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Summary

This thesis describes a novel connectionist machine utilizing induction by a Hilbert
hypercube representation. This representation offers a number of distinct advantages which
are described. We construct a theoretical and practical learning machine which lies in an area
of overlap between three disciplines - neural nets, machine learning and knowledge
acquisition - hence it is refered to as a "coalesced" machine. To this unifying aspect is added
the various advantages of its orthogonal lattice structure as against less structured nets. We
discuss the case for such a fundamental and low level empirical learning tool and the
assumptions behind the machine are clearly outlined.

Our theory of an orthogonal lattice structure the Hilbert hypercube of an n-
dimensional space using a complemented distributed lattice as a basis for supervised learning
is derived from first principles on clearly laid out scientific principles. The resulting
"subhypercube theory" was implemented in a development machine which was then used to
test the theoretical predictions again under strict scientific guidelines. The scope, advantages
and limitations of this machine were tested in a series of experiments.

Novel and seminal properties of the machine include: the "metrical”, deterministic
and global nature of its search; complete convergence invariably producing minimum
polynomial solutions for both disjuncts and conjuncts even with moderate levels of noise
present; a learning engine which is mathematically analysable in depth based upon the
"complexity range" of the function concerned; a strong bias towards the simplest possible
globally (rather than locally) derived "balanced" explanation of the data; the ability to cope
with variables in the network; and new ways of reducing the exponential explosion.
Performance issues were addressed and comparative studies with other learning machines
indicates that our novel approach has definite value and should be further researched.

Keywords: Learning, connectionist, Hilbert hypercube, subhypercube, minimum
polynomials.
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PREFACE

Of what value is this book?

Every author would like the reader to sit back and entertain the author’s
perspective on things for a while. That is the joy of books. In some research work the
value is mainly in the experiments performed and results obtained. In other research work
the value is mainly in the mathematical proofs and rigour employed. In the case of this
thesis, the author asks the reader to consider the following observation.

"Imagination is more important than knowledge.”

Albert Einstein
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Plates
Constructed Hypercube Models.

Plate 1: H1, Line; H2, Square.

Plate 2: H3, Cube.
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CHAPTER 1

Introduction

1.1 A BRIEF HISTORY OF LEARNING.

It has been something of a surprise to find that computers have proved to be
excellent at things that we find difficult, and unacceptably poor at things that we do
effortlessly. The subject of Artificial Intelligence or Al has attempted to redress this latter
deficiency. In attempting to make progress with the conceptually difficult subject of Al, one
aspect of intelligence is intuitively felt by most researchers to be crucial, namely learning.
The great variety of extant learning machines have been developed within the historical
context of a war between antagonistic tendencies, called symbolic and non-symbolic or

connectionist.

1.1.1 The First Connectionist Period.

In the 1940’s biological nerve cells or “neurons’” were seen as the apotheosis for a
series of simple abstractions or elementary “neural networks” by interconnecting simulated
biological neural elements. In 1949 a psychologist, Hebb produced a classic book called
“The Organization of Behaviour” (Hebb, 1949).

The basic idea was that networks of neurons learn by constructing internal
representations of concepts, that is, that “connections between mechanisms rather than the
connections between symbols will ultimately explain psychology”. Further Hebb held that
when two cells involving a single synapse are active together then learning takes place.

These two assumptions are still the rationale behind current neural networks.

The early 1950’s research discovered the importance of learning. Learning is
ultimately necessary, since just as we need to do much that is not already built-in, so there

will never be enough time to build-in all that an AI machine will ultimately need to know.

1.1.2 The First Symbolic Period.

The latter half of the 1950’s saw the rise of the serial processing machine based on
the Von Neumann architecture via the processing of symbolic expressions. Thus rapid
progress with regard to new and difficult problems using the counter of the Hebb theory,
that is of connections among symbols rather than Hebb’s connections among mechanisms,
and the counter concept of programming rather than learning, meant the demise of the earlier

neural network machines.
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1.1.3 The Second Connectionist Period.

However in 1962, Rosenblatt’s book “Principles of Neurodynamics™ revived an
interest in Connectionism (Rosenblatt, 1962). Rosenblatt defined the simplest possible
learning machine which he called a “Perceptron” and proved that a Perceptron could, in
principle, learn anything that it was possible to program it to do. (Actually Rosenblatt was
mathematically unhousetrained! Papert did the the impressive mathematics in the book).

Unfortunately, in practise, Perceptrons were found to be unable to learn in all
circumstances. The paucity of further connectionist progress and the advent of Minsky and
Papert’s critical appraisal entitled “Perceptrons” combined once again to halt the
connectionist approach (Minsky and Papert, 1969). Minsky later summarised the nub of the
problem as “learning is a non-problem the real problem is representation” (McCorduck,
1979).

1.1.4 The Second Symbolic Period.

In the late 1960’°s and throughout the 1970’s the resurrected symbolic paradigm
continued to make progress and saw the emergence of the central concept of the
representation of knowledge. Problem-solving, control and hence reasoning only learning
machines, such as Newell and Simon’s “General Problem Solver”, were quickly seen as
limited although they became the precursor to modern planning systems (Newell & Simon,
1963). Selfridge had produced an entertaining machine called “Pandemonium” in which
there was a symbolic attempt to rediscover the connectionist idea of intelligence resulting

from the workings of a large number of simpleton elements (Selfridge, 1959).

Lindsay et al. with a machine called “Dendral” then put these two insights together
to produce a new sort of machine called an expert system, which was designed to be
“expert” at problem solving in some tiny domain, in the sense of being comparable in
performance to a human expert within that field and which divided the reasoning or
“inference engine” from the representational knowledge it used in its “knowledge base”
(Lindsay et al., 1980).

This implied a new insight into what constitutes intelligence and comprised the
notion that large amounts of domain specific knowledge was of greater importance than a
large number of individually clever reasoning processes. This advance, as Randall Davis
then showed with his system called “TEIRESIAS”, implied that a new kind of symbolic
learning process, called a Knowledge Acquisition system, or KA system, is required, to
produce the knowledge base (Davis, 1980). That is, a machine is, required to fill the
knowledge base by extracting that knowledge, if possible semi-automatically or ideally
automatically from a human expert, in the field of the domain.
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Unfortunately, KA became a “bottleneck” for expert systems since experts were
found to be very poor at elucidating their knowledge as required by, pragmatic, analysis-
only, hand-built, non-automatic KA systems. Secondly, the semi-automatic inductive KA
systems, based on the fact that experts are much better at giving examples of their
knowledge, were and still are at an elementary stage of development.

However a third approach to learning had begun to emerge in the early 1970’s as
typified by Winston’s “Learning Structural Descriptions from Examples” (Winston, 1975)
and was a symbolic approach to the study of learning itself, known as Machine Learning or
ML, with learning by example being, both then and later, its most studied form.

1.1.5 Knowledge Representation.

We seem to possess a connectionist neural network capable of both low-level non-
symbolic processing (e.g. vision), and high-level symbolic processing (e.g. thinking). For
example, we can imagine a black cat in mid air a short distance in front of us. We can then
enlarge it, shrink it, rotate it, translate it, change its colour, distort it, view it from a different
perspective, even talk about it, imagine that we can hear it, touch it, smell it, etc. This

appears to imply an incredible, unifying, transferable, knowledge representational capability.

As the 1970’s progressed, work on the three approaches to learning (Connectionist,
KA and ML) saw reduced progress and the big explosion of research work (of the order of
one million papers to date) took place in a multitude of knowledge representational schemes
across the whole range of the fields of AL Examples of these representational systems varied
from large grained structures such as blackboards to small grained, modular structures such
as production systems, as for example in rule based systems for inclusion in an expert
system knowledge base, as in: scripts, schemas, mops, frames, semantic nets, conceptual
dependency, plans, various types of natural language parsers, various logics such as fuzzy
logic and non-monotonic logic, various image processing representations etc. Thus the
importance of powerful, flexible knowledge representational systems and processes to
manipulate them had been well learnt and was beginning to bear fruit, particularly in the field
of expert systems. The 1980’s saw the continuing confluence of the symbolic and
representational fashion in Al and significant rejuvenated progress on the theory of ML and a

widening variety of practical approaches to expert systems and KA systems.

1.1.6 The Third Connectionist Period.

However as the decade progressed, there has been renewed interest in the
connectionist paradigm world-wide. One of the prime motivating forces has been the gradual

realisation that even multiple paradigm approaches (discounting the disadvantages of their
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dimly perceived juxtaposition problems and consequences), such as rules within frames,
produced little of commercial use in the “real” world apart from the tentative hold of the
emerging “expert systems”, and also new and more powerful computers had led to more
ambitious and novel architectures by the diehards such as Kohonen and Aleksander and
newcomers such as Rumelhart, McLelland, Hinton and Grossberg.

So as the 1990’s begin, this rediscovered connectionism is spreading not just across
most of the fields of AI but also inspiring diverse subjects such as psychology,
neurophysiology, neurobiology, physics and pattern recognition in mathematics and seems
set to become the next trend. Yet, many modern connectionist “discoveries” are to be found
in the pages of Rosenblatt’s book, and earlier works. Similarly, to slowly forget the practical
successes of symbolic Al such as expert systems and its required KA system and the
theoretical foundation work in ML, and to unlearn the crucial lesson of the importance of
knowledge representation, in the renewed excitement for neural networks seems to be
unthinkable and doomed to be wastefully rediscovered later, in yet another round of the
symbolic connectionist tussle. Might there therefore be another way?

1.2 LEARNING ENGINE CRITERIA.

Of particular interest in evaluating learning engines are the following criteria; “input
felicity” (how easy is it to construct the database for input to the learning engine), “learning
speed” (how fast does it learn, is it iterative or one-shot in operation, and is convergence
assured or only obtained by trial and error), “noise immunity” (to what extent will noise
invalidate the results), and accessibility” (can the machine explain where it has got to, what it

is doing, and why and how it is doing what it is doing).

In addition to these criteria a learning engine is required to be application
independent, able to operate in the symbolic paradigm and/or in the connectionist mode, able
to work with information at a high level such as knowledge, and/or at a low level using
objective real world data, and should be fully automated, that is, able to continue without the
occasional intervention by an expert user, who may otherwise be required, for example to
facilitate the input data. Most important of all is the need for an exceptionally rich and
unifying representation which is able to transfer information between levels, but no learning
engine, to date, satisfies this requirement. Previous learning engines can be divided into

three groups, described below, with reference to these criteria.

1.2.1 Connectionist Machines.

Connectionist machines are application dependent, non-symbolic, low level

working, at best, on objective real world data, and are automated. Input felicity is not usually
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too much of a problem since a “toy” ready made database may be used or constructed or
even, real world data used directly. However learning speed is the accepted big problem area

for connectionist machines on two counts.

Firstly the process itself is heavily iterative, typically taking hours or days for
simple real world problems and possibly very much longer. The reasonableness of and need
for this state of affairs is questionable. For example biological neurons work, by
comparison, very slowly, with firing rates of the order of 100ms. Yet we appear to be
capable of single example, incremental learning, rather than the thousands to millions of
iterations required by batch-mode connectionist machines. For example, witness the single

example learning the reader is at present undergoing.

Secondly the algorithm may not converge, or do so unacceptably slowly, implying a
lengthy period of possibly weeks of parameter juggling. This unpredictable, trial and error,
hand-build approach is also questionable. Noise immunity is a big strength of connectionist
networks, but accessibility is nonexistent. If the machine “gets stuck” it can be almost
impossible to figure out what is going on, and it certainly cannot explain itself. However
connectionist networks, per se, have numerous other advantages and a strong

interdisciplinary appeal.

1.2.2 Knowledge Acquisition machines.

Knowledge Acquisition systems are application independent, symbolic,
high level by acquiring knowledge from human experts, but are only, at best, semi-
automated. Input felicity is a problem area for expert systems, implying as it does an iterative
cross-questioning of the human expert in the field, and unfortunately experts are often weak
at elucidating their knowledge. Knowledge Acquisition systems are designed to address this
problem and hence inherit the difficulty.

Learning speeds are very acceptable, especially considering that expert systems are
nowadays applied to real world problems, although semi-automated inductive Knowledge
Acquisition systems can still only handle elementary real world problems. Noise immunity is
variable depending upon the system. Accessibility is the big strength of Knowledge
Acquisition systems, in that the machine itself can explain its actions, as can the target expert

system.

1.2.3 Machine Learning Machines.

Machine Learning systems are application dependent, symbolic, high-level typically
working on data from a “toy” world, and are usually semi-automated. Input felicity tends to
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be straightforward since a ready-made database is often used, and learning speeds are
comparatively very fast. Against these strengths, it is to be remembered that despite
considerable theoretical work, Machine Learning is still at an early stage of development, and
real world problems are therefore a difficulty. Noise immunity is a big problem area and
accessibility is weak, although possible with an effort on the part of the user, since the

process handles symbolic information.

1.3 TOWARDS A COALESCED MACHINE.

To summarise the above discussion, the relative merits of the three learning

paradigms with respect to the stated evaluation criteria are given in Table 1.1.

Evaluation Criteria
Input Learning Noise Accessibility
Felicity Speed Immunity
L. unacceptably
M Connectionist easy very good very poor
slow
a
c very .
h Knowledge . fast variable very good
i Acquisition difficult
n
e Machine easy fast Very poor poor
Learning

Table 1.1 Evaluation of different learning machines

Each learning paradigm appears, at present, to be inescapably stuck with its
strengths and weaknesses, since they tend to delimit and are the essence of the paradigm. Yet
we saw in the above “learning engine criteria” (section 1.2) that the requirements for learning
engines are diverse, certainly covering the strengths of each of the types so far developed.
Further, the Al lessons of the last two decades, on the crucial importance of attention to
Knowledge Representation, must not be forgotten. Thus interest shifts to the possibility of
an amalgam of the three machines in a “coalesced machine” - hopefully attempting to retain

the strengths of each whilst eliminating the weaknesses of all three.

Let us not labour the point. Taking our cue from the importance of representation in
Al we are herein interested in developing what we see as a necessary and unifying
representation in order to accommodate the three learning paradigms and to facilitate the

transfer of information between the connectionist and symbolic parts of that machine.
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In summary Al has thus oscillated in fashion between the two major paradigms of
symbolic and connectionist. We are interested in the middle ground, rather than this
dichotomous prospect; that is, in the problem of how machines of these two types may
interface with one another within the context of learning and what this may imply for either
or both types of machine and further, in the coalescing of the three major approaches to

learning. The structure of the thesis therefore follows the outline below.

1.4 THE STRUCTURE OF THE THESIS.

In Chapter 2 the first three parts outline the approaches taken by other researchers to
the problem of learning in regard to the three main paradigms of Machine Learning,
Knowledge Acquisition and Connectionism. We then examine the strengths, weaknesses
and dangers of existing and possible integrated machines. Finally interesting
implementations of Machine Learning, Knowledge Acquisition and Connectionist paradigms
are exemined in greater detail with a view to later coalescing them into one machine in order

to attempt to overcome some of the limitations of each, whilst retaining the advantages of all
three.

Chapter 3 gives the theoretical details, foundations and aims of the design and
implementation of the above coalesced learning engine able to address the interface problem

between the symbolic and non-symbolic approaches via a unifying representation.

Chapter 4 describes the development of the new machine and the details of and
manner in which experiments to determine its behaviour were investigated in order to delimit
its scope and scale. The results obtained using this novel machine are then discussed and

compared and contrasted with contemporary learning engines.

Finally, in Chapter 5 we offer our major conclusions made on the basis of this study

as to to the relative merits of the coalesced machine.
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Learning Machines: Theory and Practice.

2.1 AN OVERVIEW OF LEARNING.

Michalski ez al. (1983) open the preface of the first of their excellent books on
Machine Learning with the words: "The ability to learn is one of the most fundamental
attributes of intelligent behavior." This certainly seems to be inescapably true. For example,
if an animal is either inherently incapable of learning anything or has very minimal learning
capabilities then we tend to regard it as unintelligent, irrespective of whatever other

capabilities it has.

Carbonell ez al. (1983) take the study and computer modelling of learning processes
in their multiple manifestations as constituting the subject matter of "Machine Learning."
Carbonell further observes that learning is a multifaceted phenomena such that the processes
of learning include acquisition of new declarative knowledge, the development of motor and
cognitive skills by instruction or practice, the organization of new knowledge into general
representations and the discovery of new facts and theories through observation and

experiments.

2.1.1 Aims and Benefits of Learning.

Carbonell then states three objectives of machine learning. Firstly, theoretical
analysis explores the space of possible learning methods and algorithms independently of
the application domain. Secondly, task oriented studies which aim to improve performance
in set tasks, corresponding to an engineering or applied learning approach. Thirdly,
cognitive simulation implying the investigation and computer simulation of human learning

processes. Thus the three major approaches form the follewing goals:

I. Intelligence Science.
Knowledge Engineering.
3. Cognitive Modelling.

Carbonell further propounds that the theoretical study of learning may reveal general
and invariant principles of intelligent behaviour that apply across many different domains.
For example, concerns such as the exploration of alternative learning mechanisms, the
discovery of various induction algorithms, the acquisition of concepts, the scope and
limitations of methods, the information that must be available to the learner and robustness

in the presence of noise. In short an "intelligence science" possibly entailing three major and
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interconnected aspects, namely: learning, the use of language and neural. As stated in the
introduction, in section 1.1.1, one of the main advantages of machine learning is that we
may be able to reduce the amount of programming required. For example, Carbonell ez al.
(1983) argue that machine learning research strives to open the possibility of instructing
computers in new ways and thereby promises to ease the burden of hand-programming the

growing volumes of increasingly complex information into the computers of tomorrow.

A practical example would involve expert systems which despite their current
success often require many man-years to construct, perfect and maintain. The bulk of this
work goes into developing and debugging extensive domain-specific knowledge bases. A
better understanding of learning, therefore, may allow the automatic construction of the

knowledge base. This constitutes the "knowledge engineering" approach.

The theory and modelling of learning is also useful to all intelligence fields:
cognitive science, artificial intelligence, pattern recognition, psychology and education. The
spin-offs of this "cognitive modelling" approach are inspirational. For example, by
modelling human learning and teaching we may improve the design of teaching methods and
create the possibility of intelligent automated tutoring systems. Hence machine learning has a
strong interdisciplinary appeal. With the present rise of connectionism, noted in the
introduction, physicists and neuroscientists are also making substantial contributions to the
field. Therefore it is first necessary to dissect this huge field of learning in order to delimit

aspects of interest to this present work.

2.1.2 Research Directions in Machine Learning.

There are many approaches to learning, both from the viewpoint of building models
of human learning and from the perspective of understanding how machines might be
endowed with the ability to learn. Examples include work on genetic learning algorithms
(Holland, 1975; Oosthuizen, 1987b), connectionist models of learning (Hinton ez al.,
1984), knowledge acquisition for expert systems (Kahn, 1986), and grammar acquisition
(Mitchell et al., 1986).

2.1.2.1 A Taxonomy of Learning.

The subject of "Machine Learning" (not to be confused with machine learning, the
generic term) has the most thorough theoretical classification of the various branches,
categories, theories and types of learning. It is more cohesive to follow a somewhat
historical perspective. In the "bible" of Machine Learning, Michalski ez al. (1983)

consider that the major research directions are as stated below.
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Learning from examples.

Modelling human learning strategies.
Knowledge acquisition for expert systems.
Learning heuristics.

Learning from instruction.

Learning by analogy.

Discovery systems.

0w NI N b~ W N

Conceptual data analysis.

The interrelationships between these approaches are given in Figure 2.1.

2.1.2.2 Automation Level.

It is possible to classify the various machine learning systems along a number of
dimensions, such as, classification on the basis of the representation used, classification in
terms of the application domain or classification by the learning strategy used. Consideration
of the level of automation clearly delineates the various research directions in an
understandable manner. Figure 2.2 gives a pseudo-graph to illustrate this concept as
proposed by Carbonell et al. (1983). Each type of learning is seen as having two parameters,
the amount of effort afforded by the teacher and amount of effort afforded by the learner.
Various learning approaches are then plotted on the graph accordingly.

Effort A
from

Teacher ﬁ;:}zote learning

= learning from instruction

=
YR
V”*l’a::,/ learning by analogy
A
N

learning from examples

learning through discovery
s

Effort from Learner

Figure 2.2 Effort from Teacher against Effort from Learner

Rote learning occurs when the learner is not required to contribute any effort and
therefore all analysis, structuring etc. is done by the teacher. Conventional programming is

an example of rote learning.
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From this extreme point on the graph, by reducing the contribution from the teacher
and increasing the contribution from the learner, we progress through: learning from
instruction, learning by analogy and learning from examples, to learning through discovery.
The final extreme point corresponds to no prior analysis or help from the teacher, and all the
work must then be done by the learner. The word "teacher" is to be taken liberally, for

example, meaning the physical environment which contributes the input to the machine.

In learning from instruction, an external entity organises the information to aid
learning. That is, the information is part pre-digested and then the learner can apply this
instruction to novel situations. Two types of learning from instruction are advice taking
systems (Mostow, D.J., 1983; Hass & Hendrix, 1983) and learning apprentice systems
(Mitchell et al., 1986). Learning apprentice systems show most promise since experts are
good at stating the appropriate action in some particular situation in order to get to the
solution. Such systems are heuristic and take a problem reduction approach to heuristic
learning, and involve credit assignment by assuming the expert's moves are positive

instances and alternatives are negative.

In learning by analogy the past, as given by the teacher, becomes a clue to new and
possibly more complex concepts deduced by the learner (Carbonell, 1983, 1986a). Learning
by example implies a system with an external teacher otherwise it is learning by experience.
Such systems utilise positive examples and exclude negative examples to induce positive
concept generalisations (Winston, 1975; Dietterich & Michalski, 1983; Mitchell et al., 1983;
Quinlan, 1983).

Learning through discovery lacks an explicit goal and an active external teacher and
may involve a range of interactions with the environment from active experimentation to
passive observation (Michalski, 1983; Lenat, 1983; Langley et al., 1983; Michalski &
Stepp, 1983). We will briefly consider some examples of these types of machine.

2.1.2.3 Learning from Instruction.

Advice taking systems have the objective of transforming declarative advice into
executeable procedures, by successive heuristic transformation of the advice into specific
operational terms. Much prior knowledge is required in terms of knowledge of the advice
representation, the actions that are available for implementing the advice and the constraints

of the domain.

The idea behind learning apprentice systems is that the machine begins by using
means-ends analysis or some other general purpose problem solver in order to obtain a

faster set of operators as specialised new domain knowledge. The system observes how the
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teacher works as an expert and converts declarative knowledge into its equivalent procedural
form. The expert may coach the system via a set of suggested preferences. The machine,
from a self analysis of its past experiences, then learns to avoid mistakes and inefficiencies.
Environmental feedback provides quality control and operator refinement.

2.1.2.4 Learning by Analogy.

A major contribution to learning by analogy was made by Carbonell (1983, 1986a).
A basic technique is Derivational Analogy. Derivational Analogy works by a transformation

process illustrated in Figure 2.3.

inferred new knowledge known old knowledge
find similar by .
new problem previously
partial mapping solved problem
|
I
analogy | derivation
V V/
transformation
solution to .< old problem
new problem process solution

Figure 2.3 Derivational Analogy

A similar problem is extracted from known problems, which have previously been
solved, by a process which forms a match between the known old knowledge and the
required new knowledge. Clearly, the closer or more similar these two are, the easier it
becomes to search for an analogy. The system recalls the previous solution to the similar old
problem and transforms the recalled solution in order to satisfy the constraints imposed by

the new problem.

A critical point is that an analogy can only be produced if it is noticed. Hence the
search time is important. For example, the simple geometrical analogy in Figure 2.4,
employed by Anderson & Kline (1979) takes 12 minutes to run (Carbonell, 1986b).
Derivational analogy can be combined with explanation-based learning. The more n
problems that are solved the greater is the likelihood of solving problem n + 1, because

more solutions exist. Unfortunately, useful analogies are rare.
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D C
B
C
B D
A
E
A
AB = DC <BAC = <DAE
BC = CB . <CAD = <DAC
I
I
AB +BC = CB +DC
=>AC = BD ' => <BAD = <CAE
Figure 2.4 Derivational Analogy Example

2.1.2.5 Learning by Example.

Clearly all learning can be regarded as "by example" and its basic methods form part
of more complex learning systems. Learning from examples is the most widely studied
problem in Machine Learning. For these reasons "learning by example" has become one of
those horrid terms meaning all things to all men. What an author means by the term may

therefore be unclear.

At one extreme it means practically any form of learning since it is difficult to find
any form of machine learning which does not in some sense use examples. The "by
example" part of "learning by example" then becomes superfluous. At the other extreme,
"learning by example" means a particular low level sub-unit of a more general learning

system, as we will now consider.

The method involves a set of given positive and negative instances of one or more
concepts. For example Winston (1975) showed the importance of near misses in
constraining the resulting concept description. The goal of the system is to generate a
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description in the form of some representation such as rules that covers all positive
instances, the "completeness condition”, and no negative instances, the "consistency
condition". The part played by the teacher is typically that of a tutor who clusters the objects
concerned in order to ease the task of the learner. The tutor, therefore, often does a lot of the
work. The representation used may be simplified by the data and concepts having the same

format.

At its simplest level the "learning by example" task is illustrated in Figure 251In
general, an incomplete "training set" from some "universe" of possible instances is used and
comprises a set of positive and a set of negative examples. The positive examples are used to
generalise or increase the scope of the concept space and the negative examples are used to

discriminate or bound the scope.

The general conclusion, typically as a concept, is then tested against a possibly
incomplete "test set" from the universe. The test set and training set are usually disjoint parts

of the universe, as below.

universe
r training set 1 r test set 1
| I | |
pl py
I os P2 | | Px |
| | | [
| [ | I
| | | I
| I o |
| I n |
| | | I
L - — - Jd. Lo - - -

Figure 2.5 Learning by Example.

Hence the learn-test process concludes concepts C which include all of the positive

examples and none of the negative examples, that is, such that for the general ith example E:

~3 Eni, Ec D Eni

34



Chapter 2 Learning Machines

There are many types of such learning engines due to the range of possible
parameters (Kodratoff, 1988). The descriptors involved may be finite-valued, or they may
form a range or a continuum, or be hierarchical, etc. The method used may be heuristic or
involve some lattice of possibilities. The examples may be externally or internally generated.
The generalisations may be conjunctive, disjunctive or both. The system may be incremental

or one-shot in operation and so forth, as shown in Figure 2.6.

from
examples
mode type source generalisation
one-trial +ve teacher external internal Instance part to
and . to class whole
incremental -ve
Learning by
experiment
Learning by Learning by qualitative
doing problem-solving  process prediction
Figure 2.6 Learning from Examples.

What is a concept? If we take it to be an hypothesis about some aspect of the world
then these hypotheses can be written in the form of descriptions. A common approach is as

follows.

The set of descriptions considered in learning from examples can be ordered
according to their generality. This defines a partial ordering through the space of possible
hypotheses. The resulting multiple paths through the representation of states in this problem
space can be searched via a set of operators, as discussed by Mitchell (1982), for the

"correct” concept as a goal.

Clearly one might start the search anywhere in this space but two natural starting
points are the most general description and the most specific description. Some algorithms
combine both search directions, thereby moving towards more general concepts in some
cases and towards more specific concepts in other cases. The most specific description is so

called because it contains the most detail i.e. lowest subset.
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This defines the dimension of generality, the partial ordering of the hypothesis
space being required to direct the search. The fact that the generality ordering is only partial
is important. Firstly, it defines a /attice of possible concept descriptions. Secondly, it implies
that some hypotheses are related along the general to specific dimension, while others are
not related. For example, A and B may be more specific than C, but not more specific than

each other.

Michalski (1983) in his excellent work on the theory of inductive learning
considered various representations of generality including the following, in order to create

more specific descriptions (or reversely for more general descriptions).

Adding conditions.

Replacing variables with constants.

Removing elements from lists.

Climbing the specialisation tree.

Replacing terms in isa hierarchies with a lower term.

AN W=

Decreasing the size of intervals.

For example, the adding/deleting conditions implies that reducing the ANDed rule
size implies a more general description. In interchanging variables and constants (a common
technique), if a certain rule specifies a particular number and this is subsequently replaced by
a variable then the first description is more specific than the resulting more general second
rule. A number of other theories exist (Vere, 1980; Dietterich & Michalski, 1981; Bunday &
Silver, 1982; Kodratoff & Ganascia, 1986; Valiant, 1985; Delgrande, 1988; Haussler,
1988; Gallant, 1990; etc.).

Kodratoff and Ganascia (1986) in an evocative paper considered how to improve
the generalisation step. The main points of which are that, firstly, concept discovery implies
discovering the variable bindings and secondly, information may be dropped from the
formula only with extreme care. They detect variable bindings common to the positive
examples (converting constants to variables) and use the dropping the condition rule as
discussed in Michalski (1983) only for negative or counterexamples as a source of possible
near misses (Winston, 1975). The generalisation is accomplished in two steps. Firstly,
detection of structural matchings takes place. This, state Kodratoff and Ganascia (1986), is
the difficult and necessary step where the real work is done. Secondly, there is the
generalisation phase, proper, which detects common links between variables in all the
structurally matching formulas. This is the easy step. The structural matching algorithm is a
sequence of two alternative operations which find new generalisation variables (GV)
common to all examples so far (links between variables and constants/variables track the

variables in each example).
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Firstly, constants/variables which are not GV in each example are chosen by a
heuristic method in order to produce new GV. However, the actual heuristics required to do
this are unspecified in the paper and bearing in mind the emphasis on deduction in this paper
it may well be the case that these heuristics are domain dependent. This has all sorts of other
implications (as we discuss in more detail later), nevertheless failure to mention this crucial
point is a weakness. Briefly mentioned are the possibilities of the user ordering the
examples, the user choosing directly for each example and combinatorial search as the

present state of implementation.

Secondly, there is a partial matching phase which looks for structural matchings of
GV in the subset of examples. These two stages in the algorithm are repeated until there are

no more constants.

Nevertheless, as seen above, the big problem area is the difficulties of finding
appropriate heuristics and/or how to search the hypothesis space as fast as possible and as
effectively as possible. There are many possibilities each with attendant advantages and
disadvantages, for example, exhaustive methods such as depth-first search (Winston,
1975), breadth-first search (Mitchell, 1982) which have the advantage of finding the best
concept description and the disadvantage of being possibly prohibitively expensive in
computational terms. In contrast, heuristics may be used often with some evaluation
function to direct the search as in the beam-search approach used by Michalski (1983).

Three main problem areas exist in any form of learning: namely clustering (how to
subgroup), discrimination (efficient concept distinction) and generalisation. Yet there are still
many outstanding problems in learning from examples due to simplifying assumptions that
are often made in order to make the problem more tractable. For example, many algorithms
assume no noise in the data. Simple statistically buffered algorithms as in Quinlan (1986)
can be partially adapted to deal with noise. Incremental methods such as version space and
the various attempts to extend the method are less adaptable (Mitchell, 1982; Kodratoff,
1988). Genetic methods learn incrementally in the presence of noise but are very expensive

and inaccurate (Quinlan, 1988).

Another simplification is the assumption that the concept representational language
is known in advance. If this search space is incomplete then the search will be fruitless or
wrong. Another simplifying assumption is that the concept is definable rather than fuzzy; but
human concepts have been shown to be fuzzy, overlapping, prototypical and usually
incapable of definition in terms of a list of properties (Roth & Frisby, 1986). Many other
assumptions are often made such as the concept semantics, the absence of disjuncts, etc.
Further, language, we feel, seems to be at the heart of many difficulties due to the fact that
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the machine does not have our appreciation of the world and hence no real understanding of

whatever it happens to be dealing with.

2.1.2.6 Learning through Discovery.

Learning by example is a form of induction. The most general form of induction
occurs when there is no teacher or even an explicit goal. This is known as learning by
observation and discovery. The environment itself acts as the teacher. The extent of the
interaction with the environment allows the classification of two major types of learning,

namely, passive observation and active experimentation (Kodratoff, 1988), see Figure 2.7.

In passive observation the collection of observations are searched for regularities
which can be used for classification purposes. In experimentation the system actively

explores the environment inducing implications accordingly.

learning from observation
and discovery

T T~

meta-algorithm operation-mode
conceptual genetic empirical passive active
clustering prediction  observ experi
-ation -ments

Figure 2.7 Learning from Observation
and Discovery.

There are various subproblems of the field of discovery, namely, taxonomic
clustering, genetic and empirical, see Figure 2.7. Clustering, called "classification" in Data
Analysis) is an important problem. It involves finding a hierarchical classification that
separately clusters together what is similar and what is distinct about the observations.
Traditionally, statisticians and biologists have been interested in the subject and have used

cluster analysis and numerical taxonomy methods.

Michalski & Stepp (1983), considered the harder problem of "conceptual
clustering" with CLUSTER/2, possibly the best system of this type so far. Conceptual
clustering makes explicit the descriptors and hence characterizes the clusters in order to make
them easier to understand than is the case with the more traditional approaches. This is a

difficult problem - remember that there is no external teacher.
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The RUMMAGE conceptual clustering system uses a top down approach to create a
hierarchy (Fisher & Langley, 1985). For each attribute the objects are sorted by attribute
value and for each value there are frame-like descriptors which describe the corresponding
objects. Attributes are selected which have the best descriptions indicating how good the
concept is, where best is taken to mean the simplest and least similar. The method is applied
recursively to create subtrees until the quality falls below a certain threshold. This algorithm
is remarkably similar to Quinlan's ID3 (Quinlan, 1983).

In genetic learning the representation itself is altered possibly randomly, in a
process termed "mutation”. Given a boolean string the representation can be altered by, for
example, "crossing over" the most and least significant bits 10010 11100 -> 11100 10010
(Caruana & Schafer, 1988). There are various such techniques analogous in prescription to
biological genetics. We would suspect that there may be considerable usage of such
technicues in the future since it seems to wonderfully allow the escape from deterministic
representation. However, since genetic learning is a field somewhat off the mainstream of
research we are unable to gauge the extent to which present-day genetic learning research
grasps the essential point inherent in this suggestion. In this regard, Holland (1986) concurs
with our intuition, as expressed above, when he claims that the way to escape "brittleness”
is by using the more subtle effects of genetic algorithms. Holland accepts, however, that
there is a trade-off between representational richness and speed. Similarly, Quinlan (1988)
found that BOOLE a genetic algorithm was over 100 times slower in rule induction tests
than his own C4 algorithm (an ID3 descendent). An example of integrating genetic learning
and learning by example is the work of Oosthuizen (1987b).

The empirical discovery of quantitative and qualitative constant relationships
between objects and variables is a branch of empirical discovery as is explanatory discovery.
Such systems all really focus on generating new terms. The explanatory discovery problem
(Zytkow & Simon, 1986; Langley et al., 1986) of producing structural explanations of
empirical laws such as kinetic energy attempts to use qualitative physics to represent
processes, analogical model generation of scientific explanations and analytical learning to

construct the explanations.

For example, BACON 4 is a system developed by Langley et al. (1983, 1986) for
discovering quantitative empirical laws. Rather surprisingly it is not knowledge intensive, in
contrast, say, to Lenat's AM system (Lenat, 1977), which is qualitative and very knowledge
intensive. BACON is given the values of the respective symbolic and numerical variables
concerned (such as P,V,T for the ideal gas laws) and is required to find the empirical law
relating the numerical variables (e.g. PV/T = 8.3). Many nineteenth century and earlier laws
in physics and chemistry have been "rediscovered" by BACON; for example the ideal gas
law, Kepler's third law, Coulomb's law, Snell's laws of refraction and Black's specific heat
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law. BACON defines new terms from old ones until it finds constant terms. On finding
nominally independent terms it postulates intrinsic properties and has thereby postulated
mass, refractive index, atomic weight, specific heat etc. The system is able, for example, to
look for common divisors. This is a common technique. All empirical discovery systems
focus on generating new terms. The strategy is quite simple, in contrast to Lenat's AM, with

three basic heuristics:

1. Terms having near constant values are formulated into a law containing the term.
This corresponds to "interestingness" in Lenat's AM.

2. Else if terms increase together then the ratio is considered, and then retry case 1.

3. Otherwise, if terms are inversely proportional then consider the product, and then
retry case 1.

The system generates a depth first search tree, with periodic backing-up. It is
interesting that 20th century physics seems to be beyond the scope of such systems.
However the hope is that one day machines of this type may aid researchers in discovering
new phenomena. Such systems may be required to provide structural explanations to
account for the empirical laws, qualitative physics to represent the processes involved and

analogy to generate the scientific explanations.

2.1.3 Expert Systems

Early work on expert systems, in particular the DENDRAL project by Buchanan
and others as reported in Buchanan and Feigenbaum (1978), identified knowledge as the
crucial component in Artificial Intelligence systems. The essential requirement was,
therefore, for vast amounts of domain specific krowledge. Expert systems are designed to
represent and apply the domain specific factual knowledge within some field of expertise in
order to solve problems within the domain at the level of a human expert. MYCIN
(Shortliffe, 1976) was the first medical expert system and so influential that it appears, at

least in retrospect, to have been the first "real” expert system.

MYCIN gives advice on the diagnosis and therapy of infectious diseases. The
knowledge in MYCIN is represented as approximately 400 production rules ('if condition
then action' rules) relating possible conditions to associated interpretations. The rules contain
"certainty factors" for a probabilistic style of reasoning. The rules are invoked by a dialogue
with the user using a backward-chaining control strategy. That is, it moves from hypothesis
to conclusions. MYCIN can explain the reasons, in terms of "why" and "how", for its
decisions. An "inference engine" is used to effect the control strategy and this allows
MYCIN to problem-solve by testing a rule's conditions against the data. The data being

either initially supplied or else is requested by the system as required from the user-
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physician. If a given rule condition is applicable, then the system "backtracks" to infer the

truth or falsity of the rule condition for other supporting rules or data.

MYCIN was quickly followed by other medical expert systems, for example
CASNET (Weiss et al., 1978) and CADUCEUS (Pople, 1977). CASNET is an expert
system for diagnosis and therapy of glaucoma in ophthalmology. CADUCEUS (previously
known as INTERNIST) is an expert system which has considerable knowledge of internal

medicine and can handle multiple disease cases.

The model of an expert system, particularly representative in MYCIN, has been
successfully applied and extended to many other fields. Well known examples being
PROSPECTOR for oil exploration (Duda et al., 1979), and R1, which was later renamed
XCON, for configuring VAX computer requests to particular user requirements
(McDermott, 1981). Hayes-Roth et al. (1983) consider the general components of an ideal
expert system. The structure of a typical modern rule-based expert system (Giarratano,
1989) includes: a knowledge base, an inference engine with possibly an agenda, a working
memory containing the "facts", a knowledge acquisition facility, an explanation facility and a

user interface as seen in Figure 2.8.

USER
KNOWLEDGE BASE
Facts
Language
Processor Rules
Plan Interpreter
Agenda - Scheduler
Consistency
Solution
Enforcer
BLACKBOARD

Figure 2.8 Block diagram of an ideal expert system
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Today many thousands of expert systems have been built world-wide and dozens of
them in a given subject area. Nevertheless, it is possible to classify expert systems as of a
particular generic type. For example, the expert system may be a diagnostic system which
infers malfunctions (e.g. for a car). Or it may be a planning system by designing the
appropriate actions. These categories such as designing, diagnosis, planning etc. are
themselves related and indicate the likely complexity of the resulting expert system. For
example, a control expert system implies interpreting, predicting, repairing and monitoring
system behaviour (Hayes-Roth ez al., 1983; Wilson, 1989). A diagram expressing these

relationships between generic expert systems as a taxonomy is given in Figure 2.9.

observations

interpretations

prediction
+ diagnosis
design +
debugging

planning

monitor

repair

instruction control

Figure 2.9 Generic Taxonomy of Expert Systems.

There are three typical present day approaches to expert systems, as applied to
increasingly large domains (Turner, 1985). Firstly, there are automatic induction engines
which learn by example from the expert. This approach is fast, typically taking 2 to 3
months, and most useful for small systems. Secondly, there are expert system shells, often
with built-in knowledge acquisition facilities, which allow the expert himself to create a
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possibly multiple-representation knowledge base. This procedure is most useful for medium
scale systems and typically takes 6 months to 2 years to develop the knowledge base. The
word "shell" here refers to a general purpose expert system package which has an inference
engine, Knowledge acquisition facilities, user interface, etc. but is missing the knowledge

base, which is built by the user.

Thirdly, for more serious and really large systems, typically taking 1 to 5 years, a
knowledge engineer is required to configure the system using an A/ language such as prolog
or lisp. In larger systems a knowledge engineer, supplying the necessary state of the art
science, is indispensable to act as a buffer between the expert and the expert system.

The "bottleneck” in expert systems is the knowledge acquisition phase (Michalski,
1983), since the inference engine and other parts of the system, such as interfaces to other

systems, tend to be more standard (domain independent).

2.1.3.1 Knowledge Engineering.

Knowledge engineering is targeted on knowledge processing rather than
information processing and involves the two subprocesses of knowledge elicitation and
knowledge acquisition together with the engineering of an appropriate expert system unless a
shell is available. The stages of evolution of an expert system (Hayes-Roth et al., 1983) are

given in Table 2.1.

Identification:  Determining problem characteristics
Conceptualization: Finding concepts to represent knowledge
Formalization: Designing structures to organise knowledge

iImplementation:  Formulating structures to embody

knowledgeTesting: Validating rules that embody knowledge

Table 2.1 The Stages of Knowledge Engineering.

The process is iterative and cyclic from prototype to full implementation. The first
two stages comprise the knowledge elicitation phase and the latter three stages involve

knowledge acquisition.

One complaint we have of this subject area is the lack of care taken with the words
knowledge elicitation and knowledge acquisition. All too often they are confused. The

elicitation phase involves bringing the expert's knowledge to light and comes from the Latin
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elicitere, to lure forth. The acquisition phase involves the follow-on process of integrating
that knowledge into the machine and acquisition comes from the Latin acquirere to acquire,
add to or gain possession of. Thus, for example, to use the words "knowledge elicitation" to
indicate the whole process is plainly careless and sloppy. Whereas it is permissible to refer
to the whole process as knowledge acquisition especially in the case, say, of learning by

example, where there is a minimal machine-computable elicitation phase.

Knowledge engineering is a methodology for eliciting, acquiring, representing and
using computational and qualitative models of systems. These models are domain specific,
exhibiting expertise in the field of the domain. The requisite knowledge is typically elicited
from human experts directly and occasionally indirectly (from text). Knowledge elicitation is
an investigative experimental process which may involve interviews, protocol analysis, or
automatic induction from examples supplied by a human expert in order to design

computational, qualitative models of expertise.

Knowledge elicitation is confounded by the absence of an adequate psychology
(Wilson, 1989). Furthermore knowledge base representations are often finer grained than
human experts are able to state (Gaines, 1988). The knowledge acquisition interface with
experts and users is important since the encoded knowledge is of little use unless humans
can understand it. Yet it is unclear how well manipulations of knowledge acquisition

representations can approximate human reasoning.

The earliest attempt to build a knowledge acquisition system was by Davis (1980) in
the mid-seventies and known as TEIRESIAS. Today nearly one thousand papers exist on
knowledge acquisition and knowledge elicitation, which is a testimony to their importance.
Furthermore, associated subjects such as machine learning and neural nets can be seen as
making oblique attacks on certain aspects of the knowledge acquisition problem.

2.1.3.2 Knowledge Elicitation.

Belkin et al. (1988) state that the main techniques for knowledge elicitation are as

follows.

1. Interviewing the expert: informally or via structured interview techniques.

2. Verbal protocol analysis: analysing recordings of experts thinking aloud as they
carry out a task.

3. Observational studies:  observing and recording the behaviour of experts at work

as unobtrusively as possible.
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Knowledge elicitation involves techniques such as card sorting, laddering, matrix
generation etc. and is surveyed in Diaper (1989). Welbank, (1983) presents a sound review
of the field and discusses how the different approaches each reveal different types of
information. For example, one well known psychological technique is "Personal Construct
theory” (Kelly, 1955), which is a top down, categorisation and questioning technique.

Welbank (1983) nevertheless cautions against the sole use of one particular
technique, for example, the interview technique is commonly used, but experts have extreme
difficulty in articulating their knowledge. Verbal protocol analysis is also very common
(Kuipers & Kassiver, 1983), however observational techniques are the least used, since they
are extremely time consuming and require in-depth analysis (Welbank, 1983). Nevertheless,
observational techniques are useful for revealing what an expert actually does, information
about the role of the expert, the ordering of tasks undertaken and so forth (Kidd, 1986).
Cordingley (1989) reproduces Welbank's well known matrix of "Types of knowledge" by
"Knowledge Acquisition methods" (she means elicitation) and discusses each technique in

some depth.

LaFrance (1988) suggests a grid technique for use in discussions with experts to
counteract the problem that expertise resists single category compartmentalisation and
because no single question can elicit all the required information. Similarly, Minsky's
"society-of-minds" theory suggests a concept of intelligence that requires the interaction of
many small systems operating with an evolving overall administrative structure (Minsky,
1986). Clearly, ultimately, multiple techniques are unfortunately required (Belkin ez al.,
1988).

Knowledge elicitation is difficult. The unreliability of experts is highlighted in a
paper by Manago and Kodratoff (1987). The frailties of human nature and the inadequacies
of language combine to make the extraction process highly unreliable. We tend to forget to
mention negative features, for example, "... the leaves must not be dry ...". The bias of a
given expert needs to be considered, but avoiding the bias by using several experts
introduces the new difficulty of choosing which expert is correct when disagreements arise
(Cleves, 1988). Gaines (1988) has assessed the major difficulties of elicitation. He states the
following difficulties.

1. The expert may be expressing his expertise with respect to a context which he fails
to define or evaluate.

2. He may be unable to express himself in language.

3. What he states may not be understandable when expressed in language.

4. What is stated may be inappropriate when expressed in language.
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5 What is stated may be irrelevant or outside the terms of reference of the system
under construction.

6. What is stated may be incomplete and/or incorrect.

7. What is stated may be expressed in language that is not understandable by a user

or apprentice.

In short, experts find knowledge elicitation exceedingly difficult. However experts

do find, in contrast, that it is very easy to give examples of their expertise.

Some knowledge acquisition systems, particularly the best of the learning by
example variety, do have some reasonably solid theoretical basis. In contrast, the subject of
knowledge elicitation is almost devoid of any theoretical grounding being pragmatic and ad
hoc (Gaines, 1988; Wilson, 1989; Diaper, 1989). The result has been that there is often little
difference in effectiveness of using one technique against another for most types of
knowledge (Welbank, 1983; Cordingley, 1989). Furthermore, many techniques are only
marginally effective in eliciting their targeted form of knowledge (Cordingley, 1989). This is
more akin to stamp collecting than science.

Clearly, the subject leaves much to be desired. Only learning by example, which
almost eliminates the elicitation phase, is effective. However, there are severe limitations
(both practical and theoretical) to what can be achieved by learning from example with
respect to the simplistic present day engines. For instance, ID3 has been found to be best
suited to the early prototyping stage of building an expert system.

2.1.3.3 Knowledge Acquisition.

In general, knowledge acquisition systems can be categorised by input source, for
example: an intelligent editing program (Davis, 1980), an induction engine (Quinlan, 1983),
a text understanding system (Bratko et al., 1985). The first takes its input from the examples
directly. The second has input as data, in the form of examples, either from a database or
directly provided by the expert. The third takes its input as typed speech from the expert in
some natural language subset or from textual sources such as manuals or books (probably
simplified prior to entry).

There is an important "interaction problem" concerning how the nature of the
problem and the inference strategy used may strongly affect the representation. This
"bottleneck" of knowledge acquisition, as referred to by many authors is by no means a
minor inconvenience. Rather, the attempt to automate knowledge acquisition potentially
requires the use of significant parts of the rest of AL Davis (1980), Hayes-Roth ez al. (1983)
and Gaines and Boose (1988) give several examples of important problems within the field.
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1. The fact that most existing systems work only with a fixed representation language
developed by the designer.

2. Systems automate only parts of the implementation, testing and refinement phases
of knowledge acquisition, see Table 2.1 (above). This leaves earlier phases (including the
selection of the representation) to manual methods. The representation language determines
the range of the describable, and hence learnable, knowledge. Therefore, since current
learning systems are unable to refine their representation languages, the initial choice of

representation is especially critical (Hayes-Roth ez al., 1983).

3. How to handle noise, that is, unexpected errors in the training and testing data, is
problematical.
4 How to utilise domain specific knowledge effectively, in order to guide learning as

in Explanation Based Learning.

5. How to apply old learning analogously.
6. How to learn from self-reflection, for example, self-generated practise problems.
7. Knowledge itself is not mono-typed. Each type of knowledge may then require a

different type of knowledge acquisition system. This refers to the fact that the knowledge
extracted by elicitation will be typed, for example, it may be factual, strategic or control
knowledge, rules of thumb, declarative knowledge, procedural knowledge, etc.

8. As previously mentioned the man-machine interface forms a major aspect of any
knowledge acquisition system. Such a system requires not just a graphical interface as in
WIMPS, but also a sizable, robust and extensible natural language subsystem with good

semantics! This request is, in itself, a very major and unsolved problem.

9. Problem difficulty discussed in Hayes-Roth et al. (1983), see Figure 2.10, is

another dimension of major size.

10 The lack of common-sense knowledge, which is immense in size compared to the
mere compilation of some tiny domain, leads to a major practical problem, namely
brittleness. That is, unexpected system failure at the boundaries of its knowledge. This is in

contrast to the "graceful degradation” of human knowledge.

11. The area of knowledge base modification, that is, maintenance, is a major,
unexplored area. Expert systems, let alone knowledge acquisition systems are too new for
this problem to have revealed itself yet. Nevertheless it is to be noted that, in software

engineering, typically 70 to 80 per cent of the time, resources, etc. are used up in the known
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unresolved problem of maintenance. One of the few hints of things to come in this area is the
following joke, at present circulating DEC.

"One XCON system replaced 6 VAX configuration engineers, and the XCON
system itself is now being replaced by 50 XCON maintenance engineers".

12. The size of the knowledge base also appears to be important. By the time the
number of modules, e.g. rules, exceeds about 4000, then knowledge base additions will
have become so complex that adding one further rule typically requires several days. Some
reasons for this are described by Rennels and Shortliffe (1987). They cite three challenges.
Firstly, modularity is difficult to obtain because new knowledge alters the old knowledge
interpretation. Unfortunately, the more one accommodates this non-modular effect via links
etc. the more it becomes entangled with tightly-coupled elements and thereby becomes
impenetrable upon updating it. Clearly software engineering still applies to AL. We should
deal in complete rule systems in a top down manner rather than accumulate individual rules
or concepts until it all gets beyond us. Secondly, the sheer quantity of information to be
handled with an exploding number of knowledge items, for example, 250,000 in the case of
INTERNIST. Thirdly the lack of proper domain models. Hence automating the process

would seem to be essential if we are to attempt large knowledge bases.

In a different way, Aikins (1983) has tried to fight the complexity effect by
increasing the grain size in an impressive system called CENTAUR. She used frames with
rules in the slots. We suspect, as does Jackson (1986), that this merely delays the onset of

the problem rather than solves the problem.

13. Jackson (1986) refers to the difficulties of ensuring the production of high quality
software when operating in a multiparadigm environment considering the years it took to
establish the rules of software engineering. The danger being unstructured, ad hoc systems.
The advantage being representational flexibility.

2.1.3.4 TEIRESIAS.

An offshoot of MYCIN is TEIRESIAS (Davis, 1980), a program that assists the
expert in the construction of large knowledge bases. TEIRESIAS helps the expert to transfer
his expertise to the knowledge base. TEIRESIAS is a knowledge acquisition system that acts
as an intelligent buffer between the expert and the target expert system. The expert carries on
a dialogue with TEIRESIAS in a subset of natural language. TEIRESIAS uses metarules
(rules about the structure etc. of domain rules) to provide a knowledge acquisition tool to be
used directly by the expert for enhancing MYCIN. TEIRESIAS aids MYCIN by having
improved explanation capabilities, it provides a flexible knowledge acquisition tool, and has
better user interface facilities than are to be found in MY CIN. TEIRESIAS facilitates the
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semi-automatic acquisition of new knowledge for the MYCIN system. This is a shortcoming
of the technique since it implies that the knowledge base must substantially exist before the
technique can be applied! TEIRESIAS also uses domain independent metaknowledge and by
assuming the existence of the MYCIN system is able to use rule models about rule-chaining

and other system behaviour.

Statistics are used to second-guess the expert by considering variations from the
norm. The process is used to detect errors in the new knowledge entered into TEIRESIAS
by the expert. For example, the system uses a metarule to ensure that rules mentioning the
culture site of an organism should also mention the organism's portal of entry. Some types
of faulty rules are therefore detected on entry. Since the system knows about MYCIN, it can
use this contextual knowledge in its dialogue with the expert. The use of metarules
concerning the constituents of a rule allows TEIRESIAS to fill-in or second-guess much of a
new rule for the expert. TEIRESIAS then appeals to the expert merely for verification. Meta-
level knowledge also facilitates better explanations in TEIRESIAS by producing the

1 "

system's "understanding” of a rule at various levels of detail, as required.

TEIRESIAS is a most impressive system. However Davis punctuates his thesis
with a formidable list of problems encountered, the greatest of which by far are the language
difficulties. That is, there is a big requirement for a reliable, advanced, natural language
subsystem. This problem constantly reoccurs in some form lying, as it does, under the
surface of many of the systems discussed in this chapter. The present state of natural
language research can be succinctly summed up by stating that there is presently some
reasonable understanding of syntactics (for the very tiny subset of any real language so far
investigated) but virtually no appreciation of semantics as yet. Unfortunately, we feel that for
any realistic attempt to solve these problems the vastness of the natural language task ahead

itself presupposes a reliable, advanced, knowledge acquisition system!

2.1.4 1ID3

Learning by example is of particular interest, given the difficulties cited above and
the advantages of learning by example (section 2.1.2.5 and section 2.1.3.2). An early and
excellent system of this type in the context of developing an expert system for soybean
disease diagnosis is described by Michalski & Chilausky (1980). This system achieved an
impressive level of expertise by out-performing the world's expert in the subject area, even
when the expert retrained on the machine's rules!

Another early example of an automatic system which learns by example is ID3
(Quinlan, 1983). ID3, however, has been the subject of a very large number of refinements
(Schlimmer & Fisher, 1986; Shapiro, 1987; Utgoff, 1988; Wirth & Catlett, 1988; Cheng et
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al., 1988; Quinlan, 1988; etc.). ID3 has also been successfully used in a number of
commercial expert system tools and very many application areas. ID3 is an inductive
learning engine that constructs concept classification rules in the form of decision trees from
a database of examples each with an associated classification indicator (+ or -). The system
is of the object-attribute-value type, where objects are described by attributes each with a
number of values, as in the example below.

Attributes: height with values {tall, short}
hair with values {dark, red, blond}
eyes with values {blue, brown}

Database of examples:  short, blond, blue: +
tall, blond, brown: -
tall, red, blue: +
short, dark, blue: -

Branches in the tree correspond to expressions of the form: Attribute = Value.
For non-leaf nodes branches are recursively created for each attribute-value with respect to
the corresponding subset of examples. The algorithm recursively builds the decision tree by
choosing a good test attribute that partitions the examples into subsets, see Figure 2.11.

hair
dark red blond
{...} {tall, red, blue: +} eyes
short, blond, blue: 4 {...}
tall, blond, blue” +

Figure 2.11 ID3 Decision Tree.

An information-theoretic measure is used to determine which attribute to use as the
test attribute for a node (Quinlan, 1983). The measure relies on minimising the decision
making required for classification of an instance. ID3 constructs decision trees that are

relatively efficient classifiers and it generalises quite well. However ID3 has a number of
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well known deficiencies: it is nonincremental, unable to handle noise, unable to cope with
non-categorical data (such as height in meters), unable to deal effectively with uncertain or
contradictory data and so forth. Indeed, Bramer (1987) in a tour de force states 64 queries
and criticisms in his excellent review of ID3.

We will consider a few of the enhancements to ID3. ID3 is best suited to a static
database. It's application, however, is the "real world" where noise is typical and an
incremental system highly desirable. ID4 (Schlimmer & Fisher, 1986) is an incremental
machine which updates the decision tree when new data becomes available. ID4 relies upon
discarding the relevant subtrees upon finding that the test attribute should be replaced with a
better attribute. ID5 (Utgoff, 1988) extends ID4 by reshaping the tree by pulling up the test
attribute from below, which is more efficient than ID4.

ID3 uses a windowing technique to deal with large training sets. Wirth and Catlett
(1988) conclude that the technique should be avoided due to it's lack of benefit in noisy
domains. Various other problems with ID3 have been identified. ID3 tends to overspecialise
or conversely undergeneralise due to its heuristic, hill climbing, non-backtracking search
technique, it tends to produce irrelevant values for classification, it misses branches and it is

biased towards attributes with a large range of values (Cheng et al., 1988).

Another important practical difficulty with ID3 is that it tends to produce decision
trees which are too complex to follow with ease. Shapiro (1987) discusses a nice structured
inductive refinement to ID3 which is more user-friendly and which has been shown to run

up to twenty times faster.

2.1.5 An Overview of the elements of Connectionism.

This area of research has many pseudonyms, for example, connectionism, PDP,
ANN's, neural networks, etc. Rumelhart and McClelland (1986a) acknowledge that their
"Parallel Distributed Processing" (PDP) idea that intelligence emerges from the interactions
of large numbers of simple processing units has come and gone several times previously.
We have already discussed two such examples in section 1.1.4. With the advent of certain
new net topologies and algorithms and further a consensus of opinion that massive
parallelism is a prerequisite for high performance in many Al tasks there has been a recent

resurgence in connectionism.

However another reason Rumelhart and McClelland give for the present
resurrection in connectionism is that symbol processing machines have failed to provide a
framework for representing knowledge accessible by content (human memory is content

addressable) and which can thereby be effectively combined with other knowledge. The
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advantage, they suggest, being the enabling of useful automatic syntheses which would then
allow intelligence to be produced.

Rumelhart and McClelland state that basic to this class of models are parallel
processing, distributed representation and distributed control, which form a true "cognitive
science" approach (section 2.1.1). Distributed representation implies that knowledge is not
stored locally but consists of the connections among units distributed throughout the

network. Hence the alternative name "Connectionism".

They further argue that software is not the whole story to the difference between Al
and humans. The brain employs a more suitable architecture requiring the simultaneous
consideration of many pieces of information as constraints on the processing. Each
constraint may be imperfectly specified and even ambiguous yet each can play a potentially

decisive role in determining the outcome of the processing.

Another basis for PDP which they suggest is that knowledge structures in Al such
as rules, frames, scripts, etc. are representations which can only approximate a neural net
structure. The result being that there is a big problem of interaction between these Al
representations when attempting some generative capacity of novel situations (as we have
already discussed in section 2.1.3.3). In contrast, PDP models assume information
processing by the interactions of large numbers of simple processing elements called "units"
or "neurons" each sending excitatory/inhibitory signals to other units. The units may stand
for hypotheses, goals, actions, syntactic roles, etc. and the activations stand roughly for the
strengths (weights) associated with different possible hypotheses. The interconnections
between units is equivalent to the constraints between hypotheses, subgoals, etc. Hence,
they feel, that there is appeal in this physiological flavour.

Rumelhart and McClelland also point out that in sequential processing the more
constraints the longer the time it takes and if the constraints are fuzzy or imprecise then there
is a computational explosion. Yet, they observe, we get faster not slower when we are able
to exploit additional constraints. PDP is therefore seen in terms of the "microstructure of

cognition” in contrast to the "macrostructure of thought" of serial machines.

In contrast, the intuition of great scientists is always worth noting, both John von
Neumann and Alan Turing became firmly convinced of the futility of this seductive and
slavish biological appeal in an earlier round of connectionism. Both men saw the way
forward in terms of mathematics and abstract logic. Turing summed up his rejection of
artificial neurons, simulated synaptic weights etc. in the persuasive statement "We don't
build cars with legs". On the other hand, von Neumann's abstraction of early neural nets

in terms of boolean numbers directly resulted in his first design for the hugely successful
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von Neumann serial stored program machine that we have today - a little known fact
(McCorduck, 1979).

The series of books Rumelhart and McClelland (1986a, 1986b), McClelland and
Rumelhart (1988) form perhaps the "bible" of present day connectionism and they give
many examples of the use of the sort of processing models discussed above. As an ideal
example of content addressability they suggest each memory is represented by a unit with
mutually excitatory interactions with units standing for each of its properties. The effect
being that if a property of the memory becomes active then the memory will tend to be
activated, and if the memory were to be activated then all of its contents would tend to
become activated. Such a memory would not be error immune, but it would have some

resilience and graceful degradation.

In non-connectionist models long term memory storage and short term memory
storage are often undifferentiated or their contents may be exchanged. In PDP, the patterns,
as such, are not stored, only the connection strengths between units but they are still able to
recreate the patterns. This type of representation implies that the contents (knowledge) can

influence the processing.

Learning also has a different perspective in connectionism. The goal of learning is
no longer the formulation of an explicit representation, but rather the acquisition of those
connection strengths which would allow the system to simulate the explicit representation.
The connection strengths are typically adjusted incrementally and based on local information.
Thus the system captures interdependences between activations. That is, it interpolates,
which in turn allows "spontaneous generalisation” as opposed to the Machine Learning

approach of searching for the generalisation.

The goal in connectionist systems is the acquisition of connection strengths such
that the units are able to respond as though they knew the "rules.” The knowledge is stored
in the connection strengths of the interconnections between units. Furthermore, it is possible
by increasing redundancy to provide better insulation against unit failure if pattern
knowledge is not stored uniquely but rather is distributed over many connections amongst
many processing units, hence producing a distributed rather than local representation. Thus
the emphasis is now on pattern activation and the learning of connection strengths. Hinton
and Anderson (1989) discuss various types of distributed model.

2.1.5.1 Connectionist machines.

The typical connectionist model is composed of layers of non-linear computational

elements in "butterfly” form operating in parallel with the outer two layers referred to as the
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input layer and output layer and the remaining layers, if any, are termed the "hidden layers",
see Figure 2.12. Typically by relaxation techniques, often gradient descent, nodes produce a
weighted sum of their inputs and pass the result through a nonlinearity such as a hard
limiter, a threshold function or in the most general (and computationally slowest case) a
sigmoid function. The diversity of these machines mitigates against a detailed review of the
various algorithms - suffice to say that, at present, “back propagation” is the most popular

machine.

input hidden output
layer layer layer

Figure 2.12 Basic supervised learning net.

2.1.6 Comparing Machines.

It is interesting to see the results of experiments comparing the performance of
algorithms which go across subject boundaries. There seems to be consistent agreement
between authors on such results - Machine Learning "has the edge" on connectionism. For
example, Mooney et al. (1989) have compared the performance of the ID3 symbolic learning
algorithm (Quinlan, 1986) with both the perceptron (Rosenblatt, 1962) and back-
propogation (Rumelhart & McClelland, 1986a) connectionist algorithms. All three systems
were tested on several large data sets from previous symbolic and connectionist experiments.
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Two surprising results emerged. Firstly, that perceptron, despite its theoretical
limitations performs well in practise being comparable to ID3. Secondly, back-propagation
takes one to two orders of magnitude longer to train than the others. Correctness and noise
tolerance of all three algorithms was very comparable, see Figure 2.13.
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Figure 2.13 Relative training times of 3 algorithms.

2.2 INTEGRATED LEARNING SYSTEMS.

The data space of possible learning engines is obviously very large. Only a
relatively few points in the totality have been identified and investigated. These isolated data
points include problems such as heuristic learning, genetic learning, learning by example
etc. Nevertheless it is possible to conceive of integrated learning systems which incorporate
a number of such data points. Attempts to produce integrated learning systems are still rare
and possibly premature. The vast majority of learning research has focussed on isolated
problems such as learning by example. Examples of integrated learning systems are the
series of machines based on the SOAR system by Laird et al. (1986), Anderson's ACT
(Anderson, 1983) and explanation-based systems (Mitchell ez al., 1986). These machines
involve some cognitive architecture which is independent of the strategy used and a set of

constraints for organising performance and learning.

2.2.1 ACT.

Anderson's ACT is an attempt to model human learning performance and has been
tested in several domains such as heuristic learning and grammar acquisition (Anderson,
1983). The model represents declarative knowledge in a semantic net and procedural skills
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as concept heuristics in the form of production rules. There are five mechanisms for learning

the rules, and the rules interact to explain the observations and improve skills:

1. generalisation: inductive, specific to general rules,

2. discrimination: inductive method for general to specific rules,

3. composition: produces deductive rules which fire together,

4. proceduralisation: produces specific versions of deductive rules and
ignores that which is not required, and

5. strengthening: the law of practice.

2.2.2 SOAR.

SOAR is a general cognitive architecture for integrating problem-solving and
learning (Laird et al., 1986; Rosenbloom & Newell, 1986; Tambe & Newell, 1988;
Mooney, 1988). SOAR is based on the “problem space hypothesis” (Newell, 1980). That
is, all intelligent behaviour takes place in a problem space. Although we are most certainly
happy with this hypothesis, it fails to mention that there are alternative perspectives.

For example, an alternative to the requiied problem space search is the weight space
relaxation technique of connectionism. That is, we mean analogously to the sense in which
algebra and geometry are alternative descriptions in mathematics. SOAR allows all decisions
to be made in a single uniform way by a problem space search using "weak methods”.
Linking the current context to previous contexts allows the formation of a goal and subgoal
hierarchy. The current context consists of four parts: a goal, a search space, a state and an

operator.

SOAR assumes all behaviour can be seen as equivalent to a search through a
problem space (Mitchell, 1982). Knowledge is represented as production rules for searching
these problem spaces. The SOAR architecture includes only one learning mechanism which
is called "chunking". The "chunk" when built becomes the production rule and thus
chunking does not in itself require a search. If SOAR cannot proceed it creates subgoals
which become new chunks. On finding a similar situation in future the chunk allows faster
problem-solving. Chunking has been used to form macro-operators, acquire heuristics for
searching and for learning from examples. Integrated learning in SOAR is therefore achieved

by a method which combines learning very closely with problem-solving.

2.2.3 A Modern Classification of Learning.

The taxonomy of Machine Learning strategies is evolving with further research.

Rather analogously to particle physics, it tends to expand and contract repeatedly as further
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insight into the essentials of the subject is gained, as we will now see. The Machine
Learning strategies defined in the texts Michalski er al. (1983) and Michalski ez al. (1986)
can be reduced at the topmost level to Figure 2.14. We have already considered learning by
rote, analogy and instruction in sections 2.1.2.2 and ensuing sections. Learning from
examples and learning from observation and discovery was discussed in section 2.1.2.5 and
section 2.1.2.6 respectively and the sequel to the "from examples" and "from observation

and discovery" parts of Figure 2.14 was given in Figure 2.6 and Figure 2.7 respectively.

The analytical approach of learning by deduction stands alone in Figure 2.14, which
has been the perception of its lack of importance until recently. This situation is being
rapidly altered, so much so, that the forthcoming Machine Learning volume 3 is expected to
attempt to put learning by induction and learning by deduction on an equal footing
(Kodratoff, 1988). We will now consider the reasons for this change.

LEARNING STRATEGY

Rote Learning by Learningby  Learning by Learning by
Learning Instruction Analogy Induction Deduction
from from

examples observation
and discovery

Figure 2.14 Machine Learning strategies.

Figure 2.2 plotted the extent of teacher instruction effort as against student inference
effort. For a time this concept proved to be a useful theoretical perspective. Unfortunately,
the "learning by X" model proved to be just too evocative. So much so, that today, there are
countless examples of different types of “X” as in the template "learning by X" leading to a

confusingly tangled taxonomy.

Thankfully, the emerging modern insight to the general problem of learning from
examples has identified two contrastive approaches. This considerable simplification divides
learning into one of two major strategies which attempt to approximate the human
equivalents of conscious or "high level" and subconscious or "low level" learning. This

dichotomy is becoming known as (the more recent) Analytical Learning or
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Explanation Based Learning (EBL) and (the traditional method) Empirical
Learning or Similarity-Based Learning, respectively. Alternatively, EBL can be seen
as semantic or justifying in approach, in contrast to the syntactic or empirical approach.
Thus the means of modern machine learning are:

a) deductive (analytical) techniques => truth preserving.

b) inductive (empirical) techniques => falsity preserving.

Empirical methods inductively move from specific data to a more general (e.g.
structural) description. Analytical methods deductively transform general (e.g. functional)
descriptions into another (e.g. operational) general description. EBL systems require
considerable prior domain knowledge and attempt to generalise after observing only a single

example and are surveyed in Ellman (1989).

Empirical learning systems (Michalski, 1980, 1983) require little domain
knowledge and involve the examination of multiple examples in order to find concept
features which are in common. Hence empirical learning techniques are not suitable for

learning from a single example.

2.2.3.1 EBL

Two facilities which we appear to possess are the ability to learn from single
examples (Ahn et al., 1987) and our ability to accumulate and use appropriately a great deal
of background, domain-specific knowledge. EBL systems (Dejong 1981; Utgoff &
Mitchell, 1982) are based on the hypothesis that an intelligent system is able to learn a
general concept after observing only a single example and from which it can then create
"justified generalisations". In order to do this EBL systems rely on background knowledge
of the domain under study. Four different tasks are usually associated with analytical
systems: generalisation (Russell, 1986), chunking (Rosenbloom & Newell, 1986),
operationalisation (Mostow, J., 1983) and analogy (Davis & Russell, 1987).

Analytical systems have two basic procedures (Mitchell ez al., 1986). Firstly, they
build an explanation of the example. The explanation is constructed in the form of a proof
tree, using the domain theory, that proves why the example is a positive instance of the goal.
Secondly, they find a general principle of operation embodied in the example. That is, the
general conditions under which the concept holds is determined and stated operationally (in
terms of the proof tree terminal nodes). Clearly, in order to build an explanation, the system

must be provided with a considerable amount of background knowledge of the domain.

The reason EBL systems are termed "analytic" is due to the fact that generalisations
of the concept acquire an analysis of the example and its explanation. Ellman (1989)
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suggests that the features and constraints pertaining to the example should be generalised as
much as possible, as long as the explanation remains valid. Background knowledge is also
required to determine which features and constraints on an example can be generalised and
the generalisation will include other examples via the same explanation. Thus generalisations
are said to be "justified" since they can be explained in terms of the systems background
knowledge. There are a number of advantages of the analytical approach over the empirical
methods (Carbonell & Langley, 1986).

1. It is not a blind leap of induction.
It provides a proof or "justification" for generated concept descriptions.

3. It only requires a sufficiency instance (single positive example, negative examples
are not required at all).

It handles disjunctive concepts (as a direct result of 3).

5. It handles noisy data because the explanation process tidies up all the misclassified
cases.
6. No search of a partial ordering space is required, since the explanation process

provides the required description.

In contrast the analytical method has the following disadvantages compared to

empirical methods.

1. It requires a great deal of domain knowledge.
2. Search is still required in the space of possible explanations.
3. Rewrite rules really constrain the system. The rewrite rules are functional

definitions stating when the domain theory can be used.

4. Multiple explanations, if they arise, imply a search through the description space
after all.

5. The explanation search space is typically very much bigger than the space of
hypothesis descriptions.

6. It has less generality.

7. A theorem prover is necessary.

It seems apparent that there is a requirement for a convergence of the two methods

in due time.

2.2.3.2 EBL Bias.

A crucial insight into learning is described by Mitchell (1980) in that every system
which learns from examples requires some sort of bias or basis upon which to generalise

and from which predictions can be made. Mitchell defines bias to be "any basis for choosing
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one generalisation over another, other than strict consistency with the observed training
instances" (Mitchell, 1980, p 1). That is, the search space can be constrained in many ways
and these constraints are called the bias. For example, the representational bias may include
only certain features of the examples or, more commonly, allow only certain forms of
concept, for example, not disjuctions because they are troublesome! Search bias may
eliminate concepts which are incomplete or inconsistent etc. or may abide by occam's razor.
It is misleading to fail to make plain the bias in a learning system since it then becomes

almost impossible to assess/compare/contrast it with the work of others.

Typical types of bias include using a restricted vocabulary in the generalisation
language (Utgoff, 1986) and preferring maximally specific concept descriptions (Dietterich
& Michalski, 1981). Bias in EBL systems may be viewed as resulting from background
knowledge or a domain model. The EBL bias is towards making generalisations that can be
justified declaratively by explaining them in terms of the domain model.

Several advantages result from a declarative domain bias representation according to
Russell & Grosof (1987). Declarative bias is interpretable in terms of easily understood
direct statements about the domain. Conversely a non-declarative bias such as a restricted
language is not easily seen in terms of statements about the domain. Evaluation cannot
therefore, be done purely on-sight, but only by consistently testing multiple training
examples (Dietterich, 1986). Declarative bias offers the advantages of domain independence
if the bias is able to be contained in a separate module, and the declarative domain model can
then be an easily modifiable, uncouplable module (Dietterich & Michalski, 1981). Whereas
if the bias is built into the representation and procedures of the system, as is usually the case
in empirical systems, then the system is not easily modifiable and may also be domain

dependent.

2.2.3.3 LEX and Version Space.

LEX 1 (Mitchell et al., 1983) uses purely empirical techniques for learning concepts
from multiple examples. LEX 2 (Mitchell et al., 1983) is a hybrid system combining
empirical LEX 1 with EBL techniques for generalising from single examples. Both LEX 1
and LEX 2 have a cycle of four main modules: a problem generator, a runtime problem
solver, a critic and a learner or build-time generaliser. Problems are created by the problem
generator. If preconditions are satisfied then the problem solver uses operators in a best-first

search for a solution to the problem.

The system labels concepts which move the state closer to a solution as “useful”.
This is in contrast to its forgetting the “not useful” operators as Figure 2.15. Such

restrictions reduce the number of states examined at runtime and increases the search speed.
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If a solution is found, the search tree is sent to the critic. It is the critic which labels the
solution search trace operators as “useful” or “not useful” according to whether the operator
application leads towards or away from the solution. This classification process produces
sets of positive and negative instances for each operator. The examples are then used in the

generaliser to learn operator preconditions (restrictions).

|
!
Y

state 11

operator 7 = useful

state 12
operator 3 = not useful operator 9 = useful
state 13 : solution

state

Figure 2.15 Critic labelling of the search tree.

The labelled instances are processed by the "candidate elimination algorithm"
Mitchell (1978) which searches a “version space” of candidate concept descriptions

interconnected by generalisation and specialisation relations defining a lattice.

On processing positive and negative examples, all candidates that are inconsistent
with the critic’s classification are eliminated by the candidate elimination algorithm. The
algorithm maintains a maximally specific (S) and maximally general (G) set of candidate

descriptions which are in-accord with the examples observed so far. This is achieved by:

1. Generalising each member of S just sufficiently to include a new positive example.
2. Specialising each member of G just sufficiently to exclude a negative example.

Since S and G move towards one another a point is reached whereupon (assuming
no noise, and assuming the lattice contains the correct concept solution, and assuming there
are sufficient examples available) the convergence coalesces into one sole candidate

description for the concept being sought. Hence, version space combines the specific to
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general and the general to specific approaches to learning from examples (section 2.1.2.5).
The S and G descriptions are not hypotheses (as is usually the case) but rather are seen as
constraints or boundaries on the current set of hypotheses.

The advantages of version space are: that it converges quickly, can incorporate new
instances easily, the sets S and G summarise the information thus far (hence there is no
requirement to keep previous instances) and it knows when it has learnt the concept since S
and G then merge. The disadvantages are the very strong bias: it assumes conjunctive
descriptions only and an absence of noise. This machine is beautifully pure in concept, but
unworldly! For example, if there is any noise S and G may just simply pass one another
and keep going! Subsequent attempts by Mitchell and others to modify the algorithm have
failed to avoid this problem (Kodratoff, 1988).

LEX 2 provides the learning modules with further knowledge (for example the
“goal" of the learning process) in order to enhance the effectiveness of the generalisation.
This, together with single example learning is the main advantage of EBL techniques. That
is, it generalises the operators to a larger class of states, typically by replacing constants by
variables - a standard technique (Michalski, 1983) as discussed in section 2.1.2.5. Hence in
theory, at least, LEX 2 learning should converge faster than LEX 1. If so, this would
indicate a stronger “bias” for inductive learning. However the effect only works in the initial
stages of learning and newly acquired heuristics soon lose their effect in contributing

towards any enhanced learning ability (Mitchell, 1983).

The difficulty is due to the fact that the learnt heuristics can only improve some
aspects of the system’s performance. The heuristics (or preconditions) aid in deciding
operator applicability for some given state but not in deciding which state to chose for
expansion. The limitation of being unable to decide on which state to expand leads to what
Mitchell calls the “wandering bottleneck” problem (Mitchell, 1983). Avoidance of
wandering bottlenecks implies the system must have the ability to automatically formulate its
own learning tasks (Keller, 1987). So in order to affect performance further, more domain
knowledge is required, but this is a recursive request! One might suspect improvements may
be proportional to the extra knowledge programmed in - although such a measurement
would be difficult!

EBL generalisations can be combined with empirical methods. For example
subconcepts found by LEX 2 are sufficient but not necessary conditions for concept
membership. Therefore subconcepts, as generalised positive instances, exist in the lattice
and can be processed by the candidate elimination algorithm as if they were actual positive

instances.
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We will not discuss LEX 2 in detail, however one aspect is of considerable interest.
LEX 2 removes references to operator applications in order to obtain candidates expressed in
terms of the example state by a constraint back-propagation procedure (CBP) (UtgofT,
1986). This is equivalent to calculating the “weakest precondition” (Dijkstra, 1976) and
performing “goal regression” (Nilsson, 1980), and is analogous, at least in operation to
error back-propagation (EBP) or, more commonly, back-propagation (BP) as the standard
relaxation technique in connectionism (Wasserman, 1989; Rumelhart & McClelland, 1986a,
1986b; Anderson & Rosenfeld, 1989; McClelland & Rumelhart, 1988).

Back-propagation could provide common ground for combining the strengths of
Machine Learning EBL and Connectionist EBP (Gangly, 1987). A "coalesced machine" of
possibly this form was stated in the introduction to be the aim of our project. Hence we have
one possible approach for this present work. However, the difficulties of EBL which we
will now highlight mitigated against this idea.

2.2.3.4 EBG.

An “Explanation-Based Generalisation” or EBG formalism has been
proposed (Mitchell ez al., 1986) in order to capture the essentials of the emerging EBL
systems. EBG is partly domain independent. EBG has two parts:

(A) the EBG problem:
Given:

§) a goal concept,

2) training examples,
3) a domain theory,
4) an operationality criterion (which specifies the types of concept

that are operational with observable or evaluable predicates)

then find concepts that are:

1) generalisations of 2) above,
2) satisfy the sufficiency condition for the goal,
3) satisfies the operationality criterion.

(B) the four interpretations:

1) generalisation:  training examples -> operational concept descriptions

2) chunking: domain theory -> concept membership test rules

3) operationalisation: goal concept -> operational concept descriptions

4) analogy: training and test examples -> test example classifications.
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2.2.3.5 Evaluation of EBG/EBL.

Dejong and Mooney (1986) criticise EBG as deficient in several areas and state that

EBG:

1) undergeneralises,

2) cannot generalise the domain theory,

3) cannot generalise the structure of the explanation,

4) has deficiencies in the operational criterion,

5) fails to note whether the information source is human or system built.
EBG requires a priori a domain theory and a goal concept. Hence (Ellman, 1989)

probingly queries:

1) are training examples necessary for EBG systems?

2) do EBG systems only learn things already contained in the domain theory?

3) in what sense can EBG be said to improve an intelligent system?

The first question results from observing that, if the domain theory is capable of
explaining the example, then the same theory might be sufficient for generating the example
in the first place! Hence the training example appears redundant! The second question results
from considering that the system creates the concept recognition rules by deduction from the

domain theory, hence what new thing is learnt?

Dietterich suggests that a system can perform “knowledge level learning” only when
there is a change in the “deductive closure” of its domain theory (Dietterich, 1986). The
deductive closure of a set of axioms being defined as the axioms themselves, plus all facts
derivable from the axioms. But the concept membership test rules created by EBG are all
contained in the deductive closure of the initial domain theory. Hence, Dejong deduces that
EBG does not change the deductive closure of the knowledge base and so does not perform

knowledge level learning!

We wonder how things might be otherwise? Possibly genetic learning or random
mutation may escape the dilemma by arbitrarily altering the representation (for example the
work of Oosthuizen, 1987b), but the price may be high - most systems altered in this way
would no doubt be useless. The possible effect can be seen in another EBL difficulty.

Further problems with EBL systems are the creation of rules that are rarely useful
(Minton, 1985; Fikes et al., 1972). The useless rules consume storage space and degrade
efficiency by attempting to apply useless rules. Although EBL can improve performance

over empirical learning Minton has shown that it can also degrade performance by
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uncontrolled chunking (Minton 1985). Minton also showed that performance can only
improve when there are heuristics to decide when to create and retain chunks (Minton 1988).
This, however, implies that common sense contextual knowledge is also required! Similar
results are obtained by others (Tambe & Newell, 1988; Markovitch & Scott, 1988). The
latter study showed improvements result from random or selective deleting of excess macros
somewhat in-accord with the genetic or random-mutation learning observation above.

As Ellman (1989) states EBG raises questions about the value of EBG which may
imply premature formalisation. The results of EBL depend critically on the representation of
the domain theories and explanations. For example, (Gupta, 1988) has identified cases in
which the generality of learnt rules depend upon the details of the domain theory
representations, such as the grain size (Braverman & Russell, 1988). There is widespread
agreement that representation is critical, clearly identified by Minsky in McCorduck (1979),
but the elements of a good representation in EBL are unknown (Ellman, 1989).

EBL systems such as LEAP (Mitchell, 1985) use EBG methods to learn by
watching a human expert problem-solving. This knowledge acquisition must not make
inordinate demands on the expert’s time. For example, if building the initial domain theory
is comparable in size to building the finished expert system, then the advantage of using the
knowledge acquisition tool shrinks recursively since the initial domain theory can be seen as

expert knowledge about the domain, itself requiring a knowledge acquisition tool ...!

Interfacing with an expert and its inherent natural language challenge, raises big
problems with regard to learning engines in general. In conventional engineering it is
sufficient to find the crucial elements of the effect required. For example, the usefulness of
the aerofoil shape for flight. In contrast, a learning engine must not only employ this step
but also it has to effectively interface with humans in order to communicate its results. And

this we know is very non-trivial.

EBL systems assume completeness of the initial domain theory in order to improve
the domain theory. Ellman (1989) gives four dimensions of initial theory defects, implying
the possibility of incomplete domain theories, incorrect domain theories, inconsistent

domain theories and intractable domain theories.

1. Completeness: Does the theory entail at least one positive or negative
classification for each example in the domain?

2. Consistency: ~ Does the theory entail at most one positive or negative

classification for each example?

3. Correctness: Are all the predictions entailed by the theory correct?
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4. Tractability: Can explanations of all examples be constructed without

exhausting specified time and space resources?

All these difficulties and deficiencies outlined above, particularly the natural
language semantic problems underlying many of these problems mitigated against a high
level "coalesced machine". Hence we now turn to consideration of extant low level,

empirical engines with sufficient commonality to form the basis of a coalesced machine.

2.3 HYPERCUBE MACHINES.

We have considered the elements of the three fields of interest, namely, Machine
Learning, Knowledge Acquisition and Connectionism including several particularly
interesting machines in section 2.1. In section 2.2 we highlighted some of the difficulties
inherent in the proposed integrated approach together with some of the deeper aspects of
learning such as bias. Again several machines were of interest particularly the lattice
representation aspects of the version space approach. Finally, in this last section we discuss
machines from the three areas of Machine Learning, Knowledge Acquisition and
Connectionism which exhibit lattice-based commonality. In these cases the lattice forms a

particular structure in multidimensional space known as a hypercube.

2.3.1 Graph Induction.

Oosthuizen (1986) describes an associative set model based on the generalisation
hierarchy ideas of Lebowitz's UNIMEM system which we will briefly describe first.
Lebowitz (1986) automatically creates concept hierarchies in order to construct a knowledge
base. Examples represented as sets of features are automatically built up into a generalisation
hierarchy using similarity-based methods. UNIMEM centres around the principle of
Generalisation Based Memory (GBM). Examples of concepts or situations are compared
with existing generalisations in the hierarchy, starting with the most general ones and
proceeding towards the most specific until the most specific generalisation is found that best
describes the new instance. Before inserting it in the hierarchy, a check is made for stored
generalisations which have features in common with the new instance, in which case, the
instance is generalised sufficiently. UMIMEM, therefore, allows the characterization of new
concepts to be formed on regularities discovered within the example descriptions. UNIMEM

has the following features:

1. Learns by observation, not guided by which concepts to define/compare.
2. Incremental learning, one example at a time, produces the best generalisation so far.
3. Example features have the format of property/value pairs.
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4. Pragmatic:
a) generalisations do not necessarily cover all examples!
b) generalisations may overlap!
c) generalisations are modified/eliminated if:
1) contradicted,
2) insufficiently confirmed.

In his paper “A Paradigm for Automatic Learning” OQosthuizen describes a method
which extends UNIMEM and is based on a set theoretical approach to knowledge
representation (Oosthuizen, 1986). Oosthuizen argues the case for his approach as follows.
Firstly, he states that machine learning is still a relatively immature technology, and that
relatively few algorithms have been implemented as commercial products. Oosthuizen

explains the reasons for this state of affairs as:

1. methods are not robust.
2. methods assume either:
(@) domain samples with a very low noise level, or

(b) a well developed domain theory
(which may minimise the need to learn)

3. methods often involve complicated algorithms. This implies:
(a) requires user guidance and iteration (so not autonomous),
(b) increasing algorithmic sophistication often increases domain
dependence.

113
.

In contrast, Oosthuizen states that his contribution “... is in the area of
representation, facilitating an automatic learning method that is remarkable for its simplicity
and implementable on highly parallel hardware,” (his underlining). We most definitely

approve of Oosthuizen’s intuition, clearly expressed in the preceding sentence. Oosthuizen

(1986) describes his ‘associated set knowledge representation model’ (ASM) and its inherent
transformations as a “semantic” network model. That is, ASM is a directed graph consisting
of nodes connected by directed arcs. Each node P is a set, as defined in the set theory:

{x/P(x)} where P is a predicate over X.

Nodes are interpreted as a set with a discrete number of members with an associated
common property. Directed arcs are the only type of network link that is allowed and
represents set subsumption. Oosthuizen states that this corresponds to the well known
inheritance hierarchy incorporating classes and subclasses (Tourzetsky, 1986) in which

terminal nodes are one or more individual entities or set members.
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Arrows in the graph point upward from subclass to class. Thus the set represented
by the lower node is contained in the set represented by the upper node. Oosthuizen states
that by considering individual members as (terminal node) sets containing that particular
member only, the network then reduces to a uniform system of nodes representing sets only

and a uniform set of links representing subsumption only. The set intersection A of sets B to

E is represented by arrows as Figure 2.16.

B C D E

A

Figure 2.16 Set Intersection
The union of sets B to E in set A is represented by arrows as shown in Figure 2.17.

A

B C D E

Figure 2.17 Set Union.

Concepts, described by the conjunction of attributes, are represented by the intersection of

sets being contained in another set, as shown in Figure 2.18.

B C D E F

A

Figure 2.18 Containment

69

=1



Chapter 2 Learning Machines

The double headed arrow indicates the intersection of B to E (i.e. A) is contained in
the set F. (i.e. F implies a concept as opposed to just any intersection of sets). This we feel
is ad hoc since it breaks with an otherwise near orthogonal structure.

Oosthuizen states that ASM relations are all transitive. This has no effect on the
expressive power of the network because the definition of a set (as above) implies that the
relationships between sets merely state whether certain objects present in a particular set are
present in another set or not. In ASM the set relationships (subsumption, intersection and
union) reduce to a one by one count and comparison of members present in each of the sets
involved. Non-transitive relations (e.g. 2 place predicates) are also expressible in the
network in a notation closely resembling Tourzetsky’s excellent work on inheritance
(Tourzetsky, 1986). For example, John loves Mary is represented by a set of “things that
love Mary” containing “John”. This set is formally: love(MARY) where MARY is the label
of another node in the network, itself a member of the set: loved-by(JOHN).

The expression before the parenthesis is to be regarded as a function, having a
unary predicate node in its domain and each generating a possible corresponding node. Each
function generates such a network forming a generalisation hierarchy and explosion of

nodes. Oosthuizen states that the basic framework of ASM has the important characteristics:

1. very simple formalism,
. all information is stored as part of a transitive (“semantic”) structure,
3. ASM uses only the three (above) fundamental concepts of set theory.

Additional restrictions are placed on the network structure in order to:

a) enrich its structure
b) enhance the potential for reflecting semantic nuances.

In ASM, any member of sets may have only one node representing their
intersection. Hence the “distributed intersection” (DI) as Figure 2.19 is disallowed:

B C D E F

A R

Figure 2.19 Distributed Intersection.

70

ey



Chapter 2 Learning Machines

This restriction entails some network transformations. For example, nets such as
Figure 2.20 (a) are changed to type Figure 2.20 (b) in order to remove the DL

A B A B

(a) (b)

Figure 2.20 Removing the DI.

The first transformation corresponds to observation based characterization, based
on regularity recognition or generalisation in Lebowitz (1986), or forming minimally-
redundant data structures in Elgalal (1985). Two further transformations correspond to some
of the generalisation rules of Michalski (1983) yet no new theory of knowledge acquisition
is required. Thus the application of the knowledge base housekeeping procedures as
transformations imply learning. Learning activities become integrated with the updating
procedures. However for the worked examples he gives the method appears to be

increasingly opaque for larger problems with exceptionally tangled network hierarchies.

In Qosthuizen (1987a, 1987b) he changes the algorithm name from ASM to
GRAND (Oosthuizen, 1987a) standing for graph induction, and an enhanced version
SUPERGRAN (Oosthuizen, 1987b) allowing genetic reformulation of the data in parallel
with the Graph Induction; and he simplifies his algebra to a boolean schema notation
accessible to the genetic machine. However the main changes are the introduction of a
genetic algorithm to work on the schema bit string to induce novel concepts (this appears to
be a strong technique), and the investigation of the use of a parallel set closure machine
developed within the department for fast induction. Oosthuizen states that apart from the
absence of the null vertex his machine is structurally and semantically equivalent to
Ganascia's Hilbert hypercube machine, CHARADE (Ganascia, 1987a). The advantages of

this representation are:

L. it integrates empirical and explanation based learning,
2. hence handles both small and large numbers of examples,
3. learning is a side-effect of updating procedures, cf. algorithmic,
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4. the model can be implemented on specialised parallel hardware,
5. hence search problems are highly reduced.

With regard to integration, Oosthuizen states that existing methodologies may be
implemented on, and integrated with this work resulting in a surprisingly powerful new
method of learning. Tests show that it out-performs ID3 (Quinlan, 1983) on ID3's published
examples in the case when the number of examples is small. This is not too surprising since

ID3 does not optimise well.

In a further paper Oosthuizen and McGregor (1988) discusses his graph induction
engine in terms of knowledge base normalisation (akin to database normalisation) for
optimally integrated rule base construction; that is, where integration is optimal and terms
appear once only. Inductive learning is discussed in terms of the lattice operations ‘meet’ and
‘join’ and ‘greatest lower bound’ and ‘least upper bound’ on the normalised knowledge
base. This paper gives a connectionist perspective which we summarise as follows. The
graph produced is a sublattice from an examples layer to an attribute-values layer with the
evolving layers in-between forming concept hierarchies. The semantics of the network are
such that the nodes are regarded as sets "covering" the objects below them and the arcs are

regarded as subsets.

For implementation of a fast machine in hardware he cites the possibility that his set
machine will run on special purpose hardware, the Generic Associate Array Processor,
GAAP, (under construction) which will dynamically construct networks to process set data
via set operations in parallel. With regard to his present environment, set closure on a SUN
3 is stated to be heavily problem dependant (hardly a surprise) and from one millisecond to
half a second for one closure on problems tried so far. Storing relationships explicitly is
stated to incur higher computational costs and higher storage requirements than Ganascia’s
CHARADE system (Ganascia, 1987a).

2.3.2 The Hilbert Cube.

Ganascia in a series of papers (Ganascia, 1987a; 1987b; 1988) is mainly concerned
with the problem of rule systems - as was Davis (1980). Davis tried to use a substitute for
the complete natural language interface with the expert that he really required, in order to
incrementally acquire a consistent rule system. However, the traces from Davis's machine at
runtime amply show the difficulties, which he fully acknowledged, resulting from his brave

attempt to use such a paucity of linguistic structure.

Ganascia, on the other hand, attempts to capture a rule system satisfying

operational criteria via a set of mathematical axioms, prior to the use of his Hilbert
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hypercube representation. But again, the paucity of a few axioms of mathematics to capture
the diverse structure of language seems evident. The intent behind Ganascia’s system
known as CHARADE is the development of an automatic learning system which can learn a

consistent rule system from:

) A descriptive language. _
b) A set of axioms about the language semantics.
) A set of examples expressed in that language.

The most interesting part of the system is the data structure used namely a Hilbert
hypercube which is an orthogonal boolean lattice. A Hilbert hypercube is an n-dimensional
cube or hypercube where n refers to the size of the learning set. Each axis of the cube is
associated with an object. Each vertex then corresponds to a set of objects and set
membership can be determined by projecting the vertex onto the corresponding axis.

The organisation of the rule base is achieved by arranging all terms into this
hypercube or lattice structure. The lattice structure is preserved implicitly by propagating
relationships between terms and only storing the actual rules obtained. This contrasts with
the above set closure system Qosthuizen used where all relationships are stored explicitly
thereby gaining a complete inventory of all dependencies between terms or groups of terms
- but at a higher computational and storage cost. A second cube is created for the set of

features or descriptors as Figure 2.21.

Space of Space of
examples descriptors

Figure 2.21 The example descriptor dual hypercube system.

Functions are defined which map these two hypercubes onto each other and remove
redundances. Objects and features are clustered into sets which are related by inheritance
relationships in the structures that form the lattice. Ganascia generalises atomic descriptors

to intervals of values and he uses statistical rules to derive approximate probabilistic rules.
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This is a noise containment approach in that probabilistic rules are used to identify outliers

and alter the graph accordingly.

As Ganascia states, a big problem exists between mere rule juxtaposition and a
complete, efficient rule system. This gap CHARADE tries to bridge by detecting logical or
statistical regularities in a set of examples. The work is a strong contribution to the field in
this area - in effect, it amounts to a rule base maintenance approach from the outset,
something a software engineer would appreciate. For example, he states that modularity is
insufficient, operational criteria such as lack of redundancy, lack of cycles, consistency,

completeness, etc. are necessary (which is all “good stuff™).

Where we feel that the work begins to come apart is that point where, when faced
with severe difficulties, ad hoc solutions are sought. In this respect Ganascia seeks heuristic
solutions at times. The system then compromises on the purity and strength of the
representation, degrading its ready mathematical formalism. The resulting “triggerable
learning parameters” then serve to highlight this weakness. Ganascia bravely tried to cover

too much ground. Nevertheless, the system is as a whole most impressive.

In a further paper Ganascia (1988) outlines the learning bias of the CHARADE
system in terms of the semantics of the representational formalism, the description language
and the learning assumptions. On representational formalism the machine is stated to work
in propositional logic thereby precluding constant variables in the generalisation process.
The generalisation is limited to the intersection of descriptors as triplets of the form:

< Attribute > < Selector > < Value >
for comprising formulae. The two description languages are the source language (for
examples) and the target language (for generalisations). With regard to learning assumptions
he states that the completion of the example descriptions can be used to add new descriptors

checked by the expert.

This paper although mainly repeating the work discussed in earlier papers offers
further details and new angles on the system. This is particularly useful since Ganascia’s
English is not strong. We do, however, feel that there is a difference between the important
task of highlighting the bias of a system and merely relating the complete system;
whereupon the bias may “get lost” in the detail. In summary, CHARADE is a very novel
system identifying a thoughtful creator, possibly suffering a little from ad hoc additions for
completeness. Its thrust is less connectionist than Oosthuizen’s Graph induction and more

an analytical, machine learning approach.

One solution may be not to “try to run before we first learn to walk”. The simpler,

preceding problem of learning to acquire concept descriptions from a set of examples and
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counter examples should, we feel, be first considered. Such a low level machine, if
adequately researched and very widely applied, might then limit the space for renewed
attempts at the much more difficult problems attempted by Davis and Ganascia, but even
that, we feel, is still we feel a very long term aim. Higher level learning is seductive. Since
we quite naturally think and reason about things, progress would appear to be fastest when
we concentrate our efforts on machines which similarly learn at the higher levels. Examples

of such machines abound throughout AI generally and, in particular, in learning.

Such systems are uniquely characterised by an analytical rather than an
empirical approach. But the essence of the analytical approach to learning is that it
necessarily implies a prior analysis of the problem. Yet the inescapable result of analysing
everything that the machine needs to know in order to cope with non-trivial, real-world
problems, necessarily tends to entail a tendency towards an infinity of domain specific
programming, such as knowledge acquisition; but learning is just what was originally
postulated to overcome just this very problem. Often the solution suggested for solving the

domain specific deficiencies is yet another round of analysis!

Thus, learning is required to overcome the immense difficulties of the analytical
approach. The seductive solution being analytical learning. This analytical learning then
implies analysis, which can only be solved, due to the enormity of the task by learning, ...!
With analytical learning as our only paradigm we necessarily have a tautology. The only
escape seems to be some measure of that much less interesting tortoise, empirical learning.
In effect this makes explicit some of the impetus behind the modern connectionist approach.
We would expect it to be a very long road from the lowest non-symbolic, empirical levels to
even the lower reaches of the higher symbolic levels. We consider this point in more

analytical detail in the next chapter.

2.3.3 Brain State in a Box.

“Brain State in a Box”’ or “BSB” is one of the half dozen or so best known basic
connectionist architectures. The BSB model (Anderson, 1977; Anderson et al., 1989;
Anderson & Mozer, 1989) is similar to the linear associator. BSB has a maximum and
minimum activation value associated with each unit. Activation values are in the interval [-1,
+1). The representation is a hypercube with the centre of activation at the centre of the
hypercube. Activation can recycle by positive feedback. Since positive feedback is inherently
unstable it is limited. For example, Anderson & Mozer (1989) have an activation rule given
by:

xj(t+ 1)=xj(t)+2wijxi(t)

where: -1 >=Xj >= +1; xj=-1 if xj<-1; Xj=+1 if xj > +1.
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Activation at time t + 1 is the sum of the state at time t and the activation propagated
through the matrix within the interval [-1, +1]. The result is that the system converges to a
state in which all the units are of maximum or minimum value. Therefore starting from any
given point in the hypercube the function ends up because of the limited positive feedback
saturation effect in a “corner” or vertex of the hypercube as Figure 2.22. Analogously to
Ganascia’s CHARADE system the axes correspond to the activation of the first, second, etc.
units. In contrast to CHARADE where only the vertices are involved in the computation,
each point in the space in BSB corresponds to a possible state of the system and the
hyperfaces and vertices delimit the space of computation.

[-1, +1, +1]
[+1, +1, +1}

|
|
LAY

['17 '13 '1]

Figure 2.22 Positive feedback in BSB.
Anderson & Mozer (1989) employed a simple Hebbian learning given by:

5wij=0c X;:;X:

Error correction has also been applied to BSB whereby the input is used for teaching as well

as the source of activation according to the rule:
SWij= 0 (ti- Xi) Xj

such that tj is the input to unit i and xj, Xj are the activation values of the system after
convergence onto one of the hypercube vertices. Anderson says that because all points
within the space are “interpreted” identically by the system any initial state occupying a given
region of the hypercube will end up in the same corner which thus puts “... noisy inputs into
saturated form ...” In contrast, Anderson ez al. (1988) by:

«..using Hebbian “antilearning” (outer product learning with the opposite sign), it

is possible to destabilise a stable state and make the system move to a new state.”

They further state that BSB has also been used for probability learning where it
does a “reasonable job” of accounting for various observed experimental effects in both man

and animal. Recent work on BSB has focussed on concept formation abilities (Anderson,
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1986) and hopfield-like energy minimisation (Golden, 1986). Golden produced formal
mathematical proofs showing, for example, that it is a gradient descent algorithm which
minimises a quadratic energy function. The psychological plausibility of the model is
considered in Wisniewski and Anderson (1988) showing, for example, the acquisition of
multiple classes of objects and categorisation of noisy, incomplete and degraded stimuli. The
system demonstrates a measure of categorisation certainty as the number of iterations to
saturation and can easily detect deviations from its expectation. Clearly BSB is powerful and
interesting and is an on-going research topic. The primary application of BSB is the
extraction of knowledge from data bases. A limitation of BSB is its one-shot decision
making - it has no iterative reasoning. BSB is similar to the “bidirectional associative
memory” (which is content addressable with associative memory) in that it can complete
fragmented inputs.

Lastly, a very interesting paper by Huyser & Horowitz (1988) demonstrates how,
by studying BSB-hypercubes, very considerable purchase is obtained on the critical aspects
of conventional neural nets. This paper gives the first real glimpse of the power and
advantages of the hypercube approach. In fact, one is left feeling that the work begs the
question: "Why having discovered such an illuminating method is it merely used as an aid to
understanding a less elucidating but more standard learning machine, namely linear threshold
units?" Surely the paper makes a convincing case for hypercube learning machines, per se?
This point does not seem to have occurred to the authors! The reason for this may be due to
the fact that a proper hypercube approach was not actually taken. Rather, the representation
used was a degraded 2D equivalent, namely Karnaugh mapping. Yet some of the subtler
points of Karnaugh mapping were not even mentioned - conceivably they were not
appreciated because problems of sufficient size were not undertaken. If we suspect that a
better solution would utilise the more compiled hypercube representation itself then the
authors make the telling comment: "An effort needs to be made to invent representations that

are more compact than Karnaugh maps ..." Nevertheless, in short this paper is first class.

2.3.4 Other work on hypercubes.

Hypersphere classifiers (Batchelor, 1974), a somewhat unacknowledged (by the
P.D.P. school) forerunner of modern competitive learning, are a generalisation of nearest
neighbour classifiers which work by measuring the distance of examples in feature space to
the nearest example of known class and assigning the test example to that class. The
algorithm essentially picks an initial centre of prototypical exemplars called a “locate” and
produces the optimal hypersphere with respect to each training example by moving and
growing hyperspheres. Its error correction procedure compares the machine and teacher’s

responses to the decision surface by adjusting the hyperspheres’ parameters accordingly.
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When the hypersphere’s decision surface error rate is sufficiently low the algorithm exits.
The major advantages are that the algorithm can out perform Perceptrons, it can accommodate
real-valued input and can produce a nonlinear decision surface. Its disadvantages are:

Placement of hyperspheres is heuristically based.

It may produce degenerate hyperspheres e.g. concentric.

It is bottom-up driven: needing to look at all examples it is exemplar limited.

It is asymmetrically biased: must be run twice: for positive and negative instances.
It is sensitive to noise which is handled statistically.

(o NNV R I

It is only weakly extensible to multiple classes.

Several other references on hypercubes are worth very briefly mentioning. Amit
(1989) discusses the important contribution of hypercubes in our understanding of n-
dimensional problems. Kandel & Lee (1979) generalise boolean lattices such as hypercubes
as a basis for their fuzzy set theory. Amarel (1986) discusses the importance of partially
ordered lattices (e.g. hypercubes) as a basis for program synthesis. Youssef and Narahari
(1990) in studying communication networks propose the advantages of combining banyans
and hypercubes. De Kleer (1986) describes a non-associative hypercube for multiple fault
diagnosis and ATMS where the algorithmic essentials are that the hypercube is climbed
nodewise. There are a large number of papers on various hardware aspects (e.g.
communication) of the many hypercube machines under development and a number of
papers on the software routing aspects of these machines. Routing is concerned with
communications between nodes. Hypercube routing algorithms are typically depth-first and
concerned with matters such as the reliability of the processors sited at each node. An
example is Chen & Shin (1990).

2.4 Conclusion.

This chapter was in three parts. Firstly we began with an overview of learning
(section 2.1). This literature survey was sufficiently broad in scope to briefly analyse all the
major fields of learning (Machine Learning, Knowledge Acquisition, Connectionism and
Genetic learning) together in some cases with their major subfields. (The only exception
being certain older mathematical and statistical techniques not normally included but often
used as a datum against which to compare the performance of learning engines). Dissection
and comparison of these machines highlighted their strengths and weaknesses.

Secondly, we considered the more modern approaches to integrated learning
systems (section 2.2) which attempt to combine the strengths and eliminate the weaknesses
of the above older methods. Our analysis of these machines led to a rejection of their
methods for the copious reasons given.
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Thirdly, this failure suggested a requirement for a more basic and unifying form of
integration. This search led to a representation which may underlie all learning machines and

is explicit in those given in section 2.3, namely hypercube learning machines.

In conclusion, it has been the purpose of this chapter to impart not just the facts
about the theory and practice of learning machines, or even (obviously better) an analysis
and comparison of such machines. Rather, we have struggled to impart to the reader
something much more subtle - namely an intuitive feel for the subject. Hopefully, the
reader has en-route spotted the various consistent threads in this argument. For this reason
the subject was analysed both in scope and depth in order to identify what we feel to be
significant and consistent reasons for failure. If we have succeeded in this difficult task then
we would hope that the reader may be better able to appreciate why we so strongly strive to
discern the essentials of low level learning and why the resulting insight in turn suggests a
possible solution is a lattice-theoretic hypercube representation. This alone we feel justifies
our otherwise unjustifiable case for the very novel learning machine to be theoretically

defined in the next chapter.
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CHAPTER 3

The Theory of Hypercube Learning.

3.1 THE SCIENTIFIC METHODOLOGY OF HYPERCUBE LEARNING.

A thesis should tell a developing “story.” The work then becomes easier to follow
and the whole more comprehensible. We have already outlined the contents of each chapter in
chapter 1. It remains to put some detail on the approach taken in order that the unfolding story
can be previewed and born in mind as an overview. That is the purpose of the following.

Learning is a very difficult subject. It has been a graveyard for many a research
project. The marginal successes in this presently active and important subject lead us to make
explicit the scientific approach to learning taken in this project. The difficulties are not so
much caused by the complexity of the subject matter, which certainly does not help, but
rather by an underlying cause. In contrast to earlier sciences, Al typically involves a very
large number of variables. Trying to limit the number of variables is the essence of the above
difficulties. It is particularly difficult to notice all the assumptions and variables not
accommodated by the theory, in order to obtain meaningful results both theoretically and
experimentally. Let us refer to this general problem as “hidden variables.”

This amounts to a division between two schools of thought. Either one can attempt
to build a technology based upon a totally inadequate set of sub-technologies, and hope to
learn major principles. The danger in this case is the difficulty of credit and blame assignment
with respect to the resulting successes and failures. Or, one can attempt to construct the
technologies required for the simplest possible building bricks, which will ultimately be
necessary. The problem in this case is that little is apparently achieved, of value, for some
unknown and possibly considerable period of time. That is, until the technology matures

sufficiently to put groups of such bricks together. 1

We strongly believe that the present trend away from the complexities of symbolic
processing towards the simpler non-symbolic processing is a considerable step in the right
direction: a necessary step towards limiting the number of hidden variables involved. Testing
this very point is one raison d’ etre of this project! Against these difficulties it is necessary to

attend even more rigourously to a scientific approach.

1 A third revision may be required at some stage since, for example, it is possible to perform
empirical learning on high level information. That is, the above dichotomy may turn out to be the extreme
points of a range. Even worse, the concepts within which knowledge is expressed may contain hidden, high
level, assumptions. These unrecognised "holes” can be a source of mischief since we should never forget that

our idea of the world is just that, an idea!
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Chapter 3 The Theory of Hypercube Learning

In science there are experimentalists and theorists. The theorist is unconvinced
unless he can mathematically prove or logically reason the general case. The experimentalist
is unconvinced unless he can demonstrate the effect experimentally. Rather we need a
balanced viewpoint. The following expansions of these two viewpoints are specious in that
they each present only half of the picture.

The experimentalist says “the proof of the baking is in the eating.” (Baking is tested
by eating - i.e. the a posteriori is the important part). Behind every theory is an experiment or
experiments. Following every theory is a new experiment or experiments to test the
theoretical predictions. Only if the theory, born of experiment, leads to successful new
experiments is the experimentalist convinced of the theory’s predictive value. Theorising is

no good unless it works in the real world.

The theorist, in effect, says “the proof of the eating is in the baking.” (Eating is
tested by baking - i.e. the a priori is the important part). Behind every experiment is a theory
implying prediction and expectation. Following every experiment is the old theory retained or
a new theory proposed. Only if the experiment, born of theory, leads to a successful new
theory is the theorist convinced of the experiment’s general value. Experimenting is pointless
unless it is precisely coupled with its theory. Science is, of course, a spiral of theory, leading
to experiments, leading to new theories, leading to new experiments, etc. However, for

simplicity we consider, herein, the elements of only one such loop.

3.1.1 Theory.

Many Al theories fail. The secret behind successful theory requires essentially two
things. Firstly, metaphorically, one or two hooks into the real world are required to some
crucial and fundamental aspect of the real world, that is, to something all-embracing and
always true. This hook may be to something so simple and obvious about the real world that
it is very hard to find. In which case it may take considerable scientific intuition to discover
and then, further, to realise the significance of such a pivotal fact. The theorist may fail here.
In Al theoretical failures typically reveal themselves only later: in brittleness and inability to

scale up to the real world.

Secondly, straight deductions are made based upon this fundamental fact. The result
is the theory and its attendant theoretical predictions. Theorising is of no use if it is based

upon poor appreciation of reality andlor is badly deduced.

Consider an example. Greek science was weak partly because they did no
experimental work. They were therefore unaware of important basic facts about the world.
Aristotle said that if a force pushes against something the object will stop moving shortly.
Newton said if you experiment with the same force acting on the same object on different
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Chapter 3 The Theory of Hypercube Learning

surfaces, then you will find that when the resistance is less the same force moves the object
further. So the real law is with no resistance it will move forever in a straight line. That
simple observation and resulting theory was the birth of physics intoned in Newton’s first
law. Every body continues in its state of rest or in uniform motion in a straight line unless
compelled by some external force (resistance) to act otherwise.

3.1.2 Experiment.

Experiment is as we have already seen, in a sense, the inverse of theory. Many Al
experiments fail to scale up to the real world. The secret behind successful experiment
requires two things. Firstly, after building the theory into a system, we metaphorically
require one or two hooks into precisely a point of maximum leverage in the theory - points

most likely to lead to failure.

Secondly, we require careful experimentation such that there can only be one
possible explanation of the result demonstrated. If the experiment is badly performed, with a
weak or incorrect understanding of the theory and/or the conclusion has many possible
alternative explanations, then the experiment demonstrates nothing. Many experimentalists
fail on this second point due to the number of hidden variables involved. Typically, failure of
experimental technique reveals itself only later when further experiments produce very
different results thereby uncovering new variables. (A recent well publicised example being
“cold fusion.” In AL an excellent example is the still celebrated “blocks-world” Ph.D. thesis
of Winograd (Winston, 1984) - by Winograd’s own, later, very thorough admission,
(Winograd and Flores, 1986). The result is the experiments and their attendant experimental
results. Experimenting is of no use if it is based upon poor appreciation of its equivalent

theory and/or is badly performed.

Consider an example. Yuri Gagarin, the acclaimed Soviet astronaut, upon
completion of his first orbit around the earth, sent back a triumphal message to earth. In effect
he said: “I’ve had a good look round up here, there is definitely no such thing as God!”
Clearly the theory, in this case, that God lives in the heavens which were his own creation,
was primitive in the extreme. Leaving that point alone, suppose that Yuri looked in 500
places above the Earth, does that number of experiments prove the theory? Of course not.
There are rather a lot of other places in the Universe also to search! Indeed, the universe is so
large that Yuri could have carried on looking for numerous lifetimes and yet the number of
experiments performed as a proportion of the possible whole would still be so infinitesimally

small that nothing would be proven.

This situation is very typically the case with experimental Al work. For all non-

trivial theories, no matter how many experiments are performed, that number, as a percentage
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of the total data space of possible experiments to test the theory, is so infinitesimally small
that nothing is proven. To attempt to do so is to grope in the dark. Nothing is achieved. The
data space is so large that the results obtained may well be atypical. Any given experiment
only tests one point in the data space. Generality cannot be experimentally
demonstrated. Hence we conclude the following. For all non-trivial theories, no matter

how many experiments are performed, it is never possible to prove the theory.

It is, however, possible to disprove the theory by experiment. Indeed one carefully
designed experiment will elegantly achieve this. The correct experimental procedure is,
therefore, clearly and most efficiently the second approach. The correct experimental
approach is, therefore, to attempt to demonstrate that the theory is incorrect. All else is futile.

3.1.3 The scientific cycle for machine learning.

We summarise the above discussion with reference to machine learning as one loop

in a cycle.

1) We require solid links into experiments on reality concerning some fundamental,

eternal fact about learning.

2) Correct theoretical deductions based upon these links lead to:
the theoretical predictions.

3) The theory is built, as closely as possible, into a machine learning program so that
the program behaviour is the theoretical predictions. Solid links into the theory are
sought with a view to well designed and carefully performed experiments on this
program focusing upon some point of possible failure in the theory.

4) Experimental purchase applied at this failure point, to carefully exclude extraneous
explanations, upon analysis leads to:
the experimental result,
which may then disprove, but never prove, the theory.

Should the theory not be shown to be false, then the theory is not proven, merely
retained pending the next experiment, rather than discarded, as in the case of it being
disproved. Clearly we ought now to fill-in for the details of the points 1 to 4, above, for our
target the hypercube learning machine. However, the intention, as above, was to set the scene
for the ensuing chapters. We will not spoil the “plot” for the reader. The details of the
hypercube cycle will be left until the conclusion of the thesis.

The above cycle was precisely followed chronologically, but to ease the reader’s task

we first provide a basic introduction to hypercubes before considering points 1 and 2.
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3.2 INTRODUCTORY CONCEPTS.

The stated aim of this project (section 1.3) was to build a coalesced learning engine.
This is becoming quite a trendy thing to do. For example, Ellman (1989) states his interest in
building a machine to integrate EBL (section 2.2.3) and empirical learning in order to
overcome the shortcomings of each. Gangly and others are interested in building a machine to

integrate back propagation and EBL (Gangly, 1987).

3.2.1 Integration and the ad hoc.

Some of the dangers of integration were pointed out in section 2.2.3.5. The biggest
danger with any integrated machine lies in the possibility of an ad hoc juxtaposition of
previous work. Nevertheless, an ad hoc machine may work quite well in practice. For
example, Quinlan transformed ID3 by ensuring reasonable noise immunity via a Chi Squared
test of the data (Quinlan, 1988). Chi Squared has nothing to do with decision trees, the
information theoretics of ID3 and its associated windowing mechanism and so we label the
resulting construction as ad hoc. Yet, in practice, this enlarged (ad hoc) ID3 is quite

impressive in performance. So what is wrong with an ad hoc solution?

The world record for the longest held theory is 1400 years - held by Ptolemy’s
“wheels within wheels” theory of planetary motion and the heavens. The deficiency with this

theory was that it required seven machineries (as seen in a working model built later) not one.

Eventually, the work of Copernicus, Kepler and Galileo resulted in one theory which also
then explained certain minor aberrations such as the anomalous behaviour of Mars, in

apparently “looping the loop”, as seen from the Earth.

Thus the real objection to an ad hoc assemblage of methods is that it is intellectually
unsatisfactory and may well thereby fall in the course of time. We really require one unified
theory and approach, not many. Hence we take the view that one way to avoid the ad hoc
quagmire is to search for common ground or a lowest common denominator, as the starting
point. A reasonable basis in the search for common ground amongst the three major
approaches to learning is to be found in the hypercube representational work of the authors
cited in the previous chapter. In this respect, the work of Anderson and others on BSB
(section 2.3.3) in Connectionism, the work of Ganascia in Machine Learning (section 2.3.2)
and Oosthuizen in Knowledge Acquisition (section 2.3.1) are all of particular interest.

3.2.2 Representation and the Hilbert hypercube.

Why start with a representational aid? We recall Minsky’s sound advice (section

1.1.3): “learning is a non-problem, the real problem is representation.” Indeed, most of
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the work in Al throughout the 1970’s concerned the discovery of the crucial importance of a
flexible representation (section 1.1.5). How is it possible to obtain a totally flexible
representation? Again the solution is to find the lowest common denominator. In effect, von
Neumann has already solved this problem. The answer was a binary machine the microcode
of which forms the basis of all present-day serial machines and we all know just how flexible
this machine has proved to be - as predicted by the Church-Turing thesis.

We have here, however, made light of the importance of later work which prescribed
how to combine binary into larger grain sizes using assemblers, high level languages,
operating systems, etc. This present work again takes its cue from the work of Anderson,
Ganascia, etc. in utilizing a binary hypercube representation or Hilbert hypercube.
However, by analogy with the above early work in computing, the problem of how to
address larger grain sizes (with some analogy of an assembler etc.) remains largely
unspecified in this present work since this accommodation can take place outside the basic
machine - as indeed is the case with conventional computers. It follows that, what is as
purely binary to the hypercube machine can independently take any meaning or form as
viewed externally. Yet the problem of knowledge is of crucial importance to machine

intelligence.

3.2.3 Domain specific knowledge.

There is a certain asymmetry in our approach towards computer science in general
and Artificial Intelligence in particular, in that, on the one hand we ask the machine to react
intelligently with respect to the world and users, and on the other hand we provide it with
such a paucity of contact with the real world that we find the former requirement inevitably
leads to our description of the machine as an idiot savant. The problem of lack of knowledge
of the real world in such systems is all pervasive and it is now realised, for all non-trivial
systems, inescapable. Lack of such knowledge leads to a ceiling of unreliability which
induces problems such as brittleness in expert systems. Yet, knowledge acquisition is
acknowledged to be a time consuming process. The general problem is known as the

knowledge acquisition bottleneck (Feigenbaum et al., 1988).

Early work on expert systems, in particular the DENDRAL project by Buchanan ez
al. (Buchanan and Feigenbaum, 1978), identified knowledge as the crucial component in
Artificial Intelligence systems. The essential requirement was found to be the need for vast
amounts of domain specific knowledge. The earliest attempt to build a knowledge acquisition
system was by Davis (1980) in the mid-seventies and known as TEIRESIAS. Today nearly
one thousand papers exist on knowledge acquisition, which is a testimony to its importance.
Furthermore, associated subjects such as machine learning and neural nets can be seen as

making oblique attacks on certain aspects of the knowledge acquisition problem.
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Hence a second great tenet of Al is Feigenbaum’s advice that (paraphrasing) “The
key to Al is masses of domain specific knowledge and a small reasoner, as opposed to
its inverse.” The hypercube representation has the advantage that it acts as a vast memory
reservoir ready to be filled with the domain specific knowledge which then finds its unique
place within the hypercube in a totally structured and orthogonal manner. This has
considerable implications as we shall see later.

3.2.4 Spatial representation of the hypercube.

The spatial representation of the general boolean quantity makes visualization easier.
If A is a general boolean quantity with n components each taking one of two values then there
are 20 cases. These cases can be represented in the corresponding n-dimensional space. We
require, firstly, that the axes of each of these dimensions are mutually perpendicular to all the
other n-1 axes. Secondly, the coordinate values along each of these axes are restricted to just
the two simple boolean values, namely 0 and 1.

Figure 3.1 (a) illustrates a one dimensional hypercube H1. This is just simply a line
segment with a node at either end. Figure 3.1 (b) illustrates the two dimensional hypercube
HZ2. The result is a square with a node at each corner. Figure 3.1 (c) illustrates the three
dimensional hypercube H3. The result being a cube with a node at each vertex. A hypercube
is therefore an orthogonal network of arcs, either based on mutually perpendicular axes or
else parallel to these axes, in the form of straight lines joining at vertices or nodes.

(@) (b) (c)

Figure 3.1. HI to H3 with axes.

If the axes are dispensed with then the equivalent hypercubes for H1 to H3 inclusive

can be represented with coordinates as Figure 3.2.
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Figure 3.2. HI to H3 minus axes, plus coordinates.

Representation beyond n = 3 presents difficulties. The square (n = 2) can be
correctly represented on a two dimensional surface such as paper. The cube (n = 3) already
begins to present difficulties for two dimensional representation. We cannot draw all three

axes perpendicular to each other as required above.

Nevertheless, since we appear to live in a three dimensional Euclidean world, a good
impression of a perspective viewpoint of a cube in three dimensions is easily obtained. By
pointing out the deficiencies of this representation of the cube it is easier to understand the

next dimension - the fourth dimension, as Figure 3.3.

Figure 3.3 The fourth dimensional hypercube B4,

In order to make certain following points clear we take the liberty of redrawing
Figure 3.3 in a less abstract and network form as the more easily visualizable representation
in Figure 3.4. The diagram now emphasizes certain arcs by shading in order to make its
perspective obvious and we have disregarded any specific representation of the nodes in

order not to distract from the effect (2 boxes connected by 6 boxes, one per mutual face).
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Chapter 3 The Theory of Hypercube Learning

Figure 3.4. Emphasizing the fourth dimensionality of the hypercube H4.

If the reader now attempts to ‘see’ the inner cube within Figure 3.4 as if it were a
model in 3D then once again, as with the cube with respect to 2D, we see a further dimension
which can only inadequately be represented. It is inadequate because, as before for H3, this
final dimension is not mutually perpendicular to the other three dimensions in our
representation. Nevertheless, by analogy with H3, due to the orthogonality of the hypercube,
it is clearly a reasonable attempt to picture the fourth dimension.

The hypercubes beyond the second dimension therefore become increasingly
difficult to represent. This does not detract from the fact that this Euclidean geometrical
interpretation of the higher dimensional hypercubes remains convenient and it is even
possible to partially appreciate and visualize such structures with practice. Mathematically, the
alternative to a geometrical interpretation is an algebraic description. The author has found on
working with higher dimensional spaces that they are most easily accessible in the first
instance geometrically and then in more detail by translation into algebra. Although this
practice may not suit every reader, we follow this procedure in our descriptions within this

thesis, since we then have two perspectives. 2

An example of the convenience of the geometrical interpretation is our double and
join rule for the general hypercube. That is, the rule by which to create HA+1| given HD for

any dimension ‘n’. The rule, see Figure 3.5, works as follows.

2 One's preferential form of description depends upon what is personally found to be the most easily
understood form of description. For example in describing how to get from A to B, one may irpmediately get
pencil and paper and draw a diagram. Another may give the description purely in words. A heavily biased form
of communication given in a less easily assimilated form for a particular reader or listener can make opaque
that which is found to be near trivial in an alternative form of communication.
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Given H":
1) double it - make a copy alongside the original, and
2) Joinit - join corresponding nodes in the original to those in the copy.
original
= 0—O0 |
join | I |
» I |

duplicate I I
-—.> I

iD -> 2D 2D -> 3D

Figure 3.5. lustrating the double and join rule.

From now on it will be convenient to to use the term hypercube for all values of n in
the term H™. Any given hypercube can be drawn as 'seen’ from an infinity of perspectives.
For the fourth dimension, two of these possibilities appear to be topologically distinct -
making the copy on the apparent outside or inside of the original and then joining both along
this newly defined dimension. This is incorrect. The same hypercube results, even if they
appear to be very different structures, indeed irreconcilable structures. The problem lies in
our inability to fully appreciate the fourth dimension, as we discovered by making deformable
models of both cases and twisting the one network into the other, see Figures 3.6 and 3.7.

Figure 3.6. H4 by outside (alongside) duplication.
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Chapter 3 The Theory of Hypercube Learning

The fourth dimensional hypercube is known and found to be a useful concept in
several other diverse subject areas outside computing such as electronic circuit design,
cryptography, mathematics and psychology where it is called Necker’s cube. The fourth
dimensional hypercube in Figure 3.7 is used in special relativity, in Minkowski's fourth-
dimensional space time, and called the “Tesseract” (Rucker, 1977). Higher dimensional
hypercube concepts have also been entertained at various times, although they are not given
separate names. For example, tenth-dimensional hypercubes have been used in General

Relativity (Misner et al., 1973). 3

Figure 3.7. g4 by inside (perspective) duplication.

Notice that in the case of H4 in Figure 3.6 there are 8 distinct but overlapping cubes
forming the hypercube. These 8 cubes are much easier to see in Figure 3.7. It is a useful
exercise for the reader to verify this in both cases since from here on the reader will be
required to get used to such visualisation. In the fourth dimension there will indeed be 8
perfect cubes, although only two are even apparently cubic in Figure 3.7. The distortion in
the remaining 6 is again due to the inadequate representation of H4- Similarly other
perspectives introduce other distortions. For example, the diamond shapes of Figures 3.1 (c),
3.3, 3.5, and 3.6. The main point, however, is that we observe 4 lines in the second
dimension, 6 faces in the third dimension, 8 cubes in the fourth dimension, etc. This
observation is important later as one component'of the learning algorithm. We generalise it as

our double rule.

The double rule states that given H" there will be 2n distinct Hn1 first level subhypercubes.

3 The following observation appears to be most interesting. Unfortunately we are at a loss as to how
to capitalise on this insight. Space can be represented in the mathematics of hyperspace and to a first
approximation by hypercubes, as above. Mind, it seems, can only appreciate the external world by itself re-
representing the external world and perhaps in ways which are equivalent to the same hyperspace formalism.
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The 'double’ part of the “double and join rule” can be reobtained by considering the
boolean dichotomy along any dimension. For example consider H4 as in Figure 3.6. If the
coordinate value along some particular dimension say dimj = 1 then corresponding nodes
form a cube whose nodes are distinct at every vertex from that cube obtained for dimj = 0. It

follows that for HY and for i = 4, 5 we obtain the four distinct cubes as in Figure 3.8.

dirn4=dim5=0 dim4=dim5=1

dim4=0, d1rn5=1 dM4=1, dim$=0
Figure 3.8. The four distinct cubes in HO.

These four cubes can be made to stand out in H5 as seen in Figure 3.9.
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Figure 3.9. The 4 cubes of H3 in H5.
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3.2.5 Invariance and variations.

The problem of invariance is fundamental to human information processing. We are
able to recognize an alphabetic letter such as a 'T" irrespective of its position, size, rotation,
colour, contrast, texture, whether black on white or white on black, font, etc. We recognize
particular words even though the component frequencies, amplitudes, or time durations of
such sounds, between the same or different people, are subject to considerable variations.
The attainment of invariance capable of dealing with such difficulties is clearly a worthwhile
goal, but how is it to be achieved? The solution may lie, as indeed is strongly suggested by
neurophysiology experiments, in forming a representation sufficient to enable capture of the
full dimensionality of the problem. We present a simplified example using a hypercube.
Consider an example in g4 representing the components of the letter "T", as diagramatically
illustrated and ignoring arcs, in Figure 3.10, together with associated reflections and rotations

as indicated.

5E 5
odopod
?@69@

Figure 3.10 'T" representation in H4.

e

U
Y TR

At the base of the hypercube, we see the null set. On the second level, the
components of a simple four quadrant ‘T' are illustrated as the dimensions of a four
dimensional hypercube. All possible variations on these basic dimensions are seen in the
higher levels. On the fourth level, all possible invariance mappings of the "T" within the terms
of reference of the problem are clearly seen along this level. That is, 'T" rotated about the four
quadrants. The lattice is therefore seen to capture all possible invariances and variations
within the scope of the problem. A related approach to the problem of invariance was
suggested by Hinton as discussed in Rumelhart and McClelland (1986a). In Hinton's
representation there are two sets of features plus a mapper. Hinton's machine is, in fact, a
hypercube equivalent disguised in the form of a coordinate mapper.
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3.2.6 Neurophysiological evidence.

Our brains contain of the order of 1011 neurons and 1015 synaptic connections. Yet
large areas of the cortex appear to be concerned, possibly exclusively, with the subconscious,
for example, the visual “striate” cortex and its associated visual cortical areas, such as “v2”,
“v3”, “v4”, “v5” etc. On the other hand, our understanding of the workings of even a single
neuron is at present incomplete. Whitfield (1984) observes that we are unaware of what it is
that one neuron learns from its predecessors. In other words, the coding scheme used, the
“semantics” (to a neuron!) of the information flow, etc. are all unknown to science. Whitfield
further states that it is unknown whether it is even meaningful to pose such questions. Other
neurophysiologists go much further and question even the validity of the computer paradigm
of the brain. For example, Whitfield suggests a possibly different paradigm by the phrase that
“it is not so much the wiring as the chemistry of the wiring that matters”, and he goes further
by suggesting that we are dealing with a chemical machine, like some vast chemical works,
of completely unknown origin.

In the face of such difficulties, to attempt to model the possibly billions of neurons
involved in the higher level learning processes of the brain seems, to say the least, ambitious.
The possible number of brain states - calculated from very simplifying assumptions ignoring
altogether synapses and neurotransmitter states (Iversen, 1979) - approximates the number of
elementary particles in the known universe (Whitfield, 1984). Perhaps, therefore, it is not
surprising that AI machines have often failed to reach commercial acceptability. Furthermore,
in the few areas of success such as expert systems the machine is still characterised by
minuscule domains of application and unpredictable brittleness. One possible reason for this
state of affairs may be the lack of breadth of knowledge which might be obtainable from the

stronger foundations of a low level learning system.

To be really low level we should not even assume that the data involves knowledge
or concepts (Stonier, 1986), that the data has some predefined representation to be
uncovered, or even that we are dealing with symbols! Do we really know, or can we even
reasonably assume, that we necessarily must use at some sub-conscious level, concepts and
symbols? Consider for example, the extent to which we are aware of our earlier stages of
visual, tactile or audible object recognition. Hence we may be best to assume nothing but the
multidimensionality of the input data and turn our attention to the immediate problems of

constructing a very low level data acquisition machine. This is the approach we have taken.

What, is known about the brain is intriguing and exciting. The structure of the
representation appears to be very important. Experimental investigations by
neurophysiologists has convincingly demonstrated that the brain is highly multidimensionally
structured (Ballard, 1986; Hubel et al., 1978; Hubel & Wiesel, 1979). The results from

microelectrode penetration of the cerebral cortex has provided convincing evidence that the

93



Chapter 3 The Theory of Hypercube Learning

brain is exceptionally highly structured despite its appearance otherwise in golgi
stains (Hubel, 1988; Rose and Dobson, 1985). A microelectrode pushed slowly in a straight
line in the visual parts of the cortex suggests that the active surface layer is divided into areas
of about 2mm?3 known as “hypercolumns” or “orientation columns.” Hypercolumns (of 104
neurons) appear to be identifiably independent processing units. Each half of the
hypercolumn takes its input from one of the eyes. Work by Hubel and Wiesel, Zeki and
others has identified highly structured and uniform subunits within the hypercolumn (Hubel
& Wiesel, 1979; Blakemore, 1990). Typical work done to date has illustrated specialised
hyperfields within hypercolumns concerned with aspects of lines of varying thickness,
orientation, colour, movement etc. All modalities appear to operate by similar principles.
Therefore it is sufficient to consider vision. Retinal processing and various relay stages on the
way up to the visual cortex mean that the hypercolumns at the visual cortex can work with
larger visual fields such as bars and lines. A glimpse at our understanding of a typical

hypercolumn is provided in Figure 3.11.
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Across the various dimensions of the hypercolumn lines of slowly varying types are
evident. For example, 180 degrees is catered for by 18 lines at uniformly intermediate
intervals. Lines vary from thin to thick, from bars to parallel lines etc. with again about 18
types. Visual field position is the third dimension. The uniformity of structure is impressive.
The basis for each hypercolumn could be summarised as an approximate method of
obtaining all possible variations of any particular problem considered. This is
hypercube-like (compare Figure 3.10). The same organisation seems to exist throughout
the brain (Hubel, 1988), for example, “grandmother cell” (Amit, 1989) hypercolumns have
also been reported (Blakemore, 1990). It may be “brute-force”, but clearly it works. 4

3.2.7 Structured inductive knowledge acquisition.

The problem of knowledge acquisition is very difficult because it is multifaceted.
The first difficulty is the sheer volume of knowledge required. Human memory capacity
seems to be of the order of 1013 bits. The real problem, however, is that human memory is
so integrated (only 7 or less neurons interconnect any 2 neurons in the brain) and knowledge
so readily assimilated and retrieved that the temptation is to conclude that “You cannot
program A.1.” Very fast, highly parallel, automatic, learning systems seem to be required to
handle such complexity, for example, inductive machines which learn by example such as
neural nets or the ID3 (Quinlan, 1983) series of machines. A second difficulty is the need for
structure, since an amorphous system, such as the first generation rule based expert systems,
would be quickly overwhelmed by the complexity aspect. Steels (1986) suggests the need for
a deep-model learning system. Similarly, Jackson (1986) warns against multiple paradigm,
unstructured ad hoc Al systems. Again, there is a pressing need to make neural nets more
structured (Falhman, 1988) since unstructured nets lead to severe problems of opaqueness
when they fail or get “stuck.” The advantages of structure were also underlined by Shapiro
(1987) by his work on structured inductive knowledge acquisition using an ID3 machine.

The Nobel prizewinning work of Hubel and Weisel on the structure of the retina and
associated cortical layers is also very relevant (Hubel & Weisel , 1979). As we have just seen
(in section 3.2.6) the basic architecture of many areas of the cortex appears to be a
surprisingly orthogonal and highly organized structure in the form of three dimensional maps
of the sensory input, such that each modality is exhaustively and uniquely situated, as
illustrated by Frisby (1979). Hence there is a case for a study of an inductive hypercube
machine that is based upon the simplest possible orthogonal data structure, namely the Hilbert

4 In this regard, von Neumann’s mathematical analysis of the brain concluded that the essence of the
brain is complexity handling within a “mixed” digital and analog, binary and statistical system thereby trading
very much reduced arithmetical precision for much increased logical reliability - t_his ‘is iq accordance with
modern neurophysiology, and at variance with much modern neural net research with its six plus significant
figure precision - (Neumann, 1958). If we are sufficiently biased with preconceived ideas of what constitutes
intelligence to rule out research into “brute-force” reducing algorithms when biological intelligence may have
taken this very pathway then we could well be in danger of denying our own intelligence!
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hypercube in a CDML (Appendix 2) as a connectionist machine where information is stored
in connections rather than memory cells. That is, a cube in n-dimensional space, hence

hypercube, where n is the number of individuals contained in the universal set.

Clearly the brain is not a mass of hypercube machines. But on the other hand we feel
that there is some similarity at the most abstract level to the hypercube we discuss
herein. This is not a coincidence. Rather, being aware of the experimental work concerning

this impressive neural structuring we attempted to find some similar abstract expression of

these ideas by extending the current work in learning in the manner outlined. Being a) an
abstraction and b) a first approximation we hope to avoid the work being grossly invalidated
by latter neurophysiological revelations on the finer details. The result has been the hypercube
approach with the many useful advantages such as invariance and variations (section 3.2.5).
The simplest possible multidimensional structure is a boolean hypercube representation. This
leads to an inductive hypercube machine. Space does not permit a detailed review of all the
work on the hypercolumn. The interested reader is initially referred to the references given
(Blakemore, 1990; Hubel, 1988; Rose and Dobson, 1985; Frisby, 1979; Hubel et al., 1978).

3.3 THE GENERAL PROBLEM.

Let us argue our way to the heart of the matter. With regard to some given problem
we assume that we have set up the equivalent hypercube and that the information obtained
specifies the hypercube connections. How is the machine to process this information? In an
abstract sense we see a very simple example of this situation in Figure 3.12. This is a fifth-
dimensional hypercube formed by the intersection of two fourth-dimensional “tesseracts.” In
the general case only some nodes are specified. The hypercube is therefore sparse, yet we
require the machine to be able to predict the result for any other node! Looking at Figure 3.12
it appears to be quite impossible to predict the state of the remaining nodes. Clearly there are
very many possible combinations and no apparent guide-lines by which the machine might
choose amongst apparently equal possibilities. Yet this problem is only hard because we have
posed it abstractly. Analogously, if the problem is posed concretely its solution becomes
trivial. Indeed we solve the problem continuously! For example, consider the problem of
recognising a tree. As a visual pattern a tree is very complex. Obviously we have only ever
seen a minute proportion of all possible tree patterns. Yet, faced with another example of a

tree we have little difficulty in recognising it as a tree.

AR OELI AT A

The typical tree would only occupy a tiny proportion of the nodes of that hypercube
of equivalent pixel dimensionality. That is, the hypercube would be very sparse indeed.
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Even all known exemplars would only occupy a tiny proportion of all the possible tree
exemplars to be found in the generalisation of the concept tree. Yet we find the tree
recognition problem trivial. This suggests that the brain uses some very powerful methods to
constrain the inherent search.

Gestalt psychologists have proposed that the brain uses perceptual groups to
constrain this search. Surprisingly and possibly suspiciously, there is no experimental
evidence and no theoretical proofs given as a basis for these proposals. Rather, in order to
become convinced, we are asked to look at perceptual groups phenomenologically, which can
be roughly translated as the following. “Try it for yourself and you will see that it is
obviously true.” (The reader may smile when remembering that practically all of the great
breakthroughs in science have come precisely at the point of departure from this naive
approach - or explanation by use of the “obvious™!!). Disappointingly, (or perhaps we should
suggest predictably), no simple neurophysiological basis has been found for these groups -
the conclusion being that the concept is still at far too high a level (Roth and Frisby, 1986;
Lowe, 1985; Lowe 1987).

3.3.1 Principle X.

We therefore propose that these perceptual groups may themselves be the result of
some even more fundamental organising principle. Let us call it principle ‘X’. Secondly,
we consider the possibility that if principle ‘X’ can be discovered it should then be possible to
constructively apply it to good effect, at least to low level concepts, independently of the
modality, context, subject matter, etc. even to the extent of whether the nodes depict symbolic

or non-symbolic information. 3

If principle ‘X’ can be discovered and successfully applied in a number of different
problem areas using the hypercube, then principle ‘X’ would then function as a basis for
resolving the bias problem posed by Figure 3.12, namely, by what guide-lines do we
choose between apparently equal possibilities? If we assume that each of these possibilities
results from some other corresponding principle then the space of possibilities delimits the
space of possible machines. Clearly, in the general case, the space of possible machines is
effectively infinite since it is possible to have an effectively infinitely dimensioned hypercube

with an even more nearly infinite set of possibilities.

We take the somewhat disappointing view that out of these infinity of possible
machines it only makes sense to try to build one of them! That machine is the machine which

5 Yet in another sense, perhaps this is not so unreasonable. It could be argued that we appear to have
only one connective structure, namely neurons, which all appear to work in the same way via associated inter-
neuron synapses for processing and storing all sorts of information: visual, verbal, auditory, etc. One cannot
open up the brain and find some other structure doing the work in some other way.
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works by principle ‘X’. The reason for this huge limitation is that if we build machines which
result in different conclusions from our own then we shall have considerable difficulty in
understanding them. Indeed we would probably pronounce their conclusions as “wrong”
even if logically this makes no sense since logically they would specify an equally valid
perspective on the world.

3.3.2 Towards principle X - a worked example.

In order to attempt to discover a good contender for principle ‘X’ some
psychological experiments were undertaken. Figure 3.12 is, as stated, far too hard for us to
solve because it is so abstract, thereby missing the usual constraints allowing easy solution.
We therefore used a very simple hypercube namely the three dimensional cube as Figure
3.13.

Figure 3.13 (a) poses a problem. We imagine that this simple hypercube
encapsulates some concept such that positive examples of the concept are depicted as “true”
(black) nodes and negative instances of the concept are depicted as “false” (white) nodes and
that the remaining (shaded) nodes are as yet unknown. Note that the problem is still posed
abstractly since no actual domain details of the instances are assumed to be known. The
question, therefore, is what state should the unknown nodes take? ©

Figures 3.13 (b) through to Figure 3.13 (e) depict four possibilities and we can
attempt to reason a case for each of these. In Figure 3.13 (b), node 001 becomes true and
node 100 becomes false. We can reason the case abstractly on the basis of a bias towards
weight of evidence. For example, node 100 is connected to two negative exemplars (false)
and one positive exemplar (true). The weight of evidence for the node 100 constrains it to be
true assuming that we are required to make a binary choice for the node. The decision follows
from the asymmetry. A similar argument applies to the node 001 constraining it to become
true. These constraints are local. Hence there is an asymmetrical bias towards weight

of local evidence.

A few further points are in order. Firstly, local evidence is well known to be
unreliable as a predictor, Boden (1977). Secondly, in the general case for an n-dimensional
hypercube it will often be necessary to consider the next-but-one nearest neighbours (and
possibly to even further depth) in order to make a decision. Clearly there are problems here.

6 The reader may protest: “That depends upon what the nodes depict.” Beware! The obvious can very
effectively mask allegory. A deeper appraisal shows that we are in difficult waters. Let the reader bear with us.
The obvious answer turns out to be facile. We will shortly require many pages to separate these waters. An
analogy (which should not be taken too far) may help. The child may protest that y = 2x + 1 is unsolvable
because the result (value of y) is unknown and depends upon a particular example (value of x). The higher
student of mathematics sees immediately that it is the equation of a straight line whose slope and intercept are
apparent. All is known from abstract consideration without us ever needing to know what x and y mean in

the particular case.

99



Chapter 3

111

(c)

111

(b)

111

(a)

000

000

100

KEY

The Theory of Hypercube Learning

Illustration.

Unknown
False

(<]
3
—
—

Figure 3.13

111

(d)




Chapter 3 The Theory of Hypercube Learning

Is such an algorithm always decidable? What do we do if one of the neighbouring nodes is
itself unknown? Rules applicable to various circumstances are found to be required in order
to solve these problems. It can even be useful to consider thresholds so that the weight of
evidence is substantial before making a decision. Thirdly, and worst still, the algorithm relies
upon an exponentially-expanding checking-process for every single node to be assessed - and
there could be millions of nodes to check!

An alternative viewpoint is given in Figure 3.13 (c) where both nodes are now
constrained to be true. In this case emphasis is on positive exemplar evidence. The positive
exemplars form one group minimally joined by a Mandelbrot-Peano-like multidimensional
line. The positive concept, both in this case and in the general case, can be described
mathematically by a minimum polynomial of inclusive disjunctives of conjunctives.
Conversely, the negative concept can only be described mathematically by a minimum
polynomial of mutually exclusive disjunctives of conjunctives since we have distinct groups.
In this particular case, we have two such groups, the group bounded by the nodes 111 and
110 and the sole node group 000. This implies a simpler algorithm than the previous case and
which lopsidedly prefers true as opposed to false nodes. That is, there is an
overgeneralisation bias towards positive evidence.

In Figure 3.13 (d), node 001 is taken to be false and node 100 is taken to be true.
The reason being that, if we consider the whole hypercube, this forms a symmetrical
grouping of opposing lines, both positive and negative. This holistic approach is greatly
recommended by the experience and history of Al where failure is often due to its absence,
Boden (1977). This is the converse of case 3.13 (b) and produces a balanced algorithm
giving equal weight to both positive and negative evidence. Since we are now considering the
hypercube as a whole, rather than iteratively considering individual nodes, this gives
potentially by far the fastest possible algorithm, that is, assuming that we can discover a
straightforward means of holistic computation. Hence in this case we have a symmetrical

bias towards weight of global evidence.

Lastly, in Figure 3.13 (e) both nodes are taken to be false. This is the negative
exemplar evidence converse of Figure 3.13 (c) and hence the rationality implies an

overgeneralisation bias towards negative evidence.

We summarise the results of the above discussion of the various biases as below.

1 Asymmetrical bias towards weight of local evidence.

2 Overgeneralisation bias towards positive evidence and
overspecialisation bias towards negative evidence.

3 Symmetrical bias towards weight of global evidence.

Overgeneralisation bias towards negative evidence and

overspecialisation bias towards positive evidence.
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3.3.3 Some Psychological Experiments.

The various possibilities therefore represent the various possible biases. We already
have some interesting bias cases. We can bias our generalisation towards positive evidence or
towards negative evidence. Or we can consider the weight of evidence either locally or
globally.

Before performing any experiment we will have some expectation of what should
happen. This expectation ought to be made clear. The expectation is based upon some idea or
theory. This theory must be made explicit beforehand. The experiment then tests if the theory
is correct. We must also consider the design of the experiment. Fig 3.14 presents a situation

in which there are 22 unknown nodes. Since the final state is boolean and

22
2 = 4,194,304

we have a choice among approximately 4 million. This is far too many possibilities and
subjects cannot visualise fifth-dimensionally anyway. Hypercubes are structurally similar in
any dimension. Therefore nothing is lost in the generality of the result by lowering the
dimensionality. 7 Hence, we experimented with the very much simpler third dimension and
presented problems with an average of four possibilities. This keeps the problems simple.
We do not want to confuse the results by overloading the subjects so that only those with
good brains and considerable attention span can solve the problems.

Each problem presents a cube in which certain exemplars are known. The known
exemplars are either true or false. The rest of the universe of possibilities, that is, the
remaining nodes in the cube, are unknown. If there are typically four possible ways of
completing the cube then these four cases represent four possible ways of generalising the
known exemplars to the universe of possibilities. Logically, there is no reason to pick out any
one of these four cases in the absence of external constraints. Suppose that subjects are
presented with this abstract situation. Subjects are told that the diagram represents a cube, the
corners of which are either black, white or grey and asked to decide whether the grey nodes
should become black or white. Surely this is ridiculous? There are four possibilities and no

logical reason to choose between them. How can one choose? Therefore our very reasonable

theory is as follows.

Subjects will choose randomly among the four possibilities. Given a reasonable
number of subjects, say six or eight, we would expect to begin to see evidence of random
choice among the four possibilities. If we set a reasonable number of variations of such

experiments, say six or eight, say averaging four possible solutions each, then we would

7 True in this case, but by no means generally true! Analogously, consider the successor generator
for integers. If OLDNUMBER is initially set to zero and NEWNUMBER is given by OLDNUMBER plus
one, then all positive integers are successively generated. But it is not true that all properties of number
theory are apparent by examining the first application of the successor rule, namely, 0+ 1 =1,
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again expect to see evidence of random choice among the possible solutions in each of these
experiments. If the subjects were in some later experiment to be told that the nodes represent
something in particular then the external real world constraints would ensure that subjects
would choose only one of the possibilities - maybe because the other choices would not then
make any sense. In a nutshell our “reasonable theory” is as follows.
Because the situation is abstract and there are no external constraints, the subjects
will choose randomly.

This was our confident expectation. The reader might object that these experiments
are a waste of time. We are merely doing experiments to test whether, faced with a random
choice, people choose randomly! Any slight variation in the result from random could be put
down to the quirkiness of human nature or statistical variation. Any other result is just not
going to happen. The outcome is so obvious that that the experiment is not worth while
doing. On the other hand, testing for the obvious can sometimes lead to a seemingly pointless
experiment providing some new insight. Testing the untested, but confidently expected
obvious, can very occasionally turns up the unexpected. Like now.

The experiments demonstrated that this apparently “reasonable theory” is wrong. We

require an “unreasonable theory”!

The actual experiments involved 12 subjects and each subject was set 12 problems in
two sets of 6 problems. We illustrate the first set of 6 problems in Figure 3.14. The results of
the psychological experiments were quite astoundingly consistent. We analyse the results by
a transitivity argument. For the first set of 6 problems taken as a set there are approximately
2000 possible different solutions. Of these 2000 possibilities a particular solution set from
one person has a random chance of 1 in 2000. Yet all 12 subjects gave the same solution set,
see Figure 3.15 and notice how beautiful the solution shapes are! The possibility of
this happening randomly is 1 in 200012t

The second set contained less constrained (harder) problems and again there was a
very high degree of agreement (well over 99.9 %). Some of these problems had a greater
number of variations than the well known psychological limit on short term memory “seven
plus or minus two” (Winston, 1984). It was a mistake to have presented problems with
greater than this number of variations - errors were bound to occur. Possibly also, these
minor differences in the harder set could be explained away on the basis of perturbation
factors such as tiredness near the end of the set, random lack of concentration, or limited
visualising capabilities for these harder problems. The problems took the subjects quite some
time to solve - up to half a minute in some cases. Therefore tiredness and lack of
concentration with such an unusual exercise could explain slight differences near the end of
the second test. Secondly the later problems required considerable three dimensional

visualisation and the subjects could have lapsed into a two dimensional perspective. The
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subjects ranged from other researchers to motorway cafe waitresses! No detectable

differences occurred with respect to the subjects “profession.” The experiments could be
criticised on many counts, for example:

1) There was a lack of a “control.”

2) There is uncertainty in the extent to which subjects ‘saw’ the solution in three
dimensions.

3) The failure to provide the full solution set from which a multiple choice could be
made (to avoid the error of overlooking some particular choice).

4) The precise wording of the instructions, as above, given at the start could influence
the result.

Nevertheless, the overwhelming consistency of the result is remarkable. Something

very definite and reproducible is evidenced in these results.

Far more remarkable is the fact that the solution set that the subjects produced, when
analysed for each problem, reveals itself as a consistent desire to find a global symmetry
solution which corresponds precisely with the simplest possible mathematical
solution in every case as already suggested above for Figure 3.13 (d). Since the
experiments demonstrated our “reasonable theory” is incorrect we require a new theory. The

new unreasonable theory is clear.

If there are no external constraints, subjects will not choose randomly among
logically equal but abstract possibilities, rather, they will always very strongly
prefer the simplest possible global generalisation.

The experiments had varying numbers of exemplars. Yet each experiment led to the
same simplifying preference. This suggests that there is nothing special about the number of
exemplars as a proportion of the universe. The conclusion must be that if subjects prefer the
simplest solution and further evidence contradicts this solution then subjects will revise their
generalisation to be the next simplest possible solution in the light of the new situation which
includes this new evidence. Perhaps external constraints have a similar effect. If the external
constraints suggest that the simplest possible solution is impossible then the next simplest

possible solution will be entertained.

We need to test this new theory. This is more complex. Merely one side issue
occupies the rest of this thesis. Why? The reason is, that as stated above, our main aim is to
build a first approximation to human generalisation into the hypercube machine. We therefore
need to develop a theory of the hypercube and extrapolate this theory to include an
approximate machine equivalent of the new “unreasonable theory.” A machine needs to be
built as an implementation of this extended theory. Experiments are required to test the
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performance of the machine. Clearly, all this is going to occupy the rest of this project. We
postulate the machine equivalent of the unreasonable theory, the MEU theory.

If there are no external constraints, the generalisation process will not choose
randomly among abstract possibilities; but rather, will always choose the simplest
possible globally derived generalisation.

We must beware of getting ourselves into a circular argument. The hypercube
machine is to be based on the MEU theory. If the machine gives interesting and useful
performance, that does not prove that the unreasonable theory is correct! This is aside from
other matters discussed in section 3.1, which would invalidate such an attempt anyway.

To recap, the interesting insight is the resulting mathematical description. It turns out
that these descriptions correspond to the simplest possible mathematical description as we
previously found by analysis in the case of Figure 3.13 (d), the global symmetry biased

case.

Hence we conclude a strong preference for the simplest possible globally derived
explanation that fits the data in a balanced way with respect to both positive and negative
evidence. Our contender for principle ‘X’ is therefore nothing more than a hypercube
equivalent of Occam’s Razor (the principle that entities should not be multiplied beyond
necessity) or as Albert Einstein was fond of saying “Everything should be as simple as
possible, but not simpler” (Einstein, 1954). Perhaps we could have guessed all this without
doing the psychological experiments since philosophers have been saying so much for
centuries, a rare point of agreement amongst them. We did not, however, anticipate this
result and looking back at the original problem that we used to start this whole discussion,
namely, Figure 3.12, it was not obvious!

We now know the solution we require the machine to search for. In section 3.1.3 we
summarised the case we had made for a sound scientific approach. The first stage in the
scientific cycle for machine learning was stated as: “We require solid links into experiments
on reality concerning some fundamental, eternal fact about learning.” We have attempted to
distil just such an insight into the elements of human learning and as a result we conclude that

a learning machine should have a strong preference for:

the simplest possible globally derived explanation that fits the data in
a balanced way with respect to both positive and negative evidence.

Clearly, we now need to consider the second point in this scientific cycle. That is, what kind
of an algorithm would achieve this effect? This necessitates the development of a formal

hypercube theory.
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3.4 HYPERCUBE THEORY.

In the set-theoretic treatment below, we take a “universal algebra” approach as, for
example, is to be found in Cohn (Cohn, 1965), to a specialised lattice algebra, complemented
distributed modular lattice or CDML (see Appendix 2) theory. The “father” of lattice theory
was Birkhoff (Birkhoff, 1948). We create a theoretical foundation and a very wide ranging
mathematical perspective on the development of the resulting ®—boolean machine. This
approach offers the possible hope of theoretically delimiting the scope of such an Artificial
Intelligence system.

This “pure” and all-encompassing attempt contrasts markedly with other comparable
contemporary systems where rarely has a rigorous attempt been made to define what an
artificial intelligence is and is not theoretically capable of. This is, in contrast to merely
defining the theoretical machine or simpler, stating the learning equation or simpler still, no
theory, just “suck it and see.”

The down-side of all this is twofold. Firstly, universal algebra implies working with
features in common to algebras. This enables the theoretical scoping but has the disadvantage
of becoming increasingly abstract and more importantly as an evolving scientific approach to
mathematics is, as yet, in itself incomplete! Secondly, the latter point suggests that for any
non-trivial machine the exercise may be impossible to conclude. Indeed such an attempt could
alone occupy many mathematical research students. Notwithstanding, the scoping that is

discovered is clearly highly desirable.

Proofs and examples are often omitted for brevity, but similar work may
occasionally be discovered in the above two standard texts or in Lipschutz (Lipschutz, 1964).
Our stated purpose is served in the following way: for the most part we are content with
iteratively defining and then combining terms into more complex structures for later
examination of their properties with respect to the hypercube. A standard notation is used
throughout and listed for reference in Appendix 1. Mathematical and other definitions are also

given in Appendix 2.

3.4.1 The atoms of mathematics.

Through mathematics, as in science, we can perceive order in the nature of things.
This ordering can be used to define structures which enable us to understand the world.
Mathematics like science has attempted to find fundamental building bricks for these
structures - akin to atoms in science. The first attempt was made by Pythagoras using
integers. The second attempt was by using sets. Sets are more fundamental than numbers and
have proved to be a near miss. Sets are still insufficient as a basis for all mathematics. Hence

108



Chapter 3 The Theory of Hypercube Learning
we immediately find a first restriction on our stated purpose with respect to theoretical
scoping.

The term “set” may be used for anything that has a well-defined, that is

distinguishable, collection of elements or members. A set can be defined by a membership
test without reference outside itself. This has the advantage of minimizing assumptions. But
there is a huge and subtle problem.

“Distinguishable” by who or what? Clearly, considerable intelligence and real world
knowledge is required to interpret the symbols, words etc. in the requisite manner and this
implies an untold number of assumptions! This interpretation process is trivial for man,
but unwise to assume for say a seal due to the absence of a common semantic appreciation. 8
The problem is even worse in the case of a mere machine. This restricts reliable application of
the hypercube to (human) specified and verified /O, that is, if we are to appreciate the
results. By this trick we avoid the flaw in set theory. In effect, the machine has a built-in
bias or restriction - the assumption of the applicability of set theory. °

3.4.2 Sets and associativity.

We assume basic set theory as summarised below and highlight further aspects.

Idempotent AUA=A AnA=A

Associative AuB)UX=AUuBUX), ( AUB)UX=AU B UX)

Commutaive @A UB=BUA, AnB=BnA

Distributive AuBnNnX)=(AUB)Nn(AuUX),
ANnBuX)=(AnB)uU(AnNnX)

Identity AUud=A AuB=0, AnNO=A, ANDT=0

Complement AUA' =0, (AY=A, AnA'=0, =0, & =0

De Morgan (AUBY=A"nB, ANB)Y=A"UB’

There are two ways of specifying sets. Either we may list all the members irrelevant
of order or we can state some common property possessed by every element in the set and by

no member (of the given universe) not in the set, for example:

{a, e, 1, 0, u} is defined by listing all members (the tabular form of a set),
{x3xisvowel} isdefined by a property of all members (set of all x such that = vowel)

8 Seals seem to have a large language yet, to date, it has proved to be uncrackable.
9 Possibly, in practice, this assumption will always hold or its exceptions be resolvable at a higher

level; else we search in vain for the origins of the ‘chicken and egg’ riddle. Sure_ly neurons work this way? In
contrast, Einstein thought otherwise, at least, as far as concepts are concerned (Einstein, 1954).
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Two sets A and B are said to be equal if they consist of the same elements. That is,
every element of A is an element of B and every element of B is an element of A. Both
conditions are required.

Sets can have subsets. If every element of B is an element of A then B is a subset of
A or A = B. Certain paradoxes in set theory can be avoided by the use of hierarchies of sets
eg. a family is a set of classes, a class is a set of sets and a set is a set of elements. Inheritance
can be properly modelled in this manner (Touretzski, 1986). A hypercube can similarly
represent a given family.

By the word space we mean any non-empty set which possesses some type of
mathematical structure - as in vector space, metric space or topological space. Let the

elements in a space be called nodes.

Special sets in a given space may be specified, for example, the set of all real
numbers R or the set of all positive integers Zt.

One class which commonly occurs is the set of all subsets of a given set. This is
called the “power set.” If A = {a., 3, ¥} then the power set of A is given by:

H3p, = (D, (a}, (B}, (v}, (o BY, (o, 7). (B, v}, (o, B, ¥))

Any subset of set A is an element of the power set. Hence, if the set has n members
the power set has 21 elements since each element either does or does not belong to a given
subset. This defines a hypercube. We shall call such hypercubes “non-associative.” They

have the advantage of requiring minimal memory.

In contrast “associative” hypercubes contain redundancy but have many
advantages such as increased felicity for fast algorithms, increased orthogonality and graceful

degradation. The associative hypercube equivalent of the above power set is:
H3, = ({o, By ) (o) B Y), (o, By, s (00 By Y ), (0, By )
where o, ... is the negation of q, ... respectively. This, in the general case, gives:
n ll’l n n n n
()= (1) () + lata) + (at) 3]
n

(1) = 3 (et ) -2

=0

n

elements in the hypercube, as before. The number of flattened elements Hf, in HI, is:
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L[

The number of flattened elements Hg, in HO,, is:

The redundancy R is given by:
n
PAE
R - H?a _ r=0 r
Hp ¢ n n
2 (e(2)) (5]
r=1
N i( n! )
ff(n-r)
r=0 n
= = ni-l 2
i nr@- 1) n2
rc-DI((-1)-(@- 1)

r=1

Hence the advantages of the associative hypercube are bought at the price of
redundancy as Table 3.1. This overhead can, in practice, be minimised by the use of virtual

hypercube memory.

n
1 2 3 4
Associative 2 8 24 64
Non-Associative 1 4 12 32

Table 3.1. Redundancy in non/associative hypercubes.

3.4.2.1 The Cartesian product.

Subsets can be represented by segments of a number line. Pairs of subsets can be
represented by points in a plane. Complementarity is shown by 1) algebra where points in a
plane can represent pairs of numbers and 2) geometry where pairs of numbers can represent

points. Setting two number lines at right angles defines a plane corresponding to the set:
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{(a,B)> € A,Be A} called the cartesian product of (set of real numbers) A with itself.

In Cartesian geometry, by convention, the horizontal and vertical axes represent the
first and second elements of the ordered pair (a, b) respectively. This set is the Cartesian

product of A with itself. The Cartesian product can be also found of set A with set B as in:
{{o, B30 € A, B e B}
We will use the symbol ® to denote the process of taking the cross product, as in:
A®B={(a,B)3ae A,B e B}
A ® B is itself a set from which we could form the Cartesian product of (A ® B) with I":
A®B)®TI = ({o,B),»30e A,Be B,ye T}

which is again a set of ordered pairs with the first element of each pair itself an ordered pair.
Conversely (o, B, ¥) is an ordered triple. In the general case we could have an ordered n-

tuple:
A®BORTI®..®V)={o,B,v7,...,v)300e A,Be B,yeT,..,ve V)

in a multidimensional space.

3.4.3 Simple and general boolean quantities.

A simple boolean quantity can take one of only two values, 1 and 0. These symbols
are however arbitrary. In logic the outcome of a proposition as true or false is also boolean,
thus we can assign the value 1 to true and O to false. This is again an arbitrary choice.

A general boolean quantity is obtained when each component of its support set is
associated with a simple boolean quantity. Conversely, a simple boolean quantity may be
considered as a general boolean quantity with one element. Let upper case letters such as A,
B, ... denote general boolean quantities and the corresponding subscripted lower case letters

for example:
{ala a2, .o an}a {B19 B2v “eey Bm}, .es

denote the simple boolean quantities of their corresponding components in their respective
support sets. The set may be finite or infinite. We will consider only finite sets. The
components may be written in the form of a matrix, either by row or column. We shall use

row format as in for example:

B = {Bl, B2, seey Bn}
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There are two special sets to consider when all the components have the same value
either O or 1, denoted by O for the zero set (not to be confused with J, the “null set” with

zero members) and I for the unit set respectively:

O = {0,0, ..., 0,0}, I={1,1, .., 1,1}.

3.4.3.1 Ordering.

The set of values of the simple boolean variable can be ordered by the relation 0 < 1.
It is convenient to represent the 21 values of the general boolean variable, A, in a row format
and the O's and 1's of the associative hypercube can then be considered as binary digits. It
must be remembered that this is for convenience only and is an arbitrary choice and implies
that the possible values or “affixes” of A are 0 to 20 -1. Equally, we could more compactly
label the vertices with octal, hexadecimal or decimal equivalent integers. This could save
memory space but at the expense of conversion time. The result is the general boolean
function total ordering of affixes. This hierarchy amongst the affixes is, however, not
particularly useful and as stated above arbitrary. It is found to be useful both within lattice
theory and in machine learning (eg version spaces) to distinguish a lesser class, namely,
partial order relations. If we extend the definition of the order relation for simple booleans

then:
A>B if Vi(aj>=bj) and A #B.

(Note: if we defined A > B if V i (aj > bj) then only O and I are involved in the relationship

which is of little interest).
Further:

A >=B if Vi (aj >= bj).
Hence:
O<=A<=landO<=B <=1

The arcs of the cube in Figure 3.2 (c) are readily seen to define the partial order by
“monotonic levels.” Given nodes A and B, if it is possible to go from A to B by
monotonically ei