Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

The Use of Deterministic Parsers on
Sublanguage for Machine Translation

Jacqueline McEwan Archibald

Doctor of Philosophy

The University of Aston in Birmingham

August 1992

¢ This copy of the Thesis has been supplied on condition that anyone who consults it
is understood to recognize that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the
author’s prior, written consent.

The University of Aston in Birmingham

The Use of Deterministic Parsers on
Sublanguage for Machine Translation

Jacqueline McEwan Archibald
Doctor of Philosophy

August 1992

Summary

For more than forty years, research as been on going in the use of the computer in the
processing of natural language. During this period methods have evolved, with various
parsing techniques and grammars coming to prominence. Problems still exist, not least
in the field of Machine Translation. However, one of the successes in this field is the
translation of sublanguage.

The present work reports Deterministic Parsing, a relatively new parsing technique,
and its application to the sublanguage of an aircraft maintenance manual for Machine
Translation. The aim has been to investigate the practability of using Deterministic
Parsers in the analysis stage of a Machine Translation system.

Machine Translation, Sublanguage and parsing are described in general terms. with
a review of Deterministic Parsing systems, pertinent to this research, being presented in
detail. The interaction between Machine Translation, Sublanguage and Parsing, including
Deterministic Parsing, is also highlighted.

Two types of Deterministic Parser have been investigated, a Marcus-type parser,
based on the basic design of the original Deterministic Parser (Marcus, 1980) and an
LR-type Deterministic Parser for natural language, based on the LR parsing algorithm.
In total, four Deterministic Parsers have been built and are described in the thesis. Two
of the Deterministic Parsers are prototypes from which the remaining two parsers to be
used on sublanguage have been developed.

This thesis reports the results of parsing by the prototypes, a Marcus-type parser
and an LR-type parser which have a similar grammatical and linguistic range to the
original Marcus parser. The Marcus-type parser uses a grammar of production rules,
whereas the LR-type parser employs a Definite Clause Grammar(DCG).

Also, reported are the results of parsing using the Deterministic Parsers for
sublanguage on the noun-phrases from an aircraft maintenance manual. This includes a
discussion of how to deal with complex nouns, which appear in the aircraft maintenance

manual.

Keywords: Natural Language Processing, Parsing Strategies
Deterministic Parsers, Sublanguage, Machine Translation,
Artificial Intelligence.

To my Parents
and

in memory of my Gran
Sarah (Cis) Walker Snaddon

ACKNOWLEDGEMENTS

I would like to express my gratitude to the following people:
Dr Peter Hancox, my associate supervisor, for his support and guidance and for having
faith in me and my work, at those times, when I did not have it myself,

Mum, Dad, Jain and other members of my family for their endless support and
encouragement in this undertaking and everything that I have done,

Dr Abdellah Salhi for his constant support and encouragement,
Dr Brian Gay for his help and guidance

all members of the Academic and Technical Support Staff of Department of Computer
Science & Applied Mathematics at Aston University,

all colleagues and former colleagues of MB268, Aston University for their advice,
suggestions and friendship especially Mr Richard Gatward and Dr Neil Simpkins.

Finally, I acknowledge the financial support provided by an Aston University
Studentship.

LIST OF CONTENTS

SUMMARY
DEDICATION
ACKNOWLEDGEMENTS
LIST OF FIGURES

LIST OF TABLES

1. INTRODUCTION

1.1 Aims of the Research

1.2 Machine Translation

1.4 Parsing Sublanguage
1.3 Outline of Following

1.2.1 Coverage of Machine Translation Systems
123 Posing SYSBIS . - « 2 « « « » onmmamesis © & % € 5 = SEstERwRs & © 5 o % 8

................................

CHEDIEES i85 4 s o o 5t srmmiwibbn s m & o 4 s

2. GRAMMARS, PARSING STRATEGIES AND PRACTICAL PARSERS

2.1 Introduction
2.2 Grammar
2.2.1 The Chomsky

2:2.1.F

2.2.1.2

2.2.1.3

23.2.1
2.3.2.2
2.3.2.3
2324
2328

2.3.2.6
2327

Algorithms

2.4.1 TAUM-Meteo

..

Hiciatchy cowvss s vovovmaens v a6 ¥ s
Type 3 - Finite State Grammars

Type 2 and Type 1 - Phrase

Structure Grammars

Type 0 - Unrestricted Rewrite

Systems and Unification Grammars
2.3 Parging Algorithihg « - « s ¢ ¢ varcmasans 46 ¢ 5 9 8 wassomes 3 5 @ 5
2.3.1 Types of Parsing Algorithms
2.3.2 Parsing Methods

Advantages of Depth-first and

Breadth-first AnalysiSi . . .« « o v & w0 svsisio
Combining the Methods

Parsing Methods for Deterministic Parsing

Top-down Analysis
Bottom-ap ANAlYSIS << oo semiame s e
Depth-first Analysis . :: ... vanmvassss
Breadth-first Analysis

2.3.3 The Formal Properties of Parsing Algorithms
2.4 Parsing Strategies used in Machine Translation Systems

10

11

12

12
15
16
18
20
21

23

2.42 TAUM-AVIQtION,
243 Metal ...
2.4.4 Concluding Remarks on Parsers for Machine Translation . .

3. DETERMINISTIC PARSERS

3.4
3.5

3.6

Introduction
General Rules of Deterministic Parsers
Marcus Parsing
3.3.1 The Marcus Parser - PARSIFAL
3.3.2 The Milne Parser - ROBIE
3.3.3 The Berwick Parser - L.PARSIFAL
3.3.4 Other Deterministic Parsing Systems

LR Parsers For Natural Language Processing
3.5.1 The Shieber and Pereira Parser
Deriving the LR Research Parsers

4. SUBLANGUAGE

4.1
4.2
4.3
4.4
4.5
4.6

54
3.2

33

Automatic Machine Translation and Sublanguage
Deterministic Parsing and Sublanguage
5. MPARSER - A MARCUS TYPE PARSER

FAPOUBCHON o v w5 o 5 o sssmsncmm 5 55 5 5 © » 5 EEEGUR & K § 0 K E R

The Grammarttt it e

321 ZK-Dartheory : :.ic..sssiisssiendempesdsosyshe

5:22 ThEGranmmarBales cueoisssas o nonmnsssasgood

5.22:1 Examples of Specifier Group

5.22.2 Examples of Head Group

5.2.2.3 Examples of Complement Group

MParser’s Data Structurest

5.3.1 The Pushdown Stackcos s s a5 s i bifaiesn e sss

5:.3.2 The Lookahead Baffer ..;vn5 s 556 0 5 5 6 suiedlent s s 9 6 8
5.3.3 Interaction of Stack and Buffer - MParser in Action ...

5.3.3:1 WD ¢ vareromem s & & 5 o & & & GGG e & & &

3.3.3.2 BHUEE" . onanmansvsi s & % & & ¥ o &t simaieies 5 5 &

3.3.3.3 PEBDE o iovomssomcammnns & 5 & 5 % 9 6 B BRSWREE A 3

5.3.3.3.1 Create_maxX

53332 perc_features

5.33.33 add_template

5.33.34 A0d - featires < :xs505:56 8 avanans

5.3.3.35 PEE MBSt oocoeis o 5 4 5 0 8 & & Ssie

3.3.3.4 PAPSE « & ¢ o v aca S R S R E & e

3.3.3:5 DEOCESS. 5 & & svasmmmmereste s & § & = & 5 & & 5 5o

Introduction

The Definition Controversy
Restrictions

6

Deriving the Marcus Type Research Parsers

......................................

Defining A Sublanguage Grammar

49

49
50
51
51
57
63
67
71
72
72
77

78

78
79
85
87
88
90

93

5.3.3.5.1 annotate_node 108

53352 amend_stack 108
5.3.3.53 amend. Emplate: . .« s i s s s 108
53354 act erente o ;.o v o s e s 108
5.33.55 RPOP <ooiins w = @ 5 5 5 siwsssies o 5 % & 109
5.4 The Grammatical and Linguistic Range of MParser 109
54,1 The Dictionary 109
54.1.1 Dictionary Look-up 110
3412 Morphological Analysis 111
5.4.2 The Processing of Unambiguous Sentences 112
5.4.3 The Processing of Ambiguous Sentences 114
5.44 Parsing Output in Relation to Analysis in Machine
Translation 120
55 Summary ... 121
6. LPARSER - AN LR TYPE PARSER 124
6.1 Introduction 124
6.2 The Grammar - A Definite Clause Grammar (DCG) 125
021 DEIMMEDEOS : v io50 s s basus su @5 s @ sas 125
622 "The GrammarRAles.: .oooowes 66 5 v o v vasan 55 5 5 ¢ & vl 128
6.22.1 Grammar Rules for Sentences 129
6.2.2.2 Grammar Rules for Noun-phrases 129
6.2.2.3 Grammar Rules for Verb-phrases 130
6.2.2.4 Other Grammar Rules 130
6.3 LParser, the Parse Table and Interaction with Stack and Buffer .. 130
6.3.1 The Construction of LParser’s Parse Table 131
6.3.2 The Parsing Rules 139
6.3.2.1 BT e a2 e e Gl R G s 140
6.3.2.2 MALCH: BEBIE. 7 s iu s svneiu i as s 8 5 8 % 140
6:32.2.1 SURE . o 5o« 5w i amuaisiaie 6 % % & @ o 8 141
6.3.2.2.2 check [CAtEZORIBS vovcin s o s s 58 o & 141
6.3.2.2.3 shift 141
6.3.2.24 METEE & v v oe e oot e eee e 141
6.3.2.2.5 TEUUCE ... » s % &= 75w sisfeimm b a5 403 142
6.3.2.2.6 MEIPe] sisssnsssanaisvsasss 142
6.3.2.27 PORUCEL o ¢ v v s v e s e % B 142
6.3.2.2.8 CHECKING v 5 = 5 5 5 3 cansmisnm 5 4 8 5 4 143
63229 check_verb 143
6.3.2.2.10 check_verb_prep 144
6.4 The Grammatical and Linguistic Range of LParser 144
6.4.1 EParser’s Dictionaly connassi i s avaaemns s 144
6.4.1.1 LParser’s Dictionary Look-up 145
6.4.1.2 LParser’s Morphological Analyzer 146
6.4.2 Modifications for Natural Language Processing 146
6.4.2.1 Conflicts in'the Parse Table 146
6.42.2 Extending the Lookahead 147
6.4.3 The Processing of Unambiguous Sentences 150
6.4.4 The Processing of Ambiguous Sentences 152
6.5 SUMMAIYttt in e tnetneennnnneennes 156

7. DETERMINISTIC PARSERS FOR A SUBLANGUAGE

7.1
7.2

7.3

7.4

15

7.6

Introduction

The Sublanguage of an Aircraft Maintenance Manual
7.2.1 The Aircraft Maintenance Manual
7.2.2 Ambiguity in the Aircraft Maintenance Manual

7.3.1 The Simple Approach to Complex Nouns
7.3.2 The Complex Approach to Complex Nouns

7:3.2.1 The Theory of Relationships
1:3.2.1 The Preprocessing of Complex
MNOUNS < & ¢z 5 & v SuRmAms 8 7 95 5 § Narsns

MParserSub - a Marcus Type Parser for a Sublanguage
1.4.1. MParserSub's Grammar . . « . veicenioe s s s o v o o sveraiim
7.4.1.1 X bar Theory and The Sublanguage
7.4.1.2 MParserSub’s Grammar Rules

7.4.1.2.1 Examples of Specifier

GIOUD o vaiswmiy 555 5 % 8 & e 5
7.4.1.2.2 Examples of Head Group
7.4.1.2.3 Examples of Complement

Group

7.4.2 MParserSub’s Parsing Rules for Sublanguage
7.4.3 MParserSub’s Parses from the Sublanguage

7.4.4 MParserSub and Ambiguitycccoevviiviieiiiieninennn.

LParserSub - an LR Type Parser for a Sublanguage
7.5.1 LParserSub’s Grammarot
7:5:1.:1 LParserSub’s Grammar Rules

751211 Grammar Rules for

Noun-phrases . . . o s ¢ o v s «

7.5.1.1.2 Grammar Rules for Other

Phrases
7.5.2 LParserSub’s Parsing Rules for Sublanguage
7.5.3 LParserSub’s Parses from the Sublanguage

7.54 LParserSub and Ambiguityovunmanas
The Use of MParserSub and LParserSub in Machine

Translation o e e e e e e e

8. CONCLUSION AND FUTURE WORK ...

8.1
8.2
8.3

CONCIUSION o 5 v v suniumes % % 5 s 6 ¥ 5 5 e 5 6 % & 9 € % & 8 vk
Future and Further Work . ..« o c oo vmmsmm w0 5 2 5 & 6 & & 0w
Concluding REMIATKS, v v 5 v 5 50 v = v ossveivaeiimis % & & € % o & & o

REFERENCES

APPENDIX A

APPENDIX B

........
.................

7.2.3 The Noun-phrases of the Aircraft Maintenance Manual . .
Dealing -with: Complex NOMNS: . < » x o v sampws s 65 ¥ 5 5 5 5 5 50

............

..........

159

159
159
160
165

. 167

169
170
171
173

176
177
178
178
180

182
182

182
183
183
185
186
187
187

188

188

189
190
191

192
200
200
201
203
204
209

239

APPENDIX C 282

APPENDIX D 288

LIST OF FIGURES

Figure 3.0 (a) PARSIFAL’s Active Node Stack

Figure 3.0 (b) PARSIFAL’s Lookahead Buffer

Figure 3.1 Marcus’ Grammar

Figure 3.2 (a) Example of a PARSIFAL grammar rule
Figure 3.2 (b) Example of a L.PARSIFAL grammar rule
Figure 5.0 Individual Components of a Grammar Rule
Figure 5.1 Actual Grammar Rule

Figure 5.2 Snapshot of Pushdown Stack

Figure 5.3 Snapshot of Lookahead Buffer and InputString
Figure 6.0 (a) A Simple CFG

Figure 6.0 (b) A Simple DCG

Figure 6.1 Example Algorithm for a Closure Function
Figure 6.2 Example Algorithm for a Goto Function
Figure 6.3 Example Algorithm for Building Itemsets
Figure 6.4 Rules for Building a Parse Table

Figure 7.0 Examples of Grammar Rules of Sentences and Verb-phrases

10

54

54

55

66

66

98

100

103

104

127

127

136

136

136

137

165

LIST OF TABLES

Table 2.0 Parsing Strategies 40
Table 7.0 Derivation of Complex Nouns - Predicate Nominalization 172
Table 7.1 MParserSub - Parse Statistics 198
Table 7.2 LParserSub - Parse Statistics 198

11

CHAPTER 1

INTRODUCTION

1.1 Aims of the Research

Since the immediate post-war period, the use of the computer in processing natural
language has occupied many researchers. The first major systems built for dealing with
natural language were Machine Translation systems. Machine Translation systems were
built to translate one natural language into another natural language, e.g., Russian into
English. Expectations of the results that these systems would produce proved to be too
optimistic, as it became apparent that fully automatic high quality translation was
virtually impossible. ~ However, although research in Machine Translation floundered
in the 1960’s, a by-product of this research began to gain credence; this was the more
general area of Computational Linguistics. The field of Computational Linguistics deals,
in part, with theories of grammar, grammar formalisms and parsing techniques that can
be computerised to perform natural language processing. Since the beginning of
research in Computational Linguistics several notable grammar formalisms and parsing

techniques have been developed.

Today’s researchers in Machine Translation, which has quietly re-emerged as an
area for research, and Computational Linguistics are building both theoretical and
practical natural language systems. The majority of practical systems built are Machine

Translation systems and Natural Language Front Ends to Databases.

12

At present, parsing methods used by the majority of Machine Translation systems
either have been of a non-deterministic nature, e.g., ATNs that employ back-tracking or
the parsing method has used pseudo-parallelism, such as, Chart Parsing systems. This
research involves the investigation of the use of a relatively untried method of parsing

in a practical situation, such as Machine Translation, namely Deterministic Parsing.

The Deterministic Parsing of natural language was put forward by Marcus (1980)
in opposition to backtracking non-deterministic systems and systems that worked in
parallel. He developed the first Deterministic Parser, PARSIFAL, dedicated to parsing
Natural Language. Marcus believed that the Deterministic Parser reflected how humans
parse - humans did not back-track or process in parallel. Other researchers, namely
Shieber (1983) and Pereira(1985) have also investigated Deterministic Parsing using an
LR type Deterministic Parser for the processing of natural language. Both types of
Deterministic Parser, i.e., the Marcus and LR type, in the main have been used as

components of theoretical systems.

As Deterministic Parsers have been used significantly as part of theoretical
systems, it was felt that there was a need to investigate their use in a practical situation;
the logical step of putting theory into practise. Specifically, the aim of this research is
to evaluate the practability of using these Deterministic Parsers in the analysis stage of
a Machine Translation system with an example sublanguage of an Aircraft Maintenance
Manual serving as the source language text. The use of a technical sublanguage adds
to the practability aspect of the research, as it is an example of the type of text that has
already been used successfully in Machine Translation. (Machine Translation and

Sublanguage are discussed in more detail below).

To fulfil the aims of the research, four parsers have been constructed. Two of

13

these four parsers are prototypes, one of which is of the Marcus type, MParser. the other
of the LR type, LParser designed to process natural language. The Marcus type
Deterministic Parser follows the basic design of Marcus’ parser with amendments made
to enhance the functioning. The grammar of production rules used is similar to that
used by Berwick (1985), itself based on Marcus (1980). The LR type Deterministic
Parser, LParser, is based on the LALR(1) algorithm. Modifications have been made to
allow it to cope with natural language. LParser is a substantial extension of the Shieber
(1983) and Pereira (1985) parser. The grammar used written in a Declarative Clause
Grammar (DCG) formalism. The construction, functioning and linguistic range of both

these parsers are discussed in the thesis.

From these prototypes, two Deterministic Parsers have been used on the
sublanguage of a Rolls-Royce aircraft maintenance manual, as part of the analysis stage
of a Machine Translation system, have been developed, i.e., a Marcus type parser,
MParserSub, for sublanguage and an LR type parser, LParserSub, for sublanguage. Both
parsers use similar type grammars to their prototypes. The Deterministic Parsers
applied to the sublanguage only process the noun-phrases of that sublanguage.
However, these noun-phrases encapsulate many differing patterns of phrases, thus
providing the Deterministic Parsers with a wide grammatical range to process. The
thesis also reports the construction, functioning and linguistic range of the two parsers

used on the sublanguage.

Having defined the aims of the thesis, the rest of the chapter concentrates on
defining and discussing the major areas that are pertinent to the research and put it into
context, namely Machine Translation, Parsing and Sublanguage. The final section of the

chapter highlights the contents of the remaining chapters of the thesis.

14

1.2 Machine Translation

Machine Translation (MT) involves the use of a computer to translate one
language into another, i.e., a source language into a target language. In the early days
of MT the strategy used was direct translation. This involved translating sentences in
stages with the output of one stage being the input to the next stage. There was no
analysis of the source text, no linguistic theory or parsing method was used. The system
worked by processing large bi-lingual dictionaries, analysing word categories and their

morphological endings and text processing.

The method of Machine Translation used by the vast majority MT systems since
the 1960’s is the indirect method. The term indirect relates to the fact that there is not
a direct link between source and target language. Two strategies of indirect MT exist -

interlingual and transfer. An interlingua can be described as a language-independent
representation of semantico-syntactic structures that produces a relevant meaning of both
source language and target language text. The interlingual approach to translation has
two stages - the analysis and synthesis stages. The analysis stage of the system
processes the source language into an interlingua and the synthesis stage generates the
target language text from the interlingua. Both the analysis and synthesis stages use

their own dictionaries and grammars.

It is the second indirect method, the transfer strategy of MT which the research
parsers to be reported in this thesis would be part. MT systems that use the transfer
strategy function in three stages - analysis, transfer and synthesis. Each stage processes
independently with its own dictionary. An important concept of transfer strategy systems
is the flow of information from source language to target language; the flow of

information passes from the analysis of the source language through transfer into target

15

language structures, to the final stage of the generation of the translation. The analysis
stage can comprise modules for morphological analysis, syntactic analysis and semantic

analysis. However many systems mostly perform syntactic analysis or morphological

and syntactic analysis with a little semantic analysis.

The analysis stage of MT is of most interest to this research, as this is the stage
where the parsing of the source text into an abstract internal representation takes place.
This analysis information is recorded on a results data structure which is passed to the
transfer component. The analysis stage involves syntactic analysis, the most important
procedure of the analysis stage, perhaps the whole system, as any errors occurring
during syntactic processing would be passed through each stage of the whole MT

system.

As a result of the importance placed on Syntactic Analysis in the majority of MT
systems, the process of analysing can prove costly, i.e. financially, and time consuming.
This has lead to the need when developing MT systems to concentrate on Syntactic

Analysis with the aim of decreasing time spent on analysis.

1.2.1 Coverage of Machine Translation Systems

Since Machine Translation systems were first developed, they have varied in size
and the type of text of they processed. Many of the MT systems developed were large
general purpose systems that tended to specialise in a subject area. An example of
direct MT system that fell into this category was Systran. Systran began as a Russian -

English system used by the Wright-Patterson Air Force Base (Hutchins, 1986). As it

was a direct MT system, it was not based on linguistic theory, rather a series of

16

programs that followed the tasks of input, main dictionary look-up, analysis, transfer and
synthesis. Each of these tasks had no distinct result structure; the output of one task
was the immediate input of another task. Later adaptations to Systran allowed this
general purpose system translate texts from English to French, French to English and
English to Italian. Systran has been used by the Commission of European Communities
to translate internal memos relating to Agriculture in these language pairs. Output from

Systran usually needed much post-editing.

A large general purpose MT system that used the interlingual approach was CETA
(Hutchins, 1986). Although general purpose, the main subject areas translated by the
system were Maths and Physics; the language pair used was Russian - French. The

system was based on Chomsky’s theory of Transformational Grammar.

Examples of general purpose systems that used the Transfer Strategy are Eurotra
and GETA (Hutchins, 1986). Both systems were designed and developed using
linguistic theories that incorporated parsing strategies for use in the Analysis Stage of
MT. The subject areas covered by each system were various. All of the above general
purpose systems were large systems in that they comprised large dictionaries and
grammars; thus much time was spent on syntactic analysis, in spite of the fact that most

of the systems concentrated on translating certain subject areas.

A few MT systems have been designed and developed for specific tasks; the most
well known are Meteo and Aviation developed by the TAUM group. Both systems were
developed as sublanguage systems in that they could only translate text specific to
certain sublanguage. The Meteo system is dedicated to translating Weather Forecast
from English into French. This is a fully working system that has proven to be one of

the most successful translation systems in the world. Aviation was dedicated to

17

translating aircraft maintenance manuals. As both systems were based on sublanguages,
their dictionaries and grammars were relatively small compared to general purpose
systems. Thus, in theory, processing time during the Analysis Stage should be shorter.

It is a sublanguage system of which the parsers, discussed above, would be part.

1.3 Parsing Systems

For the purpose of this research, parsing can be split into two types - Deterministic
and Non-Deterministic Parsing. The emphasis of the research is to investigate the use
of Deterministic Parsers on a sublanguage, however, it would be appropriate in this

introduction to define parsing, in general, and examine the characteristics of parsing for

MT.

Fundamental to a parsing system is a grammar and a parsing algorithm. The input
for a parsing system, usually in the case of MT, is a sentence. The output is a
representation usually in the form of a Phrase Structure Tree, but this is not always the
case. There are a number of grammar formalisms that can be used in parsing systems
and these are discussed in detail in the next chapter. Parsing comprise the functions of
searching and matching which is common to both types of parsing - Deterministic and
Non-deterministic. Within these types there are various parsing methods that can be

adopted, which are also discussed in the next chapter.

The function of parsing, in general, is to produce as output a syntactic or
syntactic/semantic representation from a given input. In terms of Machine Translation,
parsing, which takes place in the analysis phase of MT, can be considered to be
transducing an output from an input. In his 1983 paper, Rod Johnson discusses parsing

from an MT perspective, which is the basis of the following discussion. The parser’s

18

function in MT is to convert source language text into an abstract structure, usually
referred to as an Intermediate Representation. This definition could reasonably refer to
parsers, in general. However, most parsers in MT systems produce syntactic
representations. For Johnson, the criteria for deciding on the form of a MT parser
should be engineering criteria. These criteria state that the properties of the input and
output must be known, as an applications parser is only successful if it gets the
mappings between input and output that are correct. As Johnson (1983) further states,
" It seems somewhat gratuitous to enter into debate on the
plausibility/efficiency of a parsing strategy without reference to the
credibility/usefulness of the idealised artefact which the parser is
intended to build."

Parsers, in general, contain various types of knowledge about language and
linguistic processes. For parsers used in MT systems, Johnson (1983) considers that
four types of knowledge that should be embedded within the parsers - well-formedness
conditions, structure-building rules, knowledge about control and appropriateness criteria.
In other words MT parsers have to be able to deal with input that is not recognised and
be flexible enough to deal with modifications to the input. The parsers must be able to
differentiate between decisions that increase efficiency and effect the nature of the result.
Finally parsers should only pass on one output, so that the other stages of the translation
process are free of the ambiguities found within the source language.

If necessary the parsers should choose the ’best’ of the outputs by use of a heuristic, 1f

more than one has been processed.

Although Johnson's (1983) comments are very pertinent to MT, some of the
comments can be considered as being more relevant to multi-purpose MT systems than

those systems that are dedicated to processing a sublanguage. Parsers for sublanguage

19

would not need to be as flexible as those used in multi-purpose MT systems to deal with
new classes of input, as there would not be as many new classes of input within a
sublanguage system. Johnson (1983) does not differentiate in types of parsers that should
be used, although his comments may be more pertinent to non-deterministic parsers.
However, MT systems, especially sublanguage systems could use, it is suggested,
deterministic parsers. Although the parser used in the Meteo system was not a
deterministic parser, it did only produce one syntactic structure from each parse, which

is what a deterministic parse would do. The individual structure produced from the

parse was sufficient.

Parsing for MT is, in reality, not that different to parsing for any situation. As MT
systems, particularly transfer systems, are modular in design with the parsing process

being distinct from the other stages of the MT system.

1.4 Parsing Sublanguage

Sublanguage has many definitions which are discussed in Chapter 4, but the most
common are:

A sublanguage of a natural language L is part of L.

A sublanguage is identified with a particular semantic domain.

(Lehrberger, 1986)

The reason that sublanguage is considered to be part of natural language is that various
restrictions are found within sublanguages. The restrictions are of a lexical, syntactic
and semantic nature. Lexical restrictions in a sublanguage mean that the size of the
vocabulary is reduced especially the number of nouns and verbs. Syntactic restrictions
found within a sublanguage are the reductions in type and number of grammar rules.

The semantic restrictions within a sublanguage are more important than lexical

20

restrictions in that they restrict words being attached to one category and thus leads to

a reduction in polysemy.

These restrictions can lead to a reduction in lexical and syntactic ambiguity. The
reductions in lexical and syntactic ambiguity can be an aid to the parsing process, which
can be caused problems by ambiguous structures. However, it does not mean that the
structures that parsers have to parse are simple, some sublanguages have quite complex
syntactic structures. Parsers, in general, used in the processing of sublanguages have
been of a non-deterministic type. However, the aims of the thesis described the design
of deterministic parsers to be used to process sublanguage. The fulfilment of the aims

is discussed within the following chapters of the thesis.

1.5 Outline of Following Chapters

The remaining chapters of the thesis can be considered as falling into three
sections. The first section consists of chapters 2 - 4, which consider the literature
related to the research. The second section contains chapters 5 - 7, which discuss and
describe the four parsers built and their linguistic range. The final section contains only
Chapter 8, which draws conclusions on the parsers for sublanguage, suggestions for

future work and concluding remarks.

Chapter 2 discusses grammars, parsing strategies and parsing systems. The
parsing systems considered are those found in Machine Translation systems. Chapter
3 reviews Deterministic Parsers, beginning with Marcus’ parser PARSIFAL (Marcus,
1980) and continuing with several of the Deterministic Parsers discussed in the literature
during the past decade. This includes an examination of parsers of the LR type.

Chapter 4 examines sublanguage, describing what it is, how it is parsed and why it

21

should be used in the practical situation of Machine Translation.

Chapter 5 discusses in detail MParser, its grammar, its parsing rules and its
grammatical and linguistic range. The amendments made to the basic design of
Marcus’ parser are also discussed. Chapter 6 examines LParser, its construction, parsing
rules and grammatical and linguistic range. The modifications made to the parser to
allow it to parse natural language are discussed. Chapter 7 describes the workings of
MParserSub and LParserSub and how they are applied to the noun-phrases of the

sublanguage. The processing of complex nouns is also considered.

22

CHAPTER 2

GRAMMARS, PARSING STRATEGIES AND PRACTICAL PARSERS

2.1 Introduction

The preceding chapter introduced the use of Deterministic Parsers in the practical
situation of Machine Translation as the area to be investigated. This chapter
concentrates the discussion on the fundamentals of parsing systems - grammar and
parsing strategies - looking at the formal properties of both. The chapter ends with an
examination of some current parsers and their use in practical Machine Translation
systems to emphasise what parsers need to produce for a practical Machine Translation

system.

In linguistic theory, grammars are commonly defined as generators of language,
i.e., grammars describe the structures of a language. In section 2.2 grammars are
defined in more detail, with examples being given of the different types of grammar

commonly used in conjunction with practical parsing systems.

There are several parsing strategies that can be considered for use in NLP systems.
These strategies have been adopted both in theoretical and practical systems. As the aim
of this current work is to investigate an issue of practability in Machine Translation, the
discussion will concentrate on the latter type of system in this field. In section 2.3,
there is an examination of current parsing strategies, with the formal properties of
parsing being discussed. In section 2.4, the chapter concludes with an examination of

the parsers used in practical Machine Translation systems.

23

2.2 Grammar

It is generally regarded that grammar can be defined in the manner explained by
Winograd (1983)

" A formal linguist describes the structures of a language by devising collection
of rules, called a grammar, that can be used in a systematic way to generate the
sentences of a language."

The generating of sentences can be defined as the specification of how to form, interpret
and pronounce sentences (cf Radford, 1982,p12). The generating of sentences is the
reason for including this discussion on the theoretical properties of grammar as
interesting parsers can be engineered from the grammatical theories which generate

sentences.

However, Briscoe (1987) suggests that consideration should also be given in a
definition to the ’function of grammatical information in language, i.e.,’

" to encode explicitly by means of word order and inflection limited aspects of

meaning and thereby reduce ambiguity." (Briscoe, 1987, p69)

The function of grammatical information is very important in Machine Translation
systems. The majority of Machine Translation systems have tended to rely on the
syntactic (grammatical) information as the main (often the only) way of discovering
’semantic relations’ during processing. Both of the above definitions have equal

importance when describing grammar.

In the following sub-sections some of the most common grammar formalisms used
in the field of computational linguistics are examined. The formalisms discussed are
classified in a hierarchy of power, Type 0 - Type 3, and were widely expounded by

Noam Chomsky in his book Synractic Structures (1957). The classes of grammar

24

discussed by Chomsky and also unification grammar are examined in sub-section

22.1.

2.2.1 The Chomsky Hierarchy

Noam Chomsky classified grammars incorporating rewrite rules into a four
member hierarchy based on power: type 0 grammars are the most powerful and are
referred to as unrestricted rewriting systems, type 1 grammars are the second most
powerful and also can be referred to as context sensitive grammars, type 2 grammar are
the third most powerful also being referred to as context free grammars and finally type
3 grammars are the least powerful and can also be referred to as regular languages or

finite state grammars.

As stated, each of the grammar classes of the Chomsky hierarchy represents a
different level of power. According to Chomsky’s classification, the more powerful the
grammar type, the more classes of languages it can generate. In other words, a
language defined by type 3 grammar can be defined by types 2, 1 and 0, but a language
defined by type O cannot be defined by type 1. The power of each of grammar class
is now examined in terms of what it covers and its inherent computability or
non-computability of the grammar. The type 0 grammar can generate natural languages
which can be generated by any deterministic computational machine, thus can be
considered inherently computable. The type 1 grammar can also generate most natural
language structures. These natural language structures can be recognised by a
deterministic computational machine called a linear bounded automaton. Once more,
this type of grammar can be considered inherently computable. The type 2 grammar
which is less powerful than type 0 and type 1 grammars contains the restrictions of type

1 grammars as well as its own restrictions. As Winograd (1983) notes, type 2 grammars

25

can not generate languages that contain X"Y"Z" structures or WW structures where W
represent a string of terminal symbols and the two W’s are identical. An example would
be any sentence that contained the English ‘respectively’ construction, e.g., Jane. Martin
and Keith go to Kent and Sussex respectively. This type of grammar because of its
restrictions is not inherently computable. Type 3 grammars are the least powerful type
of grammar. As well as having the restrictions of type 1 and type 2 grammars, type 3
grammars cannot generate languages that have any embedded structures, i.e., X"Y*Z".

As with the type 2 grammars, type 3 grammars are not inherently computable.

Above, it is noted that Chomsky classified grammars that incorporated rewrite
rules. Rewrite rules are now described. The classes of grammar discussed by Chomsky
(1957) are examples of generative devices. Generative grammars have the capacity to
define the set of grammatical sentences in a language. Grammar rules in generative
grammars tend are rewrite rules which take the form X -> Y, with the symbol to the left
of arrow representing a single structural element and the symbol to the right
representing a string of one or more elements. There are generally two sets of symbols
used in rewrite rules, the set of non-terminal symbols and the set of terminal symbols.

Non-terminal symbols usually represent nodes in phrase markers, such as NP
(noun-phrase), VP (verb-phrase) or PP (prepositional phrase) etc. Terminal symbols
refer to the units, such as a, boy, -ed, used in the syntactic representation of a phrase or
sentence, when rules have been applied. Below examples of the classes of grammar are
examined, beginning with the Type 3 grammars, i.e., simple finite state grammars, also
known as regular grammars. The description continues through Type 2 and Type 1
grammars, i.e., phrase structure grammars, which describe both context free and context
sensitive grammars, to Type 0 grammars which include an example of an unrestricted

rewrite systems, transformational grammar and unification grammars.

26

2:2.1.1 Type 3 - Finite State Grammars

Finite state grammars are regarded as simple Generative Devices. Grammars of
this type generate by working through a sentence or phrase from left to right in the
following manner: an element is selected as first element and the possible occurrences
of all other elements are dependent on the type of elements by which they have been

preceded. This type of grammar can only cope with very simple sentence constructions.

An example grammar is given below:
((SO (a S1))
(S1 (b S2)
(b S3))
(82 (c S4))
(83 (d S2))
(S4 (DONE)))
Phrase structure grammars and unrestricted rewrite system are considered to improve on

the Finite State Grammar in several ways. The enhancements are discussed in

conjunction with each of the classes of grammar.

2.2.1.2 Type 2 and Type 1 - Phrase Structure Grammars

Phrase structure grammars are another type of generative device which contain
rules that can generate strings of linguistic elements and also provide a constituent
analysis of the string. By providing the constituent analysis, the phrase structure
grammar provides more information than that provided by the Finite State Grammar.
Phrase Structure Grammars are regarded as the basis for generative linguistics
(Winograd, 1983, p72) and computers systems that deal with both programming
languages and natural language. Phrase structure grammars are generally divided into
two types which are context-free grammars and context-sensitive grammars. Each of

these grammar formalisms is now discussed.

27

A context-free grammar consists of a set of rewrite rules which contain

non-terminal and terminal symbols as shown in the example below.

S -> NP VP Det -> The

NP -> Pnoun Noun -> man

NP -> Det Noun Pnoun -> Mary

VP -> V NP Pnoun -> John

V -> loves

The context-free grammar formalism is widely used in computational linguistics because
it provides a simple method of providing the information needed about the language. As
Winograd (1983) states,

" A context-free grammar provides an especially simple way of describing t h e
structures of a language and of setting up a correspondence between the
knowledge structures, the structures generated in producing or recognizing a
sentence and the processes of recognition and production."

Context-free grammars also can be referred to as immediate constituent grammars,

Backus normal form and recursive patterns.

Context-sensitive grammars are similar in appearance to context free grammars,
in that they are composed of non-terminal and terminal symbols, but are different in that
the left-hand side of a rule in a context sensitive grammar can have more than one
element which can be used to indicate context dependencies. Also the right-hand side
of a context sensitive rule consists of the left-hand side with a single symbol expanded.
An example of a context-sensitive rule is the following:

Plural NP -> Plural Det Noun

28

2.2.1.3 Type 0 - Unrestricted Rewrite Systems and Unification Grammars

The unrestricted rewrite system is another example of a generative device which
is described as having "Turing Machine’ power. This classification of grammar has no
restriction on rule form. As a result, the majority of natural language structures can be

generated by unrestricted rewrite systems. An example of the type 0, unrestricted rewrite

system is Transformational grammar.

Transformational grammar, as described by Crystal (1985), utilises the linguistic
operation of transformation which allows two levels of structural representation to be
placed in correspondence. The rules of transformational grammar comprise of
sequences of non-terminal and terminal symbols which can be rewritten as different
sequences of the same non-terminal and terminal symbols by application of a specific
operation. Transformational rules are described as having inputs which are structural
descriptions. The structural descriptions define the type of phrase-markers to which
the transformational rules can apply. Transformational rules can perform a structural
change on the input by employing at least one of several operations. Some of these

operations are movement, adjunction, insertion and deletion.

Since the first discussion of Transformational Grammar in Chomsky (1957) several
models of this type of grammar have been suggested. The Standard Model described
by Chomsky (1965) has three components: a syntactic component, a phonological
component and a semantic component. Crystal (1985) defines the components thus: the
syntactic component is made up of the base component of phrase structure rules, which
along with lexical information give deep structure information and a set of
transformational rules which generate the surface structure. The phonological

component functions as a converter of syntactic elements into pronounceable utterances.

29

The semantic component provides a representation of the meaning of lexical items.

In the early 1970’s a model of generative grammar developed out of ’standard
theory” known as "extended standard theory’. The extension to the standard theory was
the range of semantic rules which could according to the new theory operate with

surface structure as input, which meant that deep structure was not the only determinant

of the semantic representation (Crystal, 1985).

In later work on Transformational Grammar, Chomsky discussed a different
method for representing the structure of sentences in natural language called X-bar
syntax (Radford, 1981). X-bar theory is considered, by its proponents, to be an answer
to the problems of phrase structure. The problems of phrase structure are considered to
be the following:

a) too restricted in the categories it permits, i.e., phrase structure restricts types of
categories.

b) too unconstrained in the sets of possible Phrase Structure Rules it permits, i.e.,
phrase structure has no constraint on the type of phrase structure rules that can be
generated. (Radford, 1981).

X-bar theory allows more than one phrasal expansion because of its range of category

types :

’X with no bars’ or lexical category X

'X-bar’ or X'

’X-double-bar’ or X?

'X-treble-bar” or X*

etlc...

By having a range of category types, constituents can be better described as it allows

30

intermediate categories that do not appear in phrase structure syntax.

The reason that phrase structure syntax is considered unconstrained with regard to
sets of phrase structure rules is that it does not disallow theoretically incorrect structures
such as NP -> V VP. In X-bar theory the following rule applies:

X"-> .. X"..(wherem=norn-1).

In other words, a noun-phrase must have as its head a noun, a verb-phrase must have

as its head a verb, etc...

As described by Crystal (1985), Transformational grammar allows the economic
derivation of many sentence types by adding to the constituent analysis rules of phrase
structure grammars, transformation rules which can change one sentence into another.
Thus, more sentence types can be derived by Transformational Grammar than can be

derived by finite state grammars or phrase structure grammars.

The name unification grammar is given to a variety of different grammars which,
however, have not been developed specifically as unification grammars: the grammars
have been described as wunification-based or complex-feature-based because of the
approach taken by developers to encoding syntactic and semantic linguistic information
(Shieber, 1985). Many of the developers of the various grammars that come under the
heading unification grammar took as their starting point the fact that generative grammar
formalisms such as Transformational Grammar were becoming increasingly complex and
abstract. As Winograd (1983) states,

" Generative grammar has arrived at a point where the concepts of 'rule’ a n d

’generation’ are extremely distant from naive intuitions of how we produce and
understand linguistic patterns.”

The developers wished to incorporate the advantages of the simpler generative

31

formalisms, but not disregard the power of the more complex generative formalisms.

Examples of unification grammars are: Lexical Functional Grammar (LFG), Categorial

Grammar, Generalised Phrase Structure Grammar (GPSG), Head Phrase Structure

Grammar, Functional Unification Grammar (FUG) and Definite Clause Grammar

(DCG). LFG, FUG and DCG are examined in more detail below.

Each of the above grammar formalisms was developed independently by

researchers in various fields such as computational linguistics, linguistics and natural

language processing (Shieber, 1985). However, there are some common assumptions

made regarding the nature of the grammar formalism, i.e.:

surface-based:

informational:

inductive:

declarative:

providing a direct characterization of the actual surface order of
string elements in a sentence.

associating with the strings information from some informational
domain.

defining the association of strings and informational elements
recursively, new pairings being derived by merging substrings
according to some string combining operations, and merging the
associated information. © The commonly used method is
unification.

defining the association between strings and informational
elements in terms of what associations are permissible, not how

the associations are computed.

complex-feature-based: as associations between features and values taken from

some well defined. possibly structured. set.

(Shieber, 1985)

32

The informational elements mentioned above have several names dependent on the
grammar formalism, but as Shieber (1985) states can be commonly referred to as feature
structures. It is with the manipulation of these feature structures that the notion of
unification arises. The combination of two sets of feature structures will involve the
union of feature/value pairs and perhaps recursively combining the values. The process
can be referred to as graph-combining, which encapsulates the notion of unification, as
an essential operation of FUG, LFG, GPSG. There are other operations such as
disjunction, generalization and overwriting relevant to the grammar formalisms, but
unification is central to all the grammar formalisms mentioned. The previously

mentioned unification-based grammar formalisms are now examined individually.

Lexical Functional Grammar (LFG) was designed as a theory of language, with
the mental representation of grammatical constructs and the universal constraints on
natural languages being particularly stressed (Shieber, 1985). It is called
Lexical-Functional Grammar because it stresses the role of the lexicon. LFG was
developed as a result of work that had been done by its developers, Bresnan and Kaplan,
on a complex Chomsky grammar such as Transformational Grammar. LFG tries to
solve problems found in Transformational grammar by incorporating additive
description. For example, in place of transforming trees, LFG has a multi-layered
description with each layer augmenting the contents of the other layers. The
Lexical-Functional description of a sentence has two components, which are constituent
structure and functional structure. The constituent structure is a context-free surface
parse of the sentence and the functional structure is generated by equations which are
linked to the context-free rules. LEG uses syntactic metavariables, represented by
arrows, in place of names for grammatical constituents of rules and paired feature

structures (f-structures in LFG).

Functional Unification Grammar (FUG) developed by Martin Kay out of
unification grammar and functional grammar is described as a general linguistic tool
which employs unification as its only operation (Shieber, 1985). FUG comprises a set
of constituent descriptions which are arranged into sets of alternatives. The set of
alternatives can be regarded as new feature patterns including syntactic patterns and
word-defining patterns. FUG is used for both generation or parsing, with its goal being

to produce a functional description of a sentence.

Declarative Clause Grammars (DCGs) were developed from research done on the
logic programming language Prolog by Pereira and Warren (1980). DCGs employ a
form of unification based on term structures not feature structures. Terms are
informational elements which are notated in form similar to that used in logic and maths

- a predicate symbol followed by a parenthesized series of smaller terms.

DCG rules are an extended form of context-free grammar rules which link
string-combining and information-combining operations. DCGs are more powerful than
context-free grammars in that they can allow context-dependency within a grammar and
also allow structure building during parsing. DCGs are discussed in more detail in
Chapter 6. An example DCG grammar rule is given below.

sent (s (NP,VP) --> np(NP),vp(VP))

2.3 Parsing Algorithms

In Chapter 1, the function of parsing has been discussed in relation to its use
within Machine Translation systems. This section continues the discussion on parsing
with an examination of the types of parsing algorithms used not only in Machine

Translation, but in Natural Language Processing in general, the methods of parsing

34

employed by these parsing algorithms, and the formal properties of such algorithms.

2.3.1 Types of Parsing Algorithms

In the previous chapter, the discussion on parsing briefly mentioned the types of
parsing algorithms, i.e., non-deterministic parsing algorithms and deterministic parsing
algorithms. Non-deterministic parsing algorithms, in the Natural Language Processing
context, include depth-first and breadth-first parsers. Depth-first parsers use backtracking
algorithms which allow the re-parsing of words or phrases when the original parse
proves to be incorrect. Conceptually backtracking algorithms use a stack to store
alternatives and backtracking is very simply a matter of holding the current state of the
computation with each entry on the stack, so (on backtracking) the state of the
computation can be reinstated. Breadth-first parsers use a queue and can be said to
parsing one or more hypothesis at a time. The current state of the computation has to
be held in the queue assuming, of course, that the machine is sequential and not a true
parallel machine. Deterministic parsing algorithms on the other hand, do not allow either
re-parsing by use of backtracking or processing in parallel, but have the ability to use
lookahead to aid parsing. In the next sub-section, the discussion focuses on the parsing

methods used within the aforementioned algorithms.
2.3.2 Parsing Methods

In the literature (e.g. De Roeck, 1983; Winograd, 1983), parsing methods are
usually described in connection with non-deterministic parsing algorithms and
Context-Free Grammars (CFGs), although most parsers can cope with grammars of a
greater formal power, as described above. The parsers that cope with grammars of a

greater power than that of CFGs have to have extra code to be able to cope with the

35

augmented features.

Parsing, in this discussion, is taken to comprise searching and matching. Searching
in the parsing process uses methods of strategy and control to search the search space
of a grammar during the building of the parse tree structure. When describing strategy

the following definition can be used:

The first part of the method used for building a structure, that is starting either

with the starting symbol (S in the grammar below) or the input string, in other

words Top-down or Bottom-up Analysis.
When describing control the following definition can be used:

The method used for examining the derivation tree of a grammar either vertically

or horizontally; that is Depth-first or Breadth-first Analysis.

Matching in the parsing process occurs when the current input, i.e., the grammatical
constituent being processed, matches with a grammatical construct from the grammar.
When matching is successful a structure is built (usually a tree structure but perhaps a
LFG f-structure). The discussion in this section primarily considers the methods used
by non-deterministic parsing algorithms for Natural Language Processing and will use

the example CFG given below.

S -> np vp adj -> flying
vp -> verb_group np aux -> are

vp -> verb np noun -> planes
verb_group -> aux verb pronoun -> they
np -> pronoun verb -> are

np -> noun verb -> flying

np -> adj noun

There are two possible phrase structure trees for an input of 'They are flying

planes’. It is easy to work out ‘intuitively’ how the phrase structure trees may be

36

derived using top-down analysis, but more difficult to work out an easily stateable

algorithm for bottom-up parsing.
2.3.2.1 Top-down Analysis

Parsers that uses a top-down strategy begin by searching the grammar rules for the
rule containing the starting symbol, in the case of the example grammar, s.

S -> np vp
The parser checks whether the first of the constituents that form the rule, i.e., nps is a
terminal, if not this constituent is expanded.

np -> pronoun

np -> noun

np -> adj noun
There are three choices that can be made. If, for example, the first of the three
alternatives is chosen, the constituents are checked for terminals and in this case the

non-terminal is expanded:

pronoun -> they

The constituent of the rule on this occasion is a terminal and matches with the first word
of the input string. The parser continues working in the same fashion, searching the

search space, until all terminals have been found.

The parser meets no problems when parsing the above, i.e., all branches of search
tree chosen are correct but if either of the other nps had been chosen matching would
have failed. For example the following rule could have been chosen. np -> noun

On expanding the rules for finding the first terminal, the match between the terminal and

the first element of the input string would fail.

317

2.32.2 Bottom-up Analysis

When a parser uses bottom-up strategy it begins by looking at the input string and
reduces until the rule for the start symbol S is found. There are many bottom-up
algorithms, of which one is presented here. The algorithm is based on the Bottom-up

Parser (BUP) developed by Matsumoto et al. (1983).

For example, beginning the parse with the leftmost element of the input string

They’, which has the ultimate *goal’ of being covered by constituent 'np’, the initial

goal to be matched is

pronoun -> they

Pronoun is then reduced to NP as a result of the rule

np -> pronoun

The parser continues in this manner until the whole input string is covered by the
distinguished symbol S. An example of the search tree for bottom-up analysis is given

below.

According to Winograd (1983) the difference between top-down analysis and
bottom-up analysis is that top-down analysis can be defined as goal directed processing
guided by the goals it is trying to achieve and bottom-up analysis as data directed

processing which is guided by the availability of specific data.
2323 Depth-first Analysis

As stated above control comprises depth-first and breadth-first analysis. Using
depth-first analysis, a single branch of the search tree is followed to its very bottom.
In fact, both the top-down and bottom-up procedures described above, work in this

manner. Non-deterministic parsers use a stack to store alternative branches in the search

38

tree, but also have the ability to reinstate the state of the parse at the choice point.

Programming languages such as Prolog, LISP and Pascal (with facilities for recursion)

can be used to implement depth-first search easily.
2324 Breadth-first Analysis

If a parser using Depth-first analysis works in serial, it can be said that a parser
using Breadth-first analysis is concerned with working in parallel, i.e., it looks all
possible branches of the tree are searched in a horizontal manner although, of course,
this parallelism has to be simulated in current sequential machines. During the
searching each state of the computation is recorded in a queue, i.e., when successful
matching occurs during top-down or bottom-up strategy new states are added FIFO.
Using this strategy means that there is no need for a backtracking facility as all

possibilities are covered.
2.3.2.5 Advantages of Depth-first and Breadth-first Analysis

Both control mechanisms, depth-first and breadth-first, search the same search
space and give the same solutions, but not necessarily in the same order. Depth-first
will find the ’first’ path (by convention the left-hand branch in the search tree):
breadth-first always finds the shortest solution ("most compact") first - i.e., the one with

fewer nodes in the search tree.

The order of solutions becomes important when:
a) interest is in the first solution found, or

b) use of some heuristic is important.

39

2.3.2.6 Combining the Methods

It is now possible to combine the methods, as a result obtaining four different
parsing methods. The result of the combination set out in De Roeck (1983), is depicted
in Table 2.0. These are considered the basic parsing methods, but not many parsers
strictly adhere to the rules governing methods. For example, parsers exist that combine

bottom-up analysis with top-down filtering such as BUP (Matsumoto et al., 1983); a

linking device which works top-down.

Depth-first Analysis Breadth-first Analysis
Top-down Analysis | Top-down, Depth-first Top-down, Breadth-first
Bottom-up Analysis | Bottom-up, Depth-first Bottom-up, Breadth-first

Table 2.0 Parsing Strategies
2.3.2.7 Parsing Methods for Deterministic Parsing Algorithms

The parsing methods used by deterministic parsing algorithms for Natural
Language Processing use variations on the methods described above. As deterministic
parsing algorithms do not allow backtracking or processing in parallel, lookahead is used
to solve any parsing problems. The deterministic parsing algorithms commonly used
in Natural Language Processing are the Marcus deterministic parsing algorithm (Marcus,
1980) and the LR(k) type deterministic parsing algorithm (Aho and Ullman, 1972),
which will be discussed in detail in the next chapter. The Marcus parsing algorithm
uses a combination of parsing strategy of bottom-up analysis with top-down filtering.
The LR(k) type algorithm uses a bottom-up strategy. Both algorithms follow a

depth-first search path, but of course do not need to store alternatives on the stack

40

because there is no backtracking. Matching takes place on current input and up to three

buffer cells of lookahead.
233 The Formal Properties of Parsing Algorithms

In the sub-section above parsing strategies used by parsing algorithms have been
described. In this sub-section the methods of measuring the efficiency of parsing
algorithms are described. This is an important feature of work on parsing algorithms as
by examining the formal properties of parsing algorithms, the concern is with evaluatin g
the performance of the parsing algorithms. This is done by means of measuring time and
space consumption. The measuring of time and space consumption involves issues of

complexity theory in that the criteria used in evaluation are

1. The number of elementary mechanical operations executed as a function of size

of the input (time complexity).

2. How large an auxiliary memory is required to hold intermediate results that arise
during the execution, again as a function of the size of the input (space

complexity). (Aho and Ullman, 1972, pp27-28)

Another factor to be taken into consideration when evaluating parsing algorithms is the
type of grammar it is used on. As context-free grammars are most often used as
examples of grammar, the discussion on the formal properties of parsing algorithms
concentrates on the use of parsing algorithms on context-free grammars; the results of
use on other types of Chomsky grammars are reflected in the results of use on

context-free grammars (Briscoe, 1987; Berwick and Weinberg, 1984).

The use of non-deterministic parsing algorithms on context-free grammars have

41

been found to require polynomial and in the worst case exponential time and linear
space as a function of the input length of the string to be parsed (Aho and Ullman.
1972). Deterministic parsing algorithms as used on context-free grammars have been
found to require linear time and linear space. In other words by using deterministic
algorithms, the operations needed to parse sentences of ten words are not polynomially
or exponentially greater than those needed for sentences consisting of five words
(Briscoe, 1987). Whereas, by using non-deterministic parsing algorithms the number of

operations needed to parse five words would increase non-linearly.

Cautious consideration has to be given to these claims about the algorithms and
complexity theory as other factors such as the size of the grammar may affect results
(Briscoe, 1987). However, deterministic parsing algorithms have working memory

limitations, thus they use less resources whether measured in time or space.

2.4 Parsing Strategies used in Machine Translation Systems

In Chapter 1 the characteristics of parsing for Machine Translation have been
examined. In this section three actual parsers used in practical Machine Translation
systems are discussed; two of the systems are sublanguage systems. The discussion will
concentrate on the function of the parsers and their output in the context of Machine
Translation to highlight what a practical parser should produce for a Machine

Translation system. In the final sub-section each of the three parsers will be compared

and contrasted.
2.4.1 Taum-Meteo

The Taum-Meteo Machine Translation system has been one of the most successful

practical Machine Translation systems developed and is still in use today. The Meteo

42

system translates Canadian weather forecasts from English into French. The main
reason for its success seems to stem from the fact that the system only translates the

restricted language of weather forecasts.

The Meteo system is not a Machine Translation system of traditional three phase
design. The three phases found in a more traditional system are, in Meteo, dealt with
almost completely by a multi-pass syntactic and semantic parser. The designers found
that a conventional syntactic parser was not suitable due to the telegraphic style of the

text, therefore there was a need to utilise semantic information.

The aim of the parser is to produce for each input string a single description
giving categories and translations realized for the given string (Chandioux, 1976).
Following idiom and main dictionary look-up, the parsing process begins. In the first
pass of the parser, substrings containing numerals are identified as dates, hours or
temperatures. In the second pass, time and location expressions are identified. The
third pass of the parser deals with the remaining substrings with the parsing rules
dependent on the semantic sub-categorization introduced in the dictionary to choose the
correct translation. In the fourth pass, sequences of conditions, time references and
locations are tested for ambiguity and well-formedness. In the fifth and final pass

incomplete parses are rejected and stylistic adjustments made.

After parsing, the resulting structure is passed to the generator where it is

decomposed, French articles inserted where necessary, French word order considered and

agreement checked.

Meteo’s parser performs the majority of the functions of machine translation by

side-effect, i.e., having found a certain string in the input buffer, it executes arbitrary

43

code in order to produce some TL output. This process makes Meteo untypical amongst
current Machine Translation systems. It can be regarded as a direct system which can
deal only with English to French. The structure produced by the end of the parse is
almost a complete translation apart from cosmetic changes required to accommodate
French. Meteo could only be used to translate meteorological texts because it is based
on the syntax and semantics of a restricted language. However, the system could be
adapted for another restricted domain, but perhaps not another language pair, as the

system had been specifically designed to the English - French language pair.

24.2 Taum-Aviation

The Taum-Aviation Machine Translation system was designed by the same team
who developed the Meteo system. However, this system has not been practically
successful, although successful as a research system, due to the fact that funding was
withdrawn before the system was fully operational. The Aviation system was designed
to translate from English to French an aircraft maintenance manual which can be

considered as yet another sublanguage.

Taum-Aviation used a usual three phase approach: analysis, transfer and synthesis.
The parser developed for the analysis phase was REZO, a version of an Augmented
Transition Network (ATN) (Woods, 1970). An ATN is usually classed as a
non-deterministic, backtracking parser. REZO functioned in a similar manner by parsing

in a top-down, depth-first, left-to-right serial manner.

Prior to parsing, the input string was pre-processed and put through dictionary
look-up. Pre-processing involved writing the input string onto a chart structure. REZO

took the chart structure with encoded lexical ambiguities and applied the grammar in to

44

all paths of the chart producing another chart structure. The parsing process eliminated
many of the lexical ambiguities, but also introduced structural ambiguities which had
to be dealt with by semantic processing. Semantic processing attached to each tree built

within the chart structure a set of semantic features to be used in the transfer phase.

The chart structure produced at the end of the parsing process is an intermediate
representation of the source language, described as a type of semantically annotated deep
structure (Isabelle and Bourbeau, 1985). The chart structure is still in the source
language. The target language is not considered during the parsing process or the
analysis phase in general. When the chart structure is passed to the transfer module, it
undergoes both lexical and structural transfer which transforms the structure into an

intermediate representation of the target language.

2.4.3 Metal

The Machine Translation system Metal has been developed by the Linguistic
Research Center (LRC) group for Siemens Ag, Munich and has had to continually prove
itself to be cost-effective, so as to avoid the problems that beset the Taum Aviation
Project (Slocum et al., 1985). Metal is another three phase analysis, transfer and
synthesis system, with the parsing process, as in other systems of this type taking place

in the analysis phase. German was the source language used.

The LRC research team decided that the parser to be used in the analysis had to
be computationally efficient with regard to time and space consumption as set out by
complexity theory discussed above. The team compared eight parsing systems based on
two parsers, Cocke-Kasmi-Young and Left corner, with variations of top-down filtering

and early constituent analysis. Data was gathered for 35 variables measuring various

45

aspects of behaviour - general information, search space, processing time and memory
requirements. Storage management was measured by evaluating the 'conses’ executed
by Lisp, the language in which the parsers were programmed. Search space was
considered in the manner of grammar versus chart structure with the grammar
considered as being processed bottom-up and top-down. Time and space also were
separately measured for words, phrases, idioms and operating rule body procedures. In
measuring the performance everything considered relevant was taken into consideration

l.e., paging, storage management, building "interpretations" as well as parse time

(Slocum, 1981).

The parser chosen by the LRC team was one that proved best in overall
performance according to the above tests. This parser is a some-paths-parallel
bottom-up parser. The parser processes in conjunction with rule body procedures which
accept or reject grammar rule application. (Rule bodies are arbitrary code that perform
tests or building structures in the same way that ATNs are augmented with arbitrary
Lisp code.) The rule body procedures are called when the parser finds a phrase which
matches the rule’s constituent phrase structure. The procedures also aid in building an
interpretation of the phrase. Metal’s parser differs from traditional syntactic parsers
which build parse trees and may add semantic information to these trees. Rather the
parser does not construct a syntactic structure, but the linguistic procedures build an
interpretation and compute its weight or plausibility measure. The weight of the phrase
is used when comparing it with other phrases that could be built from the same sequence
of words in order to identify the most likely reading. The phrase interpretations, in most

instances, are topologically equivalent to the tree structure that could be produced by the

parser.

46

The interpretations produced by the parser and rule body procedure are considered
to be shallow analyses of the input string. The interpretations are passed to the Transfer
module with suspended rule body procedures attached. These procedures are re-invoked
by the Transfer module and aid in the Transfer process. The interpretations remain in
the source language, with the Target language firstly being considered in the Transfer
module. As in the other systems discussed both syntax and semantics have to be

considered in the analysis phase.

It is interesting that Slocum et al (1985) in their evaluation make the following

statement about evaluating parsers
" ...the researcher studying NLP can be justified in concerning himself more with
issues of practical performance in parsing sentences encountered in language as
humans actually use it using a grammar expressed in a form convenient to the
human linguist who is writing it. Moreover, very occasional poor performance

may be quite acceptable, particularly if real-time considerations are not

involved... provided the overall average performance is superior."

244 Concluding Remarks on Parsers for Machine Translation

Although the discussion on parsers for Machine Translation has focused on only
three parsers, it can be concluded that there are areas of similarity between the three
which would suggest the importance of some aspects for all parsers used in Machine
Translation, not least the parsers developed for this research. The discussion has also
primarily dealt with parsers and parsing during the analysis phase. It is also important
to point out that dictionaries and lexicons are also an important feature of the analysis
phase of all three systems. As stated above comparisons between the parsers designed

for this research and those discussed in this section are considered in Chapter 7.

47

The major similarity between the three parsers is the importance of processing
both syntax and semantics of the source language in the analysis phase. In the case of
Taum-Aviation and LRC Metal this means that structure passed to the transfer phase
carries as much information as possible about the source language text. The
Taum-Meteo parser, as a result of the restricted language it is dealing with, can perform
the translation process during the parsing procedure but relies heavily on the dictionaries

for semantic information.

Another similarity between the analysis phases of Taum-Aviation and LRC Metal
is the fact that the Target Language is not considered during this phase at all. The
parsers of these systems do not have to deal with Target language, they have solely to

deal with the source language.

In short, the parsers of all these systems have to deal both with syntax and
semantics and those used in the usual three phase system consider solely the Source

Language.

48

CHAPTER 3

DETERMINISTIC PARSERS

3.1 Introduction

In Chapter 1, the research area has been described as being the use of
Deterministic Parsers on Sublanguage for Machine Translation. The aim of this chapter
1s to introduce and discuss Deterministic Parsers, of the Marcus and LR type, on which
the parsers developed for this research have been based. The discussion considers the
parsers from a practical viewpoint, as Machine Translation systems (of which the
research parsers would be part) can be regarded as practical or engineering systems.
Brief consideration is given to the comparison of the research parsers and the parsers
discussed in this chapter. This will be covered more fully in Chapters 5 and 6. (All

references to the term "practical system" stands for Machine Translation system.)

The majority of Deterministic Parsers for natural language processing are based
on the original, PARSIFAL, developed by Mitchell Marcus and reported in his 1977
PhD thesis, which was published in book form in 1980 (Marcus, 1980). However, not
all the Deterministic Parsers that are discussed here can be described as Marcus type
parsers: one parser in particular has been developed from the deterministic LR(k)
algorithm (Aho and Ullman, 1972), primarily used as a model for parsers of
programming languages. However, since it has been suggested (Berwick, 1985) that
Marcus’ parser was a variant of the LR(k) model, the parser of the LR(k) type is

pertinent to the discussion. Also it is valid to state that the majority of the parsers

49

discussed here follow Marcus’ Determinism Hypothesis and rules guiding the building
of constituent structures as described below. Other Marcus type parsers are discussed

briefly to highlight the work done on Deterministic Parsing.

3.2 General Rules of Deterministic Parsers

As stated above, the majority of Marcus type and LR type Deterministic Parsers
are based on Marcus’ rules and hypothesis. Prior to the Deterministic Parser, most
parsers simulated Non-deterministic machines by using backtracking or
pseudo-parallelism. Marcus (1980) was motivated to design the Deterministic Parser on
watching an ATN backtracking, concluding that there must be a better way to parse

English computationally, preferably using a method similar to the way humans do it.

The design for PARSIFAL, Marcus’ parser, came from his psychological model
of how humans parse and was based on his Determinism Hypothesis:
) The syntax of any natural language can be parsed by a mechanism, which

operates strictly deterministically in that it does not simulate a

Non-deterministic machine."(Marcus, 1980, p2)

The limitations Marcus placed on his parser, which he considered fundamental to

parsing deterministically, were as follows:
a) All syntactic substructures created by the grammar interpreter are permanent,

eliminating the possibility of simulating determinism by "backtracking”.

b) All syntactic substructures created by the grammar interpreter for a given input

must be output as part of a syntactic structure assigned to that input.

¢) The internal state of the mechanism must be constrained in such a way that no

50

temporary syntactic structures are encoded within the internal state of the machine.

3.3 Marcus Parsing

In the following sub-sections the Deterministic Parsers of the Marcus type used
as the basis for the design of the parsers used in this research are examined. The
discussion begins with describing PARSIFAL (Marcus, 1980), followed by ROBIE
(Milne, 1983) and L.PARSIFAL (Berwick, 1985). The parsers are discussed in the

context of searching and matching as highlighted in Chapter 2.

As the first Deterministic Parser for Natural Language Processing, PARSIFAL set
the design for the developers of later Deterministic Parsers to follow and improve on.
Both ROBIE and L.PARSIFAL are in some way different to the Marcus original, but,

in the main, keep to Marcus’ original proposals.

3.3.1 The Marcus Parser - PARSIFAL

The Deterministic Parsing system PARSIFAL comprised three major components
- two data structures, the 'push-down’ stack and the Lookahead Buffer, and a grammar
of pattern/action rules; the parsing process being an interaction between all three
components. The stack was called the Active Node Stack and the Lookahead Buffer
could hold three constituents. A constituent could range from a single word to a clause.
These constituents, on being processed, were given the name "parse nodes", which could
form tree-like structures of "NPs", "VPs", "Ss" etc. The function of parsing has been

defined as one of searching and matching. PARSIFAL is now considered in this

context.

In terms of parsing, searching comprises strategy and control. The strategy used

51

by PARSIFAL was mixed; the parser processed bottom-up but incorporated top-down
prediction. For example, PARSIFAL would process 'with Mary’ in its lookahead
buffer by first creating a prepositional phrase node, triggered by the leading edge of the
phrase, which would be pushed onto the Active Node Stack. This would be the new top
node of the Active Node Stack. PARSIFAL would subsequently parse in a bottom-up
fashion ’with’ as a preposition. Top-down prediction would force creation of a
noun-phrase on finding the leading edge 'Mary’, which would be parsed bottom-up as
a proper-noun. In a strict bottom-up parser the phrase *with Mary’ would be processed
respectively as preposition and proper-noun, the proper-noun would be reduced to a

noun-phrase and finally prep and noun-phrase reduced to a prepositional phrase.

Control within the searching action of parsing can be depth-first, breadth-first or
a mixture of both. PARSIFAL employed a depth-first approach. Thus, the parser
follows one branch of the search tree to the bottom. As a result of determinism, only
one branch of the search tree is followed unlike non-deterministic depth-first parses
where alternative branches can be searched and stored in a stack. PARSIFAL is aided
by the three cell Lookahead Buffer to guide it through the single branch of the search
tree. PARSIFAL’s Active Node Stack contained only constituents that feature in the
final parse, it did not contain any which were superfluous or unnecessary due to

following depth-first a single branch of the search tree.

Matching in PARSIFAL was on syntactic categories. The actual production of
parsing output was based on matching. Words, having gone through dictionary look-up,
entered the Lookahead Buffer with category attached. PARSIFAL’s parsing strategy
allowed the prediction of phrase type by matching on, at most, the three constituents in

the Lookahead Buffer. PARSIFAL processed the constituent in first cell of the

52

Lookahead Buffer by matching the contents of all the cells of the Lookahead Buffer and
the Current Active Node, the bottom node in the Active Node Stack. with one of the
pattern/action grammar rules. Once the constituent in the first cell of the Lookahead
Buffer was processed, it was pushed onto the Current Active Node; the pushing of the
constituent onto the Current Active Node was activated by the action part of the
pattern/action rules. The parse tree structure was built in the Current Active Node.
Depending on the type of constituent being processed, the constituent would be pushed
into the Current Active Node either to combine with constituent or constituents already
contained in the Current Active Node adding to the building of a branch of the parse
tree or be the only constituent in Current Active Node initiating a new branch of the
parse tree. If there were constituents in the Current Active Node that could not combine
with the constituent being processed they would be pushed further into the Active Node
Stack to await further processing. The constituent which previously had been in the
second buffer cell entered, the first buffer cell. This constituent was processed in a
similar fashion, by the matching of contents of Lookahead Buffer and the Current Active

Node with a pattern/action grammar rule.

If the contents of the Lookahead Buffer and the Active Node Stack did not match
with a pattern/action grammar rule, the contents of the Current Active Node popped into
the Lookahead Buffer. Processing would be reinitiated by the matching of the contents
of the Current Active Node and Lookahead Buffer with a pattern/action grammar rule.
PARSIFAL also used special rules known as Attention Shift rules that allowed the
parser to shift attention from the constituent in the first cell of the buffer to another
constituent, if there was evidence (as Marcus called it) that this other constituent
initiated a higher level constituent of a given type. These rules were used mainly for

"NPs", but could initiate other constituents, e.g., clauses beginning with "as".

53

When the higher-level constituent had been built, the parser’s attention was returned to
the initial constituent with the newly formed constituent, in its place in the buffer, being
able to signify the context of the constituent in the first cell. Examples of sentences
that would have needed the facility of attention shift are as follows:

Have the students, who missed the exam, taken the exam today?

Have the students, who missed the exam, take the exam today.

In Figure 3.0 are snapshots of the Active Node Stack and Lookahead Buffer (Marcus,

1980, p18) part way through parsing.

S1 (S DECL MAJOR S)/ (PARSE-AUX CPOOL)
NP : (John)

C AUX1 (MODAL PAST VSPL AUX)/ (BUILD-AUX)
MODAL: (should)

Figure 3.0 (a) PARSIFAL’s Active Node Stack

WORD3 (*HAVE VERB TNSLESS AUX VERB PRES V-3S)
(have)
WORD4 (*SCHEDULE COMP-OBJ VERB INF-0OBJ V-3S
ED = EN PART PAST ED) : (scheduled)
Yet unseen words: the meeting.

Figure 3.0 (b) PARSIFAL’s Lookahead Buffer

PARSIFAL’s grammar, involved in the matching process, was based on
Chomsky’s theory of Transformational Grammar, i.e., Extended Standard Theory,
discussed in Chapter 2. The grammar was especially based on trace theory expounded
by Chomsky in the seventies; this theory places constraints on transformations. A
trace is a dummy NP that represents a NP that once occupied that position in the
sentence, but was subsequently deleted during movement. Transformations were
implemented and traces added within parsing output. Once again the contents of the
Current Active Node and the Lookahead Buffer would match with a pattern/action

grammar rule, with the action part of the rule initiating the transformation or adding the

54

trace. As a result of using this type of grammar, the parse tree built by the parser is an

annotated surface structure.

The grammar comprised a series of the pattern/action rules mentioned above. The
rules were written in PIDGIN and translated into LISP by a grammar translator. Figure
3.1 depicts the structure of Marcus’ grammar (Marcus, 1980, p56). The rules were
ordered according to numerical priority, with "0" signifying the highest priority.
PARSIFAL always began processing with the rules whose patterns matched with the

highest priority. If there was more than one rule with this priority that matched, then

the parser could arbitrarily choose one of them.

-Packets of pattern/action rules
-Matched Against The Buffer, The Current Active Node
-Ordered By Priority

PRIORITY PATTERN ACTION
1st 2nd Ard {
PACKET1
Sieaf [...] [...] then ACTION1
10 4:F [...] [...] then ACTION2
101 f Earens] [oscane] [« o) then ACTION3
PACKET2
10 it [sa] then ACTION4
15:1f [ioensi] [Hzesl] then ACTIONS
PACKET?3
5af [...] [...] then ACTIONG6
15:3f [Fasarand] | then ACTION7

Figure 3.1 Marcus’ Grammar
PARSIFAL’s range of coverage was a set of sample sentences rather than a text.
The coverage was atypical not reflecting the grammar, for example, of an aircraft

manual. Marcus listed the sample sentences in his book (Marcus, 1980).

35

The components of PARSIFAL now have been described. As the research is
considering practical issues rather than the theoretical issues of Deterministic Parsers due
to the practical nature of Machine Translation systems, it is relevant to discuss
PARSIFAL in this light. PARSIFAL was designed to test theoretical issues rather than

practical issues, but could it be considered as a parser that could be used in a practical

situation?

PARSIFAL’s grammar, as previously mentioned, is based on Chomsky’s
Transformational Grammar. The grammar contained a wide variety of grammar rules
that covered a number of grammatical constructions. The actual structure of the
packets of pattern/action rules, which represented the grammar, was rather clumsy. Each
pattern/action rule could comprise many pattern and actions which made the rules
idiosyncratic and overburdened with information. Berwick (1985) recognised that the
rules were clumsily structured, as a result the pattern/action rules of his system (see
below) were much more precise. Berwick, also, got rid of the packeting of rules, which

is discussed below.

Although PARSIFAL’s grammar contained several grammatical constructions, the
number was few compared to those of other systems. In some practical Machine
Translation systems, especially sublanguage systems, grammars are restricted and small.

This suggests suitability for use of Deterministic Parsing within a Machine Translation

system.

PARSIFAL’s data structures, the Active Node Stack and the Lookahead Buffer,
from a practical viewpoint seem sufficiently rigorous to cope with processing. However,

the three buffer lookahead is regarded as being superfluous as it is considered that two

buffer lookahead is sufficient; this was the conclusion reached by Milne (1983) and is

56

discussed in the next sub-section. The Attention Shift also appears to have been a rather
clumsy and superfluous mechanism. Both Milne (1983) and Berwick (1985), as

discussed below, regarded Attention Shift as an unnecessary mechanism.

PARSIFAL could process test sentences containing both transformational and
non-transformational type constructions. This, of course, is not proof that it could be
used in a practical situation, but, in simple terms, it does prove that the parser can parse.
However, the test sentences used by Marcus (1980) did not contain any lexical
ambiguities, i.e., part of speech ambiguities. PARSIFAL, for example, could not cope
with ’block’ as a noun and 'block’ as a verb. Obviously, parsers used in the analysis
phase of a Machine Translation system would have to deal with part of speech
ambiguity. This is a major failure in PARSIFAL which (if left unresolved) would limit
its use as part of a Machine Translation system. However part of speech ambiguity was

considered by Milne (1983) and is discussed in more detail in the next sub-section.
3.3.2 The Milne Parser - ROBIE

The second Deterministic Parser on which the research parsers of the Marcus type
are based is ROBIE (Milne, 1982, 1983, 1986). Robert Milne, the developer of ROBIE,
researched further the topic of determinism, concentrating on lexical ambiguity, i.e., part
of speech ambiguity, which Marcus had not considered. ~Milne’s parser was
implemented in Prolog. ROBIE had an Active Node Stack that was identical in design
to PARSIFAL’s Active Node Stack. However Milne designed different structures for
ROBIE’s buffer mechanism - two static buffers positioned below the bottom of the
Active Node Stack (Milne, 1982). The reasons Milne gave for using only two buffers
were as follows: if we consider that an ATN parser had only one buffer lookahead and

with this it backtracks, a two buffer lookahead must be the minimum number needed

57

to avoid backtracking. Consequently, Milne considered three buffer lookahead to be
excessive (personal communication). Milne also stated that the two buffer lookahead
was sufficient to get rid of several types of lexical ambiguity; this aspect is discussed
below. Firstly, as with PARSIFAL, ROBIE is now considered in the context of

searching and matching.

The method of searching used by ROBIE was the same as that used by
PARSIFAL. Although lookahead comprised only two buffers, similar to buffer cells in
PARSIFAL, the strategy remained bottom-up with top-down filtering and control

remained depth-first.

Matching within ROBIE was performed in a similar manner to that within
PARSIFAL, i.e., matching on syntactic categories held in the Active Node Stack and
Lookahead Buffer and resulting in the production of a parse tree. In addition, the
matching process within ROBIE helped resolve some of the problems of lexical

ambiguity.

To handle the problem of lexical ambiguity ROBIE’s dictionary contained
compound lexical entries that had attached to them all the features for all the words’
possible parts of speech and thus, when words were looked up all the possible parts of
speech were returned. After the look-up stage, words were morphologically checked.
This process was the initial aid to disambiguation. For example, when the word
‘talked” was morphologically analyzed "ed past" was added as a feature to the list of
features of the word 'talk’. If "talk’ was defined as both a noun and a verb, 'talked’
could not be a noun so disambiguation took place. Features corresponding to the verb,
e.g., "tenseless’, were removed as were other parts of speech and corresponding features.

Morphological analysis could identify adverbs, adjectives and verbs in the same

58

fashion.

The matching process dealt with lexical ambiguity and (as a side-effect) the
productions of the parse tree, simultaneously. The matching of the contents of the Active
Node Stack and the Lookahead Buffer with a pattern/action grammar rule in ROBIE also
meant the matching of the features of either the one or the two buffers and once the
features had matched the word had always that feature. How did the disambiguation
process work? In the example, 'The falling block needs painting’, the word 'falling’
could be an adjective or a verb and ’block’ could be a noun or a verb (Milne, 1986).
Having parsed ’the’, which would have started an "NP" node and been attached to it as
a determiner, the rule to parse an adjective was activated and, thus the matching of the
rule ADJECTIVE with the contents of the Active Node Stack and the Lookahead Buffer.
The word ’falling’ was then attached, disambiguated as an adjective and therefore was
not considered to be a verb. There were no more adjectives, so the rule to parse the
head-noun would be activated due to the matching of contents of buffer and stack.
"block’ matched with noun and so would be attached as a noun. Yet again the word
would not be considered as a verb. Milne stated that the following noun phrase
ambiguities could be treated likewise: "singular head-nouns’, "verb/adjective ambiguity’
and other ’pre-nominal ambiguities’ because of the word-order of the "NP". Main

verbs could also be disambiguated in this way.

Matching aided the process of disambiguation in other examples of part of speech
ambiguity. However, certain other rules had to be called upon to aid disambiguation.
For example, ROBIE could disambiguate between 'to’ as an auxiliary verb and a
preposition using the method previously described, but, ungrammatical sentences, such

as the example below, would be parsed as being grammatical by ROBIE.

59

I want to the school with you. (Milne, 1986)

Milne suggested that 'verb subcategorization’ would solve the problem of
ungrammatical sentences. In certain cases rules could be introduced that could handle
"VPs", ie., 'to’ could only be an auxiliary verb starting a "VP" when the verb took
the infinitive complement. Thus a rule could be called only when an infinitive was
permitted. If verbs for "PPs" with ’to’ as a preposition were classified this would help
disambiguation. ROBIE could also check verb and subject agreement to aid

disambiguation of phrases which included ’that’, *which’, *what’ and ’have’.

Milne found that adjective/noun ambiguity and noun/noun ambiguity were difficult

to handle and only proposed a simple method that would not handle all cases, e.g.,
The old can get in for half price. (Milne, 1986)

could not be disambiguated correctly by ROBIE (Milne, 1986). Other cases of
ambiguity Milne suggested could be resolved by checking agreement; that is by looking

at the structure of verb groups and person/number codes.

ROBIE did not use Attention Shift rules since Milne considered that two buffers
could handle most of the cases covered by PARSIFAL’s Attention Shift rules. In those
cases where three buffers seem to be needed Milne suggests that a non-syntactic
processor would be called. Again this would be part of the matching process. Each
grammar rule had as its final action a 'recursive call’ to a rule matcher that searched
the patterns of each rule in each active packet comparing the pattern with the current
state of ROBIE. The rules also called semantic routines as constituents were built.
This non-syntactic processor used the name of the rule that was executing, the Current

Active Node and the two buffers to obtain information it required. These semantic

60

routines produced predicate calculus assertions of the semantic information gleaned

(Milne, 1983).

Similar to PARSIFAL, ROBIE’s grammar was based on Chomsky’s Extended
Standard Theory. ROBIE’s grammar, as stated, was also made up of packets of

pattern/action rules, eighty percent of which were identical to PARSIFAL's. The rules

worked in exactly the same fashion as in PARSIFAL.

ROBIE’s range of coverage was that of PARSIFAL with the addition of an
extension to cover sentences from the MECHO world, related to Mechanical

engineering. MECHO was not a text, but a set of sentences relating to mechanical

engineering problems.

The main features of Milne’s parser have been described. As with PARSIFAL,
the discussion now considers ROBIE from a practical viewpoint. ROBIE’s Active Node
Stack, as stated, was similar to PARSIFAL’s in that it has the same structure and

performs the same function.

ROBIE’s grammar was similarly structured into packets of pattern/action rules, and
guided by a numbering priority. The rules were similarly large and cumbersome
containing seven functions that rules could perform. As stated in relation to PARSIFAL,
this has proved to be unnecessary as rules do not have to contain so much information,

see discussion on Berwick below.

ROBIE’s Lookahead Buffer was different from the Lookahead Buffer used by
PARSIFAL. ROBIE’s buffer contained only two cells whereas PARSIFAL’s held three
cells. Milne’s reasons for two buffer cells being sufficient to cope with the processing

of the test sentences are valid. However, the method for dealing with those sentences

61

which could not be processed within two buffer cells, by using a semantic processor,
could be regarded as a simple way of solving the problem, but probably the best way.
The two cell Lookahead Buffer could still be considered a rigorous data structure that

could be part of a parser used in a practical situation.

Another difference between the two parsers was that ROBIE did not use attention
shift. ~ The reason given by Milne for this relates to the discussion above whereby
sentences that could not be processed with a two cell buffer would call up the semantic
processor. Therefore, sentences processed by PARSIFAL with attention shift were
processed by ROBIE by using a call to the semantic processor. This does not pose a
problem from a practical viewpoint as one of the criticisms of PARSIFAL was its failure
to deal with semantics. The facility for dealing with semantics enhances the parser for

use in a practical situation.

The major difference between PARSIFAL and ROBIE is the latter’s capability to
deal with various part of speech ambiguities. It cannot cope with all ambiguities of this
type, but this does not detract from having the capability of dealing with ambiguity. It
enhances further the facility of semantic processing, which itself enhances ROBIE as a

Deterministic Parser for use in a practical situation.

As with PARSIFAL, the type of practical Machine Translation system for which
ROBIE would seem suitable to use in the analysis phase is a sublanguage/restricted
language system. ROBIE’s grammar is restricted and small, which as highlighted above
can be a feature of sublanguage systems. The semantic processor and the dealing with
part of speech ambiguity are restricted but these are also aspects of restricted Machine

Translation systems.

333 The Berwick Parser - L. PARSIFAL

Berwick’s parser L.PARSIFAL was a version of PARSIFAL used as part of an
implementation to acquire parsing rules to parse English syntax (Berwick, 1982, 1985).
The changes Berwick made were to simplify the parser, so that it would be easier for
his acquisition procedure to learn, and have a more standard design (Berwick, 1982).
L.PARSIFAL had an Active Node Stack and a three cell Lookahead Buffer similar to
PARSIFAL. It was implemented in LISP without the use of PIDGIN. However the
grammar rules of the parser were somewhat different. The rules, which were of a
pattern/action type, were acquired whilst processing the input sentences; this provided
the learning theory. As mentioned, they were of a pattern/action type but there were
also base phrase structure rules that corresponded to PARSIFAL’s packets. These rules
were used for activation and deactivation. The standard design that Berwick used was

that of a bottom-up parser.

As with the previous parsers discussed, the L.PARSIFAL parsing system will be
considered from the viewpoint searching and matching. The searching aspect of
L.PARSIFAL was exactly similar to that of PARSIFAL and ROBIE, i.e., the strategy

was bottom-up with top-down filtering and control was depth-first.

The matching process in L.PARSIFAL, as with the previous parsers discussed,
resulted in producing the parsing output. The matching was on syntactic categories; the
contents of the Active Node Stack and Lookahead Buffer matched with a pattern/action
grammar rule. The action part of the rule, as with ROBIE and PARSIFAL,
manipulated the contents of the stack and buffer to produce the eventual output.
However, if the parsing system was in acquisition mode, the matching on the stack and

buffer contributed to building a grammar rule.

63

In L.PARSIFAL, matching produced the output in a manner similar to most
bottom-up parsers, whereas PARSIFAL and ROBIE were considered to deviate from
standard bottom-up parsers, as noted below. All three parsers deviated from bottom-up
parsers in that they predicted the parent node of the subconstituents. However
PARSIFAL and ROBIE dealt with constituents individually, i.e., pushed constituents
onto the stack without waiting for the analysis of the last constituent. In L.PARSIFAL
it was not necessary to push the individual constituents whose parents were known onto
the Active Node Stack until all constituents were processed, due to the use of dotted

rules, discussed below.

Another difference between PARSIFAL and ROBIE and L.PARSIFAL is the type
of output produced. L.PARSIFAL did not produce a tree structure output: rather
complex non-terminal symbols, dotted rules, represented the state of the parse. A
dotted rule is a context free rewrite rule with a marker dot placed at some point in the
right-hand-side of the expansion showing how much has been recognized of the rule.
If the grammar rule is S -> NP VP and the sentence, Joan liked the boy, which has had
it first word processed, in this case the proper noun Joan which is the "NP", this would

be represented in dotted rule notation by:

S -> NP * VP
and when the VP constituent is processed, the dot will move past it, signalling that the

S had been completely processed.

PARSIFAL’s packet names turned out to be in one-to-one correspondence with
dotted rules. For example, the call of the packets in PARSIFAL to parse a simple
declarative sentence would be the following:

1. Sentence-Start 2. Parse-Subject 3. Parse-Aux 4. Parse-VP

64

which in one-to-one correspondence would gives us the associated re-write rule S -> NP

AUX VP, with dotted rules:

S-> * NP AUX VP

S -> NP * AUX VP

S -> NP AUX * VP

S -> NP AUX VP *
These dotted rules were easily translated into the X-bar notation of the grammar,
discussed in the previous chapter and below. Unlike in PARSIFAL where more than
one packet of rules could be active at one time, L.PARSIFAL had only a single
template packet active which related to one of the three elements of the template in

X-bar notation, e.g., Parse-specifier, Parse-head, or Parse-complement.

L.PARSIFAL similar to ROBIE had no attention shift mechanism. In place of the
mechanism, L.PARSIFAL was designed to reduce the second leftmost complete
constituent before the first leftmost complete constituent when processing the following

type of sentences.

Have the students take the exam today!
Have the students taken the exam today? (Berwick, 1985)
Matching on the contents of the stack and buffer with a pattern/action grammar rule

brought about the above procedure.

In the L.PARSIFAL parsing system, the grammar was based on Chomsky’s X-bar
theory. As stated in the previous chapter, X-bar theory shows that the base phrase
structure system of a particular language is fixed by template filling decisions (Berwick
1985). As well as not having a full packeting system, L.PARSIFAL’s grammar rules

themselves were modified as compared with PARSIFAL and ROBIE. In L.PARSIFAL

65

the grammar rules did not have a numbered priority where higher priority rules were
able to execute before those of lower priority. Instead, specific rules executed before
general rules. A specific rule was a rule with more pattern matches called for in the
first buffer cell. If this failed the second buffer was checked. If there were no
specific rules, the general rules would then fire. In Figure 3.2 are examples of similar

grammar rules used by PARSIFAL and ROBIE and L.PARSIFAL (Berwick, 1985).

Main-verb in packet parse-vp
priority: 10
IF: The first element in the buffer is a verb
THEN DEACTIVATE packet parse-vp
if the active mode is a major sentence
then ACTIVATE packet ss-final;
else 1if the active node is a secondary clause
then ACTIVATE packet emb-s-final.
CREATE a VP node.
ATTACH the VP node to the S.
ATTACH the first element in the buffer to
the active node as a verb.
ACTIVATE the clause level packet cpool
if the verb is labeled passive
then ACTIVATE the packet passive
and RUN the grammar rule passive next.
if the verb takes an infinitive without to
then ACTIVATE the packet to-less-inf-obj

Figure 3.2 (a) Example of a PARSIFAL grammar rule

Main-verb

IF
current active node 1s S
current cyclic node is nil
1st buffer cell is V

THEN

ATTACH

Figure 3.2 (b) Example of a L.PARSIFAL grammar rule

The range of coverage of L.PARSIFAL was similar to that of PARSIFAL. The

sentences were not from a definite text, rather a set of sentences that represented that

grammatical constructs of the grammar.

Finally, L.PARSIFAL is consider in terms of practability. L.PARSIFAL has been
described as a simplified version of PARSIFAL. Its data structures are similar, i.e., it

66

has an Active Node Stack and a Lookahead Buffer with three cells of lookahead which

are considered rigorous enough for use in a practical application.

The simplified grammar rules of L.PARSIFAL, compared with the packets of
pattern/action rules used by both PARSIFAL and ROBIE, contribute in making the
parser more beneficial for use in a practical system because of their precise structure and
compact nature. The compact nature of L.PARSIFAL’s grammar i.e., the reduced size
of the grammar rules would mean less processing time which would make a system

using these type of rules more efficient than that using rules of the PARSIFAL or

ROBIE type.

L.PARSIFAL could not cope with lexical ambiguity which, as stated in relation
to PARSIFAL, is a major lacking for a parsing system to be used as part of a practical
system. However, as in the case of ROBIE it has been proved that a deterministic
parser can cope with aspects of lexical ambiguity; the same method could be applied to
L.PARSIFAL. Similarly to PARSIFAL and ROBIE, L.PARSIFAL can be considered as
suitable for use in a practical system, such as the analysis stage of sublanguage/restricted

language Machine Translation system.
3.3.4 Other Deterministic Parsing Systems

As stated in the introduction to this chapter, other Deterministic Parsers of the
Marcus type have been developed. In this sub-section some of these other deterministic
parsers are discussed. The majority of the deterministic parsing systems that have been
developed since PARSIFAL have similar data structures and use grammars of
pattern/action rules although the purpose of the systems has been different. Similarly

to PARSIFAL, ROBIE and L.PARSIFAL, most of the parsers discussed below were

67

ASTON UNIVERSITY
LIBRARY AND

INEAD S & 5o .

built as theoretical systems. At the end of this sub-section, the prospect of using these

parsers in a practical system is discussed.

A modified form of PARSIFAL designed to be a Finite State Deterministic Parser
was YAP (Church, 1980). YAP had two buffers, the Upper Buffer which was similar
to PARSIFAL’s Active Node Stack and the Lower Buffer which was identical
Lookahead Buffer. The grammar also comprised pattern/action rules and was referred
to as a Deterministic Finite State Control Device. However, as Church states,

" The problem with writing a grammar in production rules (pattern/action rules)
is that the performance and the competence components tend to become tangled;
it is very difficult to write a good structured program (grammar) with elementary
building blocks." (Church, 1980, p49)

Church, thus, decided to use ’phrase structure rules’, so that the next action could be
selected in orderly fashion. The phrase structure component could cover most normal

'unmarked’ cases, pattern/action rules were used for 'marked’ examples.

Another Marcus type parsing system where the grammar rules were simplified by
use of phrase structure rules was PARAGRAM (Charniak, 1983). PARAGRAM was
developed to test whether a syntactic parser could handle ungrammatical sentences. The
data structures have not been described by Charniak (1983), but he does state that there
were many differences between PARAGRAM and PARSIFAL, although there was only

a small modification to the original design to allow for the processing of the

ungrammatical sentences. . . ‘
Three systems which followed the Marcus design dealt with semantic aspects of

processing, in addition to ROBIE (Milne, 1983). Firstly, Lesmo, Magnini and Torasso
(1981) built an analyzer to be used as a natural language front end to a medical database

of liver complaints. The natural language used was Italian. The analyzer incorporated

68

a lookahead buffer and a grammar of pattern/action rules. However, instead of building
Or storing a structure on an Active Node Stack, the interpretation process translated the
input command into a set of frame instantiations, linked together. A frame was a
collection of slots. The semantic analysis was incorporated into the action part of the
grammar rules which built representations of the constituents in a manner which would

allow semantic checking by consulting the semantic information held in the lexicon.

A second system which incorporated semantics was designed by Sabah and Rady
(1983). In this instance, the parser could cope with both English and French syntax.
The parser incorporated a lookahead buffer and a grammar of pattern/ action rules. As
with the analyzer described above, the Sabah and Rady parser did not have an Active
Node Stack. A final syntactic structure was produced, but the more important
representation produced, which was required, was of a semantic nature. The

pattern/action rules again dealt with both the syntax and semantics.

Finally, the third system, dealing with semantics, was developed by Carter and
Freiling (1984). The aim when developing the parser was to produce a parser that would
make simple the writing and understanding of deterministic grammars. As with the two
previous parsers discussed, the Carter and Freiling parser incorporated a lookahead
buffer and grammar of pattern/action rules, but not an Active Node Stack. The

pattern/action rules dealt with the syntax and semantics.

The above parsers are now considered in the searching and matching context of
parsing. With regard to searching, the strategy used by all parsers was bottom-up
with top-down prediction and the control, once more, depth-first. The matching process
of the syntactic categories of the Lookahead Buffer and Active Node Stack, or its

equivalent, with pattern/action grammar rules was similar to that of PARSIFAL. ROBIE

69

and L.PARSIFAL. The action part of the rules also produced the parsing output. All
the purely syntactic parsers produced tree structures and those that dealt with semantics

produced a semantic representation, in most instances, in addition to a Syntactic

structure.

The majority of the grammars of these systems, where mentioned, were based on
Chomsky’s Transformational Grammar. The coverage of all but one of these parsing
systems was a set of sentences that represented respective grammatical constructs of the
grammars. The coverage of the Lesmo, Magnini and Torasso analyzer was a text related
to Liver Complaints, which classifies it as one of a very few practical deterministic

parsing systems.

Most of the parsers that have been discussed in this section, as stated, were
designed as theoretical systems. The question of whether any of these parsers could be
incorporated as part of practical systems is now discussed, accepting that data structures

and simplified grammar of systems previously discussed are suitable.

The parsers YAP and PARAGRAM both had grammars with simplified rules as
compared with the cumbersome and idiosyncratic pattern/action rules used by
PARSIFAL. In the discussion on L.PARSIFAL, the use of the simplified rules was
highlighted as being beneficial to a practical parser, which suggests that both YAP and
PARAGRAM could be considered for practical applications. However, both parsing
systems had relatively small theoretical type grammars which would be unsuitable in
practical systems. The use of practical grammars in each of the parsing systems I$ not
considered to be an impossibility: once more a sublanguage/restricted language grammar

would seem easier to test because of the restriction on size and type of grammar rules.

70

The practical use of the three systems that incorporated semantics is varied.
The deterministic analyzer (Lesmo, Magnini and Torasso, 1981) was already part of a
practical application by providing the natural language interface to a medical database.
The developers did not discuss successes or failures of their system, but by adopting the
deterministic concept they must have been convinced of its potential. The remaining
two parsers were theoretical parsers and were very similar in design and structure;
neither incorporated an Active Node Stack into their system. Both parsing systems had
small grammars of pattern/action rules but the concern was the semantic as well as the
syntactic output of the parsing process. Yet again, the use of practical grammars by the

systems would provide good test ground for use in practical systems.
3.4 Deriving the Marcus Type Research Parsers

The parsers PARSIFAL, ROBIE and L.PARSIFAL, discussed above, form the
basis of the Marcus type research parsers that have been built for this research
- MParser and MParserSub. Both MParser and MParserSub comprise the data structures
of the Active Node Stack, two cell Lookahead Buffer and grammar of pattern/action
rules of the type used by L.PARSIFAL: these components were considered to be the
most suitable for use in a practical parser. However, MParser has not been built for use
in a practical system. Rather, it was built as a prototype from which MParserSub, the
proposed Machine Translation system parser, was developed. MParser, therefore, had

to be built from a practical viewpoint. MParser and MParserSub are discussed in more

detail in Chapters 5 and 7.

The Active Node Stack was used in all three parsers. It had proved to be capable
of handling and storing grammatical structures. No problems were, therefore, foreseen

in using the Active Node stack as part of MParser or MParserSub.

71

A similar argument is given for employing the Lookahead Buffer, i.e.. it could
handle grammatical structures when used as a theoretical parser, so the assumption was
made that it could be part of a practical parser. However, consideration was taken of
the fact that neither the two cell nor three cell lookahead buffer had been fully tested
on all types of sentences or phrases. It is possible that certain sentences or phrases

could turn up in a practical situation which MParser or MParserSub, with a two cell

lookahead buffer, could not handle.

The grammar of pattern/action rules used by MParser adopts the same format and
type as that used in the L.PARSIFAL system. This was expected to prove to be
suitable because similar grammars were being used. But, the grammar used by
MParserSub was to be derived from an aircraft maintenance manual and would,
therefore, contain untested grammatical structures that had not appeared in the grammars
of PARSIFAL, ROBIE or L.PARSIFAL. However, the sublanguage/restricted language
domain of aircraft maintenance manuals would mean the grammar would be of a

restricted nature, i.e., a smaller grammar with fewer types of grammatical structures.

3.5 LR Parsers For Natural Language Processing.

In this section an LR parser, which has been used in natural language processing
and on which the LR type parser developed for this research is based, is examined. The
LR parser is a variant of the deterministic LR parsing technique described by Aho and
Ullman (1972) for use in parsing programming languages. The parser that will be

discussed is the parser developed by Shieber (1983) and Pereira (1985).
3.5.1 The Shieber and Pereira Parser

The parser developed by Shieber (1983) and Pereira (1985) was a variant of the

2

LALR(k) parser (Aho and Johnson, 1974) ,which itself was a specialization of LR(k)

parser. The LALR(k) parser is a shift-reduce parser that works in a bottom-up manner.

As with the Marcus type parsers, the Shieber and Pereira parser will be considered
in the context of searching and matching, the procedures which constitute parsing.
Within the searching procedure, the parsing strategy used by the Shieber and Pereira
LALR(1) parser is purely bottom-up with no top-down prediction of phrase types.
Using a bottom-up parser of the LALR type, the example phrase given above ’with
Mary’ would be processed in the same manner as above, i.c.. respectively as preposition
and proper-noun; the proper-noun would be reduced to a noun-phrase and, finally, prep

and noun-phrase reduced to a prepositional phrase.

The method of control used by the LALR(1) parser is depth-first. Similar to the
Marcus type parsers only a single branch of the search tree would be examined because
of the limitations of determinism. The Shieber and Pereira LALR(1) parser had one cell

of lookahead which aided the search through the single branch of the search tree.

Matching in the LALR(1) parser is on syntactic categories, the final result being
the production of the parsing output, a parse tree. The components which made-up the
LALR(1) Shieber and Pereira parser were an input buffer, a stack for storing
constituents constructed during the parse and a parse table that guided the parse. The
parse table is produced by manipulation of the grammar. This process is discussed in
more detail in Chapter 6. At every stage in the parse, the parser consults the parse table
or shift reduce table, as it is sometimes known. Matching took place at this stage of
processing. The contents of the parse table match with either the syntactic category in
the first cell of the input buffer or the top node in the stack. Matching resulted in the

parser making either a shift move. when matching was on the first cell of the input

73

buffer, or a reduce move when matching was on the top node of the stack. The shift
comprises of removing the next word from the input sentence on to the top of the stack
and reduce takes constituents from the top of the stack and reduces them into a new
constituent that is placed back on the top of the stack, e.g., if the top of the stack held
a Det and a Noun the result of the reduce operation would be to replace them at the top
of the stack with a NP. After matching and the shift or reduce operation have taken

place, the whole process is repeated until processing is complete.

Within the matching process of a true LALR(1) parser, problems would have
occurred in dealing with a natural language grammar. Shieber (1983) and Pereira (1985)
built their parser so that it would work in the same manner as Marcus’ parser, i.e., that
there would be no simulation of non-determinism. However there was a difference.
The Marcus parser could only use an unambiguous grammar, whereas with the LALR(k)

parser, Shieber and Pereira used an ambiguous grammar.

The use of an ambiguous grammar made the LALR(1) Shieber and Pereira parser
a variant of the true LALR(k) algorithm, but in order to be able to parse natural
language the parser had to be amended to allow it to cope, in this case, with the syntax
of English. Since the grammar was ambiguous this meant that the parse table held
conflicting actions at certain points. Shieber (1983) dealt with this by introducing rules
that would, when there was a conflict between shift and reduce (i.e., matching with the
parse table could be on both the first buffer cell and the stack) choose the shift option
and when the conflict was between two reduce options (i.e., matching of the top of the
stack with the parse table could result in two different reductions) choose the reduce

option that would perform the longer reduction.

Another variation added to the parser was that of preterminal delaying introduced

74

by Shieber (1983). In certain situations, a word among preterminals may be
ambiguous: where this is the case the assignment of the preterminal symbol can be
delayed until the ambiguity is solved. For example, the preterminal ’that’ could be a
determiner or a complementizer and further information would be needed before

disambiguating between the two; the following two sentences are examples of this.

That problem is important.

That problems are difficult to solve is important. (Shieber, 1983)

In both of these examples the assigning of the preterminal determiner or
complementizer is delayed until the point where the first reduction takes place involving
the word. In the first case the reduction will be to NP because of the rule NP -->
Determiner, Noun and the preterminal can be assigned Determiner. In the second case,
the rule NP does not apply because of number agreement and the first possible

reduction would be Complementizer S to S.

Shieber and Pereira used the above changes to prove that the parser could account
for theories about preference, i.e., Right Association and Minimal Attachment.

Right Association, as put forward by Kimball, cited by Pereira, (1985), is the

principle that in the absence of other information phrases are attached to a partial

analysis as far right as possible.

Minimal Attachment, as put forward by Frazier and Fodor, cited by (Pereira,
1985), has the principle that in the absence of other information phrases are

attached so as to minimize the complexity of the analysis.

Pereira (1985) found that the problem of Right Association involved a shift-reduce

conflict and thus could be solved by shifting in preference to reducing, whereas Minimal

15

Attachment involved a reduce-reduce conflict and could be solved by choosing the
longer reduction. Shieber (1983) also looked at the theory that attachment preferences
depended on lexical choice. He amended the rule concerning reduce-reduce conflicts
so that longer reductions would be performed with the strongest leftmost stack element,

preterminals word pairs having been assigned with information as to whether they were

weak or strong.

As with the Marcus type parsers, it is pertinent to the discussion to consider
whether the Pereira and Shieber parser would be of use in a practical system.
However, similarly to Marcus type parsers, the Pereira and Shieber parser was built as
a theoretical parser. Although the Pereira and Shieber parser had been already amended
to cope with those aspects of natural language as mentioned above, the grammar used
by the parser was very small. As it stood, the parsing system could not be

recommended for use in a practical system.

However, the parser, itself, - the stack, the buffer and the parse table - can be
regarded as being suitable for use in a practical system, as it has been incorporated in
many compilers and proved to be suitable. For the whole parsing system to be suitable,
a larger grammar, containing a much more varied group of grammatical constructs than
that found in the Pereira and Shieber Parser, would need to be incorporated into the
system. However, the variety of the grammatical constructions may not have to be that
varied if the practical system of which the parser was to be a part were a
sublanguage/restricted language system where there is typically a restriction on the range

of grammatical constructs.

76

3.6 Deriving the LR Research Parsers

The Shieber and Pereira Parser was the basis from which the LR research parsers
were developed. As with the Marcus type parsers, two parsers, one a prototype, would
be developed for use in a practical situation. LParser would be the prototype from

which LParserSub would be developed.

The components incorporated into LParser and LParserSub are similar to the
components used in the Shieber and Pereira parser, i.e., a stack, an input buffer and
parse table derived from a grammar. The major difference between the Shieber and
Pereira parser and the research parsers would be the type and size of grammar. A
Definite Clause Grammar (DCG) would be the grammar used by both LParser and
LParserSub: LParser’s DCG would be based on the grammar used by L.PARSIFAL and
LParserSub’s DCG derived from the aircraft maintenance manual. LParser, LParserSub

and Definite Clause Grammar are discussed in more detail in Chapters 6 and 7.

717

CHAPTER 4

SUBLANGUAGE

4.1 Introduction

In this chapter the discussion is concerned with sublanguage. = The term
sublanguage came to prominence with the publication of the book "Mathematical
Structures of Language" by Zellig Harris. This work, cited by Kittredge and Lehrberger
(1982), reported research in the theory of language structure in the area of scientific

texts. Harris’ definition of sublanguage was as follows:

Certain proper subsets of the sentences of a language may be closed under
some or all of the operations defined in the language, and thus constitute a

sublanguage of it."

(Kittredge and Lehrberger, 1982)

Implicit in this definition is the assumption that sublanguage is similar to a subsystem
in mathematics. Harris, as cited by Kittredge and Lehrberger (1982), considered that
sentences that made-up a sublanguage were a subset of the whole language, but the
sublanguage grammar did not have to be part of the grammar of the whole language;

both grammars could, in fact, intersect.

In section 4.2, more recent definitions of sublanguage are examined. This is
followed, in section 4.3, by an examination of examples of the restrictions found in

sublanguages, i.e, the restrictions on semantics, grammar and syntax. In section 4.4,

78

a specific definition about the formation of a sublanguage grammar is described. This
1s based on work done by Naomi Sager (Sager, 1986). In section 4.5, the discussion
focuses on the significance of using a sublanguage within Machine Translation. Finally,
in section 4.6 the discussion focuses on whether deterministic parsing is a suitable
parsing method for the processing of sublanguage within Machine Translation. The

section concentrates on sublanguage in general and not specifically on the research area

sublanguage.

4.2 The Definition Controversy

In recent years, the definition of sublanguage has come under much scrutiny. It
has been argued, justifiably, that a sublanguage of natural language cannot be compared
with a mathematical subsystem, since the boundaries of both sublanguage and natural
language are not rigid. However can it be said that a sublanguage is an independent
system, unrelated to the whole language? This problem will now be discussed as

highlighted in Lehrberger (1986) and Fitzpatrick, Bachenko and Hindle (1986).

Lehrberger put forward five points that he thought should be considered when
defining a sublanguage:

A sublanguage of a natural language L is part of L.
A sublanguage is identified with a particular semantic domain.

A sublanguage of a natural language L grows in a natural way through the

use of L, albeit in special circumstances.

What we refer to as sublanguage texts usually contain some material that

does not belong to the sublanguage proper.

79

Whatever can be said in a sublanguage of a natural language L can be paraphrased

in Lstd (Standard Language). (Lehrberger, 1986)

Lehrberger took each of the above points in turn and discussed their significance. This

discussion is now considered.

Lehrberger began his discussion of the first point by suggesting the following
scenario. If a person ignorant of the field of nuclear physics were to read some article
on the subject, he or she would not necessarily understand the topic but he or she would
recognize the language that it was written in. According to the above, in this situation
it could be said that the sublanguage of a natural language L is part of L, but as
Lehrberger suggested it also could be said that the grammar of the sublanguage of the
language is a subgrammar of the language. This would not be true since constructions
could exist within the subgrammar that would not belong to a grammar of natural

language, such as the telegraphic construction, predominant in telegraphic sublanguages.

Regarding the second point, according to Lehrberger, the majority of investigations
into sublanguage have been concerned with writings in scientific and technical areas
with restricted semantic domains, but Harris’ definition of sublanguage did not mention
any limitations of semantics. In a later paper cited by Lehrberger, (1986), Harris called
such sublanguages subject-matter sublanguages and suggested that they did not contain
sentences of their own metalanguage; natural language, in general, had its own

metalanguage, the grammar of the language.

The third point is connected with the first two points. Lehrberger considered that
a sublanguage, like natural language, is not constructed but develops through use by

groups of specialists communicating with each other about their specific area. However,

80

Lehrberger noted specially constructed languages had not been studied in great detail,

so it was difficult to make any claim about their growth patterns.

The fourth point is concerned with information that may be in the form of
sentences or phrases that appear throughout the sublanguage text but which are not part
of the sublanguage proper. There exists in certain texts two levels, one level concerns
the actual subject matter, the other, perhaps a discussion about the subject matter. The
result of this, as Lehrberger stated, was a discourse within a particular domain and a
metadiscourse about it. It is possible to say that any text that appeared frequently in
the writings of a specific area was part of the sublanguage of that area. Thus, a
grammar of a sublanguage may have in it more than constitutes the sublanguage

grammar.

A suggestion to clear up the point, as put forward by Lehrberger, was to state that
there is a difference between sublanguage and discourse. If it was considered that it
was the discourse that would be processed, then the sublanguage grammar would be
larger to accommodate it. However by allowing the discourse analysis, based on the
grammar, to distinguish between discourse and metadiscourse this grammar would have
a component to match with the grammar of the actual sublanguage and rules for dealing

with the metadiscourse and how it corresponded to the rest of the discourse.

For the fifth point the concept of Lstd was introduced by Lehrberger which was
considered to be a grammar of the standard language, a more comprehensible grammar
than that of the whole language, L. It was also assumed that the sublanguage consisted
of deviant grammatical constructions that could be replaced by constructions of Lstd.
This was not simple, since certain examples of deletion are known only to the

specialists in the sublanguage and need to be explained by discourse rules and

81

pragmatic principles.

The stance taken by Fitzpatrick, Bachenko and Hindle (1986) was that telegraphic
sublanguages, e.g., the language of military messages, patient records, newspaper
headlines and weather reports, should be regarded as independent systems. They took
the view that Lehrberger’s first point, highlighted above, was incorrect in that they
believed telegraphic sublanguages were not part of standard language but independent
systems. They argued that the view taken by Kwasny and Sondheimer (1981) that
sublanguages were ill-formed in relation to standard language (implying that they were
to be regarded as ungrammatical) was wrong. (Kwasny and Sondheimer refer to
telegraphic sublanguages as being elliptic, with a need to be treated as special with
regard to the grammar.) Fitzpatrick, Bachenko and Hindle also did not agree with the
theory that sublanguages were reduced forms of language, with their sentences regarded
as suitable in specific areas. They believed that the error in the above assumptions was
that a telegraphic sublanguage was derived from deletions in the standard language and
thus could only be understood by reinserting the deletions. In essence, they did not
agree with the assumption that a telegraphic sentence is dependent on a full standard

language sentence.

In their research on telegraphic sublanguages, looking specifically at Navy
messages, Fitzpatrick, Bachenko and Hindle regarded the telegraphic sentence as a full
form, not a sentence with deletions. Therefore, their definition of the telegraphic
sublanguage was that it was not based on standard language, but had its own internal
consistency. In order to substantiate the above claim they had the restriction (see
below) of using only the transitive or intransitive meaning of a verb. They state that

it was not possible to prove that a restriction on transitivity forms part of the

82

navy-message sublanguage. However Harris’ statements on semantic domains of
sublanguages being subsets of those of the standard language gave credence to their

theory, i.e., lexical options appearing in the standard language may not appear in the

sublanguage.

Fitzpatrick, Bachenko and Hindle (1986) discussed areas in navy-message
sublanguage, which, it was stressed, needed a restriction on verb transitivity to produce
a correct analysis of text. ~ Other areas considered were the gapping of noun phrase
objects, passivization and apparent syntactic ambiguity. In the discussion on the gapping
of noun phrase objects the following were given as examples:

Five man hours expended to correct _

Attempt to procure _ locally to deliver _ on 05 April

Ship’s technician will repair _

System currently unable to process _

(Fitzpatrick, Bachenko and Hindle,1986)

In the navy-message sublanguage the verbs correct, procure, repair and process
were all transitive and could not be intransitive because of the transitivity restriction.
The assumption was made that the gap, found during syntactic processing, would be
filled with a noun phrase provided by the semantic processor. This is not the view
taken by those who follow the deletion theory since they would regard the gaps as
syntactic deletions of the full noun phrase object. Having the gapped object in the
sublanguage is dependent on the above verbs never being intransitive. As Fitzpatrick,
Bachenko and Hindle observed, this assumption was not true for Standard English and
hence could not be true for the syntactic deletion approach. The three remaining areas

were discussed thoroughly, with the conclusion being drawn that the telegraphic

83

sublanguage has a grammar made-up of a subset of rules of the standard language and
other interdependent rules that were peculiar to the sublanguage. This rule
interdependence along with being sublanguage-specific, showed the sublanguage

grammar to be independent in relation to the standard language (Fitzpatrick, Bachenko

and Hindle, 1986).

Lehrberger (1986) believed that independent systems could be relevant in practical
applications of certain domains, since it was possible that a greater economy could be
gained in their description. However, he also believed that there were reasons for
describing some sublanguages with reference to the structures and operations of the
standard language because particular applications use hierarchies of sublanguages with
overlap occurring between sublanguages in different hierarchies. Sublanguages with
non-similar semantic areas could be grammatically related; how they were related may
be shown with respect to standard language. Variant sublanguage texts may contain
metadiscourse expressions of similar type, so that even grammars of practical

applications could be connected with the grammar of the standard language.

In subject-matter sublanguages, grammaticality depends on the norms of usage of
the field’s specialists. It could occur that what is grammatical in the sublanguage is not
grammatical in standard language; the structures of the sublanguage conform to an
internal consistency and could be viewed as independent systems. However, Lehrberger

stated that considering

" ...sublanguage as part of a larger entity (the whole natural language) then
sublanguage structures that do not conform to the standard grammar can

legitimately be described as deviant.” (Lehrberger, 1986)

84

Structures also could be regarded as marked, the subject-matter restriction functioning
as part of extra linguistic context. ~ All this, Lehrberger (1986) stressed, gave strength

to the part-whole relation between sublanguage and standard language with the standard

language being a point of reference.

4.3 Restrictions

The variety of restrictions found in sublanguages are now considered. These
restrictions can be of the following types: lexical, syntactic, semantic or may represent

constraints in discourse or individual sentences. Lexical restrictions are examined first.

The most well known sublanguages as discussed to date in the literature have been
the language of weather broadcasts, maintenance manuals, stock market reports and
medical reports. In the sublanguage of aircraft maintenance manuals it would be
expected to find words such as aileron, motor compressor, jack or filter but not cabbage,
belief, hope. However words are not exclusive to one particular sublanguage; filter can
appear in both the language of pharmacology and aircraft maintenance manuals

(Lehrberger, 1982).

The restrictions on vocabulary vary between categories. Nouns, verbs, adjectives
and adverbs are the most restricted categories (Lehrberger, 1982), whereas the majority
of members of other categories, e.g., coordinate conjunctions and articles, are found in

most sublanguages. This emphasizes that the semantic burden is carried by nouns and

verbs.

Syntactic restrictions depend on the type of sublanguage, e.g., descriptive. In a
descriptive sublanguage it would not be usual to find direct questions or exclamatory

sentences. In the particular example of aircraft maintenance manuals, the simple past

85

tense 1s not used. But this is not to say that syntactic restriction means that the
structure of a sentence will be simple in sublanguages. It is still possible to have
complex sentences with, e.g., passives, nominalization, conjunctions and relative clauses;
these sentences can be long, even if they belong to a telegraphic sublanguage.

Syntactic restrictions do not ease completely the linguistic problems met by the parser.

The semantic restrictions of a sublanguage carry a greater importance than any
restriction on vocabulary size. The results of such restrictions can mean that there is
reduction in polysemy and words being attached to only one category. Examples from
an aircraft maintenance sublanguage are the following, with * signifying the category

not accepted by the sublanguage:

Case (N) *Case the joint.
Lug (N) *They lugged the equipment from the plane.
Cake (V) *The pilot likes banana cake.

Jerky (Adj) *Carry a pound of jerky on long flights.
Cable (N) *Cable the forward department.

(Lehrberger, 1982)

There are other words which can be restricted within their categories, e.g.,
Eccentric (Adj) Cannot apply to animate objects.
Ball (N) Can only be a spherical object.
Check (N) Abstract only.

Bore (V) Cannot take human object. (Lehrberger, 1982)

Other semantic restrictions that can occur depend on the number and kinds of

semantic features needed for parsing (Lehrberger, 1982). Nouns which can take either

86

concrete or abstract objects in the standard language may take only the concrete in a
sublanguage. Also, the amount of semantic restriction in a sublanguage has an effect
on the way semantic features are represented. Two methods, suggested by Lehrberger
(1982) for implementing this restriction were using the system of assignment of unary
or binary features. By these methods, if binary features were used, nouns such as air,
oil, water, etc., would be assigned +fluid the remaining nouns in the dictionary would
then be assigned -fluid and if the unary features were used the above nouns would be

assigned +fluid and the remaining nouns would not have any assignment attached.

As Kittredge (1982) observed various sublanguages employ in different ways a
language’s linguistic means of textual cohesion. Many sublanguages drop the use of
the definite article and copula. As well as this restriction, adjectives can be constrained
to appearing in only the predicative or attributive position. In the language of aircraft
maintenance manuals many adjectives have the attrib feature assigned to them and thus
cannot appear in the predicate position. The above are just some of the restrictions

found in sublanguages and give an outline of the depth of the restrictions.

4.4 Defining A Sublanguage Grammar

Naomi Sager addressed this subject in her article Sublanguage: Linguistic
Phenomenon, Computational Tool from where much of the information is drawn (Sager,
1986). To form a sublanguage grammar it is necessary to establish the domain-specific
noun classes and the verb and other linguistic operators that co-occur with them in
simple structures (Sager, 1986). For example certain sublanguages within the science
field have such well-classified noun classes that they can be used as they stand. Word
classification can also be defined by sorting the words of sublanguage texts into classes

by referring to their appearance in similar environments. Sager described use of a

87

clustering program which worked on sentences of a sublanguage that have been

transformationally analyzed to produce domain-specific classifications of words.

Having made an analysis of the texts by hand, the results, syntactic
operator-argument sentence trees, were put into the computer to produce the
domain-specific co-occurrence patterns. The nouns of the sublanguage were always
placed on the bottom nodes of the tree; the verbs were operators on the nouns. When
the tree structures were in the computer, a list of the main noun classes of the
sublanguage was typed in. The program replaced class names with class-member
occurrences in the tree structures. Tables of co-occurrence patterns were produced by
the computer providing material for the most elementary portion of the sublanguage
grammar (Sager, 1986). These co-occurrence patterns of word classes were used as the
main method of defining a sublanguage, usually being members of larger sentence
structures that were common amongst the sublanguage texts and forming a second level

of sublanguage description.

4.5 Automatic Machine Translation and Sublanguage

The discussion on sublanguage continues in this section with the investigation of
the use of sublanguages in the field of Machine Translation. As noted in Chapter 1,
difficulties were encountered by the developers of Machine Translation systems in their
efforts to produce efficient working systems. One of the more successful working
systems was the TAUM-METEO system developed by researchers at the University of
Montreal for the Canadian Government; the function of the system being to translate
public weather broadcasts from English to French (Chandioux, 1976). The reason for
the success of this system seems to stem from the fact that it was constructed to only

translate the language of weather reports, i.e., a sublanguage.

88

Why use a sublanguage for Machine Translation? A valid point that Lehrberger
made was that since grammarians have not yet succeeded in writing a definitive formal
grammar for natural language could it be assumed that it could be done for Machine
Translation systems (Lehrberger, 1982)? One argument suggested by Lehrberger is that
translating from one language to another does not need a full grammar, only context
sensitive transfer rules to gain the correct lexical item in the target language and rules
for restructuring these items. However, the need for context sensitivity and
restructuring imply that structures of lexical items of source and target languages have
to be recognized, which is no easy task. A system as small as METEO had still to
perform much grammatical processing of both source and target languages at each stage
of translation, i.e., parsing, transfer and generation. Using a sublanguage grammar,
however, with its built-in restrictions, would not produce as many problems as those that

would occur while trying to translate a whole language.

As Kittredge (1987) stated, analysis of the source text is very important part of
Machine Translation and if a sublanguage was used the analysis of its grammar would
be more efficient. This is due to the reduction of parsing time, itself a result of the
relatively small size of the grammar. There would also be a decrease in structural and
lexical ambiguity because of the fact that many words and phrases appearing in the

standard language would not be permitted in the sublanguage.

The benefits of using sublanguage were also found during transfer and generation.
Kittredge (1987) stressed that there was evidence to prove that there existed a strong
similarity in structure of text and sentences of scientific and technical works of different
languages over and above any similarities in the full languages. As he observed, if

taking this into consideration whilst developing a Machine Translation system, it would

89

be necessary to have the transfer grammars on the level of sentence and text. Thus, the
output produced from transfer could be computed with regard to a particular
sublanguage and not the whole language. Taking the example of TAUM-METEO, it
was found that the format of written text in English and French weather broadcasts was
totally similar. Deletion patterns in sentences of both languages’ broadcasts were also
similar with semantic and syntactic categories almost in one-to-one correspondence.
Results from the TAUM-AVIATION project showed that in the language of aircraft
maintenance manuals there were close links between French and English. The stylistic
patterns were so similar that translation could be done on the level of phrase structure
(Kittredge, 1982). These findings prompted further investigation into the similarities of
parallel sublanguages in English and French. The results published showed (Kittredge,
1982) that, generally, parallel sublanguages of English and French were much more
similar structurally than were dissimilar sublanguages of the same language, especially

if the domain of reference of the parallel sublanguages was technical.

The combination of less polysemy due to semantic restrictions, use of text norms,
limitations of vocabulary and restriction in syntax enable Machine Translation to be
practicable for sublanguages. Practicability for sublanguages is enhanced further with

the indication that parallel sublanguages have a great similarity structurally.

4.6 Deterministic Parsing and Sublanguage

As the main interest of the research is the use of deterministic parsers on
sublanguage for Machine Translation, the sections discusses the viability of this method
of processing sublanguage. It is accepted that other types of parser could be used and
are used in the processing of sublanguage for Machine Translation, but the object of the

research. as stated, is the testing the possibility of applying the deterministic parser to

90

this area. The discussion will concentrate on what are considered the best properties

of sublanguage that make it suitable to be processed by a deterministic parser in

Machine Translation.

Firstly, a recap on Deterministic Parsing and Machine Translation. In the
discussion on deterministic parsers in the previous chapter, the rules for deterministic
parsing have been set out. These rules demand that syntactic processing should not
involve backtracking or pseudo-parallelism and that there should be a limited lookahead
into the input sentence buffer: in essence, there can only be a single parse of a

sentence, nothing within the sentence can be reparsed.

In Chapter 1, it was suggested that the potential advantages of using a
deterministic parser in a Machine Translation system would be even better if a
sublanguage was the text to be processed. All sublanguage restrictions would also
enhance the tentative proposal regarding the results from computational complexity
theory that deterministic parsers processed in linear time and space which make them

more efficient than non-deterministic parsers. This is discussed in more detail below.

By adopting the stance taken by Fitzpatrick, Bachenko and Hindle (1986),
discussed above, that a sublanguage can be considered an independent system, accepting
the sublanguage grammar is correct, then it can be suggested that sublanguage,
especially a technical, telegraphic sublanguage, is suitable for deterministic parsing. The
reasons are linked to the characteristics of sublanguages which indicate differences from
standard language. These characteristics are the restrictions, previously discussed, which
are placed on the syntax, lexicon and semantics of sublanguage. Below these

sublanguage restrictions are examined in relation to deterministic parsing.

91

Technical sublanguages, such as aircraft maintenance manuals, must not be
ambiguous because of the precise nature of what they have to describe. As stated, the
restrictions found in sublanguages lead to reductions in syntactic, semantic and lexical
ambiguity. Reductions in ambiguity would favour deterministic parsing, as this does
not allow the reparsing of incorrect parses. For example, if a sentence contains a word
restricted lexically or semantically which leads to a reduction in syntactic ambiguity then
this would ease processing for a deterministic parser as there would be only one correct
parse of the sentence which the parser would produce. An actual example sentence,
where this applies, is from the Navy message sublanguage (Fitzpatrick, Bachenko and
Hindle, 1986) is ’Failed klystron. Unable to radiate continuous wave 1°. ’Failed’ can
be an intransitive left modifier of ’klystron’ or a transitive verb and ’klystron’ is its
object. When the transitivity constraint is applied, so that ’failed’ is no longer
ambiguous, this means that the sentence would no longer be structurally ambiguous.
It’s obvious that 'failed” would be restricted to its intransitive meaning, which would
mean, accepting the independent status of the sublanguage with transitivity constraint,

that wherever ’failed’ appeared in the sublanguage it would be in the intransitive sense.

As stated previously, other types of parsers can cope with processing sublanguage
for Machine Translation. However, the restrictions found in sublanguage suggest that
a deterministic parser would be able to cope with that type of language. The restrictions
also mean that less ambiguity may occur within the sublanguage corpus, which could
lead to processing being faster due to the tentative results concerning complexity theory
and deterministic parsers. No problems are foreseen with the processing of the

sublanguage being for Machine Translation, as the structure produced would also have

been semantically processed.

92

CHAPTER 5

MPARSER - A MARCUS TYPE PARSER

5.1 Introduction

In this chapter, MParser is examined in detail. The aim of building MParser,
programmed in Prolog, was to produce a prototype Deterministic Parser of the Marcus
type that would be tested on a set of sentences that cover a wide-range of grammatical
and linguistic aspects, taken from Marcus (1980). From this prototype another parser
would be developed that could be used on a sublanguage. MParser is built according
to the basic design of the first Deterministic Parser, PARSIFAL (Marcus, 1980) and the
grammar of L.PARSIFAL (Berwick, 1985), and follows the rules set out for maintaining
determinism within a system:

a) All syntactic substructures created by the machine are permanent, reflecting that
the parser should be partially data driven and prevent backtracking

b) All syntactic substructures created by the machine for a given input must be output
as part of a syntactic structure, showing that the pad reflect expectations and stop
pseudo-parallelism.

¢) The internal state of the mechanism must be constrained in such a way that no
temporary syntactic structures are encoded within the internal state of the machine,
meaning that there must be a limited lookahead facility.

(Marcus, 1980, p12-13)
MParser also incorporates structural modifications suggested by Berwick (1985) and

Milne (1982, 1983. 1986). which are considered to enhance the functioning of the

93

parser.

In section 5.2 the description begins by looking at one of the important
components of the MParser parsing system, the grammar, followed by a description of
the grammatical theory on which the grammar is based and the specific grammar rules
used by the system. The discussion continues in section 5.3 with the workings of the
parser being described in detail, beginning with an examination of MParser’s two major
data structures, the Pushdown Stack and Lookahead Buffer. Finally, in section 5.4, the

grammatical and linguistic range of MParser is discussed, with examples of the type of

sentences it can process being given.
5.2 The Grammar

The grammar used by MParser is similar to the target generative grammar acquired
by Berwick’s (1985) system, which incorporates Chomsky’s X-bar theory of phrase
structure. ~ The grammar has two parts: base phrase structure grammar rules and
transformational-type grammar rules. The base phrase structure system contains the
following: noun-phrases, verb-phrases, auxiliaries, main sentences, prepositional phrases,
relative clauses and embedded sentences. There are two types of transformational rule;
one type deals with simple local transformations, such as subject-auxiliary inversion and
the other deals with wh-movement. MParser’s grammar is an adapted form of the
grammar used by L.PARSIFAL (Berwick, 1985), which itself was an adapted form of
the grammar used by PARSIFAL (Marcus, 1980). The grammar rules are actually a
set of production rules, with each production rule being made up of a series of patterns
and a single action. Below X-bar theory is explained in some detail, followed by an

examination of the specific grammar rules that MParser utilises.

94

S5.2.1 X-bar theory

Berwick (1985) put forward pertinent reasons for using the X-bar theory of phrase
structure within L.PARSIFAL, his system being designed to mimic a child’s acquisition
of syntactic knowledge. The main reason being that it made learning easier for his
system. The reason that it was chosen for MParser is that by using X-bar theory it is
possible to make redundant the packets of rules as used in Marcus’ system, the names
of which were placed on the stack to indicate the state of the parse. By making the
packeting system redundant, the parser is rid of the process of activating and

deactivating the packets; thus enhancing the functioning of the parser.

X-bar theory of phrase structure is designed to be restrictive (Jackendoff, 1977).
In X-bar theory, the structure of the phrase can have, at most, three branches: specifier,
head and complement. Specifiers correspond to determiners, quantifiers and/or
adjectives. Complements can be embedded sentences, or phrases such as prepositional
phrases or relative clauses. Of the three branches, the head, since it is the core of the
phrase, is the most important: it is a noun in a noun-phrase, a verb in a verb-phrase,
a preposition in a prepositional phrase, etc. An important restriction in X-bar theory
is that phrases assume the features of their heads by percolation. Specifiers and
complements, which are optional within X-bar theory, function as modifiers and
arguments. For example, the determiner and/or adjective can be the specifier of a

noun-phrase, which also can have a sentential complement.

By being restrictive, X-bar theory allows the base phrase structure rules of the
grammar used by MParser to function by means of what Berwick (1985) called a small
number of template filling decisions. As stated above, by using X-bar theory Marcus’

packeting system becomes redundant. In its place it is possible to use a single template

95

packet. In MParser’s system the template is placed on the Pushdown Stack, as it is in
Berwick’s system. The template contains three descriptors, which correspond to the
three branches of a phrase. The template placed on MParser's Pushdown Stack is
represented by the following:

[spec_, head, comp]

The three descriptors themselves also represent types of rules used by MParser’s

grammar - specifiers, heads and complements, which have been described above.

The symbol ’_’ attached in the example above to spec, signifies what type of rule
is being processed. Once a rule has been processed, ’_’ either will remain attached to
the same descriptor, if the next rule to be processed is of the same rule type or it will
attach itself to the next descriptor, if the next rule is of a different type. If, for
example, a simple noun-phrase is to be parsed, e.g., the girl, the template above would
signify that *_’attaches itself to head since there are no more specifiers to be processed.
The template on the Pushdown Stack would be as follows:

[spec, head_, comp]

y

The symbol ’_’ can move only in a left-to-right direction and cannot jump
descriptors. The use of this notation is similar to using the dotted rule notation, which
incorporates context-free rewrite rules with marker dots placed in the right-hand side of
the expansion representing how much of a phrase has been parsed. The difference being

that MParser’s grammar does not incorporate context-free type rules, but rather groups

of features which correspond to specifier, head or complement type rules.

In X-bar theory groups of features represent the following lexical categories:
N(Noun), A(Adjective and Adverb), DET(Determiners and Quantifiers), V(Verb).

P(Preposition), INFL(Inflectional Elements) and COMP(Complement). Lexical

96

categories and corresponding feature representations are shown below:
N -> +N-V+A-P V -> -N+V-A+P
ADJ -> +N-V+A+P INFL -> -N+V+A+P

DET -> +N-V-A-P COMP -> -N-V+A+P

The N and V of the feature value representations correspond to noun and verb
respectively with A and P corresponding to argument and predicate: a typical argument
is a noun-phrase and typical predicate is a verb-phrase. With regard to S(Sentence),
this has INFL as its head. INFL is governor of the Subject NP, also functioning as a
predicate. S can also be an argument; S has COMP as its head. Using the feature
value representations eases conforming to X-bar theory, with any illegal structure being

ruled out early in the processing.
5.2.2 The Grammar Rules

MParser’s grammar is invoked by a call to grammar_rule/5 by the parsing rules.
The grammar is, in fact, a Prolog procedure called grammar_rule/S; each rule consists
of a grammatical category and representation of the Pushdown Stack and Lookahead
Buffer. When there is a call to grammar_rule/S, the present state of the stack and buffer
tries to match with one of the rules in the database. If the matching succeeds,
grammar_rulelS calls one of the following rules to perform an action:

attach - The function of this rule is to attach the contents of the first buffer to the

Current Active Node.

switch - This rule is called when the contents of the stack and buffer signify that
subject-auxiliary inversion should occur, i.e, the contents of the first and second

buffer cell are switched.

97

insert - This rule is called when a lexical item or trace needs to be added to the

parse tree, i.e, an empty np-node, is inserted into the first buffer cell.

Below two differing descriptions of that part of the grammar rule which includes

representations of the stack and buffer are given.

[Gram—capegory,[[xmax,Structure,Features,Template]IReststack]
[[[First_cell], [Second_cell]] |Outbuffer])

Figure 5.0 Individual Components of a Grammar Rule
In Figure 5.0 the description is that of the individual components that make up the
part of the grammar rule which matches with the state of the Pushdown Stack and

Lookahead Buffer MParser when it is ready to fire grammar-rule.

Gram-category refers to the type of grammatical category that is processed if

matching succeeds.

xmax, Structure, Features, Template are all in the Current Active Node of the
Pushdown Stack, with xmax signifying that the constituent being processed is a
maximal projection. A maximal projection is the highest level of projection and
represents the phrasal level. Structure represents a structure that has been
processed and which may have another constituent added to it. Features signifies
the type of grammatical category being processed. Template holds the descriptors,
which signify to which group the rule belongs. Reststack represents the remainder

of the Pushdown Stack.

First_cell and Second cell represent the Lookahead Buffer. Outbuffer is the

remainder of the input string that has not yet entered the Lookahead Buffer.

In Figure 5.1, below, an actual grammar rule is depicted i.e., the representations

98

of the stack and buffer which match with the state of the Pushdown Stack and
Lookahead Buffer. This example rule processes nouns. In the Current Active Node
there is already a determiner which has been previously processed. If the representation
of the stack and buffer in the rule match with the state of Pushdown Stack and
Lookahead Buffer, the noun in the first cell of the buffer is added to the determiner in

the Current Active Node.

99

Second cell
First cell

Buffer

([39233nq3In0| m M*vcoommw .A [d-e+a-u4, ‘Koq] _.] *)|
A_xumumummm_ﬁHﬁmEou.lvmmzyowmmH*_ﬁ.mnm1>|n+..mnu_~uwﬁl:UMpum_wxdExuvluwﬁczo:lsomuumwg

Structure

Current active Node

Gram category

Stack

Figure 5.1 Actual Grammar Rule

100

The rules of MParser’s grammar are grouped by type. There are three groups,
which are classified by the descriptor in the template, ie., specifier, head or
complement. Each group varies in size, with the complement group being the largest.
If considering grammatical categories, there are the thirty eight rules in total, but there
are a number of rules with the same lexical category because of the different conditions
that apply to attaching the contents of the first buffer cell to the Current Active Node.

Below examples from each group are given; the whole grammar being described in

Appendix A.

5.2.2.1 Examples of Specifier Group

attach_det - This is one of the rules for processing determiners.

grammar_rule(attach_det, [[xmax, ‘'+n-v+a-p’, [spec_, head, comp]
] IRSt],

[[FW, "+n-v-a-p’], [SW, ‘+n-v+a-p’]] |OutB] ,NewStack, NewBuffer) : -
attach ([[xmax, ‘+n-v+a-p’, [spec_,head, comp]] |IRSt],

[[[FW, '+n-v-a-p’'], [SW, "+n-v+a-p’]] |OutB] ,NewStack, NewBuffer) .

attach_adj - This is one of the rules for processing adjectives.

grammar_rule(attach_adj, [[xmax, S, ‘+n-v+a-p’, [spec_, head, com

pl]IR],
[[[FW, '+n-v+a+p’], [SW, '+n-v+a-p’]] |OutB] ,NewStack, NewBuffer

) ¥=
attach ([[xmax, S, '+n-v+a-p’, [spec_,head,comp]] IR],
[[[FW, ‘+n-v+a+p’], [SW, ‘+n-v+a-p’]] |OutB] ,NewStack, NewBuffer) .

5222 Examples of Head Group
perfective - This is one of the rules for processing perfectives.

grammar_rule (perfective, [[xmax, '-n+v’, [spec, head_, comp]] IRS

1,
[[[FW, ‘-n+v’], [SW, "-n+v’, '+’ ,en]] |OutB] ,NewStack, NewBuffer) : -

attach ([[xmax, '-n+v’, [spec,head_, comp]] IRSt],
[[[Fw,f_n+vf],[sw,'—n+v','+’,en]]1OutB],NewStack,NewBuffer).

attach rpron - This is the rule for processing relative pronouns.
grammar_rule(attach_rpron, [[xmax, '-n-v+a+p’, [spec, head_, com

101

pll,

[xmax,s,’+n—v+a—p',Temp]]IRSt],
[[[Fw,'—n—v+a+p'],Second]lOutB],NewStack,NewBuffer):—
attach([[xmax,’vn—v+a+p’,[spec,head_,comp]]

[xmax, S, ‘+n-v+a-p’, Temp]] |IRSt],
[[[FW,’~n—v+a+p'],Second][OutB],Newstack,NewBuffer).

5.2.2.3 Examples of Complement Group

attach-vp - This is one of the rules for processing verb-phrases.

(j.]]}:*éfmrg?r_rule (attach_vp, [[xmax, S, ' -n+v+a+p’, [spec, head, comp
RS], B

[[[xmax, S1’'-n+v-a+p’,Ty], Second] |OutB] NewStack, NewBuffer) : -
attach([[xmax,S, ‘-n+v+a+p’, [spec, head, comp_]]|RS],
[[[xmax,S1’-n+v-a+p’,Ty], Second] |OutB] ,NewStack, NewBuffer) .

attach_pp - This is the rule for processing prepositional phrases.

?Tammar_rule(attach_pp,[[xmax,S,'+n~v+a—p‘,[spec,head,comp_
[xmax,S1, '-n-v’,Temp]] IRst],

[[[xmax,S1, ‘n-v’], Second] |OutB],NewStack, NewBuffer) : -
attach ([[xmax,S, '+n-v+a-p’, [spec,head, comp_]],

[xmax,S1, "-n-v',Temp]] |IRSt],

[[[xmax,S1l,’'-n-v’], Second] |OutB],NewStack, NewBuffer) .

5.3 MParser’s Data Structures

Two of the major components of MParser are the Pushdown Stack and the
Lookahead Buffer, each of which is described in detail. The section ends with a
description of MParser in action, which is based on the manipulation of Stack and

Buffer.
5.3.1 The Pushdown Stack

The Pushdown Stack or Active Node Stack, by which name it is also referred in
the literature, plays a similar role in most Deterministic Parsing systems - a store of the
incomplete constituents. The Pushdo‘wn Stack used by MParser is no different. The
bottom node of the Pushdown Stack, referred to as the Current Active Node, is where
constituents are added to the node being built. Figure 5.2 shows a snapshot of the stack

102

part way through a parse.

If there is a need for further processing after a new constituent is added to the
Current Active Node, the still incomplete constituent in the Current Active Node is
dropped into the first buffer cell of the Lookahead buffer. Otherwise, the incomplete
constituent is pushed further onto the stack to allow for processing of the next node, but
this incomplete constituent itself will be processed later in the parse when it will be
added to another incomplete constituent to form a larger constituent. For example, in the
situation depicted below in the snapshot of the stack, a verb is the Current Active Node,
and since no other grammatical constituent can be added to it at this stage of the parse,
it is pushed further into the stack to allow for processing of the next node. If the next
node, after processing, is a noun-phrase this can be added to the verb, which will have

become the Current Active Node again and a verb-phrase will have been formed.

—
[#max, [attuch_subject,
[¥max , [attach _pnoun, [John, +n=v+a=p° ,pnj]]], =n+ve 4
[#max, [attach_verb,
[[1l1ke , ' -n4v’ 4 ,8], =n+v-a+p ,[spec head ,comp|]|]

Pushdowmn Stack Current Acuve Node

5.2 Snapshot of Pushdown Stack

5.3.2 The Lookahead Buffer

The Lookahead buffer used by MParser has only two cells of lookahead. This
differs from the Lookahead used by PARSIFAL (Marcus, 1980) and L.PARSIFAL
(Berwick, 1985), which both used three cell lookahead. There is a similarity to the
Lookahead Buffer used by ROBIE (Milne, 1982, 1983, 1986) which also used a

lookahead of two, but this data structure incorporated two single static buffers, whereas

103

MParser’s buffer is one buffer containing two cells. The choice of employing a buffer
with two cell lookahead is enough to prevent back-tracking and process phrases and
sentences. However there are certain ambiguities that cannot be resolved no matter how

many cells of lookahead are used. These ambiguities are mentioned below.

The Lookahead Buffer is a queue with the individual words entering from the left.
MParser processes the constituent in the first buffer cell, having the ability to look at
the second cell and "knowing" with what sort of clause it is dealing. Figure 5.3 shows
a snapshot of the Lookahead buffer and the remainder of the input string. The
remainder of the input string enters the buffer in the second cell when the contents of
the first buffer cell are pushed onto the stack and the contents of the second cell enter

the first buffer cell.

[([the ,4n-v-a-p" |, [beautiful ,‘tn-vra+p')], [garl, '7:3-]:,59 11
kahead B uffer Waiting © enter buffer

Figure 5.3 Snapshot of Lookahead Buffer and Input String

After processing, the constituent in the first buffer cell is pushed onto the stack, where

the parser constructs an enlarged grammatical constituent, as described above.

Prior to entering the Lookahead Buffer, the words that form the input string will
have already gone through dictionary look-up and a morphological analyzer. As a
result, each word in the input string will have attached its grammatical category and if

the word is a noun, it will also have attached its grammatical number, i.e., either

singular or plural.

104

5.3.3 Interaction of Stack and Buffer - MParser in Action

In this section the method by which MParser manipulates the stack and buffer to
produce the parse of a sentence is described. This description involves referring to the
series of Prolog rules that constitute MParser. The purpose of these rules is to get the
stack and buffer into a state ready for the firing of a grammar rule. As stated above,
prior to entering the Lookahead Buffer individual words of the input string pass through
dictionary look-up and morphological analysis; these procedures are discussed in a
subsequent section in connection with the parsing of certain types of sentences. Below

each rule used in the parsing process is examined. The Prolog code for MParser

appears also in Appendix A.
5331 input

The rule input is the top-level rule that calls enter, prep and parse; parse is the
key rule of the system, since it calls rules to process an input string. However, before
any processing can take place, the input string has to be entered into the buffer and the
stack prepared for the constituent in the first buffer cell; the rules enter and prep

perform this pre-parsing preparation.
5.3.3.2 enter

The rule enter places the first two words of the input sentence into the two cell
Lookahead Buffer; the rest of the input string remains outside the buffer until the
second buffer cell is empty. (At that point, the third word of the input string enters the
second buffer cell, the contents of the cell now being in the first buffer cell, the contents

of which have been pushed onto the Pushdown Stack. This procedure occurs after a call

to grammar_rule.)

105

5333 prep

This rule calls several rules, create_max, perc features, add template,
add_features and pre_test to prepare the stack for the first constituent from the buffer.

These rules are called also by act _create node and drop, which are discussed later.

5.3.3.3.1 create_max

The rule create_max places a marker in the Current Active Node of the Pushdown
Stack to signify that a maximal projection, i.e., head of a phrase, will be held there.
This rule fires even if the first constituent of a phrase is not its head, e.g., the

constituent may be a specifier.
5.3.3.3.2 perc_features

The purpose of the rule perc_features is to percolate the features of the constituent
in the first cell of the buffer to the Current Active Node. If the constituent cannot be
a maximal projection, i.e., it is a specifier, the features of the governing head are placed

on the stack.
5.3.3.3.3 add_template

The rule adds a template of descriptors, spec, head, and comp to the Pushdown
Stack that describes the function of the constituent to be placed in the Current Active
Node; the symbol ’_’ is attached to the descriptor to signify which function the
constituent holds, as described above. On occasions it is necessary to consider the

contents of the second cell and/or the stack, as well as the first buffer cell.

106

5.3.3.3.4 add_features

The rule add_features adds features to or amends the features on the stack after
percolation has occurred. Occasionally, the need for this arises when the features of
a head of phrase are incomplete, e.g., the features A and P are missing and have to be
added. On rarer occasions, an anomaly occurs in the theory and the features percolated

have to be amended, e.g., '+’ changes to ’_’ or vice versa.
5.3.3.3.5 pre_test

The purpose of pre_test is to check the contents of the buffer for the sequence of
auxiliary verb followed by a determiner, adjective or noun. If there is no such sequence
pre_test will return contents of stack and buffer as they were in the previous rule.
However, if there is such a sequence pre test calls create_max s, perc feat s,
add_template_s, attach_s, attach_sl, attach_s2, attach_s3 and drop_s, which are rules
to deal with building a maximal projection from the contents of the second buffer cell.
The rules correspond to the rules with similar names which have already been described.
The four attach rules attach the contents of the second buffer to the stack in order to
build a maximal node. Four rules are needed to deal with determiners and adjectives.
drop_s drops the contents of the stack back into the second buffer cell to allow for the

processing of subject-auxiliary inversion.
5.3.34 parse

As stated above, parse is the key rule of the system. It calls grammar rule which
invokes the grammar. If grammar_rule fires there is a call to process which in turn
calls a series of rules that makes adjustments to the stack and buffer after the firing of
grammar_rule and also prepare them for the firing of the next grammar rule. However,

107

if grammar_rule does not fire, parse then calls drop, another rule to manipulate the
stack and buffer. But, if drop fails this is a signal that parsing has ended and a final

parse tree is dropped into the buffer.

5.3.3.5 process

The rule process calls the rules annotate_node, amend_stack, amend_template,

act_create_node, add_feat spec and drop.
5.3.3.5.1 annotate node

This rule attaches the name of the grammar_rule to the Current Active Node.

5.3.3.5.2 amend_stack

The purpose of amend_stack is to add a description of the type of verb or wh-word

to the Current Active Node, if the rules to attach verb or wh-words have just fired.
5.3.3.5.3 amend_template

With amend_template, the pointer to the descriptor in the template can be moved
to the right, remain the same or be moved from comp to spec, depending on the contents
of the stack and/or buffer. The rule calls member or equal and change template or
change templatel or change _template? to aid the decision of whether the pointer should

move or remain in the same position.
5.3.3.54 act_create_node

This rule, on examination of stack and buffer, either keeps the Current Active

Node or builds another node at the bottom of the stack, which will become the Current

108

Active Node and pushes the contents of the present Current Active Node further into the
stack. In order to create the new node, act_create_node calls upon create max,

perc_features, add_template and add_features, which we have already described.

5.3.3.5.5 drop

The rule drop fires if grammar_rule fails. The main purpose of drop is to remove
the contents of the Current Active Node and place them back in the first buffer cell.
Depending on the contents of the stack and buffer after this action has taken place, it

may be necessary to build a new node on the bottom of the stack by calling the same

rules as described above.
5.4 The Grammatical and Linguistic Range of MParser

In this section the grammatical and linguistic range of MParser is discussed. The
discussion includes the examination of two types of ambiguity, structural and part of
speech ambiguity, and how MParser copes with the problems that arise. The problem
of part of speech ambiguity was the main theme of Milne (1983), whereas Marcus
(1980) did not consider the problem at all. However, both Milne and Marcus looked
at aspects of structural ambiguity. The discussion begins by looking at the dictionary
and dictionary look-up, which includes a procedure for morphological analysis. The
subsequent sub-section deals with the type of sentences MParser parses, which are not

ambiguous and the final sub-section ends with an examination of ambiguous sentences.
5.4.1 The Dictionary

Any serious parsing system needs a good dictionary for it to work effectively. The

dictionary used by MParser, a series of Prolog rules, see below, has approximately one

109

hundred words covering the major grammatical constituents such as verbs, nouns,
pronouns, proper nouns, determiners, adjectives, prepositions, relative pronouns and
wh-pronouns. The dictionary may seem relatively small, but the vocabulary allows great
scope for forming many grammatical constructions and handling ambiguity. The
dictionary contains, at most, double entries for a word, for example:

l. word(walk,Full,_,_, [Full, ‘+n-v+a-p’]).

2. word(walk,Full, PN, Tense, [Full, '-n+v’ , PN, Tense]) .
Example 1 is the dictionary entry for the noun walk and example 2 is the entry for the

verb walk.
5.4.1.1 Dictionary Look-up

The dictionary look-up procedure check is called immediately after the input string
has been read in from the keyboard. check processes each word of the input string
separately. The first procedure check calls is the procedure end which performs
morphological analysis; this procedure is discussed below. After morphological
analysis, which returns the root form of the word and its ending, there is a call to the
dictionary procedure word. The procedure word matches the root form of a word and
returns this word with ending attached and grammatical category. If the word is a

noun, the grammatical number, i.e., singular or plural, also is returned.

If the word being processed by dictionary look-up has two entries in the
dictionary, check returns both entries. Both entries remain in the processed input string
until entering the first cell of MParser’s Lookahead Buffer. MParser makes the
distinction between entries depending on the state of the Pushdown Stack and the second
cell of the Lookahead Buffer. For example, if, in the double entry of the example given

above, walk is in the first cell of the Lookahead Buffer. MParser would examine the

110

state of the Pushdown Stack and if there is a determiner in the Current Active Node,
walk would be attached as a noun. As the example shows, a double entry of noun/verb
following a determiner is disambiguated as noun. This is due to the rules of the
grammar for noun phrases, which would also be true of a double entry of noun/verb
following a determiner and adjective. If an adjective/verb double entry followed a
determiner, the entry would be disambiguated as adjective as a result of the grammar
rules for noun phrases. Similarly, if a noun/verb followed an adjective/verb which
followed a determiner, the double entries would be disambiguated as noun and adjective
respectively, once more as a result of the grammar rules for noun phrases. The
restrictions imposed by the X-bar theory of phrase structure state clearly the components
of the phrases of the grammar, thus the grammar is an aid to the method used for
disambiguation of the particular examples discussed. Milne (1983) uses a similarly

method for dealing with polysemy.
54.1.2 Morphological Analysis

As stated above, the procedure end, which performs morphological analysis, is the
first procedure called by check and is based on the algorithm for dealing with
morphology given in Winograd (1972). end examines words for typical endings, such
as s, es, ed, en, er, ly, ing, or est. If end finds one of these endings, it removes the
ending and then checks the last or last two letters of the remaining letters, since they
might need to be replaced. For example, if the word being morphologically analyzed
is pennies, the analyzer removes the es ending and on checking the last letter finds an

i which is replaced with a y. The word penny is subsequently passed to the remaining

procedures of dictionary look-up.

111

5.4.2 The Processing of Unambiguous Sentences

The grammatical and linguistic range of MParser is represented by the type of
sentence it can process. In this section the unambiguous sentences that MParser can
parse are examined. An unambiguous sentence is a sentence where there is no
structural ambiguity or where there is no part of speech ambiguity. MParser can deal
with a varied set of sentences covering the following grammatical constructions and
sentence types:

1. Auxiliary Verbs - to-infinitive, perfective, progressive, modal, do, passive_be
2. Simple Declarative Sentences. 3.Prepositional Phrase.
4. Verb Complements. 5.That Complements.

6. Deleted That Complements. 7.Subject_Auxiliary Inversion.

8. Passive Constructions. 9.Missing Subject Sentences
10. Wh Questions 11.There Insertions.

12. Imperatives. 13.Relative Pronouns.

14. Reduced Relatives. 15.Possessive Determiners.

Of course, some of the above can produce ambiguity within a sentence, but not
always. Below a few examples of unambiguous sentences employing the above
constructs and the resulting parses are given. Further example parses appear in
Appendix C.

Will the beautiful blushing bride kiss John.
Who broke the jar?
The large boy loves the small girl.

Is there a meeting scheduled for Wednesday?

?- readin(S).
| : will the beautiful blushing bride kiss John.

S= [[[xmax, [attach_subject,

[xmax,[[the,'+n*v-a—p’],[beautiful,’+n—v+a+p‘},

[blushing, '+n-v+a+p’], [bride, '+n-v+a-p’,sqgl],
‘+n-v+a-p’l],
[attach_vp, [xmax, [[aux_sai, (will, ‘-n+v+a+p‘]],

[attach_vp,

[xmax, [[attach_verb, [kiss, '-n+v’, -, tense]],
[attach_object, [xmax,
(attach_propnoun, [John’, ‘+n-v+a-p’,pnl],
‘+n-v+a-p’l]],

‘-n+v-a+p’,subjll],
‘-n+v+a+p’1]],
‘~n+v+a+p’], [11.11]

?- readin(S).|: who broke the jar.

S=[[[xmax, [[attach_wh_comp, [who, '-n-v+a+p’]],
[attach_sent, [xmax, [[attach_embedded_subject,
[np_empty, ‘+n-v+a-p’1],

[attach_vp, [xmax,
[[attach_verb, [broke, '-n+v’, -, tense]l],
[attach_object,
[xmax, [[attach_det, [the, ‘+n-v-a-p‘1]],
[attach_noun, [jar, ‘+n-v+a-p’,sqglll,
‘+n-v+a-p‘l],
*-n+v-a+p’,0bjll],
‘-n+v+a+p’ll1],
‘-n-v+a+p’,wh], (1], []]

| ?- readin(S).|: the large boy loves the small girl.

S=[[[xmax, [attach_subject,

[xmax, [[attach_det, [the, "+n-v-a-p’']],

[attach_adj, [large, ‘+n-v+a+p‘]],

[attach_noun, [boy, ‘+n-v+a-p’,sgll],'+n-v+a-p’1], [
[attach_vp,

[xmax, [[attach_verb, [love, ‘-n+v’,+,s]],

[attach_object,
[xmax, [[attach_det, [the, '+n-v-a-p’]],
[attach_adj, [small, '+n-v+a+p’]]],
[attach_noun, [girl, '+n-v+a-p‘',sglll.,
‘+n-v+a-p’'l],

*-n+v-a+p’,subjll],

'-n+v+a+p’], [11.101)
|?- readin(S).|: is there a meeting scheduled for Wednesday.
S = [[[xmax, [attach_subject, [xmax, [there, ‘+n-v+a-p’],
'yn-v+a-p’l]. ‘
[attach_vp, [xmax, [[copula, [1is, '-n+v']],

[attach_object,[xmax,{[attach_det,[a,’+n—v—a—p']],
[attach_noun, [meeting, ‘+n-v+a-p’,sqgll],
[attach_zrpron_sent, [xmax,

[attach_reduce_rel,

113

[schedule, '-n+v-a+p’, +,ed]],
[attach_pp, [xmax, [[attach_prep, [for, ‘-n-v’]],
[attach_pp_object, [xmax,
[attach_noun,['Wednesday’,'+n—v+a—p',sg]],

‘4n-v+a-p’l],

t-=n-u111,

‘-n+v+a+p’]],

‘+n-v+a-p‘l],

=1+ 1Yy
‘=ntr+asptl., (11,)]

5.4.3 The Processing of Ambiguous Sentences

Above, it was stated that MParser could handle ambiguity, namely aspects of
structural and part of speech ambiguity. Structural ambiguity occurs when a sequence
of grammatical constituents can form differing grammatical constructs, e.g.,

Have the students take the exam.

Have the students taken the exam?

The two sentences given above are structurally ambiguous because it is impossible to
decide whether Have is a main verb of an imperative sentence or an auxiliary of a

yes/no question until the verbs take or taken are parsed.

Part of speech ambiguity occurs when a word in a sentence can be more than one
type of grammatical constituent, e.g.,

1. The block is on the table.

2. I know that boy likes football.

3. I know that boys like football.

In example 1, it is obvious to the reader that "block™ is a noun, but the reader also
knows that "block" can be a verb. In example 2, the reader knows "that" is a
determiner and in example 3, "that" is a complementiser. How does the reader know

the difference? In example 1 "block" appears after a determiner, so it can only be a

114

noun. In example 2 "that" appears before a singular noun and in example 3 "that"

appears before a plural noun, in both cases the grammatical number of the noun

determines how each "that" is processed.

MParser can handle the above ambiguities. As stated above, if a word occurs
more than once in the dictionary, all entries of the word are passed, at dictionary
look-up, to the parsing process. When this group of entries appears in the first cell of
the Lookahead Buffer, only one of the entries is pushed onto the Current Active Node.
The method MParser uses for making the choice is to look at the contents of the
Pushdown Stack and/or the second buffer cell and compare with each of the multiple
entries when a grammar_rule is about to fire. In example 1, above, MParser could
discriminate between noun and verb at the crucial point because a determiner would
be in the Current Active Node. In examples 2 and 3, MParser could discriminate
between complementiser and determiner by examining the contents of the second buffer

cell and finding either a singular or plural noun.

Milne (1983) followed a similar method for dealing with examples like example
1, above, and cites Winograd (1972) as the instigator of the method by using compound
lexical entries and pattern matching to disambiguate between different grammatical
categories. Other examples (Milne, 1983) that can be dealt with by looking at the type
of grammatical constituents in the Current Active Node or second buffer cell are
ambiguities surrounding the noun-phrase, e.g., singular head nouns, verb/adjective
ambiguity and other pre-nominal ambiguities. This method also can deal with
disambiguating between fo as a preposition and /o as the infinitive auxiliary by looking
at the contents of the second buffer cell. However, the method in this case allows

ungrammatical sentences. This problem can be solved by using verb sub-categorization

115

on verbs preceding fo, i.e., certain verbs can take infinitive complements others cannot.
When verbs precede o which is followed by noun/verb ambiguity, the ambiguity can
normally be disambiguated due to verb sub-categorization. For example,

I want to school the boys.

I went to school yesterday.
It may occur that a verb may not precede fo followed by noun/verb ambiguity, in this
instance it would be difficult to disambiguate between noun and verb. MParser can deal

with the above ambiguities.

In examples 2 and 3, above, disambiguation takes place because examination of
the second cell includes checking for number agreement. Milne (1983) gives other
examples of part of speech ambiguity that can be solved by checking person/number
codes and verb agreement. These examples include disambiguating between for as a
preposition and for as a complementizer, noun/verb ambiguity in plural head nouns,
dealing with what and which noun/modal ambiguity, dealing with her, dealing with that
and dealing with have. MParser has not been programmed to deal with all of these
aspects of ambiguity but it is considered that it would be an easy task as it involves

checking for either verb agreement or person/number agreement.

MParser and all Marcus type parsers have difficulty in dealing with constructions
that exhibit unbounded dependencies, e.g., constituent questions, as stated by Church,
cited in (Briscoe, 1987). The reason for this is that it is impossible for a deterministic
parser trying to solve local ambiguities by using lookahead to find the correct gap in
unbounded dependencies; lookahead in a deterministic parser is restricted. In order to
resolve the difficulty lookahead would have to be unrestricted. Whether this causes a

problem for parsing sublanguage is discussed in Chapter 7.

116

Other ambiguities can occur when relative clauses and prepositional phrases are
subject to rightward movement; an example trace is given in the first example below
showing ’point of extraction’. Examples of rightward movement are:

The boy e’ dropped in who lives down the lane.

A girl took the job who was attractive.

A girl took the job that was attractive. (Briscoe, 1987)

Deterministic parsers, although MParser does not deal with this construction, can cope
with the ambiguities of rightward movement. Briscoe (1987) notes that rightward
movement in the English language is treated:

" as a case of canonical attachment of the postmodifier to the S node, where
semantics remains a matter of more general inference rather than a fully
determinate, grammatically defined binding."

This allows deterministic parsing of the rightwardly moved relative clause or

prepositional phrase.

Below are examples of sentences with ambiguities and the resulting parses. These
examples includes both types of ambiguity discussed and varying aspects of ambiguity

that occur within part of speech ambiguity.

The tall skinny girl with red hair that I met at the party is coming.
Have the students taken the exam?

The block is on the table.

I know that boy likes football.

I know that boys like football.

?- readin(S).

117

| : the tall skinny girl with red hair that I met at the party

is coming.

S = [[[xmax, [[attach_subject,
[xmax, [[attach_det, [the, '+n-v-a-p’]],
[attach_adj, [tall, "+n-v+a+p‘]1],
[attach_adj, [skinny, '+n-v+a+p’]],
[attach_noun, [girl, ‘+n-v+a-p’,sqgll,
[attach_pp, [xmax, [[attach_prep, (with, ‘'-n-v’]],
[attach_pp_object, [xmax,
[attach_adj, [red, '+n-v+a+p‘]l],
[attach_noun, [hair, '+n-v+a-p‘,sgl],
‘+n-v+a-p‘ll,
f=p=w*t YL,
‘+n-v+a-p‘1l,
[attach_relative_clause,
[xmax, [[attach_rpron, [that, '-n-v+a+p’']],
[attach_sent, [xmax, [[attach_embedded_subject,
[xmax, [attach_propnoun, ['I’, '+n-v+a-p’,pn]l],
‘+n-v+a-p‘l],
[attach_vp,
[xmax, [[attach_verb, [met, '-n+v’, -, tense]],
[attach_pp, [xmax, [[attach_prep,

[at; “-n~%*]1];
[attach_pp_object, [xmax,
[attach_det, [the, "+n-v-a-p’]],
[attach_noun, [party, '+n-v+a-p’,sgll,
‘¥n-v+a-p*“ll;

G s T (8 1 O
' -n+v-a+p’,subjlll],
‘-n+v+a+p’l]],
‘-n-v+a+p’'l]l],
‘+n-v+a-p’J,
[attach_vp, [xmax, [[progressive, [is,'-n+v']],
[attach_vp,[xmax,[[attach_verb,[come,’—n+v’,+,ing]],
‘-n+v-a+p’,tnsl]]],
‘-n+v’]]1],
‘-n+v+a+p’1, (1], []]

| ?- start(S).
| : have the students taken the exam.

S:[[[xmax,[[attach_subject,[xmax,[the,’+n~vﬁa—p'],
[students,'+n—v+a—p’,pl]],'+n+v+a—p']],
[attach_vp,[xmax,[[perfective,[have,'—n+v']],
[attach_vp,[xmax,[[attach_verb,[take,'-n+v’,+,en]],
[attach_object, [xmax, [[attach_det, [the, '+n-v-a-p’']],

[attach—noun,[exam,’+n-v+a—p',sg]]],'+n—v—a—p’]]],
' -n+v-a+p’,0bJjll],
r-n+v’]111,

‘-n+v+a+p’], (11,011

|-?2- start(S).

118

| : the block is on the table.

S=[[[xmax, [[attach_subject,
[xmax, [[attach_det, [the, ‘+n-v-a-p’']],
[attach_noun, [block, ‘+n-v+a-p’,sgll], "+n-v+a-p’'1l],
[attach_vp, [xmax, [[copula, [is, '-n+v‘]],
[attach_pp, [xmax, [[attach_prep, [on, ‘-n-v’]],
[attach_pp_object, [xmax,
[[attach_det, [the, "+n-v-a-p‘1],
[attach_noun, [table, '+n-v+a-p’,sglll],
‘4n-v+a-p‘J]]],
en=-v 111,
=n+vr 1],
tempreanp] . [11, [1]

| ?- start(S).
| : I know that boys like football.

S= [[[xmax, [[attach_subject, [xmax,
[attach_propnoun, ['I’,'+n-v+a-p’,pnll, ‘+n-v+a-p']],
[attach_vp,
[xmax, [[attach_verb, ' [know, '-n+v’, -, tense]],
[attach_comp_phr,
[xmax, [[attach_comp, [that, '-n-v+a+p’],
[attach_sent, [xmax,
[[attach_embedded_subject,
[xmax, [attach_noun, [boys, '+n-v+a-p’,pll],
‘+n-v+a-p’J,
[attach_vp, [xmax,
[[attach_verb, [like, '-n+v’, -, tense]],
[attach_object, [xmax,
[attach_noun, [football, '+n-v+a-p’,sqgl],
‘+n-v+a-p’'ll],
'-n+v-a+p’,subjlll],
‘-n+v+a+p’1]1],
‘-n-v+a+p‘J]],
'-n+v-a+p’,subjll],
‘-n+v+a+p’, [1], []]

| ?- start(S).
|- I know that boy likes football.
S = [[[xmax, [[attach_subject,

[xmax,[attach_propnoun,['I','+n~v+a—p',pn1]],
‘+n-v+a-p‘l].,
[attach_vp,
{xmax,[[attach_verb,{know,'-n+v',—,tense]],

[attach_zcomp_sent,
[xmax, [[attach_embedded_subject,
[xmax, [[attach_det, [that, ‘+n-v-a-p‘]],
[attach_noun,[bOy,'+n—v+a—p',sg]]],'+n—v+a—p’]],
[attach_vp,
[xmax,[[attachrverb,[like,’—n+v',+,s]],
[attach_object, [xmax,
[attach_noun,[football,'+n~v+a—p',sg]1,'+n*v+a—p’]]
'-n+v-a+p’,subjll],
‘-n+v+a+p’ll],

119

'-n+v-a+p’,subjll],
"=nevararp i1 011

5.4.4 Parsing Output in Relation to Analysis in Machine Translation

The parsing output produced by MParser tries to take account of syntactic theory,
L.e., reflect X-bar theory in the context of Transformational Grammar. In reflecting
syntactic theory, the parsing output represents the left and right branching of structures.
Thus, repetitions of prepositional phrases within a noun phrase would be represented as
a right branching structure, e.g.,

The son of the servant of the mother of the daughter.
The left branching structure of a similar noun phrase would be

The daughter’s mother’s servant’s son.
As the previous examples show, English contains both left branching and right
branching structures. There are languages, such as Turkish and Japanese, where the

recursive structures are predominantly left branching structures.

In terms of Machine Translation the adoption of a specific syntactic theory and
analysis would be made in the analysis stage, i.e., during the processing of the source
language. As stated previously, certain languages can be, for example, predominantly
left branching or a mixture of both left and right branching. During the Machine
Translation of English into Japanese and/or Turkish or vice versa, account would have
to be taken of the differences in the branching structures. As the analysis stage of a
Machine Translation system deals primarily with source language, the difference in
branching would be accounted for in the transfer stage of the system which deals with
aspects of both source and target languages. Any other differences in theory and

analysis between source and target language would be, firstly, accounted for in the

120

transfer stage.

5.5 Summary

MParser has been designed according to the principles for Deterministic Parsing
set out by Marcus (1980) and includes structural modifications suggested by Berwick
(1985) and Milne (1982, 1983, 1986), with some further structural modifications
involving abandoning the packeting system used by Marcus (1980) and Milne (1983)
and using a two cell Lookahead Buffer. MParser’s grammar incorporates X-bar theory
of phrase structure which makes easier representing the state of the parse in the
Pushdown Stack. As MParser’s grammar was based on that of L.PARSIFAL, it was
relatively easy to produce. The notion of using X-bar theory came from Berwick (1985)
which posed no problem in implementing. The grammatical and linguistic range of
MParser is similar to that of PARSIFAL (Marcus, 1980), ROBIE (Milne, 1983) and
L.PARSIFAL (Berwick, 1985), in that it can parse the majority of the sentences that

these systems can parse.

The output produced by MParser is a syntactic structure of the input sentence.
The purpose of producing the output is proof of the building of the syntactic structure
by the parsing mechanism. As the main aim of building MParser has been to provide
a prototype Deterministic Parser that can be used as a model for a parser to be built for
processing a sublanguage; the output produced is not used for any other purpose as than
that of proof of the working of the parsing process. With some changes to the grammar
and parsing rules, MParser is easily modified to become MParserSub, which is discussed

in Chapter 7. The output from MParserSub and its purpose is also discussed in Chapter

7

121

No measurement of MParser performance has been made. The performance results

of MParsersub are discussed in Chapter 7.

As MParser is based on PARSIFAL, ROBIE and L.PARSIFAL, it would be
pertinent to compare MParser with them. MParser, like to PARSIFAL, ROBIE and
L.PARSIFAL, comprises an Active Node Stack, Lookahead Buffer and a grammar of
pattern/action rules. PARSIFAL was the first of the Marcus type parsers and stands as
the basis on which parsers of this type are modelled. MParser differs from PARSIFAL
in several ways. Firstly, MParser can cope with aspects of lexical ambiguity, specifically
part of speech ambiguity, which PARSIFAL cannot. Secondly MParser has a lookahead
of two cells whereas PARSIFAL has a lookahead of three which is deemed to be

excessive by Milne (1986). This topic has been discussed in more detail in Chapter 3.

Finally with regard to grammar and grammar rules, MParser varies from
PARSIFAL in that its grammar rules were not grouped into packets of rules. The
packeting system was considered a redundant mechanism (Berwick, 1985), with the
suggested replacement being the dotted rule. The dotted rule encoded a representation
of constituents that have been parsed and replaced the tree representation built by use
of the packeting mechanism. The use of the dotted rule simplified this representation
in that the representation did not contain superfluous information such as both packet

name and non-terminal name.

The grammar used by MParser is based on Chomsky’s X-bar theory of syntax
which is more restrictive than Phrase Structure syntax in terms of types rules that it
allows. PARSIFAL’s grammar. although based on Chomsky’s work, does not
incorporate X-bar theory.

122

The differences between MParser and ROBIE lie primarily in the grammar and
grammar rules. The type of grammar and the packets of grammar rules used by ROBIE

are similar to those used by PARSIFAL.

MParser differs from L. PARSIFAL in two aspects: L. PARSIFAL, like PARSIFAL

could not cope with lexical ambiguity and also, similar to PARSIFAL, L.PARSIFAL had

a lookahead of three buffer cells.

MParser, in essence, is an amalgam of what are considered, by the author, to be
the best components for a parser of the Marcus type. The Active Node Stack,
Lookahead Buffer and Grammar of Pattern/Action Rules have already been discussed
as being suitable components for a parser. The use of lookahead of two buffer cells has
been decided to be adequate for processing the language produced from the grammar.
It has also proved suitable for processing of the sublanguage (see Chapter 7). The
amendments to the grammar, by removing the packeting system, help reduce the amount
of information held in the structure produced during processing. The restrictions of
X-bar theory help in recognising the language processed by the parser and simplify the

processing mechanism.

CHAPTER 6

LPARSER - AN LR TYPE PARSER

6.1 Introduction

In this chapter, LParser is discussed in detail. ~LParser, like MParser, has been
built as a prototype to be tested on a set of sentences covering a wide range of
grammatical and linguistic aspects taken from Marcus (1980). From this prototype
another parser, LParserSub, has been developed to be used on a sublanguage.

LParserSub is discussed in Chapter 7.

LParser is derived from an LR(k) parsing model. An LR(k) (left-to-right scan,
rightmost derivation) parser is a deterministic parser of the shift-reduce, bottom-up
variety that can work with up to k symbols of lookahead. This type of parser
traditionally belongs in the world of compiler writing and context-free parsing theory,
i.e., the pure side of Computer Science, and for which Aho and Ullman (1972) is the
classic reference. Yet, as a result of the research done by Shieber (1983), Pereira
(1985) and Tomita (1986), it has been proven that modified versions of the LR(k)
parsing technique can be applied to natural language processing. LParser has been
developed as a substantial extension of the Shieber and Pereira type parser, described
in Chapter 3, with different modifications added to allow it to deal with ambiguity.
The Shieber and Pereira parser used a small GPSG type grammar, which covered only
a few set example sentences. By incorporating a much larger grammar, LParser can

process a much wider range of grammatical and linguistic categories. LParser follows

124

all the rules set out in Marcus (1980) with regard to deterministically parsing natural

language.

LParser’s grammar is discussed in the next section. In section 6.3, there is a
detailed look at LParser, the construction of its parse table and the parsing rules. This
is followed in section 6.4, by an examination of the linguistic and grammatical range of
LParser, which includes a discussion of the modifications made to LParser to allow it

to parse natural language.

6.2 The Grammar - A Definite Clause Grammar (DCG)

The grammar used by LParser is notated in the form of a Definite Clause
Grammar (DCG) as described by Pereira and Warren (1980). LParser’s grammar is
similar in many ways to the grammar used by MParser, which is based on the target
generative grammar acquired by Berwick’s system, itself based on Marcus’ grammar.
The difference is that there is no transformational component in LParser’s grammar.
(This is not to imply that DCGs could not deal with transformation, as a transformation
is a rewriting of one string into another or the writing of an arbitrary string when you
have found another string - a DCG could be made to do this.) However, LParser does
parse the type of sentence that would be transformed by a transformational grammar,
but without a resulting transformation. All other types of sentence are parsed by
LParser in a similar way to those by MParser. In the sub-section below DCGs are

defined. This is followed by an examination of the grammar rules used by the system.

6.2.1 Defining DCGs

As stated above the grammar formalism used by LParser is a DCG. DCGs are

more than descriptions of a language, they also can process language and be made to

125

produce grammatical structures. DCGs, in fact, are executable Prolog

programs. DCGs are explained in some detail by Pereira and Warren (1980) and are

described as,

n

...a formalism originally described by Colmerauer (1975), in which
grammars are expressed as clauses of first-order predicate logic, providing
a natural generalisation of context-free grammars."
(Pereira and Warren, 1980, p231)

DCGs, in effect, are an extendable form of context-free grammars (CFGs). CFGs are
not considered to be powerful enough for describing all aspects of natural language,
whereas DCGs as extensions of CFGs are attributed with more grammatical power.
The extensions to CFGs result in the following:
a) DCGs allow context-dependency within a grammar. This results in the

form of a phrase, possibly, being dependent on the context in which that

phrase occurs in the string.

b) DCGs permit the building of structures during parsing. The structures are not

constrained by the recursive structure of the grammar

¢) DCGs permit extra conditions to be part of grammar rules. These conditions can
make parsing depend on auxiliary computations.
(Pereira and Warren, 1980, p233)
The extensions to the CFG that produce the DCG formalism are represented in the
grammatical notation. Firstly non-terminals in DCGs can be compound terms as well
as the simple atoms found in CFGs, which allows the expression of context dependency
and the building structures. Secondly, the right-hand side of DCG rule can have,

written within braces, procedure calls, which represent the extra conditions that can be

126

applied to the grammar. These calls must execute for the rule to be valid. Below in
Figure 6.0 are examples of a simple CFG and DCG with number agreement and
structure building.

S -> NP VP Pnoun -> John

NP -> Pnoun Noun -> girl

NP -> Det Noun Det -> the

VP ---> Verb NP Verb ---> likes

Figure 6.0 (a) A Simple CFG

(sentence (s (NP, VP)) -->noun_phrase (NP) ,verb_phrase (VP)).
(noun_phrase (np (singular, Pnoun)) -->p_noun(singular, Pnoun)).
(noun_phrase (N, np(Det,Noun))-->det (N, Det),noun (N, Noun)) .

(verb_phrase (N, vp(Verb NP))-->verb(N, Verb),
noun_phrase (N1,NP)) .

(p_noun(singular, p_n(Word)) --> ([Word], {is_pnoun (Word,
singular)}).
(det (N,d(Word)) --> [Word], {is_det (Word,N)}).

(noun (N, n (Word)) --> [Word], {is_noun(Word,N)}).
(verb(N, v (Word) --> [Word], {is_verb(Word,N)}).

Figure 6.0 (b) A Simple DCG
How do the above mentioned extensions enhance the capabilities of the DCG
compared with the CFG?

a) Context-Dependency: The use of context dependency within the formalism allows
contextual information to be held within the non-terminals of the DCG rules.
Non-terminals of CFGs are only singular atoms and cannot represent context
within grammar rules. Contextual information can be tested, which can result in
certain grammatical structures not being accepted by the parser, in this case

LParser. An example of contextual information that can be held within

non-terminals and subsequently tested is number agreement. Number agreement
is usually held in an extra argument of the non-terminals. The example DCG

above includes examples which handle number agreement.

b) Structure Building: The structure building capabilities of the DCG make it a
powerful grammar formalism. CFGs do not have any explicit structure building
capabilities, so they can only recognise the language not parse it. Structure
building is dependent on the extra arguments of the non-terminals, which expand
by means of matching with grammar rules. Grammatical structures are

systematically constructed in this way until matching is complete.

¢) Extra Conditions: The extra conditions found in DCGs are in the form of
procedure calls added to the right-hand side of the grammar rules. These extra
procedures act as a restriction to the type of constituent accepted by the DCG.

The CFG has no such facility.

For the purposes of this research it is only the descriptive properties of the DCG
that are necessary. The structure building properties of the DCG, ie., the parsing
capabilities have not been necessary for the research undertaken, as a separate parser,
LParser has been used. For similar reasons, the extra conditions, i.e., the procedure
calls, that DCGs can provide have not been made use of in this work. However, the
context-dependency aspect of the DCG has been utilised, as this adds quite a powerful

ingredient to the descriptive capabilities of the grammar formalism.

6.2.2 The Grammar Rules

In the previous section a small example DCG was given, in this section the rules

in LParser’s DCG are discussed, with examples of rules been given. In total, LParser’s

128

grammar holds seventy-seven rules, which represent a wide range of sentence types,
phrases and constituents, including the following: declarative sentences, noun-phrases,

verb-phrases, relative-clauses, prepositional phrases, embedded sentences, imperatives

and auxiliaries. Other types of phrase and constituent are also represented in the

grammar. All grammar rules appear in Appendix B.

6.2.2.1 Grammar Rules for Sentences

There are seventeen grammar rules that represent sentences. Examples of the

sentences are the following:

(sentence (N, s (NP, VP)) -->noun_phrase (N, NP) , verb_phrase (N, VP)) .

(sentence (N, s (NP, Aux, VP)) -->noun_phrase (N, NP) , aux (N, Aux) ,
verb_phrase (N,VP)) .

(sentence (N, s (Wh_phr, E_Sent)) -->wh_phrase (N, Wh_phr),
e_sentence(N,E_Sent)) .

(sentence (N, s (Auxl,NP,VP)) -->auxl (N, Auxl) ,noun_phrase(N,NP)),
verb_phrase(N,VP)) .

(sentence (N, s (IVP)) -->imp_verb_phrase (N, IVP)) .
6.2.2.2 Grammar Rules for Noun-phrases

There are seven rules that represent noun-phrases. Examples of the noun-phrases

are the following:

(noun_phrase(plural, np (Noun)) -->noun (plural,Noun)) .

(noun_phrase(Nl,np(Det,Adj,Noun)}~—>det{Nl,Det),Adj(Nl,Adj),
noun (N1, Noun)) .

n phrase (N1,np (NP, PP))-->noun_phrase (N1,NP),
frounp prep_phrase (N1, PP)) .

hrase (N1,np (NP,RC)) -->noun_phrase (N1,NP),
(noun_p r_clause(N1,RC)) .

129

6.2.2.3 Grammar Rules for Verb-phrases

There are eleven rules that represent verb-phrases. Examples of the verb-phrases

are the following:

(verb_phrase (N, vp (V, NP)) -->verb (N, V) ,noun_phrase (N1,NP)) .
(verb_phrase (N, vp(V, PP)) -->verb (N, V), prep_phrase (N1, PP)).
(verb_phrase (N, vp (V,VP2)) -->verb (N, V) ,verb_phrase2 (N,VP2)).

(verb_phrase2 (N, vp2 (Inf,Verb)) -->inf (N, Inf) , verb (N,V)).

6.2.2.4 Other Grammar Rules

The remaining rules of the grammar represent a variety of phrase and constituent
types. Examples of these other types are the following:

(comp_phrase (N, c_ph (Comp, E_Sent)) -->comp (N, Comp) ,
e_sentence(N,E_Sent)).

(cop_phrase (N, cp (Aux,NP)) -->aux (N, Aux) ,noun_phrase (N,NP)) .
(aux (N, aux (Prog)) -->prog (N, Prog)) .

(r_clause (N, r_c(RPron,VP))-->rpron (N, RPron) ,
verb_phrase (N,VP)).

6.3 LParser, the Parse Table and Interaction with Stack and Buffer

As stated previously, LParser has been derived from an LR(k) parsing model and
is actually a modified version of an LALR(1) parser, which has been defined as an,

" LR(1) parser in which all states that differ only in the lookahead

component of configurations are merged."
(Fischer and Leblanc, 1988, p165)

LR parsers have to work with deterministic grammars. However natural language
grammars can be full of ambiguities which result in irregularities appearing in the parse
table, one of the components of an LR parser. These irregularities have to be dealt

with to allow the parser to process ambiguous natural language grammars. Another

130

problem occurs when a word can have two or more different grammatical categories.
Both these problems lead to modifications being made to LParser, but do not allow it

to break the rules of determinism. The modifications are discussed in the next section.

LParser comprises three components - a stack, a buffer and a parse table.
LParser’s stack, like MParser’s stack, is where grammatical structures are built during
a parse. Unlike MParser, once a constituent is shifted on to the stack, it remains on the
stack. The buffer, as used by LParser, takes no part in the processing of constituents.

Its only function is to hold the constituents of the input string until they have to be
processed. The parse table could be considered the most important of the three
components that make up LParser. It is, actually, the result of first preprocessing the
grammar into a finite-state transition network and from the transition network
constructing a parse table. In the following sub-section the construction of the parse

table is examined in detail.

6.3.1 The Construction of LParser’s Parse Table

The method for constructing LParser’s quite substantial parse table follows a
similar method to that used for constructing an LR(1) parser parse table, but the
algorithm takes account of merging those states where only lookahead differs. The
algorithm also has to take account of the fact that a DCG is a complex-valued feature
system - a unification type grammar. As noted by Shieber (1985a)

" Such formalisms can be thought of by analogy to context-free grammars, as

generalizing the notion of non-terminal symbol from a finite domain of atomic

elements to a possibly infinite domain of directed graph structures."

The DCG used to build LParser’s parse table contains sets of features to represent

131

Categories, for example noun-phrase and verb-phrase. The sets of features also contain
variable values, which represent number. By including a variable value for number, the
sets of features representing the different categories can represent both singular and
plural versions of categories. Shieber (1985a) commented on the difficulties that can
occur in using a complex based feature system, i.e., moving to an infinite non-terminal
domain. The problems relate to the fact that standard methods of parsing may no longer
be applicable because of the gross inefficiency or nontermination of algorithms. How

this problem can be resolved is discussed below.

When using the DCG formalism to build the parse table and the item sets from
which the parse table is built, consideration has to be given to the fact that categories
represented within the DCG have more than one representation, e.g., there is more than
one rule for noun-phrase and verb-phrase. Therefore, when during the invoking of the
"Closure’ function, items are generated from features preceded by ’.’, all the sets of
features representing the category signified by the feature preceded by '.” have to be
generated as items. As a result there may be as a many as nine items generated to

represent a category.

All the sets of features, representing categories, contain the variable value N,
which represents number. The variable value is the same for all sets of features
representing all categories, but which could signify singular or plural. The variable value
is passed on during the generating of the item sets and building of the parse table. The
use of the variable value within the sets of features could be considered as contributing
to a meta-interpreting problem as all sets of features representing categories have to be
collected and variable value passed on. The variable value is, subsequently, represented

in the Parse Table and is utilised during the parsing procedure. During parsing

132

unification is invoked during the matching step whereby the part of the sentence being
processed unifies with appropriate match in the parse table. The variable value will also
unify and thus the same variable value will apply through out the parse. The building

of the item sets and parse table are discussed in more detail below, as is the parsing

procedure.

In using an infinite non-terminal domain, as stated, the more conventional methods
of parsing may no longer apply. As a result modifications have to be made to the
parsing algorithm. Shieber (1985a) investigated the use of a complex-feature based

formalism - PATR-II - with an extension of the Earley parsing algorithm.

As stated the main problem with the complex feature based systems, as used with
a standard parsing algorithm, is its infinite non-terminal domain. For example in using
such formalisms with parsing algorithms where preprocessing of grammar takes place,
such as the LR algorithm, failure to terminate may occur. This is discussed below in

connection with LParser.

Shieber (1985a) examined the problem with respect to Earley’s algorithm, in a
chart-parsing guise, which uses top-down prediction to hypothesize the starting points
of possible constituents. Prediction determines which categories of constituents can start
at a given point in a sentence. However Shieber noted that due to the fact that the
majority of information is not in an atomic category symbol, prediction can be useless

with many types of constituents being predicted that are never used in a complete parse.

Shieber’s extension of the Earley algorithm to deal with PATR-II involved a
technique called ’restriction’ in performing top-down filtering. The addition of the

restriction led to a drastic elimination of chart edges that were never used. The

133

restriction technique involved splitting up the infinite non-terminal domain into a finite
set of equivalence classes that can be used for parsing. The splitting into equivalence
classes involves taking a quotient of the domain with respect to a restrictor serving as
a repository of grammar dependent information. Thus, the prediction step determined

which restricted dags (graph structures in the PATR-II formalism) could start at a given

point.

As stated above, problems of the infinite non-terminal domain with complex
feature based grammar formalisms also occur with the LR algorithm, which had
implications for LParser and the DCG formalism used in this research. Amendments
had to be made to the LR algorithm to deal with the problem which is discussed below

in connection with construction of LParser.

The initial part of the construction LParser involved converting the grammar, the
DCQG, into a finite-state transition network, which involves constructing item sets or
configuration sets from the grammar rules. An item set is comprised of items, dotted
grammar rules, representing partial parses, and a lookahead symbol. An example item
is [A -> x . B y,a], definitions of components are given below. Each state of a

finite-state network has an item set.

The building of item sets is initiated by, firstly, adding another rule to the
grammar, which contains a new root symbol and an end symbol. Following this, First
Lists are created for each symbol of the grammar. A First List for a non-terminal is
created by firstly constructing a list which holds the first symbol of the right-hand side
of every grammar rule in which the non-terminal is the left-hand side symbol. The
creation of First Lists is completed by examining each non-terminal in the First List

already created and adding their own First List to the First List of which they are

134

already a member.

The actual construction of the item sets is usually defined by a Closure function
and transitions between item sets by a Goto function. Each function can be explained
by the algorithms in Figure 6.1 and 6.2, based on Aho and Johnson (1974), Fischer and
Leblanc (1988), and Briscoe (1987), which have been used to build LParser’s parse table

with added amendments having been made to the standard LALR algorithm to deal with

the DCG.

135

Closure(Itemset)
Call (totalitemsets)
Loop
For A -> x - Bvy,a Itemset,
rule B -> z
and b First (ya)
if (B -> - z, b) Itemset
or (B -> + 2z, b) totalitemset
then add (B -> * z, b) to Itemset
end 1f;
exit when no itemsets can be added:
end For;
end Loop;
return Itemset;

Figure 6.1 Example Algorithm for a Closure Function

Goto(Itemset, X)
if (A -> x - X y,a) Itemset then
J can be set of items (A -> x * y,a);
end if;
return Closure(J) ;

Figure 6.2 Example Algorithm for a Goto Function

Build-item-sets (T)

Itemset = ([S_ --> + S, $]1);
C = Closure(Itemset) ;
Loop

For each item set Itemset C
and each grammar symbol X
if Goto (Itemset,X) empty and &
then add goto(Itemset,X) to C;
else i1f ([A --> a -+ X], L1)
Goto(Itemset,X) and ([A --> a * X], L2)
Goto(Itemset0,X) and Itemsetl G
then let Goto(Itemsetl,X) = ([A -->a + X], L1 L2)
and add Goto(Itemsetl,X) to C;
end if;
end if;
end For;
end Loop;
return C.

Figure 6.3 Example Algorithm for Building Itemsets

The above functions Closure and Goto are combined to build the item sets which
relate to LParser’s grammar. They are repeated until all item sets have been built, with
a check built in for merging states that differ only in lookahead. This combination has

produced a function called Build-item-sets, the algorithm for which is given in Figure

6.3. The amendments to the algorithm to deal with the DCG are added within the
"Build-item-sets’ function. A crude form of restriction is imposed so that the non-
terminal domain within the DCG will terminate; the main problem that could arise is
recursion within the feature system. Restriction is enforced during the building of item
sets. As well as checking whether a particular item is already a member of a particular
item set, a procedure carried out within the *Closure’ function, an added check within
the "Build-item-sets’ function checks whether particular items are members of other
itemsets. If certain items are already members of another item set, they are not added
to the item set being processed. This is accomplished by storing information on the type
of items found in the item sets already processed. As a result recursion within the
feature system of a DCG is prevented by restricting processing of the type of item
previously processed as a member of another item set. In this instance, the items that

are restricted are those developed from rules representing noun-phrases in the grammar.

The parse table is constructed using the following four rules, which involve
checking the item set for terminals and non-terminals and certain types of entry. Two
of the rules employ the same Goto procedure, as used previously, and all the rules give
commands to be placed in the parse table. State i is built from item set

Itemset

1. If (A -> x *+ Xy,b) Itemset, _
X is a terminal and Goto(Itemset{X) is Iy
then entry(i,X) must read shift J

2. If (A ->a - Xy,b) Itemset, .
X is a non-terminal and Goto(Itemset,X) 1s J,
then entry (i, X) must read jJ

3. Jf (8§ ==5 $) Itemset,
then entry (i,$) must read accept

4, £ (A =3 x> a) Itemset,
then entry (i,a) must read reduce A -> a.

Figure 6.4 Rules for Building a Parse Table

137

The alphabetic symbols used in the above algorithms represent the following:

A,B = non-terminals.

a,b = terminals.

X,Y = representations of (non)terminal symbols.

X,y,z = representations of sentential forms (sequences of phrases, including null

sequences).

1 = present state number being executed in Parse Table

] = next state number to be executed in Parse Table

$ = end symbol.

The resulting parse table is a table of states. LParser’s parse table has 408 states
which are numbered beginning with state 1. More than one state can be represented
by a state number, e.g., there are thirty-seven states numbered as state 1. As a result
of restricting during the building of item sets The parse table holds three types of
commands, which manipulate the stack and buffer. These commands are shift, reduce,
and accept which do the following:

shift - this command removes the left-most constituent of the input string

buffer places it on the stack.

reduce - this command replaces a set of symbols on the stack that correspond
to the right-hand side of a grammar rule with the symbol of the

left-hand side of the grammar rule.

accept - this command signifies the end of the parse, when the stack holds the

start symbol and the buffer is empty.

138

Examples from LParser’s parse table are the following:

l. state(l, det(_,_), s, 8) .

2. state(383, ¢, ril, r_clause(_,_)).
3. state(2, verb_phrase(_,_), 41).
4. state(22, $, a).

Each of the above represent the type of states that are found in the parse table. What

do these states mean?

1. The contents of example 1 correspond to - number of the state, the left-most
element of the buffer if this state is to execute, the command shift to place

this element on the stack and the next state that should execute.

2. The contents of example 2 correspond to - number of the state, the
lookahead symbol, the command reduce and the result of reducing.

3. The contents of example 3 correspond to - number of the state, the result of
reducing (this type of state executes after the type of state in example 2) and the
next state that should execute.

4. The contents of example 4 correspond to - number of the state, the

lookahead symbol and the command accept signifying the end of the parse.

6.3.2 The Parsing Rules

In this section the interaction of LParser’s stack, buffer and parse table, which
produces a parse of a sentence, is examined. This examination of the interaction
between the three components that make-up LParser involves referring to the series of
Prolog rules that represent LParser’s parsing rules. These rules follow the commands
of the parse table and manipulate the stack and buffer. As with MParser, input strings
processed by LParser go through dictionary look-up and morphological analysis prior
to entering the buffer. which are discussed in a later section. Below each rule used in

the parsing process is described. ~ The Prolog code for LParser appears in Appendix

139

6.3.2.1 parse

The rule parse is the top level rule that calls the main rule of the parsing
procedure, match_state, the rule that controls the interaction between stack, buffer and

parse table.

6.3.2.2 match_state

As mentioned above match_state is the rule that controls the interaction between
stack, buffer and parse table. Different versions of the rule deal with shifting
constituents from the buffer on to the stack, reducing a set of grammatical structures on
the stack to a larger grammatical structure and accepting the structure on the stack
headed by the start symbol, signifying that a parse has ended. match state calls a
number of rules and checks for certain conditions and grammatical constituents. The
rules that match_state calls are state, check_categories, shift, merge, reduce, mergel,
reducel checking, check verb, check verb prep and match state. Each of these rules

is described individually below.

6.3.2.2.1 state

This is the first rule called in each of the rules that form match_state. state is a
state of the parse table and holds information, for example, on shifting or reducing, the
contents of the left-most element of the buffer and the next state to be executed. After
state has executed match_state checks the type of command, i.e., shift or reduce. If the

command is s, to shift, check categories is the next rule to be executed.

140

6.3.2.2.2 check_categories

The rule check_categories examines the constituent at the left-most end of the
buffer. The simple check is to match the constituent in the buffer with that designated
by the rule state. If the match fails state can be re-executed keeping the same state
number and command but with a different constituent to be matched with that in the
buffer. Other checks performed by check-categories are more complex in that they deal
with constituents at the left-most end of the buffer that are compound lexical entries.
When this is the case, lookahead is extended by one symbol to allow disambiguation to
take place. This situation is discussed in the next section in connection with
modifications that have been made to LParser to allow it parse ambiguous natural

language grammars.
6.3.2.2.3 shift

The rule shift is called after check categories has executed successfully. shift
removes the left-most constituent from the input string buffer and places it on the stack.
This rule always executes first in preference to a reduce command because of conflicts
that appear in the parse table. The problem with conflicts is discussed in the next

section.

6.3.2.2.4 merge

If match state, having checked the type of command, after state has executed,
finds rl, the rule merge is called. merge, which is part of the reduction process,
examines the contents of the stack. If the contents represent the right-hand side of a

grammar rule, merge returns the left-hand side of the grammar rule to be used by the

rule reduce.

141

6.3.2.2.5 reduce

The rule reduce is called immediately after merge. reduce checks the contents
of the stack. If the contents represent the right-hand side of a grammar rule, reduce

replaces the contents of the stack with the left-hand side of the grammar rule, passed on

from merge.

6.3.2.2.6 mergel

If match_state, having checked the type of command, after state has executed,
finds r2, the rule mergel is called. mergel, which is part of the reduction process,
examines the contents of the stack. If the contents represent the right-hand side of a
grammar rule, mergel returns the left-hand side of the grammar rule. The difference
between rl and r2 is that r1 represents the reduction of constituents into noun-phrases,
prepositional phrases, relative-clauses, etc, whereas r2 represents the reduction of

constituents into verb-phrases and sentences.

6.3.2.2.7 reducel

The rule reducel is called immediately after mergel. reducel checks the contents
of the stack. If the contents represent the right-hand side of a grammar rule, reduce
replaces the contents of the stack with the left-hand side of the grammar rule, passed on

from mergel.

6.3.2.2.8 checking

The rule checking is called when there is a need for a semantic check of the type
of phrases on the stack and the constituent in the left-most element of the buffer.
Certain types of phrase on the stack and contents of the buffer signify that there should
be a call to shift to build a larger grammatical structure on the stack using a state similar

142

to one that has already been executed. As previous state numbers are kept in a list, it
is possible to execute these states with state numbers that have already been used or
states that have already been used. When one of these states executes, it is possible to

call shift and the same procedure, as described above, applies.

6.3.2.2.9 check_verb

The rule check_verb is called when a four argument state rule cannot execute and
after a verb is shifted onto the stack. The rule performs a special semantic check that
tests for certain types of verb in relation to their use in conjunction with prepositional
phrases, i.e., the verb can be part of a verb-phrase with constituents V, NP, PP.
match_state, subsequently, calls a three argument state of similar state number to that
of the four argument state that did not execute. This state number is stored in a list to
be used later for the building of a larger grammatical structure. Processing continues
until a new state is executed. The execution of the new state allows the whole
shift-reduce procedure to start again. This allows parsing of the constituents in the

buffer that followed immediately after the verb.

6.3.2.2.10 check_verb_prep

The rule check_verb_prep is yet another semantic check that tests for certain types
of verb and prepositions after the reduction of a noun-phrase, which is preceded by a
verb. If the verb and preposition are of a kind that can be part of a verb-phrase with
constituents V, NP, PP, then check verb prep executes. maich_state, subsequently,
prohibits certain states from executing to allow for the longer reduction, since there

would be a reduce-reduce conflict in the parse table. The problem with conflicts are

discussed in the next section.

6.4 The Grammatical and Linguistic Range of LParser

In this section, the grammatical and linguistic range of LParser is discussed. The
discussion includes a description of the modifications that have been made to LParser
to allow it to parse ambiguities of natural language grammar. The discussion also
focuses on ambiguous and unambiguous sentences, as was the case when examining the
grammatical and linguistic range of MParser. LParser parses similar types of sentences
as those parsed by MParser. In Appendix C, the results of parses of similar sentences
by the two parsers are given. The discussion begins in the next sub-section with a look
at the dictionary and the dictionary look-up procedures as used by LParser. This is
followed by a look at the modifications that have been made to LParser. The final two
sub-sections discuss the processing of unambiguous sentences and the processing of
ambiguous sentences. Examples of both types of sentence are given during the

discussion.

6.4.1 LParser’s Dictionary

As with MParser, the dictionary used by LParser is an important part of the
parsing process. The dictionary is made-up of Prolog rules that represent grammatical
constituents such as nouns, verbs, pronouns, proper nouns, prepositions, determiners,
relative pronouns and wh-pronouns. The dictionary contains approximately one
hundred words, which may seem small but still does allow the building of a great many
grammatical structures and the handling of ambiguity. This dictionary also contains
double entries to represent the polysemous nature of certain words. Examples from the
dictionary are the following:

1. verb(_,(persuade)). 4. det(_,(that)).

2 noun(_,(bus)). 5. inf(_,(t0)).

144

3. rpron(_,(that)). 6. prep(_,(to)).

Each example is self-explanatory, since the definition for each word is given by

the rule name.

6.4.1.1 LParser’s Dictionary Look-up

After the input string has been read into the system, the dictionary look-up
procedure search_word is called, which processes each word of the input string
individually. As with MParser’s dictionary look-up procedure check, the first procedure
that search_word calls is end, which performs morphological analysis. After
morphological analysis, which returns the root form of the word and the grammatical
number, if the word is a noun, the rule dict_search executes. dict_search calls words,
which holds all the grammatical constituents that are in the dictionary. The root form
of word is passed into the list of grammatical constituents in words. When one of the
grammatical constituents holding the root form of the word matches with a grammatical
constituent in the dictionary, the full form of the word is returned by the grammatical
constituent held in words. If the word is a noun, the grammatical number will also be
held by the grammatical constituent returned by words to dict_search and subsequently

to search_word.

When the word being processed by dictionary look-up has two or more entries in
the dictionary, search_word returns all entries. All the entries remain in the processed
input string until they enter the left-most element of the input buffer. At this stage
disambiguation takes by extending the lookahead one symbol. This extension is

performed by the rule check_categories. The extension is discussed in more detail

below.

145

6.4.1.2 LParser’s Morphological Analyzer

Morphological analysis by LParser is performed by the same method as used by
MParser. The rule end is called as the first procedure of dictionary look-up. end
checks for a series of endings. On finding an ending end removes it and checks the

last one or two remaining letters as the might need to be replaced.

6.4.2 Modifications for Natural Language Processing

As mentioned earlier in this chapter, modifications have to be made to LParser if
it is to cope with the ambiguities of natural language. These modifications have to deal
with the irregularities or conflicts that appear in LParser’s parse table and part of speech
ambiguities, i.e., words that can be two or more different grammatical constituents,
which requires extending the lookahead. Below the modifications applied to LParser

are discussed.

0.4.2.1 Conflicts in the Parse Table

Irregularities appear in LParser’s parse table because of the ambiguous nature of
natural language. These irregularities are in the form of shift-reduce and reduce-reduce
conflicts appearing in the parse table among states with the same number. In order for
LParser to be called a competent parser for natural language it has to be able to deal
with these conflicts. As mentioned in Chapter 3, Shieber (1983) put forward a method
for dealing with these conflicts that has been adopted for this research. This method
involves, in the case of shift-reduce conflicts, always performing the shift and in the
case of reduce-reduce conflicts performing the longer reduction. Shieber (1983) and
Pereira (1985) found that this method could describe the principles of Right Association

and Minimal Attachment, and lexical preference, in which can be encapsulated many

146

types of sentence. In Chapter 7, the significance of Right Association and Minimal

Attachment for sublanguage is discussed.

6.4.2.2 Extending the Lookahead

Natural language is full of ambiguities that cause problems for any parser; part of
speech ambiguity is one of the major problems. The Pereira and Shieber parser deals
with the problem of ambiguity by allowing pre-terminal delaying. With this method,
if a word can be two or more different grammatical constituents, then the assignment
of type of grammatical constituent is delayed until the processing of the constituents
following is complete which, then, allows disambiguation to take place. As a
modification to the Shieber and Pereira parser, it was decided to experiment with
another method of dealing with ambiguity. This method involved extending the
lookahead in LParser, but, it has been realised that there are certain ambiguities that
extension of the lookahead will not cope with. These ambiguities do not occur in the
sample English set used. The relation to the sublanguage is discussed in the next
chapter. The procedure for extending the lookahead in LParser is discussed, in detail,

below. This topic is discussed in relation to the sublanguage in the next chapter.

At the stage in processing when LParser is prepared to execute the command shift,
lookahead is extended to two symbols when the left-most end of the input string buffer
contains a compound lexical entry of two or more constituents. A compound lexical
entry signifies that a word can be more than one grammatical constituent. ~ The
extension of lookahead to two symbols makes it possible to look at the constituent in
the buffer following the compound lexical entry, which allows disambiguation to take
place between the constituents of the compound lexical entry. For example, with this

method LParser would be able to disambiguate between the various meanings of that,

147

as a determiner, complementiser and relative pronoun, respectively, in the following

sentences:
I know that boy.
I know that boys should do it.

I told the boy, that I met, the story.

The extension of lookahead is not automatically computed from the grammar. Rather
the extension of lookahead to two symbols occurs when there is a compound lexical
entry at the left most end of the buffer and the parser is at the stage in processing where
the shift command should execute; the presence of the compound lexical entry being the
more significant factor in instigating the extension of the lookahead. At all other stages

in the processing, the lookahead is one symbol.

How does extending the lookahead effect the legitimacy of LParser with regard
to the rules governing deterministic parsers and the LALR(1) algorithm? The extension
of lookahead does not break any of Marcus’ rules for determinism. LParser does not
back-track, all structures created are permanent. LParser does not employ methods of
pseudo-parallelism, all structures created for a given input are output. LParser’s
lookahead facility still remains restricted. As regards the LALR(1) algonithm, LParser
extends the lookahead once the parse table has been built, so to some extent it is going
beyond the bounds of the algorithm. However, the parse table holds states representing
the parsing stages of all the constituents in the compound lexical entry, so LParser is not
trying to parse something for which there is no parse table entry. All the constituents
are accounted for, but the ambiguous nature of language allows some words to be
different grammatical constituents. Ambiguities have to be processed, as LParser has

to be a competent parser of natural language. The extension of lookahead does not

148

cause any problem with the rules of determinism, so going beyond the bounds of the

algorithm to parse natural language also should not be considered a problem.

Pre-terminal delaying and extension of the lookahead perform the same function
in that both procedures aid the processing of ambiguities of the type discussed above.
However, if the first two examples immediately above, i.e.,

I know that boy

I know that boys should do it
were amended to include adjectives preceding the nouns, e.g.,

I know that young boy

I know that young boys should do it
extension of lookahead to two cells could not disambiguate between ’that’ as a
determiner and ’that’ as a complementiser. (LParser was not presented with these
examples.) Preterminal-delaying could cope with the ambiguities, as the processing of

’that’, in both instances, would be delayed until the noun had been processed.

This short-coming in the case of extending the lookahead to two cells could be
remedied by extension of the lookahead to three cells, but could go on forever
depending on the number of adjectives preceding the noun. Pre-terminal delaying
appears to be the best method for dealing with the type of ambiguity as discussed above,
but, as stated LParser could parse the ambiguities found within the sample English text

used for testing its capabilities.

6.4.3 The Processing of Unambiguous Sentences

As with MParser, the grammatical and linguistic range of LParser is represented

by the type of sentence it can process. In this section the unambiguous sentences that

149

LParser can parse are examined. The unambiguous sentences that LParser can process

contain a variety of grammatical constructions which are of the following type:

1. Aux Verbs- to - infinitive, perfective, progressive, modal, do, passive_be.
2. Simple Declarative Sentence. 3. Prepositional Phrase.

4. Verb Complements. 5. That Complements.

6. Passive Constructions. 6. Wh Questions.

8. Seem Constructions. 9. Imperatives.

10. Relative Pronouns.

Some of the above grammatical constructs can hold ambiguities, but unambiguous
sentences can be produced. A few example sentences, using the above constructs, are
given below, followed by parses of the sentences.

Has the girl killed the boy?

The blind boy loves the beautiful woman.

Who broke the jar?

Is there a meeting scheduled for Friday?

There seems to be a jar broken.

The boy on the bus killed the girl with a gun.

The boy on the bus likes the girl with the gun.

| ?- run(S,B).
| : has the girl killed the boy.
S = [sentence(_7962,s (auxl (perf (has)),np(d(the),n(girl,sqg)),
vp(v(killed),np(d(the),n(boy,sg)))))],
B = []
| 2= runi{S,B) .

| : the blind boy loves the beautiful woman.

s = [sentence(_18039,s(np(d(the),a(blind), n(boy,sqg)),

150

W n

. vp(v(loves),np(d(the),a(beautiful),n(woman,sg)))))],

?2- run(S,B).

: who broke the jar.

[sentence(_9799, s (wh_ph (w_c (who)), vp (v (broke),
. np(d(the),n(jar,sg)))))1,

2= run(s.,B) .

is there a meeting scheduled for Friday.

[sentence(_23796, s (auxl (prog(is)),there(there(there)),
np(d(a) ,n(meeting,sg)),vp(v(scheduled),
i pp(p(for),np(n(’Friday’,sg))))))],

?2- run(s;B) .
there seems to be a jar broken.

= [sentence(_9242,s(there(there(there),aux(seem(seems))),
infaux(inf (to),aux(prog(be)),
np(d(a),n(jar,sqg)),a(broken))))],
= []

?- run(S, B).
the boy on the bus killed the girl with a gun.

= [sentence(_35077,s(np(np(d(the),n(boy,sqg)),
pp(p(on),np(d(the),n(bus,sg)))),vp(v(killed),
np(d(the),n(girl,sq)),
pp(p(with),np(d(a),n(gun,sg))))))],
= []

?- run(S,B).
the boy on the bus likes the girl with the gun.
[sentence(_27864,s (np(np(d(the),n(boy,sqg)),
pp(p(on),np(d(the),n(bus,sg)))),

vp (v(likes) ,np(np(d(the),n(girl, sg)
pp (p(with) ,np(d(the),n(gun,sg)))

)
)))) 1,
(]

il

6.44 The Processing of Ambiguous Sentences

As discussed above, LParser can process certain ambiguous sentences, by

extending the lookahead, a method that has proved not to be as sophisticated as pre-

151

terminal delaying. The ambiguous sentences that LParser can process are similar to
those that are processed by MParser. In Chapter 5, the two types of ambiguity, which
produce ambiguous sentences, were discussed; the ambiguities bein g structural ambiguity
and part of speech ambiguity. LParser, as built, cannot deal with structural ambiguity
produced by the following, if Have were to be assigned both a main verb and an
auxiliary.

Have the students take the exam.

Have the students taken the exam?
However, if LParser had been designed in exactly the same manner as the Pereira and
Shieber parser, which used pre-terminal delaying to deal with ambiguity, then it would
have been able to process the sentence; the reason being that the assignment of the type
of verb to Have could be delayed until the processing of the verbs take or taken.
However, it has been decided that LParser being able to process both of these types of
construction is not important, especially when the use of Have, as a main verb

imperative, is not a common type of British-English grammatical construction.

LParser has similar difficulties to those of the Marcus type parsers in dealing with
constructions that exhibit unbounded dependencies, €.g., constituent questions, as stated
by Church, cited in Briscoe (1987). To reiterate, the reason for the difficulties in
processing is that it is impossible for a deterministic parser trying to solve local
ambiguities by using lookahead to find the correct gap in unbounded dependencies;
lookahead in a deterministic parser is restricted. In order to resolve the difficulty
lookahead would have to be unrestricted. Whether this causes a problem for LParser

in parsing sublanguage is discussed in Chapter 6.

As with MParser, LParser (although not programmed to do so) could handle the

152

ambiguities of rightward movement. To recap, Briscoe (1987) notes that rightward
movement in the English language is treated:
as a case of canonical attachment of the postmodifier to the S node, where
semantics remains a matter of more general inference rather than a fully
determinate, grammatically defined binding."

This allows deterministic parsing of the rightwardly moved relative clause or

prepositional phrase.

How does LParser handle ambiguities it can cope with? As mentioned above, if
a word occurs more than once in the dictionary, all entries of the word are passed, at
dictionary look-up, to the parsing process. =~ When this group of entries is at the
left-most end of the buffer, only one of the entries can be pushed onto the stack. In
the previous section, it has been described that in handling some cases of ambiguity, it
is necessary to expand the lookahead to two symbols. For example, with the sentences
below, to disambiguate to, which can be a preposition or an auxiliary to an infinitive
verb, it is necessary to have a lookahead of two symbols.

I went to school.

I want to drive.
There is an added problem to the above disambiguation procedure if the word following
to is the double entry of noun and verb in the dictionary. Although not implemented
within LParser, the problem could be dealt with, to some extent, verb subcategorisation.
Verb s.ubcatcgorisation would distinguish those verbs that could take infinitive
complement, thus fo would be an auxiliary verb starting a VP and the word following
disambiguated as a verb. Similarly, verbs could be classified for PPs with preposition
to. Obviously, if a verb does not precede ro, it will be difficult to disambiguate the

double entry noun and verb following to.

153

If the word to be disambiguated is block, there is no need to expand the lookahead
to two symbols. The reason for this situation being that the parse table guides the
processing closely. For example, with the sentences below, the disambiguation of
block, which can be a noun or a verb, is guided by the states of the parse table.
Having processed The, the parse table guides that only a grammatical constituent that
follows a determiner will be the next constituent to be processed, so in example 1 block
can only be a noun. In example 2 block can only be a verb because it follows an

auxiliary will and the parse table guides that the next constituent to be processed is verb.
1. The block is red.

2. He will block the road.

Below examples are given of sentences with ambiguities and their resulting parses.
These examples show varying aspects of ambiguity that occur within part of speech
ambiguity.

I know that boy likes football.

I know that boys like football.

The boy on the bus that killed the man loves the woman.

The block stands on the table.

I walked to the meeting.

[want to go.

| ?2- run(S,B).

|+ i know that boy likes football.

S = [sentence(_21442,s(np(p_n(i)),vp(v(know),
z_c_ph(e_s(np(d(that),n(boy,sg)),
vp(v(likes),np(n(football,sg))))))))],

B = []

| ?2- run(S,B).

154

| : 1 know that boys like football.

S = [sentence(_12384,s(np(p_n(i)),vp(v(know),
c_ph(comp (that),e_s (np(n(boys,pl)),
. vp(v(like) ,np(n(football,sqg))))))))1],
B:

| ?- run(S,B).

|: the boy on the bus that killed the man loves the woman.

S = [sentence(_14888,s(np(np(np(d(the),n(boy,sq)),
pp(p(on) ,np(d(the),n(bus,sqg)))),
r_c(r_p(that),vp(v(killed),np(d(the),n(man,sqg))))),
vp(v(loves),np(d(the),n(woman,sg)))))],

B = []

| ?- run(S,B).

| : the block stands on the table.

S = [sentence(_16064,s(np(d(the),n(block)),

vp(v(stands) ,pp(p(on),

np(d(the),n(table,sg))))))],

B = []

| ?- run(S,B).

|: 1 walked to the meeting.

S = [sentence(_14206,s(np(p_n(i)),

vp (v (walked) ,pp(p(to),

np(d(the),n(meeting,sg))))))],

B = []

| ?- run(S,B).

|: 1 want to go.

sentence(_5391,s(np(p_n(i)),vp(v(want),vp2(inf(to),v(go)))
)]

’

— = N}

B = []

6.5 Summary

LParser has been designed as a modified version of an LALR(1) parser that

adheres to Marcus’ rules for the deterministic parsing of natural language. The

155

modifications that have been incorporated by LParser allow it to deal with ambiguities
of natural language. The ambiguous natural language grammar used by LParser
produces conflicts in its parse table. These conflicts are shift-reduce and reduce-reduce
conflicts, which LParser handles by shifting in favour of reducing in shift-reduce
conflicts and performing a long reduce when there is a reduce-reduce conflict. Another
problem with an ambiguous grammar is that it holds part of speech ambiguities.

LParser deals with part of speech ambiguities by extending the lookahead to two

symbols, if necessary. The extending of the lookahead does not break any of the rules

of deterministic parsing.

LParser’s grammar is a DCG. Although the DCG is a powerful grammar
formalism, which can even perform parsing, it is only the notation of the DCG that is

utilised by LParser.

The output produced by LParser is a syntactic structure of the input sentence. The
purpose of producing the output is proof of the building of the syntactic structure by the
parsing mechanism. As the main aim of building LParser has been to provide a
prototype Deterministic Parser that can be used as a model for a parser to be built for
processing a sublanguage, the output produced is not used for any other purpose as than
that of proof of the working of the parsing process. With some changes to the grammar
and parsing rules, LParser is easily modified to become LParserSub, which is discussed
in Chapter 7. The output from LParserSub and its purpose is also discussed in Chapter

7.

The performance of LParser has not been measured, as it was built as a prototype.
The performance of the parser, LParserSub, which is based on the prototype, to be used

as part of a Machine Translation system, is discussed in the next chapter.

156

In comparing LParser with the Shieber and Pereira parser, on which it is based,
both are similar in that both parsers have an input buffer, stack and parse table. The
main difference between the parsers is in the type and size of grammar used to create
the parse table. The Shieber and Pereira parser used a small categorial type grammar
with a few rules, whereas LParser used a Definite Clause Grammar with almost eighty
rules. The larger number of grammar rules in LParser resulted in a much larger parse
table than that used by the Shieber and Pereira parser; thus LParser could process more

and different types of sentences than the Shieber and Pereira parser.

The other difference between the two parsers is the method of dealing with
ambiguity. In the Shieber and Pereira parser ambiguity is dealt with by invoking pre-
terminal delaying. Pre-terminal delaying causes the processing of the ambiguous word
to be delayed until processing of succeeding words takes place which aids
disambiguation. LParser uses extension of the lookahead to two cells to deal with
ambiguities. However, the extension of lookahead to two cells would not be able to
cope with ambiguities where the disambiguating word did not immediately follow the
ambiguous word, for example, 'that’ in the examples

I know that small boy.

I know that small boys like football.

On comparing the strategies used by both parsers to deal with ambiguity, the pre-
terminal delaying strategy suggests itself as the better for dealing with certain
ambiguities, although LParser can cope with the all the examples of ambiguity it was
presented with, as capably as the Shieber and Pereira parser. As stated, the implications

of the extension of lookahead and the sublanguage are discussed in the next chapter.

The main aim of building LParser. as with MParser, has been to provide a

157

prototype deterministic LR parser that can be used as a model for a parser to be built
for parsing a sublanguage. The building of this new parser, LParserSub, is discussed

in the next chapter.

158

CHAPTER 7

DETERMINISTIC PARSERS FOR A SUBLANGUAGE

7.1 Introduction

In this chapter the use of Deterministic Parsers on a sublanguage, in particular, the
sublanguage of an aircraft maintenance manual, is examined. Both types of
Deterministic Parser, discussed in Chapters 5 and 6, have been modified in order to be
able to process the aforementioned sublanguage, specifically noun-phrases from that
sublanguage. The new parsers are MParserSub, a modified version of MParser, and
LParserSub, a modified version of LParser. MParserSub and LParserSub are discussed,
in detail, in sections 7.4 and 7.5, respectively. In section 7.2, the discussion focuses
on the sublanguage of an aircraft maintenance manual. In section 7.3, the discussion
focuses on complex-nouns: a phenomenon found in full natural language and very

common in aircraft maintenance manuals.

7.2 The Sublanguage of an Aircraft Maintenance Manual

As stated previously, the sublanguage used in this research is that of an aircraft
maintenance manual, namely that found in an extract of a Rolls-Royce aircraft
maintenance manual. Therefore, all results of the parsing process can only be attributed
to this specific aircraft maintenance manual, but there seems no obvious reason why the
results should not be a good general reflection of the parsing of any Rolls Royce aircraft
maintenance manual or any English aircraft maintenance manual. The reason for using

the aircraft maintenance manual as the sublanguage to be test-parsed by both types of

Deterministic Parser is that the maintenance manual is regarded as a good practical
example of the kind of document that can be processed by a Machine Translation
system; the main interest of the research is the investigation of the use of a

Deterministic Parser on a sublanguage for Machine Translation.

In sub-section 7.2.1, the sublanguage of the aircraft maintenance manual, as a
whole, is described. This is followed by a discussion of ambiguities that occur in the
sublanguage. Finally, there is a detailed examination of the different types of

noun-phrases found in this particular aircraft maintenance manual.

.20 The Aircraft Maintenance Manual

Before looking at the specifics of the sublanguage of the aircraft maintenance
manual, it would be of use to reiterate details, outlined in Chapter 4, concerning the
majority of sublanguages. Firstly there are several definitions of a sublanguage, three

of which are listed below:

1. A sublanguage is an independent system.
2. A sublanguage is identified with a particular semantic domain.
3. Sublanguage texts usually contain some material that does not belong to the

sublanguage proper.
All these definitions are applicable to an aircraft maintenance manual.

Other important details concerning sublanguage appertain to vocabulary and
grammar rules. Sublanguages do not have the same size of vocabulary or the same
number of grammatical rules as the language as a whole. In addition, the vocabulary

of the sublanguage can contain words that are restricted to having only a single meaning

160

within the sublanguage, but can have many meanings within the whole language. All

this information also can be applied to the aircraft maintenance manual being used in

this research.

The type of text found in the Rolls-Royce aircraft maintenance manual
sublanguage is both descriptive and imperative, with the imperative text taking up the
greater part of the manual. The descriptive text describes various aspects concerned
with the maintenance manual, i.e., the TASKs that make-up the manual, TASKs that
have been previously referenced, parts of the aircraft and the contents of the manual.

Examples of this type of text, representing the four aspects mentioned, are the following:

1. These tasks give the procedure for the removal and
installation of the igniter plugs

2. Torque tightening technique.

3. The electrical discharge of the high energy (H.E.)
ignition unit is potentially lethal.

4. When reference 1s made to a part 1in a different
Chapter/Section/Subject, the Fig/item numbers come after

the appropriate Chapter/Section/Subject.

The imperative text is concerned, mainly, with parts of the aircraft. Examples of this
type of text are.

1. Remove the T26 thermal unit.
2. 1Install RR289200 protective workmat 1 off in the air
intake.

3. Seal the quillshaft with OMatl1252 kraft paper tape.

As mentioned above. the Rolls-Royce aircraft maintenance manual is comprised of

161

TASKSs; an example TASK being:

Remove/Install the airflow control rpm signal transmitter.

Each TASK is broken down into SUBTASKSs to enable more detailed instructions to be
given about the TASK to be performed. The text covering each TASK is divided into
numbered sections, with the majority of the sections being divided into instructions,
listed A, B, C, etc. The remaining sections are, generally, descriptive in nature. Text

from the first three sections of a TASK is given below.

LOW PRESSURE (L.P.) TURBINE BLADES - STAGE 3
INSPECTION/CHECK
TASK 72-52-34-200-000 Examine the stage 3 low pressure

(L.P.) turbine blades
1. Equipment and Material
A. Standard equipment
Strong spotlight
B. Consumable materials - not applicable
C. Special tools
RR289200 Protective workmat 1 off
D. Expendable parts - not applicable
2. General

This TASK gives the procedure for the inspection of the stage

3 L.P. turbine blades.

When reference 1s made to a part 1in a different
Chapter/Section/Subject the Fig./item numbers come after the
appropriate Chapter/Section/Subject.

The engine 1in flight position gives the positional
relationship. Detailed radial locations have numbers in a
clockwise direction that start from the engine top position
when you look from the rear, unless otherwise told.

It is advisable to do this TASK at the same time as the
examination of the stage 3 low pressure (L.P.) nozzle guide
vanes, TASK 72-52-20-200-000 (72-52-20, P.B.601).

3. Referenced Procedures
Low pressure (L.P.) nozzle guide vanes - stage 3, TASK
72-52-20-200-000 (72-52-20, P.B.601).

The first three numbered sections of each TASK all have the same headings:
Equipment and Material, General, and Referenced Procedures. In every TASK, each

of these sections in every TASK is set out as above, but each section does not contain

162

the same information. In section 1, Equipment and Material is categorised into four
sub-sections A, B, C and D, each of which is headed by a sub-heading representing
specific equipment or materials. If a certain piece of equipment or material is needed
by the TASK, it is listed under the specific heading. However, if no equipment or
material, as categorised by a certain sub-heading, is needed by the TASK,
"not-applicable" appears beside the heading. In section 2, General gives general
information appertaining to the whole TASK. In section 3, Referenced Procedures lists
other TASKSs that need to be used within the TASK to be performed. Sections 4 - 6

are listed below, with discussion about the text following immediately after.

SUBTASK 72-52-34-010-001
4. Make Preparation to Examine the Stage 3 L.P. Turbine
Blades

A. Open relevant circuit breakers to isolate electrical
supply to the engine.

B. Isolate the thrust reverser system.

C. Install DO-NOT-OPERATE identifiers.

D. Install RR289200 protective mat 1 off.

SUBTASK 72-52-34-210-001
5 Examine the Stage 3 L.P. Turbine Blades,
Fig.72-52-34-990-001

WARNING: TAKE CARE, WHEN YOU TURN THE L.P. COMPRESSOR AND
L.P. TURBINE ASSEMBLY, IN ORDER TO PREVENT INJURY TO FINGERS
AND HANDS.

CAUTION: TO PREVENT POSSIBLE DAMAGE TO THE L.P.
COMPRESSOR AND L.P. TURBINE BLADES, DO NOT USE METAL BARS OR
SIMILAR EQUIPMENT TO TURN AND/OR LOCK THE L.P. COMPRESSOR OR
TURBINE WHEN YOU EXAMINE THE VANES.

A. From the front of the engine have someone slowly turn
the L.P. turbine at the rear of the engine.

B. With the use of a strong spotlight, examine the L.P.
turbine blades at the rear of the engine for impact damage,
cracks or metal deposits.

(1) The engine is acceptable if there is:
(a) Light impact damage to the turbine blade
airfoil, if the metal is not cracked or torn.
(b) Light impact damage to the turbine blade shroud,
if the metal is not cracked or torn.
(2) Do not use the engine if there is:
(a) Turbine blades which are cracked or torn.
(b) Turbine blades which have a segment missing.
(c) Turbine blades with metal deposits.
SUBTASK 72-52-34-410-001
6. Put Engine Back to Normal
A. Remove RR289200 protective mat 1 off.
B. Remove DO-NOT-OPERATE identifiers.

163

C. Close the relevant circuit breakers.
D. Engage the thrust reverse system.

Each of the remaining numbered sections in every TASK represents a SUBTASK.
These SUBTASKS contain information on every procedure that has to be performed to
fulfil the TASK. The majority of the text, making up each SUBTASK, is of the

imperative type, as can be seen from the example above.

The vocabulary of the Rolls-Royce aircraft maintenance manual sublanguage is
comprised of nouns, verbs, prepositions, conjunctions, relative pronouns, numerals and
reference numbers. The majority of nouns represent parts of machinery, e.g., unit,
nuts, blank, turbine. The manual also comprises complex nouns such as the following:

thermal unit joint face.

12th stage air offtake outlet duct assembly.

The complex nouns are more representative of parts of an aircraft, since they have to
be exact descriptions. The majority of the verbs represent maintenance actions such as
examine, remove, install, attach, etc. The reference numbers are a mixture of letters
and numerals. The prepositions, conjunctions and relative pronouns are not
sublanguage specific and could be found in any sublanguage. Some of the nouns and

verbs also could be found in other sublanguages, especially, those of a technical nature.

As stated above, the research has concentrated only on the processing of the
noun-phrases of the aircraft maintenance manual. The noun-phrase, of course, can
include a variety of different phrases, e.g., prepositional phrases, relative clauses,
verb-phrases; the noun-phrases found in the Rolls-Royce aircraft maintenance manual

are examined in sub-section 7.2.3.

By concentrating on noun-phrases, it means that sentence types have been ignored.

164

The majority of sentences are of the imperative type, as shown in examples above.

These sentences include the phrase types found in the noun-phrase, such as verb-phrases,
relative clauses and prepositional phrases but the make-up of some of these is different
to the make-up of those found in the noun-phrases. Below, in Figure 7.0, are examples
are given of grammar-type rules representing sentence and phrase types that are not
processed by either of the parsers, MParserSub or LParserSub, but which are included

to show the grammatical range of the sublanguage.

S -> NP, VP VP -> ImpV, NP

S -> Letter, PP, VP VE == N7 NP

S -> Letter, VP VPl -> to, V, comp-phrase
S -> N, NP, VP, conj,VP VPl -> to, V, conj, V, NP
S -> Num, Sub-clause, V VP -> ImpV, NP, PP

Figure 7.0 Examples of Grammar Rules of Sentences and Verb-phrases
As the excerpts from the aircraft maintenance show, the aircraft maintenance manual
sublanguage contains many of the linguistic structures that were discussed in Chapters
5 and 6 in relation to MParser’s and LParser’s processing of unambiguous sentences.
For example, the sublanguage sample has simple declarative sentences, imperative
sentences, relative clauses, prepositional phrases, verb complements, passive
constructions and auxiliary verbs. In the following sub-section ambiguity in the Aircraft

Maintenance Manual is discussed.

7.2.2 Ambiguity in the Aircraft Maintenance Manual

In Chapters 5 and 6, the ambiguous linguistic structures that the MParser and
LParser can handle were discussed. The types of ambiguity examined were structural
ambiguity and part of speech ambiguity. These types of ambiguity and whether they

occur in the sample of the Aircraft Maintenance Manual are now examined.

165

An Aircraft Maintenance Manual can be considered as a technical and explanatory
sublanguage. Thus, there is a need for the language not to be ambiguous in its meaning.
Any sublanguage is considered to be a restricted form of language in that it has a
smaller vocabulary, a smaller number of grammatical structures and fewer instances of
polysemy, i.e., words tend to only appear in one category. Aircraft Maintenance
Manuals, therefore, are examples of language where it is possible to find fewer examples
of ambiguous structures than in other samples of language. However, this does not mean

that ambiguity does not exist within the Aircraft Maintenance Manual.

When discussing structural ambiguity in Chapters 5 and 6, the examples examined
were ‘have’ in ambiguous structures that can be interpreted as interrogatives or
imperatives, unbounded dependencies and rightward movement. It was discussed that
deterministic parsers could deal with "have’ in ambiguous structures and rightward
movement but not, for example, unbounded dependencies that occur in constituent
questions. In the Aircraft Maintenance Manual sample discussed in this research, there
are no examples of any of these types of structural ambiguity. However, if the
structures contained the ambiguities concerned with ’have’ or rightward movement,
deterministic parsers could deal with the problems. As stated, deterministic parsers
cannot deal with unbounded dependencies, such as occur in constituent questions, but
this does not cause problems for this research as this type of construction is not found
in technical sublanguages and Aircraft Maintenance manuals in particular (Kittredge,

1982).

The ambiguity that can occur in Aircraft Maintenance Manuals is part of speech
ambiguity. Aircraft Maintenance Manuals have a predominance of compound nouns,

which can contain categories that are polysemous i.e.. they can be nouns or verbs. not

166

withstanding the fact the lexicon would be restricted. An example taken from Kittredge
(1982) shows the type of ambiguity that can occur. This example has the added
problem of structural ambiguity as a result of containing the coordinate conjunction
"and’.
Disconnect pressure and return lines from pump.

In the sample Aircraft Maintenance Manual, used in this research, there are a few
examples of part of speech ambiguity. These examples involve the polysemous words
"lock’ and ’access’, which in the sample occur as both nouns and verbs. There are,
obviously, other example of polysemous categories within the sample sublanguage;

however, in the sample they only occur as a single category. Below are listed examples:

box (noun) drain (verb)
return (noun) use (verb)
cover (noun) pump (noun)

The sample of the Aircraft Maintenance manual used in this research also does not
contain examples of the structural ambiguity that occur with the coordinate conjunctions
'and’ and ‘or’. As Kittredge’s example above shows, such structures do occur in
Aircraft Maintenance Manuals, and therefore would have to be processed. How the
parsers developed for this research deal with the sublanguage is discussed in more detail

later in this chapter.

7.2.3 The Noun-phrases of the Aircraft Maintenance Manual

As stated above, the parsers MParserSub and LParserSub have been designed to
process only the noun-phrases of the aircraft maintenance manual. In total, there are
forty-two types of noun-phrase in the manual. The noun-phrases comprise the normal

grammatical constituents of determiners, nouns, adjectives and conjunctions, but also

167

comprise the sublanguage specific constituents, such as reference numbers and numerals.
The processing of conjunctions within noun-phrases does not pose much problem as the
conjunctions are used only as simple connecting devices. In example 8, below, the
conjunction is used to connect two noun-phrases related to the determiner. Other
examples of conjunctions occurring within noun-phrases are the connecting of nouns,
adjectives and adjectives and nouns. The processing of noun-phrases from the aircraft
maintenance manual containing conjunctions does not have to deal with ellipsis or any
other problematical structures that can occur during the processing of conjunctions; the
conjunction connects the phrase or category immediately preceding it with the phrase

or category immediately succeeding it.

The noun-phrases also include prepositional phrases, of which there are two types;
relative clauses, of which there are three types; verb-phrases called as constituents of
the relative clauses, of which there are six types; a subordinate clause called as a
constituent of a verb-phrase and auxiliaries called as constituents of the relative clauses,
of which there are two types. Examples of typical and non-typical grammar-type rules

representing the noun-phrases, which are not specific to either parsing system, are given

below:
1. NP -> Det, Noun 5. NP -> Ref, Noun, Noun
2. NP -> Det, Noun, Adj 6. NP -> Det, Num, Noun, Num
3. NP -> Pronoun 7. NP -> NP, PP
4. NP -> Num, Noun 8. NP -> Det, NP, Conj, NP

Examples of the noun-phrases represented by the above grammar rules are the following:
1. the gearbox 5. Omat4/23 anti-seize compound, pure nickel special
2. a segment missing 6. the three bolts (1)

3. you 7. the inspection of the stage 3 LP turbine blades

168

4. 4 litres 8. the LP compressor and LP turbine assembly

As shown in examples 5, 7 and 8, complex nouns in the Rolls-Royce aircraft
maintenance have been classified as one noun; this is a logical step to take, as complex
nouns represent a single entity. It was decided to adopt two approaches to processing
complex nouns as they are known to pose problems in natural language processing.

Both approaches are discussed in the following section.

7.3 Dealing with Complex Nouns

As stated in the introduction, complex-nouns are very common in aircraft
maintenance manuals due to the need for precise descriptions of parts of aircraft. This
discussion may seem to veer from the goals of the thesis in that it is not concentrating
on the discussion of the use of deterministic parsers in the analysis stage of a Machine
Translation System. Rather, the discussion concentrates on the procedure for dealing
with complex-nouns in the Rolls-Royce aircraft maintenance manual which involves
preprocessing the complex-nouns before parsing begins. The main reason for
concentrating on this topic is the fact that the majority of the aircraft maintenance
manual is comprised of complex-nouns and they could not be ignored. Therefore, this
section can be considered as not being within the goals of thesis but necessary because

of the importance of complex-nouns.

In the Rolls-Royce aircraft maintenance manual complex nouns comprise between
two and nine constituents. The constituents can be both adjectives and nouns;
adjectives are closely linked with nouns to enhance the descriptive qualities of complex
nouns found in the aircraft maintenance manual. The greater the number of
constituents in the complex noun, the more difficult the processing, as the semantic

relationships between constituents and groups of constituents have to be considered.

169

Other problems are posed by the fact that individual constituents may also appear on
their own in the manual or may be grouped with other constituents to form completely
different complex nouns. All that is discussed below applies to complex nouns, which

are later parsed by both MParserSub and LParserSub.

7.3.1 The Simple Approach to Complex Nouns

As stated above, two approaches have been used to deal with complex nouns. The
first approach to be described is the simpler. The dictionary contains complex nouns
of between two and three constituents, as well as other grammatical constituents. Each
complex noun in the dictionary contains one, two or three constituents that do not
appear elsewhere in the manual apart from in the particular complex noun. As complex
nouns can be difficult to process, this use of the dictionary provides an easy method of
dealing with them. Examples of the dictionary entries, coded in Prolog, for these

complex nouns are the following:

noun(_, ([nose, cone, fairing])).
noun(_, ([power, plant])).
noun(_, ([petroleum, jelly])).

This method, although in some instances it makes things simple, does not provide the
full answer to the problem of complex nouns. It would be impossible to store all
complex nouns in this manner, as it would create a massive dictionary which would be
detrimental to processing speed even, if full advantage was taken of the standard
indexing of Prolog procedures. Problems also would occur, as a result of certain nouns

appearing in more than one complex noun structure.

7.3.2 The Complex Approach to Complex Nouns

As stated. the above method cannot be used for all complex nouns, even those

170

with only two or three constituents. As mentioned previously, constituents which form
part of a complex noun can appear on their own in the manual or with different
constituents to produce different complex nouns. In order to deal with the complex
nouns that do not appear in the dictionary, predefined syntactic/semantic relationships
between groups of nouns and adjectives have been set up. Prior to parsing, when a
group of adjectives and nouns are detected, they are preprocessed and checked against
the predefined relationships. The theory of relationships and preprocessing of complex

nouns are discussed in more detail below.

7.3.2.1 The Theory of Relationships

Before discussing the preprocessing and checking of complex nouns, it is
necessary to describe the theory concerning the use of predefined syntactic/semantic
relationships. Several researchers have considered the problem of complex nouns.
Downing (1977) and Levi (1978) have both looked at the problem of Noun + Noun
compounds from a purely linguistic standpoint and both came to the same conclusion
about semantic/syntactic relationships. Both also considered Adj + Noun compounds
as being complex structures. (References to complex nouns include Adj + Noun
structures). For example, Levi (1978) suggested that the syntactic/semantic relationship
between Noun + Noun and Adj + Noun compounds could be derived by predicate
deletion and predicate nominalization; a larger number of complex nouns being derived
by predicate deletions. Levi proposed nine Recoverably Deletable Predicates.
Examples of complex nouns derived from the predicates are:

CAUSE(tear gas), HAVE(industrial area), ABOUT(price war).

MAKE(musical clock), USE(steam iron), FROM(olive oil),

BE(soldier ant), IN(marine life), FOR(horse doctor).

171

Levi (1978) proposes that three types of complex nouns could be derived from four

types of predicate nominalization, which she represented in table form.

Subjective Objective Multi-Modifier
Act parental refusal dream analysis city land acquisition
Product clerical errors musical critique student class marks
Agent - city planner
Patient student inventions

Table 7.0 Derivation of Complex Nouns - Predicate Nominalization

Downing (1977) puts forward twelve relationships, which she believes represent
a stock set of the most common underlying relationships for deriving complex nouns.

The relationships proposed are the following:

WHOLE-PART(duck foot), HALF-HALF(giraffe-cow),
PART-WHOLE(pendulum clock), TIME(summer dust),
COMPOSITION(stone furniture), SOURCE(spring water),
COMPARISON(pumpkin bus), PLACE(Eastern Oregon Meal),
PRODUCT (honey glands), USER(flea wheelbarrow),
PURPOSE(hedge hatchet), OCCUPATION(coffee man).

However, Downing (1977) does not claim that the above relationships are an exhaustive

set of compounding relationships.

Lehrberger (1982) reports, briefly, work done at TAUM Aviation on complex

nouns from an aircraft maintenance manual and which follows the stance taken by both
Downing and Levi that syntactic/semantic relationships can be defined between nouns
and also groups of nouns. A set of fifty relationships was derived at TAUM, including
several of those derived by Levi and Downing. The full set of the TAUM Aviation

relationships was not provided.

In this research a similar approach also has been taken in dealing with complex
nouns. A set of nine binary relationships has been derived for the complex nouns from
the extract of the Rolls-Royce aircraft maintenance manual. Some of the relationships
are similar to those used by the Downing, Levi and Kittredge; the rest are specific to
the sublanguage of the Rolls-Royce aircraft maintenance manual, but this does not
preclude that they could be used to define relationships in other sublanguages. The
relationships are Use, Mod, Obj, Whole-part, Measure, For, Place, Has and Ref. In this
work, the binary relationships have a Domain and Range, each of which can represent
a singular noun or group of nouns. The examples below are of complex nouns from
the Rolls-Royce maintenance manual and the relationships that have been specifically
derived for the complex nouns, along with an explanation of the relationship used.

Low Pressure compressor

(Domain(Use)

(Domain(Mod) Low
Range(Mod) Pressure)
Range(Use) compressor)
The relationship Use represents a deletable instrumental predicate, as the example
complex noun can be said to derive from "the compressor uses Low Pressure”. This
relationship is similar to the definition in Levi (1978). The relationship Mod represents
an adjectival modifier, in that the noun Pressure is modified by the adjective Low. This

relationship has been derived specifically for the Rolls-Royce maintenance manual,

since it has been decided to include adjective as part of complex nouns. However, the

173

relationship could be used in the derivation of complex nouns in other sublanguages or
full natural language.

turbine blade

(Domain(Whole-part) turbine

Range(Whole-part) blade)
The relationship Whole-part represents the make-up of a particular entity. In this
example of the complex noun blade is part of the whole entity turbine. This
relationship is similar to the definition in Downing (1977).

7th stage outlet connector assembly

(Domain(Ref) 7th stage

Range(Ref) (Domain(Obj)

(Domain(For) outlet
Range(For) connector)
Range(Obj) assembly)

The relationship Ref represents reference, in that "outlet connector assembly" is
referenced as type "7th stage". This relationship has been derived specifically for the
sublanguage of the Rolls-Royce aircraft maintenance manual. However, as with Mod
described above, it could pertain to other complex nouns found in sublanguages or full
natural language. The relationship Obj represents object, in that assembly is the whole
object, made up of parts appertaining to outlet connector. This relationship is similar
to Ref and Mod in that it is specific to the aircraft maintenance manual, but could be
used elsewhere. The relationship For represents a deletable purpose predicate, in that
connector has a purpose which is connecting the outlet. This relationship For is
similar to the relationship defined in Levi (1978).

engine top position

(Domain(Place) engine top

Range(Place) position)

The relationship Place represents place, in that the place of position is engine top. This

relationship is similar to that used by Downing (1977).

174

thermal unit mounting face
(Domain(Has) thermal unit
Range(Has) mounting face)
The relationship Has represents a deletable possessive predicate, in that
thermal unit has a mounting face. Thermal unit and mounting face are both complex
nouns that appear in the dictionary as complex nouns. This relationship is similar to
the Have relationship found in Levi (1978).
rpm indicator generator
(Domain(Measure) rpm
Range(Measure) indicator generator)
The relationship Measure represents measurement, in that "indicator generator” is
measured in "rpm". This relationship is specific to the Rolls-Royce aircraft
maintenance manual, but as with other relationships specific to the maintenance manual
it could be used elsewhere.
7th stage air offtake outlet connector assembly lock ring
(Domain(Ref) 7th stage
Range(Ref)
(Domain(Has)
(Domain(Has)
(Domain(For) air
Range(For) offtake)
Range(Has)
(Domain(Obj)
(Domain(For)outlet
Range(For)connector)
Range(Obj) assembly)
Range(Has) lock ring)
The relationships shown in the above derivation have the same meanings as defined in

the preceding derivations. This is the largest complex noun in the Rolls-Royce aircraft

maintenance manual.

Having looked at a theory describing complex nouns, it is necessary to examine
how it is put into practice. How do a group of adjectives and nouns get translated into

a set of relations. The process is discussed in the next sub-section.

175

7321 The Preprocessing of Complex Nouns

Prior to parsing, if it is found that nouns, perhaps modified by an adjective, are
grouped together in the input string, they have to be preprocessed into a state for
parsing. This involves producing a set of binary relationships that links the adjectives
and nouns within the group. The process of creating the binary relationships occurs
in three stages, each of which is discussed below, with reference being made to the
Prolog rules used. The method of preprocessing complex nouns is similar for both

parsers.

The initial stage of the preprocessing is dictionary look-up. Prior to the
processing of other grammatical constituents, the first part of dictionary look-up involves
searching the input string for complex nouns that are already stored in the dictionary.

After all the predefined complex nouns have been processed, the remaining grammatical

constituents of the input string are processed.

Every noun and adjective that can form part of a complex noun or several complex
nouns, has in its dictionary entry its binary relationship definitions and the adjective or
nouns forming the second constituent of the binary relationship. All relations have been
devised by inspection of the Rolls Royce Aircraft Maintenance Manual. Examples of
these dictionary entries are given below.

noun(_, n([blade, [turbine, rotor, range (whole-part)]])).

noun(_,n([1ignition, [[domain(obj),unit], [domain (whole-part),
lead], [domain(for),system]]])).

noun(_,n([lead, [[domain(obj),end], [ignition, range (whole-par
t)], [high, tension, range(use)]]l])).

adj (_,a([special, [domain(mod) , tool, spanner]])).

After dictionary look-up, which works similarly for LParserSub and MParserSub as it

176

does for LParser and MParser, the already predefined complex nouns, adjectives, nouns

and the other grammatical constituents are placed back into the input string.

The next stage of the preprocessing of complex nouns is the detection of groups
of nouns and adjectives that are not predefined complex nouns. Once detected the

adjectives and nouns that appear together in the input string are grouped.

The final stage of the preprocessing is the creation of the binary relationships,
which are checked against already validated predefined relationships. Once the binary
relationships are created and validated, they can function as nouns, which can be parsed

easily by either MParserSub or LParserSub.

7.4 MParserSub - a Marcus Type Parser for a Sublanguage

As stated previously, MParserSub has been developed from MParser, a prototype
Marcus type parser, to process the sublanguage of an aircraft maintenance manual,
specifically the noun-phrases of the sublanguage. The reason for developing
MParserSub is that the sublanguage grammar of the aircraft maintenance manual is quite
different from the grammar used by MParser. It was decided that combining the two

grammars would not be feasible.

MParserSub has a Pushdown Stack, a two symbol Lookahead Buffer and utilises
a grammar of Production Rules. The stack and buffer function in a identical manner to
MParser’s stack and buffer. Therefore as with MParser, MParserSub’s Pushdown Stack
is where grammatical structures are stored and the bottom node of the stack, the Current
Active Node, is where grammatical structures are built. The processing of grammatical

constituents takes place in the first cell of the two cell Lookahead Buffer, with

177

MParserSub able to examine the contents of second buffer cell. Interaction between
MParserSub’s stack and buffer is no different from the interaction between MParser’s
stack and buffer. The differences between the parsers are concerned with the type of
grammatical constituents that they can process and the parsing rules that each parser
uses to do the processing. In the next sub-section the grammar of MParserSub is

examined. This is followed by a look at changes made to the parsing rules.

7.4.1 MParserSub’s Grammar

In this sub-section, MParserSub’s grammar is examined. The examination of the
grammar begins with an evaluation of the use of the theory of phrase structure for the
sublanguage. The evaluation of X bar theory is followed by a look at the grammar

rules used by MParserSub.

7.4.1.1 X bar Theory and The Sublanguage

The X bar theory of phrase structure is restrictive, by design. As stated in Chapter
5, a phrase in X bar theory is allowed, at most, three branches. The three branches are
specifier, head and complement. The specifier corresponds to determiners, quantifiers
and/or adjectives. The head, which is the core of a phrase and its most important
constituent, corresponds to a noun in a noun-phrase, verb in a verb-phrase and
preposition in a prepositional phrase etc. ~ The complement can be an embedded

sentence, or a phrase such as a prepositional phrase or a relative clause.

The noun-phrases from the sublanguage of aircraft maintenance manuals
correspond to the X bar theory taking into account the use of binary relationship sets:
1. a suitable blank.

2. the engine in flight position.

178

3. a continuous flow of inhibitor from the LP fuel return outlet.

4. numbers in a clockwise direction that start from an engine top position.
Some noun-phrases occurring in the Rolls-Royce aircraft maintenance manual do not fall
precisely into the specifier, head, complement schema of X Bar theory but remain within
the bounds of X bar theory. These noun-phrases are discussed below. The grammar rules
representing those type of noun-phrases are the following:

1 NP -> Det, Noun, Num

2. NP -> NP, NP

A7 NP -> Det, Noun, Num, Conj, Num

4. NP -> Noun, Ref, Noun, Num
Examples of the noun-phrases that are represented by the above are:

1 a new gasket (6a).

2a. impact damage, cracks or metal deposits.

2b. Dbolts (6), spring washers (7), and spreader washers (8).

3. the bolts 8 and 9.

4. special tool GU28202 special spanner 1 off.

In example 1, the noun-phrase, a new gasket 6a, ends with a number which, it is
assumed, is referring to a diagram. As is shown by the grammar rule definition of
example 1, the noun-phrase does not conform to the specifier, head, complement rule
of X bar theory. However, the number, 6a, can be regarded as being parenthetical and

linked to what has preceded it, thus it does not violate X bar theory.

In examples 2a and 2b, the list of noun-phrases separated by a coordinate
structure, impact damage, cracks or metal deposits, is considered a noun-phrase, as is

bolts (6), spring washers (7), and spreader washers (8). None of these noun-phrases

179

can be considered the individual head of the structure, but X bar theory as applied to

GPSG allows description by multiple heads linked by coordinate structure. There is no

hierarchy of structure.

Example 3 is another example of coordination within a noun-phrase, but in this

instance separating two numbers. The numbers can be considered as parenthetical and

linked to the Head of the phrase.

In example 4, the noun-phrase, special tool GU28202 special spanner 1 off, in
order to be descriptive, has a very unusual structure. The noun ’special tool’ is the
head of the phrase. The reference number *GU28202’ is parenthetical and lined to the
head. The noun ’special spanner’ is also parenthetical to the Head of the phrase. 1 off

is a number defining quantity and acts as a complement to the head noun.

In all instances above, the use of more than one head has occurred where a
conjunction has appeared in the noun-phrase. There are other examples in the manual
where groups of nouns appear together without being separated by a coordinate
structure. In these examples also, there is no hierarchical structure and each noun is

taken to be a head, which falls within the bounds of X bar theory.

7.4.1.2 MParserSub’s Grammar Rules

MParserSub uses a grammar of production rules invoked by a call to
'grammar_rule’ by the parsing rules. The modification of MParser’s grammar to the
grammar used by MParserSub is related to the type of structures found in the
sublanguage. MParser’s grammar is based on that developed by Marcus to produce a
number of test sentences reflecting a variety of grammatical structures. The sublanguage

grammar contains a majority of noun-phrase rules. Several of the noun, adjective

180

determiner, preposition and relative-pronoun and noun-phrases and individual verb, verb-
phrase, prepositional-phrase and relative-clause rules found in the sublanguage are in
MParser’s grammar, but the number of similar rules is not sufficient to justify using the
same grammar. Moreover, noun-phrase rules would have to have been added to cope
with the differing types of noun-phrases found in the sublanguage and many of the
grammar rules in MParser’s grammar would have been superfluous to MParserSub’s
grammar. Thus, MParserSub’s grammar comprises some of MParser’s original rules and

extra rules to deal with the various noun-phrases.

The grammar is, once again, a Prolog database of rules; each rule is made up of
a grammatical category and a representation of the Pushdown Stack and Lookahead
Buffer. The structure of the MParserSub grammar rule has the same structure as the
MParser grammar rule. As with a call to grammar_rule under MParser, a call to
grammar_rule under MParserSub invokes the attempted matching of the present state of
the stack and buffer with one of the rules in the database. If matching succeeds,
grammar_rule calls the rule attach which performs the same function previously

described for grammar_rule as called under MParser.

Similarly to the grammar rules used by MParser, the MParserSub’s grammar rules
are grouped by type - specifier, head or complement. Each group varies in size with
the head group being the largest. There are seventeen different rules covering
grammatical categories, but there are a number of rules with the same grammatical
category because of the different conditions that apply to attaching the contents of the
first buffer cell to the Current Active Node. Below examples from each group are

given, with all rules being described in Appendix D.

181

7.4.1.2.1 Examples of Specifier Group

attach_det - This is one of the rules for processing determiners.

grammar_rule(attach_det, [[xmax, ‘+n-v+a-p’, [spec_, head,
comp]] IR],

[[[FWord, '+n-v-a-p’], [SWord, '+n-v+a+p’]] |IRest],NS, NB):-
attach ([[xmax, '+n-v+a-p’, [spec_, head,comp]] |Reststack],
[[[FWord, '+n-v-a-p’], [SWord, '+n-v+a+p’]] |Rest],NS,NB) .

attach_adj - This is one of the rules for processing adjectives.

grammar_rule(attach_adj, [[xmax, S, '+n-v+a-p’, [spec_, head
,comp]] [R],

[[[Dom, [FWord, ’‘+n-v+a+p‘]],[’,’]]IRest],NS, NB):-
attach ([[xmax, St,'+n-v+a-p’, [spec_, head, comp]] |Reststack],
([[Dom, [FWord, ’'+n-v+a+p’]],[’,’]]IRest],NS,NB).

7.4.1.2.2 Examples of Head Group

attach_prep - This is one of the rules for processing prepositions.

grammar_rule (attach_prep, [[xmax,S, '-n-v’, [spec, head_, comp]]
IR],

[[[FWord, ‘-n-v‘], [W, ’'+n-v+a-p’,SP]]|Rest],NS, NB) :-
attach([[xmax,S, '-n-v’, [spec, head_,comp]] |Reststack],
[[[FWord, "-n-v'],[W, ‘+n-v+a-p’,SP]]I|Rest],NS,NB).

attach_noun - This is one of the rules for processing nouns.

grammar_rule(attach_noun, [[xmax, S, '+n-v+a-p’, [spec, head_,
comp]] IR],

[[[Dom, [FWord, ‘+n-v+a-p’,sqg]],Second] |Rest],NS, NB):-
attach ([[xmax, St, ’'+n-v+a-p’, [spec, head_, comp]]IR],

[[[Dom, [FWord, ’‘+n-v+a-p’,sgl],Second]|Rest],NS, NB).

7.4.1.2.3 Examples of Complement Group

attach_num - This is one of the rules for processing numbers.

grammar_rule(attach_num, [[xmax, S, '+n-v+a-p’, [spec, head,
comp_]J]]IR],

[[[FWord, ‘+n-v+a-p’,num], Second] |Rest],NS, NB):-
attach([[xmax, St, ‘+n-v+a-p’, [spec,head, comp_]] |IReststack],

[[[FWord, ’‘+n-v+a-p’,num], Second] |Rest],NS, NB).

182

attach_pp_object - This is a rule for processing objects of a prepositional phrase.

grammar_rule(attach_pp_object, [[xmax, S, '-n-v’,
[spec,head, comp_]]IR],

[[[xmax,S1, ‘+n-v+a-p’'],Second] |Rest],NS,NB) : -
attach([[xmax,S,’'-n-v’, [spec, head, comp_]] |Reststack],
[[[xmax,S1l, '+n-v+a-p’],Second] |Rest],NS, NB).

7.4.2 MParserSub’s Parsing Rules for Sublanguage

Having discussed the grammar, the discussion turns to MParserSub’s parsing rules:
These are similar to the rules used by MParser - they have the same names and perform
the same functions. However amendments have been made to allow MParserSub to
process the various unconventional noun-phrases that appear in the sublanguage of the
aircraft maintenance manual. Below the parsing rules, which have been amended, are

discussed.

MParserSub’s top level rule input performs the same function as when called by
MParser by calling enter, prep and parse. enter has been amended to place the
complex noun - binary relationships in the buffer. The rule prep calls the rules
create_max, perc_features, add_template, add_features and pre_test, which prepare the
stack for the first constituent from the buffer. perc_features and add_template have
been amended to deal with the grammatical constituents num and ref. parse calls
grammar _rule and process, if grammar_rule succeeds. If grammar_rule fails parse
calls drop. process calls annotate_node, amend_stack, amend_template,
act_create_node and pre_test. The rules amend_template and act_create_node have
been amended to deal with grammatical constituents that did not appear in MParser’s

grammar rules as has the rule drop.

74.3 MParserSub’s Parses from the Sublanguage

In this section example parses from the sublanguage of the aircraft maintenance

183

manual are given. The following noun-phrases are the examples that have been parsed:
cowl doors.
the engine in flight position.
a new seal ring (3).
the bolts and self-locking nuts that attach the 7th stage connector assembly.

The results of parsing, the above, are the following:

| ?- start (NP).
| : cowl doors.

NP=
[xmax, [attach_noun, [[cowl,doors], '+n-v+a-p’,pll], ‘+n-v+a-p’]

| ?- start (NP).
|+ the engine in flight position.

NP=[xmax, [[[attach_det, (the, '+n-v-a-p’']],
[attach_noun, [engine, ‘+n-v+a-p’,sgll],
[attach_pp, [xmax, [[attach_prep, [in, '-n-v‘']],
[attach_pp_object, [xmax,
[attach_noun,[[flight,position],‘+n—v+a—p',sg]],
‘+n-v+a-p’1)],'-n-v’11],'+n-v+a-p’]

| ?- start (NP).
| : a new seal ring (3).

NP=[xmax, [[[attach_det, [a, ‘+n-v-a-p']],
[attach_noun,[[domain(mod),[new,'+n—v+a+p'],range(mod),
domain(for), [seal, ' +n-v+a-p’',sg]l,
range(for),[ring,'+n—v+a—p‘,sg]],'+n—v+a—p’,sg]]],
{attach_num,[’(3)','+n—v+a—p’,num]]],'+n—v+a—p’1

| ?- start (NP).
| - the bolts and self-locking nuts that attach the 7th stage

connector assembly.

NP:{xmax,[[[[[attach_det,[the,'+n—v-a~p’]],
[attach_noun,[bolts,'+n—v+a—p’,pl}]],
[attach_conj,[and,‘+n—v+a—p',conj]]1,
[attach_noun,[['self—locking',nuts],'+n—v+a—p',pl]]],
[attach_relative_clause,

[xmax,[[attach_rpron,[that,'—n—v+a+p']],
[attach_vp,
[xmax,[[attach_verb,[attach,’—n+v',—,tense]],

[attach_object,
[xmax,[[attach_det,[the,'+n—v—a—p']],
[attach_noun,
[[[domain(ref),[[’Tth’,stage],'+n—v+a—p',sg],

184

range (ref),
domain (obj), [connector, ‘+n-v+a-p’, sqg],
range (obj),
[assembly,'+n—v+a—p’,sg]]],‘+n-v+a~p',sg]]],
’+n-v+a~p']]],’—n+v—a+p']]],’—n—v+a+p']]],'+n—v+a~p']

The results of the parses prove that MParserSub can produce output. Each output
is a syntactic representation of the phrase being parsed. Each output is considered
correct with respect to MParserSub’s grammar, as the grammar has been defined by the
author of the research. It has been assumed that each input phrase is correct as ill-
defined input has not been considered within this research. With respect to the grammar
and the parser, the output can be considered a true syntactic representation of the input.
The results of MParserSub’s parses in terms of Machine Translation and in comparison

to LParserSub are discussed in sub-section 7.6.

7.44 MParserSub and Ambiguity

As stated above in relation to ambiguity in the Aircraft Maintenance Manual, there
are relatively few examples of ambiguous structures in the manual. These examples
contain part of speech ambiguities which MParserSub can disambiguate, i.e. both "lock’
and ’access’ can be disambiguated as verbs or nouns in whatever structure they appear.
If, for example, 'lock’ was the word being processed, it would first of all be established
whether it was part of a complex noun using the method discussed above. On being
established that it was part of a complex nominal ’lock’ would be disambiguated as a
noun belonging to a complex nominal structure. If it was not proven to be part of a
complex nominal structure, disambiguation would take place according to methods
explained in Chapter 5, with regard to MParser. By having the knowledge of categories
already processed and facility to lookahead to the next category, it would be possible

to disambiguate between 'lock’ as a noun or verb.

185

It was explained that not many ambiguities appeared in the sample of Aircraft
Maintenance Manual used in this research. However all types of ambiguity that
MParser can process, as discussed in Chapter 5, MParserSub could also process if its
grammar was amended accordingly. As for the type of ambiguity that MParser cannot
process, namely constituent questions with unbounded dependencies, it is agreed, as

discussed above, that this type structure would not appear in Maintenance Manuals.

7.5 LParserSub - an LR Type Parser for a Sublanguage

LParserSub, like MParserSub, has been developed from a prototype; the
prototype being LParser, an LR type parser. LParserSub has been developed to parse
the noun-phrases of the Rolls-Royce aircraft maintenance manual extract for the same
reasons as given for developing MParserSub - the grammars of LParserSub and LParser

are significantly different and it does not seem feasible to combine them.

LParserSub has a stack, input string buffer and a parse table. The parse table has
been constructed in exactly the same manner as LParser’s parse table, using the same
algorithms. LParserSub’s parse table has 246 states and as with LParser more than
one state can be represented by a state number, e.g., there are eleven states numbered
as state 3. The parse table holds the three commands shift, reduce and accept, which

manipulate the stack and buffer.

As with LParser, modifications have to be made to LParserSub to allow it to cope
with the ambiguities of natural language. Once again shift-reduce conflicts appear in
the parse table which are dealt with by shifting when a shift-reduce contflict occurs.
There do not seem to be any reduce-reduce conflicts in the parse table, probably due to

the fact that there is not a large variety of phrase types in the grammar. The

186

shift-reduce conflicts in the parse table occur because of the variety of noun-phrases,
which can have between one and six constituents. At several stages of parsing a

noun-phrase, the parser would be confronted with shifting or reducing, but it always

obeys the shift command.

Part of speech ambiguity occurs in the aircraft maintenance manual, which has to
be dealt with by the parsing process. There are only two words that pose a problem
- access and crack which can both be verbs or a nouns. However, in this situation,
there is no need to extend the lookahead, as the parse table will guide the choice of verb
or noun. In the next sub-section LParserSub’s grammar is examined. This followed
by a look at the parsing rules and any changes that have been made. Finally the results

of LParserSub parsing the same example noun-phrases, as above, are provided.

7.5.1 LParserSub’s Grammar

In this sub-section LParserSub’s grammar is examined. ~ As with LParser, the
grammar is notated in the form of a DCG; this does not provide any difficulties as
regards grammatical theory. Yet again it is only the descriptive properties of the DCG

that are utilised.

7.5.1.1 LParserSub’s Grammar Rules

There are fifty-six rules in LParserSub’s grammar. ~ The majority of these rules
represent noun-phrases, with the remaining rules covering phrases that can be
components of the noun-phrase, such as prepositional phrases, relative clauses,
verb-phrases and auxiliaries. The modification of LParser’s grammar to the grammar
used by LParserSub is related to the type of structures found in the sublanguage.

LParser’s grammar is based on MParser’s, although notated in the form of a DCG. The

187

sublanguage grammar contains a majority of noun-phrase rules. Several of the noun,
adjective, determiner, preposition and relative-pronoun and noun-phrase and individual
verb, verb-phrase, prepositional-phrase and relative-clause rules found in the sublanguage
are in LParser’s grammar, but the number of similar rules is not sufficient to justify
using the same grammar. Moreover, noun-phrase rules would have to have been added
to cope with the differing types of noun-phrases found in the sublanguage and many of
the grammar rules in LParser’s grammar would have been superfluous to LParserSub’s
grammar. Thus, LParserSub’s grammar, similar to the link between MParser and
MParserSub, comprises some of LParser’s original rules and extra rules to deal with the
various noun-phrases. In the sub-sections below, examples of the grammar rules are

given. All LParserSub’s grammar rules appear in Appendix D.
7.5.1.1.1 Grammar Rules for Noun-phrases

There are forty-two grammar rules that represent noun-phrases. Examples of the
noun-phrases are the following:

(noun_phrase (N, np (Det,Noun)) -->det (N, Det) , noun (N, Noun)) .
(noun_phrase (N, np (Ref,Noun)) -->ref (N,Ref) ,noun (N, Noun)) .

(noun_phrase (N, np (Noun, Ref, Noun, Num)) -->noun (N, Noun) ,
ref (N,Ref) ,noun (N, Noun) ,num(N, Num)) .

(noun_phrase (N, np (Noun, Noun, Noun, Conj,Noun))_—->noun (N, Noun) ,
noun (N, Noun) , noun (N, Noun) , conj (N, Conj) , noun (N, Noun)) .

(noun_phrase (N, np (NP, Adj, Conj,Adj)) -->noun_phrase (N,NP),
adj (N,Adj),conj(N,Conj),adj(N,Ad])) .

(nOun_phrase(N,np(Adj,Conj,Noun,Noun)}——>adj(N,Adj),conj(N,
Conj) ,noun (N, Noun) ,noun (N, Noun)) .

7.5.1.1.2 Grammar Rules for Other Phrases

There are fourteen grammar rules that represent the remaining phrases in the

grammar. Examples of these phrases are the following:

188

(prep_phrase (N, pp (Prep, Prep,NP)) -->prep (N, Prep) ,prep (N, Prep),
noun_phrase (N,NP)) .

(r_clause (N, r_c(Rpron,NP)) -->rpron (N, Rpron) ,
verb_phrase (N,NP)).

(verb_phrase (N, vp (V,NP, SC)) -->verb (N, V) ,prep_phrase (N, NP),
sub_clause(N, SC)) .

(sub_clause (N, s_c (Sub, NP, VP, Sub, Adv,VP)) -->sub (N, Sub) ,
noun_phrase (N, NP) ,verb_phrase (N, VP) ,
sub (N, Sub) ,adv (N, Adv) , verb_phrase (N,VP)) .

7.5.2 LParserSub’s Parsing Rules for Sublanguage

LParserSub’s parsing rules are similarlto the rules used by LParser. They have the
same names and performs the same functions. Amendments have been made to allow
LParserSub to parse the variety of noun-phrases that appear in the sublanguage of the
aircraft maintenance manual. Below the parsing rules, which have been amended, are

discussed.

LParserSub’s top level rule parse performs a similar function as when called by
LParser by calling match state, but also sing plural. match_state as called by
LParserSub, has different versions to deal with shifting, reducing and accepting. The
rules that match_state calls are state, check_categories, shift, merge, reduce, mergel,
reducel, checking and match_state. The rule state, in this instance, represent states in
LParserSub’s parse table. check_caregories has been amended, since it does not have
to process as many part of speech ambiguities. merge, reduce, mergel and reducel
have been amended to process noun-phrase constituents on the stack. The rule
checking has been amended to do semantic checks on the constituents of certain
noun-phrases, when state does not execute. sing_plural assigns the grammatical

number of the noun-phrase after the parsing process is complete.

189

7.5.3 LParserSub’s Parses from the Sublanguage

In this section example parses from the sublanguage of the aircraft maintenance
manual are given. The measurements of time and speed have been calculated in
exactly the same way as for MParserSub as described in section 7.4.3. The example
parses are those of the noun-phrases in section 7.4.3.

| ?- run(S, B).
| : cowl doors.

[noun_phrase (pl,np(n([cowl,doors],pl)))],
[]

| ?=- run(S,B).
the engine in flight position.

I

W

S = [noun_phrase(sg,np(np(d(the),n(engine, sqg)),
pp(p(in),np(n([flight,position],sg)))))],
B =

| ?- run(S,B).

|[: a new seal ring (3).

S=

[noun_phrase(sg,np(d(a),n([domain (mod),adj(_12673,a([new])),
range (mod) ,domain(for) ,noun(_12813,n([seall,sq)),

range (for) ,noun(_13606,n([ringl,sqg))]),

num(‘(3)))) 1,

B = []

| 2= xrun(S,B) .
| : the bolts and self-locking nuts that attach the 7th stage
connector assembly.

S = [noun_phrase(pl,np(np(d(the),n(bolts,pl),

conj(and) ,n([’self-locking’,nuts],pl)),
r_c(r_p(that),vp(v(attach),
np(d(the) ’

n([(domain(ref) ,noun(_29655,n(["7th’, stage],sqg)),
range (ref),
domain (obj) ,noun(_30061,n([connector],sqg)),
range (obj) ,noun(_30632,n([assembly],sqg))]))))))],

B = []
The results of the parses also prove that LParserSub can produce output. Once

more each output is a syntactic representation of the phrase being parsed. with each

particular output being considered correct with respect to MParserSub’s grammar, as the

190

grammar has been defined by the author of the research. It has been assumed that each
input phrase is correct; ill-defined input has not been considered within this research.
With respect to the grammar and the parser, the output can be considered a true
syntactic representation of the input. The results of LParserSub’s parses in terms of

Machine Translation are discussed in sub-section 7.6.

7.54 LParserSub and Ambiguity

As with MParserSub, LParserSub can process the ambiguities found in the Aircraft
Maintenance Manual. The ambiguities are part of speech ambiguities, both ’lock’ and
"access’ can be disambiguated by LParserSub as verbs or nouns in whatever structure
they appear. If, for example, ’access” was the word being processed, it would first of
all be established whether it was part of a complex noun using the method discussed
above. On being established that it was part of a complex nominal access’ would be
disambiguated as a noun belonging to a complex nominal structure. If ’lock’ was not
proven to be part of a complex nominal structure, disambiguation would take place
according to methods explained in Chapter 6, with regard to LParser. By having the
knowledge of categories already processed and the facility to lookahead to the next

category, it would be possible to disambiguate between ’access’ as a noun or verb.

As discussed in Chapter 6, all types of ambiguity that LParser can process
LParserSub could also process if its grammar was amended accordingly. Similarly to
MParser, the type of ambiguity that LParser cannot process, namely constituent
questions with unbounded dependencies, would not appear in Maintenance Manuals, thus

would not cause problems for LParserSub.

191

7.6 The Use of MParserSub and LParserSub in Machine Translation

This section concentrates on evaluating the parsers that have been discussed in this
chapter; it could be considered as evaluating an experiment. On a superficial level, it
could be considered that evaluation of the experiment may have been determining
whether the parsers could parse noun-phrases from the Rolls-Royce Aircraft
Maintenance Manual. However, the evaluation of the experiment may more correctly
be described as determining the possibility of building a deterministic parsing system

that is useful for MT. This can be assumed to be the "thesis".

In attempting to prove that the experiment has been successful, it would be useful
to consider it from the viewpoint of "equipment" and "data"; "equipment" can be
regarded as an MT system and "data" the Rolls-Royce Maintenance Manual. For an
ideal experiment, a complete MT system with users to try the results on would be
required. As a complete MT system has not been developed, do the parsers developed

allow a reasonable judgement to be made of the "thesis"?

If a MT system had been developed, for example Metal, the parser developed
would have been constrained to producing output of a particular form, using a
vocabulary of category labels specified, in the main, by Metal. The literature describing
transfer indirect MT systems, such as Metal, of which the parsers developed for this
research would be part, discuss the fact that most outputs from the Analysis Stage are
of syntax tree type, sometimes with semantic information attached that does not alter the
tree topology. As discussed in Chapter 1, the syntax tree, the result of the parsing of
source language is often referred to as the intermediate representation in modular
Machine Translation systems. The output in the form of a syntactic representation

produced from MParserSub and LParserSub can be considered to be an intermediate

192

representation (IR). The intermediate representation, i.e., the syntactic representation is
an abstract structure. As Johnson (1983) states
" The parser should be capable ideally of yielding for a given source lan guage text
a single IR which is unambiguous up to the choice of lexical items in the target
language".
This is a statement which can be easily applied to MParserSub and LParserSub. Both
parsers are deterministic parsers which produce a single output for a given input.
Neither parser produces alternative outputs for the input that has been processed. It is
suggested, therefore, that a full practical MT system not being developed is not
detrimental to the "thesis", as full indirect MT systems are modular with each stage
being considered individually; in this instance, it is the analysis stage. The parsers
developed for this research can compare with parsers from the analysis stage of practical
full transfer indirect MT systems in that they produce output of similar type, i.e., syntax

trees.

Having discussed the "equipment”, the "data" used in the experiment is now
examined. The "data" used is an extract of a Rolls Royce maintenance manual which
can be considered as suitable as it is a sublanguage text. Sublanguage texts have been
tried and tested in systems such as TAUM-Aviation, Logos and BSO. Thus, it may be
reasonably argued that a representative corpus has been used in building both parsing
systems. Johnson (1983) states that a good MT parser will produce only one result to
avoid ambiguities occurring in the translation process that were specific to the source
language. Both MParserSub and LParserSub perform this task, aided by the source
language being a sublanguage, a restricted language with less ambiguous structures and

vocabulary.

In concluding the discussion on the experiment in broad terms, it can be stated that
it uses an input and produces an output which can both be described as reasonable.
Concentrating on specifics of the parsing systems, they can be discussed in terms of the

changes made to the non-sublanguage versions to produce the sublanguage versions and

by comparing both sublanguage parsers.

The discussion begins with grammar. The grammar used in the MParserSub
parsing system differs from that used in MParser; there are amendments to the specifier,
head and complement rule of X bar theory and new grammar rules are added. The
amendments made to the specifier, head and complement rule relate to the fact that
several noun-phrases connected with coordinate structures within the grammar are
dominated by more than one head. These type of grammatical structures were not
catered for by MParser’s grammar. However, the use of more than one head within a
phrase does not go beyond the bounds of X bar theory, as discussed in the literature
with regard to GPSG (Gazdar et al, 1985), which does not rule out its application within

Transformational type grammars.

New rules were added to the original grammar designed for MParser with some
rules superfluous to the sublanguage deleted. The new rules were specifically noun-
phrase rules to deal with the various types of noun-phrases that occurred within the
sublanguage of the Rolls-Royce Aircraft Maintenance Manual. As discussed above, there
is relatively little ambiguity within the Rolls-Royce Aircraft Maintenance Manual. The
changes to the X bar theory and the addition of new rules do not make the grammar any

more ambiguous.

The changes made to produce LParserSub’s grammar from the original LParser are

the addition of rules to cope with the various noun-phrases that occur within the

194

sublanguage. As with MParser, several rules were deleted from LParser as bein g surplus
to requirements. The addition of the new noun-phrase rules were sublanguage specific.

With regard to ambiguity within the grammar, the changes made do not make the

grammar any more ambiguous.

The changes to both non-sublanguage grammars were made to accommodate the
needs of the sublanguage of the Rolls-Royce Aircraft Maintenance Manual. Obviously,
if the original grammars had been used they would not have been adequate for the
processing of the sublanguage. The removal of superfluous rules helps the

understanding of the sublanguage grammars.

The dictionaries of both sublanguage parsing systems were altered radically from
the original non-sublanguage versions. Obviously, the text of the Aircraft Maintenance
Manuals is much more technical than that used in the non-sublanguage versions. A
major change in the type of words held within the dictionaries is the compound nouns.
Although some compound nouns are held as compound nouns, other are processed by
means of the binary relationship functions. It should be noted that in a full MT system
processing of compound nouns in the Transfer Stage would be simpler as compound
nouns would be held as compounds within a SL-TL transfer dictionary to get an
idiomatic translation. However, this does not detract from the method used during

processing in the analysis stage.

The parser software for MParser has not been significantly changed to create
MParserSub. The only changes made to create MParserSub were to cope with
grammatical constituents held within the stack that MParser did not process. The
changes made do not effect processing in any way; thus there is no difference in the

parsing process of MParser and MParserSub. Similarly, the parser software for LParser

195

has not been significantly changed to create LParserSub. The changes made are to cope
with the various noun-phrases that do not occur with LParser’s grammar but do appear
in LParserSub’s grammar. LParser’s method of processing is not different to that of

LParserSub.

Finally, a comparison of the parsers, MParserSub and LParserSub is made. The
comparison is made on the basis of statistical information produced during the parsing
of noun-phrases. The information includes parse times, memory usage and total run
times. All parsers were developed in Quintus Prolog, running on a Sun SPARCstation
linked to a network file server. As this is a practical experiment, theoretical
considerations have not been made regarding times and memory usage, ie., the
statistical information on the parsers has not been gathered in total isolation from

everything else that may be running on the network.

Speed and memory usage for each parse by each parser is measured by invoking
statistics within the program implementation of the parser. The statistics shown relate
to memory usage, run time and garbage collection when sentences have been parsed
within Quintus Prolog, the language used to implement all the parsers. Memory within
Quintus Prolog contains program space, global space which contains global stack and
trail, and local stack. The program space contains compiled and interpreted code,
recorded items and atoms. The local stack contains all the control information and the
variable bindings needed in a Prolog execution. The global stack contains all the data
structures constructed in the execution of the program and the trail contains references
to all the variables that need to be reset when backtracking occurs. The local stack
contains all control information and variable bindings needed in global execution. The

memory shown as ’in use’ is the sum of the spaces for program, global and local areas.

196

"parse took” reflects the cpu time since the last call to staristics, thus it measures parse
time only. ’runtime’ measures all procedures within the program. Garbage collection
reclaims any inaccessible global stack space reducing the need for global stack
expansion. Comparing MParserSub and LParserSub by examining the results of parsing,
it is clear that both parsers can parse all noun-phrases from the manual. The example
parses above in sections 7.4.3 and 7.5.3 are a selection of the different types of
noun-phrases that can be parsed; there are more example parses in Appendix D.
Appendix D also contains all the noun-phrases from the Rolls-Royce Aircraft
Maintenance Manual. The fact that both parsers can parse all noun-phrases is proof of

their effectiveness and goes some way to proving suitability for processing sublanguage.

In the example parses in sections 7.4.3 and 7.5.3 no statistics are given. All
statistics regarding the parses generated from MParserSub and LParserSub are presented
in table 7.1 and table 7.2, respectively. The statistics presented are the averages gained
from 100 sequential repetitions of a parse of each phrase.

The noun-phrases parsed were the following:

1. cowl doors.

2. the engine in flight position.

3. a new seal ring (3).

4. the bolts and self-locking nuts that attach the 7th stage connector

assembly.

197

Noun- Parse | Memory Program Global Run Local
phrase Time | (Total) Space Space Time Space
(sec.) | (Bytes) (Bytes) (Bytes) (Sec.) (Bytes)
1 0.016 338,744 207,680 63,444 0.316 65,508
2 0.033 338,736 207,672 63,444 0316 65,508
3 0.018 338,736 207,672 63,444 0.366 65,508
4 0.024 338,752 207,688 63.444 0.438 65,508
I'able 7.1 MParserSub - Parser Statistics
Noun- Parse | Memory Program Global Local Run
phrase Time | (Total) Space Space Space Time
(sec.) | (Bytes) (Bytes) (Bytes) (Bytes) (Sec.)
1 0.017 368,288 237,772 63,444 65,508 | 0.216
2 0.033 368,836 237,764 63,444 65,508 | 0.933
3 0.019 369,016 237,952 63,444 65,508 | 0.950
4 0.026 369,044 237,980 63,444 65,508 | 2.350

Table 7.2 LParserSub - Parser Statistics

The above statistics are now discussed. All the Prolog code that makes up
MParserSub and LParserSub is compiled before the parsing process commences. The
results show that parse times from LParserSub and MParserSub are more or less similar.
On comparing the memory usage of each parser, it can be seen that LParserSub, on
average, uses 30000 bytes more memory than MParserSub. The extra memory used by
LParserSub is taken up by program space. There is no difference between the Global
Stack space and Local Stack space used by each parser. The differences in full run times
are explained by the fact that the times for LParserSub include reading in the data, while
those for MParserSub do not. Thus it can be said that in practical terms there is no real
difference in speed of the parsers, but, LParserSub does use more program space
For the examples used, in terms of parse

(memory) while producing similar speeds.

times, LParserSub would seem to be slightly more efficient due to the fact that although

198

using more memory it can produce similar parse times to MParserSub. Appendix D

contains more example parses which produce similar statistical results.

None of the parsers have been compared with Non-deterministic Parsers in terms
of structure, speed and memory usage. However, the sublanguage parsers have
demonstrated that they can function similarly to parsers that have been built for practical

MT systems, which, in the main, have been Non-Deterministic parsers.

In conclusion, the experiment can be considered as having demonstrated the point
that it is possible to build a Deterministic Parsing system that is useful for MT.
Although, only noun-phrases have been parsed, they did contain a variety of different
structures, such as verb-phrases, prepositional phrases and relative clauses. However,
it would have been beneficial to test the parsers on more Rolls-Royce text and perhaps

other texts. It would also have been beneficial to plug it into a full MT system.

199

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this section of the final chapter, the aim is to give an overall conclusion to the
work. Evaluation of the project has been discussed in the previous chapter, the findings
of which will be taken into consideration in this section. The evaluation of the project
has, in the main, demonstrated that the aims of the project have been met, i.e.,
deterministic parsers, developed from prototypes, have been built that can parse

sublanguage as part of a MT system.

To recap, the evaluation shows that the sublanguage parsers, MParserSub and
LParserSub, serve as suitable for MT as they meet criteria for MT parsers in that they
use an input and produce an output that is reasonable in MT terms. Having evaluated
the sublanguage parsers in terms of MT, the parsers have been compared to the

prototypes from which they were developed.

Further, the changes to the non-sublanguage parsing systems to produce the
sublanguage versions were related to the needs of the sublanguage. Both grammars used
by LParserSub and MParserSub were amended from the originals by the addition of
more noun-phrase rules, with several rules that were not relevant being deleted.
Changes made to the dictionaries of both original prototypes to produce the dictionaries
for the sublanguage parsers related to the addition of vocabulary related to Rolls-Royce

Aircraft Maintenance Manuals. The dictionaries also had to store compound nouns and

200

information regarding compound nouns. These dictionaries can be considered source
language dictionaries. In a full MT system the Transfer stage of the system would have
a separate dictionary which would handle compound nouns differently because of their
structure in the target language. The actual parsers developed for processing the

sublanguage were changed from the original prototypes only to cope with the structures

of the sublanguage.

Finally, the evaluation considered a comparison of both sublanguage parsers. As
discussed in the previous chapter this includeded comparing speeds and memory usage.
These comparisons showed differences between both parsers in both speed and memory.
The more significant difference is the memory usage with LParserSub using 30000 bytes
more in memory but still producing comparable parse times. this would indicate that
LParserSub is slightly more efficient than MParserSub. The evaluation concluded that
the aims had been demonstrated satisfactorily. Although not compared in speed or
memory usage with non-deterministic parsers, the deterministic parsers developed
demonstrated that they can perform the same function as non-deterministic parser in MT

systems.

8.2 Future and Further Work

As a way of concluding the thesis, future and further work will be discussed. This

discussion will examine aspects of the work which, it is considered, could be extended.

With regard to future work, it is believed that the research, in general, on the use
of Deterministic Parsers on Sublanguage for Machine Translation cannot be expanded.
Each aspect of the research has been considered and developed, and it is believed that

work that needed to be done has been done. In short, it is considered that no other PhD

201

research topic could be developed directly from this research. However, this does not
mean that further work on specific areas within the research topic could not be pursued.

Below aspects of the further work that could be undertaken are discussed.

Firstly, the coverage of both parsers could be extended to include the processing
of all of the text in the sample Rolls-Royce aircraft maintenance manual. The coverage
could be further extended to include a complete Rolls-Royce aircraft maintenance
manual. Extension to the coverage would mean increasing the size of the grammar.
However, extending the coverage to include a complete manual, would test how good
a sample the original sample text was. Overall extension would give a better indication

of the qualities of the parsers developed.

Secondly, the coverage of MParserSub and LParserSub could be extended to
different sublanguages. Examples of sublanguages to which coverage could be extended
are medical records, stock market reports and car hire agency transactions. Extension
of coverage is considered viable, since there is interest in using sublanguages within
Machine Translation systems, especially, sublanguages of a scientific and technical
nature. This could give some further insight into the degree of syntactic limitation of

various sublanguages.

Thirdly, the research project could be extended to a full Machine Translation
system. This would involve building transfer and generation components. The transfer
component would deal immediately with the results of parsing form the analysis stage,
with the generation component processing the results for the transfer stage. It is

considered that this would be an interesting project which could show the practical value

of this research.

202

Finally, an environment could be developed to build a grammar and a grammar
and parse table for MParserSub and LParserSub, respectively. This environment would
prove to be aid to building both parsers in that the tedious work could be removed in

the building of grammars and a parse table from scratch. An environment would make

the whole process simpler and quicker.

8.3 Concluding Remarks

On reaching the end of this thesis, a few final remarks should be made about the
research. The research must be considered a success, in that Deterministic Parsers have
been built that can parse the quite complex sublanguage of an aircraft maintenance
manual. Although, the parsers have been only applied to the noun-phrases of the
sublanguage, these noun-phrases include many other phrase-types in their composition.
The success of these Deterministic Parsers for sublanguage proves the prototypes, from
which they were developed, to be good models. The achievement sought has been

attained.

203

REFERENCES

Aho, A.V.; Johnson, S.C. (1974) LR Parsing. Computing Surveys 6(2) pp 99-124.

Aho, A.V.; Ullman, J.D. (1972) The theory of parsing, translation and compiling, vol
I: parsing. Prentice-Hall.

Archibald, J.; Hancox, P. (1988) A survey of deterministic parsers. In: Applied
Informatics: proceedings of the IASTED International Symposium, Grindelwald,
Switzerland, 16-18 February 1988. ACTA Press. pp 143-146.

Bachenko, J; Hindle, D; Fitzpatrick, E. (1983) Constraining a deterministic parser.
In:Proceedings of the National Conference on Artificial Intelligence, Washington, DC,
22-26 August 1983. AAAL pp 8-11.

Bennett, W.S.; Slocum, J. (1985) The LRC machine translation system. Computational
Linguistics 11(2-3) pp 11-119.

Berwick, R.C. (1982) Locality principles and the acquisition of syntactic knowledge.
Unpublished PhD thesis, Department of Electrical Engineering and Computer Science,
MIT.

Berwick, R.C. (1985) The acquisition of syntactic knowledge. MIT Press.

Briscoe, E.J. (1987) Modelling human speech comprehension: a computational
approach. Ellis Horwood.

Carter, A.W.; Freiling, M.J. (1984) Simplifying Deterministic Parsing. In:Proceedings
of the 10th International Conference on Computational Linguistics and the 22nd Annual
Meeting of the Association for Computational Linguistics, Stanford, 2-6 July 1984. ACL.
pp 239-242.

Chandioux, J. (1976) METEO: An operational system for the translation of public
weather forecasts. /n:Hays, D.G.; Mathias, J. eds Summary proceedings of the FBIS
Seminar on Machine Translation, Rosslyn, VA, 8-9 March 1976. American Journal for
Computational Linguistics. Microfiche 46 pp 27-36.

Charniak, E. (1983) A parser with something for everyone. In:King, M. ed. Parsing
natural language: proceedings of the Second Lugano Tutorial, Lugano, 6-11 July 1983.
Academic Press. pp 117-149.

Chomsky, N. (1957) Syntactic structures. Mouton.

Chomsky, N. (1965) Aspects of the theory of syntax. MIT Press.

Chomsky, N. (1972) Some empirical issues on the theory of Transformational Grammar.
In:Peters, S. ed. Goals of linguistic theory. Prentice-Hall. pp 63-130.

Church, K. (1980) On memory limitations in natural language processing. Unpublished

204

Masters thesis, Laboratory for Computer Science, MIT.

Colmerauer, A. (1970) Les systemes Q Publication Interne nr. 43, TAUM, Universite
de Montreal.

Crystal, D. (1985) A Dictionary of Linguistics and Phonetics. Basil Blackwell Ltd.

De Roeck, A. (1983) An underview of parsing. In:King, M. ed. Parsing natural

language: proceedings of the Second Lugano Tutorial, Lugano, 6-11 July 1983.
Academic Press. pp 3-17.

Downing, P; (1977) On the creation and use of English compound nouns. Language
53(4) pp 810-842.

Earley, J. (1970) An efficient, context-free parsing algorithm. Communications of the
ACM 6(8) pp 451-455.

Fischer, C.N.; Leblanc, R.J. (1988) Crafting a compiler. Benjamin-Cumming.

Fitzpatrick, E; Bachenko, J; Hindle, D. (1986) The status of telegraphic sublanguages.
In:Grishman, R.; Kittredge, R. eds. Analyzing language in restricted domains:
sublanguage description and processing. Lawrence Erlbaum. pp 39-53.

Gazdar, G.; Klein, E.; Pullum, G.; Sag, 1. (1985) Generalized Phrase Structure
Grammar. Blackwell.

Hindle, D. (1983) Deterministic parsing of syntactic non-fluencies. /n: Proceedings of
the 21st Annual Meeting of the Association for Computational Linguistics, Cambridge,
Mass, 15-17 June 1983. ACL. pp 123-128.

Hutchins, W.J. (1982) The evolution of machine translation systems. /n:Lawson, V. ed.

Practical experience of machine translation: proceedings of a conference, London, 5-6
November 1981. North-Holland. pp 21-37.

Hutchins, W.J. (1986) Machine translation: past, present, future. Ellis Horwood.

Isabelle, P; Bourbeau, L. (1985) TAUM-Aviation: its technical features and some
experimental results. Computational Linguistics 11(1) pp 18-27.

Jackendoff, R. (1977) X bar syntax: a study of phrase structure. MIT Press.

Johnson, R (1983) Parsing - an MT Perspective. /n:
Sparck-Jones, K.; Wilks, Y., eds. Automatic Natural Language Parsing. Ellis Horwood.

Kay, M. (1973) The MIND system. In:Rustin, R. ed. Natural language processing:
Courant Computer Science Symposium 8, 20-21 December 1971. Algorithmics Press. pp
155-158.

King, M. (1982) Eurotra: an attempt to achieve multilingual MT. /n:Lawson, V. ed.
Practical experience of machine translation: proceedings of a conference, London, 5-6

205

November 1981. North-Holland. pp 139-147.

Kittredge, R.; Lehrberger, J. (1982) Introduction. In:Kitredge, R.; Lehrberger, J. eds.
Sublanguage: studies of language in restricted semantic domains. de Gruyter. pp 1-7.

Kittredge, R. (1982) Variation and homogeneity of sublanguages. In:Kittredge, R.;

Lehrberger, J. eds. Sublanguage: studies of language in restricted semantic domains. de
Gruyter. pp 107-137.

Kittredge, R. (1987) The significance of sublanguage for automatic translation.

In:Nirenburg, S. ed. Machine translation: theoretical and methodological issues.
Cambridge University Press. pp 59-67.

Kwasny, S.C.; Sondheimer, N.K. (1981) Relaxation techniques for parsing grammatically
ill-formed input in natural language understanding systems. American Journal of
Computational Linguistics 7(2) pp 99-1009.

Lehrberger, J. (1982) Automatic translation and the concept of sublanguage.

In:Kittredge, R.; Lehrberger, J. eds. Sublanguage: studies of language in restricted
semantic domains. de Gruyter. pp 81-106.

Lehrberger, J. (1986) Sublanguage analysis /n:Grishman, R.; Kittredge, R. eds. Analyzing
language in restricted domains: sublanguage description and processing. Lawrence
Erlbaum. pp 19-39.

Lesmo, L; Magnini, D; Torasso, P. (1981) A deterministic analyzer for interpretation of
natural language commands. In.: Proceedings of the 7th International Joint Conference
on Artificial Intelligence, Vancouver, 24-28 August 1981. IJCAL pp 440-442.

Levi, J.N. (1978) The syntax and semantics of complex nominals. Academic Press.

Maas, H.D. (1984) The MT system SUSY. Presented at:ISSCO tutorial on Machine
Translation, Lugano, 2-6 April 1984.

Marcus, M.P. (1980) A theory of syntactic recognition for natural language. MIT Press.
Marcus, M.P. (1985) Deterministic parsing and description theory. /n:Whitelock, P. et
al. eds. Alvey/ICL Workshop on Linguistic Theory and Computer Applications,
Manchester, September 1985. Centre for Computational Linguistics, UMIST. pp 49-75.

Matsumoto, Y. et al. (1983) BUP: a bottom-up parser embedded in Prolog.
New Generation Computing 1(1) pp145-158

Milne, R.W. (1982) Predicting garden path sentences. Cognitive Science 6(4) pp
349-373.

Milne, R. (1983) Resolving lexical ambiguity in a deterministic parser. Unpublished PhD
thesis, Department of Artificial Intelligence, University of Edinburgh.

Milne, R. (1986) Resolving lexical ambiguity in a deterministic parser. Computational

200

Linguistics 12(1) pp 1-12.

Nozohoor-Farshi, R. (1986) On formalization of the Marcus parser. In:Proceedings of
the 11th International Conference on Computational Linguistics and the 24th Annual

Meeting of the Association for Computational Linguistics, Bonn, 25-29 August 1986.
ACL. pp 533-535.

Pereira, F.C.N.; Warren, D.H.D. (1980) Definite Clause Grammars for language analysis:
a survey of the formalism and a comparison with Augmented Transition Networks.
Artificial Intelligence 13(3) pp 231-278.

Pereira, F.C.N. (1985) A new characterization of attachment preferences. /n:Dowty,
D.R.; Kartunnen, L; Zwicky, A.M. eds. Natural language parsing: psychological,
computational and theoretical perspectives. Cambridge University Press. pp 307-319.

Radford, A. (1981) Transformational Syntax: a Student’s Guide to Extended Standard
Theory. Cambridge University Press

Sabah, G; Mohamed, R. (1983) A deterministic syntactic-semantic parser.
In:Proceedings of the 8th International Joint Conference on Artificial Intelligence,
Karlsruhe, 8-12 August 1983. IJCAL pp 707-703.

Sager, N. (1986) Sublanguage: linguistic phenomenon, computational tool. /n:Grishman,
R.; Kittredge, R. eds. Analyzing language in restricted domains: sublanguage description
and processing. Lawrence Erlbaum. pp 1-19.

Sells, P. (1985) Lectures on contemporary syntactic theories. CSLI.

Shieber, S. (1983) Sentence disambiguation by a shift-reduce parsing technique. /n:
Proceedings of the 21st Annual Meeting of the Association for Computational
Linguistics, Cambridge, Mass, 15-17 June 1983. ACL. pp 113-118.

Shieber, S. (1985) An Introduction to Unification-Based Approaches to Grammar.
Presented as a Tutorial Session at the 23rd Annual Meeting of the Association for
Computational Linguistics, University of Chicago, July 8, 1985. ACL.

Shieber, S. (1985a) Using Restriction to Extend Parsing Algorithms for Complex-
Feature-Based Formalisms. In: Proceedings of the 23rd Annual Meeting of the
Association for Computational Linguistics, University of Chicago, July 8-11, 1985. ACL.
pp 145-152.

Shipman, D.W; Marcus, M.P. (1979) Towards minimal data structures for deterministic
parsing. In:Proceedings of the G6th International Joint Conference on Artificial
Intelligence, Tokyo, 20-23 August 1979. 1JCAL pp 815-817.

Slocum, J. (1981) A Practical Comparison of Parsing Strategies. /n:

Proceedings of the 19th Annual Meeting of the Association for Computational
Linguistics, Stanford University, 29June - | July. ACL. pp 1-6.

Slocum, J. (1984) Metal: The LRC machine translation system. Presented at:I1SSCO

207

tutorial on Machine Translation, Lugano, 2-6 April 1984.

Slocum, J. (1985) A survey of machine translation: its history, current status and future
prospects. Computational Linguistics 11(1) pp 1-17.

Slocum, J. (1988) Machine translation systems. Cambridge University Press.

Tomita, M. (1986) Efficient parsing for natural language: a fast algorithm for practical
systems. Kluwer Academic.

Tucker, A. (1987) Current strategies in machine translation research and development.

In:Nirenburg, S. ed. Machine translation: theoretical and methodological issues.
Cambridge University Press. pp 22-41.

Varile, G. (1983) Charts: a data structure for parsing. /n:King, M. ed. Parsing natural

language: proceedings of the Second Lugano Tutorial, Lugano, 6-11 July 1983.
Academic Press. pp 73-87.

Winograd, T. (1972) Understanding natural language. Edinburgh University Press.
Winograd, T. (1983) Language as a cognitive process, vol 1: syntax. Addison-Wesley.

Woods, W.A. (1970) Transition network grammars for natural language analysis.
Communications of the ACM 13(10) pp 591-606.

208

APPENDIX A

This appendix contains the code for MParser and its grammar rules. The code below

represent the parsing rules.

/*Top level rule which invokes the processing of the sentence, calling rules to prepare the
sentence for parsing, initiating the parsing mechanism and returning the result of the parse*/

start(S):-readin(S).

input(Sentence,S):- statistics(runtime,_),
enter(Sentence, Buffer, Stack),

prep(Buffer, Stack, Newbuffer, Newstack),,
parse(Newstack,Newbuffer,S),
statistics(runtime,[,T]),

format('parse took ~3d sec.~n’,[T]).

/*This rule, called by ‘input’, enters the first two words of the sentence into the two cell
lookahead buffer.*/

enter([First, Second | R], [[First, Second] IR], _S).

/*This rule, called by "input’, prepares the stack for the parsing of the word in the first buffer
cell.*/

prep(Buffer, Stack, Newbuffer, Newstack):-
create_max(xmax, Stack, New$S),
perc_features(Buffer, NewS, NewS1),
add_template(Buffer, _Template, NewS1,NewS2),
add_features(NewS2, Features,NewS3),
pre_test(Buffer, NewS3, Newbuffer, Newstack).

/*This rule, called by "prep’, ‘act_create_node’ and “drop’ places the term "xmax’, which signifies
that the phrase is a maximal, in the stack*/

create_max(Maximal, [], [[Maximal]]).

create_max(Maximal,[Ca | Reststack],[[Maximal],Ca | Reststack]).

/*This rule, called by ‘prep’, ‘act_create_node’ and ‘drop’ percolates the features of the word
in the first buffer cell into the stack, except if the first word is a specifier, eg determiner, then

the features of the head of a phrase beginning with a specifier are placed in the stack, eg
noun.*/

perc_fea tures([[[[_word, -n+v-a+p’,_Pn,tense],[_word, +n-v+a-p’,sgl],_]1_],[[Maximal]],[[Maxi
mal,’-n+v-a+p’]]).

perc_features([[[[_word,"+n-v+a-p’,sgl[_word,"n+v+a+p’]],[be/-n+v]] | _][[Maximal] IR],[[Ma
ximal,’-n+v+a+p’] I R]).

perc_features(|[[_word, "+n-v-a-p’|,_] | _L[[Maximal]] [[Maximal, ‘+n-v+a-p’]]).

209

perc_features([[[_word, “+n-v+a+p’l,_] | _][[Maximall],[[Maximal, "+n-v+a-p’]]).

perc_features([[[_word, +n-v+a-p’,pn],_] | _][[Maximal]],
[[Maximal,’+n-v+a-p’]]).

perc_features([[[_word, +n-v+a-p’],_] | _],[[Maximal]],
[[Maximal,’+n-v+a-p’]]).

perc_features([[[_word,Features],]!],[[Maximal]],
[[Maximal,Features]]).

perc_features([[[[word,-n+v’, '~ tense] [_word,-n+v+a+p’]],
_word1,’-n+v’,_PN, Tense]] IJ,[[Maximal]],[[Maximal,’-n+v+a+p’]]).

perc_features([[[[_word,’-n+v',’-’,tense],[ﬂword,’-n+v+a+p’
1], [[Lword1,’-n+v’,_PN,_Tense],[_word1,’-n+v+a+pl]]1_], [[Maximal]],[[Maximal,’-n+v+a+p’]]).

perc_features([[[_word, "-n+v/, _PN, _Tense],
11]L[[Maximal]],[[Maximal, -n+v’]]).

perc_features([[[_word, ’-n+v’], [_wordl, _Features, _PN, _Tense]]l],

[[Maximal] | Reststack],[[Maximal, -n+v’] | Rests
tack]).

perc_features([[[_word,’-n+v+a+p’,’+' tense],[_word1,_Features, PN, Tense]]|],[[Maximal] IR
eststack],[[Maximal, "-n+v+a+p’] | Reststack]).

perc_features([[[xmax,_S,_F], [[Wordl,_Features,sg], [Wordl, Features1]]]|_],
[[Maximal]],[[Maximal, Featuresl]]).

perc_features([[[xmax,_S, F|], [_wordl, Features, _PN, _Tense]]l_],
[[Maximal] | Reststack],[[Maximal, Features] | Reststack]).

perc_features([[[_word, ‘+n-v-a-p’l, _Second]l_], [[Maximal] | Reststack],[[Maximal,
‘+n-v+a-p’] | Reststack]).

perc_features([[[[_word, +n-v-a-p’],[_word, -n-v+a+p’]],[_W, +n-v+a-p’,sgll | _],[[Maximal] | Res
tstack],[[Maximal, "+n-v+a-p’] | Reststack]).

perc_features([[[[_word, +n-v-a-p’][_word,’-n-v+a+p’]],[_W, +n-v+a-p’,pll] | _],[[Maximal] | Res
tstack],[[Maximal,’-n-v+a+p’] | Reststack]).

perc_features([[[[_word, +n-v-a-p’],[_word,’-n-v+a+p’]],_] | _],[[Maximal] | Reststack],[[Maximal,
"-n-v+a+p’] | Reststack]).

perc_features([[[[_word,’ +n-v-a-p’],[_word,’-n-v+a+p’]],[_LW, +n-v+a-p’,pn]l | _],[[Maximal] | Re
ststack],[[Maximal,’-n-v+a+p’'] | Reststack]).

perc_features([[[[_word, +n-v-a-p’] [_word,’-n-v+a+p’]L[_W, +n-v-a-p’]] | _],[[Maximal] | Reststa
ck],[[Maximal,’-n-v+a+p’] | Reststack]).

perc_features([[[_word, ’+n-v+a+p’], _Second]!_], [[Maximal] | Reststack],[[Maximal,
‘+n-v+a-p’] | Reststack]).

perc_features([[[_word, “+n-v+a-p’,_SP], _Second]l], [[Maximal] | Reststack],[[Maximal,
‘+n-v+a-p’] | Reststack]).

perc_features([[[_word, ‘+n-v+a-p’,pnl, _Second]!], [[Maximal] | Reststack],[[Maximal,

210

"+n-v+a-p’] | Reststack]).

perc_features([[[_word, Features|,]I],
[[Maximal] | Reststack],[[Maximal, Features] | Reststack]).

perc_features([[[_word, Features, PN, _Tense], _]|_],[[Maximal]lReststack],[[Maximal,
Features] | Reststack]).

perc_features([[[xmax,[_Rulename,_word],_Features],[[_wordl,
_Featuresla),[_word1,Features1]]] | _],[[Maximal] | Reststack],[[Maximal, Features1] | Reststack]).

perc_features([[[xmax, [_Rulename, _word],_Features],[_wordl,
Features1]]!_],[[Maximal] | Reststack],[[Maximal, Features1] | Reststack]).

/* This rule, called by ‘prep’,’act_create_node’ and ‘drop’ places a template in the stack which
describes the function of the word or phrase in the first cell, eg specifier, head, or complement.
On ocassions it is also necessary toconsider the 2nd buffer cell and/or the stack.*/

add_template([[[_word, “+n-v+a+p’]l,_]1_], [spec_ head, comp][[xmax, Features]|Reststack],
[[xmax, Features,[spec_, head, comp]] | Reststack]).

add_template([[[_word, ‘+n-v-a-p’],_]1_], [spec_, head, compl,[[xmax, Features]|Reststack],
[[xmax, Features,[spec_, head, comp]] | Reststack]).

add_template([[[[_word,’+n-v-a-p’l[_word,’-n-v+a+p’]LI_W, +n-v+a-p’,sgll | _][spec_, head,
comp),[[xmax, Features] | Reststack], [[xmax, Features,[spec_, head, comp]] | Reststack]).

add_template([[[[_word,'-n+v',_PN,_TI,{_word,'-n+v+a+p’]],[_W,’-n+v’,_PN1,__T1 111_l.[spec,
head_, compl,[[xmax, Features] | Reststack], [[xmax, Features,[spec, head_, comp]] | Reststack]).

add_template(lll[_WOrd,’+n-v+a-p’,sg],[_word,’-n+v+a+p‘l],[be,’-n+v’]l | _],[spec, head_,
compl,[[xmax, Features] | Reststack], [[xmax, Features [spec, head_, comp]] | Reststack]).

add_template(([[[_word,"-n+v’,_PN,_T],[_word,’-n+v+a+p’ll,
[W,/-n+v’,_PN1,_T1L[_W,-n+v+a+p’ll] | _]Ispec, head_, comp],[[xmax, Features]|Reststack],
[[xmax, Features,[spec, head_, compl]] | Reststack]).

add_template([[[[_word, +n-v-a-p’][_word,’-n-v+a+p’]],[_LW, +n-v+a-p"plll | I [spec_ head,
compl,[[xmax, Features] | Reststack], [[xmax, Features,[spec, head_, compl] | Reststack]).

add_template([[[[_word,’+n-v-a—p‘],[_word,'-n-v+a+p’]l,_]I_],[spec“_, head, comp],[[xmax,
Features] | Reststack], [[xmax, Features,[spec, head_, compl] | Reststack]).

add_template(([[[_word, +n-v-a-p’],[_word,’-n-v+a+p']L[_LW, +n-v+a-p’,pnll |] [spec_ head,
comp),[[xmax, Features] | Reststack), [[xmax, Features,[spec, head_, comp]] | Reststack]).

add_template({[[[_word,'+n-v-a—p’],!_word,’-n-v+a+p’]],[_W,'+n-v+a-p’,pll] | l[spec_ head,
compl],[[xmax, Features] | Reststack], [[xmax, Features,[spec_, head, comp]] | Reststack]).

add_template([[[[_word, -n+v-a+p’,_PN,_T],[_word,"+n-v+a-p’,sgll.L_ W, +n-v-a-pll1_l [spec_
head, comp],[[xmax, Features] | Reststack], [[xmax, Features,[spec_, head, comp]] | Reststack]).

add_template((([_word, ‘-n+v’, "+, tense], _Second]!_l, [spec_, head, comp],[[xmax, Features]],
[[xmax, Features, [spec_ head, compl]])).

add_template(([[_word, '-n+v’, PN, _Tensel,_]I_][spec_, head, compl],[[xmax,

Features],[xmax,[altach_wh_comp,E],F,T,wh]], [[xmax,
Feamres,[spec_,head,compl].[xrnax,lattach__wh_comp,E],F,T,wh]]).

211

add_template([[[_word, “-n+v’, _PN, _Tensel,_]1_],[spec, head_, comp],[[xmax,
Features] | Reststack], [[xmax, Features,[spec, head_, comp]] | Reststack]).

add_template([[[_word, "-n+v-a+p’, PN, _Tense],]|], [spec_, head, comp],[[xmax, Features]],
[[xmax, Features,[spec_, head, compl])).

add_template([[[_word, ‘-n+v’, PN, _Tense],_]|_],[spec, head_, comp],[[xmax,
Features] | Reststack], [[xmax, Features,[spec, head_, comp]] | Reststack]).

add_template([[[_word, "-n+v-a+p’, PN, _Tense), ||], [spec_, head, compl],[[xmax, Features]],
[[xmax, Features,[spec_, head, compl]])).

add_template([[[_word, ‘n+v-a+p’, PN, _Tense],]!_], [spec, head_ comp],[[xmax,
Features] | Reststack], [[xmax, Features,[spec, head_, comp]] | Reststack]).

add_template(([[_word, "-n+v+a+p’, _PN, Tense],]|], [spec_, head, comp],[[xmax, Features]],
[[xmax, Features,[spec_, head, comp]]]).

add_template([[[_word, ‘-n+v+a+p’, _PN, _Tense],]| _], [spec, head_ compl],[[xmax,
Features] | Reststack], [[xmax, Features [spec, head_, comp]] | Reststack]).

add_template([[[_word, "-n+v’][_w1, +n-v+a-p’ll|_], [spec_, head, comp],([xmax, Features]],
[[xmax, Features,[spec_, head, compl]]]).

add_template([[[_word, ‘n+v'][_wl, +n-v-a-p’]]| _], [spec_, head, comp][[xmax, Features]],
[[xmax, Features,[spec_, head, comp]|]).

add_template([[[_word,’-n+v+a+p’l[_w1, +n-v+a-p’,_PL]]|_],[spec_, head, compl,[[xmax,
Features] IR], [[xmax, Features,[spec_, head, comp]] IR]).

add_template([[[_word, "-n+v+a+p’][_w1,+n-v-a-p’]] | _], [spec_, head, comp],[[xmax, Features]],
[[xmax, Features,[spec_, head, comp]]]).

add_template([[[_word, "-n+Vv’],_]|_], [spec, head_, comp],[[xmax, Features] | Reststack], [[xmax,
Features,[spec, head_, comp]] | Reststack]).

add_template([[[_word, "n+v+a+p’],_]|_], [spec, head_, comp],[[xmax, Features]|Reststack],
[[xmax, Features,[spec, head_, comp]] | Reststack]).

add_template([[[xmax, _S, ’‘+n-v+a-p’],_Second]!l_], [spec_, head,
comp],[[xmax,Features] | Reststack], [[xmax, Features,[spec_, head, comp]] | Reststack]).

add_template([[[xmax,_S, "-n-v+a+p’],[_Word, "-n+v’,_PN,_Tense]] | _],[spec_, head, comp],
[xmax,Features] | Reststack], [[xmax, Features,[spec_, head, comp]] | Reststack]).

add_template([[[_word, "-n-v+a+p’],_Second] | _],[spec, head_, comp],[[xmax,Features] | Reststack],
[[xmax, Features,[spec, head_, comp]] | Reststack]).

add_template([[[_word, "-n-v’],_Second]!|_] [spec, head_, comp][[xmax,Features]!Reststack],
[[xmax, Features,[spec, head_, comp]] | Reststack]).

add_template([[[_word, "+n-v+a-p’,pn],_]1_], [spec, head_, comp],[[xmax, Features] | Reststack],
[[xmax, Features,[spec, head_, comp]] | Reststack]).

add_template([[[_word, “+n-v+a-p’,_SP],_]|_], [spec, head _, comp],[[xmax, Features] | Reststack],
[[xmax, Features,[spec, head_, compl]] | Reststack]).

/*This rule, called by 'prep’, amends certain features after percolation which would not be the

212

correct descriptions of word or phrase.*/

add_features([[xmax, "-n+v’, [spec_ head, comp]] | Reststack], *-n+v’, [[xmax, "-n+v+a+p’, [spec_,
head, comp]] | Reststack)).

fidd_features([[xmax, ‘n+v-a+p’, [spec_, head, comp]] | Reststack], ‘n+v-a+p’, [[xmax,
-n+v+a+p’,[spec_, head, comp]] | Reststack]).

add_features([[xmax, "-n+v’, [spec, head_, comp]] | Reststack], ‘-n+v’, [[xmax, -n+v-a+p’,[spec,
head_, comp]] | Reststack])).

add_features([[xmax, "-n+v’, [spec, head, comp_]] | Reststack], "-n+v’, [[xmax, "-n+v-a+p’ [spec,
head, comp_]] | Reststack]).

add_fea tures([[xmax,’-n-v+a+p’,[spec_,head,comp]] | Reststack], ‘-n-v+a +p’,
[[xmax,’-n+v+a+p’,[spec_head,comp]] | Reststack]).

add_features([[xmax, Features, Template]l Reststack],
Features,[[xmax,Features, Template] | Reststack]).add_features([[xmax,Features, Template] | Rests
tack],_Featuresl,[[xmax,Features, Template] | Reststack]).

/*This recursive rule invokes the parsing mechanism, calling on the ‘grammar_rule’, which
invokes the grammar, and "process’ which manipulate the stack and buffer. If no grammar rules
fire the rule “drop’ is invoked.*/

parse([], Buffer, Buffer).parse(Stack, Buffer, P):-
grammar_rule(Rulename, Stack, Buffer, News, Newb),
process(Rulename,News,Newb,Newstack, Newbuffer),parse(Newstack, Newbuffer, P),!.

parse(Stack, Buffer,P):-
drop(Stack, Buffer, Newstack, Newbuffer),

parse(Newstack,Newbuffer,P),!.

/*This rule, called by parse, processes further the stack and buffer to be in the proper state for
the parsing of next phrase or word.*/

process(Rulename,Stack,Buffer, Newstack, Newbuffer):-
annotate_node(Rulename, Stack, NewS1),
amend_stack(NewS1,Buffer, NewS2),
amend_template(NewS2, Buffer, NewS3),
act_create_node(NewS3, Buffer, NewS4),
pre_test(Buffer NewS4,Newbuffer, Newstack).

/*This rule, called by "process’, adds the name of the grammar rule just fired to the word or
phrase in the stack.*/

annotate_node(Rulename, [[xmax, [xmax, Entry Featuresl], Features,
Template] | Reststack],[[xmax, [Rulename, [xmax,Entry,Featuresl]], Features,
Template] | Reststack]).

annotate_node(passive, [[xmax,[Rulename,Entry] Features, Template,Ty] | Reststack],
[xmax,[passive,[Rulename,Entry]], Features, Template, Ty] | Reststack]).

annotate_node(Rulenamel,[[xmax,[[Rulename, Entry],Entry1],Features, Template] | Reststack],
[xmax,[[Rulename,Entry] [Rulenamel,Entry1]], Features, Template] | Reststack]).

annotate_node(Rulename, [[xmax, Entry, Features, Template] | Reststack],[[xmax, [Rulename,

213

Entry], Features, Template] | Reststack]).

annotate_node(Rulename1,[[xmax,[[Rulename,Entry], Entry1 |, Features, Template, Type] | Reststa
ckl, [xmax,[[Rulename, Entry],[Rulenamel,Entry1]],Fea tures, Template, Type] | Reststack]).

annotate_node(_Rulename,[[xmax,Featu res,Template] | Reststack],[[xmax, Features,
Template] | Reststack]).

annotate_node(_Rulename,[[xmax,S,Featu res, Template, Ty] | Reststack],[[xmax, S,Features,
Template, Ty] | Reststack]).

/*This rule, called by “process’, checks types of verbs and wh words and adds description to
the stack.*/

amend_stack([[xmax,[attach_wh_comp,[Word, F]] Feat, Temp] | Reststack] Newbuffer,Newstack):-
check_type(Word, Type),

amend_stack1([[xmax,lattach_wh_comp,[Word,F]],

Feat,Temp] | Reststack], Type Newstack).

amend_stack([[xmax,[attach_verb,[Word,F,PN,Tense]], Feat, Temp] | Reststack],_Newbuffer,
Newstack):-

check_type(Word, Type),
amend_stack1([[xmax,[attach_verb,[Word,F PN, Tense]],
Feat,Temp] | Reststack], Type,Newstack).
amend_stack(Stack, Buffer Stack).

/*This rule, called by amend_stack checks type of verb or wh word.*/
check_type(Word, Type):-word_type(Word, Type).
/*This rule, called by "amend_stack’ adds description of word to stack.*/

amend_stack1([[xmax,[attach_wh_comp,[Word,F]] Feat,Temp] | Reststack], Type,
[xmax,[attach_wh_comp,[Word, F]],Feat, Temp, Type] | Reststack]).

amend_stack1([[xmax,[attach_verb,[Word,F,PN,Tense]],Feat, Temp] | Reststack], Type,
[xmax,[attach_verb,[Word,F,PN,Tense]],Feat, Temp, Type] | Reststack]).

/*This rule, called by ’"process’, either moves the template’s function word pointer to the
succeeding function word, keeps pointer at same position or moves it from comp to spec, by
looking at stack and buffer.*

/amend_template([[xmax, Structure, Features,[spec_, head, comp]] | Reststack],[[[_Word]1,
'+n-v+a-p’,_SP], _Second] ! _Rest], [[xmax, Structure,Features,[spec, head_, comp]] | Reststack]).

amend_template([[xmax, Structure, Features, [spec_, head, comp]] | Reststack],[[[[W,
‘+n-v+a-p’,sglLIW, ‘n+v+a+p’ll, [LW2-n+v’]]1_Rest] [[xmax, Structure Features [spec, head_,
comp]] | Reststack]).

amend_template([[xmax, Structure, Features[spec_ head, comp]] | Reststack],[[[[W,
‘miv-a+p’,~,_TLIW, “+n-v+a-p’,_SPll, [LW2,/ -n+v']||_Rest] [[xmax, Structure Features,[spec,
head_, comp]] | Reststack]).

amend_template([[xmax, Structure, Features, [spec_, head, comp]] | Reststack],[[[[W1,
v, +,sLIWT, ‘+n-v+a-p’,_SPIl, [_W2,-n+v']] | _Rest], [[xmax, Structure,Features,[spec, head_,
compl] | Reststack]).

amend_template([[xmax, Features, [spec_, head, comp]] | Reststack],[[_First, _Second] | _Rest],

214

[[xmax, Features [spec_, head, comp]] | Reststack]).

amend_template([[xmax, Features, [spec, head, comp_]] | Reststack],[[_First, _Second] | _Rest],
[[xmax, Features,[spec, head, comp_]] | Reststack]). -

amend _template([[xmax,St, Features,
Template,Ty]1Reststackl,_Newbuffer,Newstack):-equal{'-n+v-a+p’,
Features),change_templatel([[xmax,St,Features, Template, Ty] | Reststack],Newstack).

amend_template(l[xmax,St,Feamres,Template,Ty] | Reststack], Newbuffer, Newstack):-
e q u a 1 (¢ - n - v + a -2 p ’
Features),change_templatel([[xmax,St,Features, Template, Ty] | Reststack],Newstack).

amend_template([[xmax, S, Features, Template] | Reststack],_Newbuffer Newstack):-
equal(’+n-v+a+p’,Features),change_template1([[xmax,S,Features, Template] | Reststack],Newstack).

amend_template([[xmax, S, Features, Template] | Reststack],_Newbuffer, Newstack):-
equal(’+n-v-a-p’,Features),change_templatel([[xmax,S,Features, Template] | Reststack], Newstack).

amend_template([[xmax, [passive, Entry], Features, Template] | Reststack],_Newbuffer,Newstack):-
equal('-n+v-a+p’,Features),
hange_templatel([[xmax,[passive Entry| Features, Template] | Reststack] Newstack).

amend_template([[xmax, [wh_insert,Entry] Features, Template, Ty] | Reststack],_Newbuffer,New
stack):-

equal(-n+v-a+p’, Features),

hange_templatel([[xmax,[wh_insert,Entry] Features, Template,Ty], | Reststack], Newstack).

amend_template([[xmax, [Rulename, Entry], Features,
Template] | Reststack],_Newbuffer Newstack):-member(’+n-v+a-p’, Entry),
hange_template1([[xmax,[Rulename, Entry] Features, Template] | Reststack] Newstack).

amend_template([[xmax, [Rulename, Entry], Features,
Template] | Reststack],_Newbuffer Newstack):-member(’-n+v+a+p’, Entry),
hange_template1([[xmax,[Rulename,Entry],Features, Template] | Reststack],Newstack).

amend_template([[xmax,S,Features, Template] | Reststack],_Newbuffer,Newstack):-
equal(-n+v+a+p’,Features),change_template1([[xmax,S,Features, Template] | Reststack],Newstack).

amend_template([[xmax, St, Features,
Template]|ReststackI,_Newbuffer,Newstack):-equal(’-n-v+a+p’,
Features),change_template1([[xmax,St,Features, Template] | Reststack],Newstack).

amend_template([[xmax, [Rulename, Entry], Features,
Template] | Reststack],_Newbuffer, Newstack):-member(’+n-v-a-p’, Entry),
hange_template([[xmax,[Ru!ename,Entry],Fearures,Ternplate] | Reststack],Newstack).

amend _ temwplate [[x max, S ;
Features, Template] | Reststack],[[[_Word,_F,_PD],_Second] | _R],Newstack):-
equal('+n-v+a-p’ Features),change_template([[xmax,S, Features, Template] | Reststack] Newstack).

amend_template([[xmax,S, Features, Template] | Reststack],
[[_Word, +n-v+a+p’]l,_Second] | _R],Newstack):-equal("+n-v+a-p’, Features),
hange_template([[xmax,S,Features, Template] | Reststack], Newstack).

amend_template([[xmax, [Rulename, Entryl], Features,

Template] | Reststack], Newbuffer Newstack):-
member(’-n+v’,Entry), hange_templatel ([xmax[Rulename Entry} Features, Template] | Reststack] Newstack).

215

amend_template([[xmax, [Rulename, Entryl, Features, Template]|Reststack],

_NewbufferNewstack)-e¢ m b e r (* - n + v - a =+ p .

Entry),change_temp]atel([[xmax,{Rulename,Entry],Features,Template] | Reststack],ewstack).

amend _template([[xmax, [Rulename, Entry], Features,
Template] | Reststack],_Newbuffer Newstack):-
member(’-n-v’, Entry),

change_templatel([[xmax,[Rulename,Entry],Features, Template] | Reststack],Newstack).

amend_template([[xmax,S,Features, Template] | Reststack],_Newbuffer,Newstack):-

equal("-n+v-a+p’, Features), change_template1([[xmax,S,Features, Template] | Reststack],
Newstack).
a m e n d _ t e m plate ([[x max , S,

Features,Template] | Reststack], _Newbuffer,Newstack):-equal(’-n+v+a+p’,
Features),change_template1([[xmax,S,Features, Template] | Reststack], Newstack).

a m e n d _ t e m pl at e ([[x max , S,
Features,Template] | Reststack],_Newbuffer, Newstack):-equal('-n-v+a+p’,
Features),change_templatel([[xmax,S,Features, Template] | Reststack], Newstack).

amend_template([[xmax,[S,[attach_relative_clause,E]],
Features, Template] | Reststack],_Newbuffer, Newstack):-equal(’+n-v+a-p’, Features),
hange_template1([[xmax,[S,[attach_relative_clause, E]], Features, Template] | Reststack],Newstack).

a m e nd _ t e m pl at e ([[x max , S,
Features,Template] | Reststack],_Newbuffer,Newstack):-equal("+n-v+a-p’,
Features),change_templatel([[xmax,S,Features, Template] | Reststack], Newstack).

amend_template([[xmax, S, Features, Template] | Reststack],_Newbuffer,Newstack):-
equal("-n-v’, Features),
change_template2([[xmax, S,Features, Template] | Reststack], Newstack).

amend_template([[xmax,S, Features, Template] | Reststack],_Newbuffer,Newstack):-
equal(’-n+v’,Features) change_templatel([[xmax,S,Features, Template] | Reststack], Newstack).

/*These rules, called by ‘amend_template’ check features of the buffer.*/
equal(X, X).

member(X, [[X,_Y]|_LJ.

member(X, [[_Y X]I_L]).

member(X, [X | _Tail}).

member(X, [_Head | Tail]):-member(X, Tail).

/*These rules, called by ‘amend_template’ change the pointers.*/

change_template({[xmax,S,Features Template] | Reststack],[[xmax,S, Features, Template] | Reststa
ck).

change_templatel([[xmax,S,Features, [spec_, head, comp]] | Reststack],[[xmax,5,Features, [spec,
head_, comp]] | Reststack]).

change_templatel([[xmax,S,Features, [spec_, head, comp], Type] | Reststack],[[xmax,S,Features,
[spec, head_, comp], Type] | Reststack]).

change_templatel([[xmax,S,Features,[spec, head_, comp]] | Reststack],[[xmax,S, Features, [spec,
head, comp_]] | Reststack]).

change_tcmpiatel(llxmaX.S.Feamrt’S,ESPec. head, comp_]] | Reststack],[[xmax,S,Features,[spec,

216

head, comp_]] | Reststack]).

change templatel([[xmax,S,Features, [spec, head,
comp_],Type] | Reststackl,[[xmax,S,Features,[sPec, head, comp_], Type] | Reststack]).

change_templatel([[xmax,S,Features, [spec, head_, comp],Type] | Reststack],[[xmax,S,Features,
[spec, head, comp_], Typel] | Reststack]).

change_template2([[xmax,S,Features,[5pec, head, comp_]] | Reststack],[[xmax,S,Features,[spec_,
head, comp]] | Reststack]).

/*This rule, called by ‘process’, either keeps nodes of the stack active orcreate new nodes on
the stack depending on the states of the buffer and stack.*/

act_create_node([[xmax,S, "+n-v+a-p’,Template] | Reststack], [[[Word, “n+v-a+p’, '+, ing],
Second] | _Rest],Newstack):-create_max(xmax,[[xmax,S,'+n-v+a-p’,TempIate] | Reststack],NewS2
), erc_features([[[Word1,’-n+v-a+p’,’+,ingl,Second] | Rest],NewS2,NewS3),
dd_template([[[Word1,’-n+v-a+p’,’+’,ing],5ec0nd] |Rest],_Templatel NewS3, Newstack).

act_create_node([[xmax,S, ‘+n-v+a-p’, Template] | Reststack], [[[_Word, ’"-n+v-a+p’, '+, ed],
Second] | _Rest] Newstack):-create_max(xmax,[[xmax,S, +n-v+a-p’, Template] | Reststack],NewS2
), erc_features([[[Word1,’-n+v-a+p’, '+ ed],Second] | Rest],NewS2,NewS3),
dd_template([[[Word1,-n+v-a+p’,+ ,ed] Second] | Rest],_Templatel NewS3, Newstack).

act_create_node([[xmax,S, ’+n-v+a-p’, Template] | Reststack], [[[Word, “+n-v+a-p’],
[Word1,”-n+v’,PN,Tense]] | Rest], Newstack):-last1(S,attach_noun),
reate_max(xmax,[[xmax,S, +n-v+a-p’, Template] | Reststack],NewS2),

erc_features([[[Word, +n-v+a-p’],[Word1,"-n+v’,PN, Tense]] | Rest], NewS2 NewS3),
dd_template([[[Word, +n-v+a-p'l[Word1,’-n+v’ PN, Tense]] | Rest],_Templatel NewS3, Newstack).

act_create_node([[xmax,S, ’+n-v+a-p’,Template] [xmax,S1,’-n+v’,T] | Reststack], [[[Word,
? - n - v + a + p ’] ;
Second] | Rest], Newstack):-create_max(xmax,[[xmax,S,’ +n-v+a-p’, Template],[xmax,51,"-n+v’,T]
Reststack], NewS2),perc_features([[[Word,’-n-v+a+p’],Second] | Rest], NewS2,NewS3),

dd_template([[[Word, -n-v+a+p’],Second] | Rest],_Templatel, NewS3, Newstack).

act_create_node([[xmax,S,’ +n-v+a-p’, Template],[xmax,51,"-n+v-a+p’, T, Ty] | Reststack], [[[Word,
’ . n = v + a + p 7] 4
Second] | Rest],Newstack):-create_max(xmax,[[xmax,S,’ +n-v+a-p’, Template] [xmax,51,'-n+v-a+p
'ITITy]

Reststack] NewS2),perc_features([[[Word,'-n-v+a+p’],Second] | Rest], NewS2 NewS3),
dd_template([[[Word,’-n-v+a+p’],Second] | Rest],_Templatel, NewS3, Newstack).

act_create_node([[xmax,S, +n-v+a-p’, Template] [xmax,S1,"-n+v-a+p’,T, Ty] | Reststack], [[[[Word,
‘+n-v-a-p’],[Word, "-n-v+a+p’]], Second] | Rest] Newstack):-
reate_max(xmax,[[xmax,S,’ +n-v+a-p’, Template],[xmax,51,"-n+v-a+p’,T,Ty] | Reststack] NewS2),
erc_features([[[[Word, +n-v-a-p’],[Word,
‘-n-v+a+p’]],Second] | Rest],NewS2,NewS3),add_template([[[[Word,” +n-v-a-p’],[Word,
"-n-v+a+p’]],Second] | Rest],_Templatel, NewS3, Newstack).

act_create_node([[xmax,S, ’+n-v+a-p’,Template]][[[[Word, ‘+n-v-a-p’],[Word, "-n-v+a+p’l],
Second] | Rest],Newstack):-create_max(xmax,[[xmax,S,’+n-v+a-p’, Template]| NewS2),

erc features([[[[Word, +n-v-a-p’],[Word,
‘-n-v+a+p’l],Second] | Rest], NewS2,NewS3),add_template([[[[Word, +n-v-a-p’],[Word,
‘-n-v+a+p’'l),Second] | Rest], _Templatel, NewS3,

Newstack).act_create_node([[xmax,[attach_embedded_subject,Entry],Features,_Template]
Reststack],Newbuffer,Newstack):-create_max(xmax,[[xmax,[attach_embedded_subject,Entry],F

eatures]

Reststack],NewSZ),perc_features(Newbuffer,NewSZ,NewSS),addﬁtemplate(Newbuffer,_Templa
tel NewS3, NewS4),add_features(NewS4, _Feat,Newstack).

act_create_node([[xmax,S, Features, Template] | Reststack],

[[be,’-n+v',’+’,T],[Word,’-n+v-a+p’,PN,Tense]] | Rest],Newstack):-create_max(xmax,[[xmax,S,Fe
atures, Template] | Reststack],NewS2),perc_features(l[Ibe,'~n+V','+'.T].[Word.'-n+v-a+P',PN,Ten
s e]] | R e s t] ; N e w S 2 ,
NewS3),add_template([[[be,’-n+v’, +,T],[Word,'-n+v-a+p’,PN,Tense]] | Rest],_Templatel, NewS3,
NewS4),acld_feat_spec(NewS4,[[[be,’-n+v’,'+’,T],[Word,’-n+v-a+p',PN,Tense]] I Rest] Newstack).

act_create_node([[xmax,S, Features, Template] | Reststack], [[[be, ‘-n+v’, '+, TI,
_Second] IRest],Newstack):-create_max(xmax,[[xmax,S,Features,Template] | Reststack],NewS2),
erc_features([[[be, "-n+v’, "+, T], _Second] | Rest], NewS2, NewS3),add_template([[[be, "-n+v’, "+,
T], _Second] | Rest],_Templatel, NewS3, Newstack).

act_create_node([[xmax,[attach_subject,Entry], Features,_Templatel], [[[Word, -n+v-a+p’, PN,
Tense], _Second]l_Rest],Newstack):-create_max(xmax,[[xmax,[attach_subiect,Entry],
Features]] NewS2),perc_features([[[Word, -n+v-a+p’,PN,Tense],_Second] | _Rest],NewS2,NewS
3), dd_template([[[Word,’-n+v-a+p’,PN,Tense],_Second]|_Rest],_Templatel, NewS3,
New$4), dd_features(NewS4, -n+v-a+p’, Newstack).

act_create_node([[xmax,[attach_subject E],Features,_Template] | Reststack], [[[Word,’-n+v’],
[Word1,’-n+v-a+p’,’+', Tense]] | _Rest] Newstack):-create_max(xmax,[[xmax,[attach_subject,E],
Features] | Reststack] NewS2),perc_features([[[Word, -n+v’], [Word1, "-n+v-a+p’,/+, Tense]] | Rest],
NewS2, NewS3),add_template([[[Word, ‘-n+v’], [Word1, "-n+v-a+p’, '+, Tense]] | Rest],

-~ & & m p Il a ¥ € 1 ;4 N e w S§ 3 ,
NewS4),add_feat_spec(NewS4,[[[Word, -n+v’][Word1, -n+v-a+p’,’+', Tense]] | Rest] Newstack).
act_create_node([[xmax,[attach_subject,E], Features,_ Template] | Reststack], [[[is, -n+v’, '+,
tense},Second] | _Rest],Newstack):-
reate_max(xmax,[[xmax,[attach_subject,E],Features] | Reststack] NewS2),perc_features([[[is,’n+
v’ '+’ tense],Second] | Rest], NewS2 NewS3),add_template([[[is,"-n+v’, '+’ tense],Second] | Rest],
Templatel NewS3,Newstack).

r,r

act_create_node([[xmax,[attach_subject,E], Features, Template] | Reststack], [[[was, "-n+v’, '+,
tense],Second] | _Rest],Newstack):-

reate_max(xmax,[[xmax,[attach_subject,E] Features] | Reststack],NewS2),perc_features([[[was,’-
n+v’,+ tense],Second] | Rest] NewS2,NewS3),add_template([[[was,’-n+v’,’+' tense],Second] | Re
st], Templatel, NewS3 Newstack).act_create_node([[xmax,[attach_subject,E],
Features,_Template] | Reststack], [[[are, -n+V’, "+, tense],Second] | _Rest],Newstack):-
reate_max(xmax,[[xmax,[attach_subject,E] Features] | Reststack],NewS2),perc_features([[[are,’-n
+Vv’,/+ tense],Second] | Rest],NewS2,NewS3),add_template([[[are, -n+v’,'+' tense] Second] | Rest]
2 Templatel NewS3,Newstack).

act_create_node([[xmax,[attach_subject,E], Features, Template] | Reststack], [[[were, "-n+v’, '+,
tense],Second] | _Rest],Newstack):-

reate_max(xmax,[[xmax,[attach_subject,E] Features] | Reststack] NewS2),perc_features([[[were,’-
n+v’,/+ tense),Second] | Rest] NewS2,NewS3),add_template([[[were,-n+v’,’+" tense] Second] IR
est], Templatel NewS3,Newstack).

act_create_node([[xmax,[attach_subject,Entry], Features,_Template]], [[[Word, "-n+v’, PN, Tense],
_Second] | _Rest] Newstack):-
create_max(xmax,|[lxmax,[attach_subject,Entryl,
Features]],NewS2),perc_features({[[Word,’-n+v’,PN,Tense],_Second] | _Rest] NewS2,NewS3),
dd_template([[[Word,’-n+v’,PN,Tense],_Second] | _Rest], _Templatel, NewS3,
New$4),add_features(NewS4, "-n+v’, Newstack).

act_create_node([[xmax,|attach_subject,Entry], Features, Template]l, [[[Word, FI,
Second] | _Rest] Newstack):-

218

create_max(xmax,[[xmax,[attach_subject,Entry], Features]] NewS2),perc_features([[[Word, FI,
_Second] | _Rest), NewS2 NewS3),add_template([[[Word, F], _Second] | _Rest],_Templatel, NewS3,

ewstack).act_create_node(l[xmax,{attach_subject,Entryl, Features,_Template]], [[[[Word,
F,sgl,[Word,F1]], Second] | _Rest], Newstack):-
create_max(xmax,[[xmax,[attach_subject,Entry], Features]],NewS2),perc_features([[[[Word,
F,sg][Word,F1]], _Second]|_Rest},NewS2,NewS3),add_ternplate([[[[Word, F,sg],[Word,F1]),
_Second] | _Rest],_Templatel, NewS3,Newstack).

act_create_node(I[Xmax,[attach_subject,Entry], Features,_Templatel]], [[[Word, "-n+v+a+p’, +,
tense], _Second]| _Rest],Newstack):-

create_max(xmax,[[xmax,[attach_subject,Entry], Features]],NewS2),perc_features([[[Word,
‘-n+v+a+p’, '+, tense],_Second]| Rest), NewS2, NewS3),add_template([[[Word, “n+v+a+p’, '+,
tense], _Second]|_Rest], _Templatel, NewS3, Newstack).

act_create_node([[xmax,Structure, ‘-n+v’, Template] | Reststack], [[[Word, -n+v-a+p’, PN, Tense],
_Second] | _Rest],Newstack):-

createumax(xmax,[[xmax,Structure,’-n+v‘,Template] | Reststack],NewS2),
erc_features([[[Word,’-n+v-a+p’,PN, Tense],_Second] | Rest] NewS2 NewS3),add_template([[[W
ord,’-n+v-a+p’,PN,Tense],_Second] | Rest],_Templatel, NewS3, Newstack).

act_create_node([[xmax,Structure, "-n+v+a+p’,Template] | Reststack], [[[Word, -n+v-a+p’, PN,
Tense], _Second] | _Rest],Newstack):-

create_max(xmax,[[xmax,Structure,-n+v+a+p’, Template] | Reststack] NewS2),
erc_features([[[Word,’-n+v-a+p’ PN, Tense],_Second] | Rest], NewS2 NewS3),add_template([[[W
ord,’-n+v-a+p’,PN,Tense],_Second] | Rest],_Templatel, NewS3, Newstack).

act_create_node([[xmax,[attach_wh_comp,Entry], Features, Template]], [[[Word, "-n+v+a+p’, +,
tense], _Second]| _Rest],Newstack):-
create_max(xmax,[[xmax,[attach_wh_comp,Entry],
Features, Template]] NewS2),perc_features([[[Word, ’-n+v+a+p’],_Second]|_Rest], NewS2,
NewS3),

add_template([[[Word, "-n+v+a+p’], _Second]|_Rest], _Templatel, NewS3, Newstack).

act_create_node([[xmax,[modal Entry], Features, Template] | Reststack], [[Word, "-n+v’],[Word1,
‘-n+v-a+p’ ,PN, Tense]] | Rest], Newstack):-
create_maxxmax,[[xmax,[modal,Entry],Features, Template] | Reststack] NewS2),
erc_features([[[Word, -n+v'],[Word1,’-n+v-a+p’,PN, Tense]] | Rest], NewS2,NewS3),add_templat
e([[[Word, "-n+v’],[Word1, -n+v-a+p’,PN, Tense]] | Rest], _Templatel, NewS3, NewS4),
dd_feat_spec(NewS4,[[[Word,-n+v'[,[Word1,’-n+v-a+p’,PN,Tense]] | Rest] Newstack).

act_create_node([[xmax,[modal Entry], Features, Template] [Reststack], [[[Word, ’‘-n+v’],
_Second] | _Rest],Newstack):-

create_maxxmax,[[xmax,[modal,Entry],Features, Template] | Reststack] NewS2),perc_features([[[
Word, "-n+v’],_Second] | _Rest], NewS2, NewS3),add_template([[[Word, "-n+v’], _Second]|_Rest],
_Templatel, NewS3, Newstack).

act_create_node([[xmax,[attach_rpron,E],Features, Template] | Reststack], [[[Word,’-n+v’],
[Word1,’-n+v-a+p’,’+", Tense]] | _Rest],Newstack):-

create_max(xmax,[[xmax[attach_rpron,E], Features, Template] | Reststack], NewS2),
perc_features([[[Word, "-n+v’], [Word1, "-n+v-a+p’, '+, Tense]] | Rest], NewS2, NewS3),
add_template([[[Word, "-n+v’], [Word]1, "-n+v-a+p’, '+, Tense]] | Rest], _Templatel,
N e w S 3 r
New$4),add_feat_spec(NewS4,[[[Word, -n+v’] [Word1, -n+v-a+p’,’+', Tense]] | Rest] Newstack).

act_create_node([[xmax,’-n+v-a+p’, Template] | Reststack],Newbuffer,Newstack):-
create_max(xmax,[[xmax, -n+v-a+p’, Template] | Reststack],NewS2),

perc_features(Newbuffer, NewS2, NewS3),add_template(Newbuffer, _Templatel, NewS3,
Newstack).

219

act_create_node([[xmax,Structure,’-n+v-a+p’,Template, Ty] | Reststack],[[[Word,"+n-v+a-p’,PL],
_Second] | _Rest],Newstack):-

create_max(xmax,[[xmax,Structure,’-n+v-a+p’,Template,Ty] | Reststack], NewS2),
perc_features([[{Word,’+n-v+a-p’,PLl, _Second] | _Rest], NewS2, NewS3),
add“template(I[[WOrd,'+n-v+a-p’,PL], _Second] | _Rest], _Templatel, NewS3, Newstack).

act_create_node([[xmax Structure,’-n+v-a+p’, Template, Ty] | Reststack],
[[[Word,"+n-v-a-p’],[Word,’-n-v+a+p’]],Second] | _Rest],Newstack):-
create_max{xmax,{[xmax,Structure,'-n+v-a+p’,Template,Ty] | Reststack], NewS2),
erc_features([[[[Word," +n-v-a-p’],IWord, -n-v+a+p’]] Second] | _Rest],NewS2,NewS3),add temp
late([[[[Word,'+n-v-a-p’],[Word,’-n-v+a+p’]],Second] | _Rest],_Templatel,NewS3, Newstack).
act_create_node{[[xmax,Structure,’-n+v-a+p’,Template,Ty] | Reststack],[[[Word, +n-v+a-p’,pn),
_Second] | _Rest], Newstack):-
create_max(xmax, [[xmax,St'mcture,’-n+v-a+p',Template,Ty] | Reststack], NewS2),
perc_features({[[Word, +n-v+a-p’,pn], _Second] | _Rest], NewS2, NewS3),
add_template([[[Word, +n-v+a-p’,pn], _Second] | _Rest],_Templatel,NewS3, Newstack).

act_create_node([[xmax,Structure,’-n+v-a+p’, Template,Ty] | Reststack],[[[Word, +n-v+a+p’l,
- Secondl]l]Il _ R es t], Newstacek): : -
create_max(xmax,[[xrnax,Structure,’-n+v-a+p‘,Template,Ty] | Reststack], ewS2),
perc_features([[[Word,’+n-v+a+p’], _Second]|_Rest], NewS2, NewS3),

add_template([[[Word, +n-v+a+p’], _Second]|_Rest], _Templatel, NewS3, Newstack).

act_create_node([[xmax,Structure,’-n+v-a+p’, Template,Ty] | Reststack],[[[Word, +n-v-a-p’],
_ S e condl] Il _ R e s t] , News tawvclk): -
create_max(xmax,[[xmax,Structure,’-n+v-a+p’, Template,Ty] | Reststack], NewS2),
perc_features([[[Word,’+n-v-a-p’], _Second]|_Rest], NewS2, NewS3),

add_template([[[Word, +n-v-a-p’], _Second]|_Rest], _Templatel, NewS3, Newstack).
act_create_node([[xmax,Structure,’-n+v-a+p’, Template, Ty] | Reststack],[[[Word, -n-v'],
_Second]l _Rest],Newstack):-
create_max(xmax,[[xmax,Structure,’-n+v-a+p’, Template,Ty] | Reststack], NewS2),
perc_features([[[Word,-n-v’], _Second] | _Rest], NewS2, NewS3),

add_template([[[Word, -n-v’], _Second]| _Rest], _Templatel, NewS3, Newstack).

act_create_node([[xmax,Structure,’-n+v-a+p’, Template, Ty] | Reststack],[[[Word,’-n-v+a+p’],
S e ¢condl]I! _ R e s t], Ne wstavck) : -
create_max(xmax,[[xmax,Structure,’-n+v-a+p’, Template, Ty] | Reststack], NewS2),
perc_features([[[Word,"-n-v+a+p’], _Second]!|_Rest], NewS2,
NewS3),add_template([[[Word,’-n-v+a+p’], _Second]|_Rest], _“Templatel, NewS3, Newstack).

act_create_node([[xmax,Structure,’-n+v-a+p’, Template, Ty] | Reststack],[[[to, -n+v+a+p'],
S e condl] Il _ Rest], Newstack]). :@-
create_max(xmax,[[xmax,Structure,’-n+v-a+p’, Template, Ty] | Reststack], ewS2),
perc_features([[[to,"-n+v+a+p’], _Second] | _Rest], NewS2, NewS3),
add_template([[[to,-n+v+a+p’], _Second]|_Rest], _Templatel, NewS3, Newstack).

act_create_node([[xmax,Structure,’-n+v’, Template] | Reststack],

[[Word, +n-v+a-p’],Second] I Rest] Newstack):-
create_max(xmax,[[xmax,Structure,’-n+v’, Template] | Reststack],
NewS2),perc_features([[[Word, +n-v+a-p’] Second] | Rest], NewS2, NewS3),
add_template([[[Word, +n-v+a-p’] Second] | Rest], _Templatel, NewS3, Newstack).

act_create_node([[xmax,Structure,’-n+v’, Template] | Reststack],

[[Word, +n-v+a+p’],Second] | Rest],Newstack):-
create_max(xmax,[[xmax,Structure,’-n+v’, Template] |l Reststack],
NewS2),perc_features([[[Word, +n-v+a+p’] Second] | Rest], NewS2, NewS3),
add_template([[[Word,’+n-v+a+p’],5&condl I Rest], _Templatel, NewS3, Newstack).

220

act_create_node([[xmax,Structure,’-n+v’, Template] | Reststack],[[[Word, +n-v-a-p’],Second] | Res
t] Newstack):- create_max(xmax,[[xmax,Srrucrure,’-n+v’,Temp!ate] | Reststack],
NewS2),perc_features([[[Word,'+n-v-a-p'],Second] IRest], NewS2, NewS3),
add_template([[[Word, +n-v-a-p’],Second] | Rest], _Templatel, NewS3, Newstack).

act_create_node([{xrnax,Sl-ructure,’-n+v’,Template] I Reststack],[[[Word,’-n-v’],Second] | Rest],N
ewstack):- create_rnax(xmax,[[xmax,Stmcture,’-n+v’,Template] | Reststack],
NewS2),perc_features([[[Word, -n-v’] Second] | Rest], NewS2, NewS3),
dd_template([[[Word,’-n-v’],Second] | Rest], _Templatel, NewS3, Newstack).

act_create_node([[xmax,[passive,[attach_verhb,
Entry] | Remain],’-n+v-a+p’,Template,Ty] I Reststack], Newbuffer, Newstack):-
create_rnax(xmax,[[xmax,[passive,[attach_verb,Entry] | Remain],’-n+v-a+p’,Template, Ty] | Restst
ack], NewS2),perc_features(Newbuffer, NewS2, NewS3),add_template(Newbuffer, _Templatel,
NewS3, Newstack). -

act_create_node([[xmax,S, ‘+n-v+a-p’, Template] | Reststack], [[[Word, ’-n-v’],
_Second] | Rest],Newstack):-

reate_max(xmax,[[xmax,S,’+n-v+a-p’, Template] | Reststack], NewS2),
erc_features([[[Word,’-n-v’],_Second] | Rest], NewS2,NewS3),add_template([[[Word, -n-v’],_Seco
nd]IRest], Templatel NewS3, Newstack).

act_create_node([[xmax,[attach_prep,Entry],’-n-v’, Template] | Reststack], Newbuffer, Newstack):-
create_max(xmax, [[xmax,[attach_prep, Entry],’-n-v’, Template]|Reststack],
NewS2),perc_features(Newbuffer, NewS2, NewS3),add_template(Newbuffer, _Templatel, NewS3,
Newstack).

act_create_node([[xmax,[attach_comp, Entry],’-n-v+a+p’, Template] | Reststack], Newbuffer,
Newstack):-

create_max(xmax, [[xmax,[attach_comp, Entry]’-n-v+a+p’, Template] | Reststack], NewS2),
erc_features(Newbuffer, NewS2, NewS3)add_template(Newbuffer, _Templatel, NewS3,
Newstack).

act_create_node([[xmax,[attach_rpron, Entry],’-n-v+a+p’, Template] | Reststack],Newbuffer,
Newstack):-

create_max(xmax, [[xmax,[attach_rpron, Entry],’-n-v+a+p’, Template] | Reststack], NewS2),
erc_features(Newbuffer, NewS2, NewS3)add_template(Newbuffer, _Templatel, NewS3,
New$4), dd_features(NewS4, Features,Newstack).

act_create_node([[xmax,[attach_wh_comp, Entry],’-n-v+a+p’, Template,wh] | Reststack],
Newbuffer, Newstack):- create_max(xmax, [[xmax,[attach_wh_comp,
Entry],’-n-v+a+p’, Template,wh] | Reststack], NewS2),perc_features(Newbuffer, NewS2,
NewS3),add_template(Newbuffer, _Templatel, NewS3,
NewS4),add_features(NewS4, -n+v’ Newstack).

act_create_node([[xmax,[modal Entry], Features, Template] | Reststack], [[[Word, "-n+v’, PN,
T e n s e] .
_Second] | Rest],Newstack):-

reate_max(xmax,[[xmax,[modal Entry],Features, Template] | Reststack], NewS2),
perc_features([[[Word,"-n+Vv’, PN, Tense], _Second] | Rest], NewS2,NewS3),add_template([[[Word,
‘-n+v’, PN, Tense], _Second||Rest], Templatel, NewS3, NewS4),add_features(NewS4, "-n+v’,
Newstack).

act_create_node([[xmax,[to_infinitive Entry] Features, Template] | Reststack], [[[Word, "-n+v’, PN,
Tense], _Second] | Rest],Newstack):-
create_max(xmax,[[xmax,[to_infinitive Entry],Features, Template] | Reststack] NewS2),
erc_features([[[Word,’-n+v’, PN, Tense], _Second] | Rest], NewS2,NewS3),add_template([[[Word,
n+v’, PN, Tense], _Second] | Rest],_Templatel, NewS3, NewS4),add_features(NewS4, "-n+v’,

221

Newstack).

act_create_node([[xmax,[aux_sai,Entry] Features, Template] | Reststack], [[[Word, ‘-n+v’, PN,
Tense], _Second] | Rest],Newstack):-
create_max(xmax,[[xmax,[aux_sai Entry] Features, Template] | Reststack],NewS2),perc_features(
[[[Word,”-n+v", PN, Tense], _Second] | Rest], NewS2,NewS3),add_template([[[Word, "-n+v’, PN,
Tense], _Second] | Rest],_Templatel, NewS3, NewS4),

add_features(NewS4, '-n+v’, Newstack).

act_create_node([[xmax,Features,Template] | Reststack], [[[Word,
‘+n-v+a-p’,pn] [[Word1,'-n+v-a+p’,’- tense] [Word2,'+n-v+a-p’]]] | Rest] Newstack):-
reate_max(xmax,[[xmax,Features, Template] | Reststack],NewS2),perc_features([[[Word, +n-v+a-
p’.pnll[Word1, -n+v-a+p’,’- tense],[Word2, +n-v+a-p’]]] | Rest], NewS2, NewS3),
add_template([[[Word, +n-v+a-p’ pn] [[Word1,-n+v-a+p’, -’ tense] [Word2, +n-v+a-p’]]} | Rest],
_Templatel, NewS3, NewS4),add_features(NewS4, _Features, Newstack).

act_create_node([[xmax,Features, Template] | Reststack], [[[Word,
“4+n-v+a-p’,pn] [Word1,’-n+v-a+p’,~ tense]] | Rest] Newstack):-
create_max(xmax,[[xmax,Features, Template] | Reststack] NewS2),
erc_features([[[Word,’+n-v+a-p’,pn],[Word1,’-n+v-a+p’,’- tense]] | Rest] NewS2,NewS3),add _te
mplate([[[Word,’+n-v+a-p’,pn],[Word1,’-n+v-a+p’,’-’ tense]] | Rest],_Templatel NewS3 ,NewS4),
add_features(NewS4, _Features, Newstack).

act_create_node([[xmax,[REntry],’-n+v’, Template] | Reststack], [[[Word, '-n+v’, PN, Tense],
_Second] | Rest],Newstack):-

create_max(xmax,[[xmax[R,Entry],’-n+v’, Template] | Reststack] NewS2),
perc_features([[[Word,-n+v’, PN, Tensel, _Second] | Rest], NewS2,NewS3),
add_template([[[Word, -n+v’",PN, Tense],_Second] | Rest],_Templatel, NewS3, NewS54),

add _features(NewS4, "-n+v’, Newstack).

act_create_node(NewS2, _Newbuffer, NewS2).

/*This rule, called by “act_create_node’, checks the buffer positions.* /last1([_X,Y],Y).
last1([_X.[Y,_TILY).

last1({_X,[_R,IY,_T],_z,_sll,Y).

last1([_X1Z],Y):-last1(Z,Y).

/*This rule, called by ‘act_create_node’ and ‘drop3’ adds extra features to the features in the
stack depending on the contents of the buffer.*/

add_feat_spec([[xmax,[attach_prep, Entry],’-n-v’,Template] | Reststack],[[[xmax, [_Rulename,
_Entryl], _Featuresl], [to, ’‘-n+v+a+p’]]I[_Second]],[[xmax,[attach_prep, Entry],
"-n-v+a+p’, Template] | Reststack]).

add_feat_spec([[xmax,’-n+v’, Template] | Reststack],[[[_ Word, “n+v'],[_Word1, ‘-n+v-a+p’, _PN,
_Tense]] | _Rest], [[xmax,’-n+v+a+p’, Template] | Reststack]).

add_feat_spec([[xmax,’-n+v’,Template] | Reststack],[[[_Word, ‘n+v’,_ PN, _T][_Wordl, "-n+v-a+p’,
_PN, _Tense]l | _Rest],[[xmax, -n+v+a+p’, Template] | Reststack]).

/*This rule, called by 'parse’ if grammar_rule fails, drops a word or phrase from the stack into
the buffer, also can create a new node for stack, depending on the state of buffer and stack.*/
drop([[xmax,S, ’+n-v+a-p’,_TempIatel,[xmax,[attach_verb,lpersuade,Fl,PN,Tel],F,T,Ty] IR],[[[to,

‘-n+v+a+p’l,Second]] [[xmax,[attach_verb,[persuade,F1,PN,Te]l,F,T, Tyl | R] [[[xmax, S,
‘+n-v+a-p'l[to, "-n+v+a+p’]]| [Second])).

222

drop([[xmax,S, +n-v+a-p’,_Template] [xmax,[a ttach_verb,Entry1],F,T,Ty],[xmax,[attach_rpron,E
,F1,T1]| R],[[lWord,’-n+v’,PN,Tensel,Secondl],[[xmax,[attach_verb,Entryl],F,T,Ty],[xrnax,[attac
h_rpron,E],F1,T1]IR],[[[xmax,S, +n-v+a-p’][Word, -n+v’,PN,Tense]] | [Second]]).

drop(l[xmax,S,’+n-v+a-p’,_Template],[xmax,51,"-n-v’,T] | Reststack],[[[Word,’-n+v’,PN, Tense],S
econd]],[[xmax,51,"-n-v’,T) | Reststack] [[[xmax,S, +n-v+a-p’] [Word, -n+v’,PN, Tensel] | [Second])).

drop([{xmax,S,’+n-v+a-p’,_’I‘emplate],[xmax,Sl,F,T],Ixmax,[attach_reduce_rel,E],F‘l,Tl} IR]I[[W
0rd,’—n+v’],Sec0nd]],[[xmax,Sl,F,T],[xmax,[attach_reduce-reI,E],Fl ,T1]1R],[[[xmax,S,’ +n-v+a-p’]
JAWord,’-n+v’]] | [Second]]).

drop([[xmax,S,r+n-v+a-p',_Teranate],[xmax,Sl,F,T],[xmax,[attach_reduce_rel,E],Fl,T]] [RLIIIW
ord,’-n+v+a+p’],Second]] [[xmax,51,F,T],[xmax,attach_reduce_rel,E],F1,T1] IR],[[[xmax,S, +n-v
+a-p’],[Word,-n+v’]] | [Second]]).

drop([[xmax[[attach_rpron,Entry1] I R],F,_T] | Reststack],[[[Word,’-n+v’],Second]],Reststack,[[[x
max,[[attach_rpron,Entry1] | R],F],[Word,’-n+v’]] | [Second])).

d r 0 P ([[X m a X ; S ;
“+n-v+a-p’,_Template] [xmax,F,T] I R],[[First,Second] | Rest],[[xmax,F,T] I R],[[[xmax,S, +n-v+a-p’
] ,First] !l [Second ! Rest]]).drop([[xmax,S,
‘+n-v+a-p’,_Template] [xmax,51,"-n-v',T] | R],[[First, Second] | Rest),[[xmax,51,"-n-v’,T] I RL{[[xma
x,S,/+n-v+a-p’] First] | [Second | Rest]]).

drop([[xmax,S,F,_Template] | Reststack],[[First,Second] | Rest] Newstack,Newbuffer):-last1(Rests
tack,attach comp),drop2 ([[xmax,§S,

F,_Template] | Reststack],[[First,Second] | Rest], Newstack,Newbuffer).

drop([[xmax, S, Features, Template] | Reststack] [[First, Second]|Rest], Newstack,
Newbuffer):-drop1([[xmax, S, Features, Template]|Reststack] [[First, Second] | Rest], NewSl1,
Newbuffer),create_max(xmax, NewS1, NewS2),perc_features(Newbuffer, NewS2,
NewS3),add_template(Newbuffer, _Templatel, NewS3, NewS4),add_features(NewS4, _Featuresl,
Newstack).

drop([[xmax, S, Features, Template] | Reststack], [[First, Second]IRest], Newstack,
Newbuffer):-drop1([[xmax, S, Features, Template] | Reststack][[First, Second] | Rest], NewS1,
Newbuffer),

create_max(xmax, NewS1, NewS2),perc_features(Newbuffer, NewS2,
NewS3),add_template(Newbuffer, _Templatel, NewS3, NewS54),add_features(NewS4, _Featuresl,
Newstack).

drop([[xmax, S, Featuresl, Template] | Reststack],[[First, Second]], Newstack,
Newbuffer):-drop1([[xmax, S, Featuresl, Template] | Reststack][[First, Second]], NewSl,
Newbuffer),

create_max(xmax, NewS1, NewS2),perc_features(Newbuffer, NewS2,
NewS3),add_template(Newbuffer, _Templatel, NewS3, NewS4),add_features(NewS4, Features2,
Newstack).

drop([[xmax, S, Features, Template] | Reststack],[[First, Second] | Rest], Newstack,
Newbuffer):-drop2([[xmax,S,Features, Template] | Reststack],[[First, Second]|Rest], Newstack,
Newbuffer).

drop([[xmax,S,Features, Template] | Reststack],[[First, Second]], Newstack,
Newbuffer):-drop2([[xmax, S Features, Template] | Reststack],[[First, ~Second]], Newstack,

Newbuffer).

drop([{xmax,S,Features,Template,Ty]IReststack],[[First, Second]], Newstack,
Newbuffer):-drop2([[xmax, S,Features Template, Ty] | Reststack],[[First, Second]], Newstack,

223

Newbuffer).

drop([[xmax,S,"-n-v’,_Template] | R],[[First,Second] IRest],R,[[[xmax,S,’-n-v’],First] | [Second | Re
stl]).drop([[xmax,S, Features, _Template] IR][[First, Second]![XIL]],R,[[[xmax, S,
Features),First] | [Second,X | L]]).

drop([[xmax,S, Features, _Template] IR], [[First, Second]], R,[[[xmax, S, Features],
First] | [Second])).

/*These rules, called by drop, remove words or phrases from stack into buffer*/

drop1([[xmax,S, Features, _Template] I[]], [[First, Second]],[],[[[xmax,S, Features],
First] | [Second]]).

dropl([[xmax, S, Features, _Template] I[]], [[First, Second] I [X | L]],[],[[[xmax,S, Features),
First] | [Second, X I L])).

drop1([{xmax,S, Featuresl, Template] | Reststack], [[[to, "-n+v+a+p’], Second]], NewS],
Newbuffer):-drop3([[xmax,S, Features1,Template] | Reststack],[[[to, "-n+v-+a+p’], Second]], NewS,
Newbuffer),

add_feat_spec(NewS, Newbuffer, NewS1).

drop1([[xmax, S, Features, _Template] |R], [[First, Second] | [XIL]],R [[[xmax, S, Features),
First] I [Second, X I L]}).

drop1([[xmax, S, Features, _Template] R], [[First, Second]],R,[[[xmax, S, Features],
First] | [Second])).

drop3([[xmax,S, Features1,_Template] | Reststack],[[[to, "-n+v+a+p’], Second]],Reststack,[[[xmax,S,
Features1], [to, "-n+v+a+p’]] | [Second])).

drop2([[xmax,S,Features, Template, Ty],[xmax, S1, Featuresl]|Reststack], [[First,
Second] [X1 L]);[[xmax.; S 1, Featuresil,
Template] | Reststack],[[[xmax,S,Features, Ty],First] | [Second,X | L]]).

drop2([[xmax,S,Features, Template, Ty] [xmax, S1, Features1]|Reststack], [[First,
Secondl]ll].,I[l[x ma x|, S 1T ; Features 1,
Template] | Reststack],[[[xmax,S,Features, Ty, First] | [Second]]).drop2([[xmax,S,Features,
~Template,Ty] Reststackl], [[First,
Second] | [X | L]],Reststack,[[[xmax,S,Features, Ty] First] | [Second X | L]]).

drop2([[xmax,S,Features,_Template, Ty] | Reststack], [[First,
Second]],Reststack,[[[xmax,S,Features, Ty],First] | [Second]]).drop2([[xmax, S, Features,
Template],[xmax,[attach_embedded_subject,Entry],F] IR], [[First,

Second]],[[xmax,[attach_embedded_subject, Entry],F, Template] | R],[[[xmax,S,Features],First] | [S
econd]]).

drop2([[xmax,S,Features1, Template] | xmax, [attach_subject, Entry], Features] | L] [[First, Second]],
[[xmax, [attach_subject, Entry], Features, Template]|L][[[xmax,S, Featuresl],
First] | [Second]]).

drop2([[xmax,S,Features, Template],[xmax,51, Featuresl],[xmax,
[attach_comp,Entry1],Features2, Template1] IR], [[First, Second]],[[xmax, S1, Featuresl,
Template],[xmax, [attach_comp,Entryl] Features2,Templatel]|R],[[[xmax,
S,Features),First] | [Second]]).

drop2([Ixmax,S,Features,_TempIatel | Reststack], [[First, Second] | [X | L]),Reststack,[[[xmax,
S, Features),First] | [Second, X | L]]).

224

dTOPZ([[xmax,S,Features,_Template] | Reststack], [[First,
Second]],Reststack,[[[xmax,S,Features],First] | [Second]]).

/*This rule, ca!.led by ‘input’ and ‘parse’, is used to build a noun-phrase from the contents of
2ndlbuffs,?r cell if sentence is a Yes/No question or Whquestion with aux verb. The rules it calls
are identical in function tosimilarly named counterparts in file parser*/

pre_test([[[Word, ’-n+v’],[Word1, ‘+n-v+a-p’]] I Rest],[[xmax, Features, [spec_ head,
comp]]] Newbuffer, Newstack):-

create_max(xmax,[[xmax,Features, [spec_, head, compll], NewS),
perc_feat_s([[[Word, -n+v’],[Word1, "+n-v+a-p’']] I Rest], NewS,
NewS1),add_template_s([[[Word, -n+v’[,[Word1,’+n-v+a-p’]] | Rest], _Template,
NewSl, NewSZ),attach_s(NewSZ,[[[Word,’-n+v’],[Word1,‘+n-v+a-p’]] [Rest],NewS3, NewB),
drop_s(NewS3, NewB, Newstack, Newbuffer).

pre_test([[[Word, ’-n+v'],[Word]l, "+n-v-a-p’]] IRest],[[xmax, Features, [spec_, head,
comp]]],Newbuffer, Newstack):-
create_max(xmax,[[xmax,Features,[spec_, head, compll]],
NewS),perc_feat_s([[[Word, -n+v+a+p’],[Word1l, ’+n-v-a-p’]]IRest], NewsS,
NewS1),add_template_s([[[Word,"-n+v’],[Word1, +n-v-a-p’]] | Rest], _Template, NewS],
NewS52)attach_s(NewS2,[[[Word, -n+v’] [Word1, +n-v-a-p’]] | Rest] NewS3,NewB),attach_s1(Ne
wS3,NewB,NewS4, NewB1),drop_s(NewS4, NewB1, Newstack, Newbuffer).

pre_test(l[[Word, -n+v’"],[Wordi1,
“+n-v+a-p’,PL]] | Rest],[[xmax,Features,[spec_head,compl],[xmax,S, -n-v+a+p’, T,wh]], Newbuffer,
Newstack):-

create_max(xmax,[[xmax,Features, [spec_, head, compl]],[xmax,S, -n-v+a+p’,T,whl],
NewS),perc_feat_s([[[Word,’-n+v’],[Word1l, ’+n-v+a-p’,PL]]IRest], NewsS,
NewS1),add_template_s([[[Word,"-n+v’],[Word1, +n-v+a-p’,PL]] | Rest], _Template,
NewS1, NewS2),attach_s(NewS2,[[[Word,"-n+v’][Word1,’+n-v+a-p’,PL]] | Rest],

NewS3, NewB),

drop_s(NewS3, NewB, Newstack, Newbuffer).

pre_test([[[Word, -n+v’'],[Word1l, "+n-v-a-p’]]IRest],
[[xmax,Features,[spec_,head,comp]],[xmax,S, -n-v+a+p’,T,wh] | Reststack], Newbuffer,
Newstack):-create_max(xmax,[[xmax,Features,[spec_, head, compll],
[xmax,S,”-n-v+a+p’, T,wh] | Reststack],NewS),perc_feat_s([[[Word,’-n+v’],[Word1,
‘+n-v-a-p’]] | Rest], NewS, NewS1),add_template_s([[[Word, -n+v'],[Word1, +n-v-a-p’]] | Rest],

_Template, NewS1,NewS2),attach_s(NewS2,[[[Word,’-n+v’],[Word1, +n-v-a-p’]] I Rest],

NewS3,NewB),attach_s1(NewS3,NewB,NewS4, NewBl1),drop_s(NewS4, NewB]l,
Newstack, Newbuffer).

pre_test([[[Word, “-n+v+a+p’],[Word1l, "+n-v+a-p’,PL]]| Rest] [[xmax, Features, [spec_, head,
comp]]],Newbuffer, Newstack):-

create_max(xmax,[[xmax,Features,[spec_, head, compl]], NewS),

perc_feat_s([[[Word, -n+v+a+p’],[Wordl, ’+n-v+a-p’,PL]]IRest], NewsS,
NewS1),add_template_s([[[Word,’-n+v+a+p’] [Word1,’+n-v+a-p’,PL]] | Rest],_Template, NewS1,
NewS2),attach_s(NewS2,[[[Word,'-n+v+a+p’] [Word1,’+n-v+a-p’,PL]] | Rest] NewS3, NewB),
drop_s(NewS3, NewB, Newstack, Newbuffer).pre_test([[[Word, ’'-n+v+a+p’][Wordl,
‘+n-v-a-p’]] | Rest],[[xmax, Features, [spec_, head, comp]]],Newbuffer, Newstack):-
create_max(xmax,[[xmax,Features,[spec_, head, comp]]], NewS),
perc_feat_s([[[Word,’-n+v+a+p’],[Word1, ‘+n-v-a-p’]] I Rest], News§S,
NewS1),add_template_s([[[Word,’n+v+a+p’],[Word1, +n-v-a-p’]] | Rest], _Template,
N e w S 1 ;
NewS2),attach_s(NewS2,[[[Word,"-n+v+a+p’] [Word1, +n-v-a-p’]] | Rest], NewS3,NewB) attach_
s1(NewS3,NewB,NewS4, NewB1),drop_s(NewS4, NewB1, Newstack, Newbuffer).

pre_test([[[Word,’-n+v+a+p’ l.IWord1,’+n-v+a-p’,PL]] | Rest],[[xmax,Features,[spec_head,comp]

225

l,[xmax,S,’-n-v+a+p’,T,whl], Newbuffer, Newstack):-create_max(xmax,[[xmax,Features,[spec_,
}'tead, compl],[xmax,S,’-n-v+a+p’, T,wh]], NewS),perc_feat_s([[(Word,‘-n+v+a+p'],[Wordl,
+n-v+a-p’”,PL]]I Rest], N e w S ,
NewSl),add_template_S{[[[Word,’-n+v+a+p'],[W0rd1,‘+n-v+aﬁp’,PL]] | Rest],_Template, NewS1,
NewS2),attach_s(NewS2,[[[Word, -n+v+a+p’] [Word1, +n-v+a-p’,PL]] | Rest] _NewS3 NewB)
drop_s(NewS3, NewB, Newstack, Newbuffer). ' ! ‘

preﬁtest([[[Word,’-n+v+a+p’],[Word1, "+n-v-a-p’]] I Rest],
{[xmax,Features,[spec_,head,comp]],[xmax,S,‘-n—v+a+p’,T,wh] | Reststack] Newbuffer, Newstack):-
create_max(xmax,[[xmax,Features,[sPec_, head, compl],
[xmax,S,"-n-v+a+p’,T,wh] | Reststack],NewS),perc_feat_s([[[Word, -n+v+a+p’],[Word]1,
“+n-v-a-p’]] | Rest], NewS, NewS1) add_template_s([[[Word, -n+v+a+p’],[Word1, +n-v-a-p’]] | Rest],
_Temgplate, N e w S 1,
NewSZ),attach_s(NewSZ,[[[WOrd,’-n+v+a+p’],[Wordl,’+n-v-a-p’]I | Rest],
NewS3,NewB),attach_s1(NewS3,NewB,NewS4, NewB1),
drop_s(NewS4, NewB1, Newstack, Newbuffer).

pre_test(Buffer, Stack, Buffer, Stack).

perc_feat_s([[[_Word,_Feat],[_Word1, '+n-v+a-p’,PL]] | _Rest],[[xmax], [xmax, Features, [spec_,
head, comp]]|Reststack], [[xmax, ‘+n-v+a-p’,PL], [xmax, Features, [spec_ head,
compl]] | Reststack]).

perc_feat_s([[[_Word, _Feat],[_Word1, +n-v-a-p’]] I _Rest] [[xmax], [xmax, Features, [spec_, head,
comp]] I Reststack],[[xmax, ‘+n-v+a-p’], [xmax, Features, [spec_, head, comp]] | Reststack]).

add_template_s([[[_Word, _Feat],[_Word1, ’+n-v+a-p’,_PL]] | _Rest], [spec, head_, comp], [[xmax,
Features1, PL1],[xmax, Features, Template] | Reststack],[[xmax, Featuresl, [spec,head_compl]],
[xmax, Features, Template] | Reststack]).

add_template_s([[[_Word, _Feat],[_Word1, "+n-v-a-p’l] | _Rest], [spec_, head, comp], [[xmax,
“+n-v+a-p’,_PL][xmax, Features, Template] | Reststack],[[xmaXx, '+n-v+a-p’, [spec_head,compl],
[xmax, Features, Template] | Reststack]).

attach_s([[xmax, “+n-v+a-p’, lspec,head#compll,[xmax, Features, Template] | Reststack],[[[Word,
Feat][Word1, ‘+n-v+a-p’,PL}]I[Third INr]],[[xmax,[Word1, “+n-v+a-p’,PL], ‘4n-v+a-p’,
[spec_head,compl],[xmax, Features, Template] | Reststack],[[[Word, Feat], Third] | Nr]).

attach_s([[xmax, “+n-v+a-p’, [spec_head,compl]],[xmax, Features, Template] | Reststack],[[[Word,
Feat],[Word1, ‘+n-v-a-p’ll1[Third INr]],[[xmax,[Wordl, ‘+n-v-a-p’], ’‘+n-v+a-p’,
[spec_ head,compl],[xmax, Features, Template] | Reststack],[[[Word, Feat], Third] | Nr]).

attach_s1([[xmax,Structure,’+n-v+a-p’,[spec_,head,compl],[xmax, Features,
Template] | Reststack],[[[Word, Feat],[Word1l, ’‘+n-v+a+p’]]|[Third INr]],Newstack,
Newbuffer):-attach_s2([[xmax, Structure,’+n-v+a-p’ [spec_head,comp]],[xmax, Features,
Template] | Reststack],[[[Word, Feat],[Wordl,’+n-v+a+p’]] | [Third INr]],NewS1,
NewB),member([_Entry, "+n-v+a+p’], NewB),attach_s1(NewS1, NewB,Newstack, Newbuffer).

attach_s1([[xmax,Structure,’+n-v+a-p’,[spec_,head,comp]],[xmax, Features,
Template] | Reststack],[[[Word, Feat],(Wordl, ‘+n-v+a+p’ll|[Third|Nr]],Newstack,
Newbuffer):-attach_s2([[xmax, Structure,’+n-v+a-p’,[spec_,head,comp]],[xmax,
Features, Template] | Reststack],[[[Word, Feat],IWord1,’+n-v+a+p’]] I [Third | Nr]},NewS1,
NewB),attach_s3(NewS1,NewB,Newstack, Newbuffer).

attach_s1([[xmax,Structure,’+n-v+a-p’,[spec_,head,compl]],[xmax, Features,
Template]l] | Reststack],[[[Word, Feat],[Wordl,
’+n-v+a-p’,PL]]l[Third INr]),[[xmax,[Structure,[Word1, ‘+n-v+a*p',PL]], ‘+n-v+a-p’,
[spec_,head,comp]].['xmax, Features, Template] | Reststack],[[[Word, Feat],Third] | Nr]).

226

attach_sl([[xmax,Structure,’+n-v+a-p',[spec_,head,comp]],[xmax, Features,
Template] | Reststack],[[[Word, Feat],[Word1, “+n-v+a-p’,PL]] | [Third INr]],

[[xmax,[Structure,[Word1, ‘+n-v+a-p’,PL]], ‘+n-v+a-p’, [spec_head,comp]],[xmax, Features,
Template] | Reststack],[[[Word, Feat],Third] | Nr]).

attach_s2([[xmax,Structure,'+n-v+a-p',[spec_,head,comp]I,!xma x, Features,
Template] | Reststack] [[[Word, Feat],[Word1, “+n-v-+a+p’]] | [Third | Nr]],[(xmax,[Structure [Word1,

‘+n-v+a+p’l], ‘+n-v+a-p’, [spec_head,comp]],[xmax, Features, Template] | Reststack],[[[Word,
Feat], Third] | Nr]).

attach_sS([[xmax,Structure,’+n-v+a-p’,[spec_,head,comp]],[xmax, Features,
Template]IReststack],[[[Word, Feat],[Word1,
“+n-v+a-p’,PL]] [[Third I Nr]),[[xmax,[Structure,[Word]1, "+n-v+a-p’,PL]], ‘+n-v+a-p’,
[spec_head,comp]],[xmax, Features, Template] | Reststack],[[[Word, Feat], Third] | Nr]).

drop_s([[xmax,Structure, Featuresl, [spec_,head,comp]],[xmax, Features,
Template] | Reststack],[[[Word, Feat],Second] INr],[[xmax, Features,
Template] | Reststack],[[[Word,Feat] [xmax,Structure, Features1]] | [Second | Nr])).

The rules below constitute the grammar.

/*These rules constitute the grammar. The rules unify with the state of thestack and buffer and
either attach the contents of the first buffer cell to the stack, switch contents of first and second
buffer cells or insert a traceor lexical item into the first buffer cell.*/

grammar_rule(attach_adj, [[xmax, ‘+n-v+a-p’, [spec_ head, compl]]|Reststack],[[[Words,
“+n-v+a+p’l[Word, "+n-v+a+p’l] | Rest] Newstack, Newbuffer):-attach([[xmax, +n-v+a-p’, [spec_,
head, comp]] | Reststack],[[[Words, ‘+n-v+a+p’] [Word, "+n-v+a+p’]] | Rest] Newstack, Newbuffer).

grammar_rule(attach_adj, [[xmax, ’‘+n-v+a-p’[spec_ head, compl]]IReststack],[[[Words,
"+n-v+a+p’] [Word, ‘+n-v+a-p’ PL]] | Rest] Newstack, Newbuffer):-

attach([[xmax, ’‘+n-v+a-p’, [spec_, head, comp]]IReststack],[[[Words,
“+n-v+a+p’],[Word, +n-v+a-p’,PL]] | Rest] Newstack, Newbuffer).

grammar_rule(attach_adj, [[xmax,St, "+n-v+a-p’[spec_ head, comp]]|Reststack] [[[Words,
‘+n-v+a+p’l,[Word, +n-v+a+p’]] | Rest] Newstack, Newbuffer):-
attach([[xmax,St, "+n-v+a-p’, [spec_, head,
comp]] | Reststack],[[[Words,’+n-v+a+p’],[Word,’+n-v+a+p’]] | Rest], Newstack, Newbuffer).

grammar_rule(attach_adj, [[xmax,St,/+n-v+a-p’, [spec_ head, compl]lReststack] [[[Words,
"+n-v+a+p’],[Word, "+n-v+a-p’,PL]] | Rest] Newstack, Newbuffer):-
attach([[xmax,St,”+n-v+a-p’, [spec_, head,
compl]] | Reststack], [[[Words, +n-v+a+p’],[Word, +n-v+a-p’,PL]] | Rest] Newstack,Newbuffer).

grammar_rule(wh_insert,[[xmax,’-n+v+a+p’,[spec_head,comp]],[xmax,51,F1,T,wh]],[[[Word,"-
n+v’,PN,T],Second] | Rest],Newstack,Newbuffer):-insert(_Trace,[[xmax,’-n+v+a+p’,[spec_head,
comp]],[xmax,51,F1,T,whl]][[[Word,’-n+v’,PN,T],Second] | Rest),Newstack,Newbuffer).

grammar_rule(wh_insert,[[xmax, -n+v+a+p’ [spec_head,comp]],[xmax,S1,F1,T,wh]][[[Word,'-
n+v+a+p’,PN,T],Second] | Rest] Newstack,

Newbuffer):-insert(_Trace,[[xmax, -n+v+a+p’,[spec_head,comp]],[xmax,S1,F1,T,wh]][[[Word,'-
n+v+a+p’,PN,T],Second] | Rest] Newstack Newbuffer).

grammar_rule(insert_subjless_np,[[xmax,’-n+v+a+p’,[spec__,head,comp]] | Reststack],[[[to,’-n+v
+a+p’],[Word,’-n+v',’-’,tense]] | Rest],Newstack Newbuffer):-
insert(_Trace,[[xmax, -n+v+a+p’ [spec_head,comp]]

| Reststack],

227

[[[to,"-n+v+a+p’] [Word, -n+v’,’-’ tense]] | Rest],Newstack, Newbuffer).

grammar_rule(attach_det, [[xmax, ’+n-v+a-p’, [spec_, head, compl]|Reststack],[[[[FWord,
"+n-v-a-p’],[FWord, ‘-n-v+a+p’]l[Sw, +n-v+a-p’,sgl] | Rest],Newstack, Newbuffer):-
attach([[xmax, ‘+n-v+a-p’, [spec_, head,comp]|] | Reststack],[[[[FWord,
"+n-v-a-p’],[FWord, -n-v+a+p’l],

[Sw,’+n-v+a-p’,sg]] | Rest] Newstack Newbuffer).

grammar_rule(attach_det, [[xmax, ‘+n-v+a-p’, [spec_ head, comp]]|Reststack],[[[FWord,
"+n-v-a-p’],Second] | Rest],

Newstack, Newbuffer):-

attach([[xmax, "+n-v+a-p’, [spec_, head, compl]] | Reststack],

[[[FWord, "+n-v-a-p’],Second] | Rest],Newstack, Newbuffer).

grammar_rule(attach_possdet, [[xmax, "+n-v+a-p’ [spec_head, comp]] | Reststack],

[[[Words, “+n-v-a-p’,PD],Second] | Rest],Newstack, Newbuffer):-
attach([[xmax, “+n-v+a-p’, [spec_, head,
comp]] | Reststack],[[[Words, +n-v-a-p’,PD],Second] | Rest],Newstack,Newbuffer).

grammar_rule(attach_possdet,[[xmax,S, +n-v+a-p’,[spec_ head, comp]] | Reststack],[[[Words,
"+n-v-a-p’,PD],Second] |Rest],Newstack,Newbuffer):-attach([[xmax,S,’+n-v+a-p', [spec_, head,
comp]] | Reststack],[[[Words, ‘+n-v-a-p’,PD],Second] | Rest],Newstack,Newbuffer).

grammar_rule(attach_subject, [[xmax, ’-n+v+a+p’, [spec_ head,compll][[[xmax, E,
-n-v+a+p’],[Word, -n+v’,PN,Tense]] | Rest], Newstack, Newbuffer):-

attach([[xmax, -n+v+a+p’, [spec_, head,
comp]]][[[xmax,E,’-n-v+a+p’] [Word, -n+v’, PN, Tense]] | Rest], Newstack,Newbuffer).

grammar_rule(attach_subject,[[xmax,’ -n+v+a+p’,[spec_, head,
compl]]L[[[xmax,E,"+n-v+a-p’] [W F,PN,T]] | Rest] Newstack,

Newbuffer):-

attach([[xmax, -n+v+a+p’ [spec_head,comp]]] [[[xmax,E, +n-v+a-p'][W,F,PN,T]] | Rest] Newstack,
Newbuffer).

grammar_rule(attach_subject,[[xmax,’-n+v+a+p’,[spec_, head,
compl]][[[xmax,E,’+n-v+a-p’] [W,’-n+v’]] | Rest], Newstack,

Newbuffer):-

attach([[xmax,’-n+v+a+p’ [spec_head,compll][[[xmax,E, +n-v+a-p'],[W,"-n+v’]] | Rest] Newstack,
Newbuffer).

grammar_rule(attach_subject,[[xmax,’-n+v+a+p’,[spec_, head,
compl]][[[xmax,E,’+n-v+a-p’][W,’-n+v+a+p’]] | Rest] Newstack,

Newbuffer):-

attach([[xmax,’ -n+v+a+p’',[spec_, head,
compl]][[[xmax,E,’+n-v+a-p’][W,’-n+v+a+p’]] | Rest] Newstack, Newbuffer).

grammar_rule(attach_subject,[[xmax,’-n+v+a+p’,[spec_, head,
compl]][[[xmax,E,’+n-v+a-p’],S] | Rest] Newstack, Newbuffer):-attach([[xmax,’-n+v+a+p’,[spec_,
head, compl]],[[[xmax,E,’+n-v+a-p’],S] | Rest]Newstack,Newbuffer).

grammar_rule(attach_embedded_subject,[[xmax,’-n+v+a+p’ [spec_head, comp]] | Reststack],
[[[xmax,E,"+n-v+a-p’]IW,F,PN,T]] | Rest], Newstack,

Newbuffer):-

attach ([[xmax,’”-n+v+a+p’ ' ,[spec_,
head,comp]] | Reststack],[[[xmax,E,’+n-v+a-p’][W,F,PN,T]] | Rest],Newstack,

Newbuffer).

grammar_rule(attach_cmbedded_SUbject,[[xmax,’-n+v+a+p’,[spec_, head,

228

comp]] I Reststack],[[[xmax,E,’+n-v+a-p’]LIW, -n+v’]] | Rest], Newstack,
Newbuffer):-

attach([[xmax,’-n+v+a+p'{

’

head comp]] | Reststack],[[[xmax,E,’+n-v+a-p'],[W, -n+v’]] | Rest], Newstack,
Newbuffer).

s pec._,

grammar_rule(attach_embedded_subject,[[xma x,-n+v+a+p’,[spec_, head,
compl]] | Reststack],[[[xmax,E,’+n-v+a-p’] [W, -n+v+a+p’]] | Rest], Newstack,
Newbuffer):-

attach ([[xmax, " -n+v+a+p’,[spec

’

— ’

head,compl] | Reststack],[[[xmax,E, +n-v+a-p’] [W,’-n+v+a+p’]] | Rest] Newstack Newbuffer).

grammar_rule(attach_embedded_subject, [[xmax, "-n+v+a+p’, [spec_, head, comp]] | Reststack],
[[[Words, "+n-v+a-p’],[Word, -n+v+a+p’]] | Rest] Newstack, Newbuffer):-
attach([[xmax, '"-n+v+a+p’, [espec., hesd,

compl]] | Reststack],[[[Words, +n-v+a-p’],[Word,’-n+v+a+p’]] | Rest], Newstack, Newbuffer).

grammar_rule(attach_embedded_subject, [[xmax, -n+v+a+p’, [spec_, head, comp]] | Reststack],
[[[xmax,E,’+n-v+a-p’][[Word, +n-v-a-p’],[Word, -n-v+a+p’]]] | Rest], Newstack, Newbuffer):-
attach([[xmax, ‘-n+v+a+p’, [spec_ head, compl] | Reststack],

[[[xmax,E,"+n-v+a-p’][[Word, +n-v-a-p’],[Word, -n-v+a+p’]]] | Rest], Newstack, Newbuffer).

grammar_rule(attach_embedded_subject, [[xmax, ‘-n+v+a+p’, [spec_, head, comp]] [xmax,S,
"-n-v+a+p’, Templatel, Ty] | Reststack],[[[Words,” +n-v+a-p’][Word,"-n+v’,PN,T]] | Rest] Newstack,
Newbuffer):-

attach([[xmax, ‘-n+v+a+p’, [spec_, head, compl],

[xmax,S,’-n-v+a+p’, Templatel, Ty] | Reststack],[[[Words, +n-v+a-p’],[Word,"-n+v’, PN, T]] I Rest],
Newstack, Newbuffer).

grammar_rule(subj_aux_inv [[xmax, -n+v+a+p’, [spec_, head, compl] | Reststack],

[[[Word, Fl,Ixmax, Word1, ‘+n-v+a-p’]] | Rest] Newstack, Newbuffer):-

switch([[xmax, ‘-n+v+a+p’, [spec_, head, compl]|Reststack][[[Word, F] [xmax,
Word1, +n-v+a-p’]] | Rest] Newstack, Newbuffer).

grammar_rule(imperative,[[xmax,’-n+v+a+p’,[5pec_, head, complll,

[[[Words, ’-n+v-a+p’,’-", tense],Second]|Rest],Newstack, Newbuffer):-
insert([you, +n-v+a-p’,pnl,[[xmax,’-n+v+a+p’, [spec_, head,
compll]l[[Words, -n+v-a+p’,’-’ tense], Second] | Rest],Newstack,Newbuffer).
grammar_rule(imperative,[[xmax,'-n+v+a+p’[spec_ head, compl]LI[[[Words, ’-n+v-a+p’,,
tense],[Words, +n-v+a-p’,PL]],Second] | Rest],Newstack, Newbuffer):-
insert([you,'+n-v+a-p’,pn],[lxmax,'—n+v+a+p’,[5pec_, head,
comp]]],[[[[Words,'-n+v-a+p’,’-’,tensel,[Words,’+n—v+a-p',PL]],Second] | Rest],Newstack,Newbu
ffer).

grammar_rule(imperative,[[xmax,-n+v+a+p’[spec_ head, compllLl[[[Words, ‘-n+v-a+p’/~,
tensel,[Word,”+n-v+a-p’]],Second] | Rest], Newstack, Newbuffer):-
insert([you,’+n-v+a-p',pn],[[xmax,'-n+v+a+p’,[spec_, head,
comp]]],[[[[Words,‘-n+v-a+p’,’-’,tense],lWord,’+n-v+a-p’}],Second} | Rest], Newstack Newbuffer).

grammar_rule(perfective, [[xmax, *-n+v’ [spec, head_, comp]] | Reststack],[[[_word, -n+v’],[Words,
"n+v’,’+, en]] | Rest] Newstack, Newbuffer):-

attach([[xmax,’-n+v’, [spec, head_compl]IReststack] [[[_word, n+v’][Words, ’'-n+Vv/,
'+ en]] | Rest],Newstack, Newbuffer).

grammar_rule(perfective, [[xmax, ‘-n+v’[spec, head_, compl]lReststack][[[_word,

"_n+v’],[Words,-n+v’,’+' ed]] | Rest] Newstack, Newbuffer):-attach([[xmax,’-n+V’, [spec, head_,
compl]] | Reststack],[[[_word, "-n+v'][Words, "-n+v’, ‘+’, ed]] | Rest],Newstack,

229

Newbuffer),

grammar_rule(to_infinitive,[[xmax, “n+v+a+p’,[spec, head_, comp]] | Reststack],[[[to,

‘“n+v+a+p’]l,[Words, ’'-n+v’, ’-’, tense]] | Rest], Newstack,
Newbuffer):-attach([[xmax, -n+v+a+p’ [spec,head _, comp]] | Reststack], [[{to,
““n+v+a+p’],[Words, -n+v’, "~ tense]] | Rest],

Newstack,Newbuffer).

grammar_rule(progressive,[[xmax,’-n+v’,[spec,head_comp]] | Reststack],[[[_word, -n+v'],[Words,
"-n+v’,’+’,ing]] | Rest],Newstack, Newbuffer):-attach([[xmax,’-n+v’, [spec, head_,
comp]] | Reststack],[[[_word, "-n+v’],[Words, -n+v’,’+,ing]] | Rest], Newstack, Newbuffer).

grammar_rule(progressive,[[xmax,’-n+v’,[spec,head_comp]] | Reststack],[[[be, ‘-n+v’, '+,
en],[Words, *-n+v’, "+’ ,ing]] | Rest] Newstack, Newbuffer):-

attach([[xmax,’-n+v’, [spec, head_, comp]] | Reststack],

[[[be, "n+v’,’+" en] [Words, -n+v’,’+’,ing]] | Rest], Newstack, Newbuffer).

granunar_rule(copula,[[xmax,'-n+v’,[spec,head_,c0mp]] | Reststack],
[[l_word, ’-n+v’],Second] | Rest],Newstack,Newbuffer):-attach([[xmax,’-n+v’, [spec, head_
comp]] | Reststack],[[[_word, "n+v’],Second] | Rest] Newstack, Newbuffer).

grammar_rule(aux_sai, [[xmax, ‘-n+v+a+p’, [spec, head_ comp]]|Reststack],[[[Word,
‘n+v+a+p’][Words, "-n+v’, ’~, tense]] | Rest], Newstack, Newbuffer):-attach([[xmax,’-n+v+a+p’,
[spec, head_, comp]] | Reststack],[[[Word, -n+v+a+p’],[Words,’-n+v’,’~ tense]] | Rest], Newstack,
Newbuffer).

grammar_rule(aux_sai, [[xmax, -n+v’, [spec, head_, comp]] | Reststack],[[[Word, "-n+v’],[Words,
"-n+v’, '~, tense]] | Rest], Newstack, Newbuffer):-
attach ([[xmax, -n+v" ', | &:p e ; head_,

compl] I Reststack] [[[Word, -n+v’]|Words, -n+v’,’~ tense]] | Rest], Newstack, Newbuffer).

grammar_rule(modal, [[xmax, ’-n+v+a+p’, [spec, head_, comp]]|Reststack],

[[[Word, n+v+a+p’],[Words,-n+v’,~ tense]] | Rest], Newstack,Newbuffer):-

attach([[xmax, -n+v+a+p’, [spec, head_,comp]] | Reststack],[[[Word, -n+v+a+p’],[Words, "-n+v’,
’-! tense]] | Rest], Newstack, Newbuffer).

grammar_rule(modal, [[xmax, “n+v+a+p’, [spec, head_, comp]]!|Reststack],[[[Word,
"-n+v+a+p’] [Words, "-n+v’]]IRest], Newstack, Newbuffer):-attach([[xmax,’-n+v+a+p’, [spec,
head_, comp]] | Reststack],[[[Word,’-n+v+a+p’] [Words, -n+v’]] | Rest], Newstack,

Newbuffer).

grammar_rule(modal, [[xmax, ‘-n+v+a+p’, [spec, head_,
compl]] | Reststack],[[[[Word,’+n-v+a-p’,PL],[Word, ’-n+v+a+p’]],[be, ’-n+v’]]IRest],
Newstack, Newbuffer):-attach([[xmax,’-n+v+a+p’, [spec, head_,

compl] | Reststack],[[[[Word,”+n-v+a-p’,PL],[Word,’-n+v+a+p’l],[be,
‘-n+v’]] | Rest],Newstack Newbuffer).

grammar_rule(do,[[xmax,’-n+v+a+p’,[spec,head_comp]l,[xmax,Word,’-n+v+a+p’]],[[[does,
-n+v+a+p’],[Words, -n+v-a+p’, -, tense}] | Rest] Newstack, Newbuffer):-

attach([[xmax,’ -n+v+a+p’,[spec,head_ comp]],

[xmax,Word, -n+v+a+p’]l[[[does,’-n+v+a+p’] [Words, -n+v-a+p’, - tense]] | Rest], Newstack,
Newbuffer).

grammar_rule(do, [[xmax,’-n+v+a+p’[spechead_comp]],[xmax,Word,"-n+v+a+p’l], [lldid,
"_n+v+a+p’l,[Words, "-n+v-a+p’, -, tense]] | Rest],
Newstack, Newbuffer):-attach([[xmax,’-n+v+a+p’,[spec head_,compl],

[xmax,Word,-n+v+a+p’l],

230

[[ldid, n+v+a+p’] [Words, ‘“n+v-a+p’,’-’ tense]] | Rest], Newstack, Newbuffer).

grammar_rule(passive_be, [[xmax, ’-n+v+a+p’[spec, head_ comp]] | Reststack]
[[[_word,’-n-t-v’],{Words,’-n+v-a+p’,’+’,T]] | Rest], Newstack, Newbuffer):-
attach([[xmax, ‘-n+v+a+p’,[spec, head_comp]] | Reststack],[[[_word, ‘-n+v’], [Words,
‘-n+v-a+p’,’+',T]] | Rest] Newstack, Newbuffer).

’

grammar_rule(passive_be, [[xmax, -n+v+a+p’,[spec, head_, comp]] | Reststack],[[[be, ‘-n+v’, '+,
PN], [Words, -n+v-a+p’,+',T|| | Rest],Newstack, Newbuffer):-

attach([[xmax, ‘-n+v+a+p’[spec, head_, comp]] | Reststack],[[[be, "-n+v’, '+, PN], [Words,
‘-n+v-a+p’,’+’,T]] | Rest] Newstack, Newbuffer).

grammar_rule(attach_rpron,[[xmax, ’‘-n-v+a+p’, [spec, head_,
compl],[xmax,S,"+n-v+a-p’,T] | Reststack],[[[Words, ‘-n-v+a+p’],Second] | Rest],Newstack,
Newbuffer):-attach([[xmax,’ -n-v+a+p’,[spec, head_,

compl],[xmax,S,’ +n-v+a-p’,T] | Reststack],[[[Words,"-n-v+a+p’],Second] | Rest],Newstack,Newbu
ffer).

grammar_rule(attach_rpron,[[xmax, ‘-n-v+a+p’, [spec, head_,
comp]],[xmax,S,’+n-v+a-p’,T] | Reststack],[[[[Words, ‘+n-v-a-p’],[Words,
"-n-v+a+p’]],Second] | Rest],Newstack, Newbuffer):-

attach([[xmax,’-n-v+a+p’,[spec, head_comp]],[xmax,S, +n-v+a-p’,T] | Reststack],
[[[[Words,’+n-v-a-p’],[Words,'-n-v+a+p’]],Sec0nd] | Rest], Newstack,Newbuffer).

grammar_rule(attach_comp, [[xmax, '-n-v+a+p’, [spec, head_, comp]] | Reststack],
[[[[Words,'+n-v-a-p’] [Words,’-n-v+a+p’]],Second] | Rest], Newstack, Newbuffer):-
attach([[xmax,’-n-v+a+p’,[spec, head_, comp]] | Reststack],

[[[[Words, "+n-v-a-p’],[Words,’-n-v+a+p’]],Second] | Rest],

Newstack, Newbuffer).

grammar_rule(attach_comp, [[xmax, "-n-v+a+p’, [spec, head_, comp]] | Reststack],
[[[that, "-n-v+a+p’], Second] | Rest] Newstack,Newbuffer):-attach([[xmax, -n-v+a+p’ [spec, head_,
comp]] | Reststack],[[[that, "-n-v+a+p’], Second] | Rest], Newstack,Newbuffer).

grammar_rule(attach_wh_comp,[[xmax,’-n-v+a+p’,[spec,head_,compl]] | Reststack],[[[Wh,’-n-v+
a+p’l[W, +n-v+a-p’l] | Rest] Newstack, Newbuffer):-attach([[xmax, -n-v+a+p’,[spec, head _,comp
111 Reststack],[[[Wh,’-n-v+a+p’][W, +n-v+a-p’]] | Rest], Newstack,Newbuffer).

grammar_rule(attach_wh_comp,[[xmax,’-n-v+a+p’,[spec,head_,comp]] | Reststack],[[[Wh, -n-v+
a+p’LIW,’-n+v’]] | Rest],Newstack, Newbuffer):-attach([[xmax,’-n-v+a+p’ [spec,head _comp]] IR
eststack],[[[Wh,"-n-v+a+p’][W,’-n+v’]] | Rest] Newstack,Newbuffer).

grammar_rule(attach_wh_comp,[[xmax,’-n-v+a+p’,[spec,head_,comp]] | Reststack][[[Wh, -n-v+
a+p’l,IW, -n+v+a+p’]] | Rest] Newstack Newbuffer):-attach([[xmax,’-n-v+a+p’ [spec head _comp
111 Reststack],[[[Wh, -n-v+a+p’],[W,’-n+v+a+p’]] | Rest] Newstack,Newbuffer).

grammar_rule(attach_propnoun,[[xmax, +n-v+a-p’,[spec, head_, comp]]|Reststack][[[Words,
‘+n-v+a-p’,pn], Second] | Rest] Newstack, Newbuffer):-

attach([[xmax, ’+n-v+a-p’, [spec, head_,comp]]IReststack],[[[Words,
"+n-v+a-p’,pn],Second] | Rest], Newstack, Newbuffer).

grammar_ru]e(attach_propnoun,[[xmax,St,’+n-v+a-p’,{spec, head, comp_]] I Reststack],[[[Words,
‘+n-v+a-p’,pnl, Second] | Rest], Newstack, Newbuffer):-
attach([[xmax, St,/+n-v+a-p’, [spec, head,comp_]]

| Reststack],
[[[Words, ’+n-v+a-p’,pn],Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_noun, [[xmax,St,"+n-v+a-p’,[spec, head_, compl]]|Reststack],[[[Words,

231

‘+n-v+a-p’,sg],Second] | Rest] Newstack, Newbuffer):- attach([[xmax, St, “+n-v+a-p’ [spec, head_,
compl]] | Reststack],[[[Words, +n-v+a-p’,sgl,Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_noun, [[xmax,’+n-v+a-p’[spec, head_, comp]]|Reststack],[[[Words,
‘+n-v+a-p’,sgl,Second] | Rest] Newstack, Newbuffer):- attach([[xmax, +n-v+a-p’[spec, head_
compl] | Reststack],[[[Words, '+n-v+a-p’,sgl,Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_noun, [[xmax,St,’+n-v+a-p’,[spec, head_, comp]]|Reststack],[[[Words,
"+n-v+a-p’,pll,Second] | Rest] Newstack, Newbuffer):- attach([[xmax, St, "+n-v+a-p’,[spec, head_,
comp]] | Reststack],[[[Words, +n-v+a-p’,pl],Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_noun, [[xmax,'+n-v+a-p’[spec, head_, comp]]IReststack][[[Words,
‘+n-v+a-p’,pl],Second] | Rest] Newstack, Newbuffer):- attach([[xmax, "+n-v+a-p’[spec, head_
comp]] | Reststack],[[[Words, "+n-v+a-p’,pl],Second] | Rest], Newstack, Newbuffer).

grammar_rule(attach_noun, [[xmax,St,’+n-v+a-p’[spec, head_, compl]|Reststack],[[[[Words,
‘+n-v+a-p’,SP] [Words,’-n+v+a+p’]] Second] | Rest] Newstack, Newbuffer):-

attach([[xmax, St, "+n-v+a-p’,[spec,head_,compl]

| Reststack],

[[[[Words, +n-v+a-p’,SP],[Words, -n+v+a+p’]],Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_noun, [[xmax,St,"+n-v+a-p’,[spec, head_,
comp]] | Reststack], [[[[Words, -n+v-a+p’, - tense] [Words, “+n-v+a-p’,SP]],Second] | Rest] Newstack,
Newbuffer):-attach([[xmax, St, ‘+n-v+a-p’,[spec, head_, comp]]

| Reststack],

[[[([Words,’-n+v-a+p’,~’ tense],[Words, +n-v+a-p’,SP]],Second] | Rest], Newstack, Newbuffer).

grammar_rule(attach_prep, [[xmax, "-n-v’, [spec, head_, comp]] | Reststack],

[[[Words, -n-v’],IW, “+n-v+a-p’]] | Rest] Newstack, Newbuffer):-
attach([[xmax,’-n-v’,[spec, head_,compl]| Reststack],[[[Words,’ -n-v'],[W,
"+n-v+a-p’]] | Rest] Newstack, Newbuffer).

grammar _rule(attach_prep, [[xmax, "-n-v’, [spec, head_, compl]| Reststack],

[[[Words, *-n-v’],IW, +n-v+a-p’,PL]] | Rest] Newstack, Newbuffer):-
attach([[xmax,’-n-v’,[spec, head_,comp]]| Reststack],[[[Words, -n-v'],[W,
‘+n-v+a-p’,PL]] | Rest], Newstack, Newbuffer).

grammar_rule(attach_prep, [[xmax,S, -n-v’,[spec, head_, compl] | Reststack],

[[[Words, "-n-v’], [W, "+n-v+a-p’]] | Rest] Newstack, Newbuffer):-
attach([[xmax,S,”-n-v’,[spec,head_,comp]] | Reststack],[[[Words, ‘-n-v'],[W,
‘+n-v+a-p’]] | Rest], Newstack,Newbuffer).

grammar _rule(attach_prep, [[xmax, -n-v’, [spec, head_, comp]] | Reststack],

([[Words, ‘-n-v'1IW, "+n-v+a-p’,pnll | Rest] Newstack, Newbuffer):-
attach([[xmax,’-n-v’,[spec, head_, compl] | Reststack], [[[Words,’ -n-v’],[W,
‘+n-v+a-p’,pnll | Rest], Newstack, Newbuffer).

grammar_rule(attach_prep, [[xmax,S, "-n-v’,[spec, head_, comp]] | Reststack],

[[[Words, "-n-v’], [W, "+n-v+a-p’,pnl] | Rest] Newstack, Newbuffer):-

attach([[xmax,S, -n-v’,[spec, head_,comp]] | Reststack], [[[Words, ’-n-v'],[W,
‘+n-v+a-p’,pn]] | Rest],

Newstack,Newbuffer).

grammar_rule(attach_prep, [[xmax, ‘-n-v’, [spec, head_, comp]] | Reststack],

([[Words, "-n-v’], [W, “+n-v-a-p’]] | Rest],

Newstack, Newbuffer):-

attach([[xmax,’-n-v’,[spec, head_,comp]]! Reststack],[[[Words,”-n-v'],[W,

‘+n-v-a-p’]} | Rest],Newstack, Newbuffer).

grammar_rule(attach_prep, [[xmax,S, "-n-v’,[spec, head_, comp]] | Reststack],

[[[Words, "-n-v'), [W, ‘+n-v-a-p’]] | Rest],Newstack, Newbuffer):-

attach([[xma x,S,'—n-v',[s]:sec,head*,comp]] | Reststack],[[[Words, ‘-n-v'],[W
“+n-v-a-p’]] | Rest], Newstack, Newbuffer). ‘

grammar_rule(attach_prep, [[xmax, -n-v’, [spec, head_, comp]] | Reststack],

[([[Words, "-n-v’], [W, "“+n-v+a+p’,PD]] | Rest],Newstack, Newbuffer):-
attach([[xmax,’—n-v’,[spec,
head_,comp]] | Reststack],[[[Words,-n-v'][W,’ +n-v+a+p’,PD]] | Rest],Newstack, Newbuffer).
grammar_rule(attach_prep, [[xmax,S, "-n-v’,[spec, head_, comp]] | Reststack],

[[[Words, -n-v’], [W, “+n-v+a+p’,PD]] | Rest],Newstack, Newbuffer):-attach([[xmax,S,’-n-v’,[spec,
head_,comp]] | Reststack],

([[Words, -n-v’],[W, ‘+n-v+a+p’,PD]] | Rest], Newstack,Newbuffer).

grammar_rule(attach_prep, [[xmax, "-n-v/, [spec, head_, comp]] | Reststack],[[[Words, -n-v’], [W,
‘+n-v+a+p’]] | Rest],Newstack, Newbuffer):-
attach([[xmax,’-n-v',{spec,
head_,comp]] | Reststackl,[[[Words,'-n«v'],{W,'+n—v+a+p’}] | Rest] Newstack, Newbuffer).
grammar_rule(attach_prep, [[xmax,S, "-n-v’,[spec, head_, comp]] | Reststack],

[([([Words, "n-v'], [W, "+n-v+a+p’]] | Rest] Newstack, Newbuffer):-
attach([[xmax,S,‘-n-v',[spec,head_,compl] | Reststack],[[[Words, -n-v'],[W,
‘+n-v+a+p’]] | Rest] Newstack,Newbuffer).

grammar_rule(a ttachq_reduce_rel,[[xmax,’-n+v-a+p’,{spec,head_,comp]],[xmax,S,’+n-v+a-p',T] |
Reststack],

[[[Words, ‘-n+v-a+p’, PN, Tense],Second]|Rest],Newstack, Newbuffer):-
attach([[xmax, -n+v-a+p’,[spec, head _,
compl],[xmax,S,’+n-v+a-p’,T] | Reststack],[[[Words,’-n+v-a+p’,PN, Tense],Second] | Rest],Newsta
ck,Newbuffer).

grammar_rule(attach_verb, [[xmax, "-n+v-a+p’, [spec, head_, comp]] | Reststack],

[[[Words, "-n+v’, PN, Tense],Second] | Rest],Newstack, Newbuffer):-

attach([[xmax, ’-n+v-a+p’, [spec, head_,comp]]|Reststack],[[[Words,
"-n+v’, PN, Tense],Second] | Rest],Newstack, Newbuffer).

grammar_rule(attach_verb, [[xmax,’-n+V’, [spec, head_, comp]] | Reststack],[[[Words, "-n+v’, PN,
Tense],Second] | Rest], Newstack, Newbuffer):- attach([[xmax, -n+v’,[spec,
head_,comp]] | Reststack],

[[[Words, ‘n+v’,PN,Tense],Second] | Rest],Newstack, Newbuffer).

grammar_rule(attach_verb,[[xmax,’-n+v-a+p’,[spec, head_, comp]]|Reststack],[[[Words,
-n+v-a+p’, PN, Tense],Second] | Rest],Newstack, Newbuffer):- attach([[xmax,’-n+v-a+p’ [spec,
head_, compl]] | Reststack],[[[Words,’-n+v-a+p’,PN,Tense], Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_pred_adj,[[xmax,St, "-n+v’,[spec, head, comp_]] | Reststack],
([[Words, ‘+n-v+a+p’],Second] | Rest],Newstack, Newbuffer):-attach([[xmax,St, “-n+v’, [spec, head,
comp_]] | Reststack],[[[Words, ‘+n-v+a+p’],Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_infl,[[xmax,St,"-n+v+a+p’ [spec,head,comp_]] | Reststack],[[[xmax,[[to_infi
nitive [to,’-n+v+a+p’]] | Remain],’-n+v+a+p’],[]] | Rest] Newstack, Newbuffer):-attach([[xmax,St,’
- n + v + a + p ' ; [s P e c ¢
head,comp_]] | Reststack],[[[xmax,[[to_infinitive [to,'-n+v+a+p’]] | Remain],"-n+v+a+p’],[]] | Rest]
JNewstack, Newbuffer).

gramma r_rule(wh_insert,[[xmax,[attach_verb,Entry],
"-n+v-a+p’,[spec,head,comp_|, Tyl [xmax,S,F,T| [xmax,51,F1],

(R}
d
LS

[xmaxISZ,FZ,TZ.Wh]],l[I],[1]],Newstack,Newbuffer):-insert(_Trace,[Ixmax,lattach_verb,Entry],’~n

+v-a+p’ [spechead ,comp_], Tyl [xmax,S,F,T],[xmax,51,F1],[xmax,52,F2,T2,wh]L{[[1.1]]].Newstac
k,Newbuffer).

grammar_rule(attach_vp,[Ixmax,[attach_subject,Entry],'-n+v+a+p',[5pec,head,comp_]l],[[[xmax,
S/-n+v’], Second] | Rest],Newstack, Newbuffer):-

attach({[xmax, [attach_subject,Entry],’-n+v+a+p’ [spec, head, comp_l]] [[[xmax, S, -n+v],
Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_vp,[[xmax [attach_subject,Entry]),

-n+v+a+p’ [spec,head,comp_]] | Reststack],[[[xmax, S/-n+v+a+p’], Second]|Rest] Newstack,
Newbuffer):-

attach([[xmax, [attach_subject,Entry], ‘-n+v+a+p’,[spec, head,
comp_]] IReststack],[[[xmax,S,’-n+v+a+p'], Second] | Rest],Newstack, Newbuffer).

grammar_rule(attach_vp,[[xmax,S,’-n+v+a+p',ISpec,head,compm]] | Reststack],[[[xmax,
S1,/-n+v-a+p’, Ty}, Second] | Rest],Newstack, Newbuffer):-

attach([[xmax, S, "n+v+a+p’ [spec, head,comp_]]

I Reststack],[[[xmax, S1,"-n+v-a+p’, Ty],Second] | Rest],

Newstack, Newbuffer).

grammar_rule(attach_vp,[[xma x,S,”-n+v’,[spec,head,comp_]] | Reststack],[[[xmax,
S1,/-n+v-a+p’,Ty], Second] | Rest], Newstack, Newbuffer):-

attach([[xmax, S, ‘-n+v’[spec, head, comp_]]IReststack],[[[xmax,S1, -n+v-a+p’,Tyl,
Second] | Rest], Newstack, Newbuffer).

grammar_rule(attach_vp,[[xmax,S,’-n-v+a+p’,[spec,head ,comp_]] | Reststack],[[[xmax,51,’-n+v-a
+p" Tyl, Second]|Rest]Newstack, Newbuffer):- attach([[xmax,S, -n-v+a+p’,[spec, head,
comp_]] I Reststack],[[[xmax, S1,'-n+v-a+p’,Ty], Second] | Rest],Newstack, Newbuffer).

grammar_rule(attach_vp,[[xmax,S,’ -n-v+a+p’,[spec,head,comp_]] | Reststack],[[[xmax,
[[passive_be,E]| Remain],’-n+v+a+p’],Second] | Rest],Newstack, Newbuffer):-

attach ([[xmax, S, ‘"-n-v+a+p’',[spec,
head,comp_]] | Reststack],[[[xmax,[[passive_be,E] | Remain],’-n+v+a+p’] Second] | Rest],Newstack,
Newbuffer).

grammar_rule(attach_vp,[[xmax,S,’-n+v+a+p’,[spec,head,comp_]] | Reststack],[[[xmaXx,
S1,/-n+v+a+p’], Second] | Rest] Newstack, Newbuffer):-

attach([[xmax, S, "-n+v+a+p’,[spec, head,comp_]]

| Reststack],[[[xmax, S1,'-n+v+a+p’], Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_vp,[[xmax,S,’-n+v+a+p’,[spec,head,comp_]] | Reststack],[[[xmax,
S1,/-n+v+a+p’], Second] | Rest] Newstack, Newbuffer):-

attach([[xmax, S, “n+v+a+p’ [spec, head, comp_]] | Reststack],

[[[xmax, S1,/-n+v+a+p’], Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_vp,[[xmax,S,’-n+v+a+p’,[spec,head,comp_]] | Reststack],[[[xmax,
S1,-n+v-a+p’,Tyl, Second] | Rest] Newstack, Newbuffer):-

attach([[xmax,S, ’‘-n+v+a+p’[spec, head,comp_]]IReststack] [[[xmax, S1,/-n+v-a+p’,Tyl,
Second] | Rest],Newstack, Newbuffer).

grammar_rule(attach_vp,|[xmax,5,’-n+v+a+p’,[spec,head,comp_]] | Reststack],[[[xmax,
S1,-n+v-a+p’,Tyl, Second] | Rest] Newstack, Newbuffer):-

attach([[xmax, S, -n+v+a+p’,[spec, head,comp_]] | Reststack],

[[[xmax,S1,’-n+v-a+p’, Ty, Second] | Rest], Newstack, Newbuffer).

grammar_rule(artach_succ_aux,[lxmax,S,‘-n+v+a+p',[spec,head,c0mp_]] | Reststack],
[[[xmax, S1, n+v’], Second]|Rest]Newstack, Newbuffer):-attach([[xmax,S,’-n+v+a+p’,[spec,

234

head, comp_]] I Reststack],[[[xmax, S1,-n+V’], Second] | Rest],Newstack, Newbuffer).

grammar_rule(attach_succ_au x,[[xmax,S,’-n+v+a+p’,[spec,head,comp_]] | Reststack],[[[xmax,S1,
"-n+v+a+p’], Second] | Rest], Newstack,Newbuffer):-
attach([[xmax,S,'-n+v+a+p',[spec, head,
comp_]] 1Reststack],[l[xmax,Sl,’-n+v+a+p’],Second] I Rest], Newstack,Newbuffer).

grammar_rule(attach_succ_aux,[[xmax,S,’-n+v’,[spec,head,comp_]] I Reststack],[[[xmax,51,"-n+v’],
Second] | Rest] Newstack, Newbuffer):-

attach([[xmax,S,’-n+v’,[spec,head,comp_]] | Reststack],[[[xmax, S1,-n+v’], Second] | Rest],Newstack,
Newbuffer).

grammar_rule(attach_succ_aux,[[xmax,S,’-n +V’ [spec,head,comp_]] | Reststack],
[[[xmax,S1, "-n+v+a+p’], Second] | Rest], Newstack, Newbuffer):-
attach([[xmax,S,‘-n+v’,[spec

head,comp_]] [Reststack],[[[xmax,Sl,‘-n+v+a+p’],SeCOnd] | Rest],Newstack,Newbuffer). ’
grammar_rule(attach_sent, [[xmax,S,”-n-v+a+p’, [spec, head,
comp_]]lReststackl,[[[xmax,81,’«n+v+a+p'],Second]lRest],Newstack,
Newbuffer):-attach([[xmax,S,”-n-v+a+p’,[spec, head,
comp_l]| Reststack],[[[xmax,51,"-n+v+a+p’],Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_sent,[[xmax,S,’-n-v+a+p’,lspec,head,
comp_],whl]l Reststack],[[[xmax,S1,’-n+v+a+p’],Second] | Rest],Newstack,
Newbuffer):-attach([[xmax,S, -n-v+a+p’,[spec,head,comp_],wh] | Reststack],[[[xmax,51,’-n+v+a+
p’l,.Second] | Rest] Newstack, Newbuffer).

grammar _rule(attach_sent, [[xmax,’-n+v-a+p’,[spec, head,
comp_]] | Reststack],[[[xmax,S, -n+v+a+p’],Second] | Rest] Newstack, Newbuffer):-attach([[xmax,

“-n+v-a+p’[spec, head, comp_]]|Reststack][[[xmax,S, ‘-n+v+a+p’],Second]|Rest],Newstack,
Newbuffer).

grammar_rule(attach_sent, [[xmax,S, -n-v+a+p’, [spec, head, comp_]]|Reststack] [[[xmax,S1,
-n+v+a+p’],Second] | Rest] Newstack, Newbuffer):-attach([[xmax,S,’-n-v+a+p’ [spec, head,
comp_]] | Reststack],[[[xmax,51, -n+v+a+p’],Second] | Rest], Newstack, Newbuffer).

grammar_rule(attach_zcomp_sent,[[xmax,S, -n+v-a+p’,[spec,head,comp_],Ty] | Reststack],[[[xm
ax,S1,/-n+v+a+p’],Second] | Rest] Newstack, Newbuffer):-attach([[xmax,S, -n+v-a+p’,[spec, head,
comp_], Ty] | Reststack],[[[xmax,S1,"-n+v+a+p’], Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_zrpron_sent, [[xmax,S,’+n-v+a-p’,[spec, head,
comp_]] | Reststack],[[[xmax,51, ’‘-n+v+a+p’],Second] | Rest],Newstack,Newbuffer):-
attach([[xmax,S,’ +n-v+a-p’', [spec, head,
comp_]] | Reststack],[[[xmax,S1,'-n+v+a+p’],Second] | Rest], Newstack,Newbuffer).

grammar_rule(attach_zrpron_sent, [[xmax,S,’+n-v+a-p’ [spec, head, comp_]] | Reststack],
[[[xmax,S1,-n+v-a+p’, Ty],Second] | Rest] Newstack,Newbuffer):- attach([[xmax, S,"+n-v+a-p’ [spec,
head, comp_]] | Reststack],[[[xmax,51,'-n+v-a+p’, Ty],Second] | Rest],Newstack, Newbuffer).

grammar_rule(attach_zrpron_sent, [[xmax,S,’+n-v+a-p’,[spec, head,
comp_]] | Reststack],[[[xmax,S1, "-n+v-a+p’],Second] | Rest] Newstack, Newbuffer):- attach([[xmax,
5 o % % m = ¥ # @ = p ") & p e , h e a d ,

comp_]] | Reststack],[[[xmax,S1,"-n+v-a+p’],Second] | Rest],Newstack Newbuffer).

grammar_rule(attach_comp_phr, [[xmax, [attach_verb, Entry], -n+v-a+p’ [spec, head,
comp_J], Tyl I Reststack],[[[xmax, [[attach_comp,
Entry1] | Remain],’-n-v+a+p’],Second] | Rest] Newstack Newbuffer):-

attach([[xmax, [attach_verb, Entry], ‘-n+v-a+p’[spec, head, comp_| Ty]IReststack],[[[xmax,

235

[[attach_comp, Entry1]IRemain],’-n-v+a+p’],Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_ﬁrelative__clause,{[xmax,S,'+n-v+a-p',[spec, head, comp_]]|Reststack],
E[lxmax,S],'-n-v+a+p‘],59cond] |l Rest], Newstack,

Newbuffer):-attach([[xmax,S,’+n-v+a-p',[spec,head,compj] IReststack] [[[xmax,S1,"-n-v+a+p’],S
econd] | Rest],Newstack,Newbuffer).

grammar_rule(attach_object,[[xmax, St, ‘-n+v’, [spec, head,
comp_]] | Reststack] [[[xmax,E,'+n-v+a-p’], Second] | Rest] Newstack, Newbuffer)-- attach([[xmax,

St, “-n+v’, [spec, head, comp_l]IReststack],[[[xmax, E, “+n-v+a-p’],Second] | Rest] Newstack,
Newbuffer).

grammar_rule(attach_object,[[xmax,St,'-n+v-a+p',[spec,head,comp_],Tyl | Reststack],[[[xmax,E,’
+n-v+a-p’],Second] | Rest],Newstack, Newbuffer):- attach([[xmax, St,
'-n+v-a+p’,[5pec,head,cornp_],'l‘y]

| Reststack],

[[[xmax,E, "+n-v+a-p’],Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_object,[[xmax, St, ‘-n+v’, [spec, head,
comp_|]! Reststack],[[[xrnax,E,’+n-v+a»p‘,pnl,Sec0nd] | Rest],Newstack, Newbuffer):-
attach([[xmax, St, ‘-n+v’, [spec, head,comp_]] I Reststack],[[[xmax, E,
"+n-v+a-p’,pn],Second] | Rest],Newstack, Newbuffer).

grammar_rule(attach_object,[[xmax,St,’-n+v-a+p’ [spec,head,comp_], Ty] | Reststackl],[[[xmax,E,’
+n-v+a-p’,pn],Second] I Rest],Newstack, Newbuffer):- attach([[xmax, St,
‘-n+v-a+p’,[spec,head,comp_], Ty]

| Reststack],

[[[xmax,E, "+n-v+a-p’,pn],Second] | Rest] Newstack, Newbuffer).

grammar_rule(attach_pp,[[xmax,S,’-n+v-a+p’ [spec, head,comp_],Ty]|Reststack],[[[xmax,
S1,/-n-v’],Second] | Rest], Newstack Newbuffer):-attach([[xmax,S, -n+v-a+p’ [spec,head,comp_], T
y] I Reststack],[[[xmax, S1, "-n-v’],Second] | Rest], Newstack, Newbuffer).

grammar_rule(attach_pp,[[xmax,S,"-n+v-a+p’,[spec, head,comp_]]|Reststack],[[[xmax,
S1,/-n-v’],Second] | Rest] Newstack,Newbuffer):-attach([[xmax,S, -n+v-a+p’,[spec,head,comp_]]
| Reststack],[[[xmax, S1, '-n-v’],Second] | Rest], Newstack, Newbuffer).

grammar_rule(attach_pp,[[xmax,S,’+n-v+a-p’,[spec, head,comp_]] | Reststack],[[[xmax,
S1,"-n-v’],Second] | Rest] Newstack,Newbuffer):-attach([[xmax,S, +n-v+a-p’,[spec,head,comp_]]
| Reststack],[[[xmax, S1, -n-v’],Second] | Rest], Newstack, Newbuffer).

grammar_rtule(attach_pp,[[xmax,S,” -n+v’,[spec,
head,comp_]] | Reststack],[[[xmax,S1,”-n-v’],Second] | Rest] Newstack Newbuffer):-attach([[xmax
,S,/-n+Vv’ [spec,head,comp_]] | Reststack],[[[xmax,51,"-n-v’],Second] | Rest],Newstack, Newbuffer).

grammar_rule(attach_pp,[[xmax,S,’-n+v-a+p’,[spec, head,comp_|,Ty]|Reststack],
[[[xmax,S1,”-n-v+a+p’],Second] I Rest] Newstack,
Newbuffer):-attach([[xmax,S,’-n+v-a+p’,[spec,head,comp_],Ty] | Reststack], [[[xmax,S1,"-n-v+a+
p’],Second] | Rest], Newstack, Newbuffer).

grammar_ru!e(attach_pp_object,[[xmax,S,’-n-v’,lspec,head,comp_]] | Reststack],
[[[xmax,S1,"+n-v+a-p’] Second] | Rest] Newstack,Newbuffer):-attach([[xmax,5,"-n-v’,[spec, head,
comp_]] | Reststack],[[[xmax,S1,"+n-v+a-p’] Second] | Rest] Newstack, Newbuffer).

grammar_rule(passive,[[xmax,[attach_verb,F], -n+v-a+p’,[spec,head,comp_], Tyl ,[xmax,[passive

_be, Entryl],Features, Template] | Reststack],[[First, Second]!Rest],Newstack, Newbuffer):-
insert(_Trace,[[xmax,[attach_verb,F],"-n+v-a+p’ [spec,head,comp_] Ty] [xmax,[passive_be Entry

236

l],Features,Template] IReststack], [[First, Second] | Rest] Newstack, Newbuffer).

grammar_rule(passive,[[xmax,[[attach_verb,F] IR],'-n+v-a+p’ [spechead comp_],Ty],[xmax[pas
sive_be, Entryl],Features, Template]lReststack],{[First, Second] | Rest],Newstack,
New:buffer):-insert(_’I‘race,[[xmax,[[attach_verb,F] | R],’—n+v-a+p’,[spec,head,comp_],Ty],[xmax,|
passive_be,Entry1],Features, Template] | Reststack], [[First, Second] | Rest],Newstack, Newbuffer).

/*This rule, called by grammar_rule, attaches item form first buffer cell to the stack.*/

attach([[xmax, Featuresl,Template]lReststack],[[[[W, +n-v-a-p’],

_First1],[S,”+n-v+a-p’,sgll],[[xmax, [W, +n-v-a-p’], Featuresl,
Template] | Reststack][[[S, +n-v+a-p’,sg], []1)).

at{ach([[xmax,Features] ,Template] | Reststack],[[[[W,"+n-v-a-p’],
_First1],[S,"+n-v+a-p’,sgl]l I [XIL]],[[xmax, [W, +n-v-a-p’], Featuresl,
Template] | Reststack],[[[S, +n-v+a-p’,sg], X] | L]).

attach([[xmax, Featuresl, Template]|lReststack],[[[[W, -n+v+a+p’],

_I;'irstlll,lbe,’—n+v’l] HXTLILI[xmax, [W, -n+v+a+p’], Features1, Template] | Reststack],[[[be, -n+v’],
X]ILD.

attach([[xmax, Featuresl, Template]l Reststack],[[[_First,
[(W,-n-v+a+p’lLIS, +n-v+a-p’,plll [XIL]],[[xmax, [W,’-n-v+a+p’], Featuresl,
Template] | Reststack] [[[S, +n-v+a-p’,pl], X]IL]).

attach([[xmax, S,Featuresl, Template] | Reststack],[[[_First,
(W, +n-v+a-p’,sgll,IW1,-n+v’]] [XIL]][[xmax, [S,[W, +n-v+a-p’,sgll, Featuresl,
Template] | Reststack],[[[W1,"-n+v’], X]IL]).

a t t a c h ([[X m a X :
S,Features1, Template] | Reststack],[[[[W,’+n-v+a-p’,sgl,_Sel,IW1,’-n+v’]] I [XI L]],[[xmax,
[S,[W, +n-v+a-p’,sgll, Features1, Template] | Reststack],[[[W1,-n+v’], X] I L]).

attach([[xmax, Featuresl, Template]lReststack], [[[_First,
[W, -n-v+a+p’lL[S, +n-v+a-p’,pnl] [XIL]][[xmax, [W,’-n-v+a+p’], Featuresl,
Template] | Reststack],[[[S,’+n-v+a-p’,pn], X]IL)).

attach([[xmax, Featuresl, Template] |Reststack][[[_First, [W,’-n-v+a+p’]],S]I[XIL]][[xmax,
[W,-n-v+a+p’], Featuresl, Template] | Reststack],[[S,X] IL]).

attach([[xmax, Featuresl, Template] | Reststack],[[First, Second] | [X I L]],[[xmax, First, Featuresl,
Template] | Reststackl,[[Second, X]IL)).

attach([[xmax, Featuresl, Template]lReststack] [[First, Second]] [[xmax, First,
Features1,Template] | Reststack],[[Second, []]]).

attach([[xmax, Structure, Features, Template] | Reststack],[[First, Second] | [X | L]],[[xmax,
[Structure,First], Features, Template] | Reststack],[[Second, X] I L]D).attach([[xmax, Structure,
Features, Template]|Reststack],[[First, Second]] [[xmax, [Structure,First], Features,
Template] | Reststack],[[Second, [11]).

attach({[xmax,Structure,Features, Template, Type] | Reststack],[[First, Second] | [X I L] [[xmax,
[Structure,First], Features, Template, Type] | Reststack],[[Second, X]ILD.

/*This rule, called by ‘grammar_rule’, switches the contents of the two buffer cells.

*/switch({[xmax, ‘-n+v+a+p’, [spec_head,compl]]|Reststack],([First, Second]!Rest][(xmax,
"-n+v+a+p’, [spec_ head, comp]]|Reststack],[[Second, First] | Rest]).

237

/*This rule, called by ‘grammar_rule’ insert either a trace or lexical item into the stack.*/

insert([np_empty,'+n-v+a-p’,PL],[[xmax,S,’-n+v-a+p’,[5pec,head,c0mp_],TyL[xmax,[passive_be,
Entry] Features, Template] | Reststack], LEL],
Second] | Restl,[[xmax,S,’-n+v-a+p’,[spec,head,comp_],Ty],[xmax,[passive_be,Entry],Features,Te
mplate] | Reststack], [[[np_empty, +n-v+a-p’,PL],Second] | Rest]).

insert(Inp_empty,’+n-v+a-p’,PL],[[xmax,’-n+v+a+p’,[spec_,head,comp]] | Reststack],[[[to,
temavNvarp?l U Werd,"eneryv? =2t tense]l]l | Restl,

[[xmax,’-n+v+a+p’ [spec_head,comp]] | Reststack],[[[np_empty, +n-v+a-p’,PL],[to, -n+v+a+p']],
[Word,-n+v’,’-" tense] | Rest]).

insert([np_empty, +n-v+a-p’,PL],[[xmax,[R,St],' n+v-a+p’ [spec,head ,comp_], Tyl [xmax,S,F,T] [
xmax,S1,F1],[xmax,52,F2,T2,wh]LI[[],[11][[xmax,[R,St],’-n+v-a+p’ [spec, head,comp_], Ty],[xmax,
S,F,T],[xmax,51,F1],[xmax,52,F2, T2, wh]],[[[np_empty,’+n-v+a-p’,PL,[1],[1]).

insert({np_empty,’+n-v+a-p’,PL],[[xmax,’-n+v+a+p’ [spec_head,comp]],[xmax,51,F1,T,wh] | Res
tstack],[[[Word,’-n+v’,PN, Tense|,Second] | Rest],[[xmax, -n+v+a+p’,[spec_head,compl]],[xmax,5
1,F1,T,wh] | Reststack],[[[np_empty,’+n-v+a-p’,PL][Word,’-n+v’,PN,Tense]] | [Second | Rest]]).

insert(Inp_empty, +n-v+a-p’,PL] [[xmax,’-n+v+a+p’ [spec_head,comp]],[xmax,51,F1,T,wh] | Res
tstack],[[[Word, -n+v+a+p’],Second] | Rest],[[xmax,’-n+v+a+p’ [spec_head,comp]],[xmax,51,F1,
T,wh] | Reststack],[[[np_empty,’+n-v+a-p’,PL],[Word,’-n+v+a+p’l] | [Second | Rest]]).

insert([you,”+n-v+a-p’,pnl,[[xmax,’-n+v+a+p’,[spec_ head,compl]],[[[[Word,
‘-n+v-a+p’,"-",tense},_],S5Secondl] Rest],
[[xmax,’-n+v+a+p’,[spec_head,compl]l[[[you, +n-v+a-p’,pn][Word, -n+v-a+p’,’~ tense]] | [Seco
nd | Rest]]).

insert([you,’+n—v+a-p‘,pn],[[xmax,’-n+v+a+p’,Template] | Reststack],[[[[Word,’ -n+v-a+p",- tens
e] . [W o r d 1 ’
‘+n-v+a-p']],Second] | Rest],[[xmax,Word, -n+v+a+p’, Template] | Reststack] [[[you,"+n-v+a-p’,pn
1,[[Word, -n+v-a+p’,’- tense],[Word1, +n-v+a-p’l}] | [Second | Rest]]),Entry1],Features, Template]).

19
(5]
o0

APPENDIX B

This appendix contains code for the LParser and its grammar. The code below
represent the parsing rules.

/*This file contains the parsing rule for LParser.*/

_/*The top level rule ‘run’ calls the procedure for reading in text - ‘readin’and the rule which
initiates the parsing process ‘parse’.*/

run(NStack, Nbuffer):-

readin(P),

statistics(runtime,_),
add_last($,P,P1),
parse([],P1,NStack, Nbuffer),
statistics(runtime,[,T)),
format('parse took ~3d sec.~n’,[T]).

/*The rule “parse’ initiates the parsing procedure by calling the rule’match_state’ which controls
the parsing by manipulating the interactionbetween stack, buffer and parse_table.*/

parse(Stack,[InputlRestBuffer], NStack,Nbuffer):-
match_state(_State,_Statel,_States,Stack,[Input | RestBuffer]
,NStack Nbuffer),!.

/*The rule ‘match_state’” deals with shifting constituents from the buffer,reducing the
constituents on the stack and accepting the result when parsingis complete. It calls "state” which
represents states in the parse table toaid the interaction between stack and buffer.*/

match_state(State,_Statel,[],Stack,[Input | Restbuffer],

Nstack,Nbuffer):-

state(State,A,B,Q),

Bi==%§;

(Input=[_H | _T],
check_categories(Input,Restbuffer, A, [Inputl, Restl1]);
check_categoriesl (Input,Restbuffer,A,[Input],Restll)),
shift(Stack,[Input1 | Rest1] N1stack,N1buffer),

\+member(State,[]),

conc([State],[],OldStates), match_state(C, State,OldStates,N1stack,N1buffer Nstack,

Nbuffer).

match_state(State, Statel,States,Stack [Input | Restbuffer],

Nstack, Nbuffer):-

state(State,A,B,C),

B == s, (Input=[_H I_Tl,check_categories(lnput,Restbuffer,A,[lnput],Restl]);
check_categoriesl(Input,Restbuffer, A, [Inputl, Restl])),
shift(Stack,[Input1 | Rest1] N1stack,N1buffer),

(member(State,States),OldStates=States; conc([State],States,OldStates),
\+member(State,States)), match_state(C,State,OldStates,N1stack,N1buffer Nstack,

Nbuffer).

match_state{State,_State1,States,Stack,lInpul | Restbuffer],

Nstack Nbuffer):- (\+state(State,A,B,C);last1(wh_phrase(_,_),Stack);
last(rpron(_,_),Stack);last(aux(_,_),Stack),

se_last(inf(_,_),Stack)),

checking(Stack,[nput},!, Bﬁ

member(State2, States),
state(State2,A,B,C),

B == s (Input=[_H | _T],check_categories(lnput,Restbuffer,A,[Inputl,Rest] D;
check_categoriesl(Input,Restbuffer,A,[Inputl,Rest1])),
shift(Stack,[Input1 | Rest1], N1stack,N1buffer),

(member(State,States),OldStates=States; conc([State],States,OldStates), \ +member(State,States)),

match_state(C State,OldStates, N1stack,N1buffer,Nstack,
Nbuffer).

match_state(State,State1,States,Stack,[Input | Restbuffer],
Nstack, Nbuffer):-

check_verb_rpron(Stack), \+state(State,A,B, C),state(State,A,B),
(member(State,States), OldStates=States; conc([State] States,OldStates)),

state(Statel,_A1,_B1,C1),\+atom(C1),C1=\=State, \+member(C1,0ldStates),
match_state(C1,5tate1,0ldStates,Stack,[Input | Restbuffer],

Nstack,Nbuffer).

match_state(State,_Statel,States,Stack,[Input | Restbuffer],

Nstack,Nbuffer):-

state(State,_A,B,C),

B ==r1;

merge(Stack,C),

reduce(Stack,C,Nlstack), (check_verb_prep(N1stack,Input),

member(State2,States), state(State2,C,D),State2\==23,State2\==128 State2\==118;

member(State2,States),
state(State2,C,D)), match_state(D,State,States, N1stack,[Input | Restbuffer],
Nstack,Nbuffer).

match_state(State,_Statel,States,Stack,[Input | Restbuffer],

Nstack,Nbuffer):-

state(State,_A,B,C),

B ==1r2,

checking1(Stack,Input),

mergel(Stack,C,D),

reducel(Stack,D,N1stack),

(Input= $, last1(sentence(_,_),N1stack),last(State2,States); member(State2,States)),
state(State2,D,E), match_state(E, State States,N1stack,[Input | Restbuffer],
Nstack,Nbuffer).

match_state(State,_Statel,_States,Stack,[Input | Restbuffer],Stack,Restbuffer):-
state(State,$,a)=state(22,$,a), delete($,[Input | Restbuffer] Restbuffer).

/*The rule ‘check_categories’ compares the leftmost element of the inputstring with gram
category of executed state. It also deals with compoundentries which in certain circumstances
leads to lookahead being extended to be able to process them.*/

check_categories1(Inpu t,Rest,A,B):-
mem_eq(Input,A),}!,
B=[Input|[Rest]].

check_categories(Input,Rest,A,B):-

Input=[T,_S], .
T=passive_be(_,_), (mem_eq(T,A),first(Z,Rest),Z=verb{_,V{Y)),getﬂend(‘{),!,fall;

mem_eq(T,A) first(Z,Rest), Z= verb(_,v(Y)),\+get_end(Y),
Inputl=T), B=[Inputl[Rest]].

check_categories(Input,Rest,A B):-
Input=[_T.S],

240

S=prog(__), (mem_eq(S,A) first(Z,Rest),Z=verb(_v(Y)),get_end(Y),

Inputl=S§; mem_eq(S,A) first(Z Rest) (Z=det(_d(_Y));Z=adj(_a(_Y))), Input1=S),
B=[Input1 | [Rest]].

check_categories(Input,Rest,A,B):-

Input=[_T.,S],

S=prep(__), (mem_eq(S,A),first(Z,Rest),mem_eq(Zl,Z),verbaux{List),
member(Z1,List),! fail;

mem_eq(S,A),Input1=S5),

B=[Input1 | [Rest]].

check_categories(Input,Rest,A,B):-

Input=[T,_S],

T=inf(_,), mem_eq|(T,A),first(Z,Rest),mem_eq(Z1,Z),verbaux(List),
member(Z1,List),

Inputl=T,

B=[Inputl | [Rest]].

check_categories(Input,Rest,A,B):-

Input=[_T,S],

S=det(__), (mem_eq(S,A) first(Z Rest),mem_eq(Z1,Z),Z1=noun(_,_),
Inputl=5),

B=[Input1 | [Rest]].

check_categories(Input,Rest,A,B):-
Input=[T,_S],

T=pronoun(_,_),

mem_eq(T,A),

Inputl=T,

B=[Input1 | [Rest]].

check_categories(Input,Rest,A,B):-

Input=[_T,S],

S=noun(_,_), mem_eq(S,A)first(Z,Rest),mem_eq(Z1,Z),verbaux(List),
member(Z1,List),

Inputl=S,

B=[Input1 | [Rest]].

check_categories(Input,Rest,A,B):-

Input=[T,_S],

T=verb(_,_), (mem_eq(T,A),first{Z,Rest),mem_eq(Zl,Z),verbaux(List),
member(Z1,List),!,

fail;

mem_eq(T,A),

Inputl1=T),

B=[Inputl | [Rest]].

check_categories(Input,Rest,A,B):-
Input=[T,S],

cat_clash(List),

member(T,List),

member(S,List),

(mem_eq(T,A),

Input1=T;

mem_eq(S,A),

Input1=5),

B=[Input1 | [Rest]].

241

check_categories(Input,Rest,A,B):-

Input=[T,S,U,V],

cat_clash(List),

member(T,List),

member(S,List),

member(U,List),

member(V,List), (mem_eq(S,A),first(Z,Rest),er\oun(_,n(_,sg)),

Inputl1=S; mem_eq(U,A),first(Z,Rest),(Z:noun(_,n(_,pl));2=det(_,d(_))). Input1=U;
mem_eq(V,A),first(Z,Rest),\+Z=noun(_,n(1)), Inputl=V;
mem_eq(T,A) first(Z,Rest),(\+Z=noun(_n(_,)), -
\+Z=det(_d()))),Input1=T),

B=[Input1 | [Rest]].

/*This rule called by ‘match_state’ shifts the leftmost constituent of thebuffer on to the stack.*/
shift([],[X | L],[X],L).

shift((X I TL[YIL],L1, L):-
add_last(Y,[X | T],L1).

/*This rule, called by ‘match_state’, does semantic checks on verbs listed in ‘spec_verb’, to aid
in the processing of prepositional phrases. It also aidsin processing of relative clauses.*/

check_verb_rpron(Stack):-
last(X,Stack),
X=verb(_,v(Y)),
spec_verb(List),
member(Z,List),
Z=verb(_v(T)),
get_root(Y,R),

T=R.

check_verb_rpron(Stack):-
se_last(rpron(_,_),Stack).

/*This rule called by ‘'match_state” when certain states need to be reexecuted,as guided by the
parse table.*/

checking(Stack,Input):-

(last(prep(_,_),Stack);

last1(prep(_,_),Stack);

check_aux(Stack);

last(rpron(_,_),Stack);

lastl(verb(_,_),Stack);

se_last(prep_phrase(_,_),Stack),
last(verb_phrase(_,_),Stack);

last(inf(_,_),Stack),Input \==$; se_last(rpron(_,_),Stack);

se_last(inf(_,_) Stack),Input \== §; last(inf(_,_),Stack),\+(mem_eq(verb(_,),Input));
(member(wh_phrase(_,_),Stack),\+last(verb(_,_),Stack));
(se_last(comp(_,_),Stack),last(noun_phrase(_,_),Stack),

\+mem_eq(prep(*,_),[nput},\+mem_eq(rpron(_,_),lnput));
(e _lastCauxi(_,_),Stack), lastinoun_phrase(_,_), Stack));
(se_last(aux1(_,_),Stack),last(th_phrase(_,_),Stack));

(th_last(aux1(_,_),Stack),se_last(th_phrase(_,_),Stack), last(noun_phrase(_,_),Stack));
(th_last(rpron(_,_),Stack) last(noun_phrase(_,_),Stack),
Input = $); (th_last(noun_phrase(_,_),Stack),se_last(verb(_,_),Stack),

last(noun_phrase(_,_),Stack))).

check_aux(Stack):-
last(X,Stack),
X=aux(_,).

/* This rule is called by ‘match_state’ when semantic checks have to be madebefore reducing
of constituents on the stack.*/

checkingl(Stack, Input):- ((mem_eq(prep(_,_),Input);\+th_last(rpron(_,_),Stack),
\+fo_last(rpron(_,_),Stack), mem_eq(X,Input),verbaux(List), member(X,List);
(th_last(wh_phrase(_,_),Stack),last(verb_phrase(_,_),Stack));
mem_eq(comp(_,_),Input);mem_eq(rpron(_,_),Input);
(se_last(rpron(__),Stack),mem_eq(det(_,_),Input))),! fail;true).

/*This rule, called by 'match_state’ does semantic checks on verbs and prepositions listed in

‘spec_verb’ and “spec_prep_inf’. It deals with thereduce-reduce conflicts produced by the
parse_table.*/

check_verb_prep(Stack,Input):-
member(X,Stack),

X=verb(_v(Y)),

spec_verb(List),

member(Z,List),

Z=verb(_v(T)),

get_root(Y,R), T=R,

spec_prep_inf(List1),

member(Z1,Listl), mem_eq(Z1,Input).

/*This rule called by the above gets the root form of a verb.*/

get_root(Y,Y):-
name(Y, R).

get_root(Y,R):-
name(Y,R2),
cutoff(_X,R2,R1),
name(R,R1).

get_root(Y,R):-
name(Y,R3),
cutoff(_X,R3,R2),
cutoff(_Z,R2,R1),
name(R,R1).

get_end(Y):-
name(Y,R3),
cutoff1(_X,R3,R2),
cutoff1(_Z,R2,R1),
cutoffl(_T,R1,_R),
name(ing,[_T,_Z,_X).

mem_eq([],[]):- fail.
mem_eq(X,[XI_LD:= !
mem_eq(X,X):- L.

mem_eq(X,[_Y I L]):-
mem_eq(X,L).

[B
Fe
L]

/*This rule called by check_categories list categories that may clash.*/

cat_clash(List):-
List=[wh_comp(_w_c(who)),
rpron(_r_p(who)),

rpron(_r_p(that)),comp(_comp(that)),det(_ d(that)),do(_,do(do)),
verb(_v(_)),pronoun(_,_)].

spec_verb(List):- List=[verb(_,v(kill)),verb(_,v(know)),verb(_,v(want)), verb(_ v(persuade))].
spec_prep_inf(List):- List=[prep(_p(with)),inf(_inf(to))].

conc([],L,L).c
conc([XIL],L2,[XIL3]):- conc(L,L2,L3).

/*This rule called by ‘match_state’ is the first stage of the reduction process. It merges the

constituents of the stack into the corresponding constituent of the left-hand side of the grammar
rule.*/

merge(X,Y):-

last(A,X),
A=noun_phrase(_C,B),
se_last(D,X),

D=prep(_E,F),
Y=prep_phrase(_N,pp(F,B)).

merge(X,Y):-

last(A,X),

A=aux(_C,B),

se_last(D,X),

D=there(_E,F),
Y=th_phrase(_N,there(F,B)).

merge(X,Y):-

last(A,X),

A=there(_C,B),
se_last(D,X),

D=aux1(_E, F),
Y=th_phrase(_N,there(B)).

merge(X,Y):-

last(A,X),
A=noun_phrase(_C,B),
se_last(D,X),

D=aux(_E,F),
Y=cop_phrase(_N,cp(F,B)).

merge(X,Y):-

last(A,X),

A=adj(_C,B),

se_last(D,X),

D=aux(_E,F),
Y=cop_phrase(_N,cp(F,B)).

merge(X,Y):-
last(A,X),

A=adj(_C,B),
se_last(D,X),

244

D=aux(_E,F),
th_last(G,X),
G=inf(_H,]),
Y=cop_phra se(_N,cp(LF,B)).

merge(X,Y):-

last(A,X),
A=verb_phrase(_C,B),
se_last(D,X),
D=noun_phrase(_E,F),
th_last(G,X),
G=wh_phrase(_,_),
Y=e_sentence(_N,e_s(F,B)).

merge(X,Y):-

last(A,X),
A=verb_phrase(_C,B),
se_last(D,X),
D=noun_phrase(_E,F),
th_last(G,X),

G=aux(_,),
Y=e_sentence(_N,e_s(F,B)).

merge(X,Y):-

last(A,X),
A=verb_phrase(_C,B),
se_last(D,X),
D=noun_phrase(_E,F),
th_last(G,X),

G=verb(_,),
Y=e_sentence(_N,e_s(F,B)).

merge(X,Y):-

last(A,X),
A=verb_phrase(_C,B),
se_last(D,X),
D=noun_phrase(_E,F),
th_last(G,X),

G=rpron(_,_),
Y=e_sentence(_N,e_s(F,B)).

merge(X,Y):- last(A,X),
A=verb_phrase(_C,B),
se_last(D,X),
D=noun_phrase(_E,F),
th_last(G,X),

G=comp(_,_),
Y=e_sentence(_N,e_s(F,B)).

merge(X,Y):- last(A,X),
A=aux1(_C,B),
se_last(D,X),
D=wh_comp(_E,F),

Y=wh_phrase(_N,wh_ph(F,B)).

merge(X,Y):- last(A,X),
A=r_clause(_C,B),
se_last(D,X),

(3]

thn

D=noun_phrase(_E,F),
Y=noun_phrase(_N,np(F,B)).

merge(X,Y):- last(A,X),

A=verb_phrase(_C,B),
se_last(D,X),
D=rpron(_E,F),
Y=r_clause(_N,r_c(F,B)).

merge(X,Y):- last(A,X),

A=cop_phrase(_C,B),
se_last(D,X),
D=rpron(_E,F),
Y=r_clause(_N,r_c(F,B)).

merge(X,Y):- last(A,X),

A=e_sentence(_C,B),
se_last(D,X),
D=rpron(_E,F),
Y=r_clause(_N,r_c(F,B)).

merge(X,Y):- last(A,X),

A=prog(_C,B),
se_last(C,X),
C=passive_be(_D,E),
th_last(F,X),
F=perf(_G,H),
fo_last(I,X),
I=modal(_J,K),
Y=aux(_N,aux(K,H,E,B)).

merge(X,Y):- last(A,X),

A=passive_be(_C,B),
se_last(C,X),
C=perf(_D,E),
th_last(F,X),
F=modal(_G,H),
Y=aux(_N,aux(H,E,B)).

merge(X,Y):- last(A,X),

A=prog(_C,B),
se_last(C,X),
C=perf(_D,E),
th_last(F,X),
F=modal(_G,H),
Y=aux(_N,aux(H,E,B)).

merge(X,Y):- last(A,X),

A=perf(_C,B),
se_last(C,X),
C=modal(_D,E),
Y=aux(_N,aux(E,B)).

merge(X,Y):- last(A,X),

A=prog(_C.B),
se_last(C,X),
C=modal(_D,E),
Y=aux(_N,aux(E,B)).

246

merge(X,Y):- last(A,X),
A=passive_be(_C,B),
se_last(C,X),
C=prog(_D,E),
Y=aux(_N,aux(E,B)).

merge(X,Y):- last(A,X),
A=passive_be(_C,B),
se_last(C,X),
C=perf(_D,E),
Y=aux(_N,aux(E,B)).

merge(X,Y):- last(A,X),
A=prog(_C,B),
se_last(C,X),
C=perf(_D,E),
Y=aux(_N,aux(E,B)).

merge(X,Y):- last(A,X),

A=modal(_C,B),
(se_last(noun_phrase(_,_),X);se_last(there(_,_),X);

se_last(verb_phrase(_,_),)();se_last(verb_phrase2{_,_),>(); se_last(rpron(_,),X)),
Y=aux(_N,aux(B)).

merge(X,Y):- last(A,X),

A=seem(_C,B),
(se_last(noun_phrase(_,_),X);se_last(there(_,_),X);

se_last(verb_phrase(_,_),X);se_last(verb_phrase2(_,_),X); se_last(rpron(_,_),X)),
Y=aux(_N,aux(B)).

merge(X,Y):- last(A,X),

A=do(_C,B),
(se_last(noun_phrase(_,_),X);se_last(there(_,_),X);

se_last(verb_phrase(_,_),X);se_last(verb_phrase2(_,_),X); se_last(rpron(_,_),X)),
Y=aux(_N,aux(B)).

merge(X,Y):- last(A,X),

A=perf(_C,B),
(se_last(noun_phrase(_,_),X);se_last(there(_,_),X);

se_last(verb_phrase(_,_),X);se_last(verb_phrase2(_,_),X); se_last(rpron(_,_),X)),
Y=aux(_N,aux(B)).

merge(X,Y):- last(A,X),
A=prog(_C,B),
(se_last(noun_phrase(_,_),X);se_last(inf(_,_),X);se_last(there(_,_),X);
se_last(verb_phrase(_,_),X);se_last(verb_phrase2(_,_),X); se_last(rpron(_,_),X)),
Y=aux(_N,aux(B)).

merge(X,Y):- last(A,X),

A=be(_C,B),

(se_last(noun_phrase(_,_),X);se_last(inf(_,_),X);se_last(there(_,_),X);
se_last(verb_phrasc(_,_),X);se_last(verb_phraseZ(_,_),X); se_last(rpron(_,_),X)),
Y=aux(_N,aux(B)).

merge(X,Y):- last(A,X),

A=passive_be(_C,B),
(se_last(noun_phrase(_,_),X);se_last(there(_,_),X);

se_last(verb_phrase(__),X);se_last(verb_phrase2(_, _),X); se_last(rpron(_,_),X)),

247

Y=aux(_N,aux(B)).

merge(X,Y):- last(A,X),
A=modal(_C,B),
se_last(wh_comp(_,_),X),
Y=aux1(_N,aux1(B)).

merge(X,Y):- last(A,X),
A=do(_C,B),
se_last(wh_comp(_,_),X),
Y=aux1(_N,aux1(B)).

merge(X,Y):- last(A,X),
A=perf(_C,B),
se_last(wh_comp(_,_),X)
Y=aux1(_N,aux1(B)).

’

merge(X,Y):- last(A,X),
A=prog(_C,B),
se_last(wh_comp(_,_),X),
Y=aux1(_N,aux1(B)).

merge(X,Y):- last(A,X),
A=passive_be(_C,B),
se_last(wh_comp(_,_),X),
Y=aux1(_N,aux1(B)).

merge(X,Y):- last1(A X),
A=modal(_C,B),
Y=aux1(_N,aux1(B)).

merge(X,Y):- last1(A X),
A=do(_C,B),
Y=aux1(_N,aux1(B)).

merge(X,Y):- last1(A,X),
A=perf(_C,B),
Y=aux1(_N,aux1(B)).

merge(X,Y):- last1(A X),
A=prog(_C,B),
Y=aux1(_N,aux1(B)).

merge(X,Y):- last1(A,X),
A=passive_be(_C,B),
Y=aux1(_N,aux1(B)).

merge(X,Y):- last(A,X),
A=adj(_C,B),

se_last(D,X),
D=noun_phrase(_E,F),
th_last(G,X),

G=aux(_H,D,

fo_last(],X),

J=inf(_M,L),
Y=infaux(_N,infaux(L,I,F,B)).

merge(X,Y):- last(A,X),

248

A=e_sentence(_C,B),
se_last(D,X),

D=aux(_H,I),

th_last(G,X),

G=inf(M,L),
Y=infaux(_N,infaux(L,],B)).

merge(X,Y):- last(A,X),
A=verb_phrase(_C,B),
se_last(D,X),

D=aux(_H.,1),

th_last(G,X),

G=inf(_M,L),
Y=infaux(_N,infaux(L,1,B)).

merge(X,Y):- last(A,X),
A=verb(_C,B),
se_last(D,X),
D=inf(_E,F),
Y:verb_phraseZLN,vp2(F,B}).

merge(X,Y):- last(A1,X),
A1 = noun_phrase(_S1,H),
se_last(A,X),
A=verb(_C,B),
th_last(D,X),
D=inf(_E,F),
Y=verb_phrase2(_N,vp2(F,B,H)).

merge(X,Y):- last(A,X),
A=noun(_C,B),

se_last(D,X),

D=adj(_E,F),

th_last(G,X),

G=det(_H,I),
Y=noun_phrase(_N,np(l,F,B)).

merge(X,Y):- last(A,X),
A=noun(_C,B),

se_last(D,X),

D=det(_E,F),
Y=noun_phrase(_N,np(F,B)).

merge(X,Y):- last(A,X),
A=e_sentence(_C,B),
se_last(D,X),

D=comp(_E,F),
Y=comp_phrase(_N,c_ph(F,B)).

merge(X,Y):- last(A,X),
A=e_sentence(_C,B),

se_last(D,X),

D=verb(_E,_F),
Y=z_comp_phrase(_N,z_c_ph(B)).

merge(X,Y):- last(A,X),

A=prep_phrase(_C,B),
se_last(D,X),

249

D=noun_phrase(_E,F),
Y=noun_phrase(_N,np(F,B)).

merge(X,Y):- last(A,X),
A=verb(_C,B),
Y=verb_phrase(_N,np1(B,_)).

merge(X,Y):- last1(A,X),
A=proper_noun(_C,B),
Y=noun_phrase(_N,np(B)).

merge(X,Y):- last1(A,X),
A=pronoun(_C,B),
Y=noun_phrase(_N,np(B)).

merge(X,Y):- last(A,X),
A=pronoun(_C,B),
Y=noun_phrase(_N,np(B)).

merge(X,Y):- last1(A,X),
A=wh_comp(_C,B),
Y=wh_phrase(_N,wh_ph(B)).

merge(X,Y):- last(A,X),
A=proper_noun(_C,B),
Y=noun_phrase(_N,np(B)).

merge(X,Y):- last(A,X),

A=noun(_C,B),
(\+se_last(det(_,_),X);\+th_last(det(_,_),X)),
Y=noun_phrase(_N,np(B)).

/*This rule is the final part of the reduction process, it replaces thecontents of the stack with the
result of ‘merge’.*/
reduce(L,C,L4):- last(noun_phrase(_,_),L),

delete(noun_phrase(_,_),L,L1),

del_last(verb(_,_),L1,L2),

last1(inf(_,_),L2),

delete(inf(_,),L.2,L.3),

add_last1(C,L3,L4).

reduce(L,C,L3):- last(prep_phrase(_,_),L),
delete(prep_phrase(__),L,L1),
last(B,L1),
delete(B,L1,L2),
add_last(C,L2,L3).

reduce(L,C,L3):- last(prep_phrase(__),L),
delete(prep_phrase(__),L,L1),
last1(B,L1),
delete(B,L1,L2),
add_last1(C,L2,L3).

reduce(L,C,L4):- last(noun(_,_),L),
delete(noun(_,_),L,L1),
last(adj(__),L1),
delete(adj(__),L1,L2),
last1(D,L2),

250

delete(D,L2,13),
add_last1(C,L3,L4).

reduce(L,C,L4):- last(noun(_,),L),
delete(noun(_,_),L,L1),
last(adj(_,_),L1),
delete(adj(_,_),L1,L2),

last(D,L2),

delete(D,L2,L3),
add_last(C,L3,L4).

reduce(L,C,L3):- last(noun_phrase(_,_),L)

delete(noun_phrase(_,_),L,L1),
last(aux(_,),L1),
delete(aux(_,_),L1,L2),
add_last(C,L2,L3).

reduce(L,C,L4):- last(adj(__),L),
delete(adj(_,_),L,L1),
last(aux(_,_),L1),
delete(aux(_,),L1,L2),
last(inf(_,_),L2),
delete(inf(_,_),L2,L3),
add_last(C,L3,L4).

reduce(L,C,L3):- last(adj(_,_),L),
delete(adj(_,_),L,L1),
last(aux(_,_),L1),
delete(aux(_,_),L1,L2),
add_last(C,L2,L3).

reduce(L,C,L3):- last(noun(_,_),L),
delete(noun(_,),L,L1),
lastl(det(_,_),L1),
delete(det(_,_),L1,L2),
add_last1(C,L2,L3).

reduce(L,C,L3):- last(noun(_,_),L),
delete(noun(_,_),L,L1),
last(det(_,_),L1),
delete(det(_,_),L1,L2),
add_last(C,L2,L3).

reduce(L,C,L3):- last(aux1(_,_),L),
delete(aux1(_,_),L,L1),
lastl(wh_comp(__),L1),
delete(wh_comp(_,_),L1,L2),
add_last1(C,L2,L3).

reduce(L,C,L3):- last(aux(_,_),L),
delete(aux(_,_),L,L1),
last1(there(_,_),L1),
delete(there(_,_),L1,L2),
add_last1(C,L2,L3).

reduce(L,C,L3):- last(aux(_,_),L),
delete(aux(_,_),L,L1),
last(there(_,_),L1),

’

251

delete(there(_,_),L1,L2),
add_last(C,L2,L3).

reduce(L,C,L2):- last(there(_,_),L),
delete(there(_,),L,L1),
last1(aux1(_,),L1),
add_last(C,L1,L2).

reduce(L,C,L2):;- last(A,L),
auxs(List),
member(A,List),
delete(A,L,L1),
lastl(wh_comp(_,_),L1),
add_last(C,L1,L2).

reduce(L,C,L3):- last(noun_phrase(_,_),L),
delete(noun_phrase(_,_),L,L1),
last(verb(_,_),L1),
delete(verb(_,_),L1,L2),
last(rpron(_,_),L2),

add_last(C,L2,L3).

reduce(L,C,L3):- last(verb_phrase(_,_),L),
delete(verb_phrase(_,_),L,L1),
last(noun_phrase(_,_),L1),
delete(noun_phrase(_,_),L1,L2),
last(rpron(_,_),L2),

add_last(C,L2,L3).

reduce(L,C,L3):- last(cop_phrase(__),L),
delete(cop_phrase(_,_),L,L1),
last(rpron(_,_),L1),
delete(rpron(_,_),L1,L2),
add_last(C,L2,L3).

reduce(L,C1,L5):- last(A,L),

auxs(List),

member(A,List),

delete(A,L,L1),

last(B,L1),

member(B,List),

delete(B,L1,L2),

last(C,L2),

member(C,List),

delete(C,L2,L3),

last(D,L3),

member(D,List),

delete(D,L3,L4),
(se_last(noun_phrase(_,_),L3);se_1ast(there(_,_),L3);se_last(inf(_,_),LS);
se_last(verb_phrase(_,_),L);se_last(verb_phrase2(_,_),L); se_last(rpron(_,_),L)),
add_last(C1,L4,L5).

reduce(L,C1,L4):- last(A,L),
auxs(List),
member(A,List),
delete(A,L,L1),

last(B,L1),
member(B,List),

252

delete(B,L1,L2),
last(C,L2),

member(C,List),
delete(C,L2,L3),

(Se‘_last(noun_phrase(",_),L2);se_last(there(_,_),LZ);se_last(inf(_,_),LZ);
se_last(verb_phrase(,),L);se_last(verb_phrase2(_,),L); se_last(rpron(_,_),L)),
add_last(C1,L3,L4). i

reduce(L,C,L3):- last(A,L),

auxs(List),

member(A,List),

delete(A,L,L1),

last(B,L1),

member(B,List),

delete(B,L1,L2),

(se_last(noun_phrase(_,_),L1);se_last(there(_,),L1);se_last(inf(_,),L1);

se_last(verb_phrase(_,_),L);se_last(verb_phrase2(_,_),L}; se_last(rpron(__),L)),
add_last(C,L2,L3).

reduce(L,C,L.2):- last(A,L),
auxs(List),
member(A,List),
delete(A,L,L1),
(se_last(noun_phrase(_,_),L);se_last(there(_,_),L);se_last(inf(_,),L);
se_last(verb_phrase(__),L);se_last(verb_phrase2(_,_),L); se_last(rpron(_,_),L)),
add_last(C,L1,L2).

reduce(L,C,L3):- last(e_sentence(_,),L),
delete(e_sentence(_,),L,L1),
last(comp(_,_),L1),
delete(comp(_,_),L1,L2),
add_last(C,L2,L3).

reduce(L,C,L2):- last(e_sentence(_,),L),
delete(e_sentence(_,_),L,L1),
last(verb(_,),L1),
add_last(C,L1,L2).

reduce(L,C,L3):- last(verb_phrase(_,_),L),
delete(verb_phrase(_,_),L,L1),
last(noun_phrase(_,_),L1),
delete(noun_phrase(_,),L1,L2),
lastl(wh_phrase(_,_),L2),
add_last(C,L2,L3).

reduce(L,C,L3):- last(verb_phrase(_,_),L),
delete(verb_phrase(_,_),L,L1),
last(noun_phrase(__),L1),
delete(noun_phrase(_,_),L1,L2),
last(comp(_,_),L2),
add _last(C,L2,L3).

reduce(L,C,L3):- last(verb_phrase(_,_),L),
delete(verb_phrase(__),L,L1),
last(noun_phrase(_,_),L1),
delete(noun_phrase(_,_),L1,L2),
last(aux(_,_),L2),

add_last(C,L2,L3).

reduce(L,C,L3):- last(verb_phrase(_,_),L),
delete(verb_phrase(_,_),L,L1),
last(noun_phrase(_,_),L1),
delete(noun_phrase(_,_),L1,L2),
last(verb(_,_),L2),

add_last(C,L2,L3).

reduce(L,C,L3):- last(noun_phrase(_,_),L),

delete(noun_phrase(_,_),L,L1),
last(prep(_,_),L1),
delete(prep(_,_),L1,L2),
add_last(C,L2,L3).

reduce(L,C,L3):- last(noun_phrase(_,_),L),

delete(noun_phrase(_,_),L,L1),
last1(prep(__),L1),
delete(prep(_,_),L1,L2),
add_last1(C,L2,L3).

reduce(L,C,L3):- del_last(verb(_,),L,L1),
last(inf(_,_),L1),
delete(inf(_,),L1,L2),
add_last(C,L2,L3).

reduce(L,C,L4):- last(noun_phrase(_,_),L),

delete(noun_phrase(_,_),L,L1),
del_last(verb(_,),L1,L2),
last(inf(_,_),L2),

delete(inf(_,),L2,L3),
add_last(C,L3,L4).

reduce(L,C,L3):- del_last(verb(_,_),L,L1),
last1(inf(_,_),L1),
delete(inf(_,_),L1,L2),
add_last1(C,L2,L3).

reduce(L,C,L3):- last(verb_phrase(_,_),L),
delete(verb_phrase(_,_),L,L1),
last(comp(_,_),L1),
delete(comp(_,_),L1,L2),
add_last(C,L2,L3).

reduce(L,C,L2):- last(noun(__),L),
delete(noun(_,),L,L1),
last(comp(_,_),L1),
add_last(C,L1,L2).

reduce(L,C,L3):- last(r_clause(_,),L),
delete(r_clause(_,_),L,L1),
last1(B,L1),

delete(B,L1,L2),

add_last1(C,L2,L3).

reduce(L,C,L3):- last(r_clause(_,_),L),
delete(r_clause(_,_),L,L1),
last(B,L1),

delete(B,L1,L2),

add_last(C,L2,L3).

254

reduce(L,C,L3):- last(verb_phrase(_,_),L),
delete(verb_phrase(_,_),L,L1),
last(rpron(_,_),L1),
delete(rpron(_,_),L1,L2),
add_last(C,L2,L3).

reduce(L,C,L3):- last(e_sentence(_,),L),
delete(e_sentence(_,_),L,L1),
last(rpron(_,_),L1),
delete(rpron(_,_),L1,L2),
add_last(C,L2,L3).

reduce(L,C,L2):- last(A,L),
delete(A,L,L1),
last(verb(_,_),L1),
add_last(C,L1,L2).

reduce(L,C1,L4):- fo_last(prep(_,_),L),
last(A,L),

delete(A,L,L1),

last(B,L1),

delete(B,L1,L2),

last(C,L2),

delete(C,L2,L3),

add_last(C1,L3,L4).

reduce(L,C1,L5):- last(adj(_,_),L),
delete(adj(_,_),L,L1),
last(noun_phrase(_,_),L1),
delete(noun_phrase(_,_),L1,L2),
last(aux(_,),L2),
delete(aux(_,_),L2,L3),
last(inf(_,_),L3),
delete(inf(_,),L3,L4),
add_last(C1,L4,L5).

reduce(L1,C1,L5):- last(e_sentence(_,_),L1),
delete(e_sentence(_,_),L1,L2),
last(aux(_,_),L2),
delete(aux(_,),L2,L3),
last(inf(_,_),L3),
delete(inf(_,_),L3,L4),
add_last(C1,L4,L5).

reduce(L1,C1,L5):- last(verb_phrase(__),L1),

delete(verb_phrase(_,_),L1,L2),
last(aux(_,_),L2),
delete(aux(_,_),L2,L3),
last(inf(_,_),L3),
delete(inf(_,_),L3,L4),
add_last(C1,L4,L5).

reduce(L,C,L3):- th_last(prep(__),L),
last(A,L),

delete(A,L,L1),

last(B,L1),

delete(B,L1,L2),

add_last(C,L2,L3).

255

reduce(L,C,L3):- last1(A,L),
delete(A,L,[]),
add_last1(C,{],L3).

reduce(L,C,L2):- last(proper_noun(_,_),L),
delete(proper_noun(_,_),L,L1),
add_last(C,L1,L2).

reduce(L,C,L2):- last(noun(_,),L),
delete(noun(_,_),L,L1),
add_last(C,L1,L2).

reduce(L,C,L2):- last(pronoun(__),L),
delete(pronoun(_,_),L,L1),
add_last(C,L1,L2).

/*This rule called by ‘match_state’ performs the same function as ‘merge’,deals with
verb-phrases and sentences.*/
mergel(X,Y,Z):- last(A,X),

A=verb_phrase(_C,A2),

se_last(B,X),

B=noun_phrase(_D,B1),

th_last(C,X),

C=aux1(_E,C1),

Y=sentence(_N,s(C1,B1,_A1)),

Z=sentence(_N,s(C1,B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=verb_phrase(_C,A2),
se_last(B,X),
B=noun_phrase(_D,B1),
th_last(C,X),
C=th_phrase(_E,C1),
fo_last(D,X),

D=aux1(_E,D1),
Y=sentence(_N,s(D1,C1,B1,_A1)),
Z=sentence(_N,s(D1,C1,B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=verb_phrase(_C,A2),
se_last(B,X),

B=noun_phrase(_D,B1),
Y=sentence(_N,s(B1,_A1)),
Z=sentence(_N,s(B1,A2)).

mergel(X,Y,2):- last(A,X),
A=cop_phrase(_C,A2),
se_last(B,X),
B=verb_phrase2(_D,B1),
Y=sentence(_N,s(B1,_A1)),
Z=sentence(_N,s(B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=infaux(_C,A2),
se_last(B,X),
B=th_phrase(_D,B1),
th_last(C,X),
C=aux1(_E,C1),

256

Y=sentence(_N,s(C1,B1,_A1)),
Z=sentence(_N,s(C1,B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=infaux(_C,A2),
se_last(B,X),

B=aux(_D,B1),

th_last(C,X),
=noun_phrase(_E,C1),
Y=sentence(_N,s(C1,B1,_A1))
Z=sentence(_N,s(C1,B1,A2)).

’

mergel(X,Y,Z):- last(A,X),
A=infaux(_C,A2),
se_last(B,X),
B=th_phrase(_D,B1),
Y=sentence(_N,s(B1, A1)),
Z=sentence(_N,s(B1,A2)).

mergel(X,Y,Z2):- last(A,X),
A=prep_phrase(_C,A2),
se_last(B,X),
B=noun_phrase(_D,B1),
th_last(C,X),

C=verb(_E,C1),
Y=verb_phrase(_N,vp(C1,B1,_A1)),
Z=verb_phrase(_N,vp(C1,B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=verb_phrase2(_C,A2),
se_last(B,X),
B=noun_phrase(_D,B1),
th_last(C,X),

C=verb(_E,C1),
Y=verb_phrase(_N,vp(C1,B1,_Al)),
Z=verb_phrase(_N,vp(C1,B1,A2)).

mergel(X,Y,Z2):- last(A,X),
A=noun_phrase(_C,A2),
se_last(B,X),

B=verb(_D,B1),

th_last(_T,X),
Y=verb_phrase(_N,vp(B1,_A1)),
Z=verb_phrase(_N,vp(B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=noun_phrase(_C,A2),
se_last(B,X),
B=verb(_D,B1),

Y=imp_verb_phrase(_N,ivp(B1,_A1)),

Z=imp_verb_phrase(_N,ivp(B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=prep_phrase(_C,A2),
se_last(B,X),
B=noun_phrase(_D,B1),
th_last(C,X),
C=verb(_E,C1),

257

Y=imp_verb_phrase(_N,ivp(C1,B1,_A1)),
Z=imp_verb_phrase(_N,ivp(Cl,Bl,AZ)).

mergel(X,Y,Z):- last(A,X),
A=z_comp_phrase(_C,A2),
se_last(B,X),

B=verb(_D,B1),
Y=verb_phrase(_N,vp(B1,_A1)),
Z=verb_phrase(_N,vp(B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=prep_phrase(_C,A2),
se_last(B,X),

B=verb(_D,B1),
Y=verb_phrase(_N,vp(B1,_A1))
Z=verb_phrase(_N,vp(B1,A2)).

’

mergel(X,Y,Z):- last(A,X),
A=verb(_C,A2),
Y=verb_phrase(_N,vp(_A1)),
Z=verb_phrase(_N,vp(A2)).

mergel(X,Y,Z):- last1(A,X),
A=imp_verb_phrase(_C,A2),
Y=sentence(_N,s(_A1)),
Z=sentence(_N,s(A2)).

mergel(X,Y,Z):- last(A,X),
A=comp_phrase(_C,A2),
se_last(B,X),

B=verb(_D,B1),
Y=verb_phrase(_N,vp(B1,_A1)),
Z=verb_phrase(_N,vp(B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=verb_phrase2(_C,A2),
se_last(B,X),
B=verb(_D,B1),
Y=verb_phrase(_N,vp(B1,_A1)),
Z=verb_phrase(_N,vp(B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=verb_phrase(_C,A2),
se_last(B,X),
B=wh_phrase(_D,B1),
Y=sentence(_N,s(B1,_A1)),
Z=sentence(_N,s(B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=e_sentence(_C,A2),
se_last(B,X),
B=wh_phrase(_D,B1),
Y=sentence(_N,s(B1,_A1)),
Z=sentence(_N,s(B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=cop_phrase(_C,A2),
se_last(B,X),

258

B=noun_phrase(_D,B1),
Y=sentence(_N,s(B1,_A1)),
Z=sentence(_N,s(B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=cop_phrase(_C,A2),
se_last(B,X),
B=verb_phrase(_D,B1),
th_last(C,X),
C=prep_phrase(_E,C1),
Y=sentence(_N,s(C1,B1,_A1)),
Z=sentence(_N,s(C1,B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=verb_phrase(_C,A2),
se_last(B,X),

B=aux(_D,B1),

th_last(C,X),
C=noun_phrase(_F,C1),
Y=sentence(_N,s(C1,B1,_A1)),
Z=sentence(_N,s(C1,B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=verb_phrase(_C,A2),
se_last(B,X),
B=noun_phrase(_D,B1),
th_last(C,X),
C=th_phrase(_F,C1),
fo_last(D,X),

D=aux1(_G,D1),
Y=sentence(_N,s(D1,C1,B1,_A1)),
Z=sentence(_N,(D1,C1,B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=cop_phrase(_C,A2),
se_last(B,X),

B=aux(_D,B1),

th_last(C,X),
C=noun_phrase(_F,C1),
Y=sentence(_N,s(C1,B1,_A1)),
Z=sentence(_N,s(C1,B1,A2)).

mergel(X,Y,Z):- last(A,X),
A=noun(_C,A2),

se_last(B,X),

B=noun(_D,B1),
Y=noun_phrase(_N,np(B1,_A1)),
Z=noun_phrase(_N,np(B1,A2)).

mergel(X)Y,2):- last1(AX),
A=noun(_C,A2),
Y=noun_phrase(_N,np(_A1)),
Z=noun_phrase(_N,np(A2)).

/*This rule called by ’'match_state’ performs the same function as ’reduce’,deals with
verb-phrases and sentences.”/
reducel(L,C,L2):- last(X,L),

delete(X,L,L1),X=verb(__),

259

add_last(C,L1,L2).

reducel(L,C,L3):- last(A,L),
delete(A,L,L1),
del_last(verb(_,),L1,L2),
add_last(C,L2,L3).

reducel(L,C,L4):- last(A,L),
delete(A,L,L1),
last(B,L1),
delete(B,L1,L2),
del_last(verb(_,_),L2,L3),
add_last(C,L3,L4).

reducel(L,C,L5):- last(A,L),
delete(A,L,L1),

last(B,L1),

delete(B,L1,L2),
last(C1,L2),
delete(C1,L2,L3),
last1(D,L3),
delete(D,L3,L4),
add_last1(C,L4,L5).

reducel(L,C,L4):- last(A,L),
delete(A,L,L1),

last(B,L1),

delete(B,L1,L2),
last1(C1,L2),
delete(C1,L.2,1L.3),
add_last1(C,L3,L4).

reducel(L,C,L3):- last(A,L),
delete(A,L,L1),

last1(B,L1),

delete(B,L1,L2),
add_last1(C,L2,L3).
reducel(L,C,L2):- lastl(A,L),
delete(A,L,L1),
add_last1(C,L1,L2).

/*The following rules are called by the rules above to perform checks andfunctions as
representedby the name of the rule.*/

firstO [X]):-1 first(X,[X | _L]):-Lsecond(Y,[_X,Y]):-!.second(Y,[_X,Y | _L]):-Llast1(X,[X]):-!.last(X,[_
Y, X]):-Llast(X,[Y IL]D):- last(X,L).

delete(X,[X I L],L).

delete(X,[Y ILLIYIL1]):- delete(X,L,L1).
del_last(X,[Y.XL[Y].

del_lastX,[Y ILLIYIL1]):- del_last(X,L,L1).

del_first(X,[XIL]L).

260

add_last(C [Y],[Y,C)).

add_last(C,[Y IL][YIL1])):- add_last(C,L,L1).
se_last(X,[X,_Y]).

se_last(X,[_ZIY]):- se_last(X,Y).
th_last(X,[X,_Y,_Z)).

th_last(X,[_Z 1Y]):- th_last(X,Y).
fo_last(X,[X,_Y,_Z, T)).

fo_last(X,[_Z1Y]):- fo_last(X,Y).

/*This rule called by ‘reduce’ list auxilliaries.*/

auxs(List):- List=[modal(_,),
perf(__),

do(__),

prog(__),

passive_be(_,_),

seem(_,_),

be(_,)].

/*This rule, called by ‘checking1” and check_categories’, lists verbs and auxilliaries.*/

v e r b a u X (It i S t) : -
List=[verb(__),modal(__),perf(_,_),do(_,_),prog(__),passive_be(_,_),seem(_,_),be(_)].

The code below represents the grammar rules of LParser.

/*This is the grammar for LParser.*/

gram:-assert((sentence_-->sentence(N,_S))),
assert((sentence(N,s(NP,VP))-->noun_phrase(N1,NP),
verb_phrase(N,VP))),
assert((sentence(N,s(NP,Aux,VP))-->noun_phrase(N1,NP),
aux(N,Aux),
verb_phrase(N,VP))),
assert((sentence(N,s(NP,CP))-->noun_phrase(N1,NP),
cop_phrase(N1,CP))),
assert((sentence(N,s(Wh_phrase, VP))-->wh_phrase(N,Wh_phrase),
verb_phrase(N,VP))),
assert((sentence(N,s(Wh_phrase, E_Sent))-->wh_phrase(N,Wh_phrase),
e_sentence(N,E_Sent))),
assert((sentence(N,s(Aux1,NP,VP))-->aux1(N,Aux1),
noun_phrase(N1,NP),
verb_phrase(N,VP))),
assert((sentence(N,s(PP,NP,VP))-->prep_phrase(N,PP),
noun_phrase(N1,NP),
verb_phrase(N,VP))),
assert((sentence(N,s(PP,VP,CP))-->prep_phrase(N,PT),
verb_phrase(N,VD),
cop_phrase(N,CP))),
assert((sentence(N,s(VP2,CP))-->verb_phrase2(N,VI2),
cop_phrase(N,CP))),

261

assert((sentence(N,s(Aux1,Th_phrase,NP,VP))-->aux1(N,Aux1),
th_phrase(N,Th_phrase),
noun_phrase(N1,NP),
verb_phrase(N,VP))),
assert((sentence(N,s(Aux1 ,Th_phrase, InfAux))-->aux1(N,Aux1),
th_phrase(N,Th_phrase),
infaux(N,InfAux))),
assert((sentence(N,s(Aux1,NP,VP))-->aux1(N,Aux1),
noun_phrase(N1,NP),
prep_phrase(N,PP))),
assert((sentence(N,s(Th_phrase,InfAux))-->th_phrase(N,'[‘h_phrase),
infaux(N,InfAux))),
assert((sentence(N,s(Th_phrase,E_Sent))-->th_phrase(N,Th_phrase),
e_sentence(N,E_Sent))),
assert((sentence(N,s{NP,Aux,InfAux))-->noun_phra5e(N,NP),
aux(N,Aux),
infaux(N,InfAux))),
assert((e_sentence(N,e_s(NP,VP))->noun_phrase(Nl ,NP),
verb_phrase(N,VP))),
assert((imp_verb_phrase(N,vp(V,NP))-->verb(N,V),
noun_phrase(N,NP))),
assert((imp_verb_phrase(N,vp(V,NP,PP))-->verb(N,V),
noun_phrase(N,NP),
prep_phrase(N,PP))),
assert((verb_phrase(N,vp(V,NP))->verb(N,V),
noun_phrase(N,NP))),
assert((verb_phrase(N,vp(V,WP1))-->verb(N,V),
wh_phrasel(N,WP1))),
assert((verb_phrase(N,vp(V,PP))-->verb(N,V),
prep_phrase(N,PP))),
assert((verb_phrase(N,vp(V,NP,PP))-->verb(N,V),
noun_phrase(N,NP),
prep_phrase(N,PP))),
assert((verb_phrase(N,vp(V,VP2))-->verb(N,V),
verb_phrase2(N,VP2))),
assert((verb_phrase(N,vp(V,NP,VP2))-->verb(N,V),
noun_phrase(N,NP),
verb_phrase2(N,VP2))),
assert((verb_phrase(N,vp(V,CP))->verb(N,V),
comp_phrase(N,CP))),
assert((verb_phrase(N,vp(V,ZCP))-->verb(N,V),
z_comp_phrase(N,ZCP))),
assert((verb_phrase(N,vp(V,VP))-->verb(N,V))),
assert((verb_phrase2(N,vp(Inf,V))-->inf(N,Inf),
verb(N,V))),
assert((verb_phrase2(N,vp(Inf,V,NP))-->inf(N,Inf),
verb(N,V),
noun_phrase(N,NP))),
assert((infaux(N,infaux(Inf,Aux,VP))-->inf(N,Inf),
aux(N,Aux),
verb_phrase(N,V))), .
assert((infaux(N,infaux(Inf,Aux,E_Sent))-->inf(N,Inf),
aux(N,Aux),
e_sentence(N,E_S))),
assert((infaux(N,infaux(Inf,Aux,Adj))-->inf(N,Inf),
aux(N,Aux),
adj(N,Ad)))), .
assl.ert((in::aux(N,infaux(lnf,Aux,NP:Adj))“)"‘f(N*I“{)*

262

aux(N,Aux),
noun_phrase(N,NP),
adj(N,Adj))),
assert((comP_Ph"aSQ(NJC_Ph(Comp,E_Sent))*->c0mp(N,C0mp),
e_sentence(N,E_Sent))),
assert((zﬁcomp_phrase(N,z_c_ph(E_Sent))-->e_sentence(N,E_Sent))),
assert((noun_phrase(singular,np(Name))-->proper_noun(singular,Name))),
assert((noun_phrase(plural,np(Noun))—->noun(piural,Noun))},
assert((noun_phrase(N1,np(Pronoun))-->pronoun(N1,Pronoun))),
assert((noun_phrase(N1,np(Det,Noun))-->det(N1,Det),
noun(N1,Noun))),
assert((noun_phrase(N1,np(Det,Adj,Noun))-->det(N1,Det),
adj(N1,Adj),
noun(N1,Noun))),
assert((noun_phrase(N1,np(NP,PP))-->noun_phrase(N1,NP),
prep_phrase(N1,PP))),
assert((noun_phrase(N1,np(NP,RC))-->noun_phrase(N1,NP),
r_clause(N1,RC))),
assert((prep_phrase(N1,pp(Prep,NP))-->prep(N1,Prep),
noun_phrase(N1,NP))),
assert((cop_phrase(N1,cp(Aux,NP))-->aux(N1,Aux),
noun_phrase(N1,NP))),
assert((cop_phrase(N1,cp(Aux,Adj))-->aux(N1,Aux),
adj(N1,Adj))),
assert((r_clause(N1,r_c(RPron,VP))-->rpron(N1,RPron),
verb_phrase(N1,VP))),
assert((r_clause(N1,r_c(RPron,CP))-->rpron(N1,RPron),
cop_phrase(N1,CP))),
assert((r_clause(N1,r_c(RPron,Aux,VP))-->rpron(N1,RPron),
aux(N,Aux),
verb_phrase(N1,VP))),
assert((r_clause(N1,r_c(RPron,VP))-->rpron(N1,RPron),
e_sentence(N,E_Sent))),
assert((wh_phrase(N,wh_ph(Wh_comp,Aux1))-->wh_comp(N,Wh_comp),
aux1(N,Aux1))),
assert((wh_phrase(N,wh_ph(Wh_comp))-->wh_comp(N,Wh_comp))),
assert((wh_phrasel(N,wh_ph(Wh_comp,E_S))-->wh_comp(N,Wh_comp),
e_sentence(N,E_S))),
assert((wh_phrasel(N,wh_ph(Wh_comp,VP))-->wh_comp(N,Wh_comp),
verb_phrase(N,VP))),
assert((wh_phrasel1(N,wh_ph(Wh_comp,VP2))-->wh_comp(N,Wh_comp),
verb_phrase2(N,VP2))),
assert((th_phrase(N,there(There, Aux))-->there(N,There),
aux(N,Aux))),
assert((th_phrase(N,there(There))-->there(N, There))),
assert((aux(N,aux(Perf))-->seem(N,seem))),
assert((aux(N,aux(Be))-->be(N,Be))),
assert((aux(N,aux(Perf))-->perf(N,Perf))),
assert((aux(N,aux(Modal))-->modal(N,Modal))),
assert((aux(N,aux(Prog))-->prog(N,Prog))),
assert((aux(N,aux(Do))->do(N,Do))),
assert((aux(N,aux(P_Be))-->passive_be(N,P_Be))),
assert((aux1(N,aux1(Perf))-->perf(N,Perf))),
assert((aux1(N,aux1(Modal))-->modal(N,Modal))),
assert((aux1(N,aux1(Prog))-->prog(N,Prog))),
assert((aux1(N,aux1(Do))-->do(N,Do))),
assert((aux(N,aux(Modal,Perf))-->modal(N,Modal),
perf(N,Perf))),

263

assert((aux(N,aux(Modal,Prog))-->modal(N,Modal),
prog(N,Prog))),
assert((aux(N,aux(Modal,Perf,Prog))-->modal(N,Modal),
perf(N,Perf),

prog(N,Prog))),

assert((aux(N,aux(Perf,Prog))-->perf(N,Perf),

prog(N,Prog))),
assert((aux(N,aux(Prog,Passive_be))-->prog(N,Prog),
passive_be(N,Passive_be))),
assert((aux(N,aux(Perf,Passive_be))-->perf(N,Perf),
passive_be(N,Passive_be))),
assert((aux(N,aux(Modal,Perf,Passive_be))-->modal(N,Modal),
perf(N,Prog),passive_be(N,Passive_be))),
assert((aux(N,aux(Modal,Perf,l"assive_be,I’rog))-->m0dal(N ,Modal),
perf(N,Perf),passive_be(N,Pa ssive_be),prog(N,Prog))).

The code below represents the parse table for LParser.

/*This is the parse table for LParser*/

state(1, noun_phrase(_144656,_144647), 3).
state(1, det(_144656,_144673), s, 8).
state(1, noun_phrase(_144769, 144760), 4).
state(1, det(_144769,_144786), s, 9).
state(1, noun_phrase(_144769,_144786), 2).
state(1, pronoun(_144769,_144948), s, 10).
state(1, noun(_,_144948), s, 11).

state(1, noun_phrase(_}45108,_145098), 2).
state(1, noun_phrase(_145108,_145130), 2).
state(1, proper_noun(singular,_145211), s, 12).
state(1, wh_phrase(_145283,_145286), 2).
state(1, wh_comp(_145283,_145312), s, 5).
state(1, wh_phrase(_145355,_145358), 2).
state(1, wh_comp(_145355,_145384), s, 13).
state(1, verb_phrase2(_145421,_145424), 2).
state(1, inf(_145421,_145450), s, 15).
state(1, inf(_145528,_145531), s, 14).
state(1, th_phrase(_145615,_145618), 2).
state(1, there(_145615,_145644), s, 6).
state(1, there(_145722, 145725), s, 16).
state(1, th_phrase(_145797,_145800), 2).
state(1, noun_phrase(_145823,_145826), 2).
state(1, imp_verb_phrase(_145855,_145858), 2).
state(1, verb(_145855,_145878), s, 7).
state(1, verb(_145901,_145904), s, 7).
state(1, aux1(_145933,_145936), 2).

state(1, perf(_145933,_145968), s, 17).
state(1, modal(_145933,_145968), s, 18).
state(1, prog(_145933,_145968), s, 19).
state(1, do(_145933,_145968), s, 20).
state(1, prep_phrase(_l46085,_146088), 2).
state(1, prep(_146085,_146120), s, 21).
state(1, prep_phrase{_MGl98,_146201), 2).
state(1, aux1(_146230,_146233), 2).

state(1, aux1(_146268,_146271), 2).

state(1, aux1(_146300,_146303), 2).

264

state(1, sentence(_146338, 146339), 22).

state(2, verb_phrase(144644,_144648), 41).
state(2, verb(_146379, 146382), s, 33).

state(2, verb(_146411,_146414), s, 42).

state(2, verb(_146443, 146446), s, 43).

state(2, verb(_146469,_146472), s, 23).

state(2, verb(_146495,_146498), s, 25).

state(2, verb(_146521,_146524), s, 26).

state(2, verb(_146547,_146550), s, 27).

state(2, verb(_146573,_146576), s, 24).

state(2, verb(_146599, 146602), s, 44).

state(2, cop_phrase(_144769,cp(_146626,_146627)), 46).
state(2, verb_phrase(_145283,_145287), 53).
state(2, e_sentence(_145355,e_s(_146684, 146685)), 56).
state(2, cop_phrase(_145421,cp(_146716,_146717)), 58).
state(2, infaux(_145615,), 61).

state(2, e_sentence(_145797, 145801), 64).

state(2, $, r2, sentence(_145855,s(_145858))).
state(2, aux(_145095,_), 49).

state(2, aux(_145823,), 37).

state(2, noun_phrase(_145951,np(_146905,_146906,_146907)), 68).
state(2, noun_phrase(_146103,_), 57).

state(2, verb_phrase(_146198,_146217), 35).
state(2, th_phrase(_145823,there(_147015,_147016)), 38).
state(2, noun_phrase(_146318,np(_147053,_)), 36).
state(2, th_phrase(_146230,_146234), 73).

state(2, inf(_147122,_147125), s, 39).

state(2, inf(_145615,_146748), s, 39).

state(2, inf(_147192,_147195), s, 39).

state(2, inf(_147224,_147227), s, 39).

state(2, aux(_144769, 146626), 40).

state(2, noun_phrase(_147294,_146684), 70).
state(2, aux(_145421,_146716), 40).

state(2, there(_145615,_145644), s, 6).

state(2, there(145722, 145725), s, 16).

state(2, det(_144656,_144673), s, 8).

state(2, det(_144769,_144786), s, 9).

state(2, noun_phrase(_145108,_145130), 4).
state(2, noun_phrase(_144769,_144786), 3).
state(2, proper_noun(singular,_14521l), S 120
state(2, noun(_,_144948), s, 11).

state(2, pronoun(_144769,_144948), s, 10).
state(2, modal(_148045,_148048), s, 75).

state(2, modal(_148113,_148116), s, 79).

state(2, modal(_148175,_148178), s, 77).

state(2, modal(_145615,_146867), s, 65).

state(2, modal(_145095,_146829), s, 50).

state(2, perf(_148322,_148325), s, 83).

state(2, prog(_148378,_14838]), s, 85).

state(2, perf{_]48434,_148437), s, 87).

state(2, passive_be(_148490,_148493), s, 101).
state(2, prog(_148540,h148543), s, 97).

state(2, perf(_148590,_148593), s, 93).

state(2, do(_148640,_148643), s, 99).

state(2, modal(_148690,_148693), s, 95).

state(2, seem(_148740,), s, 89).

state(3, r_clause(_144769,), 48).

state(3, rpron(__]44769,_148800), s, 28).

265

state(3, rpron(_148964,_148967), s, 28).

state(3, rpron(_149045,_149048), s, 28).

state(3, rpron(_149126,_149129), s, 28).

state(4, prep_phrase(_145108,pp(_149223, 149224)), 51).

state(4, prep(_144807,_146120), s, 21).

state(5, aux1(_145283,aux1(_149397)), 54).

state(5, perf(_145283,_149397), s, 55).

state(5, modal(_144644,_145968), s, 18).

state(5, prog(_144644,_145968), s, 19).

state(5, do(_144644,_145968), s, 20).

state(6, aux(_145615,), 62).

state(6, modal(_145615,_149583), s, 63).

state(6, modal(_148045,_148048), s, 75).

state(6, modal(_148175,_148178), s, 77).

state(6, modal(_148113,_148116), s, 79).

state(6, modal(_149939,_149942), s, 81).

state(6, modal(_149939,_149942), s, 81).

state(6, perf(_148322,_148325), s, 83).

state(6, prog(_148378,_148381), s, 85).

state(6, perf(_148434,_148437), s, 87).

state(6, seem(_148740,), s, 89).

state(6, be(_150269,_150272), s, 91).

state(6, be(_150269,_150272), s, 91).

state(6, perf(_148590,_148593), s, 93).

state(6, modal(_148690, 148693), s, 95).

state(6, prog(_148540,_148543), s, 97).

state(6, do(_148640,_148643), s, 99).

state(6, passive_be(_3903,_3906), s, 101).

state(7, noun_phrase(_1268,np(_6042,_6043)), 66).

state(7, det(_1268,_6042), s, 67).

state(7, proper_noun(singular,_6099), s, 109).

state(7, noun(_,_6119), s, 111).

state(7, pronoun(_6136,_6139), s, 113).

state(7, noun_phrase(_599,_6159), 30).

state(7, noun_phrase(_6182,_6185), 32).

state(7, det(_6208, _6211), s, 107).

state(7, noun_phrase(_599,_1318), 34).

state(8, adj(_69,_87), s, 45).

state(9, noun(_182,), s, 47).
state(10,[verb(_86922,_86923),inf(_86927,_86928),modal(_86932,_86933),perf(_86937,_86938),pass
ive_be(_86942,_86943),prog(_86947,_86948),do(_86952,_86953),prep(_86957,_86958),rpron(_8696
2,_86963),det(_86967,_86968),noun(_86972,_86973)],r1, noun_phrase(_182,np(_361))).
state(11,[verb(_87340,_87341),inf(_87345,_87346),modal(_87350,_87351),perf(_87355,_87356),pass
ive_be(_87360,_87361),prog(_87365,_87366),do(_87370,_87371),prep(_87375,_87376),rpron(_8738
0,_87381),det(_87385,_87386),noun(_87390,_87391)], r1, noun_phrase(_,)).
state(12,[verb(_87758,_87759),inf(_87763,_87764),modal(_87768,_87769),perf(_87773,_87774),pass
ive_be(_87778,_87779),prog(_87783,_87784),do(_87788,_87789),prep(_87793,_87794),rpron(_8779
8,_87799),det(_87803,_87804),noun(_87808,_87809)],r1,noun_phrase(singular,np(_624))).

s t a t e (1 3 ,
[verb(_88176,_88177),noun(_88181,_88182),det(_88186,_88187),proper_noun(_88191,_88192)], r1,
wh_phrase(_768,wh_ph(_797))).

state(14, verb(_834,_864), s, 59).

state(15, verb(_941,_945), s, 60).

state(16,[verb(_92728, 92729),inf(_92733,_92734),modal(_92738,_92739),perf(_92743,_92744),pass
ive_be(92748, 92749),prog(_92753,_92754),do(_92758,_92759),prep(_92763,_92764),rpron(_9276
8,_92769),det(_92773,_92774),noun(_92778,_92779)],r1,th_phrase(_1135,there(_1138))).

state(17, [det(_93426,_93427),proper_noun(_93431,_93432)], r1, aux1(_57,aux1(_1381))).
state(18, [det(_93744,_93745),proper_noun(_93749, 93750)], r1, aux1(_57,aux1(_1381))).

266

state(19, [det(_94062,_94063),proper_noun(_94067,_94068)), r1, aux1(57,aux1(_1381))).
state(20, [det(_94380,_94381),proper_noun(_94385, 94386)], r1, aux1(_57,aux1(_1381))).
state(21, noun_phrase(_220,_1534), 72). - -
state(22, $, a).

state(23, noun_phrase(_1856,), 133).

state(23, det(_1268,_6042), s, 67).

state(23, noun_phrase(_599,_6042), 30).

state(23, noun_phrase(_599,_6185), 32).

state(23, det(_6208,_6211), s, 107).

state(23, proper_noun(singular,_6099), s, 109).
state(23, noun(_,_6119), s, 111).

state(23, pronoun(_6136,_6139), s, 113).

state(24, wh_phrasel(_1882,wh_ph(_7442, 7443)), 135).
state(24, wh_comp(_1882,_7442), s, 117).

state(24, wh_comp(_1882,_7442), s, 117).

state(24, wh_comp(_1882,_7442), s, 117).

state(25, prep_phrase(_1908,pp(_7558,_7559)), 136).
state(25, prep(_1908,_7558), s, 137).

state(26, verb_phrase2(_1934,), 138).

state(26, inf(_1934,_7622), s, 204).

state(26, inf(_7676,_7679), s, 139).

state(27, comp_phrase(_1882,c_ph(_7718,_7719)), 140).
state(27, comp(_1882,_7718), s, 118).

state(28, verb_phrase(_182,_), 146).

state(28, verb(_182, 7782), s, 125).

state(28, verb(_182, 7782), s, 203).

state(28, verb(_182, 7782), s, 202).

state(28, verb(_182,_7782), s, 128).

state(28, verb(_182, 7782), s, 124).

state(28, verb(_182,_7782), s, 122).

state(28, verb(_8351,_8354), s, 121).

state(28, verb(_8438,_8441), s, 123).

state(28, verb(_8525, 8528), s, 201).

state(28, cop_phrase(_4377,cp(_8607,_8608)), 194).
state(28, e_sentence(_ 4475, 4476), 195).

state(28, aux(_4557,_4543), 172).

state(28, noun_phrase(_8868,_8859), 196).

state(28, aux(_4377,_8607), 131).

state(28, aux(_9018,_9021), 131).

state(29, prep_phrase(_220,pp(_1533,_1534)), 51).
state(29, prep(_220,_1533), s, 52).

state(30, prep_phrase(_599,pp(_9283,_9284)), 190).
state(30, prep(_599,_7558), s, 137).

state(31, r_clause(_182,), 48).

state(31, rpron(_182,_4213), s, 126).

state(31, rpron(_9511,_9514), s, 126).

state(31, rpron(_9592,_9595), s, 126).

state(31, rpron(_9673,_9676), s, 126).

state(32, r_clause(_599,r_c(_9770,_9771)), 193).
state(32, rpron(_599,_9770), s, 127).

state(32, rpron(_9824,_9827), s, 127).

state(32, rpron(_9850,_9853), s, 127).

state(32, rpron(_9876,_9879), s, 127).

state(33, z_comp_phrase(_1986,z_c_ph(_9918)), 141).
state(33, ¢_sentence(_1986,e_s(_9949,_9950)), 142).
state(33, noun_phrase(_2707,_2097), 57).

state(34, prep_phrase(_599,pp(_10007,_10008)), 158).
state(34, prep(_599,_7558), s, 137).

267

state(35, cop_phrase(_1611,cp(_10077,_10078)), 164).

state(35, aux(_182,_2039), 40).

state(35, aux(_182, 2039), 40).

state(36, prep_phrase(_599,pp(_10204, 10205)), 168).

state(36, prep(_599,_7558), s, 137).

state(37, infaux(_1028,infaux(_10255, 10256, 10257)), 155).

state(37, inf(_1028,_2161), s, 39).

state(37, inf(_2637,_2640), s, 39).

state(37, inf(_2605,_2608), s, 39).

state(37, inf(_2535,_2538), s, 39).

state(38, infaux(_1028,infaux(_2161,_2162, 2163)), 166).

state(38, inf(_1028,_2161), s, 39).

state(38, inf(_2637,_2640), s, 39).

state(38, inf(_2605,_2608), s, 39).

state(38, inf(_2535,_2538), s, 39).

state(39, aux(_1028,_2162), 116).

state(39, aux(_2535,_2539), 116).

state(39, aux(_2637, 2641), 116).

state(39, aux(_2605,_2609), 116).

state(40, noun_phrase(_182,_2040), 145).

state(40, adj(_182,_2040), s, 151).

state(41, $, r2, sentence(_57,)).

state(42, noun_phrase(_1792,_1796), 114).

state(43, noun_phrase(_1824,_1828), 115).

state(44, $, r2, verb_phrase(_2012,)).

state(45, noun(_69,_88), s, 144).

state(46, $, r2, sentence(_170,s(_173,cp(_2039,_2040)))).
5tate(47,[verb(_373l78,_373179),inf(_373]83,_373184),m0da[(_373188,_373189),perf(_373193,_373
194),passive_be(_373198,_373199),prog(_373203,_373204),do(_373208,_373209),prep(_373213,_37
3214),rpron(_373218,_373219),det(_373223,_373224),noun(_373228,_373229)], rl,
noun_phrase(_182,)).
state(48,[verb(_373600,_373601),inf(_373605,_373606),modal(_373610,_373611),perf(_373615,_373
616),passive_be(_373620,_373621),prog(_373625, 373626),do(_373630,_373631),prep(_373635,_37
3636),rpron(_373640,_373641),det(_373645,_373646),noun(_373650,_373651)], rl,
noun_phrase(_182,)).

state(49, verb_phrase(_508,_513), 147).

state(50, perf(_508,_2243), s, 148).
state(51,[verb(_381249,_381250),inf(_381254,_381255),modal(_381259, _381260),perf(_381264,_381
265),passive_be(_381269, 381270),prog(_381274,_381275),do(_381279,_381280),prep(_381284,_38
1285),rpron(_381289,_381290),det(_381294,_381295),noun(_381 299, 381300)], r1,
noun_phrase(_220,)).

state(52, noun_phrase(_220,_1534), 72).

state(53, $, r2, sentence(_57,s(_699,_700))).

s t a t e (5 4 ;
[verb(_383052, 383053),noun(_383057,_383058),det(_383062,_383063),proper_noun(_383067,_383
068)], r1, wh_phrase(_57,wh_ph(_725,aux1(_1381)))).
state(55,[det(_383380,_383381),proper_noun(_383385,_383386)], r1, aux1(_57,aux1(_1381))).
state(56, $, r2, sentence(_768,s(_771,e_s(_2097,_2098)))).

state(57, verb_phrase(_768,_2098), 150).

state(58, $, r2, sentence(_182,s(_837,cp(_2039,_2040)))).
state(59,[verb(_387558,_387559),inf(_387563,_387564),mOdal{_387568,_387569),perf{_387573,_387
574) passi ve_be(_387578,_387579),prog(_387583,_387584),do(_387588,_387589), prep(_387593,_38
7594),rpron(_38?598,_387599),det(_387603,_387604),n0un(_387608,_387609)], rl,
verb_phrase2(_182,vp2(_863,_864))).

state(60, noun_phrase(_941,_946), 152).

state(61, $, r2, sentence(_1028,_)).
state(62,[verb(_391671,_391672),inf(_391676,_391677),modal(_391681,_391682),perf(_391686,_391
687),passive_be(_391691,_391692),prog(_391696,_391697),do(_391701,_391702), prep(_391706,_39

268

1707),rpron(_391711,_391712),det(_391716,

6 phiased 1008 o _391717),noun(_391721,_391722)], r1,
state(63, perf(_1028,_4997), s, 154).

state(64, $, r2, sentence(_1210,s(_1213,_1214))).

state(65, prog(_1028,_2281), s, 156).

state(66, $, r2, imp_verb_phrase(_599,ivp(_1291,))).

state(67, noun(_599,), s, 157).

state(68, verb_phrase(_57, 1351), 160).

state(69, adj(_69,_87), s, 161).

state(70, verb_phrase(_220,_1503), 162).

state(71, noun(_182,), s, 163).

‘state(72,[verb(_8‘l 105,_81106),inf(_81110,_81111),modal(_81115, 811 16),perf(_81120,_81121),pass
ive_be(_81125,_81126),prog(_81130,_81131),do(_81 135,_81136),prep(_81140,_81141),rpron(_8114
5,_81146),det(_81150,_81151),noun(_81155, 81 156)1,r1,prep_phrase(_220,pp(_1533,_1534))).
state(73, noun_phrase(_1667, 1648), 165).

state(74, aux(_1028,aux(_4996, 4997)), 167).

state(75, perf(_3458, 3462), s, 173).

state(76, perf(_3458,_3462), s, 173).

state(77, perf(_3588,_3592), s, 175).

state(78, perf(_3588,_3592), s, 175).

state(79, perf(_3526,_3545), s, 177).

state(80, perf(_3526,_3545), s, 177).

state(81, prog(_5352,_5356), s, 179).

state(82, prog(_5352,_5356), s, 179).

state(83, prog(_3735,_3739), s, 181).

state(84, prog(_3735,_3739), s, 181).

state(85, passive_be(_3791,_3795), s, 183).

state(86, passive_be(_3791,_3795), s, 183).

state(87, passive_be(_3847,_3851), s, 185).

state(88, passive_be(_3847,_3851), s, 185).
state(89,[verb(_139181,_139182),modal(_139186,_139187),perf(_139191,_139192),passive_be(_139
196,_139197),prog(_139201,_139202),do(_139206,_139207)],r1,aux(_4153,aux(_4156))).
state(90,[verb(_139519,_139520),modal(_139524,_139525),perf(_139529, 139530),passive_be(_139
534,_139535),prog(_139539,_139540),do(_139544,_139545)],r1,aux(_4153,aux(_4156))).

state(91,[verb(_139857,_139858),modal(_139862,_139863),perf(_139867,_139868),passive_be(_139
872,_139873),prog(_139877,_139878),do(_139882,_139883)],r1,aux(_5682,aux(_5685))).

state(92,[verb(_140195,_140196),modal(_140200,_140201),perf(_140205,_140206),passive_be(_140
210,_140211),prog(_14021 5,_140216),do(_140220,_140221)],r1,aux(_5682,aux(_5685))).
state(93,[verb(_140533,_140534),modal(_140538,_140539),perf(_140543,_140544),passive_be(_140
548,_140549),prog(_140553,_140554),do(_140558,_140559)],r1,aux(_4003,aux(_4006))).
state(94,[verb(_140871,_140872),modal(_140876,_140877),perf(_140881,_140882),passive_be(_140
886,_140887),prog(_140891,_140892),do(_140896,_140897)],r1,aux(_4003,aux(_4006))).
state(95,[verb(_141209, 141210),modal(_141214,_141215),perf(_141219,_141220),passive_be(_141
224,_141225) prog(_141229,_141230),do(_141234,_141235)],r1,aux(_4103,aux(_4106))).
state(96,[verb(_141547,_141548),modal(_141552,_141553),perf(_141557,_141558),passive_be(_141
562,_]41563),pr0g(_]41567,_141568),(110(_141572,_141573)l,rl,aux{_4103,aux(_4106))).
state(97,[verb(_ 141885, 141886),modal(_141890,_141891),perf(_141895,_141896),passive_be(_141
900,_141901),prog(_141905,_141906),do(_141910,_141911)],r1,aux(_3953,aux(_3956))).
state(98,[verb(142223, 142224),modal(_142228,_142229), perf(_142233,_142234),passive_be(_142
238, 142239),prog(_142243,_142244),do(_142248,_142249)],r1,aux(_3953,aux(_3956))).
state(99,[verb(_142561,_142562),modal(_142566,_142567),perf(_142571,_142572),passive_be(_142
576,_142577),pr0g(_142581,_142582),do('_142586,_142587)],r1,aux(_4053,aux(_4056))).

state(100,{ verb(_142899,_142900),modal(_142904,_142905),perf(_142909,_142910),passive_be(_14
2914,_142915),pr0g(_142919,_142920),d0(_142924,_142925)],r1,aux{_4053,aux(_4056))).
state(lOl,[verb(_143237,_143238),moda](_143242,_143243),perf(_l4324?,_143248),passive_be(_l4
3252,_143253),pr0g(_143257,_143258),d0(_143262,_143263)],rl,aux(_3903,aux(_3906))).
state(lO?.,[verb(*]43575,_143576),m0dal(_143580,_143581),perf(_143585,_143586),passive_be(_14
3590, 143591),prog(_143595,_143596),do(_143600,_143601)] ;r1,aux(_3903,aux(_3906))).

269

State(103,[det{_143913,_143914),pr0per_noun{_143918,_143919)1,1*1,aux](14400,aux1(_14403))).
state(104,ldet(_144231,_144232),pr0per_n0un(_144236,_144237}],r1,aux1(u14434,aux1(_14437))}.
state(105,[det(_144549,_144550),proper_noun(_144554,_144555)],r1,aux1(_14468.aux1(_14471))).
state(l06,[verb(_144867,_144868),inf(_144872,_144873),m0dal(_]44877,_1?44878),perf(344882, 14
4883),passive_be(_144887,_144888),pr0g(_144892,_144893),d0{_144897, 144898),prep_(144902_, 1
44903),rpron(_144907,_144908),det(_144912,_144913),noun(_144917, 144918)], r1,
th_phrase(_14502,there(_14505))). - -

state(107, adj(_6208,_6212), s, 189).
state(lOS,[verb(_‘l48624,_148625),inf{_148629,_148630),modal(_148634,_148635),perf(_148639, 14
8640),passive_be(_148644,_148645),prog(*148649,_148650),::!0(_148654,_148655),prep{_148659_, 1
48660),rpr0n(_148664,_]48665),det(_148669,_]48670),n0un(_148674,_148675)], r_l,
noun_phrase(singular,np(_14620))).

state(109, $, r1, noun_phrase(singular,np(_6099))).
state(110,[verb(_149253,_149254),inf(_149258, 1 49259),modal(_149263,_149264),perf(_149268,_14
9269),passive_be(_l49273,_149274),prog(_149278,_149279},d0(_149283,_149284),prep(_149288,_1
49289),1‘pr0n(_149293,_149294),det(‘149298,_149299),n0un{_149303,_149304)], i I
noun_phrase(_np(_14723))).

state(111, $, r1, noun_phrase(_np(_6119))).
state(l12,[verb(_149882,_149883),inf(_149887,_149888),m0dal(_149892,“149893),perf(_l49897,_14
9898),passive_be(_]49902,_]49903),pr0g(_149907,ﬁ149908),(10{_]49912,_149913],prep(_149917,_1
49918),rpron(_149922,_149923),det(_149927,_149928),noun(_149932, 149933)], rl,
noun_phrase(_14823,np(_14826))).

state(113, $, r1, noun_phrase(_6136,np(_6139))).

state(114, prep_phrase(_1792,_1797), 222).

state(114, prep(_599,_7558), s, 137).

state(115, verb_phrase2(_1824,_1829), 225).

state(115, inf(_1824,_7622), s, 204).

state(115, inf(_1824,_7622), s, 139).

state(116, e_sentence(_2605,_2629), 244).

state(116, noun_phrase(_15132,_15123), 247).

state(116, adj(_2637,_2642), s, 246).

state(116, noun_phrase(_2535,_2540), 143).

state(116, verb_phrase(_1028,_2597), 230).

state(117, e_sentence(_768,vp(_15236,_15237)), 219).

state(117, noun_phrase(_15132,_15123), 143).

state(117, verb_phrase(_768,vp(_15236,_15237)), 270).

state(117, verb_phrase2(_768,vp2(_15236,_15237)), 271).

state(117, inf(_1824,_7622), s, 204).

state(117, inf(_768,_7622), s, 139).

state(118, e_sentence(_768,_7719), 227).

state(118, noun_phrase(_15132,np(_15358,_15359)), 143).

state(118, det(_15132, 15358), s, 290).

state(118, proper_noun(singular,_15468), s, 292).

state(118, pronoun(_15540,_15543), s, 296).

state(118, noun(_,_15618), s, 294).

state(118, noun_phrase(_15690,_15693), 209).

state(118, noun_phrase(_15771,_15774), 207).

state(118, det(_15852, 15855), s, 288).

state(119, prep_phrase(_599,pp(_7558,_7559)), 190).

state(119, prep(_599,_7558), s, 137).

state(120, r_clause(_599,r_c(_9770,_9771)), 193).

state(120, rpron(_599,_9770), s, 127).

state(120, rpron(_599,_9770), s, 127).

state(120, rpron(_599,_9770), s, 127).

state(120, rpron(_599,_9770), s, 127).

state(121, wh_phrase1(_182,vp(_16653,_16654)), 259).

state(121, wh_comp(_182,_16235), s, 205).

state(121, wh_comp(_182,_16235), s, 205).

270

state(121, wh_comp(_182,_16235), s, 205).

state(122, prep_phrase(_182,vp(_16653, 16654)), 260).
state(122, prep(_182,_16565), s, 171).

state(123, verb_phrase2(_182,vp2(_16653,_16654)), 262).
state(123, inf(_182,_16653), s, 263).

state(123, inf(_182,_16653), s, 300).

state(124, comp_phrase(_182,vp(_16653,_16654)), 264).
state(124, comp(_182,_16994), s, 206).

state(125, z_comp_phrase(_1 82,vp(_16653,_16654)), 265).
state(125, e_sentence(_182, 17162), 266).

state(125, noun_phrase(_8868, 8859), 196).

state(126, e_sentence(_182,_4476), 195).

state(126, noun_phrase(_8868, 8859), 196).

state(126, aux(_4557, 4543), 172).

state(126, verb_phrase(_182,), 146).

state(126, cop_phrase(_4377,cp(_8607,_8608)), 194).
state(126, aux(_9018,_9021), 131).

state(126, aux(_4377,_8607), 131).

state(127, e_sentence(_9841, 9842), 285).

state(127, noun_phrase(_15132,np(_15358,_15359)), 143).
state(127, aux(_9894,_9880), 132).

state(127, verb_phrase(_599,_), 251).

state(127, cop_phrase(_599,cp(_18022,_18023)), 282).
state(127, aux(_18048,_18051), 280).

state(127, aux(_182,_2039), 132).

state(128, noun_phrase(_182,_), 258).

state(128, proper_noun(singular,_15468), s, 292).
state(128, det(_15852,_15855), s, 288).

state(128, noun(_,_15618), s, 294).

state(128, pronoun(_15540,_15543), s, 296).

state(128, det(_15132,_15358), s, 290).

state(128, noun_phrase(_15771,_15774), 207).

state(128, noun_phrase(_15690,_15693), 209).

state(129, aux(_1028,_2162), 153).

state(129, aux(_2535, 2539), 188).

state(129, aux(_2637, 2641), 187).

state(129, aux(_18850,_18854), 214).

state(130, aux(_1028, 2162), 153).

state(130, aux(_2535,_2539), 188).

state(130, aux(_2637,_2641), 187).

state(130, aux(_18850,_18854), 214).

state(131, adj(_9018,_9022), s, 268).

state(131, noun_phrase(_4377,_8608), 252).

state(132, adj(_182,_2040), s, 151).

state(132, noun_phrase(_182,_2040), 145).

state(133, $, r2, verb_phrase(_182,vp(_1859,_))).
state(134, noun(_182,), s, 157).

state(135, $, r2, verb_phrase(_768,)).

state(136, $, r2, verb_phrase(_182,)).

state(137, noun_phrase(_182,_7559), 221).

state(138, $, r2, verb_phrase(_768,)).

state(139, verb(_768,_7623), s, 224).

state(140, $, r2, verb_phrase(_768,vp(_1963,c_ph(_7718,_7719)))).
state(141, $, r2, verb_phrase(_768,vp(_1989,z_c_ph(_9918)))).
state(142, $, r1, z_comp_phrase(_768,z_c_ph(e_s(_2097,_2098)))).
state(143, verb_phrase(_768,_2098), 150).
state(144,[verb(_107689,_107690),inf(_107694,_107695),modal(_107699,_107700),perf(_107704,_10
7705),passive_be(_107709,_107710),prog(_107714,_107715),do(_107719,_107720),prep(_107724,_1

271

07725),rpron(_107729,_107730),det(_107734,_107735),noun(_107739,_107740)], rl,
noun_phrase(_69,np(_86,_87,_88))).

state(145, $, r1, cop_phrase(_182,cp(_2039,_2040))).
state(146,[\':erb(__l08326,_108327),inf(_l08331,_108332),m0dal(_108336,,_108337),perf(_108341,_10
8342),pa551ve_be(_l08346,_108347),pr0g(_108351,_1{]8352),d0(_108356,_108357),prep(_108361,_1
08362),er0ﬂL103366,_108367),det(_108371,_1083?2),noun(_108376,_108377)],r1,r_clause(_182,_)).
state(147, $, r2, sentence(_508,s(_511, , 513))).
state(l48,[Verb(_'l0903?,_109038),m0dal(_109042,_109043),perf(_1[}9047,_109048),passive_be(_10
9052,_109053),pr0g(_109057,_109058),(10(*109062,_109063)],rl,aux(_508,aux(_2242,_2243))).
state(149,[\l.rerb(_109379,_109380),inf(*1{]9384,~1U9385),m0dal(_109389,_109390),perf{_109394,_10
9395),passive_be(_109399, 1 09400),prog(_109404,_109405),do(_109409, 10941 0),prep(_109414,_1
09415),rpron(_109419,_1D9420),det(_109424,*109425),n0un(_109429,_109430)], rl,
prep_phrase(_182,pp(_19893,_19894))).

state(150, $, r1, e_sentence(_768,e_s(_, 2098))).

state(151, $, r1, cop_phrase(_182,cp(_2039,_2040))).
state(152,[verb(_110263,_110264),inf(_110268,_110269),modal(_110273,_110274),perf(_110278,_11
0279),passive_be(_110283,_110284),prog(_110288,_110289),do(_110293, 1 10294),prep(_110298,_1
10299),rpron(_110303,_110304),det(_110308,_110309),noun(_110313, _110314)], r1,
verb_phrase2(_941,vp2(_944, 945, 946))).

state(154,[verb(_113753,_113754),modal(_113758, 11 3759),perf(_113763,_113764),passive_be(_11
3768,_113769),prog(_113773,_113774),do(_113778,_113779)|,r1,aux(_1028,aux(_4996, 4997))).
state(155, $, r2, sentence(_1028,s(_1239,aux(_2280, _2281),infaux(_2161, 2162, 2163)))).
state(156,[verb(_114328,_114329), modal(_114333,_114334),perf(_114338,_1 14339),passive_be(_11
4343, 114344),prog(_114348,_114349),do(_114353,_114354)],r1,aux(_1028,aux(_2280, 2281))).
state(157, $, r1, noun_phrase(_182,)).

state(158, $, r2, imp_verb_phrase(_182,ivp(_1317,_1318,pp(_7558,_7559)))).

state(159, noun_phrase(_182,_7559), 221).

state(160, $, r2, sentence(_57,s(_1349,_, 1351))).

state(161, noun(_69,_88), s, 232).

state(162, $, r2, sentence(_182,s(_1501,_,_1503))).
state(163,[verb(_120697,_120698),inf(_120702,_120703),modal(_120707,_120708),perf(_120712,_12
0713),passive_be(_120717,_120718),prog(_120722,_120723),do(_120727,_120728),prep(_120732,_1
20733),rpron(_120737,_120738),det(_120742,_120743),noun(_120747,_120748)], r1,
noun_phrase(_182,_)).

state(164, $, r2, sentence(_182,s(_1614,_1615,cp(_2039,_2040)))).

state(165, verb_phrase(_1643,_1649), 234).

state(166, $, r2, sentence(_1028,_)).
state(167,[verb(_124283,_124284),inf(_124288,_124289),modal(_124293, 124294),perf(_124298, 12
4299),passive_be(_124303,_124304),prog(_124308,_124309),do(_124313,_124314),prep(_124318,_1
24319),rpron(_124323,_124324),det(_124328,_124329),noun(_124333,_124334)], rl,
th_phrase(_1028,there(_1057,aux(_4996,_4997)))).

state(168, $, r2, sentence(_182,s(_1716,_,_1718))).

state(169, noun_phrase(_182,_7559), 221).
state(170,[verb(_127330,_127331),inf(_127335,_127336),modal(_127340,_127341),perf(_127345,_12
7346),passive_be(_127350,_127351),prog(_127355,_127356),do(_1 27360,_127361),prep(_127365,_1
27366),rpron(_127370,_127371),det(_127375,_127376),noun(_127380,_127381)], r1,
noun_phrase(_182,_)).

state(171, noun_phrase(_182,_16566), 236).

state(172, verb_phrase(_4539,_4544), 237).

state(173, passive_be(_3458,_3463), s, 238).

state(174, passive_be(_3458,_3463), s, 238).

state(175, prog(_3588,_3593), s, 240).

state(176, prog(_3588,_3593), s, 240).

state(177, passive_be(_3526,_3531), s, 242).

state(178, passive_be(_3526,_3531), s, 242). '
state(]79,[verb(_l48550,*148551),moda!(_l48555,_148556),perf(_148560,_148561),passwe_be(_m
8565,_148566),pr0g(_148570,_]48571),do(_l48575,_148576)],rl,aux(_5352,aux(_5355,_5§56})).
state(]80,[verb(_l48892,_148893),m0d.1!(_I48897,_148898),pcrf{_}489[}2,_148903),passwe_be(_14

272

8907,_148908),prog(_148912,_148913),do(_148917,_148918)],r1,aux(_5352,aux(_5355, 5356))).
state(181,[verb(_149234,_149235),modal(_149239,_149240),perf(_149244,_149245),passive_be(_14
9249,_149250),prog(_149254,_149255),do(_149259, 149260)],r1,aux(_3735,aux(_3738, 3739))).
state(lSZ,[verb(_]49576,_149577),modal(_149581,__149582),perf(_149586,_1495_37),pa;sive_be(_14
9591,_149592),prog(_149596,_149597),do(_149601,_149602)],r1,aux(_3735,aux(_3738,_3739))).
state(183,[verb(_149918,_l49919),modal{_l49923,_149924),perf(_149928,_149929),passive_be(_14
9933,_149934),prog(_149938,_149939),do(_149943,_149944)],r1,aux(_3791,aux(_3794,_3795))).
state(184,[verbLl50260,_150261),modal(__150265,_150266),perf(_150270,_150271),passive_be(_15
0275,_150276),prog(_150280,_150281),do(_150285,_150286)],r1,aux(_3791,aux(_3794,_3795))).
state(185,[verb(_150602,_150603),modal(_150607,_150608),perf(_150612,_150613),passive_be(_15
0617,_150618),prog(_150622,_150623),do(_150627,_150628)],r1,aux(_3847,aux(_3850,_3851))).
state(l86,[verb(_l50944,_150945),m0dal(_]50949,_150950),perf{_]50954,_150955),passive_be(_15
0959,_150960),prog(_150964,_150965),do(_150969,_150970)],r1,aux(_3847,aux(_3850,_3851))).
state(189, noun(_6208,_6213), s, 248).

state(190, $, r1, noun_phrase(_182,)).

state(191, noun_phrase(_182,_7559), 221).
state(192,[verb(_160005,_160006),inf(_160010,_160011),modal(_160015,_160016),perf(_160020,_16
0021),passive_be(_160025,_160026),prog(_160030,_160031),do(_160035,_160036),prep(_160040,_1
60041),rpron(_160045,_160046),det(_160050,_160051),noun(_160055,_160056)], rl,
noun_phrase(_22286,_)).

state(193, $, r1, noun_phrase(_182,)).

state(194,[verb(_160642, 160643),inf(_160647,_160648),modal(_160652,_160653),perf(_160657, 16
0658),passive_be(_160662,_160663),prog(_160667,_160668),do(_160672,_160673),prep(_160677,_1
60678),rpron(_160682,_160683),det(_160687,_160688),noun(_160692,_160693)],r1,r_clause(_4377,)).
state(]95,[verb(*161120,_161121),inf(_161125,_161126),m0dal(_161130,_161131),perf(_161135,_16
1136),passive_be(_161140,_161141) prog(_161145,_161146),do(_161150,_161 151),prep(_161155,_1
61156),rpron(_161160,_161161),det(_161165,_161166),noun(_161170,_1611 71)],r1,r_clause(_4458,)).
state(196, verb_phrase(_182,_8860), 253).

state(197, $, r1, noun_phrase(singular,np(_22677))).

state(198, $, r1, noun_phrase(_np(_22701))).

state(199, $, r1, noun_phrase(_22722,np(_22725))).

state(200, adj(_22746,_22750), s, 257).
state(201,[verb(_166868,_166869),inf(_166873,_166874),modal(_166878,_166879), perf(_166883,_16
6884},passive_be(_166888,_166889),prog(_166893,_166894),d0(_166898,_166899),prep{_166903,_1
66904),rpron(_166908,_1 66909),det(_166913,_166914),noun(_166918,_166919)], r2,
verb_phrase(_8525,vp{_8528,_8529))).

state(202, noun_phrase(_8351,_8355), 212).

state(203, noun_phrase(_8438,_8442), 213).

state(204, verb(_768,_7680), s, 287).

state(205, e_sentence(_182,vp(_23331,_23332)), 315).

state(205, noun_phrase(_23175,_23166), 267).

state(205, verb_phrase(_182,vp(_23331,_23332)), 360).

state(205, verb_phrase2(_182,vp2(_23331,_23332)), 361).

state(205, inf(_182,_16653), s, 300).

state(205, inf(_182,_16653), s, 263).

state(206, e_sentence(_182,_16995), 319).

state(206, noun_phrase(_231 75, 23166), 267).

state(207, prep_phrase(_15771,_15775), 348).

state(207, prep(_182,_23838), s, 261).

state(208, prep_phrase(_]82,pp{ﬂ23926,_23927}), 348).

state(208, prep(_182,_23838}, s, 261).

state(209, r_clause(_]5690,r_c{_24100,_24101)), 352).

state(209, rpron(_15690,_24100), s, 301).

state(209, rpron(_24264,_24267), s, 301).

state(209, rpron(_15690,_2410{}), s, 301).

state(209, rpron(_24426,_24429), s, 301).

state(210, r_clause(_15690,r_c(_24100,.)), 352).

state(210, rpr0|1(_15690,_24'100), s, 302).

[S8]
~1
'~

state(210, rpron(_24264, 24267), s, 301).

state(210, rpron(_15690,_24100), s, 301).

state(210, rpron(_24426, 24429), s, 301).

state(211, e_sentence(_768, 9842), 285).

state(211, noun_phrase(_25004, 24995), 220).

state(211, verb_phrase(_182,cp(_2039,_2040)), 251).

state(211, cop_phrase(_182,cp(_2039,_2040)), 282).

state(211, aux(_9894,_9880), 217).

state(211, aux(_182,_2039), 280).

state(211, aux(_25134,_25137), 217).

state(212, prep_phrase(_8351,_8356), 322).

state(212, prep(_182,_23838), s, 261).

state(213, verb_phrase2(_8438,_8443), 324).

state(213, inf(_182,_16653), s, 263).

state(214, e_sentence(_768, 2629), 244).

state(214, noun_phrase(_25004, 24995), 220).

state(215, e_sentence(_768,e_s(_24995, 24996)), 244).

state(215, noun_phrase(_25004, 24995), 220).

state(216, adj(_9018,_9022), s, 268).

state(216, noun_phrase(_4377,_8608), 252).

state(217, adj(_25134,_25138), s, 269).

state(217, noun_phrase(_182,_2040), 233).

state(218, $, r1, noun_phrase(_25869,np(_25872,_25873))).

state(219, $, r1, wh_phrasel(_768,_)).

state(220, verb_phrase(_768,_24996), 229).

state(221, $, r1, prep_phrase(_182,pp(_7558,_7559))).

state(222, $, r2, verb_phrase(_182,vp(_1795,_1796,_1797))).

state(223, noun_phrase(_182,_26029), 231).

state(224, $, r1, verb_phrase2(_768,vp2(_7622,_7623))).

state(225, §, r2, verb_phrase(_768,vp(_1827,_1828,_1829))).

state(226, verb(_768,_26125), s, 306).

state(227, $, r1, comp_phrase(_768,c_ph(_7718,_7719))).

state(228, verb_phrase(_768, 24996), 229).

state(229, $, r1, e_sentence(_768,e_s(_24995, 24996))).

state(230, $, r1, infaux(_1028,infaux(_2161, 2162, 2163))).

state(231, $, r1, prep_phrase(_182,pp(_26028,_26029))).
state(232,[verb(_301849,_301850),inf(_301854,_301855),modal(_301859,_301860),perf(_301864,_30
1865),passive_be(_301869,_301870),prog(_301874,_301875),do(_301879,_301880),prep(_301884,_3
01885),rpron(_301889,_301890),det(_301894,_301895),noun(_301899,_301900)], r1,
noun_phrase(_69,np(_86,_87,_88))).

state(233, $, r1, cop_phrase(_182,cp(_2039,_2040))).

state(234, $, r2, sentence(_1643,)).

state(235, $, r1, prep_phrase(_182,pp(_26473,_26474))).
state(236,[verb(_302938,_302939),inf(_302943,_302944),modal(_302948,_302949),perf(_302953,_30
2954),passive_be(_302958,_302959),prog(_302963,_302964),do(_302968,_302969),prep(_302973,_3
02974),rpron(_302978,_302979),det(_302983,_302984),noun(_302988,_302989)], rl,
prep_phrase(_182,pp(_16565,_16566))).
state(237,[verb(_303392,_303393),inf(_303397,_303398),modal(_303402,_303403),perf(_303407,_30
3408),passive_be(_303412,_303413),prog(_303417,_303418),do(_303422,_303423),prep(_303427,_3
03428),rpron(_303432,_303433),det(_303437,_303438),noun(_303442,_303443)], rl,
r_clause(_4539,r_c(_4542, 4543, _4544))).

state(238, prog(_3458,_3464), s, 308).

state(239, prog(_3458,_3464), s, 308).
state(240,[verb(_309318,_309319),modal(_309323,_309324),perf(_309328,_309329),passive_be(_30
9333,_309334),prog(_309338,_309339),do(_309343,_309344)],r1,aux(_3588,aux(_3591,_3592,_3593))).
state(241,[verb(_309664,_309665),modal(_309669,_309670),perf(_309674,_309675),passive_be(_30
9679,_309680),prog(_309684,_309685),do(_309689,_309690)],r1,aux(_3588,aux(_3591,_3592,_3593))).
state(242,[verb(_310010,_310011),modal(_310015,_310016),perf(_310020,_310021),passive_be(_31

274

0025,_31 0026),prog(_310030,_310031),do(_310035,_310036)],r1,aux (_3526,aux(_3529, 3530, _3531))).
state(243,[verb(_310356,_310357),modal(_310361 ,_310362),perf(_31 0366,_310367),passive_be(_31
0371,_310372),prog(_310376,_310377),do(_310381,_310382)],r1,aux (_3526,aux(_3529, 3530, 3531))).
state(244, $, r1, infaux(_768,infaux(_2608,_2609, 2610))).

state(245, verb_phrase(_768,_27124), 304).

state(246, $, r1, infaux(_2637,infaux(_2640,_2641, 2642))).

state(247, adj(_2535,_2541), s, 311).

state(248, $, r1, noun_phrase(_6208,np(_6211,_6212, 6213))).

state(249, $, r1, prep_phra se(_27264,pp(_27267,_27268))).
state(250,[verb(_316477,_316478),inf(_316482, 31 6483),modal(_316487,_316488),perf(_316492, 31
6493),passive_be(_316497, 31 6498), prog(_316502,_316503),do(_316507, 31 6508),prep(_316512,_3
16513),rpron(_316517,_316518),det(_316522, 31 6523),noun(_316527,_316528)], rl,
r_clause(_27294,r_c(_27297, 27298))).

state(251, $, r1, r_clause(_182,r_c(_9770,))).

state(252,[verb(_317170,_317171)inf(_317175,_3171 76),modal(_317180, 317181). perf(_317185,_31
7186),passive_be(_317190, 317191),prog(_317195,_317196),do(_317200,_317201),prep(_317205,_3
17206),rpron(_317210,_317211),det(_317215,_317216),noun(_31 7220; 3172210 .
cop_phrase(_4377,cp(_8607,_8608))).

state(253,[verb(_317844,_317845),inf(_317849, 31 7850),modal(_317854,_317855),perf(_317859,_31
7860),passive_be(_317864, 31 7865),prog(_317869,_317870),do(_317874, 31 7875),prep(_317879, 3
17880),rpron(_317884,_317885),det(_317889, 317890),noun(_31 7894, 317895)], r1,
e_sentence(_182,e_s(_8859, 8860))).

state(254, $, r1, noun_phrase(_27579,np(_27582,_27583))).

state(255, noun_phrase(_27579,_27613), 305).

state(256, $, r1, noun_phrase(_182,_)).

state(257, noun(_22746, 22751), s, 314).
state(258,[verb(_323127,_323128),inf(_323132,_323133),modal(_323137, 3231 38),perf(_323142,_32
3143),passive_be(_323147,_323148),prog(_323152,_323153),do(_323157, 3231 58),prep(_323162,_3
23163),rpron(_323167,_323168),det(_323172,_323173),noun(_323177, 323178)], r2,
verb_phrase(_182,)).

state(259,[verb(_323675,_323676),inf(_323680,_323681), modal(_323685,_323686),perf(_323690,_32
3691),passive_be(_323695,_323696),prog(_323700,_323701),do(_323705,_323706),prep(_323710,_3
23711),rpron(_3237l 5, .323716),det(_323720,_323721),noun(_323725,_323726)], r2,
verb_phrase(_182,)).

state(261, noun_phrase(_182,_23839), 317).
state(262,[verb(_327003,_327004),inf(_327008,_327009),modal(_327013,_327014),perf(_327018,_32
7019),passive_be(_327023,_327024),prog(_327028,_327029),do(_327033,_327034),prep(_327038,_3
27039),rpron(_327043,_327044),dct(_327048,_327049),noun(_327053,_327054)], r2,
verb_phrase(_182,_)).

state(263, verb(_182, 16654), s, 318).
state(264,[verb(_329958,_329959),inf(_329963,_329964),modal(_329968,_329969),perf(_329973,_32
9974), passive_be(_329978,_329979),prog(_329983,_329984),do(_329988,_329989),prep(_329993,_3
29994),rpron(_329998,_329999),det(_330003,_330004),noun(_330008,_330009)], r2,
verb_phrase(_182,_)).

s t a t e (2 6 5 g
[verb(_330506, 330507),inf(_330511,_330512),modal(_330516,_330517),perf(_330521,_330522),pas
sive_be(_330526,_330527),prog(_330531,_330532),do(_330536,_330537),prep(_330541,_330542),rp
ron(_330546, 330547),det(_330551,_330552),noun(_330556,_330557)], r2, verb_phrase(_182,_)).

S t a t e (2 6 6 s
[verb(_331036, 331037),inf(_331041,_331042),modal(_331046,_331047),perf(_331051,_331052),pas
si ve_bg(_331 056,_331057),prog(_331061,_331062),do(_331066,_331067),prep(_331071,_331072),rp
ron(_331076, 331077),det(_331081,_331082),noun(_331086,_331087)], rl,
z_comp_phrase(_182,z_c_ph(_17162))).

state(267, verb_phrase(_182,_23167), 321).

S t a t e (2 6 8 ’
[verb(_333882,_333883),inf(_333887,_333888),modal(_333892,_333893),perf(_333897,_333898),pas
sive_be(_333902,_333903),prog(_333907,_333908),do(_333912,_333913),prep(_333917,_333918),rp
ron_(_333922,_333923),det{h333927,_333928),nnun{_333932,_333933)], rl,

275

cop_phrase(_9018,cp(_9021,_9022))).

state(269, $, r1, cop_phrase(_25134,cp(_25137,_25138))).

state(270, $, r1, wh_phrasel(_?68,wh_“ph(_7442,vp(_?622,_7623))))-

state(271, $, r1, wh_phrase1(_768,wh_ph(_7442,vp(_7622, 7623)))).

state(272, verb(_768,_7623), s, 306).

state(273, verb_phrase(_28772, 28796), 327).

state(274, verb_phrase(_28772, 28796), 327).

state(275, adj(_28844,_28849), s, 333).

state(276, adj(_28844,_28849), s, 333).

state(277, noun_phrase(_28916, 28921), 335).

state(278, noun_phrase(_28916, 28921), 335).

state(279, verb_phrase(_29000,_29005), 337).

state(280, verb_phrase(_182,_9881), 338).
state(281,[_:erb(_355382,_355383),inf(_355387,_355388),modal(b355392,_355393),perf(__355397,_35
5398),passi ve_be(_355402,_355403),prog(_355407,_355408),do(_355412, 35541 3),prep(_355417,_3
55418),rpr0n(_355422,_355423),det(_355427,_355428),n0un(_355432,_355433)], g1
r_clause(_4377,r_c(_29130,))).

state(282, $, r1, r_clause(_182,r_c(_9770,))).

state(283,[verb(_356075,_356076),inf(_356080, _356081),moda 1(_356085,_356086),perf(_356090,_35
6091),passive_be(_56095,_356096),prog(_356100,_356101),do(_356105,_3561 06),prep(_356110,_35
6111),rpron(_356115,_356116),det(_356120,_356121),noun(_356125, 356126)], r1,
r_clause(_29254,r_c(_29257, 29258))).

state(284, verb_phrase(_182,_23167), 321).

state(285, $, r1, r_clause(_182,r_c(_9770,))).

state(286, verb_phrase(_768,_27124), 304).

state(287, noun_phrase(_768,_7681), 343).

state(288, adj(_15852,_15856), s, 344).

state(289, adj(_15852,_15856), s, 344).

state(290, noun(_2707,_15359), s, 346).

state(291, noun(_2707,_15359), s, 346).
state(292,[verb(_370852,_370853),inf(_370857,_370858),modal(_370862,_370863),perf(_370867,_37
0868),passive_be(_370872,_370873),prog(_370877,_370878),do(_370882,_370883),prep(_370887,_3
70888),rpron(_370892,_370893),det(_370897,_370898),n0un(_370902,_370903)l, rl;
noun_phrase(singular,np(_15468))).
state(293,[verb(_371270,_371271),inf(_371275,_371276),modal(_371280,_371281),perf(_371285,_37
1286),passive_be(_371290,_371291),prog(_371295,_371296),do(_371300,_371301),prep(_371305,_3
71 306),rpr0n(_3713 10,_371311),det(_371315,_371316),noun(_371320,_371321), ri,
noun_phrase(singular,np(_15468))).
state(294,[verb(_371688,_371689),inf(_371693,_371694),modal(_371698,_371699),perf(_371703,_37
1704),passive_be(_371708,_371709),prog(_371713,_371714),do(_371718,_371719),prep(_371723,_3
71724),rpron(_371?28,_37l729),det(_371733,_37l734),n0un(_371?38,_371739)1, ¥l
noun_phrase(_np(_15618))).
state(295,[verb(_372106,_372107),inf(_372111,_372112),modal(_372116,_372117),perf(_372121,_37
2122),passive_be(_372126,_372127),prog(_372131,_372132),do(_3721 36,_372137),prep(_372141,_3
72142),rpron{w372146,_372]47),det(_372151,_372152),n0u11{_372156,_372157)], rl,
noun_phrase(_np(_15618))).

state(296,[verb(372524, 372525),inf(_372529,_372530),modal(_372534,_372535),perf(_372539, 37
2540),passive_be(_372544,_372545),prog(_372549,_372550),d0(_372554,_372555),prep(_372559,_3
72560),rpron(_372564,_372565),det(_372569,_372570),n0un(_372574,_372575)l, rl,
noun_phrase(_15540,np(_15543))).

state(297,[verb(372942, 372943),inf(_372947,_372948),modal(_372952,_372953),perf(_372957,_37
2958),passive_bc(_3?2962,_372963),prog(_372967,_372968),d0(_372972,_372973),prep(_372977,_3
72978),rpron(_372982,“372983),det(_37298?,_372988),noun(_372992,_372993)], rl,
noun_phrase(_15540,np(_15543))).

state(298, verb(_30346,_30350), s, 363).

state(299, verb(_30346,_30350), s, 363).

state(300, verb(_182,_16821), s, 365).

state(301, ¢ _sentence(_24281,_24282), 393).

276

state(301, noun_phrase(_30604, 30595), 316).

state(301, aux(_24444,_24430), 390).

state(301, verb_phrase(_182,), 381).

state(301, cop_phrase(_l82,Cp(aux(_231,_24786,_24787,_24788),_24783)), 382).

state(301, aux(_30928,aux(_30934,_30935,_30936, 30937)), 367).

state(301, aux(_182,aux(_231,_24786,_24787, 24788)), 367).

state(302, e_sentence(_182,e_s(_30595, 30596)), 393).

state(302, noun_phrase(_30604, 30595), 316).

state(302, aux(_24444, 24430), 390).

state(302, verb_phrase(_182,vp(_302, 24613, 24614)), 397).

state(302, cop_phrase(_182,cp(aux(_231,_24786, 24787, 24788), 24783)), 382).

state(302, aux(_30928,aux(_30934,_24786, 24787, 24788)), 367).

state(302, aux(_182,aux(_231,_24786, 24787, 24788)), 367).

state(303, adj(_31720,_31724), s, 359).

state(303, noun_phrase(_31748, 31752), 340).

state(304, $, r1, e_sentence(_768,e_s(_27123, 27124))).

state(305, $, r1, prep_phrase(_27579,pp(_27612,_27613))).

state(306, $, r1, verb_phrase2(_768,vp2(_7622, 7623))).

state(307, $, r1, e_sentence(_31868,e_s(_31871, 31872))).

state(308,[verb(_156109,_156110),modal(_156114,_1561 15),perf(_156119,_156120),passive_be(_15

6;2&_)%)56]25),]31'0@71561 29,_156130),do(_156134,_156135)],r1 ,aux(_3458,aux(_3461, 3462, 3463,

state(309,[verb(_156459,_156460),m0da1(_156464,_156465),perf(_156469,_15647{}),passive_be(_15

64;74,_)})56475),pr0g(_156479,_156480),(10(_1 56484, 156485)],r1,aux(_3458,aux(_3461,_3462, 3463,
464))).

state(310, $, r1, e_sentence(_32042,e_s(_32045, 32046))).

state(311, $, r1, infaux(_2535,infaux(_2538, 2539, 2540, 2541))).

state(312, $, r1, prep_phrase(_32114,pp(_32117,_32118))).

state(313, $, r1, r_clause(_32144,r_c(_32147,_32148))).

state(314, $, r1, noun_phrase(_22746,np(_22749,_22750,_22751))).

state(315,lverb(_l57888,_]57889),inf(_I57893,_15?894),modal(_l57898,_157899),perf(_157903,_15

7904),passive_be(_157908,_157909),prog(_157913,_157914),do(_157918,_157919),prep(_157923,_1

57924),rpron(_157928,_157929),det(_157933,_157934),noun(_157938,_157939)], r1,

wh_phrase1(_182,wh_ph(_16235,vp(_23331,_23332)))).

state(316, verb_phrase(_182,_23167), 321).

state(317,{verb(_159376,_159377),inf(_159381,_159382),modal(_159386,_159387),perf(_159391,_15

9392),passive_be(_159396,_159397),prog(_159401,_159402),do(_159406,_159407),prep(_159411,_1

59412),rpron(_159416,_159417),det(_159421,_159422),noun(_159426,_159427)], rl,

prep_phrase(_182,pp(_23838,_23839))).

state(318,[verb(_159826, 159827),inf(_159831,_159832),modal(_159836,_159837),perf(_159841,_15

9842),passive_be(_159846,_159847),prog(_159851,_159852),do(_159856,_159857),prep(_159861,_1

59862),rpron(_159866,_159867),det(_159871,_159872),noun(_159876,_159877)], rl,

verb_phrase2(_182,vp2(_16653,_16654))).

state(319,[verb(_160388,_160389),inf(_160393,_160394),modal(_160398,_160399),perf(_160403,_16

0404),passive_be(_l60408,_160409),prog(_160413,_160414J.d0(_160418,_160419),prep(_160423,_1

60424),rpron(_160428,_160429),det(_160433,_160434),nou n(_160438,_160439)], rl,

comp_phrase(_182,c_ph(_16994,_16995))).

state(320, verb_phrase(_182,_23167), 321).

state(321,[verb(_161616,_161617),inf(_161621,_161622),modal(_161626,_161627),perf(_161631,_16

1632),passive_be(_161636,_161637),prog(_161641,_161642),do(_161646,_161647),prep(_161651,_1

61652),rpron(_161656,_161657),det(_161661,_161662),noun(_161666,_161667)], rl1,

e_sentence(_182,e_s(_23166,_23167))).

state(322,[verb(_162140,_162141),inf(_162145,_1 62146),m0da1(_162150,_162151),perf(_162155,_16

2156),passive_be(_162160,_162161),prog(_162165, 162166),do(_162170,_162171),prep(_162175,_1

62176),rpron(_162180,_162181),det(_162185,_162186),noun(_162190,_162191)], r2,

verb_phrase(_182,vp(_8354, 8355, 8356))).

state(323, noun_phrase(_182,_32900), 371).

state(324,[verb(_164684,_164685),inf(_164689,_164690),modal(_164694,_164695),perf(_164699, 16

271

4700),passive_be(_1 64704,_164705),pr0g(_164709,_1 64710),do(_164714, 16471 5),prep(_164719,_1
64720),rpron(_1 64724, 164725),det(_1 64729, 164730),noun(_ 164734 164735)] r2
verb_phrase(_182,vp(_8441, 8442, 8443))). B . S
state(325, verb(_182, 33076), s, 372).

state(326, $, r1, verb_phrase2(_33157,vp2(_33160, 33161))).

state(327, $, r1, infaux(__28772,infaux(_28775,_28776,_28777))).

state(328, $, r1, infaux(_28772,infaux(_28775, 28776, 28777))).

state(329, $, r1, infaux(_33259,infaux(_33262, 33263, 33264)).

state(330, verb_phrase(_33259, 33299), 342).

state(331, $, r1, infaux(_33259,infaux(_33262,_33263,_33264J)).

state(332, verb_phrase(_33259, 33299), 342).

state(333, $, r1, infaux{_28844,infaux(_28847,_28848,_28849))J.

state(334, $, r1, infaux(_28844,infaux(_28847, 28848, 28849))).

state(335, adj(_28916,_28922), s, 375). -

state(336, adj(_28916,_28922), s, 375).

state(337,[verb(_1 74382, _174383),inf(_1 74387,_174388),modal(_174392, 1 74393),perf(_174397,_17
4398),passive_be(_1 74402, 174403),prog(_174407, 174408),d 0(_174412, 17441 3),prep_(_1 7441 ?_,_1
74418),rpron(_174422, 1 74423),det(_174427, 174428),nou n(_174432,_174433)], r1,
r_clause(_29000,r_c(_29003, 29004, 29005))).

state(338, $, r1, r_clause(_182,r_c(_9770, 9880, 9881))).
state(339,[verb(_175079,_175080),inf(_175084, 1 75085),modal(_175089,_175090),perf(_175094,_17
5095),passive_be(_175099, 1751 00),prog(_175104,_175105),do(_175109, 17511 0),prep(_175114,_1
75115),rpron(_175119,_1751 20),det(_175124, 1751 25),noun(_175129,_175130)], rl1,
cop_phrase(_33677,cp(_33680,_33681))).

state(340, $, r1, cop_phrase(_31748,cp(_31751,_31752))).

state(341,[verb(_175968,_175969),inf(_1 75973,_175974),modal(_175978, 1 75979),perf(_175983,_17
5984),passive_be(_l75988,_175989),pr0g(_1 75993,_175994),d0(_175998,_175999),prep(_176003,_1
76004),rpron(_176008,_176009),det(_1 76013,_176014),noun(_176018,_176019)], r1,
e_sentence(_33792,e_s(_33795, 33796))).

state(342, $, r1, e_sentence(_33259,e_s(_33298, 33299))).

state(343, $, r1, verb_phrase2(_768,vp2(_7622, 7680, 7681))).

state(344, noun(15852, 15857), s, 377).

state(345, noun(_15852, 15857), s, 377).
state(346,[verb(_180000,_180001),inf(_180005,_180006),modal(_180010, 180011), perf(_180015,_18
0016),passive_be(_180020,_180021),prog(_180025,_180026),do(_180030, 180031),prep(_180035,_1
80036),rpron(_180040,_180041),det(_180045,_180046),noun(_180050,_180051)], r1,
noun_phrase(_2707,np(_15358,_15359))).
state(347,[verb(_180422,_180423),inf(_180427,_180428),modal(_180432, 1 80433),perf(_180437,_18
0438),passive_be(_180442,_180443),prog(_180447,_180448),do(_180452, 1 80453),prep(_180457,_1
80458),rpron(_180462,_180463),det(_180467,_180468),noun(_180472,_180473)], rl1,
noun_phrase(_2707,np(_15358,_15359))).
state(348,[verb(_180844,_180845),inf(_180849,_180850),modal(_180854,_180855),perf(_180859,_18
0860),passive_be(_180864,_180865),prog(_180869,_180870),do(_180874,_180875),prep(_180879, 1
80880),rpron(_180884,_180885),dct(_180889,_180890),noun(_180894,_180895)], rl,
noun_phrase(_182,)).

state(349, noun_phrase(_182,_32900), 371).
state(350,[verb(_182478,_182479),inf(_182483,_182484),modal(_182488,_182489),perf(_182493,_18
2494),passive_be(_182498,_182499),prog(_182503,_182504),do(_182508,_182509),prep(_182513, 1
82514),rpron(_182518,_182519),det(_182523,_182524),noun(_182528,_182529)], rl,
noun_phrase(_182,)).

state(351, noun_phrase(_182,_32900), 371).

state(352,[verb(_184052,_184053),inf(_184057, 184058),modal(_184062,_184063),perf(_184067,_18
4068),passive_be(_184072,_184073),prog(_184077,_184078),do(_184082,_184083),prep(_184087,_1
84088),rpron(_184092,_184093),det(_184097,_184098),noun(_184102,_184103)], rl,
noun_phrase(_182,).

state(353,[verb(_184474,_184475),inf(_184479,_184480),modal(_184484,_184485),perf(_184489, 18
4490),passi ve_be(_184494,_184495),prog(_184499, 184500),do(_184504,_184505),prep(_184509, 1
84510),rpron(_184514,_184515),det(_184519,_184520),noun(_184524,_184525)], rl,

278

noun_phrase(_182,)).

state(354, verb_phrase(_34823, 34828), 383).

state(355, $, r1, r_clause(_31748,r_c(_34862,))).

state(356, $, r1, r_clause(_34895,r_c(_34898, 34899))).

state(357, verb_phrase(_34910,_34929), 373).

state(358,[Yerb(_l 87902,_187903),inf(_187907,_187908),modal (_187912, 18791 3),perf(_187917,_18
7918),passwe_be(J87922,_187923),prog(_187927,_187928),do{_187932,_187933),prep(_187937,_1
87938),rpr0n(_187942,_187943),det(_187947,_187948),n0un(_187952,_187953)], rl;
cop_phrase(_34955,cp(_34958,_34959))).

state(359, $, r1, cop_phrase(_31720,cp(_31723,_31724))).

state(360,[verb(_188791,_188792),inf(_1 88796,_188797),modal(_188801, _1 88802),perf(_188806,_18
8807),passive_be(_188811,_188812),pr0g{_188816,_188817),d0(_188821,_188822),prep(_188826,_1
88827),rpr0n(_188831,__'l88832),det(_188836,_188837),!101111(_188841,_188842)], rl,
wh_phrasel(_182,wh_ph(_l6235,Vp(_2333'l,_23332)))).
state(361,[verb(_189521,_189522),inf(_189526,_189527),modal(_189531,_189532), perf(_189536, 18
9537),passive_be(_189541,_189542),prog(_189546,_189547),do(_189551,_189552),prep(_189556,_1
89557),rpr0n(_'l89561,_189562),det(_189566,_189567),!1011!\(_189571,_189572)], Tl
wh_phrase1(_182,wh_ph(_16235,vp(_23331,_23332)))).

state(362, verb(_182, 23332), s, 372).

state(363, noun_phrase(_30346,_30351), 387).

state(364, noun_phrase(_30346, _30351), 387).

state(365, noun_phrase(_182,_16822), 389).

state(366, verb(_35494, 35498), s, 392).

state(367, adj(_182,_24783), s, 406).

state(367, noun_phrase(_182,_24783), 400).

state(368, adj(_182,_24783), s, 406).

state(368, noun_phrase(_182,_24783), 400).
state(369,[verb(_203403,_203404),inf(_203408,_203409),modal(_203413,_203414),perf(_203418,_20
3419),passive_be(_203423,_203424),prog(_203428, 203429),do(_203433,_203434),prep(_203438,_2
03439),rpron(_203443,_203444),det(_203448,_203449),noun(_203453,_203454)], rl,
e_sentence(_35941,e_s(_35944,_35945))).
state(370,[verb(_203909,_203910),inf(_203914,_203915),modal(_203919,_203920),perf(_203924,_20
3925),passive_be(_203929,_203930),prog{_203934,_203935),d0(_203939,_203940),prep(_203944,_2
03945),rpr0n(_203949,_203950),det(_203954,_203955),noun(_203959,_203960)l. rl,
e_sentence(_36026,e_s(_36029,_36030))).

state(371,[verb(_204415,_204416),inf(_204420,_204421), modal(_204425,_204426),perf(_204430,_20
4431),pa ssive"be{_204435,_204436),p rog(_204440,_204441) d 0(_2[}4445,_204446),]9!’6]9(_204450,_2
04451),rpron(_204455,_204456},det(_204460,_2[}4461),nOun{_204465,_204466)], rl,
prep_phrase(_182,pp(_32899,_32900))).
state(372,[verb(_204865,_204866),inf(_2{]4870,_204871),moda‘.(_204875,_204876),perf(_204880,_20
4881) passive_be(_204885,_204886),prog(_204890,_204891),do(_204895,_204896),prep(_204900, 2
04901),rpr(}n(_204905,_204906),det{_20491U,_2049H),r\oun{_204915,_204916)1. rl,
verb_phrase2(_182,vp2(_23331,_23332))).

state(373, $, r1, e_sentence(_34910,e_s(_34928,_34929))).

state(374, $, r1, e_sentence(_34910,e_s(_34928, 34929))).

state(375, $, r1, infaux(_28916,infaux(_28919,_28920, 28921, 28922))).

state(376, $, r1, infaux(_28916,infaux(_28919,_28920,_28921,_28922))).
state(377,{verb(_206307,_2063{}8),inf(_206312,_206313),m0dal(_2063]7,_206318),perf{_206322,_20
6323),passive_bc(_206327,_206328),prog(_206332,_206333),d0(_206337,_206338),prep(_206342,_2
06343),rpr0n(_206347,_206348),det(_2[}6352,_206353),n0un(_206357,_206358)l, ri,
noun_phrase(_l5852,np{_15855,_15856,_15857)}).

state(378,[verb(_206733,_206734),in f(_206738,_206739),modal (_206743,_206744),perf(_206748,_20
6749),passive_be(_206753,_206754),Prog(_206758,_206759),d0(_206763,~206764),prep(_206768,_2
06769),rpron(ﬂ206773,_206774),det(_206778,_206779),n0un(_206783,_206784)], rl,
noun_phrase(_l5852,11p(_15855,_15856,_15857))).

state(379,[verb(_207155, 207156),inf(_207160,_207161),modal(_207165,_207166),perf(_207170,_20
7171),passive_be(_207175,_207176),prog(_207180,_207181),do(_207185,_207186),prep(_207190,_2
07191),rpron(_207195,_207196),det(_207200,_207201),noun(_207205,_207206)}, r1,

279

prep_phrase(_36607,pp(_36610,_36611))).
;Za 2tle§380,[Yerbé_207605,_207606),in f(_207610,_207611),modal (_207615,_207616),perf(_207620,_20
e i]:;a:swe_ e(_207625,_207626),prog(_20763l},_20763l),d0(_20?635,_207636),prep(h207640,_2
p pron(_207645,_207646),det(_207650,_207651),noun(_207655,_207656)], rl,
prep_phrase(_36607,pp(_36610,_36611))).
state(381,[yerb(_208055,_208056),in f(_208060,_208061),moda 1(_208065,_208066),perf(_208070,_20
8071),paSSIve_be(_208075,_208076),prog(_208080,_208081),do(_208085,_208086), prep(_208090,_2
08091),rpron (_208095,_208096),det(_2081 00,_208101),noun(_208105,_208106)], rl,
r_clause(_182,r_c(_24100,))).
state(382,[yerb(_208533,_208534),inf(_208538,_2[}8539),modal(_208543,_208544),perf(_208548,_20
8549),pa551ve_be(_208553,_208554),pr0g(_208558,_208559),d0{_208563,_208564),prep(_208568,_2
08569),rpron(_208573, 208574), det(_208578, 208579),nou n(_208583,_208584)], r1,
r_clause(_182,r_c(_24100,_, 24783))).
state(383, $, r1, r_cl ause(_34823,r_c(_34826,_34827, 34828))).
state(384, $, r1, cop_phra se(_36989,cp(_36992,_36993))).
state(385, $, r1, e_sentence(_3701 9,e_s(_37022, 37023))).
state(386,[verb(_209660,_209661),inf(_209665, 209666),modal (_209670,_209671),perf(_209675, 20
9676),passive_be(_209680, 209681),prog(_209685,_209686),do(_209690, 209691).prep(_209695,_2
09696),rpron(_209700,_209701),det(_209705, 209706),nou n(_209710,_209711)], r1,
verb_phrase2(_37049,vp2(_37052,_37053))).
state(387, $, r1, verb_phrase2(_30346,vp2(_30349,_30350,_30351))).
state(388, $, r1, verb_phrase2(_30346,vp2(_30349,_30350,_30351))).
state(389,[verb(_210664,_210665),inf(_210669, 21 0670),modal(_210674,_210675),perf(_210679,_21
0680),passive_be(_210684,_21 0685),]3 rog(_210689,_210690),do(_210694, 21 0695),prep(_210699,_2
10700),rpr0n(_2 10704,_210705),det(_210709, 210710),nou n(_210714,_210715)], r1,
verb_phrase2(_182,vp2(_16653,_16821,_16822))).
state(390, verb_phrase(_24426, 24431), 401).
state(391, verb_phrase(_24426,_24431), 401).
state(392, noun_phrase(_35494,_35499), 403).
state(393,[verb(_213984,_213985),inf(_213989,_213990),modal(_21 3994, 213995),perf(_213999, 21
4000),passive_be(_214004,_214005),prog(_214009,_214010),do(_214014, 21401 5),prep(_214019,_2
14020),rpron(_214024,_214025),det(_214029,_214030),noun(_214034, 214035)], rl,
r_clause(_24264,r_c(_24267, 24268))).
state(394, verb_phrase(_182,_37659), 404).
state(395,[verb(_215370,_215371),inf(_215375,_215376),modal(_215380,_215381),perf(_215385,_21
5386),passive_be(_215390,_215391),prog(_215395,_215396),do(_215400,_215401),prep(_215405,_2
15406),rpron(_215410,_215411),det(_215415,_215416),noun(_215420,_215421)], rl,
r_clause(_24264,r c(_24267,_24268))).
state(396, verb_phrase(_182,_37659), 404).
state(397,[verb(_216696, 216697),inf(_216701, 21 6702),modal(_216706,_216707),perf(_216711,_21
6712),passive_be(_216716,_216717),prog(_216721,_216722),do(_216726,_216727),prep(_216731,_2
16732),rpron(_216736,_216737),det(_216741,_216742),noun(_216746,_216747)],r1,r_clause(_182,).
state(398,[verb(_217174,_217175),inf(_217179,_217180),modal(_217184,_217185),perf(_217189,_21
7190),pa ssive_be(_217194,_217195),prog(_217199,_217200),do(_217204,_217205),prep(_217209,_2
17210),rpron(_217214,_21721 5),det(217219, 217220),noun(_217224, 217225)], r1,
r_clause(_182,r_c(_38009,))).
state(399, $, r1, cop_phrase(_38107,cp(_38110,_38111))).
state(400,[verb(_217867,_217868),inf(_217872,_217873),modal(_217877,_217878),perf(_217882,_21
7883),passive_be(_217887,_217888),prog(_217892,_217893),do(_217897,_217898),prep(_217902,_2
17903),rpron(_217907,_217908),det(_217912,_217913),noun(_217917,_217918)], rl,
cop_phrase(_182,cplaux(_231,_24786,_24787,_24788),_24783))).
state(401,[verb(_218545,_218546),inf(_218550,_218551),modal(_218555,_218556),perf(_218560,_21
8561),passive_be(_218565,_218566),prog(_218570,_218571),do(_218575,_218576),prep(_218580,_2
18581),rpron(_218585,_218586),det(_218590,_218591),noun(_218595,_218596)], rl,
r_clause(_24426,r_c(_24429,_24430,_24431))).
st_.lte(402,lverb(vZ19027,_2]9028),inf(_2] 9032,_219033),modal(_219037, 219038),perf(_219042,_21
9043),passive_be(_219047,_219043),prog(_219052,_219053),do(_219057,_219058),prep(_219062,_2
19063),rpron(_219067,_219068),det(_219072,_219073),noun(_219077,_219078)], rl,

280

r_clause(_24426,r_c(_24429, 24430, 24431))).

state(403,[verb(_219509,_219510),inf(_219514, 219515),mod al(_219519,_219520),perf(_219524,_21
9525),passive_be(_219529,_21 9530),prog(_219534,_219535),do(_219539, 21 9540),prep(_219544,_2
19545),rpron(_219549,_219550),det(_219554,_219555),noun(_21 9559, 219560)],
Verb_phrase2(_35494,vp2(_35497,__35498,_35499))).
state(404,[verb(_220071,_220072),inf(_220076, 220077),modal (_220081,_220082),perf(_220086,_22
UOB?),paSSive_be(_22{}09l ,-220092),prog(_220096,_220097),do(_220101 ,_220102),prep(_220106,_2
20107),rpron(_220111,_220112),det(_220116,_220117),noun(_220121,_220122)}, rl,
e_sentence(_182,e_s(_37658,_37659))).
state(405,[verb(_220577,_220578),inf(_220582,_220583),modal(_220587,_220588),perf(_220592,_22
0593),passive_be(_220597,_220598),prog(_220602,_220603),do(_220607,_220608),prep(_220612,_2
20613),rpron(_220617,_220618),det(_220622,_220623),noun(_220627,_220628)], rl,
e_sentence(_182,e_s(_37658, 37659))).
state(406,[verb(_221083,_221084),inf(_221088,_221089),modal(_221093,_221094),perf(_221098, 22
1099),passive_be(_221103,_221104),prog(_221108,_221109),do(_221113,_221114),prep(_221118,_2
21119),rpron(_221123,_221124),det(_221128,_221129),noun(_221133,_221134)], rl,
cop_phrase(_182,cp(aux(_231,_24786, 24787, _24788),_24783))).
state(407,[verb(_221757,_221758),inf(_221762, 221763),modal(_221767,_221 763),perf(_221772,_22
1773),passive_be(_221777,_221778),prog(_221782,_221783),do(_221787,_221788),prep(_221792,_2
21793),rpron(_221797,_221 798),det(_221802,_221803),noun(_221807,_221808)], rl,
cop_phrase(_38760,cp(au x(_38766, 38767, 38768, 38769),_38764))).
state(408,[verb(222431, 222432),inf(_222436, 222437),modal(_222441,_222442),perf(_222446, 22
2447),passive_be(_222451,_222452),prog(_222456,_222457),d0{_222461,_222462),prep(__222466,_2
22467),rpron(_222471 ,.222472),det(_222476,_222477),noun(_222481 ,.222482)), rl,
cop_phrase(_38855,cp(_38858,_38859))).

rl,

281

APPENDIX C

This appendix contains further examples of the types of sentences and parses of
these sentences that MParser and LParser can process. Some of the sentences are
parsed by both parsers, the others are parsed by either MParser or LParser. The
example sentences are the following:

I told that boy that boys should do it.

I wanted John to do it.

John bought a pear for Mary to eat.

I want to do it.

Sally knows Bill kissed Jane.

Sally has been forgotten.

I know John to be a fool.

Who did Sally kiss.

I know the boy that likes Sue.

I know the boy Sue likes.

The boy’s cat is dead.

Block the road.

I know the boy that Sally likes.

The jar seems broken.

Schedule a meeting for Friday.

There seems to have been a meeting scheduled for Friday.

The examples below are results of parsing with MParser.

| 7- start(S).l: I told that boy that boys should do it.

S =[[[xmax, [[attach_subject, [xmaXx,

282

[attach_prOpnoun,['I',’+n—v+a—p',pn]],’+n—V+a-p'}],

[attach_vp, [xmax, [[attach_verb, [told, ‘-n+v’, -, tensel],
[attach_object,
[Xmaxf[[[attach_det,[that,'+n~v—a—p’]],

[attach_noun,[boy,'+n—v+a—p’,sg]]],
[attach_relative_clause, [xmax,
[[attach_rpron,[that,’—n-v+a+p']],
[attach_sent,[xmax,[[attach_embedded_subject,[xmax,

[attach_noun, [boys, '+n-v+a-p’,pll], ‘+n-v+a-p‘]1],
(attach_vp, [xmax, [[aux_sai, [should, ' -n+v+a+p’]],
[attach_vp, [xmax, [[attach_verb, [do, ‘-n+v’, -, tense]],
[attach_object, [xmax,

[attach_noun, [it, '+n-v+a-p”’,sqg9]1],
‘+n-v+a-p’l]], ‘-n+v-a+p’,subjless]]], ‘-n+v+a+p’l]],
‘-n+v+a+p’]]], ' -n-v+a+p’1]], ‘+n-v+a-p‘J11],
‘-n+v-a+p’,subjll,], ' -n+v+a+p’]l, (1], []]

| ?- start(S).l: I wanted John to do it.

S - [[[xmax, [[attach_subject, [xmax,

(attach_propnoun, [‘I‘, '+n-v+a-p’,pnll, ‘+n-v+a-p’]J],

[attach_vp, [xmax, [[attach_verb, [want, '-n+v’, +,ed]],
[attach_zcomp_sent, [xmax, [[attach_embedded_subject, [xmax,

[attach_propnoun, [‘John’, ‘+n-v+a-p’,pnll], '+n-v+a-p‘11],
[attach_infl, [xmax, [[to_infinitive, [to, ' '-n+v+a+p’]],
[attach_vp, [xmax, [[attach_verb, [do, '-n+v’, -, tense]],

[attach_object, [xmax,
[attach_noun, [it, “+n-v+a-p’,sqgl]l, '+n-v+a-p’'1]],

‘-n+v-a+p’,subjless]]],’-n+v+a+p’l]], '-n+v+a+p’]]],
‘-n+v-a+p’ ,;subj_inf]]], '-n+vea+p’}, {11,011

| ?- start(S).l: I want to do it.

S = [[[xmax, [[attach_subject, [xmax,

[attach_propnoun, ['I’, '+n-v+a-p’,pn]l, ‘+n-v+a-p’J1],

lattach_vp, [xmax, [[attach_verb, [want, '-n+v’, -, tense]],

(attach_zcomp_sent, [xmax,

[{to_infinitive, [to, ‘-n+v+a+p’]],

[attach_vp, [xmax, [[attach_verb, [do, ‘-n+v’, -, tense]],
[attach_object, [xmax,
[attach_noun, [it, ‘+n-v+a-p’,sgl], ‘+n-v+a-p’]]1],
'-n+v-a+p’,subjless]]], ‘-n+v+a+p’11]l],
‘—n+v-a+p’,subj_infll]l, ‘-n+v+a+p’],[1]1,[]]

| ?- start(S).|: John bought a pear for Mary to eat.S =

{{[xmax,[[attach_subject,[xmax,
[attach_propnoun, [‘John’, ‘+n-v+a-p’,pn]], ‘+n-v+a-p’l],
[attach_vp,[xmax,[[attach_verb,[bought,'—n+v',—,tense]],

[attach_zcomp_sent,[xmax,[[attach_embedded_subject,
[xmax, [[[attach_det, [a, ‘+n-v-a-p‘]],
[attach_noun,[pear,'+n—v+a—p’,sg]]],
[attach_pp,[xmax,[[attach_prep,[for,’—n~v']],

[attach_pp_object, [xmax,
[attach_propnoun,['Mary','+nwv+a—p',pn]],
'4n-v+a-p’11],'-n-v’]1]], ‘+n-v+a-p’]],
[attach_infl, [xmax,
[[to_infinitive, [to, '-n+v+a+p’]],

283

attach_vp, [xmax,

[a;tach_verb,[eat,'—n+v’,-,tense]],‘~n+v—a+p',
obj]1], ' -n+v+a+p’1]], ' -n+v+a+p’]]), ' -n+v-a+p’,
objlll, ' -n+v+a+p’]),[11.,11]
| ?- start(S).|: Sally knows Bill kissed Jane.
S = [[[xmax, [[attach_subject, [xmax,
lattach_noun, [‘Sally’, ‘+n-v+a-p’,sgl], ‘+n-v+a-p’l],

[attach_vp, [xmax, [[attach_verb, [know, ‘-n+v’, +,s]],

[attach_zcomp_sent, [xmax, [[attach_embedded_subiject,
[xmax,

[attach_noun, ['Bill’, ‘+n-v+a-p’,sgl], '+n-v+a-p‘]],
(attach_vp, [xmax, [[attach_verb, [kiss, '-n+v’,+,ed]],
[attach_object, [xmax,

(attach_noun, [‘Jane’, '+n-v+a-p’,sgl], ‘+n-v+a-p’111],

‘-n+v-a+p’,subjll], ‘-n+v+a+p’Jl]l], '-n+v-a+p’,subjll],
teptveasp”). L)). E1)
| ?- start(S).|: Sally has been forgotten.
S = [[[xmax, [[attach_subject, [xmax,

[attach_noun, ['Sally’, '+n-v+a-p’,sgl], '+n-v+a-p‘1l1],
[attach_vp, [xmax, [[perfective, [has, ‘-n+v’]],
[attach_succ_aux, [xmax, [[passive_be, [be, '-n+v’,+,enl],
[attach_vp, [xmax, [[passive,

[attach_verb, [forgott,'’'-n+v-a+p’,+,enlll],
[attach_object, [xmax, [attach_propnoun,
[np_empty, '+n-v+a-p’,pnll]l, +n-v+a-p‘111,"'-
n+v+a+p’,subjlll],
‘-n+v+a+p’ll], '-n+v’]]],"-n+v+a+p’], (1], []]
| 2- start(S).|l: I know John to be a fool.
S = [[[xmax, [[attach_subject, [xmax,
[attach_propnoun, [‘I’,'+n-v+a-p’,pnl], '+n-v+a-p‘J],
[attach_vp, [xmax, [[attach_verb, [know, '-n+v’, -, tense]],
[attach_zcomp_sent, [xmax, [[attach_embedded_subject,
[xmax,
[attach_propnoun, [‘John’, ‘+n-v+a-p’,pn]l, '+n-v+a-p‘]],
[attach_infl, [xmax, [[to_infinitive, [to, '-n+v+a+p’]],
[attach_vp, [xmax, [[attach_verb, [be, ‘-n+v’, -, tense]],

[attach_object, [xmax, [[attach_det, [a, '+n-v-a-p’]]
[attach_noun, [fool, ‘+n-v+a-p’,sg]ll],

‘+n-v+a-p’1]], ‘-n+v-a+p’,proglll,‘-n+v+a+p’]l],
' _n+v+a+p’]] 1 L -n+v—a+p' ’ SUb]]]]]
‘-n+v+a+p’], (11, (1]

| ?- start(S).l: who did Sally kiss.

S = [[[xmax, [[attach_wh_comp, [who,’'-n-v+a+p’]],

[attach_sent,[xmax,[[attach_embedded_subject,

[xmax, [‘Sally’, '+n-v+a-p’,sg], '+n-v+a-p’']],

[attach_vp,[xmax,[[aux_sai,[dld,'7n+v+a+p']],

[attach_vp,[xmax,[[attach_verb,[klss,'~n+v',-,tense1],

[attach_object, [xmax,
{attach_propnoun,[np_empty,’+n—v+a—p',pn]],
'+n—v+a—p']]],'—n+v~a+p',subj]1],'—n+v+a+p']]],
r-n+v+a+p’]]]), '-n-v+a+p’,whl, (1], []]

284

| ?- start(S).l: I know the boy that likes Sue.

5 = [[[xmax, [[attach_subject, [xmax,
[attach_propnoun,['I',’+n—v+a—p',pn]],'+n—v+a—p']],
[attach_vp,

[xmax, [[attach_verb, [know, '-n+v’, -, tense]],

[attach_object, [xmax, [[[attach_det, [the, '+n-v-a-p‘]],
[attach_noun, [boy, '+n-v+a-p’,sqgll],
[attach_relative_clause, [xmax,
[[attach_rpron, [that, '-n-v+a+p’]],

[attach_vp, [xmax, [[attach_verb, [like, '-n+v’,+,s]],
[attach_object, [xmax,
(attach_noun, ['Sue’, '+n-v+a-p’,sqgl]l,

‘+n-v+a-p‘Jl]], ' -n+v-a+p’,subjll], '-n-v+a+p’1]],
‘+n-v+a-p’l]], ' -n+v-a+p’,subjll], ‘-n+v+a+p’l, (11, []]
| ?- start(S).|l: I know the boy Sue likes.
S = [[[xmax, [[attach_subject, [xmax,

[attach_propnoun, [‘I’, '+n-v+a-p’,pnll, ‘+n-v+a-p’J],
[attach_vp, [xmax,
[[attach_verb, [know, '-n+v’, -, tense]],
[attach_zcomp_sent, [xmax, [[attach_embedded_subject,

[xmax, [[[attach_det, [the, '+n-v-a-p’]],
[attach_noun, [boy, '+n-v+a-p’,sqglll,
[attach_noun, ['Sue’, '+n-v+a-p’,sqglll,
"+n-v+a-p''11,

[attach_vp, [xmax, [attach_verb, [like, '-n+v’,+,s]],

‘-n+v-a+p’,subjll], ‘-n+v+a+p’ll],
‘-n+v-a+p’,subjll], ‘-n+v+a+p’],[1],[]]
| ?- start(S).|l: The boy’s cat 1is dead.
S = [[[xmax, [[attach_subject, [xmax,

[[[attach_det, ['The’, ‘+n-v-a-p’]l],
[attach_adj, [‘boy’’s’, ‘+n-v+a+p’]]],

[attach_noun,{cat,'+n—v+a—pf,sg]]],'+n—v+a—p']],
(attach_vp, [xmax, [[copula, [1s, ‘" n+v‘]],
[attach_pred_adj, [dead, ‘+n-v+a+p’]l]], ' -n+v’']]],
r-n+v+a+p’], (1], (1]

| ?- start(S).l: block the road.

S = [[[xmax,[[attach_subject,[xmax,
[attach_propnoun,[you,'+n—v+a—p',pn]],’+n—v+a—p’]],
[attach_vp, [xmax,
[[attach_verb,[block,'—n+v—a+p',—,tense]],

[attach_object,

[xmax,[[attach_det,[the,'+n—v—a—
[attach_noun, [road, ‘+n-v+a-p‘,sg
'—n+v—a+p',obj]]],‘—n+v+a+p'],[]

The examples below are results of parsing with LParser.

| ?— run(s5,B)lx 1 wanted John to do 1it.

S

285

[sentence(_22366ts{np(p_n(’I')),Vp(V(wanted},np(p_n(’John')).
vp2 (inf (to),v(do) ,np(pronoun(it))))))],

B = []
| ?- run(S,B).l: I want to do it.
S = [septence(_?SOS,s(np(p_n('I’}),Vp(v(want),
YP2(lnf(tO),V(dO),np(pronoun{it))))))],
B =]
| ?- run(S,B).|: Sally knows Bill kissed Jane.
S =
[sentence(_21075,s (np(p_n(’Sally’)),vp(v(knows),z_c_ph(e_s(
np (p_n(’Bill’)), vp (v (kissed) ,np(p_n(‘Jane’))))))))],
B = []
| ?- run(S,B).|: Sally has been forgotten.
5 = [sentence(_12342,s(np(p_n('Sally’)),
aux (perf (has) ,prog(been)),vp(v(forgotten))))],
B = []
| ?- run(S,B).|: who did Sally kiss.
S = [sentence(_12263, s (wh_ph(w_c(who),auxl (do(did))),
e_s(np(p_n(’Sally’)),vp(v(kiss)))))],
B = []
| ?- run(S,B).|: I know the boy that likes Sally.
S s
[sentence(_26279,s(np(p_n('I")),vp(v(know),np(np(d(the),n(b
o 1% , S g)) '
r_c(r_p(that),vp(v(likes) ,np(p_n(‘Sally‘)))))))) 1.
B = []
| ?- run(S,B).|l: I know the boy that Sally likes.
g =
[sentence(_27345,s(np{p_n(’I')).vp(v(know),np(np(d;the),n(b
o Y : S g) .
r_c(r_p(that),e_s(np(p_n(’'Sally’)})),vp(v(likes)))))}))],
B = []
| ?- run(S,B).|l: the jar seems broken.
S = [sentence(_10717,s(np(d(the),n(jar,sqg)),
cp (aux (seem(seems)) ,a(broken))))],
B = []
| - run(S,B).|: there seems to have been a meeting scheduled
for Friday.

286

S = [sentence(_36425,s (there(there(there), aux(seem(seems))),

infaux(inf (to) ,aux(perf (have),prog(been)),

e_s(np(d(a),n(meeting,sqg)),vp(v(scheduled),
pp(p(for),np(n(’Friday’,sqg))))))))1,

B = []

| ?- run(S,B).|: schedule a meeting for Friday.
S = [sentence(_14885,s(1ivp(v(schedule),

np (np(d(a),n(meeting,sqg)),pp(p(for),np(n(‘Friday’,sg)))))))
1,B = []

287

APPENDIX D

This appendix contains the grammars for MParserSub and LParserSub, example noun-

phrases and example parses from both parsers. The grammar below is the grammar

used by LParserSub.

gramnp:-assert((noun_phrase_--bnoun_phrase(N,_NP))),
assert((nounhphrase(N,np(Noun))-->noun(N,Noun))),
assert((noun_phrase(N,np(Noun,Noun))-->noun(N,Noun),noun(N,Noun))),
assert((noun_phrase(N,np(Pronoun))-->pronoun(N,Pronoun))),
assert({noun_phrase(N,np(ProPermnoun))->pr0per_n0un(N,Proper_noun))),
assert((noun_phrase(N,np(Det,Noun))-->det(N,Det),noun(N,Noun))),
assert((nounvphrase(N,np(Ref,Noun)}-—>ref(N,Ref),noun{N,Noun))),
assert((noun_phrase{N,np(Noun,Ref,Noun,Num))-->n0un(N,Noun),
ref(N,Ref),noun(N,Noun),num(N,Num))),
assert((noun_phrase(N,np{Noun,Noun,Noun,Conj,Noun})-->noun(N,Noun),noun(N,Noun),no
un(N,Noun),conj(N,Conj),noun(N,Noun))),

assert((noun_phrase(N,np(Noun,Nou n,Conj,Noun))-->noun(N,Noun),noun(N,Noun),conj(N,C
onj),noun(N,Noun))),
assert((noun_phrase(N,np(Det,Adj,Conj,Noun,Noun))——>det(N,Det},adj(N,Adj),conj(N,Conj),no
un(N,Noun),noun(N,Noun))),
assert((noun_phrase(N,np(Det,Adj,Conj,Noun))-->det(N,Det),adj(N,Adj),conj(N,Conj),noun(N,
Noun))),

assert((n0un_phrase(N,np(Det,Noun,Adj))-—>det(N,Det),nOun(N,Noun),adj(N,Adj))),
assert((noun_phrase(N,np(Noun,Num,Noun,Num,Noun))-->noun(N,Noun),num(N,Num) nou
n(N,Noun),num(N,Num),noun(N,Noun))),
assert((noun_phrase(N,np(Ref,Noun,Conj,Noun,Noun))-->ref(N,Ref),nou n(N,Noun),conj(N,Co
nj),noun(N,Noun),noun(N,Noun))),
assert((noun_phrase(N,np(NP,Adj,Conj,Adj))-->noun_phrase(N,NP),adj(N,Adj),conj(N,Conj),a
dj(N,Adj))),
as],sert({noun_phrase{N,np(Adj,Conj,Noun,Neun)}——>adj(N,Adj),conj(N,COnj),noun(N,Noun),no
un(N,Noun))),
assert((noun_phrase(N,np(Adj,Conj,Noun))-->adj(N,Adj),conj(N,Conj),noun(N,Noun))),
assert((noun_phrase(N,np(Adj,Noun))-->adj(N,Adj),noun(N,Noun))),
assert((noun_phrase(N,np(Adj,Adj,Noun))-->adj(N,Adj),adj(N,Adj),noun(N,Noun))),
assert((noun_phrase(N,np(Det,Adj,Adj,Conj,Noun))-->det(N,Det),adj(N,Adj),adj(N,Adj),conj(N
,Conj),noun(N,Noun))),
assert((noun_phrase(N,np(Ref,Noun,Noun))-->ref(N,Ref),noun(N,Noun),noun(N,Noun))),
assert((noun_phrase(N,np(Ref, Noun,Num))-->ref(N,Ref),noun(N,Noun),num(N,Num))),
assert((noun_phrase(N,np(Det,Noun,Num))-->det(N,Det),noun(N,Noun),num(N,Num))),
assert((noun_phrase(N,np(Det,Noun,Num))-->det(N,Det),noun(N,Noun),num(N,Num),noun(
N,Noun))),
assert((noun_phrase(N,np(Det,Num,Noun))-->det(N,Det),num(N,Num),noun(N,Noun))),
assert((noun_phrase(N,np(Adj,Det,Noun))-->adj(N,Adj),

det(N,Det),noun(N,Noun))),
assert((noun_phrase(N,np(Det,Num,Noun,Num))-->det(N,Det),num(N,Num),noun(N,Noun),n
um(N,Num))),
assert((noun_phrase(N,np(Det,Noun,Num,Conj,Num))-->det(N,Det),noun(N,Noun),num(N,N
um),conj(N,Conj),num(N,Num))), |
assert((noun_phrase(N,np(Noun,Num,Conj,Num))-->noun(N,Noun),num(N,Num),conj(N,Con
j),num(N,Num))),

assert((noun_phrase(N,np(Noun,Num))-->noun(N,Noun),num(N,Num))),
assert((noun_phrase(N,np(Num,Noun))-->num(N,Num),noun(N,Noun))),
assert((noun_phrase(N,np(Det,Noun,Conj,Noun))-->det(N, Det),noun(N,Noun),conj(N,Conj),no

ATE

un(N,Noun))),

assert((noun_phrase(N,np(Noun,Conj,Noun))-->noun{N,Noun),con}(N,Conj),noun(N,N()un))),
assert{(noun_phrase{N,np(Dct,Noun,Noun,Noun,Conj,Nou n))-->det(N,Det), noun(N,Noun),
noun(N,Noun),noun{N,Noun),conj(N,Conj),noun{N,Noun))),
assert((noun_phrase(N,np(Noun,Noun,Adj,Adj))-->noun(N,Noun),noun(N,Noun),adj(N,Adj).a
dj(N,Adj))),
assert((noun_phrase(N,np(Noun,Noun,Noun))->noun(N,Noun),noun(N,Noun),noun(N,Noun))),
assert((noun_phrase(N,np(NP,Conj,NP))-->n0un_phrase{N,NP),conj(N,Conj),noun_phrase(N,
NDP))),

assert((noun_phrase(N,np(NP,NP,Conj,NP))-->n0un_phrase(N,NP),noun_phrase{N,NP),conj(N
,Conj),noun_phrase(N,NP))),
assert((noun_phrase(N,np(NP,NP,Conj,NP))-->noun_phrase(N,NP),noun_phrase(N,NP),noun_
phrase(N,NP),conj(N,Conj),noun_phrase(N,NP))),
assert((noun_phrase(N,np(NP,PP))-->noun_phrase(N,NP),

prep_phrase(N,PP))),

assert((noun_phrase(N,np(NP,RC))-->noun_phrase(N,NP),

r_clause(N,RC))),

assert((prep_phrase(N,pp(Prep,NP))-->prep(N,Prep),noun_phrase(N,NP))),
assert((prep_phrase(N,pp(Prep,Prep,NP))-->prep(N,Prep),

prep(N,Prep),noun_phrase(N,NP))),

assert((r_clause(N,r_c(Rpron, NP))->rpron(N,Rpron),verb_phrase(N,NP))),
assert((r_clause(N,r_c(Rpron,Aux,NP))-->rpron(N,Rpron),aux(N,Aux),noun_phrase(N,NP))),
assert((r_clause(N,r_c(Rpron,Aux,VP))-->rpron(N,Rpron),aux(N,Aux),verb_phrase(N,NP))),
assert((verb_phrase(N,vp(V,NP))->verb(N,V),noun_phrase(N,NP))),
assert((verb_phrase(N,vp(V,NP))->verb(N,V),

prep_phrase(N,NP))),

assert((verb_phrase(N,vp(V))-->verb(N,V))),
assert((verb_phrase(N,vp(V,Conj,V))-->verb(N,V),conj(N,Conj),verb(N,V))),
assert((verb_phrase(N,vp(V,NP,PP))-->verb(N,V),noun_phrase(N,NP),

prep_phrase(N,PP))),

assert((verb_phrase(N,vp(V,NP,SC))-->verb(N,V),

prep_phrase(N,NP),

sub_clause(N,SQ))),
assert((sub_clause(N,s_c(Sub,NP,VP,Sub,Adv,VP))-->sub(N,Sub),noun_phrase(N,NP),verb_phr
ase(N,VP),sub(N,Sub),adv(N,Adv),verb_phrase(N,VP))),
assert((aux(N,aux(Perf))-->perf(N,Perf))),

assert((aux(N,aux(Prog))-->prog(N,Prog))).

The grammar below is the grammar used by MParserSub.

grammar_rule((], [S] Reststack],
(I, 1,[SWord, "+n-v+a-p’,SP]] | Rest] NS, NB):-

not_attach([S | Reststack],
[[[’,),ISWord, ’+n-v+a-p’,SP]] | Rest],NS,NB).

grammar_rule([], [S|Reststack],
[[’,’].[Ran,[SWord, ’+n-v+a-p’,SPII1LNS, NB):-
not_attach([S | Reststack],

[[1’,),[Ran,[SWord, ’+n-v+a-p’ SP1]]],NS,NB).

grammar _rule((], [S | Reststack][[[",'],[Dom,[SWord, “+n-v+a+p’]]] | Rest] NS, NB):-
not_attach((S | Reststack][[[",'],[Dom,[SWord, “+n-v+a+p’]l] | Rest],NS,NB).

grammar _rule(attach_adj, ([xmax, "+n-v+a-p’, [spec_, head, compl] | Reststack],
([[FWord, ‘+n-v+a+p’l.[ISWord, "+n-v+a+p’]] I Rest],NS, NB):-

attach([[xmax,’ +n-v+a-p’, [spec_, head, comp]] | Reststack],

[[[FWord, “+n-v+a+p’l [SWord, "+n-v+a+p']] | Rest] NS,NB).

289

grammar_rule(attach_adj, [[xmax, ‘+n-v+a-p’, [spec_, head, comp]] | Reststack
[[[Dom,[FWord, "+n-v+a+p’|L[',’ 11 | Rest], NS, NB):- : .
attach([[xmax,’+n-v+a-p’, [spec_, head, compl]] | Reststack],

[[[Dom,[FWord, “+n-v+a+p’|L[’, 1] | Rest], NS, NB).

grammar_rule(attach_adj, [[xmax, St/+n-v+a-p’, [spec_, head, comp]] | Reststack]
[[[Dom,[FWord, "+n-v+a+p’l],’,]] | Rest],NS, NB):- < '
attach([[xmax, St,’+n-v+a-p’, [spec_, head, compl] | Reststack),

[[[Dom,[FWord, “+n-v+a+p’]],I",]] | Rest],NS NB).

grammar_rule(attach_adj, [[xmax,St, "+n-v+a-p’,[spec_, head, comp]] | Reststack],

[[[FWord,’+n-v+a+p’},[SWOrd,‘+n-v+a+p‘]] I Rest] NS, NB):-attach([[xmax,St, ‘+n-v+a-p’, s
head, comp]] | Reststack], o preih=is

[[[FWord, "+n-v+a+p’],[SWord, “+n-v+a+p’]] | Rest],NS,NB).

grammar_rule(attach_adj, [[xmax, +n-v+a-p’, [spec_, head, comp]] | Reststack],
[[[FWord, “+n-v+a+p’][SWord, “+n-v+a-p’]] | Rest],NS, NB):-
attach([[xmax,"+n-v+a-p’, [spec_, head, comp]] | Reststack],

([[FWord, “+n-v+a+p’],[SWord, "+n-v+a-p’,conj]] | Rest], NS ,NB).

grammar_rule(attach_adj, [[xmax,St,"+n-v+a-p’, [spec_, head, comp]] | Reststack],
[[[FWord, "+n-v+a+p’],[SWord, "+n-v+a-p’,conj]] | Rest] NS, NB):-
attach([[xmax,St, +n-v+a-p’, [spec_, head, comp]] | Reststack],

[[[FWord, "+n-v+a+p’],[SWord, "+n-v+a-p’,conj]] | Rest], NS ,NB).

grammar_rule(attach_adj, [[xmax,St,+n-v+a-p’, [spec_, head, compl] | Reststack],
[[[D,[FWord, +n-v+a+p’]],[SWord, "+n-v+a-p’,conjl] | Rest],NS, NB):-
attach([[xmax,St,’ +n-v+a-p’, [spec_, head, comp]] I Reststack],

[{[D,[FWord, ’+n-v+a+p’]],[SWord, "+n-v+a-p’,conjl] | Rest], NS,NB).

grammar_rule(attach_adj, [[xmax,St, +n-v+a-p’ [spec, head, comp_]] | Reststack],
[[[FWord, "+n-v+a+p’],Second] | Rest],NS, NB):-
attach([[xmax,St, “+n-v+a-p’, [spec, head, comp_]] | Reststack],

[[[FWord, "+n-v+a+p’],Second] | Rest],NS,NB).

grammar_rule(attach_det, [[xmax,’+n-v+a-p’, [spec_, head, comp]] | Reststack],
[[[FWord, "+n-v-a-p’],[SWord, ’+n-v+a-p’,SP]] | Rest], NS, NB):-

attach([[xmax, '+n-v+a-p’,[spec_head,comp]] | Reststack],

[[[FWord, “+n-v-a-p’],[SWord, ’+n-v+a-p’,SP]] | Rest],NS,NB).

grammar_rule(attach_det, [[xmax,’+n-v+a-p’, [spec_, head, comp]] | Reststack],
[[[FWord, "+n-v-a-p’],[SWord, "+n-v-a-p’]] | Rest],NS, NB):-

attach([[xmax, '+n-v+a-p’,[spec_head,comp]] | Reststack],

[[[FWord, "+n-v-a-p’],[SWord, "+n-v-a-p’]] | Rest]NS,NB).

grammar_rule(attach_det, [[xmax,St,’+n-v+a-p’, [spec_, head, comp]] | Reststack],
[[[FWord, +n-v-a-p’],[SWord, ’+n-v+a-p’,SP]] | Rest],NS, NB):-

attach([[xmax, St,'+n-v+a-p’,[spec_head,comp]] | Reststack],

[[[FWord, "+n-v-a-p’],ISWord, “+n-v+a-p’,SP]] | Rest] NS,NB).

grammar_rule(attach_det, [[xmax,St,’+n-v+a-p’, [spec_, head, comp]] | Reststack],
[[[FWord, ‘+n-v-a-p’],[SWord, "+n-v-a-p’]] | Rest],NS, NB):-

attach([[xmax, St,'+n-v+a-p’,[spec_ head,comp]] | Reststack],

[[[FWord, "+n-v-a-p’l,[SWord, ’+n-v-a-p’]] | Rest],NS,NB).

grammar_rule(attach_det,[[xmax, “+n-v+a-p’, [spec_, head, comp]] | Reststack],

290

[[[FWord, +n-v-a-p’L[D,[SWord, +n-v+a+p’]]] I Rest],NS, NB):-
attach({[xmax,’ +n-v+a-p’ [spec_, head, comp]] | Reststack],
[[[FWord, +n-v-a-p’][D,[SWord, +n-v+a+p’]]} | Rest] NS NB).

grammar_rule(attach_det,[[xmax, ‘+n-v+a-p’, [spec_, head, comp]] I Reststack],
[[[FWord, +n-v-a-p’],[SWord, +n-v+a+p’]] | Rest] NS, NB):-
attach([[xmax,'+n-v+a-p’ [spec_, head, comp]] | Reststack],

[[([FWord, +n-v-a-p’],[SWord, +n-v+a+p’]] | Rest],NS,NB).

grammar_rule{attach_np,[[xmax,’+n-v+a-p’,[spec, head_, compl]]],
[[[xmax,E, +n-v+a-p’],Second] | Rest],NS,NB):-
attach([[xmax,’+n-v+a-p’ [spec, head _, compl]],
[[[xmax,E,"+n-v+a-p’],Second] | Rest],NS,NB).

grammar_rule(attach_np,[[xmax,St, +n-v+a-p’[spec, head_, comp]]],
[[[xmax,E,"+n-v+a-p’],Second] | Rest] NS ,NB):-
attach([[xmax,St,’+n-v+a-p’,[spec, head_, compl]],
[[[xmax,E,"+n-v+a-p’], Second] | Rest],NS,NB).

grammar_rule(attach_np,[[xmax,’+n-v+a-p’ [spec, head_, compl]],
[[[xmax,E,"+n-v+a-p’],Second] | Rest],NS,NB):-

attach([[xmax,’ +n-v+a-p’ [spec, head_, compl]],
[[[xmax,E,’+n-v+a-p’],Second] | Rest],NS,NB).

grammar_rule(attach_comp,[[xmax, -n-v+a+p’, [spec, head_, comp]] | Reststack],
[[[when, "-n-v+a+p’],Second] | Rest],NS, NB):-

attach([[xmax,’-n-v+a+p’ [spec, head_, comp]] | Reststack],

[[[when, -n-v+a+p’],Second] | Rest], NS ,NB).

grammar_rule(attach_comp,[[xmax, -n-v+a+p’, [spec, head_, comp]] | Reststack],
[[{unless, "-n-v+a+p’],Second] | Rest],NS, NB):-

attach([[xmax,’-n-v+a+p’ [spec, head_, comp]] | Reststack],
[[[unless,’-n-v+a+p’],Second] | Rest],NS,NB).

grammar_rule(attach_rpron,[[xmax, "-n-v+a+p’, [spec, head_, comp]],
[xmax,S,”+n-v+a-p’,T] | Reststack],

[[[FWord, "-n-v+a+p’],Second] | Rest] NS, NB):-
attach([[xmax,’-n-v+a+p’ [spec, head_, compl],

[xmax,S, +n-v+a-p’, T] | Reststack],

[[[FWord, -n-v+a+p’],Second] | Rest] NS,NB).

grammar_rule(attach_rpron,[[xmax, -n-v+a+p’, [spec, head_, compl],
[xmax,S,’+n-v+a-p’, T] | Reststack],

[[[[FWord, -n-v+a+p’][FWord, "+n-v-a-p’]],Second] | Rest],NS, NB):-
attach([[xmax,’-n-v+a+p’,[spec, head_, compl],

[xmax,S, +n-v+a-p’,T] | Reststack],
[{[[FWord,’-n-v+a+p’],[FWord,’+n~v-a-p’]],Sec:ond] | Rest],NS,NB).

grammar_rule(attach_propnoun,[[xmax,’+n-v+a—p’,[spec, head_, compl] | Reststack],
[[[FWord, ‘+n-v+a-p’,pn], Second] | Rest],NS, NB):-

attach([[xmax, ‘+n-v+a-p’, [spec, head_, comp]] | Reststack],

[[[FWord, ‘+n-v+a-p’,pn],Second] | Rest],NS, NB).

grammar_rule(attach_pmpnoun,l[xmax,St,"+n-v+a-p’ |spec,head _comp]] | Reststack],
[[[FWord, “+n-v+a-p’,pnl, Second] | Rest], NS, NB):-

attach([[xmax, St +n-v+a-p’, [spec, head_, compl]] | Reststack],

[[[FWord, ‘+n-v+a-p’,pn],Second] | Rest],NS, NB).

291

grammar _rule(attach_pron, [[xmax,St,"+n-v+a-p’ [spec, head_, comp]] | Reststack]
[[[FWord, “+n-v+a-p’,pron],Second] | Rest],NS, NB):- ‘
attach([[xmax, St, '+n-v+a-p’,[spec, head_, comp]] | Reststack],

[[[FWord, "+n-v+a-p’,pron],Second] | Rest],NS, NB).

grammar_rule(attach_pron, l[xmax,'+n-v+a—p‘,[spec, head_, comp]] | Reststack]
[[[FWord, "+n-v+a-p’,pron],Second] | Rest], NS, NB):- ’
attach({[xmax, "+n-v+a-p’ [spec, head_, comp]] | Reststack],

[[[FWord, "+n-v+a-p’,pron],Second] | Rest],NS, NB).

grammar_rule(attach_noun, [[xmax,St,’+n-v+a-p’ [spec, head_, comp]] | Reststack],
[[[FWord, +n-v+a-p’,sgl,Second] | Rest],NS, NB):-

attach([[xmax, St, "+n-v+a-p’,[spec, head_, comp]] | Reststack],

[[[FWord, “+n-v+a-p’,sgl,Second] | Rest] NS, NB).

grammar_rule(attach_noun, [[xmaxSt,+n-v+a-p’ [spec, head_, compl]] | Reststack],
[[[Range,FWord, ‘+n-v+a-p’,sgl,Second] | Rest],NS, NB):-

attach([[xmax, St, "+n-v+a-p’,[spec, head_, compl] | Reststack],

[[[Range,FWord, ‘+n-v+a-p’,sgl,Second] | Rest],NS, NB).

grammar_rule(attach_noun, [[xmax,St,"+n-v+a-p’ [spec, head_, compl]] | Reststack],
[[[Dom,[FWord, "+n-v+a-p’,sgl],Second] | Rest],NS, NB):-

attach([[xmax, St, “+n-v+a-p’ [spec, head_, comp]] | Reststack],

[[[Dom,[FWord, "+n-v+a-p’,sgl],Second] | Rest],NS, NB).

grammar_rule(attach_noun, [[xmax, +n-v+a-p’ [spec_, head, comp]] | Reststack],
[[[[Dom,F,R,S],’+n-v+a-p’,sgl,[SWord, +n-v+a+p’ ref]] | Rest],NS, NB):-
attach([[xmax,’+n-v-+a-p’,[spec_, head, comp]] | Reststack],
[[[[Dom,F,R,S],+n-v+a-p’,sgl,[SWord, +n-v+a+p’ ref]] | Rest], NS, NB).

grammar_rule(attach_noun, [[xmax,’+n-v+a-p’,[spec, head_, comp]] | Reststack],
[[[FWord, "+n-v+a-p’,sgl,Second] | Rest],NS, NB):-
attach([[xmax,’+n-v+a-p’ [spec, head_, comp]] | Reststack],

[[[FWord, "+n-v+a-p’,sg],Second] | Rest], NS, NB).

grammar_rule(attach_noun, [[xmax,St,+n-v+a-p’,[spec, head_, comp]] | Reststack],
[[[FWord, ’+n-v+a-p’,pl],Second] | Rest], NS, NB):-

attach([[xmax, St, “+n-v+a-p’,[spec, head_, comp]] | Reststack],

[[[FWord, "+n-v+a-p’,pll,Second] | Rest] NS, NB).

grammar_rule(attach_noun, [[xmax,St,’+n-v+a-p’,[spec, head_, comp]] | Reststack],
[[[Range,FWord, '+n-v+a-p’,pl],Second] | Rest] NS, NB):-

attach([[xmax, St, “+n-v+a-p’,|spec, head_, comp]] | Reststack],

[[[Range,FWord, ‘+n-v+a-p’,pll,Second] | Rest],NS, NB).

grammar_rule(attach_noun, [[xmax,’+n-v+a-p’ [spec, head_, comp]] | Reststack],
[[[FWord, ‘+n-v+a-p’,pl],Second] | Rest] NS, NB):-
attach([[xmax,’+n-v+a-p’ [spec, head_, comp]] | Reststack],

[[[FWord, ‘+n-v+a-p’,pl],Second] | Rest] NS, NB).

grammar_rule(attach_num, [[xmax,St, " +n-v+a-p’[spec, head, comp_l] | Reststack],
[[[FWord, "+n-v+a-p’,num],Second] | Rest],NS, NB):-

attach([[xmax, St, ‘+n-v+a-p’,Ispec, head, comp_|] | Reststack],

[[[FWord, “+n-v+a-p’,num],Second| | Rest],NS, NB).

grammar_rule(attach_num, [[xmax,'+n-v+a-p’,[spec, head_, compl] I Reststack],

[[IFWord, "+n-v+a-p’,num],Second] | Rest],NS, NB):-
attach([[xmax,’ +n-v+a-p’ [spec, head_, comp]] | Reststack],

292

[[[FWord, "+n-v+a-p’,num] Second] | Rest],NS, NB).

grammar_rule(attach_num, [[xmax,St,"+n-v+a-p’ [spec_, head, comp]] | Reststack]
[[[FWord, *+n-v+a-p’,num],Second] | Rest],NS, NB):-
attach([[xmax,St,’+n-v+a-p’,[spec_, head, comp]] | Reststack],

[[[FWord, ‘+n-v+a-p’,num),Second] | Rest] NS, NB).

’

grammar_rule(attach_ref, I[xmax,St,’+n-v+a—p’,[spec, head_, comp]] | Reststack],
[[[FWord, ‘+n-v+a+p’,ref],Second] | Rest],NS, NB):-

attach([[xmax, St, "+n-v+a-p’,[spec, head_, comp]] | Reststack],

[[[FWord, ‘+n-v+a+p’,ref] Second] | Rest],NS, NB).

grammar_rule(attach_ref, [[xmax,’+n-v+a-p’ [spec_, head, comp]] | Reststack],
[[[FWord, ‘+n-v+a+p’,ref] Second] | Rest],NS, NB):-
attach([[xmax,’+n-v+a-p’,[spec_, head, compl]] | Reststack],

[[[FWord, "+n-v+a+p’,ref],Second] | Rest],NS, NB).

grammar_rule(attach_conj, [[xmax,St,’+n-v+a-p’,[spec_, head, compl]|Reststack], [[[FWord,
"+n-v+a-p’,conjl,[SWord, +n-v+a-p’ SP]] | Rest],NS, NB):- attach([[xmax, St, "+n-v+a-p’,[spec_,
head, comp]] | Reststack], [[[FWord, "+n-v+a-p’,conjl [SWord, +n-v+a-p’,SP]] | Rest],NS, NB).

grammar_rule(attach_conj, [[xmax,St,’+n-v+a-p’ [spec, head_, comp]] | Reststack], [[[FWord,
“+n-v+a-p’,conjl,[SWord,’ +n-v+a-p’ SP]] I Rest],NS, NB):- attach([[xmax, St, “+n-v+a-p’ [spec,
head_, compl]] | Reststack], [[[FWord, ‘+n-v+a-p’,conjl[SWord, +n-v+a-p’,SP1] | Rest],NS, NB).

grammar_rule(attach_conj, [[xmax,St,+n-v+a-p’,[spec, head_, comp]]|Reststack], [[[FWord,
‘+n-v+a-p’,conjl,[Range,SWord, +n-v+a-p’,SP]] | Rest] NS, NB):- attach([[xmax, St,
"+n-v+a-p’,[spec, head_, comp]]lReststack], [[[FWord,
"+n-v+a-p’,conjl,[Range,SWord, +n-v+a-p’,SP]] | Rest],NS, NB).

grammar_rule(attach_conj, [[xmax,St,’+n-v+a-p’ [spec, head_, comp]] | Reststack], [[[FWord,
‘+n-v+a-p’,conjl[SWord, +n-v+a+p’]] | Rest] NS, NB):- attach({[xmax, St, ‘+n-v+a-p’,[spec, head_,
compl] | Reststack], [[[FWord, ‘+n-v+a-p’,conjl [SWord, +n-v+a+p’]] | Rest] NS, NB).

grammar_rule(attach_conj, [[xmax,St,’+n-v+a-p’,[spec, head_, comp]] | Reststack], [[[FWord,
‘+n-v+a-p’,conjl[SWord, +n-v-a-p’]] | Rest],NS, NB):- attach([[xmax, St, ‘+n-v+a-p’,[spec, head_,
comp]] | Reststack], [[[FWord, '+n-v+a-p’,conjl[SWord, +n-v-a-p’]] | Rest],NS, NB).

grammar_rule(attach_conj, [[xmax,St,’-n+v-a+p’ [spec, head_, comp], Ty] | Reststack], [[[FWord,
‘+n-v+a-p’,conjl,[SWord,’-n+v-a+p’,PN,T]] | Rest] NS, NB):- attach([[xmax, St, "-n+v-a+p’ [spec,
head_, comp],Ty] | Reststack], [[[FWord, +n-v+a-p’,conjl,[SWord, -n+v-a+p’,PN,T]] | Rest], NS,
NB).

grammar_rule(attach_prep, [[xmax, "-n-v’, [spec, head_, comp]] | Reststack],
[[[FWord, "-n-v’LIW, "-n-v’]] | Rest],NS, NB):-

attach([[xmax,’-n-v’,[spec, head_, comp]] | Reststack],

[[[FWord,’ -n-v'LIW, "-n-v’]] | Rest],NS, NB).

grammar_rule(attach_prep, [[xmax, "-n-v’, [spec, head_, comp]] | Reststack],
[[[FWord, "n-v’],[W, "+n-v+a-p’,SP]] | Rest],NS, NB):-
attach([[xmax,’-n-v’,[spec, head_, comp]] | Reststack],

[[[FWord,’-n-v’],IW, “+n-v+a-p’ SP]] I Rest],NS, NB).

grammar_rule(attach_prep, [[xmax,S, ‘-n-v’,[spec, head_, comp]] | Reststack],
[[[FWord, "-n-v'], [W,’+n-v+a-p’ SP]] | Rest],NS, NB):-
attach([[xmax,S,"-n-v’,[spec, head_,comp]] | Reststack],

[[[FWord, "-n-v'LIW, "+n-v+a-p’ SP]] | Rest] NS,NB).

293

grammar_rule(attach_prep, [[xmax, "-n-v’, [spec, head_, comp]] | Reststack],
[[[FWord, "-n-v’],[W, ‘+n-v+a-p’,pn]] [Rest],NS, NB):-
attach([[xmax,’-n-v’,[spec, head_, comp]] | Reststack],

[[[FWord,"-n-v’],[W, “+n-v+a-p’,pn]] | Rest],NS, NB).

grammar_rule(attach_prep, [[xmax,S, "-n-v’ [spec, head_, comp]] | Reststack],
"n-v'], [W, "+n-v+a-p’,pn]] | Rest] NS, NB):-
attach([[xmax,S,"-n-v’,[spec, head_comp]] | Reststack],

[[[FWord, "-n-v'LIW, "+n-v+a-p’,pn]] | Rest],NS,NB).

grammar_rule(attach_prep, [[xmax, "-n-v’, [spec, head_, comp]] | Reststack],
[([[FWord, "-n-v’], [W, "+n-v-a-p’]] | Rest],NS, NB):-
attach([[xmax,’-n-v’,[spec, head_, comp]] | Reststack],

[[TFWord,’ -n-v'],IW, “+n-v-a-p’]] | Rest],NS, NB).

grammar_rule(attach_prep, [[xmax,S, "-n-v’,[spec, head_, comp]] | Reststack],
[[[FWord, "-n-v’], [W, "+n-v-a-p’]] | Rest],NS, NB):-
attach([[xmax,S,’-n-v’,[spec, head_comp]] | Reststack],

[[[FWord, "-n-v’],[W, "+n-v-a-p’]] | Rest],NS,NB).

grammar_rule(attach_prep, [[xmax, "-n-v’, [spec, head_, comp]] | Reststack],
[[[FWord, "-n-v’], [W, “+n-v+a+p’,PD]] | Rest] NS, NB):-
attach([[xmax,’-n-v’,[spec, head_, compl]] | Reststack],

[[[FWord,"-n-v’],IW," +n-v+a+p’,PD]] | Rest],NS, NB).

grammar_rule(attach_prep, [[xmax,S, -n-v’,[spec, head_, compl]] | Reststack],
[[[FWord, "-n-v’], [W, “+n-v+a+p’,PD]] | Rest],NS, NB):-
attach([[xmax,S,-n-v’,[spec, head_,comp]] | Reststack],

[[[FWord,-n-v’],[W, “+n-v+a+p’,PD]] | Rest] NS,NB).

grammar_rule(attach_prep, [[xmax, "-n-v’, [spec, head_, comp]] | Reststack],
[[[FWord, "-n-v’], [W, “+n-v+a+p’l] | Rest],NS, NB):-
attach([[xmax,’-n-v’,[spec, head_, comp]] | Reststack],

[[[FWord, -n-v'LIW, +n-v+a+p’]] | Rest],NS, NB).

grammar_rule(attach_prep, [[xmax,S, "-n-v’,[spec, head_, comp]] | Reststack],
[[[FWord, '-n-v’], [W, "+n-v+a+p’]] | Rest], NS, NB):-
attach([[xmax,S,"-n-v’,[spec, head_comp]] | Reststack],

[[[FWord,-n-v’],[W, "+n-v+a+p’]] | Rest], NS,NB).

grammar_rule(attach_vp,[[xmax,S,'-n-v+a+p’ [spec,head,comp_]] | Reststack],
[[[xmax,51,-n+v-a+p’], Second] | Rest],NS, NB):-
attach([[xmax,S,-n-v+a+p’ [spec, head, comp_]] | Reststack],

[[[xmax, S1,"-n+v-a+p’], Second] | Rest],NS, NB).

grammar_rule(attach_adverb, [[xmax, "-n+V’, [spec_head, compl] | Reststack],
[[[FWord, "-n+v’]ISWord, '-n+v’,PN,Tense]] | Rest],NS, NB):-

attach([[xmax, "-n+v’, [spec_, head, comp]] | Reststack],

[[[FWord, -n+v’],[SWord, -n+v’, PN, Tense]] | Rest], NS,NB).

grammar_rule(attach_verb, [[xmax, -n+v-a+p’, [spec, head_, comp]] | Reststack],

[[[FWord, ‘-n+V’, PN, Tense],Second] | Rest] NS, NB):-
attach({[xmax, "-n+v-a+p’, [spec, head_, comp]] | Reststack],
[[[FWord, ‘-n+Vv’, PN, Tense],Second] | Rest],NS,NB).

grammar_rule(attach_verb, [[xmax,St,’-n+v-a+p’[spec, head_, comp],Ty]! Reststack],

[[[FWord, "-n+v-a+p’, PN, Tense],Second] | Rest],NS, NB):-
attach([[xmax, St, "-n+v-a+p’, [spec, head_, comp], Ty] | Reststack],

294

[[[FWord,

[[[FWord, ‘“n+v-a+p’, PN, Tense] Second] | Rest],NS,NB).

grammar_rule(attach_verb, [[xmax,’-n+v’, [spec, head_, compl]] | Reststack],
[[[FWord, "-n+v’, PN, Tense],Second] | Rest], NS, NB):-
attach([[xmax,’-n+v’ [spec, head_, comp]] | Reststack],

[[[FWord, -n+v’,PN,Tense],Second] | Rest],NS, NB).

grammar_rule(attach_verb, [[xmax,St,’-n+v-a+p‘,[5pec, head_, comp]] | Reststack]
[[(FWord, “-n+v’, PN, Tense],Second] | Rest], NS, NB):- '
attach({[xmax,St,’-n+v-a+p’,[spec, head_, comp]] | Reststack],

[[[FWord, "-n+v’,PN,Tense],Second] | Rest],NS, NB).

grammar_rule(attach_verb,[[xmax,’-n+v-a+p’ [spec, head_, comp]] | Reststack],
[[[FWord, -n+v-a+p’, PN, Tense],Second] | Rest],NS, NB):-
attach([[xmax,’-n+v-a+p’ [spec, head_, comp]] | Reststack],
[[[FWord,’-n+v-a+p’,PN,Tense],Second] | Rest],NS,NB).

grammar_rule{attach_relative_clause,[[xmax,S,’+n~v+a-p‘,[spec, head, comp_]]
| Reststack],

[[[xmax,51,-n-v+a+p’],Second] | Rest],NS, NB):-
attach([[xmax,S,’+n-v+a-p’,[spec,head,comp_]] | Reststack],
[[[xmax,51,’-n-v+a+p’],Second] | Rest], NS,NB).

grammar_rule(attach_object,[[xmax, St, "-n+V’, [spec, head, comp_]] | Reststack],
[[[xmax,E,’+n-v+a-p’],Second] | Rest], NS, NB):-

attach([[xmax, St, "-n+v’, [spec, head, comp_]] | Reststack],

[[[xmax, E, "+n-v+a-p’],Second] | Rest],NS, NB).

grammar_rule(attach_object,[[xmax,St,'-n+v-a+p’,[spec,head,comp_], Tyl
| Reststack],

[[[xmax,E,’+n-v+a-p’],Second] | Rest] NS, NB):-

attach([[xmax, St, -n+v-a+p’, [spec, head, comp_], Ty] | Reststack],
[[[xmax,E, "+n-v+a-p’],.Second] | Rest], NS, NB).

gran'\mar_rule(attachaobject,[[xmax,St,’-n+v-a+p',[spec,hcad,comp_]l
| Reststack],

[[[xmax,E,’+n-v+a-p’],Second] | Rest],NS, NB):-

attach([[xmax, St, "-n+v-a+p’, [spec, head, comp_]] | Reststack],
([[xmax,E, "+n-v+a-p’],Second] | Rest] NS, NB).

grammar_rule(attach_object,[[xmax, St, -n+v’, [spec, head, comp_l] | Reststack],
[[[xmax,E, +n-v+a-p’,pn],Second] | Rest] NS, NB):-

attach([[xmax, St, "-n+v’, [spec, head, comp_]] | Reststack],

[[[xmax, E, "+n-v+a-p’,pn],Second] | Rest],NS, NB).

grammar_rule(attach_object,|[xmax,St,"-n+v-a+p’,[spec,head,comp_],Ty]
| Reststack],

[[[xmax,E,+n-v+a-p’,pn],Second] | Rest],NS, NB):-

attach([[xmax, St, "-n+v-a+p’, [spec, head, comp_],Ty] | Reststack],
[[[xmax,E, "+n-v+a-p’,pn],Second] | Rest],NS, NB).

grammar_rule(attach_pp,[[xmax,S,’-n+v-a+p’ [spec, head,comp_],Ty] | Reststack],
[[[xmax, S1,-n-v’],Second] | Rest],NS,NB):-

attach([[xmax,S,"-n+v-a+p’ [spec,head,comp_], Ty] | Reststack],

[[[xmax, S1, "-n-v’],Second] | Rest], NS, NB).

grammarﬂrule(a ttach_pp,[[xmax,S, -n+v-a+p’ [spec, head,comp_]] Reststack],
[[[xmax, S1,/n-v'],Second] | Rest] NS,NB):-

205

attach([[xmax,S,’-n+v-a+p‘,{spec,head,comp_l] | Reststack],
[[[xmax, S1, "-n-v’] Second] | Rest], NS, NB).

grammar_rule(attach_pp,[[xmax,S, +n-v+a-p’ [spec, head,comp_]] | Reststack],
[[[xmax, S1,"-n-v’],Second] | Rest],NS,NB):-
attach([[xmax,S,‘+n-v+a-p‘,[5pec,head,comp_]] | Reststack],

[[[xmax, S1, "-n-v’],Second] | Rest], NS, NB).

grammar_rule(attach_pp,[[xmax,S, -n+v’,

[spec, head,comp_]] | Reststack],
[[[xmax,51,"-n-v’],Second] | Rest],NS NB):-
attach([[xmax,S,"-n+v’" [spec head,comp_]] | Reststack],
[[[xmax,S1,"-n-v’],Second] | Rest],NS, NB).

%grammar_rule(attach_pp,[[xmax,S,"-n+v-a+p’ [spec, head,comp_],Ty] | Reststack],
%ll[xmax,51,"-n-v+a+p’],Second] | Rest],NS, NB):-
%attach([[xmax,S,’-n+v-—a+p’,[sPec,head,compv],Ty] | Reststack],
%l[[[xmax,S1,"-n-v+a+p’],Second] | Rest], NS, NB).

grammar_rule(attach_pp_object,[[xmax,S,"-n-v' [spec,head,comp_]] | Reststack],
[[[xmax,S1,"+n-v+a-p’], Second] | Rest],NS,NB):-

attach([[xmax,S,"-n-v’,[spec, head, comp_]] | Reststack],
[[[xmax,51,'+n-v+a-p’],Second] | Rest],NS, NB).

grammar_rule(passive_be, [[xmax, '-n+v+a+p’[spec, head_, comp]]|Reststack],
[[[_word,’-n+v’L,IWords,’-n+v-a+p’,'+", T]] | Rest] Newstack, Newbuffer):-
attach([[xmax, "-n+v+a+p’ [spec, head_, compl] | Reststack],

[[[_word, "-n+v’], [Words, "-n+v-a+p’, '+, T|| | Rest] Newstack,

Newbuffer).

/*This rule, called by grammar_rule, attaches item form first buffer cell to the stack.*/

attach([[xmax, Featuresl, Template] | Reststack],

[[[[_Lword,’ -n-v+a+p’l,_F1], Second] | [XIL]],

[[xmax, [_word,’-n-v+a+p’], Featuresl, Template] | Reststack],
[[Second, X]IL}).

attach([[xmax, Featuresl, Template] | Reststack],
[[First, Second] [[X | L]],

[[xmax, First, Featuresl, Template] | Reststack],
[(Second, X]IL])).

attach([[xmax, Featuresl, Template] | Reststack],
[[First, Second]],

[[xmax, First, Featuresl, Template] | Reststack],
[[Second, [1]]).

attach([[xmax, Structure, Features, Template] | Reststack],

[[First, Second] | [XIL]],
[[xmax, [Structure,First], Features, Template] | Reststack],

[[Second, X]IL]).

attach([[xmax, Structure, Features, Template] | Reststack],
[[First, Second]],

[[xmax, [Structure,First], Features, Template] | Reststack],
[[Second, [11D.

attach([[xmax, Structure, Features, Template, Type] | Reststack],

296

[[First, Second] I[XIL]],

[[xmax, [Structure,First], Features, Template, Type] | Reststack],
[[Second, X] IL)).

attach([[xmax, Structure, Features, Template, Type] | Reststack],
[[First, Second] I L],

[[xmax, [Structure,First],Features, Template, Type] | Reststack],
[[Second, L])).

not_attach([S | Reststack],[[_First, Second] | [X L]},
[S [Reststack],
[[Second, X]IL}).

not_attach([S | Reststack],
[[_First, Second] I []],

[S | Reststack],

[[Second, [1]).

The examples below are taken from the Rolls-Royce aircraft maintenance manual. The
parsers MParserSub and LParserSub can parse all these noun-phrases.

Equipment and Material Standard equipment

Consumable materials relevant circuit breakers

OMat 4/23 Anti-seize compound, pure nickel special

Overhaul Materials Manual (OMat) Special tools

Expendable parts General

these TASKS a part in a different Chapter/Section/Subject
the Fig./item numbers the appropriate Chapter/Section/Subject.
the engine in flight position the positional relationship

Detailed radial locations Referenced Procedures

cowl doors Torque tightening technique connection of electrical plugs the igniter plugs
the Igniter Plugs item numbers in parentheses in the text
this TASK the Removal of the Igniter Plugs

the low tension electrical connector the high tension leads or igniter plugs
the H.E. ignition unit one minute

any stored energy electrical supply to ignition system.
DO-NOT-OPERATE identifiers. the high energy ignition unit.

access panel or panels the right of the drains tank on the by-pass duct
the access panel number 4 combustion liner.

fuel cooled oil cooler (F.C.0.C.) number 8 combustion liner,

the Associated Parts the high energy (H.E.) ignition leads (1).
the igniter plugs (2) number 4 and/or number 8 combustion liners.
blanks apertures a suitable blank

the lead end of the igniter. diffuser case.

strong spotlightRR289200 Protective workmat 1 off
the L.P. compressor and L.P. turbine assembly

electrical supply L.P. compressor and L.P. turbine blades
fingers and hands metal bars or similar equipment

the L.P. compressor or turbine the vanes

the front of the engine the L.P. turbine at the rear of the engine.

the L.P. wurbine blades impact damage, cracks or metal deposits.

the rear of the engine light impact damage to the turbine blade airfoil
the engine light impact damage to the turbine blade shroud
the metal turbine blades which are cracked or tom

OMat 1031 Lubricating oil turbine blades which have a segment missing.
turbine blades with metal deposits. the thrust reverse system.

OMat 238 Lockwire spacers and distance pieces.

the removal of the T26 thermal unit the T26 thermal unit

297

the electrical connector (2)

the low speed (L.S.) gearbox.
the bleed valve control rod (7).
the thermocouple/thermophial probe
the 4 off bolts

the T26 thermal unit (6)

the bolts

the blanking plate

the regulator

the intermediate case

the thermal unit mounting face
OMat 1031 lubricating ol

the probe a new gasket (6A)
the T26 thermal unit (6)

the thermocouple/thermophial tube
the bleed valve control rod (7).
a new gasket (1A).

the low speed gearbox

the electrical connector (2)
clean receptacle

fluid container

fine mesh filter

OMat 1252 Kraft paper tape
OMat 101 Kerosine

OMat 1020 Liquid paraffin
the air intake

the nose cone fairing (3)

the temporary marker
KU37366 socket wrench 1 off
the three bolts (1) washers (2)
the numbered locations

the rotor spinner assembly

the nine bolt locations

the airflow control-r.p.m. signal transmitter
the bolts (8) and (9)the gearbox,

the quillshaft

a work surface.

the correct preservation procedure
all orifices

ingress of foreign matter

the signal pressure outlet

the H.P. fuel inlet.

the L.P. r.p.m. indicator generator

the gasket.the 1.G.V. control rod (8)

the securing clips (4) and (5).

the unit

airflow control regulator and actuator

the T26 thermocouple/thermophial assembly (3)
the T26 assembly,

the thermal unit mounting face

a suitable blank

the installation of the T26 thermal unit

the T26 thermocouple/thermophial probe (3)
bolts, spreader washers and spring washers
the thermal unit joint face the regulator

4 off bolts

the clips (4) and (5)

the I.G.V. control rod (8)

the L.P. r.p.m. indicator generator (1)

bolts, spring washers and flat washers
the L.P. r.p.m. indicator generator;
minimum capacity 4 Litres (1 gallon)
OMat 1003 Mineral oil (fuel system inhibitor)
OMat 1047A Preservation compound

OMat 1238 Polythene bag

OMat 1011 Engine lubricating oil (synthetic)
OMat 262 felt or fibre tip temporary marker

a mark

the rotor spinner assembly (7)

the three bolt locations

a suitable ratchet handle,

the bolts and washers

a piece of cardboard.

the fuel cut off front ring (8)

the spinner assembly.

the transmitter

the seal ring

a maximum of 48 hours

all fuel

OMat 1003 mineral oil (fuel system inhibitor)
free flow

an approved tapered blanking plug

the quillshaft
a continuous flow of inhibitor
an approved blank.

the signal pressure outlet
several times.
the L.P. fuel return outlet

all the internal parts.

a dry suface

new blanks

the bare patches

OMat 1047A preservation compound
OMat 1252 kraft paper tape
transit box

strong, dry and undamaged box
the package document

OMat 1238 polythene bag

a new seal ring (9A)

the seal ring.

plain washers and spring washers.
the fuel drain tube connector (7)

the exterior of the transmitter clean and dry
30 minutes

a suitable container for storage

the housing and quillshaft

the approved quillshaft transportation cover
OMat 1238 polythene bag.

between padded, wooden, clamping pieces
the relevant storage details

the airflow control r.p.m. signal transmitter
the H.P. r.p.m. signal transmitter

OMat 1011 engine lubricating oil

the bolts (8) and (9)

a new gasket (7A)

the 2 bolts

298

the drain tube.

the H.P. r.p.m. signal tube (10).
OMat 1020 liquid paraffin B.P.
the L.P. fuel return tube (11)

a new seal ring (12A)

the connection (12)

new seal rings (1A) and (1B)
new seal rings (4A)

new seal rings (5A)

the H.P. fuel pump

the transfer tube (4)

bonding leads

the Tay engine

the period of self-bleeding

an increase in vibration

clean OMat 1011 engine oil
power plant

air offtake blanks.

the unit

the by-pass duct

the adjusting spacer (2) special tool GU28208
special spanner 1 off

a new seal ring (10A)

bolts, spring washers and flat washers
new seal rings (11A) and (11B)
liquid paraffin

the connector (12)

the end of tube (11)

the H.P. shut-off valve elbow connector
the H.P. fuel transfer 1ube (4)
the H.P. fuel tube (5)

bolts, spring washers and a flat washer

the clip (6)

the fuel system

a continuous bleed system

a facility for manual bleeding

all threads and abutment faces

fitting vee band coupling clamps

the 7th and 12th stage compressor air ducts
the 7th and 12th stage air offtake blanks

the 7th and 12th stage air offtakes

the 12th stage air offtake outlet duct assembly

the seal ring (3)

the 12th stage air offtake outlet duct assembly (1)

the lock ring

a new lock ring

the locking plate (1)

OMat 402 petroleum jelly

the Corrujoint gasket (4)

the locating ring face.

the dogs

the cover locking plate

the blanking cover assembly

the outlet connector assembly bore
the locating ring

a vee-clamp assembly (5)

a new seal ring (3)

the by-pass duct.

the 12th stage inner cover assembly
the seal ring (2).

the 7th stage manifold cover (5)
the 7th stage duct seat assembly (1).
the 7th stage manifold cover

special tool AB12345 extractor 1 off
the 12th stage air offtake seal carrier assembly (4).
the 12th stage air offtake seal carrier assembly

the 12th stage offtake blanking cover
the 12th stage offtake blanking cover (2)

the 12th stage outlet cover locating ring (3)
the air outlet duct threaded connector.
special tool AB23456 torque spanner 1 off
the air outlet duct locating ring

the blanking cover assembly

the 12th stage air offtake sealing cover

the 12th stage sealing cover (4) seal groove

the 12th stage inner cover assembly (2)

the 12th stage sealing cover
the 7th stage air offtake outlet duct assembly
the 7th stage air offtake outlet duct assembly (1)

special tool GU28208 special spanner 1 off,

special tool AB12345 extractor 1 off
the 7th stage air offtake seal carrier assembly (3).

the 7th stage sealing cover nuts (1), spreader washer (5) and bolts (6

the sealing cover (4)

the inner cover assembly (2)

the inner cover assembly.

the sealing cover

the 7th stage inner cover assembly
the 7th stage air offtake sealing cover
the sealing cover (4)

the seal ring (3).

the vee-clamp assembly (5)

the blanking cover assembly

12th stage air offtake sealing cover
the air outlet duct locating ring.
the locking plate (1)

the blanking cover (2).

the Corrujoint gasket (4).

the 7th stage outlet connector retainer (4)

the 7th stage outlet connector assembly (5)
the outlet adjusting spacer (6)

the 7th stage air offtake blanking cover

the 7th stage outlet spherical seat (7).

the stage 7 sealing cover (4) seal groove

the 7th stage inner cover assembly (2)

nuts (1),spreader washer (5) and bolts (6)

the 7th stage air offtake sealing cover

the bolts (6).spreader washers (5) and nuts (1)
the 7th stage air offtake blanking cover (5)
the 7th stage air offtake blanking cover

the bolts (6).spreader washers (5) and nuts (1)
the 12th stage offtake blanking cover

special tool AB23456 torque spanner 1 off

299

the 12th stage outlet securing ring

the adjusting spacer (6)

the 7th stage outlet spherical seat (7)

the 7th stage outlet spherical seat

the adjusting spacer

the spherical connection

the outlet spherical seat

the outlet connector retainer self-locking nuts
the 7th stage air offtake seal carrier

a new seal ring (2)

the 12th stage outlet locating ring (3)

the air outlet duct threaded connector (4).
the 7th stage offtake outlet duct assembly
OMat 4/47 jointing compound

the 7th stage outlet connector assembly
the 7th stage outlet connector retainer (4)
the outlet connector assembly (5)

the 7th stage air offtake seal carrier seal groove
the 7th stage air offtake seal carrier (3)

the 7th stage outlet connector. the 7th stage air outlet duct (1) threads

the 7th stage air outlet duct special tool GU28208 special spanner 1 off

the lock ring (5) the 7th stage air offtake outlet connector assembly

a new seal ring (2) 12th stage air offtake seal carrier seal groove

the 12th stage outlet connector the 12th stage air offtake seal carrier (4)

the adjusting washer the bottom of the 12th stage air offtake seal carrier
the 7th and 12th stage air offtakes the 12th stage air offtake outlet connector assembly

the procedure for the removal and installation of the igniter plugs
numbers in a clockwise direction that start from an engine top position when you look from the rear unless
otherwise told

the electrical discharge of the high energy (H.E.) ignition unit

the procedure for the inspection of the stage 3 L.P.turbineblades.

the examination of the stage 3 low pressure (L.P.) nozzle guide vanes
the procedure for the removal and installation of the T26 thermal unit.
all flexible seal rings, gaskets, keywashers and split pins.

for identification, lubrication and installation of flexible seal rings

the bi-hex head bolts that attach the L.p. r.p.m. indicator generator (1)
the regulator and the flange of the intermediate compressor case

the flexible section of the T26 thermocouple/thermophial probe

a test of the high pressure (H.P.) compressor control system

the procedures for the removal of the L.P. compressor rotor blade(s)

the installation of the airflow control r.p.m. signal transmitter

its location on the rear face of the high speed (H.S.) gearbox

a test of the high pressure (H.P.) compressor control system

the 12th stage air offtake outlet connector assembly lock ring

bolts (6),spring washers (7).and spreader washers (8).

the bolts and self locking nuts that attach the 7th stage connector assembly (3).

the 7th stage air offtake outlet connector assembly lock ringstud retaining rings (2),

studs (3).retaining screws (4),spreader washers (6) and nuts (7)

the instructions for the removal of the 7th and 12th stage air offtake blanks the installation of the 7th and
12th stage compressor air ducts

the nuts (7),spreader washers (6).retaining screws (4) and stud retaining rings (2) the bolts (6),
spring washers (7) and spreader washers (8)

These example parses have been parsed by MparserSub.

| ?- start (NP).

| : equipment and material.
parse took 0.012 sec.

memory (total) 338,736 bytes .
program space 207,672 bytes: 207,672 1n use 0 free
global space 63,444 bytes: 21,436 in use 42,008
free
global stack 21,372 bytes

300

trail 64 bytes
local stack 65,508 bytes: 848 in use 64,660

free
0.000 sec. for O program, 0 global and ? local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.316 sec. runtime. 0 pagefaults.

NP=

[xmax,[[{at;ach_noun,{equipment,’+n—v+a—p',sg]],
[attach_conj,[and,'+n~v+a~p',conj]]],
[attach_noun,[material,'+n—v+a~p’,sg]]],'+n—v+a-p'}

| ?- start (NP).

| : standard equipment.
parse took 0.016 sec.

memory (total) 338,736 bytes
program space 207,672 bytes: 207,672 in use 0 free
global space 63,444 bytes: 20,164 in use 43,280
free
global stack 20,164 bytes
trail 0 bytes
local stack 65,508 bytes: 324 1in use 65,184
free

0.000 sec. for 0 program, 0 global and ? local space

overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.

0.266 sec. runtime. 0 pagefaults.

NP=

[xmax, [attach_noun, [[standard, equipment], ‘+n-v+a-p’,sqgl],
'+n-v+a-p’]

| ?- start (NP).

| = consumable materials.
parse took 0.013 sec.

memory (total) 338,736 bytes
program space 207,672 bytes: 207,672 in use 0 free
global space 63,444 bytes: 20,448 in use 42,996
free
global stack 20,448 bytes
trail 0 bytes
local stack 65,508 bytes: 324 in use 65,18?
ree

0.000 sec. for 0 program, 0 global and ? local space

overflows. . _
0.000 sec. for 0 garbage collections which collected 0 bytes.

0.233 sec. runtime. 0 pagefaults.
NP=

[xmax,[attach_noun,[[Consumable,materials],'+n—v+a—p’,pl]],
'yn-v+a-p’J

| ?- start (NP).

301

| : OMat4/23 anti-seize compound, pure nickel special.
parse took 0.016 sec.

memory (total) 338,736 bytes
program space 207,672 bytes: 207,672 in use 0 free
global space 63,444 bytes: 21,976 in use 41,468
free
global stack 21,904 bytes
trail 72 bytes
local stack 65,508 bytes: 936 in use 64,572
free

0.000 sec. for 0 program, 0 global and ? local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.316 sec. runtime. 0 pagefaults.

NP=

[xmax, [[[attach_ref, ['OMat4/23', '+n-v+a+p’,ref]],
[attach_noun, [[‘anti-seize’, compound], ‘+n-v+a-p’,sqgll],

lattach_noun, [[pure,nickel, special], '+n-v+a-p’,sgll), ' +n-v+
a-p’]

| ?- start (NP).

| : the procedure for the removal and installation of the

igniter plugs.
parse took 0.033 sec.

memory (total) 338,744 bytes
program space 207,680 bytes: 207,680 in use 0 free
global space 63,444 bytes: 29,420 in use 34,024
free
global stack 29,256 bytes
trail 164 bytes
local stack 65,508 bytes: 2,224 1in use 63,284
free

0.000 sec. for 0 program, 0 global and ? local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.583 sec. runtime. 0 pagefaults.

NP=

[xmax,[[[attach_det,[the,'+n—v—a~p’]],[attach_noun,[procedu
re, '+n-v+a-p’',sglll,
[attach_pp,{xmax,[[attachmprep,{for,’—n—v’]],
[attach_pp_object,[xmax,[[[[[attachﬁdet,[the,’+n—vfa—p']],
[attach_noun, [removal, ‘+n-v+a-p‘,sgl]], [attach_conj, [and, "+
n - % 4+ a =~ '@ *® , e w wmw g I | | 3
[attach_noun,[installation,’+n—v+a—p',sg}]],
[attach_pp, [xmax, [[attach_prep, [of,'-n-v']],
[attach_pp_object,[xmax,[[attach_det,[the,'+n—v—a—p‘]],
[attach_noun, [[domain (for),
[igniter, '+n-v+a-p’,sg],range(for), ,
[plugs,'+n—v+a-p’,pl]],’+n—v+a—p‘,pl]]],’+n—v+a-p']]], -n-v
‘111, '+n-v+a-p‘1l], *-n-v’]]}],’+n-v+a-p’]

| ?- start (NP).

| - item numbers in parentheses in the text.
parse took 0.033 sec.

302

memory (total) 338,764 bytes
program space 207,700 bytes: 207,700 in use 0 free

global space 63,444 bytes: 26,836 in use 36,608
free
global stack 26,712 bytes
trail 124 bytes
local stack 65,508 bytes: 1,612 in use 63,896
free

0.000 sec. for 0 program, 0 global and ? local space
overflows.
0.000 sec. for 0 garbage collections which collected 0 bytes.
0.483 sec. runtime. 0 pagefaults.
NP=

(xmax, [(attach_noun, [(domain (obj),

[item, '+n-v+a-p’, sg], range (obj),

[numbers, '+n-v+a-p’,pll], ‘+n-v+a-p’,plll,

[attach_pp, [xmax, [[attach_prep, [in, '-n-v‘]], [attach_pp_obje
ct, [xmax, [[attach_noun, [parentheses,’'+n-v+a-p’,pl]l],
[attach_pp, [xmax, [[attach_prep, [in, '-n-v’1]],
[attach_pp_object, [xmax, [[attach_det, [the, ‘+n-v-a-p‘]],
[attach_noun, [text, ‘+n-v+a-p’,sgll], '+n-v+a-p‘J]1], ‘-n-v’11]1],

‘+n-v+a-p‘J]],'-n-v’]]], ‘+n-v+a-p’]

| ?- start (NP).

| :+ referenced procedures.
parse took 0.013 sec.

memory (total) 338,752 bytes
program space 207,688 bytes: 207,688 in use 0 free
global space 63,444 bytes: 20,488 in use 42,956
free
global stack 20,488 bytes
trail 0 bytes
local stack 65,508 bytes: 324 in use 65,184
free

0.000 sec. for 0 program, 0 global and ? local space

overflows.
0.000 sec. for 0 garbage collections which collected 0 bytes.

0.300 sec. runtime. 0 pagefaults.

NP=
[xmax,[attach_noun,[[referenced,procedures],'+n—v+a—p',pl]],

*#n-v+a-p’]
| ?- start(NP).

| - connection of electrical plugs.
parse took 0.017 sec.

memory (total) 338,744 bytes
program space 207,680 bytes: 207,680 in use 0 free
global space 63,444 bytes: 23,740 in use 39 ,g(}4
ree
global stack 23,652 bytes
% o= | 88 bytes
local stack 65,508 bytes: 1,244 in use 64,26?
ree

0.000 sec. for 0 program, 0 global and °? local space
overflows.

303

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.333 sec. runtime. 0 pagefaults.

NP=

[xmax,[[attach_noun,[connection,'+n—v+a—p',sg]],
[attach_pp,[xmax,[{attach_prep,[of,’—n—v']},[attach_pp_obje
ct, [xmax, [attach_noun, [[domain (mod),
[electrical,'+n—v+a+p’],range(mod),
[plugs,’+n-v+a—p',pl]],'+n—v+a—p‘,pl]],'+n—v+a—p']]],‘-n—v’
111, "+n-v+a-p’]

| ?- start (NP).

| : the removal of igniter plugs.
parse took 0.017 sec.

memory (total) 338,744 bytes
program space 207,680 bytes: 207,680 in use 0 free
global space 63,444 bytes: 24,196 in use 39,704
free
global stack 24,104 bytes
trail 92 bytes
local stack 65,508 bytes: 1,336 in use 64,172
free

0.000 sec. for 0 program, 0 global and ? 1local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.400 sec. runtime. 0 pagefaults.

NP=

[xmax, [[[attach_det, [the, '+n-v-a-p’]], [attach_noun, [removal
p 2 4+ m = ¥ 48 =p " ;39111 , _
[attach_pp, [xmax, [[attach_prep, [of, '-n-v’]], [attach_pp_obje
c o 3 [X m a >4

[attach_noun, [[domain (for), [igniter, '+n-v+a-p’,sg],range(fo
X))

[plugs, ‘+n-v+a-p’,pl]l], '+n-v+a-p’,pll], ‘+n-v+a-p‘1]l], ' -n-v’
111, '+n-v+a-p’]

| ?- start (NP).
| . the electrical discharge of the high energy (HE) ignition

unit .
parse took 0.033 sec.

memory (total) 338,736 bytes _
program space 207,672 bytes: 207,672 in use 0 free
global space 63,444 bytes: 26,592 1in use 36, ?52
ree
global stack 26,436 bytes
trail 156 Dbytes
local stack 65,508 bytes: 2,124 in use 63,38?
ree

0.000 sec. for 0 program, 0 global and ? local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.566 sec. runtime. 0 pagefaults.

Ni;xrna><, [[[attach_det, [the, '+n-v-a-p'll,
[attach_noun, [[domain (mod),

304

[electrical,'+n—v+a+p‘],range(mod),[discharge,'+n-v+a—p',sg
1] ¢ ®» £ 8 =% % a8 — o R - B« G N) [
[attach_pp,{xmax,([attach_prep,[of,'—n~v'}],
[attach_pp_ob]ect,[xmax,{[attach_det,[the,'+n—v-a—p']],
[attach_noun,[[[domaln(use),domain(mod),[high,'+n—v+a+p'],r
ange (mod) ,
[epergy{’+n—v+a~p',sg],[’(HE)’,’+n—v+a—p',sg],range(use),do
mgln(obj),

[1gpit10n,'+n—v+a—p',sg],range{obj),

[unit, ‘+n-v+a-p’,sgll], ‘+n-v+a-p’,sgll], ‘+n-v+¢a-p’]1], ' -n-v
‘11), "+n-v+a-p’]

| ?- start (NP).

| : the high tension leads or igniter plugs.
parse took 0.025 sec.

memory (total) 338,744 bytes
program space 207,680 bytes: 207,680 in use 0 free
global space 63,444 bytes: 24,088 in use 36, 852
free
global stack 23,964 bytes
trail 124 Dbytes
local stack 65,508 bytes: 1,664 in use 63,844
free

0.000 sec. for 0 program, 0 global and ? local space
overflows. .

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.450 sec. runtime. 0 pagefaults.

NP=

[(xmax, [[[[attach_det, [the, '+n-v-a-p’]], [attach_noun, [[[doma
in(use),

domain (mod), [high, ‘+n-v+a+p’], range(mod), [tension, ‘+n-v+a-p
’,sg],range(use),

[leads, '+n-v+a-p’,pllll]l, "+n-v+a-p’,plll], [attach_conj, [or,’
+ n - v +a-p°*®', comni3jl.1l1 .,

[attach_noun, [[domain(for), [igniter, ‘+n-v+a-p’,sgl,range(fo
r), [plugs, '+n-v+a-p’,pll], '+n-v+a-p’,plll], "+n-v+a-p’]

| ?- start (NP).

|: the low tension electrical connector.
parse took 0.017 sec.

memory (total) 338,736 bytes _
program space 207,672 bytes: 207,672 ln use 0 free
global space 63,444 bytes: 22,296 in use 36, ?5:2
ree
global stack 22,216 bytes
trail 80 bytes
local stack 65,508 bytes: 1,164 in use 63,34?
ree

0.000 sec. for 0 program, 0 global and ? local space

overflows. _ ‘
0.000 sec. for 0 garbage collections which collected 0 bytes.

0.383 sec. runtime. 0 pagefaults.
NP=

[xmax,[[attach_det,[the,’+n—v—a—p']],[attach_noun,[[[domain

305

(use),

domain (mOd) ' [].OW, £ +n—V+a+p'] , range (mod) ; [tenSiOH, r+n_v+a_p;
»8g), range (use),

domain(mod),[electrical,'+n—v+a+p'],range(mod),[connector,’
+n-v+a-p’,sglll,
‘+n-v+a-p’,sgll], '+n-v+a-p’]

| ?- start (NP).

| : relevant circuit breakers.
parse took 0.017 sec.

memory (total) 338,736 bytes
program space 207,672 bytes: 207,672 in use 0 free
global space 63,444 bytes: 24,188 in use 36,852
free
global stack 24,080 bytes
trail 108 bytes
local stack 65,508 bytes: 1,588 in use 63,920
free

0.000 sec. for 0 program, 0 global and ? 1local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.450 sec. runtime. 0 pagefaults.

NP=

[xmax, [attach_noun, [[domain (mod), [relevant, '+n-v+a+p’], rang
e (mod) ,

[[circuit, breakers], '+n-v+a-p’,pl]ll, '+n-v+a-p’,pll], '+n-v+a
_p"]

| ?- start (NP).

| : electrical supply to ignition system.
parse took 0.017 sec.

memory (total) 338,736 bytes
program space 207,672 bytes: 207,672 in use 0 free
global space 63,444 bytes: 24,188 in use 36,:§52
ree
global stack 24,080 bytes
trail 108 bytes
local stack 65,508 bytes: 1,588 in use 64,92?
ree

0.000 sec. for 0 program, 0 global and ? local space

overflows. . .
0.000 sec. for 0 garbage collections which collected 0 bytes.

0.450 sec. runtime. 0 pagefaults.

NP=
[xmax,[[attach_noun,[[domain(mod),[electrical,'+n—v+a+p‘],r
ange (mod) ,

[supply,’+n—v+a—p',sg]],’+n—v+a—p‘,sg]],

[attach_pp,[xmax,[[attach_prep,[to,'—n—v']l,[attachﬂpp_obje
c t [x m a x |,
[attach_noun,{[domain(for),[ignition,'+n—v+a—p',sg],range(f
or), ‘ '
[System,’+n—V+a—p',Sg]],’+n—v+a—p',sg}],'+n—v+a-p 6 [P 0 o
*11),'+n-v+a-p’]

306

| ?- start (NP).

| : the nine bolt locations.
parse took 0.017 sec.

memory (total) 338,736 bytes
program space 207,672 bytes: 207,672 in use 0 free
global space 63,444 bytes: 22,304 in use 36,852
free
glopal stack 22,224 bytes
trail 80 bytes
local stack 65,508 bytes: 1,188 in use 64,320
free

0.000 sec. for 0 program, 0 global and ? local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.300 sec. runtime. 0 pagefaults.

NP=

[xmax, [[[attach_det, [the, ‘+n-v-a-p’]], [attach_num, [nine, '+n
= A 4 @ =~ p " , n awm } F] .

[attach_noun, [[domain (obj), [bolt, '+n-v+a-p’,sg], range (obj),
[locations, ‘+n-v+a-p’,pl]], '+n-v+a-p’,pl]ll], '+n-v+a-p’)

| ?- start (NP).

| : the removal of the 7th and 12th stage compressor air
ducts.
parse took 0.017 sec.

memory (total) 338,736 bytes
program space 207,672 bytes: 207,672 in use 0 free
global space 63,444 bytes: 27,352 in use 36,092
free
global stack 27,196 bytes
trail 156 bytes
local stack 65,508 bytes: 2,004 in use 63,504
free

0.000 sec. for 0 program, 0 global and ? local space

overflows. _
0.000 sec. for 0 garbage collections which collected 0 bytes.

0.550 sec. runtime. 0 pagefaults.

NP=
[xmax,[[{attach_det,[the,’+nﬂv—a—p‘]1,[attach_noun,{removal
, " + n =~ v + a-p " ., 89 L a0 3 ;
[attach_pp,[xmax,[[attach_prep,[of,'—n—v’]],
[attach_pp_object,[xmax,[[[[attach_det,[the,'+n—v—a—p']],[a

ttach_adj, [domain(ref), _ .
['7th','+n—v+a+p‘]]]],[attach_conj,[and,‘+n—v+a—p‘,conj]]],

[attach_noun,[[domain(ref),[['12th’,stage],'+n—v+a—p',sg],r

ange (ref) ,
domain(has),[compressor,'+n—v+a—p’,sg],range(has),

domain (for), [air, '+n-v+a-p’,sg],
range(for),[ducts,'+n—v+a—p‘,pl]],'+n—v+a—p‘,pl]]].
r4n-v+a-p‘Jll],'-n-v’11], '+n-v+a-p’]

These example parses have been parsed by LparserSub.

| ?- run(S,B).

307

| : equipment and material.
parse took 0.013 sec.

memory (total) 368,828 bytes
program space 237,764 bytes: 237,764 in use 0 free
global space 63,444 bytes: 19,276 in use 44,168
global stack 19,160 bytes free
trail 116 bytes
local stack 65,508 bytes: 1,612 in use 63,8%
free

0.000 sec. for 0 program, 0 global and ? 1local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.566 sec. runtime. 0 pagefaults.
S=

}??un_phrase(sg,np(n(equipment,sg),conj{and),n(material,sg)
B= []

| ?2- run(S,B).

| : standard equipment.
parse took 0.017 sec.

memory (total) 368,836 bytes
program space 237,772 bytes: 237,772 in use 0 free
global space 63,444 bytes: 18,520 in use 44,924
free
global stack 18,500 bytes
trail 20 bytes
local stack 65,508 bytes: 468 in use b, 00
free

0.000 sec. for 0 program, 0 global and ? 1local space
overflows.
0.000 sec. for 0 garbage collections which collected 0 bytes.
0.566 sec. runtime. 0 pagefaults.
S=

[noun_phrase(sg,np(n([standard,equipment],sg}))],
B= []

| ?2- run(S,B).

| : consumable materials.
parse took 0.013 sec.

memory (total) 368,828 bytes _
program space 237,764 bytes: 237,772 in use 0 free
global space 63,444 bytes: 18,728 in use 44,716
free
global stack 18,708 bytes
trail 20 bytes
local stack 65,508 bytes: 468 1in use &b, 00
free
0.000 sec. for 0 program, 0 global and ? local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.216 sec. runtime. 0 pagefaults.

S=
[noun_phrase (pl,np (n([consumable,materials],pl)))],

308

B= []
| ?- run(S,B).

| : OMat4/23 anti-seize compound pure ni .
nick
parse took 0.100 sec. P 1ckel special.

memory (total) 368,964 bytes
program space 237,900 bytes: 237,900 in use 0 free
global space 63,444 bytes: 24,664 in use 38,780
free
global stack 24,272 bytes
trail 392 bytes
local stack 65,508 bytes: 5,068 1in use €0,440

free
0.000 sec. for 0 program, 0 global and ? 1local space
overflows.
0.000 sec. for 0 garbage collections which collected 0 bytes.
2.716 sec. runtime. 0 pagefaults.
S=

{nou?_phrase(sg,np(ref('OMat4/23'),n(['anti~seize',compound
+Sg),

n([pure,nickel, special],sg)))],
B= []

| ?2- run(S,B).
| : the procedure for the removal and installation of the

igniter plugs.
parse took 0.050 sec.

memory (total) 368,964 bytes
program space 237,900 bytes: 237,900 in use 0 free
global space 63,444 bytes: 24,664 in use 38,780
free
global stack 24,272 bytes
trail 392 bytes
local stack 65,508 bytes: 5,068 1in use 60,440
free

0.000 sec. for 0 program, 0 global and ? local space
overflows.
0.000 sec. for 0 garbage collections which collected 0 bytes.
2.716 sec. runtime. 0 pagefaults.
S=
[noun_phrase(sg,np(np(np(d(the),n(procedure, sqg)),
pp (p(for),np(d(the),n(removal, sqg),
conj (and) ,n(installation,sqg)))),
pp(p(of) ,np(d(the),n([domain(for),
noun (_20658,n([igniter],sqg)),
range (for),noun(_21154,n([plugs],pl))])))))],

B= []
| 2= run{sS,B).

| : item numbers in parentheses in the text.
parse took 0.050 sec.

memory (total) 368,992 bytes
program space 237,928 bytes: 237,928 in use 0 free
global space 63,444 bytes: 22,808 in use 40,636

309

free

global stack 22,496 bytes
trail 312 bytes
local stack 65,508 bytes: 3,572 in use 61,936

65 free
.000 sec. for 0 program, 0 global and ? 1local space
overflows.

0.000 sec. for O'garbage collections which collected 0 bytes.
1.716 sec. runtime. 0 pagefaults.
S=

[no??_phrase(pl,np(np(np(n([domain(obj),noun(_?599,n([item]
» Sg ‘

rangegobj},noun{_22618,n([numbers],pl))]}),

pp (p (in),np(n(parentheses,pl)))),

gp(?fin),np{d(the),n(text,sg))))}],

| ?- run(S,B).

| : referenced procedures.
parse took 0.014 sec.

memory (total) 368,828 bytes
program space 237,764 bytes: 237,764 in use 0 free
global space 63,444 bytes: 18,768 1in use 44,676
free
global stack 18,748 bytes
trail 20 bytes
local stack 65,508 bytes: 468 in use 65,040
free

0.000 sec. for 0 program, 0 global and ? 1local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
0.233 sec. runtime. 0 pagefaults.

S=
[noun_phrase(pl,np(n([referenced, procedures],pl)))],
B= []

| 2= runi(g, B).

| : connection of electrical plugs.
parse took 0.033 sec.

memory (total) 368,960 bytes .
program space 237,896 bytes: 237,896 in use 0 free
global space 63,444 bytes: 21,380 in use 42,0?4
ree
global stack 21,120 bytes
trail 260 bytes
local stack 65,508 bytes: 2,686 1in use ?L&B
ree
0.000 sec. for 0 program, 0 global and ? local space
overflows.

0.000 sec. for 0 garbage collections whi¢h collected 0 bytes.
1.133 sec. runtime. 0 pagefaults.
§=
[noun_phrase (pl,np(np(n(connection, sg)), _
pp (p(of),np(n([domain(mod) ,adj (_7444,a([electrical])),

310

B= [] range (mod) ,noun(_7822,n([plugs],pl))])))))],

| ?- run(S,B).

|+ the removal of the igniter plugs.
parse took 0.017 sec.

memory (total) 368,964 bytes
program space 237,900 bytes: 237,900 in use 0 free
global space 63,444 bytes: 21,968 in use 41,476
free
global stack 21,692 bytes
trail 276 bytes
local stack 65,508 bytes: 3,240 1in use &,28
free

0.000 sec. for 0 program, 0 global and ? local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
1.450 sec. runtime. 0 pagefaults

g=

[noun_phrase(sg,np(np(d(the),n(removal, sqg)),
p$;p(of),np{d{the),n([domain{for),noun(_lOOO?,n{[igniter].s
g ‘

range (for) ,noun(_10503,n([plugs],.pl))])))))],

B= []

| ?- run(S,B).

|+ the high tension leads or igniter plugs.
parse took 0.016 sec.

memory (total) 369,152 bytes
program space 237,088 bytes: 237,088 in use 0 free
global space 63,444 bytes: 23,388 in use 40,056
free
global stack 22,988 bytes
trail 400 bytes
local stack 65,508 bytes: 4,048 in use al,460
free

0.000 sec. for 0 program, 0 global and ? local space

overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.

1.816 sec. runtime. 0 pagefaults

S=

[noun_phrase (pl,np(d(the) ,n([domaln(use),

domain (mod),adj(_10806,al ([highl)) .
range(mod),noun(10908, n([tension], sg
range (use) ,noun (_18048, n([leads],pl))
conj (or), n([domaln(for},noun(1367#5; ?

)
)
(
range (for) ,noun(_18066, n({plugs],pl))])

))
1),
([ig 1ter] sg)).,
1)),
B= []

| ?2- run(S,B).

| : the low tension electrical connector.
parse took 0.017 sec.

memory (total) 369,068 bytes ‘
program space 238,004 bytes: 238,004 1n use 0 free
global space 63,444 bytes: 21,384 in use 42,060

311

free

global stack 21,112 bytes
trail 272 bytes
local stack 65,508 bytes: 2,780 in use 62,728

free
0.000 sec. for O program, 0 global and ? local space
overflows.

0.000 sec. for 0 garbage collections which collected 0 bytes.
1.233 sec. runtime. 0 pagefaults
S=
[noun_phrase(sg,np(d(the),n([domain(use),
domain(mod),adj{_7007,a{[low])),
range(mod),noun(_7109,n([tension],sg)),
range (use) ,
domain(mod),adj(_7484,a([electricall)),

B T range (mod) ,noun(_8055,n([connector],sg))1)))],

| 2= run(s,; B) s

| : relevant circuit breakers.
parse took 0.000 sec.

memory (total) 369,980 bytes
program space 237,916 bytes: 237,916 in use 0 free
global space 63,444 bytes: 20,136 1in use 43,308
free
global stack 20,004 bytes
trail 132 bytes
local stack 65,508 bytes: 1,456 in use 4,022
free

0.000 sec. for 0 program, 0 global and ? local space
overflows.
0.000 sec. for 0 garbage collections which collected 0 bytes.
0.516 sec. runtime. 0 pagefaults
S=

[noun_phrase (pl,np(n([domain(mod) ,adj (_5307,a([relevant])),

range (mod) ,noun(_7902,n([circuit, breakers],pl))])))],

B= []

| ?- run(S,B).

| :+ electrical supply to ignition system.
parse took 0.016 sec.

memory (total) 368,108 bytes .
program space 238,044 bytes: 238,044 1in use 0 free
global space 63,444 bytes: 22,636 1n use 40,828
ree
global stack 22,340 bytes
trail 296 bytes
local stack 65,508 bytes: 3,160 1in use ?&%8
ree

0.000 sec. for 0 program, 0 global and ? local space

overflows. .
0.000 sec. for 0 garbage collections which collected 0 bytes.

1.266 sec. runtime. 0 pagefaults
S=

[noun_phrase (sg,np (np (n ([domain (mod) ,adj (_4268,a([electrica

312

113,

range (mod) ,noun (_4557,n([supply],sqg))])),
pp(p(to) ,np(n([domain(for),noun(_6606,n([ignition],sg)),
range (for) ,noun(_6917,n([system],sg))])))))],

B= []
| ?- run(S,B).

| : the nine bolt locations.
parse took 0.000 sec.

memory (total) 368,964 bytes
program space 237,900 bytes:
global space 63,444 bytes:
global stack
Erail
local stack 65,508 bytes:

0.000 sec. for 0 program, 0 global

overflows.

237,900
20,776

20,568
208
2,408

and

in use 0 free
in use 42,668

free
bytes
bytes
in use 63,100
free
? local space

0.000 sec. for 0 garbage collections which collected 0 bytes.

0.966 sec. runtime. 0 pagefaults
S=

[noun_phrase(pl,np(d(the) ,num(nine) ,n([(domain(obj) ,noun(_12

518,n([bolt],sqg)),

range (obj) ,noun(_12952,n([locations],pl))])))],

B=[]

313

