Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

The Transformational
Implementation of JSD Process
Specifications via Finite Automata
Representation

Andrew Paul Bass

Doctor of Philosophy

The University of Aston in Birmingham

September 1992

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from
the thesis and no information derived from it may be published without the author's prior,
written consent.

The University of Aston in Birmingham

The Transformational Implementation of JSD
Process Specifications via Finite Automata
Representation

Andrew Paul Bass

Doctor of Philosophy
September 1992

Summary

Conventional structured methods of software engineering are often based on the use of
functional decomposition coupled with the Waterfall development process model. This
approach is argued to be inadequate for coping with the evolutionary nature of large
software systems. Alternative development paradigms, including the operational paradigm
and the transformational paradigm, have been proposed to address the inadequacies of this
conventional view of software development, and these are reviewed. JSD is presented as
an example of an operational approach to software engineering, and is contrasted with other
well documented examples. The thesis shows how aspects of JSD can be characterised
with reference to formal language theory and automata theory. In particular, it is noted that
Jackson structure diagrams are equivalent to regular expressions and can be thought of as
specifying corresponding finite automata. The thesis discusses the automatic
transformation of structure diagrams into finite automata using an algorithm adapted from
compiler theory, and then extends the technique to deal with areas of JSD which are not
strictly formalisable in terms of regular languages. In particular, an elegant and novel
method for dealing with so called recognition (or parsing) difficulties is described. Various
applications of the extended technique are described. They include a new method of
automatically implementing the dismemberment transformation; an efficient way of
implementing inversion in languages lacking a goto-statement; and a new in-the-large
implementation strategy.

Keywords: Operational paradigm; transformational implementation; Jackson System
Development (JSD); finite automata; computer-aided software engineering (CASE).

To my Family

Acknowledgements

I am greatly indebted to my supervisor, Bryan Ratcliff, not only for his guidance and
insightful technical feedback, but also for his financial support during the period of this
research, and in particular at a time of great uncertainty when I found myself between full-
time contracts just as I was starting to write up. I feel that it is unlikely that I would have
been able to complete the thesis without this support.

In addition, I would like to thank the following people for invaluable discussions and
comments: fellow PhD students, Colin Lewis & Tony Rollo; Maeve Boyle, my colleague
on the first phase of the PRESTIGE project, and John Aspinall and Graeme Walters who
followed myself and Maeve on phase 2; John Cameron, Michael Jackson and Pam Zave
who each provided insight and encouragement in the early stages.

Thanks are due to Dr. Rob Stammers of Aston Business School for the time he has allowed
me to complete the write-up.

While gratefully acknowledging at those mentioned above, together with friends whose
support kept me going while completion seemed to remain for so long over the horizon, I
must of course take full responsibility for all errors and omissions which may remain in the
thesis.

Contents

Summary 2
Acknowledgements -
Contents S
List of Figures 9
List of Tables 12
1 INTRODUCTION g s
1.1 Machines, Models and Methods 13
1.2 Contributing Domains : 14
The Operational Paradigm 14
Transformation Systems 14
Automata and Language Theory 15
1.3 Scope of Research 15
Aims and Objectives 15
Related Work 16
Areas Not Covered 17
Structure of the Thesis . 17
2 . THE OPERATIONAL PARADIGM IN SOFTWARE ENGINEERING
2.1 Software Evolution and System Development Methods 19
Critique of the Waterfall Software Development Process Model 20
Critique of Top Down Functional Decomposition 22
The Relationship between the Waterfall Model and TDFD 2
2.2 The Operational Paradigm - | 25
Reframing the Separation of Concerns 26
Examples of the Operational Approach 27
JSD 28
PAISLey 31
GIST = ' B ‘ T 32
Me Too 32
Summary 33
2.3 Transformational Implementation - = 34
Types of Transformation Rule A 34
Transformation of Functional Programs : 31
A Formal Transformational Paradigm ' 39
Transformation-in-the-large 39
2.4 Concluding Remarks 41

3
3.2

33

3.4

3.5

3.6

4.1
4.2

4.3
4.4

4.5
4.6

ON THE RELATIONSHIP OF JSD TO FORMAL LANGUAGE THEORY

Introduction

The Modelling Phase of JSD
The Vocabulary of a JSD Specification

Necessary Fundamentals of Language Theory
Syntactic Structure

Formal Languages

Regular Expressions

Entities and Event Orderings =

Interleaved Traces from the Same Regular Set
Different Structures Related to a Sngle Entity
Events Shared by Traces of More Than One Entity

Remarks Concerning Entity Modelling
Machines

Finite Automata
Nondeterministic Finite Automata

The Meaning of State in a Finite Automaton
The Network Phase of JSD
Communication
Adding Functions to the Model

Generalised Sequential Machines and JSP

The Implementation Phase of JSD
Inversion

State Vector Separation
Dismemberment

Discussion

The Relative Merits of Regular Expressions and DFAs for

Specification
More Powerful Grammars

Conclusion

TRANSFORMING STRUCTURE DIAGRAMS INTO AUTOMATA

Introduction
Followsets

Systematic Error Checking Based on Followmaps

Limitations of Direct Followmap Interpretation
No Distinction Among Multiple Occurrences of Actions

Inefficient Implementations

Conversion of a Followmap into an NFA
Conversion of NFAs to DFAs

State Minimisation

43

44
45

46
47

47
49
50
53
53
54

54
54

56
58
58

59
59
60

62

63
64
65
66

67

67
68

71

72

72
76

71
77
78

83
84
87

4.7

4.8

3.1
9.2

5.3

5.4

5.5

6.1
6.2
6.3

6.4
6.4

6.7

7.1

7.2

From Structure Diagram to DFA
The Algorithm
State Minimisation Properties of Subset Construction

Summary

TREATMENT OF AUGMENTED PROCESS STRUCTURES
Observable and Hidden Behaviour of Processes

Executable Operations

Representing Structures Augmented with Assigned Operations
Constructing an Effects Table

Assignment of Operations to Null Nodes

Dealing with Conditions
Bounded iterations

Restrictions on the range of attribute values
Allowing Data-conditions without
Violating the Automata Abstraction

Definition of Action Structures
- An example: A Banking System Statement Lister

Recognition or Parsing Difficulties
Standard Jackson Solution to Recognition Difficulties
Possible DFA Solution

A Subset Construction Algorithm for Backtracking Problems
Conclusion

APPLICATIONS

Introduction

Inversion

Context Filters
An Example

Process Dismemberment

Automation of Process Dismemberment

Network Strategies

Towards an Implementation of Network Dismemberment

Concluding Remarks

SMALLTALKIMPLEMENTATION OF DFA-BASED
TRANSFORMATIONS

Overview
The PRESTIGE Workbench
Process-level Facilities

The Tree-walking Code Generation Algorithm
Generation of Action Bodies

89
89
91

92

93

94
96
97
98

100
101
102

102
103
105

106
107
108
109

112

113
113
116
117

118
121

122
124

126

128
128

131
131
133

Implementation of Inversion

7.3 Implementation of DFAs
Subset Construction

7.4 Dismemberment)
The Book Process Dismembered by State
The Regular Expression (a bl a c)* da Dismembered by Input

7.6 Concluding Remarks

8 CONCLUSIONS
8.1 Re-representation as a Transformational Strategy
8.2 Summary of Contribution

8.3 Limitations
Conceptual Limitations |
Limitations of the Practical Work

8.4 Suggestions for Further Work

References
Appendix I
Appendix II

134

135
136

138
138
140

141

143
144
145

- 145

145
146

147
155
165

Figure 2.1.
Figure 2.2.
Figure 2.3
Figure 2.4.
Figure 2.5,
Figure 2.6.
Figure 3.1.
Figure 3.2.
Figure 3.3.

Figure 3.4.
Figure 3.5.

Figure 3.6.
Figure 3.8.
Figure 3.9.

Figure 3.10.
Figure 3.11.
Figure 3.12.

Figure 3.14.

Figure 3.15.
Figure 3.16.
Figure 3.17.
Figure 3.18.

List of Figures

The Waterfall model of software development, after Boehm (1976) 21

Separation of concerns in conventional and operational paradigms 26
Structure of an AccounT within a bank system 29
An example of state-vector connection (P inspects Q) 30
An example of datastream connection (P writes to Q) 30
A map of transformational space 35

Inheritance relationships among some subdomains of computer science 43

Generalising ideas from compiling so as to apply them to JSD 44
Equivalence of regular expressions with Jackson trees, after Hughes
(1979) 51
Bank ACCOUNT: open (credit | debit)* close 51
Library book: (Cameron, 1986): acquire classify (lend renew *
return) * (sell | dispose)) - 52
A transition diagram for ACCOUNT : 57
A possible NFA for the regular expression (a b | a c) * 58
A structure diagram representing the translation of a (b|c) * dinto x+y,
together with relevant network diagram 62
A GSM to translate a (b|c) *d into x*y 63
A simple network for the purpose of discussing inversion 64
Combining processes using inversion | 65
Figure 3.13. A simple example of inversion and statc-vcctof separation
showing a simple network (a) before and (b) after transformation 66
State-oriented specification of a part of a telephone call
forwarding system, after Zave & Jackson (1989). 68
A recursive transition network 69
A structure with recursion for accepting a context-free language 69
Marsupial process for the nested parentheses problem 70
Synchronising process for the nested parenthesis problem 71
Definition of First and Follow 73

Figure 4.1.

Figure 4.2. Application of First and Follow to the ACCOUNT structure 74

Figure 4.3. The library book structure together with implied states following Poo

(1991) 80
Figure 4.4. Equivalent states after a selection 80
Figure 4.5. Equivalent states after an iteration 81
Figure 4.6. AccounT transition graph labelled according to Poo (1991) 81
Figure 4.7. Minimum state ACCOUNT transition graph ‘ ' 82
Figure 4.8. An NFA recognising (a|b) *ac 84
Figure 4.9. An NFA (a) and an equivalent DFA (b) ‘ 85
Figure 4.10. A DFA accepting the same language as the NFA in Figure 4.8 86
Figure 4.11 Construction of a DFA from a structure diagram, adapted

from Aho et al. (1985) 90
Figure 4.12. Synonymous leaves at different positions 91
Figure 5.1. Anaugmented structure diagram for ACCOUNT¢ps 95
Figure 5.2. A DFA for ACCOUNT,ps, together with an effects table for y 97
Figure 5.3. A Structureops to DFAqps transformation algorithm 98
Figure 5.4. A structure with null components 99
Figure 5.5. Rules for the computation of the Last function 104
Figure 5.6. Process structure of STATEMENT-LISTER 105
Figure 5.7. Transition and effects tables for STATEMENT-LISTER 106

Figure 5.8. Structure diagram for (a b | a c) together with possible operation map 107

Figure 5.9. AnNFAfor (a b | a c) posing arecognition difficulty 108
Figure 5.10. A recognition difficulty solution. 108
Figure 5.12. A subset construction algorithm for the conversion of augmented
structures into DFAs which allows recognition difficulties 111
Figure 6.1. A GSM for context filtering the input to ACCOUNT 117
Figure 6.2. Animplementation topology for part of a Library system 119
Figure 6.3. A simple datastream network ‘ 122
Figure 6.4. Execution patterns in a hierarchy of inverted procedures 123
Figure 6.5. Execution pattemns in a hierarchy of conventional procedures 123

10

Figure

Figure

Figure

Figure
Figure
Figure

Figure

Figure

7'1.

7.2.
1.3.

74.
1.5.
7.6.
1.7.

8.1.

Basic implementation process model supported by PRESTIGE
(after Bass et al., 1991)

Functional overview of PRESTIGE

Hierarchical organisation of the Smalltalk classes implementing
process-level facilities

Control flow through nodes during tree walking code generation
Tree-walking code generation from the ACCOUNT structure
An instantiation of OperationTable for the ACCOUNT process

(a) A network incorporating the AcCOUNT process. (b) A possible
implementation procedure hierarchy

The approach taken in the thesis regarded as re-representation

11

129
130

131
132
133
134

135
143

Table 2.1.

Table 2.2.

Table 3.1.
Table 4.1.

Table 4.2.
Table 5.1.
Table 7.1.

List of Tables

Comparison of operational methods with respect to types of
parallelism expressible

Key differences between conventional and operational paradi§ms of
software development

Analogous terminology across a variety of domains

A transition table for an NFA representing ACCOUNT,
incorporating a dead state

Minimised automaton for ACCOUNT
An operation_map for ACCOUNTps

An operation_map for (ab | ac)*da

12

28

33
45

88
89
96
140

Chapter 1

Introduction and Overview

"I'd rather write programs to write
programs than write programs"”

Dick Sites

Digital Equipment Corporationt

1.1 Machines, Models and Methods

This thesis is motivated by three striking qualities of computer software:

1) its ability to describe (and manipulate) itself; -
2) its ability to describe most other things (at least at some level of abstraction!);
3) its potential complexity.

The first, self-referential, quality of software may appear differently depending on the
perspective of the observer. This quality is perhaps most explicit in the design of Turing's
Universal Machine (Minsky, 1967), but it is central to many varied areas of computing,
including programming languages (Ghezzi & Jazayeri, 1987) areas of artificial intelligence
(Rich, 1990), and computer-aided software engineering (Hall, 1991). Guy Steele has said
that "today's program is tomorrow's data"t. The thesis pi'csents algorithms which take
one representation of a software system and transform it into other representations.

Using software to describe things is often called modelling. Modelling is an idea
which permeates computing; indeed, Minsky (ibid.) characterises digital computers
themselves as "models for ...[the abstract mathematical concept of]... effective
computability”. Software is used to model economies, the weather, and the flight
characteristics of airliners. In this work, attention is focused on its use in modelling the
subject matter of information- and embedded- systems. _

Itis generally accepted that the development of large software systems depends on a
methodical approach to the management of complexity (for example, Boehm, 1976;
Dijkstra, 1976; Yourdon & Constantine, 1979; Jackson, 1983; Hoare, 1984; Booch,
1991) even if there is less agreement as to what form such a method should take. This

T(i) Quoted by John Bentley in "More Programming Pearls”, Reading, Mass: Addison-Wesley, 1987
1 (ii) In Bentley (Ibid.).

13

thesis draws on the methodology of the operational and transformational paradigms.
Proponents of these paradigms argue that software should be specified with the intention of
modelling the world in which it is to operate, and then should be automatically (i.e., under
the direction of still more software) converted into a form in which it can be animatedt.

1.2 Contributing Domains

This section briefly introduces those domains which underpin the thesis.

The Operational Paradigm

The functional hierarchy is a pervasive organising architecture for computer software
systems. A major problem with such an architecture is that it is directed towards some
abstract overall function which often has no analogue in the environment of the
organisation (Cameron, 1986). Operational specifications directly represent the
environment of an application and use its behaviour as the basis of the prescription of the
intended behaviour of the application (Zave, 1984; Balzer, 1982). The key feature of an
operational specification is its ability to generate the behaviour of the system it specifies.
This characteristic affords various advantages, including the ability of such a specification
to serve as a prototype, and the possibility of automatic implementation by correctness-
preserving transformation. _

There exist few methods in the operational paradigm. Perhaps the best documented
examples are PAISLey (Zave, 1982; Zave, 1991), Gist (Balzer, 1982), Me-too
(Henderson, 1986; Alexander & Jones, 1991) and Jackson System Development (JSD)
(Jackson, 1983; Cameron, 1986). Of these, JSD has had the most commercial usage, and
it is this method with which the present work is concerned.

Transformation Systems

Transformation systems (Partsch & Steinbriiggen, 1983) take well-formed behaviour-
producing representations and manipulate them to obtain different representations which
generate the same behaviours. Typically, the antecedent and consequent representations
will differ with respect to criteria such as clarity, speed of execution, and space complexity.
Often qualities such as clarity and efficiency seem to be mutually exclusive — hence
Jackson's first law of software optimisation "Don't do it"! (1975). By using a

T This description might be said to include the compilation of programs written in a high-level programming
language. The distinction is one of abstraction level: the vocabulary of a computer program is general-purpose
and consists of variables and operations, while the vocabulary of an operational model is application-specific and
consists of features of the problem domain.

14

transformation system, it is possible to specify a system using a clear representation and
then confidently convert it to an efficient one for subsequent execution. :

Most research into transformation systems has concentrated on the manipulation of
functional programs, as the strong algebraic properties of languages based on recursion
equations make them highly amenable to such manipulation (Henderson, 1986). There has
also been interest in transformations between programming paradigms, in particular, from
the functional to the imperative paradigm (Partsch, 1991). This thesis is concerned mainly
with a third class of transformation which can be said to be architectural in nature.
Transformations of this sort take abstract operational specifications and produce concrete
implementations (Jackson, 1983).

Automata and Language Theory

Automata theory and formal language theory are modern but well established branches of
mathematics. Their development has been closely associated with the development of
digital computers and computer programming (Minsky, 1967). Automata are, in fact,
abstract computing devices whose interactions with their environments can be expressed
using formal languages. These twin theoretical domains have many applications in
managing the complexity of computer software by providing tractable abstract models of
complex behaviour, and have been used in areas as diverse as programming language
design and implementation, communication network synchronisation and pattern matching
(Aho, et al., 1985). They also underlie the techniques used in JSD for constructing models
of behaviour in the environment of proposed software systems. The nature of the
relationship between the formal theories and JSD is examined in this thesis, and is used to
facilitate the automation of various transformations on JSD specifications.

1.3 Scope of Research

Aims and Objectives

The transformations usually used in the implementation of JSD specifications are for the
most part presented in an informal and pragmatic way (for example, see Jackson, 1983;
Cameron, 1986; Cameron, 1988). Furthermore, there have been few radical changes to the
repertoire since Jackson's introductory book (ibid.). It seems likely that progress in
discovering new transformations or new ways of automating existing transformations will
come only through deeper examination of the theoretical ideas underlying JSD. Support
for this notion comes from Sridhar & Hoare (1985) who show how the algebraic laws
governing CSP can be used to transform simple JSD specifications. The connection

15

between CSP and JSD has recently been further investigated by Yeung et al. (1991). The
present work draws on Hughes' (1979) explication of the programming component of the
Jackson methods, JSP, in terms of formal language theory. Language theory cannot
provide a complete account of a notation for concurrent systems such as JSD (Milner,
1980), but because of the availability of a large body of knowledge concerning the
processing of languages and automata, it nonetheless provides a point of leverage in the
pragmatic development of transformations.

In summary, the main aim of this research has been the application of language theory
to the design of automatable transformations for the efficient implementation of JSD
specifications. To this end, the following objectives have been pursued:

» to make explicit the links between JSD and the interrelated theories of regular
languages and finite automata; _ .

todesign and implement a transformational approach to bridge the gap between
the JSD world and the formal theories;

* toexploit the properties of the formal artifacts produced by the transformational
approach to generate efficient implementations of JSD processes, in particular
so-called dismembered implementations.

Related Work

This work has benefited from recent research by Lewis (1991) into the realisation of JSD
specifications in object-oriented languages. Lewis used a language-theoretic concept, that
of follow sets, as a novel way to implement JSD specifications in a Smalltalk-80
environment. This thesis takes the link with language theory further, and leads to the
explicit construction of finite automata from JSD specification elements. In doing so, it is
able to generate significantly more efficient and elegant implementations than Lewis's
approach, as well as to address special cases he did not cover. _

One piece of research which is closely related to this work is an approach to the
automatic dismemberment of process structures proposed by Cameron (1990). Unlike the
present approach, Cameron does not construct any intermediate reprcscntatibns between
process structures and program texts. Rather he defines permissible dismemberments in
terms of an algebra of process structure trees. The approach is very elegant and seems
likely to yield implementations of equivalent efficiency to those discussed here. However,
the results of this work have not been published or otherwise made availablef .
Furthermore, Cameron's ideas are specifically aimed at automating the dismemberment

1 As of Summer 1992

16

ransformation. While the present work shares this aim, it has produced an approach
which may have wider applications (discussed in Chapter 8).

Areas Not Covered

Milner (1980) discusses the limitations in using a finite automata model of communicating
systems, and these limitations apply in the case of JSD (Yeung et al., 1991). No attempt
has therefore been made to model the total semantics of JSD with a communicating
automata model. This work is more concerned with individual processes than with their
communication, which is dealt with pragmatically in a characteristically JSD style.

As the focus of the work is on an event-based view of JSD, less attention has been
paid to considerations of state-vector (database) management. So, for example, although
the need to enforce mutual exclusive access to state-vectors is mentioned in connection with
dismemberment (Chapter 6), detailed discussion of the means to achieving this requirement
is not given.

The ability to automate dismemberment transformations opens up the possibility of
applying a new implementation strategy to JSD networks. This strategy, which is called
network dismemberment, is introduced in Chapter 6. As is discussed in Chapter 8, much
work remains to be done to understand fully the utilisation of this implementation strategy,
and it is given only restricted treatment here.

Structure of the Thesis

The thesis is divided into eight chapters. Chapter 2 discusses two important software
engineering paradigms which underpin JSD: the operational paradigm and the
transformational paradigm. The introduction of these ideas is motivated by a discussion of
software evolution and the inadequacies of conventional structured methods in coping with
fluid system requirements. JSD is introduced as an example of an operational approach to
software engineering, and is contrasted with other well documented examples.

Chapter 3 presents elements of formal language theory and its relationship to
automata theory using the notations of JSD. In particular, Jackson trees are related to
regular expressions and their corresponding finite automata. Examples from typical JSD
application domains are presented. In adopting this approach, all three fields are introduced
together. This chapter establishes the foundations upon which the research is based.

Chapter 4 discusses the automatic transformation of Jackson trees into corresponding
finite automata, using an algorithm adapted from ideas developed in compiler theory. This
begins the systematic development of the transformational approach contributed by the
thesis.

17

Real JSD specifications generally feature regular expressions augmented with other
elements. Chapter 5 extends the approach developed in the preceding chapter to deal with
these augmentations, thus generalising the applicability of the approach. . In particular, an
elegant and novel method for dealing with so called recognition (or parsing) difficulties is
described.

Chapter 6 shows how the approach developed can be used to support the generation
of efficient implementations of JSD specifications in ways previously only achievable by
hand. This is argued to extend significantly the applicability of such implementation
techniques. '

Chapter 7 discusses the practical work associated with the thesis. It describes the
implementation of the algorithms developed in this work. These algorithms have been
incorporated into an experimental version of an integrated JSD implementor's toolkit
developed by the author and others. .

The concluding chapter summarises the main points of the thesis and critically
evaluates what has been achieved. Finally, suggestions are offered for further work to
extend the usefulness and applicability of the results obtained.

18

Chapter 2

‘The Operational Paradigm in
Software Engineering

This chapter establishes the context in which the work of the thesis appears. It identifies
flaws in conventional software development methodology, and argues that an altemative
approach, based on the construction and automatic manipulation of executable
specifications, substantially addresses these weaknesses.

2.1 Software Evolution and System Development
Methods

Among the many difficulties in constructing high-quality solutions to real-world software
problems are the following:

The requirements for a system are difficult to capture

- users may be only partially aware of their requirements

- communication between users and developers may be made difficult by
~ differences in domain and computing jargon.

The requirements are volatile and may be revised to include

- clarifications of incorrectly captured requirements

- new requirements suggested by experience of exercising the implementation.

These factors tend to contribute to a perceived mismatch between the user's expectations
and the actual behaviour of a system, if not immediately, then as the system is used in its
intended environment. As Jackson & McCraken (1981) note: "any system development
activity inevitably changes the environment out of which the need for the system arose".
As a change in the environment of a system is likely to invalidate portions of its
functionality, it can be concluded that the very activity of developing a software system will
give rise to the need for modifications to the original specification (Lehman, 1991).
Unfortunately, as software is modified it typically becomes less structured, more error-
prone and less amenable to subsequent change, until eventually a system may be so
atrophied that it must be discarded and replaced by an entirely new system (Lehman &
Belady, 1980). Giddings (1984) has coined the term 'Domain Dependent' to describe
software implementing large systems such as business systems, operating systems and

19

embedded systems:

"[Domain Dependent] software is characterised by interdependence between the
universe of discourse and the software. The use of the software may change both
the form and the substance of the universe of discourse, and as a result, the nature
of the problem being solved".

The dynamics of software changes described above are exacerbated by the perceived
changeability of computer software (Brooks, 1987) which encourages both users and
developers to suggest and attempt (perhaps unnecessary) revisions. Brooks describes
software as being "pure thought-stuff, infinitely malleable", and argues that this
malleability leads to the perception that it is easy to change. The lack of physical resources
needed to change software adds to the illusion (Lehman, 1991). N

Clearly, a large part of software engineering effort will be concerned with the
ongoing revision of software to keep up with the changing requirements of the user. The
activity of changing software to keep up with drifting requirements is usually called
'maintenance’ although Lehman & Belady (1980) considers the terms misleading, prefering
instead 'program evolution'. The difference in the terms demonstrates the difference in
perspective between researchers and many practitioners. Schneidewind (1987) takes the
view that change should be regarded as an integral part of a development process, while the
reality is that it is often appended as an afterthought. Whatever its name, there is no doubt
concerning its economic si gnificance. Lientz and Swanson (1980) found in a major survey
that many North American organisations were spending between 20% and 70% of their
software resource on maintenance activity. ‘

It is clear that a successful approach to system development should comfortably
accommodate an almost inevitable drift in functional requirements. The conventional
approach, by which is here meant a combination of top down functional decomposition
(TDFD) and the Waterfall software process model, has frequently been criticised for failing
in this respect. The following discussion summarise the chief objections.

Critique of the Waterfall Software Development Process
Model

The Waterfall software development process model (e.g. Royce, 1970; Boehm, 1976) is
generally accepted as the conventional process model for software development (Lehman,
1991). The same basic model has appeared in various guises over the years, but Boehm’s
formulation shown in Figure 2.1, is representative.

20

Validatior ﬂ

Preliminary
Design

1

Validatior _J

oot

Detailed
Design

"]

Validatioi

Debug

Development

Preoperation

Figure 2.1. The Waterfall model of software development, after Boehm (1976).

]

Operations &
Maintenance

Re\ul'aliclath:mJ

The Waterfall approach attempts to manage the complexity of a development process by
separating specification (often defined as ‘the WHAT') from implementation (the
'HOW")T. Itis only after the specification and design have been validated and signed off
that the move is made to implementation. All decisions regarding the binding of functions
to resources are committed early (Zave, 1984). This practice developed when access to
computers was scarce; the high level of structure in the early stages was intended to reduce

time wasted by unnecessary debugging in the code and test phases. Even now, with
computing resources much more freely available, it has been argued that it still suits project
managers to follow a Waterfall model for reasons that include the following:

« the requirements specification can form the basis for a development contract

(Hall, 1991b);

* accountability is high during the process as well-defined milestones and
corresponding intermediate deliverables can be agreed a priori (Sommerville,

1991);

» theidea of separating specification from implementation, perhaps as a result of

TAlthough the Specification/WHAT, Implementation/ HOW dichotomy is considerably overworked, its use
seems unavoidable here, as the subsequent discussion introduces an alterative view of software

development based on an explicit change of these bindings to Specification/PROBLEM-ORIENTED,
Implementation/SOLUTION-ORIENTED.

21

intuitive appeal, has become the conventional wisdom (Zave, 1984).

The first two reasons have more commercial, than methodological, utility, since contracts
and milestones can be used to resolve the almost inevitable disputes which arise as
requirements change, deadlines are missed and budgets are overrun. They characterise a
fundamentally negative, if natural, response to the problems of software evolution in which
rather than aim to produce good software, those concerned work to ensure that they will
not be blamed when things go wrong.

The third reason offered for the continuing popularity of the Waterfall model can also
be criticised. Swartout and Balzer (1982) reject the idea of a strict separation between
specification and implementation and argue that they must instead be accepted as being
"inevitably intertwined". They view the software development process as the discovery of
a hierarchy of specifications, considering that "every specification is an implementation of
some other higher level specification". Swartout and Balzer argue that in the process of
implementation, there will always tend to be the need to revise retrospectively superordinate
specifications in the hierarchy. Specifically, they identify the following classes of revision:

+ toaccount for the realities and limitations of the implementation environment
| (generally in regard to resource availability);
. to accommodate new insights about requirements, interactions between
software components, etc.

McCraken and Jackson (1981), Boehm (1988) and Schneidewind (1987) are among
writers who identify other problems with the Waterfall model, including: '

* late extant system behaviour (meaning late feedback regarding incorrectly
captured requirement); :

» failure to accommodate the use of potentially time and cost saving techniques
such as prototyping and transformations;

» difficulty of accommodating end-user development;

» lack of support for software evolution.

Critique of Top Down Functional Decomposition

By adopting the TDFD approach, a developer chooses to regard a system as implementing
a complex function from a set of inputs to a set of outputs. Progressive refinement of the
function leads to a program or system structure of hierarchically arranged subfunctions
contributing to the calculation of the original functional requirement. Among its advantages
are the following:

22

* complexity is managed through the production of an abstraction hierarchy
(Dijkstra, 1976);

e at any stage in the refinement process, the design always encompasses a

- - complete solution to the problem (Ratcliff, 1987)

Although it is an extremely popular approach, underlying many methods (for example,
Yourdon & Constantine, 1979; DeMarco, 1978; Gomaa, 1984; Nicholls, 1987) TDFD has
attracted much criticism. Among the major disadvantages identified by its detractors are the
following:

TDFD produces a system architecture based on an endemically volatile aspect of
a user’s problem, namely its functional requirements (Jackson, 1983);

* itcan be very hard to make appropriate decompositions (Cameron, 1986);

« TDFD forces the developer to make the highest risk decisions (the initial high
level decompositions) in the presence of the minimum pertinent information
(Agresti, 1986).

These criticisms are expanded on below.

As has been seen earlier, many writers have argued that provision for system
evolution should be regarded as an integral part of a software process model (e.g., Lehman
& Belady, 1985). An important factor in making a system amenable to change is the
architectural structure of the software (Parnas, 1971; Harrison & Magel, 1981). TDFD
leads to system structures based on the decomposition of an overall functional requirement.
This means that should the requirement be revised (which is almost inevitable) the entire
abstraction hierarchy could potentially be invalidated. Jackson (1983) gives an example of
a program developed using functional decomposition which is unable to accommodate a
seemingly small drift in functional requirements without a major reimplementation.

The addition of data modelling techniques to TDFD, as for example in SSADM
(Nicholls, 1987), has gone some way towards anchoring system designs to stable features
of the problem domain. Here, data structures (and in the case of object-oriented databases,
accessing methods) are based on enduring properties of the real world, namely the
attributes of participating entities. Indeed, for database applications where processing
consists purely of simple updates and queries, and flexibility can be provided by an ad hoc
query language interpreter, this approach is successful. Avison (1987) is among those
who have put forward system development methods based on this idea (although he more
recently (1988) advocates this only a component of a larger 'contingency' framework).
Data modelling is a helpful addition to TDFD, but still runs into problems where complex
processing is necessary, as the processing structure of the system is still based on a
decomposition of the original functional requirement.

23

Pamnas’s landmark paper "On the criteria for the decomposition of modules" (1971)
was an early warning of the potential dangers of modularisation based on functional
decomposition. Parnas demonstrates how alternative decompositions of the same
specification lead to systems with very different modifiability, and offers some criteria for
identifying good decompositions. In a paper published fifteen years later, Cameron (1986)
criticises TDFD for precisely the reason that it is very difficult to make the correct choices
first time. In fact, the highest risk decisions — those regarding overall system structure —
are made very early in the process, and the insight necessary to make good decompositions
only comes as the implementation level is approached. The risk-orientated viewpoint is
taken further by Boehm as the motivation behind his Spiral model of software development
(1988). The Spiral model is a software process meta-model which is instantiated according
to the risk structure of a particular problem. Using this model, Boehm identifies the
TDFD/Waterfall approach as a suitable development process when the problem is well-
understood and requirements are stable (as would be the case for a straightforward payroll
system, for example). In such a situation, where there is low risk of acquiring fundamental
misconceptions about the problem or of receiving late change requests from user, the
developer benefits from the predictability of an orderly Waterfall life-cycle. Conversely, in
the high-risk context created by the dynamics of large, novel endeavours, such a process
model is highly inappropriate.

Although he is very critical of TDFD as a design method, Jackson (1983)
acknowledges hierarchical decomposition to be a good description technique. This may
account for the enduring success of top-down methodology — textbook examples of
TDFD are very neat and easy to follow, and the reader is encouraged to believe that
rigorous application of the method will work similarly for new problems. In truth, the
examples have almost certainly been constructed retrospectively. Practitioners, keen to
demonstrate that they are adhering to good software engineering practice, may tend to
perpetuate the fallacy that TDFD is a good way to design systems, as hinted by Parnas &
Clements (1986) in their paper "A rational design process: how and why to fake it"(!).
(Actually, Parnas & Clements recognise some real value in describing a finished system in
terms of how it should have been built, arguing that at least it provides a basis for
maintenance.) ‘

TDFD has been adapted to the particular problems of implementing systems featuring
concurrent processing (Gomaa, 1984; Neilson & Shumate, 1987). However, separate
threads of control are not explicitly considered until after the functional requirements have
been decomposed into a system of dataflow through processing elements. Only then are
these individual elements composed into 'tasks’. These tasks are unlikely to reflect the
real-world concurrency which drives the system (Sanden, 1989). As a result, two or more
real-world threads of activity may require shared access to code exported by a single task,

24

which then has to handle the concurrency internally.

The Relationship between the Waterfall Model and TDFD

TDFD requires the developer to take high risk decisions (regarding, for example, functional
requirements and appropriate decompositions) early in the development process (Boehm,
1988). As testable behaviour-producing objects appear only at the lowest level of the
decomposition, errors in early decisions are often not discovered until much money and
time has been spent on design and coding. Backtracking at this stage may be prohibitively
expensive. Project managers therefore attempt to ensure that development decisions are
made correctly first time, by rigorously applying a Waterfall model, complete with
attendant paperwork to be signed off as work proceeds. Boehm (1988) and Agresti (1986)
are among those who point out that this is an effective strategy only when the functional
requirement is stable and the problem is well understood. In other cases, as has been
observed, there are many problems with such a rigid approach.

2.2 The Operational Paradigm

The operational paradigm (Zave, 1984; Agresti, 1986) has been put forward as an
alternative to the conventional approach discussed above. An operational specification
takes the form of a model of the proposed application in its environment — that is,
portions of the real-world problem domain are explicitly represented as fundamental
components of the specification — and can generate the behaviour of the system it-
specifies, either by direct execution, or after some form of translation (Balzer & Goldman,
1986). An operational model is made up of implementation independent structures, which
have the potential to be realised in a variety of ways. Choice of factors such as
programming language, operating environment (hardware and software) and database
organisation remain essentially unconstrained. There can also be any number of threads of
control. During specification, the developer is unconcered with efficiency; production of
the required behaviour is the sole aim. As a result, operational specifications tend to
execute too slowly to serve as anything other than early prototypes (Zave, 1984). The
implementation of an operational specification involves the definition of constraints on the
behaviour-producing mechanisms which can be used to meet the specification, and on the
space and time resources which are available, followed by the (automated) transformation
of the specification to meet these constraints. Note that a transformational approach to
implementation is possible because of the executable semantics of operational
specifications. Ideally, software tool support should exist to perform the transformations

(see Section 2.3).

Reframing the Separation of Concerns

The idea of separation of concerns is invaluable in managing the complexity of software
development. It is the principle behind Pamas’s suggestions regarding information hiding
(1971), stepwise refinement (Wirth, 1971), object-oriented programming and design (Cox,
1986; Booch, 1991) etc. However, one must be careful in selecting which factors are
separated. Critics of conventional software engineering methodology argue that the
WHAT—HOW axis is not a feasible choice, (Swartout & Balzer, 1982) but rather that the
PROBLEM-ORIENTED—IMPLEMENTATION-ORIENTED axis is more appropriate.
For example,

“The structure of the operational specification is problem-oriented but not

implementation-oriented. During the transformation phase the specification is

subjected to transformations that preserve external behaviour, but alter or

augment the mechanisms by which that behaviour is produced, so as to yield an
implementation-oriented specification of the same system” (Zave, 1984) .

This reframing is a key insight of the operational approach. It is summarised in Figure
2.2

h 4

Requirements o

i€

PROBLEM-
ORIENTED
executable
artifact

WHAT the
system |s
to do

Top-Down
Functional

SOLUTION-
ORIENTED

executable
artifact

CONVENTIONAL OPERATIONAL

Figure 2.2. Separation of concerns in conventional and operational paradigms.

26

There is general agreement that a specification should not lead a developer towards a
particular implementation (see for example Ratcliff, 1987). Conventional methodology
takes this to mean that a specification should describe the behaviour of a black box,
accepting stimuli and producing responses, and should say nothing about the box's internal
structure. This is predicated on the belief that an explicit structure must bias the form of an
implementation (Zave, 1982). The operational paradigm is liberated from this assumption
by the behaviour-preserving restructuring capabilities offered by transformation.
Operational specifications are therefore able to incorporate descriptions of the structure of
behaviour-producing mechanisms in order to express executable semantics. Executability
is a key feature of operational specifications as it offers the possibility of

« prototyping (Zave & Schell, 1986; Balzer et al., 1982; Warhurst et al., 1990);

. transformational implementation (Agresti, 1986); '

» increased insight into the problem domain through modelling of its dynamic
behaviour (Renold, 1988b).

While the internal structure of an operational specification is explicit, rather than hidden in a
yet-to-be-decomposed black box, it is argued not to constitute the design of a particular
system, since it makes no reference to any particular runtime environment (Zave, 1984).
Indeed, one of the great appeals of the approach is that an operational specification can be
implemented in a variety of environments simply by applying different transformations.
Automata theory (see Chapter 3) provides more than adequate support to the proposition
that a system's internal structure can be described without suggesting any particular
implementation (Rockstrom & Saracco, 1982).

Examples of the Operational Approach

Below are described four of the best documented operational approaches: JSD, PAISLey,
GIST, and Me-Too. An important feature of an operational approach is its ability to
capture parallelism in the real world (Balzer & Goldman, 1986). Zave & Schell (1986)
identify two forms of parallelism inherent in real-world software problems which they term
asynchronous and synchronous parallelism. Asynchronous parallelism is specified by
putting asynchronous computations in separate processes— a style epitomised by Hoare's
Communicating Sequential Processes or CSP (1985). Synchronous parallelism is
expressed within a process by exploiting opportunities to evaluate intermediate values
concurrently. For example, in the PAISLey expression “

sg-rt [r=sum[(square[a],square[b])]] _

twhich has the value of the length of the hypotenuse of a right-angled triangle with sides of

27

length a and b), the subexpressions squarefa] and square(b] can be evaluated in
parallel. This kind of behaviour is termed as synchronous because the evaluations are
synchronised at their endpoints.

The four methods discussed below vary in their ability to capture parallelism of either
form. These differences are summarised in Table 2.1.

Asynchronous Synchronous
JSD Yes Not explicitly
PAISLey Yes Yes
GIST Yes Yes
Me-Too No Yes, by implication

Table 2.1. Comparison of operational methods with respect to types of parallelism expressible.

JSD and PAISLey are more closely related to each other than to the other methods,
particularly through their explicit use of sequential processes to represent asynchronous
behaviours. Such processes have the following advantages:

« the ability to capture naturally asynchronous processes in the real world
(Jackson, 1983) — this is especially important in real-time applications and is
becoming more so in data processing with the proliferation of distributed and
on-line transaction systems;

« the ability to encapsulate state, and therefore allocate responsibility for the
maintenance of its integrity to a well-defined part of the system;

* the partitioning of system behaviour into sequential programs which are
individually easy to understand (Sanden, 1989).

Use of the process abstraction is not, of course, limited to those methods which are
generally characterised as operational. Among the notations which employ sequential
processes as a specification element are CSP (Hoare, 1985), CCS (Milner, 1980), and
SDL (Rockstrom & Saracco, 1982).

JSD

A little more space is devoted to JSD than the other approaches, as it forms the subject
matter of the rest of the thesis. The description here is nevertheless brief and informal. A
deeper characterisation in terms of language and automata theory is given in the next
chapter. | _— :
JSD bases the structure of a system around a model of stable aspects of the real world
(Jackson, 1983), namely entities in the problem domain and the actions in which they

28

participate — an approach that can be described as entity life history modelling (Sanden,
1989). This style of modelling is distinct from static data modelling due to a strong
emphasis on the time ordering of actions. Legal orderings of actions are imposed by
associating with each entity a structure, expressed in a graphical notation equivalent to
regular expressions (Hughes, 1979), which reflects the life history of the corresponding
real world object. For example, Figure 2.3 could describe the structure of a bank
ACCOUNT.

The constraint provided by these time ordering specifications ensures that updates to
the state of the equivalent model in the system — a set of 'long-running' sequential
processes — can occur only in a fashion consistent with changes in the real world. These
updates are initiated by inputs to the system resulting from occurrences of actions in the real
world. The system model thus tracks the progress of entities as they perform or experience
these actions. Providing an inevitable time delay is accepted between a change in the real
world and corresponding system update, the model processes will reflect the state of the
real world at any point in time (at some abstract level).

Once the entities in a system have been described as model processes, function
processes are added to meet functional requirements. There are two basic types of |
function: '

« those which answer questions about the current state of the real world;
» those which answer questions about the history of the real world.

ACCOUNT

open TRANSACT close

CRDR

d g
credit debit

Figure 2.3, Structure of an ACCOUNT within a bank system.

To facilitate the answering of these questions, function processes must be connected to the
model using one of two interprocess connections: state-vector inspections and datastream
connections (more complex connections exist but can be ignored for current purposes).

29

The persistent state of a model process is known as its state vector. Assuming three
domains for illustrative purposes — banking, warehousing and air-traffic control — state-
vector inspections (read-only accesses — see Figure 2.4) will then support functions such
as: : - .

* List all overdrawn accounts.
* How many Snickers Bars are in the stores?
* Are any aircraft on collision courses?

P Q0

Figure 2.4. An example of state-vector connection (P inspects Q).

As the model changes, information can be generated about what has happened. Each .
time an event of interest occurs, a record can be inserted in a datastream which is read .
by a function process (see Figure 2.5).

Figure 2.5. An example of datastream connection (P writes to Q). .. .

Datastreams provide the information to support functions such as:

+ List all withdrawals over £1000 since the last request.

* What has been the average daily consumption of Snickers bars since their name
was changed? o W '

+ How many 'near misses' have occurred in UK air space in the last year?

Connecting function processes to the model produces a network of asynchronous
communicating sequential processes. This network, together with the internal structures of
the processes, comprises a (probably inefficient) executable specification of the system.
To produce an efficient implementation, the JSD implementor applies transformations from
a standard repertoire. We describe these in the next chapter, and go on in the rest of the
thesis to develop the implementation of a particular class of transformations,
dismemberments, for inclusion in the PRESTIGE JSD transformational workbench (Bass
et al., 1991; Ratcliff, 1990).

30

PAISLey

Zave (1982) introduces the PAISLey language for the operational specification of
embedded computer systems. PAISLey is an acronym for Process-oriented Applicative
Interpretable Specification Language. As with JSD, the key unit of specification in
PAISLey is the asynchronous process. In considering the internal behaviour of processes,
PAISLey like JSD, models entity life-histories. Unlike JSD, however, the style which
Zave advocates for expressing a process's activity is applicative. Among the advantages
she puts forward for such a style are their interpretability, manipulability and "tremendous
powers of abstraction", which allow computations to be specified without constraining the
order of evaluation of intermediate results, the allocation of storage or the underlying
representation of data. By combining functional programming with asynchronous
processes, PAISLey specifications can exhibit maximal parallelism for the problem being
described (Zave & Schell, 1986). -

Processes and process states, are not, of course, applicative concepts. They are
judged necessary in PAISLey because such aspects as performance requirements and real-
time interfaces with the environment are difficult to specify applicatively. Processes are
specified by supplying a state space and a successor function on that state-space (i.e., a
function which when applied to one state in the state space will deliver another). A process
goes through an infinite cycle of states asynchronously with respect to all other processes.
The point at which the applicative and nonapplicative elements of PAISLey meet is in the
mechanism for interprocess communication. Processes communicate by applying
exchange functions which seem locally to be applicative, but have the global side-effects
associated with exchange of data. A choice of exchange function types is available to the
specifier, offering rendezvous-like semantics with a variety of priority and timeout
characteristics.

PAISLey enables the specifier to associate timing attributes with functions. These
specify evaluation-time ranges and distributions which can be used when a specification is
executed to simulate its performance characteristics. Reliability attributes, in the form of
probabilities of evaluation failure, can also be assigned to functions to enable the simulation
of unreliable components and interfaces. *

Zave (1991a) summarises the PAISLey project and extracts general lessons learned
over the project lifetime. The PAISLey system is available from AT&T Bell Laboratories
for educational use (Zave, 1991b). Itis implemented in the C programmmg language and
supports the editing and execution of PAISLey specifications.

31

GIST

The GIST language (Balzer, Goldman & Wile, 1982) is an operational specification
language whose semantics are defined in terms of how state is modified by the operations
comprising a specification. In this respect it has similarities with JSD and PAISLey. A
GIST specification models a closed system incorporating agents considered to be external
to the computerised subsystem. Therefore GIST specifications model relevant aspects of
the whole system. Again, this is true for JSD and PAISLey.

GIST differs in flavour from JSD and PAISLey in the way behaviour is specified.
The fundamental behaviour-producing element in a GIST specification is called a demon,
and is essentially a stimulus-response rule which fires in response to particular pattens in a
global database, causing one or more operations to be performed. The firing of a demon
will generally lead to updates to the database which then may cause other demons to be
enabled. When a demon's stimulus is enabled, its response becomes an active line of
control. The non-deterministic interleaving of the activity specified by all active lines of
control generates a space of possible behaviours which can ensue from a particular
situation. In general, however, such a space will allow behaviours which are not required
of the final system. The GIST specifier can place constraints on the permissible states of
the system, and on the applicability of individual demons, and so 'prune’ the specification

“until it generates only the behaviours required. |

GIST specifications are, in principle, executable by a suitable production-rule
interpreter. As the resulting performance would be intolerably slow, transformations are
necessary to produce an acceptable implementation (Feather and Cohen, 1982). The large
amount of nondeterminism in a GIST specification provides a corresponding amount of
flexibility in scheduling the execution of operations.

Me Too

Me too (Henderson, 1986; Alexander & Jones, 1991) is an operational method which
uses a language formed by a combination of the formal specification notation VDM
* (Jones, 1990) and a functional programming language related to Miranda (Turner,
1986). There are three steps to the method: Model, Specify, and Validate. Initially, a
model is produced which comprises abstract data objects, corresponding to real-world
entities, and associated operations. This model is then refined into a specification in the
Me too language — objects become abstract data types, and their operations become
functional definitions in terms of recursion equations. Me too is executable (by an
interpreter- available in several dialects of Lisp), so the specification can now be
exercised to see if it yields the required behaviour. The results of this evaluation are fed

32

back to the Model stage in an iterative manner. Alexander & Jones (1991) provide
several examples of the application of Me too to software specification problems.

Transformation of Me too specifications into efficient implementations is not
mentioned as a feature of the method, however, should an imperative program be
required, then transformational techniques of the sort discussed later in the chapter
would seem applicable.

Me too is an attractive method in that it combines the twin benefits of formality,
allowing specifications to be reasoned about and manipulated, and executability,
allowing user-validation of the appropriateness of the specification. Its main
deficiency, which Alexander & Jones acknowledge, is the lack of support for the
expression of asynchronous parallelism. This limits Me too's applicability for the
modelling of many real-time and user-interface applications. However, ongoing
experimentation with a CSP/Me too hybrid language may offer a promising way
forward. :

Summary

Table 2.2 summarises the differences between the conventional and operational

approaches.
Conventional approach Operational Approach

» Separates WHAT from HOW . Scﬁarales PROBLEM-WORLD
from IMPLEMENTATION-WORLD

« Intertwines PROBLEM and « Intertwines WHAT and HOW

IMPLEMENTATION

» Bases structure on functional decomposition « Bases structure on elaboration of stable real

of volatile requirements world model :

» Behaviour seen late so need for strict control « Behaviour seen early so feedback early

(Waterfall) _

» Concurrency hidden in modules » Nawrally models concurrency, so modules are
sequential programs

» Implementation by design, code and test « Implementation by automatic correctness
preserving transformation

Table 2.2. Key differences between conventional and operational paradigms of software
development.

This section has reviewed four of the best documented operational methods: JSD,
PAISLey, GIST and Me too. These four methods are very different in flavour — the
operational approach is not characterised by the kinds of notations employed. Among the

33

formalisms which have been employed for expressing operational specifications are:

* regular structures, e.g. JSD, CSP (Sridhar & Hoare, 1985);
* production rules, e.g. GIST;

* recursion equations e.g. Me t0o;

* horn clauses e.g. (Davis, 1982);

« algebraic notations, e.g. OBJ (Goguen & Meseguer, 1982).

The common threads linking these seemingly diverse approaches are (1) modelling of the
real-world, (2) executability, and (3) the potential for transformational implementation.

2.3 Transformational Implementation

Operational methods are dependant on the ability to transform specifications into efficient
forms. This section looks at the area of program and design transformation. Program
transformation systems (Partsch & Steinbriiggen, 1983; Partsch, 1991) take an executable
specification which exhibits a desired behaviour, and change the mechanism for producing
that behaviour. Transformations alter the trade-off between the clarity and efficiency of a
program, while preserving its correctness. Compilation is an example of correctness-
preserving transformation process, and like compilation, many transformations are
amenable to automation.

The discussion below falls into three sections. In the first, some common
transformational rules and techniques are introduced. These can be used for program
improvement purposes or combined into complete implementation strategies. The second
section considers the transformation of functional programs. Target implementations may
be produced either in the same language as the original program, or in an imperative
language such as Fortran. The third section considers the architectural transformations
which are used in the implementation of JSD (similar techniques would be needed for the
implementation of specifications expressed in any operational process-oriented form).

Types of Transformation Rule

Following Partsch & Steinbriiggen (1983), a transformation is defined as an equivalence
relation between program schemes (parameterised templates), where a program scheme
represents a class of related programs. Given a program scheme, programs are generated
by parameter instantiation. Transformations are partial mappings from one scheme to
another such that a domain element and its image under the mapping have equivalent
behaviour. They can be represented procedurally, as an algorithm, or declaratively, as a

34

rewrite rule with the domain scheme on the left hand side of a derivation (often =) or
equivalence (often <) operator and the range scheme on the right hand side.

An important distinction can be made between local and global transformation rules.
A local transformation rule can be applied to a program p meeting a specification s and in
one step yield another program p; which also meets specification s. A global rule may
require the performance of a sequence of n manipulations to a program Qo, yielding a
sequence of states of the program Q;..Q,, such that both Q¢ and Q, satisfy Rr, but
intermediate states Q; . .Q,-1 do not. It is often convenient to express local transformations
using rewrite rules, and global transformations using procedures (or alternatively scripts of
syntactic rules).

For convenient discussion, transformational approaches can be placed relative to two
orthogonal axes:

. Transformation 'in the small (transformations made locally at the program

construct level) vs. transformation in the large (transformations made at the
architectural level);

* Horizontal transformations (notational transformations at one level of
abstraction) vs. vertical transformations (transformations involving a change in
level of abstraction —usually towards the concrete).

Figure 2.6 shows various example transformations relative to these axes:

Vertical
4

ADT Inversion
implementation (Chapters 3,6,7)

(this section) State=-vector

separation
(Chapters 3,6)

Small = » Large

Loop combination
(this section)

Algebraic Dismemberment
simplification of (Chapter 6.7)
expressions
(this section) Y

Horizontal

Figure 2.6. A map of transformational space.

Local rules typically express horizontal transformations in the small. A typical use of such
rules is to relate language constructs (Partsch & Steinbriiggen, 1983), for example

t e

35

LoOP: 1f not B then goto END endif;
S; goto LOOP;
END:

< while B do S endwhile

This rule can be used either to add or remove structure in a program. Chapter 6 briefly
mentions the use in JSD of such a rule for the purpose of circumventing the control-flow
limitations imposed by single-entry single-exit blocks (actually, to allow jumps into the
body of s). Local rules can also express algebraic properties of programming languages,
such as .

1 + if B then x else y endif
¢ i1f B then 1 + x else 1 + y endif ,

and rules about data-type properties, such as

pop(push(s,x)) & s == for unbounded stacks, s and elements, x

bAab &b -~ for booleans, b

Global rules typically express vertical transformations in the large, and are often expressed
procedurally. The transformations used in JSD implementation fall into this category and
are discussed later in the thesis.

There is also an intermediate class of transformations which Partsch & Steinbriiggen
(1983) call hybrid rules. The most common of these is the FOLD/UNFOLD pair. UNFOLD is
the replacement of a call to a procedure or function by its body, with appropriate
substitutions, and FoLD is the inverse transformation, whereby a piece of code is replaced
by an equivalent function or procedure call. These two rules are very powerful, and form
the basis of the pioneering work on the transformation of functional programs by Burstall
& Darlington (1977). unroLp is used in Chapter 6 as a component of a global
transformation strategy. '

Hybrid rules can be used to express programming knowledge about suitable
reifications of datastructures. For example, following Cheatham (1984), the rule below
provides a linked-list implementation for notation designating the the abstract operation of
addition of an element to the end of a queue (here 's' prefixes variables in each program
scheme):

insert $e into $q
< begin
$g.count := $g.count + 1;
$g.rear := CreateQueueMember (Se, $q.rear)
end ;

This example of a vertical transformation raises several general points about program
transformations. Firstly, it is clear that providing the ability to support the reification of
queues into another representation (circular buffers, say) would simply be a matter of

36

adding other rules, one for each abstract operation. Secondly, some overall control is
needed to ensure that each abstract operation is transformed to be consistent with the
reification chosen for a particular implementation. Thirdly, when it is unclear as to which
reification of a datastructure is most appropriate (for example, from the perspective of
efficiency), alternatives can be generated and tested operationally. Fourthly, different
reifications can be chosen to custom tailor (Cheatham, 1984) and thus re-use a given
specification for different environments.

Transformation of Functional Programs

Functional programs are easier to manipulate than imperative notations, having strong
algebraic properties (Henderson, 1986). Much work in the area of transformations has
therefore focused on functional languages (Darlington, 1982). Recognising that it will
often be desirable to produce final implementations in imperative languages running on
conventional hardware, much of the effort in transformational programming has been on
taking abstract inefficient functional programs (which can be regarded as executable
specifications) and transforming them into a form to facilitate easy final translation into
efficient imperative implementations (Partsch, 1991). This often involves the introduction
of imperative idioms into a program through strategies such as loop combination, the
disciplined introduction of assignment and other destructive operations, and recursion
removal. Some work, such as the Munich CIP project (Broy & Wirsing, 1991), has used
broad spectrum languages which incorporate both applicative and imperative notations
within one language. Other approaches have explicitly translated from a functional
language to an imperative one. For example, Boyle & Muralidharan (1984), discuss a
system for transforming Lisp specifications into Fortran programs.

Darlington (1982) gives six correctness-preserving transformation rules for rewriting
functional programs:

(i) Definition. Introduce a new function.

(ii) Instantiation. Introduce an instance of an existing equation with one or more
of its variables instantiated consistently.

(iii) Unfold.

(iv) Fold.

(v) Abstraction. Introduce a where clause by deriving from a previous equation
E=E"' a new equation

E = E'[u1/F1,...un/Fp]
‘Ihﬂrﬂ <u1'noo'un> - <F1,..'Fn>

E[E1/E2) means E with all occurrences of subcxprcssiori E2 replaced by E1.

37

Angle brackets (< >) form a tuple.
(iv) Laws. Use algebraic laws (associativity, commutativity, etc) on the right-hand
side of an equation to obtain a new equation.

Darlington gives several examples illustrating the application of these rules to NPL
programs. As a straightforward example of the approach, consider the loop combination
transformation. Functional programs tend to have many independent computations kept
apart for clarity. Often these will traverse the same datastructure once for each
computation. Loop combination rearranges the program so that each computation is
performed during a single traversal. Consider the following NPL recursion equations (in
which lists have two constructors: ni1 and ‘cons', denoted by the infix operator '::*):

== add all elements of a list
sum(nil) = 0

sum(n::1) = n + sum(l)

~- multiply all elements of a list

prod(nil) =1
prod(n::1l) = n * prod(l) .

A function g may be sﬁeciﬁed as

g(l) = sum(l) + prod(l) .

This involves two traversals of the list 1. To combine the loops, Darlington first defines a
new equation

k(1) = <sum(l),prod(l)>

and by abstraction and folding obtains

g(l) = u + v where <u,v> = k(1) .

From here transformation proceeds as follows:

~ k(nil) = <sum(nil),prod(nil)> -- instantiation of list to

nil

= <0,1> -- unfold (defn of sum and
prod)
k(n::l) = <sum(n::1),prod(n::1)> -~ instantiation of 1list to
n:sl

= <n+sum(l), n*prod(l)> -- unfold (defn of sum and
prod)

<n+u, n*v>
where <u,v> = <sum(l),prod(l)>
-- abstraction
= <n+u,n*v) . -
where <u,v> = k(l) =- fold (defn of k)

Collecting the derived equations together gives the following definition of g:

38

k(nil) = <0,1>
k(n::1) = <n+u,n*v)
where <u,v> = k(l)

This definition is more efficient that the ori ginal one. It is also more difficult to understand.
This example clearly shows the basic utility of the transformational approach.
Specifications are written with clarity as the goal. They are then converted into an efficient
form by correctness-preserving steps. Balzer (1981) gives another discussion of this style
of transformation and gives an example of transformational implementation of a formal
specification for the 8-Queens problem into a Lisp implementation.

A Formal Transformational Paradigm

Partsch (1991) presents a fully formal transformational approach to software development,
which although heavily based on the CIP project (Broy & Wirsing, 1991) also serves as a
general account of the current state of transformational programming methodology. The
development process espoused by Partsch can be summarised as follows:

¢ (descriptive) formal problem specification;

“ functional (non-deterministic, recursive) solution;

e deterministic, tail-recursive solution;

» further modified applicative program (with loop combinations, shared
datastructures, etc);

» efficient procedural program (perhaps with recursion removed).

States are optional and the formal process may start or end at any stage. All
transformations are performed by the application of transformation rules whose correctness
has been proved correct. The CIP approach assumes that the developer will choose
transformations which will then be applied by the software tool. Boyle & Muralidharan
(1984) discuss a transformation system for LISP-to-Fortran conversion, which while
sitting comfortably in the process model given above, automatically selects and applies
suitable transformations.

Transformation-in-the-large

Jackson (1983) describes the use of program transformations for the implementation of the
highly concurrent networks represented by a JSD specification. The transformations he
describes are very different from those of Darlington, however, in that they are essentially
transformations in the large, i.c. they work at the module level. The purposes of
transformations in JSD are the following:

39

* reduction of concurrency

* replacement of asynchronous communication with synchronous communication

* imposition of a scheduling discipline on asynchronous communicating
processes

* implementation of multiple instances of a process by allowing them to share re-
entrant programs _

« implementation of persistent storage of process state information

¢ reduction of indeterminacy.

These objectives are likely to be important in the implementation not only of JSD
specifications, but also of specifications produced by any other operational method
employing asynchronous parallelism. The present work focuses on JSD in particular, as it
has a well developed repertoire of transformations for achieving these objectives (the major
effort in the PAISLey project, on the other hand, appears to have been in facilita'ting the
direct execution of specifications rather than their transformation (Zave, '1991)).

The correctness-preservation of the standard Jackson transformations is generally
argued on a pragmatic basis (Jackson, 1983; Cameron, 1989). However, there is potential
for a fully formal approach to JSD transformation. Hoare and Shridar (1985) m-cx}mss
some of Jackson’s examples in CSP and show how the algebraic properties of the notation
can be used to reduce concurrency and Yeung et al. (1991) further develop this approach.
Goldsmith (1988) describes.an occam transformation system (OTS). Given.the
relationship between occam and CSP, and CSP and JSD, one could envisage the OTS's
use to perform Jackson-like architectural transformations in an algebraic style.

This research is concerned with the implementation of a class of JSD transformation
known as dismemberment. As of Summer 1992, no published method of automating
dismemberment has appeared (although see Section 1.3 on Related Work).
Dismemberment is an example of horizontal transformation-in-the-large. Processes are
split into smaller processes which each implement a subset of the original's behaviour.
This allows the implementor greater flexibility of scheduling and distribution of processing
than would be available otherwise. As it is possible to formalise JSD processes in terms of
regular languages (see Chapter 3), and as it is straightforward to talk about subsets of
formal languages (and corresponding partitions of automata), the approach taken has been
to exploit existing knowledge about that formal language theory to provide a (procedural)
method of implementation for the dismemberment transformation.

2.4 Concluding Remarks

This chapter has argued that the conventional approach to software development — seen
fundamentally as a combination of TDFD and the Waterfall process model — is flawed, as
it fails to take into account the evolutionary nature of the software development context of
most substantial projects. The operational paradigm, as espoused by Zave (1982) and
others, appears to offer a promising alternative. This approach proceeds by constructin gan
executable model of the user's problem domain, elaborates the model to produce the
desired functional behaviour, and implements the specification by automatic
transformation. Ratcliff (1990) summarises the advantages of the approach as follows:

« transformational implementation can be automated;

* 'maintenance’ becomes a specification level activity — modifications are made
to a problem-oriented artifact which is then reimplemented automatically;

» prototyping can be supported, as objects with executable semantics appear early
in the software process;

» specifications can be reused by transforming them into different
implementations.

Despite these strong arguments in its favour, the operational paradigm has not, as yet,
achieved the popularity hoped for by its pioneers in the early and mid 1980s. Both
researchers and practitioners have tended to favour evolutionary changes to development
methodology and when faced with operational methods, have sometimes failed to grasp
their revolutionary nature (Zave, 1991b); one recent paper, for example, criticises the
method for not supporting top-down development (Hull, ODonogue & Hagan, 1991).

Boehm (1988), while making no major methodological challenge to what he terms the
‘transform’ model, does identify the following practical difficulties:

. limited availability of automated support;

possible difficulties in a transformationally derived system accommodating
unplanned evolution;

« potential problems in keeping track of, and making good choices among, the
ever-increasing supply of reusable components and commercially available
software products which may feature in target environments.

Ratcliff (1990) shows how the PRESTIGE JSD transformational workbench (Bass et al.,
1991) addresses the first two of these reservations and partially mitigates the third. Firstly,
PRESTIGE offers general support for JSD, a method with wide application in both real-
time and information system domains. Secondly, the workbench allows alteration of all the

41

elements of a JSD specification which may be subject to evolution. Thirdly, the
architecture of the PRESTIGE system, which performs as much of the transformational
process as possible in implementation-independent terms, should reduce turbulence felt
when PRESTIGE-generated implementations are targeted at new environments. The
PRESTIGE system is discussed in more detail in Chapter 7.

42

Chapter 3

On the Relationship of JSD to
Formal Language Theory

3.1 Introduction

This chapter relates JSD to concepts from formal language and automata theory. Since the
latter two areas are intimately connected (Hopcroft & Ullman, 1969), their names will often
be used interchangeably. Language theory is a fundamental part of computer science and
either explicitly or implicitly underlies many of the activities of computer scientists and
software engineers. Figure 3.1 presents a view of relationships among various
subdomains in computer science. In particular, it is intended to imply an inheritance-like
structure in which both JSD and compiling are seen as subordinate to language theory.
This chapter will concentrate on the validity of viewing JSD in this way. The position of
compiling is well supported by any number of sources (for example, Aho et al., 1985;
Backhouse, 1979).

Language theory
—

—-— -
— -

-—_
-—-—_---
-

:

Compiling JSD Computability

Figure 3.1. Inheritance relationships among some subdomains of computer science.

Often when composing an inheritance graph, some attribution will be made to a fairly lowly
node which actually has greater generality than is implied by its position in the hierarchy.
Once this generality is noticed, the attribute can be shifted upwards to a parent node thus
allowing other child nodes to benefit from this characteristic by inheritance. The present
work involves such a reorganisation to demonstrate the applicability of algorithms
developed in the area of compiling to JSD implementation. This is illustrated in Figure 3.2.

43

-Language theort . _
automaton generation

(general)
Compiling JSD
automaton L automaton
generation generation
(for scanning) (for
implementation)

Figure 3.2. Generalising ideas from compiling so as to apply them to JSD.

According to Dwyer (1991), the link with formal language theory was always well
known to the Michael Jackson-led programming team which developed JSP. It was never
emphasised on official JSP and JSD courses because the methods were originally aimed at
a data processing audience. Hughes (1979) provides the first published account of any
aspect of the Jackson methods in these terms — she deals with the program design method
JSP. Jackson (1983) shows how rules for the transformation of regular expressions
(Minsky, 1967) can be used to manipulate entity structures and introduces the application
of follow sets, a property of formal grammars (see Backhouse, 1979, for example), for
systematic error detection. The possibility of regarding JSD specifications as networks of
communicating finite automata is recognised, though not developed, by Borgers and
Munro (1990), while Zave (1985) discusses similar networks as a medium for expressing
operational specifications.

3.2 The Modelling Phase of JSD

A JSD specification of a system is based on an abstract model of a real world problem
domain (Jackson, 1983; Cameron, 1988; Renold, 1988b). The activity of modelling
involves abstracting important features from the problem domain; information is lost, but at
the gain of a more tractable view of the problem. The modelling process therefore
functions as a method of controlling complexity. There is a semantic gap between a real
world domain and a JSD model of the domain and this gap reflects the amount of
information lost in the abstraction process. The description of JSD presented here is still
more rarified and models particular features of JSD specifications in terms of language and
automata theory. The advantage of modelling JSD at this more abstract level is that it
allows results from the abstract theories to underpin the design and imﬁlementation of new

transformation strategies. A similar method of investigation is adopted by Sridhar & Hoare
(1985) who model JSD in terms of the more abstract CSP notation, and by doing so are
able to relate JSD to CSP's formal semantics (Hoare, 1983). They go on to show how the

44

algebraic laws governing CSP operators could form the basis of an algebraic approach to
JSD transformation.

The following discussion relates concepts from JSD, language and automata theory,
set theory and for further illustration CSP. Table 3.1 summarises analogous terminology

across these domains.
JSD Language Automata CSP Set theory
theory theory
action letter/symbol symbol event element
action list alphabet alphabet alphabet set
life history string string trace sequence .
structure diagram regular expression state transition process description set of sequence
graph
process language automaton process -

Table 3.1. Analogous terminology across a variety of domains
The Vocabulary of a JSD Specification

Any object in an operational specification must have an unambiguous meaning in real-
world terms if the specification is to be held to reflect accurately the problem domain. A
great advantage of JSD's approach to modelling is that the bridge between the rich
informality of the real world and the formality of an executable JSD specification is very
narrow, and is localised to a dictionary of event descriptions (Jackson, 1988). This is the
only place where specification elements are described in an informal way. The meaning of
all other terminology used in a particular Speéiﬁcation can be infered, either directly or
indirectly, from these event descriptions. The starting point in the construction of a JSD
domain model is therefore the identification and description of important events which
occur in the real world of interest (Jackson, 1983; Cameron, 1986).

A JSD action is an abstraction of some real world event which can be regarded as
atomic for the purposes of system developmentf. Each action is described informally, in
the jargon of the user, and the set of actions then comprises a vocabulary of terms to be
used in describing the system. An example of a list of action definitions from a simple
banking example is given below.

open An account is opened
credit Money is deposited in an account

debit Money is withdrawn from an account

t Broy (1991) makes the useful distinction between events — properties of the real world — and actions —
properties of a model. This distinction is adopted in the thesis.

45

close An account is closed

The developer may also associate a tentative list of antributes with each action (for example,
open may be assigned attributes account-number, customer, date) which may be
elaborated in the light of functional requirements; action attributes are discussed later. The
action list defines a vocabulary of the terms in which the system and its functions will be
discussed. This list of actions therefore starts to define the scope of the system, which can
only produce output based on the detection of the corresponding real-world events
(Cameron, 1986; Renold, 1988b).

The modelling of individual events provides the basis for the development of a
specification. The JSD developer then goes on to model domain behaviour as sequences of
events. Language theory (Hopcroft & Ullman, 1969; Rayward-Smith, 1983) provides
convenient ways to discuss this modelling technique.

Necessary Fundamentals of Language Theory

An alphabet, a, is a finite set of symbols (or letters). Given an alphabet, it is possible to
generate sequences of letters called strings. A string of length k is a member of A* =a X
AX ...X A, which is the cartesian product of A with itself x times. The set of non-empty
strings over A is defined as

At= (A

ne=1

and is called the transitive closure of a (Backhouse, 1979). Let € be the empty string.
Then the set containing just € is A% We can now define the set of all strings of alphabet A
as

A= A

n=20 .

A* is referred to as the reflexive transitive closure of a. Itis also called the Kleene closure.

Strings are usually denoted by the juxtaposition of their clements (e.g.,
aabbbcdaaaaa is a string over the alphabet {a,b, c,d}). As most of the symbols referred
to in the thesis will themselves be made up of sequences of letters and numbers, it will be
useful to denote alphabets and strings using explicit separators and delimiters. It is
convenient to use CSP syntax (Hoare, 1983; Sridhar & Hoare, 1985). The alphabet of a
language LANG is denoted aLANG. Strings are delimited by angle brackets, with individual
elements separated by commas. <> denotes the empty string €. Here are some examples of
alphabets together with some example strings:

46

OQMONEY = {£,1,01}
<£,1,0,0,0,0,> € OMONEY*

OENGLISH = { 1 | 1 € a..z)
<¢c,0o,n,c,a,t,e,n,a,t,i,0,n> .€ OENGLISH*

OACCOUNT = {open, close, credit, debit)
<open, debit, debit, credit, debit, close> € OACCOUNT* .,

Various operations can be performed on stﬁngs. Concatenation is denoted by the ~
operator; for example

<open, debit>“<credit> = <open, debit, credit> .

sfa is the string s restricted to the elements in set a; for example

<open, debit, debit, credit, debit, credit, close> {open, close,
credit}
= <open, credit, credit, close> -

The first item in a non-empty string is denoted by s, while the rest of the string is denoted
by s'; for example

<open, credit, close>g = open 2 ;
<open, credit, close>' = <credit, close> .

s < t means that s is a prefix (initial shbscqucnces) of t; for example

<open, credit> < <open, credit, close> .

The empty string is the prefix of all strings.

Syntactic Structure

The Kleene closure T* represents all possible sequences of letters in an alphabet T. We are
usually more interested in particular subsets of T* which exhibit some structure. Such
subsets are called formal languages (Rayward-Smith, 1983; Backhouse, 1979). This
section shows two equivalent approaches to language definition and relates them to JSD
structure diagrams.

Formal Languages

A formal language over an alphabet T is a subset of T*. The usual way to define a formal
language is by providing a grammar for that language. A grammar is defined by a 4-tuple G
= (N,T,P,S) where

» Nis a finite set of non-terminal symbols.

47

e 7is afinite set of terminal symbols.

* se nisadistinguished symbol called the start symbol. :

* pisasetof productions each of which has the form lhs — rhs where lhs € (N
uT)*tandrhs € (NU 1), lhs is called the left-hand side and rhs the right-
hand side of the production (Backhouse, 1979.).

Chomsky (1957) arranges grammars into a hierarchy, numbered from 0 to 3, according to
constraints on the form of productions. Type 0 is the least restricted form, while Type 3,
the regular grammar, is the most restricted. Consideration of grammars is here focused on
those of type 3 (type 2 grammars, the so-called context-free grammars are briefly discussed
at the end of the chapter). A regular grammar is a grammar G = (N, T,P,S) in which,
either

. all productions have the forma — tBora — t where tis a terminal (i.e. t €
~7%) and a and B are non-terminal symbols (i.e.A,B € N). This form is called a

right-linear grammar, or

o all productions share the form A — Bt ora— t wheret€ T and AB € N.
This form is called a left-linear grammar (Backhouse, 1979.).

Grammars in which left-linear productions are intermixed with right-linear productions are
not regular. For example, the grammar having the productions

R

X n
Ll
0 M

)

is not regular. This grammar represents strings of balanced parentheses {" (*® ")"" n2
0}, and is discussed further at the end of the chapter.

Consider the following right-linear grammar G = ({ACCOUNT, TRANSACT},
{open,credit, debit,close},P,ACCOUNT), where P consists of

~ ACCOUNT — open TRANSACT
TRANSACT —» credit TRANSACT
TRANSACT — debit TRANSACT
TRANSACT — close

The language described by this grammar (a subset of {open, credit,debit,close}*)
includes the following strings:

kopen, close>
<open, debit, credit, close>
<open, credit, credit, debit, credit, close>

48

It can be shown how accounTt generates these and other strings by considering the
productions as a set of rewrite rules. Following Backhouse, the = (derivation) operator is
used to denote an instantiation of a production. For example,
ACCOUNT => open TRANSACT
=> open credit TRANSACT

= open credit debit TRANSACT
etc.

A chain of derivations x; = x; = x3 = ...x, is called a derivation sequence (Backhouse,
1979.). In this case, the progressively unfolding derivation sequence can be considered to
model a possible behaviour of a bank account (abeit at a rarified level of abstraction).

Regular Expressions ‘

Regular expressions are an elegant notation for regular languages (Rayward-Smith, 1983).
The regular expressions over an alphabet a are defined recursively as follows:

1. gdenotes the empty set
2. € denotes (¢)
3. awhereae Aisaregular expression denoting {a}
4. If ry and r, are regular expressions, representing languages L; and L,
respectively then
a) {:i | r3) (representing L; U L)
b) (xr;* ry (representing LjeL;)
€ (rp *) (representing L, *)
are all regular expressions.

5. Nothing else is a regular expression.

The following regular expression describes the same language as the regular grammar for
ACCOUNT above:

open * ((credit | debit)*) e« close

Brackets are often omitted according to operator precedence in the order *, «, |. Itisalso
common to omit « and denote it by juxtaposition. This allows the example above to be
abbreviated as follows:

cpen (credit | debit)* close

Regular expressions are generally considered to be easier to interpret than equivalent
grammars and therefore tend to be favoured for the description of regular languages

49

(Backhouse, 1979.). Common uses of regular expressions in computing include the
definition of lexical items in programming languages, and as parameters to string pattern
matchers such as the UNIX grep ("get regular cxprcssion“) command (Aho et al., 1985).

Entities and Event Orderings

Having defined the vocabulary of a system, the JSD déveloper then goes on to identify and
model structure in the traces of events in the real world. Such a model increases
understanding of the dynamics of the real world and provides the basis for the behaviour of
the system under development (Renold, 1988b). :

The action abstraction in JSD models real world events as atomic (Jackson, 1983).
For the purposes of the following discussion, it is assumed that at any discrete time t only
one action can occur, so that the behaviour of the real world can be regarded as a single
stream of events (the issue of simultaneous unconnected events in the real world is resolved
by regarding their relative ordering as unimportant). This single event stream view of the
real world is not very informative, so JSD leads the developer to find and represent
regularities in the stream (Jackson, 1988). One way is to note pairwise ordering
constraints on events (for example, in modelling a bank account, we notice that open
always appears before close). In a problem for which JSD is applicable, this process
leads to the discovery of independent traces of events interleaved in the event stream.
Examination of these traces will often reveal entities in the world which suffer or perform
~ the actions which make up the traces. These entities exhibit their behaviours concurrently
and asynchronously (there may actually be some synchronisation, discussed shortly). The
various ordering constraints on these traces can be represented using regular expressions or
regular grammars (Jackson, 1988). In practice, an equivalent diagrammatic notation for
regular sets, called the structure diagram, is employed. Figure 3.3, after Hughes (1979),
shows the correspondence between regular expressions and structure diagrams.

50

(¢4 (04

(c.By) P B y
(«IBIY) x O B [[v°
(o* | [a®

Figure 3.3. Equivalence of regular expressions with Jackson trees, after Hughes (1979).

Fig'ui'es 3.4 & 3.5 show examples of structure diagrams, together with équivalént regular

expressions.
ACCOUNT
open TRANSACT closa-
L]
CRDR
o o
credit debit

Figure 3.4. Bank ACCOUNT: open (credit | debit)* close.

51

acquire classify

L o ©
Loan Part sell dispose
Renew
lend Set return

ranew

Figure 3.5. Library book: (Cameron, 1986).

acquire classify (lend renew * return) * (sell | dispose)) .

The ability to discover members of regular sets of event traces (regular languages) in the
real world is one way to discover the applicability of JSD to a particular problem.

The definition of the trace semantics of the CSP operator Il (parallel composition),
elegantly expresses the relationship between the single real world event stream and the
traces of individual entity behaviours. Jackson (1983) and Cameron (1986) acknowledge
the influence of CSP on JSD; Sridhar & Hoare (1985) and Yeung et al. (1991) further
examine the relationship. In CSP, the set of all possible behaviours which a process p can
perform is denoted traces (p). (This is equivalent to the language denoted by a regular
expression with the same structure as). p Il @ is the parallel combination of two
processes P and Q. Assuming for the purposes of illustration that the only events
observable in the real world are those participated in by the entities modelled by p and q,
then the real world event stream is a member of the set traces (p Il Q). The relationship
between traces (P Il Q) and the individual traces of the participating processes is expressed
by the definition of the parallel composition operator (Hoare, 1983):

a(Pl Q) =aP U aQ

traces(Pl Q) = :
(s | s € (P vaQ)* A slaP € traces(P) A slaQ € traces(Q)}

Events common to the alphabets of p and @ must be participated in by both processes
simultaneously. Each process is free to perform the other events in its alphabet
independently. One way to see the initial stages of JSD modelling is as a process of
identifying alphabets and trace structures such that the definition of Il holds.

Having identified trace structures, the next step is to relate them to entities which can
be considered to perform or suffer behaviour according to the ordering constraints

52

imposed. It is not always straightforward to relate trace structures to particular entities, and
it is necessary to consider the following cases:

» interleaved traces specified by the same structure;
» different structures seemingly related to the same entity;
. events seeming to take part in more than one trace (of different entities)

These three cases are discussed in more detail below.

Interleaved Traces from the Same Regular Set

Interleaved traces specified by the same structure indicate multiple instances of the same
entity class. This is known as a multithreaded structure clash in JSP (Jackson, 1975), and
more generally as a multiplexing/demultiplexing problem. Consider the following example:

s, t € traces(ACCOUNT)
s = <openg, debitg, closegs>
t = <opent, credity, credit:, credit:, debit:, close;>

realworld = <opens, debitg, open., closeg, credity, credite,
credite, debity, close.>

The distinction between those actions participating in trace s and those in trace t is made by
reference to attributes associated with each action which uniquely identify the entity of
whose life-history they are part. '

Different Structures Related to a Sngle Ehtity

Sometimes it will seem natural to associate two or more structures with the same entity
(Cameron, 1986). Efforts to unify the structures will be prevented by the observation of
arbitrary interleaving of instances of the trace sets. Such structures are said to represent
distinct roles of the entity. Consider the simple example of an EmpLOYEE who clocks on
and off work, and performs jobs which are long enough that they cannot always be
finished in a single day.

OEMPLOYEE = {clock_on, clock_off, start_job, end_ job} .

The following activity may be observed in the real world:

realworld = :
<clock_on,start_job,end_job,start_job,clock_off,clock_on,
clock_off,clock_on,end_job,clock off>.

53

While the members of {clock_on,clock_off} are constrained relative to each other, as
are members of {start_job,end_jobl}, it is impossible to impose a relative ordering
across these subsets of aEMPLOYEE. The behaviour of EMPLOYEE can be appropriately
represented as two roles, EMPLOYEE_DAYS and EMPLOYEE_JoBs which have the structures

(clock_on clock_ off)* &
(start_job end_job)*,

respectively.

Events Shared by Traces of More Than One Entity

It is sometimes appropriate to resolve the stream of events into traces by regarding some
actions as participating simultaneously in more than one trace. Such actions, called
common actions, represent points of synchronisation in the life-histories of entities. For
example, in a missile defence system, we may regard the impact of a defending missile
with an incoming target as a single event, and represent that event as an action appearing in
the life histories of both entities. The choice of using common actions is up to the
developer (Jackson, 1983) and in the end comes down to a matter of style.

Remarks Concerning Entity Modelling

It has been suggested here, following Jackson (1988), that entities are discovered through
an attempt to explain observed regularities in the occurrence of events. This is only one
perspective on JSD modelling and discovering entities is not always as neat as it may
appear from the discussion above. In practice, there will almost certainly be a need to
impose some regularity as part of the abstraction process. The approach presented here has
been chosen because it compliments a language theoretic view of JSD, but Jackson (1983)
suggests other, less formal, ways of discovering actions and entities (for example, by
examining a textual description of the real world for verbs and nouns). It is likely that a
combined approach to entity identification and modelling will be the most effective for non-
trivial problems.

Machines

A key feature of a JSD structure diagram is that it can be given an operational interpretation.
The most straightforward way to do this is to convert the structure diagram into a program
according to the following rules (based on Jackson, 1983):

54

» sequences become compound statements;

» selections become conditional statements;

* iterations become iterative statements;

* leaf nodes become skip statements which act as place markers for possible
executable operations;

» single read-ahead of actions (explained below) is applied.

Read statements are placed in the text of the program so as to accept messages representing
each of the actions which mark the leaf nodes. This standard read-ahead technique
(Jackson, 1975) is achieved by inserting a read at the beginning of the program and then
immediately after each skip statement (except the last). The boolean expressions required
by conditional and iterative statements are then merely predicates on the value of the most
recently read action. The bank AcCounT structure is realised as the following program:

ACCOUNT seq
read (input);
skip; == open
read(input);
transact itr while input # close
crdr sel input = credit '
skip; =-- credit
read(input);
crdr alt input = debit
skip: =-- debit
read (input);
crdr end;
transact end;
skip; =-=-close
== a read here would be redundant
ACCOUNT end.

Each program produced by the read-ahead technique can be regarded as an abstract ‘long-
running' sequential process. The term 'long-running' is used to demonstrate that a
program executes once in correspondence with the entire life of an entity. An executing
JSD specification can be regarded as a set of such processes running concurrently and
asynchronously (except where they share common actions). The animated specification
takes as input a stream of messages denoting the real-world event trace and simulates the
behaviour of the modelled entities in response to these events.

As the specification is elaborated, the skip statements can be replaced with system-
state update and output statements of various sorts. The constraints provided by the
structure diagrams ensure that updates to the state of the system can occur only in a fashion
consistent with changes in the real world. Providing that an inevitable time delay along
the links between the world and the system is accepted, the model will reflect the state of
the real world at any moment in time and will thus provide the basis for the functionality of

55

the system. Note that this implementation scheme assumes error free input. More is said
about this issue in Chapter 6.

Finite Automata

The read-ahead technique preserves the structure of a process specification in the
behaviour-producing mechanism. It is not necessary to insist on this however, and a
particularly interesting alternative is to transform structure diagrams into finite automata
(FAs). These can then support the generation of alternative program structures which are
behaviourally equivalent to those resulting from a read-ahead approach. In some cases, to
be discussed at length in the rest of the thesis, these alternative structures can offer
considerable advantages.

Automata theory (Minsky, 1967; Hopcroft & Ullman, 1969, for example) is
concerned with the study of abstract computing devices. It is closely related to language
theory (Hopcroft & Ullman in particular stress this link) and provides a useful way to
characterise the semantics of JSD models, because it fits in with the view of the operational
approach discussed in the last chapter in that it provides a way of discussing the internal
structure of specification elements without biasing the way such a specification could be
implemented.

A deterministic finite state automaton (DFA) is a mathematical model defined by the
S-tuple (s, aM, 8, F, q;) where: :

* s isa finite non-empty set of szates

e omis an alphabet of inputs

» Oisthe transition functiontomap s X oM — S
» risafinite set of accepting (or final) states

. qi is a distinguished element of s (the start state).

The following automaton models a bank AccounT:

S = {1: 2: 31!

OaACCOUNT = {open, debit, credit, closel},

& = {(1, open, 2), (2, debit, 2), (2, credit, 2), (2, close, 3)},
F = 3,

q =1.

Figure 3.6 shows a representation of this machine in the form of a transition graph where
nodes represent states, and labelled arcs represent transitions on particular inputs.
Accepting states are represented by nodes with doubled boundaries. o

56

credit

o - ° CIose @

debit

Figure 3.6. A transition diagram for ACCOUNT.

Any string of inputs which takes a machine M from its start state to one of its
accepting states can be said to have been recognised or accepted by M. The set of strings
accepted by M is called the language accepted by M, and may be denoted L(M). L(M) is
defined as the set {x € M* | accepts(M,x)}. This notion of acceptance can be
expressed more formally as follows. The transition function &: s X atM —s can be extended
to include its transitive closure (Rayward-Smith, 1991) to 8: s x amM* — s by the following
definition:

o(s, €) = 8
S(s, ax) = 8(5(s,a), x) [where a € ‘OM A x € OM*].

L(M) is then defined:

L(M) = {x | 8(q1, x) € F} .

¥

Given a DFA we can simulate its behaviour according to the following algorithm
(Rayward-Smith, 1991):

state := qi;
while not end of input do
read(input);
state := d(state, input);
endwhile;
1f state € F
then write(l)
else write(0):

This provides an implementation of a function fACCOUNT: ®ACCOUNT* — {1,0}. The
program will return 1 if it accepts the input (i.e., the input is 2 member of L (ACCOUNT)),

and a 0 otherwise. A language is regular if and only if it is accepted by a DFA (Minskjr.
1967).

57

Nondeterministic Finite Automata

Non-deterministic automata (NFAs) differ from DFAs in two ways:

- the transition function delivers a set of states; _
» some transitions, called e-transitions, can be made without consuming input.

Figure 3.7 shows a possible NFA for the regular expression (a b | a c)*. Note that this
example has been constructed purely to illustrate the distinguishing features of NFAs.

Figure 3.8. A possible NFA for the regular expression (a b | a c)*

Implementation of NFAs is more involved than for DFAs; backtracking is required to deal
with the presence of alternative transitions for some pairs of states and inputs; in the
presence of an alternative, an arbitrary choice must be made. Should a choice lead to a
nonaccepting path, it will be necessary to backtrack to the choice point and try another
alternative.

The Meaning of State in a Finite Automaton

The history of a finite automaton M is a trace of all the events which it has accepted up to the
present. Clearly, as M's behaviour is only determined by its inputs, M's history must be the
sole determiner of M's current internal configuration. As long as there is scope for iteration,
the set of all possible traces am* is infinite; however, M itself is finite — it cannot have a
unique internal configuration to represent the result of accepting each of its possible
histories. It can be said that M cannot distinguish each of its possible behaviours. In fact,
"[a] machine can distinguish, by its present and future behaviour, between only

some finite number of classes of possible histories. These classes..[are]..the
‘internal states' of the machine” (Minsky, 1967).

58

So, a state of M is a label given to an equivalence class of histories of M. - The members of
such a set of histories are equivalent in the sense that subsequent behaviour of M will be the
same following any of the equivalent histories.

By modelling life histories, the JSD developer is abstracting out differences in the
behaviour of real world entities in order to construct a tractable model of reality. The nature
of the loss of information implied by the finite automaton abstraction was noted by
McCulloch & Pitts (1943) in their landmark paper on neural networks:

e+ the use of disjunction means that a previous state cannot be completely
determined from the present state;

» the use of iteration means that it is impossible to determine the time in the past
when the first event in the history occurred.

When the information lost is important, because it is required to support system functions,
it can be stored explicitly either in a local database called (confusingly, given the present
topic) the process's state vector, or in a buffer called a datastream.

Automata can be used to simulate the abstract behaviour of the entities being modelled
— each real world entity is shadowed by one or more corresponding processes (executing
automata) concerned with the recognition of a trace of events as a valid life-history of the
entity in one of its roles. This provides an alternative, less implementation-oriented
interpretation of the semantics of a JSD model than the standard read-ahead based technique
described earlier.

3.3 The Network Phase of JSD

The second phase of JSD development is concerned with the elaboration of a model into a
network of communicating processes. Some of these processes, the model processes,
shadow real world entities and keep track of their behaviour, while others, function
processes, validate the inputs to the system, produce its outputs, and perhaps also generate
simulated events which are fed back into the model (Jackson, 1983; Cameron, 1986;
Renold, 1988b).

Communication
There are two primitive interprocess communication (IPC) mechanisms in JSD,

introduced in the previous chapter. Only one of them, the datastream connection, is
‘relevant to the event model. The other, state vector inspection is an observer operation

59

which takes place without directly influencing the behaviour of either the inspecting or
inspected process, and as such it can be considered as independent of the event model.
Consideration of controlled and conversational datastreams (Renold, 1988b) is outside
the scope of this work. - g

Datastreams are idealised first-in first-out buffers used to pipe data from one process
to another. They can be regarded as potentially infinite streams of messages, and provide
the input and output environment of the model processes represented by the executing
automata produced in the modelling phase. A model process will patiently work its way
through its input stream, and from time to time may produce outputs for consumption by
other processes.

The characterisation of JSD processes as executing finite automata formalises the
notion of a process's state as an abstraction of its execution history. It has been seen that
modelling entity behaviour in this fashion causes information about execution history to be
lost. Where necessary, JSD allows another form of persistent information, a record of
antributes of the entity, to store the lost information, and to store values calculated from the
attributes of actions (Jackson, 1983). The state vector of a process is an aggregation of the
automata-theoretic general state and the entity attribute record.

State vector inspection (SVI) is an operation whereby one process can examine the
state vector, in whole or part, of another process. The semantics of SVI require that the
states obtained are coherent, and this in turn demands that they be unavailable while the
inspected machine is involved in making a transition between general states. As long as
state transitions are regarded as occuring atomically and instantaneously, SVIs can be
regarded as orthogonal to the event model. At the implementation stage, this orthogonality
will no longer be tenable, and steps will need to be taken to ensure that inspected processes
are uninspectable between general states, or else that they explicitly maintain a copy of their
last coherent state vectors for inspection purposes (Cameron, 1986).

Adding Functions to the Model

Having produced an animated model of reality, further processes are connected to the
specification to meet the functional requirements of the system. Function processes are
- designed using JSP (Jackson, 1975; King & Pardoe, 1985; Storer, 1987). Function
processes transform the contents of their input streams into one or more output streams.
Hughes (1979) shows the relationship between JSP-designed programs and a class of
finite automata called generalised sequential machines (GSMs). Aspects of her account are
now related to the present characterisation of the JSD event model.

The structure of a function process is arrived at by recognising correspondences
‘between the structures of the input and output streams and producing a composite structure.

60

A correspondence defines a translation of nodes on an input structure to nodes on an
output structure. For any two nodes to correspond, their descendants must correspond
also. An input expression 1 and an output expression o correspond if the equality 0 =
output (I) can be derived using the following rules, where R and @ are regular
expressions (Hughes, 1979):

(1) R € aI = output(R) € a0 u{e}

(11) output (RQ) = output (R)output (Q)

(1ii) output (R | Q) = output(R) | output(Q)
(iv) output (R*) = (output(R))*

(v) RE = €R = R

(vi) RIQ=Q1IR

(vii) R | R=R
(viii) (R*)* = R¥*
(ix) E* = g

For example consider the two regular expressions a (bic) « d and x*y. If they correspond
then output (a(blc)*d) = x+y. That this is the case is shown below:

output (a(bjc)* d)

= output (a)output ((b|c)*)output (d) (11)

= output(a)(output(b}loutput{c))*output(d) (iii, iv)
= E(x|x)*y (1)

- x*y ; []

Having produced a composite structure, a program can be produced by applying 2 modified
read-ahead technique with new rules regarding the placement of input and output
statements:

. input statements are arranged to read ahead of leaf nodes of the composite
structure derived from the input structure;

* output statements are placed on leaf nodes of the composite structure derived
from the output structure.

Figure 3.9 shows a structure diagram for the translation of a (b|c) * d into x+y, together
with the trivial network representation of this problem.

61

ltb‘C’ *d x'y

O—L = [—O

PROG
c-d
C-a body P-y
*
b or'e
[o
C-b C-c
P=x P=-x

Figure 3.9. A structure diagram representing the translation of a(blc)+ d into x+y, together with
relevant network diagram.

Folloﬁng Jackson (1975) the consumption or production of records at leaf nodes is
denoted by labels of the form c-"record_name" or p-"record_name" respectively.

Generalised Sequential Machines and JSP

It is now possible to generalise finite automata to allow output. Hughes (1978) employs
Ginsburg's (1965) model of a finite automaton with output: the Generalised Sequential
Machine (GSM). A GSM is defined by the 6-tuple (s, a1, oo, 8, A, qi).

. s is a finite non-empty set of states

ez is an alphabet of inputs

. * «aoisanalphabet of outputs
s disthe transition functiontomap €I X s — S
» Aisthe output function tomap a1 X s — oo*
. q; s the start state of s

GSM:s are capable of translating strings from an input language, a subset of a1*, into an
output language, a subset of cco*. Figure 3.10 shows an example of a GSM, together with
a transition graph representation, to translate a (b|c) *d into x*y: ' '

62

b/ [x]

c/lx]

S ={1,2,3}

ol = la;b;c;d}

0= (x,y}

& = {(1,a,2) (2,b,2) (2,c,2) (2,d,3)}

A= {(1,a,[€)) (2,b,[x])(2,c,[x])(2,d,[y])]}
q=1 _

Figure 3.10. A GSM to translate a (bic) *d into x*y

Hughes uses Ginsberg's characterization of GSMs to show that Jackson's basic JSP
method is applicable only to GSM computable functions. However, her account of the
basic method does not cover all types of function process. She extends her account to
cover situations where the correspondence between input and outputs is ambiguous or
absent (the so called structure clashes (Jackson, 1975)), but leaves those cases where the
values of entity or action attributes are used to influence control flow. These situations are
discussed in Chapter 5.

3.4 The Implementation Phase of JSD

In principle, JSD specifications are directly executable (Cameron, 1986). This proposition
is supported in part by the work of Lewis (1991), Kato & Morisawa (1987) and Warhurst
& Flynn (1990) who have built interpreters for parts of the notation, and workers who
have shown the correspondence between JSD and CSP (Sridhar & Hoare, 1985; Yeung et
al., 1991) for which there exist published formal semantics (Hoare, 1983). Direct
execution of JSD specifications is potentially highly inefficient, as such specifications are
usually populated by large numbers of sparsely active processes, and system state
information tends to be highly distributed. The implementation phase of JSD is concerned
with transforming the specification into an efficient form. There is a well-understood
repertoire of transformations which are automatable, some of which have been realised in
the PRESTIGE workbench (Bass et al., 1991). Later in the thesis, the automata theoretic
characterisation is used to develop algorithms for the automation of the dismemberment

63

family of transformations, and to support a new transformation technique called transaction
composition. The rest of this section briefly describes the standard, well-understood JSD
implementation issues.

Inversion

If a JSD specification were to be executed directly, with one processor (real or virtual)
per process (executing machine), one would observe dynamic sparsity (Hull & McKeag,
1984) in the activity of individual processes. Each process would spend most of its time
suspended while waiting for input, and processor utilization would be extremely low.
The standard transformation in JSD for reducing dynamic sparsity in system execution is
inversion. Inversion (Jackson, 1983) in its simplest form, transforms two concurrent
processes communicating in an asynchronous producer-consumer relationship into a pair
of coroutines. Inversion results in implementation routines which express interleaved
executions of long-running processes. These 'multiprogrammed’ routines are capable of
keeping a processor busy even though most of the specification processes from which
they are derived are conceptually blocked.

Yeung et al. (1991) provide a neat formalisation of inversion in terms of CSP. The
description below is essentially as given by Yeung, but for consistency with the rest of this
chapter, using the regular expression metalanguage to specify process behaviour rather than
CSP-style recursion equations.

Consider the network shown in Figure 3.11.

o to{ 1o

Figure 3.11. A simple network for the purpose of discussing inversion.

Assuming that

P = (a?x blx)*
Q = (b?x clx)*

where
a, b, and c are datastreams,
ca = ab = ac ={1,0},
the action stream?var denotes input from stream into var,
the action stream!var denotes output from var to stream,
actions stream?var & stream!var are synchronised,

then direct execution of this system is described by the parallel composition of the two
processes, that is pllg. Rather than implement p and @ as separate concurrent processes,

64

they can be combined into a single sequential thread by arranging for their executions to be
interleaved. In this scenario, p runs until it produces a b record, suspends itself and
resumes Q to consume the record. Q runs until it next needs a b, suspends itself, resumes p
and so on. This pattern of execution can be modelled by adding a common action which
synchronises transfer of control from p to Q and back:

P' = (a?x b!x ®)*
Q' = (b?x c'!'x ®)*

® must be executed simultaneously by both p and ¢ , so enforcing coroutine-like behaviour
in the system described by p'llo*. Now if ® together with the i/o actions on channel b are
considered as hidden actions, then the new multiprogrammed unit appears to its
environment as

(p'llQ*")\{b.0,b.1.,®)
= (a?x c!'x)*

and can be scheduled as a single process. Figure 3.12 illustrates the JSD notation for the
hierarchy of inverted routines obtained in this way.

1)

Figure 3.13. Combining processes using inversion.
State Vector Separation

JSD modelling often identifies a family of entities (customer orders, aircraft, bank
accounts) which correspondingly becomes a set of multiple instances of a process in a
specification. At any one time, most, if not all, of these instances will be blocked
awaiting communication, and it is therefore highly inefficient to allocate them each to an
individual processor. In fact, it is usually necessary to implement the processes as a
single re-entrant inverted routine and a separated collection of state-vectors (one for each
instance) as a 'database’. The receipt of a message by a process instance then
necessitates the retrieval of the appropriate state vector so that the re-entrant routine can be
entered in with the correct context. The transformation which accomplishes this

65

rearrangement is called state-vector separation and is illustrated together with inversion in
Figure 3.12.

P writes Msgs to
many Q

oL o -0

(a)

" P calls Q with a Msg and
appropriate state vector =

Separated
p state
vectors of

b“ gy ®
2 12O,

(b)
Figure 3.12. A simple example of inversion and state-vector separation (after Bass et al., 1992),
showing a simple network (a) before and (b) after transformation. \

The requirements of state vector separation place minimal constraints on the implementation
of data management in the final system. In some cases (for example, small embedded
systems) a state vector database may merely consist of an array of records stored in core
memory. In large information systems, such databases may be distributed between central
data centres and local processors and may be maintained and updated according to
sophisticated network management policies. Further discussion of state vector separation
is not pertinent to the rest of the thesis. For a more complete discussion, the interested
reader is referred to the standard references (for example, Jackson, 1983; Cameron, 1988).

Dismemberment

The long-running processes obtained at the specification stage often encapsulate
functionally unrelated code. In some implementation environments (e.g. transaction
processing and concurrent environments) it is valuable, or even necessary, to split up a
specified process into a set of modules to be loaded and executed separately.
Dismemberment can be used

* toreduce transaction module size when copies of inverted subroutines are used

in separate tasks;
. to optimise resource utilization;

66

« toallow priority scheduling of time-critical portions of a process.

Dismemberment is described in detail in the rest of the thesis, with respect to both its use as
an implementation strategy and its automation. A new transformation strategy based on the
composition of dismembered components is also developed.

3.5 Discussion

This section addresses two questions raised by our account of the JSD method:

» Given the equivalence of structure diagrams with finite automata, are their
situations where one notation is preferable to the other?
e Why restrict the description to be in terms of regular languages?

The Relative Merits of Regular Expressions and DFAs for
Specification

A major difference between the regular expression or structure diagram and the finite state
machine as representations of behaviour is the kind of thinking they encourage. Regular
expressions encourage a static conception of system behaviour, in terms of the possible
form of action traces, while finite automata encourage a dynamic view, in terms of
transitions between states (Renold, 1988b). Zave & Jackson (1989) discuss the relative
appropriateness of the two alternative representations. As has been seen, the states in a
finite automaton are abstract and are only implied by its observable behaviour — they
cannot generally be associated with anything tangible in the real world. Furthermore, all
of the states in a state-transition diagram have equal visual impact, as do the various paths
between them. A state-oriented specification can therefore contain many elements which
convey little tangible meaning, especially to a non-specialist reader. Actions on the other
hand are clearly associated with real world events and are therefore easy to identify and
model. When subsequences of actions reflect particular sub-behaviours in the real world
(see for example Loan Part in the library Book example in Figure 3.5) a structure diagram
can represent the close association among the actions in the subsequence in a way that a
transition diagram cannot. Structure diagrams are therefore to be favoured when a
specification is dominated by consideration of action sequences.

On the other hand, there are processes whose behaviour is dominated by a
consideration not of action sequences, but of system status. Consider the automaton in
Figure 3.14, which is adapted from an example given by Zave and Jackson. The

‘automaton specifies part of a call-forwarding system for a telephone. According to this

67 ASTON UNIVERSITY
LIBRARY AND
INFORMATION SERVICES

specification, the call-forwarding facility can be toggled on or off by pressing the 3 key
while the receiver is off the hook. An equivalent regular expression for this specification is
(o££_hook 3* on_hook) * which, while clearly specifying the same regular language,
conveys no impression of the status of the call forwarding facility. Zave & Jackson's best
attempt at producing a structure diagram specification which indicates status employs three
trees with a total of 25 nodes (and is judged too large and complicated to include in their

paper).

inside
CF=-on

Figure 3.14. State-oriented specification of a part of a telephone call forwarding
system, after Zave & Jackson (1989).

Broy (1991) sees actions and states as two sides of the same coin and recommends taking
an action-oriented or state-oriented viewpoint as appropriate to the problem. Zave &
Jackson (1989) illustrate a method of combining such views in single specifications.

More Powerful Grammars

Consider the grammar introduced earlier with the production rules

S= (R
S - &€
R—=S§8) .

This grammar is a context-free (or type 2) grammar representing arbitrarily deep nests of
balanced parentheses. The level of recursion keeps an implicit count of the number of
unclosed parentheses and 'returning' from each application of r ensures the generation of
the appropriate number of closing parentheses. As the definition of the grammar allows an
arbitrary number of applications of R , in arbitrary nested combinations, it is impossible to
construct a finite state graph for s. It is however possible to construct a recursive transition
graph such as the one in Figure 3.15.-

68

(@ (®)

Figure 3.15. A recursive transition network.

The subgraph marked (a) represents a top level recogniser for the language s. It will accept
either an € or an opening parenthesis followed by an instance of rR. To accept an R, the
subgraph marked (b) must be entered somewhat in the manner of a subroutine. As R is
entered immediately after each opening parenthesis, and accepts (as its last action) only a
single closing parenthesis, balancing is guaranteed. Minsky (1967) describes a class of
automata called the pushdown automata, which recognise context-free grammars in a
similar way.

A structure diagram for s is shown in Figure 3.16. Recursion is represented by
naming a leaf node with the name of a non-terminal node from elsewhere in the tree
(Cameron, 1988).

S-PROG

*
S
0
nest —

e
e

S)

-

Figure 3.16. A structure diagram with recursion for accepting a context-free language.

69

The code which would result from applying the read ahead rule to this tree is as follows: -

S-PROG itr while not end of stream
. -read(input);
S sel input = " ("

read (input); -- accept " ("
R seq
S;
read (input) ; -- accept ")"
R end;
S alt
skip; == accept "-"
S end;

S=PROG end.

Dwyer (1991), one of those involved in the early development of J SP; has commented on
the close relationship of JSP to LL(1) parsing by recursive descent (Bomat, 1979). That
the main sources on JSD make no reference to this correspondence can be taken as
evidence that the extra expressiveness afforded by context free structure diagrams is not
worth the added complication (certainly also, common JSD target environments such as
early COBOLs and many embedded systems mitigate against the use of recursion).

JSD provides the power lost by its reliance on regular structures by introducing
further parallelism. One way to look at the parentheses example is in terms of the wish to
open new levels of nesting before closing old ones. In other words, it is required to have
several processes with the structure shown in Figure 3.17 active at any one time. The
solution is to view each pair of parentheses in a nest as a so-called marsupial process
(Jackson, 1983) running concurrently with each other pair. This solution allows arbitrary
nesting while guaranteeing balancing. B '

pair{p]

([p])Ip

Figure 3.17. Marsupial process for the nested parentheses problem.

s is then represented as a synchronising process which accepts a sequence of opening or
closing parentheses as shown in Figure 3.18. Each such parenthesis is identified with a
particular nest by a unique identifier. Balancing of each parenthesis pair is guaranteed by
the structure of the corresponding pair[n] process. This approach arbitrarily increases
the number of processes in the specification, but presents no more conceptual difficulty

70

than understanding the indeterminate number of nested procedure calls implied by a
recursive specification. In less contrived examples, it is a useful way of discovering
entities which were overlooked in the initial stages of the development (Jackson (1983)
provides various examples). -

A 0 |

(Ip])al

Figure 3.18. Synchronising process for the nested parenthesis problem.

3.6 Conclusion

JSD has been characterised in terms of an event model based on the theories of formal
languages and finite automata. This description of JSD forms the basis of the contribution
of the thesis — the application of results and techniques from well-established subdomains
of computer science to the contemporary problem of implementing desirable, currently
unsupported (yet sometimes manually performed) transformations on JSD specifications.

Parallels have been drawn between regular languages and entity life histories, and
regular grammars and expressions have been used to model entity behaviour. Finite
automata have been introduced as a way of viewing the animation of such models. The
modelling of individual entities had been related to the Network and Implementation phases
of JSD, drawing on work by Hughes (1979) on the formalisation of JSP, and Sridhar &
Hoare (1985) and Yeung et al. (1991) on the relationship between JSD and CSP. The
chapter concluded with a comparison of structure diagrams and finite automata as
modelling notations, and considered the use of context-free grammar as a means of gaining
extra expressiveness. It was shown how JSD uses concurrency as a way to gain the extra
power afforded by the more sophisticated class of grammar while staying with the
simplicity of regular structures.

&3

Chapter 4

Transforming Structure Diagrams
into Automata

4.1 Introduction

The previous chapter related JSD processes and finite automata. Lewis (1991) describes an
approach to JSD process implementation in object-oriented environments which depends
on the implicit construction of a restricted class of nondeterministic finite automaton. This
chapter makes the automata theory underlying Lewis's approach explicit and is therefore
able to explain its limitations. The subsequent discussion draws on research which has
been carried out in the area of automatic construction and manipulation of automata to
develop an improved approach which, while based on Lewis's original insight, addresses
problems he did not cover.

4.2 Followsets

Two equivalent views of JSD processes have been presented and related: a tree notation for
regular expressions, and finite automata. Both have been shown to constrain the syntactic
structure of strings. They do this by restricting the possibilities for each symbol in a string
based on the form of the symbol's prefix in the string. For example, consider the regular
language

L=a(bc| de) aL = {a,b,c,d,e} .
The following predicates about strings s, T € Lare true:
<a, b>< S = S(3) =c¢
<a> s T = T(2) € {b,d} .
As a second example, consider the language

M=wzxy* 2z oM = {w,x,y¥,2} .

Again, it is possible to write predicates relating prcﬁxcs to subsequcnt symbols in strings
suchasu, v € M. For cxamplc.

<w,x> S U = U(3) € {y,z)

72

<W,X, Y, Y, ¥y> SV =V(6) € {y,z} .

In general for any language L and any occurrence of a symbol se aL there will be a set of
symbols F (oL o F), which can immediately follow it, determined by the grammatical
structure of L. F is said to be the follow set of s. Jackson (1983) is the first source to
discuss follow sets in connection with JSD, though their use is well established in the field
of parsing theory (see for example Aho et al., 1985).

Figure 4.1 gives a partially graphical presentation of rules based on those given by
Jackson (1983), defining two functions First and Follow,

First : StructureDiagram — setof Actions
Follow : StructureDiagram - setof Actions .

These functions compute the first sets and follow sets of any Jackson (sub)tree. The first
set of a tree contains all those actions which can begin a string in the (sub)language the tree
represents, while the follow set contains all those actions which can immediately follow the
same set of strings. Jackson leaves the follow set of the root of a tree undefined. Lewis
(1991) adds another rule (Follow(root) = {}) to deal with this case, while Jackson
requires that an end of file marker be sequentially composed with the tree (and by
implication adds the rule Follow(eof) = {}). This thesis follows Jackson as it simplifies
the algorithm for DFA construction presented later (see Section 4.7).

a a is a leaf node
First(a) = {a}

X X is a sequence node
First (X) = First(xi)
Follow(x,) = Follow(X)
Follow(xjy) = First(xj:1)
: : for 1 £i<n

X1 . X2 e o Xn

X is a selection node
First (X) =
First(x;) UFirst(xp) V..V
First (x,)
Follow(x;) = Follow(X)
for 1 £i<n

X ¢
X is an iteration node
First (X) = Follow(x;)
X; * ' = First(x;) U Follow(X)
X
— is a null leaf node
First(—) = Follow(—)
0 - 0

73

Figure 4.1. Definition of First and Follow.

Figure 4.2 illustrates the effect of applying First and Follow to each of the subtrees of
the accounT structure. Each node is labelled with the first and follow sets of the subtree of
which it is the root (follow sets are in bold). ‘

{open}
{eof} | ACCOUNT

{open} {close}
{credit,debit, close} {eocf)}

open TRANSACT close

{credit,debit)
{close}

{credit,debit} CRDR

{credit,debit, my\

o O
credit debit
{credit) {debit}

{credit,debit,close} {credit,debit,close)

Figure 4.2. Application of First and Follow to the ACCOUNT structure.

It is possible to enumerate a mapping from leaf nodes of a structure diagram to follow sets.
For example, the follow map of the AcCouNT process is

{ (open — {credit, debit, close}),
(credit — {credit, debit, closel}),
(debit — {credit, debit, closel}),
(close — {eof})} .

Lewis (1991) describes an algorithm to construct the follow map of a process. He uses
this representation as the basis for the execution of JSD processes in a Smalltalk-80
environment. The following algorithm shows how a follow map can be used to drive a
regular language recogniser and so illustrates the idea behind Lewis's approach:

procedure recognise(S : StructureDiagram):boolean;
begin
contextset := First(S):
followmap := followmap(S);
read(insym) ;
while contextset <> {eof} do
if insym € contextset then
contextset := followmap(insym);
read(insym)
else
return false
endif
endwhile
return true

74

end recognise.

There is a parallel between the idea of a followmap and that of successor functions in the
PAISLey notation (Zave, 1982) which was discussed in Chapter 2.

Lewis observes that a particular process can be implemented in a hard-coded form
which incorporates the followmap information into the guards for an iterated multibranch
conditional. A control variable keeps track of the current context. Below is such a text for
the ACCOUNT process:

procedure follow mapped account;
begin
state := open;
read(input);
if state = open and input = "credit" then
read (input);
state := credit
elselif state = open and input = "debit" than
read(input);
.state := debit . .
elself state = open and input = "close" then
read(input);
state := close P
elself state = credit and input = "debit™ then
read(input); - L s
state := debit
elseif state = credit and input = "close"™ then
read(input)
state := close
elself state = credit and input = "credit" then
read (input);
state := credit
elself state = debit and input = "close" then
read (input) ;
state := close
elseif state = debit and input
read(input);
state := credit
elseif state = debit and input = "debit" then
read(input);
state := debit
elseif state = close and input
skip;
endif;
end follow_mapped_account.

"credit" then

"eof" then

The recognise algorithm for interpreting followmaps given above can be modified to
generate such hard-coded implementations of processes. In outline, such an algorithm
would have the following form (where the carat symbol "' is used to obtain the value of a
variable to be substituted into a string):
procedure hardcode(s : StructureDiagram)
begin
followmap := followmap(S):
emit ('read(insym);');

emit (‘while state <> eof do'):
for each maplet (sym — £s) in followmap do

75

for each s in fs do
emit('if state = “sym and input = “s
then state := “g3;
read(insym);
endif;");
endfor
endfor
emit('endwhile;')
end hardcode.

Systematic Error Checking Based on Followmaps

Jackson (1983) shows how knowledge of the context set of each node can form the basis
of a systematic error recovery scheme. Model processes represent only those possible life-
histories which the developer has abstracted from the real world. They therefore expect
their input to conform to one of these life-histories. If, for any reason, action messages
arrive in an order other than the one prescribed by the process structure (perhaps an
operator has entered a message incorrectly, or a sensing device is malfunctioning) then the
behaviour of the process is undefined. To avoid this situation occurring in an implemented
system, context filter processes are positioned upstream of the model processes in 1-1
correspondence. Each context filter checks the current context set of its model process and
passes on acceptable messages only. If a context error occurs, the filter issues a diagnostic
report and begins to skip messages until it finds one in the context set. The method is
similar to the context-based symbol skipping error recovery schemes found in syntax
directed program translators (Aho ez al., 1985; Bornat, 1979). Below is the text of a
context filter for the AccounT process (symbol skipping loops are shown in italics):

procedure account_filter;
begin
read(msqg); -
while msg € {(open} do read(msg) endwhile;
write(msg); -- open
read (input) ;
while msg € (credit, debit, close} do read(msg) endwhile;
while (msg = credit) or (msg = debit) do -
if msg = credit then
write(msg); =-- credit
read (msq) ;) . e
while msg € (credit, debit, close} do read(msg)
endwhile; - ' '
elsif msg = debit then
write(msg); -- debit
read (msqg) ; : .
while msg ¢ ({credit, debit, close} do read(msg)
endwhile ; b
endif
endwhile
write(msg) -- close
end account_filter;

Context filters are discussed further in Chapter 6.

76

4.3 Limitations of Direct Followmap Interpretation

This section discusses the limitations of what will, from now on, be termed followmap
interpretation (FMI). Subsequent sections show how by drawing on the language theory
underlying this approach, it is possible to substantially address these limitations. Lewis
himself identifies three problems with FMI:

« nodistinction is made among multiple occurrences of actions at the leaves of a
e _

. implementations can be very inefficient;

» recognition difficulties (also known as backtracking problems (Jackson, 1975))
arising from a choice of transitions for a given action are not addressed.

The first two of these issues are expanded on below. Treatment of recognition difficulties
is deferred until Chapter 5 as it depends on further theoretical prerequisites presented later
in this chapter.

No Distinction Among Multiple Occurrences of Actions

Although it is uncommon in the standard examples of (model) structure diagrams given in
the literature, it is perfectly permissible to label more than one leaf with the same action
name. Of course, in lexical analysis this is the rule rather than the exception (for example,
the set of all Pascal identifiers might be described as letter(letter|digit)*), and
indeed it is very common in JSD function processes (and JSP programs). In cases where
there are multiple occurrences of action names, a followmap which maps names to sets of
names will not provide a correct basis for an implementation. Consider the regular
expression (a|b)*cab. Each terminal letter can be associated with a set of positions at
which it can legally occur (Aho et al., 1985). For example, the letter a can appear at both
position 1 and position 4. Clearly, the follow set of the a at position 1 is different to that of
the a at position 4. If this distinction is not allowed for, then the follow set of a in the
followmap will depend on the order of evaluation of the follow sets of the leaves. This will
lead to an incomplete representation of the process. The problem is easily rectified by
computing the function followpos (position — setof positions) and a naming
mapping (position — name) which binds action names to positions. The followpos
function and attendant naming mapping for (a |b)*cab are

77

followpos ((alb) *cab)= {

namemap ((a|b) *cab))= {

il il
']

eof |} .

The extra information available in this form can be used to support the correct recognition
of languages with multiple synonymous terminals by modifying the program recognise
given earlier:
. . procedure recognise2(S : StructureDiagram): boolean;
begin
contextset := FirstPos(S):
contextsyms := symbols(contextset):
read(insym) ; '
while contextsyms <> _{eof} do .
if insym € contextsyms then
contextset := followpos(incontextpositionof(insym)):
contextsyms := symbols(contextset):
read (insym)
else
return false
endif
endwhile

return true
end recognise2,

A similar modification can clearly be made to the hardcode algorithm given earlier.

Inefficient Implementations

The main cause of inefficiency in a direct followmap implementation such as the one shown
earlier for ACCOUNT, is the suboptimal number of possible values of the state variable.
Code size is larger than necessary, as there must be (often duplicated) input and state
update statements for each of these values. There is a corresponding requirement to
evaluate more branch conditions than theoretically necessary to decide which transition to
make. Lewis (1991) suggests two optimisations: factoring out evaluation of state into a
case statement to allow a table-based evaluation of that component of the branch conditions,
and ordering branches so that more likely conditions are evaluated first (assuming a suitable
ordering heuristic can be found). The first of these can easily be accommodated in the
hardcode algorithm. All that needs to be done is to move the generation of statements of
the form if state = x outside the innermost loop, and change them into case syntax:

78

procedure hardcode2 (S : StructureDiagram)
begin
followmap := followmap(S);
emit ('read(insym);');
.emit ('while state <> eof do!):
emit ('case state of');
for each maplet sym = f£s in followmap do
emit("“sym => ');
for each s in £fs do
emit("if imput = “s
then state := “s3;

read (insym);
endif;"')
endfor
endfor
emit (‘endcase

endwhile;"')
end hardcode2.

The effects of these measures are likely to be small, however, especially when judged
against the gains which can be achieved through optimising the range of values of state,
i.e., through state-optimising the finite automaton underlying the followmap representation.

The reason Lewis's approach produces an automaton with a suboptimal number of
states is because it introduces a unique state to denote the context the machine is in after
each leafnode has matched an action. So, the number of states will always equal
| £irstpos (root) | + number of leaves, regardless of whether or not this number of
states is the minimum possible for an automaton recognising the same language. Poo
(1991) and Cameron (1988) use the same state-introduction rule as Lewis, suggesting that
the states be named systematically by past tense form of the name of the action, so that
loan = loaned, arrive = arrived, and so on (note, incidcn'tally. how this naming
convention perpetuates the synonymous leaf node problem, as it creates states
corresponding to distinct positions and names them with the same identifier) . Figure 4.3
shows a structure diagram for a library Book structure (Cameron, 1986). The vertical
arrows label the states introduced by following Poo's method, and implied by an FMI
approach.

79

_"‘17-

acquire

classify

BOOK

Book

Body

Corind)

Note that some of the states marked in figure 4.3 are equivalent in the sense used in
Chapter 3 to define the notion of state (that is, they cannot be distinguished by subsequent
input). For example, classified = returned and sold = disposed. In general, the
states following the last nodes of a selection are equivalent, and the states immediately
preceding or finishing an itc;ated part are equivalent. Indeed, any two leaf nodes whose
£ollowpos values are equal must both represent transitions into the same state (this is
intuitively the case, but later we present a more rigourous argument and use it to underpin
the explanation of a systematic approach to state minimisation). Figures 4.4 and 4.5

T

End Part

N

e

Loan Part

sell

o

dispose

(-]

lend

Renew
Set

renew

renewed

illustrate this point for selections and iterations respectively.

return

Figure 4.3. The library book structure together with implied states following Poo (1991).

(pei)

o

accepted(C)

Figure 4.4. Equivalent states after a selection.

80

disposed

/l'\

A C

accepted(A)

Figure 4.5. Equivalent states after an iteration.

Consider once again, the bank Account example. Figure 4.6 shows its transition graph
produced from its followmap and labelled in the manner of Poo (1991)

credit

credit]

OPENed

debit

Figure 4.6. Account transition graph labelled according to Poo (1991).

This graph can be easily translated into the hard-coded implementation of ACCOUNT,
namely follow_mapped_account, given earlier.

Clearly, opened = credited = debited, as ACCOUNT behaves identically for a given
string regardless of which of the three states it starts from. Recognising this, the ACCOUNT

81

transition graph presented in Figure 4.6 above can therefore be simplified to that shown in
Figure 4.7.

credit

debit

Figure 4.7. Minimum state ACCOUNT transition graph.

This graph gives rise to the following efficient hard-coded implementation:

procedure min_state_account;
begin;
state := 1;
read(input);
while input <> eof
case state of

1l =>
case input of
open => :
read (input);
state = 2
endcase;
2 =>
case input of
credit =>
read(input);
state := 2
debit => .
read (input);
state := 2
close =>
.read (input) ;
"state := 3
endcase;
3 =>
case input of
eof =>
skip;
endcase
endcase
endwhile

end min_state_account.

82

In rest of the chapter the construction of an explicit NFA from a followpos representation
is discussed. This is followed by a discussion of an algorithm for building an equivalent
DFA from any NFA. Next, the issue of state minimisation in DFAs is introduced. Finally
these three strands are brought together in the form of an algorithm for the direct
construction of a DFA from a structure diagram which also performs some state
minimisation.

4.4 Conversion of a Followmap into an NFA

Below is tabulated the followpos function for AccounT (where ACCOUNT is sequentially
composed with a final eof node), obtained by producing the follow map of its structure
diagram where the leaves have been renamed with their inorder positions:

{a =12, 3, 41,
(2 - {2, 3, 4},
(3 = {2, 3, 4)),
(4 = (5]

This table, together with the renaming mapping

nameof: position — name

{(1 - open)
(2 = credit)
(3 = debit)
(4 = close)
(5 > eof)} ,

can be used to produce a e-transition-free NFA, provided that, following Aho ez al. (1986),

» all positions in First (root) are considered start states;

» foreach pair (4, j) such that (followpos (i) = S) A j € S, an edge is added
linking state i to state 3§;

» eachedge(d, j) is labelled by nameot (3); _

» the position associated with eof is the only accepting state.

Consider now another example, the regular expression (a|b) *ac. Figure 4.8 shows the
automaton produced by applying the above rules.

83

Figure 4.8. An NFA recognising (aib) *ac.

Note that this automaton is nondeterministic. That the FMI approach produces
nondeterministic automata is hidden in Lewis's (1991) thesis, as the specific examples he
presents all give rise to deterministic machines (the set of DFAs is a subset of the set of
NFAs). Were Lewis's algorithm to be applied to (a|b) *ab, the resulting program would
be incorrect. Consider the pertinent fragment
if state = 1 and input = a then
state := 1;

elsif state = 1 and input = a then
state := 2

An important theoretical result in automata theory is that for any NFA, there is a
corresponding DFA which recognises the same language (see for example Rayward-Smith,
1983). Construction of a DFA forms the basis of a solution to the problem of catering for
recognition difficulties. This topic is dealt with in detail in Chapter 5.

4.5 Conversion of NFAs to DFAs

This section describes the conversion of NFAs into corresponding DFAs by subset
construction (Aho et al., 1986) and lays the framework for discussion of an algorithm
which constructs a size-optimised DFA directly from a structure diagram. The basic idea
behind the subset construction is that for an NFA N, a corresponding DFA b is constructed
such that each deterministic state of » , or Dstate, represents the subset of the non-
deterministic states of N (Nstates) that N could be in after a particular sequence of inputs
s. In effect, p tracks all possible paths through N on s in parallel. Figure 4.9 shows a
very simple NFA (a) and its corresponding DFA (b).

84

(a)

)

Figure 4.9. An NFA (a) and an equivalent DFA (b).

In the following discussions, names of the form pstate, and Nstate, denote Dstates oOr
Nstates, labelled by x or y respectively, in the associated diagrams. In this simple
example, Dstate 3, 4; represents the subset of Nstates ({Nstatej,Nstatey}) that the
NFA could be in having received input from the language ab.

Consider now the example shown above in Figure 4.8. This NFA — call it N —
recognises the language (a|b)*ac. An informal description of the way the subset
construction builds an equivalent DFA b is now presented. If D is to be deterministic, each
of its states must have at most one out-transition on each input symbol. In Nstate, there
is no transition on ¢, and only one on b, so we can start to construct D as follows:

b

In Nstate; the only potential nondeterminism arises from the input symbol a. The input
symbol a can cause a transition from Nstate, to either Nstate; or Nstate,. This subset
of the Nstates is represented by the single new Dstate s, 2):

(1)-+—(12)

85

This completes consideration of pstate(;,. Next the algorithm considers Dstate(y,2),
firstly as if it were Nstate, and then as if it were Nstate,. The transitions from Nstate;
have already been considered (a = {1,2}, b - {1}). D can be elaborated accordingly:

(Note that at this stage, the subset construction algorithm has eliminated the
nondeterminism in the partition of N recognising (a|b) *, and constructed a deterministic
version.) The transitions for Nstate, are very simple (¢ = {3}) and give rise to no
nondeterminism, so D is completed by the addition of a transition from pstate(;,2) to
DState(3) on input c. Figure 4.10 shows the transition graph for the complete version of
D.

Figure 4.10. A DFA accepting the same language as the NFA in Figure 4.8.

The discussion so far has considered only nondeterminism arising from multiple
transitions on the same symbol. The approach can be extended in a straightforward manner
to include NFAs with e-transitions. The &-closure of a state is the set of states reachable on
e-transitions alone. When constructing the subset of Nstates to which a particular input
symbol s can lead, the e-closure of these states must be included. Further consideration of
e-transitions and €-closures is delayed until the next chapter. For the present examples,
none of which contain e-transitions,

ge-closure (§(state, input)) = §(state, input).

Below is the subset construction algorithm basically as given by Aho ez al. (1986).

procedure subset_nfa;
Dstates := { €-closure(sg) }:
while there is an unmarked state T € Dstates do
mark(T);
for each input € aM do

86

U := g-closure(&6(T, input)):
i1€£ U ¢ Dstates then
Dstates := Dstates U{ U });
endif;
Dtran[T, input] := U
endfor
endwhile
end subset_nfa.

Note that in the worst case, the number of Dstates is exponential in the number of
Nstates as there are 2K subsets of states for a k-state machine. In JSD applications, this is
extremely unlikely to arise. Large numbers of subsets orily occur when converting
machines with high non-deterministic branching factors. In the case of JSD structures, this
can occur only when (improbably many) multiple recognition difficulties are expressed in a
single structure. Recognition difficulties and backtracking are discussed in the next
chapter. |

In JSD applications, happily, subset construction can reduce the number of states in a
DFA relative to the NFA implied by a followmap, by allowing subsets to be identified as
representing equivalent states. This is discussed further as the chapter proceeds.

4.6 State Minimisation

For any finite automaton, there exists a minimum-state DFA which recognises the same
language (Backhouse, 1979). Forany DFAM = (s, aM, §, F, qi), a string s in am*
is said to distinguish a pair of states p, q € s, if there exists a path from p to a state in F on
input s, but no such path from q, or vice versa. The simplest example is provided by the
empty string €, which distinguishes any accepting state from any non-accepting state. Note
that this notion of distinction defines a partition of the states of a machine. In the case of €
above, the two groups of this partition are r and s\F.

Any two states of a machine which are indistinguishable by any input can be
considered equivalent — recall from Chapter 3 that a state is precisely an equivalence class
of histories which cannot be distinguished by any string. This insight provides the basis
for a state minimisation algorithm (Aho er al., 1985). The algorithm starts from the
‘accepting end' of the machine and works backwards from the initial partition created by €,
taking each group in tumn and attempting to distinguish the elements of that group with one
of the possible input symbols, so progressively refining the partition until none of the
groups of states can be further distinguished.

Prior to the partition refinement process, it is necessary to ensure that the transition
function & is complete, that is to say that it has a value for all possible combinations of state
and input. This can be done straightforwardly by adding a 'dead' state with reflexive
‘transitions for all inputs in aM, and adding a transition to the dead state for all undefined

87

values of 8 (Rayward-Smith, 1983). Table 4.1 shows the transition table obtained by
applying this procedure to the ACCOUNT process.

Refinement of the partition can now proceed as follows. Call the initial partition ITj.
The algorithm attempts to further split I1j into a new partition Iy, such that for each input
symbol, a state in a group G of Il has transitions leading to the same group in I1; as any
other member of G. That is, all members of G go to the same group of Il on any given
input symbol (intuitively, any two states for which this condition does not hold must be
capable of being distinguished by a string starting with the symbol which takes them into
different groups of I11). Once I has been determined, it becomes considered for further
refinement , and the process is repeated until no further refinement is possible. The final
partition Ifina) can now be used to construct a minimum state DFA by picking one state
from each group as a representative, discarding the dead state (transitions to the dead state
become undefined) and discarding any states not reachable from the start state. A proof
that this algorithm produces a minimum state DFA can be found in Hopcroft & Ullman
(1979). We now trace its effects on the NFA produced by applying the direct followmap
construction to the ACCOUNT process, and show how it leads to the minimized machine
shown in Figure 4.7.

- open credig debit close eof
firstpos (rod:) 1 dead dead dead dead
1 dead 2 3 4 dead
2 dead 2 3 4 dead
3 dead 2 3 4 dead
4 dead dead dead dead 5
5 dead dead dead dead dead
dead dead dead dead dead dead

Table 4.1. A transition table for an NFA representing ACCOUNT, incorporating a dead state.

The following description should be read with reference to Table 4.1. The initial partition
is made by considering which states are distinguished by €. This gives the two groups (1
2.3 4 dead) (5). A singleton group cannot be split, so the other group is now
considered. The only state which is distinguished by any symbol is 4, which goes to 5 on
eof. All other states have out transitions which lead back into the group. The new
partition is (1 2 3 dead) (4) (5). This partition cannot be split further. Note that
although the input close causes a transition to (4), it does so for all members of the group
(1 2 3 dead), and so does not distinguish them. After discarding the dead state, we are
left with three groups of equivalent states (1 2 3) (4) (5). Together with the start state
firstpos (root), this leaves us with a minimized machine with four states.
Construction of the transition function proceeds by choosing a representative from
each group (for example 1, 4 and 5) and attributing their transitions to the new combined
states. In this case, the resulting transition function is as shown in Table 4.2:

88

start open {1,2,3})
{1,2,3) credit {1,2,3)
{1,2,3} debit {1,2,3}
{1,2,3]) close {4)
{4} eof {5}

Table 4.2. Minimised automaton for ACCOUNT.

Note that this is the same automaton as the one in figure 4.7.

4.7 From Structure Diagram to DFA

This section presents an algorithm, based on one presented by Aho et al. (1985), for the
direct construction of a state-optimised DFA from a structure diagram. The algorithm
involves the calculation of the followpos function as before, but differs in the way it
introduces new states. Lewis (1991) and Poo (1991) introduce a new state to represent the
current configuration after each leaf node has matched an action. In contrast, the rule used
by the direct DFA construction algorithm names a state by binding it to the set of positions
which can next be matched. This set of positions is a subset (used in the same way as in
the subset construction algorithm discussed earlier) of the set of states produced by
following the rule for state introduction used by Lewis and Poo. The start state of a
process is represented by the set of positions in £irstpos (root). Subsequent states and
transitions are added by finding all instantiations of the rule

TransitionFrom n to followpos(n) on nameof (n), (where n € S)

This means that accepting a symbol naming position n (where n is one of the positions in
the set representing the state s) will lead to the state named by (the set) followpos (n).
During this process, two sets can be identified if they define the same context (that is, they
are represented by the same set of positions).

The Algorithm

The method proceeds as follows. The set of deterministic states of the machine under
construction will be called pstates. The transition table will be called ptrans. Each
element of Dstates is a (sub)set of positions, and the start state of the machine is
firstpos (root). The accepting states will be those containing the position of eof.
Figure 4.11 presents the text of the algorithm.

89

procedure subset_struct_diag;
Dstates := {firstpos(root)):
while there is an unmarked state T € Dstates do

i) mark(T):

for each input € aM do
i) inPositions := {p € T | nameof(p) = input});
111y U := U ({fset € PN1 | q € inPositions A

fset = followpos(q)}
if U # {}) and U ¢ Dstates then

iv) Dstates := Dstates U{ U };
endif;
v) Dtran(T, input] := U;
endfor
endwhile

end subset_struct_diag.
Figure 4.11 Construction of a DFA from a structure diagram, adapted from Aho et al. (1985).

Consider the application of this algorithm to ACCOUNT. Firstpos(root) = {1} and this
is entered as a state in Dstates. This state is marked (1) and becomes the current state
under consideration. The algorithm now considers each action in @ACCOUNT with respect to
the positions which can follow the current state (11 & iii), in this case, the members of
the set {1)}. Now position 1 matches open, and followpos (1) = {1,2,3}, soweknow
that in the state reached after matching open at position 1, we will be in the state where we
can match any of the positions 1, 2 or 3, or:

TransitionFrom {1} to (2, 3, 4) on open.

Dstates and Dtrans are now as follows (iv & v):

Dstates = { {1} {2, 3, 4} }
Dtrans = { ({1} open {2,3,4})}

Next, Dstateqy,3,4) is marked and considered. Position 2 is for credit, and the
positions which can follow 2 are {2, 3, 4}. This state already exists, so there is no change
needed to Dstates, but 2 new transition is added to Dtrans:

TransitionFrom {2, 3, 4} to {2, 3, 4) on credit.

Similar reasoning applies to position 3:

TransitionFrom {2, 3, 4} to {2, 3, 4} on debit.

Dtrans is now

{ {1y open {2,3,4))
({2,3,4) credit {2,3,4))
({2,3,4) debit {2,3,4}))

The final position in Dstate(,, 3, 4)is 4. Itisthe position for close and its followpos
is {5}, which is a new state:

TransitionFrom {2, 3, 4} to {5} on close.

The algorithm finally considers pstate(s,. This state has no out-transitions. It relates to

eof and is therefore an accepting state. The algorithm here terminates leaving the
following:

‘Dstates = { {1} {2, 3, 4} { 5} }

Dtrans =
{ ({1} open {2, 3, 4}1)
" ({2, ‘3, 4} credit {2, 3, 4})
({2, 3, 4} debit {2, 3, 4})
({2, 3, 4) close {5}))

} .

Note that this is the DFA given in Figure 4.7.

State Minimisation Properties of Subset Construction

Recall from Chapter 3 that two states are equivalent if they cannot be distinguished by
future behaviours, and also that they must not merely be prepared to accept the same
symbols, but must accept them in the same positions as well.

A

Figure 4.12. Synonymous leaves at different positions.

(b)

91

The two states in Figure 4.12(a) are distinguished by b. However, the two states in Figure
4.12(b) are not distinguished by any input.

The optimisation of states which occurs in the structure diagram-to-DFA algorithm
arises from the ability to identify as equivalent two states represented by the same set of
allowable next positions. If two states can only accept the same symbols (at fixed
positions) then they must advance to the same successor state succ on a given symbol s.
Any candidate distinguishing string of the form <s>*t (which, by definition, must lead to
an accepting state from at least one of the states) must initially take the machine to the same
next state succ from where to consume t. If the machine is deterministic (given), then
d(succ, t) must take the machine to a unique accepting state. So, <s>'t must take the
machine from both candidate identical states to the same unique accepting state and they can
therefore be said to be indistinguishable.

4.8 Summary

This chapter has explained Lewis's (1991) followmap based approach to JSD process
transformation in automata-theoretic terms, and has discussed the observed limitations of
direct followmap-driven behaviour:

» failure to account for multiple synonymous leaves;

» inability to cope with recognition difficulties (dealt with more fully in the next
chapter);

e generation of automata with sub-optimal numbers of states.

With the connection to automata theory established, the chapter showed how these
problems can be addressed by applying algorithms for the manipulation of automata.
Particularly encouraging is the efficiency gain possible over the direct followmap approach
of Lewis. ’

This discussion has, however, been presented at a level somewhat abstract from real
JSD process specifications: no mention has been made of the executable operations and
extra conditions which can adorn a process structure, the treatment of recognition
difficulties has been cursory, and the assumption has been that each leaf node must
correspond to the acceptance of an action message rather than representing some
computation step internal to the process. So far, therefore, the results of this chapter are
only applicable to certain restricted kinds of model processes. The next chapter addresses
these real-life considerations and so increases considerably the applicability of these ideas.

92

Chapter 3

Treatment of
- Augmented Process Structures

5.1 Observable and Hidden Behaviour of Processes
f’revioﬁ.s chapters have explicated and developed the relationship between structure
diagrafns and automata. In doing so, they have described JSD processes at a rather abstract
level; various features of real JSD process specifications have been denied consideration,
for example assigned operations and conditions, backtracking constructs and non-reading
leaf nodes. This chapter therefore sets out to show how the approach introduced can be
extended to cope with process structures au gmented with these extra features. The result is
a transformational approach which can be applied to most process structures (probably a
large enough set not to constrain the applicability of the method), and which can be used to
facilitate the automation of desirable transformational strategies (to be discussed in Chapters
6 and 7).

Minsky (1967) describes finite automata as black box machines. That is to Say that
their internal workings are hidden from their observer, or environment. In the simplest
case, that of a deterministic recogniser, the environment can tell only two things:

» the contents of the input stream;
-« whether or not the machine has accepted an input string.

Although FAs can be described in terms of transition graphs which explicitly represent
states, the existence of anything corresponding to a state in the workings of the machine
can be infered only from the machine's observable behaviour. Certainly, nothing can be
said about the structure of the machine's internals or the configurations of this structure
which correspond to the things the environment regards as states. Indeed, as was noted in
Chapter 3, this lack of structural bias is a great attraction of automata as modelling devices.
It follows that there may be changes in the internal configuration of an FA which are
completely hidden from its environment. This is certainly the case with the software
simulations of automata which have been presented in previous chapters, in which the
internal configuration of these machines includes storage locations holding binary code, a
program counter and the miscellaneous variables needed to implement the abstract machine.
‘The environment of such a machine (for example the syntax analyser of a compiler which is

¢

93

calling a DFA-based scanner for the next program token) is completely unaware of the
updates made to, say, the program counter while the machine executes.

The great emphasis placed by JSD on the modelling of events, and their tracking by
what are essentially finite state machines, is motivated by the desire to build a stable
framework with which to organise and coordinate the provision of functionality. Most of
the computation which contributes to the functionality of a JSD system is hidden beneath
the automaton abstraction, and is specified in terms of executable operations together with
various controlling conditions which the developer assigns to process structures. This
chapter is concerned with this internal behaviour of JSD processes, and particularly with
how it relates to the external appearance of these processes when viewed as automata. As
will be seen, functional code to perform database updates and output, say, can be added
without affecting the integrity of a process as a DFA. Control predicates are another matter
and are not really compatible with the DFA abstraction. An approach to the partial
transformation of process structures into automata is proposed which can, under certain
circumstances, allow arbitrary conditions to exist within a valid automaton abstraction.

It has been seen that any NFA can be transformed into a corresponding DFA in such
a way that choices among branches for accepting a given symbol can be tracked in parallel.
There may, however, be times when the hidden behaviour associated with a branch is
different from the hidden behaviour associated with an alternative so that parallel simulation
is not possible. In such cases, subset construction alone is insufficient to ensure that the
appropriate hidden behaviour occurs when it should. This is a new view on the problem of
recognition difficulties (Jackson, 1975), and the change in perspective facilitates a new
solution, which is described at the end of the chapter.

5.2 Executable Operations

Recall that JSD model processes (essentially, executing automata) track their corresponding
entities and can therefore be inspected to yield information about the state of the real world.
However, the finite nature of these modelling devices limits the information which can be
captured by the notion of a state as formalised in Chapter 3, that is, as a named equivalence
class of behavioural histories. JSD process specifications are therefore typically elaborated
with an additional layer, comprising entity and action artributes together with associated
update operations. The resulting two layer description helps the JSD developer to maintain
a separation of concerns between the dynamic behaviour of the system over time, which is
rooted in a relatively stable aspect of the problem domain, and thc.updatc logic, which
maintains detailed status and summary information in support of the intended system's
(volatile) functional requirements.

94

Structure diagrams which have been augmented with update operations will be
denoted by their name together with the subscript ',p,'. Figure 5.1 presents an augmented
structure diagram for ACCOUNT ops.

ACCOUNT

TRANSACT
*
CRDR
) %)
credit debit

PEE HEE

OperationTable
- R = read(input);

1 — balance := 0;

2 =¥ nurn_tran's t= 0;

3 = balance := balance + input.amount;
4 — Dbalance := balance =- input.amount;
5 = num_trans := num_trans + 1;

6 — write(balance);

Figure 5.1 An augmented structure diagram for ACCOUNTps

The values required to update process attributes are supplied as attributes of the action
messages in the process's input stream (e.g. input.amount). The question of which
attributes to record and update is the subject of extensive discussion by Cameron (1988)
and is also dealt with in detail by Jackson (1983).

The subset construction approach requires that operations be assigned only to leaf
nodes. It is accepted practice (Jackson, 1975; Cameron, 1988) to assign operations to
interior nodes with the understanding that they are to be sequentially composed with the
other descendants of that node. This is purely a notational shorthand to avoid cluttering
diagrams with sequence node (in the above example, it would avoid the introduction of the
_init node as a placeholder for the first read operation). There is no loss in expressive
power as a consequence of restricting operation assignments to leaf node, and any

95

notational inconvenience is easily mitigated by the use of a suitable diagram editor such as
that provided by the PRESTIGE JSD workbench (Lewis, 1991).

Representing Structures Augmented with Assigned Operations

The operations which can be performed on the attributes of an entity can be represented by
an operationTable. For now we model this as a straightforward mapping:

OperationTable = map op_index to operation
where

op_index = NIl .

In the PRESTIGE project (Bass et al., 1991) a more sophisticated representation of
operationTable was chosen. This was used as the basis of the specification of the
textual substitutions necessary to realize the inversion transformation in a conventional way
(i.e. using goto statements) and is discussed in Chapter 7. Figure 5.1 shows the
OperationTable for ACCOUNT,ps in terms of the simple mapping representation.

The sequence of operations to be performed when accepting an action is termed an
action body, after Poo (1991). Poo, and also Lewis (1991), take the view that the action
body to be executed at any particular time is a function of the name of the action being
received. However, this gives rise to problems when there are multiple synonymous
leaves, and so it is better to regard the choice of action body to be a function of the in-order
position of the leaf node at which the action is received. This can be modelled as .

operation _map = map position to action_body
where

action_body = seq of NI

It is possible to tabulate the operation_map for ACCOUNT,p in Table 5.1.

position action body
pl [1,2]
p2 [3,5]
p3 [4,5]
p4 [6]

Table 5.1. An operation_map for ACCOUNTps.

With the constructs specified above, it is possible to define finite automata au gmented with
assigned bperations as a six-tuple (s, aM, &, Y, F, qi} wherey: state X input -
actionbody, and other fields have the same meaning as previously. Figure 5.2 presents a
graphical view of a DFA,s for ACCOUNT, together with an effects table for y (recall that the
states of a DFA are here modelled as set of position). In this diagram, transitions are
labelled action/actionbody.

96

credit/[3,5]

close/[6]

debit/[4,5]
¥ opeh credit debift clode
{pl} {1, P - - -
lp2,p3.p41 -~ (3,91 14,9 {6]
{p5} - - = =

Figure 5.2. A DFA for ACCOUNT,,, together with an effects table for 7.

Note the similarity with the output tables of GSMs discussed in Chapter 3. Clearly, if all
the assigned operations are write statements, then the similarity is exact. Where these
operations are assignments, then such an automaton can still be regarded as GSM-like
providing that the results of these assignments are not used to influence subsequent control
flow. This point is covered in more detail in Section 5.3.

Constructing an Effects Table

Transformation of an augmented structure into a corresponding automaton depends on
correctly constructing the effects table for y. This can be achieved by an enhancement to
the subset construction algorithm, making use of the one-one relationship between
positions and action bodies. The new algorithm is given in Figure 5.3. The additional
lines required to construct ¥y (stored in the variable pops) are presented in italics and are
marked (i) & (ii). Inline (1), p is matched to the singleton element of the set
inPositions. In line (ii), the expression action_body(p) yields the action body
assigned to the leaf node at position p.
procedure dfa_ops;
Dstates := {firstpos(root)};
while there is an unmarked state T € Dstates do
mark(T);

for each input € oM do
inPositions := {p € T | nameof(p) = input}:

97

U := U (fset € PN1 | g € inPositions A
fset = followpos(q)}
if U # {} and U ¢ Dstates then
Dstates := Dstates U{ U }

endif;
Dtran[T, input] := U;
1) inPositions = { ?p }:
i1 Dops[T, input] := action_body (p)
endfor
endwhile

end dfa_ops.
Figure 5.2 A Structuregps to DFAps transformation algorithm.

The action body to be performed during a state transition is a function of the position which
is matching the current action. The number of action bodies is equal to the number of
leaves of the tree. As we have seen, however, the number of states of a minimum state
DFA is usually less than the number of leaves of a corresponding structure. The above
algorithm extends Lewis's (1991) work by recognising that it is possible to perform
different action bodies and still get to the same (general) state. This follows if it is
remembered that, in general, different positions can be matched on the way to the same
state (and indeed this explains the state-reducing effects of the subset construction
algorithm over an approach based on direct construction from a follow map).

A simple modification to the algorithm for DFA animation presented in Chapter 3
provides for the execution of operations during the recognition process. The algorithm is
presented below, with the new line in bold:

state := q;;

while not end of input do
read(input);
perform(<Y(state, 4input));
state := d(state, input);

endwhile;
1f state € F then write(l) else write(0);

Assignment of Operations to Null Nodes

The structure diagram notation allows the use of null leaf nodes as components of two-way
selection. For example, the structure in Figure 5.4 is equivalent to the regular expression
a(x|e)b. A look at the available literature on Jackson methods reveals no clear answer to
the question: "Can executable operations be assigned to null nodes?". Lewis's software
tool (1991) forbids the assignment of operations to null nodes to allow his follow set based
approach to function. Consider the structure in Figure 5.4. '

98

S

T

A problem B

Figure 5.4. A structure with null components.

All sources agree that the condition for execution of the leaf labelled x is that an X message
has been read in by the read ahead positioned at the end of A. However, there is no clear
guidance about what happens if any other type of message is obtained. The two possible
codings are as follows:

View 1
read(msg)
A seq

A;

read (msqg) ;
A end;
Problem sel msg = X

X;

read (msg) ;
Problem end
B seq

B;

read (msg) ;
B end;

View 2
read (msqg)
A seq
Az
read (msqg) ;
A end;
Problem sel msg = X
X;
read (msg);
Problem alt msg <> X
Xabsent;
-- to read or not to read?
Problem end
B seq
B; :
read(msg);
B end:;

The following arguments seem convincingly to legislate against the allocation of read
operations to null components. They address three points of view: practical, JSD-

99

conceptual and language-theoretic. From a practical point of view, if the Xxabsent branch
in the second fragment above has operations allocated to it, then none of these operations
can read. If they do, then clearly the standard read-ahead is violated. Conceptually, null
nodes should not read since they do not correspond to any action occuring in the real
world. In language-theoretic terms (x | e) is saying "a possible x". It is not saying
"either an x or anything else”. For example, the regular expression a (x | €) badmits
the strings

<a, b> , and -

<a, X, b>,

but nozhmg else. A null componcnt does not therefore match (and thercfom cannot rcad)_
"any action other than X" i.e., it does not mean not (X).

No such clear argument can be made against the allocation of non-reading operations
to null components. However, the present approach does not allow such allocations due to
its underlying reliance on follow sets. The rules for follow sets (see Figure 4.1) prevent a
null node from appearing in the follow set of any other node in a structure (null nodes are
effectively skipped over). Therefore, such a node will not be visited during follow set
based execution, so any operations assigned to it will be unreachable. This constraint does
not cause a loss of expressive power, however, as it is possible to arrange for operations to
be performed in the absence of a particular message using backtracking. (Backtracking is
discussed in Section 5.4.).)

5.3 Dealing with Conditions

It is necessary to distinguish two kinds of condition which arise in JSD processes. Firstly,
there are predicates on the type of the current input message. These are the conditions
represented in transition tables of finite automata. Secondly, there are predicates which
refer to data values: either message attributes or entity attributes, or both. An example
from a banking application might be '

(balance - msg.amount) < 0 ,

which specifies the condition under which a withdrawal of funds would cause an account
to go into overdraft.

As far as the first kind of condition is concerned, the present approach automatically
generates them in the process of conversion from structure diagrams to DFAs. This
represents an improvement over Lewis's (1991) approach which requires that such
conditions be provided through human intervention. The second kind of condition is much

100

more problematic, because instances violate the integrity of the finite automata model: no
longer is a process's state-changing behaviour influenced only by the type of messages in
its input stream, but also by potentially obscure conditions on data values. Some examples
of behaviours which required conditions on process or message attributes follow.

Bounded iterations

Consider the popular library Book example from the JSD literature (Cameron, 1986; Poo,
1991) for which a structure diagram was given in Figure 3.7. The library management
might wish to enforce a constraint that a book can be renewed only twice before it must be
returned and made available to another borrower. Strictly, the only way to represent this
with any regular structure is by enumerating all possible sequences of renews. For
example:

loanpart = lend (E| renew | renew renew) return

Clearly this is rather clumsy, and would soon become unworkable for larger upper bounds
on the iteration. A solution is to break with the pure metalanguage of regular expressions
and specify loan part as

lend renew® return (0 €£nsg2) i

The simplest implementation of this scheme involves adding a condition directly to the
iteration of renew, giving rise to code of the form:

read (msqg) ;

lend;

renew_count := 0;

read (msqg) ;

while (msg <> return) and (renew_count < 2) do
renew;

renew_count := renew_count + 1;
read (msqg);

endwhile;

return.

There is an objection to this kind of coding in model processes, which is that the condition
on the loop affects control in a way not captured purely by the syntactic structure of the
process. Cameron (1989) proposes delegating responsibility for ensuring that constraints
of this sort are observed to the input subsystem. In his scheme, a context filter would keep
a count of the number of renew messages and would only pass a maximum of two such
messages on the the model, whose 1oanpart would remain specified as

loan renew* return

101

Clearly the context filter will still need a condition on the number of renews to perform its
task, but at least the syntactic purity of the model is preserved.

Restrictions on the range of attribute values
Consider the following constraint on the use of a bank account: any attempted debit which
takes the account into overdraft is not to be allowed. This constraint refers to an attribute of
the debit message, the amount, and an attribute of the entity, the balance of account.
Unless the alphabet of the process is changed so that debit is split to handle the two cases
(say into okdebit and Nokdebit) there is no way to represent such a constraint using
regular structures. A control predicate must be added to test explicitly the attribute value.
One possible implementation fragment would then be:
while msg <> close do
if msg = credit then
credit;
read (msg) ;
elselif msg = debit then
if balance - msg. amount >= 0 then
debit;
endif;
read (msg;
endif;

endwhile;
close;

Note that the prevention of overdrafts cannot be coded as

elself msg = debit and balance - msg. amount >= (0 then
debit;
read(msg):; =-- only executed when debit is ok!!
endif; ,

because the read-ahead requirement would be violated if there was indeed an attempt
overdraw. The correct solution, the one presented first, features an action body which
incorporates control structure. Such structured action bodies are discussed in detail later in
this section.

Allowing Data-conditions without Violating the Automata
Abstraction

Application of the read-ahead convention as applied to model processes gives rise to
structures in which all leaves are held to read. In many function processes there will be
non-reading leaf nodes which specify hidden behaviour. Distinguishing these hidden
nodes from reading leaf nodes makes it possible to propose an optimisation to the
Structure-to-DFA transformation developed in Section 4.7 which may be useful in certain

102

circumstances. Hidden nodes occur when action bodies must be structured in some way so
that iterations or selections, controlled by attribute values, must be negotiated in the
(conceptually atomic) transition between one general state and another. The
straightforward implementation is to treat all leaf-nodes the same (that is, as precursors of
general states) whether they correspond to external events or not, and just have execution
pass through non-reading 'states’ until a true general state is reached. Lewis (1991) shows
how this can be done. As he notes, however, this approach can be somewhat inefficient,
as it ignores opportunities to use the standard programming control structures, relying
instead on a control variable which must be explicitly tested. Consider a sequence of
hidden leaves equivalent to the regular expression (a b c). The natural implementation of
this sequence is

A; B; C;

In the worst case, Lewis's approach could give rise to the following implementation:

while state <> eof do
casa state of
Cstate => C; state := eof;
" Bstate => B; state := Cstate;
Astate => A; state := Bstate;
endcase;
endwhile;

Here, control information is held in the variable state, which must be explicitly tested in
order to determine the next processing component to be executed. It is tempting to wonder
whether or not such a baroque scheme can be avoided, and if so under what circumstances.
The present approach to this issue depends on the introduction of the notion of an action
structure. The sequence (a b c) is a simple example of an action structure, although most
such structures would also contain iterations and selections.

Definition of Action Structures

It is first necessary to define the function Last: StructureDiagram — setof action.
This function returns the set of actions which can end a string in the (sub)language
represented by the diagram. ' Rules defining Last are given in Figure 5.5. These are
symmetrical with the rules for the function First given in Chapter 4. Aho etal. (1985)
give similar rules for binary trees representing regular expressions.

103

aisaleaf node

Last (a) = {a}
X
X is a sequence node
Last (X) = Last(x,)
XI X2 L xl'l.

X is a selection node
Last (X) = ;
Last (x3) Vlast(xy) U..ULast(xp)

X
X is an iteration node
Last (X) = Last(x;)
X; *
X
X is a nullable selection node
Last (X) = {x1}
0 - 0

Figure 5.5. Rules for the computation of the Last function

An action structure is a Jackson tree which is executed on receipt of a single action. Clearly
all reading leaf-nodes can be considered as base case action structures. More generally,
any tree T is an action structure iff

All the nodes in Last (T) are reading nodes, and all other leaf nodes
(Leaves(T) \ Last(T)) are not.

(Leaves (T) returns a set containing the leaf nodes of T.)

The leaf nodes of model processes give rise to very simply structured action bodies (i.e.,
singleton sequences), but more complex action structures give rise to equally complex
action bodies. A change in the representation of operationTable (see Section 5.2)
caters for this modification:

OperationTable = map position to ActionStructure .

To maintain consistency with these changes, the root of an action structure has to be
labelled (by a tool user) as such, so that it can be treated as a position by the subset
construction algorithm.

104

An example: A Banking System Statement Lister

Consider the requirement to list the transactions undertaken on an account, one per line (in
addition to a header and footer lines). The account process of Figure 5.1, could be
elaborated to write a stream of messages summarising its activities. The STATEMENT-
LISTER process will read this stream, which will have the structure open (credit |
debit) close. The user requires STATEMENT-LISTER's output to have a slightly different
structure: header (cr-line | black-debit-line | red-debit-line) footer. The
decision as to whether to print a black-debit-1ine or a red-debit-1ine depends on
the value of the balance field in the incoming messages in the obvious way. Figure 5.6
shows the process specification of STATEMENT~-LISTER.

STATEMENT
LISTER
header BODY footer
MSG-GROUP
o
o))
black-debit red-debit
cr=line =line =line

Figure 5.6. Process structure of STATEMENT-LISTER.

To implement this as an automaton, msg-group is nominated the root of an action
structure, AS;, a selection of the three components (cr-line | black-debit=-1line |
red-debit-line). AS; incorporates the conditions required to control its execution.
Subset construction is performed on the subtree whose leaves are {header, msg-group,
footer)}. Transition and effects tables for the resulting automata are shown in Figure 5.7.

8 header msg footer
1 2 - -
2 - 2 3
3 - = =
Y header msg footer
1 action body(l) - —
2 - ASq action body(3)
3 - - -

Figure 5.7. Transition and effects tables for STATEMENT-LISTER.

105

The advantages of the action structure approach to dealing with data conditions can be
stated as follows:

» It gives rise to more efficient implc;xlcntations than the control-variable method
as it involves less explicit testing of the control variables's value;

+ It allows better congruity with the finite automaton abstraction, as each 'state’
still relates just to input history;

* The transformation algorithm has less states to consider and so runs more
quickly.

Further aspects of this approach, connected with interprocess communication, are
discussed in the next chapter.

5.4 'Recognition or Parsing Difficulties

After presenting the basic JSP method, Jackson (1975) addresses a class of problem called
recognition difficulties . A recognition difficulty arises when there is uncertainty about
what a process should do next based on consideration of only the next symbol in the input
stream. A simple regular expression which describes a language with this property is
(ablac). Figure 5.8 shows the corresponding structure diagram. A recogniser for this
language which can look only one character ahead has no way of knowing whether a string
starting with an a is the prefix of <a,b> or <a, c> (because the two positions in
firstpos(root), i.e., {1,3}, have the same name). It has been shown that for any
NFA there exists a corresponding DFA which recognises the same language, and a clue as
to a suitable DFA for this example can be obtained by factoring the expression so: a(blc).
However, such factoring will not address recognition difficulty problems where the action
body to be executed is dependent on which of the similarly-named branches is taken, and,
unfortunately, it is in precisely such cases that recognition difficulties arise in JSD.

(ablac)

106

position action body
pl (1,2)
p2 13,4)
p3 [5,6]
pd [7.8)

Figure 5.8. Structure diagram for (a b | a c) together with possible operation map.

Standard Jackson Solution to Recognition Difficulties

In the standard JSD approach to recognition difficulties, the developer nominates or posits
one of the branches as the one to assume is correct using a special kind of two-way
selection (the assumption is that there will only ever be two alternatives, although in general
there could be arbitrarily many) . Execution starts down this branch. If it transpires that
the assumption was wrong, then this branch is abandoned and the second branch, the admit
branch, is followed. Two important items of knowledge are needed to realise this
backtracking behaviour:

1) the state which it transpires that the process should be in;

2) the sequence of operations which have been performed in error, and the
alternative sequence which should have been performed instead (so that the
correct updates to attributes are made).

Below is a standard implementation of backtracking to solve the recognition difficulty
expressed in Figure 5.8.

read(msqg) ;
-- posit a b (i.e., match position 1)
perform(([1,2]);
read (msg) ;
if msg = c then goto admit endif;
perform((3,4]) -- match position 2
goto out;
admit: - a ¢
undo (actionbody (1))
perform([5,6]); ~-=- match position 3
perform([7,8]): -~ match position 4
out:

A disadvantage of this implementation is its reliance on the goto statement. Use of the
goto in the realisation of backtracking prevents the use of languages such as occam™ and
Smalltalk™ which lack such commands. Also, it leaves the program in a state where it is
much less amenable to further transformation. Finally, despite exhortations by Jackson
(1983), Cameron (1986) and others that transformed code should be regarded as object
code and therefore that the utilisation of gotos for implementing techniques such as
backtracking and inversion should not be deprecated, there remains considerable

107

commercial resistance to the use of JSD because of its use of goto statements in realising
its transformations (Cameron, 1989).

Possible DFA Solution

Consider the NFA arising from the structure shown in Figure 5.8. The transition diagram
for this machine is shown in Figure 5.9. Here, if the machine receives an initial a which
turns out to be a prefix of <a, b>, then it is required that the actions [1,2] be performed.
On the other hand, should the input string turn out to be <a, c>, then the correct actions are
(5,6]. :

b/(34]

a/[5,6]

Figure 5.9. An NFA for (a b | a c) posing a recognition difficulty.

An interesting way of viewing a backtracking solution to this recognition difficulty is
shown in Figure 5.10. The assumption is made that the initial a is a prefix of <a,b>, and
the operations (1, 2] are performed. As these dpcrations may have undesirable side-effects
on process attributes in the event of the assumption being proved wrong, a snapshot of the
process's attribute values is taken prior to execution of the operations. Once in state
(2, 31, adeterministic choice is made based on the value of the second input symbol. If it
is a b, then the posited assumption was correct and execution can continue normally. If on
the other hand it tums out to be c, then the initial values of the attributes must be restored,
and the full sequence of operations for <a, c> performed.

b/[3.4]
—~@ ©
[save, 1, 2]

c/

[restore, 5,6,7,8]

Figure 5.10 A recognition difficulty solution.

The use of save and restore operations to manage the entire state-vector of a process
seems rather clumsy and indiscriminate. Firstly, some attributes may be unaffected by the

108

wrongly-performed operations. Secondly, there are some circumstances where the side-
effects may be either neutral or beneficient (Jackson, 1975) from the point of view of the
admit branch, and may therefore be ignored. These issues can be considered independently
of present considerations, and the reader is refered to Jackson (1975) for further details.

The approach presented here avoids the use of goto statements. This offers two
major advantages:

1) itallows backtracking to be realised in languages which lack a goto facility;
2) it yields code which is amenable to further transformation.

The first of these advantages extends the understanding of the realisation of JSD
specifications in object-oriented environments provided by the work of Lewis (1991) . The
second increases the generality of the transformational approach being developed in this
thesis.

A Subset Construction Algorithm for Backtracking Probléms

Recall that subset construction deals with nondeterministic problems by building a DFA
which keeps track of all the possible states a corresponding NFA might be in at any
particular time. This algorithm already builds the correct transition table for processes with
recognition difficulties. However, the effects table will not be constructed correctly. At the
point where a recognition difficulty occurs, subset construction will build an arc to a state
represented by a subset containing two positions of the same name. The algorithm will
arbitrarily assign the action body of one of these two positions (the first one it finds, which
depends on the implementation of the set abstraction) to this transition. This action body
will then be executed, regardless of which of the two positions is actually supposed to be
matched by a given input. Where the previously presented subset algorithm treats all
positions in a subset equally, it will now be necessary to partition the subset into two
groups: those positions which can follow in the posited branch, and those which can
follow in the admit branch.

The new algorithm is presented incrementally. Firstly, we ignore the problem of
building the effects table and just concem ourselves with building the transition table. The
first increment, then, is equivalent to the subset algorithm of Aho et al (1985) presented in
Figure 4.11. The difference is that the inner loop of the algorithm, which considers the
transitions from the state under consideration on each possible input symbol, now has to
deal with two discriminated cases: '

1) when arecognition difficulty is detected;
2) when there is no such difficulty.

109

In outline, the new algorithm has the following structure:

Dstates := {firstpos(root)};
while there is an unmarked state T € Dstates do
mark(T);
for each input € aM do
inPositions := {p € T | nameof(p) = input};
U = U (fset € PN1 |
q € inPositions A fset = followpos(q)}
if |inPositions| > 1 then

"Handle recognition difficulty"
else
"No recognition difficulty"
endif;
if U # {}) and U ¢ Dstates then
Dstates := Dstates U{ U };
endif;
Dtran(T, input] := U;
Dops([T, input] := action_body(p):
endfor;
endwhile.

A new data structure, the PositTable (state — position)isintroduced (line (ii)), the
purpose of which is to record the Nstate (see Section 4.5) to which it is posited that a
particular input will lead starting from a given state. This table will be sparsely populated,
with only one entry per recognition difficulty per process.

Figure 5.12 presents a refinement of the above outline.

Dstates := {firstpos(root)};
admitseq := [restore]:
while there is an unmarked state T € Dstates do
mark (T) ;
for each input € oM do
inPositions := {p € T | nameof(p) = input};
U := U ({fset € PN1 | g € inPositions A
fset = followpos(qg))
if |inPositions| > 1 then
-- Handle recognition difficulty

(1) identify positPos and admitPos;

(ii) positTable (U) := followpos(positPos);

(1id) effect := [save] ++ actionbody(positPos);
(iv) admitseq := admitseq ++ actionbody(admit?os),

elsif |inPositions| = 1 then
== No recognition difficulty
(v) inPositions = { ?p }:
(vi) effect := actionbody(p):
if p € positTable(T) then
effect := admitseq ++ effect;
admitseq := restore;
endif;
if U # {}) and U ¢ Dstates then
Dstates := Dstates U{ U };
endif;
Dtran[T, input] := U;
Dops([T, input] := effect;
endfor;
endwhile;

110

Figure 5.12. A subset construction algorithm for the conversion of augmented structures into DFAs
which allows recognition difficulties

The following notes refer to the labelled lines in Figure 5.12:

i) Either the user must be asked to nominate the posited position or else one must
be chosen by a default rule, say, "pick the lowest numbered position".

ii) Record that the state U is posited to be the state which would be reached by
matching the input to positPos starting from state T.

ili) Ensure that the state vector will be saved when the posited branch is followed.
iv) The admitseq is made up from the actionbody of admitPos.

v) In this case, there is no recognition difficulty, so the singleton element of
inPositions is the position which is to match the input.

vi) The positTable is consulted to find the set of positions which it is posited that
are to be matched next. If the next input is not matched by any of these
positions, then backtracking to the admit branch will be necessary. The
admitseq then represents the desired effects table entry.

An example of the algorithm's operation on the recognition difﬁcﬁlty presented in Figure
5.9 is now presented.

The first state added to Dstates is firstpos (root) = {i, 3}. This state is marked
and considered as the first value of . As name (1) = name (3) = a, inPositions = {1, 3]}
when input = a. U is then the union of the followpos of each element of inPosition, that
is, {2,4). As |inPositions| > 1, the new recognition difficulty branch is entered.
Assuming the user nominates 1 as the positPos and 2 as the admitPos, then the following
assignments will be made:

PositTable[{2,4}) := 2; -- i.e. posit that an 'a' matches position
2

Dstates := Dstates U {{2,4}}; =-- add to algorithm
Dtran[{1,3}, a] := {2,4};

effect := [save,l1l,2];

admitseq := [restore,5,6];

Next, the state {2, 4} is marked and becomes the value of T. There is no (new or
continuing) recognition difficulty so the lower alternative for the consideration of inputs is
taken and the existing difficulty resolved. Only inputs b and c give rise to transitions.
Consider b first of all. If a b is obtained, this constitutes satisfactory resolution of the posit

111

branch, as in this case, U = {eof} and p = 2, and the PositTable records that in state
{2, 4} the normal execution of the posited branch continues by matching with position 2.
The following assignments can be made:

Dstates := Dstates v {{eocf}};
Dtran[{2,4}, b] := {eof};
Dops[{2,4), b] := [3,4];

Now, consider c. In this case, U = {eof}) andp = 4. The PositTable records that in
state {2, 4} normal execution proceeds by matching position 2, but ¢ matches position 4.
Therefore, if a c is obtained at this point, this means that the posit was inappropriate and
that the admit branch should have been executed. The following assignments can be made:

Dtran([{2,4}, c] := (eof}; -- note that {eof} is already in Dstates
Dops[{2,4}, 2] := [restore, 5,6,7,8]):

This algorithm therefore constructs the solution shown in Figure 5.10. Appendix I gives a
Smalltalk-80 implementation of this algorithm.

5.5 Conclusion

The subset construction approach introduced in the previous chapter has been extended to
incorporate various features which JSD uses to augment structure diagram specifications.
Operations have easily been accommodated as the definition of finite automata does not
forbid the hidden activity they imply. Conditions were shown to be rather more
problematic as they affect the external determinism of processes. By introducing the idea
of action structures, internal conditional behaviour has been facilitated, together with the
ability only partially to transform structures into automata (typically leaving lower levels in
the tree in their standard form). The approach supports the generation of transformationally
derived code which is both efficient and clear. ,

Subset construction has been used as the basis for an algorithm to generate DFAs
which handle recognition difficulties. This transformation, in common with the others
presented in the thesis, does not rely on goto-statements, and therefore its use is possible
with languages such as occam and Smalltalk. |

As a result of these enhancements to subset construction, a transformational approach
has been obtained which is general in its applicability and which produces efficient
implementations. The ability to transform the majority of JSD processes into DFAs makes
it possible to automate some very desirable global implementation strategies. This is the
subject of the next chapter.

112

Chapter 6
Applications

6.1 Introduction

Previous chapters have developed a method for automatically transforming structure
diagrams into finite automata. The ability to effect this transformation is useful to the JSD
developer because the DFA representation supports a variety of useful applications. While
the static representation of the syntax of observable behaviour provided by structure
diagrams seems to provide a useful source of insights to the modeller (Renold, 1988b), a
dynamic model of behaviour, as offered by finite automata, appears helpful when the
attention of the developer turns to implementation considerations. The latter representation
potentially offers support for activities such as implementation, validation and performance
prediction. The present work has focused on implementation issues, but some suggestions
of relevance to the other areas are made in Chapter 8.

6.2 Inversion

The standard Jackson implementation of the inversion transformation (see Chapter 3)
involves a text-pointer variable (stored in the state vector, and often named gs), which
enjoys a similar relationship with the read points of a process as the 'state' of a
corresponding automaton. This variable can be manipulated like a state variable to allow
the suspension and resumption of a process's execution as required. Below is shown the

text of ACCOUNT inverted with respect to its input stream, in an obvious pseudocode. The
| input message and the state vector of the appropriate instance of ACCOUNT are passed to the
routine as parameters. '

procedure account_inverted(input: msg_type; sv: sv_type);

dispatcher case sv.gs of -- jump to just past last suspend point
1l => goto L1;
2 => goto L2;
3 => goto L3;
4 => goto L4;
5 => goto LS5;
dispatcher end;
Ll:
open seq
actionbody (open);
sv.qs := 2; return; L2: =-- such lines replace 'read(input)’

113

open end;
transact itr while input <> close
crdr sel input = credit
credit seq
.actionbody (credit);
sv.qs := 3; raeturn; L3:
credit end;
crdr alt input = debit
debit seq
actionbody (debit) ;
sv.gs := 4; return; L4:
debit end;
transact end;
close seq

actionbody(close):
sv.gs := 5; return; L5:
close end;

end account.
The following points can be made about this text:

» Although it has been been allowed in the code above, many programming
languages (for example, Pascal and Ada) do not permit jumps into control
blocks. In such cases it is necessary to 'flatten’ iterations and multiway
selections using conditional goto-statements so that a completely destructured
text is produced (a transformation rule for the flattening of while-loops was
given in Section 2.3.).

e The initial case statement (labelled dispatcher) relates integer values of the
current text pointer (sv.qs) of the process to goto-destination labels in the
process text.

* Asregards the control indirection provided by the gotos in the dispatcher, an
approach will shortly be illustrated which allows all the substantive code of a
process to be embedded directly into a case statement ;

* Incases where an implementation language fails to offer a return statement,
the effect can be simulated by inserting a jump to the end of the text of the
routine.

An alternative to the style of inversion coding illustrated above is to explicitly manipulate
the program counter of the computer (real or virtual) on which an implementation is
running. Lewis (1991) illustrates an ingenious implementation of this kind in Smalltalk-
80, which very unusually for a high level language affords direct read-write access to the
program counter of the virtual machine (Goldberg & Robson, 1983). This option is not,
however, generally available to the JSD implementor. |

Each invocation of an inverted procedure can be thought of as representing the
transition between one general state and the next, and can be seen as the execution of a
single action body. Given a DFA representation, it is straightforward to implement

114

inversion because the relationship between states, inputs and action bodies is explicit.
Below is shown the text produced by applying this approach to AccounT:
procaduré account_dfa_inverted(input: mﬁg;type:'svﬁ.av_;ype):

state renames sv.state;
case state of

1 =>
casae input of
open =>
actionbody (open) ;
state := 2
endcase;
2 =>
case input of
credit =>
actionbody (credit);
state := 2
debit =>
actionbody (debit);
state := 2
close =>
A actionbody(close):
state := 3
endcase;
- 3 =m>
case input of
eof =>
skip
endcase
endcase

end account_dfa_inverted.

This text can be obtained by making three code lcvcl transformatlons to a DFA- bascd text
for the accounT proccss : coe :

1) read statements are removed; : S .
2) aparameter is introduced to provide input at the time of pmcedurc invocation; .
3) the outermost iteration is removed (effectively, to the calling procedure). - -

The advantagcs of this approach over standard inversion coding are as follo&é:

e The transformation is realised without goto statements, making it a viable
~ approach to the implementation of JSD spwlﬁcanons in goto-less languagcs
~ such as Smalltalk-80 and occam.

* While offering the advantages of Lewis's followmap-based approach (Section
4.2) with respect to implementation in Smalltalk, it will often be superior both
in terms of space occupancy and execution time. The text will usually be
shorter because it is generated from a DFA rather than a state-suboptimal NFA,
and execution may be faster because branch conditions are implicit in the jump
table underlying the case statement, rather than explicit in the serially evaluated
guards of a multiway selection. There may also be a marginal gain over

115

standard inversion coding in execution efficiency. This derives from the saving
of indirect jumps into the program text from a initial dispatcher.

* the code produced is more amenable to further transformation — this is
demonstrated in Section 6.4; '

the code produced is more elegant and easy to understand, although this benefit
is of little importance if transformational implementation products are regarded
as 'object code'.

6.3 Context Filters

In order to preserve simplicity and to maintain a useful separation of concerns during
modelling, the JSD developer assumes that inputs to a model process will be ‘correct’.
This correctness has both syntactic and semantic aspects. The condition for syntactic
correctness is that strings of input messages will be valid life-histories as formally
described by the structure diagram of the model. Semantic correctness, on the other hand,
is more complex and is concerned with issues such as the validity of the values of action
attributes, and the accuracy with which the model reflects the true world; it is consequently
much more difficult (perhaps impossible) to formalise. This section is concerned with
Syntactic correctness. |

Context filters (Jackson, 1983) have been briefly mentioned in Chapter 4. They are
processes which receive input on behalf of model processes and ensure that it is
syntactically correct before passing it on to the model. They achieve this by comparing
each incoming action message with the current set of actions (sometimes refered to as the
context set) that the model process is prepared to accept. Should a message arrive out of
context, it is discarded, and the filter process begins a sequential search of the input stream
for the next acceptable message. This method of input validation is similar to the symbol-
skipping error recovery strategies utilised in the syntax analysis of programming languages
(e.g., Backhouse, 1979).

The context set for each state of a process is directly represented in a DFA as the set
of labels of the out-transitions from that state. Given a DFA b, it is straightforward to
construct a GSM which behaves as a context filter p* by copying and updating the
transition and effects table of b such that:

V(sestates (D), ieQD)-+

-- shadow state transition and copy input to output
(®D(s,i) # nil = --i.e.,there is a valid transition on 'i‘'

((8D' (s,1) = &D(s,1i)) A (D' (s,i) = [i])))

116

-- stay in same state and copy £ to output .
(0D(s,i) = nil = --i.e.,there is no valid transition on 'i®

((8D' (s,1) = 3)) A (' (s, 1) = [€])))

The result of applying this procedure to a DFA representing ACCOUNT is shown in Figure
6.1 (symbol skipping loops are shown in bold).

(credit|debit|close) /(€]
credit/[credit]

open/ [€]

debit/[debit]

Figure 6.1. A GSM for context filtering the input 10 ACCOUNT.

For on-line applications, the effects table of the context filter may be elaborated so as to
emit a diagnostic message on an error stream whenever a symbol-skipping transition is
taken.

An Example

Imagine that AccounTt is to be implemented as an inverted DFA-based routine (see
account_ dfa_inverted in Section 6.2) with its input filtered by a routine based on the
GSM in Figure 6.1. The text for such a filter routine would have the following form:
procedure account_dfa_filter(input:msg_type: sv:sv_typef ok:
boolean);

state renames sv.state;
case state of

1 =>
case input of
open =>
account_dfa_inverted(input,sv);
ok := true;
state := 2
otherwise =>
ok := false
endcase
2 =>

case input of

etc. - .

117

end account_dfa_filter.

A scheduler for such a system might contain the following fragment for reading input for
AccounT from the external world and passing it on to the context filter:

procedure sys_sched;

-- set up a loop controlled by 'accepted'
accepted := false;
while not accepted do
(1) get_next_action(action);
(1) get_sv(account_svdb, action.dest_id, sv);
(111). account_filter_dfa (input, sv,accepted);
if not accepted then put (context_error_msg) endif
endwhile;

end sys_sched.

Salient features of this fragment are as follows:

(i) This line is assumed to call a user-interface routine to get the next desired
action.

(i) The state vector database for ACCOUNT is accessed, obtaining the state vector
(sv) for the instance of AccounT numbered by the destination identifier field of
the action message. '

(iii) The context filter is called with the action, the sv and the accepted flag.
According to the value of accepted when the procedure returns, the scheduler
will know whether the message was successfully passed on to the model, or
whether it will need to request another action from the user.

In Section 6.5, a transformational technique is introduced which can be used to combine
communicating routines such as account_dfa_inverted and account_dfa_filter into
a single procedure.

6.4 Process Dismemberment

When implementing a JSD specification it is not always desirable to keep the entire text of a
process together. The long-running processes obtained at the specification stage may have
a conceptual life-time of several years and the text of such a process may include code
which will be executed during only a short part of that life-time. In environments where
resources are at a premium (for example in an embedded system with limited main
memory, or a busy transaction processing environment) a transformational technique

118

called dismemberment can be used to optimise code size and functional localisation
(Jackson, 1983; Cameron, 1988). Using dismemberment, it is possible to implement a
process as a number of separate pieces of program text which can be loaded and executed
separately.

In most operating environments it will be unacceptable to allocate storage and other
resources (for example, terminals or permission to access databases) to a process which
will hold them for a long period without using them. In such circumstances it may be
appropriate to dismember the process into a series of modules each of which can be
allocated resources, scheduled and executed separately. These dismemberments can be
made by-state or by-input, deriving modules to perform batch- and transaction-orientated
processing respectively. For example, by collecting all the code of a process which would
be executed on Wednesdays, say, a batch-orientated module is obtained. On the other
hand, collecting all the code which is executed on receipt of a particular message, say a
debit message, results in a transaction-orientated module. The distinction between batch
and transaction orientations should not be taken too far — sometimes a dismembered
module will deal with the processing associated with several states and several inputs.
Furthermore, it should be noted that dismembered modules need not be disjoint.

Consider the library Book example once again. The business of running an imaginary
library might be considered to have two facets: lending and stock control. Lending requires
on-line support to allow the librarians at the loans counter to track the books as they are
borrowed by members. Stock control activities, including the acquisition, classification
and disposal of books, is attended to on Wednesday afternoons, when the library closes to
the public. Stock control updates are to be made in batch mode on Wednesday night.

Figure 6.2 illustrates a possible implementation topology for the system. The vertical
stripe on the system scheduler illustrates that it is an implementation routine with no
analogue in the specification. The single bisected lines linking the pair of routines in each
module indicate a call to a dismembered routine.

System scheduler

interface g batech
manager scheduler

ook_dism_ |
lending :

ONLINE BATCH

Figure 6.2. An implementation topology for part of a Library system.

119

Suppose that the system is to be implemented in two main modules — one online and one
batch — called by an overall system scheduler (perhaps a job control script, or even a
manual routine followed by the human system operator), together with a database of state
vectors. As the counter librarians require a sophisticated user interface which will require a
large amount of code to implement, the developer has decided to dismember the Book
process so that only the code associated with loan activity is included in the on-line module.
Stock control updates are to be made in batch by a dedicated module derived from the Book
process specification by dismemberment. Below is shown the text of the on-line portion of
the BOOK process.

procedure book_dism_lending(input: msg_type: sv: s@_;ypel:
== this just handles actions 'lend renew return' :

state renames sv.state;
case state of
in_library =>
case input of
lend =>
actionbody(lend);
state := on_loan
endcase;
on_loan =>
case input of
return =>
actionbody(return)
state := in library
renew =>
actionbody (renew) ;
state := on_loan
endcase
endcase
end book_dism_lending.

Jackson (1983) illustrates the use of dismemberment for dealing with cases where an
inverted subroutine needs to be called by two or more other routines running in an
environment where subroutines cannot be shared. This can occur, for example, where the
calling routines run as separate tasks, or one of the callers is run in batch and the other is
run on-line. In such cases, it is necessary to copy the inverted routine so that it is
separately available to each caller, and to ensure the synchronisation of the execution of
each copy via shared access to the process's state-vector (which includes the text pointer).
Provision must also be made to ensure mutually exclusive state vector access. Often, for a
particular copy of a subroutine, there will be portions of code which are unreachable
because they can be activated only in response to messages which will never be sent by that
routine's caller. It is then possible to pare down the routine so that only the reachable code
portions remain. The resulting saving in code size can often be significant.

The implementation freedom afforded by JSD allows the use of an existing operating
system or a transaction monitor such as CICS to schedule dismembered modules. The

120

executions of these modules are kept in their correct temporal relationship by common
access to the process’s state vector., A CICS-like system might allow a developer to
implement a process as a set of small dismembered components and provide not only for
appropriate resource allocation but also for automatic transfer of control and resources
among them (Cameron, 1989a).

The question of appropriate use of dismemberment is not an easy one. Cameron
(1989a) cautions against indiscriminately applying dismemberment to reduce module size.
In many virtual memory environments, a large module is less likely to be swapped out than
a smaller one (Peterson & Silberschatz, 1985). It may be preferable to therefore leave a
text in a suboptimally large form, to ensure that it is readily available for execution. The
advantage of the JSD approach, when supported by suitable software tools, is that various
implementation options can be quickly generated and then tested in the actual environment.

Automation of Process Dismemberment

Given a DFA-based representation of a process, dismemberment is straightforward due to
the explicitness of the relationships among states, inputs and transitions. Below is an
algorithm which generates dismembered texts from a DFA of the type generated by subset
construction:

procedure dismember
(states:set of state; inputs:set of input;
order:({s,i}):
if order = s
then outerloop := states; innerloop := inputs
elsif order = i

then outerloop := inputs; innerloop := states
endif;
print (‘case' , outerloop , ‘'of'):
for o in outerloop do
print(o , '=>');
print ('case' , innerloop , ‘'of!'):
for i in innerloop do
print(i ,'=>");
print(y(i,s8) , *':
state := ' , §(4,s))
endfor
endfor
end dismember.

The algorithm provides a choice of input-major or state-major evaluation order, and
constructs a program to handle only those states and inputs listed. State and input based
dismemberments are available according to the chosen values of parameters. For example,
to achieve dismemberment of a DFA b, the general form of procedure call would be as
follows:

dismember(S,A,order)

121

Where the dismemberment is required by state, then s = {s} where s is the state the
module is required for, A= b and order € {i,s}. Note that it is probably better than
order = s, S0 that the outer case statement tests the state once only. For dismemberment
by input,s = states(D),A = {a} (where a is the desired input), and ordere {4, s).
Here, it is probably better than order = i, by similar reasoning to that above.
Dismemberment by state & input would be produced by

dismember({s},{a),order)

Here, s and a are as above, and order is not critical. Clearly, any other permutation of
states and inputs is also obtainable. In the absence of an obvious choice for its value,
order could be determined by the following heuristic:

(card(S) < card(A) = order = i) A

(card(S) > card(A) = order = s) A
(card(S) = card(A) = order = (i vs))

Chapter 7 describes a Smalltalk-80 implementation of this approach to dismemberment.

6.4 Network Strategies

Once the capability to dismember processes automatically has been achieved, it becomes
realistic to consider implementation strategies which make greater use of the
dismemberment transformation than would be practical with a hand-coded approach. In
particular, one can think in terms of dismembering whole networks, that is, dismembering
all the processes in a network and recombining the segments obtained into new modules.
In this way one can alter the distribution of the processing in the network so that code is
bundled into groups which see the processing of messages through from their input to the
system to their ultimate effects (as updates to the state of the system and as outputs).
Consider the simple network in Figure 6.3.

o o o=

Figure 6.3. A simple datastream network.

Assume 0LA = {wl,x1,y1l,z1}, OB = {w2,x2,y2,22]}, 0C= {w3,x3,y3,z3}. Possible
control flow patterns exhibited by an inverted implementation of this network is illustrated
in Figure 6.5. Each message in aa causes a segment of the inverted routine to be called
followed by a segment of its subordinate. So for example, the receipt by routine p of a w1

122

message will lead to the invocation of routine @ with a w2 message and ultimately routine r
with a w3 message. However, the code executed will just be the concatenation of the
components of each routine which deal with w1, w2 and w3 respectively, and none of the x,
y and z portions. The shadings in Figure 6.4 have been chosen to illustrate this visually.

Scheduler

P]
2 Y

Q QNMMMMDMNMNMNNNN e

sl Y 0

Figure 6.4. Exccution patterns in a hierarchy of inverted procedures.
On the other hand, the coding obtained from a TDFD (see Chapter 2) design has the pattern

illustrated in Figure 6.5. Each message is processed by a dedicated routine and control-
flow semantics are much more straightforward. Many implementation environments are

optimised for this configuration.

w=proc X=-proc y-proc z-proc

'
T e
s tetalatataltelty

Figure 6.5. Execution patterns in a hierarchy of conventional procedures.

While the kind of topology illustrated in Figure 6.5 may represent a desirable
implementation structure, it was argued in Chapter 2 that such a hierarchical structure is
unlikely to provide a tractable abstract description of a large system. In particular, it can be
very difficult to formulate an appropriate hierarchical structure from an analysis of the real
world, and even assuming a useful hierarchy can be discovered, it is then likely to be

123

difficult to change to accommodate drifting requirements. The network dismemberment
strategy promises to allow the software developer to benefit from the operational nature of
JSD (with the attendant advantages discussed in Chapter 2 — modelling of real world
parallelism, executability, transformability etc), while being able to derive transformational
implementations according to a ‘conventional' scheme which may be more compatible with
real-world implementation environments.

Towards an Implementation of Network Dismemberment

There will sometimes be situations where messages are passed unchanged through a
pipeline of processes. This is the case when data is validated by a context filter on behalf
of a model process, and in ensuring synchronisation of various roles of an entity (see
Section 3.2). Implementing such a pipeline by the usual inversion route will necessitate the
introduction of a procedure call to replace each of the write statements which provide input
to the datastreams in the pipeline. Between each call, very little processing will generally
be performed. Network dismemberment improves the ratio of substantive processing
statements to procedure calls by collecting the processing statements into a single
executable sequence called a transaction module.

Transaction modules can be generated by the composition of the appropriate
dismembered components of each process which contributes to the processing of a
particular action message. The resulting text is run once for each transaction. A feature of
this composition is the ability to avoid some of the procedure calls introduced when
inversion is used to implement write statements. This is done by unfolding each amenable
procedure call (Darlington, 1982), i.e., replacing the call with the code which would be
executed by the callee (see Section 2.3). Using the dismemberment facility developed in
the thesis, is it possible precisely to identify this code for a given message type. Use of
this facility is now illustrated for a simple example in which a module is developed from the
specification of Account which filters and processes credit and debit messages only
(i.e., those messages which are important to the behaviour of accounT during the greater
part of its life-time).

The first step is to convert the structure diagram for Account into a DFA. From here,
as explained in Section 6.3, a second DFA can be constructed to represent the context filter
(account_dfa_filter, Section 6.3). If the DFA-based AcCOUNT is inverted with respect
to its input (see account_dfa_inverted, Section 6.2), then the context filter will need to
write to it by means of a procedure call. The relevant portion of text of the context filter is
. obtained by applying the following transformation:

dismember(all, {debit,credit}, i}

124

This yields the following code fragment:

case input of
debit =>
account_dfa_inverted(input,sv);
ok := true;
state := 2;
credit =>
account_dfa_inverted(input,sv);
ok := true;
state := 2;
otherwise =>
ok := false;
endcase;

The calls to account_dfa_inverted can be unfolded by replacing them with the results of
the following two dismemberments of its text respectively:

dismember(all, {debit},i)
yielding
sv.balance := sv.,balance + input.amount;

and

dismember(all, {credit}, i)
yielding
sv.balance := sv.balance + input.amount:; .

In general when unfolding a procedure call in this way, the names of the actual parameters
used in a calling routine are unlikely to be the same as the names of the formal parameters
of the called subordinate routine. For example, if the message parameter of
account_dfa_inverted was called msg rather than input, then it would be necessary to
introduce assignment statements to copy the value of input in the context filter to the
corresponding variable msg in the text derived from account_dfa_inverted. This would
result in the following text:

case input of
debit =>
msg := input;
sv.balance := sv.balance - msg.amount;
ok := true;
state := 2
credit =>
msg := input;
sv.balance := sv.balance + msg.amount;
ok := true;
state = 2
other =2
ok := false;
endcase;

125

Although two procedure calls have been saved by applying the unfold transformation, two
copy statements have been needed in their place. Aho et al. (1985) describe a technique
called copy propagation which systematically renames the variable appearing on the left
hand side of a copy statement with the name of the variable appearing on the right hand side
from that point in the text onwards. This would yield the following text if applied to the
above example:

case input of
debit -5
input := input;
sv.balance := sv.balance - input.amount;
sv.state := 2
credit =>
input:= input;
sv.balance := sv.balance + input.amount;
sv.state := 2
other -
ok := false
endcase;

The two statements input :=input are redundant and can be removed using an
optimisation called dead code elimination (Aho et al., 1986).

Further investigation of network dismemberment is outside the scope of this thesis.
A simple example has been chosen to illustrate how such an approach can improve the
code-localisation of modules and save procedure calls. So far, it has been envisaged that
the user would select the individual dismemberments to be made in implementing a network
strategy. Some suggestions for an approach to the automation of this task are made in
Chapter 8.

6.7 Concluding Remarks

Although structure diagrams may be a more convenient notation for capturing regular
behaviour from an analyst's point of view (Zave, 1989, Renold, 1988b), finite automata
provide a perspective which may afford significant advantages for the implementor. This
chapter has illustrated four applications of DFA-based representations of JSD processes in
transformational implementation:

e automatic generation of goto-less inverted texts;

e automatic generation of context filters;

* automation of process dismemberment;

* an approach to network dismemberment in which each calls to an inverted
routine is replaced with the relevant dismembered portion of that routine using
an unfolding technique.

126

The first three of these uses represent significant improvements to the NFA-based work of
Lewis (1991) and provide the prerequisites for the fourth, which appears not to have been

described elsewheret.

T As of Summer 1992.

127

Chapter 7

Smalltalk-80 Implementation
of DFA-based Transformations

7.1 Overview

The algorithms described in preceding chapters have been incorporated into the first-phase
version of the PRESTIGE JSD implementor's workbench (Bass, Boyle & Ratcliff, 1991;
Ratcliff & Boyle, 1992). Like the bulk of the PRESTIGE system, the software introduced
here is implemented in the Smalltalk-80 programming language and runs on a Macintosh
platform (and, in principle, in any other environment which provides a Smalltalk virtual
machine).

The structure of the chapter is as follows. To provide orientation, an overview of the
PRESTIGE workbench is presented in the next section. Particular attention is given to the
process-level facilities of the toolkit; code generation in both untransformed and inverted
forms is described. The third section describes the facilities added to the PRESTIGE
workbench to implement the automatic generation of DFAs from process structures. The
fourth section describes the implementation of dismemberment for generating both self-
contained modules and transaction handler subtexts.

The PRESTIGE Workbench

The PRESTIGE project is an ongoing venture intended to provide software support for
JSD implementation (Bass et al., 1991). Recall from Chapter 2 that JSD is an operational
method and that implementation consists of the (automatable) transformation of an
executable abstract specification. In keeping with the operational approach, a basic
principle of the PRESTIGE philosophy is that the binding of the progressively
transformed product to its intended implementation environment should occur as late as
possible. To this end, a two-step implementation process model has been adopted.
Primary transformation first produces an intermediate form expressed in a representation
independent of the chosen target language. The intermediate form then undergoes
secondary transformations by what may be loosely termed a 'code gcﬁerator' to yield the
desired implementation. A diagrammatic representation of the overall implementation
process supported by PRESTIGE is given in Figure 7.1.

128

ABSTRACT
SPECIFICATION
DOMAIN

ABSTRACT
IMPLEMENTATION
DOMAIN

l.mtlemcluﬂol

CONCRETE
IMPLEMENTATION
DOMAIN(S)

Figure 7.1. Basic implementation process model supported by PRESTIGE (after Bass et al., 1991).

Basseral. (1991) advance the following three arguments in support of this two-stage
implementation model:

* There is a useful modularisation of 'transformational concerns' between
aspects that are quite independent of the target language and those that are
coupled to it. :

¢ Toolkit generality, flexibility and portability are enhanced. In principle, all
that is needed to customise PRESTIGE is to hook on to its primary
component an appropriate secondary code generator.

* Reusability and maintainability are supported — that is, reuse and
maintenance of specification components and intermediate products. For
example, if an existing specification is subsequently targeted at a new
environment, then it may be necessary only to transform the previously
generated intermediate form using an appropriate code generator.

Commitment to the primary-secondary transformational model has necessitated a way of
representing the products of the first transformational phase within the toolkit. This task
has been fulfilled by the use of an intermediate form called the Common Implementation
Language (CIL). CIL has twin design aims:

129

* torepresent JSD-specific implementation structures (such as inverted routines
and state vector databases) without commitment to a particular concrete
implementation environment;

* 1o be easily translatable into a variety of actual procedural languages.

CIL is not a new programming language. It is not intended to be visible to the
implementor, and is described as a 'language’ only to facilitate easy explanation of its form
and purpose. -

. To allow the developer to specify assigned operations in a way independent of a
particular programming language, a Pascal-like design language called ESTEL is provided.
The toolkit has facilities to allow the editing of ESTEL and can translate the language into a
variety of compilable codes.

Extemal 1o0ls

generation

O® @

Figure 7.2. Functional overview of PRESTIGE.

Figure 7.2 provides a functional overview of the toolkit. Its major features include a
repertoire of transformations; automatic generation of default system topologies according
to the 'knitting needle' strategy of Cameron (1986); a graphical user-interface and

130

interactive validation of the applicability of transformation decisions. The highlighted
portions of the diagram illustrate the part of the toolkit's functionality with which the
present work is concerned — that is, the process-level facilities of the toolkit.

7.2 Process-level Facilities

The PRESTIGE toolkit provides facilities for editing structure diagrams and generating
code from these diagrams as either untransformed process texts or inverted subroutines.
The code generation facilities are described by Bass er al. (1991) and Ratcliff & Boyle
(1992). The implementation of the structure diagram editor is described by Lewis (1991).

Figure 7.3 shows the hierarchical organisation of the Smalltalk classes involved in the
implementation of the process-level facilities offered by PRESTIGE.

Object "Parent of all classes in a Smalltalk system"

Abstractlanguage "Perform code generation from <ESTELConstructs>"®
Ada

StructureText

Collection
Dictionary
OperationTable "Instances store allocated operations®™

DfaCps "Instances represent JSD processes as finite automata®
ESTELConstruct "Parses assigned operations™

Model
Browser
Structure "Instances represent structure diagrams®
StructureWithComms
StructureWithFollowset "+ followset computation®
JSDProcessBrowser "+ user interface® .
ImplProcess "+ code gen. and inversion”

Node "Instances represent nodes making up <Structures>"

CodeNode " + abllity to be allocated with operations™
ItrNode

SelNode
SegNode

Figure 7.3. Hierarchical organisation of the Smalltalk classes implementing process-level facilities.
The Tree-walking Code Generation Algorithm

Basically, an exhaustive preorder walk of the structure is performed, with control structure
headers and footers being generated during the traversal as appropriate. Figure 7.4
provides a key to the notation used to explain this tree-walking approach. In this diagram,
the dashed lines represent control flow into and out of Nodes, and the textual annotations
describe in abstract terms the work performed by the algorithm at various points.

131

emit header emit footer

et bl = General
visit children 'return from children case
Leaf i & ik
nodes [

emit action body

emit alternative choice header

emit first

choice header
[X |

Selection
nodes

Figure 7.4. Control flow through nodes during tree walking code generation

Textual representations of process structures are generated by the method
code:inverted: 0 instances of ImplProcess. A graphical trace of the operation of this
method on the AccounT process is shown in Figure 7.5. The circled numbers relate points
in the traversal to emitted lines of code. A few lines require particular comment:

1&3) read statements are emitted at the beginning of the text and then immediately
after the generation of each action body;

5) the condition on an iterated subtree T is that the current input message is not a
member of FOLLOW(T).

6&10) The conditions on each branch of a selection are that the current input message
is equal to the name of the root of the respective branch.

132

ACCOUNT seq read(input);

open seq
action_body(open); read(input);
open end;
transact itr while input <> close
crdr sel input = credit
credit seq
actionbody(credit); read(input);
credit end;
crdr alt input = credit
debit seq
actionbody(debit); read(input);
debit end;
crdr end;
transact end;
close seq;

actionbody(close);

POROOOOOCO0OPOOOOOOO

close end;

@ ACCOUNT end.

Figure 7.5. Tree-walking code generation from the ACCOUNT structure.

Generation of Action Bodies

Each leaf node is asked to generate its associated action body by sending the message

generate: pLang indent: indent on: outStream transf:
invFlag opTable: exOpDict
"Generate a sequence of containing your assigned operations in
<plang>, indented <indent> spaces. Use your list of assigned

133

operations to get the code fragments from <opTable>. Invert
according to the boolean <invFlag>.Emit code on <outStream>".

This method, implemented in class Node, achieves its purpose by accessing a table of
executable operations using a list of keys describing the node's actidnbody. This table,
called the exOpDict, is an instance variable of the parent process structure, and is itself an
instance of class operationTable. Figure 7.6 illustrates a possible instantiation of
OperationTable for the ACCOUNT process.

read(input);

balance := 0;

L)

balance := balance = amount;

-
« & & = & = = & = =

2 f
2
3 balance := balance + amount;
4
]

Figure 7.6. An instantiation of OperationTable for the ACCOUNT process.

Class operationTable is implemented as a subclass of Dictionary (Smalltalk's standard
associative array class), and assuming that no transformations are to be performed, they
behave as arrays of program fragments. These program fragments are stored as ESTEL
syntax trees and can be used to generate code in a variety of programming languages
including Ada and Smalltalk.

Implementation of Inversion

operationTables can transform ESTEL read and write operations into suspend and
resume instructions for the purpose of realising inversion. The generation of inverted texts
proceeds essentially in the same tree-walking manner as above, except that the
OperationTable is asked to return read and write operations in their transformed form.
The method used to access these operations is at :trans£:, shown below:

at: index transf: trFlag
"If trFlag is false, use inherited functionality f£from
<Dictionary>"
trFlag ifFalse: [Tsuper at: index].

"Similarly, if the operation is not a read or write,
no transformation necessary"
((readSet includes: index)
or: [writeSet includes: index])
ifFalse:

[T super at: index].

134

"Consult record of implementation topology for appropriate
inversion mode, & if absent make it read inversion by default"™
transformation ¢ ImplTopology at: (super at: index)
dataStream '
ifAbsent: [transformation ¢« #RINV].

"return appropriately transformed i/o operation"
Tself at: index withTransformation: transformation

The exact substitutions to be performed depend on the implementation topology chosen by
the developer (Jackson, 1983). ’ '

(a)

(b)

Figure 7.7. (a) A network incorporating the ACCOUNT process. -
(b) A possible implementation procedure hierarchy.

If Account is embedded in the network shown in Figure 7.7(a), and is to be implemented
as part of the topology shown in Figure 7.7(b), then the messages at: 1 transf: true
and at: 5 transf: true will yield the following transformed program fragments
rcspectively: :

tp := "next label"; return;
-- next label = (number of calls to at:transf: this walk) - 1

call(Q, balance);

Appendix I provides a Smalltalk listing of the implementation of Opé. rationTable.

7.3 Implementation of DFAs

DFAs are represented in Smalltalk by the class pfaops. Instances of this class have the
following variables : name, start, tt, et, alphabet and £inals. These have the

135

meanings described in Chapter 4. - A full listing of the implementation of pfaops is given
in Appendix L

Instances of pfaops have protocol to support a variety of code generation schemes,
together with on-the-fly regular language recognition. Of the instance variables of pfaops,
two are particularly important: tt, which represents the transition function of the pfaops,
and et which represents the output function. Both tables are implemented as instances of
subclasses of TransitionTable.

tt understands two key messages concerned with state transitions:

from: aStatel to: aState2 on: action
"Build a transition from <aStatel> to <aState2> labelled
<action>"

delta: aState on: anAction
"Answer the destination state reached by accepting <anAction>
in <aState>"
These are used to construct and animate DFAs.
Regular language recognition is provided by the method

recognise: alist
"Answer whether or not you recognise <aStream>" .

This method, if passed a list of action names, will decide whether or not the list constitutes
a valid life-history of the process by simulating the behaviour of the automaton. For

example, if bookDFA is an instance of pfaops derived from the Book process then the
expression

bookDFA recognise:
(acquire classify loan return load renew renew return sell)

would evaluate to true. In Section 8.4, suggestions are made for further work in this area
with the aim of providing a rapid prototyping facility for the JSD modeller.

Subset Construction

Class 1mp1lProcess has been provided with protocol to construct DFAs using the subset
construction method. In doing so, it calls upon the following auxiliary methods:

alphabet

firstPos

followPos: aPosition
nameOf: aPosition

These have the semantics previously described in Chapters 4 and 5, and their
implementations are listed in Appendix I, together with the various subset construction
algorithms. The methods firstPos and followpos were modified from code

136

implemented by Lewis (1991) for the calculation of FIrsT and FoLLow functions (see
Chapter 3).

Below is presented the implementation of the algorithm for the construction of a
transition table for a DFA from an ImplProcess.

dfa

"transform into a dfa ﬁaing a subset construction algorithm
based on that of Aho et al. 1985"

| dStates unMarked t inPositions u tt |
tt ¢« TransitionTable new.
dStates ¢« MarkedSe; new.

"Dstates := (firstpos(root));"
dStates add: self firstPos.

"while there is an unmarked state T € Dstates do"

[(unMarked « dStates select: [:s | s marked not]) isEmpty]
whileFalse:

[t & unMarked asOrderedCollection first.

"mark(T):"”
t mark: true.

"for each input € aM do"
self alphabet do:
[:input |

"inPositions := {p € T | nameof(p) = input);"

inPositions « t select:[:p |(self nameQf: p)
= input].

inPositions isEmpty ifFalse: .
["U := U (fset € PN1 | q € inPositions A

fset = followpos(qg)}"”
u ¢« self distrUnion:

(inPositions collect: [:pos |
self followPos: pos])].

"if U # () and U ¢ Dstates
then Dstates := Dstates U({ U } endif;"
u isEmpty | (dStates hasMember: u)
ifFalse: [dStates add: u].

"Dtran[T, input] := U;"
tt from: t to: u on: input]].

TDfaops

name: self name start: 'sl' transitions: tt
effects: nil alphabet:self alphabet finals:(Set new add: #s)

The text has been commented with fragments from the pseudocode used to present the
design of this algorithm in Chapter 4 (in italics). The implementation of the general

algorithm for subset construction, allowing for operations and recognition difficulties, is
presented in Appendix L.

137

7.4 Dismemberment

Class pfaops provides the followin g instance protocol for code generation:

hardcode :
"Generate a hardcoded version of the entire DFA"

dismemberedStates: states inputs: inputs
"Generate a hardcoded version of the portion of the DFA which
includes <states> and has transitions labelled by <inputs>"

invertedDismemberedStates: states inputs: dinputs
"As above, except include appropriate code to allow the text to
be inserted into a hierarchy of inverted procedures"™

This section provides some examples of the application of these methods to JSD
specifications. The implementations are given in Appendix I.

The BooOK Process Dismembered by State

This is a straightforward application of dismemberment. Imagine that it has been decided
to implement modules to deal with three phases of the life of a book. The first is at the
beginning of its life as it is acquired, classified and made available to lenders, the second is
the active part of the life-history, during which time it is being lent, renewed and returned,
and the third is the part of its life where it is being disposed of. These three modules are
quite disjoint from a scheduling perspective — there is no need to load the code associated
with classifying a book when handling a renew message, for example. Constructing
the DFA yields a transition table which is pretty-printed by Smalltalk as follows:

TransitionTable
(s78=>
Dictionary
(swap=>s
sell=->s)
sl->
Dictionary
(acquire=->s2)
s36->
Dictionary
(outcirc->s78
lend=->s845)
s2->
Dictionary
(classify->s36)
845->
Dictionary
(return->s36
renew=->s45))

138

A TransitionTable can be understood as a map from each state to a ict ionary which
records transitions from that state on each acceptable input. The tool-generated name of
each state is made up of an initial s suffixed by a list of positions of the original tree which
can be matched from the state. Examination of the states built by the construction algorithm
shows which ones need to be included in each of the modules. These can then be
generated with the following calls:

newBook ¢
bookStructure
invertedDismemberedStates: #(sl s2)
inputs: inputs.
useBook ¢
bookStructure
invertedDismemberedStates: #(s36 s45)
inputs: inputs.
disposeBook ¢
bookStructure
invertedDismemberedStates: #(378 s)
inputs: inputs.

The code generated for book_£sm_use is shown below. To make the structural features of
the example clear, no assigned operations have been inserted into this text.

procedure book_fsm_use(input);
case state of
536 =>
case input of
outcirc =>

-- OpSs
state := s78;
lend =>
-=- Ops
state := s45
endcase;
845 =>
case input of
return =>
-~ ops
state := 336
endcase;
case input of
renew =>
-- ops
state := 845
endcase;
andcase;

end book_fsm use;

One possible scheduling strategy to exploit the dismemberment of Book described here
would be to run the modules book_£sm_new and book_£sm_dispose in batch mode

(perhaps weekly), and run the module book_£sm_use on-line. See Appendix I for listings
of the batch modules.

139

The Regular Expression (ab| a c) * da Dismembered by Input

This example is interesting because it contains both a recognition difficulty and multiple
synonymous leaves (the two cases for which Lewis (1991) was unable to cater). For
illustrative purposes, the simple operation map shown in Table 7.1 will be assumed.

position action body
pl (1)
p2 [2]
p3 [3]
pd [4]
p5 [5]
pé [6]

Table 7.1, An operation_map for ACCOUNTp,.

If a process structure representing this expression is stored in a variable regex, then a
complete text in its DFA-based form can be obtained by evaluating the following statement:

(regex dfaOpsRecogn) dismemberedStates: #all inputs: #all

The code produced is presented below:

case state of

8135 =>
case input of
d =>
[5]):
state := s56;
a =>
[save,1]:
state := s824;
endcase;
824 =>
case input of
b =>

[21:
state := s5135;
c =
[restore, 3,4]
state := s135
endcase;
st =>
case input of
a =>
[6];
state := s3; ¢
endcase;
endcase; '

As this procedure contains no goto statements, it can be directly transcribed into languages
such as Smalltalk and occam, so providing a way of implementing backtracking in these
languages. Two examples of dismembered fragments of this procedure are now described.

140

They are respectively, (i) which deals with all a inputs, and so caters for the positing of a
particular branch and also illustrates the handling of synonymous leaves; (ii) one which
deals with c inputs and so caters for the admission of an incorrect posit. The call

(regex dfaOpsRecogn)
dismemberedStates: #(s135 s24 s6) inputs: #(a)

leads to the generation of the following text:

case state of
8135 =>
case input of
a =>
[save,l1l]}:
state := s824;
endcase;
sS6 =>
case input of
a => [6];
state := 3
endcasea;
endcase;

The call

(regex dfaOpsRecogn)
dismemberedStates: #(sl135 s24 s6) inputs: #(c)

produces

case state of
824 =>
case input of
c =>
[restore, 3,4];
state := s135;
endcase;
endcase.

The ability to dismember processes which incorporate backtracking behaviour is a major
advantage of the approach taken in the thesis.

7.6 Concluding Remarks

This chapter has discussed an implementation of the ideas developed in the thesis, so
demonstrating their feasibility. These ideas have been incorporated into a version of the
PRESTIGE JSD Implementor's toolkit and have been coded in the Smalltalk-80
programming language. By way of introduction to the new transformations, salient
fcatures of the PRESTIGE environment have been discussed, including its existing code
generation and inversion facilities. A guide to the subset-construction based

141

implementation of the new dismemberment facilities has been provided, along with the
results of their execution on some examples. These examples illustrated:

« production of batch and on-line modules by state dismemberment;

+ production of an input-driven module from a structure containing both a
recognition difficulty and multiple synonymous leaves;

» production of transaction components for use in network dismemberment
implementation schemes.

Further work is ongoing to integrate these capabilities with other PRESTIGE-related work
and these are discussed in the next chapter, together with conclusions and other
suggestions for further work.

142

- Chapter 8

‘Conclusions

8.1 Re-representation as a Transformational Strategy

In a short paper, Peterson (1992) discusses a particularly powerful strategy for the solution
of S-type (fixed formalisable) problems (Lehman, 1980) such as those traditionally
discussed in the AI literature, for example the ‘eight queens' (Balzer, 1982) and
'missionaries and cannibals' problems (Rich, 1990). This strategy, known as re-
representation, involves changing the representation of a problem prior to attempting to
solve it. Figure 8.1 shows a model of the re-representation approach to problem-solving
essentially as given by Peterson, instantiated to show the links with the present work.

Introduction of new concepts ' Pre-processing
« regular languages e e = (to partial solution)
« finite sutomata « subset construction

Solution

+ dismemberment modules
* golo-less inversion

» golo-less backtracking

Figure 8.1. The approach taken in the thesis regarded as a re-representation strategy.
This work has established a generic re-representation approach to the implementation of

JSD processes. It is generic in the sense that it solves the problem of transforming the
class of syntactically well-formed process structures into a variety of implementations via

143

their re-representation as DFAs. This approach is distinct from the one taken by Cameron
(1989d) and mentioned in Chapter 1, precisely because it involves re-representation where
Cameron's does not. Given the specific goal of implementing dismemberment, it is
difficult to favour one approach over the other. It is felt, however, that the re-
representational approach presented here is more general as it offers potential support a
variety of other development activities (to be discussed in Section 8.4)

The rest of this chapter takes the following form. First, the contribution of the thesis
is summarised. Secondly, weaknesses and limitations of scope are acknowledged.
Finally, some suggestions are offered for further development.

8.2 Summary of Contribution

This work has shown how to transform JSD process specifications into finite automata
and, based on this new representation, how to effect process dismemberment and goto-
less inversion for syntactically well-formed Jackson trees. This appears to be the first
description of automated dismemberment by this method®. The only other known
description of work on the automation of dismemberment is given in a privately circulated
paper (Cameron, 1990) using a different approach.

The present work owes a debt to the doctoral thesis of Lewis (1991) which provided
the insight that (language-theoretic) follow-set representations of JSD processes could be
used to control their execution. By more deeply studying the link between JSD and the
applied formal language theory used by compiler writers, this work has been able to
address the main limitations of Lewis's work. The improvements can be summarised as
follows: '

» Far fewer states are introduced in the present approach, because rather than
identifying a unique state with each of a process's actions, the new approach
recognises some such states to be equivalent.

» By explicitly constructing transition tables for processes, the opportunity to
evaluate transitions by table-lookup or case statement has been provided. This
affords significant efficiency gains over the sequential evaluation of multi-way
selection conditions as employed by Lewis.

* Recognition difficulties can now be handled (this work appears to be the first
description of an efficient goto-less single lookahead implementation of
backtracking®).

* Multiple synonymous leaves can now be handled.

T As of Summer 1992

144

In addition to providing an implementation of the dismemberment transformation, and to
improving upon the efficiency and generality of Lewis's approach; this research has also
yielded the opportunity to support a new implementation strategy involving the
dismemberment of whole networks. The application of network dismemberment to the
generation of transaction modules dedicated to processing particular message types has
been illustrated, and the foundations have been laid for further work in this area.

8.3 Limitations - . L
Limitations are discussed in two parts: conceptual and practical.

Conceptual Limitations
The major conceptual limitation is that the approach only applies to well-formed Jackson
structures as defined by Hughes (1979). Features which the definitive J SPIJSD literature
mentions which are not therefore supported are:

» operations assigned to null nodes (e.g. Cameron, 1989);

+ operations assigned to interior nodes of structure diagrams (e.g. Jackson,
1975); :

- quits based on the values of action or cnmy attnbutcs (e.g. Jackson, 1983).

The first two of these are not felt to be serious as their effects are achievable using well-
formed trees (backtracking can be used to circumvent the null nodes problem, while
‘redundant’ sequence nodes can be used to allow the behaviours generally achieved by the
use of interior-assigned operations). The third problem seems outside the scope of this
approach. Itis closely related to exception handling, which appears difficult to cxﬁrcss in
language-theoretic terms. - -

No consideration has been given to fixed merged input, in which a pmccés aftcrnétcly
reads from two or more input streams, or to conversational constraints or controlled
datastreams.

Limitations of the Practical Work

The objective of the practical work has been simply to demonstrate the validi'tykof the
concepts developed here. Therefore integration with the user-interface and real-world code
generation facilities of the PRESTIGE system (Bass et al., 1991) has been rudimentary. In
particular, DFA datastructures are available for inspection only in a codified form, and the

145

user is required to examine the datastructure directly to decide which states to include in a
dismembered module. In addition, to simplify the design of the practical component of the
work, code is generated in an esperanto language related to Jackson structure text (Jackson,
1983) rather than an actual compilable programming language. :

8.4 Suggestions for Further Work

The current software provides a poor interface to the datastructures which represent DFAs.
An obvious future development would therefore be a DFA browser. Such a software tool
would allow the implementor to interact directly with a transition diagram to prescribe
particular dismemberments of processes (the explicit representation of states and inputs
seems to make the transition diagram a more convenient notation for considering potential
dismemberments than the structure diagram). The JSD modeller also stands to benefit from
the facility to generate automatically an alternative, more dynamic, view of an entity's
behaviour. This aspect of the browser could be enhanced further by offering a prototyping
facility based on the recognise: animation method described in Section 7.3. Using this
facility, a modeller could confirm that a particular structure diagram did indeed admit a
representative selection of life-histories, and could validate such a description with a client.

Jackson methods feature control abstractions which are not generally directly
available in programming languages (particularly inversion and backtracking), and the
Jackson implementor has therefore been required to simulate these abstractions using goto-
statements. This has meant that use of the methods in object-oriented and process-oriented
languages has been limited. Lewis (1991) shows how inversion can be achieved in
Smalltalk using a followset-based approach, and this thesis has built on his work to
improve the efficiency of the goto-less inversion transformation and also facilitate the
implementation of backtracking. There is obvious potential for integrating this work with
Lewis's to broaden the applicability of his tool. This could be undertaken within the
framework of the PRESTIGE system. The potential to implement occam systems using the
same transformations could also be explored.

Network dismemberment has been introduced in this thesis and there exists much
scope for further work to consider both the appropriate application and implementation of
the technique. Network dismemberment appears well suited to transaction processing
environments for which it could be used to generate transaction modules dedicated to
processing particular types of incoming messages. The issues requiring investigation
include the management of shared access by concurrent transactions to state Vectors,
performance trade-offs with respect to other implementation strategies (based, for example,
on inversion), and the automatic selection of dismembered process components for
inclusion in transaction modules.

146

Zave (1985) notes that certain JSD-style networks can be transformed into single
monolithic finite automata by the composition of the automaton describing each process.
These automata can then be analysed for potential deadlock or ambiguity quite simply
(deadlock risk exists when there exists a state from which there is no out-transition which
can ultimately lead to an accepting state, and ambiguity exists when there is a choice of
transitions from a single state on a given input). Furthermore, such automata should be
amenable to performance analysis if execution times are associated with the transitions
(based on the number and type of executable operations to be performed). Production of
such automata appears to be related to the automatic dismemberment of whole networks,

and could be a fruitful avenue for further investigation, if only to circumscribe the limits of
such an approach.

147

References

Agresti, W W New Paradigms for software development. Washington D.C: IEEE Computer
Society Press; 1986.

Aho, A V; Sethi, R; Ullman, J D. Campders, principles, :echmques and tools. Reading,
Mass: Addxson-Wesley, 1985.

Ale)lt{anlcllcr, H; Jones, V. Software Design and Prarogpmg using Me too. London Prentice-
a

Avison, D E. Information Systems Development: A Data Base Approach Oxford Blackwell
Smcnt:fic Publications; 1987.

Av:son, D E; Fitzgerald, G. Information systems development: methodologies, techniques
and tools. Oxford: Blackwell Scientific; 1988.

Backhousc. R C. Syntax of Programming Languages: theory and pracnce London: Prentice-
Hall; 1979.

Balzer, R. Transformational Implementation: An Example. IEEE Transactions on Software
Engineering; 1981; 7(1): 3-14.

Balzer, R; Goldman, N M. Principles of Good Specification and their Implication for
Specification Languages. Gehani; McGettrick, eds. Software Specification Techniques.
Reading, Mass.: Addison-Wesley; 1986: 25-39.

Balzer, R; Goldman, N M; Wile, D S. Operational Specification as the Basis for Rapid
Prototyping. ACM SIGSOFT Software Engineering Notes; 1982; 7(5): 3-16.

Bass, A P; Boyle, M; Ratcliff, B. PRESTIGE: a CASE workbench for the JSD implementor.
In: 13th International Conference on Software Engineering. Los Alamitos, CA: IEEE
Computer Society Press; 1991: 198-207.

Bergland, G D. A Guided Tour of Program Design Me:hadologxes Computer Magazine;
1981; October: 18-37.

Boeg;?,s ;3 g\l' ‘;12Sp:raf Model of Software Development and Enhancement. Computer 1988;

Boeilgl,lﬁ W. Software Engineering. IEEE Transactions on Computcrs, 1976 25(12) 1226—

Booch, G. Object oriented design with applications. Redwood City, CA:
Bcnjanun/Cummmgs, 1991.

Borgers, M; Munro, M. Producing Better Maintainable JSD Specifications by Grouping
Common Aspects. Software Maintenance: Research and Practice; 1990; 2: 61-80.

Borrlu;t_} ;2. Understanding and writing compilers: a do-it-yourself guide. London: Macmillan;

Boyle, J M; Muralidharan, M N. Program Reusability through Program Transformation.
- IEEE Transactions on Software Engineering; 1984; SE-10(5): 574-588.

148

Brooks, F P. No Silver Bullet - Essence and Accidents of Software Engineering. In: Kugler,
Ili Okglnltgggmﬁon Processing 86. North-Holland: Elsevier Science Publishers B.V; 1986:

Broy, M. Formal treatment of concurrency and time. McDermid, J, ed. Software Engineer's
Reference Book: Butterworth-Heinmann; 1991.

Broy, M; Wirsing, M. Methods of programming. Selected papers on the CIP-Project.
Berlin: Springer-Verlag; 1991.

Burstall, R M; Darlington, J. A transformation system for the development of recursive
programs. Journal of the ACM; 1977; 24(1): 44-67.

Cameron, J R. A Brief Description of Work in Progress on Dismemberment. Privately
Circulated; 1990.

Cameron, J R. An Overview of JSD. IEEE Transactions on Software Engineering; 1986;
12(2):222-240.

Cameron, J R. Personal Communication; 1989.

Cameron, J R. Prototyping core functionality using JSD. IEE Colloquium on Requirements
- Capture and Specification for Critical Systems'. London: IEE; 1989.

Cameron, J R. The modelling phase of JSD. Information and Software Technology; 1988;
30(6): 373-383.

Cameron, J.R. JSP and JSD: The Jackson approach to software development (second
edition). Washington: IEEE Computer Society Press; 1989.

Cangcgr;ms. 619R Mapping JSD Network Specifications into Ada. Ada User Supplement; 1987:

Cheatham, T E. Reusability Through Program Transformations. IEEE Transactions on
Software Engineering; 1984; SE-10(5): 589-594.

Chomsky, N. Syntactic Structures; The Hague; 1957

Darlington, J. Program Transformation. In: Darlington, J; Henderson, P; Turner D A, eds.

Euggg;mal Programming and its Applications. Cambndge Cambndge University Press;

Davis, R E. Runnable Specification as a Design Tool. In: Clark, K L; T#rnlund, S A. Logic
Programming. London: Academic Press; 1982.

Del\glﬁo,l 3‘7 gzrucmred Analysis and System Specification. Englewood Cliffs, NJ: Prentice-

Dijkstra, E. A Discipline of Programming. Englewood Cliffs, N.J: Prentice-Hall; 1976.

Dromey, R G; Chorvat. T A. Structure Clashes - An Alternative to Program Inversion. The
Computcr Journal; 1990; 33(2): 126-132.

Dw%i?l? %orrcspondencc about Dromey & Chorvat (1990). The Computcr Journal; 1991;

Gehani, N; McGettrick, A. Software Specification Techniques. Reading, Mass.: Addison-
Wesley; 1986.

149

Ginsburg, S. Mathematical Theory of Context-free Languages. New York: MEGraw-Hill;
1965.

Gladden, G R. Stop the life cycle, I want to get off. ACM Software Engineering Notes;
-. 1982; 7: 35-39.

Godwin, A'N; Gore, M B; Salt, D W. A Comparison of JSD and DFD as Descriptive Tools.
The Computer Journal; 1989; 32(3): 202-211.

Goguen, L A; Meseguer, J. Rapid Prototyping in the OBJ Executable Specification
Language. ACM SIGSOFT Software Engineering Notes; 1982; 7(5): 75-84.

Goldberg, A; Robson, D. Smalltalk-80: The Programming Language and":'rs Impfemen:a:ian.
Rcadmg. Mass.: Addison-Wesley.

Goldsmith, M. occam Transformation at Oxford. In: Muntcan.T Proceedings of the 7th
occam User Group Technical Meeting. Grenoble; 1988; OUG-7.

Gomaa, H A. A software design method for real-time systems Commumcanons of the
ACM; 1984; 27(9): 938-949.

Hall, A. Keynote Address. 13th International Conference on Software Engineering; Ausun
TX. Los Alamitos, CA.: IEEE Computer Society Press; 1991.

Harrison, W; Magel, K 1. A complexity measure based on nesting Ievel ACM Slgplan
Notices; 1981; 16: 63-74.

Henderson, P. Functional Programming, Formal Specifications, and Rap:d Prororypmg.
IEEE Transactions on Software Engineering; 1986; SE-12(2). '

Henderson, P. Functional Programming: Application and Implemenmnon London
Prentice-Hall; 1980.

Hoa;'g.sc A R. Communicating Sequential Processes. Englcwood CIiff. s, N.J Prcnt:cc-Hall
5

Hoare, C A R. Pragrammg Sorcery or Science? IEEE Software; 1984; 1(2) 5-16.

Hopcroft, J E; Ullman, J D. Formal Languages and The:r Relation to Automata. Readmg,
Mass.: Addison-Wesley.

Hughes, J W. A Formalization and Explication of the Michael Jackson Method of Program
Design. Software - Practice and Experience; 1979; 9: 191-202.

Hull, M E C; McKeag, R M. Concurrency in the Design of Data Processing Systems. The
Computer Journal; 1984; 27(4).

Hull, M E C; ODonogue, P G; Hagan, B J. Development methods for real-time systems.
Computcr Journal; 1991; 34(2) 164-72.

Jackson, M A. Information Systems: Modelling, Sequencing and Transformations. In;
Pmcccdmgs of International Conference on Software Engineering. Washington, D.C.:
- IEEE Computer Society Press; 1978.

150

‘Jackson, M A. JSD Modelling: Some Underlying Ideas and their Relationship to Object-
Orientation and Data Modelling. In: Jackson, M S. Proceedings of the seminar series on
new directions in software development. Wolverhampton: The Polytechnic
Wolverhampton; 1988; 1: 1-8.

Jackson, M A. Principles of Programming Design. London: Associated Press; 1975.
Jackson, M A. System Development. Englewood Cliffs, N.J: Prentice-Hall; 1983.

Jones, % B. Systematic Software Design Using VDM. Englewood Cliffs, NJ: Prentice-Hall;
1986.

Kato, J; Morisawa, Y. Direct Execution of a JSD Specification. In: Proceedings of 11th
COMPSAC. Washington, D.C.: IEEE Computer Society Press; 1987.

King, D. Creating Effective Software (Computer Program Design Using the Jackson
Methodology): Yourdon Press (Prentice-Hall); 1988.

King, M J; Pardoe, J P. Program Design Using JSP. New York: Macmillan; 1985.

Laurier, J L. Problemsolving and Artificial Intelligence. Englewood Cliffs: Prentice-Hall;
1990.

Lehman, M M. Programs, life cycles and laws of software evolution. Proc. IEEE Special
Issue on Software Engineering; 1980: 1060-1076.

Lehman, M M. Software engineering, the software process and their support. Software
Engineering Journal; 1991; 6(5): 243-258. '

Lewis, C T. The Realisation of JSD Specifications in Object Oriented Languages Doctoral
Thesis: The University of Aston in Birmingham; 1991.

Lientz, B; Swanson, E B. Software Maintenance Management. Reading, Mass.: Addison-
Wesley; 1980.

Liskov, B; Guttag, J. Abstraction and Specification in Program Development. Cambndgc
Mass: The MIT Press; 1986.

McCracken, D D; Jackson, M A. A Minority Dissenting Position. In: Cotterman W W, ed.
Systems Analysis and Design - A Foundation for the 1980's. New York: Elseview -
North-Holland; 1981: 551-553.

McCracken, D D; Jackson, M A. Life-cycle concept considered harmful. ACM Software
Engineering Notcs April 1982: 29-32.

McCulloch, W §; Pitts, W. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics; 1943; 5: 115-133.

Mcl.‘l)ggrllid, J. Software Engineer’s Reference Book. London: Butterworth-Heinemann;

Milner, R. A Calculus of Communicating Systems. New York: Springer; 1980.
Minsky, M. Computation: finite and infinite machines. London: Prentice-Hall; 1967.

Neilson, K W; Shumate, K. Designing large real-time systems with Ada. Communications
of the ACM; 1987; 30(8): 695-715.

151

Nicholls, D. Introducing SSADM — The NCC GUIDE. Manchester: NCC Publications;
1987.

Pamas, D L. On the Criteria To Be Used in Decomposing Systems into Modules. -
Communications of the ACM; 1972; 15(12): 1053-1058.

Parnas, D L; Clements, P C. A Rational Design Process: How and Why to Fake It. IEEE
Transactions on Software Engineering; 1986; SE-12(2): 251-257.

Partsch, H; Steinbriiggen, R. Program Transformation Systems. ACM Computing Surveys;
1983; 15(3): 199-236.

Partsch, H. Specification and Transformation of Programs: A Formal Approach to Software
Development; Springer-Verlag; 1991.

Peterson, D. Three Cases of Re-representation in Problem-solving. Cognitive Science
Research Group, Univ. Birmingham.

Poo, C C D. Representing Business Policies in the Jackson System Development Method.
The Computer Journal; 1991; 34(2): 122-131.

Ratcliff, B. An inversion capability for the PRESTIGE workbench; some basic issues. In:
Proceedings of COMPSAC 14. Los Alamitos, CA: IEE Computer Society Press; 1990:
623-8.

Ratcliff, B. Software Engineering: Principles and Methods: Blackwell Scientific, 1987.

Ratcliff, B; Boyle, M. The PRESTIGE Workbench: CASE Support for the Implementation
Phase of JSD: Submitted for Publication.

Rayward-Smith, V J. A first course in formal language theory. Oxford: Blackwell Scientific;
1983.

Rayward-Smith, V J. Language Theory. McDermid, J, ed. Software Engineer's Reference
Book: Butterworth-Heinmann; 1991.

chgzch)ﬂ.sl):gigning a Music Synthesizer with the JSD Method. Scientia Electrica; 1988a;

chg}‘cz.zgk.s.ligkson System Development for Real Time Systems. Scientia Electrica; 1988b;

Rich, E. Artificial Intelligence. New York: McGraw-Hill; 1990.

Rockstrom, A; Saracco, R. SDL—CCITT specification and Description Language. IEEE
Transactions on Communications; 1982; . COM-30(6): 1310-1318.

Roper, M; Smith, P. A Structural Testing Method for JSP Designed Programs. Software -
Practice and Experience; 1987; 17(2): 135-157.

Roscoe, A W; Hoare, C A R. The Laws of Occam Programming. Oxford University
?gsr%ngtﬁrg %gl))oratory, Programming Research Group, Technical Monograph;

Roscoe, A.W. & Dathi, N. The Pursuit of Deadlock Freedom. Oxford University

Computing Laboratory, Programming Research Group, Technical Monograph; 1986;
(PRG-57).

152

Rose, J. A New Rigorous Approach for Modelling and Refining Concurrent Behaviour in
JSD Specifications. Structured Programming; 1992; (13): 11-21.

Royce, W W. Managing the Development of Large Software Systems: Concepts and
Techniques. In: Proc. Wescon; 1970.

Sanden, B. An Entity-life modeling approach to the design of concurrent software.
Communications of the ACM; 1989; 32(3): 330-343.

Sanden, B. Systems Programming with JSP: Chartwell-Bratt; 1985.

Sanders, J W. An Introduction to CSP. Oxford University Computing Laboratory,
Programming Research Group, Technical Monograph; 1988; (PRG-65).

Schneidewind, N F. The state of software maintenance. IEEE Transactions on Software
Engineering; 1987; 13: 303-310.

Sommerville, I. Software Engineering. Reading, Mass.: Addison-Wesley; 1991.

Sridhar, K T; Hoare, C A R. JSD expressed in CSP. Oxford University Computing
Laboratory, Programming Research Group, Technical Monograph; 1985; (PRG-51).

Storer, R. Data-driven software design using inversion. Information and Software
Technology; 1988; 30(2): 99-107.

Storer, R. Practical Program Development using JSP: Blackwell Scientific; 1987.
Sutcliffe, A. Jackson Systems Development. Englewood Cliffs, N.J.: Prentice-Hall; 1988.

Sutcliffe, A; Wang, L. Integrating Human Computer Interaction with Jackson System
Development. The Computer Journal; 1991; 34(2): 132-142,

Swartout, W; Balzer, R. On the Inevitable Intertwining of Specification and Implementation.
Communications of the ACM; 1982; July: 551-553.

Turner, D. An Overview of Miranda. ACM SIGPLAN; 1986; 21(12).

Warhurst, R; Flynn, D. Validating JSD specifications by executing them. Information and
Software Technology; 1990; 32(9): 598-612.

Wilson, A D. Programs to Process Trees, Representing Program Structures and Data
Structures. Software - Practice and Experience; 1984; 14(9): 807-816.

Yeung, W L; Smith, P; Topping, G. A formalisation of Jackson System Development. In:
Third International Conference on Software Engineering for Real Time Systems.
London: IEE: 31-9.

Yourdon, E N; Constantine, L L. Structured Design: Fundamentals of a Discipline of
Computer Program and System Design. Englewood Cliffs, N.J: Prentice-Hall; 1979.

Zave, P. An insider’s evaluation of PAISLey. IEEE Transactions on Software Engineering;
1991; SE-17(3): 212-25. ’

Zave, P. An Operational Approach to Requirements Specification for Embedded Systems.
IEEE Transactions on Software Engineering; 1982; 8(3): 250-269.

Zave, P, Personal Communication; 1991b.

153

Zave, P. The operational versus the conventional approach to sofiware development.
Communications of the ACM; 1984; 27(2): 104-118.

Zave, P; Jackson, D. Practical specification techniques for control-oriented systems. In:
Ritter, G X. Information Processing '89. Proceedings of the IFIP 11th World Computer
Congress. Amsterdam: North-Holland; 1989.

Zave, P; Schell, W. Salient Features of an Executable Specification Language and Its
Environment. IEEE Transactions on Software Engineering; 1986; SE-12(2): 312-325.

154

Appendix I
Smalltalk listings of subset construction algorithms
and related code

'From Smalltalk-80, Version 2.3 of 13 June 1988 on 3 June 1992 at
5:13:05 pm'

ImplProcess methodsFor: 'subset construction'

actionBody: aPosition
self leaves: [:aleaf | aleaf position = aPosition
ifTrue:
[(TalLeaf exOps printString]].

T

alphabet
| alpha |
alpha ¢« Set new. ')
self leaves: [:aleaf | alpha add: aleaf nodeName].

Talpha

dfa
"transform into a dfa using a subset construction algorithm

based on that of Aho et al., 1986"

| dStates unMarked t positionsForInput u tt |
tt « TransitionTable new.
dStates ¢« MarkedSet new.
dStates add: self firstPos. o
[(unMarked ¢ dStates select: [:3 | s marked not]) isEmpty]
whileFalse:
[t & unMarked asOrderedCollection first
t mark: true. :
self alphabet do:

[:input |
positionsForInput « t select: [:p | (self nameOf: p)
= input].
positionsForInput isEmpty
ifFalse:
[positionsForInput size > 1
ifTrue: [self error: 'recognition
difficulty']
ifFalse:

[u & self followPos:

positionsForInput asOrderedCollection first].
u isEmpty | (dStates hasMember: u)
ifFalse: [dStates add: u].
tt .
from: t to: u on: input]l]. X

Tet

155

dfaOps
"transform into a dfa using a subset construction algorithm
based on that of Aho et al. 1986"

| dStates unMarked t positionsForInput u tt et |
tt « TransitionTable new.
et ¢ TransitionTable new..
dstates _ MarkedSet new.
dStates add: self firstPos.
[(unMarked « dStates select: [:s | s marked not]) isEmpty]
whileFalse:
[t & unMarked asOrderedCollection first.
t mark: true. self halt.
self alphabet do:
[:input | : :
positionsForInput « t select: [:p |
input , '*' match: (self nameOf: p)].
positionsForInput isEmpty
ifFalse:
[positionsForInput size > 1
ifTrue: [self error: ‘'recognition
difficulty’']
ifFalse:
[u « self followPos:
positionsForInput asOrderedCollection
first].
u isEmpty | (dStates hasMember: u)
ifFalse: [dStates add: u].
tt
from: t
to: u
on: input.
et
from: t
perform: (self actionBody:
positionsForInput asOrderedCollection
first) ' |
on: input]]].
T DfaOps
name: 'D' start: 'sl' transitions: tt effects: et alphabet:
self alphabet finals: 's'

156

dfaOpsRecogn

| dStates unMarked t positionsForInput u tt et positTable
effect admitseq positPos admitPos alphabet |

alphabet ¢« self alphabet reject: [:name | ‘'*btr' match:
name] . :

tt « TransitionTable new.

et « TransitionTable new.

positTable ¢« Dictionary new.

dStates ¢« MarkedSet new.

dStates add: self firstPos.
admitseq ¢« 'restore '. effect « '',
[(unMarked ¢« dStates select: [:s | s marked not]) isEmpty]
whileFalse:
[t &« unMarked asOrderedCollection first.
t mark: true,
alphabet do:
[:input |
positionsForInput ¢« t select: [:p |
_ input , '*' match: (self nameOf: p)].
' positionsForInput isEmpty
ifFalse:
[positionsForInput size > 1
ifTrue:

"-- recognition difficulty branch

[u & self distrUnion:

(positionsForInput collect: [:pos | self followPos:
pos]).
positPos ¢« positionsForInput asSortedCollection first.
admitPos ¢« positionsForInput asSortedCollection last.
positTable at: u put: .

(self followPos: positPos).

effect « 'save' , (self actionBody: positPos).
admitseq ¢« admitseq , (self actionBody: admitPos) printString]

ifFalse:

"-=- no recognition difficulty branch

[p &« positionsForInput asOrderedCollection first.
u ¢« self followPos: p.
effect « self actionBody: p.
"check if a recognition difficulty can be resolved"”
(positTable keys includes: t)
ifTrue:
[((positTable at: t) includes: p)
ifFalse: [effect ¢« admitseq , effect]]].

" -- update dStates, transition table and effects table ====== =

u isEmpty | (dStates hasMember: u)
ifFalse: [dStates add: u].
tt from: t to: u on: input.
et from: t perform: effect on: input]]].
Tpfaops
name: self name start: 'sl' transitions: tt
effects: et alphabet: self alphabet finals: 's'

157

distrUnion: 1listOfSets
| uSet |
uSet ¢ MarkedSet new.
listOfSets do: [:set |
set do: [:elem | uSet add: elem]].
Tuset

firstPos
Tself className followMap at: #first

followPos: aPosition
Tself className followMap at: aPosition

nameOf: aPosition
self leaves:
[:aLeaf | aleaf position = aPosition ifTrue: [TalLeaf
nodeName]]

Smalltalk listings of Class pfaops
including dismemberment code generation
and direct life-history recognition

'From Smalltalk-80, Version 2.3 of 13 June 1988 on 3 June 19592 at
5:12:42 pm"

Object subclass: #DfaOps
instanceVariableNames: 'name start transitions effects alphabet
finals !
classVariableNames: ''
poolDictionaries: "'
category: 'JSD-Implementation’

DfaOps methodsFor: ‘'initialization'

name: n start: s transitions: t effects: e alphabet: a final
s: £

name ¢ n.

start « s,

transitions « t.

effects « e.

alphabet « a.

finals « £

DfaOps methodsFor: ‘'code generation'

dismemberedStates: states inputs: 4inputs
| code |
code &« '',
states do:
[:state |
code ¢« code , ' if state = ' , state , ' then

(transitions at: state)

associationsDo: [:assoc |
(inputs includes: assoc key) ifTrue:

158

[code & code , if input = ' , assoc key

then ' ,
((effects at: state) at: assoc key) printString ,
state := ' , assoc value , '
endif;
$ 111.
Tcode , !
endif;"’

159

hardcode
| code |

code ¢ 'case state of
' -

transitions
keys asSortedCollection do:
[:state |
code &« code , state , ' =>

(transitions at: state)
associationsDo: [:assoc | code ¢« .code , ' if
input = ' , assoc key , ' then
|]
r
((effects at: state) at: assoc key) printString , *
state := ' , assoc value , '
endif;
' 11.
Tcode , 'endcase;'

DfaOps methodsFor: ‘recognition'

recognise: alist

"Answer whether or not you recognise <aStream>"

| state currentSym aStream | :

aStream ¢ ReadStream on: aList from: 1 to: alList size.

state « #sl.

currentSym ¢ aStream next.

[currentSym = #eof] whileFalse:
[state « transitions delta: state on: currentSym.
currentSym ¢« aStream next].

Tstate = #s

Mo e - e me oo o e oe == - - == me e me == m= W

DfaOps class
instanceVariableNames: '!

DfaOps class methodsFor: 'instance creation'

name: n start: s transitions: t effects: e alphnbaf:_n final
s: £

T (super new)

name: n start: s transitions: t effects: e alphabet: a finals:

Smalltalk listings of Class operationTable

From Smalltalk-80, Version 2.3 of 13 June 1988 on 10 June 1992 at
11:10:18 am

Dictionary variableSubclass: #OperationTable :
instanceVariableNames: 'readSet writeSet lastLabel firstRead
noTransformation
classVariableNames: '!
poolDictionaries: 'PrestigeConstants !
category: 'PRESTIGE-Support'

160

OperationTable methodsFor: 'accessing!

at: index put: statement
| possiblelIQOstmt |

statement isNil ifTrue:

[super at: index put: statement.
T self).

(possibleIOstmt ¢-statement reduceToSingleIO) isNil
ifTrue: ‘

[super at: index put: statement.
T self)
ifFalse:

[super at: index put: possiblelOstmt.

"If statement is a read or write,

add index to the appropriate set"

(possibleIOstmt isMemberOf: ESTELreadOp)
ifTrue: [readSet add: index].

(possibleIOstmt isMemberOf: ESTELwriteOp)
ifTrue: [writeSet add: index]])

at: index transf: trFlag
"This operation returns the code fragment at i, transformed
as appropriate. Information necessary to decide on any
transformations to be performed is obtained by inspecting
the relevant #DatastreamTable and #TransformationContract"™
| transformation |

trFlag ifFalse: [“super at: index].

"If the operation is not a read or write,
no transformation necessary"
((readSet includes: index)
or: [writeSet includes: index])
ifFalse:

[T super at: index].

“Cdnsult datastream table for transformation, if absent make it
read inversion by default"

"transformation « #TT at: (super at: index) dataStream
ifAbsent: [transformation ¢ #RINV]."™

Tself at: index withTransformation: #RINV

operationlList

"Produce a sorted list of the textual form of each operation
for use in a ProcessStructure browser"

| list |
list ¢« OrderedCollection new.
(operations keys) asSortedCollection do: [:op |

list add: ((op printString) , ' : ' , ((operations at: op)
codeString))].

Tlist
OperationTable methodsFor: ‘private’

at: 4index withTransformation: transformation

"choose and call relevant method for transforming a rquested
operation™

161

(readSet includes: index)
ifTrue:
[transformation - #RINV i1fTrue: [(Tself
readInvertedRead].
transformation = #WINV ifTrue:
[Tself writeInvertedRead: index]].
(writeSet includes: index)
ifTrue:
[transformation = #RINV ifTrue:
[Tself readInvertedWrite: index].
transformation = $WINV ifTrue: (Tself
writeInvertedwrite]].
"else"
self error: 'Transformation falled: select debug'

dete:minondadaroruarga: aString

((PrestigeConstants at: #JSDdBase) at: #TableMerges)
associations do: [:each | each key asSymbol = aString asSymbol
ifTrue:

[Teach value descriptor reader]]

readSet: rs writeSet: ws lastlabel: 11 firstRead: €£r
noTransformation: nt

readSet & rs.

writeSet ¢« ws.

lastLabel « 11,

firstRead ¢« fr.

noTransformation ¢« nt

OperationTable methodsFor: 'transforming’

dispatcherIn: plLang

"Source code for jumping to the current text pointer of the
inverted

process. This is inserted at the start of the text of an
inverted

subroutine"

T'Goto L(SV.TP); L(1):'

readInvertedRead
"Answer the code which ensures that the process will
wait for the data it requires. If this is the first read,
answer the empty string and change the firstRead flag
to false. firstRead is set to true by calling initFlags"
"Smalltalk browseAllImplementorsQf: #initFlags"™

firstRead
ifTrue: '
[firstRead ¢« false.
Tut]
ifFalse: [TESTELWaitForData new label: self nextLabell
readInvertedWrite: op
"Answer the code which ensures that the process will
call its reader with the data it requires"

| statement callee dest |
statement ¢ self at: op.

162

dest ¢« ((JSDdBase at: #TableDSs)
at: statement dataStream token asJSDString)
descriptor destination.
(dest at: 1)
ifTrue: ["MERGE, so find its reader and put its name in
callee"”
callee ¢« self determineReaderOfMerge: (dest
copyReplaceAll: 'MERGE ' with: '')]
ifFalse: (["non-merge so put destination name in callee
stripped of the :
'PROCESS ' prefix"
callee «dest copyReplaceAll: 'PROCESS ' with: ''].
(callee sameAs: '"PROCESS')
ifTrue: ["implementation mode is external write"
T statement]
ifFalse: ["implementation mode is inverted call"®
T (ESTELCallWithData new) callee: callee; recordName:
statement record; datastream: statement dataStream token]

withTransformation
noTransformation ¢« false

writeInvertedRead: op
"Answer the code which ensures that the process will
call its writer for the data it requires™

| statement |
statement ¢« self at: op.
T (ESTELCallForData new)
callee: ((JSDdBase at: 'Data-Streams')
at: statement dataStream asUppercase asJSDString) writer;
recordName: statement record

writeInvertedWrite
"Answer the code which ensures that the process will
wait with the data its reader requires"”
TESTELWaitWithData new label: self nextLabel
OperationTable methodsFor: 'label generation'

nextLabel
TlastlLabel ¢ lastlLabel + 1

OperationTable methodsFor: 'initialization'

initialize
self do: [:c | self removeKey: c].
readSet ¢« Set new. "indices of read statements"
writeSet ¢ Set new. "indices of write statements"™
self initFlags "label for suspend points and first
read"

OperationTable methodsFor: 'enumerating'

collect: aBlock
operations collect: aBlock

OperationTable methodsFor: 'removing'

removeKey: aKey

163

"remove the reference to the operation at key. Remove any
occurence of key in the read or write sets"

readSet remove: aKey ifAbsent: [].
writeSet remove: aKey ifAbsent: [].
super removeKey: aKey

OperationTable methodsFor: ‘growing’

grow

"Increase the number of elements of the collection. This needs
to be overridden because Dictionary|grow doesn't allow for the
copying

of extra instance variables which may have been added by

subclasses."

| newSelf |

newSelf ¢ self species new: self basicSize + self growSize.
self associationsDo: [:each | newSelf noCheckAdd: each].
newSelf

readSet: readSet

writeSet: writeSet

lastLabel: lastlabel

firstRead: firstRead

noTransformation: noTransformation.
self become: newSelf

Ve e e = e ow me wmEm S S W @S S wm me e wme e N

OperationTable class
instanceVariableNames: '

OperationTable class methodsFor: 'instance creation'

naw
Tsuper new initialize

164

Appendix II

Examples of dismemberment generated by the software
described in the thesis

The Book process dismembered by state

This is a straightforward application of dismemberment. Imagine that it has been decided
to implement modules to deal with three phases of the life of a book. The first is at the
beginning of its life as it is acquired, classified and made available to lenders, the second is
the active part of the life-history, during which time it is being lent, renewed and returned,
and the third is the part of its life where it is being disposed of. These three modules are
quite disjoint from a scheduling perspective — there is no need to load the code associated
with c1ssifying a book when handling a renew message, for example. Constructing the
DFA yields the following Smalltalk-generated transition table:

TransitionTable
(s78=>
Dictionary
(swap->s
sell=->s)
sl->
Dictionary
(acquire->s2)
836->
Dictionary
(outcirc=->s78 ’
lend->s45)
82=->
Dictionary
(classify~>s36)
845->
Dictionary
(return->s36
renew~>s45))

The tool-generated name of each state is made up of an initial s suffixed by a list of
positions of the original tree which can be matched from the state. Examination of the
states built by the construction algorithm shows which ones need to be included in each of
the modules. These can then be generated with the following calls:

newBook ¢«
bookStructure
invertedDismemberedStates: #(sl s2)
inputs: inputs.
useBook ¢
bookStructure
invertedDismemberedStates: #(s36 s45)
inputs: inputs.
disposeBook ¢
bookStructure
invertedDismemberedStates: #(s78 s)
inputs: inputs.

165

The code generated for each of these modules is shown below. To make the structural
features of the example clear, no assigned operations have been inserted into this text.

procedure book_fsm_new(input);
case state of
81 =>
case.input of
acquire =>
-= Oops
state := s2
endcase;
82 =>
case input of
classify =>
-= ops
state := s36
endcase;
endcase;
and book_fsm_new;

procedure book_fsm use(input);
case state of
836 =>
case input of
outcirc =>
-=- Ops
state := s78;
lend =>
-- OpSs
state := 845
endcase;
S45 =>
case input of
return =>
-=- ops
state := 336
endcase;
case input of
renew =>
-=- ops
state := s45
endcase;
endcase;
end book_£fsm use;

procedure book_fsm_dispose (input);
case state of
878 =>
case input of
swap =>
-=- ops
state := s
endcase;
case input of
sell =>
~-=- ops
state := s
endcase;
endcase;
end book_fsm dispose;

166

- One possible scheduling strategy to exploit this dismemberment would be to run the

modules book_£sm_new and book_£sm_dispose in batch mode, and run the module
book_£sm_use on-line.

Purchase Order Problem dismembered by state

The Purchase Order Problem is discussed by Cameron (1988). Inspection of the transition
table produced by subset construction shows that the approach taken in the thesis
automatically derives the state-based partitioning recommended by Cameron. Below is
listed a Smalltalk-generated textual repesentation of the transition table:

TransitionTable
(s4561213=->
Dictionary
(i->s
n->s4561213
0->s4561213
p->87891011
h=>s)

s7891011~>
Dictionary
(y->s4561213
v=>84561213
w=>37891011
z->s4561213
x->s7891011)

' s123->
Dictionary
(j=>s123
k=>8123
c->84561213)
s->
Dictionary())

The three modules suggested by Cameron prescribe the behaviour of the process in each of
the three states s123 (M1), s4561213 (M2) and 57891011 (M3). These states can then be
generated with the following calls:

ml «
popStructure
invertedDismemberedStates: #(s123)
inputs: #all.
m2 ¢«
popStructure
invertedDismemberedStates: #(s4561213)
inputs: #all
m3
popStructure
invertedDismemberedStates: #(s7891011)
inputs: #all

The outline code for each of these modules, as generated by the tool, is as follows:

167

procedure M1l_s123(input, state):
case input of
.
-- ops
state := 5123
k =>
-- ops
state := 5123
c =>
-- ops
state := 54561213
_ endcase;
end Ml_s123;

procedure M2_s7891011 (input, state);
case input of
Y >
-= OpS
state := 34561213
v =>
-- ops
state := 54561213
W o=
-=- OpSs
state := 357891011
zZ =>
-= ops
state := 34561213
X =>
-= OpSs
state := 87891011
endcase;
end M2_s7891011;

procedure M3_s4561213 (input, state);
case input of
i =>
-=- ops
state := s
n =>
-- ops
state := 354561213
o =
-- ops
state := 34561213
p =>
-= OpS3
state := 37891011
h =>
-=- ops
state := g
endcase;
end M3_s4561213;

The regular expression (ab| a c) * da dismembered by input

This example is interesting because it contains both a recognition difficulty and multiple
synonymous leaves (the two cases for which Lewis (1991) was unable to cater). For
illustrative purposes, the following operation table will be assumed:

168

{1 -11), 2= 102], 3= 1([3], 4= [4), 5= [5], 6 = [6])

If a process structure rcgzcscnting this expression is stored in a variable regex, then a
complete text in its DFA-based form can be obtained by evaluating the following statement:

(regex dfaOpsRecogn) dismemberedStates: #all inputs: #all

The code produced is presented below:

case state of

8135 =>
case input of
d =>
[51:
state := 36;
a =>
[save,1]:
state := s24;
endcase;
824 =>
case input of
b =>
[21:
state := s135;
c =>
[restore, 3,4]
state := s135
endcase;
s6 =>
case input of
a =>
[61:
state := s3;
endcase;
endcase; "'

Two dismembered fragments are shown below. They are respectively, (i) which deals
with all a inputs, and so caters for the positing of a particular branch and also illustrates the
handling of synonymous leaves; (ii) one which deals with c inputs and so caters for the
admission of an incorrect posit. The call

(regex dfaOpsRecogn) dismemberedStates: #(s135 s24 s6) inputs:
#(a)

leads to the generation of the following text:

case state of
8135 =>
- case input of
a =>
[save,l]:
state := 824;
endcase;
86 =>
case input of
a => [6];

169

state := s
endcase;
endcase;

The call

(regex dfaOpsRecogn) dismemberedStates:
#(c)

produces

case state of
824 =>
case input of
c =>
[restore, 3,4);
state := s135;
endcase;
endcase.

170

#(s135 s24

s6)

inputs:

