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Chapter 1

Introduction

Surface recordings of cardiac electrical activity were originally taken by Willem Einthoven
in 1903 and have since become the primary diagnostic tool for cardiac disorders. Einthover:i\\
originally called this recording the elektrokardiogramme, which leads to the abbreviation FKG
that is still used in some places, particularly the United States [Wagner, 2001]. However, we
shall henceforth refer to it as the anglicised electrocardiogram or ECG.

Much effort has been put into determining the diagnostic features of various cardiac disor-
ders from visual analysis of the electrocardiograph output w1th a goo deal%ff success. In more
recent times, the power of modern computers has led to a number/of automdted approaches
being proposed, which have shown promising results. However, many of these automatedf
approaches have not found their way into clinicalr use,:desplte mnumerable potentla_l benefits

to clinicians. This is in the most part due to unknown reliability issues exacerbated 'ﬁby"\t’he:

cost and the difficulty in obtaining medical approval for the. undertakmg of such reseerch
Therefore, it is paramount that when opportunities arise for clinical experlments to take-“.
place, the techniques to be trialled should be developed to the highest levels of robustness

possible in a non-clinical environment.

The aim of this thesis is to introduce and 1nvest1gate two::novel approaches for use in

the understanding and diagnosis of a range of cardiac dlsorder, Th /d1sorder that will be

primarily under investigation (and hence motlvated the developmen’c:of the approaches) is

paroxysmal atrial fibrillation, a condition causmg the hea,rt /to 'be b in a,n/irregular manner. It

was noted, however, that for diagnostic use, any. automated method should be able to dlstm-

guish between a number of cardiac conditions; if someone is complaining of heart problems a
method which distinguishes between a single condition and the normal heart beat is unhkeL

to be of much use. Unfortunately, tests on multiple conditions are comparatively rare in j,s_h_eje_'u

14




CHAPTER 1. INTRODUCTION

current research literature. Therefore, we also

distinguishing between a number of cardiac conditions.

1.1 Summafy of Chapters .

The thesis is organised into chapters as follows

1.1.1 Chapter 2 - Literature Survey

This chapter is intended as a primer so that a rread/ef/ :\;ith little or no prior knowledge of
the main fields the thesis encompasses should be able ‘to understand what follows. Hence,
we review the relevant physiology of the heart, how the electrocardiogram is generated and
how to understand its use in diagnostics. We then briefly summarise the pattern recognition
techniques used in this thesis which are roughly split into classifiers, visualisation techniques
and sampling methods. The final section gives a wider treatment of the methods used t0
extract information from cardiac time series. A number of methods are included here that
are not used or mentioned again in the thesis. This is to give the reader a reasonable
background of techniques to facilitate understanding of the place in the time series analysis
catalogue in which the method introduced in Chapter 4 will occupy and how it relates to the

other approaches.

1.1.2 Chapter 3 - Investigating the P-wave

This chapter is devoted to the preliminary investigation of the P-wave (one of the sub-

waveforms of the ECG signal). The first section gives a short background ofteChnlques
currently in place and why we adopted the approach we used. The second ée,cfion detallsour
method for extraction of the P-wave from the rest of the ECG signal, with a ps.eudo—cocie"l ‘
version of the algorithm we used along with step-by-step inst/rii;cf,t,ign; The third section is
concerned with the preliminary analysis of the P-wave dé,t,;; @,ﬁéiﬁsélsf/son,le of the methods

discussed in Chapter 2 to this end. This is followed by conclusmnsdrawn from the analysis.

1.1.3 Chapter 4 - Development of Kernel Entrop .

Here we introduce the kernel entropy, a novel method of quéi:‘n’sﬁify_ing the regularity of a time
series. We start from the principle of entropy rate, with a theoretical definition, an,rd.,t\he,nj .

show how this has been used as the basis of previous regularity measures. We.’"the_ni§hdwl,\,‘h\g\;i}vi\g

15




CHAPTER 1. INTRODUCTION

issues in these measures may be resolved by adopt

of the new measure.

1.1.4 Chapter 5 - Application of the Methods

Now we apply a number of measures (including the kernel entropy) to both the series of
consecutive P-wave durations, known as the P-wave length (PWL) series, and the ‘more
conventional RR-interval (duration between consecutive beats) series. The aim here is to
evaluate the effectiveness of both the PWL series and the kernel entropy on real data in
several situations. A number of experiments are proposed to this end which are carned out\

and conclusions drawn from the results.

1.1.5 Chapter 6 - Summary of Thesis

In this final chapter, we recapltulate the main pomts 1n thls the51s w1th con31derat10n glven

to any outstanding matters. We then close with a dlscussmn of osmble extensmns to thls

research and how they might be achieved.

16




Chapter 2

Literature Survey ”

As the scope of this research is quite broad, this chapter consists of an overview of the
literature that has been studied in the compilation of this thesis. However, greater detail on
important points may be found in the relevant chapters; the aim here is to provide insight,
into areas vpertinent to the project as a whole since a certain amount of prior knowledge is
needed to understand the range of topics covered and their validity to the project goals.
The chapter is split into three parts that correspond to the main areas investigated during
the research. The first section describes the backgrouﬁd of ﬁhe;cardiological processes and

conditions relevant to the research, the second section es the classifiers, visualisation

and sampling techniques used and the thifd'/féec/tirbn‘ Kpi(rjvi;dgsﬁa;n erview of current comple‘xity

and disorder measures.

2.1 Cardiology

The aim of this project is to identify methods that can bef‘ used fo extract features f.ro‘m‘thre -
electrocardiograph (ECG) which can be used for dia;giiosié ofa variety of cardiac disorders.
The ECG is a recording of the electrical impulses generated by the heart and is the primary
method of diagnosing cardiac problems, as well as being of use 'iﬁf/the’?aiéf’fgndsis of non~card‘ia§
complaints [Wagner, 2001]. s

Before investigating any signal, it is important to understé,nd how t‘he signal is gene,rat,ed'
and the ECG is no exception. Many people are fa,mlha,rwmhthegeneral waveform of the

ECG but few are able to explain the electrophysiological méa?;ﬁng of an ECG sjgr‘lall and how

it relates to the physiological mechanisms of the heart. In this section, we shall see .'how‘_‘ﬁh)é\ o

human heart works, how this relates to the generation of electrical signals and how this may

H
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CHAPTER 2. LITERATURE SURVEY

the atria (the interatrial septum). Here, the elec rical p eSS pauses mementarxly for the ‘,

AV node (which generates potentlal at a slower rate than the SA node) te
potential. This pause also allows the ventricles time to fill with blood It is wort
that, under normal circumstances, no electrical 1mpulse can a,ffect the ventricles wrthout

going through the AV node [Brembrlla—Perrot 2002] Once the AV node has sufficient action ‘

potential, it depolarises and the impulse is carried through the bundle of His to where the
nerve fibres split into the left and right bundle branches From here the 1rnpulse spreads ,
out into the lower ventricles via the Purkinje fibres which ensure that the contraction of ‘
the ventricles happens regularly from the bottom to the top. The muscles then relax and

repolarise to become ready for the next beat.

2.1.3 Electrocardiography

Electrocardiography is a non-invasive technique where electrodes (sensors) are attached to the |
outside of the body and recorded by a device known as an electrocardiograph. - The recorded
data is the electrocardiogram. There are a variety of ways to configure the position of the
electrodes for an electrocardiogram but the standard is the 12-lead (12-channel) system. The
basic principle is that if the depolarrsatlon within the heart is moving toward a positive
electrode, or repolarisation is moving away, then the ECG will regrstel a positive (upward)
deflection and vice-versa. It is clear from this that the posrtlon of any electrode is relevant to
the interpretation of the output obtained. This is particularly evident in the orientation of
the predominant features in the ECG; if these are generally positive then the depolarisation
is moving toward the positive electrode. Further to this, it can also be seen that suitable

positioning of an electrode would increase the focus on a particular area of the heart.

12-Lead ECG

In a twelve-lead ECG, there are 6 leads (known as the V-leads, V1 to V6) which monitor
the heart on the horizontal plane and 6 leads that take measurementé from the heart on the
frontal plane which are known as the limb leads. The /poeitioninghf&t‘he lead attachments
can be seen in Figure 2.4. B

The positioning of the limb leads can be seen in Figure 24(b), ‘electrodes are attached
to both arms, and the left foot. The first three channels are hnown as leads I, IT and III
and measure the potential between the left and right arms, the left leg and the right arm,

and the left leg and left arm respectively. The other three channels are called the augmented
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Manubrial Notd tawicle

L Y dclavicular Liow

Ang ntorior Ax llmy LJM

of Louit

(a) Positioning of leads V1-V6. (b) Positioning and relative angles of the limb

leads.

Figure 2.4: The positioning of the electrodes in the 12-lead system.

-
Figure (a) is adapted from www.kauaicc.hawaii.edy, (b) is adapted from www.nobelprize.org.

leads as they measure the potential between one of the limb leads whxch is positive, and the
other two negative leads. These are known as aVR (rlght arm is pos1t1ve), aVL (left arm is
positive) and aVF (left foot is positive).

The positioning of the 6 V-leads is shown in Figure 2.4(a). These are also known as the
precordial leads as they are immediately in front of the heart. The V-leads are all positive
with the negative pole being the central terminal formed by averaging the limb leads [Wagner,
2001].

As mentioned before, each one of the 12 leads measures the electrical activity from a dif-
ferent angle. If the depolarisation moves toward the positive electrode of any of these leads,
it will register a positive deflection on the corresponding channel of the ECG. The principal
direction of electrical depolarisation of the heart occurs along the interatrial septum which
is normall‘y orientated on an axis 30° anticlockwise from the vertical [Wagner, 2001]. For
example, in the limb leads, this would mean a strong positive deflection in lead 11 which is
approximately in the same direction as the interatrial septum but would register a smaller

negative deflection in lead aVR. This shows that the choice of ECG channel will have an
effect on the shape of the signal. It also causes a problem in the task of determining con-
sistent diagnostic features using automatic computational methods due to inconsistent lead

placement or variations in cardiac physiognomy Of placement.
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Identifying the ECG complexes

Figure 2.5: A representation of a typical ECG output with cqmplexes identified.

Figure 2.5 shows a representation of an ECG signal for a normal heartbeat on a lead such
as lead II with the main points of interest identified. Here we shall concentrate on the exact
definitions of each as they appear in the signal.

The most recognisable part of the ECG signal is the QRS-complex (shown in green),
which is often used as a reference point to find other ECG features as it is the most distinctive
structure in the ECG [Dotsinsky and Stoyanov, 2004]. The P-wave (red) precedes this and
‘s defined as the segment of the signal from the first upward deflection from the baseline to
the point when the signal returns to the baseline (although, with all ECG structures, this
may be inverted depending on the lead). There is then sometimes a period of rest known as
the PR segment which is the time from the beginning of the P-wave to the start of the QRS-
complex. The components of the QRS-complex are labelled depending on its morphology
and often look quite different depending on the location of the sensors used to measure the
ECG. However, the definitions of the points remain the same. If the first deflection in the
QRS-complex is downwards then it is known as the Q-wave. Any upward deflection in the

QRS-complex is called an R-wave, whether it is preceded by a Q-wave or not, and a deflection
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below the baseline after an R-wave is always known as an ’S-wave The Q, R and S- pomts

ST

are the turning points of the waves. The point where the S-wave returns to T
known as the junction point (or J- point) and the time from the J-point to the sta
T-wave is known as the ST-segment. Finally the T-wave (blue) like the P-wave, is deﬁned |
as the signal from the first upward deflection from the ba,sehne to the return to the baseline
after the QRS-complex. This is often larger in amplitude than the P-wave. Occasionally,
there is a further wave known as the U-wave (not shown) that follows the T-wave; however
the U-wave has no known clinical significance and therefore is often ignored.

As described above, on some leads the QRS-complex will be predominantly negative and
also may not start with a Q-wave. In this case, the first upward deflection 1s still called an
R-wave but is denoted by lower case T as it is of small amplitude. The downward deflection
after the r-wave is still known as the S-wave but the subsequent deflection above the baseline

is known as r’ (r prime) so as not to get confused with the initial r-wave [Hampton, 1986]

Electrophysiological Meanings of ECG Structures

The depolarisations and repolarisations that cause the heart to beat correspond with the
various structures of the ECG output. The depolarisation of the SA node and subsequent
transmission of the impulse around the atria correspond to the P- wave. The PR-segment is
the pause for the AV node to generate the action potential needed to continue the cardiac
cycle. The QRS-complex corresponds to the depolarisation of the AV node and the impulse
moving down the bundle branches and into the Purkinje fibres. The T-wave is due to the
repolarisation of the ventricles which occurs in the opposite direction to the depolarisation
(giving it the same orientation on the ECG). It is worthy of note that there is a lack of
a defined structure that corresponds to the repolarisation of the atria. This is because it
happens concurrently with the depolarisation of the AV node and the small amplitude of the

atrial repolarisation is hidden by the far greater amplitude of the QRS-complex.

Artifacts

The ECG signal is prone to interference as the electrodes are placed on the outside of the
body and can be susceptible to other depolarisations in"the body caused by other muscles
contracting, movement by the patient, poor electrode contact and alternating current arti-

facts. Removal of these artifacts has obvious benefits in signal processing and much research

i aeieieade

has been put into this already [Liu and Kao, 2003]. In Chapter 3 we explain how we deal .
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with any artifacts.

2.1.4 ECG Intervals

Apart from the actual morphology of the ECG, information can be gained from the lengt‘hé o
and amplitudes of certain segments in an ECG recording. For example, an elevated ST-
segment [American College of Cardiology/American Heart ‘Association Task Force on Prac-
tice Guidelines, 2004] and slight changes in the T-wave [Hunt, 2002] can be indicators of a
myocardial infarction or other disorders [Engel et al., 2004].

However, most automated studies are based on the intervals of, or between, certain ECG
segments. By far the most researched are the interbeat intervals; the duration between
successive beats (e.g. [Task force of the European Society of Cardiology and the Northern
American Society of Pacing and Electrophysiology, 1996; Teich et al., 2001; Small et al., 2000;
Maier et al., 2001b]). However, the use of other intervals has been investigated, such as the

QT-interval [Doevendans, 2000) and the P-wave duration [Steinberg et al., 1993].

R-R INTERVAL R

Figure 2.6: A representation of a typical ECG output with the RR-Interval and P-wave
Length identified. ~

Interbeat Intervals

The timing of the sequence of interbeat intervals of the heart has been the subject of rﬁany
studies and has been shown to be of significance in identifying various cardiac anomalies.
To discern the time interval between beats in the ECG, the location of the R-point is often
used as the reference point as it is the most significant and easily identifiable structure in the

ECG. The duration between successive R-points is called the RR-interval and analysis of the
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fluctuations in the sequence of RR-intervals is known as heart rate va,nablhty (HRV) analys1s

Most techniques utilise what are known as NN (Normal to Normal) m‘eervals which ar
time intervals between adjacent QRS-complexes resulting from sinus node depolarisatior
anomalous occurrences such as ectopic beats are excluded. A representatlon of these can be \
seen in Figure 2.6. .

Whether the RR-interval series arises from a deterministiicdyna}miéal' system has long been
a matter of uncertainty amongst researchers with papers claiming both that it is [Wagner
and Persson, 1998] and that it is not [Teich et al., 2001]. '

There is also some indication that the cardiac behaviour of normal patients varies through-
out the day, indicating that any underlying chaotic disorder is related to a periodic circadian
cycle [Cugini et al., 1999] which would complicate matters further. Also, the heart is not
an isolated system, impulses arrive from the autonomous nervous system at regular intervals
which affect the variability. The presence of a cardiac condition could interfere with these
natural sources of variability which may be able to be detected by suitable techniques.

The study of HRV is of undetermined physiological importance as only limited conclusions
can be drawn regarding the behaviour of the system from solely the heart rate fluctuations
[Harel et al., 1998]. However, it has proved beneficial in studies of cardiac disfunction and
has been of use in distinguishing a number of conditions [Cugini et al., 2001; Maier et al.,
2001a; Teich et al., 2001].

There are a wide variety of techniques used to measure HRV which range from simple
average interval duration to non-linear analysis of the resulting time series; we shall provide

an overview of these in Section 2.4.

2.2 Cardiac Disorders

There are a very large number of cardiac disorders, with a wide variety of causes and treat-
ments. As a consequence, we shall provide only an overview of the conditions pertinent to this

research; atrial fibrillation, sleep apnoea and congestive heart failure. The overview consists

of review of the cardiac mechanisms that related to the condition, how the condition may be
detected from the ECG and a review of the data sets that we use for each condition. All the

data sets were from the PhysioNet website (www.physionet.org) Goldberger et al. [2000].
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2.2.1 Paroxysmal Atrlal Fibrillation

Atrial fibrillation (AF) is the most common sustalned cardla,c arrhythmla wit

0.4% of the population counted as sufferers whlch ac zunted for 34. 5% of patlents hosplta,hsed

with a cardiac rhythm disturbance. It is also ; ireasmgly preva,lent amongst the elderly

[Committee to Develop Guidelines for the Mana,gement of Patlents With Atrial Fibrillation,
2001]. .

Its physical symptoms are a rapid and irregulra,r/herar:f rate [Martin, 2003] often with severe
discomfort. Paroxysmal atrial fibrillation (PAF) is éelf;terminating and may be symptomatic
of underlying problems in a variety of areas especially as this uncoordinated atrial activation
can lead to deterioration of atrial function. The causes are not clearly known; sometimes
there can be structural abnormalities in the atria, where the juxtaposition of normal and
diseased atrial fibres could account for the fractioned electrical activity. It has also been
suggested that fatty infiltration or inflammation of the atria could be a cause [Committee to
Develop Guidelines for the Management of Patients With Atrial Fibrillation, 2001].

Complications arising from paroxysmal AF are often devastating because of the sporadic
dramatic changes of heart rate and regularity. Strokes can often be attributed to atrial
fibrillation and in some cases, the AV node over-stimulation can lead to ventricular fibrillation
and death. However, many patients with atrial fibrillation have no symptoms and are unaware

of the abnormal heart rhythm [Lip and Li Saw Hee, 2001].

Cardiac Mechanisms

The mechanisms of AF are not fully understood but there are certam processes that are
believed to occur during an AF episode. One is that several fou other than the SA nod(,\/ .
depolarise in an accelerated and irregular manner. These may be located in the pulmonary\
vein or other blood vessels [Committee to Develop Guidelines for the Management of Patients
With Atrial Fibrillation, 2001]. Another suggestion is that the wave fronts become fractioned
as they propagate through the atrial mass leading to multiple wavelets propagating in different

directions [Poli et al., 2003].

ECG Indicators

The ECG of a person in AF will show the absence of defined P-waves with them being
replaced by rapid oscillations which vary in size, shape and timing. The erratic timing of

the activation of the AV node due to the disordered depolarisation causes the ventricles to
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automated diagnostic method is more difficult.

Data

The data set is the Detecting Sleep Apnea from the ECG data set. It consists of 25 continuous
recordings of approximately 8 hours in length. For the purposes of this thesis, a continuous 30
minute section was randomly drawn from the larger sample for fair comparison with the atrial
fibrillation data set. Twenty of these records contain recordings with at least 100 minutes of

apnoea in the recording. Five of the recordings contain between 5 and 99 minutes of apnoea.

2.2.3 Congestive Heart Failure

Congestive heart failure (CHF) is a term used to describe any condition that impairs the
heart’s ability to pump a sufficient supply of blood around the body due to a structural or
functional abnormality [American College of Cardiology/American Heart Association Task
Force on Performance Measures, 2005] leading to the impairment of cellular respiration
[Shamsham and Mitchell, 2000]. An estimated 0.4% to 2% of the population suffer from
CHF with most sufferers aged 65 and over with no apparent predeliction for a specific gender
[Task Force for the Diagnosis apd Treatment of Chronic Heart Failure, European Society of
Cardiology, 2001; Senni et al., 1998]. There does, however, appear to be an increasing number
of sufferers from the western world which has been attributed to the rise in obesity [Hubert
et al., 1983].

There are a large number of conditions that may cause the heart to function in this
detrimental fashion. They include hereditary and congenital structural causes, :myo\c\:ardial
dysfunction, arrythmias, valve abnormalities or rhythm disturbances and the condition can
be exacerbated by smoking, obesity and alcohol and drug abuse [Task Force for the Diagnosis
and Treatment of Chronic Heart Failure, European Society of Cardiology, 2001].

The usual method of diagnosis is by assessment of the left ventricular systolic (contrac-
tion) function which shows a reduced flow in diseased héa.rts. Th/is, is often done using an
ultrasound of the heart (echocardiography) to obtain an image which a clinbi,cian, can theﬁ use
to assess the ventricular flow (ejection fraction) [American Colflege of Cardiology/ Ameﬁcan
Heart Association Task Force on Practice Guidelines, 2001]. The diagﬁosis by echocardiogram
provides the clinician with a lot of information on the specific anomalies within the heart
as the resolution is such that abnormal valve and myocardial function can be determined

[Task Force for the Diagnosis and Treatment of Chronic Heart Failure, European Society of
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Cardiology, 2001]. However, echocardiography i‘s.fk,(;f_ten: ly used after refer-r.al_ to:a;_hospi'_tal‘
by a general practitioner, based on cardiac history and sym’p.'coms_,,‘ and then only

ECG and other methods have failed to preclude the possibility of CHE. TheE G is of limi
diagnostic value as, although it can detect anomalous cardiac behaviour easily and cheaply, it

is considered insensitive and non-specific. Its clinical use is to provide useful information but

only as a guideline toward a positive diagnosis [American College of Cardiology/American

Heart Association Task Force on Practice Guidelines, 2001].

Cardiac Mechanisms

Apart from reduced blood flow, there is no singular cardiac malfunction that characterises
CHF. The presence of any anomalous cardiac defect can cause CHF which is the reason for the
unusual meticulousness in obtaining a rigorous diagnosis as the more precise the diagnosis,

the more effective the treatment and subsequent prognosis will be.

ECG Indicators

As previously mentioned, the ECG should not be used alone to diagnose a sufferer but a
number of signs can be picked up on the ECG that may warrant further investigation. A
number of sufferers exhibit tachycardia as the heart speeds upto counteract the insufficient \
blood flow. This can happen intermittently or in a sustained fashion. Apart from this, the
ECG can be examined for evidence of ventricular hypertrophy (which can be determined
by a enlarged QRS-complex), atrial enlargement (abnormally large P-waves), conduction
abnormalities (unusual ECG structure morphology/orientation dependent on location of ab-
normality), myocardial infarction (ST depression or T-wave inversion), and active ischemia

(ST depression) [Bales and Sorrentino, 1997].

Data

This data set is from the BIDMC Congestive Heart Failure Database. It consists-of 15
recordings with severe congestive heart failure of about 20 hours duration. For the purposes
of this thesis, a continuous 30 minute section was randomly drawn from the larger sample

for fair comparison with the other data sets.
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2.3 Pattern Recognition Techniques

We have used a number of pattern recognition techniques throughout this p:\r\Q\j‘ec;t\ and so
necessary to provide the background of the methods to aid understanding of the results. The
algorithms used can be categorised into visualisation techniques, classifiers, and lsampling

methods so we will review those categories here.

2.3.1 Classifiers

In this thesis, we use neural networks for classification. The goal in classification is to take an
input vector x and assign it to one of K discrete classes Cx where k = 1,2,..., K. The neural
network divides the input space into decision regions whose boundaries are called decision
boundaries. The nature of these decision boundaries depends on the type of neural network
model. A linear model will produce straight decision boundaries whereas nonlinear models
will produced curved decision boundaries.

The classifiers used in this thesis are purely for evaluation of the feature extraction and
so only a basic understanding of them is necessary and details on peripheral matters such
as standard training algorithms are omitted. They are all types of neural network ranging
from the simplest single-layer network to multi-layer networks implemented in the NETLAB
[Nabney, 1999] toolbox.

Neural networks are inspired by, and loosely modelled on, the way the central nervous
system works. They consist of a number of interconnected elements known as neurons or
units which work in parallel in a similar fashion to the brain. When a number of neurons are
combined, it forms the neural network. This is then ‘trained’ on a training set which is a data
set that is of a similar type to the intended real data set, often a subset. The training proces,sfk
assigns values to certain parameters with reference to the known outputs which are called
target variables. The target variable is dependent on the application of the neural network
and the number of classes. In this thesis we use 0-1 encoding which‘ we now describe.

For a two class problem, the target value ¢ is O for C; and 1 for Cy. For a multiclass
problem, we use a vector t of length K where an element t; is 1, and all other elements
are 0 if the input belongs to class C;. After training, the neural network is now functional
and can be used by inputting a previously unused data value which is propagated through
the network and an output y obtained. In a two class problem, the value of y is a number
between 0 and 1 that can be interpreted as the probability that the new input belongs to

class Cy. In the multiclass setting we have a vector y, of which the elements y; correspond
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to the probability that the new data value beidh’gsto; /

Generalised Linear Model

The simplest linear model is basically a linear combination df‘the pa;raméterslw = (wo, w1, -+, Wa)'

and the d-dimensional input values x so that

y(x,w) = wot+wiz+...+wWeTay (2:1)

= wlx+ wp. < : (2:2)

This model will not output values consistent with the 0-1 encoding so we transform the linear

function using a nonlinear actiwation function f(-) thus
y(x,w) = f(wx +wo). (2.3)

We can extend this further by considering linear combinations of fixed nonlinear basis func-

tions ¢;(x). This will take the form

Yl w) = f(w' ¢(x), (2:4)

or

. [4

y(x,w) = f (Z qusj(x)) : (2.5)

§=0

where ¢o(x) = 1 and c is the number of outputs. This is called a generalised linear model
[McCullagh and Nelder, 1989].
Multilayer Perceptron

A nonlinear neural network is organised into layers which are categorised into three types,

e Input layer -

This is the input data.

e Hidden layers -
There can be a number of hidden layers. These take the outputs of the input layer or

another hidden layer as their inputs.

e Output layer -

These are the outputs of the network. They take the outputs of the last hidden layer

as its inputs.
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The number of outputs ¢ and units in the hidden iayer- M is determined
number of inputs is the dimensionality of the data d. Each unit in one;"~léy
to each unit in the next layer, with no other connections permiftt‘éd.' ‘Hietic_é(,_" th_is-: type of
structure is known as a feed-forward neural network [Bishop, 1995].

The neural network model is an extension of the model giveﬁ in Equation 2.5. The model
is extended by making the basis functions ¢;(x) depend on parameters and then allow these
parameters to be adjusted, along with the coefficients w; during training. The multilayer
perceptron (MLP) used in this thesis has a single hidden layer and uses basis functions of
the same form as Equation 2.5; so each basis function itself is a nonlinear function of a
linear combination of the inputs, and the coefficients in the linear combination are adaptive
parameters [Bishop, 2006, p226].

The first step to constructing an MLP is to create M linear combinations of the input
variables in the same manner as in Equation 2.5. The difference is that the outputs are the
inputs to the hidden layer z(x,w), so the vector z = (z1,22,...,2n). Also, the activation
function used in this thesis is the ‘tanh’ function [Nabney, 1999] which we shall denote A(-).

So the function for the inputs to the each of the hidden units z; is

D 5
z;i(%, wi)y=h (Z 'wji(l)xi> , (2.6)

=0
where the superscript (1) indicates the layer of the network and j = 1,2,..., M.

Consequently, the function from the hidden layer to the output layer is

M
ye(z, w®) =0 (Z wkj(2)2j>> (2.7)
Jj=0 '

where o is chosen due to the nature of the data and the application. In this thesis, we use
the logistic sigmoid activation function for two class problems and the softmax activation
function for multiclass problems.

So, to see how this has extended the model formulated in Equation 2.5, we can write the

whole process to decide an output value as

M D
yr(x, w) = U(Z 'U)kj(z)h<zw‘ji/(l)$é>>. (2.8)
=0 =0

It is easy to see from this how h(-) replaces ¢(-), and o(-) replaces f(-) in Equation 2.5
[Bishop, 2006, p228].
This architecture has been shown to be able to model any smooth function (with suitable

weights and bias) and is therefore known as a universal approzimator [Hecht-Nielsen, 1987].
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Radial Basis Function

As an alternative for the choice of ¢;(x) in Equation 2.5, radial basis fun:c\tz‘pn;s_j,.fé_tfei’;bf‘c'
which means that the basis function depends only on a distance measure f;rom- a ‘ce_ntie: s
S0

8500 = bl =il | 29)

The RBF also includes a hidden unit layer but differs from the MLP in that the activation
functions of the hidden units are non-linear functions between the input vector and the hidden
units with a linear function of the hidden units giving the output layer. The non-linear
activation functions are radial basis functions, that is, the function is constructed using a
distance metric with respect to the function ‘centre’, relative to a variance parameter. Other

than more efficient training, the performance is similar to that of the MLP.

Network Training

Often, the way of determining the network parameters is to maximise the likelihood of the
parameter values. This is equivalent to minimising a sum-of-squares error function of the

form

N
B = 53 Iybew) — 6l 2.10)
i=1

where N is the number of input vectors in the training set {x;} and {t;} is the corresponding
target values.

Most training algorithms involve an iterative procedure to minimise such an error function,
with adjustment of the weights being carried out at each step. \

In this thesis we use the MLP for classification tasks. The method we use to train the
MLPs used in this thesis is known as the Bayesian evidence procedure [MacKay, 1992]. This
method regularises the weights of the network by introducing hyperparameters, the ch,oicé
of which can be incorporated into the learning process. Full treatment of the regulation of
weights via the Bayesian evidence procedure is outside the scope of this thesis; full details

can be found in [MacKay, 1992].

9.3.2 Visualisation and Dimensionality Reduction

These techniques are primarily concerned with representing the data in such a manner that

any underlying structure that may be exploited will become apparent. The basic aim of
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visualisation methods is to map the data to a loWer dirﬁeﬁé’ional spa‘ce'r't‘haty-ean’ be u_’hd’ep,s;tgo‘
by a human observer (i.e. a 2 or 3 dimensional space). .

Dimensionality reduction often uses similar techniques, but the éjm is not to ‘rep,'re\s’_ent;.
the data in a fashion that can be understood by a human. Instead, the aim is to reduce the
dimensionality of the data to retain as much information as possible to reduce the compu-
tational burden and to avoid the curse of dimensionality (wherein a overly high dimensional
data space compared to the number of data points will lead to a poor representation of the
structure of the data [Bishop, 1995]). There are two main methods of dimensionality reduc-
tion known as feature selection and feature extraction. Feature selection involves reducing
the dimensionality by choosing a subset of the original data that retains a suitable amount
of information. Feature extraction methods transform the data in such a fashion that opti-
mal information is retained in fewer dimensions. In this thesis, as our data is derived from
the P-wave and are continuous recordings of different lengths and each value is likely to be
highly correlated with the others, taking subsets of the data values at specific times would
not be suitable. Hence, feature extraction methods are more applicable and it is these that
are reviewed below. This means that the data points are projected onto a lower dimensional
manifold defined by a combination of the original variables. We now review-the two methods

used.

Principal Component Analysis

Principal component analysis (PCA) is a linear projection method which can be used for both
visualisation and feature extraction [Jolliffe, 1986]. It is a common technique that combines
the inputs using a linear transformation in such a manner that the maximal variance is

retained. The aim is to map a dataset of N vectors

x; of a d-dimensional space,
onto
y; in an ()-dimensional space,
where 1 =1,2,...,7n.
If consider the case where Q = 1, and u; is a d dimensional vector of unit length (uiu; =

1). Each data point is then projected onto a scalar value u;fxi.

If the sample mean is given by

1 N
x=9 x, (2.11)
N =1
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then the variance of the projected data is given by

N 2 ' -
Z{ul X; — Uy x,} =ulZu, S0 (212)

=1

z[-

where

1 N
- N—Z(xi —x)(x; —x)7T. (2.13)
1=1

Therefore, as we want to maximise the variance of the projected data, we need to maximise
u}‘E u;. As this is constrained by the normalisation condition u?ul = 1, we can construct a

Lagrangian and maximise that. The Lagrangian in this case is

ul Su; — A (1 - uluy). (2.14)

Taking the derivative with respect to u; equal to zero, we can see this quantity will have a

stationary point when

Eul - )\11114 (215)

So multiplication of u; and ¥ results in a scaling of the vector u; by a value A;. This is
the definition of an eigenvector so u; must be an eigenvector of ¥. As the magnitude of an
eigenvector is related to its corrésponding eigenvalue, the maximal variance is retained when
we use the eigenvector that corresponds to the largest eigenvalue. This eigenvector is known
as the first principal component. For @ > 1, additional principal components can be chosen
in an incremental fashion in orthogonal directions to those already chosen. This means that
the optimal linear projection for which the variance of the projected data is maximised is
defined by the @ eigenvectors having the @ largest eigenvalues [Bishop, 2006, p561].

For visualisation we choose Q = 2, but for feature extraction, we need to take the dimen-
sions that contain the most information and discard those that contain noise. A heuristic
rule is to plot the eigenvalues in descending order and see if there is a point at which the
values level off. We then take the corresponding eigenvectors before this point.

However, in an automated approach, there is no steadfast rule for selecting the number
of dimensions for use in PCA. The normal method is to take the first @ Eigenvectors which
incorporate 95% of the relative value of the Eigenvalues. However, such thresholding is not
mathematically robust and we employ a method which uses Bayesian model selection on the
probabilistic PCA (PPCA) [Tipping and Bishop, 1999] model which is a generative model

for PCA. Bayesian model selection generally selects simpler models that can be applied to
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a wider range of data sets. The probability of the data given the model is calculated by

integrating over all the unknown parameters in that model:

p(DIM) = /6 p(D|O)p (6 M) de. (2.16)

This is known as the ewvidence for model M.

As the Bayesian evidence of the PPCA model is not computétionally tractable, it is
approximated in Minka [2000] using Laplace’s method, simplifying the resulting equation.
However, testing of this method on synthetic data did not estimate the intrinsic dimensional-
ity correctly and so we use a further simplification of Laplace’s method, known as Bayesian
information criterion (BIC) which performs well.

Minka [2000] gives the BIC approximation of the Bayesian evidence of the PPCA model

is as

k ~N/2
p(Dk) ~ <H Aj> §N(d=k)[2 = (m+k)/2 (2.17)
7=1

where k is the dimension being tested, d is the original dimensionality, N is the total number

: th s R d e N '
of data vectors, A; is the j** eigenvalue, 0 = Eﬁ%—], and m = k(d — 1)(k + 1)/2.
This calculates the probabiﬁty that the data D has an intrinsic dimensionality k. The
value of k that corresponds to the largest probability is the correct dimensionality by this

method.

NeuroScale

A drawback of PCA is that it is a linear technique which means that any non-linear correla-
tions in the data would be overlooked. NeuroScale [Lowe and Tipping, 1997] is a non-linear
projection method that uses a radial basis function neural network to perform the mapping
to the feature space.

The aim of NeuroScale is to retain the topological structure of the data upon projection
to a lower dimensional space. In essence, the projection mapping is constructed so that the
Euclidean distances between the data points x; and x; in the data space dj; = |jx; — x|
should correspond as closely as possible to the distances in feature space di; = |ly: — y;l|
[Lowe and Tipping, 1996]. This is achieved by using a special error function is known as the

stress which is given as

1 (df; — dij)

: (2.18)
Lijdig iz il
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The Metropolis-Hastings algorithm is an iterative procedure where a candidate state z*

is drawn from a proposal distribution q(z]z")). In this thesis; the'propos’al distribution ,is"\ .

simply a Gaussian centred on the current state. This candidate state is then assigned a

probability

A(z*,20) = min(l, f;(zz(t))) (2.19)

We then choose a uniform random number u over the unit interval (0, 1) and accept this new
state if A(z", z(!)) > u. The use of this acceptance criterion allows the algorithm to sample
the full distribution space as t — oo. If the candidate state is accepted, then 7t = z*,
otherwise z(+1) = z(!) [Hastings, 1970; Bishop, 2006].

The choice of the variance of the proposal distribution is of some importance; if the
variance is too high then many candidate states are likely to be accepted but it will take
a significant number of iterations for the algorithm to converge to the correct distribution.

Also, if the variance is too small then the algorithm may not be able to explore the full space

as it may get stuck in a local minima.

2.4 Time Series Analysis Methods

There are a number of methods that have been used to analyse the RR-interval time series.
It would be impossible to analyse each method in depth and so we provide a brief overview

of the methods here.

2.4.1 Standard HRV Measures

There are a variety of standard techniques used in HRV analysis which utilise both the fre-
quency and time domain. Although they are not complex enough to model the full dynamics
of HRV, they can often be used for comparative purposes when developing new methods.
Detailed descriptions can be found in many sources [Task force of the European Society of
Cardiology and the Northern American Society of Pacing and Electrophysiology, 1996; Teich
et al., 2001].

Time Domain

There are many commonly used time-domain measures in HRV analysis which use NN-

intervals. They are:
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e NIN50 Number of pairs of adjacent NN-intervals. différing by more than__ 50 "r‘nilli,se‘.(’:_onds, ,

(ms).

e pNN50 The proportion of consecutive NN-intervals with differences that exceed 50

ms.
e SDINN The standard deviation of all NN-intervals.

e SDNN (0int) The mean of the standard deviations of the NN-interval set for all five

minute segments.

e SDANN The standard deviation of the averages of NN-interval over five minute seg-

ments
e SDSD Standard deviation of the differences between adjacent NN-intervals

e RMSSD The square root of the mean squared differences between adjacent NN-

intervals

These measures are relatively simple but they have been widely applied in HRV analysis with

some good results and have been shown to be clinically viable.

Frequency Domain

Transforming to the frequency domain allows analysis of how the power distributes as‘a func-
tion of the frequency [Task force of the European Society of Cardiology and the Northern
American Society of Pacing and Electrophysiology, 1996]. The usual method of transforma-
tion from the time domain to the frequency domain is by non-parametric techniques such as
the fast Fourier transform (FFT). Parametric methods such as autoregressive modelling have
also been used.

The analysis of the power spectral density (PSD) of the data can take place over the short
term (normally 5 minute intervals) or long term recordings (the entire period of the recording,
typically 24 hours) which give quite different PSDs and therefore different measures.. Long
term recordings are difficult to interpret as they suffer from nonstationarity [Furlan et al.,
1990]. Moreover, features based on long term data are highly correlated with that of the time
domain due to mathematical and physiological relationships. As such, time domain ‘analysis
is often preferred as it is easier to perform [Task force of the European Society of Cardiology

and the Northern American Society of Pacing and Electrophysiology, 1996].
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The standard clinical frequency bands are Ultra Low F‘fequency (ULF), Very Low 'Fre—‘

quency (VLF), Low Frequency (LF) and High Frequency (HF). For -shor-t: ""c_'erm‘ fecordi\rigs;

ULF is not used as a measure as is not meaningful in such a short time window. Indeeda the H
physiological explanation of VLF (the 0.003-0.04 Hz range) assessed from short term record-
ings is not well defined and it is normally not included in interpreting the data. The LF and
HF boundaries are given as 0.04-0.15 Hz and 0.15-0.4 Hz respéctively and it is these that are
the basis for most of the spectral analysis. LF and HF may also be measured in normalised
units (n.u.) which is the power of each frequency band divided by the total power minus
the VLF component. Also the LF/HF ratio is often used as it is often more useful than the
individual frequency information on its own.

The analysis of the frequency domain, particularly in short term recordings, is widely

used and is regarded as being better understood than the equivalent time domain analysis.

2.4.2 Standard P-wave Measures

There are two simple measures which have been applied to P-waves for investigative purposes,

1. P-wave duration,

2. P-wave dispersion.

The P-wave duration is normally reported as the average P-wave duration plus or minus
the standard deviation. The P-wave dispersion is the longest P-wave duration minus the
shortest. Both have been used in a number of tests [Steinberg et al., 1993; Wong et al., 2004]
which show that these statistics can be of use in determining the presence of certain ’cardiac\

conditions.

2.4.3 Information Theoretic Measures

There are a variety of information theoretic measures that are in use for cardiac time series
analysis, most of which are termed as ‘entropy’ which is a quantitative measurement of
disorder in a system. The measures that we use in this thesis are classed as entropy measures,
with one notable exception being the Fisher information. We also look at measures that do
not feature again in this thesis for comparative purposes.

The caiculation of information theoretic measures in HRV analysis can potentially over-
come some of the pitfalls of other techniques such as the limitations of linear statistical

measures and the complexity of non-linear techniques [Wessel et al., 2000]. A variety of
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methods have been presented [Fusheng et al., 2001; Cuglm et al, 1-99_ 9;;‘-’@“&0 gé ot al, 2000]
which show that this field merits further study. ..

Information Entropy

Information entropy is a method which directly estimates the amount of unpredictable in-
formation in a discrete system [Shannon, 1948]. Conversely, it can also be regarded as a
measurement of information contained in a system. For a data series, x, with N possible

outcomes, the information entropy is

N
Hy(x) = = > p(z:) log plzs), (220)
7==1

where p is the probability of value z; being observed. The logarithm in Shannon’s original
paper is base 2 as it refers to binary bits but we use natural logarithms of base e in this
equation and the rest of the thesis.

It has been used in some HRV studies [Cugini et al., 2001, 1999] but it does not hold any

information on the sequencing of the values, only on their level of disorder.

Approximate and Sample Entropy

These are similar techniques based on the concept of entropy rate which is used as a method
of determining the chaotic nature of a system. Approximate Entropy (ApEn) is a promising
characterising parameter which measures the irregularity or complexity of a signal [Fusheng
et al., 2001] whilst incorporating information on the sequential properties of the data. Sample
entropy (SampEn) is an improvement of approximate entropy which addresses some issues

inherent in the method. For an extensive overview of these techniques refer to Chapter 4.

Fisher Information

Fisher information is another information theoretic measure that predates the information
entropy by about 25 years but never achieved its popularity [Frieden, 2004].

Fisher information is defined as

I= (-%)7)3 d, (2.21)

with the discrete form

p(z;))? '

N
I Z [p(zit );i) (2.22)

1
— 2

43




CHAPTER 2. LITERATURE SURVEY

As can be seen from Equation 2.21, this statisticis a functxon 1nvolv1ng the first derlvatwe
which means that it incorporates information on the local gradient of the functlon Hence)_@\)r \
the Fisher information is sensitive to the local rearrangement of points, a property known\
as locality. This contrasts with the information entropy given in Equation 2.20 which is
a global measure [Frieden, 2004], i.e. the ordering of the values in the series will have no
effect on the result of the statistic. This is used as a useful indicator of the effect that the
local arrangement of points can have on the discriminative potential of a series. This is of
importance as the analysis done in this thesis is based on the hypothesis that the values of
consecutive points will provide useful discriminative features. Hence a simple statistic that
incorporates sequential information is of great use as a benchmark for comparison of other

sequential measures.

2.5 Nonlinear Dynamics

The problem of identifying nonlinearities is non-trivial since both chaotic and random pro-
cesses have similar broadband spectra. We shall overview the main approaches to determining
if a series displays chaotic behaviour. These techniques can also be regarded as feature ex-
traction methods. Firstly, we show how a time series may be represented in a more natural

fashion using Takens’ embedding theorem [Takens, 1981].

2.5.1 Phase-Space of a Dynamical System

Time series such as those derived from cardiac data can be regarded as a projection of the d-
dimensional state of a system to a one-dimensional space. Reconstruction of the underlying
function space is one method of exploring the dynamical nature of the system. Takens’
embedding theorem asserts that if a time series is one component of an attractor that can
be represented by a smooth d-dimensional manifold then the topographical properties of the
attractor are equivalent to the topological properties of the reconstruction [Henry et al., 2001].

The method for reconstruction of the time series in phase space is the time delay method.

The process involves calculating a set of delay vectors from the observation space of the form
Vo = (z(n),z(n+7),z(n +27),...,z(n + (m — 1)7))T, (2.23)

where 7 is the initial time, 7 is known as the lag (delay time) and m is the embedding dimen-

sion. A condition of Takens’ embedding theorem is m > 2d + 1 for complete reconstruction
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of the attractor. Because of this, and to av01d the curse of dlmensmnahty, accurate calcu—,

lation of the lag and the embedding dimension are of paramount importance in tlme delay\

embedding.

2.5.2 Delay Time

Any value of the delay time or lag is theoretically viable but the shape of the embedded time
series will change depending on the value of 7. Therefore it is prudent to choose a value
for 7 that will separate the data as much as possible [Packard et al., 1980]. Therefore a lag
time that yields a reasonably small amount of correlation between points in the reconstructed
series is preferential.

A widely used method to estimate the lag is to take the first zero (or close to zero) in the

autocorrelation function of the signal f(t) with itself

The value of T that this corresponds to is then used as the lag. As the autocorrelation is a
linear function, this will only show where linear correlations in the time series are negligible
[Henry et al., 2001; Teich et al., 2001].

Another well used method in determining an appropriate value for the lag is by takmg
the first minimum of the mutual information [Fraser and Swinney, 1986] which is a measure
of how much information about a time series point can be predicted given full information
about another [Henry et al., 2001].

There are also composite methods which predict the lag and the embedding dimension at

the same time as presented in [Gautama et al., 2003] which we shall return to later.

2.5.3 Embedding Dimension

There are many methods for calculating the value for the embedding dimension which have
been implemented. As knowledge of these techniques is only needed for contextual under-
standing, we supply only a brief overview of the false nearest neighbour, singular spectrum

analysis and differential entropy methods.

(i) False Nearest Neighbour

If the embedding dimension is too low, two points may be close when projected onto a low

dimensional embedding space when in the correct attractor dimension they are quite far apart
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[Davey et al., 2001; Signorini et al., 2001]. False nearest néig-hbour (FNN) [Kennel et al., 1992

exploits this property by determining the embedding dimension using an incremental search

starting at m = 1.

For each of the set of time-lagged vectors y,, the algorithm determines the nearest
neighbour ¥, and calculates the distance between them. The value of m is then incremented-
by one and the distance between y,,+1 and its nearest neighbour ¥,,41 is calculated in the
higher dimensional space. The relative additional separation is then calculated

d(}’m: S’m) - d()’m+1 ) S’m+1)

_ (2.25)

If this number is greater than an absolute value Rror, then y,, and y,, are classed as false
nearest neighbours. A suitable value of Rror 2> 10 was empirically shown to lead to the clear
identification of the false neighbours [Kennel et al., 1992]. The percentage of false nearest
neighbours is then calculated for the dimension m. The correct dimension is determined
when the number of false nearest neighbours is low and further increase in m does not lower

it significantly further.

(ii) Singular Spectrum Analysis

The first step of this method is to create a matrix out of the lagged delay vectors with
a temporary value for the delay that is large enough so that there is redundancy in‘the
embedding results [Broomhead and King, 1986; Roberts et al., 1998]. The matrix is of the
form

Y = (}’1,)’% ce 7yN—(n-—1.))Tﬁ (226)

where y is defined in Equation 2.23. This matrix is then decomposed into three matrices

using singular value decomposition thus:
Y =Usv?. (2.27)

The redundancy in the embedding manifests itself in rank deficiency in the matrix S which

is a diagonal matrix with the elements s;; = o; where 01-2 are the eigenvalues of YYT. Rank
deficiency can be determined where the values of s;; become 0. In the presence of noise, as
often found in biomedical systems, the magnitude of the singular values will ‘level out’ at a
noise-floor. The first singular value s; on this noise floor can be used for the value of the
embedding dimension m = i. The rank deficiency can also be investigated in other ways (see

[Ko et al., 1999]).
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(iii) Differential Entropy Method

The differential entropy based method [Gautama et al., 2003] aims to calcu_lai\;eltthe lag and ihé
embedding dimension at the same time. The method produces favourable results using the
Hénon map [Henon, 1976] with variable time delay d when compared to using the combination
of the mutual information method and the false nearest neighbour technique.

The method proposed employs the Kozachenko-Leonenko estimate [Kozachenko and Leo-

nenko, 1987] of the differential entropy

N
H(x) = In(Np;) +1n2+ Cg. (2.28)
g=1

N is the number of samples in the data set, p; is the Euclidean distance of the 4 delay vector
to its nearest neighbour and Cp(~ 0.5772) is the Euler constant. As further discussion of
the procedure involves variable embedding dimension and lag, the function of the entropy,
embedding dimension and lag is henceforth denoted H(x,m, 7).

As the Kozachenko-Leonenko estimate is not robust to dimensionality, H(x,m,7) is stan-
dardised by dividing the entropy of the original time series by the average of a set of surrogates

H(xs;,m,7) thus
H(x,m,T)
[H(Xs,i) m, T)] .

Also, to penalise for higher embedding dimensions the minimum description length (MDL)

Im,t) = = (2.29)

method is superimposed, yielding the entropy ratio

mln N
N bl

Rent(ma T) = I(’I’YL, T) + (230)

which is the statistic that is tested for a range of values for m and 7. The minimum of
the function is the correct value for m and 7. Although it has been found to be of use in

[Gautama et al., 2003], preliminary testing on heart data led to inconsistent results.

2.5.4 Detecting Deterministic Behaviour
Correlation Dimension Estimation

The correlation dimension is a measure of the spatial complexity of a system [Celebi et al.,
2001). The approach uses the principle that while a chaotic time series will have a finite
dimensional attractor, a series generated by a stochastic generator will have an infinite di-
mensional attractor [Maier et al., 2001b].

The estimation of the dimensionality of the attractor is therefore a seemingly simple test

for determinism. This can be done by calculating the correlation dimension d., traditionally
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by using the algorithm introduced by Grassberger and Procaccia {Grassberger andf Procaccia

1983a,b]. A modified version has recently been proposed by Judd [Judd 1992] whlch ylelds\s\}":f .

better results, especially in high dimensions [Galka et al., 1998; Small et al 2000]
Judd proposed that the correlation dimension be estlmated by
log(—(n)

d, = lim lim ©

2.31
e+0N-=oo  loge (2:31)

which differs from the Grassberger-Proccacia method by the inclusion of a polynomial correc-
tion term p(e) [Small et al., 2000] which is an approximation of the distribution of interpoint
distances and is of degree equal to the dimension of the attractor. P(e) is known as the

correlation function and is given by

-1
P(e) = lim <N“2W> > H(e—llzi— g, (2.32)

[i=jI>W
where W is equivalent to the lag 7 as it is a windowing constant to prevent close temporal
correlations in the series. H(z) is the Heaviside function which is zero for a negative argument
and one otherwise. Therefore its sum gives the number of pairs of points whose distance is
less than e and P(e) reflects the probability that the distance between two randomly chosen
points is closer than e [Guerrero and Smith, 2003]. In practice, d. is estimated by assigning

an arbitrary value to € or a range of values for e.

Lyapunov Exponent

The Lyapunov exponent method is considered to be a quantitative test of the sensitivity of
the system to initial conditions [Beckers et al., 2003] as they measure the rate of conver-
gence or divergence of the trajectories of a dynamical system in the phase space [Bra(‘:ié‘ and

Stefanovska, 1998; Celebi et al., 2001].
Lyapunov exponents are defined as the long time average exponential rates of di\}ergence

of nearby states [Owis et al., 2002]. The mathematical formulation is given as

in Lo (190l (
oo = i ros( P ) .

where dy is a small perturbation to the orbit of a dynamical system

y() =fy®),  y0) =yo yeR. (2.34)

It is normally the largest Lyapunov exponent that is studied as if this is positive it is

a strong indicator of chaos: the larger the exponent, the more chaotic the time series. It
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is therefore conventional to order the Lyapunov exponents by thelr magmtude Calculatmn .

of the largest Lyapunov exponent is also done by algorlthms such as [Rosenstem et al .

1993]. The analytic calculation of Lyapuncv exponents is non- tmvmi and is only apphcable
to systems with known differential equations [Ott, 1993].. More often, the Lyapunov exponents
are calculated using suitable algorithms such as the one developed by [Wolf et al., 1985] which
is used in this thesis. However, Wolf’s algorithm still relies on knowledge of the equations
(and the Jacobian must be known). For raw time series data where the equations governing
the system are unknown, more advanced algorithms must be used such as the one in [Brown
et al., 1991].

The Lyapunov exponents are linked to other chaotic measures. For instance, Pesin’s

formula [Pesin, 1977] states

h=Y_ positive Ay, (2.35)

where h is the entropy rate. Also, the Kaplan-Yorke conjecture [Kaplan and Yorke, 1979]

states that

A+ Ao+ o+ Ak
[RYSSY ,

where d; is the information dimension, and k is the maximum value of j such that Ay + A9 +

dr=k+ (2.36)

..+ X; > 0. It is also known that dy provides an upper bound for the correlation dimension

de.

Surrogate Data

The principle of surrogate data analysis involves methods that work under the assumption
that the data comes from a particular class or system and then tests that assumption by
generating surrogate data from this system [Small and Judd, 1998; Schreiber and Schmitz,
2000]. The surrogate data can be generated in a variety of ways which destroy some aspect
of the underlying structure of the data. e.g. randomly sampling from the same distribution
as the data to form a new, uncorrelated, time series. A number of surrogates are normally
generated to increase confidence in the results.

Statistics are then generated from the surrogates and the series being tested. These are
then compared, normally using conventional hypothesis testing, and the statistical confidence
that the original data set does or does not belong to the same system as the surrogate

is calculated. The hypothesis testing is normally hierarchical; the simplest explanation is
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normally tested first due to Occam’s razor (i.e. test for li’neariﬁ&) and then further, more
stringent tests can take place. l | ’

There are many methods that use surrogate data for comparative purposes for example,’ .
the differential entropy based method discussed earlier and the delay vector variance method
[Gautama et al., 2004] which compares sets of pairs of delay vectors whose distance is less
than some span rg with sets derived from surrogate time series.

Surrogate data is a widely used and important method of establishing determinism within
a system. This is because it 1s a powerful approach as many hypotheses can be tested and the
surrogate data itself is easy to generate. However, the whole field of hypothesis testing relies
on arbitrary confidence levels which, although it can be related to the number of surrogates
tested, is not a principled approach and cannot be considered robust.

For a review of the methods used to create the surrogate series used in this thesis, refer

to Appendix B.
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Chapter 3

Investigating the P-wave

The motivation for investigating the P-wave is due to paroxysmal atrial fibrillation being
the primary cardiac condition we are aiming to diagnose. As such, we are investigating the
hypothesis that as paroxysmal atrial fibrillation is a condition affecting the atria, then any
information pertaining to the onset of an AF episode may be extracted from the corresponding
atrial ECG component; the P-wave.

The ECG recordings we shall investigate are taken on a Holter monitor over a long
duration and therefore contain a large number of beats. Therefore, isolating the P-waves by
hand is not viable for most applications.

Due to its low amplitude compared to the other ECG complexes, the P-wave is usually
the most difficult to extract reliably. Indeed, the task of automatically extracting the P-wave
from the ECG is non-trivial in its own right and numerous studies have been devoted to it
[Anant et al., 2000; Hughes et al., 2003; Lepage et al., 2001; Rieta et al., 2003]. In Section
3.1 we shall look at some of the previous methods that have been employed to extract the
P-wave. Section 3.2 outlines the method that we have used in this thesis including a pseudo-
code algorithm and a discussion of its effectiveness.

Once the P-wave has been extracted, we can begin investigating the P-wave data with a
view to identifying reliable discriminative features in earnest. Section 3.3 details the prelim-

inary investigation of the P-wave data with a discussion of the results obtained.

3.1 Previous Research

Much of the previous research has involved the use of wavelet transforms, both as a pre-

processing step and as an actual analytic tool. As such, this section is further divided into
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methods using wavelet transforms and heuristic methods However as we do not use wavelet

transforms, the discussion of wavelets is limited to a brief review of prevxous methods and .

results.

3.1.1 Wavelet Transforms

Of the papers that utilise wavelet transforms, there are thos:e thaf extract the P-wave as part
of a larger ECG processing task and those that are solely aimed at P-wave extraction.

One example of the former is to be found in [Lepage et al., 2001] where wavelets were
used to isolate the P-wave in stationary ECG recordings by combining the analysis with a

hidden Markov model (HMM). There were three steps to the analysis:
e apply a Haar transform with four levels of resolution to the ECG signal;
e locate the QRS-complexes by thresholding the wavelet coefficients;
e segment the signal by applying an HMM to each resolution level.

The results for the P-wave extraction of this automated method were compared to the results
obtained by the average of two cardiologists examining the ECG by hand. This process
achieved 77% accuracy which is.not really suitable for robust P-wave analysis:

HMMs were used again, both in conjunction with multi-resolution wavelet analysis and
without in {Hughes et al., 2003]. Again, the wave onset and offset were classified by experts
and then a HMM was trained on the data in a supervised fashion. The probability densities for
the start of each P-wave were estimated using Gaussian mixture models; although results for
the other complexes were reasonable, the method only correctly extracted the P-waves 5:5%
of the time. This was then compared to an HMM trained using data that was preprocessed
with an wavelet transform in a similar fashion to [Lepage et al., 2001]. This yielded much
better P-wave segmentation (74.2%). Despite this pronounced improvement, this accuracy is
still unsuitable for robust P-wave analysis.

Another study that compared the benefits of preprocessing using wavelets to using the
raw data used a neural network in place of the HMM [Anant et al., 2000]. The aim in this
case was to detect the highest point on the P-wave. A wavelet decomposition-of the ECG
data was obtained and five different decompositions at different scales performed; the one
which had the most information about the P-wave was retained. A neural network (multi-
layer perceptron) was trained on the processed data and compared with a neural network

that was trained on the raw data. The preprocessed neural network detected the peak 70%
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of the time compared to 50% of the time for the raw data. Again, this shows the potential

benefits of wavelet decomposition but it currently remains unsuitable for P‘-Wave'anaulyéi‘s.\\' ':}: ’i\ .

3.1.2 Heuristic Methods

Heuristic approaches are often used to process ECG dat,a:" and often accurate detection of the
R-point is a prerequisite for the detection of other ECQG features. This is the most prominent
feature of the ECGQ due to its size and shape. It is also essential to determine the baseline
of a signal (usually taken as a line between the points just before the onset of the Q-wave
of two consecutive beats). This baseline can then be subtracted from the signal to give a
level representation of the ECG. These steps are important as they facilitates further feature
extraction from the ECG.

These approaches adopt the following steps:

Filtering the ECG signal

As mentioned before, the signal can be susceptible to alternating current interference or low
signal/noise ratio due to a poor electrode contact. This can be counteracted to a degree
by filtering the data using ﬁnite‘impulse response (FIR) filters and infinite impulse response
(IIR) filters. These can be targeted to filter certain frequencies and so, for example, could be

targeted to remove alternating current noise specifically.

R-Point Detection

Reliable detection of a reference point is a pre-requisite for further ECG structure analysis.
Most ECG processing packages work by detecting the QRS-complex, normally the R-wave,
as that is of the highest amplitude and is the most distinctive structure in an ECG signal.
This can be done in a variety of ways, such as analysis of the signal in the frequency domain

or an amplitude triggering approach.

Q-Point and Isoelectric Point Detection

Having detected the R-point, the next step is to detect the Q-point and subsequently the
isoelectric point (the point on the ECG baseline immediately preceding the Q-wave where
there is no electrical potential). If a Q-point does not exist then the isoelectric point still
needs to be identified. This can be achieved by using a simple gradient based approach to

detect the turning point (at the Q-point) and then detect where the gradient levels out.
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Baseline Correction

Figure 3.1: An ECG output displaying baseline wandering.

Figure adapted from library.med.utah.edu

ECG recordings are prone to what is known as baseline wandering. This is when the
baseline is not flat and can cause problems with automatic complex detection and importantly,
if the baseline is not corrected properly, any comparison of extracted complexes will be largely
meaningless due to the fact that they will be of inconsistent orientations. There are several
methods that have been implemented to correct the baseline, mainly by subtracting a baseline
approximation created using cubic splines [Meyer and Keiser, 1977] or wavelet approximations
[Cuesta-Frau et al., 2001]. The cubic spline method uses the isoelectric point as the knots

but the wavelet analysis can be carried out without the previous steps.

P-Wave Detection and Extraction

The P-wave is the lowest amplitude normal complex in the ECG waveform. This means that
‘1 some situations it is difficult to determine the exact beginning and end points although
this can be made considerably easier if the earlier stages are carried out to a high accuracy
Again, there are many methods that have been applied to this such as 51gna1 averaging
[Carlson et al., 2005; Langley et al., 2001], Markov models [Lepage et al., 2001; Hughes et al
2003] and wavelet analysis [Anant et al., 2000].
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3.2 Method

3.2.1 Data

The data that we used is two channel data supplied by PhysioNet! [Goldberger et al., 2000]. \
The identities of the leads are unknown as they were not recorded, but it is known that the
usual practice for their data is to record the MLII and V2 channels. MLII is an abbreviation
of modified lead II as it records the similar data as the normal lead II but the electrodes are
placed near the right shoulder and above the left hip [Goldberger et al., 2000] so as to be less
intrusive to the patient. The other electrode is in positiorn V2 j(see Section 2.1.3). However,
not all the recordings in the data set were done at PhysioNet and they could not guarantee
that all the data was recorded on these two channels. This means that our algorithms must be
potentially able to find the complexes on any one of the twelve leads and extract the P-wave
effectively. We only used a single channel of the data set corresponding to MLII wherever

possible.

3.2.2 Cardionetics Software

We were fortunate to have a working R-point detection program supplied by Cardionetics
Ltd. The Cardionetics software works in a similar way to the heuristic method in Section
3.1.2 and Was arranged as a series of functions with different purposes. The Cardionetics
functions were applied to the PhysioNet data with varying levels of success.

The Cardionetics filtering function worked well on the noisy data. As Figure 3.2 shows,
the signal after the filtering is a lot cleaner. The amount of noise was reduced considerably;
however, the data seemed unnecessarily distorted by some of the filtering operations, as seen
in Figure 3.3. If the 50 and 60Hz notch filters were not used, the distortion of the data was
Jess and the performance on noisy data was not significantly impaired.

R-point detection was done in two functions. The first function detected the R-points
and worked well, approximately finding their positions reliably. It picked up the location-of
the QRS-complex accurately enough but did not distinguish between the R and S-pomts and
was occasionally misled by anomalous data. However, this is not a problem as the function
is only intended to provide starting points for the next function.

This function did not work well on the data as it .did not differentiate between the R
and the S-point and sometimes crashed with anomalous data. This is probably due to the

fact that the PhysioNet data set is considerably more diverse than the data produced by the

'wuw.physionet.org
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1 begin
1nput potential R-point position, data

2 iteratively search forward (for 50ms of data) from the position of the potentlal
R-point position for the minima that corresponds to a S-point and a corresponding
maxima after the S-point that corresponds to the J pomt

3 if S-point and J-point are found then

4 return R-point position;
5 end
6 end

Algorithm 2: Pseudo-code for function Rverify for verification of the R-point location

Detecting the R-point

The Cardionetics R-point detection consisted of two functions, one to determine the rough
location of the R-points the second to pinpoint the R-point precisely. The preliminary R-
point detector function performed satisfactorily in detecting the approximate locations and
o was left untouched. After several attempts to modify the second R-point detector function
failed to increase its robustness adequately, it was decided to start afresh.

The new function would have to detect the R-point accurately every time and not -the
S-point. The program should detect the R-point as per the definition given in Section 2.1.3;
as the point immediately preceding the downward deflection of the S-wave. This meant that
the R-wave would always be a positive deflection, which was an immediate refinement of the
Cardionetics software which detected the first upward or downward deflection in the window
centred on the candidate R-point, which was not necessarily the R-point as given in the
previous déﬁnition. Tt is also worthy of note that in the case of having two R-points, r and
r’, the program should detect the first one, r.

For robustness, the function finds a suitable S-point as well as a suitable R-point. This was
done by taking the highest and lowest points of a data range centred around the approximate
R-point. If the lowest point preceded the highest point (i.e. the Q-point was lower than the
S-point), then the S-point needed to be properly located by only /searching the area after the
highest point.

It is likely that the R-point would correspond to the highest point in this data range.
However, as this is not always true, for example, if the start of the T-wave encroaches into

the data range; the program would examine all the maxima, discount any that occur after
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2

1 for k=1:2 do

begin
input: tempPvec

calculate the turning points of tempPvec and calculate line of best fit of these;

3

4 subtract the line of best fit from the data;

5 use the result to update tempPvec;

6 end

7 set a threshold as a 20% of the largest value in tempP vec;

8 identify P-wave as the section of the signal that remains above this threshold for
the most consecutive time points;

9 verify this signal section is not the T-wave by iteratively searching backward from
the signal section maxima for first maxima that lies above the threshold (which
corresponds to the T-wave) if this is found to be equal to the previous R-point,
then we have located the T-wave;

10 if T-wave located then

11 finish=locate the first minima below the threshold after the T-wave peak where
the signal rejoins the baseline;

12 start=locate the first minima below the threshold after the T-wave peak where
the signal rejoins the baseline;

13 Twave=vector of zeros the same size as tempPvec;

14 Twave(start:ﬁnish)=signal(start:ﬁnish);

15 tempPvec=tempPvec-Twave;

16 set a threshold as a 20% of the largest value in tempPvec;

17 identify P-wave as the section of the signal that remains above this threshold
for the most consecutive time points;

18 end

19 finish=locate the first minima below the threshold after the P-wave peak where the

signal rejoins the baseline;
20 start=locate the first minima below the threshold after the P-wave peak where the
signal rejoins the baseline;

21 Pwave=vector of zeros the same size as tempPvec;

22 Pwave(l:ﬁnish-start)=temvaec(start:ﬁnish);

23 return Pwave;

24 end

Algorithm 3: Pseudo-code for function findPwave for P-wave detection
61
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The Q-point detection and baseline correction improved the baseline wandering substan-

tially. This was deemed suitable for P-wave extraction.

The P-wave extraction itself performed well with good agreement in the v1sually deter-
mined P-wave beginning and end points, and the points cho§§n7byc_ét;{he‘ algorithm.

The tests were not exhaustive, or professionally veriﬁled, but:, the indications are that the
performance of the R-point detection and subsequent baseliﬁe correction improved on that

of the Cardionetics software. Also, the performance of the P-wave extraction, whilst not

perfect, is suitable for further analysis using techniques designed to work on real world data.
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CHAPTER 3. INVESTIGATING THE P-WAVE

set as decided by the BIC method. The P-waves of the absent records were then propagated .
through the MLP and which output a number between 0 and 1 for each P-wave (200 for each
record). A classification level, at 0.5, was set and each P-wave below that classified as ‘gro\up- \
N and those above that as group P. Table 3.2 shows the percentage of correct and incorrect

classifications for each class.

Correct | Incorrect
Group N 18 82
Group P 90 10

Table 3.2: Correct and incorrect classification percentages for groups N and P.

3.3.4 Conclusions

We can see from all of the initial analysis that it is difficult to extract meaningful information
from the P-wave data; at this point we cannot conclude that the P-wave contains information
pertinent to the diagnosis of atrial fibrillation. However, this is not surprising as in any cardiac
condition the P-waves are likely to be very similar, especially over relatively long time periods.
That this is evident from the research so far only indicates that we need to use a different
set of features, not that P—waves’ are necessarily uninformative. These results-motivated the
subsequent research into variation in the P-waves; this may be investigated in-a similar way
to RR-interval variation with techniques such as those in Section 2.4. However, flaws were
apparent in the current measures and it was decided to address these to create a more robust

measure before application to the P-wave data set.
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Chapter 4

Development of Kernel Entropy

In this chapter we further explore the concept of entropy rate, first mentioned in Chapter 2,
and investigate how measures based on this can be used to quantify the level of regularity in
a time series.

We shall, in Section 4.1, review in detail the dynamical systems theory behind entropy
rate and how this was used to create the regularity measures that are currently in use. We
expand on this to incorporate signal processing and probability density estimation theory in
a novel approach in Section 4.2.

Section 4.3 focusses on the validation of the new measure. It is compared to the-best
current measure on synthetic data and subjected to a variety of tests to gauge its robustness

and consisténcy when compared with the previous approach.

4.1 Theory

The entropy rate (also known as metric entropy or the Kolmogorov-Sinai invariant) is the
mean rate of creation of information [Eckmann and Ruelle, 1985]. This is the average in-
formation gain that can be obtained from each observation; a measure of the time rate of
creation of information as a chaotic orbit evolves [Ott, 1993]. It is, therefore, 0 for non-chaotic
motion as no information is gained by additional observations and greater than 0 for-chaotic
motion where, on average, more observations will yield more information about the system.

The entropy rate is of great use in the mathematical theory of chaos when the equations
governing a system are known, but is of much less use in practice as the quantity is difficult

to determine numerically for a sequence of measurements x, with elements z;, such that
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x = [z1, T2, .-, TN]: . . ”’\(4_11)",,\\::\\,;’

As our aim is to develop a measure to investigate real world data sets, the theory given here
is presented with a view to provide understanding of the origin of the regularity measures
which form the latter part of this chapter. There are a number of Qays to define the entropy
rate; we shall explore two of them as understanding both fa,cili/tates the comprehension of

how the subsequent regularity measures work.

4.1.1 Partitions

Typically in older papers in dynamical system theory, the entropy rate is defined in terms of
partitions as this gives an intuitive representation of how a chaotic system returns a positive
entropy rate.

We define a probability space (£, B,p), where Q is the sample space and B is a set of
subsets of 2, where each subset is known as an event. An element of {2 is denoted by w. p is
an ergodic probability measure assigned to each event.

Hence, a set of a disjoint subsets, Q;, of Q forms a partition Q if

Q=0 UQUUQu, (4.2)

and Q is non-empty.

If A= {aj,ay,...,aqs} is the finite alphabet of possible outcomes of a mapping M Q=
A, we can consider the partition @ = {Q;;i = 1,2,...,a} defined by Q; = {w : M(w) =
a;} = M~"({a;}) [Gray, 1990]. We can then write the entropy as a function of the partition
defined by the disjoint sets of the preimages under M on the alphabet A as

Hy(Q) ==Y p(Q:)log p(Q), (4.3)

i=1
where we also define ulogu = 0 if u = 0. So H,(Q) is the information content of the partition
with respect to the probability measure which is denoted p, as opposed to p, to indicate that
it is ergodic.
Define M7 to be the mapping M applied 7 times. The inverse images M~ can be
partitioned in a similar way to above, denoted Q7, and so we can describe the evolution of

the system in time as
or=0"uQ'u..uQh (4.4)
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Q7 is a partition of the phase space created by applying the mapping 7 times. We can write

the components of this partition as

PL=Q) nQL,n...nQ"", (4.5)

where 1; € {1,2,...,0} and k € {1,2,...,a"}. Therefore, the‘ information entropy of ‘an

interval of time period of length 7 with respect to the state p can be written as

aT

H,(Q7) = =3 p(P[) log p(PY). (4.6)
k=1

The rate of information creation is defined as the limit

h, = lim [H(Q™"") — H(Q)]. (4.7)

T—0Q
4.1.2 Probabilistic Representation

Moving away from partitions, an alternative derivation of the entropy rate can be from a more
probabilistic perspective. The whole approach can be seen as being based on the conditional

probability on the sequence of observations, x, from Equation (4.1),
P(Tigm|Tidm—1> Tigm—2, - - - Ti), (4.8)

where z) is an event in the series at time k, and 7 is an index variable that denotes the start
of the sequence. In other words, the probability of the next event in the sequence occurring
given that the previous m events have occurred in sequence; m is analogous to T above. p is
used instead of p as the condition of ergodicity has been relaxed.
If we set X" = {Titm—1,Titm—2,- - ,zi}, and we write x™ = {x{"} as the set of all x7",
then we can express the entropy rate in Equation (4.7) in probabilistic terms;
= lim [H(zm,x™) = Hx™)], (4.9)

m—0o0

where H (.41, is the joint entropy of 2,41 and x™. From this we can write
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. 1
ho= 1
mo00 Zp (1, x™) log s p(mm+1 x™m) Zp Xm)}

xnl

J

= lim Zp(xm)p(mmulxm){log(%n)ﬂo é(m +1|Xm)} ZP log

_mxm

o . m
= i | 2 PO log S *Z%p R " 276
_ 1
= lim m k1[x™) log ————0
m—00 _Z;np(x p(Emia<") log p($m+1lxm)]’
which gives us
h = lim H(zm4]x™), (4.13)

m—0o0

which is analogous to Equation 4.7.

4.1.3 Previous Measures

Equation (4.7) cannot be applied to real world applications as the data is always of finite
length and so the limit 7 — oo cannot be calculated when the dynamical equations governing
a system are unknown. Pincus noted that even an approximation of this may have intrinsic
interest in determining the nature of a dynamical system and developed-the approximate
entropy measure (ApEn) to investigate this [Pincus, 1991]. Despite being called ‘entropy’,
it is better to think of them as measures of regularity [Fusheng et al., 2001] rather than
measures of disorder. Here we review ApEn and another measure based on the entropy rate,

known as sample entropy.

Approximate Entropy

If we approach the problem as in Section 4.1.1, we can partition the dynamical space by
introducing a ball centred at x]* with radius r, denoted B(xI", ).

As we have a signal as in Equation (4.1), then we can define a distance measure to be
the maximum Euclidean distance between a window vector xJ*, consisting of m consecutive

values starting at value z;, and a corresponding window xj" starting at the value z;,

de[x{",x]"] = max{ |z — 7:]+k| 0<k<m-1}. (4.12)

As such, if a vector x7* lies within the ball B(x{",r), then dp[x[",x”'] < r. Hence, we can

7 2 ] —_—

find the number of x7*,j = {0,1,...,N —m + 1} that lie within the ball B(x™,r),

N™(r) = #{x}n € B(x;",r),7 =1{0,1,...,N —=m+1}}. (4.13)
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We can then calculate the probability that a sequence of size m will occur (within the tolerance

value) thus

N (r)
mp) — e )
crir) N-m+1 ‘
It is now possible to obtain h, directly [Eckmann and Ruelle, 1985}. If we define
. Nemtl
Mr) = —— 1 i 4.1
P = T 2 0g C7" (1), (4.15)
then, using Equation (4.7), we can say
_ . . m metl 4.
he = lim Tim_tim [§7(r) — $™ ()] (4.16)

As this is still not suitable for finite data sets, further adjustments need to be made. Ap-
proximate entropy (ApEn) is essentially Equation (4.16) but with fixed m and r, and N data
points. It is defined as

ApEn(m,r, N) = ¢™(r) — ¢™+(r). (4.17)

Although ApEn is derived from and resembles Equation (4.7), it is worth noting that
it is not intended to represent it precisely and should be considered as a separate statistic
in its own right [Pincus, 1991]. It is worth mentioning again that this formulation, as well
as the subsequent ones, cannot robustly determine chaotic behaviour and so should not be
considered a quantitative test for chaos. As they do supply information on the regularity of

the signal evolution in time they are termed regularity measures [Richman and Moorman,

2000].

Sample Entropy

It has been shown that ApEn is inherently biased [Richman and Moorman, 2000], and there-
fore sample entropy was developed to address this bias and provide a more rigorous regularity
measure.

One source of this bias is the necessity of ensuring a non-zero value for Equation (4.13).
This is so that the logarithm taken in Equation (4.14) is well defined. The method of assuring
that this constraint is fulfilled in approximate entropy is by allowing 7 = j (known as ‘self-
matching’ [Richman and Moorman, 2000]) in Equation (4.13). This is equivalent to saying
that x is always in B(x*,r) and so N;"(r) is always positive.

We can see how this causes bias in the statistic by considering N/™(r) and N/*"'(r). If
we express approximate entropy in a similar fashion to Equation (4.11), it can be considered

as the log of the conditional probability that N™(r) and N/**}(r) stay the same over time:
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=1

Now, as neither N/™(r) or N™1(r) can be 0 for this to be deﬁned, the self-matching
biases the statistic to give a positive result for the statistic Whi,:d; causes bias, especially in
small series [Richman and Moorman, 2000].

SampEn removes this bias by removing all self matches. The formulation is also slightly
different. Only the first N — m values of the series are used when calculating N™(r) and
Nl-m+1 (r) ensuring an equal series length for each value. Also, two new variables were defined,
based on the correlation integral. The correlation integral is simply the average of the series

of C*(r) (defined in Equation (4.14)),

N — 1
1 mr

i=1
Sample entropy is defined in a similar fashion to the approximate entropy above. Firstly,

Ngm(r) is defined to discount the self matches,

N™r) = #{x € B(x*,r), § ={0,1,...,N —m},j # 1}, (4.20)
We now define
1 .
M) = N,™ 4.21
Urr) = i——V: (r)s (4.21)

1
Mr) = ™(r). 4.22
U™ (r) N_m;m (r) (4.22)
U™+L(r) is similarly defined for m + 1
N ) = {0 e B ), =1{0,1,..., N = m},j # i}, (4.23)
for j =1,2,...,m,j # 1. We now proceed as before
1 /
U'L (7‘) N—‘m“"].Nl (’r)) ( )
Umtlir)y = (4.25)
Sample entropy is the negative logarithm of the ratio of these probabilities
Um+l .
SampEn(m,r, N} = — log<—ﬁ%l) (4.26)
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We can see how this compares to the approximate entropy éiven in Equation (4.18) by noting

that the 1/(N —m) and 1/(N —m — 1) terms cancel so we can write it as

N-m ,
Z Nim >

SampEn(m,r,N) = log(—i:l-———— (4.27)

N-m

Z me—i—l
=t
This is the log of the sum of the conditional probability that if two sequences are classified
as similar within a tolerance of r for m points, the next points of each sequence will also be
within r of each other [Richman and Moorman, 2000]. It can be seen from this that if there
are no matches for either Ngm or szm+1 then the measure is undefined.
If defined, an upper bound for the value of SampEn can also be calculated, minimising

U™ (r) and maximising U™(r) in Equation (4.26).

Unless there are no matches, U™*1(r) is minimised when only 1 pair of vectors (say, v
'm41(r) _

and w) of length m + 1 match. In that case IV, =250
1
m+1 —
Ul} (7‘) - N —m — 1)
and
Um+l(,r) — 1
v N-m-1’
then
2
Umti(r) =

[N —m][N -=m—1]
Similarly, U™(r) is maximised when all N —m —1 vectors are within a tolerance r of each

other so that N;mH(T) = N — m — 1 which means

_N—m—l_

= — =1
N-m-1

U (r)

)

for each value of 7 so

N —

This means the maximum probability that the equation can achieve is 2/[N — m][N — m — 1]

and therefore the upper bound is

SampEn(m,r,N) < —log [N—m][l\Qf—m—l]’ (4.28)
< log(N —m) + log(N —m — 1) — log(2). (4.29)
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Therefore, the upper bound and therefore the values of sample entropy scales as approxi-

mately 2log(N) as the value of m should be negligible compared to N.

4.2 Kernel-Based Entropy Measure

The entropy measures introduced so far can be seen as phase space reconstruction methods,
as x;" is a delay vector of size m. The set of these, for 1 = 1,2,..., N —m + 1, is the phase
space representation of the signal for dimension m. We also need to estimate the probability
that this path in phase space repeats itself. In the previous measures, calculation of this
probability is based on a binary classification of whether two delay vectors are similar to
each other or not, the degree of similarity allowed being within a tolerance of r. However,
although this is conventional in dynamical systems theory, arguably the application of a
regularity measure such as this to a time series also falls in the signal processing and pattern
recognition domain where it is quite unusual; it is equivalent to estimating a probability
density using a mixture of uniform distributions and does not consider distances greater than
7. In probability density estimation terms, this is a square kernel Parzen window around
each point x7*. The common noise model assumption is that of additive white noise [Bishop,
1995]. One method to use for probability density function estimation under this assumption
is a Gaussian kernel Parzen window.

Using Gaussian kernels instead of square kernels would have obvious benefits; for instance,
a higher probability would be assigned to points closer to the central point. Also, it is
easy to avoid the pitfalls associated with log 0 because every point has a non-zero density.
There is a computational issue if an outlier is so distant that the associated probability falls
below machine number representation. This can easily be dealt with if we are aware of it
by incorporating a failsafe in the program where the probability cannot fall below machine
precision.

There are some obvious drawbacks with using Gaussian kernels too. The main one is the
computational cost; one of the greatest benefits of the square kernel method is that it is very
computationally efficient. However, using some mathematical properties of Gaussians, we
can show how the use of Gaussian kernels in an entropy formulation can be reconciled with

computational efficiency whilst still retaining a sound analytical justification.
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(a) Square Kernel (b) Gaussian Kernel

Figure 4.1: A graphical representation of the two kernel types for Parzen window probability
density estimation.

4.2.1 Parzen Window

A Parzen window is a type of probability density estimation scheme that utilises kernels
[Wand and Jones, 1995]. A kernel is a parametric density model such as a Gaussian which
is placed on top of each data point and the full density is evaluated as the average of the
kernels. In our application, we wish to evaluate the density function at a point x}*. The

density estimation model can be written as

N
1
fr(xl) = 55 D KO =7, (4.30)
j=1

where 7 is the window width parameter and K is the kernel function. As with any density

function, it is positive and satisfies the constraint
/ K(x,n) dx = 1. (4.31)

We can see parallels with the methods employed in the entropy measures outlined above. The
kernel is the function d[x?,xg’l] < r, which in density estimation notation would be written

as

1 if max{jz;pxl :0< k<N <r
K(x™,7) = Hesael s (4.32)
0 otherwise
with 7 corresponding to the window width. This can be seen in Figure 4.1(a). With a

Gaussian kernel, the functional form is given by

1 1
G(x,8) = ———exp| —=x &7 x|, .
(6, %) (2@512158 p( 2 ) (4.33)
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where ¥ is the covariance matrix which controls the window width and d is the dimensionality
of the data. This kernel is shown in Figure 4.1(b).
The Gaussian kernel has some important properties; in particular, as a property of the

Fourier transform, a convolution of two Gaussians yields a Gaussian
/G(}CZ — Xj, Y1)G(x; — xk, Bo) dx = G(Xj — Xp, 81 + o). (4.34)

We shall now show how this property can be used to improve the computational efficiency of

an entropy formulation whilst retaining analytical justification.

4.2.2 Renyi Entropy

The family of Renyi entropies are defined by

- log/p(x)“ dx, a # 1, (4.35)

where @ denotes the order of the entropy, o > 0 [Rényi, 1961]. In the limit o — 1, this is
equivalent to the information entropy given in Equation (4.3).

As mentioned previously, the use of the term ‘entropy’ has always been rather loosely used
in the approximate entropy family of regularity measures. When ¢™ is calculated in Equation
(4.15), the measure is simply the logarithm of the probabilities rather than the information
entropy or any other standard entropy measure. However, recently it has been noted that
the approximate entropy, given in Equation (4.17), approximates the Renyi entropy of order
1 (the information entropy) and the sample entropy, given in Equation (4.26), approximates
the Renyi entropy of order 2 [Costa and Healey, 2003].

We directly use the Renyi entropy of order 2, which is termed the guadratic entropy as it
uses the second power of the probabilities [Xu and Principe, 1998]. Numerically calculating
the integral of a squared probability function would not normally be feasible for many real
world data sets due to the computational expense. However, if we use Gaussian kernels in
the quadratic entropy, we can use the property from Equation (4.34) to provide a much more
computationally tractable approach. For notational simplicity, we say n = N —m+ 1. If we

also assume that the Gaussians are spherical (2 = ¢2I™, where I’ is the identity matrix of
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dimension m), from [Principe et al., 1999] we have
Hr, = —log [ px)? dx

- e [ (S e
= ~log ZZ : —-XZZ,QUQIm).
j=1 k=1

In its full form, it is expressed as

o2 I™)G(x™ — x?,aglm)> dx

n n

Hg, = —log — Z Z — - exp <_§(xj —xMT(20°1T™) l(xgn - Xy )> (4.37)

[ (2m) 2 [207T™|2

This means that we can precisely calculate the quadratic Renyi entropy for a probability
density estimated using Gaussian kernels with pairwise sums. This has significant compu-
tational benefits as the computation is of O(N?), which is significantly more efficient than

numerical integration whilst remaining theoretically sound.

Kernel Entropy

The quadratic Renyi entropy can easily be incorporated into the entropy rate framework by

incorporating it in Equation (4.7),
thP = TILI&[HIfz(QT+1) - I{R2(QT)]' (4.38)

For calculating the statistic from finite data, we need to determine the time scale, m, as
before, and the width of the Gaussian distribution o. We can then define an approximation

of the Renyi entropy rate as

KernEn(m,o) = lim lim lim [H;g;’l(a) — HE (o)), (4.39)

c—=0m—00 N—ooo

which, when estimated for finite data is defined as
KernEn(m,o,N) = H}?jl(a) - HE (0). (4.40)

We term this the Kernel Entropy to distinguish it from other forms of entropy and to
highlight the importance of the Parzen window model in its formulation.

Renyi entropy rate has been implemented in a very recent paper to quantify the Gaussian-
ity present in heart rates under various conditions [Lake, 2006]. The approach to estimating
the probabilities is based on the method used for the sample entropy in Equation (4.26),

rather than utilising the properties of Gaussian kernels as we have. The paper does provide
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an interesting insight into properties and applications of the Renyi entropy rate as opposed to
the information entropy rate and suggests the use of Gaussian kernels would have benefi a;i
properties. This is independent of Woodcock and Nabney [2006] which theoretically defines
and implements the kernel entropy.

For comparison of this measure to the previous measures, we can calculate a bound in
a manner similar to that calculated for sample entropy in Equation (4.29). In this case, we
need to minimise Hp, and maximise H}?;l.

As H}?;l is a negative function, to maximise it, we need to minimise

n2 Z Z |2 QII exp (-%(xg’* - xfcn)T(2021)-l(x;-” — x}f)) (4.41)

=1 k=1 (
The minimum occurs when all the x”" and x}* are sufficiently far apart that the associated
probability tends to zero. If we attempt to approximate this, by saying |x; — xx| = oo, there
will still be a single x; = x; V j due to the function being derived from a square of itself.
Hence, Equation 4.41 is minimised when
1 ifj=k,

G(x* - xp,20° T = (4.42)
0 otherwise,

Using this condition, along with the fact that [202T™!| = (202)™*!, we have

1 - o
Em) exp(—g(xj — xx) T (20%1) 1(Xj - xk)),
2

max H [Z‘;l = log O )
rL .

m m -1
- log[@w)—?—wo?)—?—‘] ,

= log(n— 1) + log(2m) = + log (20 )_Qi_l,

= —log

which gives us

1 1
max H[’%H =log(n—1)+ log(27) + T—;—— log(20%). (4.43)

To minimise HY, we need every vector of length m to be an exact match with every other

vector in the system. That is to assume y; =y V j, k. Therefore,
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min Hg, = —log% ZZ

= T o E et
= —log[(Zw)%ZoQIm\ﬂ_l,
= % log(27) + élog 12021
and as [20I™| = (20)™, we have
min H}, = %10g(27r) + % log(20), (4.44)

So, substituting Equations 4.43 and 4.44 in Equation 4.40, we have

max (KernEn) = mang’;l — min Hg,,

1 1
mT log(2m) + mx

= log(n—1)+ log(20%) — znz— log(27) — —T;—Llog(Zog),

1 1
= log(n—1)+ 3 log(2m) + 5 log(20?).
So the upper bound is
1
KernEn(m,o,N) < log(N —m) + 5 [log(27r) + log(Zoz)}. (4.45)

In comparison to the upper bound for the sample entropy in Equation 4.29, we can see
that this scales as log(IN) as opposed to 2log(IN). Also, this is different to the upper bound
for the sample entropy as it is dependent on the standard deviation of the kernels, o, as well
as the size of the data set. It should also be noted that this highlights the fact that a small

kernel variance may yield a negative kernel entropy value.

4.2.3 Selection of the Parameters

Of course, for use on real data, appropriate values of m and o need to be found. For m,; the
problem is no different to that in the choice of the parameter for the other entropy measures;
the standard approach is to use m = 2 [Acharaya et al., 2004; Fusheng et al.; 2001; Pincus;
1991; Vikman et al., 1999]. However, as there may be benefits in working with different values

of m, the method should be open to application to the widest possible range.
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tance measure between two densities. The aim.is to minimise the distance from the target

density f(x) to the approximate density fg(x). The KL divergence is defined as

4.46
fu(x) (440

Dgi(f, fs) = /log {Ai(i)—}f(/x)d;;

Il

/ log £ () (x)dx — / log fx (x) 7 (x)dx, (4.47)

which is non-negative. As the first term in Equation (4.47) is constant and we do not know
the target density, the minimisation of Dy (f, fx) is the equivalent to the maximisation of

[log fg(x)f(x)dx. Using a kernel approximator, Ky (y) this can be written as

Elog[fs] = Zlogfg ;) Zlog[ ZK}: - x;, )} (4.48)

As the maximisation of this directly leads to a bandwidth matrix of zeros, a leave-one-out
cross validation estimator f,m-(xi) is used for the cost function in the MCMC method. We

start by defining

Fri(x:) :—Z;aﬂn 2K( 1" %(xiﬂxj)>, (4.49)

J#z
and we use this to calculate the log likelihood,

N
1 ~
L(x1, %2, Xnl0) = > log foi(x:). (4.50)

As we are using a Bayesian approach we need to fix a prior over o. As the likelihood is flat
when o is large, a uniform prior will lead to a wide range of values accepted by the MCMC
algorithm and therefore a reduction in robustness. Hence, we put a low prior probability
on the areas of parameter space where the likelihood is very flat. A suitable prior for this

purpose is a variant of the half-Cauchy prior [Bauwens and Lubrano, 1998]

1
DY — 4.51
(o, ) o 1+ Ao? ( )
for k =1,2,...,m and where A is a hyperparameter controlling the shape of the prior density.

Zhang discusses the choice of A in [Zhang et al., 2006], and concludes that the choice of A
does not affect the result to a noticeable extent. Hence, we use A = 1.

From Bayes’ theorem, the posterior for o (up to a normalising constant) is given by
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m 1 o ‘ |
TI'(O'\X y X2y ’xn) X { _—“M] fUSi(xi)" ' (452)
1,22 g 1+ /\o*,% g \ .

We sample from this distribution using the Metropolis-Hastings algorith_m implemented in
NETLAB [Nabney, 1999]. The mean of these samples giﬁés us the estimator for the optimal
bandwidth. R

Figure 4.2 shows a comparison of the Bayesian method with the Normal reference rule, -

4 1/(m+4)

which is the standard method of approximating the optimal bandwidth for Gaussian target
distributions [Zhang et al., 2006]. The Bayesian method is very close to the bandwidth sug-
gested by the Normal reference rule and shows its usefulness in determining the bandwidth.
For distributions that are non-Gaussian, the use of the Normal reference rule is not theoreti-
cally justified but the Bayesian method still determines a good approximation of the optimal
bandwidth [Zhang et al., 2006]. Notice that at this stage, no assumption has been made
about the nature of the kernel estimation method so it is applicable to any kernel method

chosen, including the Gaussian or square kernels already mentioned.
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4.3 Comparison with Previous Techniques

As ApEn has been shown to introduce bias, SampEn has recently superseded it as the .Cﬁr—
rent standard [Goldberger et al., 2000], and so we shall use it for comparison with KernEn.
However, due to the inherent difference in fhe o and r parameters, it'is unsound to compare
them for the same value. Therefore, the only option is to compare a range of parameter
values and identify strengths and weaknesses in both statistics. Also, by testing ¢ without
using the bandwidth selection enables us to investigate the optimal range for the new win-
dow width value. All of the experiments are carried out with m = 2 unless otherwise stated.
This is because m = 2 is the standard value used for the previous measures in the literature
[Richman and Moorman, 2000; Pincus, 1991; Acharaya et al., 2004].

Initially, we investigated how the measure behaves by directly varying o without using
the bandwidth selection procedure. As we want to be able to gauge the performance of kernel
entropy as accurately as possible before we apply it to real world data, it is prudent to apply
it to more than one synthetic data set. Here we shall apply it to two well known chaotic
series, the Lorenz series and the Duffing-Van der Pol oscillator. |

This first test was carried out by comparing the behaviour of the two measures under
increasing noise for different r and o. This is investigated on its own and then used to
evaluate the behaviour of the measures for different series lengths N and different values of
m.

The second test we carried out was to determine how the measures performed in distin-
guishing a series from several surrogates sharing some statistical properties. This was again
done for a range of r and o values.

To investigate the effectiveness of the bandwidth selection procedure, we applied the
method to a series and its surrogates to gauge the effectiveness at distinguishing a determin-
istic from a random series. Also, the behaviour of the bandwidth selection scheme was tested
for a series with increasing noise.

Finally, we tested the ability of kernel entropy to quantify the level of chaos and disorder
in a deterministic system. This was done in two related experiments. For thekﬁrst, we used
the Duffing-Van der Pol oscillator equations and altered the parameters to increase the level
of disorder. We then compared the results of kernel entropy with the bandwidth selection
procedure to the results of kernel and sample entropy for fixed parameter values as well as
the information entropy. For the second experiment, the usefulness of the kernél entropy in

determining chaos in a series is tested. This is done by comparing the value of the kernel
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entropy with the bandwidth selection scheme with the value of the entropy rate for the Lorenz

and the Duffing-Van der Pol oscillator series.

The Lorenz System

20

R
&3 b o o
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p—
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(a) Signal Space (b) Phase Space

Figure 4.3: The z-value of the Lorenz series.

The behaviour of a dynamical system in time is mathematically represented by a coupled
set of first order autonomous ordinary differential equations [Henry et al., 2001].

The Lorenz system [Lorenz, 1963] was originally conceived in the field of fluid dynamics
[Ott, 1993] and is probably the most well known system in the field of non-linear dynamics

and is almost ubiquitous in the literature. It is defined by the equations

dz

- = oly- z), (4.54)
dy .
W= -2 -y, (4.55)
dz

— = Y- 4.

7 vy — Pz, (4.56)

with a, p and 8 as dimensionless parameters. In the generation of the time series for the
subsequent experiments, we adopt the usual convention of setting a = 10, p = 28 and § = 8/3.
The series was calculated using z = 10, y = 0 and z = 10 as the initial conditions and was
sampled at unit time epochs with a burn in of 1000 iterations to make sure the phase path
has forgotten the initial conditions and is following a normal path around the attractors. We
shall only investigate the resulting series of z-values. The plots of the z-values and the phase

space (x at time t plotted against = at time ¢ + 1) are shown in Figure 4.3.
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The Duffing-Van der Pol Oscillator

The Duffing-Van der Pol oscillator [van der Pol and van der Mark, 1927] is another:\}wéllrlrr\

studied dynamical system. Its equations are

dz

= = 4.57
n v, (4.57)
Ec% = u(1—zHy — 2%+ fcos z, (4.58)
dz

i — 4.59
dt “ (4:59)

where p, f and w are dimensionless parameters. In contrast to the Lorenz system, we shall
use a range of parameters to obtain several series with a varying amount of “disorder” but
from the same generating functions for comparative purposes. The initial conditions were
rz=1and y = z = 0 and the series was sampled at a time epoch of 0.3 as these are the
standard values [Henry et al., 2001]. The parameter values are shown in Table 4.1 along with
the corresponding maximal Lyapunov exponent X, calculated using the algorithm in [Wolf

et al., 1985] run for 10000 iterations. The Lyapunov exponents in Table 4.1 indicate that it

System || pu | f| w A
DVP1 0 |0] O 0.0000
DVP2 {020} O 0.0000
DVP3 || 0.2 | 1] 0.9 | -0.0002
DVP4 || 0.2 |1 0.94 | 0.0235

Table 4.1: Parameters used in the creation of four Duffing-Van der Pol oscillator systems.

is only DVP4 that exhibits any chaotic behaviour (albeit mildly).

For the creation of the actual time series, a burn in of 1000 values was used so the
phase orbit was settled in and we recorded the next 1000 values. In our case, we are only
investigating the y-value. The plots of the y-value against time for all the systems are shown

in Figure 4.4 and the phase space representations are shown in Figure‘4.5.
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4.3.1 Robustness to Noise

To compare the measures, we need to gauge how robust they are under several c\on\\c_i-\it\ions.
Firstly, we need to know how the measures perform in the presence of noise.

For these tests we used both the Lorenz z-value series, and the DVP3 series. To investigate
the effect of increasing noise on the system, Gaussian noise was added as a percentage of the

overall signal. This can be formalised as
MIX;(x;) = (100 = 1)y; + lez, (4.60)

for each sample, where z is the output signal, y is the original signal, ¢; is Gaussian white
noise (with mean 0 and variance 1). The parameter | controls the percentage of noise; the
tests ranged from 0 to 100 in increments of 1. The data sets were all normalised to zero mean

and unit variance.

Robustness to the Influence of Noise for Different Values of » and o

What we are looking for when we investigate the robustness of the entropy measures when
applied with different values of r and o is unusual or inconsistent behaviour. Firstly, we
investigated both the measures:for a range of r and o parameter values for the full series
(N = 1000).

Figure 4.6 shows the sample entropy results for a range of values of 7 for an increasing
percentage of noise. Kach subfigure shows a range of 5 increasing = values in a range given
under each subfigure. The topmost line in each graph corresponds to the smallest values of
and each line below corresponds to an r value of 0.02 more than the previous line: Figure 4.7
shows the corresponding plots for the kernel entropy in which we altered the o parameter.
Also, 1t is different in that the lower line on each graph corresponds to the lower o value and
the higher lines correspond to higher values. This is possibly dueto the dependenceon ¢ in
the upper bound (Equation 4.45).

Both sets of entropy values show the trend of increasing to an asymptotic upper limit as
the noise increases which is as we would expect as the random element begins to dominate
the signal.

In Figure 4.6(a), we can see that for smaller values of r, the sample entropy values are
erratic. This continues from 7 = 0.02 where it is very erratic (and discontinuous) though
to r = 0.3. This is of particular interest as this covers the parameter values that Pincus

recommends (r = [0.18 - 0.25] for normalised data). These aberrations are due to the small
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number of matches when the tolerance is low so as thenoise increases, the overall percentage
of matches can change considerably. From Figure 4.7, we can see that kernel entropy does
not share this trait due to the smooth kernel function; the values are continuous thr-oughouﬁ
the noise range for all values of 0.

Another difference between the two measures is that the entropy values are closer together
in the sample entropy than kernel entropy for low noise, and further apart for high noise.
This is due to the smooth Gaussian kernel giving points further away a smaller probability
compared to the square kernel assigning an equal probability to any points within it. In
a very ordered system, all the points in the system will follow a simple path around the
attractor(s). Therefore, as long as the square kernel is of such a size that 1t can encompass
most of the noise variance, it will give similar results at low noise levels. However, at higher
noise levels, the size of the kernel will make more of a difference in encompassing more of
phase space, hence a small increase in the kernel size will affect the result disproportionately.

With kernel entropy, the opposite happens. All the points are assigned a probability
density, with those within the same phase path receiving a higher probability. However,
although the time domain epochs are equally spaced, the phase space ones are not, leading to
o lower value of kernel entropy as the phase path inevitably deviates away from the one under
consideration due to the distance between points in discrete phase space. Thus, an increase
in the size of the encompassing Gaussian kernel results in more points in the phase being
assigned a similar value as the distribution around the point becomes less sharply ‘peaked’. In
an ordered system, the flatter distribution will result in a more even probability assignment
to the phase space points that are on the same phase path which is why a change in 0 has
more effect than when the noise increases and most of the points will be assigned a small
probability regardless of the kernel size.

For the the Duffing-Van der Pol oscillator y-value series the results are similar. In Figure
4.8, we can see that the results for sample entropy are still erratic and not defined for smaller
values of r. Kernel entropy, in Figure 4.9, also behaves slightly differently; whilst still not as
erratic as sample entropy, for some of the smaller values of o (Figure 4.9(a)), there is some
inconsistent behaviour as the kernel entropy value appears to approach a plateau and then
wavers slightly. This indicates that, although kernel entropy is robust to small o values, some
care should be taken in their choice. However, in comparison to sample entropy, which in

this case has inconsistent behaviour at all values of r, it is much more consistent.

103





















CHAPTER 4. DEVELOPMENT OF K

om0 o o o o o w0 w0 oo e me  we  wo %0 6w Jw w0 wo o W w0 o W0 o @0 fo  mo  wo w0

(a) o = {0.02 — 0.1} (c) o = {0.22 = 0.3}

. .

s ol

129

102) i\ Vit oo

O e

I\ S . S
V= e
(d) o = {0.32 — 0.4} (e) o = {0.42 - 0.5} () o ={052-06}
Vaalfly WA s T ' A A 27T T - N Ao o
P P = D e e SO
I Y e e e ' : o T e 139} NV\NMW
y /’VW‘*’—* v WW"" 124) \/&W i
(g) o = {0.62 — 0.7} (h) o = {0.72 — 0.8} (i) o ={0.82 - 0.9}

Figure 4.11: The kernel entropy values (y-axis) for the z value of the Lorenz series with
increasing series length (z-axis) for a range of o values. / / ) ' '
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Robustness to the Influence of Noise for Different Window Sizes

We can investigate how the series behave with different m values by compar g plots for
ranges of r and o with different values of m. For this we use series DVP4, and plot the
ranges for m = 2, 3,4. The results for the sample entropy are shown in Figures 4.12, 4.13 and
4.14 and the results of kernel entropy are shown in Figures 4.15, 4.16 and 4.17 for m = 2,3
and 4 respectively. ‘

As with series DVP3 above, at m = 2, the results are discéntinuqus and erratic for sample
entropy, especially at lower 7 values. With m = 3, this effect is even more pronounced with a
larger number of discontinuities and the signal is erratic even for larger . This trend continues
at m = 4, where at small values of r the results are next to useless for any reasonable noise
value. At this m value, the series is very erratic; although at higher r values, the general
trend of the results are more consistent and well defined for low noise values.

At m = 2, kernel entropy behaves similarly to the results for series DVP3 with some
slight inconsistent behaviour at small o but with consistent behaviour for all other values.
At m = 3, the small o values behave inconsistently, as the noise increases, the kernel entropy
values actually decrease which is contrary to what would be expected. This is possibly due to
the sharply peaked kernels being unable to accurate encompass the higher dimensional data.
However, at the range o = 0.12 - 0.2 the behaviour is more consistent and by o = 0.32 ~ 0.4
it 15 behaving completely consistently. Again, a similar pattern occurs at m = 4, with the
small o values displaying inconsistent behaviour as before. Here, however, the results do not
start behaving consistently until o = 0.52 — 0.6.

The first thing we can notice about both sets of results is that a larger kernel size is
needed for larger values of m. Comparing the results of the two entropy measures indicates
that kernel entropy is far more consistent for differing m values as it shows no discontinuities
and is less erratic. It would also appear that kernel entropy is able to encompass a higher
percentage of noise as the result becomes unreliable with sample entropy whilst kernel entropy
remains consistent for almost all noise values as long as the o value is chosen appropriately.
In fact, from these results, it would be difficult to rely on aﬁy/ resuits; produced by ksampie

entropy at higher values of m.
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Figure 4.12: The sample entropy values
term [ (z-axis) for a range of r values at m = 2.
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Figure 4.13: The sample entropy values (y-axis) for the z value of series DVP4 with noise

term | (z-axis) for a range of r values at m = 3.
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Figure 4.14: The sample entropy values (y-axis) for the z value of series DVP4 with noise
term [ (z-axis) for a range of r values at m = 4. :
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(g) o = {0.62 — 0.7} (b) o = {0.72 — 0.8} (i) o = {0.82 = 0.9}

Figure 4.15: The kernel entropy values (y-axis) for the z value of geries DVP4 with noise
term | (z-axis) for a range of o values for m = 2. Bayesian bandwidth selection suggests
o = 0.1314.
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Figure 4.16: The kernel entropy values (y-axis) for the z value of series DVP4 with noise
term | (z-axis) for a range of o values for m = 3. Bayesian bandwidth selection suggests

o = 0.1331.
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Figure 4.17: The kernel entropy values (y-axis) for the z value of series. DVP4 with noise
term | (z-axis) for a range of o values for m = 4. Bayesian bandwidth selection suggests
o = 0.1332. o |
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4.3.2 Distinguishing Between Ordered and Disordered Systems

In this case, we are investigating how good the measures are at d‘is_t‘ing;uish'ing an ordered
(or deterministic) from a disordered (non-deterministic) system. For this, we investigate how
well the measures discriminate between the types of system under increasing noise.

To evaluate this, we found, through experiments, the minimum level of additive noise at
which the measures can no longer distinguish between the Lorenz series and nine randomly
generated phase-randomised surrogates; both measures could always distinguish between the
shuffied series and either the Lorenz or a phase-randomised surrogate for all noise values
which shows that the an defined phase path (random or otherwise) is easily distinguishable
from a completely disordered one by these measures. Hence, results and discussion are not
given.

In the first instance, kernel entropy and sample entropy values were calculated for both
series for o,r € {0.02,0.04,...,2.5} for the series with 1000 data points and no additive
noise. This was done to find the sensitivity of the measures to the bandwidth/tolerance
values by finding the smallest bandwidth/tolerance value when the Lorenz series resulted in
a higher entropy value than each of the surrogates. The average value where this occurs was
taken for comparison. The average tolerance value in sample entropy was 7 = 0.86 and the
average bandwidth in kernel entropy was o = 0.88 when this occurs. It should be pointed out
that neither one should be considered “better” at this point as the bandwidth and tolerance
are inherently different and we are merely determining the useful range of the handwidths,
although this does highlight the importance of proper bandwidth selection. With this in
mind, the closeness of these two values is somewhat surprising, but quite convenient for
future comparison.

Increasing levels of noise were added and the level of noise where the surrogates became in-
distinguishable from the deterministic Lorenz series was taken. The results for both statistics
applied to each surrogate are plotted in Figure 4.18.

Looking at each measure individually, sample entropy, indicated by the red line; is gen-
erally erratic and inconsistent as the bandwidth increases. The ‘kernel'entropy behaves more
consistently, often with a ‘peak’ which indicates the optimal bandwidth. Also, kernel entropy
was able to discern the surrogate from the deterministic series more often than sample en-
tropy. This gives it greater reliability and therefore more confidence can be attributed to the

result.
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4.3.3 Effectiveness of the Bandwidth Selection Progfeduréf ’

As there is no analogous method for the selection of r that can be used for »s_a,mplé{ ie"n'fﬁ
the selection scheme can only really be evaluated for robustness and consistency. Thié means
that to judge the robustness and consistency of the seleétiQn scheme we can only compare it
with itself. This can be done in two ways.

First, we need to investigate the properties of the 7
started 5 different experiments, with different va.rlallces of Vthe proposal distribution each
with uniformly randomised start positions between 0 and 20, on the noiseless Lorenz series
where we discarded a burn-in period of 500 iterations a,nd kept the next 500 iterations. The
variances of the proposal distributions were v = 0.01,0.04,0.09,0.16, 0.25. The o values for
the last 500 iterations for each of these proposal variances can be seen in Figure 4.20. Figure
4.19 shows the first 100 iterations of the burn-in period. It can be seen that regardless of

start point or proposal variance, these chains converge to a value of o =~ 0.44. Aside from

0 10 20 30 40 50 60 70 80 90 100
MCMC Iteration t

Figure 4.19: The MCMC burn-in period arising from a range of proposal distribution vari-
ances v for the estimation of the bandwidth for the Lorenz series.

this, we can plot histograms of the resulting distributions of the MCMC process These are
shown in Figure 4.21. The resulting distributions for v = 0. 01 and v = 0. 04 do not eXhlblt
any unusual behaviour like bimodality (y = 0. 16) and skew (y = 0.25) so 1t was de(nded that

using a proposal distribution variance of 0.04 and taking the mean of the last 500 a values,

will give an acceptable approximation of the optimal bandwidth.
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Figure 4.20: The MCMC chains arising from a range of proposal distribution variances -y for
the estimation of the bandwidth for the Lorenz series.

Now that the question of the stability of the MCMC process is resolved, we applied kernel
entropy with the bandwidth selection scheme to the Lorenz series with no noise to judge the
effectiveness in distinguishing between an ordered and a disordered system. For this we
investigate the effectiveness of the measure in differentiating between the Lorenz series, the
phase randomised surrogate, the shuffled surrogate series, and a series of white Gaussian

noise with the same mean and variance.

Data Set KernEn Value o Value
Lorenz Series 0.8365 0.1244
Phase-Randomised Surrogate 1.3251 0.1725
Shuffied Surrogate 1.3048 0.1298
Gaussian Noise 2.1564 0.3071

Table 4.3: Kernel entropy and bandwidth values calculated using the Bayesian bandwidth
selection scheme on the Lorenz series

The results of the bandwidth selection procedure, given in Table 4.3 were encouraging.
The highly-ordered Lorenz series clearly gives a lower kernel entropy value than its surrogates.
This is consistent with the results we have seen before, and the bandwidth selection returns
a suitable value in each case. One point of note is that the bandwidth for ‘the Surfogate

data is higher than either of the other two data sets which gives the surrogate a highef kernel
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Figure 4.21: The resulting distributions obtained by running the Bayesian bandwidth esti-
mation for different proposal distribution variances 7.

entropy value than might be expected if the optimal bandwidth were constant. This is of great
interest because, as we have seen previously, the surrogate'cah be more difficult to distinguish
from the deterministic signal which indicates that this variable bandwidth apprdach may be
effective in a real world application where the nature of a series is unknown.

Secondly, we applied kernel entropy with the bandwidth selection scheme to the series
with increasing additive Gaussian noise to judge its consistency under the influence of noise.
Figure 4.22 shows the kernel entropy values for the Lorenz series with increasing noise plotted
with the values for the shuffied series. The plot shows that as the series becomes more noisy,

it approaches the entropy values for the disordered series, which is exactly what you would

expect in the statistic.

4.3.4 Quantifying the level of disorder in a systerri

Some applications require the comparison of the level of disorder. - To investigate this we
used the four Duffing-Van der Pol oscillator series as they display varying levels of disorder
depending on the parameters used. Before applying the bandwidth selection, we should
investigate how the statistics behave for different 7 and o values when applied to. eagh":se,rjés.

In this case we used the full series with no additive noise.  Both statistics were calculated
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Figure 4.22: Kernel entropy calculated for the Lorenz series (blue) and the shuffled surrogate
(black) for increasing noise variance. The bandwidth is calculated separately for each noise
value with the Bayesian MCMC approach.

with m = 2 and r and o between 0.02 and 1.5.

Figure 4.23 shows the results of both entropy measures for a range of r and o values
for all four Duffing-Van der Pol series. From the phase diagrams of the Dufﬁng—Van der
Pol oscillators (Figure 4.5) we would expect DVP1 to exhibit the least disorder, followed by
DVP2, then DVP3 and DVP4. However, this is not always the case in these plots. The
sample entropy values in Figure 4.23(a) are inconsistent at low r but, as we have seen, this is
to be expected. What is more unusual is that both measures return a lower value for DVP4
than for DVP3 as r and o get larger despite the previous assumption that DVP4 is more
disordered than DVP3. For sample entropy, this occurs at > 0.35 and for kernel entropy,
this occurs at o > 0.088 which is a very small kernel size. This indicates that DVP4 may not

be as disordered (in a mathematical sense) as DVP3.

Data Set DVP1 DVP2 DVP3 DVP4
H 2.1737 3.5563 4.0517  3.895

Table 4.4: Information entropy values for the four Duffing-Van der Pol oscillator series.

This claim would appear to be supported by the results in Table 4.4 which shows the
information entropy for the four series. DVP4, does indeed. exhibit less disorder than DVP3.
However, this is in odds with the Lyapunov exponents given in table 4.1 which indicates that
DVP4 exhibits chaotic behaviour where DVP3 does not. The information entropy does not.
take into account time information which is what we are trying to incorporate. Hence; the
information entropy only tells us that the values in the serles are less disordered in DVP4, not

the order of the values in the series are less disordered. As a result, it should not be surprising
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(a) Sample Entropy (b) Kernel Entropy

Figure 4.23: Sample entropy results for increasing 7, and kernel entropy results for increasing
o, for series DVP1 (blue), DVP2 (red), DVP3 (green) and DVP4 (magenta).

that kernel entropy and, to a lesser extent, sample entropy, require smaller kernel width values
as there is no noise in the system, assuming a large kernel size is assuming that there is an
amount of noise. This again highlights the importance of suitable bandwidth selection and
that the statistics should possibly be thought of as regularity measures as opposed to disorder
measures.

The calculation of the bandwidth may also mean that we can approximate the entropy rate
(Equation 4.7 with the kernel entropy). Pesin’s formula [Pesin, 1977] tells us that the sum of
the positive Lyapunov exponents gives us the entropy rate (Chapter 2). If we investigate this
using the Duffing-Van der Pol Oscillator system then only DVP4 has a positive Lyapunov
exponent which is 0.0235. The corresponding kernel entropy estimate with the ”Bayesian
bandwidth scheme is 0.7311. These results are very different implying that the kernel entropy
is not applicable as an estimator of the entropy rate, possibly due to the dependence on fixed
m and the fact that we are calculating the Renyi entropy as opposed to the information
entropy.

We can now gauge the effectiveness of the bandwidth selection scheme. To do this, we
started by calculating kernel entropy using the Bayesian bandwidth selection procedure with
m = 2. The results can be seen in Table 4.5.

The results show that kernel entropy combined with the Bayesian bandwidth selection can
clearly discriminate between different levels of disorder with the most ordered series (DVP1)

having the lowest kernel entropy value followed by DVP2, DVP3 and DVP4. This shows that
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Data Set KernEn Value 7 o Vahrl.e‘
DVP1 -0.9091 0.0067

DVP2 -0.3439 0.0145
DVP3 0.5220 0.0701

DVP4 0.7311 .-0.1314

Table 4.5: Kernel entropy values from using the Ba,yesia;nzba,ndv&/idfh selection scheme for the
four Duffing-Van der Pol oscillator series when m = 2. ’ :

the Bayesian bandwidth selection does affect the discriminative capabilities of kernel entropy
to quantify disorder as it assigns a higher bandwidth size and therefore a higher entropy value
for DVP4 than DVP3 which is consistent with the maximal Lyapunov exponent values given
in Table 4.1. The more irregular the series, the greater the bandwidth value; the bandwidth
selection algorithm will assign a bandwidth that can best describe the probability density nof
a system. This result is of significance as it shows that using a variable bandwidth may be
able to give a more suitable result. This means that although the kernel entropy cannot be
considered an estimator of the entropy rate, it still may be applicable as an indicator of the

level of chaos and disorder in a system.

m=3 m =4
Data Set KernEn Value ¢ Value KernEn Value ¢ Value
DVP1 -0.8870 0.0068 -0.8808 0.0067
DVP2 -0.3859 0.0145 -0.5441 0.0145
DVP3 0.4142 0.0691 0.3336 0.0700
DVP4 0.6707 0.1331 0.6202 0.1332

Table 4.6: Kernel entropy values from using the Bayesian bandwidth selection scheme for the
four Duffing-Van der Pol oscillator series when m = 3 and m = 4.

Table 4.6 shows the results of kernel entropy with Bayesian bandwidth selection with
m=3 and_m = 4. The first thing to notice is that the value given for the bandwidth values
is very consistent across all three m values studied. This is encouraging as it indicates that the
MCMC process is consistent and that the dimensionality of the kernel has little effect on its
variance which is as you would expect as they are derived from the same series with no noise.
Again, when m = 3 and m = 4, the more irregular the system, the higher the kernel entropy
value. However, the values seem to become closer as mn increases. The investigation of the
kernel entropy value as m gets large may be of some interest but for comparison with sample
entropy and in evaluating its usefulness for cardiac applications (which is the motivation for

development of kernel entropy), this is outside the scope of this thesis.
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4.3.5 Conclusion

We have introduced a novel measure based on the entropy rate for quantifying regularity of
a time series known as kernel entropy. This was done by investigating how existing measures
may be improved by approaching the problem from a signal processing perspective. This
perspective led us to the use of Parzen windows for density estimation in the measure which
allowed us to employ certain mathematical properties to ensure theoretical robustness and
computational tractability. 7

The use of Parzen windows also allows us to select a method for automatically determining
the size of the window, something which was not possible in the previous approaches. To
this end, we used a Bayesian approach to create an appropriate posterior which we sampled
from using a Markov chain Monte Carlo algorithm. This method performed well on synthetic
data.

Kernel entropy was tested against a previous measure known as sample entropy in a

variety of experiments. This showed that kernel entropy

1. is more robust to noise,
2. is more consistent and predictable,

3. has a wider range of appropriate values for o than the equivalent term in-gample entropy

but the ‘optimal’ values are generally lower.
4. 1s more consistent over varying series lengths, particularly when N ig small,

5. can be combined with an automatic bandwidth selection scheme to remove ambiguity

in its choice without reduction in effectiveness.

Therefore, we can see that kernel entropy, with or without the bandwidth selection scheme,
outperformed sample entropy in these tests. These indicate that kernel entropy will be a

beneficial addition to the catalogue of regularity measures.
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Chapter 5

Application of the Methods

As we have developed a method for quantifying regularity in a time series, we can apply it to
a series created from the P-wave data. In Section 5.1 we show how we created such a series.

This gives us two objectives in this chapter,

1. evaluate the effectiveness of kernel entropy,

2. determine the value of the P-wave series.

Of the three experiments outlined in Section 5.2, the first experiment only investigates
kernel entropy; judging the effectiveness of the bandwidth selection on the classification results
of kernel entropy when compared to the sample entropy. The other two experiments were
designed to investigate both of these aims simultaneously. To this end we investigate the
effectiveness of kernel entropy by applying it alongside the sample entropy, the information
entropy and the Fisher information (see Chapter 4) to see how it performed in comparison
with these measures. We applied the measures to both the RRI and the PWL series, which
allowed us to judge the effectiveness of the latter.

The results are given in Section 5.3 with a brief discussion on each. experiment which is
expanded upon in the conclusion 5.4. We then end the chapter with Section 5.5; a discussion

of issues arising pertaining to these results.

5.1 Creation of the Time Series

An RR-interval is calculated by subtracting the time, £, of the occurrence of the previous

R-point (Rprevious) from the time of occurrence of the current R-point (Reyrrent) thus

RRt = tRcurrent - tprreuioua' (5‘1)
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The series of these values forms the the RR-interval (RRI) series.
The P-waves were extracted from the data sets using the method detailed in Ch L

The P-wave duration was calculated simply as

Pt - tPend - tPst

where P; is the duration of the P-wave, P, is the first u eflection of the signal from
the baseline, and F,,4 is the point when the signal rejoins the baseline. We call the time
series formed by the sequence of these the P-wave Length (PWL) series, to avoid confusion

with the standard P-wave duration and P-wave dispersion statistics.

5.2 Experiments

To gauge the effectiveness of kernel entropy and the the P-wave length series, we propose three
experiments. In the first, we apply only sample entropy and kernel éntropy to the RR-interval
series. In the final two experiments, we apply information entropy, Fisher information, sample

entropy and kernel entropy to both the RR-interval and P-wave length series.

5.2.1 Experiment 1

The goal of this experiment was to evaluate the usefulness of the bandwidth selection method
on real data. The data set in question is the paroxysmal atrial fibrillation prediction challenge
data set. The data in this case comes as pairs of recordings from the same patient, with one
recording immediately prior to an AF episode and one recording distant from an episode.
There were 25 patients, so there were 50 distinct recordings. The task is to classify which
of the pair of recordings for each patient is immediately prior to an atrial fibrillation episode
and which is distant. Here, only the RR-interval series was used (as the usefulness of the
P-wave length series has not been determined and its use is therefore superfluous to the goal
of the experiment).

The first stage was to calculate the sample entropy for a range of 7 values in 0.01 incre-
ments (r = [0.15,0.16,...,0.3]). It was and note down which of the pair gives the highest and
lowest sample entropy. This range was chosen as it encompasses the range recommended by
Pincus in [Pincus, 1991]. It was noted that the sample entropy values were more often lower
for the records immediately prior to AF and so for each pair (see Figure 5.1), the recording

with the lower value was classified as the one immediately prior to AF.
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(a) Group P, (b) Group P4

Figure 5.1: Histograms of the values of sample entropy for Groups P and P4 for Experiment
1.

The second stage was to calculate kernel entropy using the bandwidth selection procedure
and then classify the recordings in the same way. We then compared the classification results

to judge the efficacy of the bandwidth selection procedure.

5.2.2 Experiment 2

As before, the measures were applied to series derived from the paroxysmal atrial fibrillation
prediction challenge database with the same classification aim. However, in this experiment,
the main aim was to judge the effectiveness of the P-wave length series so aside from kernel
and sample entropy, we also used information entropy and F isher information. -Also, for
comparison with conventional P-wave techniques, these results were compared to the stan-
dard P-wave statistics calculated for the P-waves; the P-wave [average] duration and P-wave
dispersion.

As well as comparing the results between the RR-interval and P-wave length series, we
can investigate the accuracy that can be achieved by combining the two series. We need to
determine if the series provide the same information since, if so, there is little:point in-using
the PWL series as the RRI series is easier to compute robustly. We can get an indication of
the potential for classification improvement by combining the series by using them as inputs
to a neural network classifier. In this case we used an MLP with a logistic sigmoidal activation
function and 8 hidden units trained using the Bayesian evidence procedure. All the data was
normalised to zero mean and unit variance and a 0-1 encoding was used for the outputs. The

experiment was carried out using leave-one-out cross validation.

129



Equation 2.20 used binned values. This was done by dividing the series values into 10 bins
and using this to calculate the probabilities. The probabilities for Fisher information were
simply the number of occurrences of a value z; in the séri(‘agdi{vi@ed by the total number
of time points in the series, N. Sample entropy was calculatéd with m = 2 and 7 = 0.2
and kernel entropy was calculated with m = 2 and o chosen using the bandwidth selection

procedure.

5.2.3 Experiment 3

The third experiment aimed to investigate the value of multiple time series when distinguish-
ing several heart conditions and the effectiveness of the measures when applied to them. This
is to test how the methods may be of use to aid initial diagnosis.

The first dataset for this experiment was the atrial fibrillation dataset used above, only
including the 25 records close to AF (group P.). The second dataset consisted of thirty-
minute samples taken at random from the Apnoea-ECG Database (35 records). The final
data set was taken from the BIDMC Congestive Heart Failure (CHF) Database (15 records)
and was again thirty-minute samples taken at random from longer (up to 24 hour) recordings.

The four information theoretic measures were calculated for the P-wave length and RR-
interval series derived from each of these data sets.

We compared the two series by plotting the results for each measure when applied to the
RR-interval against the results of the same measure applied to the P-wave length series. In
this way we could identify patterns in the data and see which series leads to better diserimi-
nation between the conditions. As the application of such an approach in practice would be
to aid diagnosis of a cardiac condition, normal ECG data was not included.

Further investigation was carried out by using the measures from :the both-sgeries:as
inputs to a MLP neural network with 6 hidden units and a softmax activation function.
This allowed us to estimate classification accuracy using leave-one-out cross validation: The

decision boundaries are also plotted for clarity.
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5.3 Results

5.3.1 Experiment 1 - Effectiveness of the Bandwidth Selection Procedure

The results in Table 5.1 show-that kernel entropy cor : itﬁ automated bandwidth
selection performs as well as the best performing sampl Although- the results
are not particularly encouraging on their own (68% is not a particularly high classification
percentage), this is almost inconsequential as this experiment only aims to gauge the value

of Bayesian bandwidth selection for use in conjunction with kernel entropy:.

Sample Entropy

T Correctly Classified
0.15 52
0.16 52
0.17 52
0.18 56
0.19 60
0.20 60
0.21 64
0.22 68
0.23 60
0.24 64
0.25 64
0.26 64
0.27 64
0.28 64
0.29 60
0.30 64

Kernel Entropy 68

Table 5.1: Correct classification percentage of the 25 pairs of patient-specific atrial fibrillation
data when sample entropy is applied for a range of r values, and kernel entropy is applied
using the Bayesian bandwidth estimation.

The results are particularly encouraging as they show the variation in the results of sample
entropy; indicating how important it is to select 7 carefully.
Figure 5.2 shows that, similar to sample entropy, the results of the statistic are lower for

the recordings prior to an atrial fibrillation episode.

5.3.2 Experiment 2 - Performance on Atrial Fibrillation Prediction

Since the time series were from pairs of recordings, the values of the entropy measures could
be directly compared to each other. The results were then examined to see if the recordings

immediately prior to AF displayed a higher or lower value than their counterpart. This
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(a) Group P.

Figure 5.2: Histograms of the values of kernel entropy for Groups P. and P4 for Experiment

1.

showed that, in general, the values decreased before AF. Therefore, the recording from each
pair that had the lower value was classified as that being immediately prior to AF onset.

These results were compared to the conventional P-wave measures and the correct classi-
fication percentage is shown in Table 5.2. The poor performance of the P-wave dispersion is
due to strong agreement in both recordings for each patient.

Combining the measures of both series yielded better results than each series on its own.
This implies that the information obtained from the series is not highly correlated. It is worth
noting that Fisher information, sample entropy and kernel entropy all achieved the same
results. This is likely to be because there is not sufficient information for this classification

task available in the series themselves and so the measures are all performing as well as is

possible, regardless of the measure used.

(b) Group Py

Measure RRI PWL Clagsifier
Information Entropy 60 64 92
Fisher Information 56 72 100
Sample Entropy 56 72 100
Kernel Entropy 56 72 100
P-wave Duration - 64 -

P-wave Dispersion - 44 -

Table 5.2: Correct classification percentage for each statistic applied to each time series
derived from the atrial fibrillation dataset, and both series as inputs in a neural network.
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5.3.3 Experiment 3 - Discriminative Potential of the Series

The disparity in discriminative power between the RRI and PWL series is investigatﬁ.e’d”b\yj:"
determining the RRI and PWL series for a number of different conditions ain‘d applying ~thé
various measures to them. We then plot the results for each series against each other to
determine if they provide the same information. The raw values were also used for training

an MLP classifier and the decision boundaries plotted.

1.2 ° 1| 08t x
i
1 ° o on,!x x [x o5t
5 Slelel j
/
x

gl ° ° Ko/zg ol & o 04
o 00 Jo =x* '\x
Q N
06 ,,4/*60‘. x %“'\._‘__‘ . 03,
,,,,,,, 2 5 e

0.4 x . 0.2

o
%

x
woox
o x * - xp.%x.,a)_ G g
. o X5 N o <] o _ o
0.08

05 1 1.5 2 25 3 35 4 45 3 Q 0.005 0.016 0.02 0.025 0.03 0.0386

o,

(a) Information Entropy (b) Fisher Information
3 22
@y
i 2 [eo]
25 ° © o 7((: o 66
P oG o und‘= o % d)Dn 18 y o%% oo ° 0}2{)/
o?ﬁ - o /o o _z—"x0 *
o} o __oF {/ T i
o T "
) 14 - ;

[}

o G
oo
o

(c) Sample Entropy (d) Kernel Entropy

Figure 5.3: Comparison of the results of the RRI series (z-axis) and the PWL series (y-axis)
for each of the information theoretic measures. The three classes are atrial fibrillation (circle),
sleep apnoea (cross) and chronic heart failure (square). ’

Figure 5.3 shows the results of applying the four information theoretic measures to both
series for three heart conditions. The discrete points are the values obtained directly from
application of the information theoretic measures; no classifiers have been applied at this
stage. The green lines indicate the decision boundary calculated using an MLP with 6 hidden

units and a softmax activation function trained on all of the data. Figure 5.4 shows the class
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conditional probability densities as estimated by the MLP. The results of MLP 'Cl’assfﬁcatign' ,
using leave-one-out-cross validation are shown in Table 5.3. . \

Figure 5.3(a) shows the plot of information entropy when applitec‘l\tO- ‘thh‘ 5

misclassified. If we were to compare just the RR—inte;v;a'l erie:
see that there is very little discriminative potential With fhe claséés ovef‘lapping cohsiderably.
The same is true for the P-wave length series results with considerable overlap between the
results. This would account for its relatively poor performance in the classifier (Table 5.3)

The Fisher information plot in Figure 5.3(b) shows variability in the apnoea class for
PWL data while having a relatively small variation in the RRI data. Also, it returns a wide
range of vélués from the RRI series of the AF class but only a small range for the PWL series.
The CHF data clusters very well with hardly any variation in.the PWL values. However,
despite the encouraging visual separation, the classifier performs poorly. This is possibly
due to the values being too close for the classifier to meaningfully distinguish between and
it appears to show a complete failure to distinguish any of the class structure. This can be
seen more clearly in Figure 5.4(b).

Figure 5.3(c¢) shows the plot for the sample entropy results for the two series. It should
also be noted that the sample entropy was undefined for the 14th record of the CHF data
for the RR-interval series. This led to the neural network being unable to process the data:
and so the results given for sample entropy are with the undefined value omitted. Aside
from this, the classes are more separated than with information entropy, and the clustering
is improved. This is shown by the decision boundaries clearly dividing the classes with very
little ambiguity excepting the triangular area in the centre. This is again demonstrated: by
the densities shown in Figure 5.4(c). The distinct separation also leads to an improvement
in the classifier over the previous measures as can be seen in Table 5.3. If we look at each
axis in turn then we can see there is some slight variability in the: sample.entropy value.for:
the RRI series for apnoea and AF but there is a more distinct difference in the values-for the
PWL series for these conditions. The main cluster of the CHF results has a slightly larger
sample entropy for the RRI series.

Figure 5.3(d) shows the plot for kernel entropy. This also shows good class separation with
the individual classes quite tightly condensed. Less class variability is shown in the values for

the RRI sériés, although the PWL series is still distinct. The main cluster of the CHFE wvalues
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Measure RRI PWL Classifier

Information Entropy 66.6 60.0 - 70.6
Fisher Information 46.6 57.3 .- 57.3
Sample Entropy 69.3 69.3 ~80.0
Kernel Entropy 60.0 81.3 826

Table 5.3: Correct classification percentage for each statistic applied to each time series
derived from the three conditions, and the results of both series combined.

the P-wave length on its own. Therefore, it would appear that using both series together

offers the best procedure for reducing the chance of misclassification.

5.4 Conclusions

The first experiment indicated that by using Bayesian bandwidth selection with kernel entropy
18 a valid alternative to cross-validation for parameter selection. The results also show how
important correct parameter selection actually is for sample entropy, a phenomenon rarely
mentioned in the literature.

In the second experiment, the raw results suggest that using the P-wave length series is a
viable alternative to the RR-interval series in discriminating between the two types of atrial
fibrillation recordings. Also, all these measures applied to the PWL series outperformed the
two conventional P-wave statistics which further indicates the potential in this approach.
Combining the two series highlights how effective a classifier based on multiple features is
and shows that the two series have a degree of independence. This is useful as it showg that
the two series, while certainly not completely uncorrelated, may complement each other in
diagnostic applications.

This is confirmed by the third experiment which indicates that the P-wave length series,
when used in conjunction with the RRI series provides more discriminative power than the
RRI series alone. The good class separation displayed by sample entropy and kernel entropy
are encouraging, particularly as they incorporate temporal information which may mean
that the series of P-waves has a dynamical structure and could therefore be examined using
techniques designed to determine chaos such as in [Gottwald and Melbourne, 2005]. Kernel
entropy does not perform so well when used on the RRI series, but gave a defined result
for each of the recordings, unlike the sample entropy. It performs particularly well’ when
combined with the PWL series which led to kernel entropy outperforming the other measures

overall.
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Therefore, from these experiments we can say ‘that both the P-wave length series and

kernel entropy merit further study as they both display potential for clinical use.

5.5 Discussion

The results indicate that the two novel techniques introduced in this thesis'show: promise:in
the field of cardiology. Unfortunately, this cannot be seen as a fully rigorous study as these
experiments were performed on limited data sets due to the difficulty of obtaining reliable,
consistent data.

In the first experiment, the automated bandwidth estimation led kernel entropy to equal
the correct classification percentage of sample entropy. Again, with more data, the test
could be repeated to see if this is a reliable result or merely a lucky one. However, ‘it
shows the usefulness of the bandwidth selection as often cardiac measurements are taken in
a constantly changing, dynamic environment. In this case, it may not be feasible to select
the parameters manually and so the automated method may be employed to consistently
update the parameters as appropriate. Also, large data sets that exhibit non-stationarity
may require windowing and so the o values will need to be updated accordingly.

In the first two experiments, we can see that the information measures for the series
decrease as the patient approaches AF. However, as the records are only quantified as ‘distant’
or ‘close’, it is difficult to predict how any clinical application might be implemented. From
inspection of the values themselves, there does not appear to be a global threshold that would
indicate that the record comes from someone immediately prior to AF; any device employing
this method would have to be calibrated for the patient under normal beat conditions. Further
study could be undertaken using a number of timed ECG recordings and investigating the
temporal evolution of the statistics as the patients approach an AF episode. This would give
an insight‘ into the mechanisms of AF as well as furthering the understanding of how the
measures and time series change.

In the third experiment, the three classes are naturally quite distinct so it is encouraging
that an acceptable degree of class separation was achieved. The experiment does show that
the use of the PWL series improves discrimination between classes compared to that achieved
with the RRI series. This was done to highlight the potential of the PWL series and advocate
its use as a complementary analysis method to the RRI series rather than a substitute.

Analysis of the P-wave dynamics could also facilitate investigations into the role of the

sino-atrial node and the atrial influence in anomalous cardiac behaviour. This could have
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implications in determining pathological influence as well as diagnostic and prognostic app
cations [Tso et al., 2005].

Ultimately, the robustness of the P-wave length series itself is predominantly dependent on
the accuracy of the method used to extract the P-wave. In any ECG recording, noise is always
an issue and how the level of noise affects the accuracy of the extraction is undetermined.
Our extraction technique was not perfect. However, this can be offset by reliable filtering
procedures and by using measures which model noise or are robust to the effects of noise. In
the measures used here, only sample and kernel entropy explicitly incorporate noise in the
model.

Also, some physiological conclusions may be drawn: as entropy is also a measure of
disorder, in the first experiment, it would appear that the disorder decreases as the patient
nears AF. This implies that the heart rate gets less erratic before an AF episode. This is
consistent with findings of a recent independent study [Tuzcu et al., 2006]. In the second
experiment, by the same reasoning, it would appear that people prior to atrial fibrillation and
chronic heart failure have a more variable P-wave length than those suffering from apnoea
(who are also asleep). This is in line with expectations and highlights the physiological

significance of the P-wave length series.
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Chapter 6

Summary

In this thesis we have investigated methods to determine cardiac disorders, from the raw
ECG data to the classification.

We started by modifying an existing R-point detection algorithm to increase its robust-
ness for a variety of data sets. This was then complimented with a new P-wave extraction
technique which performed favourably compared to similar methods in the literature. This
was due to careful filtering and baseline wandering removal.

The P wave data was then investigated using standard statistical techniques and then
visualising using principal component analysis and NeuroScale. As these proved ineffective,
this motivated the need for a different approach.

Of those approaches, some success had been achieved with measures that quantify the
regularity in a time series, particularly approximate and sample entropies.  However, it was
soon noticed that aside from these measures leading to inconsistencies, if one wanted to apply
them to varying types of data then the parameter used on one data set may not be applicable
to another.

We decided to address these issues by creating kernel entropy which, by using properties
of Gaussian kernel Parzen windows and the Renyi entropy, remains computationally efficient
as well as being more consistent and robust than the previous measures. The use of Parzen
windows a.],sd allows us to use techniques to estimate the optimum value for the bandwidth
parameter. We chose to use a Bayesian bandwidth selection method utilising the Markov
chain Monte Carlo algorithm to estimate the parameter as it is extremely flexible. This not
only means that kernel entropy can be confidently applied to different data types, but also
that the whole calculation of the measure can be fully automated without needing cross-

validation to fine tune the parameters.
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The effectiveness of kernel entropy was investigated as coﬁlpared to sdmple”er‘_li‘;po : ’n, \'
synthetic data sets. This showed that kernel entropy was more robust and cons“i_ste__r; for
noisy data, different series lengths, different window sizes and better at detgrminiﬁg the;
level of disorder. It also showed that the automated ba,/n(/iwidth/ selection performed .Well in
determining a suitable bandwidth value. 7 : |

A secondary goal of this thesis was to compare different features derived from the ECG.
This led us to construct a time series from the series of sequential P-wave durations which
we called the P-wave length series. The usefulness of the series was evaluated by applying
kernel and sample entropies to it as well as two other information theoretic techniques for
comparison. The results indicate that the use of the P-wave length series alongside the RR-
interval series could be of use when trying to differentiate between several conditions. It
would be remiss to imply that the PWL series is of equal or more use than the RR-interval
series as the latter has been studied and researched to a huge extent and has proved itself
as a reliable technique over time. It would take many more years of lresearch and on a much
wider range of data sets to develop an appropriate level of confidence for use of the P-wave
length series in a clinical setting.

However, the main goal of the thesis was to determine the effectiveness of the kernel
entropy when applied to cardiac data. The positive outcomes of the preliminary results on
the synthetic data were confirmed in almost all of the experiments on cardiac data.  The
bandwidth selection method led to kernel entropy achieving an equal classification result
to the best sample entropy could achieve despite numerous runs with different parameter
values. Kernel entropy again matched the effectiveness of sample entropy in classification
involving the P-wave lengths for atrial fibrillation prediction. Kernel entropy also led to
better classification accuracy than the other measures when used to determine between a
number of conditions.

Therefore, in this thesis, we have shown that kernel entropy ié a viable alternative to
sample entropy in quantifying regularity. As it is more consistent, and can be combined with

a bandwidth selection scheme, it shows much promise for future use.

6.1 Further Research

Aside from validating the methods on a wider range of real-world data sets, other ways the
research could be extended is to utilise other data sets. Kernel entropy could be of great

use in quantifying the regularity of electroencephalogram (EEG) signals from the brain; for
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instance it could be used to investigate how these signals change prior to ar’l,_ep'ilept’icr attack.

There could also be a way to automatically determine the value of m in kernel en TOPY:
This was tried briefly, by using the differential entropy in section 2.5. This led to very incon-
sistent results and so the idea was dropped as erratic m values wbuld lead to very inconsis£e:11ﬁ
kernel entropy values. This is not to say that automé,ti(; sél/ection/ of m is irﬁpossible, just

that a large degree of robustness would be needed for the method to be feasible.

6.1.1 Multiscale Entropy

The most apparent way that the research could be furthered is by utilisation of kernel en-
tropy in the Multiscale Entropy (MSE) formulation which currently uses sample entropy. To
understand why kernel entropy may be better suited for use in this approach we need to give
an overview of multiscale entropy.

Multiscale entropy is designed to investigate complezity as opposed to regularity. The
difference is that simple periodic signals and completely random ones can both be described
compactly, and are therefore not described as “complex” [Costa et al., 2005]. The idea is
that investigating the correlations over a number of different structural scales can provide
information on the complexity of a signal.

The procedure can be split into three parts

1. A “coarse-graining” process is applied to the time series, giving several coarse-grained

time series of different scales,
2. Sample entropy is applied to each coarse-grained time series,
3. The sample entropy values are plotted as a function of the scale factor.

The coarse-grained series are constructed corresponding to a scale factor 7 (unrelated to
the 7 in Section 4.1.1). The time series is divided into non-overlapping windows of length 7

and the data points averaged inside each window. For a series such as in Equation 4.1, the

mathematical formulation for creation of each coarse-grained data point, yﬁ-T), is
1
’ZJ;T) == >, (6.1)
i=(j—1)7+1

where 1 < j < N/7.
The sample entropy is then calculated for the series of these yy). The process is repeated

for different values of 7, up to a limit of the users choice. This has been shown to be of

141



CHAPTER 6. SUMMARY

use for analysis of EEGs in Alzheimer’s disease patients [Escudero et al., 2006] and ECG in
RR-interval time series [Costa et al., 2005).

There are obvious benefits of employing kernel entropy in this method as it is more
reliable and consistent so confidence in the result is increased. Also, due to the reduction
in sample points as the scale is increased, it is known that MSE requires a reasonably large
number of data points to produce a consistent results [Costa et al., 2005]. As we know that
kernel entropy is more robust to short series lengths, direct replacement of sample entropy
with kernel entropy in this formulation would go some way to alleviating this constraint.
Moreover, there could be more subtle advantages that could be gained.

In Nikulin and Brismar [2004], the observation is made that the same r value is used
for sample entropy in different time scales. This leads to ambiguity in the MSE method as
it is unclear if the results are from variation of the coarse-grained series or the underlying
complexity. This is answered in Costa et al. [2004] and addressed further by Thuraisingham
and Gottwald {2006] where it is noted that the multiscale entropy can have different signatures
based on the time scales involved and the nature of the data. The use of kernel entropy with
the bandwidth selection could help address these issues and possibly form a more rigorous

foundation for the multiscale entropy approach.
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Morphological Filters

Mathematical morphology is a formal methodology based in set theory that is usually applied
to image processing problems [Maragos and Schafer, 1990]. It involves the use of a structure
element that is then applied to the data by some pre-defined operation. The structure element
is a compact set of small size and simple shape. The choice of the structure element in filtering
depends on the noise level and the features in the data one would wish to enhance.

The two fundamental morphological operations are known as erosion (denoted by &) and
dilation (denoted as ®). Ma,thematically, if X is the data set of interest and B igthe structure

element then

XeB= N X-b ={z:(B+2) CX}, (A1)
beB

XeB= JX+b ={z+b:z€ X,be B}. (A.2)
beB

We can see from this that erosion gives the set of values in X that can contain the complete
structure element and dilation gives a new set inclusive of the values outside X that can be
contained in X and B.

We can define a number of combinations of these two operators that also prove useful.
We shall limit the discussion to only those used in this thesis, namely opening (denoted as

o) and closing (denoted as e) which are defined as

XoB= (X©B)® B, (A.3)

XeB= (X&B)oB. (A4)

In a signal processing sense, both can be seen to ‘smooth’ the contours of the input signal
g g p g
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by removing sharp features. Opening does this by removing any sharp or small featurg_s\,a\r‘;d\

closing does this by filling in small gaps between protrusive features.
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Surrogate Data

The concept of surrogate data testing in time series analysis was introduced by Theiler
[Theiler, 1995] and has been widely used in a number of studies [Small et al., 2000; Small
and Judd, 1998; Schreiber and Schmitz, 2000].

The basic principle of surrogate data analysis is to generate a hypothesis that the series
that you are investigating has certain properties. Normally several series (known as surro-
gates) have exactly the same statistical properties as the original series, except the properties
stated in the hypothesis. The surrogates and the data series are evaluated using a scheme or
measure of the users choice. The results then undergo hypothesis testing to see if the-data
set is suitably different from the surrogate(s) to be classified as exhibiting the hypothesised
properties itself. Our use of the surrogate is to determine the degree of ‘regularity’ that can
be determined with the appropriate measures.

We use two surrogates in this thesis: A shuffled surrogate which has the same mean and
variance but with a random order and a phase-randomised surrogate which has the same
mean, variance and power spectrum as the original data series but is otherwise random.

The associated null hypothesis of the shuffled surrogates is that the ordering of the data
points are random. The alternative hypothesis is that they are not random.

The associated null hypothesis of the phase-randomised surrogates is that the data does
not follow an ordered path through phase space. The alternative hypothesis is that they do.

A shuffled surrogate is created by randomly reordering the values of the series. Creation

of a phase-randomised surrogate is more difficult and is detailed below.
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B.1 Method of Constructing a Phase-Randomised Surro.gaj;:e\ /

Creation of a surrogate data set has been accomplished in a variety of ways; our method is
taken from [Henry et al., 2001] where the Fourier transform is taken of the data, the phases
are randomised and then the inverse Fourier transform is taken.

Consider the time series vector z in the form

z =X+ 1y,

where y = 0.

We then apply the discrete Fourier transform,

N
. 1 .
I = X + 1Y, = —1\7,?:1 znexp(——Qm(m - 1)(n — 1)/N>,

to get the frequency domain representation of the data. This allows us to construct a set of

random phases

N
qu € [0,7‘(],’)’77,22,3,...,?,

and apply them to the transformed data thus

Zm, formzlandm:%’.+1
Zm = | Zm| expligm} for m=23,..., &
|Z(N —m+2)|exp{—i¢pn_ms2} form=%+2, 843 .. N

Finally, we finish by applying the inverse Fourier transform,

N
1 .
Z, = Tl + iyl = v E Z;nexp(Qm(m —1)(n - 1)/N)>,
m=]

to map back to the time domain.
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