Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

Combining Data Driven Programming
with Component Based Software

Development

With applications in Geovisualisation and

Dynamic Data Driven Application Systems

ANTHONY ANDREW JONES

Doctor of Philosophy

ASTON UNIVERSITY

January 2008

This copy of the thesis has been supplied on condition that anyone who consults 1t is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without proper

acknowledgement.

Thesis Summary

Software development methodologies are becoming increasingly abstract, progressing from low
level assembly and implementation languages such as C and Ada, to component based approaches
that can be used to assemble applications using technologies such as JavaBeans and the .NET frame-
work. Meanwhile, model driven approaches emphasise the role of higher level models and notations,
and embody a process of automatically deriving lower level representations and concrete software

implementations.

The relationship between data and software is also evolving. Modern data formats are becoming
increasingly standardised, open and empowered in order to support a growing need to share data
in both academia and industry. Many contemporary data formats, most notably those based on
XML, are self-describing, able to specify valid data structure and content, and can also describe data
manipulations and transformations. Furthermore, while applications of the past have made extensive
use of data, the runtime behaviour of future applications may be driven by data, as demonstrated by

the field of dynamic data driven application systems.

The combination of empowered data formats and high level software development methodologies
forms the basis of modern game development technologies, which drive software capabilities and
runtime behaviour using empowered data formats describing game content. While low level libraries
provide optimised runtime execution, content data is used to drive a wide variety of interactive and

immersive experiences.

This thesis describes the Fluid project, which combines component based software development
and game development technologies in order to define novel component technologies for the description
of data driven component based applications. The thesis makes explicit contributions to the fields of
component based software development and visualisation of spatiotemporal scenes, and also describes
potential implications for game development technologies. The thesis also proposes a number of
developments in dynamic data driven application systems in order to further empower the role of data

in this field.

Keywords: Components, Data Driven, Visualisation

To my grandparents:

for all the happy memories.

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dan Cornford, whose guidance, friendship
and support have been invaluable during the course of my PhD. Thank you for being both a mentor
and a friend, for encouraging me to explore and learn, and for making this journey of discovery and
development so enjoyable and rewarding.

I am also very grateful for a variety of input from Michal Kone¢ny. Your comments have often
made me look a little closer at what I'm doing, and my research has certainly benefited from the

additional scrutiny! Many thanks for your helpful support.

Jan Duracz and Chris Mantle have been a great source of insight, ideas, and interesting diversions
throughout the past few years. [would like to say thank you to Jan: for our many colourful discussions,
for your interest and support when the work was hard, for the fun and various distractions when the
work was easy, and for trying to teach me lots of interesting stuff.

I would also like to thank Chris for his interest in, and contributions to, the computer graphics
side of my work. Thank you for opting to work with me for two years running, for improving upon my
render system prototype in order to build the PirateHat rendering library, and for your contributions

to the subsequent Eurographics publication.

I owe a big thank you to the game developers who have contributed to my work: I am indebted

to Scott Bilas and Eric Malafeew for taking the time to provide me with some valuable input.

Finally, I would like to offer my heartfelt thanks to Helen Eley, whose love and support over the
past three years have made everything much, much easier. Thank you for pushing me to do my best,

for making every day a happier one, and for always inspiring me to be a better person.

Contents

1 Introduction

1.1 ContribULIONS .« « v v v e e e
1.2 Structure of the Thesis o o o o o
2 Context
2.1 Data in Applications
2.1.1 Data Centric Applications oo
9.1.2 Data Driven Applications« oo
2.1.3 Summary of Data in Applicationso
2.9 Software Development Methodologies 0 oo oo c
2.2.1 Object Oriented Methodology oo v
2.2.2 Interpreted Languages o oo e
2.9.3 Component Based Software Development . ..o
9294 Architecture Description Languages o oo
295 Model Driven Software Development o oo oo e
92,6 Summary of Software Development Methodologies ..o
2.3 Computer Games Technology oo o
2.3.1 Object Oriented Data Driven Programmingo oo v e e e
939 Data Driven Rendering Pipelines oo
2.3.3 Summary of Computer Games Technology oo
2.4 CONLEXt SUMIMALY .« o v o o e e e e e e
3 The Fluid Component Framework
3.1 Motivation, Aims and ODbJectives oo
3.2 DESIGIN o o o e e e e e
3.2.1 Type, Naming, and Configuration Systems oo
3.2.2 Component Model

(@

11
15
15

17
18
21
23
25
26
29
33
36
48
ol
54
o8
99
63
68

72

74

3.2.3 Composition Language« oo 96

3.9.4 Fluid Executable e 101

3.3 Complete Exampleo 104
3.3. 1 Design . . o oo 1056

3.3.2 Component implementations 107

3.3.3 Application Configurationo 114

3.3.4 Fluid Application Execution« . .o 116

335 ReSULES .« o o e e e e e e e e e e e 119

3.3.6 Critical Evaluation v o v o oo o 119

3.4 SWINNATY .« « o o o v e e e e e e 121

4 Contextualising the Fluid Framework 125
4.1 Datain Applications o 126
4.2 Software Development Methodologies« . . oo c v v 130
4.2.1 Implementation, integration and platformso 130

4.2.2 COMPONEIES .« o« v vt v e v e e 133

423 Architecture and methodology oo 136

4.3 Computer Games Technology . .« o v oo 138
A4 SWIIIALY © o o o e e e e e 141

5 Conclusions and Future Work 144
51 ContribULIONS . o o v v v e e e e 144
5.9 Critical Bvaluabion o v v v e 145
5.3 FULUIE WOIK o o o e e o e e 147
References 150
6 Appendices 164
A Publications 165

List of Figures

2.8
2.9

2.10

2.12

2.17

2.18

o
[\

A data centric application, with data forming the input and output of a fixed function-
allty process.o e

An illustration of the functionality available to GIS and DDDAS.
An illustration of the customisation points provided by software frameworks.

A illustration of the typical compile and execution lifetime of statically compiled lan-
GUALES. © v v v v e e e e e e e e e e e
A illustration of the typical compile and execution lifetime of interpreted languages.
An illustration of the customisation points provided by component frameworks.
An overview of the MDSD approach. e e

An overview of the architecture of a typical computer game application.

A simplified object oriented software structure. e
The PassegengerVehicle type is represented as an OODDP hierarchy of container and
independent class instances.o e e

An example OODDP type description for the OODDP hierarchy from Figure 2.12.

An OODDP type description for the LightAircraftType type, which makes use of

QODDP inheritance to both include and extend the definition of the PassengerVe-

hicleType type description given in Figure 2.13. e
A typical hardware render pipeline.o oo

5 A lavered illustration of the rendering pipeline, from the client application to the fin-
Y g i

ished, rendered image. L. oo

An overview of current software technologies supporting programmable rendering pipelines.

An illustration of the use of an SAS script stack to support complex rendering effects.

An overview of the Fluid component framework’s architecture.

An illustration of the runtime relationships between Fluid’s tiers and subsystems. .

18
20

21

32

61
61

61
64

64
66
69

81
81

3.3

3.9

3.10

3.11

3.12

3.13

4.1

4.3

The concepts allowed at each level in the naming system hierarchy.

Representing XML configurations via Fluid’s XmlCfg and Value classes.

A Fluid component, including its bottleneck interface.

An illustration of how components are connected via their bottleneck interfaces.
Creating a parameterised IFluid component.

The hierarchical structure of Fluid’s composition language.

The traffic network used throughout the example application.

Two views of the 3 way junction at node b from Figure 3.9.

An overview of the Fluid component executable’s runtime operation in the context of
the traffic simulation as described in Section 3.3.

Screen shots taken at time frames 500, 1000 and 1500 of an execution of the traffic
simulation, showing network gridlock.

Screen shots taken at time frames 500, 1000 and 1500 of an execution of the traffic

simulation after making a small number of changes to the application configuration.

A Venn diagram including the domains contributing to the project. .
An illustration of the functionality available to DDDAS and a speculated Fluid-based
DDDAS. . ..

A summary of the limitations and influential aspects of the technologies related to the

Fluid project, and an illustration of its contributions. .

86
87
90
93
94
97
105
117

120

127

143

List of Tables

2.1 Software engineering methodologies and technologies supporting implementation com-

position and abstraction. .

27

List of Listings

3.1 Visiting a Value instance in order to obtain type specific behaviour. 84
3.2 The pseudocode for OODDP inheritance manipulations. 89
3.3 The specification document for the UpdateSimulationComponent component. 109
3.4 The component specification for the Nto3VehicleManagerComponent component. . . . 111
3.5 The component specification for the VehicleLaneComponent component. 113
3.6 The component specification for the OpenGLContextComponent component. 115
3.7 The OODDP description for a Lane type in the traffic simulation. 116

3.8 The OODDP description for a Junction type with N incoming lanes and 3 outgoing lanes. 117
3.9 The OODDP description for a Junction instance with N incoming lanes and 3 outgoing

lanes. Some lines have been removed for clarity.o o000 118

10

Chapter 1

Introduction

Software development methodologies are evolving, incorporating increasingly abstract concepts, rep-
resentations and manipulations. Barly assembly languages had a one to one correspondence with the
binary machine instructions understood by computer hardware platforms. Due to their fundamen-
tal nature, and the need for programmers to perform a variety of low level tasks, larger programs
were difficult to write and maintain using assembly languages. Several generations of higher level lan-
guages have since introduced a number of increasingly abstract notations and concepts, with compilers
translating software programs to their corresponding binary representations.

Throughout the evolution of software programming languages, many concepts and abstractions
have allowed programmers to describe data structures and algorithms more productively. For exam-
ple, early languages introduced a range of data representations including numbers and textual strings,
and enforced their correct use throughout program execution so that programmers could rely on au-
tomated enforcement of type safety. Later languages supporting procedures allowed programmers to
encapsulate and subsequently reuse the implementation of algorithms, while automating the manage-
ment of control flow through procedural execution. More recently, the object oriented programming
paradigm has allowed programmers to conceptualise software applications using abstractions corre-
sponding to the real world, and to separate their implementation into independent units of behaviour
with well defined interfaces.

Component based approaches continue the evolution of software development methodologies into
higher levels of abstraction by building upon concepts established by the object oriented paradigm.
Component based methodologies draw on a range of analogies such as computer hardware and Lego,
and focus on plugging together independent software components in order to form component software
applications. In practice, component based methods make use of binary (compiled) representations

providing computational functionality, which are then assembled into applications by interconnecting

11

their interfaces. The process of component selection and interconnection is driven by high level
notations specifying component topologies, where component topology refers to the connectivity of
components providing computational encapsulations. While a range of composition languages define
component based applications as software structures, Architecture Description Languages (ADLs)
extend the component based approach to the architectural level of abstraction while also considering
non-functional factors such as composition correctness and the quality of service of the described
application.

Component based methodologies explicitly separate computational elements from their topology,
aiming to produce independently developed software components that may ultimately be obtained
and assembled by third parties in order to form software applications. Although a high level nota-
tion may be used to specify component topology, the components themselves are commonly written
using lower level languages. While component based methodologies allow the bottom-up definition
of software, model driven approaches adopt a top-down approach to software development. However,
model driven methodologies are far more ambitious in that they aim to derive complete software
applications from high level abstract models, by incrementally generating lower level representations
until implementation details may be obtained.

While the eventual aim of research into model driven software development is the complete and
automatic generation of software implementation, current solutions typically rely on human interven-
tion or the provision of concrete code using components or lower level representations. However, if
such research is successful, higher level notations could become programming languages of the future,

and programmers as we currently know them may become obsolete.

While software development methodologies continue to incorporate incremental abstractions and
higher level concepts, data is becoming increasingly important to a wide range of scientific disciplines.
A growing number of scientists are turning to automated processes and technologies in order to
collect, store, analyse and interpret experimental data [1]. Meanwhile, such experiments are producing
increasing volumes of data, with petabyte data sets being predicted for the near future [2].

As computers become more ubiquitous and technologies such as the Internet become more readily
available, the scientific community have also begun to make widespread use of data sharing. Purchasing
data may be more attractive when the cost of measuring or producing results is prohibitive. Meanwhile,
research efforts spanning different disciplines, countries and continents are able to communicate their
data more effectively. Many private companies and public organisations are also making a wide variety
of data available via their websites.

The communication of data may further benefit from recent changes in data representations. In

many areas, closed proprietary binary formats have been replaced with open, standardised and text-

based formats such as XML. As binary data consists of a sequence of ones and zeros, meaningful
analysis requires the use of a computer. On the other hand, text-based formats may be read and
interpreted by humans, although the use of tools is recommended for all but the most simple of
data files. Data may also be accompanied by metadata, describing attributes of the data, providing
information such as the data’s owner, origin, currency, unit of measurement, what measurement
process was used to obtain the data, and more recently, the reliability, accuracy and uncertainty of
the data.

Today’s data availability, communication and processing capabilities are allowing scientists to
tackle a wide variety of problems with increasing scale, complexity and diversity. While the availabil-
ity of more computationally demanding software applications has increased and multi-core processors
have become more popular in consumer hardware, scientists from a range of fields are making use of
distributed and grid-based architectures to support their data processing requirements. As data vol-
umes and computational requirements become increasingly large, the software applications facilitating
the storage, analysis and interpretation of data become central to the scientific process.

Geographic Information Systems (GIS) are one example of an area in which vast quantities of data
and data processing play a key role. GIS make use of a wide variety of geographically referenced data
in order to support the modelling, analysis and understanding of the world around us. Despite the
complexity of GIS, and the focal role of data in their design, GIS do not empower data, but instead
provide a fixed data processing pipeline whereby scientists analyse and visualise the results of data
manipulation in order to gain further data or information.

In contrast, Dynamic Data Driven Application Systems (DDDAS) use data obtained from mea-
surements to inform an internal model, which in turn dictates how further measurements may be
taken. This continuous loop of measurement and modelling empowers data in order to gradually
evolve the measurement and modelling process. DDDAS are thus data driven, in that data drives
their runtime behaviour, although the extent of data’s influence on DDDAS behaviour is currently
limited to controlling their execution flow and parameterisation.

The work described in this thesis does not aim to design and implement GIS or DDDAS solutions.
However, the focal role of data in such systems makes GIS and DDDAS interesting candidates for
novel data driven technologies. Furthermore, a common need for visualising models and analyses of
real world problems make the concepts modelled by GIS and DDDAS more accessible as examples.
This work has been motivated by a range of examples from both GIS and DDDAS, which have also
been used to illustrate the capabilities and potential applications of the technologies introduced during
the course of this work. The thesis will consequently contain examples from both GIS and DDDAS

contexts.

13

Modern computer games are data, computation and visualisation intensive software applications.
Growing consumer demands, consumer hardware capabilities, and market share competition, place
increasing pressure on game development studios to produce more immersive, interactive and visually
detailed game titles. At the same time, decreasing budgets and development cycles lead to a need
for more productive software and content development methodologies. In the past, game developers
have balanced data processing, runtime behaviour, detailed rendering and player interaction through
the use of low level programming and hand written assembly optimisations. More recently, a wide
range of hardware solutions have allowed developers to adopt more mainstream software development
paradigms. Today’s game studios release a series of similar titles based on the same underlying game
engine, but with their individual story lines, content and player experiences tailored to each release.

While game engines maintain their focus on optimised runtime functionality, today’s development
of such solutions relies on a range of software methodologies including object oriented implementation
and integration languages, programming patterns and third party libraries. Modern game engines
are also making widespread use of data driven technologies in order to empower title specific data.
In certain engines, game data is even used to drive the structure, composition and configuration
of software using a range of declarative data notations. Such data driven programming allows the
functionality of game titles to vary dramatically according to data, without the need to modify or
even recompile the underlying game engine.

By empowering data to include control over software capabilities, functionality and runtime be-
haviour, the data driven programming techniques supported by modern game engines represent an
amalgamation of recent developments in both the evolving role of data in applications, and increasing

abstractions in today’s software development methodologies.

This thesis introduces the Fluid project, describing the evolution and eventual design and imple-
mentation of a novel, data driven component based software framework. The Fluid framework repre-
sents the convergence of current trends in empowered data formats and increasingly abstract software
development methodologies, by supporting the development of applications using small scale software
components exhibiting a range of configurable data driven behaviour. The Fluid framework focuses
on the flexibility of Fluid applications, providing an expressive XML based composition language
supporting a number of high level manipulations from the object oriented programming paradigm.
Although the Fluid framework has a wide range of potential applications, this thesis illustrates its

potential with motivating examples from the GIS and DDDAS domains.

14

1.1 Contributions

This thesis contributes to the following fields:

Component Based Software Development The Fluid framework is a novel component based
technology building upon contemporary component based approaches and game development
technologies. The Fluid framework contributes to the field of Component Based Software De-
velopment (CBSD) by emphasising the flexibility, extensibility and expressiveness of application
descriptions. Fluid’s unique approach is facilitated by the use of high level abstractions and

manipulations driving the assembly of small scale, highly configurable black box components.

Dynamic Data Driven Application Systems The work described in this thesis does not aim to
develop DDDAS solutions. DDDAS are discussed as a related field due to their ability to
incorporate data driven behaviour into their simulation and measurement processes. This thesis
contributes to the field of DDDAS by identifying current limitations in the way DDDAS use data
to drive runtime behaviour, and speculating upon how the application of the Fluid framework

could enhance the capabilities of future DDDAS.

Visualisation of Spatiotemporal Scenes The thesis contributes to the visualisation of spatiotem-
poral scenes by introducing the PirateHat rendering library [3]'. The PirateHat rendering library
builds upon an implementation developed as part of this research in order to provide an open,

platform independent alternative to an anticipated Microsoft technology.

1.2 Structure of the Thesis

This thesis is structured as follows:

Chapter 1 provides an introduction to the thesis, including a brief overview of the main
themes covered by the research. Chapter 1 also includes an outline of the structure of the

thesis, and a brief outline of the material found in each chapter.

Chapter 2 describes the context of the work, presenting a number of concepts that
form the basis of the material given in the later chapters. Chapter 2 first discusses the
evolving role of data in applications, focussing on the dichotomy of data centric and data driven
applications. Chapter 2 then provides an overview of popular software methodologies at various
levels of abstraction, including technologies related to software implementation, integration,

component based approaches and model driven software development. Finally, Chapter 2 gives

1The PirateHat rendering library was developed in collaboration with an undergraduate student, and formed the
focus of his final year project.

15

an introduction to computer games technology, concentrating on the recent growth of data driven

techniques for defining scene content, as well as its visualisation.

Chapter 3 provides a detailed description of the Fluid component framework, and its
novel combination of game technologies with mainstream component based method-
ologies. Chapter 3 describes the motivation for introducing game technologies to component
based software development. Chapter 3 then introduces the Fluid component framework, de-
scribing its fundamental technologies, component model, composition language and executable
behaviour. An example geovisualisation application is presented before giving a summary of the

framework’s current design and implementation.

Chapter 4 discusses the research described in Chapter 3 within the context of the con-
cepts introduced in Chapter 2. Chapter 4 discusses how this work relates to the evolving role
of data in applications, including speculation on its uses in DDDAS. Chapter 4 also relates the
technologies developed during the course of the Fluid project to current software methodologies,
including low level implementation and integration languages, component based technologies,
architectural technologies and software development approaches. Finally, Chapter 4 speculates

upon the impact of this work on the games development field that initially inspired its design.

Chapter 5 concludes the thesis by providing an evaluation of the work introduced in Chapter 3,
clearly stating the contributions of this work to the fields described in Chapter 2, and discussing

potential opportunities for further work.

16

Chapter 2

Context

The distinction between software behaviour and data is becoming increasingly blurred. While data
is commonly accepted as encompassing information, measurements, or the offline representation of
runtime state, data is becoming progressively empowered to incorporate elements corresponding to
executable behaviour. The proliferation of object oriented methodologies has led to a clear separation
of state and behaviour in software design and implementation. At the opposite extreme, interpreted
languages relax the distinction between software and data: the definition of runtime behaviour may
be represented using high level notations that form part of an application’s runtime input and output;
similarly, application data may be represented using a number of assignment statements that, when
executed, perform the task of data input. Between these two extremes of separation and integration
lies a scale of varying capabilities for modern data representations. Dynamic data driven application
systems, component based methodologies, and model driven approaches provide a range of abstrac-

tions, at different scales of granularity, for allowing data to drive the runtime behaviour of software.

This chapter provides an overview for a number of relevant concepts, which collectively form the
context and motivation for the material presented in the later chapters. The work presented in these
later chapters describe a multidisciplinary project spanning a number of domains as illustrated in
Figure 2.1. Sections 2.1, 2.2, and 2.3 do not embody a complete review of each concept presented
in Figure 2.1. This chapter will instead define the research, methodologies and technologies deemed
most relevant to the work, while including references for the interested reader.

Section 2.1 provides an overview of the evolving role of data in applications. Many applications
from a wide range of fields include a substantial data processing element; Geographic Information
Systems (GIS) are used as a motivational example. In the majority of cases, such data processing

consists of a number of fixed operations deriving from a static software design. However, modern

17

Figure 2.1: A Venn diagram including the domains contributing to the project.

data representations present a range of opportunities to derive additional information during data
processing operations. This approach is embodied by the Dynamic Data Driven Application Systems
(DDDAS) paradigm. Subsequently, elements from the GIS and DDDAS fields are used as examples
in order to illustrate a variety of concepts, ideas, and techniques.

Section 2.2 describes a number of software development methodologies and technologies, with a
particular focus on techniques that facilitate software implementation, composition and reuse in a
modular fashion. This section includes a description of the object oriented (OO) paradigm, familiar
to most software programmers today. The OO paradigm also shares a number of concepts with object
based data models in GIS. Techniques are ordered according to their level of abstraction, moving
from low level software implementation to the integration of existing implementations, through the
selection of compositions to forming high level software behaviour specifications at the architectural
level.

Finally, Section 2.3 discusses the role of computer games technology within the context of software
engineering methodologies and the use of data in today’s applications. This section introduces a
number of hardware and software technologies that are being used to empower data in order to
develop applications that are flexible to changing requirements, and capable of producing highly
detailed, immersive visualisations at interactive frame rates. The discussion includes a brief overview
of how these methods have evolved, and how they are applied today.

Section 2.4 gives a summary discussion of the material presented in Sections 2.1, 2.2, and 2.3.

2.1 Data in Applications

Data storage and processing play a central role in a wide range of applications; indeed, almost all

software solutions incorporate some element of data use, from simple data storage representations

18

to powerful notations capable of driving application behaviour. Furthermore, a diverse range of
technologies related to data formats, storage, communication, processing and manipulation continue
to emerge and evolve due to academic and industrial efforts.

Many definitions of data include an emphasis on facts and information. For example, the following

dictionary definition also includes a reference to the computer representation of data [4]:

1 a series of observations, measurements, or facts; information

2 the numbers, digits, characters, and symbols operated on by a computer

Within the context of this work, the term data will be used when referring to the offline or
runtime representation of measurements, facts or information from a range of attribute domains.
Runtime data is synonymous with software state, and will be represented during software execution
by program variables corresponding to multiple bytes of computer memory. Runtime data may be
written to operating system files, stored in databases or transmitted to other offline media, at which
point they become offline data. While many definitions of what data is are very similar, the role of
data in applications is continually evolving, as illustrated by Figure 2.2.

Early applications incorporated their data as part of the software code. Application data was rep-
resented by concrete values forming part of the implementation, and could not be modified without
requiring the software to be recompiled. The application’s runtime behaviour and data were insepara-
ble: software execution was partly defined by its data, and the data could not be separately accessed
or modified.

Later applications separated their runtime behaviour from the data to be processed. Application
functionality was implemented using programming languages, while data was held in separate files.
However, the applications and their data were still tightly coupled due to the use of proprietary and
opaque data formats, and the resulting requirement for dedicated procedures to read and write the
data files. Software implementation methodologies have since evolved to further empower application
data. For example, the object oriented methodology places a particular emphasis on the separation of
runtime state and behaviour. Runtime state is encapsulated by object interfaces, which define appro-
priate access methods and manipulations, thus enforcing that the data remains valid and meaningful
within the context of its corresponding application domain.

Interpreted languages blur the lines between behaviour and state by allowing data to contain
executable code, and for such code to be generated procedurally at runtime. However, it is important
to distinguish application data from those files containing interpreted language code, which will be
referred to as scripts (interpreted languages are often referred to as scripting languages). The primary
purpose of application data is to contain a collection of values, which together constitute the input,

output or current state of the application’s various runtime processes. By contrast, executable scripts

19

‘ Behaviour
Hard Coded Behaviour - .
: Behaviour and .
Behaviour and . State ‘ State, Context
Data - = 5 ' : 1’1 and Behaviour
: aie and || Manipulations
State Context 2t ;
Data
(a) Hard coded (b) Separated (c) Object (d) Interpreted (e) XML (f) Data Driven
Oriented Languages Approach

Time

B

Figure 2.2: The evolving role of data in applications over time.

describe runtime behaviour within the context of a given scripting language and are intended for
execution.

While implementation methodologies have been providing improved support for data representa-
tion and manipulation, data formats have been incorporating increasing degrees of contextual and
behavioural information. eXtensible Markup Language (XML) and its reia.ted technologies have re-
cently emerged as a family of extensible data formats that are becoming ever more popular in a wide
variety of application domains. Whereas early data formats had to conform to closed standards fo-
cussing on particular applications, XML is an open format that may be extended to suit a range of
uses.b

Building upon the fundamental concepts of XML, XML schema may be used to describe a given
data model, incorporating how data is to be represented as data types, and what data constructs are
valid or meaningful within a particular context. Subsequently, XML schema are widely used to validate
XML data documents against their corresponding data models. In addition, many XML schema
are also comprehensive enough to derive (de)serialisation behaviour from the described data model,
facilitating the automated generation of corresponding software implementations using a variety of
languages via data binding [5, 6, 7]. Finally, the eXtensible Stylesheet Language Transformations
(XSLT) format, which is itself derived from XML, allows a variety of transformations from one data
representation to another to be described.

The XML family of data technologies is perhaps the most popular example of empowered data
formats in use today. Many previous data representations have relied upon tightly coupled software
applications to provide contextual information, various rules regarding data representation, and ma-
nipulation behaviours. By contrast, XML allows data to exist independent of a particular software

implementation by describing the context, data model, and meaningful behaviours alongside the data

20

itself. , . .

Modern software applications have an increasingly diverse range of data storage, conlmun\iéétién
and manipulation technologies to choose from. For the vast majority of applications, the careful
selection of such technologies will take place during the software’s design, and will thereafter define
the role of data for the duration of the software’s lifetime. In the context of this work, such applications
are referred to as being data centric: the application software embodies a data pipeline, with one or
more data inputs, a variety of data outputs, and a fixed data process in between. | Data centric
applications are discussed in greater detail in Section 2.1.1.

By contrast, a number of recent technologies allow data to incorporate elements which explicitly
determine, drive or otherwise significantly influence an application’s runtime behaviour. Such data
driven software responds to empowered data formats, such as XML, by modifying runtime capabilities
in order to meet initial or even dynamically changing functional and non functional requirements as
described by the data. Data driven software embodies a data engine, with a dafca input that describes
the software’s runtime parameterisation, structure, or architecture, and thus the capébilities of the

software as a whole. Section 2.1.2 provides further description of data driven applications.

2.1.1 Data Centric Applications

In data centric applications, data forms the input and output of a data processing pipeline, as illus-
trated by Figure 2.3. Data centric applications provide fixed functionality: the runtime capabilities of
the software will not change over time unless its underlying implementation is appropriately modiﬁed
and recompiled.

In many data centric applications, the data itself is immutable, and the application focusses on
data processing and manipulation in order to produce a range of data or informational outputs. Al-
ternatively, data centric applications may provide a transformational pipeline whereby data comprises
the current state of a particular application domain. In such cases, the software will be responsible
for maintaining the current state via various data modifications.

The GIS field provides a range of examples of data centric applications with both static (immutable)

and dynamic (mutable) data roles. Data forms a central part of all GIS applications, which collectively

Fixed
Process

I
Input -~ Output

AN

e

Figure 2.3: A data centric application, with data forming the input and output of a fixed functionality
process. '

21

focus on the efficient storage and informative modelling and manipulation of geographically referenced

data. The importance of data in GIS is highlighted by the following definition [8]:

A geographic information system is a computer-based information system that enables
capture, modelling, storage, retrieval, sharing, manipulation, analysis, and presentation of
geographically referenced data.

All GIS make use of one or more databases, which are responsible for the efficient storage of
a variety of geographically referenced data. This data forms a fundamental part of all operations
available to the CGIS user. Each GIS will also define a data model, which stipulates how the real world
is to be represented within the GIS. The data model employed by a given GIS will define how data is
to be stored in the database, how data is read from and written to the database, what analysis and
manipulations are meaningful, and how they are performed via the GIS software’s user interface.

Although traditional GIS provide a fixed range of data processing behaviours over immutable data
sources, there is a clear movement toward more dynamic data representations and functionality. This
trend can already be seen in the use of visualisation technologies in GIS. Current efforts in geovisual-
isation focus on the use of dynamic behaviour, interactivity and multimedia [9]. Geovisualisation is
a branch of scientific visualisation using computer systems to gain insight into and understanding of
geospatial information [9]. Geovisualisation techniques extend the map metaphor in order to produce
human-computer interfaces that are more intuitive and more expressive. All GIS include support for
the display of static two-dimensional representations, which can be used to convey a variety of informa-
tion as static maps. However, visualisations including three dimensional and virtual reality elements,
animation, non visual output, and interactive feedback are becoming more common [10, 11, 12].

Geovisualisation may be applied for a variety of reasons, and may be employed as part of processes
involving field or object based operations. In such cases, geovisualisation may be an important step
in the initial input and validation of data, as well as during its subsequent manipulation as part of
an ongoing study. Geovisualisation may be used to communicate the results of such manipulations
in order to inform [13] or assess the impact of proposed developments or changes [14]. However, it
is important to consider the effect of such technologies on participating lay persons, professionals
and members of the public; several factors, particularly the added realism of geovisualisations over
traditional cartographic displays, have been shown to add considerable bias to the planning process [15,

16).

Data plays a key role in GIS, where an extensive range of functionality regarding the representation,
storage, transmission, manipulation and visualisation of geographically referenced data is determined
by an appropriate data model. Despite data processing forming a substantial part of GIS applica-

tions, GIS software remains data centric, in that the behaviour facilitating data manipulation is fixed

22

when the software is compiled, and cannot be changed without recompilation. Unlike data driven
applications, where the runtime behaviour of software is driven by the contents of application data,
the roles of data and behaviour in GIS are established by software implementation, with neither being
able to adapt or evolve over time. Current trends in geovisualisation provide an example of where the
field of GIS is beginning to move toward a more object based, dynamic and integrated model of the
world around us. However, while research efforts in GIS incorporate an increasing range of dynamic

behaviours, a substantially data driven GIS has yet to be realised.

2.1.2 Data Driven Applications

Data driven is a popular term in academia with ambiguous meaning, often referring to data playing
a central role in an application’s functionality or to an emphasis on data processing. As described
above, in the context of this work, such applications are not considered to be data driven, and will
instead be referred to as data centric.

By contrast, an application is data driven when its data input significantly influences or determines
runtime behaviour. Data driven programming is a programming paradigm used to enable data driven
approaches; it represents a movement towards higher-level, more declarative notations for describing
application behaviour. Data driven programming advocates moving design complexity away from fixed
software implementations and into data representations that are convenient for humans to maintain
and manipulate with appropriate tools. Data driven applications are responsible for translating those
representations into runtime behaviour, so that application users or client applications may influence,
steer or even determine application behaviour via data manipulations. These basic concepts of the
data driven approach are emphasised by the following definition [17]:

When doing data-driven programming, one clearly distinguishes code from the data
structures on which it acts, and designs both so that one can make changes to the logic of
the program by editing not the code but the data structure.

The data driven approach to software development has been adopted by the relatively new DDDAS
paradigm. Core to the DDDAS paradigm is the emphasis on steering application behaviour using data
driven methods, as illustrated by the following definition [18]:

Dynamic Data Driven Applications Systems entails the ability to incorporate additional
data into an executing application, and in reverse, the ability of applications to dynamically
steer the measurement process.
DDDAS aim to improve the accuracy of the analysis, prediction and modelling of dynamic systems.
While traditional simulations rely on functionality and inputs that are fixed at application execution,
the approach embodied by the DDDAS paradigm is to refine or enhance the simulation by injecting

addition data into the model at runtime. DDDAS are thus able to form more complete models as

23

additional data becomes available, leading to more accurate analysis and predictions. In addition, a
more informed model may be able to enhance the measurement processes by adjusting their parameters
in order to optimise the usefulness of their output. Such capabilities are highly desirable where
measurements are difficult to perform, time consuming, time intensive, or expensive.

The DDDAS paradigm creates a number of new requirements for data content and processing.
DDDAS requires applications to accept data at runtime, and to adapt their behaviour in order to be
dynamically steered by such data. It is therefore important that application data contains relevant
information that can be used to drive application adaptations. Similarly, applications must include
additional routines that are able to locate and interpret those data elements that indicate a require-
ment for such change. In order to modify their runtime functionality and behaviour dynamically,
applications must also incorporate a representation of their current capabilities, and have access to a
range of operations that are able to modify such capabilities. In order to meet these requirements,
and many others not mentioned here, DDDAS is the focus of a range of multidisciplinary research
projects funded by the National Science Foundation (NSF), and the subject of numerous conference
workshops®.

A wide variety of DDDAS applications exist. In order to provide an illustration of the scope and
focus of current NSF funded projects, the following subset of examples is adapted from an online list

. 2
of current areas of interest=:

Fire propagation prediction and management Research in this area can be applied to mod-
elling fires in both open and enclosed spaces, such as wild and forest fires, in order to aid the
evacuation effort, fire containment, and the distribution of fire response personnel. The appli-
cation of such technologies is demonstrated by existing DDDAS modelling urban [19] and wild
fires [20]. The former applies an agent based approach to analyse existing fire data in order to
consider the effect of improved building planning, while the latter uses numerical methods in

order to integrate data from remote sensors to produce 2D and 3D visualisations.

Advanced Driving Assistance System The driving assistance system continuously predicts ve-
hicle motion by model-based real time simulation incorporating measurement data such as the
steering angle, vehicle accelerations and yaw rate. Vision may be another useful input. On a
larger scale, DDDAS are also considering the monitoring and management of traffic systems,

with a particular focus on emergency response scenarios [21].

Biological ‘real time’ experiments can involve time scales ranging from nanoseconds for molec-

ular and sub-molecular dynamic processes to years and decades for ecological changes. For

Inhttp://www.nsf.gov/cise/cns/dddas/
2http://uuw.nsf.gov/cise/cns//dddas/DDDAS_Appendix. jsp

24

example, in experiments recording neural activity, where the dynamics occur at different speeds,
it could be very useful in general to have ‘smart devices’ that would shape an experiment in real

time.

Hydro-complexity - Weather, Water and Pollution Weather processes are modelled at large
spatial scales; hydrologic processes are modelled at smaller spatial scales, and groundwater
pollution is modelled at even smaller spatial scales and much longer time scales. One of the
greatest challenges in “water process” simulation is to find a practical way to connect modules
that operate and require inputs of dynamic data at vastly different scales. DDIDDAS offers vast
opportunities for addressing non-linearities in this highly interactive system. Research exploring
the use of roaming sensors in order to locate and identify water contaminants [22] provides an

example application.

In all cases, measurement and simulation processes form a synergistic feedback loop that dynami-
cally adjusts the runtime behaviour of the DDDAS software, as illustrated in Figure 2.4b. By contrast,

current GIS are typically limited to fixed functionality as shown in Figure 2.4a.

2.1.3 Summary of Data in Applications

The role of data in applications continues to evolve with the introduction of new software development
methodologies, technologies, and application domains. As software applications incorporate increasing
amounts of dynamic behaviour and information, there is a necessity for their implementations to
become more adaptable to dynamically changing functional requirements.

Data. centric applications are those whose runtime capabilities are fixed during the design phase of
software development. While data centric applications incorporate extensive data processing facilities,

their concrete implementations prevent the data formats or processing routines from evolving in

Initial
. New
Information ‘ / Information

Model
Initial e

New AN
Information A { Information /
Update x__/ Vupdate

Model </ Update and |
lnform/> \ Manipulate

/

AN
Measurements Update and Measurements a
Manipulate
(a) (b)

Figure 2.4: An illustration of the functionality available to GIS (a) and DDDAS (b). Dashed lines
in (b) denote the synergistic feedback loop formed by DDDAS measurement and simulation.

25

response to changing storage or additional operational requirements. Traditional GIS provide an
example of data centric applications.

Conversely, data driven approaches allow software applications to dynamically modify their run-
time capabilities in response to changing requirements. Certain data technologies, including the XML
family of extensible data formats, support the development of data driven software by incorporating
additional information that may be used to drive, determine or significantly influence runtime appli-
cation behaviour. DDDAS are already making widespread use of data driven techniques. However
the application of data driven technologies in DDDAS is currently limited to a classical interpretation
of data driven, in that the software’s runtime behaviour is changed via parameterisation, and not
through adaptation of the software itself. DDDAS adapt their runtime behaviour by dynamically
modifying the flow of software execution and altering the parameterisation of their internal models,
simulations and operations. While these modifications allow DDDAS to change their behaviour in
response to runtime data, such changes are anticipated during software design, and are consequently
supported by their implementations via the exposure of dedicated branch and loop conditions and
appropriate parameterisations.

Although classical approaches to data driven software development facilitate dynamically changing
software behaviour, they are incapable of supporting truly adaptive applications that respond to
changing requirements by incorporating new functionality. A DDDAS supporting more extensive
dynamic adaptation would be able to optimise its capabilities at runtime according to unforeseen
changes in its data processing requirements, potentially leading to more efficient and cost effective
applications. However, in order to achieve such dynamic flexibility, the predetermined branch and loop
conditions of existing DDDAS must be replaced with more flexible, extensible and adaptive software
development methodologies. In particular, a deployment concept providing variable implementation
granularity would allow for the progressive, flexible definition of overall application functionality.
Meanwhile, higher level notations should be available to drive the (re)configuration of application
functionality.

Sections 2.2 and 2.3 describe a number of technologies and approaches that may be able to intro-
duce a novel degree of dynamically flexible and reconfigurable behaviour to future adaptive software

applications.

2.2 Software Development Methodologies

Software engineering is the process of developing software solutions, typically encompassing a number

of phases such as requirements elicitation, software design, software implementation and solution de-

26

ployment. The number, ordering and naming of these phases will depend on the software development
methodology in use - for example, the Rational Unified Process [23] (RUP) includes four phases de-
noted Inception, Elaboration, Construction and Transition. However, the overall process of software
engineering remains the same: the client’s problem is carefully documented, a solution to the problem
is encapsulated by a software design, the software design is implemented as a software solution, and
finally the software solution is delivered to the client.

A wide range of existing solutions, technologies, practices and methodologies exist to aid software
engineers in the development of today’s increasingly complex and large scale software solutions. Of
particular interest are a selection of methodologies supporting software implementation and compo-
sition at various levels of abstraction, as described in the following sections and as illustrated by

Table 2.1.

Programming Languages are responsible for providing expressive notations for the definition of
low level operations by software programmers. Such languages are used to implement the fun-
damental software solutions, libraries and frameworks upon which higher level abstractions may
rely.

Each programming language will stipulate its own notations, conventions and both syntactic
and semantic standards, which must be adhered to in order to develop valid software solutions.
Irrespective of the language used, valid implementations are invariably translated to machine
code during a compilation process, and are subsequently executed at runtime by an appropriate
hardware platform. A diverse range of paradigms exist, supporting a variety of abstractions
including procedural, object oriented and functional programming concepts to name but a few.
In the context of the work presented in this and following chapters, the object oriented paradigm
is the most popular, most commonly used, and hence most relevant paradigm to consider in

depth; see Section 2.2.1 for further details.

Scripting Languages in the context of those concepts presented in Table 2.1, are also known as

glue or integration languages, and are commonly used to compose, connect, or integrate existing

[Level ‘ Languages l Technologies }
Specification Level Architecture Description Languages | Component
Selection Level Composition Languages Technologies
Integration Level Scripting Languages Software Libraries and
Implementation Level | Programming Languages Frameworks

Table 2.1: Software engineering methodologies and technologies supporting implementation composi-
tion and abstraction. Note that the Unified Modelling Language (UML) provides abstractions at all
four levels in the table, while model driven techniques often encompass all four levels as part of its
top down approach.

27

modular solutions that have been implemented using lower level programming methodologies
such as those described in Section 2.2.1. Composition here refers to the assembly and resulting
structure of software implementations, while connection is an association relationship formed
between two or more implementations, typically via function calls. Meanwhile, integration is
the use of aggregation and association to bring otherwise independent technologies together
within the runtime environment provided by the scripting language. In order to facilitate such
compositions, scripting languages commonly incorporate a range of higher level abstractions
that can be used to provide integrations, interfaces, or adaptations for a diverse range of distinct

implementations.

While not all scripting languages are interpreted, the particular features of interpreted lan-
guages make them ideal candidates for scripting. Their expressive syntax, flexible runtime
semantics, platform independence, and native support for numerous abstract data structures
and algorithms, have led to the widespread use of interpreted languages to provide scripting
functionality. Section 2.2.2 provides a descriptive introduction to interpreted languages, with

an emphasis on their use as tools for scripting and implementation integration.

Scripting languages are employed to integrate existing implementations, with the integration pro-
cess operating over concrete components and their corresponding interfaces; these are commonly
software libraries and Application Programmer Interfaces (APIs) implemented using program-
ming languages. Scripting languages are used to facilitate the communication between indepen-
dent interfaces, in some cases including interfaces written in different programming languages.
The role of scripting languages is therefore one of translation and communication: a message
transmitted by one component will be translated by the scripting language to some intermediate
representation, communicated to the receiving component’s location, and then translated to an

appropriate format to be understood by its API.

Composition Languages In contrast to scripting languages, composition languages stipulate which
components are taking part in a composition, and how the components are composed. They can
thus be considered declarative notations, which are commonly supported by the facilities pro-
vided by imperative scripting languages. Composition languages provide a dedicated language
interface to a particular set of composition mechanisms. These mechanisms are defined by a
component model, which stipulates what components, compositions, connections, and communi-
cations are valid for a given application domain. In the context of composition languages, com-
position has a more complex meaning than the compositions supported by scripting languages
as discussed above. The exact semantics of component composition depend upon the component

model in use: composition may relate to the structure of interconnected components, but may

28

also introduce additional concepts such as component composites. Furthermore, the result of
component composition may be a new (possibly dynamically defined) component. Meanwhile,
component communication is the passing of both data and control flow between components,
while component connection is the act of binding the services provided by one component to the
services required by another so that communication may take place. The component model is
implemented by a component framework, which facilitates component deployment, composition,
connection and communication at runtime. Composition languages are expressive notations that
drive component framework operations; they typically rely on programming and scripting lan-
guages to provide lower level application functionality and integration respectively. Composition

languages, as well as their related technologies, are described in greater detail in Section 2.2.3.

Architecture Description Languages represent the highest level of abstraction considered in the
following sections. Architecture description languages (ADLs) build upon the concepts available
to composition languages in order to describe large-scale component based applications while
explicitly focussing on their architéctural features. In particular, ADLs commonly provide two
main abstractions for describing component based software: components, as described in Sec-
tion 2.2.3, and connectors. Section 2.2.4 provides an overview of ADLs in the context of this

work.

The specification, selection, and integration technologies presented in Table 2.1 build upon imple-
mentation technologies in order to provide successively higher level abstractions for the bottom-up
description of software solutions. A similar approach is taken by model driven methodologies; whereas
traditional software development involves the manual process of deriving low level implementations
from software design, model driven techniques concentrate on the automatic transformation of abstract
models to derive software code. While traditional software development methodologies endeavour to
support the process of manually developing software solutions as low level implementations, model
driven approaches ultimately aim to automate the task of code generation from abstract notations en-
compassing software design. A brief overview of the model driven software development methodology

is presented in Section 2.2.5.

2.2.1 Object Oriented Methodology

The object oriented programming methodology defines software behaviour as the interaction of a
number of objects, each of which corresponds to an entity in the problem domain. Every object
is responsible for maintaining a valid representation of its corresponding entity, including state and

behaviour. In this context, a valid representation is one where the object’s state and behaviour

29

are reasonable representations of what one would expect the state and behaviour of the object’s
counterpart in the problem domain to be.

A class is the unit of definition used to describe object oriented software functionality. Each
class exemplifies a single particular type of entity in the problem domain. For example, the set of
all vehicles would be represented by a corresponding collection of vehicle classes, with each type
of vehicle (cars, buses, motorbikes and so on) being represented by a single distinct subclass. Class
descriptions are static specifications designed using object oriented methodologies, tools and notations,
with the Unified Modelling Language being one of the most widespread examples. Class designs are
implemented using object oriented programming languages such as C++ or Java.

By contrast, an object is the dynamic (runtime) manifestation of a class, with each object repre-
senting a single instance of the concept defined by its corresponding class description. Objects only
exist during software execution, where each object has a limited lifetime starting with the object’s
instantiation and terminating when the object is destroyed. During its lifetime, each object is allo-
cated within a portion of application memory, which will also include a representation of the object’s
constituent runtime state. Object state may change as a result of object interactions, and it is the
the culmination of these interactions and subsequent state changes which together result in overall
application runtime behaviour.

Object oriented design supports two main relationships between classes: aggregation and inheri-
tance. Aggregation embodies a ‘has-a’ or ‘whole-part’ relationship between owning and constituent
classes, allowing a given class instance to contain one or more instances of other classes. Aggregation
allows complex concepts to be described as the combination of more simple concepts. For example, a
Car class description may use aggregation to describe the Car as the assembly of an Engine instance,
a Chassis instance, four Wheel instances, and so on. The use of aggregation also leads to a hierarchy
of encapsulated state and behaviour, where each enclosing class is responsible for its contained parts.

Classes may also be related via inheritance, which embodies a ‘is-a’ relationship between parent
and child classes, where a child class will automatically include or inherit the members of its parent
class. For example, a Car is-a type of Vehicle, and so the Car class will inherit all of the attributes and
methods associated with the Vehicle class description. Inheritance therefore provides a mechanism
that allows a subclass to be described as an extension or specialization of its parent class. Extending
subclasses may describe attributes and methods in addition to those inherited from its parent, while
specialising subclasses may provide their own descriptions for members of the parent class, thus
overriding their definitions. Subclasses may both specialise and extend their parent types at the same
time, by overriding some members and extending others.

This combination of class inheritance and overriding facilitate polymorphism, where the runtime

behaviour of a given method invocation varies according to which class the method definition belongs
to. For example, invoking a boardVehicle method may involve opening and closing doors for Car
classes, paying a driver for Bus classes, lifting a stand for Motorbike classes, and so on. Polymorphic
behaviour typically occurs when a function or procedure expecting a parent class parameter is invoked
using an instance of a derived (child) class. This form of type substitutability is supported because
of the inheritance relationship between the parent and child class descriptions: a Car is-a Vehicle,
and will inherit the functionality of its parent type, so any action performed on an expected Vehicle
instance should also be valid if performed on an instance of the Car class. However, if the Car class
description overrides the definition of one or more Vehicle class methods, then performing any action
on a Car instance may result in differing (polymorphic) behaviour than that expected from a Vehicle
instance.

The OO methodology thus provides an abstraction of software functionality at the granularity of
archetypes (classes) and instances (objects) that closely resemble concepts from a particular problem
domain. Classes and objects encapsulate software state and behaviour, thus hiding certain imple-
mentation details, while select operations may be exposed via class and object interfaces. However,
certain circumstances require a coarser level of granularity than that offered by classes and objects.
For example, it may be desirable to encapsulate a number of classes belonging to a software imple-
mentation, while exposing others, in order to hide certain implementation details and produce a more
simple and coherent interface to the implementation’s collective functionality. In such cases, software
libraries may be used to provide coarse grained encapsulations for implementation development and
distribution.

Software libraries contain the compiled form of software implementations, and may encapsulate
a range of functionality from single classes to entire applications, although most libraries perform a
single coherent role via a well-defined API. Software libraries thus represent a movement toward more
coarse grain implementation hiding and reuse than that offered by class abstractions. A wide variety
of applications may be developed by utilizing the functionality provided by, and thus building upon,
library implementations. There are two main types of software library, which are distinguished by how
their functionality is combined, or linked, with other software implementations. Static libraries are
linked with other software implementations by a linker program as part of the compilation process,
while dynamic libraries are typically linked during application execution. Both static and dynamic
software libraries promote implementation reuse on various scales, from the granularity of individual
software components, to applications and software frameworks.

Software frameworks provide semi-complete, reusable implementations of software applications. A

software framework typically consists of a large number of classes, some of which may be abstract,

31

which realise a variety of software patterns. Together, these patterns collectively f’ornil a partial imple-
mentation that may be completed by third parties in order to form concrete ép’pli’c’ations’_i , Fra’;méi}vé:rks
facilitate third party development by providing clear and well*defined interfaceé for customisation or
extension, as illustrated in Figure 2.5.

Framework based software development focusses on massive design and implementation reuse
by providing an existing backboune of domain specific design, iinplementation and documentatiou.
Frameworks thus embody a wealth of domain knowledge, and may include any number of system-
wide design decisions and optimisations. This encapsulation of domain knowledge and core run time
functionality allows software frameworks to deliver a stable and coherent backbone upon which further
development may be based.

Third parties create software applications by extending or customizing frameworks at predefined
locations. These customisation points typically consist of a number of abstract interfaces for which
derived concrete implementations may be defined, thus introducing custom polymorphic functionality
into the framework’s run time behaviour. Custom implementations are typically provided in the form
of dynamically linked libraries, which are often known as plugins in the context of software frameworks.
Some software frameworks provide default implementations for their customisation points, potentially
reducing the number of changes required for lightweight extensions, while others require a number of
customisations before they can be used at all. Customisation points reduce complexity by providing
clear, restricted interfaces that remove design decisions from application developers. They are thus
responsible for limiting the amount of understanding required in order to develop large-scale software
applications, and to manipulate their overall structure and run time behaviour.

For example, the Eclipse® Integrated Development Environment (IDE) provides an extensible
framework that may be extended by third parties. The Eclipse platform supports a number of Eclipse
plugins, which work together to form a seamless programming environment, performing a variety of

tasks such as dynamic syntax checking and highlighting, and software compilation; Eclipse plugins

3yuw.eclipse.org

\;-// N . . /\\M - / N\ .

v) Q< o

f \ \ \ Sj\" = Customisation
V7] Point:(plugin)

!L Software Framework o

" L. - J L 1] ; U Poin

‘.,_,_v — L-] '?deritled class)

Figure 2.5: An illustration of the customisation points provided by software frameworks.

32

may also extend the Eclipse GUI to include additional controls. Developers are able to extend Eclipse
by wrapping their custom functionality as one or more Eclipse plugins, which must conform to an
exposed plugin contract. The Eclipse plugin contract provides a powerful customisation point for the
Eclipse platform, allowing developers to both extend and adapt Eclipse to meet their own development
requirements.

Despite the popularity of object oriented approaches, OOD and OOP have often been criticised
for failing to deliver the reusability, flexibility and extensibility for which they were first introduced.
Some argue that a focus on white box reuse makes it difficult to extend OO software without first fully
understanding existing code [24]. It is also argued that OO design does not exhibit a clear separation
of computational and compositional concerns, leading to implementations that cannot cope with the
rapidly changing requirements of present day applications [25]. Further criticism highlights a number
of features of OO approaches that may hinder the modification of existing implementations [26]: OO
analysis and design are largely domain driven, consequently typically domain specific, and reuse of
existing implementations occurs much too late in the development process; interfaces and interaction
protocols are overly verbose; and software architecture is implicitly described by the connections

between its constituent classes or runtime objects.

Implementation technologies typically support the development of software solutions at a low
level of abstraction. The flexibility of such solutions is often limited: the purpose of implementation
technologies is to map high level abstractions embodied by software design to corresponding lower
level definitions targeting a particular hardware platform. The resulting software code is of a concrete
nature due to its close correspondence to a concrete and inflexible execution environment. As discussed
in Section 2.1.2, the existing use of low level implementation methodologies offers limited support for
dynamic flexibility and adaptability of DDDAS functionality. By contrast, a much greater degree of

dynamic flexibility is supported by interpreted languages, as described by the following section.

2.2.2 Interpreted Languages

Interpreted languages provide a powerful alternative for writing application software, by incorporating
a number of high-level abstractions offering a wide range of benefits to application developers. Many
interpreted languages allow a combination of interpreted and statically compiled languages to be used
together, or integrated, as part of the same application.

When using statically compiled programming languages such as C, C++ or Ada, program code
is processed once by a compiler, resulting in machine code that may be executed by a particular
hardware platform. By contrast, interpreted languages such as Java, Python and Lua are compiled to

an intermediate form known as byte code. Byte code consists of a sequence of rudimentary instructions,

33

typically similar in both appearance and meaning to-assembly code, Which. may be read and executed .
by an interpreter application, resulting in the intended run time behaviour. 'Té this énd,\ "in\te_rﬁl;é_te\fs’
commonly provide a simulation of an underlying llax(iware platform or virtual machine.

Figure 2.6 presents an outline of the compile and execution lifetime of typical statically compiled
language, while Figure 2.7 presents that of interpreted languages. The illustrations also highlight one
of the major benefits of using interpreted languages: both code and byte code forins of interpreted
software applications are platform independent. All one requires to execute a given interpreted lan-
guage application on any given platform is a virtual machine compiled for that platform. Meanwhile,
statically compiled languages must target a particular operating system and hardware platforrﬁ dur-
ingb the compilation process. Platform independence has contributed to the popularity of languages
such as Java and JavaScript, which benefit from simple software-reuse facilitated by a standard lan-
guage and libraries with no external platform dependencies. Contrast this with statically compiled
languages and libraries, which often force application developers to acknowledge platform differences
and dependencies.

The vast majority of interpreted languages may be used to write stand-alone applications, and
are not necessarily restricted to small text-processing applications, but are increasingly being used
to write medium to large scale software. For many applications, a number of interpreted languages
rely upon the functionality provided by C and C++ libraries in order to benefit from their lower-
level functionality and features. For such uses, some interpreted languages include interfaces for the
purpose of communicating with other (statically compiled or interpreted) languages. For example,
Lua modules may he developed using Lua code, or optionally deployed as C or C++ libraries. Lua
includes facilities for accessing the functionality encapsulated by such modulés in a uniform way.

Similarly, many software developers are recognising the benefits of having the high-level features
of interpreted languages available as part of their applications. This has resulted in a number of
applications embedding interpreted languages in order to offer their functionality to users and other

developers. For example, some applications may include an interpreted command environment for

1000101(‘{&

0101001010
—_— 1010001010
[_,‘,»7 —[1011101010
i 1001010101

| main()) 1010101010
{
| print(*Hello Compitation
world!"); [
|) l 1000101L\M
| | 0101001010
e 1010001010
| PLATFORM 1011101010
INDEPENDENT 1001010101
e 1010101010
MACHINE
CODE

Figure 2.6: A illustration of the typical compile and execution lifetime of statically compiled languages.

34

]\ ﬁ\ | Interpreter.
l main() - ey 10001010\
[t i [0101001010] | e
int(*Hell ilation e 1010001010
| pn:lérld?')'o Compilation 1011101010 |
O N S 1001010101 am
| [1010101010 | | [
DR S interpreter
| PLATFORM svrecooe | !
INDEPENDENT | e

Figure 2.7: A illustration of the typical compile and execution lifetime of interpreted languages.

run time manipulation of program state, while others may use an interpreted language to support the
use of initialisation scripts. These scripts will be executed by an application when it is first executed,
and will typically assign initial values, invoke initialisation behaviour and so on. The interoperability
of many interpreted languages has allowed software developers to bridge the gap between statically
compiled and interpreted implementations, by supporting varying degrees of both languages and thus
a mix of their individual features, functionality, benefits and drawbacks.

While interpreted languages offer powerful and abstract environments for the development of
software solutions, they are not suitable for all applications. Dynamic byte code interpretation incurs
an additional runtime cost, while many abstractions such as dynamic typing hide operations that
the software developer may wish to control or constrain in favour of further runtime efficiency or
additional type safety. The abstractions offered by many interpreted languages may come at the cost

of control or runtime performance.

Interpreted languages allow software developers to make use of a wide range of high-level abstrac-
tions and implementations, improving the interoperability and re-use opportunities of their products,
as well as increasing their own productivity. Software development may be simplified by removing
low-level concerns from the development environment, using either those attributes common to all
interpreted languages such as the virtual i‘na(:hinc concept, or via language-specific features such as
dynamic typing. A particular benefit of using interpreted languages is that their strengths may be
combined with those of other languages: a d_eveloper may write the majority of a software application
using Python, while implementing certain modules in C++ where additional runtime efficiency is
required. Interpreted languages thus allow developers to integrate their higher-level attributes with
those of lower-level implementation languages that must be statically compiled.

While implementation languages provide a mapping from high level software design to static and
concrete software solutions, interpreted languages emphasise runtime flexibility and adaptability by
supporting an execution environment with a higher level of abstraction than the target hardware

platform. However, many interpreted languages also introduce a number of disadvantages that could

35

prove prohibitive to the development of larger scale adaptive software applications. For example,
interpreted languages often provide very limited support for enforcing information hiding and imple-
mentation encapsulation: the development, deployment and subsequent reuse of implementations is
typically based on plaintext scripts, rather than closed libraries and software frameworks. The con-
cepts described by such scripts are also often open to further modification by other executing scripts
in the same program. Furthermore, many language features such as dynamic typing focus on software
flexibility, and do not support the degree of static control or safety as provided by statically typed
languages. While it is clear that the development of more adaptable software applications will require
the use of more flexible technologies than those currently in use, the flexibility offered by interpreted
languages may not be conducive to large scale software development or the careful reuse of existing
implementations.

Between the two extremes of implementation technologies and interpreted languages, component
based approaches offer an intermediate alternative allowing independent software implementations
of varying granularity to be assembled using higher level notations. The resulting component based
software offers both high level behaviour control and low level implementation flexibility, and thus has

the potential to enhance the development of future adaptive software applications.

2.2.3 Component Based Software Development

Component Based Software Development (CBSD) is an established field of study within software
engineering. CBSD is an active research area, attracting interest from many commercial and academic
stakeholders, as illustrated by the diverse range of component based projects and products. The
focus of the CBSD methodology is to facilitate the development of software applications via the
selection, deployment and composition of prefabricated binary software components. The resulting
software applications are commonly known as component software applications. CBSD builds upon
a number related concepts from software engineering, such as software objects, software frameworks,
and software modelling. At a basic level, CBSD may be considered similar to the object-oriented
methodology, albeit at a higher level of abstraction and with coarser elements to be composed: the
underlying idea is to define a collection of encapsulated software parts and to form new software
applications by connecting them together via their interfaces.

The difference between OO programming and component based approaches can be subtle, and it
is easy to confuse components with objects, and the composition of components with the assembly of
objects in order to form complete applications. Indeed, in practice there may be little or no difference
between some components and their corresponding OO implementations.

However, CBSD introduces a number of features, methods and technologies that collectively im-

36

prove upon those available to the OO programming paradigm [27]. While OO implementations are
commonly distributed as classes, libraries or frameworks, components typically consist of a collection
of classes in order to deliver a single coherent concept. Furthermore, a component will not necessar-
ily make use of OO technologies at all, but may instead provide a component based interface to an
internal implementation based on alternative paradigms.

Components are further distinguished from the OO methodology by their design and intended use.
OO classes are typically delivered as source code or one or more libraries, are commonly intended for
white-box reuse, and a programmer is commonly required before their implementations can be properly
understood and utilised. Meanwhile, components are commonly intended to be deployed and used as
black box units of functionality. Component interfaces, disciplines, languages and standards also allow
component applications to be deployed without an in depth knowledge of component implementation
details.

Components embody concepts such as independence, late composition, and reuse by third parties,
which are essential concepts for the design, marketing, sale and purchase of component implementa-
tions. In contrast, OO technologies are primarily concerned with implementation, and do not consider
the deployment, assembly or distribution of objects beyond the compilation process. While the OO
paradigm provides a range of concepts for the reuse of software implementations, CBSD delivers
additional practices, standards and abstractions concerned with the development, distribution and
deployment of computational abstractions as part of a software development methodology with larger
scale abstractions and long term concerns.

Two concepts central to CBSD are software components, which are responsible for providing ap-
plication functionality, and component composition, which is required in order to build more complex
applications from collaborating component behaviour and is usually performed within the context of

a particular component framework.

Components

The principal concept in CBSD is the binary software component, for which Szyperski [28] provides
the following definition:

A software component is a unit of composition with contractually specified interfaces and

explicit context dependencies only. A software component can be deployed independently

and is subject to composition by third parties.

Software components represent the fundamental unit of composition from which component soft-

ware is created. FEach component is responsible for encapsulating a single coherent portion of func-
tionality, and are independently developed, selected and deployed in order to collaboratively form a

functioning software application. Components are units of binary composition, in that they do not

37

define static (design-time) descriptions of behaviour, but instead encapsulate dynamic (run-time) be-
haviour. In the context of object-oriented programming, components may be seen as encapsulating
objects rather than classes. Like objects, they may not be partially deployed or otherwise broken into
smaller units of abstraction. Each component deployment is atomic, providing a well-defined unit of
functionality, and more complex behaviour may only be obtained via their composition.

Not all component implementations are suitable for composition in all component applications:
some components may have been developed for a particular platform or application. The functionality
provided by some components may not be necessary or suitable for the application being developed,
or they may require existing functionality that the application cannot provide. Some components may
communicate using a different method or protocol to those supported by the application, and others
may only be composed in a particular way. It is clear that only a subset of all components may be
appropriate for use in any given application. More specifically, a given component application may

only make use of those components that satisfy its component model.

Component Models

A given component model defines a particular set of component types, by taking into account their
characteristic features, contractual obligations and environmental dependencies, communication styles,
and how they may be structurally composed. Component models thus describe the most relevant as-
pects of component design that must be taken into account when deploying components as part
of component based applications, which rely upon their collaborating functionality to provide the
required runtime behaviour. A number of standards may be defined in order to describe those com-

ponents that conform to the component model. For example:

Component Standards The term binary software component may be applied to a broad range
of binary encapsulations at a variety of scales: components may range from single functions and
procedures, to objects, libraries, and entire applications. The component standard for any given
application context will be responsible for defining what is and is not a component within that context.
A component standard refers to the collection of definitions, requirements and rules that must be
adhered to in order for a component to function as part of a given application context.

An important aspect to consider when defining what components are allowed is their degree of
encapsulation. The most common abstractions are black, white and gray box [29]. The functionality
of black box components may only be accessed via their interfaces. Black box components are similar
to OO objects, in that they do not reveal anything about their implementations. In contrast, the
implementation details of white box components are fully visible to their clients. Gray box components

offer partial access to select parts of their implementation details while hiding others. The exposed

38

portions of a gray box component implementation may take the form of low level code, additional

documentation, or even functional specifications describing internal behaviour.

Interface Standards Software components are specifically and explicitly designed for composition
in order to form part of a (potentially) wide range of software applications. It is therefore important
that each component also explicitly specifies its part in such compositions. This is most commonly
achieved by describing the services the component provides, what the component requires from the
environment in which it is deployed, and how communication takes place using interface or WITing
standards.

Each component provides one or more interfaces, which are responsible for describing the services
provided by the component. These interfaces are known as provides interfaces. It is via such provides
interfaces that each component exposes the functionality it encapsulates to other components in
the composition, and thus contributes to the collective functionality represented by the component
software application.

Bach component is also required to specify what it requires from such compositions. Such spec-
ifications are known as context dependencies or requires interfaces, and state the requirements that
must be met before the component may form part of a given composition. A component’s provides
and requires interfaces are collectively known as the component’s bottleneck interface.

Other details that may be available via component interfaces include version information, the
description of additional options available to clients, and formal descriptions of implementation be-
haviour. However, the primary role of interface standards is to facilitate the specification of how

component functionality may be interconnected to form component applications.

Composition Standards A component model will also specify a composition standard, which dic-
tates the structural relationship between component deployments. The most common options for
composition styles are flat compositions and their hierarchical counterparts. In the case of flat com-
positions, all components are deployed to the same global context, where they are identified, located
and updated independently. By contrast, hierarchical compositions allow component deployments to

encapsulate or own other deployments, leading to the hierarchical aggregation of components.

Component Frameworks

One aim of CBSD is to elevate the level of application development to a higher level of abstraction,
where application developers may create applications via the independent selection, deployment, and
composition of binary components. However, a number of lower level concerns must also be addressed

by the resulting software.

39

For example, a component based application cannot enfi’re‘iy consist of \comp‘o,nentr impiemen,tations
alone, but must also embody, facilitate and enforce the various standards. of a par‘ciculartf\compé_n,,.en\t
model. A central process should be available to support the deployment of appropriate cdrﬁpoﬁéﬂts,
as well as their connection and runtime communication, while rejecting those components, connections
and communications that do not satisfy the component model. Furthermore, the software may require
access to lower level functionality, resources or facilities, such as those provided by the underlying
operating system or distributed environment. It may not be desirable (or possible) for components
and component developers to implement this low-level functionality.

Component frameworks offer a solution to lower level concerns by providing semi-complete realisa-
tions of domain specific software applications. Much like their object oriented counterparts described
in Section 2.2.1, component frameworks are responsible for providing a stable yet adaptable basis
for large-scale software development. This is achieved by incorporating the majority of application
functionality and by including well defined locations and interfaces for application specific extension
and customisation, as illustrated in Figure 2.8.

In the context of CBSD, component frameworks incorporate stability by implementing, support-
ing and enforcing a given component model. Meanwhile, individual component implementations and
component compositions allow component software to adapt to a variety of applications. This combi-
nation of stable re-use and abstract adaptation can significantly improve the development of specific
component software solutions.

A component framework will build upon a particular component and wiring standard in order
to additionally define the deployment and communication standards by which components may be
composed. A given component framework will thus support the instantiation and deployment of
valid components (as specified by the component specification), as well as providing the means by

which components may communicate via their specified interfaces. In the latter case, while a given

A -
A/ < = Customisation
/7] Point (plugin)

] = Customisation

L“J " Point

(derived class)

B (= Customisation
e Component ||~ Point
]] Model! l X7 (component)

Figure 2.8: An illustration of the customisation points provided by component frameworks.

40

component standard may state the required wiring standards by which components may communicate,
it is the framework’s responsibility to support such wiring standards via the provision of appropriate

enumerations, data formats, marshalling services, and so on.

Composition Languages

Composition languages are used to describe component applications as the concrete composition
of components. Composition descriptions typically drive the runtime deployment and subsequent
connection of component instances within the context of a particular component model. In order to
maintain consistency with the model, the composition language must also enforce that the components,
connectors and compositions described adhere to underlying component, interface and composition
standards. Composition languages provide an expressive tool by which software developers may
describe the initial (and in some cases dynamic) deployment of computational elements, and their
connections, to form component-based applications.

A considerable range of existing composition languages is available to the component software
developer, with each language offering a different approach, paradigm and methodology for defining
component based software. However, the majority of composition languages subscribe to some or all
of the following requirements [30]: a composition language must support the encapsulation of both
objects and components, it must support objects as processes, and components as abstractions. A
composition language must also enforce plug compatibility between objects and components, provide
a formal object model, and be scalable. The following paragraphs present a short description of each
requirement in order to further define what a composition language is.

Composition languages introduce the requirement for the concept of a component. Component
based methodologies can almost be regarded as analogous to traditional object oriented approaches,
which similarly define software as a collection of independently operating elements connected via their
interfaces. However, components provide an additional layer of abstraction above that of an object:
whereas objects are computational elements representing runtime state and behaviour, components
exist to define the composition of binary units via their interfaces. While the exact difference between
objects and components will depend on a given component model, components and objects typically
perform different roles as part of component based applications.

In the context of component based software, objects are independent entities or processes that
collectively contribute to overall application functionality. Objects should be considered as operating
autonomously and potentially concurrently, and should not be regarded as static data structures or
collections of procedures. The objective of component based methodologies is to direct the collabora-

tion of independent object behaviour to form higher level functionality that satisfies the requirements

41

of component applications.

Components are software abstractions that must be instantiated and composed in order to be-
come part of a component application. Components provide abstractions so that the composition of
runtime functionality may take place. However, components do not necessarily correspond to objects;
numerous concepts such as interfaces, wrappers, and connectors do not have corresponding object
representations, and only have meaning within the context of a given composition. Certain concepts,
such as connectors, are explicitly defined by composition languages and may be used to infer meaning
from compositions. By contrast, many implementation methodologies will make such concepts im-
plicit by hiding their use as implementation details (for example, consider the definition of inter-object
references in object oriented approaches). Furthermore, the scale and granularity of components may
have greater variation than that of objects in component based software. While the behaviour of all
objects will contribute to overall application behaviour, some components may have to form part of
other compositions before they become useful.

Component applications are formed by the composition of both objects and components. The
composition of objects provides complex behaviour that defines application functionality, while the
composition of components determines their communication and collaboration. The plug compatibility
of objects and components must be formally expressed in order to form valid compositions, and to
prevent invalid compositions from forming. Varying forms and degrees of plug compatibility exist. For
example, object composition will typically require object interfaces and inter-object communication to
adhere to an underlying type system and message passing protocol, while component compositions may
take advantage of interface and parameter adaptation, message forwarding, and so on. The interface
standard of a given component model is typically responsible for defining what plug compatibility
means, and to what degree the composition language will support and enforce the composition of
both objects and components.

Formally describing the roles of objects, components and compositions is sometimes considered
a prerequisite to defining compositions representations and compositions languages [31). A formal
model can be used as a basis for enforcing a number of concepts, such as the integration and plug
compatibility of objects and components, that are central to component based methodologies [32).
Subsequently, a variety of composition languages include a formal model of objects, components and
compositions as a foundation for further descriptions. This foundation can be used to formalise the
various standards of a component model, but it can also be used to define the enforcement of such
standards as part of a component framework and supporting tools.

One further key requirement of composition languages is that they must also be scalable. Scalable

in this context is not limited to size or granularity (which have already been discussed above), but

42

also applies to configuration, completeness, correctness, and differing modes of use. When rapidly
prototyping an application, a composition language must be flexible to allow dynamic changes, pro-
vide default values, and support incomplete or even incorrect definitions to improve productivity. By
contrast, component software intended for delivery should be statically checked for correctness, com-
pleteness and validity. Perhaps a better term for this requirement would be flexibility: a composition
language should be flexible to support the productive development of component applications as well
as their correct deployment.

Composition languages provide the means by which component compositions may be defined. The
use of declarative notations is common, in part due to their focus on the explicit deployment and
connection of individual component instantiations. While composition languages often provide an
expressive interface, they are also responsible for enforcing the rules and restrictions of the component
model by limiting the compositions application developers may describe. As a result, composition
languages will commonly support validation, contractual programming, and formal semantics. Al-
though many existing composition languages subscribe to combinations of the requirements described
above, a number of composition language developers are also experimenting with the use of alter-
native technologies such as XML [33], visual component assembly [34], or the integration of related

methodologies such as aspect-oriented programming [35].

Existing Component Technologies

A number of existing component models and frameworks are available to application developers, in
order to support the implementation of components and their deployment and composition as part of
coherent applications. The most popular technologies are those developed by the Object Management
Group (OMG), Sun, and Microsoft. The following is a brief overview of their respective contributions

to the field of component based software development.

The Object Management Group developed the Common Object Request Broker Architecture
(CORBA) standards in order to provide a uniform distributed computing environment for a
wide range of programming languages and platforms. The CORBA standard defines mappings
to and from its Interface Definition Language (IDL), which facilitates communication between
different implementation languages. Furthermore, the same IDL is used to describe the interfaces
to code implementations, known as CORBA servants, and thus determines the marshalling and
unmarshalling required for code to interact via remote method invocation or Remote Procedure

Call (RPC).

With CORBA 3, the OMG provides an extension similar to Enterprise Java Beans (EJB) in the
form of its CORBA Component Model (CCM). A CCM application is an assembly of CCM or

43

EJB components, where CCM components consist of implementation code packaged alongside

an XML description of the component’s capabilities, attributes, and configuration.

Sun Java is a popular and widespread object-oriented programming language supporting a number
of component models (specifically: J2EE, applets, JavaBeans, Enterprise Java Beans, servlets,

and application client components).

The JavaBeans component model embodies Java’s first component-based architecture. Jav-
aBean components are called beans and consist of a number of classes and resources, although
component instances are also called beans. One or more implemented beans are packaged as
JAR files, which will also contain a manifest file that names the beans in the JAR file. During
design time, an application designer will assemble JavaBean components to create component
software compositions; at runtime, the required bean components are instantiated and together

form an executing application.

Microsoft have two major standards for component based software development: COM, and the
NET framework. COM is the older of the two technologies, and while the underlying principles
have been used elsewhere, COM is only really widely used on the Windows platform. COM
is a binary wiring standard - it does not describe higher-level concepts such as objects, or
components. Instead, the COM standard specifies the lower-level concept of an interface node,

which may serve to represent (part of) a component.

NET is the more recent of Microsoft’s two component standards. It contains, among other
things, the common language runtime (CLR), which is in turn an implementation of the com-
mon language infrastructure (CLI) specification. The CLI defines a language-neutral platform
for software definition (via an intermediate language), deployment (using Assemblies), and ex-
tensible metadata. Assemblies are the .NET equivalent of software components. Similar to
JAR files, Assemblies contain the executable implementation of the component’s functionality,
expressed as common intermediate language (CIL) byte code. Assemblies must also include a

manifest, which describes the Assemblies’ contents, as well as their dependencies.

In addition to the technologies described above, a wide range of composition languages have been
developed as part of ongoing academic research. The following gives a brief overview of those languages

most relevant to the material presented later in this work.

CoML [33] is an XML based composition language designed to be independent of the language(s)
used to implement components. The CoML composition language forms part of a larger work

targeting component construction, deployment, and assembly [36]. Due to its clear basis on

44

BML [37], CoML is most suitable for component platforms with similar functionality to Jav-

aBeans, most notably the .NET framework.

VISSION [38] is a component-based dataflow framework for simulation and visualisation. VIS-
SION’s solutions are written entirely in C++, consisting of components deployed as C++ DLLs,
and component compositions written in an interpreted form of C++. Due to use of C++ as
a composition language, VISSION benefits from continuous support of C++ types, syntax and
semantics from lower implementation levels through to higher levels of abstraction describing

the composition of component applications.

Contigra [39] is an XML and eXtensible 3D (X3D) based architecture for component oriented 3D
applications. Contigra’s application descriptions include the instantiation and configuration of
components at varying scales, and also includes a form of XML node inheritance that allows

configuration prototypes to be reused and customised throughout such documents.

ChefMaster [40] is a glue framework which, unlike the majority of components frameworks discussed
as part of this work, does not support a composition language of its own. Instead, the glue
framework relies on a range of conversions from various composition language to ChefMaster
scripts, which then drive the process of component composition. As part of this process, the grey
box Enterprise JavaBeans components supported by ChefMaster may be modified by injecting
behavioural adjustments, in order for such components to be used outside the contexts for which

they were initially developed.

XCompose [41] is an XML based framework expressing complex component compositions as se-
quences of composition operators. Composition operators manipulate components in order to
form composites, and may be glued together in order to form larger manipulations sequences

called composition pattern templates, which closely resemble imperative functions.

PICCOLA [206] is an imperative glue code, derived from mA-calculus, conforming t;o-the functional
programming paradigm. Component applications are assembled from cooperating components,
or agents, which communicate by exchanging forms. PICCOLA’s forms are extensible records,
constituting a fundamental concept used for deployment as well as message passing; forms thus

have a widespread use similar to tables in Lua.

VHD+4 [42] is a component framework supporting interactive, real-time 3D simulations target-
ing game, virtual reality and augmented reality domains. VHD++ is a feature-rich component
framework that has been successfully applied in a range of areas including education, training,

and construction. The VHD++ framework also makes use of an expressive XML based compo-

45

sition language, includes support for behavioural scripts written in the Python language, and
exposes a number of customisation points at various levels of abstraction for future customisation

and extensibility.

Component based approaches are becoming more commonplace in contemporary software solutions
and applications. However, it is clear that today’s CBSD is an immature and developing methodology:
certain CBSD proponents have recently highlighted the limitations of current component technolo-
gies [43, 44]. This viewpoint is further supported by a number of ongoing studies, which continue
their attempts to resolve a broad range of problems and shortcomings.

Current CBSD lacks the support of methodologies such as RUP [23], models such as the water-
fall and spiral models [45, 46], or standards such as UML. Consequently, many component software
developers are developing systems from scratch, thereby failing to take advantage of the reusability,
maintainability, and evolving development of component based solutions [47]:

Components are mostly identified in the late phases of the system development cycle
without considering the end-users’ requirements specified in the early phases. The effort
required to develop or re-use components which satisfy the requirements is still significant,
so that a lot of developers generally prefer to develop a system from scratch, while being
largely influenced by technological concerns.

Furthermore, component based software commonly fails to properly separate application func-
tionality into loosely coupled, coherent component implementations: code is often duplicated across
many components, while business logic may be tangled with code specifically concerned with the use
of a given component platform. Current research aims to solve this problem by applying aspect or
attribute oriented approaches [48, 49].

However, it is likely that a higher level, further reaching solution may be found in the application
of CBSD methodologies, models and standards. Consequently, a number of studies aim to intro-
duce software development methodologies for component based software development [47], component
frameworks [50, 51], and component classification [52]. A subset of this literature is also dedicated
to resolving incompatibilities between middleware platforms [53] and component versions [54]; certain
researchers suggest a combination of CBSD and model driven approaches [55, 56].

Although the CBSD research community continues to propose new component technologies and
methodologies, much of the literature is dedicated to resolving gaps and inadequacies in current
technologies. This is particularly true for the current limitations of component description, use, and
integration, perhaps due to an ever growing desire to make use of existing component implementations.
Recent research focuses on adequately describing and measuring quality of service [57, 58] and non-
functional requirements {59}, while further work looks at the quality, certification and trustworthiness

of component implementations [60, 61, 62]. Such research indicates that binary components are

46

not enough, and that there is an increasing demand for interface description languages (IDLs) to
incorporate additional descriptions, features, and functionality.

Finally, it is becoming clear that component based solutions may not be appropriate for all prob-
lem domains due to limited runtime performance. In particular, it has been shown that CBSD may
not be suitable for high-performance systems [63], while its applicability in embedded systems could
be limited by current component technologies [64]. However, this is not a universally held view, and
component based research continues to explore applications in a diverse range of domains. For ex-
ample, the successful use of component based approaches in computationally intensive applications is
demonstrated by modern data driven game technologies, as discussed in Section 2.3.1. Such games
satisty conflicting requirements for software designs that are flexible to change at a late stage in the
software development process, and the efficient runtime performance of the designs’ corresponding
implementations. An effective balance is achieved by encapsulating the majority of computation-
ally intensive software as low level software libraries, while dedicated notations closely related to
component approaches facilitate title specific customisation at a high level of abstraction. It can be
speculated that a broader application of such game development techniques may have potential benefit
to more mainstream computer science CBSD applications, particularly where runtime performance is
important.

While the performance of complex component applications can be greatly influenced by early
design decisions [65], developments in the measurement and prediction of performance for component
software may lead to more efficient designs, and thus more successful use [64]. In the meantime,
operating systems and other user driven applications continue to use component based approaches

with much success.

Despite a number of potential limitations, CBSD improves upon the OO programming paradigm
in order to provide an approach that encompasses a broader view of the software development lifecy-
cle. At the heart of CBSD lies the binary component, which represents a range of concepts that are
typically more coarsely grained and abstract than those seen in OO methodologies. As with inter-
preted languages, component based approaches thus take a step further from the hardware platform
and toward a higher level of abstraction: CBSD incorporates a design phase based on the selection,
interconnection, and configuration of high level abstractions; the initial development and subsequent
reuse of implementations may involve the use of a component market, while software maintenance is
facilitated through the individual update of versioned components. Although component implemen-
tations necessarily remain concrete and platform dependent, a wide range of higher level concepts are
available to describe overall application behaviour and support the component based methodology as

a whole.

47

Architecture description languages continue the movement into higher levels of abstraction, often
building upon concepts established by component based approaches, by focusing on the description,

analysis and reasoning of software architectures.

2.2.4 Architecture Description Languages

A software architecture is the top level decomposition of a system into major components together
with a characterisation of how these components interact [66]. A software architecture is a global,
often graphic, representation suitable for communication among customers, stakeholders, designers
and software engineers. Software architecture is a high level representation derived from software
requirements, and as such, captures early design decisions by explicitly defining software functionality
as Interactions between computational components. Software architecture provides the first system
based codification of software requirements, and directs subsequent activities such as structural design
and software implementation. Because of their early involvement in the software development process,
the designs represented by software architectures are the most difficult to change. There is a growing
interest in being able to reason about architectural designs, as well as testing the feasibility of design
candidates, before they can impact later software development activities.

Architectural Description Languages (ADLs) are emerging as formal notations for representing
and reasoning about software architectures. The aim of ADLs is to enhance the understandability
and reusability of architectural designs, and to enable a greater degree of analysis. Due to the varying
features and functionality of ADLs described in the literature, it has been difficult to define exactly
what an ADL is, and conversely, what an ADL is not. As an early step toward producing an ap-
propriate definition, a number of ADL proponents have presented classifications that identify ADLs
based on their capabilities [67, 68, 69]. The following definition includes a number of widely accepted
requirements [68]:

An ADL must explicitly model components, connectors, and their configurations®; fur-
thermore, to be truly usable and useful, it must provide tool support for architecture-based
development and evolution.

Following the typical contents of ADL classifications, the following description focusses on the

representation of components, protocols, connectors, configurations and tools.

Components in ADLs represent the first description of software functionality. ADL components are
therefore typically coarse grained, consisting of a number of behaviour patterns and responsibil-
ities, which may be as large as applications. However, some ADLs can also incorporate concrete

behaviour in the form of single procedures.

4In the context of this definition, configuration refers the topology of components and connectors.

48

Unlike composition languages, ADLs are also concerned with the specification of component be-
havioural semantics. Such specifications will typically include a (formal) notation for describing
functional and non-functional aspects of component behaviour, as well as usage requirements
and constraints. While the functional behaviour of a component refers to the computation it
encapsulates, the non-functional aspects of a component incorporate a number of characteristics

such as safety, security, reliability and performance.

Protocols describe the various ways in which components communicate, including restrictions on
which components are permitted to communicate. Certain ADLs support the specification of
communication protocols as part of individual component interfaces. In such cases, a component
interface will typically define what data types are communicated as inputs and outputs for
its exported functions and procedures. Other examples of protocol descriptions include the
stipulation of communication styles (including synchronous and asynchronous message passing)

and additional restrictions concerning valid inter component connections.

Connectors are modelled explicitly in the majority of ADLs; they are typically defined either in-line
as part of component configurations, or as independent entities described separately. ADL con-
nectors are used to model the numerous interactions and styles of interaction among components,
and will not necessarily correspond to actual objects or components in lower level software rep-
resentations. As with components themselves, the level of abstraction and granularity supported
by connectors varies greatly among ADLs. In some cases, connectors consist of inter-component
references, and provide in-line topological information only. In other ADLs, component connec-
tors are distinct entities, sometimes forming their own type families for enhanced reuse, and may
incorporate their own imported and exported services, specifications for behavioural semantics,

communication protocols, and so on.

Configurations in ADLs refer to the topology of components and connectors defining a particular
software architecture. A vital requirement of ADL configurations is that they can be created,
manipulated, read and understood by humans, so that software architectures may be effectively
described and communicated. However, it is also important that ADL configurations are open
to manipulation by tools. Furthermore, an ADL configuration must be suitable for refinement to
more concrete levels of abstraction, including structural designs and concrete implementations

in a given programming language.

Tools have a number of applications within the context of ADLs. For example, tools are commonly
employed during the processes of defining, viewing, or otherwise manipulating software archi-

tecture configurations. ADL tools may also be used for the analysis of existing configurations.

49

For example, the validity or feasibility of a given architecture may be determined by taking
the requirements and restrictions of components and connectors into account. Similarly, a tool
could indicate which components invalidate an architecture’s non-functional requirements by
inspecting their behavioural specifications. A further use of ADL tools is to provide mappings
from the abstract representations supported by ADLs to more concrete representations at lower

levels of abstraction, employing code generation, scripting, and glue.

While the classifications presented in relevant literature present the most common requirements
for ADL capabilities, the provision of such capabilities varies greatly among ADL implementations. A
more general description of ADLs is that they typically provide similar functionality to composition
languages, albeit at a higher level of abstraction. The need to reason about and analyse architectural
designs leads to the incorporation of additional features such as explicit modelling of connectors and
behavioural specifications, which are not required for lower level structural designs intended to inform
software implementation. ADLs are intended to encapsulate the high level architectural elements of
software design, and embody the first system based codification of software requirements. ADLs are
formal notations for the description, communication and both functional and non-functional analysis

of software architectures.

Despite the clear distinction between the requirements of ADLs and composition languages, they
exist on the same continuous scale of descriptions for software composition. The diverse range of
ADL and composition language implementations presented in the literature has lead to a blurring of
their individual roles, as ADLs include a variety of lower level definitions, while composition languages
incorporate a growing number of higher level abstractions. Furthermore, a number of papers present
efforts to explicitly bridge the gap between the two technologies (70, 71, 72).

While technologies at the lower level of component implementations and component frameworks
are currently being applied in industry, most notably via a small number of increasingly popular tech-
nologies, the use of ADLs to specify component based software architecture remains largely academic.
The immature nature of ADLs is demonstrated by a wide variety of continuing academic research,
including fundamental issues such as the semantics of component connectors [73], as well as higher
level concepts such as the redeployment and reconfiguration of component architectures [72].

As with lower level component based approaches, ADLs currently lack a unified standard for the
development of software implementations and applications based on reasoning at the level of software
architectures. A number of methods have been proposed for bridging the gap between abstract,
architectural level components and concrete implementation level components [70, 74]. However,

until a common standard is widely supported, the lack of guidance when utilising ADLs is likely to

50

continue to discourage commercial applications, leading to ad-hoc and bespoke implementations [75].

The lack of standards for ADLs is possibly due to the immaturity of ADL technologies, as today’s
ADLs continue to explore the overall role and use of architectural descriptions as part of software
development. Furthermore, ADL technologies have yet to converge, with support for architecture
configuration, refinement and traceability, evolution, dynamism, and non-functional properties varying
across the available languages [76]. The diverse nature of ADLs may be partly due to each ADL being
designed with a single particular goal in mind; for instance [69]:

Darwin is designed for dynamic architectures, Unicon is aimed for generating executable
code from a description, ACME focusses on architectural interchange, and Rapide on
simulation and architecture conformance. Wright precisely focusses on the integration of
formal methodology to architectural description.
Component based software development is a developing and immature field, with an assorted range
of open issues to be resolved by collaborating industrial and academic research and development (44].
Consequently, today’s component based applications employ a variety of experimental and proprietary
technologies, which build upon popular standards from a small number of vendors. The resulting
collection of component definitions, models, frameworks, and languages is overwhelmingly diverse,

although a future convergence and standardisation of technologies may further their acceptance and

industrial application.

ADLs provide a formal representation of software architectures. While the conceptual elements
supported by ADLs are typically both more abstract and more granular than those supported by
component based approaches, the distinction between the two technologies is becoming increasing
blurred. ADL proponents make use of dedicated tools that permit early reasoning and analysis
of non-functional aspects of software architectures. While some ADLs also allow their high level
descriptions to be translated to lower level representations, the process of automatically generating
concrete implementations from higher level notations is the particular focus of model driven approaches

to software development.

2.2.5 Model Driven Software Development

Model driven software development (MDSD) focuses on the definition of high Jevel models, which
encompass software design, and the subsequent automatic transformation of such models to gener-
ate their corresponding software implementation. In this way, MDSD can be considered similar to
computer aided manufacture, where blueprints are transformed into physical products by automated
machines and tools. The goals of MDSD include increased development speed and enhanced software

quality, both of which are enabled by the use of an automated code generation process. By generat-

51

ing low level implementation details from more abstract descriptions, software code can be produced

automatically, quickly, and consistently.

MDSD relies upon the availability of domain specific languages, which are used to desc‘ri’b’é_\an
abstract; platform independent model (PIM) of the desired software application. MDSD also makes
use of a variety of languages that define mappings, or transformations, from higher level models
to increasingly platform specific models (PSM), ultimately including software code in a particular
programming language. A range of tools facilitate the process of producing initial high level models,
transforming from higher to lower level models, and finally editing, deploying and executing the
generated software code. An overview of the MDSD process is presented in Figure 2.9; further detail

follows.

Models In many software development methodologies,

modelling forms part of an initial design phase. The soft-

PIM

ware model is typically used to inform software developers

during a subsequent implementation phase, after which the

model is no longer necessary. By contrast, MDSD empow- Mapping

ers the software model to include all information that is
required to automatically generate its corresponding im-

plementation; the software model constitutes an important

part of the software’s definition. To this end, MDSD mod-

els must be both abstract and formal at the same time. ‘ Builds upon

While a high level of abstraction facilitates expressive soft- A\ ; g =

ware design, formal elements are required in order to en-

Platform

force the rules of a particular problem domain. Because of

the wide range of MDSD applications, today’s modelling

notations are typically domain specific. Figure 2.9: An overview of the MDSD

The MDSD methodology begins with the development approach, illustrating the mappings from

of an injtial model. The model will embody an abstract, platform independent models (PIM) to

high level view of the application’s design, incorporating ™O'¢P latform specific models (PSM).
concepts that are independent of any particular application

platform. The initial model thus abstracts from implementation or technological details, and instead
focuses on those stable concepts that are core to the software design. For example, UML static class

diagrams, sequence diagrams and activity diagrams may be used to depict a high level view of a given

software design [77].

Platforms In MDSD, the concept of a platform is not limited to a particular hardware environment
or operating system, but encompasses many levels of abstraction: hardware environments are a plat-
form for operating systems, which provide platforms for programming languages, which are in turn
platforms for software applications, and so on. The concept of a target platform is introduced during
the process of mapping from high level models to lower level, platform specific, models that must take
platform differences into account. Model transformations are responsible for introducing successive
platform specific elements in order to translate a more general model into a more specific one, within
the context of a particular platform. While higher level models commonly consist of graphical or other
abstract notations, lower level models will typically introduce code skeletons and abstract interfaces,
then specific patterns, data structures, algorithms, and finally concrete code for functions, procedures
and class methods.

An MDSD platform will commonly incorporate a software framework or selection of components
ready to be assembled. In such cases, the MDSD approach will not be required to produce low level
code providing all software behaviour, but will instead reuse existing implementations in order to

provide the required application functionality.

Transformations FEach translation of an element in a higher level model to its corresponding ele-
ment in a lower level model is performed by one or more transformations, which are typically written
in languages ranging from dedicated transformation languages such as XSLT, to mainstream pro-
gramming and scripting languages such as C++ or Python. Example transformations include the
generation of class definitions from models such as UML static class diagrams, and the generation of
lower level algorithms from UML activity and sequence diagrams. Transforms often take the form of
templates, which replace a specific pattern in the source model with a corresponding pattern in the
destination model. However, in many cases MDSD transformations are not able to generate applica-
tion software in its entirety, and software developers may be required to provide the more complex
implementations.

Building upon existing specification, selection, integration and implementation technologies, model
driven approaches automatically derive software solutions from high level notations and descriptions.
In this way, MDSD provides a top-down development methodology with increased development speed,
software quality and consistency. Although there is a limit to what can be automatically generated
from higher level models, improvements to independent software development technologies, particu-
larly in the areas of formal notations and standardisation, may allow for more complex solutions to
be written by MDSD transformations.

The top down approach embodied by MDSD has clear links to the use of composition languages and

53

ADLs to drive the selection and interconnection of platform dependent computational encapsulations.
Furthermore, component based approaches may be combined with MDSD, with higher level notations

driving the assembly of lower level component implementations (55].

2.2.6 Summary of Software Development Methodologies

Object oriented methodologies provide a popular approach for the definition of software implemen-
tations, while also defining a fine grained mechanism for their encapsulation and reuse. Meanwhile,
software libraries and frameworks supply similar modularity at higher levels of granularity and ab-
straction, in order to facilitate the incremental development of applications.

The OO paradigm is widely supported by implementation languages, where the expressiveness of
OO abstractions may be combined with a range of low level concepts with a close correspondence
with the underlying execution platform. Consequently, programmers making use of OO implementa-
tion languages are able to write OO classes, libraries and frameworks, but must also consider details
such as heap memory management, thread synchronisation, and the availability of platform specific
resources such as hardware timers. Programs written in implementation languages are typically com-
piled to platform specific machine instructions, and the resulting binary representations are commonly
associated with high runtime performance and efficient memory use and execution.

However, the lower level programming environments provided by implementation languages can
lead to less expressive notations than those supported by their higher level counterparts, leading to
programs with more instructions and hence lower programmer productivity. Furthermore, the close
correspondence between implementation languages and platform hardware results in implementations
being less portable and flexible. Low level solutions may also be less adaptive to future change, and
may be difficult to integrate with independent implementations.

Interpreted languages offer a higher level, more expressive software development environment than
implementation languages, in part due to the availability of a dedicated virtual machine (VM), which
provides a foundation of basic functionality that interpreted languages can rely on. Interpreted lan-
guages also commonly offer a range of abstract concepts or programming paradigms, often making
them more productive than implementation languages, and thus more suited to rapid application
development. For example, Lua’s tables are a fundamental and yet incredibly powerful part of the
language providing a range of data structure concepts in the form of a single abstraction. Tables in
Lua take the form of associative containers, although the values on the left and right hand sides of the
association can be any of the concepts supported by the Lua language. For instance, tables support
integer based indexing in order to support array behaviour, direct manipulation of the first and last

elements can also be used to provide list, queue and stack-like data structures. Indexing using strings

allows items to be stored and subsequently accessed by name. However, string based indexing also
forms the basis of program structuring, as further tables, functions, procedures and items can all be
stored as part of a named table hierarchy. The provision of a single, high level concept to support a
wide range of data structures allows Lua programs to be written more rapidly and expressively than
programs written in lower languages such as C++, which has a number of data structures available
and is optimised for different uses.

Unlike their implementation language counterparts, programs written using interpreted languages
are typically compiled to an intermediate bytecode for later interpretation by a VM. As compiled
bytecode can be interpreted by an appropriate VM on any execution platform, programs written
using interpreted languages are more portable than those written using implementation languages.
Furthermore, although the overhead of VM interpretation has been prohibitive for larger applications
in the past, improvements in compiler and VM technologies, as well as continuing advances in CPU
hardware, are effectively mitigating the negative aspects of interpreted languages. Some interpreted
languages, such as Lua and Python, were also designed to support a range of bindings to lower level
languages including C and C++, so that existing implementations may be integrated and exposed to
programs written in higher level languages.

Implementation languages are typically used for low level programming, and interpreted languages
for writing software at higher levels of abstraction, often relying on libraries written using implemen-
tation languages for those parts requiring more efficient execution. In contrast, component based
approaches focus on the assembly of independently developed implementations in order to form com-
plete applications. CBSD builds upon the interests of lower level technologies, and is primarily con-
cerned with the definition, selection, interconnection, configuration, and larger scale distribution of
components. To this end, the component based methodology introduces a range of technologies that
collectively support and enforce a new way of designing, developing, describing, and distributing
software encapsulations and applications.

In a similar way to interpreted languages, a composition based approach may be suited to rapid
application development, provided the correct components are available for purchase and existing
technologies are being used to support their composition. Furthermore, CBSD is particularly suited
to the development of a range of related products, where the use of component technologies will
emphasise the reuse of implementations. Due to the use of high level composition languages to describe
component based applications, component based solutions may also be more flexible to change and
open to high level analysis than solutions written using lower level languages.

At a higher level of abstraction, ADLs focus on the specification of software architecture, often

incorporating measures related to non-functional properties and quality of service provided by the

runtime execution of component based applications. While a wide variety of features are present
in lower level composition languages, ADLs are commonly concerned with modelling, manipulating,
analysing and ultimately understanding software architectures.

Today’s vast range of component based technologies present a variety of benefits. Common themes
include greater flexibility and extensibility, enhanced implementation reuse, and additional support
for analysis. CBSD promotes a more effective methodology for designing, developing and marketing
software implementations. However, the vast majority of component based technologies have yet to
mature. Although a small number of solutions, including COM, CORBA, JavaBeans and .NET are
becoming increasingly popular and more widely applied, such solutions form part of the component
based approach. Composition languages, component frameworks, and ADLs remain predominantly
academic. Furthermore, research in CBSD has yet to converge in order to provide widely supported
standards for the design and implementation of component based implementations and applications.

Model driven approaches endeavour to provide an automated transformation from a number of
abstract models to their corresponding low level platforms and concrete implementations. As part
of this process, MDSD may make use of a wide range of technologies providing sequential mappings
from platform independent models to increasingly concrete representations. Such technologies may
include implementation, interpreted, composition and architecture description languages providing a
wide range of increasingly abstract concepts, environments and encapsulations for software develop-
ment, with each technology introducing additional abstractions that may be translated to lower level
operations and representations. While such technologies may be used in combination in order to pro-
vide a complete software solution, MDSD may be used to bring them together as part of a continuous
and automatic software development process.

Model driven approaches are not yet completely effective, and may not be able to provide a
complete concrete implementation for all application designs. Where concrete implementations are
not automatically derived, a software engineer may still be required to provide lower level designs
and software code. However, a range of new functionality forming part of the new UML 2.0 standard
give explicit support for the MDSD approach, and vastly improve the expressiveness and precision
of modelling notations [77]. It is likely that the new features of the UML 2.0 standard will improve
the effectiveness of model driven approaches, resolve a number of current restrictions and allow wider

range of software solutions to be generated automatically.

The runtime behaviour of DDDAS is driven by high level, domain specific elements embedded in
runtime data. Section 2.2 has discussed a number of technologies, with increasing levels of abstraction,
where higher level descriptions of software may be used to drive lower level software structure and

overall application functionality.

e The class descriptions of OO implementation languages allow the state and behavioural aspects
of software to be described separately. Features such as inheritance and implementation encap-
sulation allow a degree of flexibility, but the low level nature of such languages is prohibitive to

truly adaptive behaviour.

e At the opposite extreme, interpreted languages focus on providing software flexibility, and com-
monly support runtime adaptation via the dynamic generation and interpretation of plaintext
scripts. However, such languages may be too flexible for the development of large-scale adaptive
applications, where additional granularity may benefit the dynamic (re)deployment of indepen-

dent software implementations.

e Component based approaches support an ideal separation of software implementation and de-
ployment, and thus provide an opportunity to adapt software (re)composition at runtime from

a collection of black-box implementations.

e Meanwhile, both ADLs and model driven approaches provide static software descriptions at
higher levels of abstraction. While future research may allow ADLs and MDSD to be applied
to DDDAS, current progress remains focussed on academic projects with limited industrial

application.

Applying CBSD within the field of DDDAS has the potential to enhance the dynamic adaptability
of future software systems. A component-based DDDAS would be able to include additional function-
ality at runtime, optionally replacing existing behaviour with alternative implementations, in order
to optimise runtime behaviour in response to dynamically changing requirements.

While CBSD could be used to support the macro-scale manipulation of data driven behaviour,
future DDDAS could incorporate greater flexibility if the component implementations themselves
could also be data driven. However, the extensive use of data driven methodologies as defined in
Section 2.1.2 is not commonly found in industrial or academic applications. As previously discussed,
the term data driven typically refers to an emphasis on data processing, or that limited aspects of the
software’s behaviour may be parameterised using an appropriate configuration file.

Meanwhile, the computer games industry has adopted a particularly effective data driven approach
to software development. Indeed, the popularity of data driven rendering has led to hardware vendors
producing a range of data driven technologies, with a dramatic effect on subsequent software flexibility.
The following section describes the data driven approach used by today’s computer game developers.
The aim of Section 2.3 is to provide an overview of the data driven programming paradigm, while mo-
tivating the combination of CBSD and data driven approaches in order to enhance software flexibility

and adaptability.

S
3

2.3 Computer Games Technology

Superficially, the computer games industry appears to have little influence on computer science
academia, and vice-versa: indeed, the two fields often appear to be independent. Under closer in-
spection, it becomes apparent that a number of significant computer game technologies are supported
by continuing efforts from academic research. For example, popular methods for introducing realistic
shadows to scenes depicted in games [78, 79] have clear academic foundations (80, 81, 82, 83]. Fur-
thermore, computer games are often included as a motivation for a range of research efforts focussing
on the interactive visualisation of dynamic scenes [84, 85]. Certain fields, such as those concerning
virtual reality, incorporate a range of application content, interaction, and visualisation technologies
whose application appears to be very similar to that seen in games [12]. Finally, computer game
applications have also been employed to provide interactive visualisation capabilities for a range of
research projects [86, 87, 88]. In such areas, the distinction between computer game technology and
academic research is becoming less clear.

During the past decade, the game development community has made considerable efforts to improve
its software development methodologies and technologies in response to a growing consumer demand
for more detailed, realistic, interactive, immersive and customisable experiences. Best practice is
consequently the focus of a wide range of game development articles and presentations [89, 90, 91].

In many cases, a modern game will consist of a number of distinct layers as seen in Figure 2.10:
a lower level layer (left) providing generic functionality for a range of related titles; a middle layer
(center) representing the functionality related to a single specific game title; and a higher level layer
(right) allowing third parties or consumers, many of whom are non-programmers, to customise a
specific game title to their own requirements. The lower and middle layers will often be implemented
as a combination of first and third party libraries encapsulating tightly coupled responsibilities such
as resource access and management, visual and audio output, user input, and runtime updates. These
libraries form a software framework, commonly referred to as a game engine, providing a reusable
backbone of functionality. In order to create a range of individual game titles, game developers will
supply custom subclasses, plugins, and parameterisations in order to customise the game engine’s
operation according to title specific requirements, latest hardware capabilities, consumer market, and
so on. Finally, a diverse range of title-specific environments and experiences are provided by a variety
of content and logic data files.

A growing number of game engines have begun to incorporate a data driven aspect, as described in
Section 2.1.2, in order to maximise the reuse of implementations, as well as their flexibility and exten-
sibility. The most noteworthy applications of data driven methodologies in the context of computer

games technology can be seen in the definition of runtime game content as described in Section 2.3.1,

58

y\/:g = Customisation

V7] Point (plugin)

H = Customisation
1 Point -
(derived class)

Game Engine -
L T{ JJ 1 7 IIM_“_—

="M= Game content
|=_| data files and
— runtime fogic
" script files

— |

Generic functionalit Title specific I 3“ party or consumer ‘
y J_ functionality l custom functionality _’

Figure 2.10: An overview of the architecture of a typical computer game application.

and scripted behaviour in programmable rendering pipelines as outlined- in Section 2.3.2.

2.3.1 Object Oriented Data Driven Programming

As part of the movement toward more content driven methodologies, games developers are making
increasing use of data driven programming (DDP), as described in Section 2.1.2. Game developers
extend the popular data driven concept by incorporating object oriented features such as type defini-
tion, inheritance and instantiation, and enhance the use of DDP by allowing application data to drive
runtime software structure. In order to distinguish the game developers’ extensions to data driven
programming from that described in Section 2.1.2, the approach utilised by game developers will be
referred to as object oriented data driven programming (OODDP) in the text that follows.

In describing his motivations for developing OODDP, Scott Bilas states [92]:

'To meet changing design needs, one can’t Just data-drive the object properties, one must
data-drive the structure (schema) of the objects.

The term schema here refers to the objects, the objects’ attributes, and the relationships between
objects. In OODDP, this schema may be data-driven by replacing static inheritance relationships
with dynamic aggregation relationships and then driving dynamic assembly at runtime using data.

For example, consider the following simplified object oriented software structure, as illustrated
by Figure 2.11. A Vehicle type forms the root of an object oriented inheritance hierarchy, providing
common behaviour (e.g. the ability to belong to a traffic network simulation, and to travel between
locations on that network), and common attributes (such as engine size, average speed and so on). The
PassengerVehicle type extends the Vehicle type by providing seats for passengers, plus the behaviour
for boarding and alighting. Tﬁe Car type extends PassengerVehicle in order to provide a concrete
type for cars and similar vehicles, while the LightAircraft type provides a PassengerVehicle that can

transport passengers by air. If this scenario were implemented in code, runtime objects would be

59

instances of the child classes - that is, one would declare instances of the Car and LightAircraft
types as part of the code, and each runtime object would be identified via its corresponding variable
declaration.

OODDP replaces inheritance with aggregation in order to replace static relationships in the soft-
ware structure with dynamic relationships that can be driven by data at runtime. In order to achieve
this, related classes in the inheritance hierarchy must be represented using independent classes, which
are then combined to provide the functionality previously represented by the static software structure.
For example, the PassengerVehicle class no longer inherits from Vehicle, but is written as an indepen-
dent class. If the parent (Vehicle) class from the earlier example provides any common behaviour to its
children, then it will also be represented by an independent class that encapsulates this commonality.
If the OODDP scenario were implemented in code, runtime objects would be represented by simple
containers of instances of the independent child class types. For example, an instance of the Car class
would be represented in the OODDP scenario as the aggregation shown in Figure 2.12, incorporating
the functionality of the Vehicle class, plus that provided by the SeatingCapacity class. Each OODDP
instance (that is, the container instance representing the corresponding class instance) is uniquely
identified via a runtime identifier. The instance in Figure 2.12 has the identifier ‘myCar’.

In OODDP, each hierarchy of container object and contained class instances may be described
using an OODDP type description. Type descriptions drive the runtime instantiation and aggregation
of container and class instances in order to form an OODDP hierarchy. Each type description includes
an identifier for the OODDP type currently being described, and specifies which classes should be
instantiated and inserted into the container. Each specified class instance is also given an identifier so
that the various parts of an OODDP hierarchy may be uniquely identified. Class instance specifications
may also include an optional configuration, which is used to customise the class instance and can be
regarded as synonymous with class constructor parameterisation. In practice, class configurations are
used to initialise attribute values.

Figure 2.13, written in XML, describes the type PassengerVehicleType, which contains a Vehicle
class instance and a SeatingCapacity class instance, both of which include configuration elements.

Furthering its incorporation of the object-oriented paradigm, OODDP re-introduces inheritance

JAN

i PassengerVehicle I

T

I |
Car I LightAircraft

Figure 2.11: A simplified object oriented software structure.

60

myCar : Container

vehiclePart : Vehicle

seatingPart : SeatingCapacity

Figure 2.12: The PassegengerVehicle type is represented as an OODDP hierarchy of container and
independent class instances.

<Type id="PassengerVehicleType">
<Vehicle id="vehiclePart">

<!—— Vehicle configuration —>
<AverageSpeed>50mph</AverageSpeed>
N et >

</Vehicle>

<SeatingCapacity id="seatingPart">
<!—— SeatingCapacity configuration ——>
<Seats>5</Seats>
< etc ——>

</SeatingCapacity>

</Type>

Figure 2.13: An example OODDP type description for the OODDP hierarchy from Figure 2.12.
Vehicle and SeatingCapacity are the names of OODDP components, which will be added to all Pas-
sengerVehicleType instances.

via manipulations on its type descriptions. New OODDP type descriptions can be described based
on existing OODDP type descriptions, allowing for description re-use and thus more expressive power
for OODDP software designers. In a similar way to traditional object-oriented paradigms, OODDP
inheritance forms a relationship between a parent and child type description. For example, Figure 2.14
makes use of a parent type description (PassengerVehicleType from Figure 2.13) and describes a child
type description (LightAircraftType). The LightAircraft type describes PassengerVehicleType type
that uses flight as its mode of travel, as represented by its additional Fixed WingFlight class instance.

An OODDP type description may be instantiated via the definition of an OODDP instance de-
scription. An instance description typically has a similar appearance to an OODDP type description,

and provides an identifier for the instance. The following excerpt describes an instance of the Passen-

<Type id="LightAircraftType" parent="PassengerVehicleType ">

<!—— LightAircraftType inherits seatingPart from the PassengerVehicleType —>
<!—— OODDP type description. LightAircraftType provides its own descriplion ——>
<l—— for the wvehiclePart, which overrides that in PassengerVehicleType —_

<Vehicle id="vehiclePart">
<AverageSpeed>150mph</AverageSpeed>
</Vehicle>
<l—— LightAircraftType extends PassengerVehicleType by including an —>
<l—— instance of the FizedWingFlight class -
<FixedWingFlight id="flightPart">
<Ceiling>15000ft</Ceiling>
</FixedWingFlight>
</Type>

Figure 2.14: An OODDP type description for the Light Aircraft Type type, which makes use of OODDP
inheritance to both include and extend the definition of the PassengerVehicleType type description
given in Figure 2.13.

61

gerVehicleType type given in Figure 2.13:

<Instance id="myCar"parent="PassengerVehicleType" /> l

After OODDP inheritance is applied, the ‘myCar’ instance description will include the contents of
the PassengerVehicleType type description as given in Figure 2.13.

OODDP inheritance, as described above, may also be applied to instance descriptions. For exam-
ple, the following describes another instance of the PassengerVehicleType type given in Figure 2.13,
although in this example the instance description overrides the PassengerVehicleType type description

by providing a custom SeatingCapacity class description for a custom number of seats:

<Instance id="anotherCar" parent="PassengerVehicleType">
<SeatingCapacity id="seatingPart">

<Seats>7</Seats>

</SeatingCapacity>

</Instance>

While the basic principles of OODDP are commonly accepted as described above, their imple-
mentation often varies due to individual developer requirements. Alex Duran [93] presents a range
of data driven programming technologies, providing a clear overview of common features among data
driven systems. In addition, the following proponents’ implementations are particularly relevant to

the concepts presented later in this work.

Scott Bilas [92] Introduces an OODDP system incorporating types, instances and inheritance re-
lationships, which are described and configured using a dedicated scripting language. Bilas’
system makes use of configuration schema, which perform a similar role to XML schema, in or-
der to both describe and enforce the structure of OODDP types. Components can be developed
independently as C++ libraries or as scripts, and may be introduced to the OODDP system
to form part of its type and instance descriptions. Bilas’ system also makes use of automated

function binding capable of forming links with the functionality exposed by C++ DLLs [94].

Chris Stoy [95] describes a system based on GameObjects representing concepts such as player
avatars, with each GameObject consisting of GameObjectComponents encapsulating a range of
finely grained concepts. Stoy’s system has support for data-based configuration templates,
which can be used to initialise GameObjects and GameObjectComponents during the data driven

instantiation of a given game scene.

Bjarne Rene [96] presents a more flexible component communication system based on message
passing. Although not explicitly demonstrated by the literature, it is clear that Rene’s system
can be used to develop independent, loosely coupled components that do not rely on other

components’ implementations for inter-component communication.

62

Modern game titles are becoming increasingly data driven, and OODDP is just one example of
where game developers are allowing data to drive application behaviour. One advantage of a data
driven approach is that many independent titles can be described via changes to game content data,
with very little low level programming required. Data driven methods have also been highly successful
in the recent evolution of rendering hardware and software technologies, where a number of high level
notations have been developed for the definition and subsequent control of a diverse range of visual

effects and rendering techniques, as described in the following section.

2.3.2 Data Driven Rendering Pipelines

In the context of computer games, rendering is the process of forming a two-dimensional (image)
representation from the description of the game environment. In most cases, the rendered image is
presented to the user via display hardware such as a television or monitor. The vast majority of
game environments are two or three dimensional, and range from the representation of traditional
game boards (such as chess), through medium-sized situations containing multiple kilometres, to vast
spaces consisting of solar systems, galaxies and even universes. The game environments themselves
will typically manage spatial positions, extents and relationships for all objects in the game, plus their
runtime states and logic in accordance with the game rules.

Almost all games are interactive, maintaining an internal representation of the game environment
which may be modified in response to a variety of user inputs and logical rules. As the game environ-
ment changes, a new visualisation is presented to the user. A typical frequency for these visual updates
will lie between 25 and 60 frames per second in order to maintain the illusion of continuous animation
between the individual frames. Interactive games are thus similar to the model-view-controller (MVC)
pattern from software engineering [97], in that the model consists of the game environment, user input
and logical rules constitute the controllers, and a rendering process provides the view.

The typical render pipeline, as employed by the majority of modern graphics hardware, can be
seen in Figure 2.15. Today’s consumer-level graphics hardware for desktop systems include dedicated
memory for geometry and texture data, as well as powerful graphics processing units (GPUs) for
the parallel execution of rendering pipeline calculations. While the rendering hardware is responsible
for performing much of the computational work involved in producing visualisations, a number of
layers exist above the hardware in order to facilitate the communication of client data and processing
control. The various layers involved in the communication between client application and rendering
hardware are shown in Figure 2.16. Hardware vendors provide driver software for their products,
which are in turn built upon by graphics library developers. Graphics libraries provide a variety of

abstractions and functionality that client applications may use in order to define visualisations. A

63

Connectivity

Transformed ~ —

Vertices Vertices Primitive
—— Vertex x:> | Assembly
Transformation : and

Rasterization

ﬂ Fragments

Pixel

Positions

<:: . Fragment
o,i?-::gns <:’ Texturing
Pixel Coloured and Coloring .
Updates Fragments

Figure 2.15: A typical hardware render pipeline.

typical graphics library will include a number of functions for the submission and subsequent control
of geometry, textures, material properties, lights, cameras, and a range of special effects including
fog and shadows. As graphics hardware capabilities have evolved, so has the range of functionality
encapsulated by graphics libraries. The current leading graphics libraries are OpenGL and Microsoft’s
DirectX.

While visual representations are important for many computer games, certain genres are placing
increasing emphasis on visual realism and detail. Developers are making considerable investments in
order to incorporate complex surface representations, environmental features such as realistic lighting,
shadiﬁg and shadows, and both pre- and post- processing effects such as motion blur and depth of
field. Many of the methods employed in such visualisations derive from academic study, and must be
optimised or approximated in order fo;' them to operate at interactive frame rates on current hardware.
Meanwhile, hardware vendors al'é constantly improving the processing capabilities of their products,
and exposing more diverse functionality to developers.

The continuing evolution of hardware capabilities, both low and high level APIs, and consumer

demand, has resulted in a number of distinct advances in rendering technologies and methodologies.

S 0 7] 0 @
= o L2y L5
s Lo NLE S NE 2
2eB5r 82 Es
O a Lj = 0]
g- () O O x

Figure 2.16: A layered illustration of the rendering pipeline, from the client application to the finished,
rendered image.

64

As game developers have improved their software engineering practices, the majority of rendering
pipelines have become increasingly content-driven in order to maximise implementation re-use and

reduce the impact of escalating data requirements.

Programmable rendering pipelines

Modern rendering pipelines allow client applications to submit two programs to the graphics library,
both written in dedicated assembly languages: one replaced the vertex processing part of the pipeline,
while another was responsible for the rasterisation of fragments, where each fragment has the potential
to be a pixel in the resulting rendered image. The continued emphasis on using vertex and fragment
programs to determine the appearance of objects lead to such programs being collectively known
as shaders. Although vertex and fragment shaders were initially severely limited in terms of size
and functionality, further advancements in GPU technology later permitted longer, more advanced
programs to be written, and higher level notations similar to imperative languages such as C and
C++ to be used. The more successful high-level languages for programmable GPUs include High
Level Shading Language (HLSL) for DirectX, GL Shading Language (GLSL) for OpenGL, C for
Graphics (Cg) for both DirectX and OpenGL was developed alongside HLSL by nVidia, and Sh
(originally SMASH) [98], which offers an alternative approach to manipulating GPU behaviour using
high level code embedded in the application code. Figure 2.17 provides an illustration of the current
technologies supporting the rendering pipeline.

While the power and flexibility of programmable rendering pipelines permit developers to create
complex surface, pre-process and post-process effects, the logic required to fully implement these ef-
fects extends beyond the hardware and graphics library, and into the client application itself. The
application must interact with the graphics library, via its API, in order to submit appropriate geom-
etry, textures, lights and so on, as well as dedicated programs corresponding to material appearance
and image processing effects. The selection of such programs, parameterisation of those currently
selected, and their subsequent execution, are application dependent problems that cannot be solved
by generic graphics library implementations.

Higher level concepts were introduced by graphics library developers in order to begin to tackle the
problem of linking a range of client applications with the underlying graphics API and programmable
rendering hardware. DirectX included support for the FX file format, which packages an individual
material appearance or alternatively a single pre- or post- rendering effect. FX files include one or more
technigues, which are intended to enumerate the various rendering methods available to the client.
For example, one technique may only be compatible with the latest rendering hardware, while another

may have differing data requirements. Each technique consists of one or more passes consisting of

65

Standard
.. Annotation
Scripting

U

FX Files

| Cg.

el VN 1 i

|
!

Direct3D

Graphics Driver

Y

Graphics Hardware

Figure 2.17: An overview of current software technologies supporting the rendering pipeline. Dashed
areas denote software rendering abstractions and encapsulations provided by Microsoft’s DirectX
(left), nVidia’s Cg (middle) and OpenGL (right).
vertex or fragment prograns, which incrementally realise the intended material appearance or effect.
Client applications commmunicate with FX files via an FX API, which defines a layer of abstraction
above the traditional data submission and control provided by older graphics libraries. Existing FX
APIs include the ninth version of DirectX, while NVIDIA’s CgFX framework [99] provides similar
functionality for applications using either DirectX or OpenGL. An FX APT will typically support the
submission of data, selection and execution of techniques and passes, plus a range of functions for

accessing the FX file’s semantics and annotations.

Semantics are labels for FX variables, structures and parameters that indicate their intended use to
the client application. To illustrate, the range of semantics include POSITION to indicate that
a given variable represents a position in N dimensional space, while NORMAL and COLORO

correspond to surface normals and color values respectively.

Annotations are per-variable structures containing further variable assignments. For example, a
floating point type brightness variable may specify an annotation including thé statements
float min = 0.0f; and float max = 1.0f;. Like semantics, annotations are accessible via
the FX API, although unlike semantics they are commonly used to communicate details to an
application that do not directly relate to the rendering process. For example, an application may
use annotations to drive the placement, appearance and use of user interface elements controlling

certain FX variables.

Together, FX semantics and annotations provide a standardised method for connecting client

66

applications to FX files. FX files include semantics to indicate which aspects of client data should
be assigned to each FX variable or parameter, while annotations allow effect authors to drive certain

aspects of FX aware application functionality.

Data-driven rendering pipelines

Building upon today’s programmable rendering pipelines, Microsoft are in the process of releasing
information regarding their Standard Annotation Scripting (SAS) standard, which is expected to form
part of the tenth major revision of the DirectX API. While the current use of FX files allows developers
to supply data to the rendering pipeline in a very uniform and data-driven way, combinations of FX files
must still be managed by application specific code. For example, shadow mapping [82] is a popular
technique for generating shadows in rendered scenes. The shadow mapping technique requires all
geometry to be rendered twice: once from the viewpoint of the shadow casting light source, and once
from the viewpoint of the camera. On the second pass, a function checks if each fragment is in shadow
or not, and renders appropriate pixel color values. In order to perform shadow mapping without the
use of SAS scripts, the client application must prepare each rendering pass explicitly, and must also
stipulate that the shadow checking function is to be called during the second pass.

SAS defines a strict standard for the use of semantics in FX files, as well as a powerful scripting
language that is embedded in FX annotations. Applications conforming to the SAS standard must
comply with its use of semantics, binding data of the correct type, range and format to the FX variables
and parameters with corresponding SAS semantics. Furthermore, SAS compliant applications must
also provide runtime behaviour for its range of script commands, and it is suspected that the next
release of the DirectX API will both enforce data binding and supply appropriate SAS scripting
functionality.

SAS scripts are embedded in FX string annotations, and may be attached to the file’s various
techniques and passes. For any given FX file, a global variable with a STANDARDSGLOBAL semantic
holds the script’s entry point as a string annotation. SAS scripts are responsible for performing a
number of tasks, including selecting and clearing the current render target, assigning values to FX file
global variables, performing a given technique or pass, and calling another FX file’s SAS script.

More complex rendering effects, such as the shadow mapping technique described above, are facil-
itated by the combination of FX scripts. To this end, SAS assumes the existence of a data structure
with first-in, last-out (stack-like) behaviour capable of storing multiple scripts. While the script stack
may be managed by an appropriate rendering library, the client application is responsible for pushing
and popping FX scripts to and from the stack, as shown in Figure 2.18a. In order to render the scene,

the entry point of the topmost script in the stack is located and executed; see Figure 2.18b. SAS

67

script statements are executed in sequence until a callexternal command is encountered, at which
point control flow passes to the entry point of the next script down in the stack, as illustrated by
Figure 2.18c. If the script at the bottom of the stack includes a callexternal statement, then the
rendering library is required to render scene geometry, which may in turn result in the execution of
additional FX files and SAS scripts as geometry appearance is specified. This is shown in Figure 2.18d.
When the end of an FX script is reached, control flow returns to the next script up in the stack. If the
end of the topmost FX script is reached then control will return to the rendering library and client
application as shown in Figure 2.18e.

The use of a stack for FX scripts provides a simple abstraction for calls to other FX scripts, and
thus allows complex effects involving multiple scripts to be defined, without the need for complex
coordination from the client application. The FX stack also allows pre- and post- processing effects
to be defined in a very flexible way: if a given FX scripts performs its own processing before including
a callexternal statement, then it defines a pre-processing effect and will be performed before any
geometry is processed; the script calls callexternal before performing its own processing, then it

represents a post-processing effect and will take effect after all geometry has been rendered.

The use of rendering technologies to produce animated visual representations of spatiotemporal
descriptions has become prolific in a wide range of computer game and academic applications. Early
requirements for the efficient throughput of increasing numbers of geometric primitives led to the
development of dedicated rendering libraries supporting higher level abstractions. More recently,
growing consumer demand for more complex, detailed, dynamic and realistic scenes has resulted in
modern rendering pipelines becoming more flexible to custom processing. In contrast to the fixed
functionality pipelines of the past, today’s data driven rendering pipelines allow a variety of low level
hardware operations to be driven using high level notations forming part of application data. Despite
a persistent need for processing speed and efficiency, modern rendering pipelines clearly illustrate the

flexibility and expressiveness afforded by incorporating data driven techniques.

2.3.3 Summary of Computer Games Technology

OODDP has beconie a popular methodology for game developers, who replace static inheritance rela-
tionships in software structures with ownership relationships that can be dynamically driven by data
at runtime. However, the use of OODDP remains confined to application content, where it is limited
to describing the contents of the gaming environment, including both static and dynamic elements.
OODDP has not been applied to the definition of software structures within the game engines them-
selves, which instead act as frameworks taking supporting roles in data-driven applications. The most

likely reasons for this limitation are the additional memory and processing requirements of OODDP

68

Render library Client

| N
Script B I

Render library Client Render library Client

X7

O

8| Script - | _:lﬁ T . “_ﬁ_ — T e
7 rip I .Rendenng l drawScene f l drawScene |
2 :

— H

o

7))

| Effect T

| ,
] Script A l ’]
l —_— l] Script:B l
l m I Script'A ’
|
l Frame |] |
| Renderable COO0
| Renderables I
(a) Clients are responsible for providing render- (b) When drawing the scene, (¢) A callexternal call in
ables, pushing scripts to and popping scripts control flow passes to script B results in control
from the rendering library’s effect stack. the topmost effect in the flow passing to the next

stack. script down in the stack.

Render library Client Render library Client

E——— N
! drawScene l
: T e

I Script B

Script B

Script A

| Script A

- .
(d) A callexternal call in script A (e) As scripts A and B are com-
results in this frame’s render- pleted, control flow passes up
ables being drawn. through the script stack and ul-

timately back to the client.

Figure 2.18: An illustration of the use of an SAS script stack to support complex rendering effects.
Dotted lines and arrows denote the runtime flow of exccution.

69

implementations, which would prohibit its general use to develop processor intensive interactive appli-
cations like modern game applications. In the context of more mainstream commercial and academic
software development, there may be opportunities to benefit from the flexibility and expressiveness of
OODDP software where such memory and processing requirements are less prohibitive.
Furthermore, OODDP remains an applied methodology, with no formal theory and no explicit
connections to related fields. OODDP has yet to be investigated outside of the game development

context, although similar technologies exist, as described below.

Code generation performs a similar process of transforming higher level descriptions into lower
level software representations. In the context of the MDSD approach, OODDP could be con-
sidered a transform responsible for mapping a platform independent description of an OO type
system to a platform dependent model providing component or object centric OODDP imple-
mentations. The component and object centric models would provide further mappings to lower
level database and component based implementations, respectively. This relationship between
OODDP and MDSD suggests that there may be potential benefit from combining the two tech-

nologies.

Despite their superficial similarity, there is a clear difference between the code generation process
and OODDP approaches. The ultimate output of code generation is low level software code,
typically producing class interfaces and definitions to be statically compiled as the result of
transforming higher level descriptions into lower level implementations. By contrast, OODDP
is a runtime factory process that instantiates and interconnects small scale data or object based
components in order to form a higher level object oriented type system. Where code generation

produces static software code, OODDP dynamically creates runtime topologies.

Interpreted languages offer very similar functionality to OODDP, particularly those supporting
OO or pseudo-O0 type systems. Many interpreted languages support the dynamic configuration

of OO types and instances from high level descriptions.

However, while interpreted scripts often form part of application data, there is a clear distinction
between the roles of interpreted scripts and OODDP configurations. For example, interpreted
languages provide lower level functionality than that delivered by OODDP, concentrating on
much smaller state and behavioural elements including individual variables, function definitions
and code statements. By contrast, OODDP focuses on the deployment of black box components;
there is no direct manipulation of state, and runtime behaviour is influenced via high level

component configuration and by interconnecting component interfaces.

While OODDP operates on more abstract and discrete components than those typically ma-

70

nipulated by interpreted languages, the latter technology is capable of supporting OODDP’s
higher level concepts through the use of appropriate extensions and APIs; indeed, interpreted
languages such as Python and Lua would offer an ideal platform for OODDP implementations.

There remains, therefore, some blurring of the distinction between the two approaches.

Composition languages are perhaps the most similar mainstream software engineering technology
to OODDP’s fundamental ideas: both approaches focus on component instantiation and inter-
connection in order to define coherent software structures. However, there is a clear difference

in the application of the two technologies.

The main use of OODDP is to describe an OO type system, where each type consists of a
number of configurable elements. The application of OODDP is typically limited to application
content data, and focuses on the definition and configuration of OODDP instances that will

subsequently appear as visible (and often interactive) elements in the runtime application.

Conversely, composition languages focus on the explicit deployment and interconnection of com-
ponent instances. While a component configuration may define a major portion of application
functionality, the particular configuration is often invisible to the user. Furthermore, composi-
tion languages are explicitly developed and applied for the definition of component deployment
and composition, whereas the implementation of an OODDP type system is not limited to a
component based approach.

A further distinction is introduced by the level of abstraction and granularity adopted by
OODDP and composition languages. Component based approaches in mainstream industry
and academia typically make use of components encapsulating concepts at the level of one or
more objects. While a small number of composition languages support smaller concepts such
as functions and procedures, the vast majority of components provide a variety of abstractions
ranging from objects to entire libraries. A composition language supporting the OO paradigm
will often define a thin wrapper for such components by directly mapping the component’s

methods to a similar interface definition in the composition language for further manipulation.

By contrast, OODDP builds an abstract OO type system that incorporates components encap-
sulating small scale concepts such as single operations or aspects of a class. The capabilities
and behaviour of an OODDP type is the union of the functionality provided by its constituent

components.

As with OODDP, it is clear to see that the evolution of modern rendering pipelines is moving
toward the use of data-driven methodologies. Early efforts to provide a powerful pipeline connecting

application content to low-level hardware functionality relied upon the client application to perform

71

many tasks that were later encapsulated by graphics libraries. More recently, graphics libraries and
FX APIs have incorporated high-level languages that can be used to control hardware behaviour, while
guiding the use of application data through the use of semantics and annotations. Today’s rendering
technologies allow application data to drive the behaviour of the rendering pipeline.

The movement toward data-driven methodologies will continue with the introduction of Microsoft’s
standardised annotations and semantics, which are embedded into the definition of the effect and
appearance descriptions that form a significant part of today’s game application content. The expres-
siveness and functionality of FX files is rapidly approaching the capabilities of traditional interpreted
languages; their operation relies upon a fixed set of compliant data bindings and runtime interpreted
behaviour as supplied by client applications and future graphics libraries. Meanwhile, the metaphor-
ical rendering pipeline supported by modern rendering APIs is becoming increasingly concrete, with
well-defined data bindings for client applications, and standardised runtime functionality provided by

SAS compliance and programmable rendering hardware.

2.4 Context Summary

The role of data in applications is changing. As discussed in Section 2.1, application data is becoming
increasingly empowered to incorporate type information, data manipulations, contextual documenta-
tion, meta data, and range of other aspects that have traditionally been recognised as the responsibility
of application software. Data is also beginning to determine or otherwise significantly influence ap-
plication behaviour, a growing trend that is embodied by the DDDAS paradigm, which incorporates
elements of application data to enhance its runtime functionality. Although both GIS and DDDAS
incorporate a particular focus on modelling the world around us, neither have yet to fully realise the
benefits of data driven behaviours: the vast majority of GIS operations for data creation, visualisation
and manipulation remain fixed over the lifetime of the GIS software. However, a small number of GIS
projects have begun to include data driven aspects, and it is becoming increasingly likely that the
GIS community will embrace a more data driven approach in the future {100].

Data driven paradigms advocate the use of expressive, human readable notations to drive software
behaviour at high levels of abstraction, which reflects a similar movement in mainstream software en-
gineering. The component based software development methodology is becoming increasingly popular
and widespread, as software developers benefit from the increased implementation reuse, flexibility
and extensibility that the object oriented paradigm failed to provide. While independently devel-
oped and deployed components provide runtime computational behaviour, high level composition and

configuration languages drive their topology to form connections, communications, and collaborative

72

functionality. Although such configurations are typically employed to drive component compositions
in a bottom up fashion, a small number of methods support runtime reconfiguration at the structural
or architectural level [101, 102, 103].

In contrast to the GIS field, the interactive spatiotemporal scenes of modern computer games
commonly incorporate a number of data driven technologies. As part of a movement toward more
effective software development methodologies, game developers have introduced a range of related
data driven techniques in order to keep abreast of changing demands from both game designers
and consumers. For example, data describing application content may include an expressive object
oriented notation to drive software structure in a similar way to that of composition languages. Such
notations have proven to be particularly popular, as their expressive high level nature means they
are commonly open to manipulation via tools and non-programmers, including game designers and
members of the consumer community. Meanwhile, rendering hardware vendors and graphics library
developers provide powerful abstractions allowing rendering pipeline behaviour to be driven by high
level languages embedded in application content.

While a future movement toward data driven approaches in GIS is likely, a significant hurdle to
overcome is the fixed functionality defined by a chosen data model. The introduction of DDDAS
technologies would add a dynamic aspect to data manipulations, but the degree of change in DDDAS
has limitations: dynamic behaviour is typically implemented by modifying the parameterisations of
operations in response to runtime data. There is clear potential benefit from taking a step beyond the
data driven dynamics supported by DDDAS, to incorporate manipulations of the application software
itself. This could be achieved by incorporating component based approaches, defining operations over
a meta model of the software that in turn drive the (re)composition of component topologies.

However, additional benefit may be gained by merging mainstream component based methodology
with the object oriented data driven notations used by game developers. The resulting notations
would be able to drive runtime software composition at runtime via an empowered notation built into
application data. Furthermore, a combined approach would allow the same human readable notation
to be used to define both application content and application software. Finally, the notation would be
expressive enough to be open to manipulation via tools and non-programmers, potentially bringing

the popularity and ease of consumer based computer game customisations to the GIS community.

73

Chapter 3

The Fluid Component Framework

The Fluid framework [104] combines OODDP technologies from game development with mainstream
CBSD methodologies in order to form a component framework and composition language with a
particular focus on configuration, extensibility and flexibility. The Fluid framework aims to emphasise
implementation reuse by incorporating both a component based approach, which aims to achieve
reuse through the development of software from prefabricated binary components, and OO style
composition inheritance, as supported by the OODDP techniques described in Section 2.3.1. By
bringing these elements together, the Fluid framework supports an expressive, object-oriented notation
for the description of component applications.

Section 3.1 provides an overview of the motivation, aims and objectives for the design and de-
velopment of the Fluid framework, while Section 3.2 presents the three tiers comprising the Fluid
framework, including a high level description of each tier as well as relevant lower level aspects of
their design. Meanwhile, Section 3.2.4 describes the Fluid executable, which forms the entry point for
Fluid applications. Section 3.3 presents a complete example of a Fluid application, bringing together
the individual descriptions for Fluid’s three tiers and executable. Finally, Section 3.4 summarises the

description of the Fluid framework.

3.1 Motivation, Aims and Objectives

The development of the Fluid framework was primarily motivated by the limitations of the project’s
earlier research, which attempted to introduce a data driven approach to geovisualisation. Bringing
together a number of concepts from Chapter 2, the Fluid framework’s prototype application aimed to
deliver a flexible and extensible software framework capable of producing real-time, near photorealistic

visualisations for geospatial scenes. The focus of this earlier work was to combine data driven program-

74

ming and rendering techniques to form a data driven software framework providing geovisualisation
functionality.

As described in Section 2.1.1, the field of geovisualisation is beginning to incorporate data driven
elements as part of a small number of academic projects. However, commercial geovisualisation
solutions have yet to adopt data driven methodologies. Indeed, is has been observed that many GIS
have limited visualisation capabilities, and often utilise separate technologies to provide rendering
functionality [14]. Meanwhile, the introduction of more detailed and realistic renderings [105] and
the visualisation of dynamic phenomena [106] remain issues for ongoing research. Alternatively, a
number of game engines focussing on the representation of geospatial scenes have been proposed as
possible geovisualisation platforms [86, 87]. The idea of leveraging certain game engines in order to
support geovisualisation functionality seems attractive: as described in Section 2.3, today’s computer
games technology is capable of producing incredibly immersive, realistic and interactive environments
incorporating geospatial data at various scales. However, while it has been demonstrated that existing
game engines can provide visualisations for a wide range of applications [88], geovisualisation and
game-based visualisations have differing underlying motivations: while modern game titles focus on
player immersion, atmosphere and interaction, geovisualisation is used to communicate geographically
referenced information.

The Fluid prototype aimed to bridge the gap between computer games technology and tradi-
tional geovisualisation solutions by incorporating a simplified game engine targeting general geospatial
scenes. The prototype’s reduced game engine included only the most relevant functionality related to
simulation and visualisation; superfluous features such as artificial intelligence and storytelling were
not considered. By building upon existing game development techniques, the prototype aimed to pro-
vide additional visual quality, detail and realism as seen in modern game titles. While a description of
the Fluid prototype’s objectives and high level design can be found elsewhere [107, 108], the following

paragraphs highlight the most relevant achievements of this research:

Data driven scene system The prototype’s simulation content was defined using a hybrid OODDP
system as described in Section 2.3.1; the scene system’s use of OODDP was influenced by a range
of game object system designs [92, 93, 109, 110, 96]. The Fluid prototype’s scene system applied
OODDP outside of the game technology field in order to allow application developers to describe
the functionality and runtime behaviour of scene content using configuration data. However, the

brototype’s application of OODDP remained similar to that seen in the motivating literature.
I YT PI g

Data driven rendering system The Fluid prototype also included a data driven rendering system,
as described in Section 2.3.2, supporting similar functionality to an anticipated Direct3D release.

However, while Microsoft’s Direct3D API offers a complete implementation of a data driven

75

pipeline in a single proprietary package, the Fluid prototype delivered equivalent functionality
using open alternatives: OpenGL provides low-level rendering capabilities, while nVidia’s Cg and
CgFx languages present abstractions for individual shader programs and effect representations
respectively. The Fluid prototype introduced an additional layer supporting a subset of SAS
commands, which allowed effects to be connected together in order to form more complex effects
for geometry materials and pre- and post- processing. The Fluid prototype’s render system
implementation is the first to deliver a complete open data driven rendering pipeline from high-
level SAS abstractions to low-level rendering functions. Furthermore, Fluid’s implementation is
platform independent, while that provided by Direct3D is restricted to the Windows platform.
Due to its potential benefit to the visualisation community, the functionality defined by the Fluid
prototype has been developed further in order to create the PirateHat rendering library [3]: a

C++ static library that can be used independently of the Fluid project.

The Fluid prototype inspired a second software development iteration with a more concentrated
focus on mainstream computer science methodologies. The Fluid prototype’s implementation had
shown that producing interactive, near photorealistic visualisations for geovisualisation was unlikely
due to certain limitations of the prototype’s design and the poor data availability common to GIS
applications. Consequently, the research focus was modified to have a more narrow scope, and to
instead focus on utilising computer game technologies in order to introduce a flexible, extensible and
dynamic software architecture to the field of GIS.

In order to achieve this aim, the Fluid framework would build upon the Fluid prototype’s OODDP
implementation by incorporating the flexibility of component based software development. A compo-
nent based approach would increase both flexibility and extensibility by allowing each Fluid application
to introduce its own domain and semantics as part of the selection, composition and configuration
of Fluid components. A component based Fluid framework would be responsible for supporting the
development of Fluid applications by both aiding and enforcing the use of valid Fluid components, as
well as their correct composition and the configuration of their data driven behaviours.

Contemporary component based approaches make use of high level notations to drive the selection
and composition of components in order to define software applications. A number of these composi-
tion languages have a similar appearance to the OODDP technologies available to game developers.
In order to understand the relationship between composition languages and OODDP approaches, a

review of the CBSD field concentrated on the following issues:

To what extent do existing composition languages make use of OO concepts, abstrac-
tions and manipulations? A wide range of composition languages regularly make use of

OO types, the instantiation of OO types, OO interfaces and encapsulation. These concepts

76

commonly enhance the functionality and expressiveness of the concepts embodied by the com-
position languages. A number of technologies such as delegates [111] and mixins [112] also exist
to support the use of OO encapsulation and inheritance across individual components. Further-
more, a number of ADLs directly support OO types, instances, interfaces and inheritance, albeit

at a higher level of abstraction.

However, support for these concepts in the composition languages themselves is often limited,
with many composition languages acting as thin wrappers around equivalent concepts and op-
erations provided by underlying OO components. While such languages allow OO inheritance
to be established between components, these relationships are commonly established between
classes contained within components, and not between the components as they are represented

in the composition languages themselves.

To what extent do existing composition languages focus on configuration, parameter-
isation and data driven approaches? The vast majority of composition languages define
a high level textual notation for defining software applications as the selection, interconnection
and parameterisation of components providing computational encapsulations. However, none
of the composition languages encountered have the same emphasis on parameterisation and
data driven behaviours as seen in DDP and OODDP. Instead, many composition languages
focus on incorporating additional behavioural capabilities, such as the inline invocations seen in

CoML [33], or formal notations, such as those seen in PICCOLA [26].

Component customisation remains an open topic of research in CBSD. Proponents such as
Schultz [113] advocate the specialisation of black box components, but at the implementation
level, which could prove obtrusive to the overall CBSD methodology of independent component
development. A similar approach is taken by Weis [114], who advocates the application of
component customisation before they are distributed. A wide range of studies have investigated
the use of component wrappers to provide customisation during component deployment [115,
116, 117}, although there has also been a plea for grey box components that can be more easily

customised [29].

A small subset of research looks at the use of smaller computational encapsulations. For example,
Mirza [118] demonstrates that small grained components may aid rapid application development,
while Lorenz [119] states that smaller components at the granularity of objects have a closer
correspondence with artefacts of OO design and implementation, and may be more approachable
when developing component based systems. Meanwhile, Hamlet [120] discusses component scale,

concluding with the argument that smaller components can be useful when precise understanding

77

of their operational semantics is important, for example in the case of unit testing. Reussner [121]
discusses the tradeoffs of both large and small components, and concludes that component
contracts should be adaptable in order to increase the reuse of components at various scales of

granularity.

The results of this initial research into the field of CBSD introduce a number of interesting research

questions, including:

What is the effectiveness of a novel composition language combining OODDP and main-
stream CBSD approaches? What benefits and drawbacks does OODDP introduce? How
does the type system and OO inheritance introduced by OODDP relate to existing approaches

such as delegation and mixins?

Can a novel composition language incorporating OODDP be used to define overall
software structure? Alternatively, should the application of OODDP be limited to software

content, as already demonstrated by game engines?

Relevant reference materials [122] and dedicated workshops! provide an overview of the CBSD
field, and also define a number of accepted concepts and terms. In particular, those materials giving a
high level appreciation of the past, present and future themes in CBSD [43] highlight the limitations,
drawbacks, and unexplored aspects of current research. However, the design and implementation of
the Fluid approach has been influenced by a more narrow range of related work. Described below is a
small selection of the reviewed literature. Although a wide and varied range of work has contributed
to the design of Fluid’s component framework, only the most influential or distinctive publications
are highlighted here.

Jiazzi [123] provides an example technology for writing component based software using Java
packages. Interestingly, Jiazzi does not make use of a higher level composition language; instead,
Jiazzi relies upon the deployment and reflection mechanisms of the Java language, plus additional
support for external linking and separate compilation, to define components that may be hierarchically
assembled and executed by a Java Virtual Machine. The range of concepts supported by Jiazzi
present an interesting insight into how implementation languages, additional compilation steps, code
generation, and higher level manipulations can be combined to provide a component based solution.
A related publication by the same authors [124] also presents a range of essential technical properties

for component systems.

'For example, see http://wuw.ict.svin.edu.au/personal/mlunpe/ for an index of past events related to the Work-
shop on Composition Languages, and http://research.microsoft.com/~cszypers/events/WCOP2007/ for the 2007
meeting of International Workshop on Component-Oriented Programming

78

PICCOLA [26] incorporates the explicit separation of component implementation and composi-
tion in its support of the paradigm Applications = Components + Scripts. XCompose [41] further
refines this as Applications = Components + Composition Language, and employs various XML
technologies in order to form its underlying composition model. The clear need for separate abstrac-
tions for component composition greatly influenced the design of Fluid’s composition language and
underlying framework.

While Jiazzi and PICCOLA provide an influential introduction to some of the higher level concepts
of component based approaches, a variety of lower level concerns and possible solutions are also
presented, highlighting a range of potentially important limitations to be considered by Fluid’s design
and implementation. For example, the enforcement of component encapsulation behind restrictive
interfaces, as well as carefully designing interface invocation semantics, could improve the quality and
reliability of both components and their compositions [125]. Also, it may be important to consider
the distinction between control and data flow in component compositions [126].

In addition to the more theoretical studies discussed thus far, a number of publications also de-
scribe the application of component methodologies in a wide variety fields, including those related to
the visualisation of 3D scenes. Such publications give an important insight into the overall method-
ology of developing component based software, as well as the motivation for integrating a component
based approach into a range of problem domains. For example, Contigra [39] is a component based ar-
chitecture for the development of interactive 3D applications, which may be standalone or web-based.
Of particular relevance to Fluid’s focus on geovisualisation is Contigra’s use of a scene graph to de-
scribe its 3D scenes, including the participation of JavaBean components. The syntax and semantics
of Contigra’s various XML documents also motivated the design of similar documents in the Fluid
framework.

The two most influential technologies for the design of the Fluid framework are VHD++ and CoML.
VHD++ [42] is a component framework supporting interactive, real-time 3D simulations making use of
a combination of game, virtual reality and augmented reality technologies. There are obvious parallels
between the domain of VHD++ and Fluid’s geovisualisation focus. Furthermore, both frameworks
face the same opposing issues of performance and generality, and aim to resolve this disparity via
the application of game derived technologies. Consequently, VHD++4 has had a profound impact
on the design of Fluid’s underlying component framework. For example, both VHD++4 and Fluid
make a distinction between data and behavioural encapsulations, as well as supporting procedural
and event-based inter-component connections. Fluid also makes similar augmentations to C++ in
order to support additional type information, reflection, and improved heap memory management.

Furthermore, the XML based composition language employed by VHD-++4 was also considered when

79

designing Fluid’s own composition language.

However, the composition language described in Section 3.2.3 bears a stronger resemblance to
CoML [33], a platform independent XML based composition language forming part of a larger frame-
work for component composition [36, 127]. Fluid’s composition language is heavily influenced by
CoML for a number of reasons. The most important reason for this is that CoML is an operational
composition language, forming part of a larger study into component distribution and composition,
and based on requirements stipulated by the earlier work of Nierstrasz and Meijler [30]. In addition,
CoML has particularly clear syntax and semantics, and a focus on connection based programming
with black box components. Finally, CoML also incorporates an appropriate amount of type in-
formation, without becoming overly verbose, in order to support components written in a variety of
implementation languages. These features made CoML an ideal foundation for Fluid’s customisations.

The design for Fluid’s composition language was initially built upon a simplified version of CoML,
most notably discarding those elements describing runtime behaviour, but retaining those elements
pertaining to composition selection, connection and configuration. Certain aspects of VHD++, as

well as minor additions from other work discussed here, have also been incorporated.

The Fluid component framework represents a second iteration of the design and implementation
process, which builds upon the Fluid prototype by incorporating a CBSD approach. The limitations
of the Fluid prototype motivated an improved design that incorporated aspects of a wide range of
computer science and game technologies. For example, implementation and integration languages
such as Cf, Java and Lua informed the redevelopment of Fluid’s lower level functionality. Meanwhile,
the design of Fluid’s higher level abstractions incorporate a significant change in the project’s overall
research aims. In particular, Fluid’s composition language combines component based technologies
with data driven techniques in order to contribute a novel CBSD approach to mainstream computer
science.

The design of the Fluid framework is described in the following section.

3.2 Design

An illustration of the Fluid component framework’s architecture is shown in Figure 3.1; its three
tiers are described below: Section 3.2.1 presents an overview of Fluid’s lower tier systems and their
respective responsibilities, Section 3.2.2 defines Fluid’s component model, and Section 3.2.3 describes
Fluid’s composition language. Section 3.4 gives a summary of the material in this chapter.

Figure 3.2 provides an alternative view of the Fluid framework, showing the runtime relationships

between its tiers and systems. An XML document describing a particular Fluid application is parsed

80

Composition Language .

_ Component Model

Configuration | Narﬁing
System System

Type System

Figure 3.1: An overview of the Fluid component framework’s architecture. Three fundamental systems
form the lower tier (see Section 3.2.1). These are built upon by a component model (see Section 3.2.2),
which facilitates the definition of a high level composition language (see Section 3.2.3).

by Fluid’s composition language tier. The composition language tier drives further operations in the
component model and configuration system. As the document’s XML elements are processed, a range
of primitive and OODDP types are introduced to the framework. Runtime ob jects corresponding to
these types are composed in order to form a complete Fluid application, which is finally executed by

the Fluid framework.

3.2.1 Type, Naming, and Configuration Systems

Fluid’s Type, Naming and Configuration systems define a low level C++ platform to support the
higher level concepts introduced by the component model and composition language. Fluid’s lower
tier is responsible for augmenting the capabilities of C++ so that the framework’s higher tiers may
be defined. The Type system provides a range of standard data types, additional runtime type
information to that provided by C++, limited support for type reflection, as well as a range of new
type checking operations. Meanwlile, the Naming systein supports a unified deployment space for"a
range of data and behavioural representations that collectively define Iluid applications. Finally, the
Coufiguration system gives limited support for converting XML descriptions containing type system
concepts to their corresponding naming system l’G])I‘(—:S(:‘ll]ta.l}iOIlS.

The functionality provided by Fluid’s lower tier is influenced by a number of other implementation

languages offering capabilities that C-++ lacks. For example, the primitive data types supported by

Component

Model *
Composition N : Naming
Language Type System System
Application :
Description Confiaurat 4
; onfiguration
System

Figure 3.2: An illustration of the runtime relationships between Fluid’s tiers and subsystems. Arrows
depict the flow of information and control; for example, Fluid’s composition language drives the
behaviour of the component model by providing OODDP type and instance descriptions.

81

C-++ have platform dependent representations, and the language itself offers limited run time type
information; by contrast, both Java and Cff have standardised data representations and very powerful
type information and reflection facilities. Meanwhile, XML and Lua’s tables have influenced the
development of Fluid’s naming system. Finally, Cff and Lua support the use of data representations
to describe software structure: Cf supports conversions between Cff class descriptions and XML, while
Lua literature [128] describes a flexible way to store Lua tables in plain text format. It is clear that
migrating the Fluid framework to an implementation language more suited to the development of
component based software would malke certain parts of the lower tier redundant. However, the Fluid
framework’s development was based on the prototype’s implementation, and initially reused much of

its functionality.

Type System

The type system is responsible for providing a uniform concept of runtime type information for all
types that are visible to the Fluid framework. Visible types include values stored in the naming system,
values communicated between component instances, the functions and events used for inter-component
communication, values used to configure component instances, individual component instances being
managed by the framework, and OODDP type and instance descriptions. Visible types thus facilitate
interoperability for application configuration and runtime functionality. Those types forming part of
component implementations or Fluid’s system implementations are invisible to Fluid’s type system,
and are not necessarily supported by the type system.

Fluid’s visible types consist of primitive types for simple values (variables), primitive manipulations
for more complex data representations, and signature types for event and function signatures, as

described below:

Primitive types Fluid primitives provide a range of fundamental concepts for the storage and run-
time representation of values. Primitive types are derived from a subset of XML schema. types
in order to take advantage of an existing standard. The primitive types therefore include sup-
port for dates, times and durations; strings and certain other types that can be represented
using strings; single and double precision floating point numbers; and both signed and unsigned
integers of various sizes. Fluid adds a nil type, which represents uninitialized or empty values,
and may also be used in situations where a type is unknown, superfluous or irrelevant?.

The Fluid framework stipulates a range of C++ types that correspond to its supported XML

schema types. The majority of these C++ types have been chosen in order to provide a stan-

dardised representation for numerical values. For example, the C++ Boost library provides a

2For example, in some contexts nil may be used in place of the C4++ void keyword.

82

range of types that guarantee the minimal requirements of 8, 16, 32 and 64 bit integer rep-
resentations. While the ezact representations for these data types may vary, Fluid is able to
support their corresponding XML schema types on a wide range of platforms by using such
Boost abstractions. There are at present certain limitations: the current implementation of the
Fluid framework does not support types with infinite range, such as the decimal and integer
types; similarly, certain specialisations of the string type, including token and NCName, are not
currently considered and will be converted to Unicode strings by the Fluid framework. However,
note that such type conversions do not affect XML schema validation, which occurs prior to any

changes made by the framework.

Manipulations Fluid supports more complex data descriptions using manipulations of the above
primitive types: Sequence holds multiple values with a repeating type pattern®, Choice stores
a single value of a fixed range of types?, and Optional will hold either a value or nil at any
given time®. Manipulations may be used recursively, and may form complex type descriptions,
such as a sequence consisting of an optional boolean followed by a choice of 32-bit integer or

single precision floating point number.

Signature types use the primitive types and manipulations given above to describe the return val-
ues and parameters for event and function signatures. The type system is thus able to check
inter-comporent connections for type safety by comparing the type information for connected

signatures.

Fluid provides a Value class for defining and communicating primitive types, including their
manipulations. The Value concept is heavily influenced by Lua variables, which are dynamically
typed according to the value they are currently holding. In order to mimic this behaviour, the Value
class makes use of a discriminated union concept® so that each instance may hold a variety of primitives
and manipulations during its lifetime. The content of a Value may be accessed by first inspecting
the Value’s current type, and then calling a type casting template method with an appropriate type

parameter:

bool internalValue = aValue.as<bool>();'

However, a more flexible method is to use a combination of the visitor pattern and C++ function
overloading to provide a visitor with specialised behaviour for each type. A generic function may be

used to collect those types for which no special behaviour is required. Value visitation is illustrated

3For example, a sequence of four strings, or a string followed by a boolean may be described.
4For example, holding either a boolean or a string.

5An Optional<T> is thus equivalent to a Choice<nil,T>.

Value’s discriminated union is provided by the Boost variant library.

83

in Listing 3.1; further information is available via the Boost library documentation?.

Meanwhile, component functions and events, along with their connection and invocation, are
supported in the Fluid framework by Function and Event classes, respectively. Although Fluid’s
Function and Event classes exhibit differing runtime behaviour, in the context of the type system, the
two classes are very similar, as both Function and Event are encapsulations of procedural signatures.

Function and Event are in fact supported by two classes: one for the representation of the Function
or Event itself, and another for connecting or subscribing to a given Function or Event instance. The
former storage classes provide an encapsulation that wraps Function and Event signatures behind
a uniform interface. These storage classes are not template classes; signature information must be
hidden in order to provide a simplified abstraction for runtime storage in the naming system (see
below). The latter access classes are responsible for providing type safe access to a given storage class’
encapsulated Function or Event. These access classes are template classes, parameterised with the
desired Function or Event signature, and their connection or subscription will fail if the given signature
does not match that of the storage class’ type. The storage and access classes use a generalised union
type [129] in order to provide the required uniform encapsulations and type safe access idioms.

As well as providing type rich representations for Fluid’s fundamental storage and communication
concepts, the type system is also responsible for maintaining type information for any OODDP types
that are introduced to the framework at runtime. Each OODDP type consists of a type name, optional
parent type, and type description, all of which are provided by Fluid’s composition language. The
type system is required to maintain a collection of known OODDP types, and must also provide access
to their parent types (if applicable) and descriptions. OODDP types are described as part of Fluid’s
configuration system (see below).

In a similar way to the Value class, the type system encapsulates its various type information

7http://www.boost.org

Listing 3.1: Visiting a Value instance in order to obtain type specific behaviour.

class IsManipulationVisitor : public boost::static_visitor <bool>
// return true for manipulation types
const bool operator () (const Sequence&) const

{ return true;

}

const bool operator()(const Choice&) const
{ return true;

}

const bool operator () (const Optional&) const
return true;

// for all other types, return false

template<typename T> const bool operator () (const T&) const
{ return false;

}

}s

// wvisit a Value instance to determine if it is a manipulation type
bool isManipulation = boost::apply.visitor (aValue,IsManipulationVisitor ());

84

representations using a single TypeInfo class, which makes use of the same discriminated union idiom.
As with Value, the actual type held by a Typelnfo object may be accessed via a casting method or
appropriate visitor, leading in some cases to additional type information such as the types held by a
given Sequence, or the return value and parameter types for a given Function. However, the Typelnfo
class interface also provides common operations such as testing for type equality, relative ordering of
Typelnfo objects, and obtaining a descriptive string for each type.

Through Value, Function, Event, and Typelnfo, the type system provides a reflective, type
safe means for components to communicate with the Fluid framework and each other. Furthermore,
component configurations, deployments and connections may be checked at runtime, to ensure that
such compositions conform to Fluid’s component model as well as their own specifications. Further

detail regarding Fluid’s component model can be found in Section 3.2.2.

Naming System

The Fluid framework’s naming system provides a central blackboard [130] for the storage of named
objects. The naming system consists of an acyclic graph of associative containers, where objects are
assoclated with a given name, and may be subsequently identified and accessed using that name. The
most basic associative container is the Namespace, which is allowed to store other Namespaces, Values,
OODDP type descriptions, or OODDP instance objects. OODDP instances are also associative con-
tainers, and may store nested OODDP instances, Values and component instances. Component
instances form the final layer in the naming system, and may contain Values, plus any Functions and
Events that are exposed by the component. The range of allowed types at each level in the hierarchy
are illustrated by Figure 3.3. Note that the naming system itself holds a single Namespace instance
providing the root of the naming hierarchy.

Namespaces, OODDP Instances and components are supported by a generic MappedStorage base
class, which encapsulates the concept of an associative container. Classes inheriting MappedStorage
may provide custom functionality, such as access to type identification, but will generally defer control
of the associative container to the MappedStorage class. MappedStorage is a generic class taking a list
of stored types as a type parameter. The resulting MappedStorage class specialisation maps string
identifiers to instances of a discriminated union over its stored types. Methods for querying and
manipulating the contents of the associative container are provided.

Due to the use of MappedStorage and discriminated unions, a wide range of operations over nam-
ing system contents may be implemented using various forms of C++ template meta-programming,
including the type specialised visitation technique discussed above. A combination of visitors and

overloading function definitions provide the vast majority of naming system functionality.

Namespace
S Namespace (recursive)
Lo Value
S OODDP Type
Lo OODDP Instance

P OODDP Instance (recursive)

S Value

. Component
e Value
e Function
e Event

Figure 3.3: The concepts allowed at each level in the naming system hierarchy.

In contrast to more flexible deployment spaces, such as Lua tables, Fluid’s naming system has a
strict structuring to its stored concepts, as shown in Figure 3.3. For example, Fluid components may
not be placed in namespaces, but must form part of OODDP instances. The hierarchy of types shown
in Figure 3.3 is enforced in order to emphasise the use of object oriented design when developing Fluid
applications: runtime behaviour must be encapsulated by OODDP type and instance descriptions.
By forcing behavioural components into OODDP types and instances, Fluid’s naming system forms
the first part of a layer of object oriented concepts, which reside above those OO concepts supported
by the C++ language. The restrictions embodied by the naming system’s type hierarchy are built
upon by Fluid’s composition language to define an OODDP textual interface for the definition of
component software (see Section 3.2.3).

Fluid’s naming system supports flexible deployment by facilitating type-safe late binding. This
is achieved via the use of weak references [131]. Weak references essentially allow objects to refer to
one another via an intermediate proxy, before the objects themselves have been fully deployed: an
object may create, during its configuration-driven initialization, a type-safe weak reference to another
object’s location in the naming system. When this second object (the referee) is created and entered
into the naming system, the referring object’s weak reference is completed, at which point it is able
to make full use of the facilities of the referee. Weak references thus remove the need to carefully
deploy objects in a fixed order, and allows the use of circular object references, as an object may now
be deployed before the object(s) it requires access to.

The naming system provides a single unified deployment space for all application content and
functionality. The naming system thus resembles, to some extent, a more restrictive form of Lua’s

tables [128]. Alternatively, the framework’s naming system also mimics the hierarchical nature of

86

XML’s syntax. These similarities are intentional, and aim to support potential mappings from both

Lua and XML to Fluid-based compositions.

Configuration System

In the context of the Fluid framework, a configuration is an XML description of a Fluid concept. XML
configurations are used throughout the Fluid framework for the description of its various concepts,
and will typically be used to populate the naming system or parameterise Fluid’s runtime objects.

Fluid configurations are supported by the XmlICfg class, which corresponds to XML elements, and
Values representing XML attributes. In order to represent a given XML element’s child elements and
attributes, each XmlCfg object stores an associative container mapping element and attribute names
to their matching Value and XmlCfg instances. The resulting hierarchy of objects supported by this
representation is illustrated by Figure 3.4.

Prior to use, a given configuration will be validated against its corresponding XML schema, and
then parsed to form an appropriate XmlCfg and Value hierarchy. Certain parts of Fluid configurations
may also undergo additional processing before they are parsed, in order to support concepts such as
OODDP inheritance relationships (see below).

The configuration system provides a number of operations for parsing and manipulating XML
configurations. For example, the configuration system encapsulates the functionality required to
locate an XML file given a suitable filename, validate the file against its XML schema®, and construct
the XML file’s corresponding XmlCfg representation.

Fluid’s configuration system also employs the type and naming systems to parse a small selection
of XML elements: it is able to construct runtime objects corresponding to Fluid’s primitive and
manipulation types. The configuration system is also able to construct namespace instances, and can
thus form simple namespace and value hierarchies.

Finally, the configuration system is also responsible for supporting OODDP type inheritance re-
lationships via a manipulation of the types’ XML configurations. The inheritance manipulation op-
eration takes two OODDP type or instance configurations, given as XmlCfg instances, and returns a

new XmlCfg as its result. The pseudocode for Fluid’s OODDP inheritance is given by Listing 3.2;

8Fluid's configuration system uses Xerces-C+- from the Apache Software Foundation for XML schema validation.

XmlCfg
XmlCfg (recursive)
Value

Figure 3.4: Representing XML configurations via Fluid’s XmlCfg and Value classes.

87

the following provides an overview of the process while referring to line numbers in Listing 3.2 for

completeness.

o The first step in this operation is to assign the parent configuration to the operation’s result,
giving result a copy of the parent configuration’s content (Line 31). The result thereby inherits

the parent configuration.

e Next, the parent configuration is both overridden and extended by the child configuration in
the same recursive process. This process applies to both XML attribute and elements, which
are collectively referred to as items in the following description for clarity. For each item in the
child configuration, the parent configuration is checked for a corresponding item with the same

absolute location and id attribute (for elements) or name (for attributes).

o If the parent configuration contains a corresponding item, then the child’s item will override
that of the parent. For XML attributes, overriding is performed by overwriting the attribute
in the result with the child attribute’s value (Line 5). Meanwhile, XML elements are implicitly
overridden if the same element is held by both parent and child configurations: child elements
are recursively processed in order to further apply overriding and extending manipulations. This

is achieved via a recursive call (Line 15).

e If the parent configuration does not contain a matching item, then the child configuration must
eztend the parent: this is performed by inserting this item into the appropriate position in result

(Lines 5 and 21).

The result of this process is a child OODDP type or instance configuration that inherits its parent’s
XML elements and attributes, with the exception of those items that it overrides or additionally
provides. Once the appropriate inheritance manipulations have been applied to a given OODDP
type description, the resulting configuration may be passed to the type system to be stored as a
new OODDP type, or to Fluid’s component model for the creation of an OODDP instance. Fluid’s
composition language tier is responsible for driving the processing of XML configurations, as well as
their subsequent use by the framework (see Sections 3.2.2 and 3.2.3).

The Fluid framework’s configuration system reintroduces much of the scene system’s functionality
for describing scene content. However, the configuration system’s behaviour is better encapsulated,
and defers certain operations to Fluid’s component model. Whereas the prototype’s scene system
was responsible for the description and instantiation of OODDP types, the framework’s configuration
system is exclusively concerned with lower level XML manipulations, regardless of their higher level

semantics.

88

O ~1D0h WK —

Listing 3.2: The pseudocode for OODDP inheritance manipulations.

void processInheritance(XmlCfg& parent, const XmlCfg& child)

// override or exztend parent’s attributes with those from child
for_each attribute a in child

{ parent {a] = child [a]

}

// override or eztend parent’s elements with those from child
for.each element e in child

{
if parent[e] exists then
// rTecursively call processinheritance in order to
// perform the mecessary inheritance manipulations
// for sub—element e in both parent and child
processInheritance (parent|e], child[e])
}
else
{
// assign a deep copy of child[e] to parentfe],
// thus exztending parent with element e from child
parent [e] = child [e]
}
}
}
XmlCfg parent = ... // obtain parent type description from XML configuration
XmlCfg child = ... // obtain child type description from XML configuration

// resull is initialised to a deep copy of the parent type; the following assignment
// is equivalent to result inheriting every element and attribute from the parent type
XmiICfg result = parent;

// begin recursively processing result and child in order to perform any mnecessary
// overriding and eztension of attributes and elements
processInheritance(result, child);

Furthermore, although the prototype’s scene system was also able to generate value hierarchies from
XML, the availability of the type and naming systems allows the framework’s configuration system
to make a number of improvements. For example, while the Fluid prototype used XML schema to
validate data prior to use, the type information maintained by Value objects allows for continual run-
time type and integrity checking. Meanwhile, the concepts offered by Value manipulations support an
extensible range of complex configuration data to be described. The semantics of such manipulations
are also retained by the type system, so that an Optional<boolean> does not lose information by
becoming a true or false value in the data. These additional features support a more continuous
relationship between configuration data and its eventual use in the naming system, OODDP instances

and components.

3.2.2 Component Model

The Fluid framework’s component model is responsible for both supporting and enforcing the use
of Fluid components to define application functionality. Consequently, Fluid’s component model
provides a range of standards, XML schema, and operations for the definition of Fluid components,
their deployment as part of Fluid applications, the specification of their interfaces, and the lifetime of

component instantiations.

89

Fluid Component Definition

Fluid components conform to the definition of components as given in Section 2 2 3. ythey are unlts of

composition with contractually specified interfaces and exp11c1t context dependencles only Fulthel- .

more, although Fluid components can be deployed to Fluid’s naming system independently -as part of
OODDP Instances, they al-*e ultimately subject to composition b_';/ third parties in order to form more
complex Fluid applications.

More specifically, Fluid components are finely grained objects that will form part of higher level
OODDP type and instance definitions. A number of components may be required to fully describe
a given OODDP type, with each Fluid component encapsulating the functionality of a single facet
of that type’s conceptual representation. As a result, Fluid components will typically encapsulate
functionality at the granularity of a small number of tightly coupled functions or events. The Fluid
framework’s usé of fine grained components has been greatly influenced by that seen in data driven
game engines. Also, while mainstream component based applications typically make use of class based
components, a number of studies have explored the potential usefulness of components encapsulating
smaller concepts [120, 119, 118].

Each Fluid component is an encapsulation of runtime behaviour and computation. In order to
define complete Fluid applications, components must be composed and thus allowed to collaborate.
Component composition is facilitated by the presence of bottleneck interfaces, which consist of both
required and provided events and functions. The interconnection of bottleneck interfaces is described
below. In addition, each component may also be parameterised using XML configurations. Component
parameterisation will typically influence the component’s runtime state and behaviour, leading to
mcreased flexibility and implementation reuse. Finally, components may expose certain properties to
the naming system, and therefore other components, by including named Values in their associative
containers. An overview of a Fluid component, including the main elements given here, is depicted in

Figure 3.5.

Component

Configuration
Required Provided
Functions Fluid Functions
Event Component Published
Subscriptions Events

Exposed
Values

Figure 3.5: A Fluid component, including its bottleneck interface.

90

Fluid Component Deployment

In the context of the Fluid framework’s component model, a component deployment corresponds to a
single component representation, available at a known location, that may be used by the Fluid frame-
work. Each Fluid deployment consists of two distinct parts providing separate component description
and dynamically linked implementation. This approach differs from many component frameworks,
such as those based on JavaBeans, where there is little or no distinction between implementation and
description: in many cases, especially when Java is employed, a component’s description may often be
derived from its implementation using metadata or reflective functionality provided by the component
itself.

However, C++4 lacks the facilities required to éa,sily access such information from Fluid components.
A naive solution could incorporate both implementation and description within the same component
DLL, providing separa’cé interfaces for introspection and component instance management. However,
this approach would hide potentially useful information behind a C or C++ interface, placing ad-
ditional and unnecessary requirements on any client wishing to access component description data.
Instead, Fluid encapsulates component implementations using DLL files, and provides component de-
scriptions using separate XML files. Fluid’s component descriptions are thereby readily accessible to
tools and casual browsing, and clients are only required to interact with DLL interfaces when makirig
use of component implementations. Further wrapping for component distribution is easily facilitated
by a wide range of third party Zip, Rar and Tarball file manipulation utilities.

The Fluid framework assumes the availability of one or more local repositories of Fluid component
deployments. Note that local in this context refers to a local or networked directory accessible via
a drive letter and absolute path. The Fluid framework places no restrictions on the number of
component repositories, nor on the number of component deployments available in each repository.
However, the framework assumes that both repository and deployment locations are known prior to
executing any Fluid application, and that any absolute paths to such locations will remain valid during
the application’s execution. As component repositories are not the focus of this work, any further
functionality or complications regarding their use are not considered by the Fluid framework’s design

or implementation.

Fluid Component Interfaces

Each Fluid component deployment includes a component description, or specification file, which is
written in XML and must conform to an XML schema provided by the Fluid framework. The speci-
fication file is responsible for describing the bottleneck interface of a single component, as well as its

configuration requirements. Each component specification includes the following items:

91

e An id attribute, in the root of the: XML file, which uniquely identifies the de‘ploy,mgént{ .

e A location attribute, in the root of the XML file, which gives an absolute path declarmg he
location of the component’s DLL. Note that the component’s specification and implementation

are not required to be stored in the same location.

e An Exports element containing a description of the functions and events provided by the com-
ponent. Each export is described as a function or event signature, and will be converted into a

corresponding signature type description at runtime by the type system.

e An Imports element, which contains a description of the functions and events required by the
component. As with the Exports element, each signature description will be converted and used

at runtime by the type system.

e A Configuration element, which contains a list of basic and manipulation type descriptions.
Each type description under the Configuration element will be converted to a runtime type
object, and the resulting sequence of type objects will be used to validate the component’s

configuration data. Component configuration is described below.

All Fluid components are black box objects that expose their functionality via bottleneck interfaces.
A Fluid component’s bottleneck interface describes the functionality provided by the component,
as well as the component’s contextual dependencies. The functionality -of Fluid components is‘not
restricted by a fixed interface, but is instead described by the component itself: each-componentis
free to provide and require both functions and events, as described below.

A Fluid component exposes free, static or member functions using the Function class provided by
the type system (see Section 3.2.1). All exposed functions are deployed alongside their owning com-
ponent instances, as child entries in the naming system, regardless of their initial scope or ownership.
That is, all function exposures are treated as members of the component providing them. Subsequent
to exposure, a function may be accessed by other components in the naming system’s namespace
hierarchy using a weak reference as described in Section 3.2.1. Function references define a functional
operator that allows the references to be invoked as if they were locally ‘declared function pointers.
Their use by referring components looks like any other function call.

Components may also expose (or publish) functionality using the type system’s Event class (see
Section 3.2.1). Event signatures do not specify a return type, but may include a single optional payload
parameter. Like functions, published events are deployed in the naming system as child elements of
the component exposing them, and may be referenced (or subscribed to) by other components in a

similar way. However, unlike function referencing, subscribing components must also provide an event

92

handler function in order to create a.complete event i'efe‘réﬁc/é.; At runtime, the publishing component

will trigger the event, which will in turn call subscribihg components’ event hand’jl‘ers;"rﬂp,a@si;ng -h

event payload (if any) as the call parameter.

Fluid’s function and event concepts support two - distinct methods for inter-component communi-
cation and collaboration: Function provides a single cast message:passing Concept, which transfers
control from a single calling component to a single called component. By contrast, Event supports
multicast message passing, transferring control from a single triggered publisher component to multi-
ple subscriber components. Although both Function and Event could have been implemented using
a lower level message passing concept, their distinctive availability in the Fluid framework allows for
a more terse and explicit description of the intended application control flow. Figure 3.6 shows an
example components topology, with a given componenﬁ instance exposing both events and functions
with multiple connections.

As described in Section 3.2.1, Function and Event signatures must define their return value and
parameter types using Fluid’s basic types and manipulations. The Fluid framework provides a number
of mappings from its basic types to a number of standardised C++ types; Functions with no return

value and Events with no payload may use nil in place of the C+++ void keyword.

Fluid Component Lifetime

Deployment DLLs are required to provide two functions for the management of component lifetimes: a
create function, which is responsible for constructing component instances; and a destroy function,
which destructs component instances. Deployment DLLs are thus implementations of the Factory
Method pattern {132], with each DLL providing a single concrete creator. The Fluid framework

implementation ensures that components are created and destroyed by the same deployment DLL.

N-1 Function
Connection y

Fluid - -
Component

\
N-1 Event \
Subscription

Figure 3.6: An illustration of how components are connected via their bottleneck interfaces.

When invoked by Fluid’s component model; a deploymefnt’s‘create function is given two paiamétérs:

the first is an XmlCfg instance containing a-list of attributes, which may be used to parameterise

component instantiation. The second parameter is an instance of the NamespaceAc_ée_sis“clé\s’s,\'\Whi\'ch\ ’
is responsible for providing controlled access to the naming system’s contents. The relationships
between a Fluid component, its create function parameters, and its-deployment:specification:are
shown in Figure 3.7.

A deployment’s create function is given an XmlCfg parameter containing a list of Value instances,
which may be used to configure the component instance it returns. The list of Values may consist
of basic types and manipulations, which must conform to a corresponding list of Value name and
type descriptions given in the component’s specification. A component configuration that has been
validated against the corresponding deployment’s component specification may be used by its create
function during the construction of a component instance.

Component configuration is an important part of Fluid framework, and can potentially increase
implementation reuse by allowing a wide variety of OODDP instance behaviours to be defined with
a small selection of component deployments. Furthermore, component configurations form part of
OODDP type and instance descriptions, and may thus take part in OODDP inheritance relationships.
It is therefore possible to describe a range of OODDP instances with varying configurations, without
having to describe cach instance entirely: application developers can define an OODDP type describing
a default configuration, and subsequent OODDP instantiations need only include those elements that
differ from this default. OODDP inheritance manipulations will ensure that the resulting instance
descriptions inherit the default configuration, while overriding or extending the default configuration
with those elements and attributes particular to each instance.

The Fluid framework is responsible for enforcing that a deployment’s DLL constructs components

that conform to the deployment specification. This is done by placing restrictions on what the com-

1
! Component
' Configuration Key

—0 XmiCfg

=]P———-—4'¢ NamespaceAccess
(= T C k————-

4 = Flow of
information

—Q = Enforced by

Component Fluid
Specification Naming Component deployment
System Contextual specification

Dependencies Exposed

Values

Figure 3.7: Creating a parameterised Fluid component. Each component imports its contextual
dependencies, while optionally exporting any number of Value instances. A component’s interactions
with the Fluid framework, including its imports, exports and configuration, are validated against the
component’s specification.

94

ponent is allowed to write to and read from the naming system during its construction. Firstly, each
component must write at least its specified exports to child elements in its own associative container.
This restriction guarantees that component instances provide the minimum functionality promised by
their specifications. Also, each component may only access those namespace entries corresponding to
the import entries in their specifications. The latter restriction is enforced by the NamespaceAccess
class, which provides the only means by which a deployment’s create function may access the nam-
ing system’s contents. Limiting a component’s namespace access to its predefined imports precludes
component implementations with greater contextual dependencies than those specified.

As well as accessing its specified namespace imports, a component also has access, via the
NamespaceAccess class, to its enclosing OODDP instance object in the naming system. An OODDP
instance’s namespace entry may contain any number of component instances; these instances collec-
tively represent the functionality of the OODDP instance, and are analogous to object methods. The
OODDP instance object available via the NamespaceAccess class of component instantiation is there-
fore equivalent to the this object in languages such as C-++ and Java, and the self object in Lua.
In a similar way to such languages, all components have access to the associative container of their
enclosing OODDP object, and thus its Values and other components. This feature allows OODDP
instances to behave more like their counterparts in object oriented implementation languages.

By validating a component’s described bottleneck interface against its interactions with Fluid’s
naming system contents during instantiation, Fluid’s component model is able to enforce that runtime
component topology is consistent with what is defined by application descriptions. Furthermore, by
disallowing additional inter-component dependencies, Fluid’s component model is able to fully un-
derstand the current relationships between component instances. This understanding could facilitate
optimisations such as the removal of unreferenced components, and potentially the introduction of
garbage collection to Fluid’s composition language.

Fluid components created via component deployments will be constructed by their corresponding
component factory with a given configuration. During its instantiation, each component will form
collaborations with other component instances by assigning its exported events and functions as child
entries in its own associative container, and by importing functions and events that have been similarly
exported by other components. Once instantiated, the component will be accessible as an entry in the
naming system; the actual placement of the component instance will depend on the application config-
uration currently in use. During application execution, a component’s runtime behaviour is invoked by
other components, either by directly calling the component’s exported functions, or triggering events
to which this component has subscribed. When no longer required, the component will be passed to

its deployment’s destroy function, which is responsible for calling the correct object destructor and

restoring memory to the heap. Fluid’s Function and Event objects will automatically disconnect
themselves as part of the component’s destruction, and thus sever any collaborative connections the

component had during its lifetime.

3.2.3 Composition Language

The Fluid framework builds upon the functionality supported by its lower tiers in order to provide an
XML based composition language. Fluid’s composition language provides a textual interface for de-
scribing component applications via the selection, connection and configuration of Fluid components.
Each component application is described by an XML application description document, and Fluid’s
composition language is responsible for supporting the use of application description documents to
define component applications. In order to meet this requirement, the composition language tier
supplies a number of XML schema that define the syntax for application descriptions, as well as a
range of operations that open, parse and process application descriptions in order to drive lower level
functionality.

Fluid’s composition language has a declarative syntax that drives a range of runtime activity in the
framework’s lower tiers. Application descriptions are parsed in order to populate the naming system
with a hierarchy of Values, OODDP types and instances, and Fluid components. Subsequent runtime
behaviour is provided by the implementation of Fluid components, and the framework’s component
model. Like many other XML based composition languages, Fluid’s composition language provides
the means by which an initial application configuration may be specified. The reconfiguration of
software structure is facilitated by certain operations available via Fluid’s component model.

The Fluid framework provides an number of XML schema that collectively stipulate the hierarchical
structure of application descriptions. An overview of the structure described by the schema is given
in Figure 3.8; the concepts supported by this structure are discussed further below.

The concepts illustrated by Figure 3.8 correspond to equivalent concepts maintained by the nam-
ing system’s hierarchy of associative containers, as seen carlier in Figure 3.3. Consequently, those
XML elements introducing such concepts must provide an id attribute, so that the object stored by
the naming system may be identified at runtime. Certain concepts, such as the events and functions
exposed by Fluid components, are required to refer to other concepts described in application descrip-
tions; these inter-concept references may be made using both relative and absolute paths making use

of the identifiers specified by id attributes.

Namespace Namespaces in an application description have a direct correspondence with those in
Fluid’s naming system. When parsing the application description, each Namespace element

is created as a namespace instance. Elements between the opening and closing Namespace

96

Namespace
Do Namespace (recursive)
Lo Value
Co OODDP Type
U (As OODDP Instance)

e OODDP Instance (recursive)

e Value
TR Component
e Import
L Event
. Function
........................ Configuration
......... Value

Figure 3.8: The hierarchical structure of Fluid’s composition language.

elements are further parsed to become children of the namespace instance. Each application
description must begin with a root element with the root identifier, which corresponds to the
root namespace in the naming system.

Namespaces allow a Fluid application developer to organise software structure into associative
groups, which help to avoid ambiguity and may also be used to represent concepts such as
ownership, authorship, distinct packages or libraries. Fluid’s use of namespaces is motivated by
similar concepts in C++ and Lua. Like these concepts, Fluid’s namespaces are open, in that

they may be added to after the point of their initial description.

Value Values in application descriptions generally correspond to variables used in implementation
languages, although their particular meaning depends on where a given Value resides in an appli-
cation description. Values contained within opening and closing Namespace elements correspond
to global variables, while those forming part of an OODDP Type or Instance description (see
below) resemble class and instance attributes respectively. Finally, Value descriptions forming
part of Fluid component descriptions (again, see below), or within the Configuration part of
Component descriptions may be considered part of the components’ configuration and parame-
terisation. Regardless of its location, each Value element in an application description is parsed

and a corresponding Value instance is created.

All Value elements specify both a Type and Data part in order to describe the Value’s type as well

as an initial assignment. The XML schema for Values allows a range of type information and data

97

assignments to be described, including primitive values and complex recursive manipulations.
At runtime, a Value capable of supporting the described type is first constructed, and then the

data part of the Value description is assigned to initialise the Value instance.

The verbose description of Values is used to increase type correctness and avoid ambiguity:
a reduced syntax requiring only an initial assignment could stipulate a Value containing the
integer 15, but actually representing an Optional<int>, a Sequence<int> containing one item,
and so on. Although a more verbose syntax for Value descriptions leads to more complex and
longer XML documents, the additional information held by a Value description also helps to
retain the semantics of the initial description, and leads to greater type safety. For example, an
application developer may model the triplet {yes, no, unknown} using an Optional<boolean>,
which will only accept true, false and nil, respectively, throughout the lifetime of the Value
instance. While this representation does not directly correspond to the developer’s intentions,
the Value instance maintains more of the initial meaning than a naked boolean holding only

true or false.

OODDP Type An XML OODDP Type description consists of both opening and closing Type ele-
ments, with an id attribute to name the OODDP Type, and an optional parentType attribute
to name a parent OODDP Type description. Everything between the opening and closing Type
elements are part of the described type, and may include descriptions for Values, Components
and nested Instances. Subsequent to being parsed by the Fluid framework, OODDP Type
descriptions are maintained as static textual representations in the Fluid framework. As such,
OODDP Type descriptions are similar to classes in OO languages. OODDP inheritance is sup-
ported as a manipulation over OODDP Type descriptions: the XML elements of a parent type

description may be inherited, overridden or extended by a child type description.

OODDP Instance OODDP type descriptions may be instantiated by Iluid’s component model
in order to form OODDP Instances, which correspond to dynamic OO objects. Although
Fluid’s Instance class is merely a Namespace specialisation with additional methods exposing
OODDP Type information, the recursive instantiation of OODDP Types will typically include
the construction of Values, Components, and their constituent parts, which contribute to overall
application state and behaviour. As such OODDP Instances collectively define application be-
haviour, using object oriented abstractions to guide the granularity, separation and identification

of software structure.

Each OODDP Instance is described by a pair of opening and closing Instance XML elements.

The opening element must contain an id attribute to name the OODDP Instance, just as

98

an identifier would be associated with an implementation language variable. In addition, a
parentType attribute may be provided, in which case the Instance description will take part
in OODDP inheritance manipulations with the given parent type prior to its instantiation; the
Instance description is free to include Value, Component and nested Instance descriptions in
order to override or extend those described by the parent OODDP Type description. If no
parentType attribute is given, then the instantiation process only considers the given Instance
description. Regardless of the presence of a parentType attribute, everything between the

Instance’s opening and closing elements is considered part of the Instance description.

Component Fluid component implementations are subject to composition by third parties in order
to collectively provide the custom behaviour of many different Fluid applications. In order to
achieve this, component elements of application descriptions are required to provide the selection,

interconnection and configuration of Fluid components.

Each component description consists of a number of XML attributes and elements provided
between opening and closing Component elements. The opening element must include an id
attribute, which identifies the component’s entry in the naming system. Furthermore, a par-
ticular Fluid component is selected for composition by providing a type attribute as part of
the opening Component element. The identifier given by the type attribute must correspond to
the name of a component deployment available to Fluid’s component model (see Section 3.2.2).
At runtime, Fluid’s component model will use the component deployment identified in order
to further process and instantiate a given Component description. Those XML elements lying
between the opening and closing Component elements will be parsed as part of the process of
comporient instantiation.

As described in Section 3.2.2, each component deployment supplies a specification stipulating
the name and type information of its component’s bottleneck interfaces. Both provided and
required functions and events are defined. These bottleneck interfaces are connected by the
Imports element forming part of each Component description.

The Imports element contains a number of Event and Function elements, each of which consists
of an id attribute and either a exportedEvent or exportedFunction. The id of such imports
must match the id attribute of a corresponding Event or Function element in the Imports
section of the component’s specification document. The id attributes in the component specifi-
cation document and Component description thus connect the type information of an import (in
the specification document) with its instantiation configuration (in the Component description).

The exportedEvent or exportedFunction attribute of an opening Component element gives the

99

relative or absolute path to an Event or Function instance in the naming system.

During its runtime instantiation, each Component will create a number of Event and Function
instances, as described by the Exports element of its specification document, that collectively
form a bottleneck interface to its implementation details. These Event and Function instances
will be added as children of the Component’s instance in the naming system hierarchy. During
the same instantiation process, each Component will also attempt to import the Events and
Functions described by the contents of its Imports element. Each imported Event or Function
will be located via the path given by the import’s exportedEvent or exportedFunction at-
tribute, and the type of the Event or Function instance will be checked against the import’s
type information as given by the component’s specification document. If the type information

does not match, then Component construction will fail.

Finally, the Configuration element of a Component description contains a sequence of Value
elements providing component configuration and parameterisation. The Value elements de-
scribed by a Component configuration are parsed in the same way as all other Value descriptions
in order to generate corresponding Value instances. However, once created, the type of each
Value is checked against an element with the same id attribute in the component specification’s
Configuration section. For each Value element in the Component description, the component
specification must contain an entry with the same identification, and describing the same type as
what is given by the current Value element. If a corresponding Value specification is not found,
then the Component will not be instantiated. Meanwhile, Component configurations that pass
this validation test will be supplied as part of Component instantiation, and may be used to

configure the resulting Component instance.

Fluid’s composition language brings together the concepts of composition languages from main-
stream academia and industry and OODDP from game development, and thus introduces a novel
object oriented abstraction for the definition of software compositions, making use of a range of con-
cepts at the scale of OO software structure. The resulting composition language exhibits a number of
object oriented features: Fluid’s Values and Components respectively provide attribute and methods
abstractions, while static OODDP Type descriptions support an analogy of OO classes. OODDP
Instances are dynamic representations of OODDP Types, and thus correspond to objects in object
oriented terminology.

While Fluid’s OODDP implementation supports a number of OO concepts, the motivation for their
incorporation is not to produce an OO composition language, but to develop a composition language
where certain OO concepts introduce additional expressiveness and accessibility for the definition of

flexible software structures using fine grained, highly configurable components. Accordingly, Fluid’s

100

composition language supports OODDP inheritance as a first step toward bridging the clear disparity
between the design of traditional OO and component based software [119]. However, Fluid’s OODDP
implementation currently lacks certain fundamental OO concepts such as encapsulation, which are
often present in the majority of OO implementation languages”, but have not been considered by

Fluid’s design thus far due to a foremost focus on software composition and configuration.

3.2.4 Fluid Executable

The Fluid executable is responsible for bringing together the three tiers of the Fluid framework, which
have been implemented as a number of C++ static libraries, to form a single coherent component
framework capable of supporting a range of potential Fluid component applications. The Fluid ex-
ecutable represents the entry point for all Fluid applications, and provides the means by which all
Fluid applications will be launched. Fluid’s executable is therefore responsible for the overall control
flow and lifetime of all Fluid applications, as well as for the Fluid frameworlk itself. In order to meet

this requirement, the Fluid executable performs a sequence of high level actions, as discussed below.

1. Enter Fluid executable The Fluid executable begins its lifetime as a Windows process, where-

upon control flow passes to its main C++ function.

9 Parse command line The Fluid executable accepts a number of command line parameters,
which collectively indicate which Fluid application is to be launched. An app_config option
must be provided in order to specify the location of an application description file. Following this,
a list of component_spec parameters may be used to give the relative or absolute paths of one or
more component specification files. Alternatively, an optional config parameter can be used to
direct the Fluid executable to a command line configuration file, which may contain additional
component_spec and app_config parameters. The use of a command line configuration file
is recommended for more complex Fluid applications making use of many different component

deployments.

3. Create Fluid framework Once the executable’s command line has been parsed, the Fluid
framework is created by instantiating one or more objects corresponding to each tier: a
TypeManager instance maintains OODDP types on behalf of the type system, while a Namespace
instance provides the root namespace for the naming system. Meanwhile, a ComponentFactory
instance encapsulates the majority of Fluid’s component model functionality. There is no sin-
gle class corresponding to the configuration system or component model; their operations are

invoked via facade interfaces comprising related functions in appropriate namespaces.

9For example, C++ has the public private and protected keywords to control access rights, and thus the degree
of encapsulation, for class methods and attributes.

101

4. Register components Fluid components are registered with the framework by parsing each
component specification given as a command line parameter, obtaining bottleneck interface and
configuration information from the specification, and then linking with the deployment’s DLL
in order to locate its create and destroy functions. Each component used in the application
description must be registered in this way before the application description itself is parsed. If
an unregistered component is named in the application description, then the Fluid framework
will not be able to locate or verify that component, and instantiation of the Fluid application

will fail.

5. Deploy System instance Once Fluid’s component framework is ready to instantiate a Fluid
application, an OODDP instance named System is inserted into the root namespace. The
System instance is responsible for exposing a range of essential functionality to Fluid components,
and thus performs a role similar to that of the standard libraries in Lua. Unlike the creation
of OODDP instances and Fluid component described elsewhere, the process of inserting the
System instance is not restricted by bottleneck interface or configuration checks, as the instance
is inserted by the Fluid executable itself. Indeed, many of the operations provided by the System
instance would not be possible if they were not exposed in this way. The functionality exposed

by the System instance includes the following:

Application loop The ApplicationLoop component is responsible for encapsulating the con-
cept of the application loop. The ApplicationLoop component exposes an update event, as
well as two functions allowing other components to stop the application loop and check if
the application loop is currently active. The Fluid framework is required to trigger the ap-
plication loop’s update event, allowing its subscribing components to provide a wide range
of runtime behaviours. The Fluid framework will repeatedly trigger the update event until
the ApplicationLoop’s stop function is called, in order to produce the illusion of continuous

functionality.

Namespace access The NamespaceAccess component’s intended use is for monitoring the cur-
rent status of the naming system and its constituent elements. In order to support this func-
tionality, the NamespaceAccess component exposes a generic visitRootNamespace func-
tion, which takes a visitor object capable of operating on the naming system’s contents (see
Section 3.2.1). The visitor passed to visitRootNamespace is initially given immutable access
to the root namespace, although it is possible to visit all elements of the naming system
by selectively recursing on associative containers. An overload of the visitRootNamespace

function takes an absolute path, and providing the named element exists, will pass the

102

named element to the given visitor in place of the root namespace.

Namespace management The NamespaceManagement component exposes a number of func-
tions for modifying the contents of the naming system. Three functions are exposed at
present: one for creating OODDP instances and inserting them into the naming system,
another for moving them from one namespace or parent OODDP instance to another, and a
final function for destroying an OODDP instance at a given location. The NamespaceMan-
agement component supports a number of experimental features, allowing for the dynamic
reconfiguration of application descriptions. The functions exposed by the NamespaceMan-
agement component are intended to allow application developers to manipulate OODDP
instances during runtime execution, and further emphasise the use of OODDP types and

instances as the main unit of application description, deployment and manipulation.

6. Parse application description Once the System instance has been inserted into the root
namespace, the Fluid framework parses the application description file. Each element of the
application description is processed, with corresponding objects being created and inserted into
the naming system as described in Section 3.2.1. Once the entire application description file has

been parsed and all namespace entries inserted, the Fluid application is ready for execution.

7. Enter application loop Fluid’s application loop is implemented by the Fluid executable, which
first obtains a handle to the System instance’s application loop component, then continuously
triggers its update event while the application is running. The Fluid executable implementation

is illustrated by the following pseudo code:

// appLoopComponent is a handle to the System instance’s application loop component
while (appLoopComponent—>isRunning ())
{ appLoopComponent—>triggerUpdateEvent () ;

}

Bach time the application loop component’s update event is triggered, those components sub-
scribing to the event will also be triggered. As control flow passes to component implementations,
each component will be able to perform its own operations, potentially propagating control flow
down to further components via event triggers and function calls. In this way, the application
loop component’s update event is the source of all runtime functionality for Fluid applications.
The application loop, and thus all runtime behaviour, will terminate when a component imple-

mentation calls the application loop component’s exposed stop function.

8. Destroy root namespace When control flow exits Fluid’s application loop, the Fluid exe-
cutable will destroy the naming system’s root namespace. This results in the namespace sys-

tem’s contents being removed in depth first fashion, as each namespace instance will destroy

103

its contents prior to its own destruction. The Fluid executable thus dissolves the current Fluid

application.

9. Destroy Fluid framework Once there is no longer a requirement to represent the current Fluid
application, the Fluid framework itself may be destroyed. This results in all resources previously

held by the framework being relinquished, including handles to component deployment DLLs.

10. Exit Fluid executable Finally, with all resources released, the Fluid executable terminates

gracefully and its Windows process is destroyed by the operating system kernel.

The Fluid executable provides a fixed skeleton or pipeline of runtime behaviour. Application spe-
cific functionality and flexibility are provided by application descriptions, which specify the selection,
interconnection and parameterisation of data driven components. Section 3.3 provides a complete

example within the context of the geovisualition domain.

3.3 Complete Example

This section provides an example use of the Fluid framework to develop a simple traffic simulation
represented by the network shown in Figure 3.9. The intention of this example is to demonstrate
how OODDP can be used as an expressive reuse mechanism as part of an XML based composition
language, while also providing a more concrete illustration of the Fluid framework’s functionality as
described in sections 3.2 through 3.2.4.

The simple example given in this section was chosen because it is able to demonstrate the successful
combination of OODDP and component based concepts without superfluous complexity, and whilst
remaining accessible to non experts. The traffic simulation employs OODDP manipulations to describe
the simulation’s constituent concepts, making use of OODDP inheritance, overriding and extension
where appropriate. Meanwhile, the Fluid framework’s component model both enforces and supports
the use of a number of small scale configurable components that collectively define overall application
functionality. Finally, a range of emergent behaviour exhibited by the executing simulation illustrates
the successful combination of technologies in the Fluid framework: the example’s various components
and configurations cooperate at runtime to form a working, albeit simple, traffic simulation and
appropriate real-time geovisualisation.

Section 3.3.1 presents an overview of the traffic simulation’s high level design. The simulation’s
implementation is defined using Fluid component instances, component specifications, and an appro-
priate application configuration. Section 3.3.2 describes the Fluid component implementations and

their specifications, while Section 3.3.3 presents the application configuration including the OODDP

104

(a) Junctions are represented as nodes in the traffic (b) The number of outgoing lanes for each junction in
network the traffic network shown in Figure 3.9a

Figure 3.9: The traffic network used throughout this example. Circles denote junctions, with doubly
ringed circles representing vehicle sources and filled black circles representing vehicle sinks. Directed
arrows correspond to lanes, indicating the direction of vehicle travel.

types and instances used to define the Fluid application. Section 3.3.4 illustrates the Fluid executable’s
runtime behaviour, building upon the material given in Section 3.2.4 with concrete details from the
traffic simulation application. Section 3.3.5 presents the results of the traffic simulation, including a
number of screen shots taken during its runtime visualisation.

The traffic simulation described in this section provides a complete application of the Fluid frame-
work’s ﬁmctionality, the results of which may influence further developments, improvements and
refinements of its design and implementation. To this end, Section 3.3.6 provides an evaluation of the
traffic simulation application, highlighting the limitations of the Flnid framework’s current design and

implementation and discussing some suggested improvements.

3.3.1 Design

The traffic network topology shown in Figure 3.9 consists of junctions, lanes, vehicles, vehicle sources
and vehicle sinks. The aim of the example traffic simulation is to support the following dynamic

behaviour:

e The vehicles in this traffic simulation are minimal representations used to denote vehicle in-
stances. Consequently, vehicles do not posses individual behaviour such as an intended destina-
tion or driving style, although a visual representation of each vehicle must be provided by the

application.

e Vehicle sources and sinks represent the boundaries of the traffic network. They correspond to

105

where vehicles will enter and leave the area considered by the traffic simulation, and provide
abstractions for motorway junctions, places of work, homes, car parks, and other areas where

vehicles may begin and end their journeys.

Vehicle sources introduce vehicles to the traffic simulation. A vehicle source is responsible for
periodically instantiating a vehicle object and introducing it to the traffic network by passing

the instance to an outgoing lane.

Lanes are unidirectional, with bidirectional roads being modelled as two lanes connecting the
same two junctions but in opposite directions. Each lane is responsible for updating its vehicles
in order to move them along until they reach the end of the lane. Lanes must maintain the
ordering of incoming vehicles, so overtaking behaviour will not be supported, and the lane will
also be required to prevent vehicles from hitting one another. Lanes must therefore take other
vehicle positions into account when updating each vehicle. When a vehicle reaches the end of a
lane, the vehicle is passed to the lane’s outgoing connection, which will be a junction or vehicle

sink.

Junctions may have N incoming lanes and M outgoing lanes, and represent locations at which
vehicles may change direction. A junction instance will accept one vehicle at a time from among
its incoming lanes and pass the vehicle to one of its outgoing lanes. Vehicles are not permitted to
wait on junctions, but are instead moved from an incoming lane to an outgoing lane as a single
operation. Junctions with more than one outgoing lane will exhibit behaviour corresponding to
junctions with traffic lights controlling traffic flow. Each junction will maintain runtime state
dictating which outgoing lane is currently available to vehicles. Junctions will periodically cycle
through their outgoing lanes. A vehicle arriving at a junction will be passed to the junction’s

currently available outgoing lane.

All vehicles travel along the traffic network’s lanes and junctions until they reach a vehicle sink,

at which point they are destroyed and removed from the simulation.

A real time visualisation of the traffic simulation’s current state should be available, with vehicles,

sources, sinks, junctions and lanes all rendered using appropriate representations.

The traffic network shown in Figure 3.9 has been designed to demonstrate a number of vehicle

sources, sinks and junctions with varying numbers of incoming and outgoing lanes. The traffic network

also includes both unidirectional and bidirectional roads, and supports a number of opportunities for

looping routes. For example, a vehicle travelling to junctions at nodes d, h, e and b may return to the

junction at node d rather than leaving the simulation via the vehicle sink at node c. Each concept in

106

the traffic system is represented in the Fluid application by a distinct OODDP type, as discussed in
Section 3.3.3. The following section describes a component based approach to representing the above

behaviour.

3.3.2 Component implementations

In order to implement the above design, the OODDP types described above have been defined using

the following component types.

Event propagation An UpdateSimulationComponent is used to control the high level behaviour
of the traffic simulation by propagating the update event emitted by the Fluid framework’s System
instance, as described in Section 3.2.4. An UpdateSimulationComponent instance subscribes to the
System instance’s update event, but also exposes an update event of its own. Each update event
received by the UpdateSimulationComponent is considered to represent the start of a new time frame
in the traffic simulation. Fluid components constituting the various traffic simulation elements sub-
scribe to the UpdateSimulationComponent instance’s update event in order to be notified of each
time frame as it occurs. The UpdateSimulationComponent forwards the Fluid framework’s update
event in this way so that it may introduce application-specific behaviour such as simulations with
varying time scales, while also retaining control of the traffic simulation’s runtime behaviour.

The UpdateSimulationComponent may be configured by specifying the time frame at which the
traffic simulation should be terminated. The traffic simulation’s runtime behaviour can also be sped
up or slowed down by providing the duration or delta of each time frame. The update event exposed
by UpdateSimulationComponent instances includes the frame delta as an event parameter, so that
the current time scale is propagated to every element of the simulation.

Listing 3.3 gives the specification document for the UpdateSimulationComponent. The contents
of Lines 1 to 7 provide the version and encoding of the XML document, as well as the identities of any
XML namespaces used. These lines also provide the location of the UpdateSimulationComponent
implementation DLL, and the location of the schema against which the specification document in
Listing 3.3 should be validated. As Lines 1 to 7 will vary little between component specifications,
they will be omitted from further examples for clarity.

Lines 9 to 15 of Listing 3.3 describe the functionality provided by the UpdateSimulationComponent,
while Lines 16 to 28 describe its contextual dependencies. The UpdateSimulationComponent re-
places Fluid’s update event with its own scaled version as discussed above by importing a single
event with no parameters, while exposing an update event with a parameter of type float. The

UpdateSimulationComponent also exposes a function allowing clients to terminate the simulation at

107

any time.
The contents of Lines 29 to 36 describe the UpdateSimulationComponent’s configuration. The

purpose of stopAtFrame and frameDelta have been discussed above.

Junction behaviour Junctions in the traffic system represent a number of interconnected decision
points, each with N incoming and M outgoing lanes. Junctions are responsible for forwarding incoming
vehicles to an appropriate outgoing lane according to the current state of their traffic lights.

Fach junction is modelled as an OODDP instance containing a component providing the junction’s
behavioural functionality. A junction may also contain a single vehicle instance corresponding to the
vehicle being passed from an incoming lane to the currently available outgoing lane. The junction’s
behavioural component has access to nested vehicle instances via the concept of self that was provided
during the component’s instantiation.

A junction’s behavioural component performs the following operation upon receiving an update
event: if a vehicle is currently waiting to be processed by the junction, then the vehicle is passed to
an outgoing lane according to the current state of its traffic lights. A junction’s traffic lights will be
represented as an enumeration indicating that incoming vehicles are able to proceed to outgoing lanes
A, B or C, depending on the junction’s number of outgoing lanes. A junction will modify the runtime
state of its traffic lights by cycling through the outgoing lanes available to the junction. Each outgoing
lane should be navigable for a parameterised duration, allowing the distribution of traffic flow to be
controlled by the application’s configuration.

The implementation of junctions within the Fluid framework is complicated by two restrictions.
The first restriction is due to component instances only having immutable access to the root names-
pace, as described in Section 3.2.2. Consequently, vehicle instances cannot be passed between junctions
and lanes directly, but must instead be moved using the moveInstance function provided by the Fluid
framework’s System instance. This limitation presents two possible ways of moving vehicles, based

on push and pull semantics.

e The push method would rely on junctions to pass vehicle instances to outgoing lanes using the
movelInstance function. In order to facilitate this, each junction would require the paths of its
outgoing lane instances as part of its configuration. Junctions should also inform outgoing lanes
of any added vehicles, and so lanes must provide a vehicleAdded function that may be called

by junction instances.

e The pull method would be based on junctions emitting a takeVehicle event indicating that a
vehicle with a given id must be moved to an outgoing lane. An outgoing lane would subscribe

to and subsequently receive the event, and invoke the moveInstance function with the vehicle

108

O 00~ U WD —

Listing 3.3: The specification document for the UpdateSimulationComponent component.

<?xml version="1.0" encoding="utf-8"7>
<Component id="UpdateSimulationComponent"
location="X:\TrafficSimComponents\UpdateSimulationComponent.dll"
xmlns:xsi="http://wuw.w3.0rg/2001/XMLSchema-instance"
xmins="fluid_namespace"
xsitschemaLocation="fluid_namespace
X:\libraries\fluid\fluid\schema\component_specification.xsd">

<Exports>
<Event id="onUpdate">
<Type>
<Payload xsi:type="PrimitiveType" typename="Float"'/>
</Type>
</Event>
</Exports>
<Imports>
<Event id="onUpdate">

<Type>
<Payload xsi:type="PrimitiveType" typename="Nil"/>
</Type>
</Event>
<Function id="stopApplication">
<Type xsi:type ="FunctionTypeNode">

<ReturnType xsi:type="PrimitiveType" typename="Nil"/>
<Parameters/>
</Type>
</Function>
</Imports>
<Configuration>

<Value id="stopAtFrame"><!—— ~! == NEVERSTOP ——>
<Type xsi:type="PrimitiveType" typename="Integer"/>
</Value>

<Value id="frameDelta">
<Type xsi:type="PrimitiveType" typename="Float" />
</Value>
</Configuration>
</Component>

id in order to take ownership of it.

The second limitation of a Fluid based approach is that component specifications must declare
all provided exports and contextual dependencies individually and explicitly so that they may be
validated against the application configuration. For instance, a junction with N incoming lanes and M
outgoing lanes must explicitly describe N connections for the pull method in order to subscribe to N
takeVehicle events, or M connections for the push method in order to be able to call M vehicleAdded
functions.

In addition, each enumeration of incoming or outgoing lanes would require its own component
implementation and specification. The pull method would require N distinct junction implementations
in order to subscribe to N event sources, but would allow for any number of outgoing lanes. Meanwhile,
the push method described above would require M distinct junction implementations to support M
outgoing lanes, but would allow for any number of incoming lanes. Finally, event connections in the
Fluid framework are described using the path to the OODDP instance publishing the event, rather
than relying on a global message broadcast system.

Due to the above limitations of the design and implementation of the Fluid framework, the traffic

simulation application makes use of the push method of passing vehicles between lanes and junction

109

instances, in order to avoid too many explicit paths in the application configuration. An improved
event system based on event types and global event broadcast would support more efficient event
subscriptions and application configurations.

The traffic network shown in Figure 3.9 requires junctions with one, two and three outgoing
lanes. Consequently, three junction components have been implemented, and named NtoMVehi-
cleManagerComponent, where M is replaced with 1, 2 or 3 according to the number of outgoing
lanes supported by each component implementation. Listing 3.4 gives the specification for the
Nto3VehicleManagerComponent. The NtolVehicleManagerComponent and
Nto2VehicleManagerComponent are similarly specified, except that the import and configuration ele-
ments for lanes B and C are not present in the specification for the Nto1VehicleManagerComponent,
while those for lane C are not present in the specification for the Nto2VehicleManagerComponent.

Nto3VehicleManagerComponent exports the handoverVehicle function, which allows incoming
lanes to inform the junction that a vehicle instance has been added. handoverVehicle takes the
id of the vehicle added as its single parameter. The isSpaceAvailable returns whether the junc-
tion is able to receive an incoming vehicle. spaceAvailableOnOutgoingA, B and C are imported to
allow the junction to query its outgoing lanes to see if a vehicle can currently be passed to them.
The spaceAvailableOnOutgoing functions should be passed to the isSpaceAvailable exposures of
the junction’s outgoing lanes. handoverVehicleToOtherA, plus its B and C equivalents, are also im-
ported by Nto3VehicleManagerComponent. These functions should be bound to the handoverVehicle
functions exported by the junction’s three outgoing lanes, and allow the junction to inform these
lanes that it has passed a vehicle to it. handoverVehicleToOtherA also imports a function named
moveVehicle, which must be bound to the moveInstance function exposed by the Fluid frame-
work’s System instance. moveVehicle takes two parameters: the first is the relative or absolute
path of where to move a vehicle instance from, and the second is the path of where to move ve-
hicle to. Finally, Nto3VehicleManagerComponent immports the onUpdate event as exposed by the
UpdateSimulationComponent described above.

The configuration of Nto3VehicleManagerComponent instances must include the junction’s posi-
tion in two-dimensional Euclidean space so that the junction may be rendered correctly. Meanwhile,
the outgoingInstancePathA value, along with its B and C versions, provide the absolute or relative
paths for outgoing lane instances. Although the paths for outgoing lanes could be more conveniently
accessed from the list of imported functions, the Fluid framework restricts access to all but the
Configuration section of OODDP descriptions during component instantiation, and so the infor-
mation must be duplicated. switchLanesAtFrame instructs the junction to cycle its currently active

outgoing lane after a given number of time frames.

110

Listing 3.4: The component specification for the Nto3VehicleManagerComponent component.

<Exports>
<Function id="handoverVehicle">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Nil"/>
<Parameters><Parameter xsi:type="PrimitiveType" typename="String"/></Parameters>
</Type>
</Function>
<Function id="isSpaceAvailable">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Boolean"/>
<Parameters/>
</Type>
</Function>
</Exports>
<Imports>
<Function id="spaceAvailableOnOutgoingh">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Boolean"/>
<Parameters />
</ Type>
</Function>
<Function id="spaceAvailableOnOutgoingB">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Boolean"/>
<Parameters />

</Type>

</Function>

<Function id="spaceAvailableOnOutgoingC">
<Type>

<ReturnType xsi:type="PrimitiveType" typename="Boolean"/>
<Parameters />
</Type>
</Function>
<Function id="handoverVehicleToOtherA">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Nil"/>
<Parameters><Parameter xsi:type="PrimitiveType" typename="String"/></Parameters>
</ Type>
</Function>
<Function id="handoverVehicleToOtherB">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Nil"/>
<Parameters><Parameter xsi:type="PrimitiveType" typename="String"/></Parameters>
</Type>
</Function>
<Function id="handoverVehicleToOtherC">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Nil"/>
<Parameters><Parameter xsi:type="PrimitiveType" (ypename="String"/></Parameters>
</Type>
</Function>
<Function id="moveVehicle">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Boolean"/>
<Parameters>
<Parameter xsi:type="PrimitiveType" typename="String"/>
<Parameter xsi:type="PrimitiveType" typename="String"/>
</Parameters>
</Type>
</Function>
<Event id="onUpdate“>
<Type><Payload xsi:type="PrimitiveType" typename="Float"/></Type>
</Event>
<Event id="onRender ">
<Type><Payload xsiitype="PrimitiveType" typename="Nil"/></Type>
</Event>
</Imports>
<Configuration>
<Value id="position">
<Type xsi:type="SequenceType" >
<Type xsi:type="PrimitiveType” typename="Float"/>
</Type>
</Value>
<Value id="switchLanesAtFrame">
<Type xsi:type="PrimitiveType” typename="Float"/>
</Value>
<Value id="outgoinglnstancePathA">
<Type xsi:type="PrimitiveType" typename="String"/>
</Value>
<Value id="outgoinglnstancePathB">
<Type xsi:type="PrimitiveType" typename="String"/>
</Value>
<Value id="outgoingInstancePathC">
<Type xsi:type="PrimitiveType"” typename="String"/>
</Value>
</Configuration>

ey
e
-

Lane behaviour In a similar way to junctions, each lane is modelled as an OODDP instance with
a VehicleLaneComponent providing its runtime behaviour. Each lane acts as a container for vehicle
instances, with VehicleLaneComponent accessing individual vehicles via its concept of self. A lane’s
response to an UpdateSimulationComponent update event is to iterate through the vehicles contained
by its enclosing instance, incrementing each vehicle’s position. Vehicles are updated in order, starting
with the vehicle furthest along the lane and until the rearmost vehicle is processed. The position of
each vehicle is incremented according to the current time scale, although the lane must also maintain
a given inter-vehicle distance. When a vehicle reaches the end of the lane, VehicleLaneComponent
passes the vehicle to its outgoing junction.

When considering how lanes are to be connected to incoming and outgoing junction instances, the
same push and pull options as described above are available. Lanes may either push vehicle instances
to their outgoing junctions, or pull vehicles from their incoming junctions in response to an event.
In this case, the lanes in the traffic simulation will use push semantics in order to remain consistent
with the behaviour of junctions. The specification document for the VehicleLaneComponent given
in Listing 3.5 is subsequently similar to that of a junction with one outgoing lane. However, lane
components require two additional elements in their configurations, providing the two dimensional
position of its incoming and outgoing junctions. These positions are used to correctly render the lane

as connecting the two junctions together.

Vehicle behaviour As described above, the vehicles in the traffic simulation do not exhibit any
complex behaviour of their own. Consequently, they do not require a component providing runtime
behaviour in response to an UpdateSimulationComponent update event. Each vehicle object is rep-
resented by an OODDP instance, which includes the vehicle’s diffuse color as a nested Value in order
to vary vehicle appearance during simulation visualisation. Vehicle instances are created at runtime

by vehicle sinks, as described below.

Vehicle sources and sinks While the junctions and lanes in the traffic network are collectively
responsible for the movement of vehicles, the traffic system also requires a method for creating vehicle
instances and removing those leaving the simulated area.

The vehicle source component is responsible for creating vehicle instances. A vehicle source
is similar to a junction with no incoming lanes and a single outgoing lane. In response to an
UpdateSimulationComponent update event, a vehicle source will create a single vehicle instance and
pass that instance to its outgoing lane.

The vehicle sink component is responsible for the destruction of vehicle instances and thereby

removing them from the traffic simulation. A vehicle source is similar to a junction with one incoming

112

Listing 3.5: The component specification for the VehicleLaneComponent component.

W oo =1y Ut b WY —

pS

v Oy Ov Ot Ut

@~ ;L

<Exports>
<Function id="handoverVehicle">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Nil"/>
<Parameters><Parameter xsi:type="PrimitiveType" typename="String"/></Parameters>
</Type>
</Function>
<Function id="isSpaceAvailable">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Boolean"/>
<Parameters />
</Type>
</Function>
</Exports>
<Imports>
<Function id="spaceAvailableOnOutgoing">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Boolean"/>
<Parameters />
</ Type>
</Function>
<Function id="handoverVehicleToOther">
<Type>
<ReturnType xsi:type="PrimitiveType" typename="Nil"/>
<Parameters><Parameter xsi:type="PrimitiveType" typename="String"/></Parameters>

</Type>

</Function>

<Function id="moveVehicle">
<Type>

<ReturnType xsi:type="PrimitiveType" typename="Boolean"/>
<Parameters>
<Parameter xsi:type="PrimitiveType" typename="String"/>
<Parameter xsi:type="PrimitiveType" typename="String"/>
</Parameters>
</Type>
</Function>
<Event id="onUpdate">
<Type><Payload xsi:type="PrimitiveType" typename="Float"/></Type>
</ Event>
<Event id="onRender ">
<Type><Payload xsi:type="PrimitiveType" typename="Nil"/></Type>
</Event>
</Imports>
<Configuration>
<Value id="incomingInstancePosition">
<Type xsi:type="SequenceType">
<Type xsi:type="PrimitiveType" typename="Float"/>
</ Type>
</ Value>
<Value id="outgoingInstancePosition">
<Type xsi:type="SequenceType">
<Type xsi:type="PrimitiveType” typename="Float"/>
</Type>
</Value>
<Value id="absoluteQutgoingInstancePath">
<Type xsi:type="PrimitiveType" typename="String"/>
</ Value>
</Configuration>

113

lane and no outgoing lanes. When an incoming lane pushes a vehicle instance onto a vehicle sink, the

vehicle sink will immediately destroy the vehicle instance.

Visualisation The OpenGLContextComponent provides support for the traffic simulation’s runtime
visualisation by creating and maintaining a window and rendering surface that may receive rendering
instructions via the OpenGL rendering API. The OpenGLContextComponent also encapsulates essential
rendering behaviours, such as placing the viewpoint, allowing the traffic simulation’s constituent parts
to draw themselves during the current time frame, and clearing the window ready for the next time
frame. In order to synchronise the runtime behaviour of the traffic simulation with its visualisation, the
OpenGLContextComponent subscribes to the UpdateSimulationComponent update event, and emits a
render event each time frame. Visible traffic system elements are required to subscribe to the render
event, and respond by calling appropriate OpenGL functions so that their visual representations are
drawn.

Listing 3.6 gives the component specification document for the OpenGLContextComponent. Lines 2
and 7 respectively export the OpenGLContextComponent onRender event and import the
UpdateSimulationComponent onUpdate event as discussed above. The OpenGLContextComponent
also imports the stopApplication function exported by UpdateSimulationComponent in order to
allow users to terminate the traffic simulation by closing the rendering window, as shown by Line 12.

Lines 20, 25 and 30 in the OpenGLContextComponent configuration allow the visualisation’s view-
point to be set, with value names and types corresponding to the parameters of the GLUT gluLookAt
function!”. position is the 3D Euclidean position of the virtual camera, while lookAt gives the
3D position of what is being viewed. upVector is a normalised 3D vector representing the upward

orientation of the camera'!.

3.3.3 Application Configuration

The Fluid traffic simulation’s application configuration consists of over 1,000 lines of XML. Sec-
tion 3.3.3 will describe the most relevant parts of the application configuration and highlight areas for
further discussion. Note that isSpaceAvailable and spaceAvailableOnOutgoing connections have
been removed in order to improve the clarity of the following discussion.

Listing 3.7 provides the traffic simulation’s OODDP Lane type definition. The imports speci-
fied as part of Listing 3.7 must match those of the VehicleLaneComponent component specifica-

tion, as given in Listing 3.5. The Lane type connects the Fluid System instance’s movelnstance

10The Graphics Library Utility Toolkit (GLUT) provides a number of extensions to the functionality provided by the
OpenGL API, and is often distributed alongside the OpenGL library.

"The ‘up’ vector is typically set to { 0, 1, 0 } in order to coincide with the positive Y axis, which is commonly
associated with the vertical direction in 3D graphics.

114

WO~ U B Wbl

Listing 3.6: The component specification for the OpenGLContextComponent component.

<Exports>
<Event id="onRender">
<Type><Payload xsi:type="PrimitiveType" typename="Nil"/></Type>
</Event>
</Exports>
<Imports>
<Event id="onUpdate">
<Type>
<Payload xsi:type="PrimitiveType" typename="Nil"/>
</Type>
</Event>
<Function id="stopApplication">
<Type xsi:type ="FunctionTypeNode">
<ReturnType xsi:type="PrimitiveType" typename="Nil"/>
<Parameters />
</Type>
</Function>
</Imports>
<Configuration>
<Value id="position">
<Type xsi:type="SequenceType">
<Type xsi:type="PrimitiveType" typename="Float" />
</Type>
</Value>
<Value id="lookAt">
<Type xsi:type="SequenceType">
<Type xsi:type="PrimitiveType" typename="Float" />
</Type>
</Value>
<Value id="upVector ">
<Type xsi:type="SequenceType">
<Type xsi:type="PrimitiveType" typename="Float" />
</Type>
</Value>
</Configuration>

function to the VehicleLaneComponent moveVehicle import. The UpdateSimulationComponent
onUpdate event and the OpenGLContextComponent onRender event are also imported, so that the
VehicleLaneComponent will be informed of time frame updates and when to render its visual repre-
sentation.

As the Lane type is the base OODDP type for all lane instances used to define the traffic network,
lane instances will not have to form these basic connections individually, but will instead inherit
them from the base type. Each lane instance will provide the position of its incoming and outgoing
network nodes for visualisation purposes. Lane instances are also required to define their connectivity
to vehicle sources, vehicle sinks and junctions as discussed below.

Listing 3.8 gives the OODDP type description for the 3Way type, which provides the base class
for all junctions with N incoming lanes and 3 outgoing lanes. The type description in Listing 3.8
must match the specification given in Listing 3.4. The 3Way type includes the same subscriptions to
movelnstance, onUpdate and onRender as described for the Lane type. However, the 3Way type is also
able to stipulate the paths for its handoverVehicleToOther functions and outgoingInstancePath
configurations for lanes A, B, and C. These topological references are allowed here because of the
way in which junction and lane instances are arranged. As shown in Listing 3.9 and Figure 3.10b,

each junction instance contains the definition of its outgoing lanes as nested OODDP instances. The

WO~ UL W —

relationship between junctions and their outgoing lanes is consequently fixed, and the relationships
may be described as part of the base OODDP types for 1, 2 and 3 way junctions.

Listing 3.9 provides the OODDP instance description for node b in the traffic network. As node b
is a junction with 3 outgoing lanes, its instance description includes the 3Way type as its parent, and
will subsequently inherit, override and extend the description given in Listing 3.8.

Despite inheriting a number of XML elements from the Lane and 3Way parent types, the OODDP
instance description given in Listing 3.9 is still unnecessarily verbose. The length of the OODDP
instance description for node b is mainly due to the need to provide both type information and data
for values. In particular, each 2D position given for lanes and junctions requires 10 lines of XML. The
expressiveness of Fluid’s composition language could be improved by allowing regular patterns to be
defined and reused. For example, a 2DPosition could be defined as the sequence of two floating point

numbers, and the 2D position for node b could subsequently be given as follows:

<2DPosition>
<Data>
<Float>5.0</Float>
<Float>0.0</Float>
</Data>
</2DPosition>

OODDP type and instance descriptions could be further improved by allowing component instances
to access the entirety of such definitions during their instantiation. This change to Fluid’s component
model would allow lane instances to reuse the outgoing junction path given in the
handoverVehicleToOther function import, avoiding the need to provide the path again as part of

the lane’s configuration.

3.3.4 Fluid Application Execution

Figure 3.11 shows the runtime operations of the Fluid executable when running the traffic simulation

example. The illustration given by Figure 3.11 is based on the description of the Fluid executable

Listing 3.7: The OODDP description for a Lane type in the traffic simulation.

<Type id="Lane">
<Component id="vehicleManager" type="VehicleLaneComponent'>
<Imports>
<Event id="onUpdate™
exportedEvent="root/SimulationControl /updater/onUpdate" />
<Event id="onRender"
exportedEvent="root/SimulationControl/0penGLRenderer/onRender" />
<Function id="moveVehicle"
exportedFunction="root/system/namespaceManagement /movelnstance" />
</Imports>
<Configuration/>
</Component>
</Type>

116

BoRNv IS Be N S I N

=0

—-I VehicEeLaneComponent]
=

| faneC |

-—{ VehicleLaneComponent]

0

(2) (b)

Figure 3.10: Two views of the 3 way junction at node b from F igure 3.9. (a) shows the junction’s
topology from Figure 3.9, while (b) illustrates the runtime structure of the OQODDP instances. Lines
with arrows in (b) show the direction of handoverVehicleToOther function connections.

Listing 3.8: The OODDP description for a Junction type with N incoming lanes and 3 outgoing lanes.

<Type id="3Way">
<Component id="vehicleManager" type="Nto3VehicleManagerComponent ">
<lmports>
<Event id="onUpdate"
exportedEvent="root/SimulationControl/updater/onUpdate" />
<Event id="onRender"

expc)rt,edEvent,=”toot/SimulationControl/OpenCLRenderer/onRender"/>
<Function id="moveVehicle”
export,edI’unct,ion::”root/system/namespaceManagement/movelnstance"/>
<Function id="handoverVehicleToOtherA"
exporLedFunct,ion:"laneA/vehicleManager/handoverVehicle"/>
<Function id="handoverVehicleToOtherB"
exportedFunction="laneB/vehicleManager/handoverVehicle" />

<Function id="handoverVehicleToQtherC"
exportedFuncLion:"laneC/vehicleHanager/handoverVehicle"/>
</Imports>
<Configuration>
<Value id="outgoinglnstancePathA" xsi:type="PrimitiveValue">
<Type typename="String"/><Data><String>laneA</String></Data>
</Value>
<Value id="outgoinglnstancePathB" xsi:type="RrimitiveValue">
<Type typename="String" /><Data><String>laneB</String></Data>
</Value>
<Value id="outgoinglnstancePathC" xsi:type="PrimitiveValue">
<Type typename="String"/><Data><String>laneC</String></Data>
</Value>
</Configuration>
</Cormponent>
</Type>

117

OO0~ O R W=

Listing 3.9: The OODDP description for a Junction instance with N incoming lanes and 3 outgoing

lanes. Some lines have been removed for clarity.

<Instance id="b" parent="3Way">
<Component id="vehicleManager" type="Nto3VehicleManagerComponent">
<Imports />
<Configuration>
<Value id="position” xsi:type="SequenceValue">
<Type>
<Type xsi:type="PrimitiveType" typename="Float"/>
<Type xsi:type="PrimitiveType" typename="Float"/>
</Type>
<Data>
<Datum xsi:type="PrimitiveData">XFloat>5.0</Float></Datum>
<Datum xsi:type="PrimitiveData"><Float>0.0</Float></Datum>

</Data>
</Value>
</Configuration>
</Component>
<Instance id="laneA" parent="root/trafficSim/Lane">
<Component id="vehicleManager" type="VehiclelLaneComponent ">

<Imports>
<Function id="handoverVehicleToOther™
exportedFunction="root/trafficSim/c/consumer/handoverVehicle"/>
</Imports>
<Configuration>
<Value id="incomingInstancePosition" xsi:type="SequenceValue">
<Type>
<Type xsi:type="PrimitiveType" typename="Float"/>
<Type xsi:type="PrimitiveType" typename="Float"/>
</Type>
<Data>
<Datum xsi:type="PrimitiveData"><Float>5.0</Float></Datum>
<Datum xsi:type="PrimitiveData"><Float>0.0</Float></Datum>
</Data>
</ Value>
<Value id="outgoingInstancePosition” xsi:type="SequenceValue">
<Type>
<Type xsi:type="PrimitiveType" typename="Float"/>
<Type xsi:type="PrimitiveType" typename="Float"/>
</ Type>
<Data>
<Datum xsi:type="PrimitiveData"><Float>10.0</Float></Datum>
<Datum xsi:type="PrimitiveData'"><Float> 0.0</Float></Datum>
</Data>
</Value>
<Value id="absolutelutgoingInstancePath" xsi:lype="PrimitiveValue">
<Type typename="String"/>
<Data><String>root/trafficSim/c</String></Data>
</ Value>
</Configuration>
</Component>
</Instance>
<Instance id="laneB" parent="root/trafficSim/Lane">
<l— Contents are similar to those for laneA (removed for clarily) —>
</Instance>
<Instance id="laneC" parent="root/trafficSim/Lane">
<!— Contents are similar to those for laneA (removed for clarity) ——>
</lInstance>
</Instance>

118

given in Section 3.2.4, but with concrete references to elements of the traffic system example described

above.

3.3.5 Results

When executed, the traffic simulation described above operates at interactive frame rates. Fig-
ures 3.12a, 3.12b and 3.12c¢ show the visualisation produced by time frames 500, 1000 and 1500
with a frame delta of 0.1 during a single execution of the traffic simulation. Note that the traffic
network becomes congested due to the high density of traffic.

The traffic network shown in Figures 3.13a, 3.13b and 3.13 has a higher traffic light switching
frequency for both 2Way and 3Way junctions. The traffic is subsequently more dispersed, and vehicles

are able to find their way to vehicle sinks without the congestion seen in Figure 3.12.

3.3.6 Critical Evaluation

Section 3.3 describes the successful application of the Fluid framework to model a complete albeit
simple traffic simulation. As shown in Section 3.3.5, the Fluid application satisfies the behaviour
described in Section 3.3.1. However, as discussed throughout sections 3.3.2, and 3.3.3, the development
of the traffic simulation example has not been trivial, and a number of limitations of the Fluid
framework have been highlighted.

The difficulties encountered when designing and implementing the traffic simulation are partly due
to restrictions and limitations of the Fluid framework itself. Certain aspects of Fluid’s component
model improve system robustness by reducing the flexibility available to component implementa-
tions. However, such restrictions have further reaching effects on Fluid’s composition language and
the OODDP concepts it supports. Furthermore, the design of abstractions supporting component
topologies could be improved to enhance the expressiveness of Fluid application configurations. An
event system based on message broadcast, rather than explicitly subscribing to the event publisher,
would also make inter-component connections more flexible to change. Finally, the use of a declarative
XML based composition language has resulted in component specifications and application configura-
tions that are overly verbose and unclear. If the Fluid framework is to continue making use of XML
based technologies, then there is an obvious requirement for user friendly editing tools or higher level
abstractions supported by Fluid’s composition language.

Section 3.3.3 has demonstrated the use of OODDP concepts and inheritance manipulations in or-
der to improve the expressiveness of XML based application configurations. Listings 3.8, 3.7 and 3.9
together illustrate how OODDP can support an object oriented type system making use of inheritance

relationships to reuse fundamental definitions in derived instantiations. While the application config-

119

Enter . Create Fluid
Fluid Executable B> Parse Command Line Framework

The following OODDP types are introduced: Lane, -
VehicleSourceType, VehicleSinkType, 1Way, 2Way, and
3Way. OODDP instances for SimulationControl;
OpenGLRenderer and junctions a to k are created an
their runtime representations are entered into the Nam ing
System. OODDP instantiation resuits in component
instances being created, and connections being formed.

VehicleSinkComponent.
Nto1VehicleManagerComponent
NNto2VehicleManagerComponent.

Nto3VehicleManagerComponent .

VehicleLaneComponent

0cT

Register Components

l: - The AppﬁcationLoopComponent,
- NamespaceAccessComponent and

Parse Application Deploy System

Description _ Instance /',NamgspacéManagementComponent are
E— E—— S —— created.and form part of the Fluid
: g K’ instance. -
{ while(appLoopComponent—>isRunning()) Framework’s System instance
{ appLoopComponent—>triggerUpdate();
}
The UpdateSimulationComponent sends an
Enter . onUpdate event with a scaled time frame to
Application Loop : its subscribers, which update their runtime
Simulation state accordingly. :
running
Simulation L
terminated '
fmeeemeceaneacaan Seemeenaan,
H H
H H
N W e N . e A2
. Lanes Vehicle Vehicle Sinks] Junctions of OpenGLContextComponent:
H Sources all types onRender()
[TN AT TN H
H ' H : ' '
,,,,,, N e : H - 4

Vehicles The OpenGLContextComponent responds

to the UpdateSimulationComponent's
onUpdate event by sending an onRender
event to its subscribers, which send their
v visual representations to the OpenGL APj).

Destroy Root Destroy Fluid Exit Fiuid Executable
Namespace Framework

Figure 3.11: An overview of the Fluid component executable’s runtime operation in the context of
the traffic simulation as described in Section 3.3. Solid lines with closed arrows show the high level
control flow of the Fluid executable, while dotted lines with open arrows indicate event propagation.

Vehicle behaviour
and visualisation is
provided by Lanes.

(a) (b) (c)

Figure 3.12: Screen shots taken at time frames 500, 1000 and 1500 of an execution of the traffic
simulation, showing network gridlock.

120

(a) (b) (c)

Figure 3.13: Screen shots taken at time frames 500, 1000 and 1500 of an execution of the traffic
simulation after making a small number of changes to the application configuration.

- uration file for the traffic simulation example may be overly long and difficult to understand, OODDP
has both reduced its length and improved the expressiveness of the concepts described. Moreover, the
availability of OODDP concepts has helped to manage the complexity of the traflic simulation’s design
and implementation, by allowing reusable concepts to be encapsu!ated, named and inherited as part
of a high level composition language. An application configuration based on OODDP abstractions
embodies a number of structures at varying scales of granularity, which may be éomprehended and
manipulated in a similar way to OO classes.

The successful application of OODDP in the traffic simulation example suggests that a composition
language incorporating additional levels of abstraction may be more powerful and expressive than
that supported by the Fluid framework’s current design and implementation. One goal would be to
approach the expressiveness and capabilities of modern integration languages such as Lua. A Lua
prototype of the traffic simulation producing the behaviour described in Section 3.3.1 was developed
before writing the Fluid implementation described in Sections 3.3.2 and 3.3.3. The Lua prototype was
casier to write, with a more flexible and capable implementation, and required fewer than 500 lines of

9
codel?.

3.4 Summary

This chapter has described the Fluid component framework, including the aims and motivations
leading to its development in Section 3.1, followed by relevant details of its design and implementation
in Section 3.2. Section 3.2.4 provides a complete ovefview of the Fluid framework’s runtime behaviour,
while Section 3.3 gives an example application.

The Fluid framework combines mainstream CBSD technologies with OODDP from the game

development field. The framework’s implementation incorporates a low level platform augmenting the

12The Lua prototype makes use of a third party library to provide OpenGL support.

121

features of the C++ language in order to provide a range of low level functionality including additional
type information, as well as standardised data representations, manipulation, and storage. Building
upon its lower tier, the framework’s middle tier supports and enforces Fluid’s component model. This
model defines what constitutes a Fluid component, as well as how components are to be instantiated,
parameterised, communicated with, and destroyed. The Fluid framework’s lower and middle tiers
thus constitute a component based approach for the C++ platform. Meanwhile, the framework’s
higher tier provides a range of high level abstractions for manipulating compositions, while focussing
on controlling component parameterisation via a number of OODDP concepts and operations.

The resulting development environment is consequently minimal, with component implementation
and specifications responsible for the definition of application functionality, appropriate interfaces,
and the topology of component deployments. The Fluid framework does not directly support the defi-
nition of geovisualisation or other spatiotemporal applications, as its implementation does not provide
interfaces or other abstractions related to a particular application domain. Instead, the Fluid frame-
work provides a fixed range of behaviours which collectively allow application descriptions to drive
the population of the naming system, the deployment and parameterisation of components, and the
propagation of function calls and events. The framework does not dictate the granularity, delimita-
tion or interface of application functionality, but is instead responsible for supporting the description,

instantiation, parameterisation and runtime operation of a wide range of Fluid applications.

The Fluid framework represents a vast improvement over its predecessor in terms of flexibility and
extensibility. However, the framework’s design does not remove all of the prototype’s limitations, and
aspects of its implementation may benefit from further improvement.

The Fluid framework retains reliance on implicit rules to define concepts provided by the combi-
nation of two or more components, although the framework is able to solve some cases using OODDP
representations. For example, in the Fluid prototype a visible scene object is defined by an OODDP
type or instance containing both geometry and appearance facet objects. In the Fluid framework, a
renderable could be represented by a Renderable OODDP type with an appropriate interface, with
derived types and instances providing custom implementations for the separate geometry and ap-
pearance concepts. During the application’s execution, runtime type information could be used to
select those OODDP instances deriving from the Renderable type, which could then be passed to an
appropriate component for rendering.

However, a Fluid application must still make use of an implied relationship in order to communicate
geometry to the render system, as Fluid’s standardisation of visible types requires that matrix and
vertex objects must be translated to Value manipulations. This problem may be solved by allowing

component specifications to define their own names for Value manipulations, and to introduce them

122

to the framework’s type system. For example, a Matrix4x4 type, described by an appropriate render
system component, could also be used by the Renderable type described above in order to explicitly
model an OpenGL matrix concept. The introduction of aliases would also facilitate more consistent
type checking between component implementations, and allow for a number of widely accepted data

representations to be built upon those natively supported by the Fluid framework.

Further limitations are introduced as a result of the rapid design and development of the Fluid
framework; indeed, the Fluid framework’s current incarnation may be considered a prototype or
proof of concept focussing on the combination of CBSD and OODDP technologies. Consequently,
much of the framework’s implementation provides the required functionality, but may not represent
the optimal solution. Furthermore, the framework’s design does not consider problems such as the
distributed deployment of components, nor their runtime operation over multiple threads of execution.

A number of errors may also exist in the framework’s current implementation, limiting its use
in practice. For example, the requirement for runtime manipulation and adaptation of component
topologies was introduced relatively late in the development process, and was not considered during
the initial design of the framework’s lower level tiers. Consequently, function and event bindings do
not migrate consistently when moving OODDP instances from one location in the naming system to
another. It is expected that such limitations can be removed during the subsequent maintenance, and
improvement of the framework’s implementation as the Fluid project matures.

Finally, a number of limitations of the Fluid framework are due to the C4-+ platform. As discussed
in Section 3.2.1, the development of the framework’s lower tiers involved introducing a range of
functionality that already exists in more appropriate languages and platforms. For example, the
NET framework supports a number of powerful development languages such as Cff, includes support
for a deployment concept in the form of assemblies, and is particularly suited to CBSD. Modern
languages such as Java and Cf are further aided by features such as reflection, code generation, and
the use of attributes, which allow the use of attribute oriented programming [49]. It is speculated
that a number of improvements may be made by adopting a higher level programming language and

development platform in future developments of the Fluid framework.

The initial inception and early design of the Fluid framework highlighted a number of research
questions regarding the validity, applicability, flexibility and expressiveness of a CBSD technology
incorporating an OODDP approach. As described throughout Sections 3.2.2 and 3.2.3, and further
demonstrated in Section 3.3, OODDP concepts and their manipulations have been successfully com-
bined with CBSD in the Fluid framework.

The resulting system maintains the flexibility and expressiveness of OODDP, supporting a range

123

of high level concepts with which to define and manipulate a number of highly configurable, small
scale components with data driven behaviours. However, the Fluid framework also broadens the
application of data driven programming, to include the selection and topology of computational en-
capsulations. The Fluid project thus incorporates the principles of CBSD, allowing applications to be
developed using independently developed binary components that may be deployed, interconnected

and parameterised in order to form a variety of Fluid applications.

124

Chapter 4

Contextualising the Fluid

Framework

The evolution of the Fluid framework, from its prototypical OO framework to its current incarnation
as a component framework and composition language, is the result of a multidisciplinary research
project spanning several fields as described in Chapter 2. Figufe 4.1, taken from Chapter 2, illustrates
these contributing fields.

This chapter places the work carried out in this research within the context of these surrounding
fields; Sections 4.1, 4.2, and 4.3 highlight the contributions made to the role of data in applications,

to software development methodologies, and to game development technologies respectively.

Figure 4.1: A Venn diagram including the domains contributing to the project.

4.1 Data in Applications

The evolving relationship between application data and software has reached a point where empowered
data formats are able to drive, determine, or significantly influence the runtime behaviour of a wide
range of application functionality. The resulting data driven paradigm is the focus of DDDAS, where
measurement data and software behaviour form a synergistic cycle, as illustrated by Figure 4.2a.
The Fluid project does not aim to create a complete GIS or DDDAS solution: GIS and DDDAS are
neither small nor simple software applications, and their successful development typically involves the
multidisciplinary collaboration of numerous individuals.

Instead, the Fluid project embodies the amalgamation of a range of technologies including GIS,
DDDAS, OODDP and CBSD, in order to form a novel type of data driven manipulation and function-
ality. Although it has not been possible to integrate Fluid with any new or existing DDDAS platforms,
one can speculate the role of the Fluid framework as part of a Fluid-based DDDAS application. As
illustrated by Figure 4.2b, a Fluid-based DDDAS would use measurement data to drive the creation
or adaptation of one or more Fluid applications, which in turn provide the DDDAS simulation.

The approach described here lies outside those techniques currently used to support dynamic
behaviour in DDDAS, which typically adjust their models by modifying parameter values according to
incoming data. Although the resulting systems are able to exhibit a range of data driven behaviour,
the capabilities of current DDDAS software remain static: parameterisation cannot introduce new
functionality, but is limited to changing the behaviour of existing code by directing control flow via
the manipulation of branch conditions or loop counters.

By contrast, a Fluid-based DDDAS could potentially facilitate the dynamic data driven modi-
fication of application capabilities and behaviour by incorporating a variety of OODDP types and
instances as part of its runtime model. A Fluid-based model would be open to the introduction of
new OODDP types and instances, including those derived from existing OODDP types, forming new
software structures with dynamically selected runtime capabilities. Fluid’s composition language al-
lows new OODDP types and instances to be introduced, via OODDP inheritance, by describing their
specialisation of existing types. Meanwhile, DDDAS can continue to parameterise existing function-
ality due to Fluid’s focus on software components with data driven behaviour. A Fluid-based model,
operating as part of a Fluid-based DDDAS, would thus support the dynamic modification of software
behaviour and capabilities at various scales of abstraction and granularity, by allowing configuration
data to drive the selection, interconnection and configuration of Fluid components.

A Fluid approach may not be suitable to all application domains of DDDAS; indeed, there are
areas where a Fluid-based DDDAS may be particularly effective, where DDDAS may gain partial

benefit from incorporating Fluid technologies, and where a Fluid approach may not be appropriate

126

Initial
Information

Initial

) : New - .
Information)| Information / Toiite
pdate and
Model ,‘/ / Manipulate
/ \ Update‘ ~ OODDP Model
Update{ Update and ’Update \ .
\ Manipulate \ } Update
\ / \ /
“~ Measurements Measurements -
(a) (b)

Figure 4.2: An illustration of the functionality available to DDDAS (a) and a speculated Fluid-based
DDDAS (b). Dashed lines in both (a) and (b) denote the synergistic feedback loop formed by DDDAS
measurement and simulation.

at all. This scale of applicability is described below with the use of some illustrative speculations:

Areas most suited to a Fluid-based DDDAS The Fluid approach described above has greatest
applicability to DDDAS focusing on discrete phenomena with varying individual attributes and
dynamic behaviour. Relevant examples include the evacuation of a nightclub fire as studied
by Chaturvedi et al: (19], the management of surface transportation systems in the work of
Fujimoto et al. [21], and informing emergency response systems using wireless phone signals as
seen in Madey et al. [133].

DDDAS in this category offer opportunities to incorporate Fluid’s OODDP software descriptions
at two levels: the first (micro) level consists of the description of the various elements constituting

the simulation, including elements such as nightclub patrons, vehicles and cell phone users;

meanwhile, the second (macro) level consists of the simulation software itself, including its
various responsibilities for receiving input, updating the simulation, and providing any required
outputs, which may include realtime visuellisdtions.

At the micro level, Fluid’s OODDP descriptions may be used to provide a range of individually
parameterised entities that collectively form a given simulation. For example, a wide variety
of nightclub patrons could be described and instantiated by first describing a default or base
‘person’ type and then providing individual characteristics as part of OODDP inheritance or
instantiation manipulations. Deeper OODDP inheritance hierarchies could be used to describe
vehicle types with distinct appearances and behaviours, leading to simulations populated with
a variety objects having closer correspondence to their real-world counterparts.

Meanwhile, Fluid’s component model allows components of base types to be exchanged with

127

overriding behaviour in their derived types, providing component interconnections remain valid.
The resulting configurations would exhibit polymorphic behaviour, allowing for example some
nightclub patrons to make use of an evacuation behaviour model as described by Helbing et

al. [134], while other patrons act independently or according to an alternative model.

At the macro level, simulation functionality could be changed by modifying those OODDP types
and instances used to form the simulation software. These OODDP software entities are likely
to be larger in scale than those used to populate the simulation, and will typically operate at
a higher level of abstraction. The current level of DDDAS adaptability could be achieved by
modifying the parameterisation of such types and instances via their exposed functions, events
and Value instances. However, a greater degree of change could be supported by modifying
existing OODDP instances or using OODDP inheritance manipulations to derive new instances
providing additional functionality. For example, a Fluid-based DDDAS could introduce OODDP
types providing support for additional data input, user interaction, new simulation management
strategies, or more realistic visualisation methods. Software behaviour introduced in this way
could be added to existing simulations through the instantiation of OODDP types, appropriate

event listeners and function bindings.

DDDAS focusing on discrete phenomena with varying individual attributes and dynamic be-
haviour are most appropriate targets for Fluid integration; indeed, there is a clear opportunity
for the use of OODDP types, instances and manipulations at varying levels of abstraction.
Furthermore, the use of OODDP inheritance appears most attractive where a range of related
scenarios are to be simulated (for example, variations of a nightclub’s architecture [19]). The
Fluid approach to this problem would be to describe each scenario as an OODDP instance
deriving from a common default case. Fluid’s support for OODDP inheritance manipulations
would allow each scenario to be described as nothing more than its variations from the default

template.

Areas partially suited to a Fluid-based DDDAS Many domains already benefit from dedicated
software solutions that are widely used, trusted, and accepted as standard. For example, areas
such as weather analysis and forecasting in the work of Plale et al. [135] and the analysis of
urban water distribution systems as studied by Mahinthakumar et al. [136] make use of a range
of software applications, middleware, and hardware devices, that form part of well established
solutions. These studies are unlikely to benefit from replacing their current solutions with a
novel approach based on the Fluid framework, as their micro-scale elements are often entirely

managed by dedicated libraries providing a range of specialised functionality.

128

However, one can speculate potential benefit from adopting a Fluid approach at the macro scale,
where existing solutions appear to be seeking additional support [136]. While domain-specific
solutions provide specialised low level behaviour in order to support data modelling, simula-
tion and analysis, a higher level Fluid approach could determine overall application control or
work flow. For example, a Fluid-based DDDAS would allow widespread changes to be made to
application parameterisation using OODDP inheritance manipulations. Furthermore, existing
OODDP instances could be exchanged with appropriately derived objects in order to modify
overall application functionality via polymorphism. The resulting DDDAS workflow would be
adaptable to changing requirements, for example including additional data processing or valida-

tion, incorporating additional measurements in order to determine measurement reliability.

Areas not particularly suited to a Fluid-based DDDAS While looking forward to the poten-
tial applications of Fluid within DDDAS, it is also important to acknowledge those areas where a
Fluid-based approach may not be suitable. For example, DDDAS modelling continuous phenom-

ena such as wildfires in the work of Douglas at al. [20] are not well suited to the OO paradigm

used by Fluid’s composition language, and often make use of dedicated mathematical libraries
to provide their lower level functionality. In certain cases, such as the management of water
contaminants as studied by Parashar et al. [137], the granularity of adaptation is unclear, and
the application of Fluid’s OODDP manipulations may be less straightforward. Furthermore,
overall application control flow may be necessarily simplistic, or too integrated into lower level
details to benefit from the application of Fluid manipulations at the macro scale. In such cases,
black box computational encapsulations provide the vast majority of application functionality,
and these are often tightly coupled with other software elements. Consequently, existing meth-
ods based on adjusting the parameterisation of mathematical models may be more appropriate

than a Fluid approach.

The Fluid framework contributes to the evolving role and capabilities of data in applications by
incorporating a high level declarative composition language making use of OODDP concepts and
manipulations. The Fluid project thus further empowers data by broadening the application of data
driven programming to CBSD. The Fluid framework may be used to define a variety of applications as
the composition of small scale components with data driven behaviour. The framework has potential
applications in many areas where data may be used to drive the deployment of computational encapsu-
lations, the structure of their instantiations, and the behaviour of their runtime execution. Section 4.1
has illustrated potential use of the Fluid framework by speculating a number of applications in the

context of DDDAS.

129

4.2 Software Development Methodologies

The work described here is related to a number of software development technologies and method-
ologies, many of which have inspired the development of the Fluid prototype and subsequently its
evolution to form the Fluid framework. Sections 4.2.1 through 4.2.3 place the Fluid framework and
its prototype within the context of surrounding software development methodologies and technolo-
gies, progressing from lower level abstractions through to higher level concepts. Section 4.2.1 begins
with an overview of how implementation languages, integration languages and platforms relate to this
work, while Section 4.2.2 describes links with other component-based technologies including composi-
tion languages and component frameworks. Finally, Section 4.2.3 distinguishes the Fluid project from
those concepts supported by ADLs, as well as considering the relevant features of certain software

development methodologies.

4.2.1 Implementation, integration and platforms

Many of the concepts forming the Fluid framework and its prototype can be found elsewhere in other
software development platforms. In a similar way, Fluid’s composition language shares certain aspects
with several implementation and integration languages. Indeed, the Fluid project as a whole has ben-
efitted from the influence of many implementation languages, integration languages and development
platforms in use today.

Popular implementation languages such as Cff and Java already support component oriented soft-
ware development, with language features such as standardised data representations, rich runtime
type information, reflection, introspection, and a unified concept for component deployment. Further-
more, these features are built upon by platforms such as the NET framework and JavaBeans, which
advocate a component based software development methodology. Such platforms typically provide
extensive support for the development of component software, often in the form of a wide range of
standard libraries and software components.

The Fluid framework evolved during the course of the project from an initial prototype written in
C++. In order to overcome some of the limitations of C++, certain aspects of the technology found
in more modern implementation languages have been reproduced in the framework’s lower tier. For
example, Fluid’s type system builds upon the type information exposed by C++ in order to support
a range of operations that both Cf and Java provide as part of the standard language. Furthermore,
while Fluid’s lower tier clearly reproduces the features provided by certain implementation languages,
the component model supported by its middle tier partially resembles the functionality supported

by higher level platforms. For example, both the .NET and JavaBeans platforms deliver a range of

operations for managing component lifetime and interconnection.

Retrospectively, migrating to the Cff language and the .NET framework before developing the Fluid
framework would have facilitated a more efficient development schedule and more capable implemen-
tation. Moreover, the .NET framework would have allowed certain parts of the Fluid prototype to
be reused as unmanaged code. A Fluid framework written in Cff would have had the full support of a
range of low level functionality, as well as a number of high level abstractions and standard operations
for developing, deploying, inspecting and managing components.

Migrating to a more suitable implementation language and supporting software platform would
have removed the need to develop certain parts of the Fluid framework’s functionality. However,
a number of the concepts supported by the framework’s lower, middle and higher tiers are more
abstract than those typically seen in implementation languages and OO frameworks, and have a
closer resemblance to the features of integration languages.

Fluid’s higher level abstractions have been strongly influenced by the Lua integration language.
For example, the namespace concept used to represent Fluid’s deployment space, and supported by
the framework’s lower tier, closely resembles the table construct that forms the basis of all Lua data
structures. In addition, the dynamic typing of Fluid’s Values is similarly based on the dynamically
typed variables that are characteristic of high level interpreted languages. Furthermore, the OODDP
inheritance mechanism supported by Fluid’s composition language is very similar to that found in
Lua, and many other integration languages providing pseudo-support for OO inheritance through the
use of prototypes’.

However, three main differences separate Fluid’s high level concepts from those found in integration

languages:

e The first difference is one of abstraction and granularity. Like Fluid, integration languages are
typically intended to incorporate concepts ranging from primitive data types to entire subsys-
tem encapsulations. However, the development environment provided by the Fluid framework
is much more coarsely grained than that supported by integration languages. Integration lan-
guages typically support a continuous range of imperative features with which to define appli-
cation functionality. These abstractions include variable and constant declarations, expressions
and statements, functions and procedures, objects, and other concepts such as Lua’s tables.
Meanwhile, Fluid offers a fixed enumeration of declarative concepts, namely values and their
manipulations, functions and events, components, and its OODDP abstractions. Unlike the con-
tinuous descriptions supported by integration languages, the functionality of Fluid applications

is delivered by its black-box components.

1 As opposed to integration languages with native OO support, such as Python.

131

e Fluid’s higher level concepts are further separated from integration languages such as Lua and
Python by the degree of flexibility they offer. Integration languages typically provide environ-
ments where flexibility is emphasised. To this end, integration languages are commonly imper-
ative programming languages that are both interpreted and dynamically typed. Furthermore,
such languages often incorporate high level encapsulations for data structures and algorithms,
higher order programming, and tend to provide abstractions for more complex concepts such as

multithreading, persistence and implementation deployment.

In contrast, Fluid gives relatively little control to individual computational elements. Rather
than focussing on flexibility, the Fluid framework must balance the flexibility of its higher level
representations, including its composition language, against the safety of Fluid applications as a
whole. For example, Fluid’s hierarchical naming system is partially based on Lua’s tables, which
remain both accessible and mutable to all parts of a given Lua script throughout its execution.
A Fluid application offering the same degree of flexibility would be open to modification by its
constituent components, and if a change were made, then the application’s runtime structure may
no longer reflect that described by the application’s initial description. A malicious component
could thereby introduce incorrect, inconsistent and potentially dangerous behaviour to a Fluid
application.

In order to provide additional security for Fluid applications, the Fluid framework validates
each component’s interactions with the framework against both its individual specification and
the current application description. Inconsistent interactions, such as attempting to form an
inter-component connection that does not appear in the component specification or application
description, will violate the component’s instantiation and thus prevent the Fluid application
from being formed. Furthermore, component implementations have limited access to, and con-
trol over, the Fluid framework’s naming system and its contents. The framework’s System
component provides immutable access to the naming system’s root node, as well as a number of
functions for creating, moving and removing namespaces, Values, OODDP types and OODDP
instances. The System component is responsible for ensuring that such modifications are valid,
and that the IFluid application remains in a consistent state once the requested changes are

made.

e The final difference between Fluid’s higher level concepts and integration languages is in the fun-
damental focus of their use. Integration languages are used to write scripts, typically making use
of an imperative or functional notation. Such scripts describe software behaviour as sequences
of statements, and are therefore synonymous with software programs. Although some scripts

may be used to initialise a software application, and may have some resemblance to application

132

data, such initialisations are applied by executing the script. Initialisation is therefore a side

effect of the runtime behaviour described by the script.

On the other hand, Fluid’s composition language describes the naming, topology and parame-
terisation of computational encapsulations using a declarative notation. Furthermore, the inher-
itance manipulations supported by Fluid’s OODDP implementation affect both the behavioural
and parameterisation aspects of the types and instances on which they act, but are ultimately

concerned with the manipulation of an application description’s configuration data.

4.2.2 Components

While certain aspects of the Fluid project can be related to lower level implementation and integration
technologies as described in Section 4.2.1, the project as a whole is more directly related to component
frameworks and composition languages. This section describes the relationship between the Fluid
framework and composition language, and a selection of the most relevant component technologies as

described in Section 2.2.3.

CoML The overall design of CoML was influential during the development of Fluid’s composition
language. CoML is similarly XML based, with a declarative syntax and supporting a connection-
oriented component model. In addition, the major elements of CoML are components, proper-
ties, functions and events, all of which have corresponding concepts in Fluid’s composition lan-
guage. However, Fluid does not incorporate all features found in CoML. For example, CoML’s
somewhat imperative elements, such as property access and modification, as well as function
calls and event triggering, were not included. Fluid’s composition language instead focusses on
the declarative description of components, their interconnections and configurations, and relies
on component implementations to encapsulate runtime behaviour. Although a more mature
version of the Fluid framework may incorporate imperative instructions, possibly via the use of
inline scripting as supported by BML, the effect of OODDP manipulations on such elements has

yet to be explored.

VISSION Despite its apparent support for component composition and configuration, VISSION’s
environment for component composition has a number of traits that clearly relate it to inte-
gration languages. For example, the methods used to expose DLL component properties are
very similar to those used to expose C++ functions to higher level languages including Lua

2

and Python®. Furthermore, VISSION’s composition language is similarly used as a language

environment for the integration of implementations: its metaclass concepts provide one-to-one

2For example, see LuaBind http://wuw.rasterbar.com/producte/luabind. html and Boost’s Python bindings http:
//wwu.boost.org/libs/python/doc/index.html.

mappings from component implementations to their interpreted counterparts. By contrast,
Fluid’s composition language supports higher level manipulations by hierarchically composing
its small scale, highly configurable components into an object oriented type system. The type
system supported by Fluid’s composition language exists at a higher level of abstraction than the
individual components, and the OODDP manipulations supported by the language are intended

to make widespread changes to application composition and configuration.

Contigra Contigra’s composition language has a very similar set of features to that supported by the
Fluid framework. However, the scope of the latter project is ultimately limited by its underlying
technologies. Much like the Fluid prototype, the current incarnation of Contigra is clearly
targeting the visualisation of simple virtual environments. Meanwhile, the current evolution
of the Fluid framework is intentionally more generalised, and is consequently able to apply its

OODDP manipulations to a much broader context of software components and applications.

ChefMaster ChefMaster is just one example of a range of composition frameworks advocating the
use of white or grey box components for the purpose of component adaptation. However, Fluid’s
emphasis on component customisation, along with the OODDP type system supported by its
composition language, aim to increase component adaptability and to bypass the need to break
the encapsulation of black box components. Furthermore, alternative methods for adapting
components have been proposed, many of which rely on wrapping component interfaces in order

to modify their external interfaces, provided functionality, and contextual requirements [116].

XCompose Although XCompose makes some use of XML for component specifications, much of
its composition language appears to build imperative features upon the declarative XQuery
language [138]. For example, XCompose’s merge and inline composition pattern templates
are written as sequences of XQuery statements that progressively form derived classes when
executed. Although XCompose thus includes support for OODDP inheritance, such manipula-
tions are exposed in the imperative language as functional operations, and require additional
parameterisation to handle special cases. Composition pattern templates thus lack the expres-
siveness afforded by Fluid’s composition language, where the inheritance relationship is part
of a declarative syntax, and the semantics of OODDP manipulations are encapsulated by the
Fluid framework. XCompose thus presents a lower level, more explicit, and less approachable

language to its users.

PICCOLA The use of forms in PICCOLA has some similarity to Fluid’s use of namespaces as a
deployment concept, although the former are more widely used in PICCOLA, and are not only

employed for deployment, but also take part in message passing, composition analysis, and other

134

operations. Although certain concepts in Fluid were influenced by Lua’s tables, PICCOLA’s

forms resemble them more closely.

There is a clear distinction between the Fluid framework, Fluid’s composition language, and
composition languages like PICCOLA. PICCOLA is an imperative, functional language, with
support for multiple architectural styles and a focus on composition analysis. Despite its im-
perative syntax, PICCOLA’s overall level of abstraction is much higher than that supported by
Fluid, which focusses on the expressive manipulation of software structure and configuration.
PICCOLA, and other languages with such a focus on higher level architectural issues, thus bridge
the boundary between composition languages focussing on the wiring of software components,

and ADLs intent on the description and analysis of software architecture.

VHD++ Despite its support for a wide range of high level concepts, many of which may be pa-
rameterised, the VHD++ framework does not make use of a data driven approach: there is
no emphasis on data driving behaviour®, and its composition lacks data manipulations such as
inheritance relationships. Although VHD++ clearly demonstrates the use of its composition
language to parameterise and compose both application software and content, the focus of such

compositions is the wiring of these various elements, and not the influence of runtime behaviour.

The Fluid framework and composition language provide an alternative component technology to
those discussed above. As is common among such technologies, the Fluid project bears a strong
resemblance to its predecessors. In most cases, a component technology will extend another with a
unique concept, relying on a proven approach to form the foundation for novel ideas. Meanwhile,
the most effective or commonly supported ideas become increasingly prolific until they are accepted
as cornerstones of the field. Consequently, almost all component models are based on the principles
of components, script and glue, while a wide variety of compositional notations are supported by
composition languages.

Fluid contributes to the evolution of CBSD by introducing a unique amalgamation of established
approach component technologies and OODDP. Although a selection of the technologies discussed
above include features and functionality overlapping those of the Fluid project, Fluid’s framework
and composition language maintain a unique approach to developing component based applications.
Fluid makes use of small scale, data driven computational encapsulations, and provides a composition

language supporting a range of OODDP definitions and manipulations.

3The references to data driven behaviour in [42] are in fact referring Lo event-based component connections and are
not related to use of the term date driven as used throughout this work.

4.2.3 Architecture and methodology

ADLs support the description of component based solutions at higher level of abstraction than the
composition languages discussed in Section 4.2.2, and often include support for more abstract concepts
allowing the definition of compositions, their manipulations and their analysis. Consequently, there
is little surprise to see OO inheritance relationship present in a number of ADLs, including C2 {139],
Rapide [140], and Darwin [141]. Indeed, the following listing provides an example from ACME [142]
demonstrating its use of OO inheritance to form a derived component type by inheriting, overriding,

and extending the various elements of a parent type in a similar way to Fluid’s OODDP manipulations.

Component Type FilterType =

{
Ports { stdin; stdout; };
Property throughput : int;
}s
Component Type UnixFilterType extends FilterType with
{
Port stderr;
Property implementationFile : String;
}s

There is a difference between the inheritance relationships expressed in ADLs such as ACME and
those supported by the Fluid framework and its composition language. The first, and perhaps most
prominent distinction is one of representation, particularly in the level of abstraction and granularity
supported. ADLs concentrate on the architectural level, focussing on large scale components often
representing concepts from the scale of objects to entire systems. Meanwhile, the type systems repre-
sented by ADLs are used to represent software architecture via component composition. Some of the
relationships seen in ADLs, such as association, composition and generalisation may be found in high
level notations such as UML 1.0, but ADLs also make widespread use of connectors including pipes,
streams, and message passing.

By contrast, the Fluid project concentrates on highly configurable, small scale components forming
partial fucets of software objects. Fluid’s facets are scaled up through incremental composition to the
level of OO classes, where they become subject to OO relationships such as inheritance, and may
be instantiated in order to form component applications. While ADLs are used to form software
architectures, Fluid’s composition language is used to form data driven software structures. Fluid’s
composition language and framework thus exhibit a lower level of abstraction than that supported
by ADLs: its composition language is used to form low level component relationships, and disregards

higher level architectural reasoning.

A further difference can be seen in the direction of information propagation throughout.the ap-
plication descriptions written using ADLs and Fluid’s composition language. In ADLs, information
is derived in a bottom up fashion: the atomic elements of ADLs are used to describe component
specifications and compositions, which are in turn glued together to describe software architectures.
Software architectures specified by ADLs are typically subjected to further analysis, which derives
information pertaining to composition correctness, the flow of data through a software architecture
during its execution, the quality of service that may be expected from its runtime behaviour, and so
on. Such non-functional attributes of software architectures are often central to the use of ADLs, and
their representation and analysis are commonly facilitated by ADL syntax and semantics.

On the other hand, the direction of information flow in Fluid compositions is intentionally top
down: Fluid’s composition language has been explicitly designed to provide an expressive environ-
ment for the composition and manipulation of small scale components and their parameterisations.
Meanwhile, the Fluid framework facilitates the propagation of high level descriptions down to a lower
level where data may drive the runtime behaviour of component implementations. From an alterna-
tive viewpoint, the lower tiers of the Fluid framework provide a deployment and intercommunication
space for a large number of finely grained data driven components. Fluid’s higher tiers, including
its composition language, are responsible for proving an expressive notation for making widespread
changes to application behaviour via data manipulations.

The Fluid framework makes use of a high level language and OODDP manipulations in order to
drive the construction of a software structure consisting of computation encapsulations at a lower
level of abstraction. In this way, Fluid bears some similarity to the MDSD approach, where high
level notations describing software design are incrementally processed in order to ultimately derive
corresponding implementations. Indeed, Fluid shares a focus on high level notations as seen in MDSD:
in the Fluid framework, application description, along with the OODDP concepts it describes, forms
part of the software structure and is used to determine overall application behaviour. Furthermore,
the process of constructing software structures from higher level notations is similar to the process
of code generation applied in model driven methodologies, particularly those constructing OO types
from XML [97].

However, a distinction between Fluid and MDSD c¢an be found in the overall direction of their
constituent processes. Processes in MDSD are typically top down, with no loops or feedback, and no
opportunity for lower level platform specific concepts to influence the higher level platform independent
models. In contrast, Fluid component implementations are able to affect the overall software structure
via naming system modifications. In addition, Fluid does not perform code generation, but instead

relies on a fixed factory pattern that does not involve the use of a compilation step.

137

Despite the differences between the MDSD methodology and the Fluid approach to software de-
velopment, there is clear potential for additional benefit to be introduced by using Fluid’s higher
level data descriptions to drive the generation of lower level implementations as well as their runtime
behaviour. This is supported by existing work demonstrating the combination of model driven and
component oriented technologies [55], and may be further facilitated by the use of metadata if a future
migration to languages such as Cf is undertaken [49]. The development of support for higher level
concepts above those currently in use by the Fluid framework is an interesting avenue for further
work.

While the high level behaviour of the Fluid framework forms links with MDSD, its use of small scale
components defining portions of a given object’s overall functionality also has some resemblance to
the aspect oriented (AO) methodology. Fluid’s small components could potentially be used to provide
cross-cutting behaviours such as logging or security, and subsequently integrated in to a variety of
OODDP types and instances. Due to their fine granularity, and their use to form more coarse and
abstract encapsulations, Fluid components may seem attractive as aspects that may be woven by
Fluid’s composition model.

Although the Fluid framework may appear to support a number of AO technologies, its design
and implementation have no native support for join point models. Fluid is therefore incapable of ex-
plicitly defining join points, pointcuts or the encapsulation of advice, although such concepts could be
supported via the use of an appropriate component specification, application description, and compo-
nent implementations, respectively. However, the resulting implementation would lose the semantics
associated with AO, and would instead resemble an OODDP component deployment rather than its
AO counterpart. Although the Fluid framework is not currently applicable to the AO methodology,
recent research [35] highlights potential techniques and benefits for the combination of CBSD and AO

technologies.

4.3 Computer Games Technology

Data driven programming, as seen in modern game technologies, was originally conceived as a means
by which static OO hierarchies written in low level languages such as C++ could be replaced with a
more dynamic type representation. The resulting data driven type systems could be easily modified
in response to the ever-changing requirements of game designers, without the need to refactor crys-
tallised class hierarchies. The increasing volumes and complexity of game content data has lead to

the prolification of data driven techniques, resulting in their widespread use today. Furthermore, the

data driven methodology within the game development field continues to mature, as evidenced by a

138

number of links with more mainstream CBSD concepts in more recent literature [95].

However, despite being widely used, and more recent associations with mainstream technologies,
data driven methodologies remain limited to the definition of game content. With the notable excep-
tion of Microsoft’s DirectX rendering API and its earlier input, sound and networking equivalents,
which have always been deployed as COM components, game developers do not currently employ
compornent based technologies in their game engines. The most likely reason for this is performance:
game engines are often designed to be as efficient as possible, with certain routines being optimised
in assembly code in order to take advantage of hardware-specific functionality. Furthermore, many of
today’s game engines are required to provide performance where it matters most, while application
flexibility is delivered by data driven techniques.

The Fluid framework’s incorporated OODDP technologies are similar to those used in the games
industry, as introduced in Section 2.3.1. However, their combination with CBSD from mainstream

computer science introduces a number of important distinctions, as discussed below.

Alex Duran allows the Fluid framework’s use of OODDP to be placed in the context of other
OODDP implementations. For example, it is clear that Fluid makes use of an object based
representation for its various OODDP abstractions, by supporting an explicit hierarchy between
OODDP objects and their constituent parts. In contrast, a component based representation?
reverses the ownership relationship present in Fluid by requiring leaf elements of the object
hierarchy to maintain a reference to their parent objects.

Fluid also supports abstractions for OODDP types, templates and instances, as well as QO
inheritance relationships between them. The Fluid framework’s OODDP representations form
part of its component model, and play a key role in its composition language.

Furthermore, Fluid components are able to form dependencies on other components by con-
necting the exported functionality of one component to the contextual requirements of another.
Fluid’s inter-component connections thus resemble the component requirements discussed by
Duran, albeit at a finer level of granularity. However, Fluid does not currently enforce com-
ponent exclusion, which requires that a component of a given type is not present as part of a
component topology.

The Fluid framework does not make a distinction between simple and complex components,
which encapsulate concepts at the scales of program state to behavioural ahstractions respec-
tively. Indeed, the Fluid framework is capable of incorporating components at a wide range of
scales, from single values supported by Value objects, through to more conventional components

corresponding to QO libraries.

“The term component based here refers to its use in OODDP rather than its use in computer science.

Duran also presents a number of concepts that are not supported by the Fluid framework, such
as the various optimisations available to OODDP implementations. However, such optimisations

may be introduced as the Fluid framework matures.

Scott Bilas Bilas’ system motivated the use of OODDP concepts as part of the Fluid prototype,
and greatly influenced its design and implementation. However, the Fluid framework makes a
number of improvements in order to increase the flexibility of its OODDP abstractions. For
example, the OODDP types in Bilas’ system and the Fluid prototype are built upon a num-
ber of low level component types that form part of the underlying framework. In the Fluid
framework, all components are developed independently, and are not restricted by the interfaces
or semantics introduced by lower level functionality. Furthermore, Fluid’s component model
and composition language form inter-component connections at a higher level of abstraction
than Bilas’ automated library linker. Whereas Bilas’ function binding tool relies upon a range
of low level and both platform and compiler dependent properties, the concepts supported by
Fluid’s component model and composition language are more scalable and flexible to future

modification.

Chris Stoy Although Stoy’s system bears some resemblance to the OODDP concepts incorporated
by the Fluid framework, the introduction of a component based approach makes the Fluid
framework much more flexible: Stoy’s GameObjects communicate with one another by access-
ing GameObjectComponent instances belonging to other GameObjects via a common base type,
and then downcasting the GameObjectComponent instance to its concrete type for manipula-
tion. This type of interaction between components requires that component implementations
are aware of the class types representing other components at compile time. Consequently,
component implementations remain tightly coupled. In contrast, Fluid’s components are con-
nected via the framework’s component model and unified type system. Fluid’s components
may be independently developed and are not affected by modifications to other components’

implementations.

Bjarne Rene The higher level flexibility of Rene’s OODDP implementation remains unclear. Com-
ponent message types are enumerated at design time and represented using constant values,
which also appear in component implementations. These fixed values could form a tight cou-
pling between communicating component implementations. In the Fluid framework, messages
consist of direct connections between publishing and subscribing instances, with the framework’s
component model and low level providing the necessary connections. The Fluid framework thus

provides a more flexible component communication system.

140

Fluid successfully applies the data driven methodology in its OODDP framework and composition
language, forming explicit links between data driven programming and mainstream CBSD. In contrast
to its use in modern game engines, the Fluid framework incorporates an OODDP composition language
in order to support the composition of small scale computational encapsulations, delivering both
scene content and overall application behaviour. Although this worlk is unlikely to impact the game
development community as a whole, the Fluid framework demonstrates the potential for broader

applications of game technologies such as OODDP.

4.4 Summary

Figure 4.3 provides an illustrative summary of the contextualisation of the Fluid project.

Figure 4.3a presents the limitations of a number of related technologies Data centric appli-
cations are those where data plays a central role in the application’s functionality. For example,
the functionality of GIS is based on the selection of an appropriate data model, which determines
the meaningful representation, storage, communication and manipulation of geographically ref-
erenced data. However, the runtime behaviour of data centric applications is typically static,

and cannot be changed without modifying and recompiling the software implementation.

In contrast, the behaviour of data driven applications may be influenced by their data inputs.
DDDAS incorporate a synergistic feedback loop between simulation and measurement, where
measurement data informs the simulation, which in turn drives further measurements. However,
the extent of data driven behaviour in DDDAS is typically limited to the modification of control
flow and simulation parameterisation. DDDAS are not currently able to dynamically alter the
capabilities of their software implementations, and the current level of adaptation exhibited by
DDDAS is accommodated by their otherwise static software implementations.

Component based approaches provide a range of solutions for manipulating software capabilities
using high level composition languages. However, the CBSD field is currently immature, with
a wide range of independent projects failing to converge in order to form supportive standards.
Furthermore, the flexibility of component applications is typically provided by component ma-
nipulations at a high level of abstraction, often making use of component wrappers, and there
is little data driven behaviour or configurable flexibility provided by components themselves.
OODDP technologies are becoming increasingly popular in contemporary game titles, and sup-
port the manipulation of application functionality and behaviour using high level notations
embedded in game content data. OODDP focuses on creating a wide variety of immersive expe-

riences through the use of highly configurable small scale components. However, the application

141

of OODDP is currently limited to defining game content, and its use in the more general context

of software development has yet to be explored.

Figure 4.3b shows how these technologies have formed the basis of the work described
in this thesis The Fluid project combines CBSD with OODDP in order to define a novel
component framework and composition language supporting a range of OODDP concepts and
manipulations, and focussing on the use of small scale data driven black box components. Con-

sequently, the Fluid project builds upon a wide range of research from the CBSD field in order to

define the design and implementation of the Fluid framework’s various component technologies.
A number of articles and presentations related to game developers’ use of data driven approaches

have also influenced the work discussed in this thesis.

While the aim of the Fluid project is to successfully and effectively combine technologies from
the CBSD and game development fields, GIS and DDDAS provide the motivation for much of

the work presented in Chapter 3, and also supply the context of any example applications.

Figure 4.3c gives the contributions made by the Fluid project The Fluid project contributes
to CBSD by defining novel component based technologies emphasising the use of fine grained
data driven components. While a small number of studies show potential benefits of small com-

ponents [120, 119, 118], their use has yet to be fully explored by the CBSD research community.

The Fluid framework introduces a number of potential implications for game developers. This
thesis demonstrates that a hybrid approach making use of CBSD and OODDP has broader
applications beyond the definition of game content. Indeed, OODDP has a number of potential
uses in introducing higher level abstractions to describing the selection, interconnection and
configuration of component based applications. There may also be benefits to incorporating
component based approaches as part of more flexible and extensible game engines.

Finally, Section 4.1 has discussed potential applications of the Fluid approach to DDDAS, where
an OODDP based component model and composition language could form part of a more flexible
modelling and measurement process. A speculative Fluid based DDDAS would be more flexible
to change by further empowering data in order to determine application capabilities as well as

its runtime behaviour.

142

/ Application limited to 4 Component - \
game content ! based software. manipulations and
! development focus-on small
methodology - scale data driven
components

/’/lmmature technologies,
{""focus on higher level
{ concepts, limited

', component flexibility

<)

(a) Current limitations of related technologies

. Broader
’\f’::;e»f::ixing applications to
nne g ”\?é . 1 application
Saaten / software
components.

(¢) The contributions of the Fluid project

Figure 4.3: A summary of the limitations and influential aspects of the technologies related to the

Fluid project, and an illustration of its contributions.

Chapter 5

Conclusions and Future Work

This chapter concludes the thesis by presenting the contributions of the work described, as well as

a number of closing arguments. Section 5.1 summarises the main contributions of the thesis, while

Section 5.2 critically evaluates the work described and Section 5.3 outlines opportunities for future

research.

5.1

Contributions

The principal contributions of this thesis are listed below.

A Fluid approach to component based software development The work described in Chap-

ter 3 makes a conceptual contribution by introducing the data driven programming paradigm
to component based software development methodologies to form a novel combination of tech-
nologies. Furthermore, the Fluid framework also makes a technical contribution by successfully
implementing and applying the combination of OODDP and CBSD.

The Fluid framework is the result of successfully introducing the data driven programming
paradigm to component based software development methodologies. The Fluid approach to
CBSD emphasises flexibility and extensibility through the use of small scale, highly configurable
components exhibiting a variety of data driven behaviour. Furthermore, the definition of Fluid
applications is facilitated by a declarative comnposition language supporting an OO program-
ming style via its incorporation of OODDP concepts and manipulations. The Fluid framework
has been successfully applied to model a simple but representative example, as discussed in

Section 3.3.

A Fluid approach to DDDAS The thesis makes a conceptual contribution to the field of DDDAS

by proposing a novel cornbination of OODDP, CBSD and DDDAS technologies with the potential

144

to overcome certain limitations of current DDDAS. However, the technical application of the

proposed solution lies outside the scope of this work.

DDDAS currently incorporate measurement data into an evolving model, which in turn drives
further measurement. The synergistic feedback loop between measurement and model allow
DDDAS to focus resources on measuring more effectively. However, this thesis identified a
limitation of current approaches; while the runtime behaviour of DDDAS may be driven by
data, the extent of influence available to data is in fact limited to modifying application control

flow and adjusting the parameterisation of methods.

This thesis has speculated a number of potential applications of the Fluid framework within the
DDDAS field of research. Section 4.1 has suggested how a combination of Fluid and DDDAS
technologies would allow the functionality of DDDAS to change according to measurement data.
The proposed combination of Fluid and DDDAS technologies would be particularly suitable for

simulations concerning discrete phenomena, where Fluid’s OODDP concepts are most effective.

A Fluid approach to data driven rendering The work described in Section 3.1 builds upon a
number of concepts that have been recently introduced by Microsoft. However, the rendering
system described in a related publication [3] makes a technical contribution by implementing
a platform independent alternative to an upcoming version of the Direct3D library, making use
of open source and third party technologies.

As described in Section 3.1, the Fluid prototype’s render system provides a data driven rendering
pipeline, which encompasses functionality ranging from high-level SAS manipulations to low
level OpenGL API calls. Fluid’s render system implementation makes use of a range of third
party solutions that collectively deliver a platform independent alternative to an anticipated
Direct3D release. The PirateHat rendering library encapsulates an implementation of the Fluid
prototype’s rendering system that may be used independently of the Fluid project [3]; it is
the first rendering library to offer a complete data driven rendering pipeline supporting SAS

instructions to the OpenGL platform.

5.2 Critical Evaluation

Summarising Chapter 4, the key strengths and weaknesses of the Fluid project are:

Successful combination of technologies CBSD and OODDP have heen successfully combined in
the Fluid framework, a C++ component framework supporting an object oriented data driven

component model and composition language. Fluid’s composition language provides a number of
I guag g

145

OO abstractions and manipulations to define Fluid applications using fine grained components

with data driven runtime behaviour.

Successful application of the Fluid framework The Fluid framework has been successfully ap-
plied to model a simple traffic simulation. Although the example described in Section 3.3 is very
basic, the application demonstrates the use of the Fluid framework, including its low level func-
tionality, component model and composition language, to define a complete component based

application through the combination of CBSD and OODDP technologies.

Enhanced parameterisation The Fluid framework supports the definition of component applica-
tions using fine grained, highly configurable black box components. Through the combination
of its component model and OODDP composition language, the Fluid framework allows fine
grained control and configuration of computational abstractions. Fluid applications are thus
able to incorporate a greater degree of parameterisation and data driven behaviour than typi-

cally seen in composition languages, without the need to break component encapsulation.

Data driven rendering The PirateHat rendering library [3] encapsulates a data driven rendering
pipeline that can be manipulated using a high level scripting language. The PirateHat library
delivers similar functionality to that anticipated from an upcoming version of the Direct3D API,

but uses open third party solutions in order to remain platform independent.

Low level implementation Although the Fluid framework augments the low level functionality of
the C4+ implementation language, the concepts provided by the Fluid framework exhibit a
low level of abstraction, which may limit their use in the development of Fluid components.
While the Fluid framework could be improved to support higher level abstractions, the desired
functionality is already provided by a number of software development platforms more suited to
CBSD, most notably JavaBeans and the .NET framework. It may be beneficial to migrate the

Fluid framework to a more appropriate development platform.

Overly verbose While the successful combination of CBSD and OODDP allows Fluid’s application
configurations to make use of a range of OO concepts and manipulations, the definition and
modification of Fluid’s XML based component specifications and application configurations may
be difficult without the aid of visual tools. The difficulty of manipulating Fluid’s XML documents
is partly due to the XML schema in use. An improved XML schema, the provision of appropriate
visual tools, and a composition supporting higher level functionality such as the introduction of

new type descriptions, are likely to improve the expressiveness of Fluid’s XML documents.

Unknown scalability Section 3.3 demonstrates the application of the Fluid framework to model a

146

simple traffic simulation. However, the effectiveness of Fluid’s CBSD approach when modelling

larger, more complex systems remains untested.

5.3 Future work

The Fluid project has shown that the combination of CBSD and QODDP offer an effective platform
for the definition of flexible component based applications. However, the current design and imple-
mentation of the Fluid framework are immature, and further iterations would be required before the
research community would be able to make practical use of Fluid technologies. The following para-
graphs provide a brief overview of interesting opportunities for further research within the context of

the Fluid framework.

Applications in DDDAS A number of particularly interesting opportunities for further research are
provided by the continued integration of DDDAS and Fluid technologies. Chapter 4 describes
a range of potential applications. However, the Fluid framework is currently unable to fully
support such use, due to the additional requirements of DDDAS and the complex nature of their
implementations. A speculative Fluid based DDDAS would be most effective if its simulation and
modelling software could evolve over time in response to changing requirements, thus focussing
computational resources in the same way as the measurement process is currently optimised.
In order to facilitate this, the Fluid framework would have to incorporate a range of additional
functionality.

Although Fluid applications are presently open to the modification of OODDP instances after
their initial deployment, the current framework implementation has limited support for main-
taining the correctness of such changes. While a number of research projects explore the runtime
adaptation of component based applications, the granularity and data driven nature of FFluid’s
components may limit the applicability of their solutions. For example, while many component
frameworks maintain a one to one correlation between their components and those concepts
present in their composition languages, Fluid’s OODDP abstractions may be used to collect
many small components into a single unit of deployment. Furthermore, while the use of OODDP
concepts has proven to be effective for the initial definition of Fluid applications, appropriate
notations for the adaptation of OODDP types, instances, deployments and parameterisations

have yet to be realised.

The need to modify Fluid applications presents a number of interesting questions and opportu-
nities for its composition language. Should application change be driven by Fluid’s composition

language, or should such changes be made directly via Fluid’s component model or its lower

147

tiers? If Fluid’s composition language is to include the specification of application change, how
should such changes be represented? Early designs for the Fluid framework provided support for
the Lua scripting language throughout its fundamental systems, component model and compo-
sition language. The intention of these designs was to allow application developers to describe a
range of application behaviour using a high level scripting language. However, Lua integration
was not realised due to time limitations. Scripting languages have been made available in a
number of composition languages including BML [37]. An alternative approach is provided by
CoML, which supports a range of platform independent behavioural operations as part of its

XML syntax [33].

Higher level abstractions Further development of the Fluid framework would also provide an op-
portunity for building higher level abstractions upon those already supported. Incrementally
abstract concepts and manipulations could potentially allow the specification, selection, inter-
connection and parameterisation of Fluid components to be defined with increasing flexibility

and expressiveness.

Of particular interest are those abstractions facilitating visual programming. The initial de-
velopment of OODDP methodologies in games was highly motivated by the need to expose
software structure to game designers via tools. Consequently, a vast array of visual tools have
been developed by game developers and consumer communities for many data driven game titles.
Furthermore, many game development studios are releasing tools alongside their games, so that
lay consumers are able to design their own content, stories and player experiences. Meanwhile,
many component based research projects are also producing visual tools for the development of
component applications. For example, SuperGlue [34], Contigra [39] and VISSION [38] support
the interactive assembly of component implementations using visual interfaces. As the Fluid
project combines OODDP technologies with those from CBSD, development of appropriate vi-
sual tools should be straightforward.

Higher level abstractions may also allow the Fluid project to participate in model driven ap-
proaches to software development; Fluid’s OODDP concepts and manipulations already bear
some resemblance to some of the relationships used in UML static class diagrams. Further
research in this area may lead to a model driven approach making use of Fluid’s higher level
abstractions to express its platform independent representations, while a range of Fluid compo-
nents provide platform specific implementations. An interesting question in this area of research
is whether a small selection of finely grained, highly configurable components can provide a
palette of computation encapsulations that may be used in place of automatically generated

concrete code. If so, then Fluid’s component model and composition language could provide

148

appropriate mappings for a range of OO descriptions.

A potentially exciting outcome of developing increasing layers of abstraction upon those concepts
already available to Fluid may be a further generation of empowered data formats that are
completely self describing. Data written using such formats may be able to describe appropriate
reading, processing, analysis and visualisation operations, using platform independent notations

that drive the generation of corresponding software applications.

149

References

S. H. Muggleton, “Exceeding human limits,” Nature, vol. 440, pp. 409-410, 2006.
A. Szalay and J. Gray, “Science in an exponential world,” Nature, vol. 440, pp. 413-414, 2006.

A. Jones, C. Mantle, and D. Cornford, “Data driven graphical applications: A fluid approach,”
in Theory and Practice of Computer Graphics Eurographics UK Chapter Proceedings (I. S. Lim

and D. Duce, eds.), pp. 187-194, Eurographics Association, 2007.

D. Treffry and S. Ferguson, eds., Collins English Dictionary. HarperCollins Publishers, 2006.

B. McLaughlin, Java and XML data binding. Sebastopol, CA, USA: O’Reilly & Associates, Inc.,
2002.
A. Brookes, “XML data binding,” Dr. Dobb’s Journal, vol. 28, pp. 26, 28, 30, 32, 35-36, March

2003.

F. Atanassow, D. Clarke, and J. Jeuring, “UUXML: A type-preserving XML schema-Haskell
data binding,” in Practical Aspects of Declarative Languages, vol. 3057/2004 of Lecture Notes

in Computer Science, pp. 71-85, Springer Berlin / Heidelberg, May 2004.

M. Worboys and M. Duckham, GIS: a computing perspective, ch. 1, pp. 1 - 33. CRC Press,

2 ed., 2004.

M. Worboys and M. Duckham, GIS: a compuling perspective, ch. 8.3, pp. 305 — 316. CRC Press,

2 ed., 2004.

S. Su, W. Sherman, F. Harris, and M. Dye, “TAVERNS: Visualization and manipulation of

3

GIS data in 3D large screen immersive environments,” in International Conference on Artificial

Reality and Telezistence Workshops, pp. 656-661, IEEE Computer Society, 2006.

J. Dollner and K. Hinrichs, “An object-oriented approach for integrating 3D visualization sys-

tems and GIS,” Computers and Geosciences, vol. 26, no. 1, pp. 67-76, 2000.

12]

[13]

[14]

[15]

[16]

J. Metze, B. Neidhold, and M. Wacker, “Towards a general concept for distributed visualisation
of simulations in virtual reality environments,” in Proceedings of the 9th International Workshop
on Immersive Projection Technology (E. Kjems and R. Blach, eds.), (Aalborg, Denmark), pp. 79~

90, Eurographics Association, 2005.

S. D. Bergen, R. J. McGaughey, and J. L. Fridley, “Data-driven simulation, dimensional accuracy
and realism in a landscape visualization tool,” Landscape and Urban Planning, vol. 40, pp. 283~

293, May 1998.

D. V. Pullar and M. E. Tidey, “Coupling 3Ds visualisation to qualitative assessment of built

environment designs,” in Landscape and Urban Planning, vol. 55, pp. 29-40, June 2001.

K. Appleton and A. Lovett, “GIS-based visualisation of development proposals: reactions from
planning and related professionals,” Computers, Environment and Urban Systems, vol. 29,

pp. 321-339, May 2005.

K. Appleton and A. Lovett, “GIS-based visualisation of rural landscapes: defining ‘sufficient’ re-
alism for environmental decision-making, landscape and urban planning,” Landscape and Urban

Planning, vol. 65, pp. 117-131, October 2003.
E. S. Raymond, The Art of Uniz Programming, ch. 9, p. 250. Addison-Wesley, September 2003.

F. Darema, “Crid computing and beyond: the context of dynamic data driven applications

systems,” in Proceedings of the IEEE, vol. 93, pp. 692 - 697, March 2005.

A. Chaturvedi, A. Mellema, S. Filatyev, and J. Gore, “DDDAS for fire and agent evacuation
modeling of the Rhode Island nightclub fire,” in International Conference on Computational
Science (V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongaira, eds.), vol. 3993

of Lecture Notes in Computer Science, pp. 433-439, Springer, 2006.

C. C. Douglas, J. D. Beezley, J. Coen, D. Li, W. Li, A. K. Mandel, J. Mandel, G. Qin, and
A. Vodacek, “Demonstrating the validity of a wildfire DDDAS,” in International Conference on
Computational Science (V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra,

eds.), vol. 3993 of Lecture Notes in Computer Science, pp. 522-529, Springer, 2006.

R. Fujimoto, R. Guensler, M. Hunter, H. K. Kim, J. Lee, J. Leonard II, M. Palekar, K. Schwan,
and B. Seshasayee, “Dynamic data driven application simulation of surface transportation sys-
tems,” in International Conference on Computational Science (V. N. Alexandrov, G. D. van
Albada, P. M. A. Sloot, and J. Dongarra, eds.), vol. 3993 of Lecture Notes in Computer Science,

pp. 425-432, Springer, 2006.

151

22

[25]

126)

[27]

(30]

C. C. Douglas, J. C. Harris, M. Iskandarani, C. R. Johnson, R. J. Lodder, S. G. Parker, M. J.
Cole, R. Ewing, Y. Efendiev, R. Lazarov, and G. Qin, “Dynamic contaminant identification in

)

water,” in International Conference on Computational Science (V. N. Alexandrov, G. D. van
Albada, P. M. A. Sloot, and J. Dongaira, eds.), vol. 3993 of Lecture Notes in Computer Science,

pp. 393-400, Springer, 2006.

P. Kruchten, The Rational Unified Process: An Introduction. Boston, MA, USA: Addison- Wesley

Longman Publishing Co., Inc., 2003.

R. Wuyts and S. Ducasse, “Composition languages for black-box components,” in Object Ori-
ented Programming, Systems, Languages, and Applications (D. H. Lorenz and V. C. Sreedhar,
eds.), pp. 33-36, Technical Report NU-CSS-01-06, College of Computer Science, Northeastern

University, Boston, MA 02115, 2001.

)

J.-G. Schneider and O. Nierstrasz, “Components, scripts and glue,” in Software Architectures —
Advances and Applications (L. Barroca, J. Hall, and P. Hall, eds.), pp. 13-25, Springer-Verlag,

1999.

F. Achermann, M. Lumpe, J.-G. Schneider, and O. Nierstrasz, “Piccola — a small composi-
tion language,” in Formal Methods for Distributed Processing — A Survey of Object-Oriented

Approaches (H. Bowman and J. Derrick, eds.), pp. 403-426, Cambridge University Press, 2001.

C. Szyperski, Component Software: Beyond Object-Oriented Programming, ch. 1, pp. 3 ~ 15.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

C. Szyperski, Component Software: Beyond Object-Oriented Programming, ch. 8, p. 41. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

M. Biichi and W. Weck, “A plea for grey-box components,” in Proceedings of the 1st Workshop
on the Foundations of Component-Based Systems (G. T. Leavens and M. Sitaraman, eds.),

pp. 39-49, September 1997.

O. Nierstrasz and T. D. Meijler, “Requirements for a composition language,” in Object-Based
Models and Languages for Concurrent Systerns (P. Cilancarini, O. Nierstrasz, and A. Yonezawa,

eds.), vol. 924, pp. 147-161, Springer-Verlag, 1995.

N. Jefferson and S. Riddle, “Towards a formal semantics of a composition language,” in Pro-
ceedings of the 3rd International Workshop on Composition Languages, (Darmstadt,Germany.),

July 2003.

152

32]

[33]

[36]

(38]

[39]

(40]

Y. D. Liu and S. F. Smith, “A formal framework for component deployment,” in Object Oriented
Programming, Systems, Languages, and Applications, (New York, NY, USA), pp. 325-344, ACM
Press, 2006.

]

D. Birngruber, “CoML: Yet another, but simple component composition language,” in Proceed-

ings of the 1st Workshop on Composition Languages, (Vienna, Austria), September 2001.

S. McDirmid, “Interactive component assembly with SuperGlue,” in Proceedings of the 11th

International Workshop on Component Oriented Programming, 2006.

M. Bynens and W. Joosen, “On the benefits of using aspect technology in component-oriented

]

architectures,” in Proceedings of the 11th International Workshop on Component Oriented Pro-

grammang, 2006.

D. Birngruber and M. Hof, “Using plans for specifying preconfigured bean sets,” in Technology
of Object Oriented Languages and Systems (Q. Li, D. Firesmith, R. Riehle, and B. Meyer, eds.),
pp. 217-226, IEEE Computer Society, 2000.

S. Weerawarana, F. Curbera, M. J. Duftler, D. A. Epstein, and J. Kesselman, “Bean Markup
Language: A composition language for JavaBeans components,” in Conference on Object Ori-

ented Technologies and Systems, pp. 173-188, USENIX, 2001.

A. Telea, “A component-based dataflow framework for simulation and visualization,” in Furo-
b)
pean Conference on Object Oriented Programming Workshops (A. M. D. Moreira and S. De-

meyer, eds.), vol. 1743 of Lecture Notes in Computer Science, p. 187, Springer, 1999.

R. Dachselt, M. Hinz, and K. Meifiner, “Contigra: an XML-based architecture for component-
oriented 3D applications,” in Proceeding of the 7th inlernational conference on 3D Web technol-

ogy, (New York, NY, USA), pp. 155-163, ACM Press, 2002.

D. J. Ram and C. Babu, “Chefmaster: An augmented glue framework for dynamic customization
of interacting components,” in Proceedings of the 3rd International Workshop on Composition

Lunguages, (Darmstadt,Germany.), July 2003.

N. Tansalarak and K. T. Claypool, “XCompose: An XML-based component composition frame-

work,” in Proceedings of the Srd International Workshop on Composition Languages, 2003.

| M. Ponder, Component-bused methodology and development framework for virtual and aug-

mented reality systems. PhD thesis, IC Facult informatique et communications, 2004.

[43]

(44]

45]

(46]

[47]

[49]

[52]

J.-G. Schneider and J. Han, “Components — the past, the present, and the future,” in Pro-
ceedings of the 9th International Workshop on Component Oriented Programming (W. W.

Clemens Szyperski and J. Bosch, eds.), (Oslo, Norway), June 2004.

S. D. Panfilis and A. J. Berre, “Open issues and concerns on component-based software engineer-
ing,” in Proceedings of the 9th International Workshop on Component Oriented Programming,

(Oslo, Norway), June 2004.

H. van Vliet, Software Engineering: Principles and Practice, ch. 3.1, pp. 49-51. John Wiley and

Sons, Ltd., 2 ed., 2000.

H. van Vliet, Software Engineering: Principles and Practice, ch. 3.6, pp. 62-63. John Wiley and
Sons, Ltd., 2 ed., 2000.

E. Renaux and E. Lefebvre, “Component based method for enterprise application design,” in
Proceedings of the 11th International Workshop on Component Oriented Programming, (Nantes,

France), July 2006.

N. Pessemier, L. Seinturier, T. Coupaye, and L. Duchien, “A safe aspect-oriented programming
support for component-oriented programming,” in Proceedings of the 11th International ECOOP
Workshop on Component-Oriented Programming (WCOP06), vol. 200611 of Technical Report,
(Nantes, France), Karlsruhe University, jul 2006.

R. Rouvoy and P. Merle, “Leveraging component-oriented programming with attribute-oriented

)

programming,” in Proceedings of the 11th International Workshop on Component Oriented Pro-

grammang, vol. 200611 of Technical Report, (Nantes, France), Karlsruhe University, July 2006.

S. Lopes, A. Tavares, J. L. Monteiro, and C. A. Silva, “Describing framework static structure :

3

promoting interfaces with UML annotations,” in Proceedings of the 11th International Workshop

on Component Oriented Programming, 2006.

A. Scherp and S. Boll, “A lightweight process model and development methodology for compo-
nent frameworks,” in Proceedings of the 10th Internationoel Workshop on Component Oriented

Programming, (Glasgow, Scotland), 2005.

S. Overhage, “Towards a standardized specification framework for component development,
discovery, and configuration,” in Proceedings of the 8th International Workshop on Component

Oriented Programming (J. Bosch, C. Szyperski, and W. Weck, eds.), 2003.

F. Dominguez-Mateos and R. Hijon-Neira, “An architectural component-based model to solve

ol

the heterogeneous interoperability of component-oriented middleware platforms,” in Proceedings

154

[55]

[58]

[60]

of the 11th International Workshop on Component Oriented Programming, (Nantes, France),

July 2006.

L. A. Gayard, P. A. de Castro Guerra, A. E. de Campos Lobo, and C. M. F. Rubira, “Automated
deployment of component architectures with versioned components,” in Proceedings of the 11th

International Workshop on Component Oriented Programming, (Nantes, France), July 2006.

S.-Y. Lee, O.-C. Kwon, M.-J. Kim, and G.-S. Shin, “Research on an MDA based COP approach,”
in Proceedings of the 8th International Workshop on Component Oriented Programming, (Darm-

stadt, Germany), July 2003.

O. Nano and M. Blay-Fornarino, “Using MDA to integrate services in component platforms,” in
Proceedings of the 8th International Workshop on Component Oriented Programming, (Darm-

stat, Germany), July 2003.

H. Koziolek and S. Becker, “Transforming operational profiles of software components for qual-
ity of service predictions,” in Proceedings of the 10th International Workshop on Component

Oriented Programming, 2005.

J. Happe and V. Firus, “Using stochastic petri nets to predict quality of service attributes of
component-based software architectures,” in Proceedings of the 10th International Workshop on

Component Oriented Programming, (Glasgow, Scotland), July 2005.

M. Meyerhofer and F. Lauterwald, “Towards platform-independent component measurement,”
in Proceedings of the 10th International Workshop on Component Oriented Programming, (Glas-

gow, Scotland), July 2005.

R. Reussner, I. Poernomo, and H. Schmidt, “Contracts and quality attributes for software
components,” in Proceedings of the 8th International Workshop on Component Oriented Pro-

gramiming (W. Weck, J. Bosch, and C. Szyperski, eds.), 2003.

A. Alvaro, E. S. Almeida, and S. L. Meira, “Quality attributes for a component quality model,”
in Proceedings of the 10th International Workshop on Component Oriented Programming, (Glas-

gow, Scotland), 2005.

| F. Puntigam, “In components we trust — programming language support for weak protection,”

in Proceedings of the 10th International Workshop on Component Oriented Programming, (Glas-

gow, UK), July 2005.

[63]

(66]

[67]

(68]

(73]

A. Zeid, M. Messiha, and S. Youssef, “Applicability of component-based development in high-
performance systems,” in Proceedings of the 9th International Workshop on Component Oriented

Programming (J. Bosch, C. Szyperski, and W. Wolfgang, eds.), June 2004.

I. Crnkovic, “Component-based approach for embedded systems,” in Proceedings of the 9th

International Workshop on Component Oriented Programmaing, 2004.

T. Parsons and J. Murphy, “A framework for detecting, assessing and visualizing performance
antipatterns in component based systems,” in Object Oriented Programming, Systems, Lan-

guages, and Applications, pp. 316 - 317, 2004.

I. Sommerville, Software Engineering, ch. 11, pp. 241-265. International Computer Science,

Pearson Education Limited, 8 ed., 2007.

P. Kogut and P. Clements, “Features of architecture description languages.” Draft of a Carnegie-

Mellon University/Software Engineering Institute Technical Report, 1994.

N. Medvidovic and R. N. Taylor, “A framework for classifying and comparing architecture
description languages,” in Proceedings of the 6th European Software Engineering Conference,

(Ziirich, Switzerland), pp. 60-76, September 1997.

A. D. Fuxman, “A survey of architecture description languages.” Technical report CSRG-407,

Department of Computer Science, University of Toronto, Canada, 2000.

K. Wallnau, J. Stafford, S. Hissam, and M. Klein, “On the relationship of software architec-
ture to software component technology,” in Proceedings of the Gth International Workshop on

Component Oriented Programming, (Budapest, Hungary), June 2001.

J. Oberleitner and T. Gschwind, “Requirements for an architectural composition language,” in

Proceedings of the 7th International Workshop on Component Oriented Programming, 2002.

J. Matevska-Meyer, W. Hasselbring, and R. Reussner, “Software architecture description sup-

i

porting component deployment and system runtime reconfiguration,” in Proceedings of the 9th
International Workshop on Component Oriented Programming (J. Bosch, C. Szyperski, and

W. Wolfgang, eds.), June 2004.

S. Zhang and S. Goddard, “xSADL: An architecture description language to specify component-
based systems,” in Proceedings of the International Conference on Information Technology:

Coding and Computing, vol. 2, pp. 443-448, 2005.

156

[74]

[75]

[76]

[77]

(78]

[84]

M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik, “Abstractions for
software architecture and tools to support them,” Software Engineering, vol. 21, no. 4, pp. 314~

335, 1995.

Y. Ledru, R. Sanlaville, and J. Estublier, “Defining an architecture description language for
dassault systémes,” in Proceedings of the fth International Software Architecture Workshop

(B. Balzer and H. Obbink, eds.), pp. 115 — 120, June 2000.

N. Medvidovic and R. N. Taylor, “A classification and comparison framework for software archi-
tecture description languages,” IEFEE Transactions on Software Engineering, vol. 26, pp. 70-93,

January 2000.

B. Selic, “UML 2: A model-driven development tool,” IBM Systems Journal, vol. 45, no. 3,

pp. 607-620, 2006.

M. McGuire, “Efficient shadow volume rendering,” in GPU Gems (R. Fernando, ed.), ch. 9,

pp. 137-166, Boston, MA: Addison Wesley, 1 ed., 2004.

S. Kozlov, “Perspective shadow maps: Care and feeding,” in GPU Gems (R. Fernando, ed.),

ch. 14, pp. 217-244, Boston, MA: Addison Wesley, 1 ed., 2004.

U. Assarsson, M. Dougherty, M. Mounier, and T. Akenine-Moller, “An optimized soft shadow
volume algorithm with real-time performance,” in Proceedings of the Annual ACM SIG-
GRAPH/Eurographics Conference on Graphics Hardware (W. Mark and A. Schilling, eds.),

(Aire-la-ville, Switzerland), pp. 33-40, Eurographics Association, July 2003.

S. Brabec and H.-P. Seidel, “Shadow volumes on programmable graphics hardware,” Computer

Graphics Forum, vol. 22, no. 3, pp. 433-440, 2003.

L. Williams, “Casting curved shadows on curved surfaces,” in Computer Graphics, vol. 12,

pp. 270-274, SIGGRAPH, August 1978.

] M. Stamminger and G. Drettakis, “Perspective shadow maps,” in Proceedings of the 29th annual

conference on Computer graphics and interactive techniques, (New York, NY, USA), pp. 557~

562, SIGGRAPH, ACM Press, 2002.

L. Cenydd and W. Teahan, “The dynamic animation of ambulatory arthropods,” in Theory
and Pructice of Computer Graphics (I. S. Lim and D. Duce, eds.), pp. 21 - 28, Eurographics

Association, June 2007.

157

[85]

(86]

[90]

[91]

[92]

(93]

94]

O. E. Gundersen and L. Tangvald, “Level of detail for physically based fire,” in Theory and Prac-
tice of Computer Graphics (I. S. Lim and D. Duce, eds.), pp. 21 — 28, Eurographics Association,

June 2007.

A. Herwig and P. Paar, Trends in GIS and Virtualization in Environmental Planning and Design,
ch. Game Engines: Tools for Landscape Visualization and Planning?, pp. 162-171. Wichmann,

2002.

D. Fritsch and M. Kada, “Visualisation using game engines,” in Geo-Informations-Systeme
> g g g s ,

vol. 2004, pp. 32-36, June 2004.

B. Kot, B. Wuensche, J. Grundy, and J. Hosking, “Information visualisation utilising 3D com-
y7 o g

puter game engines case study: a source code comprehension tool,” in Proceedings of the 6th

ACM SIGCHI New Zealand chapter’s international conference on Computer-human interaction,

(New York, NY, USA), pp. 53-60, ACM Press, 2005.

D. Rohrl, “T'wo dozen ways to screw up a perfectly good project,” in Game Developers Confer-

ence Proceedings, 2002.

N. Llopis, “By the books: Solid software engineering for games,” in Game Developers Conference
g g g P

Proceedings, 2003.

G. Booch, “Best practices in game development,” in Game Developers Conference Proceedings,

2006.

5. Bilas, “A data-driven game object system,” in Game Developers Conference Proceedings,

2002.

A. Duran, “Building object systems - features, tradeoffs, and pitfalls,” in Game Developers

Conference Proceedings, 2003.

S. Bilas, “Fubi: Automatic function exporting for networking and scripting,” in Game Developers
Conference Proceedings, 2001.

C. Stoy, “Game object component system,” in Gume Programming Gems 6 (M. Dickheiser, ed.),

ch. 4.6, pp. 393-403, Rockland, MA, USA: Charles River Media, Inc., February 2006.

)| B. Rene, “Component based object management,” in Game Programming Gems § (K. Pallister,

ed.), ch. 1.3, pp. 25-37, Charles River Media, February 2005.

| E. van der Vlist, “XML driven classes in Python,” in Proceedings of the O’Reilly Open source

Convention, O’Reilly, July 2004.

158

(98]

101)

[102]

[103]

[104]

[106]

107)

M. D. McCool, Z. Qin, and T. S. Popa, “Shader metaprogramming,” in Proceedings of the 17th
Eurographics/SIGGRAPH workshop on graphics hardware (S. N. Spencer, ed.), (New York),
pp. 57-68, ACM Press, Sept. 1-2 2002.

R. Fernando and M. J. Kilgard, The Cg Tutorial: The Definitive Guide to Programmable Real-

Time Graphics. Addison-Wesley, 2003.

T. Reeves, D. Cornford, M. Konecny, and J. Ellis, “Modelling geometric rules in object based
models: An XML/GML approach,” in Progress in Spatial Data Handling. 12th International
Symposium on Spatial Data Handling (A. Riedl, W. Kainz, and G. Elmes, eds.), pp. 133-148,

Springer-Verlag, 2006.

V. Mencl, “Autonomous points in component composition,” in Object Oriented Programming,

Systems, Languages, and Applications, (Tampa, FL, USA), pp. 83-84, October 2001.

G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu, “Mutatis mutandis: safe and

»

predictable dynamic software updating,” in Principles of Programming Languages, (New York,

NY, USA), pp. 183-194, ACM Press, 2005.

S. Zachariadis and C. Mascolo, “The satin component system-a metamodel for engineering
adaptable mobile systems,” IEEE Transactions on Software Engineering, vol. 32, no. 11, pp. 910-

927, 2006. Member-Wolfgang Emmerich.

A. Jones and D. Cornford, “Defining the fluid framework,” in Proceedings of the 2007 IEEE
International Conference on Information Reuse and Integration (W. Chang and J. B. D. Joshi,

eds.), pp. 695-700, 2007.

Z. Reljic, “Extending geomatics concepts and capabilities for scientific visualization and com-
munication: Integrating photorealism with geovisualization,” Master’s thesis, Department of

Geography, University of Ottawa, November 2006.

C. Claramunt, B. Jiang, and A. Bargiela, “A new framework for the integration, analysis and
visualisation of urban traffic data within geographic information systems,” Transportation Re-
search Part C: Emerging Technologies, vol. 8, pp. 167-184, 2000.

A. Jones and D. Cornford, *Advanced data driven visualisation for geo-spatial data,” in Inter-
national Conference on Compultational Science (V. N. Alexandrov, G. D. van Albada, P. M.

Sloot, and J. Dongarra, eds.), vol. 3993 of Lecture Notes in Computer Science, pp. 586-592,

Springer, May 2006.

159

[108] A. Jones and D. Cornford, “A flexible, extensible object oriented real-time near photoreaslistic
visualisation system: The system framework design,” in Progress in Spatial Data Handling. 12th
International Symposium on Spatial Data Handling (A. Riedl, W. Kainz, and G. Elmes, eds.),

pp. 563-579, Springer-Verlag, 2006.

[109] K. Wilson, “Game object structure roundtable,” in Game Developers Conference Proceedings,

2003.

[110] W. Buchanan, “A generic component library,” in Game Programming Gems 5 (K. Pallister,

ed.), ch. 1.16, pp. 177-187, Charles River Media, February 2005.

[111] K. Ostermann and M. Mezini, “Implementing reusable collaborations with delegation layers,” in
Object Oriented Programming, Systems, Languages, and Applications, (Tampa Bay, FL, USA),
2001.

[112] Y. Smaragdakis and D. S. Batory, “Mixin layers: an object-oriented implementation technique
for refinements and collaboration-based designs,” Software Engineering and Methodology, vol. 11,

no. 2, pp. 215-255, 2002.

[113] U. P. Schultz, “Black-box program specialization,” in Proceedings of the 4th International Work-

shop on Component Oriented Progrumming, p. 187, 1999.

(114] T. Weis, “Component customization,” in Proceedings of the 6th International Workshop on

Component Oriented Programming, (Budapest, Hungary), June 2001.

[115] B. Kiictk, N. Alpdemir, and R. Zobel, “Customisable adapters for black-box components,” in

Proceedings of the 3rd International Workshop on Component Oriented Programming, 1998.

(116] M. Biichi and W. Weck, “Generic wrappers,” in Lecture Notes in Compuler Science (E. Bertino,

ed.), pp. 201-225, 2000.

(117] G. Bobeff and J. Noye, “Molding components using program specialization techniques,” in
Proceedings of the §th Internationsl Workshop on Component Oriented Programming (J. Bosch,
C. Szyperski, and W. Weck, eds.), (Darmstadt, Germany), 2003. In conjunction with ECOOP

2003.

(118] Y. H. Mirza, “A compositional component collections framework,” in Proceedings of the Tth
International Workshop on Component Oriented Programiming, (Malaga, Spain), 2002.

[119] D. H. Lorenz and J. Vlissides, “Designing components versus objects: a transformational ap-
proach,” in Proceedings of the 23rd International Conference on Software Engineering, (Wash-

ington, DC, USA), pp. 253-262, IEEE Computer Society, 2001.

160

[120]

[123]

[124]

[125]

[126]

[130]

131]

132)

D. Hamlet, “Component synthesis theory: The problem of scale,” in Proceedings of the 4th
International Conference on Software Engineering Workshop on Component-based Software En-

gineering (K. Wallnau, ed.), (Toronto, Canada), pp. 75-80, 2001.

R. Reussner, “The use of parameterised contracts for architecting systems with software compo-

»

nents,” in Proceedings of the 6th International Workshop on Component Oriented Programming

(W. Weck, J. Bosch, and C. Szyperski, eds.), June 2001.

C. Szyperski, Component Software: Beyond Object-Oriented Programming. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2002.

S. McDirmid, M. Flatt, and W. Hsieh, “Jiazzi: New-age components for old-fashioned Java,” in

Object Oriented Programming, Systems, Languages, and Applications, October 2001.

S. McDirmid, M. Flatt, and W. Hsieh, “Mixing COP and OOP,” in Object Oriented Program-
ming, Systems, Languages, and Applications (D. H. Lorenz and V. C. Sreedhar, eds.), pp. 29-32,
Technical Report NU-CSS-01-06, College of Computer Science, Northeastern University, Boston,
MA 02115, October 2001.

J. Noble, “Three features for component frameworks,” in Proceedings of the {th International
Workshop on Component Oriented Programming, p. 187, 1999.

M. Chaudron, “Reflections on the anatomy of software composition mechanisms,” in Proceedings

of the Joint 8th European Software Engineering Conference and 9th ACM SIGSOFT Symposium

on the Foundations of Software Engineering, (Vienna, Austria), September 2001.

D. Birngruber, “A software composition language and its implementation,” Lecture Notes in

Computer Science, vol. 2244, pp. 519-529, 2001.
R. Ierusalimschy, Programming in Lua. Lua.org, 2 ed., 2006.

K. Henney, “Valued conversions,” From Mechanism to Method, C++ Report, vol. 12, pp. 37-40,

JulyAugust 2000.
D. D. Corkill, “Blackboard systems,” Al Ezpert, vol. 6, pp. 40-47, Sept. 1991.

N. Llopis, “The beauty of weak references and null objects,” in Gume Programming Gems 4

(A. Kirmse, ed.), ch. 1.7, pp. 61-68, Charles River Media, March 2004.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: FElements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

161

133]

[134]

135)

[136]

137]

[138]

139]

[140]

[141]

G. R. Madey, G. Szabd, and A.-L. Barabdsi, “WIPER: The integrated wireless phone based
emergency response system,” in International Conference on Computational Science (V. N.
Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, eds.), vol. 3993 of Lecture

Notes in Computer Science, pp. 417-424, Springer, 2006.

D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features of escape panic,” Nature,

vol. 407, pp. 487-490, 2000.

B. Plale, D. Gannon, D. Reed, S. Graves, K. Droegemeier, B. Wilhelmson, and M. Ramamurthy,
“Towards dynamically adaptive weather analysis and forecasting in LEAD,” in International
Conference on Computational Science (V. S. et al., ed.), vol. 3515 of Lecture Notes in Computer

Science, pp. 624-631, Springer, 2005.

K. Mahinthakumar, G. von Laszewski, R. Ranjithan, D. Brill, J. Uber, K. Harrison, S. Sreepathi,
and E. Zechman, “An adaptive cyberinfrastructure for threat management in urban water dis-
tribution systems,” in International Conference on Computational Science (V. N. Alexandrov,
G. D. van Albada, P. M. A. Sloot, and J. Dongarra, eds.), vol. 3993 of Lecture Notes in Computer

Science, pp. 401-408, Springer, 2006.

M. Parashar, V. Matossian, H. Klie, S. G. Thomas, M. F. Wheeler, T. Kurc, J. Saltz, and
R. Versteeg, “Towards dynamic data-driven mangement of the Ruby Gulch waste repository,”
in International Conference on Computational Science (V. N. Alexandrov, G. D. van Albada,
P. M. A. Sloot, and J. Dongarra, eds.), vol. 3993 of Lecture Notes in Computer Science, pp. 384~

392, Springer, 2006.

D. Draper, P. Fankhauser, M. F. Ferndndez, A. Malhotra, K. H. Rose, M. Rys, J. Siméon,
and P. Wadler, “XQuery 1.0 and XPath 2.0 formal semantics.” World Wide Web Consortium,

Recommendation REC-xquery-semantics-20070123, January 2007.

R. Taylor et al., “A component- and message-based architectural style for GUI software,” IFEE

Transactions on Software Engineering, vol. 22, no. 6, pp. 390-406, 1996.

D. C. Luckham and J. Vera, “An event-based architecture definition language,” IEEE Transac-

tions on Software Engineering, vol. 21, pp. 7T17-734, September 1995.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying distributed software architec-
tures,” in Proceedings of the 5th European Software Engineering Conference, (London, UK),

pp. 137-153, Springer-Verlag, 1995.

162

[142] D. Garlan, R. T. Monroe, and D. Wile, “Acme: Architectural description of component-based
systems,” in Foundations of Component-Based Systems (G. T. Leavens and M. Sitaraman, eds.),

ch. 3, pp. 47-67, New York, NY: Cambridge University Press, 2000.

163

Chapter 6

Appendices

164

Appendix A

Publications

The following publications accompany this thesis.

Jones, A. and Cornford, D. Riedl, A.; Kainz, W. and Elmes, G. (ed.) A Flexible, Extensible
Object Oriented Real-time Near Photoreaslistic Visualisation System: The System Framework Design
Progress in Spatial Data Handling. 12th International Symposium on Spatial Data Handling, Springer-
Verlag, 2006, 563-579

Jones, A. and Cornford, D. Alexandrov, V.N.; van Albada, G.D.; Sloot, P.M. and Dongaira, J.
(ed.) Advanced Data Driven Visualisation for Geo-spatial Data Computational Science - ICCS 2006,
Springer, 2006, 3993, 586-592

Jones, A.; Mantle, C. and Cornford, D. Lim, I.S. and Duce, D. (ed.) Data Driven Graphical Ap-
plications: A I'luid Approach Theory and Practice of Computer Graphics Eurographics UK Chapter
Proceedings, Eurographics Association, 2007, 187-194

Jones, A. and Cornford, D. Chang, W. and Joshi, J.B.D. (ed.) Defining the Fluid Framework
Proceedings of the 2007 IEEE International Conference on Information Reuse and Integration, 2007,

695-700

Aston University

Content has been removed for copyright reasons

Aston University

Content has been removed for copyright reasons

@
T
«
®
&1
&
§
§
&

