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The binding of iron (39 Fe) and gallium (67Ga) to the plasma protein transferrin (Tf) was
investigated by G75 gel filtration chromatography in control patients and treated and
untreated patients with Parkinson's disease (PD). Fe-Tf binding was 100% in all controls
and PD patients suggesting that a defect in Fe-Tf binding was not involved in the aetiology
of PD. Ga-Tf binding was significantly reduced in both untreated and treated PD patients
compared to controls. In addition, treated PD patients had significantly higher Ga-Tf
binding than untreated patients. A reduction in metal binding to Tf could result in the
increase of a low molecular weight species which may more readily enter the CNS.
Alternatively, it could lead to a decrease in the transport of essential metals into the brain
via the Tf receptor system.

A significant elevation in neopterin was demonstrated within the plasma of untreated PD
patients compared to controls suggesting the activation of a cellular immune response.
Furthermore, plasma neopterin was lower in treated compared to untreated PD patients,
although the difference was not significant. There was no evidence for the activation of the
humoral immune response in untreated or treated PD patients as measured by circulating
immune complex (CIC) levels within the plasma.

An inverse relationship between Ga-Tf binding and neopterin was observed in untreated
PD patients. The addition of oxidants in the form of potassium permanganate and activated
manganese dioxide reduced Ga-Tf binding in control plasma. However, relatively little
response was observed using monocyte preparations. The results suggest that oxidants
produced by activation of the cellular immune system could damage the Tf molecule
thereby reducing its ability to bind metals.

Key Words : Parkinson's disease; Transferrin binding; Neopterin; Circulating

immune complexes; Immune activation.
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CHAPTER 1: INTRODUCTION TO PARKINSON'S DISEASE

1.1 INTRODUCTION

Parkinson's disease (PD) is a movement disorder believed to be caused by the degeneration
of the extrapyramidal nervous system. The disease was first described by the physician
James Parkinson (1817) in a publication entitled an "Essay on the Shaking Palsy".
Parkinson originally named the disease "Paralysis Agitans" but later the term Parkinson's
disease was suggested by the French neurologist Charcot (1892) as a more appropriate

name.

The incidence of PD increases with age, the average age of onset being 58-62 years
(Marttila 1987). The disease develops slowly in most patients with a mean duration of 8-10
years increasing to 13-14 years following the introduction of levodopa therapy (Marttila

and Rinne 1991).

The prevalance of PD in north America has been estimated at approximately 300 per 100
000 of the population (Rajput 1992), although within the white population values between
66-187 per 100 000 (Marttila 1983) have been reported. Rates may be lower in China
(Wang 1991) and amongst the black population (McKeigue and Marmot 1990). There is an
increase in prevalence with age, the peak prevalence (300-1800 per 100 000) occuring in
the age range 70-79 years (Martilla 1983). Prevalance has been reported to be the same for

both men and women (Schoenberg er al 1985, Rajput 1984).

Several studies have reported an increased mortality rate in PD patients compared with age
matched controls (Joseph e al 1978, Rajput 1984, Uitti et al 1993). A study by Hoehn and
Yahr (1967) found that before the introduction of levodopa, mortality rate was 2.9 times
higher in PD sufferers compared to age and sex matched controls resulting in an average
reduction in life expectancy of 6 years. Levodopa therapy has been reported to reduce
excess mortality in PD (Joseph er al 1978, Rajput 1984, Uitti et al 1993). However, the

extent of this reduction depends first, on the duration of therapy as mortality rates rise after
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prolonged treatment (Hardie ef al 1984) and second, on the severity of the disease when

levodopa therapy begins (Martilla et al 1977).

1.2 SYMPTOMS OF PARKINSON'S DISEASE

PD is characterised by a number of symptoms which vary in individual patients and are
dependent upon the severity of the disease. The three cardinal symptoms are tremor,
rigidity and impairment of motor function. However, not all symptoms are present in every
case. Patients may be classified into classical PD (all 3 symptoms are expressed), tremor
dominant PD (mild akinesia and rigidity) and akinetic-rigid PD (little or no tremor)
(Gerstenbrand and Poewe 1990). Initially, symptoms may be unilateral and confined to the
upper body but as the disorder worsens the rest of the body may become involved

(Shimomura and Headley 1988).

As a rule, the first symptom to be recognised is tremor, a rhythmic alternating contraction
and relaxation occuring in opposing muscle groups. Tremor is not specific to PD and may
be seen in a number of other conditions including hyperthyroidism, essential tremor,
multiple sclerosis and cerebellar damage (Walton 1985). However, Parkinsonian tremor
can generally be distinguished as it occurs at a relatively slow frequency (4-8 Hz) and is
seen at rest, although it may persist during movement in severe cases (Yahr 1989). In the
hands, tremor results in a characteristic "pill-rolling” movement involving the thumb and
forefinger. Tremor may then spread to the wrist, elbow and the lower limbs. At a later
stage, both sides of the body may be affected. In addition, tremor may occur in the
mandibular muscles, tongue and very occasionally in the head (Selby 1990). Parkinsonian
tremor may take the form of a rotatory movement or, as in the case of the wrist and ankle
tremor, a flexion and extension (Walton 1985). Tremor can be a highly visible and

embarrasing symptom of the condition which is worsened by emotional stress and anxiety.

Rigidity is partially responsible for the mask-like face and impairment of movement seen
in PD. It can be defined as a resistance to passive movements and occurs in opposing
muscle groups. Rigidity can be detected by grasping the arm at the elbow and rotating the

shoulder or by alternately flexing and extending the wrist (Walshe 1958). In PD, two forms
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may occur. Firstly, lead pipe rigidity which is smooth and uniform throughout the range of
movement and secondly, cog wheel rigidity where the muscles yield in a series of jerks as

the increased muscle tone is interrupted by tremor (Selby 1990).

In addition to tremor and rigidity, an impairment of motor performance is encountered in
PD. This can take three forms depending upon severity:- 1) hypokinesia, a decreased range
of motion, 2) bradykinesia, slowness during a movement and 3) akinesia, a lack of
spontaneous movement (Selby 1990). A number of typical symptoms of PD can be
attributed to these disorder of movement (for a review see Yahr 1989). Initially,
movements become slow and restricted in range. The small muscle groups are particularly
affected resulting in a loss of dexterity. As the disease worsens, the patient may experience
difficulty carrying out daily tasks such as washing, dressing and rising from a chair.
Changes in handwriting are often an early sign and include micrographia, a condition in
which the patients writing becomes progressively smaller. Bradykinesia and akinesia lead
to a "poverty of movement" including the lack of facial expressions and reduction in
blinking which result in the mask-like face often seen in early cases. Furthermore, a
reduction in fidgeting, a lack of postural adjustments and a loss of associated movement,
for example swinging of the arms when walking, may be seen. The muscles used for
speech may be affected and voice disturbances occur which are characterised by a
reduction in amplitude, lack of pronunciation and variation in pitch. Dribbling from the
mouth may occur due to a reduction in the automatic swallowing of saliva. Motor
disturbances are also responsible for the short stepped, shuffling gait characteristic of PD.
In severe cases, akinesia may cause the patient to "freeze" particularly if there is an

obstruction to forward progress.

Disorders of posture and balance occur at a later stage of the disease (Selby 1990).
Typically, the head is bent forward and the trunk bowed. The upper limbs are flexed at the
elbows and the arms adducted so that the hands are held in front of the body. The hand
itself may be affected, the metacarpophalangeal joints are flexed and the interphalangeal
Joints are hyperextended resulting in"striatal hand". There may also be flexion at the knees,

soles of the feet and toes with a tendency for the big toe to be hyper-extended. Disorders of
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balance include propulsion and retropulsion where the patient is unable to stop if pushed
forwards or backwards. An effect of propulsion is the typical "festinating" gait in which
the patient is compelled to accelerate with small steps as if he were chasing his own centre
of gravity. In addition, there is an impaired righting reflex and the sufferer may have

difficulty correcting a trip resulting in frequent falls.

Autonomic dysfunction is a more uncommon symptom of PD. Such effects may include
constipation, thermal paresthesias, postural hypotension, urine retention and excessive

sweating (Yahr 1989).

It is now accepted that the mental state of the patient is affected in PD. Initially, there may
be a mild decline in memory, attention span and cognitive function. In addition, depression
has been found to occur more commonly in PD patients than controls (Gotham et al 1986),
although it has been suggested that this may be a reaction to the illness rather than a
separate physical symptom. Dementia in PD is well documented and occurs at a later stage
of the disease. The incidence of dementia in PD patients has been found to be significantly
higher than in age matched controls (Rajput et al 1984, El-Awar et al 1987). However,
estimated incidence rates vary from 10% to 81% (Gerstenbrand and Poewe 1990). It is
possible that dementia is common in a distinct subset of patients in which the disease
process is more rapid, and the patient less responsive to levodopa (Lieberman et al 1979).
It has also been suggested that demented PD patients actually represent a condition which
combines the features of Lewy body disease and Alzheimer's disease (Hakim and

Mathieson 1979).

1.3 DOPAMINE

The major symptoms of PD can be attributed to a degeneration of the nigrostriatal pathway
which uses dopamine as a neurotransmitter. Dopamine and noradrenalin are
catecholamines and consist of a catechol nucleus (a benzene ring plus two hydroxyl

groups) and an amino group.
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1.3.1 SYNTHESIS OF DOPAMINE

Dopamine and noradrenalin are produced by the same synthetic pathway (figure 1.1) from
phenylalanine and tyrosine, both of which are obtainable from the diet (Bradford 1986).
Dopaminergic neurons have only the first two enzymes of this pathway ensuring that
dopamine is the end product. Neurones that use noradrenalin as a neurotransmitter have an
additional enzyme called dopamine-B-hydroxylase which converts dopamine to
noradrenalin. The rate limiting step in this pathway is tyrosine hydroxylase and its

concentration will determine how much dopamine or noradrenalin is produced.

CH2CHNH2 - CHzCHNHz CH2CHNH2
COOH COOH COOH

PHENYLALANINE TYROSINE DOPA
B
OH

OH | OH

—CHCH, NH, C @‘CH 2CH, NH,
—-— e
0): ¢ OH
NORADRENALIN DOPAMINE

A= Tyrosine hydroxylase
B= L-Aromatic acid decarboxylase

C= Dopaminef} Hydroxylase

Figure 1.1 Synthesis of dopamine.

Adapted from Bradford (1986).

1.3.2 STORAGE AND RELEASE OF DOPAMINE

The structure of the dopamine synapse is shown in figure 1.2. Tyrosine is transported
down the axon to the nerve terminal where it is converted into dopamine. The
neurotransmitter is synthesised and stored in vesicles within the axon terminal. An action
potential, proceeded by an influx of calcium into the terminal, causes the release of

dopamine into the synaptic cleft. The dopamine then diffuses across the cleft and attaches
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to dopamine receptors on the postsynaptic membrane. This causes a change in the
postsynaptic membrane via the activation of a second messanger system thus generating an

action potential in the postsynaptic neuron.

TYROSINE

1
)\
DOPA

\'%

DA DOPAC
OH \
2 (o8)
DA MAO
3 (pa 7\5

4 COMT MAO

1. Synthesis of dopamine

2. Storage of dopamine

3. Release of dopamine

4. Interaction with receptor

5. Re-uptake of dopamine

6. Degredation of dopamine by MAO to form Dihydroxyphenylacetic acid (DOPAC)

7. Inactivation of dopamine by COMT, with further degredation of the product by MAO

Figure 1.2 Dopamine synapse.
Adapted from Thompson (1993).

1.3.3 METABOLISM OF DOPAMINE

Two enzymes are involved in the inactivation of dopamine namely monoamine oxidase
(MAO) and catechol-O-methyl transferase (COMT). Inactivation occurs mainly via re-

uptake into the surrounding neurons and glial cells. MAO is located within the

19



mitochondria of both neurons and glial cells. It metabolises dopamine resulting from re-
uptake or leakage from the storage vescicles. In addition, the enzyme COMT brings about
the methylation of dopamine to produce inactive compounds that can enter the blood
stream and be excreted. The products of methylation may also be metabolised by MAO.
Although COMT is found in the cytoplasm of neurons and glia, extraneuronal COMT is
thought to be the major site for the inactivation of dopamine released from the nerve

terminal. The metabolites of dopamine are shown in figure 1.3.

CH;0 N
OH CH,CH,NH,
COMT ‘ MAO
3-methyltyramine
CH;0
OH CH,CH,NH,
OH OH — CH,COOH
Dopamine Homovanillic acid
HVA
MAO COMT
OH

OH™ — CH,COOH

Dihydropheny! acetic acid
DOPAC

Figure 1.3 Metabolites of dopamine.

Adapted from Bradford (1986)

1.3.4 DOPAMINE CIRCUITS IN THE BRAIN

There are 3 main dopamine pathways in the brain (figure 1.4) (Bradford 1986). Firstly, the
tubero-infundibular pathway, a local circuit consisting of cell bodies located in the
hypothalamus and projecting to the pituitary gland. This pathway is involved in endocrine
control, dopamine being released as a hypothalmic hormone. Secondly, the
mesocorticolimbic pathway which involves projections from the midbrain to the frontal

cortex and limbic system. Its functions are not fully understood, but it is thought to be



affected in patients with schizophrenia. Finally, the nigrostriatal pathway which arises in
the pars compacta of the substantia nigra and terminates in the basal ganglia. This pathway
is involved in the control of movement and is of particular relevance to PD. In addition to
these three pathways, dopamine is found in the cells of the retina and the sympathetic

ganglia of the peripheral nervous system.

Frontal cortex Caudate nucleus

Substanta nigra

Hypothalam

L’Q Midbrain
Pituitary gland
Limbic system Brain stem

Figure 1.4 Dopamine pathways in the brain.

Adapted from Thompson (1993)

1.4 BASAL GANGLIA

The basal ganglia comprises a group of subcortical structures the largest of which is the
corpus striatum (Carpenter 1985, Bradford 1986). The corpus striatum consists of a series
of interconnected structures including the caudate nucleus and putamen (collectively
known as the neostriatum) and the globus pallidus. In addition, the subthalamic nucleus,
the red nucleus and the substantia nigra may be considered to be part of the basal ganglia.
Projections exist between the basal ganglia and the thalamus, hypothalamus and cerebral

cortex. The main receptive areas of the basal ganglia are the caudate nucleus and putamen
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which receive sensory input from the thalamus and cortex and then project to the globus
pallidus. The major output of the basal ganglia is from the globus pallidus to the motor
cortex via the thalamus. Information then passes via the pyramidal system to the motor

neurons of the spinal cord.

The substantia nigra is a pigmented nucleus located in the midbrain. It consists of two
layers, an inner layer containing the dopaminergic cell bodies known as the pars compacta
and an outer layer called the pars reticulata. The axons from these dopaminergic cells
project as far as the neostriatum and constitute the nigrostriatal pathway. This pathway has
an inhibitory effect that reduces the activity of the cholinergic interneurones of the corpus
striatum. The nigrostriatal pathway is thought to be responsible for the smooth, co-
ordinated output from the neostriatum to the globus pallidus. In addition to dopaminergic
neurons, the basal ganglia also contain cholinergic and serotonergic neurotransmitter

systems, and neurons containing GABA and peptides.

The function of the basal ganglia is believed to be the planning, initiation and co-
ordination of movement. The neostriatum controls large subconscious movements of
skeletal muscle whilst the globus pallidus regulates muscle tone and body position. This
explains why damage to the basal ganglia results in a number of different movement
disorders. For example, Huntington's chorea involves damage to the striatum and is
characterised by involuntary, irregular contractions called chorea (Fahn 1989a). Ballismus
is a form of chorea that involves involuntary flinging of the limbs and can occur due to

lesions of the subthalamus (Fahn 1989b).

1.5 DEGENERATION IN PARKINSON'S DISEASE

In PD, degeneration of the dopaminergic neurons of the substantia nigra leads to a
depletion of dopamine at the site of projection of these neurons. This degeneration is
responsible for the typical loss of pigment within the substantia nigra seen in Parkinsonian
brains at post mortem (figure 1.5). Within the Parkinsonian brain, dopamine levels in the
neostriatum may be decreased by 80-90% (Bernheimer ef al 1973) with a greater reduction

in the putamen compared with the caudate nucleus (Kish er al 1988). This is because most
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cell loss occurs in the lateral zona compacta of the substantia nigra which projects
primarily to the putamen (Bernheimer 1973). Some cell loss is also seen in the globus
pallidus. In addition to loss of dopaminergic neurons, there is a reduction in the enzymes
that synthesis dopamine, namely tyrosine hydroxylase (McGeer and McGeer 1976) and
dopa decarboxylase (Lloyd er al 1975). Initially, an increase in the activity of the
remaining dopaminergic neurons and hypersensitivity of the post synaptic dopamine
feceptors compensates for neuronal cell loss (Agid et al 1987). This explains why 80-85%
of substantia nigra neurons must be lost before the Symptoms of the disease appear

(Marsden 1982).

Cell loss in PD is not confined to the nigrostriatal pathway. Dopaminergic neurons of the
tuberoinfundibular (Rinne and Sonninen 1973) and mesocorticolimbic pathways (Javoy-
Agid and Agid 1980) degenerate but to a lesser extent. However, those projecting to the
spinal cord appear to be spared (Agid et al 1987). In addition, other neurotransmitter
systems may be affected in PD. A reduction in noradrenalin (Rinne and Sonninen 1973)
and GABA (Diamond and Borison 1978) have been reported in the substantia nigra of PD
patients. Furthermore, noradrenergic neurones in the locus coeruleus, cholinergic neurons
in the nucleus basalis of Meynert and serotonergic neurons of the raphe nuclei (all of
which project from subcortical to cortical and limbic structures) may be affected (Agid er

al 1987).

1.6 PATHOPHYSIOLOGY OF PARKINSON'S DISEASE

The classic motor symptoms of PD are believed to arise as a result of the degeneration of
dopaminergic systems (Langston 1989a). Rigidity and hypokinesia are associated with
dopamine depletion in the putamen. This is the area of the striatum mainly concerned with
motor function as oppose to the caudate nucleus, which is involved in psychomotor
function and motivation. By contrast, postural and gait defects are most likely to be due to
the degeneration of non-dopaminergic neurons (Agid et al 1987). Tremor may also arise
due to the degeneration of areas other than the nigrostriatal tract. This could explain why

tremor is not related to neuronal loss in the substantia nigra (Rinne et al 1989). Cognitive
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defects such as bradyphrenia (a slowness of information processing that may result in
slowness of thought, impaired attention and apathy), depression, memory disorders and
dementia are thought to be partly due to subcortical lesions. Degeneration of dopaminergic
systems may affect mental state in PD since dementia was found to be correlated with cell
loss in the medial substantia nigra (Rinne et al 1989). The medial substantia nigra projects
to the caudate nucleus which in turn has connections with the frontal cortex. It has also
been suggested that dementia in PD patients may arise due to dysfunction of the ascending
cholinergic system which originates in the subcortical nucleus basalis of Meynert.
Neuronal loss in this nucleus is known to occur to a greater degree in demented patients
(Gaspar and Gray 1984). Alternatively, dementia in PD may be due to the presence of the
lesions of Alzheimer's disease, namely senile plaques (SP) and neurofibrillary tangles
(NFT), within the cortex (Hakim and Mathieson 1979). This is supported by the fact that
the severity of dementia in PD is correlated with the extent of Alzheimer type pathology

(Jellinger 1986b).

1.7 NEUROPATHOLOGY OF PARKINSON'S DISEASE

In addition to neurochemical changes, neuropathological changes also occur within the
Parkinsonian brain. The most important of these changes is a form of cytoskeletal
abnormality known as the Lewy body (LB), a cytoplasmic inclusion found within nerve
cells (figure 1.6). LBs are said to be the pathological hallmark of PD, although they are not
specific to PD and may occur in Alzheimer patients (Morris et al 1989) and in elderly
controls who have not developed the symptoms of PD (Gibb and Lees 1989). In PD
patients, LBs are mainly located in the substantia nigra although they may also be present
in the locus coeruleus, dorsal vagal nuclei and nucleus basalis of Meynert (Jellinger
1986b). In a subset of patients, LBs have been reported to be abundant throughout the
cortex in a condition known as diffuse Lewy body disease (Yoshimura 1983). This type of
pathology has been found to be associated with cognitive defects and dementia (Yagashita

et al 1980).
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other body secretions. Third serotransferrin, often referred to simply as transferrin, is the
form found within blood serum and a number of other mammalian fluids including the
cerebrospinal fluid, bile, amniotic fluid and lymph (Harris and Aisen 1989). The liver is
the major site of Tf synthesis although it is also produced in the mammary glands,

lymphocytes, muscle and in the brain (Bomford and Munro 1985).

2.2.1 STRUCTURE OF TRANSFERRIN

The Tf molecule is a glycoprotein consisting of a single polypeptide chain of 679 amino
acids with two asparagine linked oligosaccharide chains. The estimated molecular weight

of the Tf molecule is 79 570 D (MacGillivray et al 1983).
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Figure 2.1 Simplified diagram of the human lactoferrin molecule.
Taken from Baker et al (1987)
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Crystallographical studies have provided information about the structure of human
lactoferrin which may be extended to the other Tf molecules (Aisen 1989). The
polypeptide chain of the protein is arranged in two lobes, an N-terminal lobe and a C-
terminal lobe, related by a 2 fold screw axis (figure 2.1). Each lobe is further divided into

two domains surrounding a cleft in which the Fe binding site is located.

2.2.2 TRANSFERRIN AND IRON BINDING

There is an Fe binding site within both lobes of the Tf enabling one molecule to bind two
atoms of Fe. The amino acids involved in Fe binding are the same for both binding sites
although they may be located in different positions. Each Fe atom is co-ordinated by two
tyrosines, one aspartic acid, one histidine, a synergistic anion (in vivo HCO3-) and either a
hydroxyl ion or a water molecule (Thorstensen and Romslo 1990). Controversy exists as to
whether the two Fe binding sites of Tf are functionally identical. Zak and Aisen (1986)
reported that the N-terminal site was predominantly occupied by Fe although it is the
weaker of the two binding sites. However, this finding was not supported by a subsequent

study which suggested that the two sites were equally occupied (Beguin et al 1988).

Physical and chemical differences are believed to exist between the two Fe binding sites of
Tf. The C-terminal site has been shown to have a greater affinity for Fe than the N-
terminal site (Harris 1983). Furthermore, the C-terminal site is acid stable and only looses
its Fe when the pH is reduced to between 5 and 6. The N-terminal site, on the other hand,
is acid labile and looses its Fe between pH 6 and 7 (Lestas 1976). Metal binding to Tf
involves the ferric form of Fe and the Tf molecule itself may oxidise the ferrous form to
enable binding to occur. A unique property of Tf metal binding is the concomitant binding
of the Tf molecule to an anion. /n vivo, the anion is thought to be either HCO3- or CO3-
(Harris and Aisen 1989). Four forms of Tf may exist within the serum depending upon
which of the binding sites are occupied. ApoTf has two free Fe sites and is the most
abundant form of seroTf. Monoferric-A and monferric-B Tf have either the C-terminal site
or N-terminal site occupied respectively. Finally, the form of Tf in which Fe is bound to

both sites is known as diferric Tf.
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2.2.3 TRANSFERRIN AND OTHER METALS

Under normal circumstances only 30% of the binding sites of Tf within the plasma are
occupied by Fe (Martin et al 1987) leaving plenty of capacity for the binding of Tf to a
range of other metals. Tf has been demonstrated to bind to a variety of metal ions including
ions of the first transition series, main group elements, lanthanides and actinides. A
number of the metal ions that are known to bind to Tf include Al3+, Ga3+, Mn3+, Cr,3+,
Co3+, Ni2+, Zn2+, Cu2+. In addition to Fe transport, Tf is believed to play a role in the
transport of Zn (Evans 1976, Harris and Keen 1989), Mn (Aschen and Gannon 1994) and
Al (Roskams and Connor 1990) within the body.

2.2.4 TRANSFERRIN RECEPTORS

The Tf receptor is a dimer of two identical subunits linked together by two disulphide
bridges (figure 2.2). Each subunit consists of three domains, an N-terminal cytoplasmic
tail, a transmembrane section and an extracellular C-terminal region to which the Tf
molecule is bound. In addition, three N-asparginine linked carbohydrate chains are bound
to the extracellular portion of the receptor. A cysteine in each transmembrane section

anchors the receptor to the cell membrane (Thorstensen and Romslo 1990).

Transferrin receptors are embedded in the cell membranes of a variety of Fe requiring cells
including reticulocytes, fibroblasts, hepatocytes and macrophages (Harris and Aisen 1989).
In addition, the brain possesses Tf receptors on the vascular endothelium (Jefferies et al

1984) and on individual neurons (Morris et al 1994).

The number of Tf receptors present on the cell surface is determined by the levels of Fe
available. The receptor density on the surface of cultured cells was found to decrease as the
availability of Fe increased. Conversely, the number of cell surface Tf receptors was found
to increase if Fe was deficient (Rudolph ef al 1985). Hence, alteration in Fe levels results
in a change in the total number of Tf receptors due to an alteration in the rate of receptor
synthesis. In addition, the number of cell surface receptors may be altered by the
translocation of receptors between the cell surface and the internal environment, although
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this occurs more frequently in response to changes in cell differentiation (Bomford and

Munro 1985).
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Figure 2.2 Transferrin receptor.
Adapted from Aisen (1989)

2.2.5 CELLULAR UPTAKE OF IRON BOUND TO TRANSFERRIN

The cellular uptake of Fe is generally thought to occur via a process referred to as receptor
mediated endocytosis (RME) (Thorstensen and Romslo 1990). Initially, the Fe bound to Tf
attaches to the Tf receptor present on the cell surface. The Fe-Tf-receptor complex is then
internalised via the formation of an endocytotic vesicle known as an endosome. Within the

endosome a proton pump lowers the pH resulting in the release of Fe from the complex.
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The Fe is subsequently transported across the endosomal membrane into the cytosol. The
apoTf bound to the receptor is then returned to the cell surface in an exocytotic vesicle
which fuses with the plasma membrane to release the Tf-receptor complex. The
extracellular pH of 7.4 causes the dissociation of the apoTf from the receptor and the Tf
molecule re-enters the circulation where it can participate further in the transport of Fe
(Thorstensen and Romslo 1990). Additional mechanisms of Fe uptake to RME may exist
in the hepatocyte. The Redox model also involves the binding of Tf to its receptor.
However, following receptor binding it has been suggested that the actions of protons and
reducing factors at the cell membrane destabilize the Tf-Fe bond and bring about a
reduction of Fe. Ferrous ions are liberated and are transported across the cell membrane
independently of the Tf system via a specific Fe carrier (Thorstensen and Romslo 1988). In
addition, the hepatocyte may exhibit a non specific binding of Tf to the cell membrane
followed by internalisation of the complex with the pH dependent release of Fe (Morgan

and Baker 1986).

2.2.6 TRANSFERRIN AND THE ENTRY OF METALS INTO THE BRAIN

The Tf system is believed to be involved in the entry of Fe into the brain. Tf receptors have
been found to be present on the endothelium of brain vasculature and the endocytosis of Tf
is known to occur within these capillaries (Pardridge et al 1987). The ferroTf may pass
directly through the capillary endothelium to deliver Fe directly to those cells possessing
Tf receptors (Fishman et al 1987). An alternative hypothesis suggests that Fe gains access
to the brain via the internalisation of the Tf-Tf receptor complex by the cerebral capillaries.
Fe may then dissociate from the seroTf resulting in deposition within the endothelial cells
of the capillaries. The deposited Fe may then be taken up by brain derived Tf and delivered
to cells of the CNS possessing Tf receptors where it is internalised by RME (Morris et al
1992). This theory is supported by the observation that following its systemic
administration, uptake of Tf bound Fe in the rat brain was found to reflect the distribution
of Tf receptors (Morris et al 1992). The highest density of Tf receptors, and hence the
greatest uptake of Fe, occurs in the neocortex, hippocampus and brain stem. However, Tf

mediated uptake of Fe cannot account for the accumulation of Fe within the brain as the
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density of Tf receptors does not correspond to the distribution of brain Fe (Morris et al
1992, Hill et al 1985) which is highest in the substantia nigra and globus pallidus (Dexter
et al 1989b). In order to explain this anomaly, it has been proposed that Fe may be
transported within neurons from areas with a high density to areas with a low density of Tf
receptors (Hill ez al 1985). It has however, been reported that the levels of Tf itself are
highest in the Fe rich areas such as the globus pallidus and substantia nigra in the rat brain

(Roskams and Connor 1994).

In addition to Fe, the entry of other metals into the brain may be regulated via the Tf
system. It has been reported that the Tf receptor present in the rat brain has a very high
affinity for Al bound to Tf. Furthermore, Al has been reported to gain entry into the CNS
via the Tf receptor system (Roskams and Connor 1990). Further studies have suggested
that Mn may enter the brain via a Tf conjugated Mn transport system (Aschner and

Gannon 1994).

2.2.7 METAL-TRANSFERRIN BINDING WITHIN THE PLASMA

Speciation refers to the chemical form in which a metal is present within the plasma. Most
studies have been made on Al, a metal that is known to be toxic and has been implicated in
a number of neurological disorders. Within the plasma, Al is believed to be bound
predominantly to Tf (Fatemi et al 1991, Harris 1992), although Al has also been found to
bind to serum albumen (Trapp 1983, Fatemi et al 1991). Further studies have reported that
following an increase in serum Al levels, additional serum proteins, for example
immunoglobulins, can compete with Tf and albumen to bind Al (Favarato ef al 1991). In
addition to plasma proteins, a number of low molecular weight (LMW) species have also

been reported to bind to Al within the plasma.

In the absence of a suitable radio-isotope of Al, 67Gallium (67Ga) has been employed as a
marker to study the binding of Al within the plasma. Ga and Al are both group III metals.
67Ga has been shown to be a suitable analogue of Al in investigations of Al speciation
within the plasma (Cochran ez al 1983, Farrar et al 1990) and as a marker for Al transport
in the rat brain (Pullen et al 1990). Furthermore, Hodgkins ez al (1993) demonstrated that
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Ga-Tf binding was significantly correlated with AI-Tf binding. Ga-Tf binding was initially
used as a model to study Al speciation (Farrar et al 1990) but can be extended as a marker

for the binding of Tf to a variety of other metals.

2.3 REDUCED GA-TF BINDING IN NEUROLOGICAL DISEASES

The binding of Ga to Tf within the plasma has been investigated in a number of
neurological disease. Farrar et al (1990) reported that the percentage of Ga bound to Tf
within the plasma of Alzheimer's Disease and Down's syndrome patients was significantly
reduced in comparison with controls. However, these studies have been criticised for a
number of reasons. Firstly, the percentage of Ga bound to Tf was lower than would be
expected. This could be attributed to a lack of bicarbonate in the medium which is known
to be required for Tf binding to metals (Candy et al 1990). Secondly, the reduction in
binding seen in both patient groups could be a reflection of reduced Tf levels (McGregor et
al 1991). The studies of Farrar er al were also criticised on the grounds that the increased
Tf saturation with Fe seen in the AD group could account for the reduction in Ga-Tf
binding observed. However, a defect that results in a reduced binding of Tf to Ga could
also reduce the amount of Tf available thus increasing Tf-Fe saturation. Further studies
have also reported a reduced binding of Ga to Tf in patients with neurological diseases.
Forstl et al (1991) and Brammer et al (1990) reported a significant reduction in the
percentage of Ga bound to plasma proteins in Alzheimer patients compared to age and sex
matched controls. However, these findings are controversial and could not be confirmed by
others (Taylor et al 1991, McGregor et al 1991). In addition, Ga-Tf binding has been
reported to be significantly reduced in Down's syndrome patients compared to controls.
Furthermore, binding was significantly lower in demented compared to non demented
Down's patients (Hodgkins e al 1993). Preliminary studies have also noted a reduction in

Ga-Tf binding in PD patients compared to controls (Hodgkins 1992, Winsper et al 1994).

2.3.1 BINDING OF METALS TO A LOW MOLECULAR WEIGHT SPECIES

Within control plasma, the binding of Ga to Tf has been found to be less than 100 percent.
Hence, a proportion of the Ga (and by implication Al) may be present as a LMW species
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and not bound to Tf (Hodgkins et al 1993, Winsper et al 1994). Subsequently, a reduction
in the percentage of Ga bound to Tf may result in a corresponding increase in a LMW
species within the plasma. Most studies have been made on Al although there is
controversy as to the identity of the LMW species binding to this metal. Chromatographic
techniques have produced varying results. VanGinkle ef al (1990) reported that in rat
serum Al was associated with a LMW citrate species. These findings were further
supported by Martin et al (1987) who suggests that citrate was the most likely LMW
carrier of Al within human plasma. Furthermore, Fatemi ef al (1991) demonstrated that in
the presence of high plasma Al levels, appreciable to those found in haemodialysis
patients, some of the Al was bound to citrate. Computer models have also been used to
predict the LMW forms of Al present within the plasma. Jackson (1990) reported that at
physiological pH, the LMW Al would exist predominantly as hydrolysed phosphate
complexes with some binding to a citrate species. This finding was supported by Harris
(1992). By contrast, Hodgkins et al (1993) identified the LMW Ga species (used as a
marker for Al) present in the plasma as silicate or phosphate. It has also been suggested
that a LMW protein transports Al in the case of haemodialysis patients who have high

levels of Al within their plasma (Khalil-Manesh e al 1989).

2.3.2 IMPLICATIONS OF REDUCED METAL TRANSFERRIN BINDING

The decreased binding of Ga to Tf may reflect a reduction in Tf binding of many metals
within the plasma. The extent to which a particular metal would exhibit a reduction in
binding depends upon its stability constant with Tf, those metals with lower stability

constant being displaced from Tf first.

Table 2.1 Stability constants of metal-transferrin complexes.

log K1 log K2
Fe-Tf 22.5 21.4
Ga-Tf 20.3 19.3
Al-Tf 12.9 12.3
Zn-Tf 7.42 6.0
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Fe-Tf is known to have the greatest estimated stability constant followed by Ga, Al (Martin

1987) and Zn (Harris 1992) (table 2.1).

A reduction in the binding of metals to Tf could have two possible effects both of which
could have implications for a number of neurological diseases. Firstly, it has been
suggested that a reduction in Tf mediated transport could have a damaging effect by
limiting the brain entry of essential metals (Hodgkins e al 1993). The Tf system has been
found to be involved in the uptake of both Al and Fe into the brain (Roskams and Connor
1990). A number of metals such as Mg, Zn and Fe are known to be required for brain
functioning and a deficiency of essential metals has been implicated in the aetiology of
neurological diseases. For example, the level of Zn in the hippocampus has been reported
to be decreased in AD and a deficiency of Zn enzymes may play a role in the pathology of
this disorder (Constantinidis 1991). In addition, Mg deficiency has been implicated in the
aetiology of PD (Yasui et al 1992a) and ALS (Yasui ez al 1992b). Secondly, a reduction in
metal Tf binding may facilitate the entry of toxic metals into the brain, Tf may have a
protective function by regulating the uptake of certain metals. For example, the uptake of
Mg across the BBB of the rat is limited by the binding of the metal to Tf (Rabin er al
1993). A reduction in Tf meta] binding increases the availability of the LMW form of the
metal which could then cross the BBB unhindered, resulting in deposition within the brain
(Farrar et al 1990). Indeed in hypotransferrinaemic mice, there was a greatly enhanced
uptake of iron into the brain indicating that non-Tf bound iron readily crosses the BBB
(Ueda et al 1993). Furthermore, in haemodialysis patients there is an elevation in plasma
Al and a subsequent increase in a LMW form of the metal. It has been suggested that this
LMW species is neurotoxic and crosses the BBB more easily (King et al 1982). Hence, the
identity of the LMW species may be important in determining whether brain entry of the
metal is increased. Citrate has been reported to enhance the bioavailability of Al by
increasing its absorption and tissue accumulation (Slanina ez al 1985). On the other hand,
silicon, which can react with Al to form Al silicates, may possibly protect against Al

accumulation in the brain (Carlisle 1986).
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It is also possible that reduced binding is a consequence of earlier pathogenic events in the
brain e.g. oxidation or immune activation within the plasma. This hypothesis will be

discussed in chapter 7.

2.3.3 WHY IS GALLIUM TRANSFERRIN BINDING REDUCED?

A number of factors could be responsible for a reduction in the binding of Tf to metals.
Biochemical alterations within the blood plasma have been shown to result in changes in
Ga-Tf binding. The bicarbonate anion is known to be required for Tf binding (Aisen ef al
1967). As expected, the binding of Ga to Tf in vitro was found to depend upon the level of
bicarbonate present, maximum binding occurring in the presence of physiological levels of
HCO3- (Hodgkins 1992). In addition, deviations from the physiological pH of 7.4 have
been shown to reduce Ga-Tf binding and, to a lesser extent, Fe-Tf binding with the
liberation of a LMW species (Hodgkins 1992, McGregor and Brock 1992). Changes in the
electrolytic composition of plasma can also affect Tf binding. The addition of the metals
Fe and Al to plasma was found to bring about a reduction in Ga-Tf binding, although Mg,
Zn and Cu had little effect (Hodgkins 1992). Furthermore, the presence of a high affinity
LMW ligand may reduce the binding of Tf to metals by competing with the Tf molecule.
An increase in the level of citrate within serum was found to markedly reduce the binding

of Ga to Tf in vitro (McGregor and Brock 1992).

A reduction in the levels of Tf will obviously reduce its availability to bind to metals. Tf
levels are depressed in response to a number of events including an increase in body iron
stores, nephrosis, cirrhosis of the liver, protein malnutrition, haemolytic anaemia and

inflammation (Morgan 1974).

Farrar et al (1990) suggested that a functional defect in the Tf molecule could result in a
reduction in Ga-Tf binding. A number of variants of the Tf molecule have been reported
(Kirk 1967). Furthermore, Evans et al (1982) described a variant of Tf which bound to iron

abnormally at the C-terminal site.,
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Alternatively, increased oxidation within the circulation could provide a mechanism
whereby the Tf molecule is damaged thus reducing its metal binding capacity. The
addition of oxidising agents to plasma was found to induce a reduction in Ga-Tf binding in
vitro (Hodgkins 1992). A possible source of oxidising species would be an immune
reaction within the body. Hence, it has been suggested that an increase in oxidation, due to
the activity of macrophages, results in the reduction in Ga-Tf binding seen in PD patients
(Winsper et al 1994). It is also possible that the components of the immune system attack
the Tf molecule directly. An autoimmune form of atransferrinemia has been described
involving the production of auto-antibodies specific for the Tf molecule with the
generation of circulating immune complexes of Tf and IgG (Westerhausen and Meurret
19777). The Tf molecule may also be responsive to inflammation. The inflammatory
response can stimulate changes in the concentration of a series of plasma proteins called
Acute Phase Proteins (APP) (Kushner 1988). Tf is believed to be a negative acute phase
protein thereby its levels may fall in response to inflammation (Maes et al 1992). The
possible relationship between the immune response and metal binding will be discussed

further in chapter 7.
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CHAPTER 3: NEOPTERIN AND THE IMMUNE RESPONSE

3.1 THE IMMUNE RESPONSE

The immune system (IS) is the bodies means of defence against infection. Two types of
immune response occur, the innate and the adaptive immune response (Sell 1987, Totora

and Anagnostakos 1989).

The innate (or non-specific) IS is inherited and involves a general response to a variety of
infectious agents. In this response, phagocytic cells play an important role in engulfing and
destroying foreign cells and debris. The phagocytic cell involved in the initial immune
reaction is the neutrophil, a form of polymorphonuclear leukocyte. In addition,
macrophages, formed from blood monocytes, are recruited at a later stage of the response.
The non-specific IS also includes a group of up to 20 proteins collectively referred to as
complement. Activation of complement involves a cascade of reactions resulting in the
generation of activated molecules. The classical pathway for complement activation is
initiated via the binding of the complement protein Clq to an antibody molecule that has
reacted with an antigen. In addition, an alternative complement pathway exists that can be
activated by bacterial components such as lipopolysaccharide. The complement system can
attack foreign invaders in a number of ways. Firstly, the activated complement component
C3b may act as an opsonin to attract phagocytic cells which may then engulf and destroy
the invader. Secondly, a membrane attack complex (MAC), composed of complement
proteins C5-C9, may be formed. This complex can insert itself into the lipid membrane

where it forms a transmembrane channel resulting in cell lysis and death.

In contrast to the innate IS, the adaptive (or specific) IS develops in response to a specific
antigen. In this case, a particular cell (T-cell) or molecule (antibody) is generated that
recognises a specific antigen. Antigens comprise several substances that are recognised by
the body as being foreign and include microbial structures, toxins and transplanted tissue.

The adaptive IS consists of both cellular and humoral immunity.
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Cellular immunity relies upon the actions of sensitised T-lymphocytes and is effective
against parasites, viruses, cancer cells and transplanted tissue. The T-cell alone cannot
recognise an antigen and requires the help of an antigen presenting cell (APC). APCs are
generally macrophages, although a number of other cells can fulfil this role. The APC
internalises and processes antigens, fragmenting them into antigenic peptides. These
peptides are then displayed upon the surface of the APC in combination with a self-marker
known as a major histocompatibility complex (MHC) molecule. T-cells are equipped with
cell surface receptors that allow them to react to specific antigens providing they are in
combination with an MHC molecule. Two forms of MHC molecule exist. MHC class 1
antigens which are present on the surface of virtually all nucleated cells and MHC Class II
antigens which are only expressed on certain cells such as macrophages and B-
lymphocytes. When a T-cell is activated by its specific antigen in combination with an
MHC molecule, it divides and differentiates to form a clone consisting of sub-populations
of cells each with a different function. T-helper cells aid antibody formation by secreting
lymphokines that stimulate B-cells. T-helper/inducer cells can be identified by the
presence of CD4 cell surface markers and recognise antigens displayed with MHC class II
antigens. T-cytotoxic lymphocytes kill target cells by causing cell lysis and T-suppressor
cells are responsible for limiting the immune response. T-suppressor/cytotoxic cells can be
detected by CD8 markers and recognise antigen in combination with MHC class I

molecules.

Humoral immunity involves the production of antibodies i.e. protein molecules that react
specifically to antigens. This system is involved in defence mainly against bacterial and
viral pathogens. The B-lymphocyte has a surface receptor that enables it to recognise a
specific antigen in a process that does not require the presence of an MHC molecule.
Following antigenic stimulation, the B-lymphocyte divides and differentiates into plasma
cells which synthesis and secrete antibody. Antibodies can act by binding to antigens to

neutralise them or by precipitating the actions of complement or phagocytic cells.

The components of the immune response are influenced by a number of chemical

mediators known as cytokines. Lymphokines are a type of cytokine which are produced by
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lymphocytes and include the interleukins and Y interferons. Interleukins are the products of
activated T-cells and macrophages and are capable of stimulating the activation and
differentiation of lymphocytes. By contrast, vy interferons are produced by T-cells and are
involved in regulating the expression of MHC molecules and stimulating the

differentiation of cytotoxic T-cells.

3.2 THE IMMUNE SYSTEM OF THE BRAIN

Until recently the possible role of the immune response in neurological diseases has been
limited by the concept that the brain was "immunologically privileged". This refers to a
number of characteristics of the brain-: 1) the existence of the blood brain barrier (BBB)
preventing antibodies and immunocompetant cells from entering the brain; 2) the absence
of lymphatic drainage of the central nervous system (CNS); 3) the inability of neurons to
express MHC molecules and 4) the fact that inflammation is atypical of the brain (McGeer
et al 1991). However, more recent evidence has brought into question the concept of
immunological privilege of the brain. Firstly, in certain circumstances the BBB may not
act as a complete barrier to immune system mediators. For example, the BBB is known to
be almost absent in the olfactory epithelium, with additional weaknesses detected in
regions of the temporal lobe, hypothalamus and brain stem (Balin et al 1986). In addition,
head trauma and natural ageing can result in a deterioration of the BBB (Wisniewski and
Kozlowski 1982). Furthermore, it has been reported that immune cells may penetrate the
intact BBB. For example, activated T-cells have been shown to bind to endothelial cells
and pass through the BBB (Savion ef al 1984). Activated T-cells may also secrete
mediators that increase vascular permeability thereby allowing antibodies and
immunocompetant cells to pass through the BBB (Leibowitz and Hughes 1983). Secondly,
recent studies have demonstrated a significant infiltration of lymphocytes into the brain
(Wekerle ef al 1986). Thirdly, it now appears that a variety of cells originating within the
CNS are capable of expressing MHC antigens upon their surface and presenting antigen to
T-cells in culture. These include microglia (McGeer et al 1991, Krzanowski 1993),
astrocytes (Fontana et al 1984), oligodendrocytes (Cashman and Noronha 1986) and

endothelial cells (Fabry et al 1990). Finally, it is now generally accepted that in the case of
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viral infections, head trauma and certain neurological diseases, inflammatory responses
occur within the CNS (Rogers and Luber-Narod 1988, McGeer et al 1991, Aisen and
Davis 1994).

3.3 THE IMMUNE RESPONSE AND NEUROLOGICAL DISEASES

Immune mechanisms are known to play a role in the pathogenesis of the neurological
disease myasthenia gravis. In this disorder, auto-antibodies are directed against acetyl-
choline receptors resulting in an inhibition of neuromuscular transmission (Drachman et al
1982). In addition, the immune response has been implicated in a variety of disorders
affecting the peripheral nervous system. The formation of immune complexes has been
reported in Guillain-Barre syndrome in which demyelination of peripheral nerves occurs
(Tachovsky et al 1976). Amyotrophic lateral sclerosis (ALS) involves degeneration of the
motor neurons of the spinal cord. Elements consistent with a cellular immune response, i.e.
T-helper/inducer cells, cytotoxic T-cells and MHC positive microglia, have been detected
within the spinal cord of ALS patients (McGeer et al 1991). Multiple sclerosis, depression,
Down's syndrome and Alzheimer's Disease (AD) represent diseases of the CNS in which
immune mechanisms have been implicated. In multiple sclerosis, demyelination of the
white matter of the CNS occurs. The pathological process is believed to involve the
generation of auto-antibodies which attack the oligodendrocytes that synthesis myelin. In
addition, T-cells appear to recognise a component of myelin, presented in combination
with an MHC molecule by macrophages, leading to the destruction of the myelin sheath of
neurons (Steinman 1993). Major depression also appears to be accompanied by immune
activation including T-cell activation, B-cell proliferation, generation of auto-antibodies
and an increase in the production of IL-1B and IL-6 (Maes 1995). Finally, elevation of
urinary neopterin (Armstrong ef al 1994) and the presence of circulating immune
complexes (Heinonen et al 1993) provides evidence for the activation of both cellular and

humoral immunity in AD and Down's syndrome patients.

Several lines of evidence exist to support a role for the IR in the aetiology of AD.

Complement proteins of the classical pathway are associated with amyloid plaques
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(Kalaria er al 1991, McGeer et al 1989b, Eikelenboom and Stam 1982), dystrophic
neurons, neuropil threads and some neurons (McGeer 1989b). In addition,
immunoreactivity for the complement components C5b-C9 (i.e. the MAC) has been found
to be associated with dystrophic neurons and NFTs in AD brains (McGeer et al 1989b,
Itagaki et al 1994). The presence of T-lymphocytes and cells possessing MHC
glycoproteins provides evidence that is consistent with a cell mediated immune response
within the AD brain. The presence of both T-helper/inducer (CD4) and T-
cytotoxic/suppressor (CD8) cells has been reported within the AD hippocampus (McGeer
et al 1989a, 1991). Furthermore, Itagaski et al (1988) reported an increase in the number of
T-cytotoxic cells in AD brain tissue compared to age matched controls. However, these
findings were not supported by Rozemuller er al (1992a) who failed to identify T-cell
subsets in AD brains. Further evidence for a T-cell response in AD brains is the presence
of CNS cells expressing both MHC class I (in humans known as HLA-A,B,C) and MHC
class I (HLA-DR) molecules which may enable them to present antigens to T-cells. Large
numbers of HLA-DR positive microglia have been detected within the AD brain (McGeer
et al 1988, Rozemuller et al 1992a). Furthermore, HLA-DR positive microglia have been
reported to be associated with amyloid plaques (McGeer ef al 1989a, Rogers er al 1988)
although only the classical and not the diffuse plaques appear to be involved( Rozemuller
et al 1992a). In addition to acting as APCs, microglia are involved in the mediation of the
immune response and in AD brains have been found to express a number of cytokines and
their receptors such as 111, IL6, TNFo (Dickson ef al 1993) and the IL2 receptor (Rogers
and Luber-Narod 1988). Several lines of evidence suggests that the humoral immune
response may also be activated in AD. The presence of circulating immune complexes
(CICs) has been demonstrated within the serum of patients with AD (Heinonen et al 1993).
In addition, auto-antibodies that specifically bind to cholinergic neurons have been
detected in the sera and cerebrospinal fluid (CSF) of AD patients (Chapman et al 1988,
McRae Deguerce et al 1987). Furthermore, Bradford er al (1989) demonstrated that the
sera from patients with AD caused complement mediated immunolysis of cholinergic
nerve terminals from the rat cerebral cortex. Serum antibodies that recognise the vascular
basement membrane have also been reported to occur in AD patients but not ageing

controls (Fillit ez al 1987). The presence of IgG has been reported in senile plaques (Ishii
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and Haga 1976, Ishii et al 1988) although subsequent attempts to stain for

immunoglobulins have proved inconsistent (McGeer et al 1989a).

3.4 THE IMMUNE RESPONSE IN PARKINSON'S DISEASE

Several lines of evidence suggest that abnormalities of the immune response may occur in
patients with PD. It has been proposed that activation of the complement system may
contribute to the pathogenesis of PD. Antibodies to the components of the classical
complement pathway, C3d, C4d, C7 and C9, have been found to stain Lewy bodies within
the Parkinsonian substantia nigra (Yamada et al 1992). In addition, oligodendroglia
identified by anti-C3d and anti-C4d were present in increased numbers in the substantia
nigra of PD patients compared to controls (Yamada et al 1992). It has been suggested that
these complement activated oligodendroglia, consisting of swollen processes of
degenerating myelin to which complement proteins are attached, may represent opsonised
oligodendrocytes. The complement component Clq, the first step of the cascade, was not
detected. This may be explained by the fact that Clq is present in small amounts and is
loosely bound to the target and may therefore become detached and dissipate within the
tissue. The trigger for the activation of the classical complement pathway is unknown but
in addition to IgG and IgM, trypsin like enzymes, myelin and viruses are capable of
initiating the cascade (Vanguri e al 1982). The alternative complement pathway does not
appear to be activated in the brains of PD patients as staining for properdin and fraction Bb

of factor B was negative (Yamada et al 1992).

Disturbances in cellular immunity may also occur in PD patient. Reduced levels of
peripheral T-cells and defective T-cell mitogenic responses have been reported in patients
with advanced PD compared to age matched controls (Martilla et al 1984). In addition, the
number of CD4+ T-helper/inducer cells as a proportion of peripheral blood mononuclear
cells was reduced in PD patients compared to controls (Martilla et al 1985). Kuhn et al
(1988) reported a reduction in both the T-suppressor cell and B-cell count in PD patients.
However, Martilla et al (1984) reported that the number of B-cells was similar in PD

patients and neurological controls. The cellular immune response has also been found to be
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increased in PD patients. Fiszer et al (1994) reported that a sub-population of T-cells
involved in infection and autoimmunity known as gamma delta T+ cells were increased in
the blood of PD patients compared to other neurological disease patients. There was also
an increase in the proportion of these cells present in the CSF of PD patients. In addition,
cells possessing MHC molecules on their surface, enabling them to present antigen to T-
cells, have been identified in PD brains. McGeer et al (1988) detected large numbers of
HLA-DR positive reactive microglia in the substantia nigra of all PD cases studied.
Furthermore, these microglia could be visualised phagocytosing dopaminergic neurons and
their processes. In addition, PD cases with dementia had large numbers of HLA-DR
positive microglia within the hippocampus (McGeer et al 1988). It has been hypothesised
that a form of non-specific cell mediated immunity known as antibody dependent cell
mediated cytotoxicity (ADCC) may be involved in the pathological processes in PD.
ADCC is a type of lymphocyte-mediated target cell killing involving the attachment of
antibody to a target cell followed by the binding of a killer lymphocyte through Fc
receptors. Killer T-cells can act without prior immunisation and are not MHC restricted.
Bokor et al (1993) reported that killer cell activity was increased in PD patients with
severe symptoms compared to milder cases and it has been hypothesised that an ADCC

reaction is mounted against dopaminergic cells.

The humoral IR may also be involved in the aetiology of PD. Pouplard and Emile (1984)
detected the presence of auto-antibodies to human sympathetic ganglion neurons in the
sera of 70.5% of PD cases studied. These antibodies appeared to cross react with CNS
structures namely the neuronal cells of the rat locus ceruleus and the pigmented neurons of
the human substantia nigra. In addition, antibodies that recognise specific epitopes of
dopaminergic neurons have been detected in the serum and CSF of PD patients. McRae-
Deguerce et al (1986) reported that the CSF from PD patients produced
immunocytochemical staining of the rat substantia nigra and Husby et al (1977) detected
antibodies against human caudate nucleus in 33% of PD cases. Furthermore, PD serum has
been found to cause complement dependent damage to cultured rat dopaminergic neurons
and it has been suggested that complement mediated humoral immunity may be involved

in the degeneration of dopaminergic neurons in PD (Defazio et al 1994).
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It has also been suggested that the cytokine tumour necrosis factor (TNF) is involved in the
degeneration of dopaminergic neurons in PD. This is supported by several lines of
evidence. Firstly, the concentration of TNFa has been reported to be significantly
increased within the striatum and CSF of PD patients compared to controls (Mogi et al
1994). Secondly, activated microglia and astrocytes are known to release TNF (Sawada et
al 1989) and TNF-immunoreactive glia have been detected within the substantia nigra of
PD patients (Boka er al 1994). Finally, immunoreactivity for TNF receptors has been
demonstrated in the cell bodies and processes of dopaminergic neurons which suggests that
they may be sensitive to TNF (Boka et al 1994). TNF is known to exhibit cytotoxic
activity against myelin and oligodendrocytes in vitro (Selmaj and Raine 1989) and may
also be toxic to neurons. TNF has been found to inhibit the respiratory chain (Schulze-
Osthoff et al 1992) and increase the production or oxygen free radicals (Asoh er al 1989).
Both of these mechanisms could result in nerve cell death. Alternatively, increased levels
of TNF may be a secondary event resulting from gliosis occurring in the substantia nigra in

PD.

In the present study, it was proposed to use various markers of the immune response to
investigate the plasma of PD patients. Neopterin has been measured as a marker of cell
mediated immunity and circulating immune complexes (CICS) as a marker of humoral

immunity.

3.5 NEOPTERIN

3.5.1 STRUCTURE OF NEOPTERIN

Neopterin belongs to the class of compounds known as pteridines. The pteridine structure
consists of a bicyclic nitrogenous ring system derived from a pyrazine and pyrimidine to
form a pyrazino-pyrimidine. Neopterin and biopterin are derivatives of the pyrazino-
pyrimidine compound with only small substitutions and are therefore referred to as
unconjugated pteridines. Pteridines can be further classified as pterins (derivatives of 2-

amino-4-0xo0-3,4 dihydropteridine) including neopterin and biopterin and lumazines
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(derivatives of 2,4-dioxo-1,2,3,4-tetrahydropteridine) (Wachter et al 1992). The structure

of neopterin is shown in figure 3.1.
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Figure 3.1 Structure of neopterin.

N

3.5.2 SYNTHESIS OF NEOPTERIN

Neopterin is a metabolite of guanosine triphosphate (GTP) and is formed during the

biosynthetic pathway of biopterin (a co-factor for neurotransmitter synthesis) (figure 3.2).

GUANOSINE-5-TRIPHOSPHATE

GTP cyclohydrolese 1

7,8-DIHYDRONEOPTERIN  phosphatases
TRIPHOSPHATE >, 7,8-DIHYDRONEOPTERIN

6-pyruvoyl-tetrahydropterin synthase

sepiapterin reductase

5,6,7,8-TETRAHYDROBIOPTERIN

Figure 3.2 Pteridine biosynthesis from guanosine triphosphate.

The first step of this pathway is catalysed by the enzyme GTP cyclohydrolase 1 with the
formation of 7,8,-dihydroneopterin triphosphate. This intermediate is then converted to
tetrahydrobiopterin by the enzymes 6-pyruvoyl-tetrahydropterin and sepiapterin reductase,
and dihydroneopterin by phosphatases. Interferon gamma is known to activate GTP
cyclohydrolase 1 in a variety of human cells (Werner et al 1990). Macrophages are unique

in that the activity of GTP cyclohydrolase 1 exceeds the activity of 6-pyruvoyl-

58




tetrahydropterin synthase. Subsequently macrophages convert only small quantities of 7,8,-
dihydroneopterin triphosphate to tetrahydrobiopterin but they produce and release large

amounts of neopterin (Fuchs ef al 1993a).

The physiological function of neopterin is unknown. Neopterin may influence cytokines
and has been found to enhance the release of TNF from monocytes (Barak and Gruener
1991). In addition, neopterin may play a part in the cytotoxic actions of macrophages and
oxidised neopterin has been found to increase the toxicity mediated by oxygen free radicals

(Weiss et al 1993).

3.5.3 NEOPTERIN AS A MARKER

Neopterin is released in large quantities by macrophages stimulated by interferon 7y
secreted by activated T cells and may therefore be an indicator of cell mediated immunity
(Huber er al 1984). Indeed, neopterin is elevated in the body fluids in a variety of
conditions in which the cellular immune response is activated i.e viral infections,

malignancies, allograft rejection and auto-immune disorders (Wachter ez al 1992).

Neopterin exists as fully oxidised neopterin and its reduced form, dihydroneopterin. Both
forms are excreted by activated macrophages. Oxidised neopterin accounts for 43% and
45% of total neopterin in the serum and urine respectively (Levine and Milstein 1984) but
Jess than 30% in the CSF (Howells et al 1986). Oxidised neopterin or total neopterin
(oxidised + reduced forms) serve equally well as a diagnostic marker of an immune
response although it may be preferable to measure oxidised neopterin as dihydroneopterin

is easily degraded (Wachter et al 1992).

3.5.4 NEOPTERIN AND NEUROLOGICAL DISEASES

Previous studies have reported an increase in neopterin levels in a number of neurological
diseases. In multiple sclerosis patients, CSF neopterin was found to be increased during
clinical exacerbations compared to levels in the same patient during remission (Fredrikson

et al 1987). Plasma and urinary neopterin have been found to be elevated in patients with
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major depression (Dunbar et al 1992, Duch et al 1984). Urinary neopterin levels were also
found to be significantly increased in Down's syndrome and AD patients compared to age
matched controls (Armstrong et al 1994). In addition, Winsper et al (1994) demonstrated
that serum neopterin levels were significantly elevated in PD patients compared to
controls. However previous studies reported that neopterin was reduced (Fujishiro et al

1990) or unchanged (Furukawa er al 1992) in the CSF of PD patients.

3.6 CIRCULATING IMMUNE COMPLEXES

Immune complexes are macromolecules formed by the interaction of antibody with a
specific antigen. The production of immune complexes by the IS is a benign and ongoing
process. Circulating immune complexes (CICs) are normally cleared from the circulation
by a series of biochemical, enzymatic and cellular processes. Prolonged antigenic
stimulation can however, result in the deposition of CICs within small blood vessels and

tissue leading to the activation of complement and subsequent damage to the host.

Increased levels of CICs occur in auto-immune diseases, malignancies and infections
(Theofilopoulos and Dixon 1980). In addition, CICs have been found to be present in the
sera of both AD and Down's syndrome patients more frequently than in controls (Soininen
et al 1993, Heinonen et al 1993). Furthermore, cognitive decline in AD patients (as
measured by the mini-mental status examination) was correlated with the level of CICs
present. (Heinonen ef al 1993). Elevated CICs have been detected in a number of other
neurological disease including multiple sclerosis (Tachovsky et al 1976, Cojocaru et al
1992) and ALS (Oldstone et al 1976, Westarp et al 1993). Previous studies have stated that
serum and CSF CIC levels did not differ in PD patients compared to patients with

progressive supranuclear palsy and cervical spondylosis (Yamada e al 1994b).

3.7 ROLE OF THE IMMUNE RESPONSE IN THE PATHOGENESIS
OF PARKINSON'S DISEASE

The role of an immune response in the aetiology of PD remains to be established. Three

possibilities exist. First, the immune response is the primary process responsible for the
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lesions of the disease. In this case an auto-immune response, where B or T lymphocytes
are capable of recognising self antigens, could be generated against the dopaminergic
neurons resulting in the degeneration of the substantia nigra. Autoimmunity can occur in
response to a number of circumstances including damage to the BBB, the presence of an
environmental toxin or infectious agent, or the abnormal expression of MHC antigens.
Second, the immune response is a secondary event involved in removing debris produced
by degeneration due to some other cause. In this case, the immune response could be a
more general inflammation occuring in response to the degeneration of the substantia
nigra. However, even if the immune response is a secondary event it may play a role by
exacerbating neuronal damage. Third, there is a further process that results in both the

observed lesions and independently stimulates the immune response.

3.8 METAL BINDING AND THE IMMUNE RESPONSE

A defect in metal binding to transferrin (Tf) and the generation of an immune response
may both be involved in the pathogenesis of PD. Furthermore, evidence exists for a
relationship between Tf binding and the immune response. In patients with immune
activation (as measured by neopterin levels), disturbances in iron metabolism have been
observed with a transfer of iron towards storage sites. Neopterin levels were found to be
positively correlated with ferritin levels and inversely related to serum iron and Tf levels
(Denz et al 1992, Fuchs et al 1993b). Winsper et al (1994) reported an inverse correlation
between Ga-Tf binding and serum neopterin (as a marker of a cell mediated response)
levels in PD patients. This could be explained by a number of possibilities. Firstly, defects
in metal binding to Tf could generate an immune response. An increase in the free metal,
due to reduced binding to Tf, could result in the stimulation of the IS by a metal or metal
complex. A number of metals have the ability to stimulate an immune response and it has
been hypothesised that a metal induced immune response within the brain could contribute
to the pathology of AD (Armstrong et al 1995). Aluminium compounds have a long
history of use as vaccine adjuvants such as in the diptheria toxoid (Edelman 1980).
Adjuvants are substances that nonspecifically enhance the immune response to an antigen.

The disorder known as chronic beryllium disease (CBD) is a lung disease arising due to
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industrial exposure to beryllium dust. In this condition, a cell mediated immunity to
beryllium occurs with the formation of granulomas or clusters of immune cells
surrounding beryllium particles in the walls of the alveoli (Mroz ef al 1991). In addition,

mercury has been found to induce antibodies against renal antigens (Kosuda et al 1993).

Secondly, immune activation could remove metals from Tf. Oxidation has been shown to
reduce plasma Ga-Tf binding in vitro (Hodgkins 1992). Hence, macrophages, that release a
number of oxidants, could result in oxidation within the periphery and a subsequent fall in
Ga-Tf binding. It is also possible that a specific immune attack of Tf occurs, damaging the
molecule with the release of metals. A Tf immune complex disease has been described
involving the production of auto-antibodies specific for the Tf molecule that results in the

generation of a CIC of Tf and IgG (Westerhausen and Meuret 1977).

Finally, a third independant factor could be responsible for both immune activation and a

reduction in Tf binding.




CHAPTER4:GALLIUM-TRANSFERRIN BINDING IN PARKINSON'S
DISEASE

4.1 INTRODUCTION

Metals have been known to be involved in the aetiology of idiopathic PD since the
demonstration that the metal manganese induces secondary Parkinsonism in man (Chandra
et al 1974). Evidence suggests that both iron (Fe) and aluminium (Al) could be involved in
the disease. Fe is increased within the substantia nigra of PD patients (Dexter ef al 1989b,
Sofic ef al 1991) and is present at high levels within substantia nigral Lewy bodies (Hirch
et al 1991). Furthermore, the intranigral injection of Fe in rats induced a depletion of
striatal dopamine resulting in a reduction in spontaneous movements and episodes of
motor freezing (Ben-Shachar and Youdim 1991). In addition, Al has been reported to be
elevated in the substantia nigra, caudate nucleus and globus pallidus of PD patients
compared to controls (Yasui et al 1992a) and is present within the Lewy bodies of PD
patients (Hirch et al 1991). It is also possible that a deficiency of an essential metal could
be involved in the pathogenesis of PD. Magnesium (Mg) levels are reduced in the
substantia nigra, globus pallidus and caudate nucleus in PD patients compared to controls
(Yasui et al 1992a) and it has been reported that a deficiency of Mg may result in CNS

degeneration in rodents (Yasui et al 1990).

The binding of 97Gallium (67Ga) to the plasma protein transferrin has been employed
initially as a marker to study Tf binding to Al (Cochran et al 1983, Farrar et al 1990) but
may also reflect Tf binding to other metals. Ga-Tf binding has been investigated in a
number of neurological disorders. The binding of Ga to Tf has been reported to be reduced
in the plasma of Alzheimer's disease (AD) and Down's syndrome patients (Farrar et al
1990, Hodgkins et al 1993). Ga-Tf binding has also been found to be depressed in PD

patients, especially prior to drug therapy (Hodgkins 1992, Winsper et al 1994).

A reduction in Tf binding may result in increased binding of the metal to a low molecular
weight (LMW) molecule. Reductions in metal binding to Tf could have several

neurological consequences and hence be involved in the pathogenesis of the disease. A
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decrease in Tf binding could lead to the increased entry of a toxic LMW species into the
brain. Alternatively, a decrease in binding to Tf could limit the transport of an essential
metal into the brain via the Tf receptor system. It is also possible that reduced Ga-Tf

binding occurs as a consequence rather than a primary cause of the disease process.

4.1.1 AIMS OF THE CHAPTER

The objectives of this study were to test the hypothesis that defective metal binding to Tf is
involved in the pathogenesis of PD by studying the binding of Fe and Ga to Tf in plasma

taken from controls, untreated and treated PD patients.

4.2 METHODS

4.2.1 MATERIALS

All chemicals used were of general grade and were supplied by: Sigma Chemical
Company Ltd (Poole, UK); Aldrich Chemical Company (Gillingham, UK); BDH
Chemicals Ltd (Poole, UK). Radio-isotopes were supplied by Amersham International

PLC (Aylesbury, UK). Distilled water was used to make up all solutions.

4.2.1.1 RADIO-ISOTOPES

67Ga (half life 78 hours) was supplied as 67GaClz in 0.4 M HCl. Fe was supplied as
59FeCl3 in 0.1 M HCI. 67Ga activity was measured by counting gamma emissions over the
energy range 50-420 KeV for 60 seconds with automatic correction for radioactive decay.
59Fe was also counted for gamma emissions over the energy range 970-1450 KeV for 60

seconds (LKB 1282 Compugamma counter, Pharmacia-LKB, Milton Kenes, UK).

4.2.2 CONTROL AND PATIENT STUDY GROUPS

A control group without neurological disease comprised 12 healthy volunteers living in the

community and 5 cancer patients courtesy of Dr Leeming (General Hospital, Birmingham).
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Plasma from untreated PD patients was obtained from Dr. H. Pall (Consultant Neurologist,
Queen Elizabeth Hospital, Birmingham) at the time of clinical diagnosis before the start of
drug therapy. All patients included in the experimental group displayed at least two of the
three classical symptoms of PD (tremor, rigidity and bradykinesia) and subsequently
responded to levodopa therapy. The severity of disease varied between stages 1-4

according to the Hoehn and Yahr's classification (Hoehn and Yahr 1967).

In addition, blood samples from treated PD patients, who were receiving anti-Parkinsonian
drugs, were obtained from an outpatient clinic courtesy of Dr. H. Pall. For the Fe-Tf
binding studies, the 4 treated patients were receiving L-Dopa. For the Ga-Tf binding
studies, 26 of the 28 treated patients were receiving L-Dopa therapy (sinemet or madopar),
15 of these were also receiving a MAO B inhibitor (selegiline) and 2 patients were
receiving benzhexol alone. Details of the patients and controls used in the Fe and Ga-Tf

binding studies are given in tables 4.1 and 4.2.

Table 4.1 Composition of the Fe-Tf study eroup.

patient group N male: female age (mean + SD) age range
controls 6 2:4 30.3+8.3 22-41
untreated PD 6 5:1 64.8+5.9 58-73
treated PD 4 3:1 62.5+6.7 57-72

Table 4.2 Composition of the Ga-Tf study eroup.

patient group N male: female age (mean +SD)  age range
controls 17 4:13 38.6 +18.7 17-81
untreated PD 26 13:13 63.2+10.5 40-80
all treated PD 28 11:17 66.3+10.9 43-89
PD treated with L-Dopa 11 2:9 703+ 11.3 52-89
PD treated with L-Dopa 15 8:7 65.2+9.1 46-76

+ selegiline
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4.2.2.1 THE UNIFIED PARKINSON'S DISEASE RATING SCORE (UPDRS)

The untreated PD patients were assesed according to the first stage of the unified
Parkinson's disease rating score (UPDRS). The first section of the UPDRS consists of 31
items referring to symptoms and signs of the disease and assesses 3 aspects; 1) Mentation,
behaviour and mood; 2) Activities of daily living and 3) Motor function. Each item is
given a score between 0 and 4 (4 referring to the most severe cases) giving a possible total
score of 124. 15 of the untreated PD patients were scored according to section 1 of the

UPDRS. The UPDRS system is included in appendix 1.

4.2.3 PLASMA PREPARATION

Blood samples were collected in lithium heparin tubes and plasma obtained by
centrifugation at 2000g for 15 minutes at room temperature (MSE Minor centrifuge, MSE

Ltd, Crawley, UK). All plasma samples were stored at -20°C prior to use.

4.2.4 GEL FILTRATION CHROMATOGRAPHY

Gel filtration chromatography is a technique employed to separate solutes depending upon
molecular size. Gel filtration chromatography has been demonstrated to be a suitable
technique to study the binding of Al (and Ga) to serum proteins (Cochran et al 1983, Trapp

1983, Favarato et al 1991).

The binding of ©7Ga and 59Fe to transferrin in human plasma was analysed by gel filtration
chromatography using Sephadex G75 beads (Sigma Chemical Company Ltd, Poole, UK)
in a 60cm by 1.6cm glass column (Amicon Ltd, Stonehouse, UK). The dry beads were
swollen in excess elution buffer (25mM Tris-HCI, 100mM NaCl, 25mM NayHCO3, pH
7.4) for 48 hours and then degassed by purging hellium through for 30 minutes. The
column was packed at a flow rate of 2mls/min and equilibriated by running elution buffer
through for 3 hours at a rate of Iml/min. Due to the dissociation of bicarbonate, it was
necessary to replace the buffer with a fresh solution every 3 hours. Fresh buffer was run

through the column for 1 hour prior to the experiment to replace the bicarbonate and to

66




clear the columns of any remaining activity.

4.2.4.1 PROCEDURE

To investigate Ga-Tf binding, 900ul of plasma was incubated with 1-5uCi of 67Ga and a
"cold" Ga(NO3)3 solution giving a final concentration of Ga equal to 10ug/l, a
concentration similar to the level of Al present in the serum (Shore and Wyatt 1983). This
was placed in a shaking water bath (60 osillations per min) at 37°C for 1 hour then applied
to the Sephadex G75 column and eluted upwards at a rate of 1ml/min using the elution
buffer. Fifty 6éml fractions were collected from the column (LKB Redirac fraction

collector, LKB Pharmacia Ltd, Milton Keynes, UK) and counted for gamma emissions.

To investigate Fe-Tf binding, 900ul of plasma was incubated with 1-5uCi of 59Fe and

applied to the G75 column following the same procedure as for 7Ga.

4.2.5 EFFECT OF % SATURATION ON FE-TF BINDING

The estimated % saturation of transferrin with iron was increased from 30% to 50%, 75%
and 100% by the addition of FeCls to the plasma prior to incubation with 9Fe and

separation on a G75 column as described in section 4.2.4.1.

4.2.6 STATISTICAL ANALYSIS

Data were presented as the mean of each patient group * standard deviation (SD). Data
analysis was by analysis of variance (ANOVA) followed by a Fischer t-test to compare the
differences between patient groups. This uses a slightly higher level of probability than a
conventional t-test because the analysis make multiple comparisons between groups
(Snedecor and Cochran 1980). The variance ratio was used to test the difference in
variance between patient groups. Differences between males and females within a patient
group were analysed via a two-tailed unpaired Student's t-test. The degree of correlation
between metal binding and patient age was assessed by correlation and regression

methods.
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4.3 RESULTS

4.3.1 FE-TF BINDING

4.3.1.1 FE-TF BINDING IN CONTROL PLASMA

Figure 4.1 shows a typical elution profile obtained when control plasma incubated with
S9Fe was applied to a G75 column. A single peak, > 75 kDa, was eluted in the void volume
(fractions 9-10) and is believed to correspond to Fe bound to Tf. In the control group, Fe-
Tf binding was 100% in all individuals. The mean % of radioactivity recovered from the

column was 82.3 £ 5.63, with a range of 72-88%.

de+5 T
P1=100%, R=81%

= 3e+5 T
S
2
g
= 2e+5
g
=4
E le+5 7
) €

Oe+0 - n"‘ﬂﬂnnBﬂnnnunnnunnnnnnnnannnnnnnnnunnu

0 10 20 30 40 50 60

Fraction number

Figure 4.1 Fe-Tf binding in control plasma.

4.3.1.2 FE-TF BINDING IN PARKINSONIAN PLASMA

Figures 4.2 and 4.3 show the speciation of Fe in untreated and treated Parkinsonian
plasma. In all untreated and treated PD patients Fe-Tf binding was 100%. The estimated

radioactivity recovered from the columns was between 80% and 90%, the mean recovery

was 84.8 + 3.08.
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Figure 4.2 Fe-Tf binding in untreated PD plasma.
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Figure 4.3 Fe-Tf binding in treated PD plasma.

4.3.1.3 EFFECT OF INCREASING FE-TF SATURATION

The estimated saturation of Tf with Fe was increased to 100% in 3 controls and 3 PD
patients. Fe-Tf binding remained 100% in two of the controls. In the third control, some
binding to a low molecular weight species was observed, Fe-Tf binding equalling 93%. In

all 3 PD patients Fe-Tf binding remained 100%.
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4.3.2 GA-TF BINDING

4.3.2.1 CHANGES IN GA-TF BINDING WITH TIME

Table 4.3 Changes in Ga-Tf binding over time.

sample 1 sample 2
control 1 27.5.94 : 60% 27.7.94 : 59%
control 2 25.5.94 : 73% 7.7.94 : 74%
control 3 23.5.94 : 75% 2.8.94 : 68%
PD1 3.9.93:63% 7.6.94:71%
PD 2 7.5.93:62% 7.6.94 : 76%
PD 3 7.5.93:72% 5.11.93:72%
PD 4 26.10.92 : 40% 3.9.93:32%

Table 4.3 shows changes in Ga-Tf binding with time within individual control and PD
patients. Patients 1, 2 and 3 were receiving therapy at both sample dates. Patient 4 was
untreated at the first sample date but was receiving therapy at the second date. The results
indicate some variation in Ga-Tf binding with time. In control subjects, Ga-Tf binding
values varied by as little as 1%. The PD patients who had received therapy at both sample

dates showed an increase in binding (PD1 and PD2) or no change in binding (PD3).

4.3.2.2 GA-TF BINDING IN CONTROL PLASMA

Figure 4.4 shows a typical elution profile obtained when control plasma was applied to a
G75 column. Peak 1, a high molecular weight form (=75KD) eluted at fractions 9-10, is
believed to be Ga-Tf. Binding activity was also observed between fractions 20 and 24 and
represents a low molecular weight species that remains unidentified. The data confirm the
results of Farrar et al (1990) and Hodgkins (1992). The % recovered radioactivity was

between 77 and 95%, mean recovery was 84.5+6.4.
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Figure 4.4 Ga speciation in control plasma.

The mean % binding of Ga to Tf (peak 1 as a % of total activity) in the control group was

73.16 £ 5.77. % Ga-Tf binding ranged from 60-82%.

4.3.2.3 GA-TF BINDING IN UNTREATED PD PLASMA

In all untreated PD plasma, a peak of radioactivity occured at fractions 9-10 and is
believed to be Ga-Tf. In the majority of individuals, a second region of activity occured
between fractions 20-24. However, in a number of PD patients there were low levels of
binding to Tf (in 10 patients less than 50% of the Ga was bound to Tf) and a second peak
of activity was observed corresponding to high levels of binding to a LMW species. This
peak occured between fractions 14 and 24, the exact location of the peak varied between
patients. In 3 PD patients, two distinct LMW peaks were observed. Figure 4.5 shows the
elution profiles obtained when the plasma from two untreated PD patients incubated with
67Ga was applied to a G75 column. A large variation in % binding was observed in the PD
group and it was possible to separate experimental subjects into "high" and "low" binders.
Figure 4.6 shows an elution profile obtained with a low Tf binder in which two LMW
peaks occured at fractions 14 and 23. The mean recovered radioactivity in the untreated PD

group was 89.5 £ 6.2 with a range of 81-99%.
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Figure 4.5 Ga speciation in untreated PD plasma.
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Figure 4.6 Ga speciation in an untreated PD patient with "low binding".
Peak 1 represents Ga binding to Tf, peaks 2 and 3 represent binding to a LMW species.

Mean % Ga-Tf binding in untreated Parkinsonian plasma was 52.15 £ 15.73. Values

ranged between 25 and 78%.

4.3.2.4 THE RELATIONSHIP BETWEEN UPDRS AND GA-TF BINDING

The unified Parkinson's disease rating score (UPDRS) was found to be negatively

correlated with % Ga-Tf binding in 16 untreated PD patients (r=-0.61, p<0.02) (figure 4.7).
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Figure 4.7 The relationship between Ga-Tf binding and UPDRS in untreated PD patients.

4.3.2.5 GA-TF BINDING IN TREATED PD PLASMA

A peak corresponding to Ga-Tf was eluted at fractions 9-10 in all treated PD patients. In
the majority of patients, binding activity was also observed between fractions 20 and 24
representing a LMW species. However, in one patient with low binding to Tf, a LMW
peaks was seen between fractions 14 and 16. Recovered radioactivity ranged from 81% to

99%, the mean % recovery was 87.9 +9.0.

The mean % binding of Ga to Tf in treated PD patients was 65.48 + 9.02. Binding values
ranged from 32% to 76%.

4.3.2.6 COMPARISONS BETWEEN PATIENT GROUPS

Differences in mean % Ga-Tf binding over the study population in table 4.4 (i.e. controls,

untreated and treated PD patients) were significant (p<0.001).

Ga-Tf binding was found to be significantly reduced (p<0.05) in the untreated PD patients
(52.2+15.7, n=26) compared to the control group (73.2 + 5.8, n=17). Ga-Tf binding was
also found to be significantly depressed (P<0.05) in the treated PD group (65.5 £ 9.0,

n=28) compared to the controls (73.2 £+ 5.8, n=17). However, there was a significant
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increase in Ga-Tf binding in treated PD patients compared to untreated PD patients

(p<0.05).

Table 4.4 Ga-Tf binding in controls, untreated and treated PD patients.

control untreated PD treated PD
% Ga-Tf binding 73.2+5.8 (n=17) 52.2+15.7 (n=26)* 65.519.0 (n=28)*#
Binding range 60-82 32-76 25-78

Values represent means + SD, n=number of observations, *p<0.05 compared to controls;
#p<0.05 compared to untreated PD.

Statistical analysis: ANOVA (1 way): Effects of treatment, F=18.94, p<0.001. Comparison
between means (Fisher's t-test): Untreated PD vs control t=7.13 p<0.05; Treated PD vs
control t=7.03, p<0.05; Treated PD vs untreated PD t=6.22, p<0.05.

In addition, the data was analysed by dividing the treated PD patients into those receiving

L-Dopa (sinemet/madopar) and those receiving L-Dopa plus selegiline (table 4.5).

Table 4.5 Ga-Tf binding in PD patients treated with L-Dopa only and I-Dopa plus
selegiline.

control  untreated PD PD treated with  PD treated with
L-Dopa L-Dopa + selegiline
% Ga-Tfbinding 73.2+58 522+15.7% 65.6 6.3 # 649+ 119 *#
(n=17) (n=2) (n=11) (n=15)

Values represent means + SD, n=number of observations, *p<0.05 compared to controls;
#p<0.05 compared to untreated PD.

Statistical analysis: ANOVA (1 way): Effects of treatment, F=11.96, p<0.001. Comparison
between means (Fisher's t-test): Untreated PD vs control t=7.28 p<0.05; L-Dopa vs control
t=9.03, p>0.05; L-Dopa + selegiline vs control t=8.26, p<0.05. L-Dopa vs untreated PD
t=8.39, p<0.05; L-Dopa + selegiline vs untreated PD t=7.56, p<0.05. L-Dopa vs L-Dopa +
selegiline t=9.26, p>0.05.

Mean Ga-Tf binding values were found to differ significantly (p<0.001) between the
patient groups shown in table 4.5 (i.e. controls, untreated PD, PD treated with L-Dopa and

PD treated with L-Dopa + selegiline). However, there was no significant difference in Ga-
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Tf binding between PD patients treated with L-Dopa alone (65.5 + 6.3, n=11) and patients

treated with L-Dopa plus selegiline ( 64.9 £ 11.9, n=15).

4.3.2.7 VARIATION WITHIN PATIENT GROUPS

As shown in table 4.4 the range of % Ga-Tf binding values varied between the patient
groups. The most limited range was seen in the control group with binding figures of 60-
82%. In treated PD patients, values varied from 32-76% while the untreated PD group
demonstrated the greatest range of binding figures from 25-78%. Figure 4.8 shows the

variation in % binding within each patient group.
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Figure 4.8 Variation in % Ga-Tf binding within the patient groups.

The untreated PD group was found to have significantly different variance compared to the
controls (F=7.43, p<0.05). The variance of the treated PD patients did not differ

significantly in comparison to controls (F=2.44, P>0.05).
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4.3.2.8 EFFFECT OF AGE AND SEX UPON GA-TF BINDING

There was no significance difference in Ga-Tf binding between males and females in

controls, untreated PD or treated PD patients (table 4.6).

Table 4.6 Ga-Tf binding in males and females in controls, untreated and treated PD

patients.

% Ga-Tf binding % Ga-Tf binding

males females
controls 70.4 + 8.6 (n=4) 74.02 £4.8 (n=13)
untreated PD 53.8+ 11.2 (n=13) 50.5% 19.6 (n=13)
treated PD 64.6 + 6.4 (n=11) 66.1 £ 10.5 (n=17)

Values represent means + SD, n=number of observations.
Statistical analysis: Comparison between males and females, unpaired Student's t-test:
Controls t=0.81, p>0.05; Untreated PD t= 0.516, p>0.05; Treated PD t= 0.48, p>0.05.

Ga-Tf binding was not correlated with age in controls, untreated PD or treated PD patients

(figures 4.9 a, b, c).
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Figure 4.9a The relationship between Ga-Tf binding and age in controls.
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Figure 4.9b The relationship between Ga-Tf binding and age in untreated PD patients.
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Figure 4.9c The relationship between Ga-Tf binding and age in treated PD patients

4.4 DISCUSSION

4.4.1 FE-TF STUDIES

The binding of Fe to Tf was found to be 100% in all controls, untreated and treated PD

patients. Furthermore, increasing the saturation of Tf with Fe to approximately 100% by

adding FeCl; to the plasma, had little or no effect upon Fe-Tf binding in any of the patient
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groups. The results support the findings of Winsper et al (1994) and Hodgkins (1992) who
previously reported that Fe-Tf binding was 100% in both controls and PD patients. In
addition, Fe-Tf binding was found to exceeded 97% in controls and AD patients and was
unaffected by the degree of Tf saturation with Fe, changes in pH and the addition of citrate
to the serum (McGregor and Brock 1992, McGregor ef al 1991). The results suggest that
within Parkinsonian plasma, Fe exists largely in complex with Tf to which it is very tightly
bound. These findings would not be consistent with the hypothesis that brain accumulation

of Fe, as a result of an increase in a LMW species, is involved in the aetiology of PD.

4.4.2 GA-TF STUDIES

In the absence of a suitable isotope of aluminium, 67Ga was used as a marker for
aluminium binding in plasma. 67Ga has been found to be a suitable analogue of Al in
investigations of Al speciation within the plasma (Cochran et al 1983, Farrar et al 1990)
and Ga-Tf binding has been found to correlate significantly with AI-Tf binding (Hodgkins

et al 1993).

Repetition of measurements in individual controls showed relatively little variation in Ga-
Tf binding values although there was a time lapse of several months between samples and
the runs were carried out on different columns. This indicates that the measurement was

reliable and did not vary greatly over time.

In all controls and PD patients, a high molecular weight species was eluted at fractions 9-
10 on a G75 column. This species is believed to be Ga bound to Tf, the principle binding
protein for both Ga and Al (Trapp 1983, Martin et al 1987, Harris 1992). A region of
activity corresponding to a LMW Ga species was also observed between fractions 20 and
24 in all controls and the majority of PD patients. The binding of Ga to Tf and a LMW
species within the plasma has been previously reported by Hodgkins et al (1993) and
Farrar et al (1990). In a number of PD patients, who demonstrated low Ga-Tf binding
values, a defined peak was seen between fractions 14 and 24 corresponding to high levels
of binding to a LMW ligand. The location of this LMW peak varied between patients. At

present the LMW species obtained have not been identified. Citrate has been implicated as
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the most probable LMW species to bind Al within the blood (Van Ginkel ef al 1990,
Fatemi et al 1991, Martin et al 1987). However, Hodgkins er al (1993) reported that Al
bound citrate species were absent in control and Down's syndrome plasma. Using a
computer model, Harris (1992) predicted that the primary LMW ligand to bind Al would
be phosphate with minor amounts binding to citrate and hydroxide. In addition, Hodgkins
et al (1993) identified phosphate and silicate as the predominant non-Tf bound Ga species
within control and Down's syndrome plasma. It is possible that Ga (and by implication Al)
is bound to a number of different LMW ligands. In low binders for example, the LMW
species was eluted at several different positions and in a few individuals two distinct LMW
peaks were observed. The identity of the LMW species formed as a consequence of
reduced binding could be important in determining whether the metal is transported into

the brain.

In control plasma, Ga was found to exist mainly as a Tf bound species with minimal
binding to a LMW ligand. This supports the findings of Hodgkins ef al (1993) and Farrar
et al (1990). The control group included healthy individuals and cancer patients. The
cancer patients were included in the control group as they had no neurological symptoms
and there is no evidence that cancer affects Ga-Tf binding. There was little variation in Ga-
Tf binding within the control group indicating that illness or hospitalisation (as in the case

of cancer patients) alone did not affect Ga-Tf binding.

In plasma from untreated PD patients, Ga-Tf binding was significantly reduced compared
with controls. Previous studies have reported a decrease in Ga-Tf binding in untreated PD
patients (Winsper et al 1994, Hodgkins 1992). Reduced Ga-Tf binding has also been
reported in Down's Syndrome (Hodgkins et al 1993) and Alzheimer's Disease patients
(Farrar et al 1990, Brammer et al 1990), although the later finding is controversial and

could not be confirmed by McGregor et al (1991) and Taylor et al (1991).

Within the untreated PD group there was a wide range of binding values, the variance
being significantly different from controls. Subsequently, individuals could be classified
into those with a high or low binding of Ga to Tf. This phenomenon may occur for a

number of reasons. Firstly, PD could arise from a number of different causes. In low
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binders, reduced metal binding could play a role in the aetiology of the disease while in
high binders some other cause could be involved. Secondly, if reduced binding is merely a
consequence of the underlying disease process, binding levels could be related to the
progression of the disease, low binders being at a later stage than high binders. However,

the lack of correlation between binding and age would not support the later hypothesis.

Ga-Tf binding was also found to be significantly decreased in treated PD patients
compared to controls. However, treatment appeared to increase binding towards control
levels, Ga-Tf binding being significantly greater in the treated PD patients compared to the
untreated PD group. Furthermore, two patients receiving therapy showed an increase in
binding over time which could have occurred due to the effects of treatment. The results
are supported by the findings of Hodgkins (1992) who demonstrated significantly higher
levels of Ga-Tf in treated PD compared to untreated PD patients. The fact that therapy may
affect binding suggests that Ga-Tf binding could be involved in the pathogenesis of PD.
Farrar (1991) demonstrated the inhibition of the oxidation of 5-methyltetrahydrofolate in
the presence of L-Dopa which was proposed to be due to the ability of L-Dopa to combine
with free radicals to preventing further oxidation. Increased oxidation within the
circulation has been implicated as a cause of reduced Ga-Tf binding (Hodgkins et al 1993,
Winsper et al 1994)) therefore if L-Dopa inhibited oxidative stress it would be expected to
improved Ga-Tf binding. In addition, the drug selegiline is an inhibitor of the enzyme
monoamine oxidase B (MAO B) and therefore has the effect of reducing the production of
oxidising species. L.-Dopa has also been reported to influence the immune response. PD
patients treated with L-Dopa were found to demonstrate increased IL-1 synthesis and IgM
and IgG levels within the plasma (Fiszer et al 1994). In addition, the intra-peritoneal
administration of dopamine in mice depressed the antibody response and delayed
hypersensitivity reaction to sheep red blood cells and resulted in a decrease in spleen T-cell
numbers. In vitro, lymphocyte proliferation and the generation of cytotoxic T-cells in
response to allogenic stimulator cells were decreased by L-Dopa (Boukhris et al 1987,
Kouassi et al 1987). Therefore if the immune response is responsible for increased
oxidation, L-Dopa could act by reducing the degree of the immune reaction. However, it is

also possible that the level of Tf binding relates to the disease stage.
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No significant differences in the effects of L-Dopa and selegiline upon Ga-Tf binding were
observed. This supports the finding that the long-term use of selegiline has minimal

benefits compared with L-Dopa alone (Brannan and Yahr 1995).

4.4.2.1 IMPLICATIONS OF REDUCED GA-TF BINDING

Throughout these studies 67Ga has been used as a marker for Al. Thus we are making
implications about Al-Tf binding from results obtained with 6’Ga. The affinity of a metal
will influence its binding to Tf. For example, Ga is bound more weakly to Tf than Fe as the
stability constants for Ga-Tf (log K;=20.3; log K,=19.3) are less than those for Fe-Tf
(K1=22.5; log K»=21.4) (Martin et al 1987). As a result, Ga-Tf binding is more labile than
Fe-Tf binding and is susceptible to chaﬁges in pH and competing chelators (McGregor and
Brock 1992). The lower stability constants of Ga-Tf explains why Ga-Tf binding was
reduced in PD plasma, but Fe-Tf binding remained unaltered. The stability constants of Al-
Tf are log K;=12.9, log K,=12.3 (Martin et al 1987). Consequently, Al is more likely to be
liberated from Tf than Ga and Al-Tf binding may be considerably lower than the values
stated for Ga-Tf binding. If the capacity of Tf to bind metals is reduced, those metals with

lower binding constants that Fe, namely Ga and Al, would be expected to be released first.

The reduced binding of Ga to Tf in PD may reflect a decrease in the binding of Tf to a
variety of metals within the plasma. A decrease in Tf metal binding and a subsequent
increase in a LMW form could have a number of implications. It has been suggested that
reduced Tf binding leads to a decrease in the transport of essential metals into the brain via
the Tf system (Hodgkins et al 1993). A deficiency of essential metals has been implicated
in a number of neurological diseases. For example, in AD a depression of zinc (Zn) within
the hippocampus has been reported (Constantinidis 1991). Tf is believed to play a
considerable role in the serum transport of Zn (Harris and Keen 1989). Furthermore, Zn is
known to have a relatively low Tf binding constant (log K;=7.42, log K»=6.0) (Harris
1992) so would be displaced from Tf relatively easily (Hodgkins et al 1993). However, a
defect in brain uptake of zinc is not supported by the finding that Zn is increased in the

substantia nigra, caudate nucleus and putamen in PD (Dexter ef al 1989b, Dexter et al
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1993), although this refers to total zinc and may not reflect Zn levels within specific types
of cell. In addition, a reduction in brain magnesium (Mg) has been implicated in the
pathogenesis of PD (Yasui et al 1992a) and amyotrophic lateral sclerosis (ALS) (Yasui et
al 1992b). However, there is little evidence that plasma Mg is transported by Tf as within
the serum the protein bound Mg is mainly attached to albumen with the rest being bound to
globulins (Kroll and Elin 1985). Therefore reduced Tf binding is unlikely to account for a

Mg deficiency within the brain.

Conversely, a reduction in Tf binding could enhance the entry of toxic metals into the
brain. Tf may have a protective effect by regulating the brain uptake of certain metals. For
example, in the rat, the binding of manganese (Mn) to Tf limits the transport of the metal
across the BBB (Rabin et al 1993). Reduced metal Tf binding results in an increase in a
LMW species which could enter the CNS unhindered providing a mechanism for the
accumulation of the metal within the brain (Farrar et al 1990). Indeed, in
hypotransferrinaemic mice, there was greatly enhanced brain uptake of iron indicating that
non-Tf bound Fe readily crosses the BBB (Ueda et al 1993). Furthermore, it has been
suggested that a LMW form of Al, present in increased amounts within the plasma of
haemodialysis patients, is neurotoxic and readily crosses the BBB (King et al 1982). The
identity of the LMW species may determine whether brain entry of the metal is increased.
Slanina et al (1985) demonstrated that citrate, a candidate for a LMW Al species, increased
Al absorption from the gut and resulted in its accumulation within the tissues. It has been
suggested that the Al citrate complex in serum may be involved in the intracellular
accumulation and toxicity of Al (Van Ginkle 1990). By contrast, the binding of Al to
silicon may possibly protect against Al accumulation in the brain (Carlisle 1986). The
results indicated that a number of different LMW species may occur within Parkinsonian
plasma. In low binders, an additional toxic LMW species could occur which is not present

in high binders.

It 1s also possible that reduced Tf binding is secondary to an earlier pathogenic event, for
example, increased oxidation or immune activation. However, the fact that in untreated PD

patients Ga-Tf binding was found to be negatively correlated with the UPDRS (a measure
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of disability) indicates that a reduction in Tf binding may be an important factor in the

pathogenic process.

4.4.2.2 WHY IS GALLIUM TRANSFERRIN BINDING REDUCED IN THE
PLASMA OF PD PATIENTS ?

The results demonstrated that Ga-Tf binding was not correlated with age in controls or PD
patients. Furthermore, there were no differences in Ga-Tf binding values between the
sexes. Therefore, the reduced Tf binding observed in PD patients was not due to an age or

sex effect.

A number of factors have been found to influence Ga-Tf binding. Biochemical alterations
within the plasma may result in a reduction in Tf binding, although there is no evidence
that such changes occur in PD. In order to bind metals optimally, Tf requires the
bicarbonate anion (Aisen et al 1967). Ga-Tf binding is dependent upon the level of
bicarbonate available with maximum binding occurring at the normal physiological level
of 25mM (Hodgkins 1992). Deviation from physiological pH has been shown to reduce
Ga-Tf binding in plasma (Hodgkins 1992, McGregor and Brock 1992). In addition,
changes in the electrolytic composition of plasma can have an effect. The addition of Fe
and Al to plasma was found to result in a reduction in Ga-Tf binding (Hodgkins 1992). The
presence of a high affinity LMW ligand such as citrate may also reducing metal Tf binding

by competing with the Tf molecule (McGregor and Brock 1992).

A reduction in Tf levels within the plasma would reduce the availability of Tf to bind to
metals. Tf levels are depressed in response to a number of circumstances including
increased body iron stores, cirrhosis of the liver, protein malnutrition and haemolytic
anaemia (Morgan 1974). In addition, Tf levels could be depressed in response to
inflammation. The inflammatory response can stimulate changes in the concentration of a
series of plasma proteins known as acute phase proteins (Kushner 1988). Tt is believed to
be a negative acute phase protein therefore its plasma levels may fall in response to
inflammation (Maes et al 1992). However, serum/plasma Tf levels have been reported to

be unchanged in both AD (Corrigan et al 1992) and PD (Hodgkins 1992, Cabrera-Valdivia
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et al 1994). It has also been suggested that a reduction in plasma Ga-Tf binding arises due
to an increase in Tf saturation with Fe (Schulman and Ponka 1990). This is unlikely to be
the case in PD as plasma Tf saturation did not differ in PD patients compared to controls.

(Chen and Shih 1992, Hodgkins 1992).

It is also possible that an inherent defect in the Tf molecule is responsible for reduced Ga-
Tf binding in PD. A variant of Tf has been described in human serum which binds iron
abnormally at one site (Evans et al 1982). In addition, Hodgkins (1992) described a
subject with Tf that was unable to bind iron on its C-terminal lobe due to the absence of
tyrosine residues. It is possible that a functional defect of Tf could result in reduced metal
binding (Farrar et al 1990). However, is unlikely that an inherent defect of Tf occurs in PD

due to the lack of evidence for a genetic basis to the disease.

Alternatively, increased oxidation within the circulation could provide a mechanism
whereby the Tf molecule is damaged thus reducing its metal binding capacity. Hence, the
addition of oxidising agents to plasma has been found to decrease Ga-Tf binding in vitro
(Hodgkins 1992). The excessive formation of reactive oxygen species within the substantia
nigra in PD could occur due to increased metabolism of dopamine or by the actions of a
neurotoxin (Jenner 1992). An alternative source of oxidising species is the immune
response. It has been proposed that the activation of macrophages results in increased
oxidative activity thereby reducing Ga-Tf binding in Parkinsonian plasma (Winsper et al
1994). Hodgkins et al (1993) also suggested that oxidation of Tf, occurring as a
consequence of an immune response, results in reduced metal Tf binding in Down's
syndrome. It is also possible that the immune response could be directed against the Tf
molecule itself. An auto-immune form of atransferrinaemia has been described in which
auto-antibodies against the Tf molecule are produced with the generation of circulating
immune complexes of Tf and IgG (Westerhausen and Meurret 1977). The possible

relationship between the immune response and Tf binding will be investigated in chapter 7.
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CHAPTER 5: NEOPTERIN IN PARKINSON'S DISEASE

3.1 INTRODUCTION

Immunological factors may be important in the aetiology of a number of neurological
diseases including Alzheimer's disease (Chapman et al 1988, McGeer et al 1991, Aisen
and Davis 1994), Down's syndrome (Hodgkins et al/ 1993, Heinonen et al 1993,
Armstrong et al 1994), amyotrophic lateral sclerosis (McGeer et al 1991), multiple

sclerosis (Steinman 1993) and depression (Maes 1995).

Considerable evidence suggests that the immune response is involved in the aetiology of
PD. The classical complement pathway appears to be activated within the substantia nigra
of PD patients (Yamada et al 1992). Components of the cellular immune system have also
been demonstrated within the Parkinsonian brain. T-cytotoxic/suppressor lymphocytes and
HLA-DR positive microglia, which are capable of presenting antigens to T cells, have been
detected within the substantia nigra of PD patients (Yamada et al 1992, McGeer et al
1988). In addition, gamma delta T+ cells (a sub-population of T-cells involved in infection
and auto-immunity) have been found to be increased within the blood of PD patients
compared to other neurological disease patients (Fiszer et al 1994). The humoral immune
response has also been implicated in the pathogenesis of PD as anti-neuronal antibodies
have been detected in the serum and CSF of PD patients (Husby et al 1977, Pouplard and
Emile 1984, McRae-Deguerce et al 1986). Finally, tumour necrosis factor (TNF) o has
been reported to be increased in the striatum and CSF of PD patients (Mogi ez al 1994) and

TNF immunoreactive glia have been detected in the Parkinsonian substantia nigra (Boka ez

al 1994).

Neopterin is a pteridine derived from guanosine triphosphate (GTP) during the
biosynthetic pathway of biopterin. Large quantities of neopterin are released by
macrophages on stimulation with interferon y secreted by activated T cells (Huber ef al
1984). Furthermore, neopterin is elevated in body fluids in a number of conditions in

which the cellular immune response is involved i.e. viral infections, malignancies, allograft
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rejections and auto-immune disorders (Wachter et al 1992). Neopterin can therefore be

employed as a marker of a cell mediated immune response.

Neopterin has previously been reported to be elevated within body fluids in a number of
neurological diseases. These include Alzheimer's disease, Down's syndrome (Armstrong et
al 1994) and depression (Duch er al 1984, Dunbar et al 1992, Maes et al 1994).
Furthermore, in a preliminary report, Winsper et al (1994) reported that serum neopterin

levels were significantly elevated in untreated PD patients compared to controls.

5.1.1 AIMS OF THE CHAPTER

The objectives of this study were to extend the findings of Winsper et al (1994) and to

determine whether levels of neopterin were influenced by treatment of PD patients.

5.2 METHODS

5.2.1 CONTROL AND PATIENT STUDY GROUPS

The control group comprised 20 healthy volunteers living in the community and a cancer
patient courtesy of Dr Leeming (Department of Haematology, General Hospital,
Birmingham). A second control group was also obtained from blood bank samples age and
sex matched with the untreated PD patients courtesy of Professor Fuchs (Institute of

Medicinal Chemistry and Biochemistry, University of Innsbruck, Austria).

Plasma from untreated PD patients was obtained from Dr. H. Pall (consultant neurologist,
Queen Elizabeth Hospital, Birmingham) at the time of clinical diagnosis before the start of
drug therapy. All patients in the experimental group displayed at least two of the three
classic symptoms of PD (tremor, rigidity and bradykinesia) and subsequently responded to
levodopa therapy. The severity of the disease varied between stages 1-4 according to the

Hoehn and Yahr's classification (Hoehn and Yahr 1967).
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Blood samples were also obtained from treated PD patients, who were receiving anti-
Parkinsonian drugs, from an outpatient clinic courtesy of Dr. H. Pall. 28 of the 30 treated
patients were receiving L-Dopa therapy (sinemet or madopar), 12 of these were also
receiving a MAO B inhibitor (selegiline). In addition, one patient was receiving selegiline

alone and another benzhexol alone.

The same selection criteria were applied to controls and PD patients. The study excluded
individuals known to have any condition that could activate the immune response and
thereby possibly increase neopterin levels i.e. inflammatory disorders, infections, allergies,
auto-immune disorders and types of malignancy. In addition, individuals receiving
medication that could affect neopterin levels, for example anti-inflammatory drugs, were
not included in the study group. A cancer patient who was in remission however was
included as neopterin is believed to return to normal levels during the remission phase
(Wachter 1992). Details of the patients and controls used in the neopterin study are given

in table 5.1.

Table 5.1 Composition of the neopterin study group.

patient group number of male: female age (mean+SD) age range
subjects

controls 21 9:12 38.1+17.9 17-81

untreated PD 17 6:11 64.0+10.4 43-80

all treated PD 30 15:15 66.7+10.7 43-89

PD treated with L-Dopa 16 79 68.6+11.2 52-89

PD treated with 12 7:5 65.319.0 49-78

L-Dopa + selegiline

5.2.2 PLASMA PREPARATION

Blood samples were collected in lithium heparin tubes and plasma obtained by
centrifugation at 2000g for 15 minutes at room temperature (MSE Minor centrifuge, MSE

Ltd, Crawley, UK). All plasma samples were stored at -20°C prior to use.
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5.2.3 MEASUREMENT OF NEOPTERIN

Oxidised plasma neopterin was measured by radioimmunoassay (Fuchs et al 1992)
courtesy of Professor Fuchs (Institute of Medicinal Chemistry and Biochemistry,

University of Innsbruck, Austria).

5.2.4 STATISTICAL ANALYSIS

Data were presented as the mean of each patient group + standard deviation (SD). Data
analysis was by analysis of variance (ANOVA) followed by a Fisher's t-test to compare the
differences between patient groups. For the comparison of PD patients with age and sex
matched controls a paired Student's t-test was employed. Differences between males and
females within a patient group were analysed using a two-tailed unpaired Student's t-test.

The degree of correlation between neopterin and age was tested by regression methods.

5.3 RESULTS

5.3.1 CHANGES IN PLASMA NEOPTERIN OVER TIME

Table 5.2 Changes in oxidised plasma neopterin in nmol/l over time.

sample 1 sample 2 sample 3
control 1 27.5.94:5.2 27.7.94: 5.0
control 2 5.1.94:5.0 25.5.94:5.2 7.7.94: 4.6
PD1 3.9.93:5.9 7.6.94:5.3
PD 2 7.5.93:7.1 7.6.94: 6.9
PD 3 7.5.93:5.8 5.11.93:4.6 7.1.94:4.3
PD 4 26.10.92: 6.4 3.9.93:9.2
PD 5 28.5.92: 5.6 5.11.93:3.9

Table 5.2 shows changes in plasma neopterin over time. PD patients 1, 2, and 3 were
receiving treatment at all sample dates. In the case of patients 4 and 5, the first sample was

prior to treatment and the second sample post-treatment.
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5.3.2 COMPARISONS BETWEEN PATIENT GROUPS

Table 5.3 Oxidised plasma neopterin in controls, untreated and treated PD patients.

controls untreated PD treated PD
oxidised plasma 5.5242.38 (n=21) 8.39+£3.29 (n=17)* 7.2£3.87 (n=30)
neopterin (nmol/l)
neopterin range (nmol/1) 2.3-13.7 4.4-17 4.0-23.8

Values represent means + SD, n=number of observations, *p<0.05 compared to controls.
Statistical analysis: ANOVA (1 way): Effects of treatment, F=3.61, p<0.05. Comparison
between means (Fisher's t-test): Control vs untreated PD t=2.17 p<0.05; Control vs treated
PD t=1.89, p>0.05; Treated vs untreated PD t=2.02, p>0.05. Paired Student's t-test:
Untreated PD vs age and sex matched controls t=2.12, p=0.05

Differences in mean oxidised plasma neopterin over the study population in table 5.2 (i.e.
controls untreated PD and treated PD) were significant (p<0.05). Plasma neopterin was
found to be significantly elevated in untreated PD patients (8.39+3.29, n=17) compared to
controls (5.5242.38, n=21) (p<0.05). A reduction in neopterin was observed in treated PD
patients (7.2+3.87, n=30) compared to the untreated PD patients (8.39£3.29, n=17),
although this was not significant. There was no statistical difference between neopterin
levels in treated PD patients compared with controls. Plasma neopterin was also found to
be significantly elevated in the untreated PD group compared to age and sex matched

controls (p=0.05)

In addition, subjects could be classified according to whether their neopterin values were
within the normal range. For healthy controls below the age of 75 years the upper normal
limit of plasma neopterin was taken as 8.7nmol/l (Wachter et al 1992). 7 (41.2%) of the
untreated PD patients, 6 (20%) of the treated PD patients and 1 (4.8%) of the controls had
neopterin levels above the upper normal limit of 8.7nmol/l. In both PD groups only two of
the patients with neopterin above 8.7nmol/l were in excess of 75 years of age. In the

control group, the patient with neopterin above the normal upper limit was 50 years of age.
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The data were also analysed by dividing the treated PD patients into those receiving L-

Dopa (sinemet/madopar) and those receiving L-Dopa plus selegiline (table 5.3).

Table 5.4 Oxidised plasma neopterin in PD patients treated with L.-Dopa only and L-Dopa

controls untreated PD PD treated PD treated with L-
with L-Dopa  Dopa + selegiline

oxidised plasma 5.52+2.38 8.394+3.29* 7.261+2.48 7.6315.4
neopterin (nmol/l) (n=21) (n=17) (n=16) (n=12)

Values represent means + SD, n=number of observations, *p<0.05 compared to controls.
Statistical analysis: ANOVA (1 way): Effects of treatment, F=2.50, p>0.05. Comparison
between means (Fisher's t-test): Control vs untreated PD t=2.19 p<0.05; Control vs treated
with L-Dopa t=2.28, p>0.05; Control vs treated with L-Dopa + selegiline t=2.43, p>0.05;
Untreated PD vs treated with L-Dopa t=2.34, p>0.05; Untreated PD vs treated with L-
Dopa + selegiline t=2.53, p>0.05; L-Dopa vs L-Dopa + selegiline t=2.56, p>0.05.

Plasma neopterin was not found to differ significantly over the study population shown in
table 5.4, i.e. controls, untreated PD patients, PD patients treated with L-Dopa and PD
patients treated with L-Dopa plus selegiline. Within this study group, neopterin was found
to be significantly increased in the untreated PD patients compared to controls (P<0.05).
No statistical difference was observed between the PD patients treated with L-Dopa and
those treated with L-Dopa plus selegiline. Neopterin did not differ significantly in either of

the treatment groups compared with controls or untreated PD.

5.3.3 VARIATION WITHIN PATIENT GROUPS

As shown in table 5.3 the range of plasma neopterin values varied between the patient
groups. The control group demonstrated the smallest range of values, neopterin varying
between 2.3 and 13.7nmo/l. In the untreated PD patients neopterin varied between 4.4-
17nmol/l. The greatest range of neopterin was seen in the treated PD group with values
ranging from 4.0-23.8nmol/l. Figure 5.1 shows the variation in plasma neopterin within the

patient groups. The treated PD group was found to have significantly different variance
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compared with the control group (F=2.65, p<0.05). The variance of the untreated PD group

did not differ significantly from that of the control group (F=1.91, p>0.05).
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Figure 5.1 Variation in plasma neopterin within the patient groups

5.3.4 EFFECT OF AGE AND SEX UPON NEOPTERIN

Plasma neopterin did not differ significantly between males and females in controls,

untreated PD and treated PD patients (table 5.5).

Table 5.5 Plasma neopterin in males and females in controls, untreated and treated PD.

plasma neopterin (nmo/l) plasma neopterin (nmo/l)

males females
controls 4.48+1.74 (n=9) 6.3+£2.57 (n=12)
untreated PD 8.4312.72 (n=6) 8.3613.68 (n=11)
treated PD 7.72%5.15 (n=15) 6.68+1.98 (n=15)

Values represent means + SD, n=number of observations
Statistical analysis: Comparison between males and females, unpaired Student's t-test:
Controls t=1.94, p>0.05; Untreated PD t=0.045, p>0.05; Treated PD t=0.73, p>0.05
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Plasma neopterin was not correlated with age in controls or untreated PD patients. In
treated PD patients a positive correlation between age and serum neopterin was observed

(p<0.05) (figures 5.2 a, b, c).
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Figure 5.2a The relationship between plasma neopterin and age in controls
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Figure 5.2b The relationship between plasma neopterin and age in untreated PD patients.
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Figure 5.2¢c The relationship between plasma neopterin and age in treated PD patients

5.4 DISCUSSION

During this study the level of oxidised neopterin as oppose to total neopterin (i.e. oxidised
neopterin + 7-8-dihydroneopterin) was determined. It is recommended that oxidised
neopterin is measured in preference to total neopterin due to the lability of 7-8-
dihydroneopterin to oxidative reactions. However, the diagnostic information provided by
the measurement of neopterin does not depend upon whether oxidised or total neopterin is

determined (Wachter et al 1992).

The results demonstrated that variation in neopterin with time within a single control
subject was small, the values remaining within the normal range. Hence, plasma neopterin
levels within the blood are stable under normal circumstances and the method of
determining neopterin was reliable. A previous study by Haas and Gerstner (1986)
reported that when serum neopterin was determined in individuals daily over one month
variations in neopterin were small. The 3 PD patients receiving therapy at both sample
dates showed a reduction in neopterin with time which may be attributed to the effects of
treatment. In addition, one of the patients demonstrated a decrease in neopterin post-

treatment compared to pre-treatment, although the reverse was true in another patient. The
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effect of treatment upon neopterin levels could be dependent upon the severity of the

disease and the duration of treatment.

Mean oxidised plasma neopterin levels in controls (5.52+2.38nmol/l) were similar to
serum control values reported by Wachter er al (1992) (5.3420.14) and Hagberg et al
(1993) (6.0).

Oxidised plasma neopterin was found to be significantly elevated in untreated PD patients
compared to controls. Furthermore, the untreated PD group had a greater percentage of
individuals with neopterin levels above the normal upper limit compared to the treated PD
and control group. Urinary neopterin has previously been reported to be increased in a
number of neurological diseases including Alzheimer's disease and Down's syndrome
(Armstrong et al 1994). However Milstien ef al (1994) reported that neopterin within the
CSF was not significantly different in AD patients compared to controls. In depressed
patients, neopterin has been reported to be significantly increased within the plasma (Maes
et al 1994), serum (Dunbar et al 1992) and urine (Duch et al 1984). An increase in serum
neopterin has also been reported in untreated PD patients compared to healthy controls
(Winsper et al 1994). However, CSF neopterin has been found to be decreased (Fujishiro

et al 1990) or unchanged in PD patients (Furukawa et al 1992).

The range of plasma neopterin values in control subjects (2.3-13.7nmol/l) was similar to
the range demonstrated for plasma neopterin in healthy individuals (3.4-12.8nmol/l) by
Maes et al (1994). The range of neopterin values in the control sample was increased
considerably by 1 patient with a value well above the normal upper limit given by Wachter
et al (1992). The treated PD group showed the greatest range of neopterin values, the
variance being significantly different from that of the controls. The wide range of values
could be explained by the fact that treated patients varied according to the disease stage

and therefore the duration of treatment.

Treated PD patients were found to have reduced neopterin compared to untreated patients,
although the difference was not significant. The treated PD patients also demonstrated a

smaller percentage of individuals with plasma neopterin above the upper normal limit
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compared to the untreated PD patients. Furthermore, patients receiving therapy showed a
reduction in neopterin over time which could have resulted from the effects of treatment.
Treatment with L-Dopa has been reported to influence the immune system. Interleukin-1
synthesis and IgM and IgA plasma levels have been found to be increased in PD patients
receiving L-Dopa compared to untreated PD patients (Fiszer et al 1991). In addition, L-
Dopa has been reported to selectively depress T-dependent immune responses in mice.
Administration of L-Dopa reduced the antibody response and delayed hypersensitivity
reaction to sheep red blood cells (a T-dependent antigen). In vitro, L-Dopa decreased
lymphocyte proliferation and the generation of cytotoxic T-cells in response to allogeneic
stimulator cells. Furthermore, L-Dopa treatment of mice resulted in a decrease in spleen T-
cell numbers (Boukhris et al 1987). L-Dopa could produce selective T-cell defects either
by direct action upon subsets of T-lymphocytes or via neuro-endocrine interactions
(Kouassi er al 1987, Boukhris et al 1987). It is therefore possible that in treated PD
patients L-Dopa could reduce neopterin levels by depressing the T-cell response.
Alternatively, the level of neopterin could reflect the progression of the disease. The
immune response could be more intense during the early stages when the majority of
dopamine neurons are destroyed, the response later being less intense. Treated PD patients
may have lower neopterin levels as they are generally at a later stage of the disease process

than untreated patients.

No statistical difference was observed between the PD patients treated with L-Dopa and
those treated with L-Dopa plus selegiline. This supports the finding that the long-term use
of selegiline has minimal benefits for the clinical condition of the patient over L-Dopa

(Brannan and Yahr 1995).

Plasma neopterin was not found to differ between males and females. Previous studies
have also reported that there were no difference in plasma or serum neopterin between the

sexes (Werner et al 1987, Wachter et al 1992, Maes et al 1994).

A weak positive correlation between neopterin and age was observed in the treated PD
group but not the controls or untreated PD patients. Plasma neopterin has been reported to

be positively correlated with age in controls and depressed patients (Maes 1994). In
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addition, Wachter et al (1992) reported an increase in serum neopterin in healthy controls
aged above 75 years compared to controls aged below 75 years. The relationship between
neopterin and age in treated PD patients could also be related to the duration of treatment.
Older patients would be expected to have been receiving treatment for a longer period. The
efficacy of L-Dopa has been reported to be reduced after a maintained period of treatment.
This could mean that in older patients L-Dopa has less effect in reducing neopterin levels.
A relationship between age and neopterin was not observed in the untreated PD group,
although they had a similar age range and mean age as the treated group. An age effect
may occur in untreated PD patients but may be hidden as the effect of age may be less
pronounced than the effect of the disease upon neopterin levels. Plasma neopterin was
increased in untreated PD patients compared to age matched controls thus elevated
neopterin cannot be explained by an age effect alone. An increase in neopterin with age
may only occur above a certain age. This may explained why there was no relationship
between age and neopterin in the control group which had a lower mean age than the

treated and untreated PD patients.

5.4.1 IMPLICATIONS OF ELEVATED NEOPTERIN

Neopterin is generally accepted as a marker of a cellular immune response (Wachter et al
1992). However, elevated neopterin is not specific to any one disorder and occurs in a
variety of conditions in which the cellular immune system is activated. Individuals were
excluded from the present study population if they were known to be suffering from
conditions or were receiving drug treatment which could modify the immune response and
therefore neopterin levels. However, it is possible that individuals could have elevated
neopterin due to a sub-clinical condition. This could explain why one of the healthy

controls had a neopterin value above the normal upper limit.

The increase in plasma neopterin suggests that a cellular immune response occurs in
untreated PD patients. A role for cell mediated immunity in PD is supported by several
lines of evidence. Yamada ef a/ (1992) and McGeer et al (1988) reported the presence of

T-cytotoxic/suppressor lymphocytes and HLA-DR positive microglia within the substantia
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nigra of PD patients. In addition, gamma delta T+ cells (a sub-population of T-cells
involved in infection and auto-immunity) have been found to be increased in the blood of
PD patients compared to other neurological disease patients. An increase in the proportion

of these cells within the CSF was also reported (Fiszer et al 1994).

During this study neopterin was measured within the plasma. An important consideration
is whether a marker of immune activation within the periphery reflects processes occurring
within the brain. CNS disorders may be accompanied by an elevation of neopterin within
the periphery. Neopterin has previously been reported to be elevated within the urine in
Alzheimer's disease and Down's syndrome patients (Armstrong et al 1994) and in the
plasma (Maes et al 1994), serum (Dunbar et al 1992) and urine (Duch et al 1984) of
depressed patients. In addition, serum neopterin was found to be significantly increased in
patients with CNS infections compared to healthy controls (Hagberg ef al 1993). Plasma
neopterin could originate from the CNS although pteridines have a relatively low
permeability across the blood brain barrier (BBB) (Hagberg et al 1993). It is also possible
that the activated cells of the immune system pass from the brain into the periphery where
they generate neopterin. The BBB is no longer believed to be impermeable to
immunocompetent cells. The BBB may be absent or weak in certain brain areas (Balin ef
al 1986). Furthermore, activated T-cells may pass through the BBB and secrete mediators
that increase BBB permeability (Savion ef al 1984, Leibowitz and Hughes 1983). It is also

possible that in PD damage to the BBB occurs.

The role of the immune response in the pathogenesis of PD is unclear. An immune attack
directed against the dopaminergic neurons could be responsible for degeneration of the
substantia nigra. The neopterin itself could be a factor in the degeneration by acting as an
oxidant (Arai et al 1994). It is also possible that the immune response is secondary to
neuronal damage occurring due to some other cause. In this case, the immune response
could still exacerbate the degenerative process. Alternatively, a third factor could result in

neuronal degeneration and stimulation the immune system independently.
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5.4.2 WHY IS AN IMMUNE RESPONSE GENERATED IN PARKINSON'S
DISEASE?

As previously suggested immune activation occurring within the Parkinsonian brain could

be secondary to degeneration within the substantia nigra resulting from some other cause.

It is also possible that the immune response is a primary event and could be generated
against the dopaminergic neurons in PD for a number of reasons. Auto-immunity refers to
a loss of tolerance to self-antigens and this could be the primary factor responsible for the
degeneration of substantia nigral neurons in PD. An auto-immune response could occur
due to a number of circumstances. Breakdown of the BBB could result in the release of
antigens, normally prevented from contact with immune cells present in the circulation,
with consequent stimulation of the immune system. Alternatively, auto-antigens may be
altered by a virus, toxin or trauma so they are no longer recognised as self and thus result
in the generation of auto-antibodies or auto-reactive T-cells. It is also possible that an
antigen generated against an infectious agent or environmental toxin may cross react with
the bodies own antigens. Auto-immunity may also occur due to loss of suppressor cell
function, formation of a B-cell clone that recognises self-antigens or an increase in T-
helper cell activity with the inappropriate activation of B-cells. Polyclonal activators such
as endotoxins may activate B-cells nonspecifically leading to a nonspecific increase in
antibodies, some of which may react with self antigens. Finally, expression of MHC
molecules by cells that do not normally poccess these antigens could lead to presentation
of antigen and induction of the immune response. It is also possible that the immune
response observed in PD could be a chronic inflammatory disorder, similar to rheumatoid
arthritis, in which an unknown aetiological trigger leads to an inflammatory response.
Inflammation is the process whereby blood cells and proteins enter the tissue in response
to infection or injury. This inflammation may be self propagating or could continue if the

initial trigger persists.
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CHAPTER 6: CIRCULATING IMMUNE COMPLEXES IN
PARKINSON'S DISEASE

6.1 INTRODUCTION

The involvement of immune factors in PD is well documented. Anti-neuronal antibodies
have been detected within the serum and CSF of PD patients (Husby et al 1977, Pouplard
and Emile 1984, McRae-Deguerce et al 1986) suggesting that a humoral immune response
may occur in this disorder. In addition, activation of the classical complement pathway has

been demonstrated within the Parkinsonian brain (Yamada et al 1992).

Immune complexes are macromolecules formed by the interaction of antibody and antigen
as part of the humoral immune response. Immune complexes are produced continually in
healthy subjects and are usually removed from the circulation by a number of biochemical,
enzymatic and cellular processes without any detrimental effect to the individual.
However, the deposition of immune complexes may result in complement dependent tissue
injury. The fixation of complement by immune complexes initiates a series of events that
may damage the hosts own tissue due to anaphylatoxin production, leukocyte stimulation,

macrophage activation and cell lysis (McDoudal and McDuffie 1985).

Increased levels of circulating immune complexes (CICs) have been detected in auto-
immune diseases, malignancies and certain bacterial, viral and parasitic infections
(Theofilopoulos and Dixon 1980). Furthermore, the formation of CICs has been implicated
in a number of neurological diseases including, multiple sclerosis (Tachovsky et al 1976,
Cojocaru et al 1992), amyotrophic lateral sclerosis (ALS) (Oldstone et al 1976, Westarp et

al 1993), Alzheimer's disease and Down's syndrome (Heinonen et al 1993, Soininen et al

1993).

During the present study the levels of IgG containing CICs were investigated within the
plasma of PD patients using the Clq solid phase binding assay, a form of enzyme linked

immunosorbent assay (ELISA). The Clq solid phase binding assay is based upon the
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principle that IgG containing CICs will bind to the complement component Clq which is

attached to microwells to form a solid phase.

6.1.1 AIMS OF THE CHAPTER

The objective of this study was to establish whether a humoral immune response is
involved in the aetiology of PD by investigate the levels of CICs with the plasma of

controls, untreated and treated PD patients.

6.2 METHODS

Two different studies were made of CICs within Parkinsonian plasma, both involved the
solid phase Clq binding assay. Study A utilised the Sigma immunoassay kit and study B

the Quidel immunoassay Kkit.

6.2.1 CONTROL AND PATIENT STUDY GROUPS

The control groups comprised healthy volunteers living in the community.

Plasma from untreated PD patients was obtained from Dr. H. Pall (consultant neurologist,
Queen Elizabeth Hospital, Birmingham) at the time of clinical diagnosis and before the
start of drug therapy. All patients in the experimental group displayed at least two of the
three classic symptoms of PD (tremor, rigidity and bradykinesia) and subsequently
responded to levodopa therapy. The severity of the disease varied between stages 1-4

according to the Hoehn and Yahr's classification (Hoehn and Yahr 1967).

Blood samples were also obtained from treated PD patients, who were receiving anti-
Parkinsonian drugs, from an outpatient clinic courtesy of Dr. H. Pall. For study A, 12 of
the treated patients were receiving L-Dopa therapy (sinemet or madopar), 5 of these were
also receiving a MAO B inhibitor (selegiline). In addition, one patient was receiving

selegiline alone. For study B, 20 of the treated patients were receiving L-Dopa therapy
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(sinemet or madopar), 10 of these patients were also receiving selegiline. Finally, one

patient was receiving selegiline alone and another was receiving benzhexol alone.

The study excluded individuals with any condition known to result in abnormal levels of
CICs such as auto-immunity, malignancy or infection. Tables 6.1 and 6.2 show details of

the patient groups used in study A (using the Sigma kit) and study B (using the Quidel kit).

Table 6.1 Patient details for study A using the Sigma kit.

patient group number of male: female age (mean +SD) age range
subjects

controls 10 5:5 35.2+15.2 17-56

untreated PD 15 5:10 62.9+10.5 43-76

treated PD 13 6:7 66.8+11.4 49-84

Table 6.2 Patient details for study B using the Quidel kit.

patient group number of male: female age (mean+SD) age range
subjects
controls 5 1:4 26.0+10.32 21-44
treated PD 22 12:10 67.5+10.6 43-89
6.2.2 PLASMA PREPARATION

Blood samples were collected in lithium heparin tubes and plasma obtained by
centrifugation at 2000g for 15 minutes at room temperature (MSE Minor centrifuge, MSE

Ltd, Crawley, UK). All plasma samples were stored at -70°C prior to use.

6.2.3 MEASUREMENT OF CICS IN PLASMA

The Clq solid phase binding assay involves the binding of IgG containing immune
complexes to immobilised Clq. Two immunoassay kits based upon this principle were

employed.
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6.2.3.1 STUDY A

Study A employed the Sigma immunoassay (SIA) immune complex kit (Sigma
Diagnostics, Poole, UK). For each run the positive and negative controls, calibrator and
plasma specimens were assayed in duplicate. The positive control and calibrator consisted
of heat aggregated human IgG. The negative control consisted of human serum with no
detectable immune complexes. A reagent blank was used consisting of sample diluent. A
1:41 dilution of all samples was carried out prior to the assay. The samples were incubated
in microwells coated with goat Clq for 20 minutes followed by washing to remove any
unbound material. Antibodies to human IgG labelled with alkaline phosphatase (conjugate)
were then added to each well for 20 minutes. A second washing stage was carried out and
P-nitrophenyl phosphate (substrate) was added to the wells. After 20 minutes, the
absorbance of the end product was measured at 405nm (Anthos reader 2001, Anthos
Labtec Instruments). A 620nm differential reading was automatically subtracted from the
405nm reading to maximise optical precision. The absorbance of the reagent blank was
subtracted from the absorbance of each sample. The CIC concentration of the samples was

calculated according to the following equation:

CICs in pug Eq/mL = Absorbance of the sample  «  vajue of calibrator (ug Eq/mL)
Absorbance of the calibrator
Results are expressed as [g equivalents per mL (ug Eq/mL) of heat aggregated human

IgG.

6.2.3.2 STUDY B

Study B employed the Quidel CIC-Clq enzyme immunoassay kit (Quidel, San Diego,
USA). For each run the standards and plasma specimens were tested in duplicate. The
standards consisted of a known quantity of heat aggregated human gamma globulin. The
specimen diluent was used as a reagent blank. Plasma specimens were diluted 1:50 prior to
the assay. The samples were incubated in microwells coated with Clq for 1 hour. The

wells were then washed to remove any material not bound to C1q. Horseradish-peroxidase
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conjugated goat anti-human IgG (conjugate) was added to each well for 30 minutes. This
was followed by a second wash stage. A chromogenic substrate solution containing 2-2-
Azino-di-(3-ethylbenzothiazoline sulphonic acid) diammonium salt was added to the wells
according to the suppliers directions. After 30 minutes, the absorbance of the end product
was measured at 405nm (Anthos reader 2001, Anthos Labtec Instruments). The absorbance
of the reagent blank was subtracted from the absorbance of each sample. A standard curve
was generated by plotting the concentration of the standards against the absorbance values
obtained. The concentration of immune complexes in the plasma specimens was
determined by reference to the standard curve. Results are expressed as |Lg of heat

aggregated human gamma globulin equivalents per mL (ugEq/mL).

6.2.4 STATISTICAL ANALYSIS

Data were presented as the mean of each patient group + standard deviation (SD). Data
analysis for study A was by analysis of variance (ANOVA) followed by a Fisher's t-test to
compare the differences between patient groups. For study B, an unpaired Student's t-test
was employed for the comparison of treated PD patients with controls. The variance ratio
was used to test the difference in variance between patient groups. The degree of

correlation between CICs and age was tested by regression methods.

6.3 RESULTS

6.3.1 INTER-ASSAY VARIATION IN CICS

The variation in the measurement of CICs between assay runs (i.e. inter-assay variation)
within positive and negative controls and a treated PD patient is shown in table 6.3 for the
3 Sigma kits (A, B and C) used in study A. The positive and negative controls were
provided by the supplier. Different positive controls were used for each kit with varying

concentrations of CICs.
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Table 6.3 Inter-assay variation in the concentration of CICs within the positive and

negative controls and a treated PD patient in study A (Sigma immunoassay kit).

mean plasma  interassay

CICs % CV
+ control for kit A 89.91+6.1 (n=5) 6.8
+ control for kit B 53.1£2.1 (n=5) 3.9
+ control for kit C 58.8+3.7 (n=2) 6.3
- control for kit A 7.3%1.4 (n=5) 18
- control for kit B 5.32%1.1 (n=5) 20
- control for kit C 7.31£0.46 (n=2) 6.1
treated PD patient 21.8+5.6 (n=3) 25.7

Values represent mean + SD, n=number of runs. % CV= % coefficient of variation.

Table 6.4 shows the inter-assay variation in CICs within the positive control, a treated PD

patient and a control patient tested using the Quidel kit in study B.

Table 6.4 Inter-assay variation in the concentration of CICs within a positive control, a

treated PD patient and a control patient in study B (Quidel immunoassay).

mean CICs interassay

(ugEq/mL) % CV
+ control 7.32+1.06 (n=3) 14.5
treated PD patient  11.0+2.15 (n=3) 19.6
control patient 1.07+0.56(n=4) 52.8

Values represent mean £ SD, n=number of runs. % CV= % coefficient of variation.

6.3.2 COMPARISONS BETWEEN PATIENT GROUPS

For the comparison between patient groups the level of CICs in study A are expressed as

the concentration of CICs minus the negative control value. The results for study B refer to

the absolute value of CICs.
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Table 6.5 CICs in the plasma of controls. untreated and treated PD patients in study A.

control untreated PD treated PD

CICs minus neg control  2.79+5.29 (n=10) 0.36+5.52 (n=15) 1.98+5.66 (n=13)
(uLgEg/mL)

Values represent the mean * SD of the concentration of CICs minus the CIC value of the
negative control, n=number of observations.
Statistical analysis: ANOVA (1 way): Effects of treatment, F=0.804, p>0.05.

Table 6.6 CICs in the plasma of controls and treated PD patients in study B.

control treated PD
CICs pugEq/mL 0.80%0.57(n=5) *1.9342.28 (n=22)

Values represent the mean + SD, n=number of observations. *p=0.05 compared to control.
Statistical analysis: Unpaired Student's t-test: Control vs treated PD t=2.06, p=0.05.

Differences in mean plasma CICs in study A (using the Sigma kit) were not significant

over the study population in table 6.5 (i.e. controls, untreated and treated PD) (p>0.05).

Plasma CIC levels in study B (using the Quidel kit) were found to be increased in treated
PD patients (1.93%£2.28, n=22) compared to controls (0.80+£0.57, n=5) at a level that was
just significant (P=0.05) (Table 6.6). However, the mean level of plasma CICs in treated
PD patients was below 4 pugEq/mL and is therefore considered to be negative for
significant levels of CICs according to the suppliers directions. Furthermore, the level of

CICs in treated PD plasma (1.93%£2.28, n=22) was comparable to the average CIC

concentration in normal asymptomatic subjects (2.1+1.9, n=106) reported by the supplier.

In addition, individual patients were classified according to whether their CIC levels
exceeded the normal limit stated in the suppliers instructions (Table 6.7). The
concentration of CICs measured by both the Sigma and Quidel immunoassays was within
the normal range in all controls. 1 of 15 (6.7%) untreated PD patients tested using the

Sigma assay had abnormal CIC levels. In the treated PD patients, 1 out of 13 (7.7%)
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patients assessed by the Sigma assay and 2 out of 22 (9.1%) patients assessed by the

Quidel assay had CICs above the normal limit.

Table 6.7 The % of individuals in studies A and B with CICs above the normal limit.

control untreated PD treated PD
STUDY A(> 20ugEq/mL) 0% 6.7% 7.7%
STUDY B(> 4ugEq/mL) 0% —_ 9.1%

6.3.3 VARIATION WITHIN PATIENT GROUPS

As shown in Figures 6.1 and 6.2, the majority of individual had CIC levels within the
normal range, although there was some variation within the patient groups. In study A,
variance did not differ significantly in the untreated (F=1.09, p>0.05) or treated PD
(F=1.15, p>0.05) patients compared to the controls or between the untreated and treated
PD groups (F=1.05, p>0.05). However in study B, the treated PD patients had significantly

different variance compared to the controls (F=15.99, p<0.05).
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Figure 6.1 Variation in plasma CICs in study A.

106



12 7
1 a
- 107
= .
~
S 8-
w -’
3.
6 -
5} J
Q o]
25 normal limit
2 } 0]
- o)
a
0 &
0 controls treated PD 3
PATIENT GROUP

Figure 6.2 Variation in plasma CICs in study B.

6.3.4 EFFECT OF AGE UPON PLASMA CIC LEVELS

Plasma CIC levels were not correlated with age in controls, untreated or treated PD

patients in studies A or B. The relationship between plasma CICs and age is shown in

figures 6.3 to 6.6.

r=0.24, p>0.05
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Ficure 6.3 The relationship between plasma CICs and age in control patients in study A.

CIC values refer to the CIC level in plasma minus that in the negative control.
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Figure 6.4 The relationship between plasma CICs and age in untreated PD patients in
study A.

CIC values refer to the CIC levels in plasma minus that in the negative control.
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Fioure 6.5 The relationship between plasma CICs and age in treated PD patients in study
A

CIC values refer to the CIC levels in plasma minus that in the negative control.
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Figure 6.6 The relationship between plasma CICs and age in treated PD patients in study
B

6.4 DISCUSSION

CICs have been detected in a number of conditions such as auto-immune disorders,
infections and malignancies (Theophilopoulus and Dixon 1980). It was therefore necessary
to screen the controls and PD patients for any of these condition which could result in

abnormally high levels of CICs.

The results demonstrated some inter-assay variation in CICs. However, the concentrations
of CICs in a plasma sample remained within the same range and results were consistent
between assays. To account for inter-assay variation within study A (using the Sigma
immunoassay), the CIC concentration within the plasma minus the negative control was

used for comparisons between patient groups and for the correlations between CICs and

age.

The concentration of plasma CICs, as measured by the Sigma immunoassay, did not differ

significantly between controls, untreated and treated PD patients.

In study B, the mean plasma CICs in treated PD patients were similar to the level of CICs

in PD patients measured using the same Quidel immunoassay kit by Yamada et al (1994b).
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An increase in plasma CICs in the treated PD patients compared to controls was
demonstrated in study B. However, the mean level of CICs within the treated PD patients
was within the normal range (i.e. below 4ugEq/mL) and was similar to the average CIC

concentration reported by the supplier for normal subjects (2.1+1 94ugEq/mL).

The percentage of individuals with abnormal levels of plasma CICs was lower in the
untreated (6.7%) and two sets of treated PD (7.7% and 9.1%) patients compared to 149

blood donors assessed by Sigma (10.1%).

Age was not correlated with the concentration of plasma CICs in any of the study groups.
Previous studies have also reported that there was no correlation between age and CIC
levels in plasma of PD patients (Yamada et al 1994) and sera of controls, Alzheimer's

disease and Down's syndrome patients (Heinonen ez al 1993).

In this study, abnormal levels of CICs were not observed in PD patients. The results
indicate that the excessive production of CICs is unlikely to be involved in PD, at least
during the stages of the disease represented by our patients. As the results suggest, there is
little evidence for the generation of CICs within PD patients. Yamada et al (1994b)
reported that there was no significant difference in the levels of plasma or CSF CICs (as
measured by the Quidel immunoassay kit) in PD patients compared to patients with
progressive supranuclear palsy and cervical spondylosis. Furthermore, none of the 14 PD
patients tested had CIC values above 4pgEq/mL which is considered to be the normal
limit by the supplier. Elevated levels of CICs have previously been observed in ALS
(Westarp et al 1993) and multiple sclerosis patients (Cojocaru et al 1992). In addition,
CICs have been reported to occur more frequently in the sera of Down's syndrome and
Alzheimer's disease patients with severe dementia compared to controls (Heinonen et al
1993, Soininen et al 1993). However, the frequency of CICs in AD patients with mild to

moderate dementia was similar to control values (Soininen et al 1993).
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CHAPTER 7: THE RELATIONSHIP BETWEEN TRANSFERRIN
BINDING AND THE IMMUNE RESPONSE

7.1 INTRODUCTION

A reduction in the binding of gallium (Ga) to transferrin (Tf) and an elevation of serum
neopterin (as a marker of a cellular immune response) has previously been reported in PD

patients compared to controls.

Two possibilities may explain the relationship between Tf binding and neopterin. Firstly, a
reduction in metal binding could lead to an increase in a low molecular weight metal
species capable of stimulating a cellular IR and consequently increasing neopterin levels.
For example, it has been hypothesised that a metal could induce an immune response
within the brain via the mutual histocompatibility system in AD patients (Armstrong et al
1995). A number of metals have been shown to stimulate the immune system. Aluminium
is used in vaccine adjuvants to enhance the immune response (Edelman 1980), exposure to
beryllium is associated with an inflammatory lung disorder known as chronic beryllium
disease (Mroz et al 1991) and injections of mercury can induce antibodies against renal
antigens in experimental animals (Kosuda et al 1993). In addition, a number of metal
haptens such as nickel, chromium, beryllium and mercury can generate a type of delayed

hypersensitivity reaction (Druet 1994).

Secondly, the immune response itself might interact with the Tf molecule resulting in a
reduction in the binding of metals. It has been proposed that in PD patients, the activation
of macrophages could increase oxidation within the periphery with a subsequent decrease
in metal binding to Tf (Winsper et al 1994). To investigate these effects, first, the
relationship between Tf binding and the cellular immune response (using neopterin as a
marker) was studied and second, the effect of oxidation upon Ga-Tf binding was tested by
the addition of oxidising agents to the plasma. In addition, the effect of activated
monocytes, stimulated with phorbol myristic acetate (PMA) to induce a respiratory burst,

was investigated.
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7.1.1 AIMS OF THE CHAPTER
The objectives of this study were to determine whether a relationship existed
between the immune response and Tf binding and to investigate whether oxidative attack

could induce a reduction in Tf binding in control plasma.

7.2 METHODS

7.2.1 MATERIALS

All chemicals used were of general grade and were supplied by: Sigma Chemical
Company Ltd (Poole, UK); Aldrich Chemical Company (Gillingham, UK); BDH
Chemicals Ltd (Poole, UK). Radio-isotopes were supplied by Amersham International

PLC (Aylesbury, UK). Distilled water was used to make up all solutions.

7.2.2 PLASMA PREPARATION

Blood samples were collected in lithium heparin tubes and plasma obtained by
centrifugation at 2000g for 15 minutes at room temperature (MSE Minor centrifuge, MSE

Ltd, Crawley, UK). All plasma samples were stored at -20°C prior to use.

7.2.3 CONTROL AND PATIENT STUDY GROUPS

7.2.3.1 CORRELATION STUDIES

The control group comprised 11 healthy volunteers living in the community.

Plasma from untreated PD patients was obtained from Dr. H. Pall (consultant neurologist,
Queen Elizabeth Hospital, Birmingham) at the time of clinical diagnosis and before the
start of drug therapy. All patients in the experimental group displayed at least two of the
three classic symptoms of PD (tremor, rigidity and bradykinesia) and subsequently
responded to levodopa therapy. The severity of the disease varied between stages 1-4

according to the Hoehn and Yahr's classification (Hoehn and Yahr 1967).
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Blood samples were also obtained from treated PD patients, who were receiving anti-
Parkinsonian drugs, from an outpatient clinic courtesy of Dr. H. Pall. Twenty one of the 23
treated patients were receiving L-Dopa therapy (sinemet or madopar), 11 of these were
also receiving a MAO B inhibitor (selegiline). In addition, 2 patients were receiving

benzhexol alone).

The details of the study groups used to investigate the relationship between Tf binding and

neopterin are shown in table 7.1.

Table 7.1 Composition of the study group used for the correlation between % Ga-Tf

binding and neopterin.

patient group number of male: female age (mean +SD) age range
subjects

controls 11 3:8 28.54£11.04 17-50

untreated PD 24 12:12 63.5+10.64 40-80

untreated PD high binders 12 7:5 65.25+£10.98 40-77

untreated PD low binders 12 57 61.75£10.47 43-80

treated PD 23 8:15 67.09+10.69 43-89

7.2.3.2 OXIDATION STUDIES

To investigate the effects of oxidation upon % Ga-Tf binding, plasma from healthy
volunteers living in the community was employed. Details of the controls used in the

oxidation studies are shown in table 7.2.

Table 7.2 Composition of the study groups used for the oxidation studies.

patient group number of male: female age (mean +SD) age range
subjects

control oxidising agents 6 1:5 30.83+£13.08 17-50

controls monocytes 3 1:2 30.0+14.18 23-50
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7.2.4 GA-TF BINDING

% Ga-Tf binding within plasma samples was determined by gel filtration chromatography

as described in section 4.2.4.1.

7.2.5 MEASUREMENT OF NEOPTERIN

Oxidised serum neopterin was measured by radioimmunoassay (Fuchs et al 1992) courtesy
of Professor Fuchs (Institute of Medicinal Chemistry and Biochemistry, University of

Innsbruck, Austria).

7.2.6 OXIDATION STUDIES

7.2.6.1 CHEMICAL OXIDISING AGENTS

Plasma from 6 control subjects was incubated with various concentrations of manganese
dioxide, activated manganese dioxide and potassium permanganate for two hours at 37°C
in a shaking water bath prior to incubation with Ga®7 and application to a G75 column as
described in section 4.2.4.1. The manganese dioxide which is sparingly soluble was
prepared as a suspension. The activated manganese dioxide was purchased from Sigma
Chemical Company (Poole, UK) and was designed specifically to take part in oxidation

reactions.

7.2.6.2 ACTIVATED MONOCYTES

The human monocyte cell line U937 was employed during this study. The cell line was
grown in R10 media (RPMI 1640 medium with phenol red plus 10% calf serum, 5%
penicillin-streptomycin, 1% L-glutamate, 0.5% gentamycin). The cells were passaged to
maintain a density of between 1 x 105 © 7 x 105 cells per ml. Cells were incubated with
various concentrations of phorbol myristic acetate (PMA) for 72 hours in order to induce
the respiratory burst. Plasma from 3 control subjects was incubated with a final

approximate concentration of 2x 103 activated and non-activated monocyte. Following
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incubation with the monocytes for two hours at 37°C in a shaking water bath, the plasma
samples were incubated with Gab7 and applied to a G75 column as described in section

4.2.4.1.

7.2.7 STATISTICAL ANALYSIS

Data were presented as the mean of each patient group + standard deviation (SD). The
degree of correlation between Ga-Tf binding and neopterin was assessed by correlation
and regression methods. The effect of oxidising agents and monocytes upon Ga-Tf binding

was tested via paired Student's t-tests.

7.3 RESULTS

7.3.1 THE RELATIONSHIP BETWEEN GA-TF BINDING AND PLASMA
NEOPTERIN

Ga-Tf binding was not significantly correlated with plasma neopterin in controls, untreated
or treated PD patients (table 7.3). However, in all PD groups the correlation coefficient

was negative, as neopterin increased Ga-Tf binding was reduced.

Table 7.3 The relationship between Ga-Tf binding and plasma neopterin in controls,

untreated and treated PD patients.

Patient Group N R P

controls 11 0 >0.05
untreated PD 24 -0.27 >0.05
untreated PD high binders 12 -0.62 <0.05
untreated PD low binders 12 -0.737 <0.01
treated PD 23 -0.324 >0.05

It was possible to subdivide the untreated PD patients into high and low binding groups as
previously shown by Hodgkins (1992). At low neopterin values, i.e. <10nmol/l, individuals

with Ga-Tf binding of 60% or above were classified as high binders, those below 60% as
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low binders. At high neopterin values, i.e. >10nmol/l, individuals with binding of 50% or
more were selected as high binders and those with values below 50% as low binders.
Plasma neopterin was found to be negatively correlated with % Ga-Tf binding in both the
untreated PD high binders (P<0.05) and the untreated PD low binders (p<0.01) (Figure
7.1).

The two regression lines fitted to the high and low binders had significantly different

elevations (p<0.001) but did not differ in slope (P>0.05).
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Figure 7.1 The relationship between Ga-Tf binding and plasma neopterin in untreated PD

patients, high and low binders.

7.3.2 THE ADDITION OF OXIDISING AGENTS TO PLASMA
7.3.2.1 CHEMICAL OXIDISING AGENTS

To investigate the effect of oxidation upon Ga-Tf binding the oxidising agents KMnO4 and
activated MnO, (formulated to take part in oxidation reactions) were added to control
plasma (table 7.4). MnO was also added to the plasma to ensure the effects of the
activated MnO, were not due to the Mn ion competing with Ga for Tf binding. The results
indicate that the MnO» had little effect upon Ga-Tf binding. Ga-Tf binding did not differ

significantly in control plasma compared to plasma with the addition of 1073 or 1072

116




MnOj,. The presence of 1073 activated MnO; had no significant effect upon Ga-Tf binding
in control plasma. However, the addition of 10-2 activated MnO; was found to reduce Ga-
Tf binding significantly (P<0.05). The oxidising agent KMnOy4 was found to greatly reduce

the binding of Ga to Tf at a concentration of 104M (p<0.01).

Table 7.4 The effect of oxidising agents upon Ga-Tf binding in control plasma.

control MnO; activated MnO> KMnO4
10-3 10-2 10-3 102 10-4
control 1 60 - - 50 15 -
control 2 75 69 73 67 54 2.34
control 3 80 - 68 - 63 -
control 4 73 - 72 - 62 8.6
control 5 79 - - 78 72 -
control 6 75 70 65 77 67 2.2
mean 73.7 69.5 69.5 68 55.5% 4.38#
+SD 7.2 0.7 3.7 13.0 20.7 3.66

Statistical analysis : Paired Student's t-test: Control vs 10-2 MnO;, t=2.25, p>0.05; Control
vs 10-3 activated MnO; t= 1.5 p>0.05; Control vs 102 activated MnO; t= 3.13 p<0.05%;
Control vs KMNOy t=25.19 p<0.01#
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Figure 7.2 The effect of activated MnO7 upon Ga-Tf binding in four control patients.
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The results also indicate that certain subjects were more susceptible to a reduction in Ga-Tf
binding due to the effects of oxidation. Figure 7.2 shows the effects of activated MnO;
upon Ga-Tf binding within the plasma of 4 individual controls. All subjects demonstrated a
reduction in binding with the addition of activated MnO; However control subject 1
demonstrated a greater reduction in binding than the other subjects. It is apparent that this

individual had relatively low binding before the addition of oxidising agents.

7.3.2.2 ACTIVATED MONOCYTES

Table 7.5 shows the effect of monocytes and monocytes + PMA upon Ga-Tf binding in
control plasma. The PMA was added to the monocytes in order to stimulate the respiratory
burst thereby producing oxidising species. The addition of monocytes or monocytes
stimulated with 6pg PMA was found to have no significant effect upon Ga-Tf binding in
control plasma. However, in one subject (control 1) a reduction in Ga-Tf binding within
the plasma was observed on incubation with monocytes stimulated with 6pg PMA. The
same individual was found to demonstrate the greatest reduction in binding following

incubation with activated MnOy,

Table 7.5 The effect of the addition of monocytes and monocytes stimulated with PMA

upon Ga-Tf binding in control plasma.

control monocytes monocytes + PMA
2ug PMA 4pugPMA 6ugPMA

control 1 60 61 59 53

control 2 68 66 64 72

control 3 80 77 78
mean 69.3 68.0 64 59 67.7
+SD 10.1 8.2 13.1

Statistical analysis: Paired Student's t-test; Control vs monocytes t=1.11 p>0.05; Control vs
6ug PMA t=0.52 p>0.05
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7.4 DISCUSSION

Individuals with conditions that could activate the immune system or receiving medication
that could affect the immune response, such an anti-inflammatory drugs, were included in
the study population. It is valid to include those individuals with elevated neopterin due to
some other condition as when investigating the relationship between neopterin and % Ga-
Tf binding the origin of the cellular immune response should not determine the effect

upon Ga-Tf binding.

An inverse correlation between % Ga-Tf binding and plasma neopterin was observed when
the untreated PD patients were subdivided into "high" and "low" Tf binders. As Ga-Tf
binding is dependent upon neopterin levels, high and low binders were defined in relation
to the level of neopterin. At low neopterin values, i.e. <10nmol/l, individuals with binding
of 60% or above were classified as high binders, below 60% as low binders. At high
neopterin values, i.e. >10nmol/l, high binders were defined as having binding of 50% or
more, low binders as below 50%. The finding that the elevations of the two regression
lines were significantly different confirms the presence of two distinct populations of high

and low binders as reported by Hodgkins (1992).

The results indicate that in untreated PD patients there is an inverse relationship between
Tf binding and serum neopterin, Ga-Tf binding declining as plasma neopterin increases.
An associated between immune activation and disturbances in iron metabolism has also

been reported by Fuchs et al (1993b), neopterin being inversely correlated with Tt levels.

A significant correlation between Ga-Tf binding and plasma neopterin was not observed in
controls or treated PD patients. In the control group, all individuals demonstrated Ga-Tf
binding values above 60% and neopterin levels below 10ugEq/mL. The relatively small
range of values might explain why a relationship between the two parameters was not
observed. In the treated PD group, drug therapy may have altered either Tf binding or

affected the level of neopterin resulting in no significant correlation between the two.
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The addition of oxidising agents to control plasma demonstrated that oxidation is capable
of liberating metals from Tf. A reduction in Tf binding following the addition of oxidising
agents to plasma has been previously reported by Hodgkins (1992). The results indicated
that in certain subjects, oxidising agents induced a greater reduction in Ga-Tf binding. It is
possible that individuals with lower levels of binding lose metals from Tf more easily than
high binders. In the oxidative studies, the control with the lowest % Ga-Tf binding
demonstrated the greatest reduction in binding following the addition of oxidising agents

to the plasma.

The addition of activated monocytes to plasma aimed to produce an oxidative environment
resembling that within the body during an immune response. In order to induce the
respiratory burst, the monocytes were stimulated with PMA. However, the activated
monocytes only produced a small reduction in Ga-Tf binding in one control subjects. This
may be due to the fact that the monocytes were incubated for an insufficient time to affect
binding. Within the body, oxidative stress due to immune activation may occur over a
greater time period. Furthermore, the cell line employed in this study generates a relatively

small amount of oxygen metabolites in comparison to macrophages or neutrophils.

The results indicate that in untreated PD patients there is an inverse relationship between
Tf binding and serum neopterin. Three possibilities exist. Firstly, defects in Ga-Tf binding
are responsible for an increase in immune activation and therefore the elevation of
neopterin. Secondly immune activation results in the liberation of metals from Tf. Finally,
a third factor could result in both a reduction in Ga-Tf binding and stimulation of the

immune response.

7.4.1 DOES REDUCED METAL TF BINDING LEAD TO IMMUNE
ACTIVATION?

An increase in free metal, due to reduced binding to Tf, could result in the stimulation of
the immune system by a metal or metal complex. Metals are known to be capable of
initiating a cellular immune response and inducing antibody formation. Metals also have

the ability to activate complement. Al compounds have a long history of use as vaccine
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adjuvants such as in the diphtheria toxoid (Edleman 1980). Adjuvants are substances that
non-specifically enhance the immune response to an antigen. Al containing adjuvants have
been found to induce antibody production (Reiotella and Orasy 1969), prime T-helper cells
(Kishimoto and Ishizaka 1973) and activate complement proteins (Ramanathan et al 1979).
The disorder known as chronic beryllium disease (CBD) is a lung disease arising due to
industrial exposure to beryllium dust. In this condition, a cell mediated immunity to
beryllium occurs with the formation of granulomas or clusters of immune cells
surrounding beryllium particles in the walls of the alveoli (Mroz et al 1991). In addition, a
number of metal haptens such as nickel, chromium, beryllium and mercury can induce
contact dermatitis (Druet 1994), a type of delayed hypersensitivity reaction. Finally,
mercury has been found to induce antibodies against renal antigens in experimental

animals (Kosuda et al 1993).

It has been hypothesised that a metal induced immune disorder within the brain may play a
role in the pathogenesis of AD (Armstrong et al 1995). Metals can generate an immune
response in a number of ways. Firstly, metals are known to be capable of inducing a
hypersensitivity reaction. In this case, a cellular or humoral immune response is mounted
against the metal antigen which is overtly aggressive with pathological consequences for
the host. Recognition of metal haptens by T-cells is believed to be MHC restricted
(Sinigaglia 1994) and could occur under a number of circumstances. Nickel has been
found to bind MHC associated peptides, modifying the structure of the MHC-peptide
complex, and resulting in the presentation of the hapten to T-cells. By contrast, gold was
demonstrated to bind directly to the MHC molecules accounting for the production of gold
specific T-cells and the generation of the delayed type hypersensitivity reaction seen in

some individuals (Sinigaglia 1994).

Secondly, metals are believed to be capable of inducing auto-immunity in which an
immune response, involving auto-reactive T-cells or auto-antibodies, is directed against an
auto-antigen. In this case, metals may modify self-proteins which then become auto-

antigenic. For example, in rodents, gold and mercury salts have been found to stimulate an

121




autoimmune response which is believed to occur because the metals modify the MHC-

peptide complex so it is recognised by auto-reactive T-cells (Druet 1994).

Furthermore, the MHC molecule itself may be important in determining whether a metal is
recognised by the immune system. In CBD, certain MHC alleles were found to be
associated with the disease (Richeldi et al 1993). In addition, T-cell clones from
individuals with contact dermatitis only responded to nickel in association with a certain
HLA isotype (Sinigaglia 1994). The influence of the MHC molecule could explain why

some individuals could be susceptible to metal induced immune responses.

7.4.2 DOES IMMUNE ACTIVATION LEAD TO REDUCED METAL TF
BINDING?

It is also possible that increased immune activation, as indicated by the elevation in
neopterin, is responsible for the reduction in Ga-Tf binding demonstrated in PD patients.
The effect of oxidising agents upon Tf binding in vitro demonstrated that oxidation within
the plasma is capable of liberating Ga from Tf. Furthermore, those metals with lower
stability constants than Ga, such as Al, would be more likely to be lost from the Tf
molecule. A potential source of oxidising species is the immune response. It has been
suggested that increased oxidative activity, due to the activation of macrophages, results in
a reduction in Ga-Tf binding in PD patients (Winsper et al 1994). Furthermore, neopterin
itself may act as an oxidant (Arai 1994) and thus contribute to the reduction in Tf binding.
Alternatively, a specific immune attack of the Tf molecule could occur as in the case of
auto-immune atransferrinaemia. This disorder involves the production of auto-antibodies
specific for the Tf molecule resulting in the generation of a circulating immune complex of

Tf and IgG (Westerhausen and Meuret 1977).
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CHAPTER 8: GENERAL DISCUSSION

8.1 OBJECTIVES OF THE STUDY

This study had a number of objectives:

1) To determine whether the binding of Fe and Ga (and by implication other metals) to Tf
was defective in plasma from patients with Parkinson's disease and to investigate the effect
of drug therapy upon Ga-Tf binding.

2) To extend preliminary studies that demonstrated an elevation of neopterin in untreated
PD patients (Winsper et al 1994) and to determine whether the levels of neopterin were
influenced by treatment.

3) To investigate whether the humoral immune response is activated within the plasma of
PD patients by measuring the levels of CICs.

4) To establish the relationship between Ga-Tf binding and plasma neopterin (as a marker
of a cellular immune response) and to demonstrate the ability of oxidation to reduce Ga-Tf

binding in vitro.

8.2 MAJOR CONCLUSIONS

Fe-Tf binding was found to be 100% within the plasma of all controls and PD patients

indicating that a defect in the binding of Fe to Tf is not involved in the aetiology of PD.

The binding of Ga to Tf was found to be significantly reduced within the plasma of both
untreated and treated PD patients compared to controls. Furthermore, treatment was found
to increase Ga-Tf binding towards control values, treated PD patients having significantly
higher levels of binding than untreated PD patients. Ga-Tf binding may reflect the binding
of Tf to a series of other metals. A reduction in metal Tf binding could have several
consequences. A decrease in Tf binding may result in an increase in a low molecular
weight species which may be readily transported across the BBB leading to the
accumulation of the metal within the brain. Alternatively, a decrease in Tf binding could
limit the entry of an essential metal into the brain via the Tf receptor system. It is also

possible that Ga-Tf binding is secondary to some other process, such as immune activation.
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The study also demonstrated a significant elevation in neopterin within the plasma of
untreated PD patients compared to controls indicating the activation of a cellular immune
response. Treatment was found to influence neopterin levels, plasma neopterin being lower
in treated PD patients compared to untreated PD patients, although the difference was not
significant. By contrast, there was no evidence for the activation of the humoral immune

response in untreated or treated PD patients as measured by CIC levels within the plasma.

An inverse relationship was found to exist between Ga-Tf binding and neopterin within the
plasma of untreated PD patients. A number of possibilities may explain this relationship.
Firstly, reduced metal Tf binding could result in the release of a low molecular weight
form of the metal which is capable of stimulating an immune response thus increasing
neopterin levels. Secondly, the activation of the cellular immune system may be
responsible for the reduction in Tf binding. The immune response provides a source of
oxidants which could damage the Tf molecule thereby reducing its ability to bind to
metals. This hypothesis is supported by the finding that the addition of oxidising agents to
control plasma reduced Ga-Tf binding in vifro demonstrating that oxidation is capable of

inducing the release of metals from Tf.

Substantial evidence suggests that an immune response occurs within the Parkinsonian
brain (Yamada et al 1992, McGeer et al 1988, McRae-Deguerce et al 1986, Mogi et al
1994) however, the origin of this response is unknown. One possibility is that an auto-
immune attack is generated against the dopaminergic neurons resulting in the degeneration
of the substantia nigra. Auto-immunity occurs when self-antigens are recognised by the
immune system as foreign, resulting in the production of auto-antibodies and/or auto-
reactive T-cells against the bodies own tissues. An auto-immune response may occur for a
number of reasons. Firstly, damage to the BBB could result in brain antigens, coming into
contact with immune cells in the plasma, thus stimulating an immune reaction. Secondly,
an auto-antigen may be modified, for example in response to a virus, toxin or trauma, so
that it would be recognised by the immune system as foreign. Thirdly, an antigen
generated against an infectious agent or environmental toxin may cross-react with the

bodies own antigens. Fourthly, autoimmunity may arise due to a defect within the immune
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system itself for example by a loss of suppressor cell function, formation of a B-cell clone
that recognises self-antigens or an increase in T-helper cell activity with the inappropriate
activation of B-cells. Finally, expression of MHC molecules by cells that do not normally
possess these antigens could lead to the abnormal presentation of antigen and generation

of an auto-immune response.

It has been suggested that some forms of Alzheimer's disease could be a metal-induced
auto-immune disorder (Armstrong et al 1995) and it is possible that such a process could
be involved in the aetiology of PD. The metals Al and Fe are known to be increased within
the Parkinsonian brain (Yasui er al 1992a, Dexter et al 1989b, Sofic et al 1991) and are
present within Lewy bodies (Hirch et al 1991). Metals can induce two types of immune
reaction. Metals such as nickel, chromium, beryllium and mercury are capable of
stimulating a hypersensitivity reaction in which the immune system is overtly reactive to
an exogenous antigen resulting in injury to the hosts tissue (Druet 1994). The recognition
of metals during the hypersensitivity response appears to be MHC restricted (Sinigaglia
1994). Nickel has been found to bind directly to MHC associated peptides to modify the
structure of the MHC-peptide complex (Sinigaglia 1994). By contrast, gold binds directly
to the MHC molecule leading to the generation of metal specific T-cells. In addition, the
metals mercury and gold have been demonstrated to induce an auto-immune response in
rats. The mechanism involved is believed to be the modification of the MHC/MHC-peptide
complex by the metal leading to the recognition of normal class I MHC molecules by

auto-reactive T-cells with the polyclonal activation of B cells (Druet 1994).

It is also possible that the immune response is a more general inflammation occurring in
response to the degeneration of the substantia nigra due to some other cause. However,
even if the immune response is secondary it may play a role in the pathogenesis by causing

further neuronal damage.

125




8.3 PROPOSALS FOR FUTURE WORK

1) To identify the low molecular weight Ga species present in both controls and PD
patients and to establish whether patients with low levels of Tf binding posses different

low molecular weight species than those with high levels of binding.

2) To investigate further the relationship between Ga-Tf binding and plasma neopterin in
individuals over a prolonged period of treatment with Parkinsonian drugs and to extend the

studies to include the effects of duration and dosage of treatment.

3) To establish whether the cellular immune response (as indicated by elevated neopterin)
demonstrated within the plasma of PD patients is also present within the brain perhaps by

investigating a marker of immune activation within the cerebrospinal fluid.

4) To establish whether immune activation precedes reduced Ga-Tf binding in PD patients

by studying the parameters within the same individuals at different stages of the disease.

5) To establish whether PD patients are more susceptible to a reduction in Tf binding
following oxidation within the plasma by investigating the effects of oxidising agents upon

Ga-Tf binding in the plasma of PD patients.
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APPENDICES

APPENDIX 1

THE UNIFIED PARKINSON'S DISEASE RATING SCORE (UPDRS)
version 3.0 - February 1987 (courtesy of Dr H Pall)

I. MENTATION, BEHAVIOUR AND MOOD

1. Intellectual impairment O none.

I Mild. Consistent forgetfulness with partial recollection of
events and no other difficulties.

2 Moderate memory loss with disorientation and moderate
difficulty handling complex problems. Mild but definite
impairment of function at home with need of occasional
prompting.

3 Severe memory loss with disorientation for time and often
to place. Severe impairment of handling problems.

4 Severe memory loss with orientation preserved to person
only. Unable to make judgements or solve problems.
Requires much help with personal care. Cannot be left
alone at all.

2. Thought disorder (due to dementia or drug intoxication)

None.

Vivid dreaming.

Benign hallucinations with insight retained.

Occasional to frequent hallucinations or delusions; without
insight, could interfere with daily activities.

Persistent hallucinations, delusions or florid psychosis,

not able to care for self.

WrN— O

N

Not present.

Periods of sadness or guilt greater than normal, never
sustained for days or weeks.

Sustained depression (1 week or more).

Sustained depression with vegetative symptoms (insomnia,
anorexia, weight loss, loss of interest).

4 Sustained depression with vegetative symptoms and
suicidal thoughts or intent.

3. Depression

— O

W N

0 Normal.

1 Less assertive than usual, more passive.

2 Loss of initiative or disinterest in elective (non-routine)
activities.

3 Loss of initiative or disinterest in day to day (routine)
activities.

4 Withdrawn, complete loss of motivation.

4. Motivation/Initiative

II. ACTIVITIES OF DAILY LIVING

5. Speech 0 Normal.

1 Mildly affected. No difficulty being understood.

2 Moderately affected. Sometimes asked to repeat
statements.
Severely affected. Frequently asked to repeat statements.
Unintelligible most of the time.

&~ W
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6. Salivation

7. Swallowing

8. Handwriting

9. Cutting food and
handling utensils

10. Dressing

11. Hygiene

12. Turning in bed and
adjusting bed clothes

13. Falling

14. Freezing when walking

N —_—0 BLWNN—=O LN —O S LN —_0

N — O W

N — O W

(o)

PROO—O OO~ O ALV~ O &

Normal.

Slight but definite excess of saliva in mouth, may have
night time drooling

Moderately excessive saliva, may have minimal drooling.
Marked excess of saliva with some drooling.

Marked drooling, requires constant tissue or handkerchief.

Normal.

Rare choking.

Occasional choking.

Requires soft food

Requires NG tube or gastrotomy feeding.

Normal.

Slightly slow or small.

Moderately slow or small, all words are legible.
Severely affected, not all words are legible.
The majority of words are not legible.

Normal

Somewhat slow and clumsy but no help needed.

Can cut most foods although clumsy and slow, some help
needed.

Food must be cut by someone but can still feed slowly.
Needs to be fed.

Normal

Somewhat slow but no help needed.

Occasional assistance with buttoning, getting arms in
sleeves.

Considerable help required but can do some things alone.
Helpless.

Normal

Somewhat slow but no help needed.

Needs help to shower or bathe, or very slow in hygienic
care.

Requires assistance for washing, brushing teeth, combing
hair, going to bathroom.

Catheter or other mechanical aids.

Normal

Somewhat slow and clumsy but no help needed.

Can turn alone or adjust sheets but with great difficulty.
Can initiate but not turn or adjust sheets alone.
Helpless.

None

Rare falling

Occasional falls, less than once per day.
Falls on average of once per day.

Falls more than once daily.

None.

Rare freezing when walking, may have start hesitation.
Occasional freezing when walking.

Frequent freezing. Occasional falls when freezing.
Frequent falls from freezing.
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15. Walking

16. Tremor

17. Sensory complaints
related to Parkinsonism

0 Normal.

Mild difficulty, may not swing arms or may tend to drag
leg.

Moderate difficulty but requires little or no assistance.
Severe disturbance of walking, requiring assistance.
Cannot walk at all, even with assistance.

—

Absent.

Slight and infrequently present.
Moderate, bothersome to patient.
Severe, interferes with many activities.
Marked, interferes with most activities.

None

Occasionally has numbness, tingling or mild aching.
Frequently has numbness, tingling or aching, not
distressing.

Frequently painful sensations.

Excruciating pain.

N = O WO —O B

W

III MOTOR EXAMINATION

18. Speech 0 Normal.
1 Slight loss of expression, dictation and/or volume.
2 Monotone, slurred but understandable, moderately

impaired.

3 Marked impairment, difficult to understand.
4 Unintelligible.

19. Facial expressions 0 Normal
I Minimal hypomimia could be normal "poker face'.
2 Slight but definitely abnormal diminution of facial

20. Tremor at rest

21. Action or postural
tremor of the hands

22. Rigidity

expression.

Moderate hypomimia, lips parted some of the time.
Masked or fixed facies with severe or complete loss of
facial expression, lips parted.

W

Absent.

Slight and infrequently present.

Mild in amplitude and persistent or moderate in amplitude
but only intermittently present.

Moderate in amplitude and present most of the time.
Marked in amplitude and present most of the time.

N = O

Absent.

Slight, present with action.

Moderate in amplitude, present with action.
Moderate in amplitude, present most of the time.
Marked in amplitude, interferes with feeding.

AL~ O W

(judged on passive movement of major joints with patient
relaxed in sitting position)

0 Absent

1 Slight or detectable only when activated by mirror or other
movements.

Mild to moderate.

Marked but full range of motion easily achieved.

Severe, range of motion achieved with difficulty.

AW
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23. Finger taps

24, Hand movements

25. Rapid alternating

26. Leg agility

27. Arising from chair

28. Posture

29. Postural stability

(Patient taps thumb with index finger in rapid succession with

widest amplitude possible)

0 Normal

1 Mild slowing and/or reduction in amplitude.

2 Moderately impaired. Definite and early fatiguing, may
have occasional arrests in movement.

3 Severely impaired, frequent hesitation in initiating.

4 Can barely perform the task.

(Patient opens and closes hands in rapid succession with

widest amplitude possible)

1 Mild slowing and/or reduction in amplitude.

2 Moderately impaired. Definite and early fatiguing, may
have occasional arrests in movement.

3 Severely impaired, frequent hesitation in initiating
movements Or arrests in ongoing movement.

4 Can barely perform the task.

(Pronation-supination movements of hands, vertically or

horizontally with large an amplitude as possible, both hands

simultaneously)

1 Mild slowing and/or reduction in amplitude.

2 Moderately impaired. Definite and early fatiguing, may
have occasional arrests in movement.

3 Severely impaired, frequent hesitation in initiating
movements or arrests in ongoing movement.

4 Can barely perform the task.

(Patient taps heel on ground in rapid succession, picking up

entire foot, amplitude should be about 3 inches)

1 Mild slowing and/or reduction in amplitude.

2 Moderately impaired. Definite and early fatiguing, may
have occasional arrests in movement.

3 Severely impaired, frequent hesitation in initiating

movements or arrests in ongoing movement.

Can barely perform the task.

Normal

Slow may need more than one attempt.

Pushes self up from arms of seat.

Tends to fall back and may have to try more than one time
but can get up without help.

Unable to rise without help.

W —O ~

Normal erect

Not quite erect, slightly stooped posture, could be normal

for older person.

Moderately stooped posture, definitely abnormal, can be

slightly leaning to one side.

3 Severely stooped posture with kyphosis, can be
moderately leaning to one side.

4 Marked flexion with extreme abnormality of posture.

—o A

o

(Response to sudden posterior displacement produced by pull
on shoulders while patient erect with eyes open and feet
slightly apart., Patient was prepared).

0 Normal

1 Retropulsion but recovers unaided.

2 Absence of postural response would fall if not caught.

3 Very unstable, tends to lose balance spontaneously.

4 Unable to stand without assistance.
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30. Gait 0 Normal.

1 Walks slowly, may shuffle with short steps but no
festination or propulsion.

2 Walks with difficulty but requires little or no
assistance, may have some festination, short steps or
propulsion.

3 Severe disturbance of gait, requiring assistance.

4 Cannot walk at all, even with assistance.

31. Body bradykinesia (Combining slowness, hesitancy, decreased arm swing,
and hypokinesia small amplitude and poverty of movement in general).
0 None

] Minimal slowness giving movement a deliberate
character , could be normal for some persons, possibly
reduced amplitude.

2 Mild degree of slowness and poverty of movement
which is definitely abnormal, alternatively some
reduced amplitude.

3 Moderate slowness, poverty or small amplitude of
movement.

4 Marked slowness, poverty or small amplitude of
movement.
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APPENDIX 2

FE-TF BINDING STUDIES

CONTROL RESULTS
LD Sex Age condition treatment % Fe-Tf
binding
D F 36 diabetic insulin 100
HD F 41 none nil 100
PH M 24 none nil 100
DS M 23 none nil 100
ST F 36 none nil 100
SW F 22 none nil 100
PD PATIENT RESULTS
L.D Sex Age condition treatment % Fe-Tt
binding
WB M 62 untreated PD Hydralazine 100
hypertension oxyprenolol
gout allopurinol
MH M 64 untreated PD asparin 100
WH M 71 untreated PD nil 100
JS M 61 untreated PD naproxen 100
MT M 58 untreated PD amilodipine 100
hypertension atenolol
MW F 73 untreated PD prothiaden 100
thyroid disease
depression
PA M 59 treated PD selegiline 100
sinemet
WH M 72 treated PD sinemet plus 100
osteo-arthritis ~ nitrazepan
vascular disease
LH F 57 treated PD sinemet 100
selegiline
phenobarbitone
SP M 62 treated PD sinemet 110 100




APPENDIX 3

CONTROL RESULTS FOR GA-TF BINDING AND NEOPTERIN

D Sex Age condition treatment % Ga-Tf neopterin
binding (nmol/L)
RA M 44 none nil 59.5 5.1
TB F 40  retroperitoneal- 50 mg MTX 76 *7.6
leimyosarcoma fortnightly
HD F 41  none nil 82 6.0
SD F 22 none nil 67 6.0
PD M 22 none nil - 3.8
BE F 59  ulcerative- salazopyrinine - *6.4
colitis
GG M 49 none nil - 7.8
DH F 57 infection doxycycline- - *8.7
metionidazole
FH F 70  bronchitis nil - *15.5
PHi M 53 none nil - 4.7
PHo M 24 none nil 80 3.6
DH F 55  bronchitis brufen - *9.1
thrombosis
MH F 50 none nil - 13.7
PHu M 47  acute nephritis nil - *6.2
kidney stones
SK F 24  none nil 79 3.6
BM M 52 infection fludoxacilin - *11.4
SM F 55  asthma ventiline - *7.9
becotide
asparin
CP M 56 none nil - 6.4
VP F 71  non-Hodkins thyroxine 77 5.3
lymphoma (in
remission)
SR F 44  none nil - 7.0
JR F 27  none nil 75 6.9
MR F 50  cancer of breast hydrocorticosone 74 *3.0
maxolon
stemetil
cyclophosphamide
MTX
flourouracil
folinic acid
BS F 53  adenosarcoma prednisolone 64 *5.4
of breast
DS M 25 none nil - 3.6
RS F 50  hypertension bendoflourazide - *12.1
zesteril
SS M 81  cancerof none 73 3.0
prostate
ST F 36 none nil - 4.3
TT M 21 none nil 69 2.3
YW F 46 7 ? 74 -
CW F 21  none nil 75 6.4
ClIW F 17  none nil 71.3 4.9
MW F 50?7 none nil 76.5 4.8
SW F 23 none nil 71.5 6.7

* individuals with conditions or receiving medication that can effe

and where therefore excluded from the neopterin study.
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APPENDIX 4

UNTREATED PD RESULTS FOR GA-TF BINDING AN

D NEOPTERIN

ID Sex Age additional treatment % Ga-Tf neopterin
conditions binding (nmol/L)
IB F 68  diabetes lofepramine 25 17
depression
SB M 67 hyperthyroidism carbimazole 33 -
amiodarone
CB F 40  asthma pulmicort ferrous 56 *11
anaemia sulphate
JC ™M 72 none co-dydramol 38 10
LC M 64 angina prothiaden 41 7.5
carace
nitrolingual spray
DC M 72 none nil 68 6.6
EC M 77 asthma duovent 68 *9.8
cardiovascular-  becotide
disease asparin
BF F 62  thyroid disease ~ diazepam 29 9.6
paracetamol
MG F 55 none nil 20 1.4
MH F 61  hypertension bendrofluazide 78 *5.6
rampril
CH F 68  none multi-vitamins 65 4.5
D] F 65  depression lorazepan 40 6.4
clomipramine
MJ] F 80 none nil 39 9.1
MM F 76  none nil 68 12.9
DN M 45 angioneuritic nil 54 4.4
oedemia
SN F 43  none noriday 47 7.2
LO M 76  arthritis none 50 *12.4
DP M 52 ulcer omeprazol 53 -
IS F 59  osteoarthritis none 45 6.3
IS M 67 diverticular- fybogel 54 *3.2
disease
arthritis
HS M 67 depression prothiaden 60 10.6
hiatis hernia zantac
IS M 61 stiff shoulder naproxen 53 *3.0
OT F 67 none asparin 69 6.0
MTa M 58  hypertension amilodipine 64 *7.2
atenolol
MTr F 69  anxiety coproxamol 76 *6.4
arthritis
MW F 73  depression prothiaden 5.6
thyroid disease
CY M 52  depression imipramine 63 11.5
temazepan
diazepan

* individuals with conditions or receiving medication that can effect th

and where therefore excluded from the neopterin study.
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APPENDIX 5

TREATED PD RESULTS FOR GA-TF BINDING AND NEOPTERIN

LD  Sex Age additional treatment % Ga-Tf neopterin
conditions binding (nmol/L)
DA M 62 none sinemet plus fitd - 6.0
SA M 89 none sinemet plus ttd 59 12.4
TA F 61  none sinemet plus od 72 -
PA~ M 61 none sinemet plus td 67 5.6
sinemet CR ttd
selegiline 10mg
SB M 76  heart disease sinemet std 67 23.8
selegiline 10mg
digoxin
frusamide
MB F 75  arthritis madopar ttd 72 *7.3
selegiline 10mg
amitriptyline
volterol
zantac
BB F 56  none sinemet 55 6.2
benzhexol
LB M 69 none sinemet plus ttd - 5.6
TB M 70 ulcer sinemet plus ftd 65 *4.7
IC F 49  none sinemet plus ttd 64 4.3
selegiline 10mg
MC F 71  none sinemet plus ftd 72 -
selegiline
RD M 59 none selegiline - 4.2
SF M 71 hiatus hernia sinemet ttd 66 9.4
epilepsy selegiline
amitriptyline
phenytoin
chlorodiazepoxide
carbamazepine
EG M 71  psoriasis sinemet LS fitd 74 5.1
sinemet CR
selegiline
HG F 65 none sinemet plus ftd 8.6
nitrazepan 2mg
dispirin
RG M 67 neurosis madopar 60 *8.5
urinary infection sinemet 110
selegiline 10mg
diazepan
ciproxin
EG F 61 none sinemet plus ttd 76 7.1
selegiline 10mg
PG F 68  depression sinemet CR 64 5.4
amitryptyline
EG F 62  fluid retention  sinemet LS ttd 75 6.9
selegiline 2
asparin
multi-vitamins
WH M 72  osteoarthritis sinemet plus ttd 65 11.1
vascular disease nitrazepan
CH F 52 none sinemet plus 72 5.7
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1D  Sex
TJ M
DJ F
JK M
HK F
M M
MM F
GO F
GR M
MR M
FS M
CT M
MT F
DT M
VS F
MW F
GWh F
GWo F
GWy M

* individuals with conditions or receiving medication that can effect the immune response

Age
58
66

46

74

82
84
77
43

78

69
71

55
63

747
66

73

additional
conditions
none

none

none

heart disease

nonc
none

none

none
none

none

hypertension
depression

none
asthma
hypertension
hiatis hernia
rheumatoid-
arthritis

none
hypothyroidism
depression

none

none

treatment

sinemet ftd
selegiline 10mg
sinemet
selegiline 10mg
amitryptyline
sinemet ftd
selegiline Smg
benzhexol
domperidone
apomorphine
madopar
selegiline
digoxin
frusamide
sinemet
sinemet CR
sinemet 110
benzhexol
sinemet plus std
disipal
benzhexol
sinemet plus ttd
selegiline 10mg
sinemet ftd
selegiline 10mg
selegiline
sinemet 110 ttd
amitryptyline
sinemet plus ftd
benzhexol
salbutamol
co-amilozide
co-drydramol
cimetidine
sinemet
sinemet plus
thyroxine

sinemet ftd
benzhexol 125mg
digoxin

sinemet plus ftd
amitriptyline
25mg

and where therefore excluded from the neopterin study.

od = once daily

td = twice daily

ttd = three times daily

R I O ———m——ihammm—sss

% Ga-Tf neopterin

binding
67
32

50

66

56
70

69

72
70

68

ftd = four times daily fitd = five times daily std = six times daily
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9.2

5.9

%0 L3
O

10.2

5.6




APPENDIX 6

STUDY A (SIGMA KIT)
CIC LEVELS IN CONTROLS
ID Sex Age  condition treatment CICs CICs - neg
control
HD F 41 none nil 10.83 3.89
PD M 22 none nil 19.5 11.35
GG M 49 none nil 3.72 -1.68
PHi M 53 none nil 102 4.23
PH M 24 none nil 123 6.33
CP M 56 none nil 19.5 10.3
YW F 46 none volterol 6.04 -0.1
CW F 21 none nil 4.44 -2.56
ClW F 17 none nil 3.75 -3.25
SW F 23 none nil 6.89 -0.74
CIC LEVELS IN UNTREATED PD PATIENTS
ID Sex Age additional treatment CICs CICs - neg
conditions control
IB F 68 diabetes lofepramine 6.2 0.23
depression
JC M 72 none co-drydramol 6.73 -1.42
BF F 62 thyroid disease diazepan 6.4 0.3
paracetamol
MG F 55 none nil 5.2 0.9
MH F 61 hypertension bendrofluazide 6.71 0.74
rampril
DJ F 65 depression lorazepan 9.65 045
clomipramine
MM F 76 none nil 2.23 -2.37
DN M 45 none nil 5.0 0.4
SN F 43 none noriday 3.67 -2.5
LO M 76 arthritis none 3.28 -2.89
DP M 52 ulcer omeprazol 2.48 -3.53
IS F 59 osteoarthritis none 26.67 19.73
HS M 67 depression prothiaden 34 -1.2
hiatus hernia zantac
MT F 69 anxiety coproxamol 564  -0.53
arthritis
MW F 73 depression prothiaden 3.5 -1.1

thyroid disease
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CIC LEVELS IN TREATED PD
ID Sex Age additional treatment CICs CICs-neg
conditions control

PA M 60 none sinemet fitd 18 11.06
selegiline 10mg
domperidom

BB F 56 none sinemet 6.72 0.71
benzhexol

JC F 49 none sinemet plus ttd 3.65 -2.5
selegiline 10mg

RD M 59 none selegiline 10mg 4.86 -2.77

DJ F 66 none sinemet 4.69 -1.32
selegiline 10mg
amitriptyline

TJ M 58 none sinemet ftd 8.95 2.98
selegiline 10mg

MM 84 none sinemet CR 15.23  7.08
sinemet 110
benzhexol

IM M 81 none madopar fitd 21.75  14.33

GO F 77 none sinemet plus std 7.8 24
disipal

ES M 78 none sinemet 6.63 -1.13
selegiline

DT M 55 none sinemet plus ftd 7.48 -0.15

MT F 71 none sinemet 110 ttd 2.58 -5.05
amitryptyline

MW F 74 none sinemet otd 7.79 0.22
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APPENDIX 7

STUDY B (QUIDEL KIT)

CIC LEVELS IN CONTROLS

ID Sex Age additional treatment CICs
conditions

RA M 44 none nil 0

SW F 23 none nil 1.07

CwW F 21 none nil 1.02

CIwW F 18 none nil 0.47

SK F 24 none nil 1.45
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CIC LEVELS IN TREATED PD

ID Sex Age additional treatment CICs
conditions
DA M 62 none sinemet plus fitd 1.33
SA M 89 none sinemet plus ttd 2.73
PA M 61 none sinemet fitd 1.96
selegiline 10mg
domperidom
MB F 75 arthritis madopar ttd 2.22
selegiline 10mg
amitriptyline
volterol
zantac
TB M 79 none sinemet plus ftd 1.73
AF F 69 none sinemet ftd 0.08
seroxat
SF M 71 hiatus hernia sinemet ttd 0.8
epilepsy selegiline
amitriptyline
phenytoin
chlorodiazepoxide
carbamazepine
EG M 71 psoriasis sinemet LS fitd 0.345
sinemet CR
selegiline???
HG F 65 none sinemet plus ftd 4.62
nitrazepan 2mg
dispirin
RG M 67 neurosis madopar 1.9
sinemet 110
selegiline 10mg
diazepan
EGr F 61 none sinemet plus ttd 1.47
selegiline 10mg
PG F 68 depression sinemet CR 1.18
amitryptyline
EGu F 62 fluid retention sinemet LS ttd 2.71
selegiline 10mg
asparin
multi-vitamins
CH F 52 none sinemet plus 2.5
HK F 74 heart disease madopar std 1.93
selegiline 10mg
digoxin
frusamide
M M 82 none sinemet 0.95
MM F 85 none sinemet CR 0.74
sinemet 110
benzhexol
GR M 43 none benzhexol 0.71
MR M 53 none sinemet plus ttd 0.39
selegiline 10mg
CT M 69 hypertension selegiline 0.22
GWo F 73 none sinemet ftd 1.02
benzhexol 125mg
digoxin
GWy M 63 none sinemet plus ftd 10.97

amitriptyline 25mg






