Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

SERVICES FOR ACTIVITIES IN GROUP EDITING

'SAGE'

BALA BUKSH

Doctor of Philosophy

THE UNIVERSITY OF ASTON IN BIRMINGHAM
July 1993

© The copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from
the thesis and no information derived from it may be published without proper
acknowledgement.

THE UNIVERSITY OF ASTON IN BIRMINGHAM

SERVICES FOR ACTIVITIES IN GROUP EDITING
'SAGE'

BALA BUKSH
Doctor of Philosophy
1993

Summary

The project described in this thesis investigates the needs of a group of people
working cooperatively in an OSI environment, and recommends tools and services
to meet these needs. The project looks specifically at Services for Activities in
Group Editing, and is identified as the ‘SAGE’ project.

The project uses case studies to identify user requirements and to determine
common functionalities for a variety of group editing activities. A prototype is
implemented in an X.400 environment to help refine user requirements, as a
source of new ideas and to test the proposed functionalities.

The conceptual modelling follows current CCITT proposals, but a new
classification of group activities is proposed: Informative, Objective and
Supportive application groups. Itis proposed that each of these application groups
have their own Service Agent. Use of this classification allows the possibility of
developing three sets of tools which will cover a wide range of group activities,
rather than developing tools for individual activities. Group editing is considered
to be in the Supportive application group.

A set of additional services and tools to support group editing are proposed in the
context of the CCITT draft on group communication, X.gc. The proposed
services and tools are mapped onto the X.400 series of recommendations, with the
Abstract Service Definition of the operational objects defined, along with their
associated component files, by extending the X.420 protocol functionality.

It is proposed that each of the Informative, Objective and Supportive application
groups should be implemented as a modified X.420 inter-personal messaging
system.

KEY WORDS: Services for Activities in Group Editing, Group Editing Services,
Joint Editing Tools, OSI & Group Editing and Group Editing and Group
Communication System.

R

Thank-God

Dedicated to My Loving Mother

Acknowledgements

I would like to express my sincere appreciation and thanks to the following persons:

Mr. Bernard Doherty, from Aston University, and Dr. Andrew Jordan, from the

_ University of Huddersfield, who have made this research possible by their continous

_ invaluable guidance, support and valuable time.

Mr. John Williams, Aston University, for offering valuable help and suggestions on

_ ‘quipu’ where PP is implemented.
Dr. Steve Benford, Nottingham University, for providing needful guidance on the project
and supplying various literature on the subject including CCITT draft and AMIGO report (a

- complementary copy).

The staff of the department and all those persons with whom personal communications

have been made during the case studies and demonstration of the prototype.

- The Government of India, which has sponsored this research programme and provided

__ complete financial support.

The High Commission of India in United Kingdom, specially Mr. S. Mukharjee, Student
Welfare Officer, who has met official requirements and arranged all payments.

The Oil & Natural Gas Commission of India, my empoyer, who has granted the study
leave for completion of the study.

Finally, I am deeply grateful to my wife Sajan, for her sacrifice during my stay in the
United Kingdom and my son Pankaj and daughters Priyanka and Renuka for their sacrifice

and immense patience.

Table of Content

~ Chapter 1 : Introduction

1.0 INtrodUCHON . ..vuin ittt 12
1.1 Value of STANAATASvoveeeeeeeeeeeee oo 15
1.2 Network Protocols and OSI NetwOorking.....coooeviiiiiiiiiiie e 16
1.3 OSIReference MOdelco.oovivoeeeeeeee oo 17
1.4 The 'SAGE' Project and the OSI Model..........cccoooiiiiiiiiieieieeeeeeeeee, 20
1.4.1 The 'SAGE' Project and the Application Layer............................... 20

1.4.2 Outline of the 'SAGE Project.............oo.oiiiii i 21

1.4.3 Research Method... ... 23

1.4.3.1 Thecase Studies.................oooiiiiiiiiiiinnnai ., 24

1.4.3.2 The Prototypeco.ovuiiiii i 24

1.4.3.3 Review of Group Activitiesoevvvenenini.. .. 25

Chapter 2 : Literature Review

2.0 INroduCONuitii e 27
2.1 General Work on Group CommUNICAtiONS.ouueieeeeineeeeeeee 28
2.2 Specific Projects on Group Communicationoooiiiiiiiii e 32
- 2.2.1 The AMIGO PIOJECt ..o 33

2.2.2 CCITT Draft Release X.gC....cooooiiiiiiiiiiiiiieieeeeee e 35

2.2.3 The Grace ProOjectooiviuiii e 36

2.3 Current Work in Group COmMmURiCationccooiiiinii e, 38
24 Work Underlying The 'SAGE' PrOJeCt...........oouiiuiiiiiiiiie el 39

Chapter 3 : X.400 Message Handling System (Overview)

3.0 INtrodUCHON .. c.eeuie i 41
3.1 The X.400 Functional Model..............oooiiiiii e 43
3.2 Structure of the MHS Application.................oooviii i 47
3.2.1 Alignment with Application Layer of OSIModelc.covvueeeeiin. .. 47
3.2.1.1 Protocol Used in MHS................viiiiiiiiinn, 49

3.2.2 Features and Services of the MHS.......... ... i, 49

3.3 Interpersonal Messaging System (IPMS) ..o 51
3.3.1 Services Obtained by Modified IPMScocoviiiinie...54

3.4 X.400 Implementation as PP ... 55
3.5 The X.500 (Directory SErVICES)ouviiei et 55
3.5.1 Relationship to X400 el 00

1 Group Communication System Architecture

4.1.1 Group Communication Information Model....................ooooiiiin.... 61
4.1.2 The Group Communication SEIVICeSeuuuivenininiainiaraeaninnnnn... 63
4.1.3 Group CommUNICAHONvtitiet ettt ettt eeeennn 66
4.1.3.1 Group ACHVIHES «.eoveiiiniiiiiiiiiiieieeennss 68
4.2 Modelling of Group CommunICAtIONvvueieiiiiitiiiiiiieiat e, 68
4.3 The 'SAGE' View 0f Modelling.......cccoooiiuiviioriiioniiiieiiee e, 69
4.3.1 The Relational View of Operational Objectsoovivviiniiinniinn... 73
4.3.2 Modelling of All Application Groups........ccovveiieiiiiiiiaiiiianniinnian.... 74

,\\\i@f;l"iapter 5 : Case Studies & Identification of General Model
5.0 INOAUCHON .. ov e 76

5.1 Why Case Studies are Required ... 76
5.2 Method of Case Studycouinniiiiiiii 77
5.2.1 Conduct of User Interaction for case studiesccovevviiieienn.... 79

5.3 Selection of Group Activities for Case Study................oociiiiiiii. 82
' 5.3.1 Editinga Newsletter ... e 82
5.3.2 Editing a Technical Papercooooiiii i 83

5.3.3 Distributed Software Editing Teamcoooiiiiiiiiiiiin. 83

5.4 The Group Editing Problem...............cocoiiiiiiiiieieeee oo, 84
5.5 Conceptual Model for Group Editingcoooiiiiiiii 85
' 5.5.1 Editing Environment............ouiiiiiiiiiin e 86
5.5.2 Group Editing Organiser (GEO)ooooiiiiiiiiiiiii i, 87

5.5.3 AccesS CONTOL ...ouivii i 89

5.5.4 Storage Facility........ooiiiiii i 90

5.5.5 Version Control ..ot 93

5.5.6 Message FlOW ... 94

5.5.7 General Facilities.ooiiii e 94

Chapter 6 : Editing A Newsletter: Prototype Specification

6.0 INTOAUCHON e et e et e e 96

6.1 Selecting the Prototype Technique ... 97

6.2 Editing a Newsletter: Analysis................ooooiiiiii 98
. 6.2.1 Structure of the Newsletter EQIting ACHVILYo.voveoveeeereeerene.. 100
6.2.2 Working on Newsletter.......coooiiiiiiiiiiiiiii e 101
6.2.2.1 Creation of Group ACtVItycooviiiiiiiiiiiiiin.. 102

6.2.2.2 Initial Message flow..........ccoooiiiiiiiiiiiiii ., 103

6.2.2.3 Contribution FIow.........coooiiiiiiiiiiiiii 104

6.2.2.4 Group Editing Header...........ccoocoveiiieiiiiinnnn. 105

6.2.2.5 Editing a Contribution.......cccoeeivieiiineeiiieeiiinnn... 106

6.2.2.6 Retrieval of Newsletter....ccoooiiiieiiiiieeiniineiiinn. 108

6.2.2.7 Other Facilitiescooiiiiiiiiiiiiiiiiiiii i, 108

6.3 Implementation Specification for the Prototype......ccccccccviiiiiiiiiiiiiinniinnnnn. 109
6.3.1 Functional Requirementcooviitiiiiiiiiiiiiiiiiiiiieiiee e 109
6.3.1.1 Basic Requirement.......cccocceiiiiiiiinniininiiannnnn... 110

6.3.1.2 Optional Requirement...........cooveviiiiiiiiiiiiiinn. .. 111

6.3.1.3 Monitoring Requirement...............c.ooovieiiiiiiiin... 111

6.3.2 System Model ... 112

6.4 Prototype Implementation: Editing Newsletter.....c.cooooiiiiiiniiiiiinniniiiinnn... 114
6.4.1 Prototype Design.o 114

6.4.2 Data Flow DIagramscoooiiiiii i i 115

6.4.3 The Prototype Implementation...........cccooviiiiieiiiniiiiieeiieaiieeannn. 117
6.4.3.1 Activity Generator..........ooveiiieiiiiiiini i, 118

6.4.3.2 Activity Responder.............cooiiiiiiiiiiiiiiii. 125

6.4.3.3 Activity MONItOTooiiiiiiiii e, 128

Chapter 7 : Testing & Evaluation of Newsletter Prototype

7.0 INtrOdUCHON ...t e e e e 132
7.1 Prototype TeStINg. ..o ee e e 133
7.1.1 Prototype DEmONSIation.ottt 133

7.2 Analysis Of ReSULtS. ..ot 135
7.2.1 ACtiVity GeNETATOT..ciuititiiiiei it iie e et et e erie e eeneeneeaneens 136
7.2.1.1 Limitations in the Activity Generator...................... 136

7.2.1.2 User Evaluation..............cooiiiiiiiiiiiiii e, 137

7.2.2 Activity ReSpPONder.......cooiiiiiiiiiiii i 141
7.2.2.1 Limitations in the Activity Responder..................... 142

7.2.2.2 User Evaluation...........ooooiiiiiiiiiiiiiiii e 143

7.2.3 ACHVILY MONIOT. ..o\ttt ittt et e e e 144
7.2.3.1 Limitations in the Activity Monitor........................ 145

7.2.4 Necessary modifications to MHS ... o 145

7.3 USET COMIMEIIES ..t ttttttte ittt et ettt e et e e ettt et e et e et ee e e e eeeeaees 146

Chapter 8 : Supporting Case Studies

8.0 INtrOdUCHION ... iui it e 148
8.1 Editing a Technical Paper............c.cccciiiiiiiiiiiiiiiii e 148
8.2 Technical Paper ACHVILYc.uiuiiitiii it e 148
8.3 Structure of Technical Paper ACtiVitycooviiiiiiiiiiiiiiiii i, 149
8.4 WOTKING ON A Pa eT ... it 150
8.4.1 Creation of Technical Paper ACtiVity......ccooooeiiiiiiieeeiiiiiiieeeeiiinnnn... 150
8.4.2 Contribution flowooiiiiii i 151
8.4.3 Technical Paper Headerccoooiiiiiiiiiiiiiiiiiii e 153
8.4.4 Technical Paper EQitingcooiiiiiiiiiiiiiiiii e 154
8.4.5 Other FacCilities...ciuiiiiiiiiiii e, 154
8.5 Distributed Software Development Team.........ccooviiiiiiiiiiiiiiiiiiiniinninnnnn. 155
8.5.1 Software Development ACHVILYcooiiiiiiiiiiiiiiii i 155
8.5.2 Software Development Team Activity Working............oooooiiii. 157
8.5.3 Identification of Commonality...............oooiiii i, 158

Chapter 9 : Proposed Model for Group Editing Activities

9.0 INtrOQUCHION ...\ e et e 160
9.1 Group Editing EnvITONmMEeNt......ccooiiiiiiiiiiiiiiiiiiii e 160
9.2 Access COntrol. ... 161
9.3 Storage FaCilIties ..ottt 163
9.4 Version Handling.........ooooiii 165

Chapter 10 : Recommendation for Group Editing Services

10.0 INErOAUCTION ettt e e et eeee 167
10.1 Group Editing SeTVICES......oiiiiiiiiiiiiiiii e 167
10.1.1 Editing Services and ToOIS ..ot 168
TO.1.1.1 NamiIng «ovvii e 169

10.1.2 Abstract Service Definition ... 171

10.1.3 Group Editing Information Handling system...............cccoeoeiiinnnn, 177

10.2 Mapping the Services Onto MHS 179
10.2.1 Services of X.400/X.420.ot 183

10.2.2 Message Handler Services.........oooiiiiiiiiiiiiiiiiiii i 184

~ Chapter 11 : Conclusion
T1.0 INtrodUuCHON. ... e ittt e e e e 188

11.1 Observations 0On ReSEArCh.....c.coviiiiiiiiiiiiiiiiii e 189
11.1.1 General ObServations......cocciuiininiieiniieitieiie et eeeeeinaneanns 189

11.1.2 Specific ODSEIVAIONS . .vuutietiiieenie ettt eee e e eeee e e 190
11.1.2.1 Case StUAICS . ..veennitiei et e, 190

I O BV o (017614 o) 1 U - S T U 192

11.1.2.3 Modelling of ACHVILIES....c.uuiitiiiiiiiiiiiiiiii e, 193

11.1.2.4 Recommended Services and Tools.................ciiiiil. 196

11.1.2.5 Additional Functionalitycoooiiiiiiiiiiiiiiiiiiiiii, 197

11.2 The ‘SAGE’ Project Recommendations.............ooviiiiiiiiiiiiiiiiiiaiiannan..n, 198
11.3 The NOVEL Featuresoovuiiie ittt et e e et aeee e eiae s 198
11,4 FUuture WOrK ...t e e 199
11,5 CONCIUSION . ..ttt ettt et e e e e et e e e 201
References and Bibliography.. 202
APPENAICeS ... 215

9

Figure 1.1
Figure 1.2
Figure 1.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 5.1
Figure 5.2
Figure 5.3
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17
Figure 6.18
Figure 6.19
Figure 7.1
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 9.1

 List of Figures and Tables:

Relation of Group Editing Services to X.400. 14
Seven layer architecture of OSI Reference Model.................... 17
Extended Structure of the Application Layer.........ccc..c.......... 20
The Model of the Message Handling System......................... 44
Structure of Application Layer for MHS. 48
Structure of IP messSage.oovvveeriiiiiiiiieiiei e 52
Group Communication Environment.c...c.oociiin. ... 63
The Group Communication Basic Services.............coooovenn.... 64
Group Communication SySte€M.....cccccceeerieiiriiiineiinnnennnnn.. 64
Functional Model of Group Communication System................ 67
Layering Structure of Application Group Services Tools. 72
Functional Object Relationship with the Activity..................... 73
Elements of Group Editing Model.ooooi. 86
Mapping of Editing Entities with CCITT Draft....................... 88
Mapping of Communication Ports with CCITT Draft............... 89
The Development Phase of the Research.............................. 98
Scope of Group Editing Information Model.......................... 100
Group Hierarchy StruCture............cooovveiiiiiiiiiieiiniiieeinen, 101
Structure of the Activity Database.................ocoevvieiiinnann... 103
Initial Contribution Flow. ...t 104
Flow of Contribution During Operation.....................c.o.o.o.. 105
Top level Model Activity Editing Environment....................... 112
Activity Monitor Rule Based Sub-System.coooon 0. 113
ACHIVILY GeNETALOT....itiiiiieiiiieit ettt ee e ae e 113
Activity Responder.........coooooiiiiiiiiiiiiiiiiini 114
Notation Used for Data Flow Diagram.................coooovoiiin. 115
Activity Generator Data Flow Diagram...............ccooiiiiiinn.. 116
Activity Responder Data Flow Diagram......................ooal. 116
Activity Monitor Data Flow Diagram.ocoiin. 117
Relational View of Editing Sub-Systems.........cccccccccnnnnnnni. 118
Newsletter Creation Process.........oooviiiiiiiiiiiiiiiiiiine. 120
Add New Member Process.coooiiiiiiiiiiiiiiiiiii.. 121
Processing a Contribution.............cooooiiiii . 123
Role of Activity MONItOT.eviiiiii i 128
Various Testing Phases....c..ccooiiiiiiiiiiiiiiiiiiiiiinn, 133
Contribution flow between GEO and Authors.............ceeeue. 152
Flow of Suggestions........cc.ccoiiiiiiiiiiiiiiiiiiiiii, 153
Flow of COmMmMEeNts.covuiiiiiiiiiiiii i 153
Common StOre StruCtUIe.ovuit it 156
Newsletter Editing Environment. ... 161

10

Figure 9.2
Figure 9.3
Figure 9.4
Figure 10.1
Figure 10.2
Figure 10.3

Figure 10.4

Figure A 2.1
Figure A 2.2
Figure A 2.3
Figure A 2.4
Figure A 2.5
Figure A 2.6
Figure A 2.7
Figure A 2.8

Figure A 3.1

Table 4.1
Table 6.1
Table 6.2
Table 6.3
Table 7.1
Table 7.2
Table 8.1

Table A 2.1
Table A 2.3
Table A 2.4
Table A 2.5
Table A 2.6
Table A 2.7
Table A 2.8
Table A 2.9
Table A 8.1

Group Editing Environment. ... 163

Common Store Relationship with Other Services.................... 165
Different Versions by a Member in Common Store.................. 166
Attributes in an Information Object.c..coviiiiiiiiinininnnn... 170
The Supportive Application Group Agent........ccccceeevuvnvnnenn... 177
Editing Activity object classes derived from GCS object
ClaSSES. ettt 178
Data Model for Group Editing ACtiVItiesooeviviiiniiinian.... 179
Structure of the P7 protocol.........ccooviiiiiiiiiiiiiiiiiiii. 217
Structure of the P3 protocol.......coooiiiiiiiiiiiiiiiiiiiiinn, 218
Structure of the Pl protocol........cooceeiiiiiiiiiiiiiiiiiinnin., 218
Simple Model of the EDI Messaging System......................... 224
Structure of EDIFACT file.........oooooiiiii i 225
PP Process Structure.oooiiiiiiiiiiiiiiiiiiiiiieee 228
Components of Directory System.........cooviiiiiiiiiiiiiain... 237
Functional Model of the Relationship between X.500 and

XA00. . 237
Group Communication System interworking with

Supporting Systems.ot 239
Classification of Group ACHVItIES.ovveveiieieiieiiiiiiiirieianes 71
Entity DesCTIPHON. ...ttt e 110
Menu for Activity GENerator..........ovviuiiieiiiiiiiiii i aiannns 119
Menu for Activity Responder...........ooooiiiiiiiiiiiiiiiiii 125
Functions in Activity Generator.cceeveiuieiiiiininannann... 136
Functions in Activity Responder.ooooiiiiiiiiiin. 142
Comparative Summary between Editing Activities for
Functionalities.c.oviuiiiiiii e 159
Example of Alias Table..........oooiiiiiiiiiiii e, 229
Example of Domain Table........ccoooociiiiiiin 230
Example of OrTable.........cooiiiiiiiiiiiiii 231
Example of Channel Table ... 232
Example of Users Table...........oooooiiiiiiiiiiiiiiic 232
Make Variables that should be Setat Site ... 233
Make Variables that can be Defaulted...................o. 234
CCITT/ISO Specifications for Directories.cc.ooeevivieinn... 235

... 313

11

Chapter 1

Introduction

1.0 Introduction

The aim of this research is to investigate the needs of a group of people working co-
operatively and communicating in an OSI network environment, and to recommend
tools and services to meet these needs. The research focuses specifically on the services

and tools required for group editing activities.

The research described in this thesis is concerned with Services for Activities in
Group Editing (SAGE), and will be identified as the 'SAGE' project for the

remainder of the thesis.

Information technology has in recent years seen a move towards individual work-
stations linked by networks. These networks have become widespread, allowing global
communication for many users. The improved communication capability has been
exploited in many ways. One of the recent developments has been computer supported
cooperative working (Taylor, 1990). CSCW provides the computing environment that
allows several people to work co-operatively on a common task. ‘Computer supported
cooperative work (CSCW) combines the understanding of the way people work in
groups with the enabling technologies of computer networking and associated
hardware, software, services and techniques’ (Wilson, 91). CSCW promises to
provide a timely synergism between group dynamics and state of the art computer
technology (Cross, 89). The growth of CSCW has led to research towards the

development of tools for coordinating group activities. These tools have been described

Chapter 1 ke Introduction

as group communication services for groupware, conferencing, team work or co-
operative work. Some tools are available but do not fully address the need of particular
groups of people working together over a distributed environment. What is needed is a
system which allows propagation of information between a large number of people in an
organised way, with users ideally not needing to be aware of the underlying services
(for example e-mail, unix-mail, X.400, EDI or any other messaging services) used to

handle the communication.

A variety of group communication applications has been developed. These applications
include computer conferencing, bulletin board and news services systems (e.g. COM,
USENET news and EIES and VAXNOTES). An example is a departmental bulletin
board which is a special kind of mass communication arrangement for posting of
announcement, messages and decisions written by, and intended for the users of the
system. The applications are focused on providing shared access to messages within a
group. These systems introduced many important ideas, but they suffer from a number
of limitations (Benford et.al., 90) particularly in functionality management and
interworking. Over recent years there has been a movement to introduce standardisation
to improve interconnectivity and provide a common flexible infrastructure in a
widespread communication network. This infrastructure is provided within the Open

System Interconnection (OSI) environment.

The OSI standards cover most aspects of network communication. Within OSI the
X.400 series of recommendations are designed to provide the standard protocols and
message format that allows exchange of messages on a global basis. X.400 has been
widely accepted, and covers the academic world, governments, and businesses. The
'SAGE' project seeks to define a common messaging protocol on a specific area of
group working (i.e. group editing). The protocol is based on the X.400 series of

recommendations, in particular the X.420 recommendation.

13

Chapter 1 / Introduction

The 'SAGE' project classifies group activities into different application groups which

are modelled as a group communication system and focuses on group communication
support for group editing activities, an example of which is editing of a Newsletter. The
'SAGE' project seeks to identify services and tools for management, storage and
distribution in support of group editing activities (so as to fulfil the requirements of the
group of people working together). The work follows the direction proposed by the
CCITT draft working document on group communication X.gc (Joint ISO/IEC/CCITT,
91) and also takes account of research work being carried out elsewhere. Figure 1.1
shows the proposed relation of group editing services to the X.400 recommendations.

The X.gc recommendations propose a group communication framework model and

define asynchronous computer conferencing on top of it. The 'SAGE' project proposes
that a shell structure be used with all group communication activities built on the group
communication framework model. Group editing is one of set of group communication

activities.

X.400 :
Message
Handling
System

ip9]

g >
Q

g 2

o =

i}

~)

Figure 1.1 Relation of Group Editing Services to X.400.

14

Chapter 1 / Introduction

The services needed in group editing are determined by a study of current literature in

group communication and by interviewing a small set of potential users. From the

services found to be required, a set of recommendations for tools to implement the
services is described, in a form consistent with that used to describe other group

communication support services (similar to the X.gc document).

To support the study, a prototype tool set has been implemented to provide the functions
and services identified as needed to support group editing. This prototype has been
implemented in the X.400 environment and used both to confirm that the service

definitions of the tools are workable and to provide a testbed for user feedback which

improves the information obtained from interacting users.

1.1 Value of Standards

The ‘SAGE’ project is concerned with productive communication Over extensive
networks. These networks are assumed to be international and to extend to all kinds of
organisation. This can only occur if the services provided are in accord with widespread
standards. International standards are thus crucial to successful provision of group

editing services.

Information technology, in particular computer network technology, covers the
converging disciplines of computing and communications and is thus a distributed
technology involving equipment and systems from different suppliers. In such
circumstances standards become essential to both the suppliers and the users. The
organisations ECMA (European Computer Manufacturers Association), IEEE (Institute
of Electrical and Electronics Engineers), CCITT (International Telephone and Telegraph
Consultative Committee) and ISO (International Standards Organisation) have

accordingly given due attention to standards (Bartlett, 1986). CCITT uses the term

‘Recommendations’ rather than standards.

15

Chapter 1 Introduction

Standards are needed when several parties participate in technical activities (Sherif &

Sparrell, 92). Examples of such activities are: propagation of information, management

of systems, specification of performance and quality attributes and compatibility and
interconnectivity between applications. Standards facilitate the relationships among
network vendors, users and providers. Open System Interconnection (OSI) brings

together such parties, anticipating the availability of technology.

1.2 Network Protocols and OSI Networking
The major advantages of OSI standards have been discussed in last paragraph. In the

light of these advantages, this research has been carried out within the OSI standards.

The OSI standards define common protocols for communication in an open environment

to meet the needs of different users.

In order for two processes to communicate over a communication link they need to
implement various ‘protocols’. The protocol definition in an 'analysis’ of the OSI model
of the open system interconnecting (Strokes (ed), 86) is described in the following
terms:

“When we have two processes facing each other across some communication
link, the protocol is the set of their agreements on the format and relative timing of
messages to be exchanged. When we speak of a protocol, there is usually an important
goal to be fulfilled. Although any set of agreements between cooperating (i.e.
communicating) processes is a protocol, the protocols of interest are those which are

constructed for general application by a large population of processes in solving a large
class of problems” .

OS] standards solve these information management problems and address the
communication needs. The following four aspects of functionality must be considered in
designing a dynamic multi vendor network: Connectivity, Interoperability,
Manageability and Distributed Applications. These functionality aspects are mapped

onto the OSI reference model.

16

Chapter 1 Introduction

1.3 OSI Reference Model

The Open System Interconnection Reference Model (OSIRM) (Strokes (ed.), 86) 1s a
seven layer model of a network ‘architecture’, with each layer performing a different
function and having its interface to adjacent layers fully specified. The model defines the
accepted International Standards by which open systems should communicate with each
other, and also sets the rules for how the standards are to be implemented. An open
system is a computing system or network that can interoperate with any other open

system on the basis of OSI International Standards.

Receiving

Sending

Process Process

Application Application
. Higher Level Presentation
Presentation Protocols
Session Session
Transport Transport
Network Lower, OF . Network
Communications
. Levels
Data Link Data Link
Physical — Physical
‘ Physical connection
—

Actual data transmission path

Figure 1.2 Seven layer architecture of OSI Reference Model.

The term ‘architecture’ is used to describe how a network organises connectivity and

interoperability so that elements of a communication function in a logical order as

information moves in and out of the network. A network’s architecture is important

because it sorts communication functions into logical groups, or layers, so that they

17

Chapter 1 Introduction

always perform the required function (Jarratt, 1989). Figure 1.2 shows the seven layer

architecture of the OSI reference model (Taylor, 1986).

The functionality aspects (viz Connectivity, Interoperability, Manageability and
Distributed Applications) are mapped on OSI reference model in a seven layer structure.
Connectivity is the ability of the network to move any piece of information from one
point to another, regardless of the medium or transmission technologies. Connectivity
provides information integrity and ability to make physical connections.
Interoperability is the ability of all system elements to exchange information between

equipment from the same vendor or a collection of different vendors. It is this feature

that makes information understandable. Manageability is provided by the combined
products and services that enables the network to be designed, controlled, directed and
supported, and that enable the management of change in a responsible and flexible
manner. Distributed Applications enhance the usefulness, or value delivered by the
network, providing the users with enterprise-wide, easy-to-use communication

capabilities (Jarratt, 89).

Every layer in the OSIRM is defined by a standard which comprises a Service Definition
and a Protocol Specification. Each of OSI’s layers provides services to the layers
adjacent to it, and maintains a relationship with the corresponding layer of the system it
is communicating with. The layers are independent of each other in the sense that a
change in one layer does not affect operations or protocols in neighbouring layers. For
example, changing the physical transmission medium (e.g. Co-axial, Twisted pair, and
Fibre links) does not affect the type of data link. The OSI Physical, Data-Link and
Network (1, 2 and 3) layers address the connectivity needs of Local Area and Wide
Area Networks (LAN and WAN). Interoperability aspects of the network are addressed

by the next three layers: Transport, Session and Presentation (4, 5 and 6). Distributed

Applications issues are addressed by the seventh, the highest layer. All seven layers of

18

Chapter 1 Introduction

the model are involved in providing manageability aspects of the network. A functional

overview of each layer is discussed in Appendix 1.

An electronic message handling system should provide message input assistance,
message transfer, status reporting, type conversion, and format preservation (Palme,
1987). Different vendor computer based mail systems use different terminals,
formatting, addressing and control procedures. Recent efforts by CCITT have provided
standard document formats, electronic mail and messaging and addressing structures as
a basis for message handling. CCITT s protocols provide a means of harmonising these

different paths. The Message Handling System (MHS) is defined by a set of

standards for electronic mail. The standards are the X.400 series of CCITT
recommendations and have been adopted by ISO as the Message Oriented Text

Interchange System (MOTIS).

Two message services, Message Transfer (MT) service (a general, i.e. application

independent, store-and-forward message transfer service) and Inter-Personal Messaging
(IPM) service (person-to person communication), are described in the X.400 series of
recommendations, together with their functional models and protocols. The protocols of
the X.400 series of recommendations extend the Open System Interconnection
environment up to the user level and thus provide rapid and effective transfer of
information (in required format and shape), rather than data, by allowing automation of

many of the information handling and routing functions (Roechr, 1986).

The X.400 recommendations provide a standard protocol that allow the exchange of
information on a global basis. Implementations of the X.400 recommendations are
widely available. Thus using the X.400 protocols as a carrier to derive group

communication system services would increase the force of implementation of these

services as standard on user community.

19

Chapter 1 Introduction

1.4 The 'SAGE' Project and the OSI Model

The Application Layer is the highest layer in the ISO model and it can be considered as

the layer in which all application processes reside. The Application Layer provides
information services to support end-user application tasks such as file transfer, remote
file access database management, electronic mail and terminal access. It manages

communications between applications.

The work of the 'SAGE' project is in the application layer, and is particularly concerned
with the X.400 (i.e. message handling system) series of recommendations. The position

of the 'SAGE' project research within the application layer is shown in figure 1.3.

Application Layer -1 :;\‘\‘g‘ AG EPr 0_] e c‘t§;\§ Prototype: Editing News Letter
T Study: Editing Applications
l A
Application Groups —3 Classification of Group Activities
Application Layer -I Management, Storage and Distribution Services
Group Communication Basic Services Frame

___ I S U
Application Layer Other Applications Message Handling Environment

Presentation Layer l

Figure 1.3 Extended Structure of the Application Layer.

1.4.1 The 'SAGE' Project and the Application Layer

X.400 and X.500 (directory services) recommendations enable interpersonal electronic

mail and distribution list in a geographical distributed environment. The services of

20

Chapter 1 Introduction

X.400 recommendations (i.e. message handling system) form a message handling

environment, and exist within the application layer. The X.500 (directory) services are

also a part of the services provided by the application layer as a standard. Both X.400
and X.500 services do not support group activities such as cooperative writing, editing
of periodical newsletters, meeting scheduling systems, which are based on the

messaging system.

The 'SAGE' project defines Group Communication as “communication which fulfils the
communicating requirement for a group of people with common objectives working on

a single pool of information within the boundaries of the group”. The complexity of the

group, however, may depend on the group environment (e.g. members of a group or
the group itself can be a part of other groups). The objective of the group may vary
according to the nature of the problem in business, government and organisations.
Group Communication sets up an environment for communication between more than

two users! depending upon the group category (discussed later).

The X.400 recommendations have been used for user applications such as InterPersonal
Messaging, Electronic Data Interchange, and are now the basis for work (AMIGO and
X.gc draft) to define group communication tools (i.e. Group Communication Services)
for group applications over networks using X.400 recommendations. The realisation of
these services is shown in figure 1.3, in the Application-I1 layer, as 'group

communication basic services frame'.

1.4.2 Outline of the 'SAGE' Project
The 'SAGE' project defines a classification of group activities into different application
groups and focuses on the services and tools required for group editing activities within

one application group (shown in figure 1.3). The aim of this research is to investigate

1 A-process can be user.

21

Chapter 1 Introduction

the needs of a group of people communicating together and to recommend tools and

services to fulfil such requirements in an editing environment. Examples of user

services and tools needed are: a mechanism to handle the information; setting up the
environment for version and access control; structured storage; the header components
_ (in context of X.400) and the need to manage the activity with operations such as create,

update, add and delete.

The 'SAGE' project follows recent suggestions (Benford & Palme, 93) and takes a top-

down approach to the development of group communication system services by

ascertaining needs in group communication applications. The research is carried out in

three phases.

The first phase involves carrying out case studies considering three group editing
activities, viz a Newsletter, Technical Paper and Software Development Team. The
Newsletter activity is discussed in depth and used for the prototype. The other two
activities are discussed as supporting (minor) cases, with consideration of their
similarities and differences. The case studies methodology seeks to determine the
underlying needs for these activities by reviewing the literature and by interviewing

some potential users involved in group activities.

The second phase of the research involves development of a working prototype for
editing a Newsletter. The case studies and literature are the basis of the requirement

specification produced to enable the design of the basic system for the prototype.

The third phase of the 'SAGE' project involves modelling of group editing activities
based on common issues determined from the previous phase, and recommends the

services and tools required for group editing activities in the light of the X.400 series of

Chapter 1 Introduction

recommendations. The recommended services and tools are proposed to modify/extend

the functionality of the X.420 recommendation (Interpersonal Messaging System).

These phases of the research established that the main issues are to provide version and
access control, to work out the logical structure of the common store, to construct the
group editing header components and to provide management of the activity. These

issues are discussed later in detail.

1.4.3 Research Method

The approach to research for the 'SAGE' project involves the following activities:

1) Carrying out case studies for three group editing activities to derive common
functionality,
i) Prototyping one of the activities, i.e. editing a Newsletter, as a testbed to users

and to test the functionality,

1i1) Deriving a general model for group editing,

1v) Identifying additional services and tools required for group editing activities,

V) Defining Abstract Service Definitions for additional operations required to meet
the functionality of the group for editing activities,

vi) Mapping the services onto the Message Handling System as extension services
of MHS,

vii) Proposing extended header parameters and their component files.

viii) Review of group activities in the light of classification of group activities,

1X) Proposing identification of these classified application groups as OSI

applications as standards.

Chapter 1 Introduction

1.4.3.1 The case Studies

To understand the nature of problem and to produce an abstract specification, three

group editing activities were chosen for case study. The initial 'finding' phase
comprised arranging interviews with users who are involved in editing activities. The
users are not concerned with the underlying services used for the system. However they
are concerned with the issues like: avoiding redundant editing, the need to have more
than one version, control over the activity, access facilities, the role of the referee in the
case of technical articles and having header parameters (e.g. up-dated on, submission
date and subject etc.). The role of group editing organiser (who acts as moderator)

provides different kinds of control in each of the cases (discussed later). The case

studies were useful in identifying the commonality of editing issues so that the
necessary services for group communication, viz creation of group, definition of activity
and creation of common storage, can be determined. These issues are key
implementation issues in the context of creating a group editing activity before operation

in a distributed network environment.

1.4.3.2 The Prototype

To support the development of ideas and investigate the required functionality, a
working prototype has been developed for editing a Newsletter activity. The prototype
system is divided into two sub-systems. One system contains the built-in processes,
which act on behalf of the group editing organiser or group member concerned and take
an automatic decision (discussed in detail in chapter 6) depending upon the event. This
is a rule-based system. The built-in processes address issues such as version control,
request handling to avoid redundant editing, delivery failure, reminder generation and

automatic generation of a Newsletter document.

Chapter 1 Introduction

The second sub-system requires interaction with the group member concerned to act on

an event. Amongst the tools provided are: definition of the Newsletter, addition and

deletion of members, showing the differences between two contributions submitted by a
member and showing the history and statistics of the activity. This set of facilities is
presented as a menu for the convenience of users (for group editing organiser and other

members).

The prototype uses the ‘C’ language, the Unix shell and the services of an X.400
implementation in the message handling environment. Finally the prototype has been

demonstrated to potential users before reviewing the case and reaching conclusions and

providing recommendations on additions and modifications to X.400.

1.4.3.3 Review of Group Activities

There are many kinds of group activity, which are discussed more fully in chapter 4. It
may not be possible to have universal tools for each and every activity. In order to
recognise services and tools for a group activity as an OSI application, there is a need to
categorise/classify such activities. The classification of the activities is based on the
behaviour and functionalities of the activities. For example the activities which supply
information, such as a bulletin board, and activities which need other member's co-
operation to complete a task, such as co-operative writing, should be in different
categories. Based on the characteristics of activities (those which need similar kinds of
support), it is suggested in this research that such group activities may be divided into
three base classes of application groups (described later in detail). These classes or

application groups are proposed as:

[N
[))

Chapter 1 Introduction

Informative group (supplies information only),
Objective (decision making) group (needs decision making support),
Supportive (co-operative work) group (co-operation is necessary to complete
task).
This chapter has described the value of standards in a computer network environment
along with the role of network protocols. An overview of OSI reference model has been
discussed in relation to the 'SAGE' project, particularly the application layer and

message handling system. Finally an outline of the research method has been described.

26

Chapter 2

Literature Review

2.0 Introduction

The literature review is structured to present a review of general work on group
communication applications and then a review of specific projects such as '"AMIGO/,
'GRACE' and by CCITT working group. Some current work on group
communications is also described in this chapter. Literature that is specialised to a

particular topic is reviewed in the chapter that covers that topic.

The existence of message handling system within the OSI reference model has been

described in the previous chapter.

The literature shows that, in recent years, there has been a widespread growth of
message handling systems and an increasing use of group applications over them.
Research on group communication activities is underway in most countries and In many
supplier organisations. Review of the literature (Wilson, 91) suggests there are about
50-60 work centres involved in developing group communication services. The

extensive research in the field is difficult to completely review in this short space.

The literature discussed here is that which has made a significant contribution to the field
and led to work related to the 'SAGE' project. More specific issues and aspects are

discussed and referred to at appropriate places in later chapters.

Chapter 2 Literature Review

2.1 General Work on Group Communications

A series of papers (Palme, 1986, 1987, 88) describes group communications. The first

paper sets out the difference between personal and group messages. The paper also
discusses information overload in personal communication and use of distribution list to
reduce such overload. The second paper defines Computer Conferencing and its
| purpose. The paper describes conferencing and bulletin boards as group communication
messaging systems with special support. The paper also describes the advantages (to
users) of computer conferencing over face-to face meeting, and lists the common

features of a conferencing system such as structuring of messages, access control (for

open, closed or protected conferences), moderator functions and conversations. The
paper then describes the principle of conferencing in the light of extension to the
message handling system and X.500. The role of the moderator in group
communication is first set out in the paper by Palme. The last (third) paper extends the
ideas of the second paper on computer conferencing. The paper describes the detailed
functionality of computer conferencing system in the light of X.400. The paper
highlights the database structure for user and conference and the properties of
conferences (open, closed and restricted). The role of X.500 (i.e. the Directory

services) is extended in the conferencing system. The paper describes the operations for

moderator and recipients and the use of distribution lists. The paper then gives a view
on computer conferencing services in distributed systems in the light of CCITT
recommendations and ISO standards. Operations such as voting and features of joint
editing and database cleaning are also mentioned in the paper. Some of the features

described by Palme appear later in CCITT draft X.gc (Joint ISO/IEC/CCITT, 91).

Two papers (Lanceros & Saras, 88, 89) introduce a model for group communication

facilities in the X.400 message handling environment. The papers describe storage,

directory and management services over message handling system. The papers give a

28

Chapter 2 Literature Review

substantial description of a structure of a ‘group’ in the context of group

communication. A group as described by Lanceros & Saras consists of group name,

group members, distribution of contributions, common store, description of the group
and the owner/ administrator. The papers consider group contributions as extension of
the interpersonal messaging (IPM) format. The papers also describe the possibility of
managing group messages by modification or extension to the protocols “P1”, “P2” (P1
is a message transfer agent to message transfer agent protocol and P2 is an interpersonal
messaging protocol) and directory services. The concept of entity group manager
(similar to moderator in Palme) is supported in the papers. The work of Lanceros &

Saras is in the context of the AMIGO MHS ™" project (Smith et.al., 89). Some of the

features described by Lanceros & Saras appear later in CCITT draft release X.gc (Joint

ISO/TEC/CCITT, 91).

The AMIGO MHS™ project has carried out research to explore Group Communication
in the context of a distributed environment in the light of extension and integration of
existing inter-personal services such as X.400 and Electronic Mail. Another concern 1S
to close the gap between the facilities offered by existing centralised Group
Communication services (e.g. conferencing systems and bulletin boards) and
standardisation efforts in distributed messaging (X.400). The AMIGO MHS™ report
(Smith et.al., 89) discusses a distributed group communication service architecture and
describes an abstract model for group communication support and an outline

implementation architecture (described in section 2.2.1).

A working document X.gc (Joint ISO/IEC/CCITT, 91) on Group Communications has
been defined by ISO/IEC/CCITT as “the overall system and services overview of Group
Communications”. This is the seventh version of the working document X.gc. It takes

account of all previous work to derive the draft working document. The document

defines a general Group Communication Model in terms of its goal, and requirements

Chapter 2 Literature Review

and services to be provided. The working document also specifies group

communication as an information model and then defines Abstract Service Definition of

the system. The goal of this model is to provide a framework for modelling and
implementing a variety of group communication applications (discussed in section

2.2.2). The 'SAGE' project accepts the proposed framework as a basis for research.

A paper by Jakobs (Jakobs, 91) takes a different view, with the assumption that the
group communication may be divided into two distinct problem areas. These are known
as user-oriented and network-oriented problem areas. The user oriented problems

includes user-friendly naming techniques and establishment and maintenance of the

groups. The network oriented problems are the mechanism to provide an addressing
scheme and routing strategies. These include management of group addressing and
multi-destination routing. The paper describes the integration of two services, viz
message handling service and directory service, to support group communication. The
paper then defines a new object class set for address and group description as Abstract
Service Notation one (ASN.1) in directory services as a global naming structure. The
paper also classifies the group into three categories: static, semi-static and dynamic and

describes the techniques to define the addresses and group objects.

Jakobs' view differs from the group category approach used in the ‘SAGE’ project and
discussed later in detail (in chapter 4). Jakobs' approach makes it difficult to consider
issues like group classification and group communication problems in the context of
group communication services and tools. Jakobs' proposal indicates that the group
activity problems (other than user-oriented) are network problems. The paper does not
make it clear that the network problems are to be built-in the network itself, or whether

additional support should be provided to handle such problems.

30

Chapter 2 Literature Review

A paper (Benford et.al., 92) describes the current state of art in group communication in

terms of standardization work within the joint ISO/IEC/CCITT messaging group

(X.400). The work has been discussed in the light of providing standardized support
for ‘Asynchronous Group Communication’ over OSI network. The group
communication is described as a general computer mediated communication (CMC)
which is to be extended to Computer Supported Co-operative Work (CSCW), computer
conferencing and group decision support systems. The paper discusses the importance
of standards and supports the CCITT working document X.gc (Joint ISO/IEC/CCITT,
91).

The paper describes the scope of standardisation in terms of a framework reference
model for group communication. As a reference model it then discusses the group
communication framework in one part. The scope of a reference model for group
communication include the modelling of group communication framework as a standard
Information model. The second part of the paper describes the use of an Information
Model to model the core functionality for asynchronous computer conferencing. The
informal description of asynchronous computer conferencing in given along with the

modelling of the operations with the information model. The paper raises important

current issues.

Another paper on standards for OSI group communication (Benford & Palme, 93)
provides an overview of the current working document X.gc (Joint ISO/IEC/CCITT,
91) as a basis for messaging standardisation. The paper describes the group
communication architecture in the light of a distributed environment. It highlights the
critical limitations of messaging systems, which are lack of persistent information
(disappearance of messages i.e. not reaching to a destination) and lack of structure

(retrieval of referenced messages) of information. The paper lists the successful group

communication systems and the limitations of their being a non-standard products. The

31

Chapter 2 Literature Review

paper then supports the view that for such services to be successful they should be built

on the existing OSI standards. For example the building of group communication

services on message handling system. The paper describes ‘bottom-up’ and ‘top-down’

approaches in context of producing group communication services as standard.

The paper by Benford and Palme splits the working document into two parts: specific
group communication services information model and asynchronous computer
conferencing. The asynchronous computer conferencing consists of a set of
group activities. The paper describes several categories of membership (viz regular

member, observer, prospective member, moderator and activity manager) as its

participant. The paper supports the categories of group activities type (Palme, 87) as
open, closed, restricted and protected. The group communication information model is
object-based for all information in the group communication system. The abstract
service definition defines basic operations for manipulating group communication
system objects. The information model represents information and the members of the
group as objects. The paper further highlights the operations of CCITT working
document X.gc (Joint ISO/IEC/CCITT, 91) in reference to the base model. A mapping
has been carried out of a computer conferencing onto the group communication
reference model services. The paper also indicates features of the group communication
system to support it, as an extended structure. These are support of global name space
as an extension of directory service and the use of ‘links’ to build simple objects into
complex information structures. The 'SAGE' project makes use of ideas in the paper

and builds on the framework.

2.2 Specific Projects on Group Communication

The previous section describes work on group communication by individuals. There are

some important projects which have contributed towards the standardisation process for

32

Chapter 2 Literature Review

group communication. This section describes the AMIGO and the GRACE project and

the associated CCITT draft proposal. The last section describes the scope of the 'SAGE’

project in relation to the work discussed here.

2.2.1 The AMIGO Project

A report “Distributed Group Communication - the AMIGO information model” (Smith
et al, 1989) describes the AMIGO MHS™ project. The goal of this project is to explore
Group Communication in the context of a distributed environment: it considers the
extension and integration of existing inter-personal services such as X.400 and

Electronic Mail. Another concern is to close the gap between the facilities offered by

existing centralised Group Communication services (e.g. conferencing systems and
bulletin boards) and standardisation efforts in distributed messaging (X.400). The
report discusses a distributed group communication service architecture and describes an
abstract model for group communication support and an outline implementation

architecture.

The AMIGO project has three different work areas; Advanced Group Communication,
MHS+ (Message Handling System) and MMConf (Multi-Media Conferencing). The
Advanced group communication area addressed the provision of a conceptual
framework for group communication activities. The MHS* group was concerned with
how to use the available OSI services for group communication support. The MMConf
group examined on-line group communication and the requirements of multimedia tools
and support services. AMIGO MHS™ project recommendations have been used in most
subsequent work on group communications including the CCITT draft document X.gc
(Joint ISO/IEC/CCITT 91). The AMIGO MHS™ project report is presented in various

chapters, most of which have been influential in the 'SAGE' project.

33

Chapter 2 Literature Review

An introduction to group communication service requirements is described by Smith

(Smith, 89) which indicates the example of existing structured communication

applications and defines the group communication activities. The ideas are followed
while describing distributed architecture for group communication along with its
elements. The work is recognised by the CCITT group in the draft X.gc (Joint
ISO/IEC/CCITT, 91).

A contribution by (Benford, 89) in the AMIGO report specifies an information model
for group communication as global information space. Benford examines the issues

required for naming the communication entities and information objects. The

environmental view of information objects, their operations and the access rights are

also discussed and appear in the CCITT draft.

The AMIGO contribution by Weiss & Bogen, 89 describes the group communication
architectural requirement from the view of users, administrator/providers and designers.
Weiss & Bogen treat the group communication system services as basic (distribution,
storage and co-ordination services) and advanced services. The contribution also

describes the basic services of distribution, storage and co-ordination and the entity

group communication service agent (GCSA) needed to fulfil service requirements. The
chapter finally models the group communication system with the supporting services
(viz message handling system, directory services, archive services and management
services), along with the role of group communication service agent. These ideas appear

in the 'SAGE' project.

One chapter (Nunez, 89) of the report gives an overview of archive services along with
the storage protocols. Nunez describes a distributed Archive service agent used to

handle information objects and operations. A concept similar to an archive agent has

been used in the 'SAGE' project, but with extended functionality for advanced services.

Chapter 2 Literature Review

 The contribution by Wagner & Palme (Wagner & Palme, 89) in the report discusses

~ additional group communication services to support added functionality that meets the

requirement of advanced group communication. The chapter also describes a need for
knowledge based information handling support in such functionalities. Wagner & Palme
examine the use of knowledge based information handling system in archive services,
retrieval, storage and distribution of information objects. This portion of the report
identifies the activities which require advanced group communication support, viz
voting, joint editing and meeting scheduling. The 'SAGE' project follows the idea of a
knowledge-based information handling system, which is termed a rule-based

information handling system, and focuses on joint editing activities.

2.2.2 CCITT Draft Release X.gc

The recent draft report by ISO/IEC/CCITT (Joint ISO/IEC/CCITT, 91) has defined “the
overall system and services overview of Group Communications™ in a working
document. The draft is based on past work carried out in the field, including AMIGO
and GRACE (section 2.2.3) projects, and input from the CCITT study group on group
communications. This is the seventh version of working document X.gc. The document
defines a general Group Communication Model in terms of its goal, requirements and
services provided. The working document also specifies group communication as an
information model and then gives an Abstract Service Definition of the system. The goal
of this model is to provide a framework for modelling and implementing a variety of
group communication applications. The document also defines basic terms in group
communications such as: object, item, entity, domain, attribute, link and distinguished

name.

The draft document specifies a general model of group communication and Abstract

Service Definitions and models for asynchronous Computer Conferencing. The

working document also points out some of the further study areas, for example: Access

35

Chapter 2 Literature Review

Control mechanism, detailed functionality of filters (exploring links between objects)

and alias support for objects. The document does not include however certain advanced

Group Communication Services, for example, Voting, Joint Editing of a document and

specific group activities.

The last part of the draft describes distributed relations of the computer conferencing
model. The draft indicates the requirement should be meet by a special computer
conferencing protocols by mapping of the computer conferencing services onto the
general group communication model. The draft working document describes the role of

group communication service agent (GCSA) to control the activity. The role of GCSA is

defined in a similar manner to the message transfer agent in the MHS. Likewise each
GCSA controls one or more activities and communicates with each other to meet the
functionality of the activity. The working document also describes distribution of
contributions in the group. The document finally describes the mapping of
asynchronous computer conferencing into the basic architecture model in different
ways. The draft gives warning that there will be a number of versions of this
document, which is incomplete and should not be considered as a base for any

implementations.

2.2.3 The Grace Project

The GRACE! project was a two year project funded by UK Joint Network Team to
investigate and develop group communication applications within OSI network
environment. The aim of the project was to specify and prototype an OSI-based group
communication service which provides common support services for a wide range of
group activities. This includes development of theoretical models of collaborative
working and production of a demonstrator for one or more sample applications

including computer conferencing. The phase I report (Benford et al., 1990) presents the

1 The Group Communication project at Nottingham University is funded by UK Computer Board.

36

Chapter 2 Literature Review

specification of the GRACE Conceptual Model as well as four examples of how the

model would be used to represent different applications. The report identifies some

activities to be modelled as GRACE which are described here in brief.

The GRACE conceptual model for group communication is an information
sharing system within the groups. The model specifies a hierarchy of generic group
communication objects and a set of abstract operations for manipulating them. The
report indicates a list of group activities such as news distribution, joint editing, voting,
elections, opinion polls, presentations and seminars etc. The report also describes the

support requirement for group communication services in an OSI network environment.

The report then considers the information overload problem (Palme, 86) along with
other limitations. The report also describes the approach of the GRACE project to
investigating the provision of an OSI based group communication services in two
dimensions: the scale of communication (in terms of number of entities sharing
information) and the degree of formalised communication procedures/constraints. The
degree of formalised communication here refers to whether the activity involves a well-
defined sequence of synchronised message exchanges (like formalised office

procedures) or whether information is shared in a less synchronised manner (e.g.

bulletin board). A GRACE conceptual model is also defined in the report, consisting of
an information model and abstract operations required to derive the information in the

model.

The GRACE report also describes the Formal specification of a GRACE group
communication service and Schema definitions for the GRACE Generic objects. The
definition of the specification uses the standard OSI Abstract Service Definition
conventions. The conceptual model defines the functionality of the group

communication system which provides the common support facilities to OSI group

37

Chapter 2 Literature Review

applications. The document also specifies the schema for the generic item, cluster, role,

domain and entity objects defined by GRACE conceptual model.

The sample of applications follows the common structure along with the overall
functionality. Application specific objects and operations are mapped onto the
conceptual model to derive the functionality. OSI networking is assumed and the project
sets out to demonstrate conferencing and help desk applications over the OSI Group
Communication Services. The ideas of GRACE project were useful to the 'SAGE'

project , especially in mapping the services onto the message handling system.

Four activities considered as examples are: A Help Desk inquiry, Classified
Advertising, “Which ?” style magazine and USENET news distribution service. The
activities are of Informative type which are relevant to a specific group in terms of

classification of group activities (discussed later).

2.3 Current Work in Group Communication
Group Communication is an active topic and work is being carried out world-wide.

Some of the known major projects in the field of group communication are listed here.

The 'COST 14 CO-TECH? action’ is investigating the process of group knowledge
development and assessing how technology could be made to support it,
"EUROCOOP3' and 'EIES 24' (decision support facilities utilising Electronic
Information Exchange System based on X.400 data structure) were undertaking
substantial work in the area of Computer Supported Co-operative Work (CSCW)

(Wilson, 91).

2 Started in 1989 for CSCW research work in the European community.

3 Organisations include TA-Triumph-Adler, Empirica, Jydsk Telefon, BNR Europe, X-Tel Services,
Aarhus University, Rutherford Appleton Laboratory, Great Belt and GMD.

4 Group Oriented Decision Support system at New Jersey Institute of Technology.

38

Chapter 2 Literature Review

The USA National Science Foundation (NSF) is a leader in Co-ordination Theory and

~ Collaboration Technology and is running several programmes in the field. The NSF

projects include support for collaborative team (to develop a conceptual framework and
a prototype system for collaboration in an asynchronous mode), and distributed group
decision making (multi-disciplinary project for synchronous and asynchronous

computer conferencing).

Other key projects are the Grace Conceptual Model for Group Communication (GRACE
project described earlier) at Nottingham University, and at University College London,

two projects: the XUA (JNT project) to design and prototype a work-station visual

interface for X.400 (88) utilising X windows, and extension of PP (which is a X.400
implementation) for use of directory services, support of multi-media messaging,

provision of secure messaging and implementation of message store.

A CCITT study group is also actively working in the area of Group Communication.
The CCITT (study SG5 VII or SG 1 Rapporteurs) Groups give the final shape to the

recommendation.

2.4 Work Underlying The 'SAGE' Project

The literature shows that a set of basic requirements have been identified for a
framework for a group communication base model. The 'SAGE' project uses the X.400
services and the definition of a basic group communication information model defined in
the draft X.gc recommendations (Joint ISO/IEC/CCITT, 91) along with other important
ideas discussed in various papers and projects. The research adopts the same definition
of terms as in the X.gc working document, and ideas available in the literature. For

example definition of item, entity, domain, role and object are the same as defined in

5 8G VII & SG I are X & F series study group working on CCITT draft recommendations before
approval.

39

Chapter 2 Literature Review

CCITT draft document. The roles of moderator, group communication service agent and

modelling of communication ports (discussed latter) are as described in the document.

Terms which are not defined in the CCITT draft documents are defined elsewhere and if

incorporated in the research are described in detailed.

The research in the 'SAGE' project builds on current knowledge to identify the services
and tools for a set of group activities in an editing environment. The services would be
considered as advanced group communication services in the context of its services and

tools.

The concept of dividing the group communication system (a base model and a set of
activities) (Benford & Palme, 93) is used in this research. The classification of group
activities proposed by the 'SAGE' project takes a similar approach to Benford & Palme

to define services and tools for a set of activities.

The paper by Benford & Palme (Benford & Palme, 93) describes persistency and
structure of information as current issues. The research seek a solution to issues of
persistency and structure of the information (structure of multi-version contributions).
The ‘SAGE’ project research proposes three application group identifiers to recognise
the services for each application group. These identifiers are proposed for three base

classes (Informative, Objective and Supportive) as OSI applications.

The case studies are based on similar approaches in the AMIGO and GRACE projects
and X.gc. The Newsletter activity consists of components defined in X.gc, AMIGO and
other work. The components are structured in a similar manner, but some are modified
and given suitable names. For example the 'moderator’ (X.gc) is termed as 'group
editing organiser' and similarly 'archive agent' (AMIGO report) is termed as ‘supportive

application group agent’” with extended functionality (discussed later).

40

Chapter 3

X.400: Message Handling System (Overview)

3.0 Introduction

The 'SAGE' project research is built around the X.400 recommendations, so it is
appropriate to describe the message handling system (MHS) services of X.400.
Particularly, the research work is related to one of the recommendations (X.420) within
X.400 series. The services recommended for group editing activities will assume the
availability of a system with an X.400 implementation. For this reason it was necessary
to closely investigate the X.400 recommendations and describe an overview of message

handling system.

The model derived from the case studies adopts the features of X.400
recommendations, specifically the extension field facilities provided in the X.420
recommendation and the prototype used in the research is built around the features of the
message handling system. The project is finally mapped onto the message handling
system to produce the final outcome of this research: proposals for modification and

extension in the X.420 recommendations.

Early systems for message handling were in the form of electronic mail. Electronic Mail
has been available for around two decades (Tanenbaum, 89). The first e-mail systems
simply consisted of file transfer protocols, with the convention that the first line of each
message (i.e. file) contained the recipient’s address. As time went on, the limitations of
this approach became more obvious: it was inconvenient to send a message to a group

of people, messages had no internal structure, making computer processing difficult, the

41

Chapter 3 X: Message Handling System (Overview)

originator never knew if a message arrived or not, it was not easy to forward the

messages, there was a poor user interface and it was not possible to create and send

messages containing a mixture of text, drawings, facsimile, and voice.

As experience was gained, new proposals were made for more ambitious e-mail
systems (Tanenbaum, 89). To prevent world wide chaos, the International Telegraph
and Telephone Consultative Committee (CCITT), defined a series of protocols for what
it called the Message Handling System (MHS) in its X.400 series of recommendations
1984. In 1988, CCITT modified X.400 to make it compatible with the Message

Oriented Text Interchange System (MOTIS). MOTIS/X.400 is becoming widespread as

the standard for all electronic mail systems. Both MOTIS and X.400 are concerned with

all aspects of the electronic mail system.

The aim of MHS standards is to provide an international service for the exchange of
electronic messages. Since 1984, the organisations CCITT and International Standard
Organisation (ISO) which are involved in the production of standards for MHS, have
agreed to harmonize their activities, and produce parallel standards with identical text.

The CCITT uses the term ‘recommendations’ rather then ‘standards’.

X.400 recommendations can be viewed both tactically and strategically. In the tactical
view, the standard is seen as a gateway specification, a technological basis for
connecting one message handling system to another. In the strategic view, on the other
hand, X.400 is also seen as an architecture for the message handling systems and does

not address the demands of the user interface.

The description of X.400 recommendations in this chapter will commence with

functional overview of the X.400. This will be followed by description of the services

(and protocols) provided in the application layer of the OSI reference model. Services

42

Chapter 3 X: Message Handling System (Overview)

such as Interpersonal Messaging (IPM) X.420 and Electronic Data Interchange

Messaging (EDIM) are also discussed as extended services of X.400. The last two
sections describe the implementation of X.400 and its relationship with X.500 (the

directory services).

3.1 The X.400 Functional Model

The X.400 message handling system (MHS) provides person-to-person communication
on single user basis together with the distribution list facilities. Figure 3.1 shows the
message handling system in the context of the layers above and below it. The MHS

supports one-to-one and one-to many communication, but it does not support group

communication between the users.

The 'SAGE' project describes a layer between the message handling system and the
users to provide group communication support for a group performing an editing task.
For example when five people are writing a paper then the system should set an
environment for the communication (many-to-many) between them along with other

special support to help complete the task.

There are two version of the X.400 series of recommendations. The X.400 (88) series
of recommendations is an improved version released jointly by CCITT (International
Telegraphic and Telephonic Consultative Committee) and ISO (International Standard
Organization) in 1988 after the four years study period in which they harmonised their
activities for the production of standards. The improved version is very similar to the 84
recommendations but is extended in terms of functionality. For example, it defines new
entities like message store and access unit and also provides a mechanism for protocol

extension to extend functionality (within IPMS) of the system. The description and, in

general, the specifications of X.400 have become more formalized in the later (88)

version.

43

Chapter 3 X: Message Handling System (Overview)

The X.400 series of recommendations represents the Message Handling System (MHS)
’ as an object which contains other objects. The objects contained are for example
message transfer agent and user agents. The message handling system exists in a
message handling environment. The message handling environment is shown in figure
3.1 which describes the relations between the components of the Message Handling

System (MHS).

Figure 3.1 The Model of the Message Handling System.

44

Chapter 3 X: Message Handling System (Overview)

The MHS is a layered model and the innermost layer, the message transfer system,

relays messages from MTA (message transfer agent) to MTA. Messages enter this

(innermost layer) transfer system via a submission protocol and leave it via a delivery
protocol (Schicker, 1989). The middle layer, the MHS, contains the user agents that
assist the message handling system user on the one hand, and engage in submission and
delivery action with the message transfer agents on the other hand. The outermost layer,
the message handling environment, is populated by the users who utilise the message

handling system for communication of messages.

The message transfer system (MTS) is populated by Message Transfer Agents (MTAs).

The MTAS accept service requests from user agent or from another MTA. There are two
service requests taken care of by the MTS: a submission request made by a client, or a
message received by transfer from a remote MTA. An MTA in receipt of a message
from either source undertakes responsibility on behalf of the whole MTS for correct
handling of the message. The inner part of the Figure 3.1 shows the functional view of
the message transfer system. The block labelled MTA is a functional entity which, in
cooperation with similar entities, conveys messages through the message transfer

system (MTS).

The MHS layer contains User Agents (UAs), Message Stores (MSs), Message Transfer
Agents (MTAs) and Access Units (AUs) (e.g. telex and physical delivery units). The
User Agent (i.e. a functional entity) is an application process that interacts with the
MTS or a message store (MS), to submit a message or accept delivery on behalf of a

single user.

The Message Store (MS) is a functional entity whose primary purpose is to store and

permit retrieval of delivery messages. The MS is an optional general purpose

capability of MHS that can act as an intermediary between a user agent and the MTA.

45

Chapter 3 X: Message Handling System (Overview)

The MS supports message retrieval and indirect message submission in the MHS. The
message store uses the (message administration) services provided by the MTS. Each
MS is associated with one user agent, but not every user agent has an associated

message store.

The Access Unit (AU) provides a port to another communication system, such as a
postal system. The Access Unit (AU) and, as a special case of the Physical Delivery
Access Unit (PDAU) are indirect users and new objects in the enhanced version X.400
(88). They represent gateways to other services like telex, teletex and letter post. It is

also conceivable that AUs may be used as gateways to non-X.400 systems (e.g.

academic research networks such as the Internet or manufacturer-specific systems). The

physical delivery access unit establishes a connection with the regular e-mail services.

The outermost layer is the message handling environment, and comprises the message

handling system, user entities and the physical delivery services. The environment
provides ways and means for multi-media exchange of information (e.g. text, teletex,

fax and videotex). A process can also act as a user in the environment.

The X.400 (88) recommendation specifies the services of MTS in an abstract form
(CCITT, 88). The message transfer system offers the other objects of the MHS abstract
services for message submission, delivery and administration. The other view of the
MTS considers all objects of the MHS as consumers! (Manros, 89) that make use of a

service and consider the MTS to have the role of supplier.

A principle feature of MHS is that it operates in a store-and-forward manner. This
means that the originator of a message need not wait until the recipient (s) indicates

willingness to accept delivery before the originator sends the message. The structure of

lysers are the consumers.

46

Chapter 3 X: Message Handling System (Overview)

a message consist of two parts: Envelope and Content. The envelope contains all the

_information required by the MTS to convey the message to its intended recipient (s).
_The content consists of the substance of the message itself, supplied by the message

originator.

3.2 Structure of the MHS Application

The X.400 (88) recommendations are aligned with the OSI standards. In analogy to the
layering principle of the OSI-model, the message handling service is defined in two
layers which co-operate via a protocol (Plattner et.al., 91). An abstract element of the

layer which co-operate via a protocol are called entities. The entity which represents the

functions of the User Agent Layer (UAL) in a User Agent (UA) is termed the user agent
entity (UAE). Similarly, the term message transfer agent entity (MTAE) denotes an
entity in an MTA which carries out the functions of the message transfer layer (MTL).
These protocols and entities reside in the application layer of the OSI model. The
services of message transfer system (MTS) and corresponding protocol building block

are described in the form of application service elements (ASEs).

3.2.1 Alignment with Application Layer of OSI Model

The application layer consists of application services elements: Association Control
Service Element, Remote Operation Service Element and Reliable Transfer Service
Element specific to the layer, and five MHS specific application services elements
(Message Administration Service Element, Message Delivery Service Element, Message
Retrieval Service Element, Message Submission Service Element and Message Transfer
Services Element). Figure 3.2 shows the structure of the application layer, as it is used
for an application entity in X.400. The MHE-specific (message handling environment -
specific) ASEs functions are described below. Figure 3.1 provides the MHE-specific

services whose relationship with application services are shown in figure 3.2.

47

Chapter 3 X: Message Handling System (Overview)

Real system environment
\’ Application Process

(MTA, UA, MS, AU or PDAU)
User element

o o] Application
""""""""""""""" g independent ASE

‘Presentation Layer Service Access Point

Figure 3.2 Structure of Application Layer for MHS.

The Message Administration Service Element (MASE) permits the registration of
consumers (UA,MS and AU) with a supplier (MTA and MS) and the exchange of data
for authentication. The Message Delivery Service Element (MDSE) delivers messages
and reports and controls the delivery process. The Message Retrieval Service Element
(MRSE) permits access to the message store through operations such as summarise,
list, fetch, delete, register and alert. The last is used by the MS to signal the arrival of a
new message. The Message Submission Service Element (MSSE) contains operations
for the submission of messages and reports and for control of the submission process.
The Message Transfer Services Element (MTSE) contains operations to establish

associations and to transmit messages, probe messages and reports between MTAs.

The objects, User Agent (UA), Message Store (MS), Access Unit (AU), Physical
Delivery Access Unit (PDAU) and Message Transfer Agent (MTA) in the functional

48

Chapter 3 X:Message Handling System (Overview)

model of X.400 (88) represent the application processes in the sense of the OSI model

(fig 3.1).

3.2.1.1 Protocol Used in MHS

The X.419 recommendation (X.400 series) defines communication protocols within the
message handling system. The “P7” protocol is the access protocol between user agent
and message store. The communication between MTS and MS or UA takes place
through the “P3” protocol. The “P1” protocol controls the communication between

MTA to MTA within the message transfer system. A detailed description of these

protocols is given in Appendix 2.

Apart from "P1" and "P3" protocols the protocol “Pc” represents a class of application-
specific protocols of the user agent layer (UAL) for the exchange of messages between
user agent entities (UAEs). X.400 defines a single “Pc”, the interpersonal messaging
protocol “P2”, which is in the context of interpersonal messaging system (IPMS)
discussed in section 3.3. “Pt” is the protocol between UAEs and the user, in other
words the description of the user surface that is the interactive terminal-to-system

protocol (Plattner et.al, 91).

3.2.2 Features and Services of the MHS

Various mappings of functional elements onto real systems are possible, and user agents
are available as application processes on a computer which itself implements message
transfer agent functions. This is frequently the case for multi-user systems, which
should offer a large number of UAs, and do this in the form of a user-callable
command. The message transfer agent may also have a stand-alone implementation, as

may the user agent.

49

Chapter 3 X: Message Handling System (Overview)

The management of a world-wide MHS is a task which can only be successfully

accomplished if the large system is broken up into smaller parts, for example domain

. part and local part (described in detail later). To this end, X.400 provides so-called
Management Domains (MD). The X.400 series of recommendations defines two
distinct management domains; Public or Administration Management Domain (ADMD)
and Private Management Domain (PDMD). The recommendations cater for the
standardization of the message traffic between administration management domains
(within a country or across country boundaries) as well as the message traffic between
public and private management domains. The address capabilities on the ‘envelope’ of a

message allow for naming only one private management domain and this must be

connected directly to an administration management domain. Any user agent that is
connected to a private management domain has no direct connection to an administration

management domain (Schicker, 1989).

In communication systems a name is a unique designation for an object. It is primarily
its user who must be named. Similarly an address is also identified as an object but
within the coordinates of the system. This address denotes the location at which the

object may be found.

The message handling service is extended by connecting it to physical delivery
systems such as the postal service. This allows for hard-copy delivery of messages
originated within the message handling system, and in some cases allows for the return
of notifications from the physical delivery services to the message originator. Physical
delivery is an option which is also defined for the interpersonal message service. An
example of this is the printing of a message and its automatic enclosure in a paper
envelope. The access unit passes the physically rendered message to a physical delivery

system for further relaying and eventual physical delivery.

50

Chapter 3 X: Message Handling System (Overview)

The X.400(88) recommendations provide a basic form of group communication based

on distribution lists (DL). Distribution lists are well-defined lists of subscribers (the

members of the list). Messages sent to a distribution list are passed to all members.
Distribution lists allow authorized subscribers to reach all group members of a given
distribution list using a single address. The procedure by which messages are passed to

the members is called expansion.

The message handling system offers various supplementary services over and above
regular e-mail services. A subset of the supplementary services that transfer system and

interpersonal messaging system can render is listed in Appendix 2. A complete list of all

services is given in the annex B to the Recommendation X.400 (1988). The message
handling system provides effective and better services: for example compared to a
regular e-mail service, it is a simple task for an electronic message handling system to
make multiple copies of a message by using the supplementary service “Multi-

Destination Delivery” which allows the submission of a message with several addresses

on the envelope. Similarly, the security supplementary service in the message handling
system refers to the security of a message against casual or deliberate inspection by third

parties.

3.3 Interpersonal Messaging System (IPMS)

Within the X.400 series, the X.420 recommendation defines the interpersonal
messaging system. The purpose of discussing the X.420 recommendation in detail 1s
that the research is built particularly on the X.420 features. The group editing services

are mapped onto X.420 in a message handling environment as extended services.

As mentioned earlier a message is composed of an envelope and a content (shown in

figure 3.3). The envelope part contains originator and recipients addresses together with

all the information necessary to influence the transfer of the message.

51

Chapter 3 X: Message Handling System (Overview)

Basic message structure

\

Envelope \/
\ /Envelope\

A Heading

§D Body

o Body part

£

. Content
v Body part

Figure 3.3 Structure of IP message.

The information is necessary to invoke the supplementary services of the message
transfer system (e.g. request for a delivery notification). The X.420 recommendation 1s
one of a set of recommendations for message handling. This Recommendation defines

the message handling application called InterPersonal Messaging, specifying in the

process the message content type and associated procedures known as “P2”. The P2
content type is designed to fulfil the requirement of person-to-person communication.
User agents are grouped into classes of cooperating user agents according to a common
ability to handle messages of a particular content type. P2 determines the encoding of
message content exchanged end-to-end by IPM-UAs and defines the semantics of
information conveyed. The set of user agents in the IPMS constitutes the interpersonal

messaging system.

The message transfer system (MTS) conveys user message from originator to recipients

without regard to message content type. This simple model actually embodies two layers

N
[\

Chapter 3 X: Message Handling System (Overview)

of service. The message transfer service operates as a general purpose carrier of

messages across the message transfer system. The P2 content divides into two parts,

heading and body. The heading of an interpersonal message consists of a set of fields
containing conventional items of information such as ‘from’, ‘to’ and ‘subject’. The
body of the message contains the primary information object which the originator
wishes to convey. The message may consist of one or more body parts, each of which

may contain different types of encoded information.

One of the important features of the X.420 recommendation is that it provides an

extension mechanism for arranging new fields in the heading to extend the functionality

of the protocols. This mechanism is based on the fact that the specification of the data
formats at various places (for example, in a message envelope, in O/R addresses and in
the heading of an IPMS communication) allows for additional fields in which protocol
extension could be implemented. The protocol extension may consist of an arbitrary
type and a value of this type. An example of the specification for an extension field in a

message envelope is given in Appendix 2.

The X.420 recommendation defines the message handling application called

interpersonal messaging, specifying in the process the message content type and
associated procedures known as “P2”. The recommendation within the message
handling architecture identifies other documents in it. The recommendation also has a
mechanism to extend the protocol and functionality. The purpose of describing the
X420 recommendation is to identify the group communication activities in the message
handling architecture as other documents by extension and/or modification in the

recommendation.

53

Chapter 3 X: Message Handling System (Overview)

3.3.1 Services Obtained by Modified IPMS
;;ﬁlcctronic Data Interchange (EDI) is an application using the X.400 service as a user
agent service, much like that defined for the InterPersonal Messaging (P2) service.
CCITT Study Group VII has defined a new content type and protocol for EDI (EDI for
Finance Administration Commerce and Transport), currently known as Pedi (protocol
for electronic data interchange) and reflected in CCITT draft Recommendation X.edil
~ and X.edi2. The importance of EDIFACT here is that it is considered to be an

application over X.400 to recognise another document like IPMS application.

EDI (Electronic Document Interchange) is the electronic interchange of documents in all

possible areas of business. The aim of EDI is to replace the numerous paper documents
used in the course of business by electronic forms. Such documents include orders,
delivery notes, consignment notes, customs declarations, receipts and invoices.
However, to ensure the interoperability of EDI systems from different manufacturers,
international standardization of the electronic representation of all possible document
types is under way. The standardization is collectively denoted by EDIFACT (Electronic
Document Interchange for Finance, Administration Commerce and Transport) by the
United Nations Economic Commission for Europe, ISO and other standardization

committees. Detail information on EDI including file structure is given in Appendix 2.

The possibilities of identifying group editing services like IPMS and EDI as a document
for a group of people are discussed later while mapping the services onto message
handling system. However, The problem specification in this regard has been discussed
in section 1.4. It is likely that the objects of the 'SAGE' project would be met with the

help of X.420 recommendations.

54

Chapter 3 X: Message Handling System (Overview)

3.4 X.400 Implementation as PP

~ Implementations of the X.400 protocols are now available widely and the
implementation is known as ‘PP’. PP is a message transfer agent oriented towards
support of the X.400 series recommendation. The goal of PP is described in Appendix
2 which includes (Kille, 91): interface provision for message submission and delivery,
support of all message transfer service elements and multi-media messages, support of

multiple address format and use of directory services.

The ISODE (ISO development environment) is a key component of the PP

implementation (Kille, 91). ISODE is an implementation of the OSI upper layers. It
contains the layer services of session and presentation. These are common services: the
ASCE, ROSE and RTSE, application services (described in Appendix 2); the FTAM
and VTP and ASN.1 handling tools. The ISODE also operates over a TCP/IP network.
This has enabled OSI applications, including PP and QUIPU? to be deployed ahead of
provision of a global OSI network service. The ISODE creates an implementation
environment for PP. ISODE is widely available, it is in public domain, which puts PP

effectively in the public domain. The ISODE package (Kille, 91) has made the mapping

of the PP message transfer service onto OSI a relatively mechanical operation.

A brief description on PP is given in Appendix 2 which includes an overview of PP,

channel requirement and PP tables.

3.5 The X.500 (Directory Services)
In 1988 the standardisation bodies ISO and CCITT released the first series of

recommendations X.500 for distributed Directory Services. The purpose of the

Directory as X.500 standard is to supply a global name server and an application-

2QUIPU is the X.500 (direclory services) implementation.

55

Chapter 3 X: Message Handling System (Overview)

. independent information service (Benford, 89). The Directories is a collection of open
,?’ systems which co-operate to hold a logical database of information about a set of objects
in the real world. The users of the directory, including people and computer programs,
can read or modify the information, or part of it, subject to having permission to do so.
The directory service facilitates the interconnection of information processing
systems.The information held by the directory is, collectively known as the directory

_ information base (DIB). Directories play a significant role in open system
interconnection, whose aim is to allow, with a minimum of technical agreement beyond

_ interconnection standards, interconnection of information system from different

manufacturers under different managements and of different ages.

Directories are used to show the relationship of data elements to databases, files and
programs. The Directory (some times also called Dictionary) is used to check all key
automated systems for accuracy and duplication and permits an organisation to assess

the impact of system changes on all automated resources (Black, 91).

A consequence of the growing number of message handling system (MHS) is that there

is a need for a directory that supplies information about MHS users. In 1988 a working

group was established by the standardisation bodies ISO and CCITT to define a
distributed directory system of OSI applications and users. This is now available as the

CCITT X.500 or ISO 9595 directory standard.

A detailed information about X.500 specifications and features of the directory services

are given in Appendix 2.

3.5.1 Relationship to X.400

Message Handling Systems are expected to be the first and most important users of

directory services. Only X.400(88) provides the prerequisite that the directory service

56

Chapter 3 X: Message Handling System (Overview)

_ should be usable directly or indirectly in that it re-defines the term ‘O/R name’. An O/R

name in X.400(84) denotes an address, for which we use the term ‘O/R address’. In

X.400(88), an O/R name may now contain either an O/R address or a directory name or

both. Directory names in the X.500 sense are distinguished names. Based on the new

_ definition of O/R names there are several ways in which an MHS may use the directory

services (Plattner et. al., 91):

®

(ii)

(1i1)

@iv)

v)

User-friendly name - The originator and the recipient of a message may be
denoted by user-friendly names. If an O/R name consists of a name alone, this
must be supplemented with the corresponding address using the directory
service.

Distribution List(DL) - A group of recipients may be combined on a DL. This
has an O/R address and also a name, if it is managed by the directory service. If
the name of a distribution list occurs in the recipient field of a message, this must
be expanded with the corresponding O/R addresses by the first MTA and
replaced by the O/R addresses of the DL members, by the MTA responsible for
the DL (expansion point). Both actions are executed using the directory services.
Functionality of MHS Component - The services supported by a UA, an MS or
an MTA may be stored in its directory entry. If details of the functionality of a
component are requested directly via the directory service, no probe message
need be sent and the load on the MTS is lightened.

Mutual Authentication - Before the communication itself, the MHS components
mutually authenticate each other.

Interactive Use - The X.400 user may consult the directory service directly to
find recipients and their O/R addresses. If one has the name he/she may

determine the corresponding O/R addresses.

57

Chapter 3 X: Message Handling System (Overview)

Figure A 2.8 in Appendix 2 shows the functional model of the relationship between

- XSOO and X.400. The use of a directory system is a local concern of individual MHS

components; therefore, it has no effect on the MHS protocols and does not force the
supplier or manager of another component to integrate these services. The model does
not require a global directory system. Every component that wishes to gain from a
directory system must possess a local DUA, since there are no protocols between X.500
and X.400. In Figure A 2.8 (Appendix 2), the X.400 components that make use of the

directory service are shown.

58

Chapter-4

Group Communication Architecture and Models

4.0 Introduction

Group communications may be described as groupware, team work or co-operative
work. Group communication may support users who are in a distributed environment or
who share an information system. The group communication combines understanding
of the way people work in groups with the enabling technologies of computer

networking and associated hardware, software, services and techniques (Wilson, 91).

The use of group work has evolved from a drive to increase personal productivity,
which could lead to significant improvements in business efficiency and cost-
effectiveness. Group communications should enable group of people to take advantage
of networked information technology. To assess the benefits we need to understand
why people form groups. There are many reasons, but among the more important are

(Olson, 1989);

1) Decomposing a task -- divides a large task amongst a group of people, this
may for example be to meet deadlines and distribute decision making
applications.

i) Gathering relevant expertise -- handles diverse aspects of problems with

diversity of skills and experience.

59

Chapter 4 Group Communication Architecture and Models

ii1) Pooling diverse viewpoints -- incorporates a larger set of ideas, wisdom,

and judgements (as compared to the limited perspectives or opinions of
individuals).

iv) Performance -- generalised improvement of individual's performance.

4.1 Group Communication System Architecture
The AMIGO report describes the group communication architecture model as a
component which includes a group communication system (containing roles, rules and

functions) (Weiss & Bogen, 89). The communication architecture model consists of

information objects (e.g. a contribution) and the communication entities (e.g. group
user) which form an Information Model. The functionality and services provided by the
group communication system are defined in terms of the operations (e.g. create, delete
and submit) in order to provide the underlying functionality to support a particular kind
of group communication process (Weiss & Bogen, 89). These services are followed by

the related support services (e.g. directory and message handling services).

The group communication architectural model takes into account three types of
constraints (Weiss & Bogen, 89): the need to support ‘distributed’ group
communication, the need to support high level descriptions of communication activity,
and the need to support the dynamic nature of group communication. Within distributed
communication, the communication architecture must allow the description of group
communication systems that support multiple co-operating entities in the distributed
environment. The scale of distribution should include office environments as well as

international working groups.

To allow large-scale distribution a global naming scheme 1s necessary to identify

uniquely communication entities (users, machine and process) and information objects

60

Chapter 4 Group Communication Architecture and Models

(messages, documents and information articles). At the same time the architectural
model should support distributed storage to reduce communication overhead in a very

large distributed environment.

The AMIGO report (Weiss & Bogen, 89) proposes that the group communication
system should support the specification of multi-activities (e.g. add new activity) and
operate under standard rules. The architecture model should provide integration with the
activity model including its components (roles, rules and functions). That is, a proper
relationship should be provided between the objects within the activity. The entities
should exist within the architectural model. In addition to handling of the information
objects by specific operations (e.g. submit, deliver, store and retrieve) these entities
must support the handling of the role, rule and function components within the activity

definition. Such activities should be specified by procedure oriented description.

The dynamic behaviour of the group should be maintained. The dynamic characteristics
include allowing a new member to join or leave a group, or allowing the attributes of the
members, such as addresses, tasks, rights or obligations, to change over the course of
time. The configuration of group communication system must be dynamic (Weiss at el,
89). For example a service agent should not be permanently bound to one group or one

activity.

4.1.1 Group Communication Information Model

The information model comprises the group communication environment (i.e. entities,
domains and information objects). The Information model represents both information
and members of the groups as objects (Joint ISO/IEC/CCITT, 91). The object classes in
the model are arranged into a class hierarchy. Each group communication activity may
define its own specific object classes, derived from the standard set of base classes. The

Information model X.gc (Joint ISO/IEC/CCITT, 91) identifies three base classes: group

61

Chapter 4 Group Communication Architecture and Models

__communication item, group communication entities and group communication domain.
A group communication item is a basic unit of information (e.g. a message). A group
communication entity is an entity which takes part in a communication process.
However, the group communication domain provides the mechanism to bind groups of

entities to the relevant information structures.

A group communication system might include the following services (Weiss & Bogen,

89) which are described in AMIGO report :

1) Interpersonal messaging to communicate with other users.

ii) Registration with the group communication system for different group
communication facilities.

1ii) Communication support services to interact with groups of users (i.e. collect,
create, distribute, modify and read etc.).

iv) Filing and retrieval of documents.

V) Directory, to know where and how to access remote communication elements,

applications or users.

vi) Encryption as defined in X.400 (1988).

vii) Authentication to avoid unauthorized access (personal, private or organisational)

viil) Asynchronous (store and forward) as well as synchronous communication
mechanism.

1x) Information object transfer between different applications or remote servers.

The AMIGO MHST report (Smith, 89) recommends the X.400 MHS, X.500 DS,
FTAM (File transfer Access and Management) and DFR (Document Filing and
Retrieval) as group communication support services. This means the group
communication services must be based on Open System Interconnection (OSI) services.
The group communication system assumes that the user would utilise these services to

communicate with a group via a port which should form a group communication

62

Chapter 4 Group Communication Architecture and Models

environment. The group communication environment in relation to these services is

jéh,’own in figure 4.1. The group communication system (GCS) may use the services of

message handling system (MHS), or directory services (DS) or archive services (AS) or
management services (MGMS) or all of them to fulfil the requirement of a group

communication user (GC user).

GCS

Figure 4.1 Group Communication Environment.

4.1.2 The Group Communication Services
The services offered by the group communication system may be categorised into basic

services and advanced services: Basic services are realized within the group

communication system, and may be viewed as common services. Advanced services are
intended for handling some more detailed group activity procedures, for example: voting

and group editing.

The group communication system basic service is made up of a Distribution service,
an Archive service and a Co-ordination service, (shown in figure 4.2). Access to
the services is made by special communication support system (discussed later). The

functions of the three services (Weiss & Bogen, 89) are now discussed in turn.

63

Chapter 4 Group Communication Architecture-and Models

Management Storage Distribution
Services Services Services

Group Communication Basic Services

Figure 4.2 The Group Communication Basic Services.

~ The Distribution service provides the means of distributing group information objects

(e.g. conversations, documents). A CCITT model of distributed group communication
system is shown in Figure 4.3 which considers group communication system agents as

the central functional entity.

Group Communication Service

Distributed Group Communication System '

Figure 4.3 Group Communication System.

64

Chapter 4 Group Communication Architecture and Models

The service might be implemented in two ways: Firstly, by use of MHS Distribution

ist service (which may take the form of normal IP-messages (Interpersonal-Messages)

being addressed to a group communication system agent (GCSA). In the architectural
model a group communication user agent (GCUA) accesses the basic service ports via

an interaction with a group communication system agent (Joint ISO/IEC/CCITT, 91).

Secondly, information might be distributed via the archive system (‘pass-through’,
‘retrieve-t0’). In order to use the distribution list service, a user access protocol is

} ,{r{equired. A system protocol specifying co-operation between distribution agent should

Iso be defined.

The existing AMIGO report and CCITT draft provide no external storage services to
fulfil the multi-user requirement. The design of multi-user store is addressed in the

“'f\',,,,activities of ISO/IEC JTC 1/SC 18/WG 4 which deals with the specification of a

document filing and retrieval (DFR) application. However, within CCITT’s study group
~ VII and the corresponding ISO standardization body, a message store (single-user) has
 been defined as an extension of the “P3” submission and delivery protocol (discussed

~ earlier in section 3.2.1.1 of chapter 3).

Co-ordination service supports the co-ordination of the co-operating communication
entities that provide group services. When a user interacts with the group
communication system, the group communication system co-ordination service should
interact with other services to achieve the goal. For example, distribution of a group
information object might be achieved by the co-operation of entities such as directory

service, a group information object transfer service (the MTS) and an archive service.

65

Chapter 4 Group Communication Architecture and Models

- 4.1.3 Group Communication

~ The CCITT draft X.gc (Joint ISO/IEC/CCITT, 91) definition of Group Communication

“a service for computer-mediated human communication with special support for the
_interaction within groups of users”. Group communication in a message handling
environment may be realised as “‘co-ordinated interchange of information between sets
gf users connected via a store-and-forward message handling system”. The information
exchange activities require the provision of MHS services that handle Distribution Lists,
Conferences, Bulletin Boards and more advanced uses such as Computer Supported

~ Cooperative Work (Medina et.al., 1986). A group activity looks like a multi user system

to the users who form a group to complete that activity in question.

Group communication has been defined by other researchers in different ways
following the basic idea that it is ‘the communication between more than two people’
(Palme, 86 & 87). The CCITT view is that ‘by group communication is meant a service
for computer-mediated human communication with special support for the interaction
within groups of users’. It may also be defined as the communication which fulfils the
communication requirement for group of people working on a single pool within the

boundaries of the group. The complexity of the group, may however depend on the

group environment, for example forming a subgroup.

Group communication is carried out in three types of communicating environment: one

[132

user communicates with “n“ users (one to many e.g. distribution list); “n” users

(332

communicate with one user (many to one e.g. distance learning); and “n” users
communicate with “m” users (many to many e.g. group discussion). Where “n” and
“m” are integers greater than one. This environment is created by a particular activity

according to its functionality.

66

Chapter 4

Group Communication Architecture and Models

~ The group communication can be supported by developing a system in the context of

distributed systems, distributed applications and system architectures (Klehn & Kuna,

91).

CCITT defined basic group communication services (discussed in section 4.1.1) to

provide common support facilities to a variety of activities. In effect, the group

communication system is a software layer which sits between different group

applications and underlying technologies, providing services (co-ordination,

management and a common storage facilities). The group communication System agent

| (GCSA) is considered to be a central functional entity which should represent the group

communication system to the outside world. A group communication system agent is

accessed via a group communication user agent (GCUA). The GCSA and GCUA

capabilities and characteristics are discussed in AMIGO MHS* (Weiss & Bogen, 89).

Figure 4.4 shows an AMIGO functional model of the group communication system.

@S>

4 GCUA

-

GCSA

b
~ T
~ -
~ -
~ -
~ -
~ -
~ -
~ .’

So -

S

s D— aesa
Group
Communication
—@ System

-

GCUA

-]

-
-
-
-
-
L

CED

GCUA

Curs>—

@D

MHS
AS
DS

GCSA : Group Communication
Service Agent

MGMS : Management Services

: Message Handling Services

: Archive Services

: Directory Services

Figure 4.4 Functional Model of Group Communication System.

67

ASTON UNIVERSITY
LIBRARY AND

ARIFEADAL & TiMmAt FFMIst e

|

Chapter 4 Group Communication Architecture and Models

A complete list of capabilities and characteristics along-with GCS interworking with

~ supporting systems are given in Appendix 3.

4.1.3.1 Group Activities

There are a large number of group activities. It may not be possible to provide services
for each activity an individual basis. There may be a necessity to categorise these
'é(;tivities into various classes of group. We shall come back to the classification of these
(;lasses of group after section 4.3 and look into the possibilities for providing set of

_services tools for such classes.

4.2 Modelling of Group Communication
(Klehn & Kuna, 91) models the group communication into three sub-groups. A
_ cooperation model describes the activity, in terms of cooperation, course of facts,
j’: the communication relations and the task distribution. This modelling is independent of
- afhe participating persons and of the environment where the cooperation takes place. An
organisational model specifies the members of the group and its organisational
structure, where a person can be assigned a role depending on their position in an

~ organisation. An environment model determines the environment, where an instance

of an activity takes place. It specifies the location of components and information

relevant to the given instance of the activity.

(Jakobs, 91) introduces groups for different types of mechanisms to be provided by the
- group communication system. Static group represents the most simple class for
example a distribution list, in which membership changes only rarely and which

requires explicit management action to make the changes. Semi Dynamic group is

not established explicitly by a list of members. The membership within this group is
dynamic whereas the specifying criteria are static. The management costs and

communication overhead are considerably higher because of changes in the

68

Chapter 4 Group Communication Architecture and Models

membership. Dynamic group comprises a set of participants having in common

1trary criteria that were specified in a query. The membership and the specifying

arl

criteria are dynamic, which provides a higher degree of flexibility, but with very high

cost and overhead.

4.3 The 'SAGE' View of Modelling
There are two main modelling approaches discussed above. The models (Klehn &
Kuna 91) by Klehn & Kuna are based on co-operation, organisation and environment.

Jakobs (Jakobs, 91) introduces Static, Semi-Dynamic and Dynamic group classes for

’up communication. The classes or models are based on the nature of a group (viz co-
éi)erative group, organisational group static group and dynamic group etc.), but these
| group are not discussed in the light of group communication services and tools under

any sub-group or class. Therefore, there is a need to describe the classes of group
' ‘,;‘dctivities based on their functionalities to identify the services and tools for a set of

~ class.

The 'SAGE' project takes a different view on classifying the groups. The project does

~notclassify the group users. Instead, it classifies the group activities depending on their

functionalities. This means a group has to be formed by the activities which are of
similar nature: for example a set of activities which distribute information (bulletin
board). These classes would then be able to provide the services and tools needed by

each class in the group communication environment.

The 'SAGE' project introduces three classes of group communication models, for each
of which there is a set of services and tools which meets the common functional
requirement of the class. The classes are proposed as the 'Informative' application

group, the 'Objective’ application group and the 'Supportive' application group.

69

Chapter 4 Group Communication Architecture and Models

~ The first application group activity may fall in a group category which identifies those

~ similar kind of functionalities which are of informative type: these activities distribute

information and sometimes need replies. Examples of such activities are Bulletin Board,
Distance Learning, Distribution list and multi-user System Broadcast. Typical activities

of this category are listed under the head of ‘Informative’ in the table 4.1.

~ The second group category i.e. objective application group identifies those activities
which need some kind of group decision making procedures, such as voting and

__executive decisions. Examples are producing international standards or executive

‘meetings which need to take decisions to achieve an objective. In case of a difference of
\' opinion there needs to be some kind of voting or other means to reach a single result
(e.g. ‘yes’ or ‘no’). These activities are listed under the heading *Objective’ in the table

4.1.

~ The supportive application group covers cases where groups of people work together on
a single pool to complete certain tasks for an activity. The activities are categorised
under the supportive application group, which needs supporting work within the

group and cannot be completed without help of the rest of the group members.

Examples of such activities are cooperative writing, a software development team or
producing minutes of a meeting. The activities under heading ‘Supportive’ in the table
4.1 identify the application group. Some of the functions of supportive application

group will appear in other groups.

Group communication comprises a large number of group activities. Some activities are
listed in table 4.1 under three different headings: Informative, Objective and Supportive.

The list is compiled from AMIGO, GRACE and other literature.

70

Chapter 4 Group Communication Architecture and Models

~ Informative Objective Supportive

Bulletin board Date Planning Group editing

Distance learning Conferencing (specific) Distributed S/W updating
Lecturing Project Managt. Co-ordination Meeting environment
Presentations Producing International Standard Editing Newsletters
Course Assignment Executive meetings Questionnaire session
Procedures Election S/W design team
Help-Desk Opinion Polls Minutes of meeting

Seminars Voting Auction

 Sales & Buying Experts Opinion Stock Market

Table 4.1 Classification of Group Activities.

The proposed three base-class group applications are based on the functionality of the
group activities. The 'SAGE' project proposes three innovative classes of application
groups. The application groups are proposed to be identified as three different
applications in the OSI environment. As with the InterPersonal Messaging (IPM)

service in the X.420 recommendation, there is a need to define (by extending the

functionality) three application types within the heading field component type to
recognise these application groups. The services which are to be met by these three
application groups are proposed to be called InformativeGroup, ObjectiveGroup and
SupportiveGroup Messaging services. These services would have their associated
service agents as in X.gc (Joint ISO/IEC/CCITT, 91) to fulfil the requirement of each
application group. The underlying functionality for these proposed application groups
would be met by their respective application group agents. For example, the services

(comprised of basic, advanced and information handling) required by supportive

application group is to be met by the supportive application group agent (SAGA).

71

Chapter 4 Group Communication Architecture and Models

. The position of Informative application group, Objective application group and

\1,-S'upportive application group within the application layer is shown in figure 4.5.

Real World
Supportive group
Activities

Real World
Objective group
Activities

A

Real World
Informative group
Activities

Application Layer -II

Group Applications Tool set —= Informative Gr. Objective Gr. Supportive Gr.
| Tt f """"""""""""
Application Layer -1 Management, Storage and Distribution Services
Group Communication Services Tools
... o
Application Layer Other Applications Message Handling Environment

Presentation Layer l

Figure 4.5 Layering Structure of Application Group Services & Tools.

~ Taking this view, a group communication environment should contain the information
objects, the functional or operational objects and the entities. The relationship between

these would form a group to complete an activity. Hence these objects and entities

should not belong to any specific class (e.g. domain, activity or group). However, the
underlying functionality for an operational object is dependent on the nature of the
activity. For example, functionality of the ‘add-member’ operation is different in the

Supportive application group and Informative application group. The functionality

involved in an Informative application group different in its access support (read, write
and delete) to the Supportive application group. The application service agent would be

able to provide the required functionality for an operational object in each case.

72

Chapter 4 Group Communication Architecture and Models

Group Entity
OBJECT

Activity
Information
OBIJECT

Operational

OBJECT

Add Member Application
Group
Identifig

Objective
Application
Service Agen

Supportive
Application
Service Agent

Informative
Application
Service Agent

Set of Services Set of Services Set of Services
for a number of for a number of for a number of
aclivities in group activities in group activities in group

Figure 4.6 Functional Object Relationship with the Activity.

4.3.1 The Functional View of Operational Objects

Figure 4.6 shows the 'SAGE' project’s relational view of an functional object with the
activity and group (which is a set of the entities), in which no component is bound to
any other one, and free to form any type of group communication structure. The

following are the important implementation issues involve in the proposed

configuration:
1) The functional objects should be able to identify the activity,
i) The activities should identify the particular class of application group,

1i1) The application group should select the required application group agent, and

iv) The selected group agent should provide the services and tools required in that

class.

Chapter 4 Group Communication Architecture and Models

4.3.2 Modelling of All Application Groups
‘The goal of Group Communication Information Model X.gc (Joint ISO/IEC/CCITT,

91) is to provide a framework for implementing a variety of group communication
applications. A requirement of a model must be able to represent many different types of
objects: such as documents (e.g. message, newsletter and reports etc.), filing (e.g.
notice boards, topics and conversations) and users (both individual and groups). The
objects might have complex structures and relationship. The model must reflect the
administrative boundaries and must allow the implementation in a distributed

environment.

The group communication environment can be modelled as a functional object,
functions of which include reading a contribution, editing a contribution and storing a
contribution. It can be subdivided into three classes of group communication models
defined earlier. Diagrammatically it is shown in figure 4.5, within application layer II as
a group communication services and tool set under three different heads: Informative,
Objective and Supportive application groups. These application groups should be able to
meet the functional requirement of the activity which is identified under such application

group. The functionality requirement (basic and advanced) includes operational and

rule-based information handling requirement.

The purpose of the case studies to be discussed later is to identify common features
between these activities. For example, the activities of editing a technical paper, or a
editing Newsletter or preparing the minutes of meeting are likely to have common
functional requirements. These requirements will include such things as version control,
access control, storage management and security management. The tools which meet
these common functional requirements should be designed in the context of the needs of

the full range of group activities rather than in the context of only one.

74

Chapter 4 Group Communication Architecture and Models

This chapter describes the group communication architecture and its information model.
- The role of support services is also described in the light of group communication basic
services. Different modelling views of group communication are compared in the
chapter. Finally the 'SAGE' view of modelling of group activities is discussed in the

light of group communication services and tools.

75

Chapter 5

Case Studies & Identification of General Model

5.0 Introduction
This chapter describes the purpose of case studies and the method used for the case

studies. The method used for case studies involves user interaction to formulate the

pecifications for the prototype and to deduce common features between the activities.
To investigate common functionality, activities are selected from a particular topic (i.e.
_editing) within the supportive application group (discussed in section 4.3, chapter 4).
’J‘The problem definition for these activities, viz a Newsletter, a Technical paper and a

. Software development team, is discussed in this chapter.

_ This chapter also describes a general investigation and a theoretical solution of a
conceptual model for group editing. The conceptual model is discussed in the light of

_ issues such as: editing environment, role of group editing organiser, access control,

version control and message flow mechanism.

5.1 Why Case Studies are Required

Support of group communication requires hardware development, programming
development and information development, together with successful user tools and/or
acceptable standards. The success of such services, tools and standards depend on user
support and satisfaction. To develop a software system (including prototypes), one way

. to start is by studying the ‘real world” way of working by looking at existing manually

based systems. The study of manual systems reveals a variety of methods and

operations needed to complete the activity. The end users of group communication

76

Chapter 5 Case Studies & Identification of General Model

~ system services are people of the ‘real world’. Therefore, it is felt necessary to obtain

the views of users who are concerned with such services and tools.

The case studies aim to deduce underlying requirements by looking at how group
activities are performed. This is achieved in two ways: by study of related literature and
by user interaction. Study of the editing process in the literature establishes how group
editing is described in terms of its working processes, and user interaction establishes

how people achieve the final shape of the edited document.

The case study approach follows methods used in the development of X.400 standards
from e-mail systems, which involved studying existing e-mail systems and interaction
with those people who were working with e-mail systems, and on this basis determined

useful recommendations.

As described in section 4.3 of chapter 4 the 'SAGE' project divides group activities into

_three classes of application groups: Informative, Objective and Supportive. The cases
selected for study are within the supportive applications group. Specifically group
~editing activities are considered as a subset of the supportive applications group. The
cases produce the results of a study of ‘real world’ cases in group editing. From these

cases common characteristics and features editing can be deduced.

5.2 Method of Case Study

In seeking a systematic approach to software development, the software industry is
recognizing the need for a variety of new practices. Structured methods are accepted as
necessary if large systems are to be developed. Structured methods provide notations to
aid and capture the functional specifications of the requirement. The notations also
provide the notion of abstraction which is required for the application of a structured

method.

77

Chapter 5 Case Studies & Identification of General Model

 The first step is to produce an abstract specification characterizing the essential

‘properties of the problem and stating what is required. In producing an abstract

specification, it is necessary to understand the problem structure exactly. The enquiry
process (Checkland & Scholes, 90) is a soft system methodology which reflects current
‘real world’ practice. The enquiries are logic-based and cultural. The case study
considered uses a process of modelling in a methodological cycle having the following
_ stages (Checkland & Scholes, 90): 'finding out', expressing the problem situation,

formulating root definition, building concept models, comparing models and the

perceived ‘real world’, debating definition changes and taking action.

To form a conceptual model of the problem, there are many questions to be answered,
for example: problem description, interaction, extra facilities, and integration. In the

- ‘SAGE’ project, the approach used to produce an abstract specification involved an

fn‘itial 'finding out' phase which proceeded by personal discussions with the users of
:Lé»diting activities. This results of the investigation were enhanced with knowledge taken
from the literature. ‘Finding out’ at an early stage in the development was found useful

to produce a basic structural design of the problem situation and a detailed model of a

~ general system. To express the problem situation three relevant (within supportive

_ group) activities are considered for study: production of a Newsletter, production of a
technical paper and software development by a team. In the phase of formulating the
root definition, a general solution is derived which is considered to be a common for all
such problems. The 'building conceptual models phase' describes the selected activity
models of the chosen activities, and discusses one of the models in detail. Stage five and
six of Checkland & Scholes approach are considered in reverse order: the detailed model

is prototyped and demonstrated to the ‘real world’ and then these models and the

outcome of the demonstration are evaluated to derive a final model for group editing

activities.

78

Chapter 5 Case Studies & Identification of General Model

- 5.2.1 Conduct of User Interaction for case studies

_ The following people were interviewed during the case studies: Dr. H. Shah (for

general editing background), Dr. D. Newman (involved in CSCW activities), Dr. B.
Gay (former editor of academic journal), Dr. P. Coxhead (book editor), Prof. D.
Avison (author and journal editor), Dr. Celia O'Donovan (editor, departmental
newsletter), Mr. G. Bellavia (for knowledge of software development) and Ms A.

Grant (co-editor, Aston Fortnight).

 Pre-planned interviews were arranged on an individual basis. The interview subjects

were visited in their work places. A brief description of the project was given verbally,
followed by discussion of editing issues in general. A discussion guide had been
~prepared before the interviews. The guide addressed general and specific issues on

editing of a Newsletter, editing a technical paper and software development. More

specifically the following issues were raised:

1) Facilities to avoid redundant editing;
11) Version control;
111) Version requirements;

Access facilities;

Role of editor, co-editor and guest editor and control over document;

Editing process;
vii) Collection of information and storing the information;

viii) Naming, creating, processing and completing a Newsletter process;

1X) Header information requirement;
X) Adding new members and their contributions;
X1) Issuing Newsletter and its distribution;

Xii) Formation of software team,

Xiii) Information flow;

xiv) Upgrading to new version; and

79

Chapter 5 Case Studies & Identification of General Model

Testing and integration of a package.

The issues were raised in the order listed, with some alteration for different activities.
All were presented with the common issues (i) through (vi). Additional issues related to
the Newsletter (vii through xi) were raised with people working with a Newsletter. The

issues (xii) to (xv) were raised in the context of the software development activity.

These issues were put to the interviewee in the form of verbal questions. During the

_interview, cross questioning was done wherever answers were not clear or clarification

£ the issues were needed. Each interview lasted an hour or so. Responses were

recorded m anually.

_ A summary of the user responses now follows.

~ General issues (i) through (vi):

 To avoid redundant editing, it was suggested that various editing mechanisms be
~ adopted: page editing, screen editing, line editing, where page, screen or line are locked
during editing, or locking the document itself. There were mixed responses about

_editing a contribution where there is more than one version: one set of responses

favoured editing of any version of a contribution available on a topic, while another set
favoured allowing editing only of the last version of the contribution. Most favoured

having available two to three versions of a contribution on a particular topic.

In the present manual system, only the editors have access to a contribution. In a group
editing system, it was thought desirable to have read only access for all members of the
group. However, write access should be provided to the author of the contribution,

while the editor should have all types of access.

80

Chapter 5 Case Studies & Identification of General Model

The users felt that the Newsletter should centrally be controlled by an editor, operating

\ wmth co-editors if needed. A co-editor may form a sub-group and should be able to

handle the sub-group independently within the group.

Newsletter issues (vii) to (ix)

All information related to a Newsletter should be stored under the name of that
Newsletter, so that it can be made available in the future. A distinguished name should
be given to each Newsletter. For example, 'Aston Fortnight Vol.3 No.8', where Vol.

represents the year and No. represents the number of issue in that year. A completed

ewsletter should be closed and no information should be added to it. A header for a
_contribution should contain information about the Newsletter, for example, submission
date, name of the Newsletter, topic etc. There were mixed responses on whether the

' status of the member (i.e. reader, author and editor) should be included in the header.

Users considered it should be possible to add a new member to the group at any time. A
provision should be made allow the editor a convenient way to generate the Newsletter

in any specific order from the available contributions.

There was some support for automatic distribution of the finished Newsletter to its

readers. A bulletin board approach was also suggested.

Issues related to the software development: (xii) to (xv)

A team should consists of the members who are related to a package which bound by
single specifications. The distribution of tasks to the team should be made on modular
basis. There should be a provision for the flow of information between the members of
the group. The information flow should include data dictionary, test data and global

parameters. Only tested modules should be submitted to the editor. These modules may

81

Chapter 5 Case Studies & Identification of General Model

be tested with simulated data or test data. Sufficient testing should be carried out as

iﬁtég»r%ated package before distribution for implementation.
The user interviews were important in understandings the problem definition and

underlying functionality. The interviews provided sufficient information to form

specifications for the prototype which were enhanced with the help of the literature.

5.3 Selection of Group Activities for Case Study

e common features and characteristics for group editing issues were investigated by
I\e,cting the cases in one application group (i.e. supportive application group) with
s;-milar functionality (i.e. group editing). The selection of group activities for
‘i,jx’)vestigation has been made on the basis that the activities should have a requirement for

advanced services and the activities should also have some commonality with each other

(e.g. editing documents of different characteristics). Although the cases selected for
\' “"'\s,’;tzudy all fit under the heading of group editing, part of their procedural operations may

be different.

 The cases chosen for study are editing a newsletter, writing a technical paper and

software development by a team. All cases are considered to involve a group writing in
_ a distributed network environment. In the 'SAGE' project, the common characteristics
of cases which would be useful for defining group communication services and tools

are described later.

5.3.1 Editing a Newsletter

A Newsletter is a document which is produced jointly from the contributions on
different topic/subjects by its authors and editors. The Newsletter has readers who are
the beneficiaries from it. This is a group activity and is headed by a chief editor. The

Newsletter editing activity in the 'SAGE' project is managed by a group editing

82

Chapter 5 Case Studies & Identification of General Model

organiser, who is empowered to make changes and/or take decisions. It is not necessary

that the group editing organiser agrees with the contributing author(s). Thus editing a

Newsletter may be viewed as a centralised control activity. The Group Editing
Environment may however consist of nested sub-groups in geographical or other

domains, and operational powers may be distributed within the group or sub-groups.

5.3.2 Editing a Technical Paper

A technical paper written by a group of people is a joint editing activity. The object of

he activity is to produce a final version of a paper which is written on a single

,quect/topic. Each member of the group may have equal status in the group. However,
1n ’comparison to a Newsletter, this activity may be viewed in different ways in terms of

' gfiower and control. The group editing organiser in this case may have to take nto

. 5 ’féic':count the views of author(s) of the paper. For example, after a referee's comments
. have been received the group editing organiser and the author(s) have to agree with each
‘f""bi,ther before publication. In this application the role of editing organiser is weaker than

' the earlier one, and control is distributed among members of the group.

5.3.3 Distributed Software Editing Team
Software development by a team is also a group activity. The group activity is critical in
~§nsuﬁng proper testing and integration of a package in a distributed environment. The
members of the activity also need a high level of interaction between them, and frequent
~ reference to the specifications. This case may however be viewed in another way in
comparison to the other two cases. Each member of the group has a specific task to edit,

~ whose parameters are pre-defined to form an integrated package. The members have to

 take care with interfacing parameters of the package. The group editing organiser in this

case may probably have to act as co-ordinator among the team members. The group

_editing organiser may or may not agree with the member concerned. In case of

Chapter 5 Case Studies & Identification of General Model

\:dlsagreement the group editing organiser may have to work on the member’s

f\contnbutlon The role of GEO may be considered to be between the role in Editing

Newsletters and the role in Editing a Technical Paper.

5.4 The Group Editing Problem

The ‘SAGE’ project seeks to recommend group editing services and tools to provide a
process for group communication system. This requires identifying functions,
operations and their relationship in a group communication environment (for example).

The case studies deal with the various aspects of the handling of editing issues for a

ocument in a group environment. These aspects are, for example, Updating, Co-
ordination, Version control, Access facilities, and Document handling. The case studies
are also used to identify the common functionality between editing activities. A working
__prototype is developed as a user testbed and to clarify detail of services identified during

the investigation phase. The case studies and prototype provide vehicles for identifying

_ needs and developing and evaluating proposals for support services and tools.

To decide what facilities the system should provide, there are several questions to be

addressed. Aspects not directly related to this problem (in context of X.400) are not

:'discusscd here (for example; message composition tools, final page layout, advance
. : planning, cross-referencing, (auto)indexing). Aspects which are directly related to the
messaging system however, are considered in depth. These include message
communication frequency, automatic message delivery, studying and modifying draft,
subsequent reviewing, full text retrieval, new version distribution, number of versions,
reminders facilities, editor/author relationship, access facilities, refereeing, version

modification, notification and storage facilities.

The discussion of the case studies is divided into three parts. The first part describes a

conceptual model in general terms for group editing activities. This part is described in

84

Chapter 5 Case Studies & Identification of General Model

this chapter. The second part discusses the Newsletter case study from which the

: fs,pgé.ci’fication requirement for the prototype is derived. The last part looks at the case

studies of a technical paper and software development team. The last two parts are

discussed in the following chapters. The final outcome is derived from the solutions of

all cases and the user comments received on the testbed prototype.

5.5. Conceptual Model for Group Editing

Group editing is a procedure that allows a group of authors/editors to produce a

ocument in the form of master document in an acceptable form. The group
_communication information model (discussed in chapter 4, section 4.1.1) identifies
 three base classes (item, entity and domain). A group communication item is a basic unit
of information which is exchanged or manipulated during a communication process.

| "‘Typical items are: messages, notifications, suggestions, contributions, chapters and
documents. A group communication entity is an entity which actively takes part in a
"~;ommunicati0n process. Examples are group editing organiser, authors, readers, co-
. ordinators, editors and agents (a process can be a user) (Joint ISO/IEC/CCITT, 91).
éroup communication domains provide the mechanism to bind groups of entities to the

relevant information structures for such editing activity. They may represent specific

group communication activities. (e.g. topic in group editing). A domain may contain

_ entities, items and other domains.

Figure 5.1 shows elements of the information model X.gc (Joint ISO/IEC/CCITT, 91)
containing the components of the model. The information model consists of domain A
& B and sub-domain within domain B. Each domain and a sub-domain consist of

messages, conversations, items, agents and entities as described in the three base

classes.

Chapter 5 Case Stdies & Identification of General Model

Domain & Domain B O

Conversakions N

SubDomsin

Figure 5.1 Elements of Group Editing Model.

~ Group editing should provide special support for a manuscript by several authors
_ (Palme, 88). It may deal with joint storage area for the text and control of simultaneous

updates. It may be based upon the tree structure of the manuscript where an update

~ operation applies only to a certain node of the tree structure. The document is structured

into a detailed hierarchical structure (Smith et.al., 89) where each message may be

~ considered as a node. Each node may be handled in the same way as message. The
message may refer to other document and may contain additional special field for group
_editing for example, ‘part of’, ‘obsoletes’ (Wagner & Palme, 89) and ‘commented’ etc.

The existence of the group has to be maintained until the end of activity.

5.5.1 Editing Environment
An editing group is to be formed within Group Communication Environment. As

described in X.gc (Joint ISO/IEC/CCITT, 91), a Group Communication Environment

(GCE) can be modelled as a functional object. Since a group editing environment is

86

Chapter 5 Case Studies & Identification of General Model

xco‘\n\sidered to be a sub-set of GCE, it can also be modelled as a functional object. The
group editing environment is the relationship of the group members for manipulating
information objects in an editing activity. The environment needs to define the roles and
the functions or protocols adequate for accessing these information objects. Objects of
group editing include a single central object (e.g. a contribution), the group editing
system and the group members. A group member may be a person and/or a computer

process, who can originate/receive group editing information.

5.5.2 Group Editing Organiser (GEO)
The group editing organiser is a person with special powers to operate the group
_ activity. As described by Palme (Palme, 87 & 88) the operations may be to remove

irrelevant messages, add/delete members, restrict access and perhaps control over

~contributions. In accordance with the CCITT draft release working document X.gc for

":"'f'"fggroup communications (Joint ISO/IEC/CCITT, 91), it is assumed that the group is

~ ‘controlled’ by an entity called the ‘Moderator’. A similar functions is carried out by

‘Group Editing Organiser’ (GEO) in the 'SAGE' project. The GEO entity is necessary
for the smooth running of the group and to fix responsibility. The powers of Group

~ Editing Organiser will be discussed further in later chapters.

The Draft X.gc (Joint ISO/IEC/CCITT, 91) describes three communication ports to
meet the functionality requirement at three levels. Access to the services is made by the
concept of a port in the communication system. A port may be defined as a point at
which an abstract object interacts with another object, for example, the 'add member’
service would interact with an activity object and a group object to create a relationship
with the new member with whom it is to be added. The draft X.gc (Joint
: ISO/IEC/CCITT, 91) in asynchronous computer conferencing defines these three level
as member, moderator and conference manager. The 'member’ port provides the

functionality associated with members (e.g read). The 'moderator’ port provides

87

Chapter 5 Case Studies & Identification of General Model

additional functionality for moderation (e.g. delete). The '‘conference manager' port

provides the additional functionality for administration (e.g. create).

The names (in terms of their roles) of the entities in the ‘SAGE’ project differ from
those used for computer conferencing in the X.gc draft, reflecting slightly different
functions. Figure 5.2 shows the mapping of CCITT entities with the editing group

entities in the ‘SAGE’ project.

CCITT SAGE
Conference Manager Group Editing Organiser
Moderator Coordinator/Editor
Member Author/Reader.

Figure 5.2 Mapping of Editing Entities with CCITT Draft.

The mapping of group editing system communication ports viz member, co-
ordinator/editor and group editing organiser is shown in figure 5.3. The group editing

environment is considered as a group editing system where its functionality would be

et by the service agent within the application group (discussed in chapter 4).

f:‘,;(v‘lonsidering the wider range of the group and making use of concept described 1n
',"AMIGO report, it is assumed that the group contains sub-groups. For example there
‘;Vould be a sub-group of editors, and/or sub-group of a technical paper writing team. In

\ ~$uch cases the group editing organiser may have a co-ordinator for each of sub-group. It
. is understood in the 'SAGE' project that the sub-group editor or co-ordinator would,
‘within a sub-group, have powers similar to the group editing organiser. The group
v\editing organiser should be able to assign such operational powers to intermediate

entities (co-ordinators or co-editors).

88

Chapter 5 Case Studies & Identification of General Model

Member Port
Group Subscriber Port Editing
Editing rl._—] User
System GEO Port Agent

Figure 5.3 Mapping of Communication Ports with CCITT Draft.

5.5.3 Access Control

Access control (Smith et.al., 89) is the need for privacy and integrity of information
where information is shared among many users in a distributed network environment.
Privacy prevents people from retrieving unauthorised information or allows them to hide
information. Privacy is required when dealing with personal or sensitive information.
Integrity aims to provide correct and meaningful information. Access control assists
integrity by ensuring that only authorised persons are able to maintain the information.
Access control grants permission to perform operations. The operation available vary
from application to application and who operates them. The operations must provide the
functionality required by a specified operation. For example, ‘update-contribution’
operation should be able to meet the functional requirement involve in it. The draft X.gc
(Joint ISO/IEC/CCITT, 91) on group communication system, contains abstract service
definitions that specify the following operations allowed to a group while it is in
operation (a complete abstract service definitions of these operations are given in

Appendix 4).

Initial operations which need access support for each role in the activity are given below

(Joint ISO/IEC/CCITT, 91):

1) create an object with distinguished name and attributes --> create,

1) delete a specific object --> delete,

89

Chapter 5 Case Studies & Identification of General Model

1i1) provide read mechanism for retrieving information for a single object --> read,
iv) modify of an attribute belonging to a single object --> modify,

V) establish relationship between objects --> links,

vi) remove relations --> unlink,

vil) specify link to the named items --> linked-to,

viii) name all items to which named items has the specific link --> linked-by,

1X) find items in defined area -->search.

All these operations assign rights for manipulating a specific item (i.e. read, modify,
delete etc.). The right however, to create a new activity or add/delete a member or
allocate rights to other members is given from a higher level, superior node. In case of

group editing activities this right is with the group editing organiser.

The access control mechanism requires a method of describing users so that they can be
assigned access rights within the application. As the directory service maintains the
users directory names, the users can be represented with their directory names (Smith
et.al., 89). The names of subtrees in the Directory Information Tree (DIT) could be used
to represent groups of users, which would also allow access rights to be assigned on an

organizational basis as reflected by a directory information tree.

5.5.4 Storage Facility

The CCITT X.400 series of recommendations 1988 included a new entity: message
store. Each message store is to be associated with a user agent, but the reverse is not
necessary. This is to meet the storage requirement of remote networked workstations on
a single user basis. The requirement for a group user to store common contributions 1s
to be met by having a common storage facility serving as common store or common
database. Palme (Palme, 87 & 88) considers that conferencing should have a distributed

common database for storage of group contributions. The AMIGO report (Smith et.al.,

90

Chapter 5 Case Studies & Identification of General Model

- 89) considers that the Group Communication Services Information Model should

~ support distributed storage to avoid communication overheads in a very large distributed

environment, having different molecular structure, such as chains, trees or nets. The
issues of common store are concerned with locating objects, replicating objects,
distributed update and consistency of information (Nunez, 89). The Grace conceptual
model considers that the structure of various group communication objects are rather

like a data dictionary that defines the structure of information in a database.

The AMIGO internal information model identifies the requirements which must be met
by the internal data model (Nunez, 89). These include representation of basic
communication objects, additional information needed for distribution handling,
elements and operations to support the activity, mechanism to preserve information

integrity, multi-user characteristics and global naming structure.

The services provided by an information model (which forms a common store) are
described in section 4.1.1, chapter 4). Group Editing activities have a different structure
of information as they have more than one versions on a same topic. The description of
the common store is one of the major issues on which work is being carried out at other
places. The structure of common store is not an issue in the 'SAGE' project. However,
the concept used to define common store in the 'SAGE' project is that there is a
common work place for all the group members which is centrally located (to be defined
by GEO). This common store has a nature of distributing information (from a centrally
located storage) to its members on a needs basis and links the new versions to the rest of
the members (i.e. other than the originator). This distribution of information is handled
by rule-based information handling system. The retrieval and the storage requirement to

and from the common store is dealt by the rule-based information handling system.

91

Chapter 5 Case Studies & Identification of General Model

 Two different types of common store structure are discussed in the 'SAGE' project
during analysis and prototyping the group editing activities. The first type of structure is
discussed precisely in this chapter, and has a set file structure. The same structure 1s
considered for the Newsletter prototype implementation. Another type of structure,

which is a single folder, is discussed with the technical paper.

The proposed structure (discussed here) for this project is that, there would be a
centrally located common storage facility to store common contributions. The common
store is basically divided into two logical parts. The first part is for the contributions

from all group members and the second part is for group editing organiser (GEO) to

accumulate accepted versions and to allow document handling. The first part has
separate individual folders for each member of the group which contains their individual
contributions. The second part is a set of folders which are defined for handling of

accepted versions, request, suggestions and reminders.

Contributions arriving for the GEO are temporarily kept in the MH-Directory (Message
Handler-Directory), and are transferred to an appropriate part of the common store when

they have passed through the monitoring system. The rule-based information handling

system should be able to retrieve these contributions for a given operation. For example,
a read operation will display the contribution, to be retrieved by an appropriate group

service agent.

The group editing organiser would control the access facilities (read, write, edit, and
delete), for contributions in common store. The group editing organiser may however,

assign various operations to the other members of the group.

92

Chapter 5 Case Studies & Identification of General Model

5.5.5 Version Control

The version control mechanism varies from application to application and is a major
issue in group editing activities because at any moment there may be a new version. The
aims of controlling versions are to avoid redundant editing, ensure distribution of an

appropriate document and retrieval of old contributions, and also to save disk space.

There are many ways to deal with version control problems, for example: locking,
dynamic editing, page/screen editing and/or last version tracking. The approach used in
'SAGE' project is similar to the CCITT draft X.gc (Joint ISO/IEC/CCITT, 91), where
each single edited contribution is a separate node point having its own identity. There
should be a tracking mechanism for individual’s contribution, which always retrieves
the latest and highest versions at a base level. The base version (from where the tracking
is required) would form a derived link (Benford & Palme, 93) in the structure of
information model. All contributions should be available to all the members of the group
as read only, but originator and GEO have extra access rights to a contribution. If an

intermediate version is updated, it will become the latest version in the common store.

The 'SAGE' project introduces the concept of edit request to avoid redundant editing.
The redundant editing is to be controlled by access rights provided to the members. The
edit request has to pass through these access rights for each member. If a topic has more
than two authors or a document itself is edited by more than two people (e.g. a technical
paper) and they want to edit the same contribution at one time, then an editing request
has to be made. This edit request requisition would be approved by the application
service agent (i.e. by rule-based information handling system), which is monitoring the
activity. If the contribution (which includes all versions) is not being updated by any
member then it would be released for next update, and locked as ‘not to be updated’
until the arrival of next new version. The request for edit can be made for any

contribution in the common store. The proposed concept is contrary to the technique

93

Chapter 5 Case Studies & Identification of General Model

described in AMIGO report (Nunez, 89) where next update can only be applied on the
latest version which is considered as a master document. The reason for considering all
versions for the next update is to give extra flexibility to the author. This is possible

because all previous contributions are available in the common store.

5.5.6 Message Flow

The message flow within a group editing depends on the activity and the originator.
Depending on the communication set up, the message flow takes the shape of a one to
many, many to one or many to many communicating environment. For example for a
bulletin board, the set up is formed for one person to many, whereas for editing a paper,
the set up is formed for many to many. An originator may send a message to selective
members of the group. The Group Editing Organiser may send a message to the referee
editor who may be invisible to other members of the group. In some cases a referee may
be able to deliver messages direct to the author concerned. If a message is originated by
Group Editing Organiser, it may be sent in broadcast mode. The GEO should be able to
decide the frequency of all message traffic (e.g to reduce communication overload).
Messages (each one is considered as a separate node) may be bundled together which
may economise the communication cost in case of long geographical links. In the case
of notification (e.g. delivery notification) (Joint ISO/IEC/CCITT, 91) a message can be
originated by a process (built-in optional facilities) according to the requirements of the
activity concerned. The particular mechanism of message flow depends on the activity

being carried out.

5.5.7 General Facilities
While defining standards and user tools there is a requirement to try to ensure that the
requirements of a large number of users are met. But the system should not have

excessive overhead caused by meeting minor requirements. System features like direct

94

Chapter 5 Case Studies & Identification of General Model

communication between group members (in context of group editing), need of

notifications & reminders and role of referee would be set as a default options. System

features may be divided within two categories: controllable by a group editing organiser

and controllable by other members of the group.

The message handling system is a store-and-forward system. That means a handshake
mechanism is not required. A delivery failure checking mechanism should be provided,
and if there is a delivery failure the contribution should be searched and re-sent to the
destination. The editing system should also be supported by automatic reminder

facilities with reminders sent to members who have been inactive for a set of time.

This chapter has discussed the need for a case study, and the method used for the case
study, in the 'SAGE' project. The nature of group activities suitable for case study has
been discussed. From these considerations a basis for a conceptual modelling is
outlined. The next chapter applies the conceptual model to the specific task of editing a

Newsletter.

Chapter 6

Editing A Newsletter: Prototype Specification

6.0 Introduction

The Newsletter editing éctivity was selected as the main case study topic as described in
chapter 1 (section 1.4.2). This chapter discusses the issues that arise in the group
editing of a Newsletter in a networked environment, making use of the literature and of
user interviews. The Newsletter editing activity is developed on the basis of the general
model described in previous chapter, proceeding from requirements through progressive

design steps to a working prototype of a Newsletter editing system.

A breakdown of the Newsletter editing activity is necessary to develop the requirement
definition for the implementation. An initial prototype was implemented to test the
system on potential users and to support and develop ideas for the research. The user
testing sought to discover any misunderstanding of, or omission from, the user’s
requirement. User testing and personal communication may suggest further

requirements.

An analysis of a typical Newsletter activity (section 6.2) was used to develop the
requirements for the prototype. The prototyping activity was designed to test the
requirement of underlying functionality demanded by the message handling system and
group editing tools. The case study does not address the requirements of the user
interface. Such requirements are of course of the greatest significance in a complete
implementation, but the 'SAGE project research relates to necessary extensions to

X 400 and its services, rather then the human interface side.

96

Chapter 6 Editing A Newsletter: Prototype Specification

- Obtaining the necessary extensions to X.400 is achieved by designing a throw-away

~_prototype. The prototype is developed by system modelling, which allows extraction of

additional requirements, and implementation of the system as a prototype. The prototype
provided the foundations for the recommendations for group editing support services
tools which are additions and/or modifications to X.400 as defined in the group

communication services draft recommendations X.gc (Joint ISO/IEC/CCITT, 91).

6.1 Selecting the Prototype Technique

Implementation of the prototype is a software engineering problem. Software
engineering produce a number of techniques to design systems. Four of these were
considered for use in this work: the waterfall method, the exploratory programming
method, the prototyping method and the formal transformation method (Sommerville,
89) are all widely used. The first three are more widely used for practical system
development (Sommerville, 89). The exploratory programming and prototyping
methods are similar in nature and involve developing a basic working system. One of
the important functions of each design technique is to establish the system requirements.
The exploratory programming method is useful in the early development of new, large
and complex systems. Exploratory programming produces an incomplete system which
is developed from an initial incomplete understanding of the requirement and
progressively augments the system as new requirements are brought out from testing of
the initial system. Exploratory Programming methods tend to result in a system whose
structure is not well defined and therefore hard to maintain (Sommerville, 89). The
benefits (Sommerville, 89) of using prototyping during the requirement analysis and
definition phase are awareness of the users requirement, detection of missing user

services and identification and refinement of confusing services.

The case studies, literature and user interaction provided sufficient requirements

information to go directly to the prototyping method. The initial phase of the study

97

Chapter 6 Editing A Newsletter: Prototype Specification

_comprised collecting potential user's comments on functionality and reviewing the

_ literature. The results of these two phases were used to build 'good' specifications.

prototyping methods which could improve the specification requirements.

These specifications were used to build a prototype as a prelude to application of

There are two different types of technique within the prototyping method. One is the

‘throw away’ technique which does not really concern the implementation part. The

other leads to the implementation as a closed loop which involves validation,

verifications and refinements. The throw away technique is used in this research.

Maintenance is not an issue for a prototype.

The prototype is mapped onto X.400 in the context of the group communication

services and this leads on to the review of the case study. A graphical representation of

the development phase of the research is shown in Figure 6.1.

Outline rototyping
Requirement —3(Executable System
Formulated Spec

X.400
Mapping

Figure 6.1 The Development Phase of the Research.

6.2 Editing a Newsletter: Analysis

In the context of group communication, the system for producing Newsletters is an

environment which contains a tool set for production of a Newsletter in an OSI network

environment. The environment allows contributions from multiple authors at various

98

Chapter 6 Editing A Newsletter: Prototype Specification

levels of editing, browsing and co-ordination. The activity is controlled by the group
editing organiser and consists of three basic group communication classes related to the
CCITT draft: entity (members), item (contributions) and domain (geographical range of
network i.e. OSI boundaries) as shown in figure 6.2. An example of group editing of a
publication is the production of the fortnightly Newsletter 'ASTON FORTNIGHT' in
Aston University. The domain and/or period of publication may be extended or changed

for such Newsletters, say a monthly publication for all Universities in UK or Europe.

The CCITT draft X.gc (Joint ISO/IEC/CCITT, 91) specifies the group communication
information model and the abstract service definition to provide a framework for
modelling and implementing a variety of group communication applications. The
information model for editing a Newsletter consist of three base classes of objects. The
items which take part in the process are contributions, subjects, topics, the Newsletter
document and parts of the document. The entities are author(s), co-editor(s), co-
ordinator(s), reader(s) and agents. The domain of the activity is limited by the extent of

the OSI network.

The block diagram in Figure 6.2 shows the scope of the Newsletter information model.
For example: domain A and domain B are two different organisations in the country X
and domain C is another organisation in the country Y. These organisations produce a
technical Newsletter for which the activities are controlled by the group editing organiser
at domain A. However, the Newsletter is produced by the authors, editors and co-
ordinators spread over the countries X and Y in all three domains, using the services of

the message transfer agent.

99

Chapter 6 Editing A Newsletter: Prototype Specification

Domain A Domain B

Country X

Sub-domain
within domain B

Sub-domain
within domain C

Figure 6.2 Scope of Group Editing Information Model.

6.2.1 Structure of the Newsletter Editing Activity

The structure of a group editing activity information model comprises communication

between members and the common store via operations provided to meet the
requirement of an activity. Initially the operations (defined in section 5.5.3) are
considered to be the same as specified in the CCITT draft release. These operations are
to be constructed to meet the requirement of the editing group. The operations are
grouped (Joint ISO/IEC/CCITT, 91) into three communication ports. The
communication ports are modelled onto the editing Newsletter activity as below
(discussed in section 5.5.2):

(1) Member port ---> author(s), referee or guest editor,

(11) Moderator port ---> co-editor(s), co-ordinator(s) and

100

Chapter 6 Editing A Newsletter: Prototype Specification

(i) Conferencing Manager port ---> group editing organiser (GEO).

Each port should specify the access control operation to the concerned member of the
group. These three ports form a hierarchy of operations in terms of access right. The
hierarchy of operations is that the operations for a member are a subset of the operations
of co-editor/co-ordinator. The operations of co-editor/co-ordinator are a subset of
operations of the group editing organiser. The access right hierarchy structure of the
group is shown in figure 6.3. The member level has access to least operations and the
subscriber level has access to more operations than a member. The moderator level has

access to all operations.

Moderator 7 ~
Level // \ \\
_____/——'“—/—l-\—_—-‘;_—_—
A /] \
’ / I \. -
Subscriber / | \ \
Levl — / j __ _ _ 1 _ 4 _\N _ _ _ 4 _1____

By o |
EDIE F 4, @

Member
Level @ @

Figure 6.3 Group Hierarchy Structure.

6.2.2 Working on Newsletter

This section discusses the basic requirement and message flow mechanism of the
Newsletter editing activity. It is considered that the activity consist of the object classes
as explained in section 5.5 and the access rights hierarchy (similar to draft X.gc) shown

in Figure 6.3. Initially the group editing organiser has to prepare a list of topics/themes

101

Chapter 6

Editing A Newsletter: Prototype Specification

\in relation to the Newsletter. The GEO also has to decide the other members of the

~group. The group editing organiser may however communicate with such member(s)

before creation of the group by means of the normal services of the message handling

services, for example.

6.2.2.1 Creation of Group Activity

The create operation is described in CCITT draft X.gc (Joint ISO/IEC/CCITT, 91).

Only the underlying functionality involved during the create process is discussed here.

The group editing activity may be created by any user by taking four basic measures to

initiate the activity process in regards to group administration. The originator of the

activity is known as the group editing organiser (owner) for the activity. The group

editing organiser is the only one empowered to access the operations described below.

@)

(i)

(ii1)

(iv)

Definition of activity -- group editing organiser should be able to define the
name of the activity which would be access by this name in future (e.g. name
of Newsletter).

Definition of group -- group editing organiser should be able to define group
members with their status such as: author, co-editor or co-ordinator.
Definition of Common store -- The common store structure is created by the
Group Editing Organiser (the GEO decides where to create the common store).
Definition of activity history -- activity history database is also defined by the
Group Editing Organiser. It contains complete information about the
activity/application, group and storage definitions and other informations such

as: date of creation, critical date and topics with their associate members.

Figure 6.4 shows the structure of the database in relation to the activity concerned. The

definition of activity should be under an application group which would be useful to

102

Chapter 6 Ediung A Newsletter: Prototype Specification

identify the group application type for a wide range of activities (discussed in section

4.3 chapter 4).

Name of the Activity

3| Name of Common store

—————>=1 Group Members

— Activity History

L——— | Other Information

Figure 6.4 Structure of the Activity Database.

6.2.2.2 Initial Message flow

The activity, which has been defined and which has come into operation has its status
maintained until it closes. The group editing organiser has to send Newsletter
information (subject, topic etc.) to author(s), co-editor(s) and co-ordinator(s) in the
form of notifications to each member of the group. Figure 6.5 shows the flow of initial
/messages/contributions. The author(s) and co-ordinator(s) may accept or reject or ask
for modification. In case of rejection no action is required by author(s). The Group
Editing Organiser may however, exercise the same action with another member
(author). In the case of acceptance the author has to write the news and co-ordinator/co-
editor has to distribute the topic between author(s). In the case of modification,
author/co-ordinator may suggest/modify the issues and send it to the Group Editing

Organiser. This process is repeated until both agree. The modification may include

issues such as completion date and payments.

103

Chapter 6 Editing A Newsletter: Prototype Specification

GEO

Notification

To
T > Common

v Store

Member A
Concerned

Y

Update
Contribution

Y

Submit
Contribution

Figure 6.5 Initial Contribution Flow.

6.2.2.3 Contribution Flow

Each contribution in the common store has a unique identity and follows the X.400
messaging format. Most of the time the contribution flows between a group member and
the group editing organiser. Each update by a member submits a new contribution to the
group editing organiser and is available in the common store, as read only, to all
members of the group. An edit request can be made by any member to update their own
contribution. The request is based on subject, topic and contribution number. The
request flows from requesting member to the group editing organiser. The released

version flows from common store to the member concerned.

A suggestion can also be made by any member of the group. This flows from the
suggesting member to the group editing organiser for record, and a copy of the
contribution containing the suggestion flows from the group editing organiser(common
store) to the originator of the contribution. Figure 6.6 illustrate the contribution flow

between group editing organiser and member concerned.

104

Chapter 6 Editing A Newsletter: Prototype Specification

Concemed
Member

new version

edit request

suggestion

Group ———| Common Store
Editing &

Organiser ———{ DamBase

Y

released version
accepted version
or reminder etc.

Figure 6.6 Flow of Contribution During Operation.

If the contribution is related to a technical issue then the group editing organiser may
send the contribution to a referee (guest-editor) for comments. The group editing
organiser may wait for similar contributions to bundle these which are to be sent to one
referee. The commented contributions may directly be sent to the originator or it may be

sent via group editing organiser.

6.2.2.4 Group Editing Header
The group editing header is defined as an extension fields of IPMS (X.420) in context
of X.400 messaging format. The header parameters will be displayed with each editing

session. It is proposed the group editing header comprise the following parameters:

1) Reference of News Letter : ' name of the news letter '
11) Status of the Member: ‘author/editor/co-ordinator/reader’
111) Current Topic : ' topic for concerned author

105

Chapter 6 Ediung A Newsletter: Prototype Specification

v) From GEO/Co-ordinator/Co--editor : ' from whom contribution is sent '
V) To Author/Co-ordinator/Co--editor : ' to whom contribution is sent '
vi) Latest Submission Date : ' applies to author '

vil) Updated on : ' date ' (optional)

viil) Part of Newsletter : ' Newsletter to which it belongs

1X) Revision Suggested By : ' Suggesting user member ' (optional)
X) Version: ‘Released for Edit’ (optional)
Xi) Version: ‘Accepted’ (optional)

Some of the header components (e.g. from and to) are defined in X.420. The 'SAGE'
project proposes the header components at number 1), ii), iii), vi), x) and xi). These

header components are required to meet the functionality involved with the activity.

The optional header parameters are visible when such fields are required. For example,
when a version is released for next update, the parameter ‘version released for edit’ is
visible. Since all the members will have read only access to all contributions, any
member of the group can suggest change to any contribution. In such case 'Revision

Suggested By' parameter is visible along with other parameters of the header.

6.2.2.5 Editing a Contribution

Any group member with access rights beyond read only can update an existing
contribution or create the first draft after receiving the first notification from the group
editing organiser. The contributions contributed by a member, or updated by group
editing organiser for a member are available in the common store. To update a
contribution (other than first draft) a member has to make an edit request to get the
required version from common store. The contribution which is released from common

store for update carries an additional header parameter 'Version: released for edit'. After

106

Chapter 6 Editing A Newsletter: Prototype Specification

editing, if the version is submitted, it is available in common store as the highest

version.

The group editing organiser can edit, without making an edit request, any contribution at
any time, provided the contribution is available for update, that is, the contribution is not
currently open for updating. The system should check this for the group editing

organiser.

The common store holds all contributions for all members within their allocated folders.
The group editing organiser can accept the contribution send by any member. If a
contribution is accepted, it should disable further editing the author member on that
particular subject and topic. The accepted contribution is available in the document
folder in the common store and carries an additional header component 'Version:

Accepted'. The copy of the accepted contribution is sent to the originator.

Any member other than the originator can send a suggestion for an alteration to the work
of another member. In the case of a suggestion, the suggestion is appended to the
original contribution, along with an additional header parameter '‘Revision Suggested
By'. A copy of this suggested contribution is sent to the originator of the contribution.
This is available in the request folder in the common store. The group editing organiser
or originator of the contribution may act on that contribution according to the

suggestions and may edit the contribution to take account of the suggestion.

The group editing organiser may ask the referee (or a guest-editor) to comment on any
particular contribution. In such case the referee should be able to edit that particular
version of the contribution. Alternatively the group editing organiser may ask the referee

to comment in the form of a suggestion, not allowing updating of the contribution. The

107

Chapter 6 Editing A Newsletter: Prototype Specification

comments on a contribution from the referee will only be available to the group editing

organiser, who may pass it to the author.

Based on the submission date for date critical topics and subject, an automatic reminder

should be generated by the system to the concerned member if it is required.

6.2.2.6 Retrieval of Newsletter

As described in the section 6.2.2.5, the accepted versions of contributions from each
group member are available in the document folder within the common store. To retrieve
the Newsletter document the sequence of the contributions is required. The Newsletter
document will appear in the order according to the selected sequence number. The
Newsletter is held in the home directory of the group editing organiser. Different
versions of the Newsletter can be generated by changing the order of the sequence of
accepted contributions. The Newsletter can then be submitted for publication and/or
automatic delivery to any or all members of the group. Only the group editing organiser

is empowered to submit the Newsletter for publication.

The individual contributions can also be retrieved on a selective basis by using
'mhtools' (Peek, 91). A ‘pick’ command can retrieve the contributions based on
subject, topic, member and date etc. This is very useful at later stage for a complex
structure of information model (Joint ISO/IEC/CCITT, 91) which needs special

searches for information handling.

6.2.2.7 Other Facilities

The approach adopted for delivery notification is the same as in X.400 (i.e. non-
delivery notification). If the contribution is not delivered at its destination, the non-

delivery notification (X.400, 88) is delivered to the originator as delivery failure. The

108

Chapter 6 Editing A Newsletter: Prototype Specification

system would be able to check automatically such non-delivery failure and the

contribution re-sent to the destinations.

The system would have a notification facility after receiving the first notification from
the group editing organiser. The first notification is the registration to be a member of

the group.

6.3 Implementation Specification for the Prototype
The important features of prototyping is to establish the requirement specifications. A

throw away prototype is developed in this research. The prototype is the testbed for

users views and suggested ideas.

6.3.1 Functional Requirement

This prototype deals with the various aspects of handling of editing by a group of
people working together for a Newsletter. The group is assumed to be operating in an
open systems network environment. The functional or specification requirement defined
here is basically the solution of the activity described in the previous section 6.2 which
tries to determine what the users want or what services should be provided for the
users. This requirement is to be concluded as group communication system services

tools for editing Newsletter.

The problems of group editing (updating, co-ordination and access etc.) are described
in section 5.4 which explores group editing issues for editing activities in general. The
requirement described in the analysis of the Newsletter activity (section 6.2) is a key

tool for prototype system mapping on X.400.

The entity description in table 6.1 may also be referred to as a top level requirement

definition. This requirement may be divided in to three parts. The first part describes the

109

Chapter 6 Editing A Newsletter: Prototype Specification

initialising requirements for the activity. The second part covers the supplementary

requirements which are those activities needed during the operational phase. The third

covers is the monitoring activities needed to update the status of the activity after every

time interval.

Name Description
Activity Rule-based Contribution handling system e.g.
Monitor handling of edit request, suggestions, reminder, deli-

very failure and new contributions.

Activity Menu based system used by the group editing
Generator organiser to create activity, common store, group and
to work with contributions in the common store.

Activity Menu based system with member concerned to make
Responder edit request, update contribution, and make
suggestion for other member's contributions.

X.400 (88) Use of X.400 set rules and extension of the P2 header
Implementation to get editing header parameters; part-of-news-letter,
updated-on and latest-submission-date.

Table 6.1 Entity Description.

6.3.1.1 Basic Requirement

The basic requirements are initial needs required to operate the activity:

1) creation of activity (Newsletter) database,
i1) creation of a common work place for group contributions,
1i) creation of a group members list to identify those working with the activity

(with their status; viz author, reader, editor and co-ordinator),

1v) creation of a header for a particular operation (like edit, accept and suggest),
V) generation of initial notifications to the concerned member.
vi) edit contribution,

110

Chapter 6 Editing A Newsletter: Prototype Specification

vii) accept contribution and

viii) generate Newsletter in a desired order.

6.3.1.2 Optional Requirement
This requirement may be viewed as an optional requirement. It is not necessary that all

of the requirement be used while the activity is operating:

1) add and delete member,

11) make an edit request to get a copy of a contribution from the common store,
1ii) make a suggestion about another member's contribution,

iv) show the difference between two contribution from a member.

6.3.1.3 Monitoring Requirement
This requirement is a rule-based requirement used to update the overall status of the
Newsletter activity. The automatic decisions are taken on behalf of the group editing

organiser by a set of processes running as a background job over a specific time

interval:

1) set initial parameters and update group status,

1) check for new contribution and process the contribution if required,

i1) check an edit request and release required version from common store if
possible,

1v) check for suggestion and process the suggestion if needed,

V) check for reminder, generate and send if necessary,

vi) check for delivery failure, a contribution is re-sent in case of delivery failure,

vii) set read only access for the contributions required to be read by the member's

of the group and

111

Chapter 6

6.3.2 System Model

The prototype for the group editing support system models consists of three sub models
which operate in parallel. The activity environment is created by modelling three sub-
processes on X.400 implementation. The simple block diagram of the model is shown

in Figure 6.7 which is supplemented by the entities whose details are described in table

Editing A Newsletter: Prototype Specification

6.1. The notation used here is discussed in Sommerville (Sommerville, 89).

Activity
Responder

Activity Activity
Generator Monitor
Activity (Newsletter)
Editing Environment
X.400(88)
Requirement |- > Implementation

Figure 6.7 Top level Model Activity Editing Environment.

Each sub-system, activity generator, responder and monitor, is independent and runs
separately. The activity monitor is a collection of built-in processes which is a rule-

based system and runs in the background at pre-specified time intervals (defined by the

Group Editing Organiser), shown in Figure 6.8.

112

Chapter 6

Processing new
Contribution

Editing A Newsletter: Prototype Specification

Processing
Reminder

Built-in
Processes

Processing
Edit Request

Processing
Suggestion

needed by the group editing organiser.

Processing
Delivery Failure

Create Activity, initialise
group & common store

Process
Contribution

Figure 6.8 Activity Monitor Rule Based Sub-System.

The activity generator is a menu based sub-system shown in Figure 6.9, and requires

action by the group editing organiser. The activity generator provides the processing

Show History
and Statistics

Activity Responder
Environment(menu based)

Add member

The activity responder is also a user interactive sub-system (Figure 6.10) which gives a

member the facilities to update contributions, provide suggestions for other member's

functionality.

Send initial
Notification

Delete member

Figure 6.9 Activity Generator.

contributions and request a copy from common store for next update along with other

Chapter 6 Editing A Newsletter: Prototype Specification

Make Edit Request Suggest Revision

/

Activity Responder
Environment(menu based)

: Show difference of
Update New Version
pda M two Contribution

Built-in Processes for
Reminder Suggestion etc.

Figure 6.10 Activity Responder.

6.4 Prototype Implementation: Editing Newsletter

X.400 is critical to the prototype to enable it to meet the functional requirement as
discussed in section 6.3.1. The X.400 implementation is run under Unix in a message
handling environment which supports the Bourne Shell, C-Shell, and C language
processor. In the prototype the 'vi' text editor is used to update a contribution. A choice
among emacs, promptor or any other editor may be made available at later stage. The
current prototype uses user- and host name as a member address. However, the services
of X.500 (i.e. CCITT the directory services recommendations) can be used to define
group members. In such case the system should support X.500 implementation e.g. the
services of QUIPUL. But this prototype is modelled over X.400 (i.e. message handling
system). This prototype is particularly tuned for the sun sparc2gx work-station, which

gives the xmh windowing facilities while editing a contribution on a host.

6.4.1 Prototype Design
The prototyping techniques (discussed in section 6.1) suggests (Sommerville, 89) use

of a very high level language, the relaxing of non-functional requirements, ignoring the

1 this is a X.500 directory services implementation like pp.

114

Chapter 6 Editing A Newsletter: Prototype Specification

considerations of error action and ignoring reliability and program quality standards.
The prototyping produces an executable system that may be in an un-structured form.
As discussed in section 6.3 the prototyping method used in this research is not

concerned with the software design features as it uses the throw away technique.

The strategy used in the production of throw away prototype is Function Oriented
Design. The function oriented design is an approach to software design where design is
decomposed to a set of interacting units which have clearly defined functions. The

approach is used to test the ideas and features for the testbed system.

6.4.2 Data Flow Diagrams
Data flow diagrams are an integral part of design methods and each method uses a

slightly different notations. The notation used (Sommerville, 89) here shown in Figure

6.11.
Transformation Data Store User Interaction Direction of Path
Data Flow

Centres

Figure 6.11 Notation Used for Data Flow Diagram.

The group communication editing environment is to be created across the network for an
individual activity. For this research project the environment is modelled using three
different entities by means of having three independent sub-processes (activity
generator, responder and monitor). The entities are group editing organiser, member
(viz author, editor, reader and co-ordinator) and built-in process? (rule-based system).

Therefore the flow of data also takes place to-and-from these entities within the domain

of the activity.

23 process can be a user and here acls as group ediling organiser.

115

Chapter 6 Editing A Newsletter: Prototype Specification

The activity generator sub-process needs the interaction of the group editing organiser to

activate the data flow mechanism. A simplified data flow diagram concentrating on

functions for activity generator is shown in Figure 6.12.

Common
‘ Store A
Define I
Activity i
> Activity

History
Define
1 Group 4
¥ (Generate) Send M
Notification T

o member Corjcerned
9 Add Member

"

v
Delete M
Member

To member Concerned

Figure 6.12 Activity Generator Data Flow Diagram.

Notification and

Released
From Version
GEO
Released
1
To Group Ed:
Organiser

Suggestion
Request

Request
to update

Figure 6.13 Activity Responder Data Flow Diagram.

116

Chapter 6 Editing A Newsletter: Prototype Specification

The activity responder sub-process also needs manual interaction from the member
concerned to interact with the activity and the information flows accordingly. Figure

6.13 illustrates a simplified functional data flow diagram for activity responder.

From
members

request, new
version, and
suggestion etc.

Common Store

stedVersion To Member
Concemned
New Process Lmk‘New
Version Version

'
To Originator
aure To Member

Incorporate

Concerned
Common Store Proce.zss for
Reminder To Member
Concerned

Figure 6.14 Activity Monitor Data Flow Diagram.

The activity monitor sub-process is a rule-based system which acts on behalf of the
group editing organiser while running in background. The sub-process takes its own
decisions based on the situation (discussed in section 6.3.1.3) and activates the flow of
data to-and-from common store and member concerned. Figure 6.14 shows the data

flow diagram when the activity monitor is activated.

6.4.3 The Prototype Implementation

As mentioned previously this prototype is developed to test the ideas and acts as a

testbed. Logically the Newsletter editing environment is modelled by means of three

117

Chapter 6

Editing A Newsletter: Prototype Specification

sub-systems (activity generator, responder and monitor) which are independent in
nature and run separately. Figure 6.15 shows the relationship of these sub-systems.
These sub-system are discussed as basic, optional and monitoring requirement in
section 6.2.2. Since each sub-system is independent from each other, it is better to
describe these separately. The following sections describes the working of these

modules. Table 6.2 shows the menu for the activity generator.

The list of activity generator, activity responder and activity monitor is placed in

Appendix 5A, 5B and 5C respectively.

Group Editing Environment

Activity
Generator Responder

Figure 6.15 Relational View of Editing Sub-Systems.

6.4.3.1 Activity Generator

The activity generator is a collection of various sub-modules developed using C, Bourne
and C shell and services of X.400 in the message handling environment. Most of the
features of the activity generator meet the basic requirement needed to initiate the
Newsletter activity. This is a menu driven module run by the group editing organiser.

Table 6.2 show the menu facilities.

118

Chapter 6 Editing A Newsletter: Prototype Specification

Option Services
A--> To Create new Newsletter
B--> To Add Group Member
C--> To Delete Group Member
D--> To Send First Notification to the Member
E--> To Process Contribution
F--> To History and Statistics
G--> To Edit Contribution
Q--> To Quit

Table 6.2 Menu for Activity Generator.

or n 1 r

This is an initialising module for the activity and defines all basic requirement to put the
activity in operation. At present the Newsletter editing environment handles only one
activity at a time. However, the initialising module checks for the previous activity and
if found, warns the group editing organiser about the current existence of Newsletter. If

the group editing organiser continues, then closes the previous Newsletter (moves

existing Newsletter), advises the group editing organiser for location, and creates a new

Newsletter. Figure 6.16 shows the processing of the sub-module (create newsletter)

diagrammatically.

119

Chapter 6

Editing A Newsletter: Prototype Specification

Newsletter

accept news
letter details >

Activity
; Database

accept member)J
details > A

member
W

Figure 6.16 Newsletter Creation Process.

«Add Member

This module provides the facilities to define the group member's details. It is called by
create new Newsletter module if member is included when the activity is initially defined
and also called if member to be added later. The sub-module updates the information in
the activity database to build-up the historical information. The add member sub-module
also makes available the existing contributions in the common store to the newly added
member, and creates a place for new member in the working folder within common

store. Figure 6.17 illustrate the processing of adding a new member diagrammatically.

Chapter 6 Editing A Newsletter: Prototype Specification

add new
member

To update Member's

accept details Record file

Y

create folder in

common store

Y

link old
contribution

Figure 6.17 Add New Member Process.

There are two different techniques used to access the contributions for the members of
the group. The first technique uses the communication link every time when a new
contribution is received by the activity monitor, which needs to link it to rest of the
members in the group. The second technique accesses the common store as read only
once when a member wishes to work with the contributions. The latter technique is used

for the networked group member during the testing phase.

«Delete Member

This module deletes a member's details from the activity database and disables further

interaction between the activity and the deleted member.

The shortcoming of the module is that it does not maintain the record of the members

who have been deleted from the group. This might be a useful requirement while

121

Chapter 6 Editing A Newsletter: Prototype Specification

analysing the activity status at later stage. However it preserves the information

contributed by the deleted member.

«Gener Initial ification
An initial notification information is the registration of a group member to the editing

activity. The activity database is used to construct the header component for initial

notification. The module needs to input the address (user name and host name) of the

member concerned. The header components consist of the information related to the
member viz subject, topic, status, latest submission date and part of the Newsletter. The
latest-submission-date, is required to be entered by the group editing organiser which
may not be the same for every member in the group. The structure of header is same as
a X.400 message, and confirms the P2 protocols header parameter extension facilities of

X.420 recommendations. Finally the module enters in to the X.400 message mode and

provides complete message composition tools available in the message handler.

o History and Statistics

The module formats the information in a required form collecting information from the
activity database and from common store. The historical information displayed by the
module is: name of the Newsletter, completion date, name of group editing organiser,
details of other members and the statistics of the contributions. The statistics includes
information about notification, suggestion, and acceptance of contribution for each
member. Further information can be added for display as history and statistics. The
information considered here, is common for editing activities. This module needs

further work to work out the history and statistics in general. However this module is

based on an individual activity (i.e. editing Newsletter).

122

Chapter 6 Editing A Newsletter: Prototype Specification

oProcess Contribution
This module provides a second level menu facility to the group editing organiser, to
work with the various contribution submitted by the members of the group. The second

level menu consist of two options, viz accept contribution and generate document.

The first option i.e. accept contribution also needs entry of the group member name and
the number of the contribution to be accepted. The accepted contribution carries an
additional header component (i.e. 'Version : Accepred") and a copy of accepted version
is sent to the originator of the contribution. The accepted version is filed in the document
folder of the common store. Figure 6.18 shows the processing diagram of a

contribution by group editing organiser.

process
contribution

select
option

member to
process with

order of news-
letter document

¢ a/g
contribution
to be accepted generate
* newsletter
accepted copy

to originator

Y

contribution to
document folder

)

Figure 6.18 Processing a Contribution.

123

Chapter 6

Editing A Newsletter: Prototype Specification

The second option module allows the group editing organiser to generate the complete
Newsletter document. The document is generated from the accepted contributions
available in the document folder in the common store. The option module requires
selection of the sequence order of the Newsletter within the accepted versions. The
generated document is made available in the home directory as news.doc. The

Newsletter document can be generated many times and at any time.

The structure of the document has flexibility in terms of its presentation. Depending
upon the choice and requirement the group editing organiser can reformat the structure
of the Newsletter document by changing the format file in Mail directory with the help
of any text editor. The format file for the current activity contains the information on

subject, topic and author.

«Edit Contribution

The edit contribution option module requires input from the group editing organiser.
The group editing organiser has to provide the name of group member and contribution
number whose contribution is to be edited. If the contribution has been released (by
GEO) for editing then the module exits from the menu displaying the message;

"Contribution is being updated: wait for new contribution”.

If the contribution has not been released for updating the module allows the group
editing organiser to update. X.400 message composition tools, such as send, delete,
push, edit and refile are available during the edit process. The header parameter of the
new contribution is generated from the selected contribution. The updated contribution

is to be submitted to the group editing organiser to be a part of the common store.

124

Chapter 6 Editing A Newsletter: Prototype Specification

6.4.3.2 Activity Responder
The activity responder allows a member to respond to a Newsletter activity initiated by
the group editing organiser. The activity can be new or old and may be processed by the

various operations listed as menu requirement in next paragraph.

The activity responder is also menu driven. The menu facilities shown in table 6.3 are
required to meet the functional requirement of this module. Apart from the menu-based
facilities, the activity responder also does the initial checking for delivery failure and
checks for reminder send by activity monitor. The delivery failure checks for an un-
delivered contribution from a member which is returned back and not delivered to the
group editing organiser. Then the module tries to find the un-delivered contribution and,
when it is found, re-sends it to the group editing organiser. If a reminder of an overdue
contribution is received from the activity monitor, the activity responder displays a

message, and the member can see the reminder while working with the Newsletter.

Option Service

A--> To send edit request to common store

B --> [To edit requested contribution

C--> To suggest revision to contributions by other members

D--> To show differences between two contributions

E-> To create first draft

F--> To edit earlier drafts (when xmh facilities available)

Q-—> To Quit

Table 6.3 Menu for Activity Responder.

Chapter 6 Editing A Newsletter: Prototype Specification

«Send Edit Request

The module displays a list of all versions of all contributions submitted by the originator
and edited by group editing organiser for this originator on any one topic and subject.
Each contribution is displayed on one line containing information on; contribution
number (unique for its own contributions), date of submission, subject and part of the
first line of the contribution. The module requires entry of the contribution number to be
released from the common store. The request is sent to the activity monitor carrying the
contribution number and a built-in message. The request is required to release a copy of
the version by the activity monitor (monitoring the activity) at group editing organisers

end.

The display format to show the list of different versions can be changed as required by
changing the scan format file available in the Mail directory. For example the update
time and/or topic may also be included along with date and subject respectively. The
display format is depend on the member who can edit the file using any text editor.

However a default format file is defined in the Mail directory.

«Edit R ntribution

This module checks the copy require to update by means of header parameter 'Version:
Released for Edit ' and Part-of-Newslerter. If the copy has been released, the module
constructs the header for next version with new updating date and time. The body part
of the new contribution is opened for next update with previous contents of the

contribution. The contribution uses necessary X.400 messaging services (provided in

the message handling environment) to deal with the contribution, such as send, delete,

refile list or further edit. The send operation carries the new version to the group editing

organiser to be dealt by activity monitor. It is t0 be remembered that all previous

versions are available in the common store and no one 18 deleted.

Chapter 6 Editing A Newsletter: Prototype Specification

oSuggest Revision to Contributions by Other Members

This module displays a list of all the contributions submitted by other members. A
group member enters the contribution number on which s/he wants to make a
suggestion. The activity responder constructs the header for the suggesting contribution.
The header parameter carries an additional component 'Revision-Suggested-By: address
of suggesting member'. The contribution uses the X.400 message composition tools to
enter the suggestion and appended at the end of the contribution. The contribution then

can be sent to the group editing organiser which is handled by the activity monitor.

«Show Differences Between Two Versions

This module shows the differences between two versions from a member using
standard Unix utility to show difference between two files. The module compares the
first and second contributions, then the second and third contributions and so on, in a
sequential order. The module displays the difference of compared two versions along
with the name of originating member. If the originator has only one or none
contribution, it does not display any contribution but the name of the group member.
This supplementary requirement is not really an editing requirement, but an

enhancement to the tool quality.

«Create First Draft

After a group member receives notification from group editing organiser the first
contribution can be created by the member. The first notification carries all information
about subject, topic, name of Newsletter and submission date for the concerned member
which are required to generate the header for the contribution. The activity responder

acts on the notification by generating header and body part for the first contribution

which is edited by the text editor. The completed draft is dealt in the X.400 messaging

mode for further action (e.g. re-edit, refile, delete, send). The first draft can be worked

till it is ready to be sent to the group editing Organiser.

127

Chapter 6

Editing A Newsletter: Prototype Specification

o Edit Earlier Drafts (on xmh windows only)

This facility is only available if the host on which a group member has logged in,
supports the xmh windows and the work-station is sparc2gx. This operation takes the
member into the xmh environment and provides all xmh facilities: show list of
contributions, refile, pick, or edit drafts etc. The old drafts are available in the drafts

folder within the Mail directory can be updated during this option.

6.4.3.3 Activity Monitor

The activity monitor is a collection of various sub-modules required to meet the
monitoring requirement in the message handling environment. The module needs to run
in background to update the status of the activity at a regular intervals. Each event for
the activity has to pass through the activity monitor sub-system. The monitoring sub-
system deals with two types of transactions: the transactions generated by group
members and the transactions generated by its own (activity monitoring).

From

Concerned
Member

new version
edit request
suggestion

Activity Monitor o Common Store
Intelligence gathering &

system > DataBase

v

released version
accepted version

or reminder etc.
To
> Concerned
Member

Figure 6.19 Role of Activity Monitor.

128

Chapter 6

Editing A Newsletter: Prototype Specification

Examples of those are, requesting a contribution from common store for next update
and an automatic reminder sent by activity monitor whenever it is necessary. Figure
6.19 shows the interaction of activity monitor with member, common store and the rest

of the components of the activity.

Most of the features of the activity monitor concern decision making based on the
current situation. The activity monitor is also concerned with the collection of
information from the editing environment. As the activity monitoring uses a rule-based

mechanism for making decisions, it may be termed as a rule based system.

Apart from the monitoring the module does the initial check-up and parameter setting
such as incorporating a new contribution, setting-up reminder timing and updating
group members list (if any new member is added). The group editing organiser can set

up reminder timings as he chooses.

The following are the major monitoring job carried out by the activity monitor.

External transactions:

1) edit request handling,
i1) contribution handling (i.e. linking) and
iii) suggestion handling.

Internal Transactions:
1v) generating reminder and
v) delivery failure checking

When the monitoring system receives an edit request from a member it searches for the

required contribution in common Store and sends a copy of the contribution to the

129

Chapter 6

Editing A Newsletter: Prototype Specification

member concerned. The released copy carries an additional header component i.e.

‘Version: Released for edit’.

When an updated contribution is received from a contributor by the activity monitor, the
contribution is linked by the activity monitor to the rest of the group members as read
only, and filed in the folder of the contributor within the common store. In the
prototype, if a group member is a networked member, the new contribution is not
linked. Instead of linking the contribution, all contributions are temporarily made
available to the member, allowing direct access (read only) to the common store. The
technique is unsatisfactory and while useful in the prototype it is not suitable for full

implementation.

When a suggestion is received from a group member, a copy of the suggestion 1s sent to
the originator of the contribution and the suggestion is filed in the request folder in
common store. The suggestion facility not been provided to the group editing organiser

in the prototype, although it should be provided in a final solution.

The activity monitor checks for automatic reminder generation. The timing for the
reminders are set automatically by the activity monitor but the group editing organiser
can alter the setting. At present two reminder times are set. One 15 days from the first
notification and the second 7 days after from the first reminder. The system does not

provide a reminder facility on an ‘as needed’ basis (i.e. manual).

Delivery failure is taken care by the activity monitor. If the contribution or message
related to the Newsletter is reported by the mail system as not delivered to the concerned
member for any reason (i.e. is returned back to the originator of the contribution). Then

the contribution is located in the common store and re-sent to the recipient.

130

Chapter 6 Editing A Newsletter: Prototype Specification

This chapter has described the analysis of the Newsletter editing activity and the design
of the working prototype which is used for functionality testing and user demonstration.

The next chapter evaluates the prototype.

Chapter 7

Testing & Evaluation of Newsletter Prototype

7.0 Introduction

Program testing and user evaluation of the prototype are used in formulating the formal
recommendations. There are two phases in the testing of the prototype. One phase is the
testing of correct operation of the program code. The other phase is the testing of the
prototype functionality against the requirements. The testing of the code is described in

Appendix 7.

The prototype is not a final implementation. It is developed to test the functionality and
for communication with users to get feedback. Therefore comprehensive error handling,
validity of data and integration implementation procedures are not given attention. Hence
it is necessary for users to follow the operation manual (Appendix 6) step by step if

syntax and run time errors are to be avoided. Errors may cause the prototype system to

‘hang-up’ or give unexpected results.

The outcome of the prototype evaluation and feedback from the users during the testing
phase are given significant weight in providing the final recommendations.The
recommendation follows the guide lines from AMIGO and CCITT draft

recommendations on group communication, are built-on the CCITT group

communication draft recommendations together with the AMIGO project.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

7.1 Prototype Testing

The testing process must proceed in stages. There are five stages identified in the testing
process (Sommerville, 89). These distinct stages are known as unit testing, module
testing, sub-system testing, integration testing and acceptance testing. These phases are

shown in figure 7.1. A complete description of step by step testing phase is described in

Appendix 7.
Unit
Testing l
A Module
Testing |
A Sub-system
Tesing [|
A Integration
Testing l
Acceptance
Testing

Figure 7.1 Various Testing Phases.

The testing is carried out considering 'ASTON FORTNIGHT' Newsletter, to obtain the
requirement specification discussed in section 6.3 of chapter 6. The testing phase also
includes demonstration of the editing system as a whole to users to allow them to
provide feedback. The system Is not primarily concerned with performance, but was

used to remove doubts and to improve suitability of the services as editing tools.

7.1.1 Prototype Demonstration
The prototype was demonstrated to Dr. Celia O'Donovan (editor, departmental

Newsletter), Ms Susan Jackson and Ms Ghika Duroe (editor and co-editor, Aston

Fortnight) and Dr. B. Gay (ex.editor of academic journal).

Chapter 7

Testing & Evaluation of NewsLetter Prototype

The demonstrations were pre-arranged with each user and demonstrated in the
department of computer science project laboratory. Before the start of the demonstration,
a brief verbal description was given about the functionality of the prototype. A printed
list of a few pages containing menus, and information related to the menus, was also
given to the users just before the start of the demonstration in the project laboratory. To
get the comments from the users, sheets were provided which had questions on access,
versions, edit functionality, reminder, delivery failure, header, the facility provided in
the built-in processes (e.g. information handling). Space was provided for general
comments if any. The questions were extracted from the issues raised at the time of

interviews. Space of about six or seven lines was provided for each issue.

Each functional operation in the menu were demonstrated with the issuing of an Aston
Fortnight Newsletter as example. The demonstration proceeded step by step, beginning
from creation of a Newsletter, editing and finally generating the Newsletter. The
prototype was operated by a demonstrator. During the operation, each function was
explained to the user. At times the users asked questions on the operations. Each

demonstration of the prototype took about one and half to two hours.

The facilities for reminders for authors who had not submitted in time and for indicating
delivery failure had not been suggested by users in the initial interviews. Following the
literature these facilities were included in the prototype, and pointed out to the users

during the demonstration.

The comments on the prototype were obtained from the users at later date, written on the

sheets provided before the start of the demonstrations. All users considered the

prototype functionality would meet their needs, and several improvements were

suggested. It was suggested the system should keep on informing members on delivery

status, showing date and time of updates while selecting the version for the next update,

134

Chapter 7 Testing & Evaluation of NewsLetter Prototype

that there should be a manual reminder facility, provision of security features to protect

privacy and inclusion of a rename function. The key functionality features which were

suggested by the users are compiled and listed in the section 7.3.

Apart from the functionality, the users were more concerned about the 'user interface’
facilities. It was suggested by the users that the system should be 'user friendly' and
facilities provided for such system should be simple to understand. Sometimes users
may not be familiar with computer terminology. One user pointed out that such systems
are more useful in geographically distributed areas where more people are working

together.

7.2 Analysis of Results

The prototype is divided into three sub-systems. Two sub-systems are menu driven and
interactive: one for the group editing organiser (the activity generator sub-system) and
another for the rest of the members of the group (the activity responder). The third sub-
system is a monitoring system (the activity monitor) required to update the status of an
activity and to take hidden decisions for the group editing organiser in the background.

The Activity generator, monitor and responder sub-systems have been discussed in

section 6.4.3 in chapter 6.

During the functionality testing demonstrations were arranged to display the results to
potential users for feedback. Rather than discuss the testing in full, only those points
that were confusing or needing improvement in regard to users are discussed here. The
following paragraphs discuss the functionality of the activity generator, the activity

monitor and the activity responder sub-systems in turn, along with limitations of the

prototype.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

Services

To Create new Newsletter

To Add Group Member

To Delete Group Member

To Send First Notification to the Member

To Process Contribution

To History and Statistics

To Edit Contribution

To Quit

Table 7.1 Functions in Activity Generator.

7.2.1 Activity Generator

The activity generator acts for the group editing organiser. The table 7.1 shows the
functions implemented in the activity generator (placed here for ready reference). The
results of the functionality testing of the activity generator are divided into two parts: the

limitation part and the user evaluation part.

There are some shortcoming of the modules in the prototype, which would need
improvements when developing a final implementation of the system. The

improvements are discussed in the user evaluation phase.

72.1.1 Limitations in the Activity Generator
Most of the limitations in the prototype arose because it was decided to avoid complexity
during program development. These limitations can be overcome by writing more code

or more efficient code, which is not an object here. The easier and quicker program

development coding is used to check various functions in the prototype.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

The “Create Newsletter’ module restricts creation of more than one Newsletter. This is a
prototype limitation which would not be in a full implementation of the system. The
reason is that the functionality of the operation is obtained by checking the header

component which could be overcome by extending the code.

Another limitation is that the name of the common store is given as ‘newsloc’ (i.e.
derived from news location) in the Mail directory of group editing organiser. The name
of the common store should be based on the name of the document (i.e. Newsletter) to
create an unique database system for each Newsletter. This can be extended as a sub-
directory for each editing activity within the common store, which will form a structured
database for such activities. The structure of the Newsletter information is given in

figure 6.4.

There is a requirement to create an address or aliases file in the Mail directory of group
editing organiser containing all group members for general information. The address file
creates a special communication channel between group members. This is created using
a text editor. The ‘add member’ module should include functionality so that it can be

created automatically.

7.2.1.2 User Evaluation

Create Newsletter

There is a need to define the group editing organiser separately while creating a
Newsletter. The module should consider the Newsletter creating member as group

editing organiser (owner of the activity) by default. The status of the group editing

organiser should automatically be defined by the function.

In the prototype system a member can contribute only for one topic. For example a

member cannot contribute for two different chapters in a book. However, it would be

Chapter 7 Testing & Evaluation of NewsLeiter Prototype

desirable of one group member could contribute more than one topic in a subject or in
different subject. This is a validation problem during the edit request process. The

function should be checked for subject and topic for a given member.

Add Member

This module provides dual functionality: it adds a new member in the group and also
makes available previous contributions to the new member as read only versions which
are in common store. Adding a new member function is straightforward (it updates the
information). The functionality to link contributions is achieved by two different ways.
The first technique uses the communication link (using the Unix and ‘MH’ tools) and
writes the sequence number of the existing contribution to the new member’s ‘newsloc’
folder in the Mail directory. Therefore only one copy of the contribution is available at
common store. A drawback of this technique is that if a communication link fails during
the linking process, the rest of the contributions will not be available to the new
member. The technique is not recommended for the full implementation of the

Newsletter editing system.

A second technique temporarily copies the common store in the ‘newsloc’ folder in the
Mail directory of the new member of the group. This process is carried out when a
group member wants to work with the activity, and hence whatever is available in the
common store is temporarily copied. The latter technique though expensive in its
demands on communication band-width, was used in the testing phase. These two

techniques are parallel but whereas the first uses the X.400 functionality, the second

requires a direct one to one link (which may be host to host). This is appropriate for

prototype demonstration of functionality but not be suggested for full implementation

system.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

The two techniques described here are only for prototype testing. The final linking

mechanism should be taken from the CCITT draft X.gc (Joint ISO/IEC/CCITT, 91)
proposed link operations. The operations proposed in X.gc (Joint ISO/IEC/CCITT, 91)
are: linked-to and linked-by which create the relationship to all objects which have
the specified link to the named object, and to which the named objects has the specified

link respectively (in the form of direct or derived link).

The add member function does not support replacement of a member in the prototype.
That is, if a member quits the group, the group editing organiser should be able to
transfer the task or contributions of the old member to a new member. A ‘rename a
member’ function to perform this task is an additional requirement for the full

implementation.

Delete Member

The prototype module deletes the record of the member from the group member file.
This means an un-delete operation cannot be performed for this member. The delete
member function should not perform the physical deletion. It should maintain a deleted
status character with the record of the deleted member. This will provide flexibility in the

operation, and if required the deleted members can be listed or re-included later.

First Notification

This module sends a notification to a member on selective basis. The notification
supplies information (on their registration in the group) to a member about their
membership in the group. There 1s no other provision for a member to know that he/she
is included in a group. Therefore, the notification should automatically be displayed to

the member, whenever a member first logs-in after the arrival of the first notification.

Chapter 7 Testing & Evaluation-of NewsLetter Prototype

History and Statistics

A limited facility is incorporated to display the history and statistics associated with each
Newsletter. The history and statistics aspect contains a wide range of information. It is
very difficult to decide what particular information is required at a particular installation.
A local installation requirement should be consider as open ended. The history and
statistics information may be provided as command line instructions in different break-
ups, for example: show requests, show accepted-versions, list group or list
suggestions. The command should, for example, be able to display all requests made by
a member. It is not necessary to have all functionality as a part of a standard. The history
and statistics functionality should have the facility to extend its functionality based on

local requirements.

The prototype module does not support the display of information to group members
who are not the group editing organiser. It would be better to provide such facilities to
all members of the group, so that the status of the activity can be known by all group
members. Therefore the group member file should be made available (with restrictions)

to all the members to provide information such as history and group information.

Process Contribution

The module combines two functions. Firstly, it accepts from members contributions
which the group editing organiser finds acceptable. The 'accept contribution’ function
does not check for an earlier accepted version. If a version is already accepted, it should

give a message saying so. The acceptance of a contribution should stop further updates

and any other action taken by an author or reader for this topic. However the group

editing organiser should be able to do any modifications, or update the document. This

is not implemented in the prototype.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

Secondly, ‘generate Newsletter' function does not check for defaulters who have not
supplied their contribution. During the Newsletter document generating process, the
system should check accepted versions from all members. It should provide information
to the group editing organiser about the members whose contributions are not accepted
and facility to continue the generating process after alerting the GEO to the fact that a
contribution has not been accepted. If a Newsletter is generated, the activity should not
allow further update by any member of the group and should be closed. However, it
should not stop generation of various versions of the Newsletter document. Such access

should only be available to the group editing organiser or his/her representative.

Edit Contribution

This module provides facility for the GEO to edit a contribution received from another
member. After GEO edits he sends a copy of the revised contribution to the author. In
the prototype, the copy contains an additional header parameter 'CC’ (carbon copy),
which should be avoided in a full implementation. The contribution carries new ‘update-
on’ date and time but the ‘CC’ header component can create confusion if the original

author does not recognise copy (CC) as a modification of his work.

7.2.2 Activity Responder

The activity responder performs two tasks. In the monitoring mode, it checks for

reminder and delivery failure during each process.

In another mode, the activity responder provides the editing tools required by the all
group members (other than group editing organiser). Table 7.2 shows a list of tools

incorporated in the activity responder. The modules, related to this activity sub-system

which would need improvements during the implementation implementation of a

working system are discussed in the user evaluation phase.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

Service

To send edit request to common store

To edit requested contribution

To suggest revision to contributions by other members

To show differences between two contributions

To create first draft

To edit earlier drafts (when xmh facilities available)

To Quit

Table 7.2 Functions in Activity Responder.

7.2.2.1 Limitations in the Activity Responder

The group editing organiser is able to incorporate a suggestion on behalf of any member
of the group. The prototype does not provide the facility for the group editing organiser
to make suggestions on another member’s contribution. This facility is available to all

other members of the group. The facility should be extended to the group editing

organiser.

When a contribution is released for update, an edit flag is set by creating a file
‘checkedit'. This file is available in the member's Mail directory in the ‘newsloc’ folder.
The checkedit file is also created in the individual folder within the common store. The

method is not suitable for a working implementation, because it needs to write a

e number of the contribution in the checkedit file. The same file is also created

sequenc

over the network in the member’s ‘newsloc’ folder which is risky (may not set a flag)

and may not be created if the communication fails during the process.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

The edit flag is required to define as a new character (likewise as defined for reply,

delete and current) to be incorporated within the contribution. Such characters also
required to define for rest of the operations: suggestion request, reminder, new version
and current update. The flags for edit request and new version should hold the variable
status and should change when the status changes, for example after arrival of a new
version, the edit flag should be removed and new version flag should move to the next

version.

If an edit flag is incorporated within the contribution, it would avoid duplicate setting of
flag, one in ‘newsloc’ folder in member’s directory, another in the common store. This

will also reduce communication overheads.

7.2.2.2 User Evaluation

Edit Contribution

A contribution is divided into two parts. The header part and the body part. The header
part contains all header components required for an outgoing message and processing.

The body part contains the actual contribution written by the group member.

During the edit session the body part of the contribution is opened for update. It does
not provides the details of the header component while edit. However, the complete
contribution (i.e. header and body) should be displayed during edit session. The reason

may not be strong, but it makes clear the subject, topic, to whom it is being sent etc.

When a group member gets a new version for next update the member should be

informed at its arrival. So that a member can start next update. No information 1is

supplied in the present prototype.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

Suggest Revision

The suggestion contains a contribution carrying an additional header component
‘Revision-Suggested-By: name of the member ‘. Apart from an additional header
component, a character should be defined for a suggestion which would be able to
identify that this contribution contains a suggestion. This character should be

incorporated into the contribution in a similar way to the reply character discussed

earlier.

Show Differences

The module lists the differences of two consecutive contributions for each member. This
does not allow a member to select the contributions that are compared. This facility is
made available to all the group members except the group editing organiser in the present

prototype.

7.2.3 Activity Monitor

The activity monitor provides a rule-based information handling system to keep an eye
on the progress of the Newsletter activity. It is necessary for each event to pass through
the activity monitor to update the status. Therefore, the activity monitoring system

should check the events related to the Newsletter at regular intervals or as the events

arrive.

The reminder generating part should check the necessity for reminders and after certain

number of reminders it should inform the group editing organiser. The group editing

organiser should be able to send reminders manually.

The system should give indication to the group members for the major events and status

of Newsletter to get their attention. If a member is not logged-in, and if there are events,

it should inform the member for all events while log-in.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

7.2.3.1 Limitations in the Activity Monitor

The activity monitoring system watches each event of the Newsletter activity. When a
new contribution arrives from a member the monitoring system processes it. During the
processing the new contribution is linked to the rest of the members and refiled in the
individual folder for the member. If the communication link fails during the process then
the new contribution may not be available to the remaining members. There is a need to
extend the functionality of prototype to confirm the contribution, that it is linked to all
the members. If the contribution is found not linked to any then it should be linked to

that member.

The reminder timings are set (built-in) within the activity monitor. The activity monitor
code has to be altered to change the timings. A separate function should be made

available to make such timing setting interactive.

7.2.4 Necessary modifications to MHS

Some modifications to MHS are required to enable the 'SAGE' project to meet the
required functionality. These are discussed below:

1) New Commands and

i) Setting up .mhprofile.

Modified new commands are generated from the existing ‘MH’ tools. For example, to
send an edit request, a command (xrequest) is generated from the send command. The
component file for the new command is also define as ‘requestcomp’ (defines modified
header components). The new command is also need to declare in the home directory in

.mhprofile of the concerned member. The .mhprofile file is to be edited manually.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

The Newsletter activity should fall into a group editing application which might contain a

wide range of editing activities. This application must be able to access a separate set of

tools related to group editing.

The CCITT draft X.gc (Joint ISO/IEC/CCITT, 91) proposes an ‘announcement’
functionality for asynchronous computer conferencing system. This facility would also
be desirable in group editing. There is no provision in this prototype for
‘announcement’, but it would be desirable in a full implementation. The announcement

facility would be useful to find potential contributors to the Newsletter.

7.3 User Comments
As a part of this research, the prototype was used as a testbed for user feedback. The
prototype system was demonstrated to assist personal communication with some
potential users. The responses from the potential users were very helpful in discovering
and clarifying some of the misunderstandings about the services, and gave some new
ideas. Some user comments are listed below:
Requirement for additional reminders, to be sent manually, as needed.
Requirement to keep members informed of delivery status at all times.
Requirement to provide history and statistics to all members.
Requirement to increase system security: for example a password to entry to the
Newsletter activity.
User friendliness of the system. These commands should easily be
understandable by novice users.

All new events of the activity should be advised to the member when they log-in.

A ‘rename’ function to replace a member who quits.

Chapter 7 Testing & Evaluation of NewsLetter Prototype

The prototype testing and evaluation has allowed testing of functionality of the proposed

Newsletter editing model, and also provided user feedback to refine the specifications,

and has allowed identification of limitations of the prototype. Two supportive case

studies for comparison with the Newsletter are now described in the next chapter.

Chapter 8

Supporting Case Studies

8.0 Introduction

A detailed study has been carried out on editing issues within Newsletter activity. There
are other activities whose functionalities are similar to the Newsletter activity. These
activities are editing a technical paper and a software development team, which are
discussed here to investigate their commonality with the Newsletter activity. The

outcome helps in determining common issues in group editing.

8.1 Editing a Technical Paper

The activity consists of the authors and of the operations to carry out editing of a
technical paper. The working domain of the paper may span several countries for
example, or different, possibly geographically separate, departments of an organisation.
The limitation of the domain depends on the network connectivity and the locations of
the authors. One of the authors has to act as the group editing organiser having
responsibility for completion of the paper. The access rights in this case may be equal
for all members. However if a working domain contains a sub-group then the access

rights would not be the same at second level of the group.

8.2 Technical Paper Activity
Technical paper writing by more than two people is a joint editing (writing) activity on a
single subject/topic. There are different ways to edit a paper. One approach is to edit a

single document. In this case the first contribution is updated successively to generate a

148

apter 8 . :
Chapter Supporting Case Studies

higher version. The first contribution can be updated (written to) by any member of the

group. This mode of group editing has only two versions of the paper available at one

time the latest version and a back-up copy.

A second approach starts from the first contribution which can be updated (written to)
by any member of the group. The subsequent versions are generated by editing previous
versions. In this approach if the authors of the group are assigned a separate part in the
paper than this becomes a similar to the Newsletter. In such case all authors are allowed
to update any contribution on their part. But if the authors are not assigned separate task
in the paper then the editing has to be made on the latest version, which is in
contradiction to the Newsletter activity. In this case updating only the current version
would be an appropriate. However the update would follow the edit request mechanism

as in Newsletter activity to avoid redundant editing.

The technical paper editing activity consists of the same three base classes (i.e. entity,
item and domain). The Group Editing Organiser (who can be a co-author) acts as a

coordinator and is responsible for completion of the activity. All authors have the same

level of access (read, modify and write) as the GEO, but the GEO has extra

administration powers.

8.3 Structure of Technical Paper Activity

The information model of the technical paper activity consists of internetworking and
different operations performed by each member of the group (defined in section 5.5).
The Group Editing Organiser has additional functionalities for administration and for

processing common store, for example: get comments from referee, generate final shape

of the paper, activity completion and other administration operations. These operations

as in X.gc (Joint ISO/IEC/CCITT, 91), are modelled as follows:

Chapter & Supporting Case Studies

@) Member port ---> referee, reader(s) or guest editor,
(i1) Subscriber port ---> author(s) and

(i) Moderator port ---> group editing organiser.

The member port may be available only for commenting on the paper and not for
editing. The hierarchy structure is similar to Figure 6.3 in which second layer (i.e.
coordinator(s) and co-editor(s)) would be replaced by authors and the last layer by
referee & guest editor. It may be possible that author(s) do not know about the

referee/guest editor and may not be able to share contributions with such entities.

8.4 Working on A Paper

The selection of subject or topic for a paper, the contributors and the group editing
organiser are decided by mutual agreement between authors. These agreements can be
reached over any communication medium. The initial agreement need not be via a
computer network, but one can use normal Message Handling services to agree these
issues before creation of the activity. Once agreement is reached, the activity can be put

into operation.

8.4.1 Creation of Technical Paper Activity
The technical paper editing activity could be created by any user over the network. The
originator of the activity would act as a group editing organiser. These steps are similar

to the Newsletter activity. The originator should be able to start the activity by taking the

following action:

(i) Define activity --- The group editing organiser will have to define the activity

(i.e. giving name to the technical paper activity),
Define members of the group --- Creation of associated list of authors, reader(s)
and referee(s) group members,

150

Chapter 8 Supporting Case Studies

(iii) Define common store --- Creation of common store, and

(iv) Define history file --- Creation of basic information history about the activity

like: date of creation, list of authors, reader(s), referee(s), guest editor(s) and

latest submission date if any (this file will contain lesser information compare to

news letter activity).

8.4.2 Contribution flow

The status of an activity is maintained by the group editing organiser until it 1s
completed. The group editing organiser may negotiate among the members to decide
who starts with the initial contribution. Any member of the team can edit the very first
contribution, which is submitted to the author acting as the group editing organiser
(GEO), who maintains the common store. Further editing is carried out on a controlled
basis by making an edit request, and releasing the latest version and each time requested
version is released for updating. This will avoid redundant editing (being a single
topic/subject editing) among the members. However, any additional text to the topic
may be contributed any time by any member of the group. There should be a provision

to have sub-sections within the paper so that, different members can work at the same

time, if necessary. The Group Editing Organiser would give the required shape to the
final contribution. There should be linking mechanism to link it to rest of the members
of the group whose master copy is in the common store. Figure 8.1 shows the flow of
contribution between an author and the group editing organiser along with the linking

process. If each author has a separate part to work than it operates in the similar manner

as Newsletter.

Chapter 8 Supporting Case Studies

!

Edit first contribution-any author

™

Submit to GEO

for edit
request

Release version for edit Link to all members

\ [

Send to requesting author

Wait for check time

\
Updating by the author

Figure 8.1 Contribution flow between GEO and Authors.

The release of a requested contribution and linking of new updated version should be
part of the information handling supported by a service agent. Any reader member
should be able to submit a suggestion, which is kept in the common store. The group
editing organiser may get comments from the referee/guest-editor. There should be a

provision to hide such commented contributions from other members.

Figure 8.2 shows a contribution flow carrying a suggestion by a reader member and

figure 8.3 shows the contribution flow between group editing organiser and referee

editor in the group.

Chapter 8 Supporting Case Studies

'

Suggestion by reader

Send version to referee

Y
| Comments by referee
Submit to GEO

¥
Submit to GEO

o -
do nothing |)

ant
to hide Hide it
it ?

Link to all members

\
Refile to suggest. box

Link to authors

Y

Refile to comment box
Stop

Figure 8.2 Flow of Suggestions. Figure 8.3 Flow of Comments.

8.4.3 Technical Paper Header

The header of a technical paper can be defined using IPMS header extension fields
facilities. The component are similar to the Newsletter activity. The group editing header
for technical paper would comprise the following parameters which are similar as
Newsletter but given separate headings (e.g. paper reference and Authors):

1) Paper reference: ‘name of the paper’,

(i) Authors: ‘list of authors’,

(ii) Subject: ‘subject for paper’,

153

Chapter 8 Supporting Case Studies
(vi) Topic: (optional in case of sections),

(v) Author: ‘name of current updating member’,

(vi) Latest submission date: (if any (optional)),

(vii) Suggestion By: ‘name of reader/referee’ (optional),

(vili) Version: ‘Released for edit” (optional),

(ix) Version: ‘Accepted’ (optional) and

(x) Updated-On: ‘date and time’ (other then first contribution).

8.4.4 Technical Paper Editing

Any author can start the very first contribution. When this contribution is submitted, it is
available in the common store. Since all authors are working on a same document (i.e.
paper) on one topic, they are allowed to read or modify (i.e. update) the document. This
update has to be controlled by making an edit request, so that only one author can
update at one time. If the paper is divided into sub-sections and each author is
contributing separately, in such case all authors are allowed to update at the same time
but on their own part of the document. However they should be able to read the
contributions of other members and the activity is operated in the similar manner as

Newsletter.

If comments are required from a referee, the group editing organiser should be able to
send such contributions to the referee. A provision for not showing commented

contributions to rest of the members or some of the members should be made

particularly in this case.

8.4.5 Other Facilities

If the activity is not closed, the retrieval of the document should show the last version

of the paper. The group editing organiser can submit the accepted version for

publication. A rule-based system would be able to check non-delivery notification and

154

Chapter 8 Supporting Case Studies

reminder facilities. In case of delivery failure, the system should be able to resend the
un-delivered contribution. If an author fails to submit their contribution within a specific
time, an automatic reminder can be sent to the author concemed. The reminder may also

be sent in case of a pending edit request. These features are similar to the Newsletter

activity.

8.5 Distributed Software Development Team

A majority of software engineering work is carried out in teams which vary in size. In a
study undertaken by IBM it is found that 50% of a typical programmer’s time is spent
interacting with other team members and 30% working alone (Sommerville, 89). The
interaction between members plays an important role in the overall performance of the
group. A group whose members recognise each other’s technical skill and deficiencies

and are mutually supportive can achieve better results.

The activity needs comparatively more interaction between the group members. The
activity also requires activity specifications in more generalised way, and should be

made available on a need basis to each member. The activity has to follow the software

development procedure (Sommerville, 89), where testing and integration phase, are

difficult in such an environment. Each member has to produce working code as a

module before integration.

8.5.1 Software Development Activity

The software development by a group of people is a critical activity in terms of its
integration as a package in a distributed environment. Such a package carries pre-
defined specifications to produce specified results. Each member of the group is

assigned to develop a part of the package in the form of subroutines within the scope of

the package. These subroutines are limited to specified input and output parameters. In

such cases the activity should define all basic needs of the package like: global

155

Chapter 8 ;
Supporting Case Studies

parameters, input, output, data dictionary, system design structure etc. It may possible

that the sequence of contributions from each member within the integrated package be
defined at early stage. It is necessary for members to test their contribution before
submission with the help of simulated data input. However, a member can use other
member’s contributions from the common store if available. A tested contribution which
consists of header and body part is submitted to group editing organiser. These
contributions are available in a general folder and the body part of the contributions (i.e.
coding only) in the coding folder within common store. The final shape of the coding
can be generated by the group editing organiser. The integrated coding contains the
chain of body part of contributions in the shape of the package. This considers the
highest version of each member. The common store consists of the folders like: general,

coding, reminder and modify. The Structure of common store is shown in Figure 8.4.

General folder

header

member-1
—_—
contribution | body body body

version-1 version-2 version-n

header header header

member-2
e
contribution | body body body

version-1 version-2 version-n

header header

member-n
e R
contribution | body body body

version-1 version-2 version-n

coding folder

member-3 member-1

member-n member-2

body part only

control folders

Figure 8.4 Common Store Structure.

156

Chapter 8 . :
apter Supporting Case Studies

Since each member is assigned a pre-defined task within the software package they are
usually responsible for completing the task. However, GEO may issue reminders, ask
for modifications and assign rights to another member for integration, testing and
implementation of the package. The contributions from other member are linked to each
member within the group. One can use the contribution for testing purpose. They
should not be able to modify the coding of another member. In this activity the control
of the group editing organiser is very weak . However, s/he is responsible for

administration and completion of the activity testing, integration and implementation.

8.5.2 Software Development Team Activity Working

Like other group activities software development team also comprises the entities, roles
and functions in terms of group communication system in a specified domain. The team
may consist of members who have the equal status (programmers). The activity may
also have experts of the software system who may act as referees at a later stage. The
role of group editing organiser (GEO) is like a team manager or co-ordinator. The act of
GEO depend on skill (e.g. in case of rejection of code they may write new code). The

functional requirement is to be met by the operations and their underlying

functionalities. In this case a member has to submit a tested contribution for an
integration. The group editing organiser may nominate another member with additional
access support for testing and integration of the package. The domain of the activity

could be an organisation or a set of organisations.

As described, software development by a team is a critical activity and has its own

importance. The activity, compared to others needs frequent interaction between

members of the group. It may be necessary to provide the separate channel for

interaction between members. This communication channel may also be used for

transfer of information other than the contribution which should be considered as a part

157

Chapter 8
P Supporting Case Studies

of the activity. It would also be necessary that the member should send a copy of tested

code to the member who is in need of that code (e.g. sub-routine) as input.

The activity needs to be defined (section 6.2.2.1) by four steps. There would be a
necessity to provide the system (software) specification and related information such as
global parameters and data dictionary which would normally be accessible by the

members. This information would be maintained along with the historical information.

The header components of the activity are similar to those listed in section 6.2.2.4 with
a modification. The component ‘Paper Reference’ may be given a name ‘Part of

Package’

Initially the activity looks like an independent activity. This needs relatively more co-
operation when it proceeds towards completion. The operation edit request has weak
role in this activity. An author (i.e. programmer) can always submit and improved

version of their code before testing and integration.

8.5.3 Identification of Commonality

A comparative summary of the cases for which a study has been carried out is shown in

table 8.1. The comparative study showed many similarities in the functionality between

the group editing activities.

Chapter 8

Supporting Case Studies

Functionality Features

Newsletter

Technical Paper

Software Team

Group Editing Environment

Same

Same

Same

Group Editing Organiser Role

Strong

Less Strong

Co-ordination

Access Rights

Based on Status of the
member

Based on Status of the
member

Based on Status of the
member

Common Storage

Yes

Yes

Yes

Multi Versions

Yes

Yes

Yes

Contribution Flow Mechanism

Similar

Similar

Similar

Notification Requirement

Similar

Similar

Similar

Reminder Requirement

Similar

Similar

Similar

Delivery Failure Check

Similar

Similar

Similar

Communication Requirement

Based on Status of the
member

Based on Status of the
member

Based on Status of the
member

Header Component

Similar

Similar

Similar

Creale Functionality

Similar

Similar

Similar

Interaction Between Members

very Low

Low

High

Activity Information Interaction|

Low

High

Table 8.1 Comparative Summary between Editing Activities.

For the functionalities that differ, by suitable formulation of their operations and
services the functionality can be made sufficiently flexible to accommodate the
differences. For example the access rights of GEO would be based on the nature of the
activity (discussed in section 5.3), and would be different. Similarly, a header
component requires the name of Newsletter or Technical paper or Software package,

which would be met by a header component: ‘name of document’. This name should be

represented by ASN.1 (abstract service notation one) object identifier.

Chapter 9

Proposed Model for Group Editing Activities

9.0 Introduction

The group editing problem is described in section 5.5 on various aspects of editing
issues in a group environment. The solution of editing issues in an OSI network
environment has been summarised to determine group editing services and tools for
group editing activities. This chapter describes a common model for group editing
activities considering the results of all three case studies (a newsletter, a technical paper
and a software development team), prototype and user comments. Issues on group

editing services and tools will be discussed later.

9.1 Group Editing Environment
As discussed in section 5.5.1, an editing environment can be modelled as a functional
object. These objects may be identified as contributions, group editing system, and

group members.

The group communication services in terms of basic services, advance services and
rule-based information handling services (discussed in section 4.3) would be met by a

supportive application group agent. The group editing environment consisting of all 1ts

components is shown in fig 9.1, within the supportive application group in relation to

figure 4.5.

Chapter 9

Proposed Model for 4Group,Editingv Activities

Editing
Tools

Rule-Based Common

Information Handling
Svystem g Store

Figure 9.1 Group Editing Environment.

9.2 Access Control

The access control module grants permission to determine which user can perform
which functional operations. There are two main reasons behind it. There 1s a
requirement of privacy within the environment where information is shared between
users and a requirement of integrity of information. This is the issue for the group
editing organiser who can decide the permissions to access these operations (e.g. read
and create). The following are the operations compiled from CCITT draft X.gc (Joint
ISO/IEC/CCITT, 91) AMIGO report (Smith et.al., 89) and derived from this research to

be provided as a group editing tools:

Create an activity with distinguished name and attributes.
Add a member with distinguished name and attributes.
Delete a member with distinguished name and attributes
Delete contribution with distinguished name and attributes
Send notification with distinguished name

Update contribution with distinguished name and attributes

Accept contribution with distinguished name and attributes

Generate Newsletter with attributes

Show history with distinguished name and attributes

161

Chapter 9

X)
X1)
Xii)
Xiii)
Xiv)
XV)
xvi)

xXvii)

Proposed Model for Group Editing Activities

Show statistics with distinguished name and attributes
Send edit request with attributes

Suggest revision with attributes

Show difference of two contribution

Send reminder with distinguished name

Rename with distinguished name and attributes

Read contribution with distinguished name and attributes

List group member with distinguished name

Hidden operations are required in a monitoring system (discussed earlier). The members

of the group would invoke these operations by means of three ports which are discussed

in AMIGO report.

Administration port, which defines operations for administering the activity.
Retrieve port, which defines operations required for retrieval of inform ation
objects.

Store port, which defines operations for manipulating information.

The modelling of these ports in a group editing environment is shown in figure 9.2. The

figure is extended from AMIGO report (Smith et.al., 89) in which all operations are

required to pass through a rule-based information handling system.

9
Chapter Proposed Model for Group Editing Activities

Rule-Based
Infomation Handling
System

Group Editing System

Figure 9.2 Group Editing Environment.

9.3 Storage Facilities

As discussed in the analysis for the case studies, a common work place is required to
store the contributions during the editing process by the group of people. Each member
has the access rights corresponding to their status in the group. Different storage
structures are considered in editing newsletter, writing a technical paper and software
development activities. Since each information object is considered as a basic object and
separate node, it contains all the information required for processing. Therefore, there is
no need to define individual working folders in the common store. A single folder,
which can be a common store itself, meets the requirement of a group of people. The
approach is different in the Newsletter activity (Ch 5.5.4).

Each event related to the group activity has to pass through a rule-based information

e newsletter box, it may be called

handling system. If such rules are incorporated with th

an active ‘newsletterbox’” within the mail directory. The ‘newsletterbox’ may act as

active mailbox on incoming and outgoing messages in regard to editing activities. This

163

Chapter 9

Proposed Model for Group Editing Activities

3 ’ M
newsletterbox’ may consist of advanced group communication support services to

handle the information to and from the common store.

The AMIGO MHS* report on use of directory services for group communication
(Weiss, 89) discusses the existence of an archive agent to deal with the services related
to the common store. This means the rule-based information part related to common
storage handling may be built-in as archive agent. Services such as request handling,
linking of new arrivals, suggestion handling and history and statistics could be
integrated as a part of the services of an archive agent. The AMIGO MHS™ report
also suggests defining a document identification (document-id) as the directory object

class which can be used to request the document.

A mechanism for linking contributions in common store to all the members (as read
only) is necessary to avoid multiple copies of a contribution. This reduces the disk space
overhead for large activities. It could be part of advanced group communication

services.

The 'SAGE' project strongly supports an entity archive agent (to provide store and
retrieve services) with its extended functionality. As discussed in section 4.3 the
services of supportive application group agent (SAGA) would contains basic services,
advanced services and information handling services. The services of an archive agent

would be used as a part of store and retrieval services within the SAGA. The services of

supportive application group agent provide the group communication services support

for the common store. Figure 9.3 shows the proposed relationship structure between

. . . . “ S an 'v . nt.
support services and common store considering the monitoring part as an archive agent

A group member has to use the services provided by the message handling system, the

directory and the services forming group editing tools to complete an editing activity.

hapter 9 ” -
Chap Proposed Model for Group Editing Activities
group Rule-Based
member Information Handling
System
Message
Handling —>»»| Archive p—————3 Common
System < Agent DA Store
Directory
Services

Figure 9.3 Common Store Relationship with Other Services.

The AMIGO report describes the requirement of the internal data information model. A
similar approach is used for the structure of the common store, which must be able to

meet the following requirement (Nunez, 89):

1) it must define basic communication objects.

1) must represents the information needed for handling distribution of information.
111) it must define elements and operations to support distributed information access.
iv) it must support the multi-user characteristic of the system along with access

control and privacy.

V) it must support a namespace of globally unique names.

9.4 Version Handling
A contribution is made up of a header and a body part. The header of the contribution

contains a component ‘Updated-On’. There is a direct mapping between the fields and

the attributes of a contribution. That s, the ‘Updated-On’ field contains the date and

time of submission of the contribution. This date and time is derived from the system

during submission, which is unique for each contribution. The posting time of the

contribution is used to distinguish various versions. The timing would also be helpful

165

Chapter 9

for controlling versions. To identify the last version a character should be incorporated

within the contribution which would indicate the last version. Figure 9.4 shows various

versions in the common store submitted by a member.

Contribution
from
balab

Y

From:balab@email
Status: Author

Updated-On: 10 10 92 07:14:26

Y

From: balab@email
Status: Author

Apart from this MH tools can also be used to check the last previous and first version of

a contribution. A list of such useful commands are placed in Appendix 6 with operation

manual.

Updated-On: 1 3 93 15:30:15

From: balab@email
Status: Author

Updated-On: 16 1 93 09:34:10

Common Store

Figure 9.4 Different Versions by a Member in Common Store.

166

Proposed Model for Group Editing Activities

Chapter 10

Recommendation for Group Editing Services

10.0 Introduction

Based on the study made on group editing activities which are discussed in chapters 4
through 9, the group editing services are recommended. The recommendations are
proposed in the style of CCITT and are comprised of Abstract Service Definitions
mapping onto the message handling system, and functionality extensions to the X.420

protocol.

The recommendations style are discussed in the light of global naming structure and
represented by ASN.1 (abstract service notation one) object identifiers (Joint
ISO/IEC/CCITT, 91). The abstract service definitions are given for the operations
which are additional to the CCITT draft X.gc (Joint ISO/IEC/CCITT, 91) for group
editing activities. The mapping and X.420 protocol functionality extension is proposed

in terms of component files (header components) readily available for editing

operations.

10.1 Group Editing Services
The group communication services for editing application (within the supportive group)
are projected in terms of the group editing services tools as basic services, advanced

services and rule based information handling system. The editing services are the only

part directly related to the users of the system. The rule based information handling

system is the underlying functionality required by the editing application group as a

whole to manipulate internal and external transactions.

167

Chapter 10

Recommendation:for Group Editing Services

10.1.1 Editing Services and Tools

The 'SAGE' project view on a functionality of any group activity is that it can be
divided into two parts: the tools part and the services part. The first part
comprises the operations directly accessed by the users of the group. The second part
is the underlying functionality required to meet such operations. For example, an 'edit
request' is a functional operation which would present a contribution to a member for
next update. When a member sends an edit request the underlying functionality
involved in the operation is: the request is sent to the common store, the required
contribution (version) is searched, the availability for next update is checked and if
found to be up-datable then the contribution is retrieved over the network for next
update. The functionality involved with the operation is depend on the complexity of

the operation.

The 'SAGE' project defines the operations required by different roles in the activity as
a tool set. The underlying functionality of these tools is to be provided by an
application service agent. The underlying functionality provided by the service agent is
defined as the services for an activity. Therefore a group communication system
would provide these services and tools to meet the requirement of the activity. The

services could include a rule-based information handling requirement.

The support requirement for a group editing environment is split into two parts: the
operational part of the functions and the rule based information handling part. The
operational part of the functions is discussed in this section. The group editing
requirement is worked out in chapter 9, while discussing the group editing model. The

set of abstract operations which access and manipulate group communication editing

objects are defined in turn. The conceptual group communication operations are

specified in terms of outline functions in the form (Benford et.al, 90):

168

Chapter 10

Recommendation for Group Editing Services

function name (parameters) --> results

The operations are specified using OSI Abstract Service Definition conventions. The
abstract operations should return status information indicating their success or failure as

a part of the operation results. The operations must be given distinguished names to

identify objects.

10.1.1.1 Naming

The naming of objects is a critical for large distributed systems (Benford et.al., 92). All
objects are accessed by names provided them. Therefore each object must have at least
one globally unique name. Group Communication Distinguished Names (DNs) provide
the handle by which all objects accessed (Benford & Palme, 93). An object may be
identified by more then one name (e.g. aliases). It should be possible to locate the object
by a given name in a globally distributed system. Such examples in this project are:
name of a group editing activity, group editing user, name of common store. In the
description DN stands-for Distinguished Name and group of DN is a

clusterDN.

The Distinguished naming mechanism should be defined in same way as in CCITT
draft X.gc proposal consisting of an ordered sequence of attributes type/value pairs. The
name should be divided into two components; the domain part and the local part. The
domain part indicates the naming authority for the object and the local part consists of a

subset of the objects attributes which must be unique within the domain. A domain is

itself an object with a name where each name part is an ordered sequence of attribute

type/value pairs. For example:

organisation=X@organisational unit=Y @topic=editing activities,

169

Chapter 10

Recommendation for Group Editing Services

where name of a cluster may represent an editing group activity which would be
contained in its naming organisation domain, organisation = X@ organisational unit=Y
(domain part), and the local part of the name would be topic = editing activities (local
part), the symbol @ is used to separate name parts and represents an attribute

type/value pair in the form type = value. The attribute types are globally unique and are

represented by ASN.1 objects identifiers.

The internal state of each object is represented by a set of attributes (i.e.
attributelist), each of which has a type and a set of value. Attribute types are
globally unique (Joint ISO/IEC/CCITT, 91) and represented by ASN.1 (Abstract
Service Notation one) object identifiers. Attribute values may have complex structures

within ASN.1 syntaxes.

Figure 10.1 shows an example of an attribute in an information object (Joint
ISO/IEC/CCITT , 91). In the context of the editing activities each header component
may be viewed as a single attribute (e.g. topic, subject, updated-on, status of the

member and a group member).

Type Value

[PMessagelD | 123@John

Importance High

raphjordan@ hud.ac.x&]

Recipient Ea]ab@ cmall.asum.ac‘ukl
Ibemard@quipu.aston.ac‘uk I

Figure 10.1 Attributes in an Information Object.

170

Chapter 10 Recommendation for Group Editing Services

The external relationship between objects are represented by links. A list of such link
operations defined in CCITT draft recommendations are placed in Appendix 4. Each

link has a type and restricted to the editing group objects. For example:

e Membership links between entities and domains,

® Contribution links between items and domains and

® Update links between items

10.1.2 Abstract Service Definition

This section specifies the Abstract Service Definition of an asynchronous group editing
communication system. Asynchronous means that there is no support for ‘real-time’
communication between group editing users. The system works on store-and-forward
manner (as defined in X.400 recommendations). The editing group consists of
contributions, topics, subjects, documents and participants. The group editing
environment defines certain advanced group communication services required in context
of editing a document. It does not specify an implementation specification for such

protocols as a whole.

The abstract operations access and manipulate group editing objects. In broad terms the
operations support retrieval, storing, administering and modification of editing objects.
The access right is depend on the nature of the activity (Benford & Palme, 93), viz:
open, closed, restricted or protected. This is an issue to be decided by the owner of the

activity i.e. the group editing organiser, that what kind of access to be provided to

various members of the group.

The abstract service definition specifies operations which allows groups to work with

the editing document. For example: create, update, suggest and read complex shared

information structures within domains. The editing group users would interact with the

group editing system by invoking abstract operations by means of admin, store and

171

1 .
Chapter 10 Recommendation for Group Editing Services

retrieve ports (discussed in section 9.2 in chapter 9). These operations are informally

described below.

Create-Activity (DN, domainDN, attributelist) --> attributelist, status

Creates editing activity with the given Distinguished Name and attribute in the
Distinguished domain. The object should be created and the name of the common store
is to be determined from its name. The object type identified the class of object. The

object can subsequently be removed from its distinguished domain.

Register-GroupMember (DN, clusterDN, attributelist) -> status

Operation which is able to create an editing group for a given activity with the status (for
example author, co-ordinator, reader etc.) for Distinguished Name activity within the
specified domains. The attribute list is a set of values containing topic, subject and status
of the Distinguished Name group member. The operation allows a member be a
subscriber within the specific domain. It is to say that this operation registers a user to
be a group member and defines a cluster of Distinguished Name members. The
operation creates a relationship between the Distinguished Name activity and the

Distinguished Name editing group member for specified set of attributes.

Delete-GroupMember(DN, clusterDN, attributelist) ->attributelist, status
The deletion operation should delete the specified object (group member) from the
clusterDN for the given attribute list, and for distinguished name activity. It should
remove the object from all domains and clusters in which it exists. The operation should
be able to unlink the relationship between specialised objects for a given attribute list.

The value of attribute may contain a particular subject and/ or topic. The status of the

operation must indicate the success or failure along with the attribute list.

172

Chapter 10 Recommendation for Group Editing Services

Edit-Notification (DN, clusterDN, attributelist) -> status

This operation should support sending of a first notification of attributes belonging to a
single Distinguished Name. The operation locates the named object and sends a
notification, and establishes the relationship between the Distinguished Name (i.e.
activity) and the clusterDN (group) address. The attribute list can contain values (e.g.
latest submission date) by adding the member in the group for a specified object. The

status of the operation must indicate success or failure for the notification.

Update-document (DN, clusterDN, attributelist) -> attributelist, status

The operation locates the named object and checks for the availability for next update. If
the contribution specified by the attributelist values is free to update, then presented for
next update. For example a group member requests access to update a contribution
specified in the attribute list (for a topic and subject) for a group edit activity (DN) which
was requested to update. If the contribution is released from the common store then it
should be presented for next update. The operation should return the status value as
attribute list (e.g. can’t be released or being released or not authorised etc.) as success or

failure . In case of first time edit, the operation should check the notification and return

the status accordingly, with the appropriate action.

If a suggestion is considered to be incorporated, the next update for the specific topic
should be locked. A built-in functionality should be provided on the request of the
originating member or the group editing organiser, for incorporating the suggestion.

After submission of the contribution containing the suggestion such locking should be

removed.
Edit-Request (DN, attributelist) -> attribute, status

The operation should be able to locate the Distinguished Name (activity name) and

specified attribute objects (e.g. contribution value and topic etc.) and retrieve it for the

173

Chapter 10 Recommendation for Group Editing Services

requesting member from the common store. The edit-request operation should set the
edit flag to stop next update on this topic until arrival of new version. The status
indicates the success or failure of the operation. A failure should return a message (e.g.
contribution under update: wait for new version). The Distinguished Name (activity)

should establish the relationship with the contribution and the common store.

Accept-Contribution (DN, clusterDN, attributelist) -> status

The operation accepts the contribution for a document from Distinguished Name group
member. The operation is able to set the flag not to be further updated or to entertain
request handling for given attribute list objects (e.g. given topic and subject). Success or
failure status gives an adequate message: such as contribution already accepted or

document has been completed.

Generate-Document (DN, attributelist) -> attributelist, status

The operation generates the Distinguished Name editing document in the order of a
given attribute list. The operation should allow generation of more than one format for
the document. However, it should not allow any change in the document by any
member but the group editing organiser. The operation also allows generation of the
document in the sequential attribute list decided by the group editing organiser. The

status of the operation should indicate defaulters whose contributions are not accepted

and continue if desired.

List-GroupMember (DN) -> clusterDN, attributelist, status

The operation returns the Distinguished Name of the cluster objects and the name of the
type of all Distinguished Names who have a relationship with the given Distinguished
Name activity. The status should indicate the success or failure of the operation. The

attribute list specifies the Distinguished Name members other details, such as his/her

status, topic, subject etc. for a given Distinguished Name activity.

174

Chapter 10 Recommendation for Group Editing Services

List-Statistics (DN) -> clusterDN, attributelist, status

The informative operation returns statistics of all objects (contributions e.g. notification,
total contribution, accepted contribution etc.) for a Distinguished Name activity along
with the Distinguished Name member. The list of attributes should be treated as local

requirement. Such requirement may vary activity to activity.

Edit-Suggestion (DN, clusterDN, attributelist) -> attributelist, status

The operation allows a member to append text in a Distinguished Name activity for a
given Distinguished Name member. The attribute contains the contribution object which
need suggestion. The operation also sets a suggestion flag within the contribution and
carries an additional header component ‘Revision-Suggested-By’. Success or failure

should also be indicated by the operation.

Show-Difference (DN, clusterDN, attributelist) -> attributelist, status

The operation is required to show differences between two contribution objects
(different versions) by a cluster Distinguished Name group member for a given
Distinguished Name activity. The status should indicate the existence of the versions,

success or failure.

Rename-Member (DN, clusterDN, attributelist)

--> DN,attributelist, status
The rename operation re-assigns the objects (contributions) of Distinguished Name
group member who no longer has a relation with a given attribute type in a
Distinguished Name activity. This operation replaces the Distinguished Name group

member with the other Distinguished Name group member by changing its name. The

status should indicate the success or failure of the operation.

175

Chapter 10 Recommendation for Group Editing Services

Edit-Reminder (DN, clusterDN, attribute) -> status

This operation issues manual follow-up reminder to cluster Distinguished Name group
member for given attribute type Distinguished Name activity. The success or failure

status is also returned by the operation.

Delete-Contribution (DN, clusterDN, attributelist) --> attributelist, status
The operation deletes an object contribution submitted by a Distinguished Name group
member on a given attribute type Distinguished Name activity. The attribute list should
conform the status of an object. The operation should also indicate the success or

failure.

Read-Contribution (DN, clusterDN, attributelist) --> attributelist, status
The operation retrieves information about a single object (contribution) to read for a
Distinguished Name group member on a given attribute type Distinguished Name

activity.

Show-History (DN) --> attributelist, status
The operation returns a list of individual objects related to the Distinguished Name
activity. For example it should include the name of the activity, completion date, name

of GEO.

The operations such as create-activity and delete-contribution have also been defined in
X.gc (Joint ISO/IEC/CCITT, 91). These operation would possibly be modelled on

create and delete operations as also proposed for editing activities.

Other operations which have already been specified in CCITT X.gc draft (Joint

ISO/IEC/CCITT, 91) as basic operations or ‘GRACE’ project (Benforrd et.al., 90) for

176

Chapter 10 Recommendation for Group Editing Services

group communication services are not mentioned here. A list of such operations (in

brief) is placed in Appendix 4.

10.1.3 Group Editing Information Handling system

A brief discussion is made in section 9.1 while discussing group editing model of the
rule-based information handling system. The group communication working document
X.gc (Joint ISO/IEC/CCITT, 91) specifies an entity i.e. group communication service
agent (GCSA) for basic group communication system services. The idea of having an
archive agent proposed by Weiss (Weiss, 89) in AMIGO report is considered to be a
key issue in rule-based handling information. The archive agent would provide the

services for retrieve and store information to and from the database or common store.

As described in section 4.3 there would be a user service agent for each application
group, which would meet the functional requirement of the activity. The 'SAGE' project
proposes an entity supportive application group agent (SAGA). The entity
supportive application group agent would be a combination of rule-based information
handling services, basic group communication services and the rest of the advanced
support required for a group editing activity. The services of a group communication
service agent should be integrated as a single user agent for such application group.
Figure 10.2 shows a merger of such entities in a single unit as a supportive application

group agent.

GCs Editng | | RuleBased

Basic Advance L =4 Information
Services Services : Handling

SﬁpportiVe Application Group Agent

Figure 10.2 The Supportive Application Group Agent.

177

Chapter 10 Recommendation 'fbf Group Editing Sﬁ'ef\/iées

The services provided by the supportive application group agent (SAGA) would contain
rule based decision making support for the editing activities. If the agent is mapped onto
the present prototype, it is to say that the SAGA should provide all services incorporated
in the activity monitor, for example: edit request handling, linking relationship between
contributions and group members, checking delivery failure, automatic reminder
generating, selection of various header component on an specific event. The agent
should also be able to take decisions for storing, retrieval or administering the editing

application group.

The underlying functionality of SAGA is a part of monitoring system. Every event of
the group editing system should pass through the SAGA. The underlying functions are

able to generate internal and external transactions. The functionality would be meant to

support a store and forward system i.e. X.400.

Editing
Object

Gr
Common Storc A ; “P
Contribution cuvity
Notification

Edit-Request

D
Figure 10.3 Editing Activity object classes derived from GCS object classes.

178

Chapter 10 Recommendéﬁén’:for roup Editing S’.e‘rvices

10.2 Mapping the Services Onto MHS

An editing activity consists of a number of objects and roles. The objects can be
identified as items (i.e. contributions), editing groups and sub-groups and a domain. An
editing group which is an object contains a number of items on an editing activity. The
items are submitted to the group editing organiser, who can accept, ask for update,
suggest or edit the item. Figure 10.3 derives the group editing activity objects classes
from group communication system (GCS) object classes. In addition figure 10 shows

Entity Relation Diagram for group editing activities (Avison, 85).

is registered .
ACTIVITY P Domain
registered
with the activity
is responsible
has
has \
GEO
Subject w
~ Editor
/\ Co-ordinator co-rdinates

Reminder >is_seﬂt_ Topic @Sl&ed

N Author > N

/\ ?‘o(\“czs >has role Member

Reader

Version

2
makSion

sugk

;\

Figure 10.4 Data Model for Group Editing Activities.

The domain defines the group, within which its items or contributions are visible.

Typically, this should default to the area domain where the group is named. If an editing

179

Chapter 10

Recommendation for Group Editing Services

group has a sub-group, a similar kind of mechanism should be provided to meet the

requirement. It should follow the X.400 addressing format (area domain, organisational

domain).

Each user entity in the group performs a role within the group based on a defined set of
operations. An editing group consists of the following roles:

e Group Editing Organiser,

@ Author,

@ Editor,

e Co-ordinator,

e Group Editing Organiser,
e Guest Editor and

e Reader.

Group editing organiser is responsible for initialising an activity. The group editing

organiser is also responsible for the following operations:

Create-Activity creates a new activity for group edit
Define-Group registers group members with the activity

Delete-GroupMember removes a member from the group

Edit-Notification sends an initial notification to a group member

Accept-Contribution accepts a contribution as a part of edit document

Generate-Document integrates all the accepted contributions in a single
document

Rename-Member re-assigns the contributions of an old member to a new
member

Delete-Contribution removes un-wanted contributions from the common

store.

180

Chapter 10

Recommendation for Group Editing Services

The role of editor and co-ordinator may also be viewed as area or organisation manager/

administrator. The role of an Editor/Co-ordinator will be a sub-set of those of the

group editing organiser but limited to the scope of the area or organisational domain.

Such operations are listed below :

Define-Sub-Group

Delete-Sub-Gr-Member

Edit-Notification
Rename-Member

Delete-Contribution

Edit-Reminder

The role of an Author:

Update-Contribution
Edit-Suggestion
List-groupMember
List-Statistics

Show-Difference

Show-History

Read-Contribution

registers a member within the sub-group

removes a member from the sub-group

sends an initial notification to a group member

re-assigns the contributions within sub-group

removes un-wanted contributions from the common store
sends a follow-up note to a specific member for a

contribution.

updates a released contributions or it could be a first edit
appends text to a contributions as a suggestion

returns the list of group member

lists various contributions from all members

shows differences between two contribution from a
member

shows activities history viz: date of completion, GEO etc.

reads a contributions from a specific member.

The guest editor is able to comment on a contribution. If guest editor is asked for such

comments with the help of ‘Edit-Suggestion’ operation is used for the comments. As

such a guest editor is a silent member of the group. The role of reader is also similar to

the guest editor, but a reader member wou

1d not be asked for comments. However a

181

Chapter 10 Recommendation fbr-Group:Editing Services

reader member is able to suggest. The capabilities of an Guest-Editor and Reader

are:
Edit-Suggestion appends a text to a contribution as comment/suggestion
Read-Contribution reads a contributions from a specific member.

The information model consists of information and group members as objects. Objects

in the group editing environment may be illustrated as below:

Items
contribution
suggestion
edit-request
follow-up call (reminder)
filter (filter keeps a record of which items have been read and currently

unread)

Cluster
edit group

Domain
activity domain
role domain
area
organisation

Entity
group editing organiser
editor
co-ordinator
author
reader
any process agent

182

Chapter 10 Recommendation for Group Editing Services

10.2.1 Services of X.400/X.420

An information object represents a single logical item created by a member of the group.
Each information object in the editing group has a header containing information
identifying the object and a body containing text. The header part consists of a number
of fields including author, part-of-document, subject, topic, updated-on. The
information objects governs X.400 messaging format. That is to say an information
object is made up of an envelope and the content (discussed in section 3.3 in chapter 3).
The envelope carries information that is used by the message transfer system (MTS)

when transferring the message within the MTS.

The header requirement (i.e. within the envelope) in the information objects are met by
the use of X.420 extension fields facilities. The extension field facilities exist within the
'P22' protocol used for InterPersonal Messaging System (IPMS). The facilities of
'P22' protocol are extended to meet the requirement (including part-of-document,
updated-on, latest-submission-date and status-of-member) for a group editing

environment.

The heading part of IPMS i.e. X .420 recommendations (discussed in section 3.3 in
chapter 3) defines several kind of fields component types such as: IPMlIdentifier,
Recipient specifier and O/R descriptor (a list can be found in Appendix 2). The
IPMIdentifier is used to define various application as ASN.1. At present the '11" is the
only ASN.1 application defined for person to person communications. It is proposed to

define another Groupldentifier for supportive application group which would

provide the services required by the editing activities. The identifier should also be able

to set-up communications requirement between the group users for such group. The

Abstract Service Notation One (ASN.1) definition for the services in terms of the

operations proposed in the 'SAGE' project are given in Appendix 8.

Chapter 10 Recommendation for Group Editing Services

10.2.2 Message Handler Services

The services provided by the message handler are in the form of executable commands.
For example to compose a message, a compose command is used which requires a
component file. A similar kind of approach is used to define the various group editing
commands. These commands are described as Abstract Service Definition in the section
10.1.2. The mapping of these functions onto message handler will be described in turn

in the following paragraphs.

The commands Edit-Notification, Update-Document, Edit-Request, Edit-Suggestion
and Follow-up-Call (reminder) are of the similar nature. These commands can be
generated by creating a new command from compose command of the message handler,
which would be derived from component files specific to each command. For example
‘Edit-Notification would be using a component file header components for these
component files would be containing specific header parameters described below. The
requirement of additional header parameters could be met from the X.420 extension

field facilities.

Header parameters for Edit-Notification component file ‘notecomp’.

To: clusterDN (address of the group member)
From: geo

Status: Author (to whom notification is to be sent)
Subject: attribute (any value of attribute)

Topic: attribute (value of attribute)
Part-of-Document: DN (name of the activity)
Latest-Submission-Date: attribute (value of attribute)

The Update-Document component file ‘updatecomp’ should contain the following

header parameters.

184

Chapter 10 Recommendation for Group Editing Services

To: clusterDN (address of geo)

From: clusterDN (updating member)

Status: Author

Subject. attribute (any value of attribute)

Topic: attribute (value of attribute)
Part-of-Document: DN (name of the activity)
Latest-Submission-Date: attribute (value of attribute)
Updated-On: attribute (value of attribute)

The Edit-Request component file ‘requestcomp’ should contain the following

header parameters.

To: clusterDN (address of geo)

From: clusterDN (updating member)

X-Number: attribute (any value of the contribution number to be released for
update)

Subject: attribute (any value of attribute)

Topic: attribute (value of attribute)

Part-of-Document: DN (name of the activity)

The header components for Edit-Suggestion component file ‘suggestcomp’ are as

below.

To: clusterDN (address of geo)

Revision-Suggested-By: DN (name of the suggesting member)
Status: Author

Subject: attribute (any value of attribute)

Topic: attribute (value of atiribute)

Part-of-Document:. DN (name of the activity)

The header components for Edit-Reminder (Follow-up-Call) component file

‘remindercomp’ are given below.

To: clusterDN (address of the group member)

185

Chapter 10

Recommendation for Group Editing Services

From: geo
Reminder: clusterDN (to whom reminder is to be sent)
Status: Author (to whom notification is to be sent)
Subject: attribute (any value of attribute)

Topic: attribute (value of attribute)
Part-of-Document: DN (name of the activity)
Latest-Submission-Date: attribute (value of attribute)

The header components for Create-Document component file ‘createcomp’ are

given below.

Application-Identifier: attribute (pre-defined value)
Work-Domain: domainDN (common store location in the domain)
Document-Name: DN (name of the activity)

Completion-Date: attribute (value of attribute)
Special-Comments: attributes (value of attribute)

The header components for Generate-Document component file ‘documentcomp’

are given below.

Application-Identifier: attribute (pre-defined value)
Document-Name: DN (name of the activity)
Completion-Date: attribute (value of attribute)
Order-of-Accepted-Versions: attributes (value of attribute)

The functions register-member, delete-member, delete-contribution, accept-contribution
and rename-member would be able to return the value of status. For example, in case of
delete-member, success status would contain value like ‘the “X” member has been
removed from the group’ or failure status would contain value such as ‘can’t delete “X”

member or “X”’ member not found’ which ever is suitable for the situation.

186

Chapter 10 R i for o
ecommendation for Group Editing Sér-vices

h 0 Crations i 1 1 1

otherwise.

187

Chapter 11

Conclusion

11.0 Introduction

The 'SAGE' project has sought to investigate the needs of a group of people working
co-operatively and communicating in an OSI network environment, and to recommend
tools and services to meet these needs. The research has focused specifically on the

services and tools required for group editing activities.

The work of the 'SAGE' project is in the application layer of the OSI model, and is
particularly concerned with the X.400 (i.e. message handling system) series of

recommendations.

The 'SAGE' project has followed recent suggestions (Benford & Palme, 93) and takes a
top-down approach to the development of group communication system services by
ascertaining needs in group communication applications. The research has been carried

out in three phases.

The first phase involved carrying out case studies considering three group editing
activities: a Newsletter, a Technical Paper and a Software Development Team. The

Newsletter activity has been discussed in depth and used for the prototype. The other

two activities have been used as supporting (minor) cases studies. The case studies have

determined the underlying needs for these activities.

188

Chapter 11 Conclusion

The second phase involved the development and testing of a working prototype for

editing a Newsletter.

The third phase involved modelling of group editing activities based on common issues
determined from the previous phase, and has led to recommendations for the services
and tools required for group editing activities. Recommendations have been proposed to
modify/extend the functionality of the X.420 recommendation (Interpersonal Messaging

System).

The research has established that the main issues are to provide version and access
control, to work out the logical structure of the common store, to construct the group

editing header components and to provide management of the activity.

This concluding chapter also evaluates the 'SAGE' project. The evaluation discusses
observations made during the 'SAGE' project research, and considers advantages and
disadvantages of the major recommendations. Finally novel features of the research are

listed and suggestions for future research in the field given.

11.1 Observations on Research

11.1.1 General observations

To start the work it is necessary to define the problem. The 'SAGE' project is defined in
relation to the OSI network reference model and the X.400 recommendations, which
proved a good foundation and placed no restrictions on the development. The X.400
implementation used provided many of the facilities needed for the project, and its

protocol extension facilities allowed successful provision of the required functionalities

for Group Editing.

189

Chapter 11 Conclusion
There is a considerable amount of literature relevant to the 'SAGE! project. The most
useful proved to be either standards, or work either leading to, or oriented towards,
standards. The 'SAGE' project builds directly on work described in the literature and/or
standards. The 'SAGE' project does not seek to comment on standards but is concerned
with the use of existing standards and making recommendations for extensions to

X.400 for group editing activities.

The research method adopted in the 'SAGE' project led to satisfactory results. The
research method used case studies, prototyping and modelling of group activities. The
case studies are based on interviews with users. Three related cases on a particular topic
(i.e. group editing) were chosen in order to deduce common functionality features to

derive a model for a set of group editing activities.

The prototype was based on the specifications extracted from the case studies, and was
specific to the Newsletter activity. The prototyping approach provided clarification of
the implementation and shape of the services, and was used as a testbed and as a vehicle

for user comments to improve the final functionality features.

The modelling of group activities allowed the determination of the common services and
tools for a set of activities. This led to the classification of group activities into three

application groups which assist construction of framework models for a wide range of

group activities.

11.1.2 Specific Observations

11.1.2.1. Case studies

The choice of users for interview in the case studies was spread over different people in
different activities, giving a breadth of user views over the three activities used for case

study. All users had working experience of their activities. All the users interviewed

190

Chapter 11 Conclusion
were from a University environment, but this made them accessible for detailed
discussion and led to their having a good understanding of the work and to willing

cooperation.

There is always a question where using case studies of how many people to interview,
how suitable they are and whether the right topics were chosen. In the context of this

work the case studies provided sufficient material to advance the work.

The choice of verbal interaction to establish the users views on editing issues proved
successful: the verbal format meant that the user was less constrained by the question,
and gave full answers that often extended beyond the question. Cross questioning was

made easy by the verbal format.

The issues presented to the user at interview were extracted from the literature. The
issues were perceived by the users as sensible and relevant, and were sufficiently
general to allow the user to express their views without being too broad to give a clear
focus. The set of issues raised with the user provided sufficient information to form the

initial specification.

The case studies chosen covered different functionalities within Group Editing. Three
cases were chosen as sufficiently different to cover most functionalities needed in the
Group Editing environment. The specific choices were guided by the availability of
users for interview. Review of other Group Editing activities confirmed that the three

cases chosen had been sufficiently broad.

The method of case studies and the case study chosen proved sufficient for establishing

a adequate set of requirements for group editing and to provide a framework for the

prototype and to permit the construction of good specifications.

191

1
Chapter 1 Conclusion

11.1.2.2. Prototyping

A throw-away prototype was developed to demonstrate the proposed functionality to the

users. The demonstration of the prototype proved useful in obtaining new ideas from

users on the functionality they required.

The prototype was designed to fit in with structures currently proposed for Group
Communications. The trend of research suggests that Group Editing requires
identification of advanced services and knowledge-based Information Handling beyond
the basic services already defined in X.gc. The implementation of the prototype in three
modules provides a structure consistent with this approach: parts of the Activity
Generator and Activity Responder modules provide the advanced services, while the

Activity Monitor provides the Information Handling functionality.

The prototype was developed with modular program design. It may have been better to
use an object oriented approach for the prototype which would have been closer to the
proposed group communication information model. It could also have been useful to
include X.500 services within the prototype. However t he complexity of these
approaches would be more suited to a final implementation than to a prototype designed

to evaluate functionality.

The demonstration of the prototype was to fewer users than had contributed to the first
set of interviews. This was caused by movement of some of the users. It would have
been better to have all the initial set of users for the demonstration, but those who were

available for the demonstration were still sufficiently diverse to provide information over

the range of activities.

Most of the issues raised in the initial interview were covered again in the

demonstration. The users suggested some further functionality needs after seeing the

192

1
Chapter 1 Conclusion
demonstration. The users were satisfied that the demonstration covered the main
functionalities, and the information obtained from the demonstration provided

confirmation that the specification had been correctly established.

The lack of error handling on the prototype required that it be demonstrated to the user
rather than allowing the user to ‘play’ with the prototype. This may have restricted the
range of user responses, but despite this the range of issues raised during the
demonstration was extensive and covered a wide range of functionality features. The
long duration of the demonstration made it better to allow the user to write notes as the
demonstration proceeded, and it would have been difficult to keep up the continuity of

the demonstration if verbal answers had to be recorded by the demonstrator.

11.1.2.3. Modelling of Activities

The modelling of group activities in the 'SAGE' project provides a structural approach
to extend the group communication framework model. The modelling also proposes the
three number of models to covers a wide range of group activities. But there are some

advantages and disadvantages, which are discussed in following paragraphs.

The 'SAGE' project proposes modelling of a wide range of group activities as three
classes of application groups: informative, supportive and objective application groups.

Some advantages and disadvantages of this classification are listed, then discussed in

the following paragraphs.

Advantages:

* Modelling of all group communication activities into three application groups,

e Three sets of services and tools will provide functionality for all group activities,

» Reduced number of service agents needed in a group communication system,

* Provides hierarchic structure for group activities in OSI environment,

* Classes do not restrict use of an operational object to any one class.

193

1
Chapter 1 Conclusion

Disadvantages:

« Fitting of activities into groups:
May be difficult to place all group activities into these three groups,
An activity may fit into more than one of the three group,

« Wider class functionality increases complexity for service agents,

« Complexity may arise in forming relationships between operational objects and

information objects.

The proposed classification implies that there will be only three general models to cover
all group activities. This will allow concentration of effort on refining these models.
Modelling of future activities will be simplified if they can be included within one of the

groups.

Rather than developing individual services and tools for each group activity, three
universal tool sets would be all that is required to provide functionality for all group
communication activities. For example, a ‘Help Desk Facility’ activity (Benford, 91)
would fall within the Informative group, and is similar to 'distance learning’ or 'bulletin
board' activities. The functional requirement of these activities are similar and require

similar services and tools.

The classification provides a structure that allows an individual activity to be recognised
as part of an OSI system. As further group communication applications are developed in
the future, there is possibility of a proliferation of service agents being developed to
meet the needs of each application. By using the proposed classification of application
groups developers will be encouraged to work with the service agents for that group,
gents to three. There is already an increasing number of

limiting the number of service a

group communication service agents (e.g. computer conferencing service agent, EDI

service agent etc.) in the group communication system.

194

Chapter 11 Conclusion
The proposed classes do not restrict the use of operational objects to any one class.
Much of the functionality of each class can be made common. The common set of
operational objects can serve all three classes. There are some special tools for each
class and only the special tools for the class in use needs to be available. For example
analysis of the Objective application group shows that these activities have common
functionality with the supportive application group. Most of the editing services are
common for the objective application group. For example, an executive board needs to
prepare minutes of meetings, which could be prepared with the editing services and
tools. However the objective application group has special needs, for example ‘voting’

or ‘opinion analysis’ or similar decision making functionality.

Clearly there are several advantages in the proposed classification of group

communication activities. There are however, some disadvantages.

It may not be possible to place group activities that arise in the future into one of these
classes, or perhaps an activity will fit into more than one application group. For example
the date planning activity (Prinz & Woitass, 89) will use the supportive application
group services in most situations, and therefore would appear to belong in the
supportive application group. However, if a date could not be agreed, then the services

of the objective application group are needed.

By implementing functionality for an entire class of activities in one service agent the

complexity of the service agent is increased. The complexity of relationship between

operational objects and information objects will also be increased. For example a

relationship such as 'add member’ must be linked to all activities in the activity class to

provide service to them.

Chapter 11 Conclusion
The proposed classification brings significant structural advantages. The disadvantages
lie at the implementation level. The implementation difficulties are not great and are a

price worth paying for the major structural advantages.

11.1.2.4. Recommended Services and Tools

The proposed services and tools (described in section 10.1.2 in chapter 10) have some

advantages and disadvantages.

The services and tools are easy to implement as they are supported by existing standards
and implemented in a Unix and X.400 environment. The services are described in the
same style as CCITT draft X.gc, making it easier to add these tools to existing
standards. The services and tools proposed by the 'SAGE' project are compatible with

the classification of activities proposed in the research.

However the proposed tools require a different header component files for most of
operations, which must be created and stored. The proposed tools will be sufficient to
meet the requirement of most group editing activities, but additional functionality may be
needed for some activities in the application group. A group communication service
agent (GCSA) which uses the basic services of X.gc and provides advanced services
and an information handling system in one service agent may be difficult to specify and
implement. The complexity may make it difficult to incorporate the functionality as a
modification of X.420.

The main strength of the proposal is the integration with existing standards, which will

ensure strong interworking.

196

Chapter 11 Conclusion

The disadvantages lie more in the implementation and can be overcome. However the

question of how well the proposed modification will fit into X.420 requires further

considerations.

11.1.2.5. Additional Functionality
The following additional functions are proposed (section 6.2.2.7 in chapter 6) which
were implemented in the prototype:

Reminder facility: when a contribution is not submitted within a specific time the

system generates an automatic reminder to the author.

Delivery failure check facility: if a contribution is submitted to the group editing

organiser, but returned to the author for any reason, then the contribution is

automatically located and re-sent.

The automatic reminder facility worked well, but users felt that there should be a manual

reminder facility in addition.

The delivery failure check proved satisfactory, but could be improved by having a
double check. Firstly, it should check delivery failure and if there is a delivery failure,
then the contribution should be re-sent. To improve the procedure, arrival of the
contribution at its destination (i.e. at common Store) should generate and send a
‘contribution arrival' notification to the originator. If an arrival notification does not
arrive within a specific time, a 'contribution check' event should be generated
automatically to check on behalf of the originator, the arrival of the contribution at the

common store. While it would not be a foolproof system it would increase the

credibility of the delivery check.

197

11
Chapter Conclusion

11.2 The ‘SAGE’ Project Recommendations
The 'SAGE' project proposes the classification of group communication activities
into three innovative application groups (i.e. Informative group, Objective

group and Supportive group), which will need new application types each with their

own service agents.

The 'SAGE' project view on the functionality of any group activity is that it can be
divided into two parts: the tools part and the services part. The first part comprises
the operations directly concerned with the users of the group. The second part is the
underlying functionality required to meet such operations. The underlying functionality

of these tools is to be provided by an application service agent.

Abstract Service Definitions are given for fourteen proposed new operations (e.g.
Create-Activity, Update-Document, Accept-Contribution and Edit-Notification) which
are in addition to the CCITT working document X.gc (Joint ISO/IEC/CCITT, 91). The

Abstract Service Definitions are given in the style of X.gc.

It is also proposed that the group editing services are modelled onto the message
handling system and require different header parameters which is achieved with the help

of the protocol extension facilities provided in X.420 recommendation. This extends the

protocol functionality of the X.420 recommendation.

11.3 The Novel Features of This Research

L. Classification of group communication activities within three application groups.
2. Proposal of three application groups: Informative, Supportive and

Objective application groups.

3. Proposal to define a new Group [dentifier for each application group so it can be

recognised as an OSI application.

198

1
Chapter 1 Conclusion

4. Proposal to incorporate all basic services, advanced services and rule-based

information handling for each application group agent into a service agent.

5. Derivation of Abstract Service Definition for group editing services operations.

6. Proposal of extension and modification of X.420 fields for the group editing
services.

7. Mapping of group editing services onto the message handling system and

proposal of new component files for such services.

8. Proposal of group editing services and tools, in addition to CCITT.

11.4 Future Work

Work in the area of group communication spreading rapidly. At the same time the use of
standard protocols is also increasing widely (i.e. X.400 and X.500). This is the right
time to set up a logical approach to work out the strategy for modelling group
communication activities onto the existing standard protocols. Based on the work

described here, the following research is now needed.

Categorisation of group activities into three application groups - In view of
the large number of group activities, it would be useful to categorise the known group
activities into three application groups. It would be helpful to have as many group
activities as possible classified within the groups at an initial stage. This would allow

application groups to be designed with maximum functionality.

Investigation of the common functionality within each group - The classes

of the application groups are based on similar functionality features. Further work needs

to be done on identifying common functionality within each application group. It is

proposed to start with the Informative application group which has the least functionality

requirements in terms of operations and complexity of operations.

199

11
Chapter Conclusion
Common functionality between application groups - The common services
and tools of each application group should be mapped onto all three (Informative
Supportive and Objective) application groups. This would enable a common set of
services and tools for a wide range of group activities to be derived. The services

specific to each application group would be built within that application group.

Definition of the services and tools for each application group - The
services and tools required by each application group should be defined as the services
provided by the respective application service agent. For example the services and tools
required by the Informative application group should be recognised by the Informative
Application Group Agent, and likewise by the Supportive Application Group Agent for
that group. Each service agent would carry the list of activities to be served by that

application group agent.

Extension of the CCITT framework model for the application groups -
The 'SAGE' project proposes the extension of the framework model up to the level of
each application group but has not implemented it. Therefore there would be three
framework model to cover all group communication activities. Each framework would
have common built-in functionality containing basic and advanced services and

information handling requirements, as per the requirement of each application group.

Modelling of individual activities onto the framework model - The
individual activities are to be modelled onto their respective application group's
framework model. The features specific to the activity concerned would be built on top
rvices and tools required by the activity

of the framework. However the common $¢

would be provided by the service agent.

200

11
Chapter Conclusion

11.5 Conclusion
The 'SAGE' project has investigated the needs of a group of people working
cooperatively in an OSI environment, and recommended tools and services to meet these

needs.

The project used case studies to identify user requirements and to determine common
functionalities for a variety of group editing activities. A prototype was implemented in
an X.400 environment and proved useful in refining user requirements and testing the

proposed functionalities.

The conceptual modelling follows current CCITT proposals, but a new classification of
group activities has been proposed: Informative, Objective and Supportive application
groups. Each of these application groups should have their own Service Agent. Use of
this classification allows the possibility of developing three sets of tools which will
cover a wide range of group activities, rather than developing tools for individual

activities. Group editing has been considered to be in the Supportive application group.

A set of additional services and tools to support group editing are proposed in the
context of the CCITT draft on group communication, X.gc. The proposed services and
tools have been mapped onto the X.400 series of recommendations, with the Abstract
Service Definition of the operational objects defined, along with their associated

component files, by extending the X.420 protocol functionality.

It has been proposed that each of the Informative, Objective and Supportive application

groups should be implemented as a modified X420 inter-personal messaging system.

201

References

References
Avison, D.E., (1985), The Open Book, Information Systems Development: A Data
Base Approach, UK: Blackwell Scientific Publications.
Bartlett, K.A., (1986), " Standards for communications-too many or too few ”, in
Strokes, A.V. Dr. (ed) Communication Standards: State of the Art Report ,
England: Pergamon Infotech,App.3-9‘
Benford, S., (1989), “The Global Information Space”, in Smith, H., Onions, J. &
Benford, S., (eds), Distributed Group Communication the AMIGO information
model, Ellis Horwood Ltd Publishers, Chichester.
Benford, S. (1991), “Building Group Communication on OSI“,Computers
Networks and ISDN Systems, Vol./Part 23(1-3) pp. 87-90.
Benford, S., Howidy, H., Shepherd, A. & Smith, H., (1990), “Group
Communication in an Open Systems Environment “,The Grace Project Phase [
Report, Research Communication Group: Nottingham University, UK.
Benford, S., Palme, J., (1993), “A Standard for OSI Group
Communication®,Computers Networks and ISDN Systems,Vol./Part 14(5-6), pp.
933-946.
Benford, S., Turoff, M. & Palme, J., (1992), “An OSI Standard to Support
Asynchronous Group Communication® Computers Standards & Interfaces,
Vol./Part 25(8), Elsevier Science Publishers B.V.: North-Holland, pp. 363-373.
Black, U., (1991), The X Series Recommendations Protocols for Data
Communications Networks, USA: McGraw-Hill Inc.
CCITT/ISO Recommendations, (1988), "X.500: Data Communication Networks
Directory X.500-X.521 Volume VIIT", (Blue Book).

CCITT/ISO Recommendations, (1988), " 400: Data Communication Networks

Message Handling Systems X.400-X.420 Volume VIII", (Blue Book).

Checkland, P., (1990), “Soft System Methodology in Action”, John Wiley & Sons

Ltd., Chichester, England.

202

References

Cross, John A., (February, 1989), “ Technology Transfer in the 1990’s:
Evaluating Computer-Support for Cooperative Work “,Computing Trends in
1990’s 17th Annual ACM Computer Science Conference., New York: ACM Press,
pp. 474.

Jakobs, K., (1991), "Beyond the interface - Group Communication Services
Supporting CSCW?, in Venijan-Stuart, A.A., Sol, H.G. & Hammersley, P.,
(eds),Support Functionality in Office Environment, Elsevier Science Publishers
B.V.: North-Holland, pp. 67-84.

Jarratt, P., (1989), Birmingham University, “Distributed Computing and
Networks “, M.Sc. lecture notes Sept/Oct.

Joint ISO/TEC/CCITT, (1991), of the Group Communication Working Document
X.gc Version 7, CCITT Study Group 1/Q.15, VII/Q.18 and ISOIIEC JTC 1/SC
18/WG 4 SPW Messaging, Period 1989-1992 Document MH-534.

Kille, S.E., (1991), Implemenating X.400 and X.500: The PP and QUIPU
Systems, USA: Artech House, Inc.

Klehn, N. & Kuna, M., (1991), “CSCW and Group Communication”, /nformatik,
Informationen Reporte, Vol./Part 4, pp. 7-16.

Kuna, M. & Klehn, N., (1991), “A Three Level Approach to Model Systems for
Computer Supported Cooperative Work”, Informatik, Informationen Reporte,
Vol./Part 4, pp. 222-231.

Lanceros, A. G. & Saras, J. A., (1988), " Group Communication Support

in the MHS Environment ", in Speth, R. (ed), EUTECO ‘88’ on Research into
Networks and Distributed Applications, North-Holland, pp. 311-322.

Lanceros, A & Saras, J., (1989), “The Distribution Service”, in Smith, H,,
Onions, J. & Benford, S. (eds), Distributed Group Communication the AMIGO
information model, Ellis Horwood Ltd Publishers, Chichester.

Manros, C-U.. (1989), The X.400 Blue Book Companion, UK: Dotesios Pronters

Ltd.

203

References

Marshall, T.Rose, (1989), The Open Book, A practical Perspective On OSI,
USA: Prentice Hall Inc.

Medina, M., Maude, T. & Smith, H., (October, 1986), “ X.400 and Group
Communication Support “, International Business Strategy Conference, Online
Publication, pp. 261-269.

Nunez, M., (1989), “Archive Services”, in Smith, H., Onions, J. & Benford, S.
(eds), Distributed Group Communication the AMIGO information model, Ellis
Horwood Ltd Publishers, Chichester.

Olson, G. M, (1989), "The Nature of Group Work ", Proceeding of the Human
Factors Society 33rd Annual meeting, pp. 852-855.

Palme, J., (1986), "Group Communication & its role in Electronic Mail ",
Electronic Message Systems, Online Publications: Pinner, UK, pp. 297-307.
Palme, J., (1987), "Distributed Computer Conferencing ", Computer Networks
and ISDN Systems , Vol./part 14(2-5), North Holland, pp. 137-145.

Palme, J., (1988), " Extending Message Handling to Computer Conferencing ", in
Raviv, J. (ed),Computer Communication Technologies for the 90’s, Elsevier
Science Publishers B.V.: North-Holland, pp. 44-59.

Peek, J.D., (1991), MH & xmh E-mail for Users & Programmers, USA: O'Reilly
& Associates, INC.

Plattner, B., Lanz, C., Lubich, H., Muller, M. & Walter, T., (1991), X.400
Message Handling Standards, Interworking, Applications, Addison-Wesley
Publishing Company Inc.

Prinz, W. & Woitass, M., (1989), “ Date Planning System - Example of a

Cooperative Group Activity “, in Stefferud, E., Jacobsen, O.J. & Schicker (eds),

Proceedings of the IFIP TC 6/WG 6.5 Working Conference on Message Handling

Systems and Distributed Applications Costa Mesa, California: North Holland, pp.

359-379.

204

References

Roechr, W, (1986), " Message Handling Protocols “ in Strokes, A.V. Dr. (ed)
Communication Standards: State of the Art Report , England: Pergamon Infotech,
pp-187-202.

Schicker, P., (1989), “ Message Handling Systems, X.400 (An Overview)”, in
Stefferud, E., Jacobsen, O.J. & Schicker (eds), Proceedings of the IFIP TC 6/WG
6.5 Working Conference on Message Handling Systems and Distributed
Applications Costa Mesa, California: North Holland, pp. 3-41.

Sherif, M.H. & Sparrell, D., (1992), “Standards and Innovation in
Telecommunications”, IEEE Communications Magazine, July 1992, pp. 22-28.
Smith, H., (1989), “An Introduction to Group Communication Service
Requirements”, in Smith, H., Onions, J. & Benford, S. (eds), Distributed Group
Communication the AMIGO information model, Ellis Horwood Ltd Publishers,
Chichester.

Smith, H., Onions, J. & Benford, S., (1989), Distributed Group
Communication the AMIGO information model, Ellis Horwood Ltd Publishers,
Chichester.

Sommerville, 1., (1989), Software Engineering (Third Edition), Addison-Weley
Publishers Ltd.

Steedman, D., (1986) " Message Handling Systems " in Strokes, A.V. Dr. (ed)
Communication Standards: State of the Art Report , England: Pergamon Infotech,
pp.217-231.

Strokes, A.V. (ed) , (1986), “ The 0OSI model of Open System Interconnecting ,
Communication Standards: State of the Art Report , England: Pergamon
Infotech, pp. 315-318.

Tanenbaum, A. S., (1989), Computer Nerworks (Second Edition), USA: Prentice-

Hall Inc.

Taylor, J.M. (January, 1990), © Co-operative Computing and Control “, I[EE

Proceedings, Vol.137, Pt. E, No.1, UK, pp. 1-16.

205

~ References

Wagner, B. & Palme, J., (1989), “Support for Advanced Group Communication”,
in Smith, H., Onions, J. & Benford, S. (eds), Distributed Group Communication
the AMIGO information model, Ellis Horwood Ltd Publishers, Chichester.
Weiss, K-H. & Bogen, M., (1989), “A Group Communication Service
Architecture”, in Smith, H., Onions, J. & Benford, S. (eds), Distributed Group
Communication the AMIGQ information model, Ellis Horwood Ltd Publishers,
Chichester.

Weiss, K-H., (1989), “Use of the Directory Service for Group Communication
Support”, in Smith, H., Onions, J. & Benford, S. (eds), Distributed Group
Communication the AMIGO information model, Ellis Horwood Ltd Publishers,
Chichester.

Wilson, P., (1991), Computer Supported Cooperative Work, Great Britain:

Intellect Books Publishers.

206

Bibliography.

Bibliography
Ahuja, S.R. & Ensor, J.R., (1992), "Coordination and Control of Multimedia
Conferencing”, IEEE Communications magazine, Vol. 30 No. 5 pp. 38-43.
Badine S.A., Kintzig C. & Okoko, M., (1988), “A Job Submission Service within
the Message Handling System”, in Boyanov & Angelinov (eds), Network
Information Processing Systems, Elsevier Science Publishers B.V.: North-
Holland, pp. 265-279.
Benford, S., (1989), “ Navigation and Knowledge Management within a
Distributed Directory System “, in Stefferud, E., Jacobsen, O.J. & Schicker (eds),
Proceedings of the IFIP TC 6/WG 6.5 Working Conference on Message Handling
Systems and Distributed Applications Costa Mesa, California: North Holland, pp.
143-161.
Christensen, W. & Suess, R., (1978), "Hobbyist Computerized Bulletin Board",
Byte Oublication Inc, November 1978, pp. 150-157.
Clark, B. & O’Donnell, S., (1991), “Computer Supported Cooperative Work™,
British Telecom Technol Journal, January 1991, Vol./Part 9(1) pp. 47-55.
Clark, W.J., (1992), "Multipoint Multimedia Conferencing", /[EEE
Communications magazine, Vol. 30 No. 5 pp. 44-50.
Cole, R. & Burns J., (1989), “An Architecture for Mobile OSI Mail Access
System”, IEEE Journal on Selected Areas in Cmmunications, Vol.7 No. 2,
February 1989, pp. 249-256.
Cole, R.H., Hall, C.S., Rush, P.D.C. & Walker, J., (1988), “Mobile Access to
Secure Inter-Personsal Messaging”, International Open Systems Coference 88,
Pinner, On-Line Publications, pp. 19-21.

Cornell, P., (1989), “Ergonomic Environment Aspects of Computer Supported

Cooperative Work”, Proceedings of the HUMAN FACTORS SOCIETY 33rd

Annual Meeting, pp. 862-860.

207

Bibliography

Danthine, A. & Godelaine, P., (1989), “ MHS in a Corporate Communication
System Offering InterNet Service “, in Stefferud, E., Jacobsen, O.J. & Schicker
(eds), Proceedings of the IFIP TC 6/WG 6.5 Working Conference on Message
Handling Systems and Distributed Applications Costa Mesa, California: North
Holland, pp. 305-319.

Dede, C.J., (1990), “ The Evaluation of Distance Learning: Technology-Mediated
Interactive Learning “, Journal of Research on Computing in Education, Vol./Part
22(3), Florida, pp. 247-264.

Dittrich, J. & Wolisz, A., (1992), “Toward Cooperative Use of Shared Data in
Open Distributed Systems”, in Meer, J.de, Heymer, V. & Roth, R, Open
Distributed Processing, Elsevier Science Publishers B.V.: North-Holland, pp. 179-
190.

Eliasen, F., Nordli, I. & Danielsen, T., (1989), “Communication via Shared
Conceptual Memory”, in Stefferud, E., Jacobsen, 0.J. & Schicker (eds), Message
Handling Systems and Distributed Applications , Elsevier Science Publishers B.V.:
North-Holland, pp. 383-413.

Ellis, C.A., Gibbs, S.J. & Rein, G., (1990), “Design and Use of a Group Editor”,
in Kockton, G. (ed), Engineering for Human-Computer Interaction, Elsevier
Science Publishers B.V.: North-Holland, pp. 13-25.

Engelbart, D. & Lehtman, H., (1988), "In Depth Groupware: Working Together
Byte December 1988, pp. 245-252.

Gardner, A., (1986), * British Telecom’s X.400 service , Electronic Message
Systems, Online Publications: Pinner, UK, pp. 345-356.

Genilloud, G. (April, 1990), © X 400 MHS: First step Towards an EDI

Communications Standard ©, Computer Communication Review 1990, Vol. 20(2),

pp. 72-86.
Golfer, J.L., (1985), “Going Online with America: The World of Electronic

Board”, Online 85 Conference, Weston, Online Inc: pages 133-137.

208

‘Bibliography

Halsall, F., (1989), Data Communications, Computer Networks and OSI (Second
Edition), Addison-Wesley Publishing Company Inc.

Handley, M.J. & Wilbur, S., (1992), “Multimedia Conferencing from Prototype to
National Pilot”, e-mail: M.Handley@cs.ucl.ac.uk & S.Wilbur@cs.ucl.ac.uk.
Hansen, A., (1988), "RARE MHS project Review", Computer Networks and
ISDN Systems, Elsevier Science Publishers B.V.: North-Holland, pp. 8-12.
Henshall, J. & Shaw, S., (1988), “ Message handling systems, X.400/MOTIS *,
OSI Explained: end-to-end computer Communication Standards , Chichester: Ellis
Horwood, pp.158-200.

Herbert, D., (1990), “EDI and Communications - the technology debate”, ED/
Analysis January 1990, pp. 10-11.

Hiltz S. R., & Turoff Murray, (1985), “Structuring Computer-Mediated
CommunicationSystem to avoid Information Overload”, Comunications of the
ACM, Volume 28 number 27 pp. 680-689.

Hiltz S., R., Turoff M. & Johnson K., (1989), “Decision Support Systems”,
Elsevier Science Publisher B.V.: North Holland, pp. 217- 232.

Hunter, R. & Cross, B.A., (1991), “ODA- an Open Information Architecture for
Interconnecting Office Systems, British Telecom Technol Journal, January 1991,
Kenny, P., (1988), Unified Implementation of X.400 and EDI “, Electronic I
information Interchange -X400 and EDI, [EE Colloquium on X400 and EDI,
London: IEE, pp. 9/1-9/3.

Kille, S.E., (1989), ““ PP- A Message Transfer Agent , in Stefferud, E., Jacobsen,
0.J. & Schicker (eds), Proceedings of the IFIP TC 6/WG 6.5 Working Conference
on Message Handling Systems and Distributed Applications Costa Mesa,

California: North Holland, pp. 115-127.

209

Bibliography

Kille, S.E., (1989), “ The Quipu Directory Service “, in Stefferud, E., Jacobsen,
0.J. & Schicker (eds), Proceedings of the IFIP TC 6/WG 6.5 Working Conference
on Message Handling Systems and Distributed Applications Costa Mesa,
California: North Holland, pp. 115-127.

Kime, H. & Smith, Jr., (1992), "Accessing Multimedia Network Services", IEEE
Communications magazine, Vol. 30 No. 5 pp. 72-80.

Krcmar, H.A.O., (1991), “Computer Supported Cooperative Work - State of the
Art”, in Bullinger H.J. (ed), Human Aspects in Computing: Design and Use of
Interactive Systems and Information Management, Elsevier Science Publishers
B.V., pp. 1113-1117.

Kretz, F. & Colaitis, F., (1992), "Standardizing Hypermedia Information Objects",
IEEE Communications magazine, Vol. 30 No. 5 pp. 60-70.

Lanceros, A. G. & S., Juan A., (1989), " Definition of Group

Communication Facilities in the MHS", in Stefferud, E., Jacobsen, O.J. &
Schicker (eds), Proceedings of the IFIP TC 6/WG 6.5 Working Conference on
Message Handling Systems and Distributed Applications Costa Mesa, California:
North Holland, pp. 323-336.

Lawrence, A., (1989), Grand Plans (X.400 Message Handling Standards),
Communicate June 1989, , pp. 46-48.

Lebeck, S. & Lubich, H., (1989), ** Final Report: Multi-Media Messaging “, in
Stefferud, E., Jacobsen, O.J. & Schicker (eds), Proceedings of the IFIP TC 6/WG
6.5 Working Conference on Message Handling Systems and Distributed
Applications Costa Mesa, California: North Holland, pp. 547-550.

Lebeck, S.K., (1989), « Implementing MHS: 1984 versus 1988 «, in Stefferud,

E., Jacobsen, O.J. & Schicker (eds), Proceedings of the IFIP TC 6/WG 6.5
Working Conference on Message H andling Systems and Distributed Applications

Costa Mesa, California: North Holland, pp. 115-127.

210

Bibliography

Lebeck S. K., (1989), “ Implementing MHS: 1984 versus 1988 “, in Stefferud, E.,
Jacobsen, O.J. & Schicker (eds), Proceedings of the IFIP TC 6/WG 6.5 Working
Conference on Message Handling Systems and Distributed Applications Costa
Mesa, California: North Holland, pp. 101-113.

Leland, M.D.P., Fish, R.S. & Kraut, R.E., (1988), “Collaborative Document
Production Using Quilt”, ACM SIGOIS Conference 1988, pp. 30-37.

Lubich, H. & Platter, B., (1988), "Naming and Addressing in SWITHmail",
Computer Networks and ISDN Systems, Elsevier Science Publishers B.V.: North-
Holland, pp. 48-54.

Lubich, H. & Plattner B., (1990), “A Proposed Model and Functionality Definition
for a Collaborative Editing and Conferencing System”, in Gibbs, S. & Venijan-
Stuart, A.A. (eds), Multi-User Interfaces and Applications, Elsevier Science
Publishers B.V.: North-Holland, pp. 215-232.

Lubich, H.P., (1990), “MultimETH, a Collaborative Editing and Conferencing
Project”, Computers Networks and ISDN Systems, Vol./Part 19(3-5), Elsevier
Science Publishers B.V.: North-Holland, pp. 215-223.

Mahon, B., (1989), "Electronic Mail System, ", Electronic Transfer of Information
and its Impact on Aerospace Development, Neuilly, France 1990 AGARD, pp. 12
Mantei Marilyn, (1989), “Observation of Executives Using a Computer Supported
Meeting Environment”, Decision Supprt Systems, Elsevier Science Publishers
B.V.: North-Holland, pp. 153-166.

Mark, L. A., (1989), « Technology for Computer-Supported Meeting “,
Proceeding of the Human Factors Society 33 rd Annual meeting, pp. 857-861.
Marsden, B.W., (1991), Communication Network Protocols (3rd Edition) OSI
Explained, Sweden: Chartwell-Bratt (Publishing and Training) Ltd.

Mendoza, E., (1988), "Directory Services and COSINE", omputer Networks and

ISDN Systems, Elsevier Science Publishers B.V.: North-Holland, pp. 44-47.

 Bibliography

Mount, R.P., (1988), "What Users Want", Computer Networks and ISDN
Systems, Elsevier Science Publishers B.V.: North-Holland, pp. 146-149.

Ngoh, L.H. & Hopkins, T.P., (1990), “ Initial Experience Implementing Multicast
Facilities in Computing Supported Cooperative Work “, UK IT 1990 Conference,
London: IEE, pp. 196-203.

Olsen, B.A., (1986), “Cost benefit analtsis of mail & conference systems”,
Electronic Message Systems, Online Publications: Pinner, UK, pp. 147-164.

Open Systems Data Transfer, (October 1989), “EDI X.400: Projects and
Prospects‘,Omnicom Newsletter service , Omnicom International Ltd. UK.

Palme, J., (1986), “Data Bases in Computer Messaging Systems”, 8th International
Conference on Computer Communications, pp. 67-71.

Palme, J. (1986), ““ Data bases in Computer Messaging Systems “, New
Communication Services: A Challenge to Comp. Technology, Amsterdam: Elsevier
Publishers, North-Holland, pp. 67-71.

Pays, P.A. & You, Y.Z., (1989), “ A General Multi-User Message Store “, in
Stefferud, E., Jacobsen, O.J. & Schicker (eds), Proceedings of the IFIP TC 6/WG
6.5 Working Conference on Message Handling Systems and Distributed
Applications Costa Mesa, California: North Holland, pp. 399-414.

Racke W. F. & Fischer K., (1988), “Extending an Existing Mail Service to
Support X.400 Message Handling”, ! Oth Computer Networking Symposium,
IEEE Computer Sco. Press: pages 245-53.

Rafaeli S., (1986), “ Electronic Bulletin Board, A Computer Driven Mass

Medium”, Computers and Social Sciences, Vol 2(3), Paradingm Press Inc., pp.
123-136.
Santo, H., (1988), Advanced Messaging in Groups «, Interim Report, North-

Holland, pp. 55-60.

212

Bibliography

Scheller A. & Fuhrhop C., (1990), “Joint Editin g with DAPHNE”, in Vandoni,
C.E. & Duce, D.A. (eds), EUROGRAPHICS ‘90, Elsevier Science Publishers
B.V.: North-Holland, pp. 113-124.

Schulze G., (1988), * Office Document Architecture and Its use in Message
Handling Systems”, in Raviv, J. (ed),Computer Communication Technologies for
the 90's, Elsevier Science Publishers B.V.: North-Holland, pp. 38-43.
Shillingford, J., (1990), “Electronic Messaging in the 1990s”, Communicate,
Vol./Part pp. 42-44.

Shoshana, L., (1992), "Delivering Interactive Multimedia Documents over
Networks", IEEE Communications magazine, Vol. 30 No. 5 pp. 52-59.

Touillet, D., (1988), “X.400 the Key for new Networking Applications the
example of Atlas 4007, in Raviv, J. (ed),Computer Communication Technologies
for the 90’s, Elsevier Science Publishers B.V.: North-Holland, pp. 470-475.
Valentine, I., (1988), “What Next After X.400”, Communication International
January 1988, pp. 29-30.

Wagner, B., Bogen, M., Nunez, M,, Gallardo, J., Benford, S., Onions, J. &
Palme, J., (1989), “Piloting”, in Smith, H., Onions, J. & Benford, S. (eds),
Distributed Group Communication the AMIGO information model, Ellis Horwood
Ltd Publishers, Chichester.

Wilbur, S., (1989), “ Group Communication as a Tool in an Organisation Support
Environment ¢, in Stefferud, E., Jacobsen, O.J. & Schicker (eds), Proceedings of
the IFIP TC 6/WG 6.5 Working Conference on Message Handling Systems and
Distributed Applications Costa Mesa, California: North Holland, pp. 337-344.
Wilson, P., (1988), “Key Research in Computer Supported Cooperative Work

(CSCW)”, Research into Networks and Distributed Applications, Elsevier Science

Publishers B.V.: North-Holland, pp. 211-226.

213

Bibliography

Yamazaki, K. & Suzuki, H., (1984), "A Methodology of Project Management for
Micro-Computer System Development", Journal of Japan Society of Precision

Engineering Vol./Part 50(3), pp. 550-555.

Appendix 1 ‘

Appendix 1

Overview of Seven Layers

A 1.1 Overview of Seven Layers

The brief functional description of seven layer in the OSI reference model given below:

@) The Physical Layer (Layer 1)

The Physical Layer is the lowest layer of the ISO model and interfaces to the actual
communication medium. This layer provides mechanical, electrical, functional and
procedural characteristics to establish, maintain and release physical connections between
two data link entities. It handles the encoding of data into signals compatible with the
medium, bit timing and modulation standards.

(i1) The Data Link Layer (Layer 2)

The Data Link Layer builds upon the services offered by the Physical Layer in order to
transmit a stream of bits without error. Layer 2 synchronises transmission and handles
error control and recovery so that information can be transmitted over the Physical Layer. It
establishes an error-free communication path between network nodes over the Physical
Layer channel, message access to the communication channel, and ensures the proper
sequence and integrity of transmitted pockets of data. For example, an OSI standard known
as High-Level Data Link Control (HDLC) provides the data-link connect procedures
(Jarratt, 1989).

The Network Layer (Layer 3)
The Network Layer provides a service which is independent of the actual network(s) being

used. The Network Layer establishes, maintains and terminates communicaton between

nodes. It sets-up the most economical path, both physical and logical, between

communicating nodes, routes messages through intervening nodes to their destination and

controls the flow of messages between nodes. Any relay functions are hop-by-hop service

twork service between the OSI end open

enhancement protocols used to support the ne
e. within the Network Layer or below.

Systems are operating below the Transport Layer, 1.

Appendix 1

The Transport Layer (Layer 4)
The Transport Layer provides a service to transport data from one system to another
without concern for the underlying network(s). It provides end-to-end (source-node-to-
destination-node) control of a communication session once the path has been established,
allowing processes to exchange data reliably and sequentially, independent of which
systems are communicating, and their location in the network. It is basically acts as the
Jiaison between user and network. It is this layer which provides end-to-end sequence
control, error detection, error recovery, flow control and monitoring & supervisory

functions.

The Session Layer (Layer 5)

The Session Layer is concerned with the maintenance of logical sessions. The Session
Layer manages dialogue, establishing and controlling system-dependents of
communications sessions between specific nodes on the network. A node is any intelligent
unit on a network that has an integral central processing unit (CPU). Every node is

uniquely addressed on the network (Jarratt, 1989).

The Presentation Layer (Layer 6)

As the name implies, the Presentation Layer is responsible for presenting data to entities in
the Application Layer in the form that they understand. The Presentation Layer resolves the
difference of varying data formats between systems of different vendors. It works by
transferring data in a system independent manner, performing appropriate conversions at

each system.

The Application Layer (Layer 7)

The Application Layer is the highest layer in the ISO model and it can be considered as the
layer in which all application processes reside. The Application Layer provides information
services to support end-user application tasks such as file transfer, remote file access

database management, electronic mail and terminal access. It manages communications

between applications.

Y1 A

Appendix 2 '

Appendix 2

Suplementary Information on MHS

A 2.1 Protocols “P7”, “P3” and “P1”

The structure of access protocol “P7” views between UA and the MS is shown in Figure A
2.1. Figure A 2.2 shows the communication between MTS and MS or UA using “P3”
protocol. The service elements specific to protocols "P3" and “P7" cater for the submission
of messages or probes and the delivery of messages or reports as well as the administration
of the connections (CCITT, 88). The protocol “P7” is identical to the protocol “P3” except
the delivery port services are replaced by the retrieval port services. The protocols “P3” and
“P7” in addition make use of the remote operation service element (ROSE). ROSE is a
simple protocol that triggers an action in the partner MTA. Such an action is for example
the receipt of a message. The action always responds to the initiator with either a result or

an eIror message.

M S Submission Port Services MS
S E S E
M R Retrieval Port Services MR
S E S E
M A Administration Port Services M A
S E S E
R L IR A // ALl RLIR
o | N\< Remote Operations cH o
T C b P
s s s \ Reliable Transfer s s s
P—— -
Association Control
e

Figure A 2.1 Structure of the P7 protocol.

The structure of two MTAs communicating with protocol “p1” is shown in figures A 2.3.

e reliable transfer service element
e element (ACSE). ACSE

The message transfer service element (MTSE) utilizes th
(RTSE) which in turn makes use of the association control servic

217

Appendix 2 '

s responsible for the establishment and release of a connection. Both RTSE and ACSE

depend on the services of the presentation layer, i.e.. layer 6 of the OS] model. The reliable
rransfer service element hides the particulars of the OS] protocols. The MTSE hands over
to the RTSE a complete message. This message is then segmented by RTSE and
ransmitted to the partner MTA through OSI layer services. The RTSE ensures that those
services are employed correctly, so that even in the case of a complete disruption of the
connection, the message, probe or report is not lost nor replicated.

MS . .
s E Submission Port Services b
M D Delivery Port Servic MD
S E S E
M A Administration Port Services M A
S E S E
R] R[] A~ A=
Y T C Remote Operations /__ T ©
s s s e s s s
Reliable Transfer
E E E) - L] SEIRE E
Association Contro
L] e

Figure A 2.2 Structure of the P3 protocol.

MTA <t | e MTA
Message Transfer Services 2’1 g
MT
- Message Transfer
Probe Transfer

R Report Transfer - =

A
. Reliable Transfer c N
' N Association Control) s
$ s

E E
B E
s e

Figure A 2.3 Structure of the P1 protocol.

Appendix 2

A 2.2 List of Suplementary Services (Transfer System & IPMS)

' Access Management
Basic Content Confidentiality
Content Type Indication
Converted Indication
Cross referencing Indication

Delivery Time Stamp Indication
[P-message Identification

Language Indication

Multi-part Body

Message Identification

Non-Delivery Notification

Original Encoded Information Types
Primary and Copy Recipients Indication
Registered Information Type

Stored Message Alert

User/UA Capabilities Registration etc.

Additional Physical Rendition
Alternate Recipient Allowed

SL;?EISS‘O“ Deferred Delivery
. Deferred Delivery Cancellation
Delivery

Delivery Notification Disclosure of Other Recipients
Express Mail Service

DL expansion Prohibited

Latest Delivery Designation

Multi-Destination Delivery

Physical Delivery Notification by MHS

Physical Delivery Notification by PDS

Prevention of Non-Delivery Notification

Special Delivery

Return of Contents etc.

. Conversion Prohibition
Conversion Conversion Prohibition in case of loss Information

Explicit Conversion
Implicit Conversion

Query Probe .
Probe Origin Authentication

Alternate Recipient

Status an_d Assignment
Information Hold for Delivery
Type Body

Use of Distribution List
Stored Message Listing etc.

ue book VOLUME VIII - FASCICLE VIIL7.

For complet i ‘ fer CCITT bl
plete Services please refer dations X.400-

Data Communication Networks, Message Hnadling Systems Recommen
X.420.

~N10

Appendix 2

A 2.3 An Example of Protocol Extension Macros,

HEADING EXTENSION MACROS ::=

BEGIN
TYPE NOTATION ::="VALUE" type | empty

VALUE NOTATION ::= value (VALUE OBJECT IDENTIFIER)
END

ExtensionsField ::= SEQUENCE {
type [0} EXTENSION
criticality [1] Criticality
value [2] ANY DEFINED BY type }

criticality ::= BITSTRING {
for-submission (0),
for-transfer (1),
for-delivery (2) }

The type defines the type of the extension (the EXTENSION macros defined in X.420 (88)
in details) and value contains the corresponding value. Since the presence or absence of an
extension may enable or prevent certain operations, the entry criticality is used to indicate
the criticality or non-criticality of the corresponding extension for the operation of message

submission, transfer or delivery.

The types of body parts that may appear in the body of an [PM may includes text, voice,
videotex, encrypted, mixed-mode and teletex (a complete body part choice is listed in

X.420 (88) etc. numbering to sixteen types.

0

Appendix 2

A 2.3.1 List of X.420 fields
The Interpersonal message (IPM) is number of primary class of information object
consists of the following: |

Heading fields component types,

Heading fields and

Body part types.

Heading fields component types are: IPM identifier, recipient specifier and O/R

descriptor and defined as below:
IPMIdentifier ::= [APPLICATION 11] SET {

user o OR address OPTIONAL,
user-relative-identifier LocallPMIdentifier)

Recipient specifier ::= SET {

recipient [0] OR Descriptor,

notification-requests [1] Notification Requests DEFAULT {},

reply-requests [2] BOOLEAN DEFAULT FALSE }
O/R Descriptor ::= SET {

fomal-name ORName OPTIONAL,

free-form-name (0] FreeFormName OPTIONAL,

telephone-number [1] TelephoneNumber OPTIONAL }

The fields that appear in the heading of an IPM are defined and described below:
Heading ::= SET {

this-IMP ThisIMPField,

originator [0] OriginatorField OPTIONAL,
authorizing-users [1] AuthorizingUserField OPTIONAL,
primary-recipients ~ [2] PromaryRecipientsField DEFAULT {},
copy-recipients [3] CopyRecipientsField DEFAULT {},
blind-copy-recipients [4] BlindCopyRemplentFlcld OPTIONAL,
replied-to-IPM [5] RepliedTolPMField OPTIONAL,
obsoleted-IPMs [6] Obsoleted[PMField DEFAULT {},
related-IPMs [7] RelatedIPMsField DEFAULT {},
subject [8] EXPLICIT SubjectField OPTIONAL,
expiry-time [9] ExpiryTimeField OPTIONAL,
reply-time [10] ReplyTimeField OPT TONAL,
reply-recipients [11] ReplyRec1p1g>ntsFleld OPTIONAL,1
importance [12] ImportanceField DEFAULT normal,
sensitivity [13] SensivityField OPTIONAL, LSE
auto-forwarded [14] AutoForwardefiFleld DEFAULT FALSE,
extensions [15] ExtensionsField DEFAULT {}}

331

Appendix 2.

nationally-defined

7] NationallyDefinedBodyPart,
externally-defined

15] ExternallyDefinedBodyPart,

hat are appear i ;
The typeBso(ég g(;?ty t i CHOI%PE a{r In the body of an IPM are defined and described below:
1a5-text [0] IA5TextBodyPart,
voice [l] VoiceBodyPart,
g3-facsimile [2] G3FacsimileBodyPart,
g4-classl [3] G4Class1BodyPart,
teletex [4] TeletexBodyPart,
videotex [5] VideotexBodyPart,
encrypted [8] EncryptedBodyPart,
message [91 MessageBodyPart,
mixed-mode [11] MixedModeBodyPart,
bilaterally-defined [14] BilaterallyDefinedBodyPart,
[
[

Note: 1) An O/R descriptor is an information item that identifies a user or
Distribution List (DL).

ii) Some fields have components and thus are composite, rather than indivisible. A
field component is called a sub-field.

iii) The body part of some the type may have two components that is parameters
and data.

For detailed information please see section 7 (X.420), CCITT Recommendations X.400-
X420 ‘Data Communication Networks: Message Handling System’ VOLUME VIII .

~N)

Appendix 2

A 2.4 Electronic Data Interchange Messaging System (EDIMS)
The electronic data interchange messaging (EDIM) system is a service in parallel to the
interpersonal messaging system. The system is can also be seen in parallel to the services to
be recommended in this research. In this context it is felt necessary to describe the EDIM
system in brief.

EDI (Electronic Document Interchange) is the electronic interchange of documents in all
possible areas of business. The aim of EDI is to replace the numerous paper documents
used in the course of business by electronic forms. Such documents include orders,
delivery notes, consignment notes, customs declarations, receipts and invoices. However,
to ensure the interoperability of EDI systems from different manufacturers, international
standardization of the electronic representation of all possible document types is under way.
The standardization is collectively denoted by EDIFACT (Electronic Document Interchange
for Finance, Administration Commerce and Transport) by the United Nations Economic

Commission for Europe, ISO and other standardization committees.

The importance of EDIFACT here is that it is considered to be an application of X.400 like
P2/IPMS. The few EDIFACT implementations available follow a pragmatic route under
X.400 and generate a P2 formatted content, the body of which contains the EDIFACT
message to be transmitted. In this case the message switching nodes corresponding to the
MTAs are called Clearing Centres (CC) and Terminals correspond to the UAs (Plattner et.
al,, 91).

Electronic Data Interchange is an application using the X.400 service as a user agent
service, much like that defined for the InterPersonal Messaging (P2) service. CCITT Study
Group VII has defined a new content type and protocol for EDI (for EDIFACT), currently
known as Pedi (protocol for electronic data interchange) and reflected in CCITT draft
Recommendation X.edil and X.edi2. Figure A 2.4 provides an overview of the EDIMS.

~NIY22

Appendix 2

........
...........

...........
..........
.....

..... EDI - Messaging Syste
.-:;:<Emmsua N
N sage N
L LN TRANSFER T
% SrSSlDll TRANSFER Yoioolhllll
.:':CED""‘ SERVICE A orreeee]
T e T e S
.::j:j:j::::t' EDIMS UA '::j:::j:::i::::iji:::ﬁ'

"CHL;;_:_'_:_:_::'.'_::::',::'_'.::::::::::::::‘ """"

_r—""__"—h-h__
USER
-\—__—__.4—"-)

Figure A 2.4 Simple Model of the EDI Messaging System.

The EDI/EDIFACT system determines which specific EDI application is to be invoked by
examination of the EDI header. For example, in the EDIFACT context, information about
the entire EDI interchange is carried in an UNB! header. UNB is the header segment of the
transfer file; it contains a statement on the standard and which version of it is used. The
Pedi consists of a heading and a body, which in turn consists of a number of body parts.
The body contains only one EDI message (or ‘interchange’, in EDIFACT terminology) or

one forwarded EDI message. Other body parts may exist and may be used to contain other
ext accompanying a purchase order. The Pedi

information, such as an explanatory note of t
om the EDI interchange header (UNB 1n

header is a combination of P2 fields, fields fr
EDIFACT), and some new fields specifically defined for Pedi. The structure of a

EDIFACT transfer file is shown in Figure A 2.5.

on the standard and which version of it is used.

1 ¢ -
header segment of the transfer file; contains a statement

~~ A

Transmission File Transmission File

: or
UNA UNB ' either messagel individual UN7Z '
group message
UNG ' message message message UNE :
UNH ' segment segment segment UNT '
. . Simple data element
S t identifi + !
egment identifier + data element group
Identifier : | number
value GD | : | GD
value value

, -------- denotes alternative to

GD denotes group data element

For more information please refer to X.400 Message Handling, Standard, Interworking,

Application, By Plattner et. al., 1991 Edition.

Appendix 2

A 2.5 X.400 Implementation as PP

In previous sections the X.400 recommendations are described in brief. Implementations of
the X.400 protocols are now available widely. It is not necessary to discuss in detail the
implementation of X.400. However, in this section the ‘PP’ X 400 implementation is
described briefly as the prototype was developed on this implementation.

The use of the PEPY ASN.1 compiler from ISODE (ISO development environment)
package (Kille, 91) has made the mapping of the PP message transfer service onto OSI a
relative mechanical operation. This has provided the underlying OSI model required for
x.400 and QMGR ROS (queue manager remote operation service). The PEPY tool has
peen used by ‘PP’ for implementation to automatically generate the X.400 ASN.1 and the
ROSY and POSY tools have been used by ‘PP’ for implementaion to generate the QMGR
protocols.

The ISODE is a key component of the PP implementation (Kille, 91). ISODE is an
implementation of the OSI upper layers. It contains the layer services of session and
presentation. These are common services: the ASCE, ROSE and RTSE, application
services; the FTAM and VTP and ASN.1 handling tools. The ISODE also operates over a
TCP/IP network. This has enabled OSI applications, including PP and QUIPUZ to be
deployed ahead of provision of a global OSI network service. The ISODE creates an
implementation environment for PP. ISODE is widely available, it is in public domain,

which puts PP effectively in the public domain.

PP is a message transfer agent oriented towards support of the X.400 series
recommendation. PP is implemented in C to be portable to a wide range of UNIX and Unix
like operating system. The major goals of PP are given below (Kille, 91):

) Interface provision for message submission and delivery to support wide range of

user agents,

(11) Support of all the message transfer service elements i.e. X.400 (84 and 88),
(i) Support to facilitate the handling of multimedia messages,

(iv) Scheduling of message delivery to optimise local and communication rc?s'c).urces,
v) Provision of a range of management., quthorisation and monitoring facilities,
(vi) Reformation between body part types in general manner,

(vi

vii) Support of multiple address format,

Vi) Use of OSI directory services,

2 . .
QUIPU is the X.500 (directory services) implementation.

APP'Chdix, 2

(ix) Support of message protocol conversion in an integrated form
x) Access to message transfer services, other than IPMS and
() Support of other services not provided in X.400.

A 2.5.1 Overview and Structure of PP
The PP MTA makes use of UNIX processes to provide the modularity which is

fandamental to PP. The aim of a process in PP is to perform a single function, which
allows flexible construction of complex processing and minimising side effects (Kille, 91).
PP has a single queue which increases robustness, facilitates uniform handling of errors
and simplifies the management. The structure consists of submit, queue manager, inbound
and outbound channels, Queue and UA processes.

The first key process in PP is submit. Submit takes all incoming messages and places it in
the queue. Submit performs all calculations to process the message and determine how it
will be delivered. Early checking also ensures the detection of errors at the earliest point,
and that later processes can be implemented in a more as straightforward fashion. The
initial checking also includes the management and address verification. A message is

received by submit either from a user agent or a protocol server called inbound channel.

The second key process is the QMGR (queue manager) which schedules all operations
within PP. The QMGR holds the full queue status in memory, and controls the processes
which perform the work. The major components controlled by the QMGR are channels, for
the functions either of delivering a message (locally or using X.400 P1 protocol) or
carrying out a format conversion (i.e. manipulation within the queue). For each MTA, there
is a single queue and a single QMGR. There may be multiple instances of the submit
processes acting at any one time as there may be for channel and user agent processes. The
PP process structure is illustrated in figure A 2 6. There are two critical processes with

complex functionality. They are the submit process and queue manager process (QMGR).

age; a file
For each message in the queue there are two components to process the message, a

- , . age as it
containing the control information and a UNIX directory containing the message as
arrives together with any associated delivery notifications

designed not to be tied to a specific protocol. It supports a wide T

“The queue encoding format 18

ange of protocols.

Appendix 2

Inbound
Channel |

— — — —— ——

Outbound
Channel

.)

Figure A 2.6 PP Process Structure.

A 2.5.2 Specific Channel Requirement

The term channel is used in PP to describe a number of somewhat different components. In
essence, each channel takes a message as an input, and then provides a different output.
Channels may put a message in a queue, remove a message from a queue or transfer a

message from a queue. Following channels in PP have external dependencies/supports:

@ SMTP: The Simple Mail Transfer Protocol channel requires the use of TCP/IP.

() JNT Mail: This is integrated with the UNIX-NIFTP package, which usually
requires X.25 access.

(i) X.400: This uses the ISODE lower layers (both 1984 and 1988 variants). For
most services X.25, CONS or CLNP is required to run this channel, although it
can be run over TCP/IP using RFC 1006 (Kille, 91).

(iv) UUCP: This channel requires a working UUCP installed on the Sunlink DNI

(DecNet Interface Version 7.0 or later) package.

A 2.5.3 PP tables and their Purpose
These are five basic tables used by PP; the aliases table, the users
the channel table and the or table. There are also set of ables €

information and a family of tables that provide mapping betwee

table, the domain table,
ontaining authorisation

n X.400 or names and

Appendix 2

RFC? 822 domain names. Specific channels may also have their own tables containing th
. 1 \ e
information they require.

When a message an*ive;, the submit process uses the domain, or, users, aliases and
channel tables to identify delivery routes for the addresses in the message. The RFC’s are
used to convert between X.400 style addresses and RFC style addresses and vice versa.
The address arrives in one particular form either an X.400 style or an RFC 822 style
address. This address is normalised via the appropriate table: the or table for X.400 style
addresses, the domain table for RFC 822 style addresses. This address may be
unrecognised or remote site or local. In the case of remote address, the remote site is
accessed via the channel table. If the address is local than it is first looked in the aliases
wble and if not found then the routing information for the local address is accessed via the

users table.

PPs first service operation has been to provide X.400 gatewaying services for the UK
Academic Community. In providing these services, the PP system has interworked with
about 40 other different implementations of P1 protocol (Kille, 91) demonstrating its
interoperability. PP is being taken by sites around the world, particularly for use as a

gateway or conversion service. The examples of these tables are given in below.

MR extract of ‘aliases’ table #HHHEHHHHEHHHHHIH
#

mail-group-request:alias Irene.Hassell

postmaster:alias Irene.Hassell

pp:alias postmaster

#

a.dacruz:synonym Alina.DaCruz

alina:synontm Alina.DaCruz
#

Jpo:alias jpo@uk.ac.aston.cs 822
#

peialias “/1=P/S=Cowen/O=xtel/services/ ADMD= Je=gb/” x400
#

Table A 2.1 Example of Alias Table

3
Request For Comments.

#10p level entries

edu:mta = 1:*

mil:mta = 1%

ptmta = 1:*

#1ocal entries

cs.uclac.uk:mta =

cs.ucl.ac:synonym cs.ucl.ac.uk
cs.ucl:synonym cs.ucl.ac.uk
cs.aston.ac.uk:mta cs.aston.ac.uk
#note the above is equivelent to

cs.aston.ac.uk:mta =
cs.aston.ac:synonym cs.aston.ac.uk
¢s.aston:synonym cs.aston.ac.uk
cs:synonym cs.aston.ac.uk

#

NRS derived entries
alass.aston.ac.uk:mta alass.aston.ac.uk
alass.aston.ac:synonym alass.aston.ac.uk
alass.aston:synonym alass.aston.ac.uk
alass.aston.ac.uk:mta =
alass.aston.ac:synonym alass.aston.ac.uk
alass.aston:synonym alass.aston.ac.uk
clan.aston.ac.uk:mta clan.aston.ac.uk
clan.aston.ac:synonym clan.aston.ac.uk
clan.aston:synonym clan.aston.ac.uk
clan.aston.ac.uk:mta =
clan.aston.ac:synonym clan.aston.ac.uk

Clan.aston:synonym clan.aston.ac.uk

Table A 2.3 Example of Domain Table

~ o~

Appendix 2

A_ppendix 2

#

#extract of ‘or’ table
#

skkk gb Sk _
#

C$GB:valid

C$UK:synonym C$GB
ADMD$GOLD 400.C$GB:valid
PRDMS$UK\AC.ADMDS$GOLD 400.C$GB:valid

g ekkkkkkek giteg connecting via gold 400 ADMD *##.

#

PRMDS$DIGITAL.ADMD$GOLD 400.C$GB:mta bt-gold
PRMD$TELECOM GOLD.ADMD$GOLD\ 400.C$GB:mta bt-gold
OU$CS.O$UCL.PRMD$UK\ AC.ADMD$GOLD\ 400.C$GB:local

C$FR:valid

ADMDS$PTT.C$FR:mta emu-france
ADMDS$ATLAS.C$FR:mta emu-france
PRMD$BULLMTS.ADMD$ATLAS.C$FR:mta MYBULL

PRMD$DERIEUX.ADMD$ATLAS.C$FR:mta persona
#

Table A 2.4 Example of Or Table

~ 4

#
#
a,cs.uiuc.cdu:a.cs.uiuc.edu(smtp)
#
bsec.abcy.uwist.ac.uk:bsec.abcy.uwist.ac.uk(gb-janet)
bt-gold:bt—gold(x40()out84)

bte:bte(x4000ut84)

abel.co.uk:ukc.ac.uk(gb-janet), ukc.ac.uk(gb-pss)
ptvax.ulster.ac.uk:btvax.ulster.ac.uk(gb-janet)
pull:bull(x4000ut84)
bunny.ulcc.ac.uk:bunny.ulcc.ac.uk(gb-janet)

#

emu-france:emu-france(x4000ut84)

#

torch.co.uk:ukc.ac.uk(gb-janet), stl.stc.co.uk(gb-pss)
These are resolved directly by the DNS - no relay
edu:(smtp)

gov:(smtp)

com:(smtp)

us:(smtp)

mil:(smtp)

org:(smtp)

Table A 2.5 Example of Channel Table

MR o ract Of ‘users table AT
#

Alina.DaCruz:822-local vs2.cs.ucl.ac.uk

Steve Kille:822-local pyrl.cs.ucl.ac.uk

John.Tayler:822-local vs2.cs.ucl.ac.uk, slocal vs2.cs.ucl.ac.uk

POStie‘Pat:822~local vs2.cs.ucl.ac.uk

X400-users: list
Warning:shel]

Table A 2.6 Example of Users Table

Appendix 2

Appendix 2

A 2.6 Description of Make Variables (Installing PP)

Having done the normalisation of the address, the routing information fo; that address th
address is converted into other style address (X.400 to RFC 822 or vice versa) Thz
installation software requires a number of make variables to be set. The variables Co;ne in
wo classes. The first variables are truly site specific. The second variables are those which
can probably be left as the defaults. A list of such variables and their description in brief is

given below.

Variable Example Description

TAILOR /ust/lib/pp/tailor Location of the pp tailor file

CMDDIR Jusr/lib/pp Directory for pp basic commands

CHANDIR Jusr/lib/pp/chans Directory for channel programs

FORMDIR /usr/lib/pp/format Directory for the simple formatting channels

TOOLDIR /usr/lib/pp/tools Directory for miscellaneous shell scriots and
debugging tools

LOGDIR fusr/lib/pp/logs Directory for pp logs

QUEDIR /usr/spool/pp Location of pp queue directory

TBLDIR /usr/lib/pp/tables The directory containing the table files

LIBSYS -lisode External libraries required - must include ISODE

LIBRESOLV -lresolv Resolver library for bind (empty if name server
not required

USRBINDIR Jusr/local/bin Directory for user binaries

OPTIONALCHANS | list 822-local smtp List of optional channels required

OPTIONALFILTERS List of optional filters

MANDIR /usr/local/man Directory to place manual pages under

MANOPTS -bsd42 Manual page installation options

NIFTPSRC Jusr/src/niftp Directory containing the source to unix-nift package

(only required if you wish to run grey book mail).
INFTPINTERFACE sun Niftp interface being used (restriction as above)

Table A 2.7 Make Variables that should be Set at Site

Appendix 2

—
Variable Default Description
[——
cC cc The C compiler to use
CCOPTIONS -0 C compiler options
LIBCCOPTIONS -0 C compiler options specific to library files
OLDCC cc Other cc if gec is used
LDOPTIONS -$ Loaded options
PEPY pepy The pepy ASN.1 parser/compiler
POSY posy The posy stub generator
ROSY 108y The rosy remote operations stub generator
PEPSY pepsy The pepsy program
X11 true Does the system have X11?
LIBX -1Xaw -1Xmu -1X11 | The X11 libraries - may need -1Xext for X11R4
LINT lint The lint (1) command
LINTFLAGS -hbuz lint flags
PGMPROT 755 Program protection mode
PPUSER pp The user id PP will run as
ROOTUSER root The user id for privileged
CHOWN chown The chown (8) command
CHMOD chmod The chmod (1) command
BACKUP cp A command to back up the old binary
INSTALL cp A command to install a new binary

Table A 2.8 Make Variables that can be Defaulted

More details please see ‘Implementing X.400 and X.500: The PP and QUIPU Systems.

Appendix 2

A 2.7 The OSI Directory (X.500) and Specificatjons

Each organisation and vendor has developed a unique and proprietary approach to the

design and implementation of Directories. In the spirit of OSI, the purpose of the X.500

Directory is to provide a set of standards to govern the use of Directories

The X.500 series of recommendations describes the operations of the Directory. It is
designed to support and facilitate the communication of information between systems about
objects such as data, applications, hardware, people, files, distribution lists and practically
anything else that the organisation deems worthy of tracking for management purposes.

X500 recommendations places no requirement on the nature of the information stored in
the Directory (i.e. specifications for the Directory). The X.500 recommendations and their
applications for the Directory Services are given in Table A 2.7.

CCITT/ISO Applications

X.500/9594-1 | Overview of Concepts, Models and Services
X.501/9594/2 | The Directory Models

X.509/9594/8 | Authentication Framework

X.511/9594/3 | Abstract Service Definition

X.518/9594/4 | Procedures of Dostrbited Opreations

X.519/9594/5 | Protocol Specifications

X.520/9594/6 | Selected Attribute Type

X.521 959477 Selected Object Classes

Table A 2.9 CCITT/ISO Specifications for Directories.

ook VOLUME VIII - FASCICLE

(For complete information please refer to CCITT blue b
P manen b dations X.500-X.521.)

VIIL8, Data Communication Networks, Directory Recommen

Appendixffzé

A 2.7.1 Features of Directory Services

The communication system consist of a large number of components of real obje

including people, organisations, computers, processes, file systems and electJ C"ts
mailboxes. The information relating to a real object is called a logical object (or just o;?er:t():
and its storage is called an entry. So that real objects in distributed applications maJy be

unambiguously identified, they are given names. A real object may have several names
They should be user friendly. .

In order to generate a communication relationship between real objects there is a
requirement for addresses. An address denotes the position of a real object with respect to
the system architecture. Addresses uniquely identify the real objects. The Directory
Services assigns a set of values to the name of a real object. Such values include not only
the address but also all valuable information in the form of text, speech, images etc.

The Directory Services includes operations to interrogate and alter the Directory. Retrieve
operations may be divided into two classes (Black, 91). White pages queries provide the
information stored for one or more given names. Yellow pages queries supply the names of
the objects that corresponds in the criteria defined in the query. Operations involve the

insertion and removal of entries of their components.

The information held in the Directory is known as the Directory Information Base (DIB).
The entries in the DIB are arranged in a tree structure called Directory Information Tree
(DIT).The DIB is accessed by the Directory User Agent (DUA), which is considered to be
an application process. The components of the Directory system are shown in Figure A2.6.

The services are offered to users by the Directory system via a directory user agent DUA. If

the DUA of the user and the Directory Service Agents (DSA) which represents the directory
ems, their communication is defined by the

unicating DSAs are located in different
e Directory System Protocol (DSP)

systems are located in different real open syst
Directory Access Protocol (DAP). When two comm
real open system their communication is defined by th
(Plattner et. al., 91).

Appendix 2

oSA DUA (—){ User |
DSA < DSA <—¢—> DUA <> User |
= DUA J<—>{ Ter]

Access Points

Figure A 2.7 Components of Directory System.

MTA
MTS / <> User

\ e
User
¢ DSA
AN
DUA (&> DSA |[<&— —>»> DSA |«&——>>{ DUA [&—>»t User

Directory System

Figure A 2.8 Functional Model of the Relationship between X.500 and X.400.

Appendix 3

Characteristics of GCSA and GCUA

A 3.1 Capabilities and Characteristics of GCSA and GCUA.

Group communication service agents (GCSA) and Group communication user agents
(GCUA) which are described in AMIGO report have the following capabilities and

characteristics:

e A GCUA is an entry point for GCS which is reachable via a group
communication port.

e A GCSA is able to co-operate with other GCSAs to provide the
required services via a GC system protocol.

e In addition to co-operation, a GCSA has to co-operate with the following:

a) the Directory Services (DS),

b) the Archive System (AS), (AMIGO Muld-User Storage System for
piloting),

¢) the message handling system (MHS '84 and 88' with message store
(MS), (MHS 1984 with AMIGO-DLs for piloting),

d) the management system (MGMS), to be based on the emerging ISO/
OSI common management information system.

Apbendfk 3

A 3.2 GCS Interworking with Supporting Systems.

Read Pont
Modity port Directory
/ Zearch port 3ystem
—— —_H_'__,.,.-?
N
Group

Submit port Messsge

Commvanication Delivery port Tramsfer
sdm. por ——@\‘ fystem

Hystem Te—

Adm. port —Ee] Arclive
?_’:37 F&E port 553 Bystem

-‘--\—-
u\ 1 ___d_'hL‘___b-
—~ ..
\ \?— Mgm. port —E;f;/ Minsgement System :}
S -

Figure A 3.1Group Communication System interworking with Supporting

Systems.

For more information please see AMIGO report chapter 3: “Group Communication

Architecture’.

Appendix 4

CCITT & GRACE Operations

A 4.1 List of CCITT operations

The group communication system defines basic operation as abstract service definition. The

list is in addition to the operations required to manipulates the group editing objects.

create(DN, type, attributes) --> status
Creates the object with the given distinguished name and attributes. The object is created in
its distinguished domain determined from its name. It cam only subsequently be

removedfrom this domain by being deleted. The object type identifies the class of object.

delete(DN) -> status
Deletes the specified object. This removes it from all other objects to which it is linked. It is
not possible to delete a domain which is the distinguished naming domain for some other

object.

read(DN, attribute type list) -> DN, attributes, status

Provides the mechanism for retrieving information about a single object. The operation
returns the distinguished name of the object followed by the value of tthe specified
attributes. It is possible to request the values of “411” attributes in the attribute type list

argument,

modify(DN, modification list) -> status
Supports the modification of atiributes belonging 10 a single object. The oper .
the named object and adds or deletes attributes as specified in the modification list. A single

Operation might combine the addition or deletion of several attributes. Adding an attribute
ecifying a type and

f an object can not

ation locates

Involves specifying a type and a set of new values. Deleting involves sp

aset of old values (the type alone means delete all values). The name 0

be modified with this opeartion.

link(DNT, DN2, link-type) -> status
Establishes relationship of given type between objects.

~ A

Appendix 4

unlink(DN1, DN2, link-type) -> status
Removes relationship between two given objects. An explicit unlink between o opy
jects

will cancel a previously given link, and will also cancel existing or forthcoming derived
Jinks of the given type.

inked-to(DN, link-type, explit) -> DN Iist
The operation returns the names of all objects which have the specified link to the named
object. If explicit is true, only direct links are found. If explicit is false, also derivrd links

are found.

linked-by(DN, link-type, explit) -> DN list
This operation returns the names of all objects to which the named object has the specified
link. If explicit is true, only direct links are found. If explicit is false, also derivrd links are

found.

search(cluster DN, domainlist, filter, target attributes) -> DNs and attributes
This operation is used to search for the objects in a cluster or domain which match the
specified filter (as in the Directory). The values of the target attributes are returned. It is
possible to request the values of all attributes. If both a cluster and a domain are specified
then the contents of the cluster are searched relative to the domains (i.e. only objects in the
cluster and atleast one of the domain are examined).This supports the above requirement
for ‘views’ where the results of searching a cluster may vary depending on the domain

where searching is constrained.

A 4.2 List of ‘GRACE’ operations
The following operations are defined in the project «JSENET news modelled as a GRACE

activity”. The operations are listed because their functionalities are similar to some of the

operations require in group editing.

initialise create the object and role to start the activity
register organisation to register a new organisation in this domain
de-register organisation de-register the organisation from this domain
remove item remove old.expired items from the domain
Jollow-up item respond to a specific news item

Uccept item accent the item for the news group
accep

Program Listing

The program listing is devided into four part. That is part ‘A’, part ‘B’, and ———
listing description is given below:

i A ---> Activity Generator,
i) B ---> Activity Responder, and
i) C ---> Activity Monitor.

Appendix 5

A. ACTIVITY GENERATOR

#! fbin/sh
#*************
continued="y"
service=

until ["$continued” = "n" -0 "$continued” = "N"
do

clear

cat < menutxt

echo-n' > 77777

read service

case "$service" in

Ala) defineshell;;
Blb) chmod 666 member.dat
add_member
chmod 644 member.dat;;
Clc) chmod 666 member.dat member _name
clear
delete_member
mv membern.dat member.dat
if test -s tmpname
then
mv member_name member.name
del_uname
mv member.new member_name
mem="cat tmpname’
if test "$mem" = "balab"
then
mv Mail/newsloc/b.bala Mail/newsloc/oldb.bala

fi
if (test "$mem" != "balab")
then
mv Mail/newsloc/$Smem Mail/newsloc/oldSmem
fi

rm tmpname
chmod 644 member.dat member_name
else
echo "abnormal exit"”
echo""
fi
echo"";;
DId) notification ;;

Ele) process_contrib;;
FIfy his_stat_new 2> junk ;;
Glg) i=1

for eall in “cat newsletter.dat’
do
echo $eall > news[$1]
i=$i+1
done
clear

Appendix 5

echo "News Letter : “cat news[1+1]" Release Date: $eall" > news.doc
rm news([1] news[1+1] news[1+1+1]

echo "Main Editor: bala@uk.ac.aston.quipu” >> news.doc
echo ™
" >> news.doc

scan +newsloc/document

echo " "

echo -n "Please enter the numbers (separated by spaces) of the contributions in the order they will

appear in the New Letter 77 "

read order

echo " "

for msgnum in $order

do

show $msgnum -form doch.form >> news.doc
echo " " >> news.doc

done

more news.doc

exit

Qlg) exit;;
*) echo 'Please type a,b,c,d.e.f,gorq??';;

esac
echo
echo -n "Do you need more services (default is yes type n/N to exit) ?? "
echo " "

read continued

if ["$continued” = "n" -0 "$continued" = "N"]

then

"o

exit
fi
done

*ikakk a4k END OF ACTIVITY GENERATOR# ke x

%4+ ¥ DEFINESHELL (CREATE ACTIVITY) **%s%xxx
#1 /bin/sh

#*************

if test -f newsletter.dat
then
clear
cat <<- ENDOFMSG

Warning:-

1. This system supports only a single News Letter.

2. There is a News Letter currently being prepared, if you continue
the current News Letter will be closed.

3. If a News Letter is closed all old information will be available as follows;

(i) activity details --> oldnewsletter.dat
(i) group member details --> oldmember.dat
(iii) remark details --> oldremark.dat

(iv) user names --> oldmember_name
(v) newsletter folder --> oldnewsloc

244

Do you want to create a New News Letter(and close old one) yorn??
y --> To create a New News Letter.

q --> To Quit (without closing existing News Leuer).

ENDOFMSG

option=
echo -n "Enter Option y or q ---> 77"
read option

else
" "

option="y
fi

if (test $option = "q" -0 $option = "Q")
then

exit
fi

if (test $option = "y" -0 Soption = "Y™")
then
echo " "
nextoption=
echo -n "Are you sure y or g ---> 77"
read nextoption
fi

case $nextoption in
Yiy) if test -f newsletter.dat
then
chmod 644 remark.dat member.dat member_name 2> junk
chmod 644 Mail/newsloc 2>junk
mv member.dat oldmember.dat 2>junk
mv remark.dat oldremark.dat 2>junk
mv Mail/newsloc Mail/oldnewsloc 2>junk
mv member_name oldmember_name
mv newsletter.dat oldnewsletter.dat 2>junk
chmod 644 oldremark.dat oldmember.dat 2>junk
chmod 755 oldmember_name Mail/oldnewsloc 2>junk
fi
rm junk
mkdir Mail/newsloc 2>junk
mkdir Mail/newsloc/out 2>junk
mkdir Mail/newsloc/document 2>junk
mkdir Mail/newsloc/reminder 2>junk
mkdir Mail/newsloc/request 2>junk
basic_new_defn
chmod 644 newsletter.dat remark.dat member.dat

Qlg) exit;;

*) CChO "ot
echo 'Please type y or q 7?7

¢sac
*ask ks ko k A END OF DIFINES HELL ¥k sdokoodok

245

Appendix 5

Appendix 5

radxserik ADD LINK TO OLD CONTRIBUTIONS TO NEW GR. MEMBER ¥k %k x
#!/bin/csh
#*************
##GET ALL GROUP MEMBERS IN GR_LST
if -f member_name then
echo""
echo "linking earlier contributions to this member."
set gr_lst = ("cat member_name")
if (""cat newmember™" != "balab") then
finger “cat newmember® >! findadr
awk '/Directory:/ {print $2 > "foladdr"}' findadr
set actualfold = "cat foladdr
foreach member ($gr_lst)
pick -sequence picked +newsloc/$member >! hits
if ! -z hits then
refile picked -li +$actualfold/Mail/newsloc >&! junk
endif
end
##cat newmember >> member_name
rm foladdr hits newmember
endif
unset gr_lst actualfold
endif

wkdknnik sk NOTIFICATIONS TO SEND FIRST MESSAGE *# s+
#! /bin/sh

#*************

o

echo
echo -n "Enter Notification To (username@hostname): "
read note
pick -to $note -sequence picked +newsloc/out 1> hits 2> junk
if test ! -s hits
then
echo $note > notename
int_header
if test -s draft
then
clear
myv draft Mail/draft
comp -use
fi
else
echo Notification has already been sent
fi
HHHEHHHHHHHHRHRHEHHEHHEHEREREHEHA
echo " " >! member_last

for member in “cat member_name’
do
if (test $member = "bala")
then
set lastm=$member
else
if (test Smember = "balab")

then
echo b.bala >> member_last

else

246

Appendix 5

echo Smember >> member_last
fi
fi
done
echo $lastm >> member_last
HHHHEHH B

for eachmember in “cat member_last"

do
scan +newsloc/$eachmember 1> hit 2> junk
if test ! -s hit

then
if (test $eachmember != "b.bala")
then
| pick -to $eachmember -sequence picked +newsloc/out 1> hits 2> junk
else
o pick -to balab@email -sequence picked +newsloc/out 1> hits 2> junk
1
if test -s hits
then
refile -1i picked +newsloc/$eachmember 2> junk
rm hits junk
fi
rm hit
fi
done
eCh() non

rm member_last

***************END OF NOTIFICATION >k 3k ok ok sk ok skokokosk

#!/bin/sh

o 3K 3 e ek ok 3k ke ek k

#

clear
flag="f
rm member_last 2>junk

HEHEHEHRHREHEHHEHHHREH R

echo " " > member_last
for member in “cat member_name’
do
if test $member = "bala"
then
set lastm=$member
else
if test $member = "balab”
then
echo b.bala >> member_last
else
echo $member >> member_last
fi
fi
done

echo $lastm >> member_last

247

R
awk ' {print $1 $2 > "mreader"}' member.dat

for eachone in “cat member_last"

do
for eachmem in “cat mreader’
do
if (test "$eachone@quipureader” = "$eachmem")
then
flag="t
else
if (test "$eachone@email” = "eachmem™)
then
flag="t
fi
fi
done
if test "$flag" 1= "1"
then
echo " contribution from $eachone "
scan +newsloc/$eachone
echo" "
set flag="f"
fi
done
#
cated_qry
echo -n "Enter > 777"
read query
if (test $query = "q" -0 $query = "Q")
then
exit
fi
if (test $query = "e" -0 $query = "E" -0 Squery = "a" -0 Squery = "A")
then
echo-n"
Carefully type in the name of the originator of the contribution 7? "
read mem
else
exit
fi
if (test $query = "e" -0 $query = "E")
then
if(test -s Mail/newsloc/$Smem/checkedit)
then
echo "Contribution is being Updated: not available for editing”
exit
fi
fi
clear
for member in “cat member_last’
do

if test "$member" = "$mem"
then

echo "$mem s contribution '

248

Appendix 5

Appendix 5

scan +newsloc/$mem 2>!hh
echo "o
folder +newsloc/$mem
pick -sequence picked 1> hit 2>!hh
fi
done

if (test -s hit)

then
echo"”
echo -n " Select contribution number 22 "
read number
rm hit
else echo™" "
rm hit
fi
clear

if (test Squery = "a" -0 $query = "A")
then
show $number | more
anno Snumber -component Version: -text ' Accepted’ -nodate
refile $number -li +newsloc/document
scan $number -format "%(msg) % {from)" |
while read msg from
do

echo -n "To: $from" > head
show "$number” -form hcad.form >> head
(/01110 J e —— " >> head
show "$number" -form body.form > bodypart
done
cat head bodypart > Mail/draft
send draft
fi

if (test $query = "e" -0 $query = "E")
then
if (test $mem != "b.bala")
then
rm foladdr 2> junk
finger $mem@quipu >! findaddr
awk ‘/Directory:/ {print $2 > "foladdr"}' findaddr
echo $number > "cat foladdr’/Mail/newsloc/checkedit"
fi
cd Mail/newsloc/$mem
echo $number > checkedit
cp $Snumber 9998
anno 9998 -component Version: -text 'released for edit’ -nodate

cd /.1

scan 9998 -format "%(msg) %{from} %{cc} %{sender}" |
while read msg from cc sender

do
echo "To: geo " > headl
if test "$mem" != "bala"
then

if test "$mem" = "b.bala"

249

Appendix 5

then
echo -n "Cc: Smem@email” >> headl
else
echo -n "Cc: $mem” >> headl
fi
fi

show 9998 -form head.form >> head1l

echo "Updated-On: “date” " >> headl

[T6] o SR " >> headl

done

show 9998 -form body.form > bodypart
if test " cat hostfile™" = "sparc2gx"
then
cat headl bodypart > Mail/inbox/9998
/usr/bin/X11/xmh -fg blue -bg white -bd red -flag -display sparc2gx:0 1>&2;
rm Mail/inbox/9998
rm " cat foladdr' /Mail/newsloc/checkedit
rm Mail/newsloc/$mem/checkedit
rm Mail/newsloc/$mem/9998
exit 2
else
vi bodypart
cat head1 bodypart > Mail/draft
echo -n "Do you wish to submit this contribution Y/N 2? "
read ans
if (test $ans = "y" -0 $ans = "Y")
then
rm Mail/newsloc/$Smem/9998
refile -draft -1i +newsloc/$mem
send draft
rm " cat foladdr /Mail/newsloc/checkedit Mail/newsloc/$Smem/checkedit
echo "the contribution has been sent"
else
mv Mail/draft Mail/drafts/1000
rm Mail/newsloc/$mem/9998
clear
echo
rm “cat foladdr’ /Mail/newsloc/checkedit Mail/newsloc/$mem/checkedit
echo "This draft 1s available in the drafts folder as number 1000"
echo "---> EDITCHECK has been REMOVED."

non

fi
rm head1 bodypart
#fi
fi
fi

#rm head headl bodypart] bodypart
rm member_last
#********************END OF PROCESS CONTRIBUTION Sk 3k ok 3k 3k 3k ok ok ok %k kK 3k ok ok ki k

kkskoxkkdkkkk HIS STAT NEW GENERATE HISTORY AND STATISTICS #¥skskxx
#! /bin/csh

#*************

set newsdata = “cat newsletter.dat’

set memberdata = “cat member.dat’

awk ' {print $1 > "memname"}' member.dat

set memnum = “cat memname’

HHHHHEHAHHHEHHEHE AR

set gr_lst = ("cat member_name")

250

"non

echo " " >! member_last

foreach member ($gr_Ist)

if ($member == "bala") then
set lastm = $Smember
else
if ($member == "balab") then
echo b.bala >> member_last
else
echo $member >> member_last
endif
endif
end
echo $lastm >> member_last
HHHHHHHHHH R

#set groupdata = “cat Mail/groupm’
awk '/geo:/ {print $2 > "geoname")" Mail/groupm
#awk '/geo:/ {print $2 > "geoname"}" aliasses

clear
echo "Application: Snewsdata(1] "
echo "News Letter: $newsdata(2] "

echo "Completion Date: $newsdata[3] "

echo "Group Editing Organiser: *cat geoname™"
echo " "

e(:l‘lo "on

echo "Members Details:-"

1" "

awk 'fauthor / {print $1 > "authorname" }' member.dat
echo Authors:

cat authorname

echo""

awk 'feditor / {print $1 > "editorname” }' member.dat

awk ‘/coordinator / {print $1 > "coordname" }' member.dat
echo "Sub-Editors/Coordinators:"

echo " "
cat editorname

cat coordname

echo""

awk '/reader / {print $1 > "readername” }' member.dat
echo Readers:

cat readername

echo ™"

setsp="

cat authorname editorname > totname

cat totname coordname > allname

cat allname geoname > totalname

echo "Overall Contribution Statistics :-"

echo” "

echo "Total No. of Members in the Group = $#memnum”

echo""

echo”

echo "I Member's name | Notification{ Total | Number of | Accepted I"

echo "l | sent yes/no | Contributions ISuggestions! yes/no |"

echo " !

foreach member ("cat totalname”) .
pick -to $member -sequence picked +newsloc/out >! hits
if ! -z hits then

"

"

251

Appendix 5

Appendix 5

echo "yes" >! notes
else
echo "no " >! notes
endif
foreach uname (“cat member_last’)

if (($member == "Suname@quipu") Il (Suname == "b.bala")) && (Suname != "bala")) then
pick -sequence picked +newsloc/Suname >! hit
if ! -z hit then
awk ' {print $1 > "mnumber"}" hit
else
echo "-" >! mnumber
endif
if ($uname == tb1 Il Suname == b2 Il Suname == (b3) then
echo "$Smember " >! spname
else
if (Suname == b.bala) then
echo "$member " >! spname
else
if $uname == bala then
echo "$Smember " >! spname
else
echo "$member" >! spname
endif
endif
endif
pick -from $uname -an -search 'Revision-Suggested-By:' -sequence picked +newsloc/request >!
shits
if ! -z shits then
awk ' {print $1 > "sug_numb"}' shits
else
echo "-"
endif
set sp="
pick -from $uname -sequence picked +newsloc/document >! dhits
if ! -z dhits then
echo "yes" >! docs

>! sug_numb

"

else
echo "no " >! docs
endif
if (Smember == "$uname@quipu") then
echo "l “cat spname’ $sp “cat notes’ $sp “cat mnumber’ $sp cat sug_numb" $sp “cat
docs™ 1"
endif
if ((Suname == "b.bala") && ($Smember == "balab@ecmail")) then
echo "I “cat spname” $sp “catnotes $sp “cat mnumber” $sp “cat sug_numb’ $sp “cat
docs™ I"
endif
endif

end
end
echo ™
rm dhits shits hit
rm hits totalname spname sug_numb totname allname
rm geoname authorname editorname readername memname mnumber
rm notes docs coordname

252

e ADD_MEMBE.C “C” PROGRAM TO ADD NEW MEMBER*#*## %%

#include "basicd2.h"

FILE *rf;

FILE *mtf;

/***/

/* Function get list of group members */
struct members
getmembers()

{

{

FILE *mtf;

struct members drec;
struct members mrec;
char temp[32];

char stringf[32];

char tempcmd[90];

char inmem[140], inrec[245], yesno="N', continued="N’", junk;

int =0, count=0;

while ((continued !="Y") && (continued !='y"))

printf("\n\n\n\n\n\t The following questions are to obtain the details of a group member for this

News Letter.");

while ((yesno !="Y") && (yesno !='y"))
{ strepy(inrec,” ");
strepy(temp,” ");

printf("\m\n\n\n\t Enter e-mail address of this group member (username@hostname): "):

scanf("%s",inmem);

if ((rf=fopen("newmember","w"))==NULL)

{ printf("can't open newmember \n");
exit(1); }

fprintf(rf,"%s" ,inmem);

fclose(rf);

strcpy(temp,inmem);
strepy(tempemd, "mkdir Mail/newsloc/");
i=0;
strepy(stringf," ");
while (templ[i] = \100")
{ (stringf[i]=templi);
++i1; 1
if (stremp(stringf,”balab™) ==0)
strcat(tempcmd,"b.bala™);
else
strcat(tempcemd,stringf);

if ((mtf=fopen("member.dat”,"a+"))==NULL)

{ printf("can't open member.dat \n");
exit(l); }

fscanf(mtf,"%s", drec.member);

while (feof(mtf) = EOF)

if (feof(mtf) != 0) break;

else
{ if (stremp(inmem,drec.member) == 0)
{ printf("Member already exists \n");

exit(1);)

fscanf(mtf," %s", drec.slal.us);
fscanf(mtf,"%s", drec.topic);

253

Appendix 5

fscanf(mtf,"%s", drec.sublopic);

fscanf(mitf,"%s", drec.member);

++count; }
fclose(mtf);

strepy(mrec.member,inmem);

strcat(inmem," ");

strcat(inrec,inmem);

printf("\n\n\t status of group member: "):
scanf("%s",inmem);
strcpy(mrec.status,inmem);
strcat(inmem," ");

strcat(inrec,inmem);

printf("\n\n\t Subject area for this group member: ");
scanf("%s",inmem);

strcpy (mrec.topic,inmem);

strcat(inmem," ");

strcat(inrec,inmem);

printf("\n\n\t Topic for this group member: ");
scanf("%s",inmem);
strcat(inmem,\n");
strcat(inrec,inmem);

printf("\n\n Is this information correct y/n 27 ");
junk=getchar();
yesno=getchar(); }

system(tempcmd);

if ((rf=fopen("member.dat","a+"))==NULL)

{ printf("can't open member.dat \n");
exit(1); }

if ((yesno ="'Y") && (yesno ='y"))

{ fprintf(rf,"%s" inrec);
yesno="N"; }

fclose(rf);

system("addlink 2> junk");

if ((rf=fopen("member_name","a"))==NULL)
{ printf("can't open member_name \n");
exit(1); }
fprintf(rf,” %s\n" stringf);
fclose(rf);
printf("n Have you entered all group members y/n 77 ");
junk=getchar();
continued=getchar();)
return mrec;

J

/* end of function get list of group members */
/**/
main()
{ FILE *mtf;

getmembers(); o
printf("\n Be sureto go back to main menu and send Notification to new members.");

}

/* end of program

254

Appendix 5

Appendix 5

ki *DEL_MEMBER.C TO DELETE MEMBER **#% ik
#include "basicd2.h”

FILE *mitf;
FILE *rf;
FILE *mf;

/* function to delete group member */
/***/

/* function to delete members details */
struct members

deletemember()

{ struct members trec;
char junk, addr{64], temp{32];
int i=0;

char stringf{32], oldmember[32], balab[5];

strepy(addr,” "),
printf("\n\n Address (username@host) of the member to be deleted: ");
Jjunk=getchar();
gets(addr);
strepy(temp,addr);
strepy(stringf,”
while ((tempfi] = \100")
{ (stringflil=tempfi]);

++i;)
i=0;
while (stringf[i] = 040"
{ (balabli]=stringfli]);
i++; }

if ((mf=fopen("tmpname","w"))==NULL)
{ printf("can't open tmpname \n");
exit(1); }

if ((mtf=fopen("member.dat","r"))==NULL)
{ printf("can't open member.dat while delete\n");
exit(1); }
if ((rf=fopen("membern.dat","w"))==NULL)
{ printf("can’t open member.dat\n™);

exit(1);)
while (feof(mtf) != EOF)
{ if (feof(mtf) != 0) exit(0);
else
{ fscanf(mtf,"%s", trec.member);

fscanf(mtf,"%s", trec.status);

fscanf(mtf,"%s", trec.topic);
fscanf(mtf,"%s", trec.subtopic);
}
if (strcmp(addr,trec.member) != 0)
{
fprintf(rf," %s" trec.member);
fprintf(rf," %s" trec.status);
fprintf(rf," %s" trec.topic);
fprintf(rf," %s" trec.subtopic);
{fprintf(rf,"™\n");

255

}
if (strcmp(addr,lrec.member) ==()
{ printf("Deleted Member: ");
printf(" %s\n" addr);
if (stremp(addr,"balab@email ") == 0)
fprintf(mf," %s\n" balab);
else
fprintf(mf,"%s\n" stringf); }
strepy(trec.subtopic, " ");
strepy(trec.topic, " ");
strepy(trec.status, " ");
strepy(trec.member, " ");
}
fclose(mf);
fclose(mtf);
fclose(rf);
}

/* end of function delete members details */
/***/

main()

{ char reply;
printf("\n\n Do you really want to delete a member from group y/n 77);
reply=getchar();

if ((reply=="Y") Il (reply=='y"))
deletemember();
J

/* end of program */

S FExssckickicoRk BN OF DELETE MEMBER #ekkokskoh ok sk sk sk ok ok ok */

*okkokkokododeok ok kYR, UNA MO F kot otk koo o
#include "basicd2.h"

FILE *mf;
FILE *rf;
FILE *mtf;

/* this program deletes user name from member_name file */
/***/

main()
{ char stringf[32];
char oldmember[32];

if ((mtf=fopen("tmpname","r"))==NULL)
{ printf("can't open tmpname\n");
exit(1); }
fscanf(mtf,"%s", stringf};
fclose(mtf);

if ((mf=fopen("member.name","'r"))==NULL)
{ printf("can't open member.name\n");
exit(1); }
if ((rf=fopen("member.new","w"))==NULL)

256

Appendix 5

{ printf("can't open member.new\n");
exit(1); }

while (feof(mf) != EOF)
{ if (feof(mf) 1= 0) exi(1);
else
fscanf(mf,"%s", oldmember);

if (stremp(stringf,oldmember) != 0)

{ fprintf(rf," %s\n " 0oldmember);
strcpy(oldmember,” ™); }
fclose(mf);
fclose(rf);

}
JR¥FFFFH A4 XA END OF DELETE USER NAME ¥tk sk ok |

kA *BASIC_HEAD.C INITIAL HEADER FOR NOTIFICATION**#*
#include "hbasic.h"

FILE *mtf;
FILE *mf;
FILE *rf;

/* function to application name */
/***/

getname() {
char applca([24], name{64], cdate[9];

if ((mf=fopen("newsletter.dat","r"))==NULL)
{ printf("can't open newsletter.dat\n");
exit(1); }
else
{ fscanf(mf,"%s" applca);
fscanf(mf,"%s" ,name);
fscanf(mf,"%s" cdate);
}

fclose(mf);

if ((rf=fopen("draft","a"))==NULL)
{ printf("can't open draft \n");
exit(1); }

fprintf(rf, \nPart-of-News-Letter: %s",name);
fprintf(rf, \nLatest-Submission-Date: ");

fprintf(rf,"\nFcc: newsloc/out");
fprintf(rf, \n-----=m--mmmeno- ";
fprintf(rf,"\n");
fciose(rf);
J

/* program to construct header for initial message */
/***/

257

Appendix 5

Appendix 5

main()
{
struct members hrec;
char addr[64] , junk;
strcpy(addr, " ™),

J* printf("™n\n To: ");

gets(addr); */

/* new text for addr from shell */
if ((mf=fopen("notename","r"))==NULL)
{ printf("can't open notename file \n");
exit(1); }
fscanf(mf,"%s", addr);

fclose(mf);
/* end new text */

if ((mtf=fopen("member.dat","r"))==NULL)
{ printf("can’t open member.dat file \n");
exit(1); }

fscanf(mtf,"%s", hrec.member);
fscanf(mtf,"%s" hrec.status);
fscanf(mtf,"%s" hrec.topic);
fscanf(mtf,"%s" hrec.subtopic);

while ((strcmp(addr,hrec.member) != 0))

{ fscanf(mtf,"%s", hrec.member);
fscanf(mtf,"” %s" hrec.status);
fscanf(mtf,"%s",hrec.topic);
fscanf(mtf," %s" hrec.subtopic);
if (feof(mtf) !=0)

{ printf("record not found \n");
exi(l);) }
fclose(mtf);
if (stremp(addr,hrec.member) != 0)
{ printf("record not found \n");
exit(1); }
if ((rf=fopen("draft","w+"))==NULL)
{ printf("can't open draft\n");
exit(1); }
fprintf(rf, \To: %s" ,hrec.member);
fprintf(rf,\nStatus: %s",hrec.status);
fprintf(rf, \nSubject: %s",hrec.topic);
fprintf(rf, \nTopic: %s" hrec.subtopic);
fclose(rf);
getname(); }
/* end of program */
J¥ Fkkskkosokkk sk« END OF HEADER FOR NOTIFICA TIQN ks 3 |

wkdkkkkk*xk ¥ BASIC_NEW_DEFN.C TO CREATE NEW NEWS LETTER ****
#include "basicd2.h"

#define THISYEAR 92
/* function define application file */

FILE *rf;
struct mfilentry

258

getdefin()
{

}

struct mfilentry frec;
char junk, confirmed="n";
char inword[64], inline[95], remark[250)] :
pn:ntf("\t\n\n\n Please enter basic histocal details for the application. ");
printf("n\n\i\t "EDITING NEWS LETTERS™");
while ((confirmed !="y") && (confirmed !="Y"))
{ strepy(inline,"Editing-News-Letters ");
printf("\n\n\n\n\n\t Name & Issues of the News Letter: ");
gets(inword);
strepy(frec.name, inword);
strcat(inword,” ");
strcat(inline,inword);
printf("™n\n\t Date of Release: ");
scanf("%s",inword);
/* while ((chdate(inword))==0)
{ printf("\n enter date of meeting in format DDMMYY.");
scanf("%s",inword); } */
strepy(frec.date inword);
strcat(inword," ");
strcat(inline,inword);
junk=getchar();
printf("\a\n\t Remark if Any 7 ");
gets(remark);
printf("™\n ..7? Is this correct ? Y/N ");
confirmed=getchar();

junk=getchar(); } /* end of while loop */
if ((rf=fopen("remark.dat","w+"))==NULL)
{ printf("can’nt open remark file.");
exit(l);)
fprintf(rf," %s" remark);
fclose(rf);
if ((mtf=fopen("newsletter.dat","w+"))==NULL)
{ printf("can’nt open news letter file.");
exit(l); }

fprintf(mtf,"%s",inline);
fprintf(mtf,"%s",™\n");
fclose(mtf);

return frec;

/* end of define application function */
/***/

/* function to check date validity */

chdate(indate)
char *indate;

{

int idate, iday, imonth, iyear, valid = 1;

idate = atoi(indate); /* convert string to integer */
iday = idate/10000;

imonth = (idate%10000)/100;

iyear = idate%100;

/* printf("%i" iday); */

if ((strlen(indate) != 6) Il ((iday<1) Il (iday>3’]))
Il ((imonth<1) Il (imonth>12)) Il (iyear<THISYEARY))

strepy(indate,iday);

259

Appendix 5

Appendix 5

s(rcal(inda[ﬁ,"-" ;
strcpy(indate,imonth);
strcat(indate,"-");
' strepy(indate,iyear);
printf("\n\n %s",indate); ¥/
valid =0;

return valid;

/* end of date valid function */
/***/

main() {
char addmem='n";
struct members aprec;
struct mfilentry nrec;
getdefin();
printf("™\n\n\’\t Want to Add Members ?? ");
addmem=getchar();
if ((addmem =="y") Il (addmem =="Y"))
system("add_member");

/* aprec=getmembers(); */
}
/* end of program */

/* ************END OF BASIC_NEW_DEFN‘C*************** */

***xx*+*+*HEADER FILE FOR ADD DELETE AND CREATE MEMBER **
#include <stdio.h>

#include <string.h>

#include <ctype.h>

#define CENTURY 19

FILE *mf;
FILE *mtf;

struct mfilentry {
char applica[24];
char name[64];
char date[7]; };

struct members {
char member{140];
char status{25];
char topic[40];
char subtopic[40]; };

/* function to read application defination record */
/***/
/* function read definition */

struct mfilentry

readdefin()

struct mfilentry drec;
char inword[64], inline[140];
int count=0;

260

Appendix 5

fscanf(mf,"%s", drec.applica);
strcpy(drec.applica, "Editing News Letters");
strcpy(inline,”);

if (feof(mf) != 0)

{ printf("\n can’nt epen definition file\n");
exit(1);)

else

{

scanf(mf,"%s" inword);

while (stremp(inword,"**") 1= ()

{ strcat(inline,inword);
strcat(inline," ");
fscanf(mf,"%s" ,inword); }

fscanf(mf,"%s" drec.name);

fscanf(mf,"%s" inword);
fscanf(mf," %s" drec.date);
]

return drec;

}

/* end of function readdefin */
/***/

/* function read menbers */

struct members

readmember()

{ struct members mrec;
char inword[64], inline[140};
fscanf(mtf,"%s", mrec.member);
strcpy(inline, " ");

if (feof(mtf) != 0)
{ printf("\n normal exit \n");

exit(1); }

else

{ fscanf(mtf,"%s" ,inword);
while (strcmp(inword,"**"} = 0)
{ strcat(inline,inword);

strcat(inline," ");

fscanf(mtf,"%s",inword); }
fscanf(mtf,"%s" ,mrec.status);
fscanf(mif,"%s" inword);

while (stremp(inword,"**") !=0)

{ strcat(inline,inword);
strcat(inline,” ");
fscanf(mif,"%s" ,inword); }

fscanf(mtf,"%s" ,mrec.Lopic);

fscanf(mif,"%s" inword);

while (stremp(inword,"**") 1= 0)

{ streat(inline,inword);
strcat(inline,” ");
fscanf(mtf,"%s" ,inword); }

fscanf(mtf,"%s" ,mrec.subtopic);

fscanf(mtf,"%s" ,inword); }
return mrec;
}

/* end of read member funtion */
JrFssskkkskkk END OF HEADER FILE BASICD2, Hksskkdkkoksdkesesdk

261

Appendix 5

dxxkA¥*HEADER FILE HBASIC.H HEADER FOR NOTIFICATION**%*
#include <stdio.h>

#include <string.h>

#include <ctype.h>

#define CENTURY 19

FILE *mf;
FILE *mtf;

struct mfilentry (
char applica[24];
char name[64];
char date[7]; };

struct members {
char member[140];
char status[25];
char topic[40];
char subtopic[40]; }:

/* function 1o read application defination record */
/***/

/* function read definition */

struct mfilentry
readdefin()
{
struct mfilentry drec;
char inword[64], inline[140];
int count=0;
fscanf(mf,"%s", drec.applica);

if (feof(mf) 1= 0)

{ printf("\n can’nt open definition file.\n");
exit(1);)

else

{ fscanf(mf,"%s" drec.name);
fscanf(mf,"%s" drec.date);

}

return drec;

}

/* end of function readdefin */
/***/

/* function read menbers */

struct members

readmember()

{ struct members mrec;
char inword[64], inline[140];
strepy(inline, " ");

if (feof(mtf) 1= 0)

{ printf("\n normal exit \n");
exit(1); '}

else

{ fscanf(mtf,"%s", mrec.member);

fscanf(mtf,"%s",mrec.status);

262

Appendix 5

fscanf(mtf,"%s" mrec.topic);
fscanf(mtf,"%s",mrec.subtopic); }
return mrec;)
/* end of read member funtion */
Fab kL E R E L L2 N1)) OF HBASIC.H*****************/

leftadjust,compwidih=12
ignores=msgid,message-id recci ved cc,forwarded, via,updated-on, return-path, to,from date
extras:nocomponent

**********end Of head.form 33 3k ok 3k ke sk e ek

¥¥kskkk %%k BODY FORM BODY FILE %% % s sk sk sk o sk
leftadjust,compwidth=24
body:nocomponent,overflowtext= overflowoffset=0,noleftadjust

*kskkk ok k¥ *kand of body . form otk sk sk

*dddokkdokkk DET [VNOTE.FORM %% % #ok sk sk sdesok %
leftadjust,compwidth=12 '
ignores=msgid,message-id,received,forwarded,return-path,from,date
extras:nocomponent

body:nocomponent

************end Of de]iVnO[C.fonn*********

##kak ki DOCH.FOM TO GENERATE DOCUMENT### sk kot

leftadjust,compwidth=10

Subject:

ignores=msgid,message-id,via,received forwarded,return-path,to,date, version,status,Updated-On, Latest-
Submission-Date,Part-of-News-Letter

extras:nocomponent

body:nocomponent

*okoksokskokkokkkkkand of doch.form ***k ok koo kokx

##xskxkx4EDIT.FORM TO EDIT CONTRIBUTION*# stk

leftadjust,compwidth=10

To:

Subject: ‘
ignores=msgid,message-id,received,forwarded, return-path,date, version
extras:nocomponent

263

body:nocomponent

************end Of edl[form ke ok 3k o % 3k o ok ok ok

FAAHIAAAFFRELEASE.FORM TO RELEASE CONTRIBUTIQN* ¥4
leftadjust,compwidth=12
ignores:msgid,message—id,received,forwarded,retum-pa(h,version,date
extras:nocomponent

body:nocomponent

***********end of release.fonn ko ook ko ok

*oxkskaksxk MHL.FORMAT MAIN FORMAT FILE TO SHOW sk kokokoesnsx

leftadjust,compwidth=12

To:

From:

Status:

Subject:

Topic:

ignores=msgid,message-id received,date,via,return-path,forwarded
extras:nocomponent

body:nocomponent,overflowtext=,overflowoffset=0,noleftadjust

ke 3 ok ok 3 ok ok ok skok end Of mhl'forma[2k 2k 3¢ 3 3k Sk Sk 3k Sk >k ok ok ok kok

Frsddsk k¥ menu text file for generator ** ok

‘Welcome to News Letter Editing System'

Please Enter the Letter for the Service you Require

a --> To Create New NewsLetter.

b --> To Add Group Members.

¢ --> To Delete Group Member.

d --> To Send First Notification to Group Members.
e --> To Process Contribution.

f --> To History & Statistics.

g --> To Generate News Letter Document.

q --> To Quit.

264

Appendix 5

Fskdokdokdokokokokkand of menu file sk sk sk skok seske ke skesk sk sk skook o ok

ackx menu file (ed_qry) process contribution *##k#x

---> a to accept contribution
---> ¢ to edit contribution

---> (to quit
******************end Of query flle 3K 3k 3k 3K s e ek 3k ok ok Kok ok sk sk ok

265

Appendix 5

Appendix 5

B. ACTIVITY RESPONDER

ok Kook kkok ok ok Main script for responder **kkkxkk
#!/bin/sh
#********
set continued="y"
until ["$continued” = "n" -0 "$continued" = "N"]
d
process_edit 2>junk
echo -n "Do you need more services default is yes (to quit type n/N) 727"
read continued
if ["$continued” = "n" -0 "$continued” = "N"]
then

exit
fi

done
Fdokkkdokkkdokand of Main *okkkkkskokskokok

Hrdrkkkkk* process_edit main query System **¥¥¥kx

#!/bin/sh

#*********

#*THIS IS MAIN SCRIPT RUNS AT MEMBER'S END

#*THE SCRIPT IS MENU BASED AND NEEDS MANUAL INTERACTION OF THE MEMBER
#*CONCERNED TO WORK WITH THE NEWS LETTER.

#*THE SCRIPT DOES AUTOMATIC DELIVERY FAILURE CHECKING AND IF FOUND,
#*THE FAILED CONTRIBUTION IS RESENT TO THE GEO.

#*THE SCRIPT ALSO CHECKS REMINDER AND IF FOUND, AMESSAGE IS DISPLAYED TO
THE MEMBER.

#CHECK FOR REMINDER

check_reminder 2> junk

#CHECK FOR DELIVERY FAILURE

check_delivery 2> junk

set continued="y"

until ["$continued” = "n" -0 "$continued” = "N"]

do

inc -silent 2> junk
folder +inbox 1> junk 2> junk
#*CHECKING FOR THE FIRST MESSAGE TO START THE NEWS LETTER
#*IF MESSAGE IS FOUND IT IS REFILE TO NEWS LETTER OUT FOLDER
scan +newsloc/out 1> hits 2> junk

if [!-shits]

then
pick +inbox -search 'Part-of-News-Letter:' -sequence picked 1> hit 2> junk
if [-s hit]
then

refile picked +newsloc/out

fi

rm hit 2> junk
fi
rm hits 2>junk
#*CHECKS FOR CARBON COPY RECEIVED IF GEO EDITS THE OTHER MEMBER'
CONTRIBUTION
#*[F FOUND REFILES TO THE NEWSLETTER OUT FOLDER
pick +inbox -Ib -cc $USER -an -search 'Part-of-News-Letter:" -rb -sequence picked 1> hit 2> junk

if { -s hit]
then
refile picked +newsloc/out
fi
rm hit

266

Appendix 5

#*CHECKS FOR NEWS LETTER FOLDERS IF EMPTY THEN EXITS AFTER DISPLAY OF A
MESSAGE.
scan +newsloc/out 1> hits 2> junk
if [! -s hits]
then
scan +newsloc 1> hit 2> junk
if [!-shit]
then
echo "EITHER"
echo "common store is empty"
echo "or you are not recorded as member of the group”
echo "or a contribution request has not been made to you"
echo""
exit
fi
rm hit 2>junk
fi
rm hits 2>junk

#l*DISPLAYS QUERY MENU AND WAITS FOR THE REPLY FROM THE MEMBER TO ACT ON
clear

cat queryfile

echo -n "Enter option please ?? "

read job

echo""

case $job in

#*CHECKS FOR WORKSTATION, IF WORKSTATION IS SPARC2GX THEN OLD DRAFTS ARE
#OPENED IN A xmh WINDOWING ENVIRONMENT
Bib) if (test -s hostfile -a "cat hostfile’" = "sparc2gx™)

then
/usr/bin/X11/xmh -fg blue -bg white -bd red -flag -initial drafts -display sparc2gx:0
1>&2;
exit 2
else
echo""
echo "quipu is to be added on spac2gx”
echo "please run xlinking if workstation is sparc2gx"
echo""
fi

L X

#*DISPLAYS OLD VERSIONS TO MAKE EDIT REQUEST FOR A CONTRIBUION
#*AND WAITS FOR CONTRIBUTION NUMBER TO ENTERED AND
#*SENDS THE REQUEST TO COMMON STORE
Clo) if [-s Mail/newsloc/checkedit]
then
echo "Contribution is being updated: not available for editing”
exit
else
scan last +newsloc/out -format "%(msg)" 1> msgnum
mnumber="cat msgnum’
if test "$mnumber” -1t 2

then
echo""
echo you can edit first time
echo""
exit
else

scan +newsloc/out

267

Appendix 5

cat request_text
xrequest
fi
fi
echo "there will be a communication delay before the contribution arrives"

79

#*CHECKS FOR THE RELEASED CONTRIBUTION FOR NEXT UPDATE, IF FOUND THEN
CONSTRUCTS

#*THE HEADER FOR THE NEXT CONTRIBUTION AND OPENS THE BODY PART FOR UPDATE.
Did) folder +inbox 1> junk 2> junk
pick -search 'Version: released for edit' -sequence picked 1>hits 2>junk
if [-s hits]
then
echo -n "To: geo" 1> head
show picked -form head.form >> head
echo "Updated-On: “date’ " 1> headl
echo "Fcc: newsloc/out” >> head1
echo "--eeememmeeeo " >> headl
cat head headl > headpart
show picked -form body.form 1> bodypart

#*CHECKS FOR WORKSTATION, IF WORKSTATION IS SPARC2GX THEN OLD DRAFTS ARE
#*OPENED IN A xmh WINDOWING ENVIRONMENT
if (test ""cat hostfile™" = "sparc2gx")
then
cat headpart bodypart 1> Mail/inbox/9999
echo " PLEASE SAVE THE EDITED DRAFT IF DO NOT WANT TO
SEND AND UPDATE NEXT TIME"
/usr/bin/X11/xmh -fg blue -bg white -bd red -flag -display sparc2gx:0 1>&2;
rmm 9999 +inbox
rmm picked
exit 2
else
vi bodypart
cat headpart bodypart 1> Mail/draft
echo""
#*IF THE CONTRIBUTION IS NOT SNET THEN THE SAME DRAFT CAN BE EDITED
#*WHICH IS AVAILABLE AS MAIL/DARFT IF REQUIRES OTHERWISE FRESH DRAFT WILL BE
GENERATED
echo -n "Do you wish to send this contribution 7? "

read ans
if (test $ans = "y" -0 Sans = "Y")
then
send draft
echo " "
echo contribution sent successfully
echo" "
rmm picked
fi
rm bodypart head head1 headpart hits junk
fi
else
echo""
echo no edit request made or document not received
echo""

fi
folder +inbox 1> junk 2>junk

268

Appendix 5

#*DISPLAYS ALL CONTRIBUTION BY OTHER MEMBER'S FOR SUGGESTION
#*AND WAITS FOR REPLY TO SELECT THE CONTRIBUTION NUMBER AND SELECTED
CONTRIBUTION IS SENT #*TO THE GEO AFTER ADDING REVISION-SUGGESTED-BY:
COMPONENT AS HEADER PARAMETER
Ele) scan +newsloc

echo""

echo -n "Enter the number of the contribution on which you want to make a suggestion ?? "

read thisnum

echo""

echo "Type control D when finished typing."

echo " "

sleep 2

cp Mail/newsloc/$thisnum Mail/newsloc/9990

anno 9990 -component Revision-Suggested-By: -text "$SUSER@ hostname™" -nodate

show -form suggest.form 9990 1> Mail/draft

comp -use

rmm 9990

Y

#*THIS IS C SHELL TO WORK OUT DIFFERNCES OF TWO CONTRIBUTIONS BY A MEMBER
Fif) checkdiffer 2>! junk

L]

#*CREATES HEADER FOR NEWS LETTER AND FIRST DRAFT BASED UPON THE FIRST
MESSAGE SENT BY GEO
#*THE BODY PART IS PRESENTED FOR UPDATE
Ala) folder +newsloc/out 1>! junk 2>! junk
scan last -format "%(msg)" 1> msgnum
mnumber="cat msgnum’
if test "$mnumber” -gt 1

then
echo""
echo please make edit request
echo " "
exit
else

echo -n "To: geo" 1> head
show 1 +newsloc/out -form head.form >> head
echo "Updated-On: “date” " >> head
echo "Fcc: newsloc/out” >> head
echo "----m-memeenneen " >> head
echo "Message From geo :-" 1> bodypart
show 1 +newsloc/out -form body.form 1>> bodypart

#*CHECKS FOR WORKSTATION, IF WORKSTATION IS SPARC2GX THEN OLD DRAFTS ARE
#*OPENED IN A xmh WINDOWING ENVIRONMENT
if test ""cat hostfile’" = "sparc2gx"
then
cat head bodypart 1> Mail/inbox/9999
Jusr/bin/X11/xmh -fg blue -bg white -bd red -flag -display sparc2gx:0 1>&2;
rmm 9999 +inbox
exit 2
else
vi bodypart
cat head bodypart 1> Mail/draft
echo -n "Do you wish to send this contribution ?? "
read ans
if (test $ans = "y" -0 $ans = "Y")

then

269

Appendix 5
send:draft
. eche contnibuiton seng successtully
i
fi
rm head bedypart junic
&
Qla) £X117;

#CONTINUES TILE QUERY IS NOT RESPONDED n
#echo - Do you necd more services default is yes (to quit type n/N) 77"

#read connned

#if ["Seonamued” ="n" -0 "Scontinned” = "N" |
Hthen

exit

#1’./

done:

Cil{ﬁ Of pm&s-s_eiﬁ[e e Ne NN MO N 6 e SN e iR

[eanfcsi

11 et rmdo e aimmigradocnds v

w
foider +newsioe >&! junik
Clear

R R T N T O R TR TN Y I TR T D T T AT A T TR TR

TTIT

set gr_lst = ("cat member_name’)
echo " " >! member_last

foreach member ($gr_lst)

if ($member == "bala") then
set lastm = $member
else
if ($member == "balab") then
echo b.bala >> member_last
else
echo $member >> member_last
endif
endif
end
echo $lastm >> member_last
HHHHEHEHERHARHH R
set memlist = “cat member_last’
foreach member ($memlist)
seti=1
#clear
if (($member != "b.bala") && ($member != "bala")) then
pick -from $member -sequence picked >! hits
if ! -z hits then
scan picked -format "%(msg)" >! msgnum
set numlist = “cat msgnum’

forecach num ($numlist)

270

show $num -form body.form >! fil$;
if ($i > 1) then ’ s

@ i=8%i-1
diff fil$; fi1Si >! thisdiff
echo" "

echo "Member $member --Difference of contributions $j and $i is -->"

cat thisdiff | more

echo "eemeee . "
#rm fil$; fil$i
endif
@ i++
end
sleep 1
endif
refile picked +newsloc/newstmp >&! junk
endif
end

folder +newsloc/newstmp >! junk
refile all +newsloc

echo""
echo""
echo "Check this --=-ermmeaec >"
seti=1

pick +newsloc/out -sequence picked >&! junk
scan picked -format "%(msg)" >! msgnum
set numlist = “cat msgnum’
foreach num ($numlist)
show $num -form body.form >! fil$i
if ($i > 1) then

@j=%i-1
diff fil§; fil$i >! thisdiff
echo™"

Aﬁpp:,endix 5

echo "Member "Suser” --Difference of contributions $j and $i is -->"

cat thisdiff | more

endif
@ i++
end
sleep 1
folder +inbox >! junk
rm member_last

*************end OfCheckdlffer***************

dekoksdokokrkkkcheck reminder ¥¥*FF*E* for over due *¥*sHH*x

#!/bin/csh

#************* , . hi
pick -subject 'Reminder' -an -search 'Part-of-News-Letter:' -sequence picked >! hits

if ! -z hits then . ’ o
echo " Got reminder to edit SEE in newsloc Folder

refile picked +newsloc
endif
rm hits

. okt sk kR ROk
sk dodokkolorkoRkkkend of check_reminder** ¥

.) Kokskokok kokok ok
$dkkskkcheck delivery to check delivery failure

271

Appendix 5

#!/bin/csh

#*************

echo "checking for delivery failure"
folder +inbox >&! /dev/null

##CHECK FOR MESSAGE AS DELIVERY FAILURE
pick -search 'Message_Type: Delivery Report' -sequence picking >! hits
if ! -z hits then

show picking >! hit

##IF THERE IS DELIVERY FAILURE MESSAGE THEN GET ITS INITIAL DELIVERY TIME
awk '/Date:/ {print $2 $3 $4 $5 $6 $7 > "intialtime"}" hit
set ctime = “cat intialtime"
folder +newsloc/out >&! junk

##GET MESSAGE NUMBER OF ALL OUT GOING MESSAGES
scan -format "%(msg)" >! checkfail
set msgtime = “cat checkfail"
foreach ftime ($ctime)
foreach eachmsg ($msgtime)
show $eachmsg -noshowproc >! hit

##GET DELIVERY TIME OF EACH OF OUT GOING MESSAGE
awk /AD/{print $2 $3 $4 $5 $6 $7 > "findtime"}' hit
set foundtime = “cat findtime’

##]F THE DELIVERY FAILURE MESSAGE TIME IS SAME AS THIS MESSAGE TIME
#THAN RESEND THIS MESSAGE
if ($foundtime == $ftime) then
show $eachmsg -form delivnote.form >! Mail/msgresend
send msgresend
endif
end ##end of for loop
end ##end of for loop
endif
folder +inbox >! junk

***********Cnd Of delivery failure 3k 3k 3k 3k 3k ok 3k 3k 3k 3K 3k 3K ok ok ok % ok

*********Suggest.fom e 3 3 o ok o %k ok %k K

leftadjust,compwidth=12

To:

From:
ignores=msgid,message-id,via,received,updated-on return-path,date
extras:nocomponent

body:nocomponent
koo ok kokkok kR kskok ko d of suggets.form********

272

Appendix 5

ks xk* queryfile menu for responder *¥**¥k¥ ok

'Welcome to News Letter Editing System'

Please Enter the Letter for the Service you Require

a ---> To create first draft

b ---> To edit earlier drafts (if workstation supports X Windows)
(Presently sparc2gx only)

¢ ---> To select a stored contribution for editing

d ---> To edit contribution released from common store

e ---> To suggest revision to contributions by other members
f ---> To show differences between two contributions

q ---> To quit

************end Of queryﬁle*************

kkkkkrk***request_text message for edit contribution ekskkkkokk

Enter the number of the Contribution you wish to edit from the list above.
Then, if you wish, enter explanatory notes for recording in the activity database.
Press control D immediately if there are no notes,

otherwise press control D after you have finished entering the notes.

After you have pressed control D, the prompt what now ? will appear:
Type s to send or q -d to quit (q 'space' -d).

************end Of reques[_[ext 3k 3k 3k 3k 3 3k ok sk ek sk ok

273

Appendix 5

C. ACTIVITY MONITOR.

#!/bin/sh

#*********

clear

monitor_sys 2>junk

#!/bin/csh

#*************

#*THIS C SHELL PROVIDES BUILT-IN PROCESSOR FACILITIES AT

#*GR. EDITING ORGANISER'S END.

#*THIS SCRIPT SHOULD RUN AS BACK GROUND JOB AT PREDEFINED TIME INTERVALS
#*FOR AUTOMATIC HANDLING AND UPDATE OF THE NEWS LETTER ACITVITY ISSUES
LIKE;

#* -CHECKING OF EDIT REQUEST,

#* -RELEASE OF REQUESTED VERSION FROM COOMON STORE IF AVAILABLE FOR EDIT,
#* -CHECKING FOR NEW CONTRIBUTIONS TO BE MADE AVAILABLE FOR OTHER MEMBERS,
#* -CHECKING BFOR SUGGESTION CONTRIBUTIONS,

#* -CHECKING FOR DELIVERY FAILURE,

#* -CHECKING FOR REMINDERS AND ISSUEING REMINDERS IF REQUIRED.

this is working shell to link message to all users.

HHHHEHHBHBH BB R R

set gr_lst = ("cat member_name")

echo " " >! member_last

foreach member ($gr_lst)

if (Smember == "bala") then
set lastm = Smember
else
if ($member == "balab") then
echo b.bala >> member last
else
echo $Smember >> member_last
endif
endif
end
echo $lastm >> member_last
HHHHHHHHH R
##GET ALL GROUP MEMBERS IN GR_LST
set gr_lst = ("cat member_last’)
echo " List of Group Members: $gr_Ist"
echo""
##SET VARIABLES
seti=1
set bdr = /isode/csam/
set mdr = /Mail/newsloc/
set odr = /Mail/newsloc
set rmr = /Mail/newsletter
##SET REMINDER TIME AS 15 ADYS FROM THE TIME OF FIRST MESSAGE
set checktimel = 6696000
set checktime2 = 1648000
folder +inbox >&! junk
##INCORPORATE ALL NEW INCOMING MESSAGES
inc -silent >&! junk

##GET GROUP MEMBERS DIRECTORY PATH ON THEIR HOST
foreach member ($gr_lst)
if ($member != "b.bala") then
finger $member@quipu >! findaddr$member
endif

Appendix 5

FHEHER K KoK ok ok sk sk ok ok K o o o o o ok ok ok ok sk sk ok sk ok sk sk o 3 o o ok sk sk sk sk sk sk o ok sk sk sk ok o ok ok sk sk ok ok ok ok sk sk ok ok oK oK

ech checking to incorporate new or updated contributions, or suggestions
ec O "ot

foreach member ($gr_Ist)
##GET GROUP MEMBERS DIRECTORY PATH ON THEIR HOST
pick -from $member -an -search Revision-Suggested-By:' -sequence pickedup +inbox >! hits
if (! -z hits) then
HIHHHHEHAHH
if ($member != "b.bala") then
awk '/Directory:/ {print $2 > "foladdr"}' findaddr$member
set actualfold = “cat foladdr
refile pickedup -li +$actualfold/$odr >&! junk
endif
HRHHHHHREHE
refile pickedup +newsloc/request >&! junk
folder +inbox >&! junk
endif

##PICK ALL CONTRIBUTIONS WHICH HAS HEADER COMPONENT 'VERSION: RELEASED FOR
EDIT'
##IN INBOX FOLDER

pick -from $member -an -search 'Version: released for edit' -sequence picked >! hits

##PICK MESSAGE IF EDITED BY GEO
pick -Ib -cc $member -an -search 'Part-of-News-Letter:' -rb -sequence pickedup >! hit

##IF REMOVE EDIT FLAG IF UPDATED CONTRIBUTION RECIEVED FROM THIS MEMBER
if ((! -z hit) Il (! -z hits) && ($member != Suser)) then

HHHHEH#HHE#
if ((Smember != "b.bala") && (! -z hits)) then
awk '/Directory:/ {print $2 > "foladdr"}' findaddr$member
set actualfold = “cat foladdr’
##IF THERE IS CONTRIBUTION FROM THIS MEMBER ON THIS CHECK THEN
#REMOVE EDIT CHECK AT MEMBERS DIRECTORY AND COMMON STORE
rm Mail/newsloc/$member/checkedit $actualfold$odr/checkedit
endif
HHREHHHERH
if (($member == "b.bala") && (! -z hits)) then
rm Mail/newsloc/$member/checkedit
endif
endif
##IF CONTRIBUTION CARRIES "Version: released for edit" PARAMETER THEN
PROCESS TO REMOVE THIS FROM HEADER
if ! -z hits then
awk '/Directory:/ {print $2 > "foladdr"}' findaddr$member
set actualfold = “cat foladdr’

#REMOVE THE VERSION RELEASED FOR EDIT HEADER PARAMETER FROM THE HEADER
OF
##THE MESSAGE MAINTAINING SAME MESSAGE NUMBER
scan picked -format "%(msg)" >! mnumbers
set msgnumbers = “cat mnumbers’
show $msgnumbers -form release.form >! newmsg
rmm picked
mv newmsg Mail/inbox/$msgnumbers
refile $msgnumbers +newsloc
rm mnumbers
endif

275

Appendix 5

#
pick +newsloc -sequence picked >! hits
if ! -z hits then
refile all +inbox -src +newsloc >&! junk
endif
folder +inbox >&! junk

R b ok ket ok s o sk e sk ok sk ok sk sk ke ok s ke ok ke ok ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk s ok ok sk ok sk sk sk s ok o sk 3k 3 sk ok ok sk sk s ok ok ok

echo linking contributions from a group member to all other group members
eCl]() " 1

while ($i <= $#gr_lIst)
#

##PICK ALL CONTRIBUTIONS FROM EACH GROUP MEMBERS WHICH ARE SENT
##AS PART OF NEWS LETTER

pick -1b -from $gr_Ist[$i] -an -search "Part-of-News-Letter:' -rb -sequence picked +inbox >! hits

#
pick -1b -cc $gr_lst[$i] -an -search 'Part-of -News-Letter:' -rb -sequence pickedup +inbox >! hit
foreach member ($gr_lIst)
if ! -z hit then
if (($gr_Ist[$i] = Smember) && ($gr_lst[$i] != "Suser") && (Smember != "Suser"))
then
##GET GROUP MEMBERS DIRECTORY PATH ON THEIR HOST
HiHHHHHH

if ($member != "b.bala") then
awk '/Directory:/ {print $2 > "foladdr"}' findaddr$member
set actualfold = “cat foladdr’
refile pickedup -li +$actualfold$odr >&! junk
endif
HiHHH
endif
endif
##LINK ALL PICKED CONTRIBUTIONS TO ALL OTHER (THAN ORIGINATOR)
#GROUP MEMBERS AS READ ONLYAT THEIR HOST IN NEWSLOC FOLDER
if ! -z hits then
if ((Sgr_Ist[$i] != $member) && ($gr_Ist[$i] != "$user") && ($Smember != "Suser"))
then

#GET GROUP MEMBERS DIRECTORY PATH ON THEIR HOST
HHHHEHEHEREHE
if ($member != "b.bala") then
awk '/Directory:/ {print $2 > "foladdr"}' findaddr$member
set actualfold = “cat foladdr®
refile picked -li +$actualfold$odr >&! junk

endif
endif
endif
end #end of for loop
##FILE ALL CONTRIBUTION FROM THIS MEMBER IN HIS/HER FOLDER WITHIN COMMON
STORE
if ((! -z hits) I (! -z hit)) then
refile pickedup +newsloc/{$Sgr_Ist[$i]} >&! junk
refile picked +newsloc/{$Sgr_lsi[$i]} >&! junk
##CHAGE ACCESS MORE TO READ ONLY TO ALL MEMBERS
scan +newsloc/$gr_lst[$i] -format "%(msg)” >! chmodnum
set chnum = "cat chmodnum’
cd {$bdr}bala{$mdr} {$gr_Ist[$i])
foreach changenum ($chnum)
chmod 655 Schangenum

end

276

Appendix 5

#echo " working with $gr_Ist[$i] "

home
endif
@ i++
end #end of while loop
#
Hith

##:#***

echo "checking for editrequest from all group members”
eCl]() "on

##PICK MESSAGE FROM THIS MEMBER WHICH HAS SUBJECT AS EDIT REQUEST
foreach member ($gr_lst)

##SET FOLDER TO INBOX
folder +inbox >&! /dev/null
pick -from $member -an -subject 'editrequest’ -an -search 'X-msgnum:’ -sequence pickedup >! hits
#
if ! -z hits then
##OTHERWISE PICK THE MESSAGE NUMBER REQUESTED
show pickedup >! tmp
awk '/X-msgnum:/ {print int($2) > “tm"}' tmp
set snum = “cat tm” >&! junk
foreach ssnum ($snum)

if (-e Mail/newsloc/$Smember/checkedit) then
break
else
##IF EDIT REQUEST MESSAGE FOUND THEN CHECK FOR EDIT CHECK FLAG
##IF IT EXISTS THEN REMOVE THIS REQUEST AND OUT
cp Mail/newsloc/$member/$ssnum Mail/newsloc/$member/9999
refile pickedup +newsloc/request
folder +newsloc/Smember >&! junk
##CONSTRUCT THE DRAFT HAVING AN ADDITIONAL PARAMETER VERSION RELEASED
FOR EDIT
anno 9999 -component Version: -text 'released for edit' -nodate >&! junk

if ($member == "b.bala") then
echo -n "To: Smember@email” >! Mail/draftrelecase
else
echo -n "To: $member" >! Mail/draftrelease
endif
show 9999 -form head.form >>! Mail/draftrelease
show 9999 -form body.form >>! Mail/drafirelease
chmod 600 Mail/newsloc/$Smember/9999
rm Mail/newsloc/Smember/9999
##SEND THE REQUIRED MESSAGE FOR UPDATION
send draftrelease
##GET GROUP MEMBERS DIRECTORY PATH ON THEIR HOST
HHRHHHEHBRAHEHE A
if ($member != "b.bala") then
awk '/Directory:/ {print $2 > "foladdr"}' findaddr$member
set actualfold = "cat foladdr
##LOCK FOR FUTHER EDIT REQUEST TO THIS MEMBERS CONTRIBUTION
echo $snum > $actualfold$odr/checkedit
echo $snum > Mail/newsloc/Smember/checkedit
else
echo $snum > Mail/newsloc/Smember/checkedit
endif
HIRHHEHHHHHEHEHE R

2717

Appendix 5

##REFILE REQUEST MESSAGE IN NEWSLOC/REQUEST FOLDER ?727?-->
endif
rm tm >&! junk
end
endif
end ##end of for loop

###**

echo "checking for delivery failure"
eChO "o

folder +inbox >&! /dev/null

##CHECK FOR MESSAGE AS DELIVERY FAILURE
pick -search 'Message_Type: Delivery Report' -an -search "Part-of-News-Letter:' -sequence picked >! hits
if ! -z hits then
show picked >! hit
scan picked

##IF THERE IS DELIVERY FAILURE MESSAGE THEN GET ITS INITIAL DELIVERY TIME
awk '/Date:/ {print $2 $3 $4 $5 $6 $7 > "intialtime"}" hit
set ctime = “cat intialtime"
folder +newsloc/out >&! junk

##GET MESSAGE NUMBER OF ALL OUT GOING MESSAGES
scan -format "%(msg)" >! checkfail
set msgtime = "cat checkfail’
foreach ftime ($ctime)
foreach eachmsg ($msgtime)
show $eachmsg -noshowproc >! hit

##GET DELIVERY TIME OF EACH OF OUT GOING MESSAGE
awk '/AD/{print $2 $3 $4 $5 $6 $7 > "findtime"}" hit
set foundtime = “cat findtime’

##IF THE DELIVERY FAILURE MESSAGE TIME IS SAME AS THIS MESSAGE TIME
##THAN RESEND THIS MESSAGE
if ($foundtime == $ftime) then
show $Seachmsg -form delivnote.form >! Mail/msgresend
send msgresend
endif
end ##end of for loop
end ##end of for loop
endif
#**
echo "checking for contributions overdue and sending reminders”
echo "

##PROCESS TO GET LIST OF READER MEMBER FROM THE GROUP LIST
cp member.dat dimp

awk '{print $1, $2}' dtmp > dtmp1

awk ‘' $2 == "reader” {print $1 $2}' dtmp1 > dtmp2

set mstat = ("cat dimp2°)

set sflag=""

##ISSUE REMINDERS IF NECESSARY
foreach member ($gr_lst)

##CHECK THIS MEMBER WITH READER MEMBER LIST
##IF FOUND SET TRUE FLAG

278

Appendix 5

foreach memberstat ($mstat)

if (§member != "b.bala") then
if Smemberstat == "$member@quipureader” then
set sflag = t
break
endif
else
if $memberstat == "$member@emailreader” then
set sflag =t
break
endif
endif
end

##IF TRUE FLAG NOT SET THEN PROCESS FOR REMINDER
if $sflag != "t" then
##echo PROCESSING FOR reminder to $Smember

##]F REMINDER HEADER FILE NOT EXISTS THEN PROCESS FOR IT
if ! - Mreminder? then
echo creating Reminder file
set tmpdata = (“cat newsletter.dat)
echo "Subject: Reminder" > formrem1
echo "Part-of-News-Letter: $tmpdata[2]" >> formrem1
cat formrem1 formrem?2 > Mreminder2
rm formrem1
endif

##CHECK EACH MEMBERS FOLDER FOR MESSAGE

##IF INDIVIDUAL FOLDER IN COMMON STORE IS EMPTY THEN

##PICK INITIAL MESSAGE TO THIS MEMBER FROM THE NEWSLOC/OUT FOLDER
pick +newsloc/$member -sequence picked >! hits

if -z hits then
##CHECK MESSAGE TIME WITH REMINDER TIME
##IF MESSAGE TIME PASSES REMINDER TIME THEN SEND REMINDER
scan picked -format "%(rclock {date})" >! remtime
set remindertime = “cat remtime’
foreach rtime ($remindertime)
if ($rtime > $checktimel) then
if ($member != "b.bala") then
echo "To: $member" >! Mreminderl

else
echo "To: $member@email” >! Mreminderl
endif
cat Mreminderl Mreminder2 >! Mail/Mreminder
send Mreminder
rm Mreminder]
endif
end
folder +newsloc/{$member} >&! junk
rm remtime

endif

##PROCESS FOR SECOND REMINDER

if ! -z hits then ‘ .
pick +newsloc/reminder -to $member -sequence picked >! hit
if ! -z hit then

##CHECK FIRST REMINDER TIME WITH TO ISSUE SECOND REMINDER

279

Appendix 5

##IF MESSAGE TIME PASSES REMINDER TIME THEN SEND SECOND REMINDER
scan picked -format "%(rclock {date})" >! remtime
set remindertime = cat remtime’
foreach rtime ($remindertime)
if ($rtime > $checktime?) then

HIBHHEHERE
if ($member != "b.bala™) then
echo "To: $member” >! Mreminderl
else
echo "To: $member@email" >! Mreminderl
endif
HHHHEHEREHH
cat Mreminder! Mreminder2 >! Mail/Mreminder
send Mreminder
rm Mreminder1
endif
end
folder +newsloc/{ $member} >&! junk
m remtime
endif
endif
endif
end ##end of for loop
##REMOVE ALL TEMPORARY REMINDER FILES
rm dtmp
rm dtmp1l
rm dtmp?2

##;#**

folder +inbox >&! /dev/null
#i#techo $gr_lst

#REMOVE TEMPORARYDIRECTORY ADDRESS FILES FOR ALL MEMBERS
foreach member ($gr_lst)
if ($member != "b.bala") then
rm findaddr$member
endif
end
unset gr_Lst i mdr odr
rm member_last

280

Appendix 6

Appendix 6

Operation Manual
For Prototype

Editing a Newsletter by a Group

Aston University

Content has been removed for copyright reasons

Appendix 7

Appendix 7

Testing

A 7.1 Testing Results

The process of testing and debugging a program is an implementation phase and involves
verification and validation (Sommerville, 89). ‘Verification involves checking that the
program confims to its specification’. ‘Validation involves checking that the program as
implemented meets the expectations of the user’. Testing is the process of establishing the
presence of faults. Debugging is concerned with finding and removing faults. Being a

prototype, debugging may not be necessary at great length for this system.

There are three different type of testing techniques described (Sommerville, 89) which can
be used in systematically testing a program. These are Equivalence partitioning, Structural
(also called ‘black-box’) testing and testing of real-time systems. It is very difficult to say
how far any particular testing technique is required in the case of testing a throw away

prototype, but it does not need rigourous testing.

A 7.1.1 Prototype Testing

The testing must proceed in stages. There are five stages identified in the testing process
(Sommerville, 89). These distinct stages are known as unit testing, module testing, sub-
system testing, integration testing and acceptance testing. These phases are shown in figure
7.1. During the unit testing phase individual components i.e. functions and objects are tested

to ensure that they operate correctly. The coding is tested in this phase.

In this project, each function and object is tested before incorporating it in a module. The test

results for few functions (such as add member, send notification, and generate edit request)

302

Appendix 7

are described later. Each unit is tested and modified until the desired functionality was

achieved.

Module testing tests a group of functions and objects as a whole. For example a module
‘create newsletter’ which consists of various functions: define common store with individual
folders, define member’s record and define a Newsletter details, tests the functionality of the
module as whole, including the side effects of individual functions. The test results of a few
modules (create-newsletter, process contribution, accept contribution, history and statistics
and generate Newsletter) are discussed later. The module testing is carried out until the

desired functionality is attained.

Sub-system testing is carried out by testing each sub-system, which is made up of the
various modules. The examples are testing of activity generator, activity monitor and activity
responder as a whole. In this prototype, individual sub-system testing is not possible,
because the functionality of the sub-systems are inter-linked. For example if a member sends
an edit request working with activity responder, 1t 1$ to be checked by the activity monitor to
release the required version from the common store. Sub-system testing is taken care in the

next phase (i.e integration testing).

Integration testing is carried out after the sub-systems are integrated to make up the entire
system. This phase of testing involves the creation of six accounts, on two different hosts
(both with X.400 implementation), for each of the six participants and installation of
appropriate activity sub-systems on these accounts. The integration testing is concerned with
finding errors which normally result from unanticipated interaction between sub-systems and
components. In this case testing is concentrated on ensuring that the system provides the

function specified in the requirements.

303

Appendix 7

The acceptance testing (sometime called stress testing or alpha testing) exercises the system
functions and demonstrates its performance. Conventionally the object of this testing is to
allow the procurer to accept the system from a developer. The aim of acceptance testing in
this research is to provide a system for communication with the users to obtain their
feedback. In this regard an example of ‘ASTON FORTNIGHT’ Newsletter is considered to

check various functions, viz edit request, new update, suggestion and accept contribution.

The system is tested as a whole, comprising activity generator, activity monitor and activity
responder. The activity generator and activity monitor are installed at the account of the user
who acts as group editing organiser. The activity responder is implemented on the rest of
the accounts who act as group members. The testing is carried out by creating a Newsletter,
sending notifications, submission of contributions by members of the group, sending

editing request and releasing requested version from common store etc.

304

Appendix 7

A 7.2 Testing Results
Add member:

Executable file ---> add_member
Record file for group member's ---> member.dat

Command line:

24 fisode/csam/bala->cat member.dat (contents of member.dat file before add operation)
tbl@quipu author networks x.400

bala@quipu geo news-round-up editing

bernard@quipu editor fundings computerisation

th2@quipu author message-handling-system text-handling
25 fisode/csam/bala->add_member

The following questions are to obtain the details of a group member for this News Letter.

Enter e-mail address of this group member (username@hostname): th3@quipu
status of group member: author
Subject area for this group member: Aston-graduates
Topic for this group member: top-emloyment
Is this information correct y/n 7?7 y
26 /isode/csam/bala->cat member.dat
tb1@quipu author networks x.400
bala@quipu geo news-round-up editing
bernard@quipu editor fundings computerisation

tb2@quipu author message-handling-system text-handling

tb3@gquipu author Aston-graduates top-emloyment (after adding member tb3)

Send Notification:

Executable file ---> notification
Copy of notification is kept at ---> newsloc/out

Command line:

44 fisode/csam/bala->scan +newsloc/out (Contents of newsloc/out before notification)
1 11/12 To:tbl networks<<This is a funding special issue. >>
2 11/12 To:bernard fundings<<This is to check the editing procedure

45 fisode/csam/bala->>notification

Enter Notification To (username@hostname): th3@quipu (to be enter by GEO)

305

Appendix 7

(complete header components are displayed by system)

To: tb3@quipu

Status: author

Subject: Aston-graduates

Topic: top-emloyment

Part-of-News-Letter: aston-fortnight-vol12-no24

Latest-Submission-Date: 15-12-92

Fcc: newsloc/out

The first notification allow you to start sending contribution. (first message to be typed)
The given date is very close.

What now? s (notification is sent to tb3 member carrying required information)

46 fisode/csam/bala->scan +newsloc/out (Contents of newsloc/out after notification)

1 11/12 To:tbl networks<<This is a funding special issue. >>
2 11/12 To:bernard fundings<<This is to check the editing procedure
3+ 11/13 To:tb3 Aston-graduates<<The first notification allow yo

47 /isode/csam/bala->

Edit request:

Executable file ---> xrequest
Contribution folder ---> newsloc/out

(contents of newsloc/out folder)

1+ 06/26 Bala Buksh 021 35 X.500<<Directory services are implementaed on 'Q
2 06/26 To:bala@quipu X.500<<Directory services are implementaed on 'Q

Command line:
50 /isode/csam/bala-> xrequest

To: bala@quipu
Subject: editrequest
X-msgnum: 2

Please release X-msgnumber for further updation.

........ Enter additional text

It is important to make some changes in the contribution. (optional text)

What now? send (request is sent for release version number 2 from common store)

51 /isode/csam/bala->

bt s s

306

Appendix 7

Create new activity (with a process to clsoe earlier):
Executable file ---> defineshell
Record file ---> newsletter.dat
Special Remark ---> remark.dat

Command line;
4 /isode/csam/bala->defineshell

1. This system supports only a single News Letter.

2. There is a News Letter currently being prepared, if you continue
the current News Letter will be closed.

3. If a News Letter is closed all old information will be available as follows:

(1) activity details --> oldnewsletter.dat
(ii) group member details --> oldmember.dat
(iii) remark details --> oldremark.dat

(1v) user names --> oldmember_name
(v) newsletter folder --> oldnewsloc

Do you want to create a New News Letter(and close old one) y or n 7
y --> To create a New News Letter.

q --> To Quit (without closing existing News Letter).

Enter Option y or q ---> 77y

Are you sure yorq---> 77y

Following questions will collect the details for the activity.
“EDITING A NEWS LETTERS" (at present exists)
Name & Issue of the News Letter: aston-fortnight-vol2-no$
Date of Release: 1-1-93
General Remarks if Any ? This will be new year issue on admission policy.
77 Are all these details correct ? Y/N 7?7 y

5 /isode/csam/bala->cat newsletter.dat
Editing-News-Letters aston-fortnight-vol2-no5 1-1-93

6 /isode/csam/bala->cat remark.dat ’
This will be new year issue on admission policy.

307

Appendix 7

(newsloc (common store) has no folder for members but control folders, just after creating
activity)
7 fisode/csam/bala-> folders +newsloc (Newly created common store)
Folder # of messages (range); cur msg (other files)
newsloc+ has no messages ; (others).
newsloc/document has no messages.
newsloc/out has no messages.
newsloc/reminder has no messages.
newsloc/request has no messages.

TOTAL= 0 messages in 5 folders.

(Information of old newsloc moved to oldnewsloc)
8 /isode/csam/bala-> folders +oldnewsloc
Folder # of messages (range); cur msg (other files)
oldnewsloc+ has no messages ; (others).
oldnewsloc/bala has no messages.
oldnewsloc/bernard has 1 message (1- 1);cur= 1.
oldnewsloc/document has 2 messages (1- 2); cur= 1.
oldnewsloc/oldtb2 has no messages.
oldnewsloc/oldtb3 has 1 message (1- 1).
oldnewsloc/out has 4 messages (1- 4);cur= 4
oldnewsloc/reminder has no messages.
oldnewsloc/request has 2 messages (1- 2).
oldnewsloc/tbl has 2 messages (1- 2); cur= 2; (others).
oldnewsloc/tb2 has 3 messages (1- 3);cur= 3
oldnewsloc/tb3 has 1 message (1- 1).

TOTAL= 16 messages in 12 folders.

9 /isode/csam/bala->

sk sk sk sk ok sk ok sk sk sk ke sk sk sk sk sk okeok sk skeskok skokokeok ok k

Process Contribution:
Executable file ---> process_contrib

Command line:
33 /isode/csam/bala-> process_contrib (displays all contributions from all members)

contribution from tbl
1 12/09 To:tbl X.400<<This first notificatin. >>
2 12/09 BalaTest] X.400<<Message From geo :- this is first contrib
3+ 12/14*Bala Buksh 021 35 X.400<<Message From geo :- this is first

contribution from bernard
1+ 12/11 To:bernard Al<<This is first notification to you. >>

contribution from balab
1+ 12/11 To:balab@email S/W<<This is first notification to you>>

contribution from tb2
scan: no messages in newsloc/tb2

308

Appendix 7

contribution from tb3
1 12/15 To:tb3 osi-networks<<This is the first notification. the>>

---> a to accept contribution
---> e to edit contribution
--->q to quit
ENET ~cnnmmmmmmmmmmmmmmmemmm > 7777 a (accept contribution)

Carefully type in the name of the originator of the contribution ?? tb1

tb1 s contribution (contributions from tb1 are displayed again)
1 12/09 To:tbl X.400<<This first notificatin. >>
2 12/09 BalaTestl] X.400<<Message From geo :- this is first contrib
3+ 12/14*Bala Buksh 021 35 X.400<<Message From geo :- this is first

newsloc/tb1+ has 3 messages (1- 3); cur= 3.

Select contribution number ?? 3 (contribution 3 is accepted)

(accepted contribution displayed and a copy send to the author of the contribution)
To: Buksh.Bala@quipu.aston.ac.uk

From: Bala Buksh 021 359 3611 X4272 <Buksh.Bala@quipu.aston.ac.uk>
Status: author

Subject: X.400

Topic: mhs

Version: Accepted

Part-of-News-Letter: Aston-fortnight-vol30-no6

Latest-Submission-Date: 7-1-93

Updated-On: Mon Dec 14 22:47:13 GMT 1992

his is first contribution
This first notificatin.
adding 1o the first not.

34 fisode/csam/bala->

History and Statistics:
Executable file ---> his_stat_new

Command line:
14 /isode/csam/bala—>his_stat~ncw

Application: Editing-News-Letters
News Letter: Aston-fortnight-vol30-no6
Completion Date: 15-1-93

Group Editing Organiser: bala@quipu

309

Appendix 7

M rs Details:-
Authors:
tbl@quipu
tb3@quipu

Sub-Editors/Coordinators:
bernard@quipu
th2@quipu

Readers:

Overall Contribution Statistics :-
Total No. of Members in the Group = 5

| Member's name! Notification | Total | Number of | Accepted |
l / sent yes/no |Contributions/Suggestions! yes/no |
| tbl@quipu yes 3 - yes |
| th3@quipu yes 1 - no |
| bernard@quipu yes 1 - no |
| tb2@quipu no - - no |

15 /isode/csam/bala->

Generate document:
The shecll script provided within the main module under option 'g'.
The option needs to enter the sequence number of the accepted contributions.

(All accepted versions are displayed before asking to enter sequence numbers.)
1+ 12/09 BalaTestl X.400<<Message From geo this is first contrib
2 12/15*Bala Buksh 021 35 X .400<<Message From geo this is first

Please enter the numbers (separated by spaces) of the contributions in the order they will

appear in the New Letter 7721

(Displaying format for the Newsletter)
News Letter : Aston-fortnight-vol30-no6 Release Date: 15-1-93

Main Editor: bala@uk.ac.aston.quipu

310

Appendix7

Subject: X.400
Topic: mhs

From: Bala Buksh 021 359 3611 X4272 <Buksh.Bala@quipu.aston.ac.uk>

this is first contribution
This first notificatin.
adding to the first not.
Subject: X.400

Topic: mhs

From: BalaTestl <tbl@quipu.aston.ac.uk>

this is first contribution
This first notificatin.
adding to the first not.

(After generating the document it exits from the prototype system.)
30 /isode/csam/bala->

sk sk sk sk 3k ok ke ok ok o ok sk sk ok sk sk sk sk sk ok skeckok ok kokok

311

Appendix 8

Appendix 8

Abstract Syntax Notation One

A 8.1 Abstract Syntax Notation One
OST's method of specifying abstract objects is called Abstract Syntax Notation One
(ASN.1). ASN.1 is flexible notation that allows one to define a variety data types. The
following meta-syntax is used in describing ASN.1 notation (Marshall, 89):
BIT monospace denotes literal characters in the type and value notation
nl bold italics denotes a variable
[] bold square brackets indicate that a term is optional
{} bold braces groups related terms
I bold italics bar delimits alternatives with a group

bold ellipsis indicates repeated occurrences
= bold equal sign expresses terms as sub-terms
-- pair of hyphens to comment.
Identifiers (names of value and fields) and type references (names of types) consists of
upper and lower case letters digits, hyphens and spaces. Identifiers begin with lower
case letters, type references begin with upper case letters.
In ASN.1, a type is a set of values. ASN.1 has four kinds of type : simple types, which
are 'atomic' and have no components; structured types, which have components; tagged
types, which are derived from other types; and other types, which include CHOICE and

ANY types (Marshall, 89). Types and values can be given names with the ASN.1

assignment operator (::=).

312

Appendix 8

There are four classes of tag:

1) universal --> 0 (whose meaning is same in all applications)

i) application --> 1 (whose meaning is specific to an application)

ii1) context-specific --> 2 (whose meaning is specific to a given structured
type)

iv) private --> 3 (whose meaning is specific to an enterprise).

Table A 8.1 lists some ASN.1 types and their universal-class tags.

Type Tag Number
INTEGER 2
BIT STRING 3
OCTET STRING 4
NULL 5
OBJECT IDENTIFIER 6
SEQUENCE and SEQUENCE OF 16
SET and SET OF 17
Printable String 19
IA5String 22
UTTime 23

Table A 8.1

A 8.1.1 SAGE Environment

This module specifies the fundamental components within the SAGE project
environment, which are users, services and the ports through which they communicate
(Benford et.al., 90).

SageEnvironmentRefinement {

ccitt(0)asdc(2)aston(???)modules(0)sage(0) sage-env-refinement(1) }
Sage DEFINITIONS::=

BEGIN
--Prologue

313

Appendix 8

EXPORTS

sage-environment, sage-environment-refinement, sage-system, sage-user;
IMPORTS
--Sage Abstract Service

sage-admin, sage-retrieve, sage-store

FROM SageAbstractService {
ccitt(0)asdc(2)aston(???)modules(0)sage(0) sage-abstract-service(2) }

--Sage Object Identifiers
id-ot-sage-environment, id-ot-sage-system, id-ot-sage-user,

id-ref-sage-environment

FROM SageObjectldentifiers {
ccitt(0)asdc(2)aston(??7)modules(0)sage(0) objectidentifier(3))

Certificates
FROM AuthenticationFramework {
joint-iso-ccitt ds(5) modules(1) authentication-framework(7) }

--Abstract Service Notation
OBJECT DEFINE
FROM AbstractServiceNotaion {

joint-iso-ccittmhs-motis(6)asdc(2)modules(O)notation(1))

--Sage Environment
sage-environment OBJECT

::= id-ot-sage-environment
--Sage Environment Refinement

sage-environment-refinement REFINE sage-environment AS
sage-user RECURRING

314

sage-system
sage-admin[S]
sage-retrieve[S]
sage-store[S]

::= id-ot-sage-environment

--PORTS
sage-user OBJECT
PORTS {
sage-admin[C],
sage-retrieve[C],
sage-store[C] }
::= 1d-ot-sage-user

sage-system OBJECT

PORTS {
sage-admin[S],
sage-retrieve(S],
sage-store[S]

::= id-ot-sage-system

--port types
sage-admin PORT

PAIRED WITH sage-user
PAIRED WITH sage-user
PAIRED WITH sage-user

CONSUMER INVOKES {

RegisterMember,

De-RegisterMember,

RegisterActivity }

::= id-pt-sage-admin

sage-retrieve PORT

CONSUMER INVOKES {

EditRequest,
ListGroup,
ListStatistics,
EditSuggestion,
ShowDifference,
ReadContribution,

315

Appendix 8

EditReminder }

::= id-pt-sage-retrieve

sage-store PORT
CONSUMER INVOKES {
CreateActivity,
EditNotification,
UpdateDocument,
RenameMember,
DeleteContribution
AcceptContribution,
GenerateDocument |}

::= id-pt-sage-store

--Operations

--Abstract Bind Operation

sage-bind ::= ABSTRACT-BIND
TO ({sage-manage[S])

BIND
ARGUMENT Bind-arguments
RESULT Bind-results
BIND-ERROR SET {

[1) ENUMERATED {

Appendix 8

busy, authentication-error, unacceptable-security-context },

[2] Errors }

--Abstract Unbind Operation
sage-unbind ::= ABSTRACT-UNBIND
FROM {sage-manage[S]}

RegisterMember ABSTRACT-OPERATION

ARGUMENT RegisterMember-Argument
RESULT NULL

ERRORS {accessControlError, objectError}
=2

316

Appendix 8

De-RegisterMember ABSTRACT-OPERATION

ARGUMENT DistinguishedName

RESULT De-RegisterMember-Result
ERRORS {accessControlError, objectError}
=3

RegisterActivity ABSTRACT-OPERATION

ARGUMENT Create-Argument

RESULT NULL

ERRORS {accessControlError,objectError,schemaViolationError,
attributeError}

n=4

EditRequest ABSTRACT-OPERATION

ARGUMENT Request-Arguments

RESULT NULL

ERRORS {accessControlError, objectError}
n=5

ListGroup ABSTRACT-OPERATION

ARGUMENT DistinguishedName

RESULT Group-Result

ERRORS {accessControlError, objectError}
=6

ListStatistics ABSTRACT-OPERATION

ARGUMENT DistinguishedName

RESULT Statistics-Result

ERRORS {accessControlError, objectError,attributeError}
=

EditSuggestion ABSTRACT-OPERATION

ARGUMENT ObjectName

RESULT NULL

ERRORS {accessControlError, objectError}
=8

317

Appendix 8

ShowDifference ABSTRACT-OPERATION

ARGUMENT Difference-Argument

RESULT Difference-Result

ERRORS {accessControlError, objectError}
=9

ReadContribution ABSTRACT-OPERATION

ARGUMENT Read-Argument

RESULT Read-Result

ERRORS {accessControlError, objectError}
=10

EditReminder ABSTRACT-OPERATION

ARGUMENT DistinguishedName

RESULT NULL

ERRORS {accessControlError, objectError}
a=11

EditNotification ABSTRACT-OPERATION

ARGUMENT EditNotification-Argument

RESULT NULL

ERRORS {accessControlError, objectError,schemaViolationError,
attributeError}

n=12

UpdateDocument ABSTRACT-OPERATION

ARGUMENT Update-Argument
RESULT UpdateDocument-Result
ERRORS {accessControlError, objectError,schemaViolationError,

attributeError}
a=13

318

Appendix 8

RenameMember ABSTRACT-OPERATION

ARGUMENT Rename-Argument

RESULT NULL

ERRORS {accessControlError, objectError,schemaViolationError,
attributeError}

n=14

DeleteContribution ABSTRACT-OPERATION

ARGUMENT DeleteContribution-Argument

RESULT NULL

ERRORS {accessControlError, objectError,attributeError})
=15

AcceptContribution ABSTRACT-OPERATION

ARGUMENT ObjectName

RESULT NULL

ERRORS {accessControlError, objectError}
=16

GenerateDocument ABSTRACT-OPERATION

ARGUMENT Generate-Argument

RESULT Generate-Result

ERRORS {accessControlError, objectError)
n=17

--Abstract Errors

accessControlError ABSTRACT-ERROR
PARAMETER AccessControlError
=0

objectError ABSTRACT-ERROR
PARAMETER ObjectError
=1

attributeError ABSTRACT-ERROR

PARAMETER AttributeError
=2

319

schemaViolationError ABSTRACT-ERROR

PARAMETER SchemaViolationError
=3
--arguments
Bind-arguments ::= CHOICE {
NULL, --1f no authorisation is required
[1] SET { -- if authorisation is required
user-name [0] SageName,

initiator-credentials [1] Initiator-Credentials,
security-context (2] SecurityContext OPTIONAL } }

RegisterMember-arguments ::= SET {

userName [0] DistinguishedName,
activityName [1] ObjectName,
attributes [2] SET OF AttributeType }

Create-arguments ::= SET {
name (0] DistinguishedName,
domainName [1] ObjectName,
attributes [2] Attributes }

Request-arguments ::= SET {
name [0] DistinguishedName,

requestName [1] ObjectName }

Show-Difference-arguments ::= SET {
name [0] ObjectName,
attributes [1] SEQUENCE OF ObjectType }

Read-arguments ::= SET {
name [0] ObjectName,
attributes [1] SET OF AttributeType }

EditNotification-arguments ::= SET {

name [0] DistinguishedName,
attributes [1] SET OF Attribute Type }

320

Appendix &

Update-Document-arguments ::= SET {
name [0] DistinguishedName,
attributes (1] SEQUENCE OF Modification }

GenerateDocument-arguments ::= SET {
objectList [0] SEQUENCE OF ObjectName,
erTors [1] accessControlError, objectError }

DeleteContribution-arguments ::= SET {
name [0] ObjectName,

eITorS [1] accessControlError, objectError, attributeError }

Rename-arguments ::= SET {

oldname [0] DistinguishedName,

newname [1] DistinguishedName,

attributes [2] SET OF AttributeType,

redirect [3] BOOLEAN DEFAULT TRUE }
--results
Bind-result ::= CHOICE {

NULL, --if no authorisation is required

[1] SET { -- if authorisation is required

user-name [0] SageName,

responder-credentials [1] ResponderCredentials } }

De-RegisterMember-result ::= SEQUENCE |

name [0] DistinguishedName,
targetAttributes [1] SET OF AttributeType,
eITOorS [2] Errors }

List-group-result ::= SEQUENCE {

clusterName [0] DistinguishedName,
clusterContents [1] SEQUENCE OF DistinguishedName,
attributes [2] Attributes }

321

Appendix 8

List-statistics-result ::= SEQUENCE {

name [0] DistinguishedName,
contents [1] SEQUENCE OF ObjectName,
attributes [2] Attributes }

Show-difference-result ::= SEQUENCE {

name [0] DistinguishedName,
targetAttributes [1] Attributes,
errors 2] Errors }

Read-result ::= SET {

name (0] DistinguishedName,
targetAttributes [1] Attributes,
eITors [2] Errors }

UpdateDocument-result ::= SET {
name [0] DistinguishedName,
Attribute [1] UTTime,

GenerateDocument-result ::= SEQUENCE {

name [0] SEQUENCE OF ObjectName,
values [1] SEQUENCE OF AttributeValue,
errors [2] Errors }
--eITOrs
AccessControlError ::= {readOnly, readWriteOnly, writeOnly, notAccessible,
permissionDenied }
AttributeError n=ANY
ObjectError m=ANY

SchemaViolationError ::= ANY

--definitions
Attributes ::= SET OF Attribute
Attribute ::= SEQUENCE {
type [0} AttributeType,
values [1] SET OF values }

AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY

Errors ::= SET OF Error
Error ::= ANY

Modification ::= CHOICE {

add [0O] attribute,

delete [1] SEQUENCE OF delete-arguments }
Delete-arguments ::= SEQUENCE {

type [0O] AttributeType,

value [1] SET OF AttributeValue }
DistinguishedName ::= RDNSequence
SageName ::= IA5String
ObjectName ::= CHOICE OF {RDNSequence}
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RelativeDistinguishedName ::= SET OF Attribute Value Assertion
AttributeValueAssertion ::= SEQUENCE OF { AttributeType, AttributeValue }
ObjectType ::= OBJECTIDENTIFIER
InitiatorCredentials ::= CHOICE {

simple [0] Password,
strong [1] StrongCredentials (WITH COMPONENTS {

vy

binb-token PRESENT })}

323

Appendix '8

ResponderCredentials ::= CHOICE {
simple [0] Password,
strong [1] StrongCredentials (WITH COMPONENTS {
binb-token PRESENT })}
Password ::= CHOICE {
TASString (SIZE (0..ub-password-length)),
OCTET STRING (SIZE (0..ub-password-length)) }
StoongCredentials ::= SET {
bind-token [0] Token OPTIONAL,
certificates [1] Certificates OPTIONAL }
Token ::= ANY
SecurityContext ::= SET OF SecurityLabls (SIZE (1..ub-security-labls))

SecurityLabls ::= ANY

END --SageAbstractService

324

Appendix 8

