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Summary

The computer systems of today are characterised by data and program control that are
distributed functionally and geographically across a network. A major issue of
concern in this environment is the operating system activity of resource management
for different processors in the network. To ensure equity in load distribution and
improved system performance, load balancing is often undertaken.

The research conducted in this field so far, has been primarily concerned with a small
set of algorithms operating on tightly-coupled distributed systems. More recent
studies have investigated the performance of such algorithms in loosely-coupled
architectures but using a small set of processors.

This thesis describes a simulation model developed to study the behaviour and
general performance characteristics of a range of dynamic load balancing algorithms.
Further, the scalability of these algorithms are discussed and a range of regionalised
load balancing algorithms developed. In particular, we examine the impact of
network diameter and delay on the performance of such algorithms across a range of
system workloads. The results produced seem to suggest that the performance of
simple dynamic policies are scalable but lack the load stability of more complex
global average algorithms.
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Load Balancing Protocols
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CHAPTER 1

INTRODUCTION

As computer manufacturers move towards the delivery of more open computer
architectures and portable software products, the performance of computer sysiems
has become the most important criterion in procurement decisions of many users. It is
often the case that as the performance of computer systems improves, users find
themselves in a position to tackle problems that were previously considered fo be
intractable. In the quest for ever-increasing system performance the adoption of very
large scale integration(VLSI) technology and maierial has enabled computational
power to increase by a factor of 10 on average, every five years [Hockney88]. Many
have argued thai this rate of increase, through technology alone, could not be
sustained and ultimately was subject to an upper physical limit which, most systems in
the 1980s had almost reached. According to Lewis [Lewis92], one is likely to see the
maximum switching speed of silicon reached during the 1990s and the rapid progress

in achieving greater computing speed level off.

It is generally accepted by most researchers that further increases in performance can
only be sustained through reorganising the way in which a compuler operates such
that a greater degree of parallel processing takes place. Whilst the RISC-based
technology of the 1990s has focused on performance enhancement via essential but
simple insfruction sets, it has also become a cost-effective building black for
camputers with multiple processors, with or without pipelined instruction and data
sireams. Furthermore, the expansion of network and communications technology in
the 1990s has broadened the issue of performance based on tightly-coupled

multiprocessor systems fo cover sysiems consisling of Iwo or more aulanomous
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processors linked together over a well-defined geographical region, be it local,
national, or international. Processors can be added (o the network by local user
communities to service their processing requirements as well as to share resources
with other communities on the network. The incremental growth in the sysiem may
well improve the overall performance of the system for all its users and thereby, offer
enormous computational power at modest cost in contrast (o today's muliiprocessor
supercomputers. However, the realisation of the performance potential of disiributed
systems is dependent on the design and development of new and effective sysiem
software for such environmenis. Whilst the performance of a local sysiem is
dependent on the nature of its workload and the level of interaciion across the network
with other user communities, the overall effectiveness of the system relies an the
ability of the resource scheduler used to predict, ideniily, and rectify such things as

load imbalances and the under-utilisation of expensive sysiem resotrces.

It is generally the case that in a distributed system, some user-communities on the
network have a propensity to generate a more demanding warkload for their local
processor than others with more modest requirements. Consequently, a disparity in
the quality of service received by all users will develop. Therefore, one of the goals
of a well-tuned resource scheduler is to exercise both local and remote scheduling
disciplines so that the system workload is shared equally between all available
processors. The event-chain initiated by the scheduler should result in process
migration from the over-utilised to the under-utilised processor sites. Many
researchers have shown, and is re-affirmed in this study, that such schedulers result in
an overall improvement in performance for all users even in cases where the simplesi
of implementations is being used. The static allocation methods are the most limiied
as it requires a priori knowledge of future sites and their warkload pattern, In

contrast, adaptive (or dynamic) allocation methods are able 1o respond 1o changes in
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system workload. However, the performance gained is inevitably a trade-off with the
expense of collecting, composing, and broadcasting system state information that is
accurate and reliable. This is one of the main factors that has been influential in the

architecture and implementation of commercial distributed systems.

Many of the schedulers developed and investigaied for disiribuied sysiems are
analogous to (raditional computer architectures, characterised by the centralisation of
data (such as file servers), and program and control (resource schedulers).  Semi-
distributed systems are being developed (o alfain some of the benefils of deceniralised
architectures using the hardware and software technology of today. The greater
challenge is in distributed systems where each processar is aufonomous, having iis
own memory, resources, and operating sysiem, execufing asynchronously, and
communicating solely by message-passing proiocals. A key prablem peculiar (o such
systems is that of ensuring the timeliness and integrity of messages on which critical
resource management decisions will be made. The problem is further exacerbated by
unpredictable increases in system workload. The task of balancing workload under
such circumstances is not trivial. Factors such as workload characteristics, sysiem
state, communication delay, and processor characteristics must be considered. These

are the issues that this study is primarily concerned with.

A number of researchers have studied and documented a variety of algorithms far
effecting load balancing on decentralised (or loosely-coupled) sysiems under light,
moderate, and heavy workloads. However, many of the systems studied are small,
and eight or nine-processor configurations are commonplace. Given the success of
the algorithms considered by other researchers, the optimal size of the system and the
scalability of such algorithms are important design paramefers for any resource

manager. Furthermore, it is possible that as the diamelter of (he sysiem increases,
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algorithms previously considered inefficient may become more attractive. Finally, i
is also important to know the behaviour of such algorithms under exireme load

conditions especially in cases where the system is tending towards its saturation level.

The aims of the research conducted here are summarised as follows. Firstly, o
investigate the behaviour and general performance characteristics of lnad balancing
algorithms of varying implementation complexity under a variety of workload
conditions. Secondly, to examine the impact of nelwork diameier and delay on the
performance of such algorithms. Thirdly, to identify efficient and scalable load
balancing algorithms. A simulation model of a loosely-coupled distributed sysiem
was developed (o aid the investigation. The workload of each node consisted of
independent, CPU-intensive processes. Given ihe larger system configurations under
consideration, algorithms were developed where each local host atlempied 1o
construct and maintain a communicating set of processors participating in load
balancing activity over a period of time. The implementation of such algorithms
varied in their complexity and performance, in terms of average response time and

load stability, compared to adaptive global average algorithms.

The remainder of this thesis is organised as follows: in Chapter Two an overview is
given of distributed system architecture with particular consideration being given io
the design philosophy and mechanisms required by local hosts engaged in load
balancing activities. In addition, a selection of distributed operating sysiem kernels,

currently under development are discussed.

In Chapter Three the structural characteristics of load balancing algorithme are

examined in greater detail and a general classification for such algorithme presenisc,
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The relative performance of the algorithms are compared and the work and findings

of their authors summarised and evaluated.

Chapter Four provides a detailed discussion of the design and implemeniation of the
model. The first part of this chapter focuses on the design and implementation of load
balancing algorithms as message-passing protocols using state transition modelling
techniques; and the second part is concerned with building the simulated sysiem

architecture using object-oriented techniques.

Chapter Five presents a discussion of the methods used (o verify and validate ihe
design of the model and its resulting output. In Chapler Six an analysis, and
evaluation of the experimental resulis is presented in ierms of the represeniational
accuracy of the model and the relative perfarmance of the laad halancing algorithma

considered.

Chapter Seven presents a summary of the findings, and suggests areas for which

further investigation may be necessary and appropriate.
The appendices include: graphs and statistical data for the main algorithms;

monitoring output and supporting descriptions for load balancing protocols; detailed

model design descriptions and equivalent program source code.
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CHAPTER 2

DISTRIBUTED SYSTEMS ARCHITECTURE

2.1 DEFINITION AND CLASSIFICATION

It is the considered view of many scientists that one of the grand challenges of the
1990s is to increase the speed of computers to the teraflops level so that very large
scientific and engineering problems might be solved [Cacke88, Lewis92]. The advent
of RISC technology has made it possible for workstation manufaciurers o offer
within their general product range, relatively cheap single-processor systems with
speeds of up to 100 MIPS. Ultimately, performance enhancement by merely
reimplementing traditional architecture is subject to physical, technological, and
economic constraints. A number of researchers are of the opinion that further
increases in performance can only be sustained through reorganising the way in which
a computer operates such that a greater degree of parallel processing takes
place[Watson82, Dennis80, Gurd85, Trealeaven82]. Thus, computers with multiple
processors, have been developed for use in highly specialised applications. However,
developments in network technology have facilitated the construction of
multicomputer systems where specialised resources of local communities can be made
available to other more remote communities of users. Such sysiems are loosely
referred to as distributed systems, and are one of the principal sysiem design

innovations to appear in recent fimes.

Given the variety of possible distributed system configurations, a precise definitian or

+

classification for such systems is desirable. In ueing the classification proposed hy
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Flynn [Flynn72], one is restricted to the view that all distributed systems have
Multiple Instructions that operate concurrently on Multiple Data streams. The
taxonomy of Flynn places two quite different classes of computer systems, namely
multiprocessor systems and distributed systems, in the same broad category. Fallmyr
et al [Fallmyr91] regard a distributed system as distinct from a multiprocessor sysiem
by having the following properties: asynchronous parallel processes communicating
over links that are subject to delay; no central point of control; inaccurate global siate
information or global time; and processes which change their communication paiierns
according to changes in the system state. However, this definition only covers a
specific group of systems, commonly referred 10 as loosely-coupled sysiems, where
processing and data is fully distributed across the available processors. That is, each
processor is autonomous and has its own user processes, local memory, sysiem
resources, and operating system. As there is no shared memaory, or ceniral point of
control, co-operating processors must execute asynchronously and communicate
solely by message-passing protocols. Distributed systems with a centralised file
server or process scheduler may be regarded as semi-distributed, whereas fully
distributed systems have decentralised functionality. Therefore, in the context of its

common usage, Tanenbaum [Tanenbaum92] defines a distributed system as: "..one
that runs on a collection of machines that do not have shared memory, yel looks ta ils
users like a single computer." Primarily, it is the level of imperfection exhibited by

the communication network for losing data, being slow, sluggish and untimely in its

actions when overloaded that distinguishes one distributed system from another.

2.2 PERFORMANCE ISSUES

According 1o Cocke [Cocke88], the three principal confributors fo sysiem

performance are the algorithm, compiler, and the system architecture. In the latter
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case, performance improvements tend to grow linearly relative to the number of
processors used in the architectural design. Whilst algorithm improvements tend fo
have the most spectacular effect on performance, with performance changes of
logarithmic proportions (such as NjogN) in some cases, exploitation of the algorithm's
characteristics in the underlying system architecture tends to result in the creation of
highly specialised systems. In many instances, such sysiems tend o perform badly

when applied to different algorithms. Cocke therefore suggesis that:

"..the simultaneous optimisation of these three factors holds the key to the
highest possible performance." [CockeB8].

The partitioning of an algorithm at a glabal level which facilitaies aperation on ifs
separate components using the multiple processors of the underlying architeciure
remains a key area of research and beyond the scope of this thesis. However,
unresolved questions remain about the underlying system architecture. Researchers
into system architecture have generally attempted lo identify the total number of
processors, and the hardware and system software configurations that can maximise
overall system performance. Distributed systems with multiple processors and control
software, like its shared memory single-box multiprocessor counterpart, are subject (o
the laws of diminishing returns, where (o continually increase the number of
processors would cause a disproportionate increase in hardware costs, and a
corresponding decrease in overall system performance as a result of increased
communication overheads. However, unlike shared memary multiprocessars where
performance degradation may well occur in cases of hundreds of processors, if is
conceivable that disiributed systems with thousands of pracessors can susiain

performance many orders of magnitude greater than the systems of today,
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The three key attributes that a computer architeciure should deliver are security,
reliability, and performance. Traditional computer architectures, characterised by the
centralisation of data, program, and control, were unable to deliver high performance
to users at a local level. Aspects of security which were previously considered to be
the strength of such systems, have given way (0 a range of secure distributed sysiems
architecture. In recent years, the choice of architecture is primarily governed by the
level of security required for user data and simplicity of administraiion. On (hose
criteria distributed systems with powerful centralised file servers are popular

[Ciciani92].

Distributed systems with centralised servers and/or schedulers are generally maore
secure and relatively simple (o manage. However, such an archileciure gives rige (0
the creation of a central point of failure, and ultimately, communication and
performance bottlenecks, with its consequential effects on "slave" processors and
their user communities. In contrast, a system in which processing and data is fully
distributed across the available processors, supported by peer-to-peer communication,
should be more robust and reliable as each processor is autonomous and has its own
memory, resources, and operating system. Furthermore, a processor will also have a
small number of point-to-point connections to other processors and will be able (o
route messages via these connections. As there is no shared memory, co-operating
processors must execute asynchronously and communicate solely by message-passing
profocols. Given this diversity in computer architecture and performance, Cocke's

conclusion is particularly poignant:

"I do not find it discouraging thai there seems (o be no clear-cul route 1o high
performance. 1 feel the flexibility of computers will allow us i solve problems
in ways not yet envisioned, and will make the fuiure of computing more
interesting than the past" [Cocke88].



2.3 NETWORK HARDWARE

In a distributed system with multiple host processors the configuration and
interconnection between nodes may have a significant effect on the performance, cost
and reliability of the system. According to Reed et al [Reed87] "a network ill-suited o
prevailing communication paiterns results in message congesiion and excessive
communication delays." In terms of the transmission medium, a disiributed system
can be constructed with different types of cables or directional links which may be
differentiated by their bandwidth, and transmission reliability. Generally, coaxial
cable has a greater bandwidih than twisted copper wire pairs, buf a lesser bandwidil
than fibre optic sysiems. The amouni of information carried (bandwidih) by coaxial

cable is typically within the region of 10 Megabiis per second. Given ihe

iransmission medium, the topology of a neiwork will depend 1o same degree on ih

lex)

architecture of the interconnection network. A bus archileciure has a single backplane
(o which all machines are connecied and over which messages are sent and received.
Messages transmitted in the form of packets may be addressed to a specific host or to
all hosts on the network. In the later case, commonly referred to as broadcasting,
each message conltains a special address which will be recognised by all hosts thereby
copying the transmitted message to their local message buffers. Generally, broadcast
mechanisms of this nature are very efficient for transmitting messages relevant to all
hosts, such as the processor state information. That is, the cost of transmission to all
hosts via the broadcast mechanism is only marginally more expensive than
transmitting to a single host in the case of Local Area Networks (LANs). In contrasi
to broadcasting, a multicast mechanism is characterised by transmitting messages {0 a
specific subset of the hosts or processes available in ihe sysiem [Cheriton88]. A
common implementation is for transmitted message packeis to contain a group

identifier which is recognisable to hosts belonging o that specific group.  Such



systems become inefficient in cases where: groups are dynamically configurable; there

is a need to send messages to a sub-group; or hosts belong to different groups.

In terms of LANs one of the most typical and common network arrangement would be
either an Ethernet or [EEE 802.3 single-bus unidirectional broadcast system wilh 3

fixed number of hosts. However, it is only able to handle one signal in the cable ai

any one time from any host. The hardware operation requires that ihe controller for

cach host checks to see whether another host is transmitiing, and will continue io d

o

so at random time intervals uniil the potential for dual (ransmission, message

collision, and data loss are avoided. A minimum lengih for daia packets musi be

1w

imposed to make collisions deieciable while the packeis involved are being
transmitted. This technology, known as Carrier Sense Mulliple Access/Caollision
Detect (CSMA/CD) has been found to be ideal when ihe neiwork is lightly Toaded and
the probability of two hosts transmitting at the same time is low [Nam92]. As most
Ethernet technology typically operates far below their maximum capacity,
synchronisation overheads at such loads are often absent. However, the main problem
with this architecture is its behaviour under extreme loads. In such cases, a large
number of hosts trying to use the bus at the same time would result in a greater
incidence of message collision, loss, and retransmission. Further, the algorithms used
to avoid this problem area requires additional processing time and introduces further
complexily in network operation. Such delays may be crucial to the timeliness of
state information on which load balancing decisions are made. In addition, network
failure (such as a break in the bus cable) is liable to result in the whole sysiem going
down as there is no opportunity to re-route messages to their iniended desfinations.
Greater reliability can be achieved by the use of a dual-bus unidirectional hroadcasi
system that would allow each host to transmit on the outhound channel whilsf

receiving on the inbound channel. An aliernative stralegy proposed by Nam ei al
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[Nam92] would be to include a collision-avoidance switch using a multichannel

roadcast star network. In this topology, the central host (or hub) would only switch
the data packet if the destination link is idle, otherwise it must be retransmiited by the
source. Nam et al found that whilst the use of a multichannel medium reduced the
probability of collisions in CSMA/CD based technolagy, at low loads the higher data

rate reduced the overall response time.

Another widely used LAN standard is based on a token-passing ring topology. Ti
avoids the problem of collision and its detection by ensuring that only the host
holding the data packet containing a special patiern of bits (known as a “token”) can
transmit. The token circulates around the ring continually and is absorbed by the host
wishing to transmit. On completion of transmission, the token wiil be released. In

this topology, all stations physically receive the iransmitied packet, bul only ihe

addressed host will carry out further processing operations on the received data.

To overcome some of the problems presented by a bus-type architecture switched
architectures make use of individual cables between machines. Messages are then
routed by explicit switching decisions at intermediate hosts before reaching ihe
destination host. An ideal topology is one in which every host is directly connected 10
every other host. The main advantage is the greater speed and reliability of message
transmission even at extreme loads. Should a connection fail aliernative paths for re-
routing messages will exist between the sender and the receiver. However, the main
problem with this arrangement is the packaging constraints and wiring costs which
tend to impose a limited number of connections (o and from each host, In ihe
hypercube topology for example, the dimension of the cube determines the number of
nodes and the number of links to each node. Thus, a three-dimensional hypercube

will consist of eight nodes and three communication links o neighbouring nodes,
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One advantage of this topology is that the maximum distance for routing messages
from source to destination increases logarithmically with the size of the cube. Thus,
in the case of a 9-processor hypercube, a maximum of three hops will be required (o
send a message anywhere within the network. Further, host addressing and message

routing is simple to compute and implement. The main weakness of the topolagy
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however, is the exponential growth in connections with every increase
hypercube dimension.  Consequently, a 10-dimensional hypercube supporting 1024
nodes, each with ten communication links represenis the current technological limit

for this arrangement.

The two-dimensional mesh topology used in this study imposes a limit of up io four

connections per host. One of the main problems in ihis arrangemeni is (o ensure ihai

the route 1o a destination is both the shoriesi passible, and nodes are evenly laaded as
far as routed message traffic is concerned. Without this constraint, the risk remains of
certain intermediate nodes becoming the “shortest path" hubs for "send-and-reply"
communication between hosts. Thus, the hub processor is likely to spend more time

handling or routing message traffic relative to servicing its own process queues.

2.4 COMMUNICATIONS MODEL

Comer [Comer88] views protocols as providing formulae for passing messages,
specifying message format, and handling error conditions. The complexity of these
formulas can make a significant impact on the performance of a disiribuied sysiem as
the network performance is determined by the characteristics of the protocol used
[Tusch92]. A host with limited processing power, must not only meet ifs local
processing requiremenis bul invoke and execule protocol eofiware (o assemble,

disassemble, and interpret (ransmitted data. Further, under exireme loads a high



incidence of transmission errors, and subsequent recovery processes will cause the

protocol to be invoked and executed more frequently.

The OSI (Open Sysitems Interconnection) Reference Model published by ihe
International Organisation for Standardisation (ISO/IEC) identifies seven levels of

network functionality ranging from the physical to the application layer. The

L

collection of software that represent the "layers" of funciionality is commonly referr
to as the protocol stack as the concepl embodies a clearly defined interface belween
each layer such that only service requesis can be made by any given layer (o the layer
immediately below it. That is, each layer pariicipates in a dialogue wiih the layer

immediately above it without assuming control of its data or the manner in which i

a given host will only send data packets upwards

operales. Thus in some sysiems
from the physical layer 1o the application layer if it is addressed by ihe ]lmhm The
advantage of the proiocol stack model are twofold. Firsily, by having a well-deflined
interface, the integrity of each layer is ensured. Secondly, greater flexibility and ease

of maintenance is achievable as each layer can be replaced or modified independently

of other layers providing the interface remains intact.

The main problem with the stack concept is that strict adherence to its principle may
well result in performance overheads as each layer is engaged al different stages with
messages being passed between distributed applications. Furthermore, the complexity
and size of some vendor implementation of a particular layer of functionality may in
practice be so inefficient that the discipline of the protocol stack is abandoned. For
example, some large commercial users have opled for the IBM SNA proiocal,

preference to TCP/IP, for transferring large blocks of data around a netwark because
the overhead imposed was significantly smaller in the case of the former, whereas the

latter consisted of around 80,000 lines of code [PC93]. Thus, the greater ihe time



dedicated by a processor to the execution of the protocol layers, the greater the
message transfer delay compared to the pure network access delay for a CSMA/CD
based bus technology, for example. Message queues and buffers fill up in the
receiving host as the load increases on the network. For certain protocols overflowing
message queues, or messages chronologically out of sequence, results in a greater
propensity for packets to be lost and congestion becoming a persistent state as senders

enter "retransmit message" loops.

Each layer of the protocol stack offers a range of communication services to potential
users, from transmission error control to data traffic flow control services. A transport
layer protocol such as TCP guarantees error-free delivery of all messages sent, and in
the sequence in which they were transmitted. This is made possible through its
connection-oriented, and flow control services, supplemented by the use of time-outs
for monitoring acknowledgements from recipients. A connection-oriented service
means that a connection must be established between host machines or the
applications concerned before communication can take place. The flow control
service ensures that a sender does not retransmit at a rate in excess of the receiver's
ability to process the transmitted data. Whilst guaranteced message delivery is
desirable between the hosts of a distributed system, a connection-oriented exchange
can impose significant processing overheads in terms of the time taken to establish a

connection, and terminating the connection once data transfer is complete.

In contrast to TCP, the UDP protocol offers a connectionless packet delivery service.
Although this protocol is much simpler than TCP and avoids the overheads of

managing a connection, there is no guarantee that messages seni using the unp

protocol will arrive at their destination. Therefore, for a distributed system which

engages in load balancing one could send status information using protocols such as



UDP that offers a connectionless service. However, whilst it may be possible for the
system to tolerate the loss of state information pertaining to the workload of one or
more of its hosts, the loss of processes in transit would be unacceptable. Therefore, it
is imperative that the migration of a process be carried out using a connection-oriented
protocol. In cases where multiple protocols are being used on the network, one
possible solution is to have self-ideniifying frames where "the Ethernet interrupt

routine uses the packei type field of arriving packets to determine which protocal was

O

used in the packet" [Comer91].

At a functional level, client-server models are popular and useful abstractions for
describing the interaction between (wo or more processing componenis. For example,
when applied 1o the protocol siack, the software of the upper layer acis as clieni
processes by making requesis (o the layer below {or specific services. The laiier will
then play the role of server by performing the required service on behalf of the client
making the request. However, where the provision of a service is effected elsewhere
on the network, the local "protocol” server must itself become a client and make
requests to its remote peer for the required service. The client-server model is also

applicable to computation and information services and will be used throughout the

remaining chapter.

2.5 DISTRIBUTED RESOURCE MANAGEMENT

The primary goal of a distributed operating system is (o coordinate and manage the
collection of resources on the network [Goscinski90, Tanenbaum90]. In so doing ifs
activities should be transparent to users and user processes. Thal is, a process may be
moved or scheduled on a remole host without the user having to make an explicii
change in the process's name, behaviour, and resources used. However, whilal
iransparency remains the key attribute of a distributed operating sysiem, a range of
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implementations exist, from those where scheduling, data and file service activities
are the responsibility of a single processor to those where both data and processing are
distributed. For example, in Figure 2.1, if processor A was designated to be the file
server, then all client processors B, C, and D would send their file processing requests
to A. Correspondingly, if processor A was also responsible for the process scheduling
activity of the system then the workload of all client processors would be determined
and influenced by the central server.

Host
B

NETWORK

Scrver

() Client

Figure 2.1 Distributed System Model using a Centralised Server

Host

D

In contrast, a distributed system where both data and process scheduling are
distributed would mean that all processors A, B, C, and D would be responsible for
the scheduling of their own and the system workload, as well as the integrity of the
data files of the system used. For workload redistribution to be effective, Goscinski et
al [Goscinski90] argues that such a facility should make decisions on when to
balance, which process or process group to exchange, and where in the network the
most acceptable destination host resides. However, as illustrated in Figure 2.2, the
load balancing facility will need to interact with other system services of the

distributed operating system, such as the migration facility, the high-level scheduler,

d
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and the communication sub-system (in the form of the protocol stack). Figure 2.2
shows that the load balancer makes use of both local and remote state information
obtained from the local scheduler, and remote hosts respectively. The migration
facility manages the transfer of processes to and from remote hosts, and this may in
turn be determined by the host (according to its address) selected by the load balancer.
The protocol stack will be used by both the load balancer and the migration facility (o

exchange state or process information.

Scheduler
Local State
Load
Balancer Local Process
Hos
o Migration
Address Facility

Remote State Remote Process

Communication Subsystem

Figure 2.2 The Process Architecture for Load Balancing Mechanisms

On most distributed systems, the software of the communication sub-system resides in
the operating system kernel and is shared by all system and user processes in the
system. In particular, the system processes of a given host wishing (o engage other
hosts in the exchange of state information or user processes, will interact with one or
more of the relevant active protocol process modules available.  Whilst the

communication sub-system is an important component of any distribuied sysiem,
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detailed study is beyond the scope of this thesis. Therefore, the following sub-
sections will lay emphasis on the other major components of the workload balancing

facility illustrated in Figure 2.2.

2.5.1 Process Scheduler

In a uniprocessor or multiprocessor environment, the goal of a process scheduler is 1o
match executable processes with available processors such that no processor is idle
and no process is kept waiting for significant periods of time. Depending on ihe
application environment and the operating system, pre-emplive, round-robin
scheduling may be applicable, whereas in other cases a non-preempiive, shoriest job
first policy may be appropriate. The execution of ihe scheduler will impose

performance overheads attributable to: the execution time of the scheduling algorithm;

and the time it takes to make a coniext swiich beiween ithe scheduler and other

processes in the system. Singhal et al defines a distributed scheduler as:

"...a resource management component of a distributed operating system that
focuses on judiciously and transparently redistributing the load of the system

among the computers such that overall performance of the system is maximized"
[Singhal94].

More specifically, Blake [Blake92] sees the scheduling activity as being concerned
with assigning processes to processors in multicomputer systems so that the end resuli
is the minimisation of process completion times. Therefore, in a disiributed system
the role of the scheduler is often synonymous with load balancing. The scheduling
overhead in this case, includes the activity of transferring a process fram the local host
to the process queue of the remote host (analogous to a local contexi swiich) in

addition to the execution time of the scheduler itself.



The notion of idle processors in a multicomputer system can be loosely understood
to be processors with under-utilised processing capacity, where utilisation is measured
against a fixed or variable threshold value. Whilst each host may operate a local
scheduling discipline for its own process queue, a tightly-coupled system with a
centralised scheduler will schedule work to those hosts with workloads below a given
threshold.  Some researchers [Ali92, Ahmad90, Lin91] have investigated load
balancing in systems using a centralised scheduler. In such systems, the scheduler
will use state information collected from all processors and select the processor that
will yield the maximum performance advantage to one or more of the migratable
processes in the system. In contrast, scheduling in a loosely-coupled system requires
each host to execute its own scheduler, and collect its own state information from

other hosts [Blake92, Johnson88]. According to Blake,

"The collection of global information requires a non-trivial amount of overhead,
but is essential to develop a moderately effective scheduler." [Blake92]

Therefore, the success of scheduling strategies for distributed systems will be mainly
governed by the timeliness and accuracy of the state information collected and used in
scheduling decisions. Thus, Blake argues that heuristics must be used in order to
constrain the complexity of the scheduler relative to the number of schedulable

processes in the system [Blake92].

A further problem for schedulers in distributed sysiems relates o process granularity.
The scheduling of coarse grained processes, consisting of a set of intercommunicating
processes, presents additional parameters in the scheduling equation. Firsily, io

schedule each member process to any host that becomes "idle" may result in the

—

scatiering of set members throughout the network. Whilst, it is possible ihat a more

balanced load is achieved, the average response time may suffer as these processes

maintain their communication channels over much greater disiances (via implicii

;
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Remote Procedure Calls) and are subject to the prevailing operating environment of
the resident host. A refinement on such a strategy is to constrain the scheduling
policy such that communicating processes are grouped together via those hosts that
have spare processing capacity.  Eventually, all processes belonging to the
communicating set would reside on the same host, but with a better overall
performance than if they had not been migrated in the first place. Nevertheless, even
this strategy will incur significant interprocess communication overheads, even
though it may only be for a short time. A more favoured strategy used in the study of
Johnson [Johnson88], is to make the process group the unit of distribution. Thus, an
idle host will only receive work if it has sufficient capacity to accommodate the
members of a given process group on the local host. This strategy eliminates the
overheads caused by distributing the members of a process group bul may result in
processor fragmentation. That is, the scheduler is unable to find a host with sufficient
capacity to accommodate all the members of the available process groups. The
growth in distributed applications using multiple process threads has highlighted the
problem of the granularity of scheduling as shared memory is one of the primary
means by which communication between threads can be accomplished. Further, as
developers and users move towards object-based applications, composed of a
collection of objects that communicate using messages, the problem of scheduling in a

disiributed environment will become more acute.

Nevertheless, whether a centralised or disiributed scheduler is being used in a
distributed system, an ideal scheduling strategy would be a preemptive one that resulis

in the remote execution on the least loaded processor say, of the local hosi's Jongest
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running jobs or its largest group of intercommunicating processes.



2.5.2 Load Balancing Servers

As indicated in the previous section, load balancing can be viewed as a sophisticated
high-level process scheduler for a distributed environment. However, as illustrated in
Figure 2.2, the remit of the load balancer is the network of processors. In contrast,
the scheduler is primarily concerned with local processors and processes. Thus, as
discussed in the previous section, the local scheduler will influence and may decide on
the process or group of processes to be selected as candidates for migration.
Furthermore, the separation of load balancing and scheduling functions enables such
servers to be enhanced, replaced, and maintained with minimal impact on the

operation and cost of the other.

It is common to find in the literature no real distinctions being made between load
sharing and load balancing. According to Cybenko [Cybenko89], the goal of load
balancing is for each processor to perform an equitable share of the total work load. If
load sharing is concerned with sharing workload fairly among hosts regardless of
origin then it equates to load balancing. In a tightly-coupled multiprocessor
environment where communication delays are negligible, load sharing regardless of
origin is acceptable. However, in a loosely-coupled environment load balancing
strategies are driven by the desire to improve overall system performance. Thus, in
the latter case, the origin and state of the remote host must be considered in any load
balancing policy. In either case, there is still a need to avoid bottlenecks in the
system, and maintain robustness and performance in the presence of partial failures in
the system [Fallmyr91]. Many researchers such as Hatch et al [Hatch90] see no
difference between load balancing and load sharing, with load sharing being defined

1

as attempting "..to improve system performance by transparently dispersing the
individual hosts' workloads throughout the system" [Hatch90]. Therefore, in the

following chapters load sharing and load balancing will be used in a similar light.
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Figure 2.3 Load Balancing Example Using Four Interconnected Processors

The primary aim of load balancing is to ensure that the resources of the sysiem as 3

whole are uiilised in a manner that enables all hosts o deliver a service within a

predefined quality range to all its client processes. Figure 2.3a shows a poini-ia-point

distributed system wiih four homogeneous host processors. The process arrival raie ai

¢ach host is such that two processors (A and D) are always overloaded and two

processors (B and C) underloaded. Thus, whereas the |

Vo]
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able to produce response times below a predefined threshold of acceptance for all their
processes, the overloaded processors A and D are characterised by excessive use and
response times over and above the response threshold. Therefore, the use of load
balancing techniques, resulting in the migration of excess processes from host A and
host D to the underloaded hosts, may result in all hosts having a normal workload
(Figure 2.3b) and delivering a service within a specified quality range. However, it is
important that any technique employed does not simply shift the problem of load
imbalance from one pair of hosts to the next, or further exacerbate the problem of an
already overloaded host, resulting in a further degradation in system performance. In
the situation where all hosts are heavily loaded, illustrated in Figure 2.3c, load
balancing should still be possible as long as it is able reduce system instability and

ensure that no single host is more overtoaded than another.

2.5.3 Process Migration Facility

Joosen et al [Joosen90] defines process migration as an operation "causing the
execution of the process to continue on another machine with the same functionality
as if it was never reallocated". By implication, migration can only be effective if the
behaviour of other processes which interact with the migrated process remain
unaffected. That is, process migration should be completely traznsparent to the user,
related processes, and the migrated process itself throughout the lifetime of the latier.
Joosen et al views transparency as a fundamental component of a process migraiion
facility and defines it in the following manner: "the migration of a process is
completely fransparent when the process and all processes that cooperate
(communicate) with the migrated process execute exactly as if the migration never
accurred" [Joosen90] . Considerable processing overheads can result from process
migration as the process iiself and informaiion on its staie musi be transferred. The

process state information required would include the contents of registers and slacks,
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its virtual memory address space, and any file descriptors being used. For example,
given a 10Mbps Ethernet communication medium, and a process using 10 megaby

of address space, at least 10 seconds would be required io transfer the memory
contents alone. Therefore, process migration can only be justified if the benefit (o the

process is significantly greater than the cost [Mullender93].

Q)

The process migration facility is not load balancing, but the basic icol for the
implemeniaiion of any load balancing policy. According to Arisy et al [Arisy89], ihe
design and implementation of the facility is problematic due to the inherent
complexity of the operations (o be performed. Thai is, "..the mechanism for moving
processes must reliably and efficiently deiach a migrani process [rom ils source
environmeni, transfer it with its context (the per-process daia siruciures held in the
kernel), and attach it 10 a new environmeni on the desiination machine" [Arisy89],
That is, once the decision has been made to transfer a process from the local host
computer 1o a remole host willing to accept the process, the following generalised

process migration steps need to be carried out on the local host:

a) Suspend the selected process, and save its current
execution environment.

b) Effect the protocol for the transfer of the process and its
state information to the remote host.

c) After remote execution is complete, effect the protacol for
receiving the process and its state information.

d) Restore the process's original execution environment.

Likewise, the migration mechanism of the remote host concerned will cooperate in the
transfer by effecting its protocol for receiving hoth the process and iis sfafe
information. Once the remote host has established an execution environment for the

migrated process, the protocol is made complete by the refurn of an acknowledgemeni
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message to the originating host. The latter can now destroy the execution image of
the process it had just migrated. However, the execution profile of the process may
dictate the extent to which the local host should preserve iis execution environment

when the process is resident elsewhere.

The term residual dependency was used by Joosen et al [Joosen90] to describe the

S

case where the whole or part of a migrated process's execution environment continued
to exist on the originating host compuier. In time-limited residual dependency, the
migrated process would run on its new hosi after a finite period of time. In the

migration facility outlined residual dependency would come into effect fram the iime

the local host starts the transfer of the process ia ithe time ii receives ihe

acknowledgemeni from the remote host. Independeni, CPU-boun

o,
[ 1
-4
]
(]
L
oo
Vs
i
[P
r

homogenous disiributed system tend to exhibit this characieristic.  Accordin
Douglis et al [Douglis91b] residual dependency is undesirable due 1o its general
propensity for unreliability, poor performance, and level of complexity. For example,
consider the case of 1/O bound and cooperating processes. The devices that are being
used on the local host may be difficult to migrate, although it may be possible (o
migrale a virtual representation (in the form of copy files say), along with the process
using them, in order to minimise residual dependency. The problem of migration
becomes even more complex when the files are shared by two or more local processes.
One must either move the file and all the processes sharing it to the remote host, or
move the selected process only and retain a high degree of residual dependency. One
of the primary cosls associated with dependency of this nature is the cost in
communication and processing time as more messages are generated in order io
redirect and re-route the "mail" belonging to the migrated process. The problem is
further exacerbated if the process is migrated mare than once, resuliing In resicual

dependency on each new hosi. Thal is, system operations such as memory
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management and failure recovery are complicated by the distribution of state
information among several nodes for any number of processes. To simplify the
management of such problems, a number of design constrainis have been impaosed on
the migration facility of distributed operating systems such as the V-sysiem
(Cheriton88] and Sprite [Douglis91bl. Joosen et al [Joosen90] found that none of ihe
distributed operating systems investigated were without residual dependency, and

concludes that process migration facilities can only be made efficient by introducing a

[y

high degree of residual dependency.

Given the potential costs incurred by a process as a result of migration, Hac [Hac91]

introduces the concept of the migratable factor, defined as the
transfer time of a process to the local average process response (run) time. In their
experimentis, the migratable factor of CPU-intensive processes was close 1o zerd;
mixed CPU-I/O-intensive processes was 0.9; and I/O-intensive processes a value of
7.3. One can argue that the higher value of I/O-intensive processes reflect the level of
residual dependency between such processes and their originating hosts. Thus, it is
conceivable that a process migration facility could decide to transfer only those
processes with a migratable factor less than one or alternatively, as a result of the
transfer can obtain a value that is less than or equal to its existing value. However,
such a mechanism would be complex, and would make demands on the host's
processor and memory resources for computing and maintaining the migratable factor

for every active process.

2.6 DISTRIBUTED OPERATING SYSTEMS

Over the years, operating systems have evolved to manage the hardware, sofiware,

and data resources of a computer system lo ensure efficient and correct aperation,
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Within a distributed computing environment the operating system's responsibility for
the management of input-outpuf, memory, and processor resource must also
encompass the scheduling of multiple processors operating in parallel, and the
provision of communication services to processes across the network. According to
Cheriton, a distributed operating system is characterised by the cooperation of the
kernels in different hosts "to provide a single system abstraction of processes in
address spaces communicating using a base set of communication primitives”
[Cheriton88]. Similarly, Tanenbaum identifies resource transparency as the hallmark
of a truly distributed operating system [Tanenbaum90]. Thus, when a process is

created, the single "abstract” operating system makes the decision as (o the best place

~.)

to run it. The other characteristic identified by Tanenbaum is the existence of a single,

system-wide file system. There is therefore, "no concept of file transfer, uploading or
downloading from servers, or mounting remote file systems.” [Tanenbaum9G]. Gne
of the major problem thal such systems must tackle efficiently is the problem of
uniquely identifying objects (such as files and migrated processes) in a dynamic,
decentralised environment and associating data and addresses with those names
[Shaw88]. As techniques for overcoming these problems are current topics for further
research, most commercial operating systems provide a collection of modules to
facilitate communication across the network. Further, a dedicated file or name server
where object names and addresses are statically determined are commonplace. Such
systems fall short of the Tanenbaum ideal for a distributed operating system because
the user is, and in many cases needs io be, aware that multiple independent computers

exist and must deal with them accordingly.

Most distributed operating systems currently under development have attempted (0

distribute the functionality of the operating system such that only a minimal sei of

services which need access ta privileged functions or devices are implemenied in the



kernel (referred to as a "micro-kernel"). For example, the memory manager, process
kernel. Other services, such as file, directory, and terminal handling are carried out by

processes running in user mode and are directly available from elsewhere within the

—_—

neiwork. The micro-kernel approach has the advaniages of giving designers and users

new services and technologies, and ease of maintenance. However, a greater number

of context swilches are required (o effect the range of services offered by the sysiem.
Thus, despite the findings of researchers on projecis such as the Amoeba project

[DouglisO1b], supporting research evidence for the improvemeni in the quality of

JEATEE

service provision through micro-kernel archilectures remains rather skeichy, s

and sometimes unclear.

According to Douglis et al [Douglis91a], the two key issues of distributed operating
systems rescarch today relates to shared storage and shared processing power. The
primary focus in shared storage research is how to implement a distributed file system
that can facilitate the sharing of data objects (such as files) amongst all the processors
in a network without degrading the overall system performance or forcing users to
worry about the distributed nature of the filing system. In the case of shared
processing power, the main focus is to identify techniques that can harness the power
of the processors and make it available to individual users so that their applications
can benefit through improved response or completion times . Whilst ii is the case that
most distributed operating systems currently adopt similar techniques for managing
shared data, Douglis et al [Douglis91a] perceive the differences between such systems
to be their model of computation rather than the operating sysiem's software

architecture. For example, systems such as Sprite [Douglis91b], and V [Cheriton88]



use a workstation-cenired model of computation compared to the shared processor

pool model used by the Amoeba system [Tanenbaum90].

In the workstation-centred model users are associated with individual workstations
that can provide sufficient power to meet most of their application's processing
requirementis. Such a model was jusiified on the basis that any further advancement in

processor technology would be to facilitate workstation users wiih betier and fasier

raphical user inierfaces. In contrast, designers adopiing the " essing pool” maodel

were driven by the belief that:

".il would be easier to place hundreds of processors ir
than distribuie those processors equally among each u

Thus, one is able to make available io an individual user the iotal processing power of
the "pool" rather than the power of any one individual workstation, especially in cases
where the process to be executed exceeds the processing capacity of the latter. For
example, a user program consisting of n independent compilation units can be
compiled using a pool of n processors to produce a potential n-fold speedup of the

compilation process. The following sections provide a brief overview of some of the

distributed systems under development.

2.6.1 Amoeba

The Amoeba distributed operating system model was developed ai the Vrije
University of Amsterdam with the aim of understanding and developing techniques
for the transparent connection of multiple computers [Leveli92, Tanenbaum90],
Rased on the "processor pool" model, the Amoeba architecture consisis of: intelligent

user terminals, specialised servers, a processor pool consisting of 48 single-board

46



VME-based computers, and 10 VAX CPUs, and gateways which isolaie Amoeba

from non-standard protocols used over Wide Area Networks

The operating system is organised around the client-server model of distribution
Conventional operating system services such as file and direciory managemeni
services have been removed from ihe kernel and delegated 1o server processes. The
Amoeba kernel, with only communication, scheduling, and memory managemeni
responsibilities can make client requests o ihe delegated servers.  These servers may

in turn send client requestis 1o the kernel in its role as both client and server. Remaole

2

Procedure Call (RPC), implemented directly by the kernel, is used as the primary

implemeniation mechanism for client-server communication.

he performance of the Amoeba RPC implemeniation was compared (o other sysieny

T

in terms of delay and bandwidth. In this instance, delay is concerned with the time
that has elapsed between a client issuing a request and receiving an acknowledgement
to that request, and bandwidth is concerned with the data transfer rate between server
and client. Experiments were conducted for the local case where both processes
reside on the same machine, and for the remote case where each process ran on
separate machines and communicated over an Ethernet network. The researchers
found that, when compared (o the RPC facility of the SUNOS network operating
system implementation, the Amoeba's delay was six times betler and ils bandwidth
twice as good. It was also observed that the operation of the Mach's RPC was worse
than most distributed operating systems by a factor of three, and ten times slower than

ithe Amoeba.

Amoeba is transparent both in terms of the location of service provision and (he

underlying processor configuration used. This enables the operating sysiem (o service
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user requests dynamically by allocating one or more available processors, depending
on the degree of concurrency inherent in the request made, from its pool of available
processors. A run server is responsible for organising the pool and will atiempt io
match the service request (in the form of executable binary files) to the available
processors according (o their current workload and the memory requirements of the

application.

In terms of communicaling process groups, an Amoeba process consisis of muliiple
threads of execution that are capable of operating in parallel. However, these process
ihreads share the same address space and communicaie through their comman area.
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scheduled as a group by the operating sysiem. A

the individual threads of a process musi be handled by the designe

itself.

The migration of a process to a processor is mainly governed by information held in
the respective process descriptor such as: class of machines, instruction set, and

minimum memory requirements. The migration protocol would operate thus:

1) The local host sends process descripior to the machine where it will be
executed.
2) The memory server feiches the code and data segments

from wherever they might reside for the remaote host.

3) The kernel of the remote host creates the process threads according 1o
the process descriptor data, and invokes them.

4)  Remote host creales and returns a capability, that contains process
identification and privilege information, ta the initiaior.



Whilst the basic primitives exist to support process migration for load balancing

S

o

purposes, the research team on the Amoeba project were undecided about its merit
implied by the following statement:
"Whether process migration for load balancing is an essential feature

or just another frill is still under discussion" [Tanenbaum92].
The sentiment expressed should be viewed in the context of the two critical factors of
any process migration facility for load balancing. Firstly, residual dependency
becomes more of a problem the greater the number of migrations endured by a process
during its lifetime. Secondly, migration for load balancing requires the local host o

negotiate with one or more remote hosts. In this scenario, the clieni-server model

where RPCs are the predominant mode of communication may seriously

system performance as each sequence of packets must be individually acknowledged,
It is therefore not surprising that the researchers, having observed that asynchronous
RPC allowed considerable parallelism despite its difficulty to program correctly,

advised future designers to avoid such mechanisms.

The Sprite operating system was developed primarily to run UNIX applications on a
network of workstations [Douglis91al. Sprite is based on the workstation-cenired
model of computation where owners are pre-eminent on their own machines.
However, each station informs a central coordinator process of iis availability to
receive work whenever it becomes idle or under-utilised. The availability of a siation
is determined by the length of time belween keyboard or mouse inpui and ihe number
of the runnable processes. At (he time of wriling, it was (he responsibility of the
workstation user (o decide which tasks o run remoiely using the sysiem slale

information available to the ceniral coordinator [Douglis91b]. However, should the
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owner of the selected workstation require further use of its resources then any
identifiable "foreign" process is either run at a lower priority or migraied back io their
originating host. Douglis et al [Douglis91b] observed an improvement in response
time by a factor of five when performing multiple application builds (using UNIX

‘make’) for a network of 12 workstations.

Process migration is effected automatically whenever "foreign" processes must be
returned to their originator or as the indirect consequence of a user-request o transfer
a process. In order to contain the problem of residual dependency, the siaie
information on the migrated process is resiricled to the process's originaling node
although a copy can be made available ai the new hosi via ihe file service. All signals

and messages are sent to the process' home machine from where

Further, o reduce the time thal a process remains in the suspended
migration, the file server is used (o receive any modified pages of the process' address
space from both the original and the new host, and all other pages are demand-paged

in at the new host. It is anticipated that over time relatively few pages will be

modified.

Communication between hosts is facilitated by the RPC mechanism. Thus, using an
Ethernet network of SparcStation 1 workstations the overheads due solely to the
Sprite migration mechanism (migrating a "null" process) was in the region of 76
milliseconds [Douglis91b]. Tt is notable that the original design of Sprite cansisted of
independent monolithic kernels running on each host but only sharing file sysiem

services, due 1o the perceived inefficiencies in micro-kernel technologies.
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2.6.3 The V-System

The V distributed system staried life as a research project at Stanford University.
Unlike the Amoeba processor pool model, V was designed to support a cluster of
computer workstations connected by a high performance network. The primary tenel

of the design philosophy is the creation of a software backplane in which a small

[ex)

distributed kernel and a set of exchangeable value added service modules (such as fil

servers) can co-exist [Cheriton88]. The researchers focused on optimising the

serformance of the communication sub-system. Cheriton et al found that 50% of ihe
message traflic fits into  short fixed-lengih messages [Cheriton88]. Therefore, ihe
performance for short RPCs is improved when a user process places ihe eniire
message in the CPU registers and is taken out by the kernel for fransmission. Along

~

with other optimising features, their implementation of the iranspori pi

oiocn] VMTE

"l

in ithe UNIX kernel exhibited “TIPILJVL(J performance with an 8ms mies

time and 1.9Mbps data rate using two MicroVaxIl machines over an Ethernet link.

In the load sharing policy described by Stumm et al [Stumm88] each host not only
broadcast its current state to all other hosts, but also attempls to maintain a list of
potential sites for load sharing. In order to reduce the communication overheads state
information is only broadcast whenever there is a significant state change, as indicated
by the CPU utilisation measure. In addition, a multicast facility is also available to
request and distribute load information as part of the distributed scheduling
mechanism. Only newly arrived tasks are nominated for transfer as this reduces (he
overheads of process migration and the potential level of residual dependency.
Further, in the V-system kernel communicating processes are considered io be

lightweight as each process does not carry the weight of a separale address space.



In the case of the process migration mechanism of the V kernel, elimination of
dependency could only be guaranteed if programmers ensured ihai their processes
used globally managed resources.  The actual mechanism makes use of a technique
known as precopying which transfers the bulk of the process state information prior o

the suspension of the process. Once suspended, the complele address space is

transferred followed by any pages modified whilst the transfer was in progress

However, precopying imposes additional cormmunication overheads and, according (o

Singhal et al,

"..provides an advantage (o migrating tasks at a performance cost (o (hose lasks
left behind at the sending host and those iasks already residing at the receiving
host." [Singhal94].

The Mach technology was designed at Carnegie-Mellon University as a
multiprocessor operating system. The key aspects of its design were functional
compatibility with the UNIX technology of the day, and the provision of multi-
threaded application support [Acetta86]. 1t was later incorporated as the base
technology for OSF/1. The kernel is object-based, which allows the system (o exhibit
the personality of a particular operating system. Thus, unlike traditional UNIX, the
kernel consists of tasks, threads, and memory objects which can be dynamically
reconfigured without the need to rebuild the system. However, unlike the Amoeha,
network communication is implemented outside the kernel as user-level servers and

consequently has an associated performance penalty.

The kernel schedules the individual threads of a process rather than the process jiself
as each thread will have ils own execution and compulation siate.  Althaugh, if is

ossible o implement Mach as a micro-kernel architeciure, no perceived henefils
8]



were envisaged in a multiprocessor environment. Thus, a generalised process
migration facility is also absent. The Mach IPC which facilitaies communication
between task objects consist of ports and messages. A clever optimisation technique

is used to pass messages between processes running on the same machine, namely

mapping their address space, thus avoiding the copy operation.

The OSF/1 kernel is derived from the Mach operating system, and makes use of the

kernel objecis o implement the UNIX operating system personality [OSF93]. Ti
attempts (o integrale the operaiing system and the application programming inierface

o

such that the services offered can be used directly by application programs. However,

applicaiion developers generally, do not work direcily wiih ia

future standard for distributed UNIX sysiems, it does provide a migration path for

existing UNIX applications, whilst harnessing ihe resources of a disiribuied sysiem.

2.7 DISTRIBUTED APPLICATION STANDARDS

As distributed systems architecture become more commonplace the emphasis has
shifted some way towards the development of applications that can best exploit the
characteristics of the underlying architecture. In principal, application programmers,
system administrators, and end users would have access to an integraled toolsei for
building systems that are capable of being ported or operated across helerogeneous
platforms. Whilst such standards are to be welcomed, they do provide a "blueprint"
for building distributed applications with the technology of today. Therefare, it is
even more imporiant that  distributed operating systems are designed that can
shoulder the responsibility of managing processes and pracess threads in an efficient
manner. Load balancing mechanisms and algorithms will be a key feature of such

systems. The following sub-sections presenis a brief overview of same key standards,



2.7.1 OSF/DCE

The Open Software Foundation (OSF) proposal for a distributed computing
environment, (commonly referred to as DCE), presents a collection of services and
tools that support the creation, use, and maintenance of distributed applications in a

heterogeneous computing environment [OSF92]. The DCE software architeciure is

based on the Clieni-Server model of computation using RPC as the basic mechanism
for communication between applications. Figure 2.4 illustrates the DCE Architecture

on a lypical host and consists of general services, disiributed file services, and RPC
and process thread mechanisms. Services such as data sharing are implemented
through the provision of directory and file servers. Given the heterogeneous nalure of
ihe network, communication between the DCE's of different host is achieved through

the use of a network protocol that is common to all.

The DCE architecture takes on the role of a distributed operating system by ensuring
network transparency for distributed applications running on conventional network
operating systems.  In instances where such an operating system exists, DCE
essentially specifies the name, type, format, and structure of distributed programming
facilities, including the libraries that implement the Application Programming
Interface (API) and program development tools. A distributed application that makes
use of facilities such as RPC and process threads of DCE would have such functions
mapped directly onto the components of the underlying operating sysiem. Hawever,
for systems without the ability to schedule or manage pracess threads, the application
developer must also carry the responsibility for the management, synchronisation, and
prioritisation of individual threads. Further, in cases where DCE threads are made

available as a user-space library routine, the capability of the underlying operating
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system may only be the identification and scheduling of the complete process rather

than individual threads.

Distributed
Applications

Services

Distributed File Service

RPC

Threads OCE

0S & Transport Services

Figure 2.4 The DCE Software Architecture

2.7.2 OMG/CORBA

The Object Management Group (OMG) published its standards for an architecture for
object-oriented messaging and referred to it as CORBA (Common Object Request

Broker Architecture) [Byron94]. The primary goal was to facilitate distributed object

P

management in a manner that allows objects in a heterogeneous network (o
communicate transparently. An object may be loosely regarded as the unit of
processing defined by the encapsulation of both the computational methods and ihe
data to be used. In addition, an object of any type can request services of ather
objects via ihe exchange of messages. The objects managed by CORBA includes

".components of, and output from, operating sysiems,

.
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networking software, and applications - whether they were built with object
technology or not" [Byron94]. In this scenario objects, as units of processing, can
vary enormously in their size and complexity. Therefore, one of the primary goals in
setting the standards was compatibility with existing applications (where size and
behaviour are predictable) with a view to facilitate fuiure objeci-orienied

implementation needs.

The architecture is similar to DCE in terms of its relationship with the native

. .,\,.._,

operaling system and the toolset provided to application developers. The CORBA

structure consist of an Object Request Broker (ORB) kernel, Interface Definitio

Language, and other APls. The primary difference is that as an object iiself, the ORB
and iis components can be shared or simultaneously used to build other client abjects
CORBA defines standards for name services, the mapping of requesiers o providers,

the selection and invocation of the appropriate methods for service provision, and its

delivery using standard transport protocols such as TCP/IP.

The future of standards such as CORBA is uncertain as there are a number of
competing products (or de facto standards) available such as Microsoft's OLE (Object
Linking and Embedding), and Architecture Projects Management Ltd's ANSA
(Advanced Networked Systems Architecture) [APM93]. However, it may be some
time before application developers are able to appreciate and demand the full benefit
of object orientations, and vendors can deliver such architectures at a performance

premium.
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CHAPTER 3

DISTRIBUTED LOAD BALANCING

.1 POLICIES AND PROCEDURES

In a study conducted by Williams [Williams91] load imbalance is defined 1o be "the

difference between the maximum and minimum numbers of elemenis per processar

)

compared (o the average number of elemenis per processor”". However, in order 1o

correct imbalances in system workload, the local host may need io colleci informaiion

about the process loads of part or all of the sysiem, decide the most appropr

location to continue execuiion of a process, and seleci

would benefit most from execution at that remote location. These tasks entail both
communication and processing overheads. Therefore, its policies for collecting and
exchanging state information, selecting remote hosts and local processes for the
purpose of process migration, should result in low communication overheads and a

fast response time.

Researchers such as Lin et al {L.in91], Zhou [Zhou88], and Johnson [Johnson88] have
identified three components of any load balancing policy, namely policies for the
exchange of state information, the transfer of processes, and the lacation of recipient
processors. Similarly, Goscinski et al [Goscinski90] suggest that a load balancing
server should consist of three components to answer the when, which, and where
questions of load balancing. Thus, the transfer component would address the guesiion

of which process {o migrate, the location component answers quesiions regarding the



destination for migrated processes, and the issue of when to activate load balancing

would be governed by the system clock or other specific events.
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Figure 3.1 Components of a Load Balancing Server

Shown in Figure 3.1 is a more detailed illustration of
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presented in an earlier Figure 2.
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do with the exchange of state rather than process information. For example, in Figure
3.1, the information exchange component requests state information from other nodes
in the network. This may in turn be the result of the activities of the load
measurement process in its attempt to construct a picture of the global state. The
transfer policy component, using local and global staie information, will respond by
sending a request to the location policy component and signalling the scheduler
according to the degree of imbalance detected. The location policy component,
having identified a suitable destination for process migration will pass the hosi

address to the migration mechanism to effect the iransfer.

In the load balancing policy (referred to as LBC) suggesied by Ciciani et al and Lin &
al[Lin91], the information exchange and location componenis are centralised, and ihe
transfer component is partially distributed and partially centralised. One of the
processor nodes acts as a central job dispatcher by maintaining a table of process
queue lengths for each node. Process migration only occurs on the basis of the state
information available and at the request of the central dispatcher (o potential senders
and receivers [Ciciani88]. Whilst, this strategy requires only partial involvement in
the actual transfer of processes between processors, like most centralised load
balancing strategies, the system is vulnerable to failure in the processor running the
job dispatcher. Therefore, greater reliability can be altained by each processor taking
responsibility for effecting and synchronising load balancing activities with its peers.

The various policies commonly operated by the components of a load halancing

server are discussed in the following sections.
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3.1.1 Processor Load Measurement

The monitoring of processor load is an important activity in centralised and
distributed systems. The information collected may be used for accounting purposes,
load balancing, performance measurement, and configuration management in the
short- and long-term. Given the potential impact of these decisions on the service
quality of the system, it is essential that the load measurements be accurate and

timely.  Furthermore, the measure should impose litile or no processing or

4]

communication overheads. For example, a load measure that is simple to compute,
but needs to be sent frequently to all the remote hosts of a large distributed system can
impose significant communication overheads. In a loosely-coupled distributed
system, each processor will independently compute iis local load.  Various
quantitative and qualitative indicators of processor load are possible along with a
variety of methods for compuling their values. The simplest load measure is ihe
instantaneous length of resource queues for a given host. The predefined maximum
queue lengths would be used to define the capacity of a host processor. The
computation of the load is invoked during any process state change such as creation,
execution, suspension, and termination. The computation would involve simple
increment or decrement operations in accordance with the resource queues concerned.
The processing overhead is insignificant as the computation is an integral pari of the
operating system's resource management operation. However, this measure is
inaccurate as it does not take into account processes that are in transit from remaie
hosts. That is, as migrating processes are not counted on the local host until they

arrive, their arrival after the load measurement has been made would make the

Ll

preceding load reading inaccurate. The time that a process is in transit is likely o b
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significantly smaller than the load measurement sampling period. Thus, there

r>

.
%42
3

(‘t}

suarantee that the next measurement made would capiure such processes in ihe queti



of the local host. In the study by Barman et al [Barman89], the scheduler of each

processor estimated its own load continually, using the formula:

ZU+MN)=Z) +a(Ar) —s(Ar) +xr (Ar) —xi (AF) (3.1)

where, Z(1+ Ar)is the estimated load for the new time frame (r+A7), (A
represents newly created local processes, s(Ar)is the number of local processes
transmitted to the local cpu server, xr (A7) is the number of remote process arrivals,
and xt (Af) is the number of processes migrated during the time period A7, Whilst
this method gives a more accurate and stable load measure, by irying (o anticipate the

creation and movement of processes, it has a number of problems. Firstly, a suitable

time frame must be selected which maximises the accuracy of the measurement and

minimises the overheads of its computation. Such requiremenis are ofien in conflict.
Secondly, the method needs to build up knowledge about the system's workload
characteristics as light-weight and heavy-weight processes can significantly distort

the accuracy of the measure.

In the study by Johnson [Johnson88], the virtual load of a system would be the sum
of the local processes, and processes in transit from other nodes. The local host could
keep track of its virtual load, by maintaining a count of the total number of processes
it has agreed to receive or transmit. The key problem with this method is that under
heavy system loadings, it needs a reliable nelwork, resilieni communication protocols,
and remote hosts that are unlikely to cancel negotiated process agreements,
Nevertheless, the virtual load is a more accurale representation of a sysiem's
instantaneous load than the length of process queues, and much easier to compute than

the measure suggested by Barman et al [Barman®9].



The load value should not only be an accurate reflection of current load, but also a
means by which one can make reasonable predictions about the future workload
[Hatch90]. The research conducted by Ferrari et al [Ferrari87] demonstrated that
resource queue lengths, such as CPU, disk, and memory, were the best indicator of
current and future system load. Hac et al [Hac90] used the CPU queue length, CPU
utilisation, and the number of active jobs to characterise the workload at a given host.
State information tables are kept in the form of a load vector for each site. The load

vector for host h is computed as follows:

w(h) = w(h) + k(h)2 (3.2)

where, w(h) is the length of the load vector, k(h) represents the weighted workload
characteristic (CPU queue length , utilisation etc.) for h. Thus, long load vectors

would represent hosts that are heavily loaded relative to those with short load vectors.

In the case of light-weight processes, instantaneous load measurements are unreliable
and suscepltible to rapid change. Therefore, any decisions made on the basis of the
load information collected are more likely 1o be inaccurate and contribute to system
instability. An alternative and more accurate load measure is (he average system load
over a given time period. The difficulty here is in defining a load sampling period
that is small enough to capture significant changes in system load, and yet large
enough to allow its accurate prediction for succeeding time periods. UNIX systems
provide a load average, based on the length of the process run queue, over a five
minute period. Given the length of the sampling period, the measure can only provide

an indicator to system activity from one five minute period to the next, but is very

suggest that systern load should be "averaged over a period at least as long as the time
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necessary to migrate an average process". Again, the time to migrate a process will
very much depend on the system load, the routing possibilities of each intermediate
host, and the scheduling discipline employed by a local host for processing messages
and processes from their respective queues. The study of Ferrari et al [Ferrari87]
identified a four second average subjected to short-term smoothing allowed more
accurate decision-making with a resultant improvement in overall sysiem

performance.

The length of the message queue for a given host can be a good indicator of its load.
However, this is a less reliable measure as it depends on the degree of residual
dependency on the local host. That is, cooperating processes, that have been
partitioned through migration across the network will continue to generate messages
to the local host for processes of that set. Thus, the length of the queue does not
reflect the process load of the host. Further, the message queue of a local host in a
point-to-point distributed system architecture may contain processes that are waiting

to be routed to their destinations.

Hatch et al [Hatch90] examined various load indices for load sharing in a distributed
system with differing processor speeds. The researchers concluded that a relative load
index based upon the resource queue lengths, and processor speed gave a more
accurate characterisation of processor load and resulted in the greatest reduction in

average job response times.
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3.1.2 Information Exchange Policy

To obtain the aggregate load for a distributed system, the load of each host must be
determined and collected. The collection of this information is known as the load
balancing information exchange policy. The policy may be implemented in one of
two ways. In the first approach, a host could actively seek the load of its remote
hosts. That is, each time the local host needs the information, it will broadcast or send
individual requests for it, and the receiving hosts will reply in kind with information
about its current system load. As load information is only requested when needed, the
policy keeps to a minimum the communication overheads resulting from the exchange
of state information. Alternatively, each host may volunteer this information by
broadcasting to all its remote hosts at periodic time intervals or on the occurrence of
specific events such as a change in the systems load. The effectiveness of this policy
will primarily be determined by the frequency of events and the chosen time intervals
for information exchange. Frequent information exchange provides each recipient
host with relatively accurate information regarding system load, but results in a
greater volume of messages on the network. The use of flexible time intervals would
enable less frequent information exchange at low loadings, and more frequent
exchange at high loadings. ~ Hac et al [Hac90] makes use of a flexible exchange
policy where the interval for information exchange depends on the load of each host.
For example, information can be exchanged less often as long as the load is balanced,
and on every occurrence of a load state change. The local host receiving the load
packets of its peers, can either use the information to update a locally held load table
for all the hosts in the system, or compute a global system load value to be used in any
present or future balancing policy. However, the overhead in attempting to identify
and predict the future load state, in order to set an appropriate interval for information

exchange, may outweigh the advantage of such a policy.
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Both strategies for the exchange of information become problematic under extreme
system loads and such policies may even accentuate the communication overheads.
For example, under heavy system load, information is exchanged more frequently,
but with less accuracy, because the load state is changing even before any decision
can be made with the data received. Further, there is a greater likelihood of messages
being lost or discarded as a result of overflowing message buffers, a saturated
communication medium, or "reply" responses being timed out. It may be the case that
the load state of systems with long running processes changes less frequently than
those with lightweight processes, and the problem of information exchange under
such conditions is one of degree. Nevertheless, the problem remains of ensuring that

the information exchanged is timely and accurate.

Most bus-based LANs have an efficient implementation of a broadcast mechanism
such that message delivery time to all hosts in the network is generally uniform
[Blake92]. However, under extreme loads the incidence of message collision and
their avoidance can further exacerbate the communication overheads. Given the
communication overheads of a fully distributed system various alternative proposals
have been suggested for reducing this overhead. Some researchers have suggested a
semi-distributed scheme such that certain hosts are nominated for the collection of
state information from processors within the network, and are given the responsibility
for computing the system load, and re-broadcasting this value to all host processors
[Mittal89, Ahmad90]. The main problem with this scheme is its reliance on
centralisation of the information exchange policy and its vulnerability to system
failure. Alternatively, the design of an efficient multicast system yielding similar
performance to the broadcast mechanism retains the fully distributed scheme, but
would allow each host to collect partial state information from processors up to a

maximum distance from the requesting host. The issue is whether the decisions based
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on partial information about the load state is just as effective as those using

information that is more complete [Ali92].

3.1.3 Transfer Policy

According to Zhou, "the transfer policy determines the eligibility of a job for load
balancing based on the job and the loads of the host" [Zhou88]. That is, the transfer
policy determines the process to be migrated and the circumstances in which it takes
place. However, Johnson [Johnson88] regards the role of the transfer policy
component to be primarily concerned with the conditions under which process
migration should be considered. This view is supported by Lin et al [Lin91] who

states:

"The transfer rule is used to determine when to initiate an attempt to
transfer a job and whether or not to transfer a job" [Lin91].

Thus, the algorithm's complexity is reduced by delegating the responsibility for

selecting a migratable process to one or more schedulers of the local host.

Threshold values are commonly used to flag the conditions under which migration
should take place [Eager86]. A local host can be considered to be overloaded,
underloaded, or normally loaded depending on its current workload relative to the
load threshold value. If the host is not handling a normal load, then an attempt should
be made to redress this load imbalance by making beiter use of the remote hosis. A
simple transfer policy consists of a fixed threshold value derived from extensive
system traces, modelling, and simulation. Researchers have found that a fixed
threshold value of up to two processes yielded a betier system performance than
much larger values [Johnson88, Zhou88, Eager86]. The advantage of this sirategy is
its ease of implementation and operation as the policy is primarily concerned with the
load of the local host. No knowledge of the load of remote hosts, and the subsequent



average system load, is required to operate the policy. However, there will be periods
when all hosts are in an underloaded or overloaded state. In such cases, the fixed
threshold policy would result in futile attempts being made to balance the workload.
Furthermore, it is even more important than the transfer policy is driven by the load
of the local host relative to that of its remote peers. The global average policy
suggested by Johnson [Johnson89a) attempts to ensure that each host maintains its
load within range of the average system load. If a local host finds its load to be out of

range then procedures will be set in motion to remove the imbalance in the system.

The transfer policy can be activated periodically or on the occurrence of a change in
load state resulting from activities such as process creation or deletion. In the model
developed by Johnson [Johnson88], the global average policy was activated every 200
milliseconds. This period of activation was found to give the best response times for
processes with an average execution time of one second. In transferring a process to a
remote node, one must ensure that: the process does not continue to migrate aimlessly
through the network without ever being executed at any of the nodes to which it is
sent. The process should continue to execute at its new location with the same
functionality as if the transfer never occurred. Dealing adequately with these

problems may place additional costs on systems which employ load balancing.

3.1.4 Location Policy

Once the decision has been taken to initiate a process transfer, the load balancing
facility must locate and negotiate with potential remote hosts to be the source of or

destination for a migratable process. The complexity of the location policy is

dependent on whether the requesting local host maintains, and updaies regularly, state




point of merely selecting the most suitable location address from a local state table. In
the algorithm proposed by Hac et al [Hac90], the state information tables provide an
easy-to-use reference for the location policy. The site with the longest load vector
would indicate the worst location, and the shortest the ideal choice. If the site with the
shortest load vector is unwilling to accept the process then the next best sites will be
chosen. Failure to find a suitable location may result in the termination of the

algorithm.

In load balancing strategies that maintain little or no state information, the location
policy must poll potential hosts in order to identify suitable destinations. Having
received a number of replies, it can either select the first underloaded host, or wait for
all hosts to reply before deciding on the host with the best location, in terms of
distance as well as measured workload, for undertaking process migration. Under
very heavy or light system load a requesting host which adopts a policy that 1s based
on collecting all replies before selecting potential destinations is more likely to lose
those respondents with acceptable conditions for migration. This is primarily because
the state of the selected location may well have changed even before the migration
mechanism is effected, resulting in the subsequent rejection of a potentially

migratable process.

3.1.5 Frequency Of Activation

The execution of the load balancing algorithm represents an additional performance
overhead. This is dependent on the frequency of its activation and the complexity of
the processing performed. A computation-intensive or message-intensive algorithm
will impose a greater overhead than those requiring simple arithmetic computations,

little or no inter-processor messaging, and with occasional activation.
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Load balancing may be invoked at the point of process scheduling or at regular time
intervals which may or may not coincide with the operation of the scheduler. Ideally,
the algorithm should be invoked whenever its execution is likely to result in the
successful migration of a local process to a remote host. For example, whenever a
process is created by the High-Level Scheduler the load balancing algorithm would be
invoked by the low-level Scheduler. In this case, known as non-preemptive
scheduling, processes that have started their execution on the local host are not
eligible for migration. The intention is to begin and complete execution of the newly
created process earlier than would be possible on the local host, and also avoid the
extra complexity of administering the run-time environment for the migrated process.
However, if the algorithm fails to find a remote host, the local host will remain in an
overloaded state until one or more local processes complete. However, whilst the
execution of the algorithm is kept to a minimum, the creation of subsequent processes,
and the continued failure to find a remote host for these new processes may result in

the local host being in an overloaded state for an indefinite period.

In cases where load balancing is invoked at regular time intervals, the interval must be
such that the overheads do not outweigh the benefits of a successful migration. For
example, frequent execution of the algorithm could result in  more successful
migrations but a reduced throughput on the local host. The primary disadvantage of
this form of activation is ifs expense as it must be supported by pre-emptive process
scheduling. It is generally the case that such scheduling carries enormous overheads
as it may be necessary to migrate the complete process environment including

registers and workspace areas [Singhal94].




3.2 ALGORITHMIC CLASSIFICATION

The algorithms used for implementing a load balancing policy vary in their level of
complexity and sophistication. Wah et al [Wah85] used the term "task bidding" to
describe the process by which overloaded and underloaded hosts negotiate the transfer
of processes. However, today it is more common to refer to this activity, in the case
of loosely-coupled systems, as having sender-initiated or receiver-initiated properties.
The sender-initiated policy is one in which the overloaded host invokes load balancing
in an attempt to find a peer processor that is able to accept its excess workload. It is
therefore the responsibility of the overloaded host to identify amongst its peers
potential (underloaded) recipients of the excess workload. Zhou [Zhou88] refers to
policies of this type as source-initiative algorithms, because the overloaded host must
take the initiative to transfer excess workload. In contrast, a receiver-initiated policy is
characterised by the underloaded host initiating the load balancing procedure to seek
out peer processors from which additional work may be obtained. Such policies are
referred to by Zhou [Zhou88] as server-initiative algorithms as it is the underloaded
hosts that takes the initiative to be actively engaged in finding amongst its peers,

potential (overloaded) senders of any excess workload.

The success or failure of policies in either category is governed by the ratio of the
amount of message traffic created by a policy againsi the number of process
migrations that results from that activity. The debate is not so much to do with
whether sender-initiated policies are better than receiver-initiated policies, but is more
to do with the amount of state information that needs to be collected and maintained,
in order to identify overloaded or underloaded processors, and thus increase ihe

likelihoad of successful process migrations.
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The researcher Philp [Philp90] views the complexity of load balancing algorithms by
the amount of communication that results when attempting to identify the least loaded
node in the network . Thus, load balancing algorithms can vary from those which
collect little or no state information from peer nodes to those that base their location

decision on state information gathered from all nodes in the network.
In the following sub-sections, load balancing algorithms are classified according to

the state information that must be collected and maintained before policy decisions

can be made.

3.2.1 Simple Static Algorithms

A load balancing algorithm is said to be static if it collects no state information. That
is, a local host employing such an algorithm will be characterised by the absence of
dialogue with other hosts to establish the system state, and also the maintenance of
state tables for remote hosts who may or may not broadcast their current state.
Therefore, given the absence of state information, the location policy of the local host
is primarily governed by probabilistic balancing decisions, without regard for the
current state of the system. A very simple processor load measure is used by the
algorithm, such as the number of processes resident on the host concerned. Typically,
a predefined load threshold level is set and kept constant throughout the operational
lifetime of the system. This threshold value may have been derived from simulation
studies and system load traces. But, once the load balancing parameters have been

established, they become unalterable at run-time.

The balancing algorithm is only effected whenever the load rises above (or drops

below) the threshold. Once effected, the algorithm will decide, without interrogating
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the intended destination, which process should be migrated to which node. The
selection of a process and its destination host may be randomly determined, or based
on predefined rules such as migrating the last locally created process to a destination
host whose address is the first entry in the locally held remote host address table. The
process is then migrated to the destination, which has no choice but to accept it. The
policy for selecting a process to migrate must ensure that on migration, any remote
host receiving the process does not continue the aimless and indefinite migration of
the same process. In this study, the policy adopted was to allow only one migration
per process. In Ahmad et al [Ahmad90] a process is allowed to make many
migrations until a suitable node is found or a predefined process migration limit is
exceeded. Eager et al [Eager86] adopted the method of specifying a maximum
number of migrations per process. Alternatively, a process could be migrated a
variable number of times during its lifetime providing it was executed at least once on

each new host before becoming eligible for any future migrations.

The random load balancing policy is characteristic of this class of algorithms and is
commonly cited as the lowest common denominator for all practical load balancing
algorithms [FFinkel90]. Such algorithms are aiiractive because the communication
overheads are minimal but they are generally incapable of adjusting to the real
imbalances of "peaks" and "troughs" of system workload over a period of time.
Further, Srimani et al [Srimani92] adapts the policy for real-time processes with
execution deadlines. In this environment a migrated process will be lost if the
receiving host cannot start its execution immediately. However, before any such jabs

are lost, the policy attempts to ensure their execution by issuing pre-emptive priorities.



3.2.2 Simple Dynamic Algorithms

These algorithms are characterised by the collection of small amounts of siate
information. Similar to the static algorithms, a simple processor load measure is also
used, and a predefined load threshold set. Unlike the static algorithms, its invocation
will initiate a dialogue between the overloaded (or underloaded) processor and a fixed
number of potential recipients. Refusal by all potential recipients as a result of their
own workload, will result in the migratable process being executed locally. A
willingness to accept a process by any one of the interrogated processes will result in
ithe migration of a selected process to that node. The algorithm proposed by Ahmad et
al [Ahmad90] is characterised by nodes collecting state information from their most
immediate neighbours, and the migration of processes io the neighbour wiih ithe

lowest load. Other researchers have used sender-initiated threshold algorithms where

staie collection is activated on the arrival of a local task [Mirchandaney89,
Johnson88]. Remote hosts are polled at random and the first to respond positively is
selected. In contrast, an alternative algorithm probes a fixed number of remote hosts,
awaits all replies, and select the host with the shortest process queue[Finkel90,

Eager86, Philp90].

In the model used by Dikshit et al [Dikshit89] the parameters to the threshold policy
includes a random set of hosts. However, a remote host that receives a probe message
determines if transferring a job to the host would make its load greater than the
threshold. In the real-time environment of Srimani et al [Srimani92] a probing node
that is unable to find a suitable node sends the newly created process as a priority job
to the last node probed. Equivalent receiver-initiated algorithms have also been
developed. Such algorithms, referred to as the "reverse" palicy, are activated every
time a process completes [Mirchandaney89]. In the study conducted by Lin et al

[Lin91a] an underioaded host will randomly probe remole sites to find those with job
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queues above a fixed threshold. The located siies are subsequently probed and, those

whose job queues continue to be above the threshold, will be sent requests for work.

3.2.3 Adaptive Algorithms

These algorithms are characterised by a variable threshold level governed by the
current state of the system, and may combine two or more load balancing policies.
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e, if a processor is overloaded, it will inform a fixed number of processors
of its desire 1o off load work, and subsequently enier negotiation with one or more
positive respondents regarding their staius. Should no node respond positively, the
initiator may presume that the threshold level is oo low (herefore everyone is
overloaded), and may adjust the level upwards. Likewise, should a processor's load
fall below the threshold, then it may well inform other processors in the neiwork of iis

willingness io receive work.

More complex adaptive algorithms may change their policy according to the dynamic
workload characteristics of  the system. For example, at light system loads, the
strategy may be (o adopt a sender-initiated load balancing policy. However, should
the system become heavily loaded, the sender-initiated policy would be abandoned
and a receiver-initiated approach adopted.  Such algorithms can be extremely
sophisticated, requiring complex communications protocols. The "symmetric"
algorithms developed in [Lin91, Mirchandaney89] uses both sender and receiver-
initiated strategies. In the implementations proposed load balancing is activaied when
the local load becomes more than the sender-threshold or less than the receiver-

threshold.

The algorithm proposed by Dikshit et al [Dikshit89] is activated at regular iniervals

and compuies the difference between iis own load and ihe leasi bhusy hosi. A
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difference greater than an accepiable bias initiates a job transfer. However, a time
window, maintained by the load balancer which keep time histories for process
transfers made, is used (o avoid overloading the least loaded processor. An alternative
approach, known as "broadcast idle" is used to resolve the problem of saturating
underloaded hosts. The policy operaies such that a local host whose load is more than
one must wait for a time period equal to the dimension of the network divided by the
local load. Thus, the more heavily loaded a host is, the less will be the duration of iis
wait . A broadcast 'reservation' can then be made to the idle host if one has not been

made already.

In the State Collection Algorithm of Ammar et al [Ammar88] each node keeps a
record of the global state in terms of the process queue lengih for each node.
However, unlike the Global policy in which state information is broadcast
periodically, their algorithm only collects state information as a by-product of
communication between two or more processes. For example, whenever a process is
migrated, the load of the sending host is packaged with the process itself. Likewise,
the termination of a process remotely will result in packing the load of the remote host

with the exit message sent to the originating host.

3.3 SYSTEM PERFORMANCE

The most common finding of the majority of research conducted thus far, is the

superior performance exhibited by distributed sysiems with a foad balancing policy

Ta

over those without any policy at all. This was particularly evideni in ihe case of siati



Researchers such as [Mirchandaney89, Hac91, Zhou88, [Simpson94] found that
substantial improvements in system performance can be achieved over a wide range of
workload intensities, even for very simple load balancing algorithms. The
improvement in overall system performance at low system loading, although positive,
was generally negligible. At low system loadings, the overheads in employing load
balancing negates the benefits of a more balanced workload.  Performance
improvements are particularly marked in cases of moderate to heavy sysiem loadings.
[Zhou88] showed that load balancing for moderate systern loads, reduced the average

response time of a task by as much as 60%, and also made it much more prediciable.

The effect of load balancing overheads on system performance is generally accepied

as a limiting factor. Hac et al [Hac91] found that the delay caused by load balan

was in the region of 5 to 15 seconds, depending on the number of processes, and
resulted in a five percent degradation of system performance. However, this overhead
was found to be fairly consistent across system workloads consisting of a range of job

mix.

Some researchers have explored the impact of network speed on the overall
performance of distributed load balancing sysiems [Mirchandaney89, Ali92].
Generally, the slower the network speed becomes as a result of the physical medium
of transfer, and the protocols effected during the transfer, then ihe smaller ihe benefiis
of load balancing. Ali et al [A1i92] found that the performance does deterioraie at high
system loads, the greater the distance between communicaiing processors. This was
due to job congestion in the network arising from the greater incidence of process

migration. However, Mirchandaney et al [Mirchandaney89] found ihai, despiie ihe

deterioration in performance, their experimenis demonsirated thai load sharing
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remained a worthwhile task, even when delays in the network were in excess of 10

times the run time of a migrated process.

The simulation study conducted by Blake [Blake92] investigated the performance of a
variely of load balancing algorithms for application processes that were assumed {0
be highly independent. In their study, the sysiem was saturated with processes, and

the effectiveness of the algorithm was measured in terms of its ability to redisiribute

o

.

the workload such that an overall improvement in system performance resulied.
Results were collected for an Ethernet bus-based architecture with 10 and 100
processors respectively. In the case where scheduling and migraiion overheads are

negligible, Blake found thai:

a) the no load balancing and random scheduling policy were ineffeciive
for sysiems with moderate sysiem loads;

b) the effectiveness of the sender-initiated threshold policy increased
the greater the system load;

c) the receiver-initiated threshold policy strayed furthest away from the
optimal at low system loads, but formulated near optimal schedules
the greater the load.

A centralised scheduler, that collects state information at negligible costs constructed
optimal schedules at all times [Blake92]. In the case where significant cosis were
attributed to task migration and the execution of the scheduler, Blake found the
performance of the centralised scheduler degraded. In contrast, the receiver-initiated
threshold policy was found to give the best performance overall. Blake therefore
concluded that the receiver-initiated policy was the scheduling method of choice for

both a 10 and 100 processor system [Blake92].
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Whilst these findings are in line with the results of other researchers in the field, the
model used by Blake omitted a number of important parameters. Firstly, the
assumption is made that tasks communicate infrequently, and this direcily implies a
light load on the interconnection network making bus contention an insignificant
issue.  Secondly, Blake makes the presumption ihat bus-based interconnection is
generally characterised by uniform message delivery time, resulting in the scalability
of the scheduling algorithms for larger processor networks. Under moderate system
load these assumptions are valid, but the load on most systems is highly variable.
Therefore, what is of particular interest is the behaviour of such algorithms across a

range of loads and, more importantly, their scalability in such cases.

It may be argued that the above results are not surprising for independent, Cru-
intensive processes with little or no communication with other processes. Joosen ef al
[Joosen90], and Eager et al [Eager88] investigated the impact on system performance
of dependency between a migrated process and the host from which it was migrated
and concluded that remote execution is less expensive and preferable (o migration
even in cases where load balancing is advantageous. The above observation is not an
argument against load balancing, but rather the unsuitability of process migration as

the basic mechanism for load balancing.

However, the study of Hac et al [Hac91] examined the impact of a decentralised load
balancing algorithm on system performance for a variety of job mixes ranging from

CPU-intensive to I/O-intensive processes. Generally, they found the improvemeni of

network across a range of job mixes. For example, in a nefwork where only 25% of

the processor nodes are overloaded, the results of Hac el al [Hac91] show thai there

was 4 (hreefold improvement in the mean response (ime of CPU-intensive processes in
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the system which used dynamic load balancing. Furthermore, the mean response time
for I/O-intensive processes showed a 25% to 45% improvement on systems without
load balancing. Similarly, experiments conducted on a network in which 75% of the
processor nodes were overloaded, returned a response time improvement of 40% for
CPU-intensive processes for the load balancing case. However, a performance
decrease of between two and eight percent was exhibited for I[/O-intensive processes
on systems with load balancing principally because of the transfer of very large files

between local and remote processors. This led Hac et al to conclude that:

"The overhead caused by the execution of the decentralised load balancing
algorithm is not significant in comparison with the mean response time. The
overhead caused by the transfer of large files and large processes is significant.”
[Hac92].

The work of [Johnson88] examined the impact of load balancing in a communicating
process group model. In this study, load balancing was also found to be worthwhile at
or above moderate system loadings. Other researchers have considered load balancing
in a heterogeneous processor environment and have demonstrated similar findings.
The study by [Harinarayan91] examined a range of limited access network topologies,
where access (o server nodes by one or more source nodes in the network was
restricted according to locality. The results of this study demonstrated that "different

interconnection patterns” gave similar performance measurements.

Given the above findings, recent research effort has endeavoured to identify ihe
"perfect” or optimal balancing algorithm. Such an algorithm should perform well
across a wide range of system loads, workload mixes, and configurations, achieving
resource utilisation at or near the upper reaches of the performance boundary defined
by the number of nodes in the network. More recently the primary issue has been

whether more sophisticated algarithms are the means by which "perfection” in
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performance can be aitained compared to the less sophisticated group of algorithms.
One might expect balancing algorithms which make use of current sysiem staie

information to perform better than static algorithms depending on the completen

’l)

the information collected. Thus, the more complete the state information, the betier

the location decisions, and thus the overall performance.

Eager et al [Eager86] argues that the optimal level of algorithmic complexity falls in
the simple dynamic range. Further, Eager el al [Eager86] staies (hal "simple
adaptive load sharing is of considerable practical value and that there is no firm
evidence that the potential costs of collecting and using extensive state information
are justified by the potential benefits".  This latter observation is supporied by
Johnson [Johnson88] who found that in an environment consisiing of shori, cpu-
intensive, and non-communicaling processes, the maore complex global average
algorithm was unable (o produce any further improvement over the simple dynamic
algorithm represented by the threshold policy across a range of system load. In the
case of a lightly loaded system one could envisage the situation where the
communication cost involved in collecting information about the system state is
significant relative to the execution time of a potential migratable process. Further,
there is a greater likelihood of an overloaded processor finding a potential recipient
without the need to collect a significant amount of state information. Similarly, in the
case of heavy system loading, one might expect an overloaded processor to receive a
greater number of rejections as most processors are generally overloaded themselves.
Thus, the greater the amount of global state information available, the befler the
location decision, with a consequent reduction in the possibility of rejection.
However, Philp [Philp90] argues that at high loadings, even a perfect balancing
algorithm would not show increased performance because the additional siate

information collected by complex palicies are counterproductive. The failure of
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complex algorithms to deliver improved performance was explained by the increasing
likelihood that other processors in the system have and are acting on the same
information.  For example, an underloaded processor in a network of mainly
overloaded processors  may well find itself to be a potential recipient of excess
process loads from the other processors that have access (o iis siate informaiion.
Consequently, instability will arise as the overloaded processors overwhelm the leasi-

loaded processor with migrating processes.

In cases of high system loadings, the fact that demand for addiiional processing
capacity outsirips the availability of least-loaded locations creates a requirement for
additional mechanisms 1o avoid potential instability. For example, whal may have
been a relatively simple protocol for migraiing a process

encompass a "Request, Acknowledge, Send, Acknowledge

ii

processor load measure could be extended to also cover processes that are in transit (o
or from the node concerned. However, these mechanisms impose additional
complexity and cost on an already complex algorithm. Philp [Philp90] argues that
irrespective of such mechanisms, the problem of delayed information is one that
affects complex algorithms the most. The problem is that such algorithms work well
when the state information received is an accurate reflection of a node's siate at the
time the information was received and at the time that it was acted upon. However, a
processor has no real way of knowing when, where fram, and how many processes
will be resident within the time frame between the announcement of is state and the
action on that state information. Thus, the information sent out is ofien imprecise and
incomplete.  Philp [Philp90] therefore suggests that the best strategy for complex

algorithms is 10 make decisions on information supplied by a small collection of

respondents.
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The study by Ali et al [Ali92] examined load balancing on a range of helerogeneous
disiributed system neiwork topologies using an algorithm which limits the distance
that a migratable process can travel. The distributed system would be split intc a
number of partitions of a given size. The size of the pariition then becomes a
parameter to control the flow of jobs through the communication network. That is,
the partition to which a node belongs will dictate whether they are allowed (o

xchange processes. Thus, load balancing is limited to the nodes within a givern

nartition, and, whenever a major state change occurs, each node should send iis siaius
| J B

10 all the nodes in its partition. The load balancing technique is such that each node

vill use the received state information to caleulate the difference between iis load and

the expecied load of every node in the partition. Furthermare, "a node may choose nol

(o send any job for remole processing if the estimaie vemnent in performance is

U’"

below a ceriain threshold" [A6i92].

Ali et al [Al1i92] found that the average utilisation in systems with and without load
balancing was around 80% and 66% respectively. Furthermore, partitions with
broadcast distance equal to two were found (o give the best performance for all
configurations studied. The greater the size of the partition, the greater the number of
nodes thal can communicate and share workload. However, grealer partition size may
result in less accurate information being exchanged due to communication delays. Ali
et al [A1i92] therefore, conclude that "the best performance can be reached when the
broadcast distance is around half the diameter of the graph that represenis the

interconnection network".

This particular study was limited in a number of ways. Firsily, a distributed sysiem
with only eight nodes was examined. The question remains as to whether the

perfarmance of the algorithm studied can be scaled given networks with a greater
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number of nodes, and partition sizes. Secondly, the system load studied was confined
to heavy system loads. Again, how the algorithm performs relative (o other balancing
algorithms across a range of system workloads and network sizes should be explored.
This is particularly important as the proposed algorithm is fairly complex compared 1o
others. For example, it attempis to predict system load and determine the cost-

effectiveness of ils process migration decisions.

Ahmad et al [Ahmad90] argues that a fully distributed load balancing scheme, in
which all nodes collect state information about every other node, presenis practical
problems for large sysiems consisting of hundreds or thousands of processors. He
therefore, proposes a semi-distributed load balancing scheme 1o overcome the
increased communication overhead of fully-distributed schemes. The semi-distribuied
approach used was based on an interconneciion structure partitioned into independent
symmetric regions, where each region has a special processor known as the scheduler.
The scheduler maintains state information for all the processor nodes within its
allotted region. Load balancing operates at two levels: at the high level the
schedulers cooperate in an attempt to balance workload across regions; whilst at the
low level, an individual scheduler balances the workload amongst the nodes of a
particular region. The resulting task migrations are carried out between the scheduler
and its regional nodes, and the schedulers for other regions. The threshold level for
inter-regional migration was one process whereas for intra-regional it was three

pracesses.

Ahmad et al [Ahmad90] compared fully distributed load balancing schemes for
multiprocessor systems with up ta 1024 processors and found that far very large
distributed systems, both semi and fully distributed load balancing scheme yielded a

significant improvement in respanse fime aver the no load balancing case under low,
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medium, and high system loads. At loadings of 90%, the fully distributed and semi-
distributed schemes showed  performance improvements of 62% and 82%
respectively. Further, the semi-distributed scheme outperformed the fully distributed
load balancer across both the system load range and size. The division of the system
into regions consisting of 176 nodes increased the likelihood of finding an idie

rocessor locally at low system loads. At high system load inira-region migration

-

predominates. In both, the messaging overhead is lower compared 1o the fully
distributed scheme. In the fully distributed scheme proposed by Ni et al [Ni85] each
processor maintains the most recent staie information of all the other processors in a
broadcasting network but only that of its most immediate neighbours in the case of a

aint-to-point network. The main problem is thai ihe former iniroduces subsianiial

=

communicaiion overheads whilst the laiter limiis the benefits achievable through load

balancing (o the most immediate neighbours. In the study of Ozden et al [Ozden93]
the centralised load sharing algorithm would not scale to thousands of workstations,
whilst large fully distributed systems yielded poorer performance. Therefore, the
researchers proposed a semi-distributed algorithm, referred to as the distributed
clustering load sharing algorithm, demonstrating good scalability properties. The key
facet of the algorithm is that clusters of processors are formed where each cluster has
a processor responsible for maintaining state information regarding the nodes in the
cluster and, in order to locate resources, limited information about other clusters.

Thus, the overheads of state updates are limited to a well-defined set of managers

[Qzden93).

An alternative semi-distributed straiegy adopted by Ryou et al [Ryou93] organised
processors into a logical tree structure where the root node of each subiree acis as a
central controller for the processors in ils (wo sub-trees,  Each host is assigned a

sending and receiving set such that load information is only exchanged beiween
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processors that are members of their reciprocating sets. Thus, "the sending set of a
node contains all of its ancestors, and the receiving set contains all of its offsprings”
[Ry0u93], Ryou et al demonsirated that the number of message required for each
stale update can be reduced to the square root of the number of processors in the
system providing the seis are balanced (or of the same size). Further, the researchers
found that there was no compromise in performance as the load balancing scheme
with balanced sets outperformed other schemes where a greater amount of siate

information is collected.

Whilsi the schemes suggested by Ahmad et al [Ahmad90], Ozden et al [Ozden93],
and Ryou et al [Ryou93], gave a belier overall performance by reducing

communication overheads and making more accurate placement decisions than a fully
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schedule tasks. Further, it is not only possible for a fully distributed scheme to
generate good performance results and scalability properties, as detailed in this study,
but to do so using simple load balancing policies. The study by Ali et al [Ali92]
proposed a fully distributed load sharing policy that was based on simple asymmetric
partitions arising from the distance between nodes. The researchers were also able to
show performance improvements over a load sharing scheme in which all nodes
collected state data from every other node [Ali92]. However, the study of Ahmad et
al [Ahmad90] did not investigate the performance of the schemes proposed for large

system configurations.

On the basis of the published findings of many researchers it would appear that the
most effective policies are likely to be those in the simple dynamic range because they
are based on the assumption that "most nodes will find their own distinct lightly-

loaded pariner to migrate jobs (a" over a period of time. The resulis produced and
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documented in the later chapters of this thesis, confirms such findings. The study by
Harinarayan et al [Harinarayan91] of load balancing in a network of server and client
nodes found that greater accessibility between nodes had the greatest impact on
performance.  This accessibility meant that, irrespective of the type of algorithm,

performance was constrained during periods of high system loads by the ripple effeci

of

of poor load balancing decisions based on inaccurate information. Their measur

(¢

diversity is the total number of server nodes accessible 1o a clieni node which is nol
accessible (o neighbouring clients. Thus, at high system loading, increasing diversity
should result in improved performance. Harinarayan et al [Harinarayan91] conclude
however, that "once there is some load sharing in the sysiem, increasing diversity
really does not help in improving performance as much as increasing the number of

Tesources a source has access io".

Whilst studies such as Eager et al [Eager86], and Philp [Philp90] reaffirm the failings
of complex algorithms in improving the overall performance of distributed systems
characterised by light-weight processes, the results documented in this thesis, and
alluded to in the Johnson [Johnson88] model show that complex algorithms can
perform better in an environment consisting primarily of "heavy-weight" processes.
Furthermore, in the case of a light-weight processing environment, if performance was
o be judged by the general stability and balance of workload across all nodes, the

success of such algorithms are undeniable.
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CHAPTER 4

MODEL DESIGN AND IMPLEMENTATION

4.1 SYSTEM MODEL

In the development of a distributed system simulation model, there were three key
requirements considered important to this study. These are: flexibility in the
representation of a variety of system configurations; speed and efficiency in the
production of statistical data and results for analysis; and comparable accuracy in
modelling system behaviour when validated against other systems and models.
Mathematical queuing models provide the opportunity to explore load sharing
policies for very large network topologies. The models are generally characterised by
speed and efficiency in the generation of analytical results for such networks.
However, many simplifying assumptions are often made about communication
patterns between processes and processors, workload characteristics, and the load
balancing activity to make the mathematics tractable. For example, a common set of
assumptions made include: negligible message-passing overheads: guaranieed
message delivery; and tightly-coupled architectures where centralised process
scheduling is effected with or without circuit-switched routing. Further refinements
of such models often incorporate probabilistic reasoning about network, and process
behaviour. Whilst mathematical models for distributed systems can act as a general
yardstick for measuring the effeciiveness of load balancing activity at a macroscopic
level, their ability o provide insight into the dynamic relationship between the

algorithms, network activity, and workload characteristics, is limited.




The two other approaches considered for modelling a loosely-coupled distributed
system were a physical model, and a computer simulation model. In contrast to
mathematical (stochastic) models a physical sysiem can encapsulate with greater
accuracy and realism the behavioural dynamics of load balancing in a loosely-
coupled distributed system. However, the capital cost and technical constraints of
building a LAN model of loosely-coupled workstations with distributed operating
system kernels, would severely limit the size and diameter of the network that could
be investigated. An alternative strategy would be to link a large number of cheap
processors, such as the Inmos transputer chip, together. The transputer, with on-board
memory and communication channels, and the ability to link directly to four other
transputers, facilitates the development of a distributed systern model of various sizes
and topologies [Galletly90]. Models based on transputer-type technology allows one
to focus on an architecturally independent distributed system model where each
component of the system is identified and described in terms of its behaviour. That
is, the emphasis changes to what a component does rather than how it does it. As the
central theme of this study is concerned with the effect of load balancing components,
the model design is more important than its physical realisation. Once the design is
complete and representative of the important features of the system, each abstract idea

or process can be configured or mapped to the transputers in the network.

Despite the praciical advantages of transputers for building a physical model, the
Transputer Development System (TDS) was a limiting factor both in terms of the
transputer network size and the availability of usable program developmeni tools.
Consequently, this study adopted computer-based simulation madelling techniques
using the superior facilities of powerful RISC-based worksiations. A compuier
simulation madel would allow larger network sizes to be studied with the added speed

o~

and flexibility for experimentation and network configuration.
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Most tools used for describing a system either emphasise the structure of ifs

components or their behaviour. For example, in the former case,

o

processor
component may be described according to category, function, technology, and other
factors such as speed, capacity, and size. In contrasi, a behavioural description of a
processor may highlight the feich, decode, and execute cycle. However, according 1o

Djordjevic et al,

"Structure and behaviour go hand in hand and it is a measure of (he power of
a language that it is able to enhance one aspecit over the oiher" [Djordjevic'85].

Objeci-oriented modelling allows one 1o combine both siructural and behavioural

s
oo

information and emphasise aspecis of either by hiding certain details. In this study,

an object-based approach was used (o design the system model. As the focus of ihe
study was primarily concerned with distributed system behaviour, descriptions of
system structure was at the system component level. All other information pertaining
to processor organisation are hidden. As can be seen in Figure 4.1, the design stage
of the experimental model identified three main objects, namely the Simulator, the
System, and its Monitor. Again, it is important to nole that these three objects can be
mapped onto a transputer network of up to three processors. Thus, the Monitor object
could be mapped onto a transputer for monitoring the System object, whilst the latter
would be a collection of one or more CPU objecis residing on one or more

transputers. The category (or type description) to which the objects belong are

commonly referred to as a class.

Anather important aspect of the object-oriented paradigm is the inheritance of
common behaviour and attributes by classes that are derived from ane ar mare ohjeci

class. In Figure 4.1, objects from the monitar and system class are derived from (he
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simulator class and therefore will inherit the properties of that class. For example, the
simulator class defines the context of each simulation run, and each derived class will
inhierit this context, be it an interactive or batch-oriented simulation context. Further,
each derived class will have properties that distinguishes objects of that class from
other objects.  Thus, the sysiem class may represent the network and processor
characteristics, whilst the moniior class is primarily concerned with collecting (or

sampling) statistical information.

type_SIMULATOR

interactive();
Baich{);
7
/ \\
- .
//// \\\
- & ~ p N N ( .
type_MONITOR type_SYSTEM
.
Enable() Configure() s
; Boot() > ype_t-
Disable() Reset()
Run() Run()
_J DisConnect() 0S(Cmd)
. J \. J

Figure 4.1: Simulation Model Object Interface

However, a common requirement in simulation models is for objects from different
derived classes to communicate. [n the above example, the monitor ohject should be
able to issue synchronisation and data requests evenis (o the sysiem object using the
facilities of the latter without the need to inherit such facilities from the simulator
class. To do so would result in a complicated design for the simulator class and a loss
in the quality of the abstractions made. These issues are discussed in more detail in

Appendix C with reference to the implementation of the design.
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The object-oriented approach allows one to describe and represent the functionality
(or behaviour) of an object at two levels, commonly referred to as the public and
private interfaces.  The private interface represents the internal structures and
operations specific to the object and is generally inaccessible 1o the users of ihat
object. In contrast, the public interface can be equated o the list of services offered
by an object to users of that object. For example, consider the following description
for a monitor object:
task type_Monitor : derived from type_Simulator
lf
privaie:
Initialise_Nodes();
Reser Reached();
public:
Enablef);

Disable();

/l'
In this example, a monitor object provides explicit behavioural methods to Enable or
Disable the monitoring of system behaviour. Additional behaviour for the monitor
object, such as the initialisation and synchronisation of System objects, is implicitly
performed (using private functions). Such low level details on how to model such
behaviour is not given the opportunity to confuse, influence or complicate the nature
of the public services that must be provided by the monitor object. Thus, as in Figure
4.1, the central focus is the aggregate behaviour of the three objects and the services

they offer.

4.2 THE SIMULATOR ORJECT

The services provided by the Simulator object include the specification of the system
under siudy both in terms of the processor and the network architeciure. In additian,

this object also allows the user to select the mode of aperation for the ayslem. Ap
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interactive mode of operation allows monitoring information to be displayed on the
terminal, and the system parameters 1o be altered during execution. The definition of
the simulated system will generate a configuration file which specifies (he
connections between the processors in the network. Thus, for 4 three-by-three square
mesh topology illustrated in Figure 4.2, the configuration file specifies for every node

in the network a set of nodes to which it is directly linked

(Pei‘} @ Pe2 )
T - Pe0 {Pel, Pe3}
Pe2 {Pel, Pe5}
Pe6 {Pe3, Pe7}
PRy N g Pe8 {Pe5, Pe7}
(Fe3) {Ped )= (Pes) Pel [Pe0, Pe2, |
T T Pe3 {Pel
Pe5 (Pe2,
Pe7 {Ped
iy N Py Ped {Pel,
(a) 3-by-3 Mesh (b) Configuration File

Figure 4.2: A Typical Square Mesh System Configuration

The entries in the configuration file are arranged according to the number of direct
links from the source node. For example, node Pe0 has two direct links (1o nodes Pel
and Pe3), whereas node Pe7 has three direct links (o nodes Ped, Pe6, and Pe&. The
network configuration file can be generated automatically in the case of the square
mesh topology or specified manually for other network interconneciions.  The
canfiguration file may contain more than one set of network definitions io facilitale
multiple simulation runs. Thus, a typical control program for the simulation model

wauld take the following form:




PROGRAM Simulation_Model
{
select
Tuskl:
Simulator. Interaciive(),
Simularor.Configure();
Task2. Entry
cid Tuski;
or Task2:
Sinudaror. Baich();
Litiy:: While noi end of (Configuration_File)
Spsten. Configure();
System. Boot();
Systeim. Run()
citdd While
eid Tusk2;

In this example, there are two tasks. The first task (Taskl) involves the interactive
generation of the configuration file using the Simulator object, In the second task
(Task2), the simulator is run in batch service mode but is also characterised by an
"entry" point (or rendezvous) through which Taskl may be synchronised. The

configuration file created by Taskl is then used to provide the System object with

parameters defining the operational context.

4.3 THE SYSTEM OBJECT

The system is essentially a collection of processors and communication links
organised in some way. The services provided by the system object include the
onfiguration of both the processor and network architecture, and boot/re-boot, run,
and disconnect (or power down) services. The configuration file created by the
simulator object is used by the configuration service in three ways. Firsily, o build
ihe distributed system model by identifying the processors and their attribules.
Secandly, to set up the direct communication channels between pairs of nades, and

thirdly, to determine the routing table for all nades in the network, Once the sysiem is
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configured, the Boot service will signal each processor, and initialise the links

between them.

The dilemma presented in the design of a system object relates to the determination of
its properties. The services provided by a system object must be delivered on one or
more of the system's processor components. One could consider the iniraduction of a

class of specialist processors that delivers the services required and (o which all other

roCesso ObjEC[S are slaves. For

hen}
jov]

loosely-coupled sysiem, these specialist processors
are not considered to be part of the system specified in the configuration file bui are

merely private mechanisms for the control of the aciual sysiem componenis.

However, an alternative viewpoini that removes the need for specialists is 1o regard

(he system's componenis as systems in their own right that inheriis general sysiem
characteristics alongside their own specific properties. Consider ihe following

outline class definition for a system object:

task type_System : derived from type Simulator
{
public:

Configure();
Boot();
Run();

Each derived component of the sysiem class will inherit and thus reflect all the facels
of the system to configure, bool, and run itself. This applies (o all the processors of
the sysiem and their respective communication channels. Thus, the companents are
able (o deliver the range of services available to the sysiem irrespeciive of the
exisience of specialist servers or drivers, Further, the latter approach ensures the

infegrity of the system model as one can model specialisis as actual components of
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the system by redefining, if necessary, any of the inherited properties. For example,
given other system properties such as processing speed, memory capacity, and
software portfolio, one can easily construct an heterogeneous system by redefining

these global properties locally for each inherited compornent.

4.3.1 The Processor Obijeci

As discussed in the previous section, the processor objects are themselves systems

with hardware, software, and data characteristics. The hardware architeciure

]

encompasses the organisation of memory, processors and registers, limer devices, and

=

the communication technology used. In contrast, the sofliware architeciure s
primarily concerned with the organisation and operation of the operating system

components such as the device drivers, memory manager, and process scheduler. The

J

haracierisiics of

(-:\
=
o
e

following outline class definition atiempis o encapsulate the general

a processor object:

task type _LocalHost

privare:
Clock(System, Timer)
Processor (CPU, Graphics, 10, Message)
Memory (Ram, Register)
Comms(Data, Control :Bus)
Host_Admin (Pid, Load, Threshold)
Address_Table (Link, Route, Comm_Set)
Event_Queues (Message, Process)
public:
OS_Command_Interpreter(cmd)

/

In ihe class definition given for a processor object, the operating sysiem command
line interpreter (OS_Command_Interpreter()) is the only mechanism through which
the resource components of a processor object can be utilised. However, i proved
impractical 1o implement independent models of the iniernal hardware and sofiware
tompanents and the inferaction beiween them for a pracessor object. A maore
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practical solution would be to adopt a single model of behaviour such that the
hardware components become an implicit element of an appropriately named sofiware
object, given the degree of interrelationship that exist between them. For example
memory , communication, and timer devices would become a facei of ithe memory

manager, message handler, and the timeourt handler software respectively.

The basic data held by each host processor object includes a unique name or
identifier, and perhaps its current load and threshold values for load balancing
purposes.  However, further detailed architeciural descriptions would necessiiaie
choice between a proprietary or non-proprietary architeciure, be it hardware or

software. It is the author's belief that (o build a complete model of an existing
architecture would only provide a betier understanding of that sysiem and the mannes
in which a load balancing facility can be made an inegral component.  In ihis
instance, the development of the facility would be better served by the use of actual
instances of the proprietary hardware and sofiware. However, as the primary concern
of this study is the general scalability and relative ranking of load balancing
algorithms, detailed proprietary hardware and software characteristics are of less
significance.  Therefore, the overall behaviour of the processor was defined
specifically in terms of its performance rating. That is, the parameters for describing
the processor architecture for each simulation run were primarily the processor and
network hardware speed, and the operating sysiem and protocol software processing
overheads. Further assumptions, relating to the organisation and management of
memary, timers, and user processes were considered in (he design of the operating

sysfem kernel.
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4.3.2 Network Interconnection

The communication medium both in terms of the cable and device types were
encapsulated in the form of a message handling process. Again, an important
parameter was considered to be the general speed of the communication device raiher
than the cabling used in connecting processors. In this study, gencral feaiures of
Ethernet communication technology in terms of iis speed and reliability was assumed.
By representing the communication device as a component of ihe local host, it is
possible o represent its message-passing functionality by making use of the
interprocess  communication mechanism of (he underlying UNIX  developmeni
environment.  For example, within UNIX n sages can be exchanged beiween
processes and systems using UDP or TCP/IP sockeis. The former is an efficient way
ol sending messages but does not guaraniee the sequence in which messages are seni
or ihe delivery of such messages. In conirasi, TCP sockeis are slow bui provide a
guaranteed message delivery service. Therefore, one could use UDP sockets for
sending load balancing messages, and TCP sockets for (he migration of processes.
However, this assumes that the loss of load balancing information is far less
important than ensuring the successful delivery of a user process. From the point of
view of load balancing algorithms that make use of varying degree of state
information such loss may have significant performance implications. [ may be
argued that the impact on load balancing performance is significantly greater for
algorithms that rely on relatively small amounts of state information. However, (he
timeliness of the information collected is also important. That is, the late arrival of a
Message may have the same impact as a lost message packel. For example,
information that arrives late may result in the recipient continuing processing and
ignoring the information as if it was never sent. Another algorithm may atlempi 1o
fespond fo all message arrivals irrespective of (heir time of arrival. Therefare, i

seemed apprapriate and practical to use TCP sockets for the load balancing profocal
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between two sites at any one time, and UDP sockets for representing the broadcasi
mechanism for state information to two or more sites. No specific broadcast or
multicast mechanism is assumed in (he model, and message-passing is effected
through point-to-point connection. That is, each message is individually addressed
and routed accordingly. UDP sockets seemed an appropriate absiraciion as it sends

messages many times faster than the TCP channels.

In addition to the communication channels, the individual hosis of a mesh network
topology also maintain tables with neiwork addresses for their neighbouring
processors (Links) or members of their communicating set (Comm_Set), and tables of
paths (Routes) (o all nodes in the network. Figure 4.3 shows some typical entries for
the route tables for NodeO and Node3 in a three-by-three mesh network. Each host
initialises all its address and routing tables with information gleaned from its

configuration file.

With the exception of the communicating set table of addresses, the tables remained
constant throughout the life of the system. In systems such as Wide Area Networks,
where locations and routes are liable to change as a result of traffic volumes, and
network or remote system failure, such tables would need to be altered dynamically
for all affected sites. This would require additional protocol sofiware (o ensure the
exchange and verification of host addresses and their routes. Therefore, it was
assumed that the network was reliable and traffic contention minimal given the paini-

io-point architecture adopted. A discussion of routing strategies fallows,




Dest_Addr Link_Addr Hops

Node0 - -
Nodel Nodel Nodel 1
Node2 Nodel 2
Node3 Node3 1
Node4 Nodel 2
Node5 Nodel 3
Node6 Nodel 2
Node7 Nodel 3
Node8 Nodel 4

Dest_Addr Link_Addr Hops

,\ Node( Node0 1
Node3 / Node( 2

Nodel

AN Node?2 Node() 3

e

Node3 - -
Node4 Noded i
Node5 Noded 2
Nodeo Noded i
Node7 Node6 2
Node8 Node6

Figure 4.3: Route Table of Node0 and Node3

4.3.3 Routing Algorithm

In a large distributed network it is impractical to provide each network processor with
complete and up-to-date knowledge of the current topology and processing
characteristics of the whole network. An interval routing scheme, using limited
knowledge of the network topology, would allow each host processor o communicale
with all other hosts in the network via their immediate neighbours. Each host makes
two tables (o effect correct host addressing: the Link table maintains the
physical address and operational state of its most immediate neighbours, and ihe
Raoute table represents the preferred route and distance from the local host to all aiher

hosts in the network. Normally, the size of the routing table at each nade is

3
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represented by O(N) where N represents the number of nodes in the network. Thus,
the storage requirement for the routing table will limit the size of the network in terms
of its node composition. " Various other routing schemes have been suggested to
eliminate or minimise the size of the routing table to O(D), where D is the degree (or
the number of neighbours) of a node [Leeuwen87]. Whilst such strategies have the
advantage of performing message routing for larger networks with insignificant
increases in storage overheads at each node, the algorithms are complex and can
impose significant processing overheads in attempting to resolve the routing
requirement of a given message.  As this study is primarily concerned with load
balancing, a simple interval routing strategy using partially complete routing tables, is

used.

The Route table created at system boot time represents the shortest distance (o each
host in the network. The path to a given host is generated from the Link table for
each intermediate host. For example, given the two route tables in Figure 4.3, the
route for a message addressed to Node3 from Node0 can be determined from the
Route Table. In this case, the entry indicates that Node3 is an immediate neighbour (a
distance of a single hop), and as Node0 maintains a set of addresses for its immediate
neighbours, the message can be directly addressed to Node3. In contrast, if the
message was to be sent to Node6 from Node0, the Route table entry indicates that it
should be sent via Node3. When the message arrives at Node3, its Route table entry
indicates that Node6 is an immediate neighbour and can be addressed directly. Thus,
messages sent via Node3 to Node6 will always represent the shortest route for Node(.

Alternative routes via Nodel will be at least one hop longer. In cases where twa

€

€qually acceptable routes exist (in terms of distance), the route chosen will be based

on the expecied iraffic intensity on the respective neighbour links. Far example

Nadel can send messages o Noded via Nodel or Node3. However, Nodel wil] be
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selected if it is less of a bottleneck for message traffic on-route to other hosts when
compared with Node3. Although the Link and Route tables are created and initialised
once in this study, it is possible for a host to broadcast its new address to its
immediate neighbours, who in turn will update their respective Link tables. Likewise,
the policy of using fixed routes may mean that under extreme traffic intensity routes
considered to be shortest may take the longest time to traverse. In such cases,
dynamic routing based on traffic flow may be more efficient. Experiments conducted
with dynamic routing of messages, based on the assumption that it imposes no
additional overheads, was found to have an insignificant impact on overall system
performance. This is primarily due to the balance attained in the initial Route tables

generated for each host.

4.4 THE OPERATING SYSTEM KERNEL

The operating system, via its command line interpreter (OS_Command_Interpreter())
i1s the public interface through which users can run their processes using the available
resources of the system. The operating system is itself a process that is composed of a
collection of interacting processes. Therefore, the design of a base class called
type_Aprocess was first considered as the means by which kernel and user process

objects can be built. The resulting object hierarchy is illustrated in Figure 4.4.

A Process object is characterised by information such as: an identifying name, a
priority, state, and run-time history in terms of the originating and preferred hosis. In
addition, methods are made available to access this information. From this general
class, two distinct process sub-classes can be identified, namely user and kernel
processes. The kernel processes in the system will include such things as the local

scheduler, the load balancing algorithms, and the event and message handlers. Three




types of wuser processes were identified: io-bound (type InOut), cpu-bound
(type_Cpu), and communication-oriented (type commset). Such class of processes

operate within a different context to kernel processes and are discussed further in

Appendix C.

( type_Process w

Get_Pid(}
™ ’
(t}’Pc_KL‘rnclProccss type_UserProcess )
E
\\\
(type_llmlancer )( type_Timer W((ype_Schcduler) type_CommSet type_InOut

Static_lba()

. Set_Timer{() Local()
Dynamic_Iba() Reset_Timer() Remote() .
Adaptive_Iba() type_Cpu

Figure 4.4: Process Object Hierarchy

4.5 WORKLOAD CHARACTERISTICS

The workload of a given host may be characterised according to the type of resources
used and the duration and patiern of usage. Such resources include processors, and
input-output channels to other devices and processes. A process may be classified
according to its service time requirements. A process is considered ta be light-weight

if It only requires a small number of resource time-slices during its lifetime, Heavy-

weight processes would require considerably more time-slices than lighi-weighi
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processes. Various researchers have considered workloads characterised by a mixture
of light and heavy weight processes using specific resources, or in some cases, a
variety of resources. In this study our focus is on both heavy-weight and light-

weight, CPU-intensive processes.

The workload used in the Trace-Driven Simulation Model developed by Zhou et
al[Zhou88] was based on trace dumps from actual systems. Whilst this may be
useful in gaining insight into how load balancing affects performance within a
specific user environment, the workload may be unrepresentative for other
environments, and it presents difficulties in cases where ihe workload characteristics
are variable. As this siudy is concerned with the sensitivity of load balancing

algorithms to varying workload characteristics, like many other researchers in the

field, a discrete-event simulation model was developed.

The UNIX linear congruential random number generator function was used to
generate the inter-arrival times for each host, and this in turn was transformed to
produce an exponential distribution. In using the queuing model, a system should be
stable if processes arrive at a rate that is smaller than their service requirement
[Lavenberg83]. In order to examine the sensitivity of load balancing algorithms to
different load intensities, the following traffic intensity formula of Lavenberg et al

[Lavenberg83] was used:

o= A E[S]/my 4.1)

where A represents the load factor. Further details on the the queuing madel used in

this siudy can be found in Appendix B.




4.6 LOAD BALANCING PROTOCOLS

In large loosely-coupled distributed systems, the general decision strategy that an

operating system might pursue, could be represented as follows:

MAXIMISE (load balancing)

[ISE(load balancing).

That is, if the relative increase in load cost (in terms of average processor run-iime) as
a result of current workload, is very much greaier than the relaiive increase in

load balancing across the whole network. However, where such cosis are
whenever global balancing is attempted, then such activities should be minimised
through local load sharing. The problem with the approach outlined above is that it
requires that the control algorithm predict and anticipate what the likely load and
message traffic cost will be for every change in workload, before it can decide
whether to minimise or maximise load balancing. This is an extremely difficult task
and the overheads involved in achieving this must be taken into account when
developing models for the load balancing protocol. In the protocols discussed in the
following sub-sections no a priori knowledge of job arrival times is assumed.
Therefore, no job length information can be used when making load balancing
decisions in the case of non-preemptive sender-initiated algorithms. However, (he
remaining service time of processes can be considered in relation to communication
costs for the algorithms under study. For example, non-preemptive sender-initiated,
and pre-emptive receiver-initiated algorithms will only cansider for migration thaose

processes with the longest remaining service times.
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In this model, the process queue length is used to measure the load on each host
processor. Researchers have shown that load indices based on process queue length
provide a relatively accuraie representaiion of system load compared to more complex
methods. The primary advantages of queue length are: it is simple to compute, and it
imposes negligible compuiational overheads. For example, by using a register to
maintain a count of actual processes with hardware support for increment and

decrement operations, the load index may be computed in a single machine cycle.
Alternatively, the operation can be conveniently carried out as a by-product of larger
system processes that are activated (o handle the arrival and removal of processes

from local process queues.

However, the decision-making policy of the load balancing algorithm, based on
actual process queue lengih can lead (o instability. For example, an underloaded host,
on the basis of its actual load at time ¢, requests work from remote hosis at time .
Two or more remote hosts may respond by migrating one of their local processes.
But, due to network delay the migrated processes are received by the local host at
time ¢ +/, t+2, t++3. Load instability may ensue as the requesting host generates
further requests between times ¢ and ¢+, without regard for processes in transit. This
potential instability in the decision-making policy can be reduced in a number of
ways. A simple strategy is to operate a stop-and-go protocol such that no further
requests can be made until replies are received from the remote hosts that have been
addressed. However, the local host should not wait indefinitely for a reply as this
imposes additional performance overheads. Therefore, a timer should be set at the
stari of each process migraiion dialogue and the local host can then decide whether or
nai to re-initiate the exchange of messages should the timer expire. The main
problem with this method is selecting the optimum time-out period for maximising

averall system performance. For maximum effectiveness the time-out period may
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vary according to the communication delay imposed by the system load. Thus, one
would expect the time out period to be longer under heavy system loads and shorter
when the system is lightly loaded. Whilst it is possible through the use of timers (o
limit the number of successive requests made by a local host, and to allow the local
load to stabilise as those processes in transit arrive at their destination, the problem
remains that requests received from remote hosts may result in inaccurate information
being transmitted by the local host about its present load state. The local host could
delay its reply to a remote request until the time-out period has expired but success
again depends on the time-out periods operated by local and remote hosis and the

synchronisation of both.

Aliernatively, the process queue length can be averaged over a period of time where
the period selected takes into account the average duration of network delays and the
system load. The main problems with this method are: the required computations are
more involved and thus results in greater overheads, and the accuracy of the measure

in response (o changes in system loads is dependent on adaptive time period variables

over which averages are compulted.

Ini this model it was decided to supplement the process queue length with the number
of potential processes that are expecied to arrive at the local host. This is known as

the virtual process load and is represented by the formula:

n
V{h)=Q0) + Z D= (4.2)
X

where Q(h) is the process queue length for host h, and Py has a value of one far

processes destined for host h, and zero otherwise, In this model, hosis ihat actively

...“ .

negoiiaie a process transfer on the basis of available capaciiy, will incremeni ihai;




virtual load, each time a remote host agrees on a process transfer. The virtual load is
decremented (and the actual load incremented) if migration is completed successfully.
But fixed period timers are also used to ensure that the virtual load does noi remain
artificially high should a remote host fail to complete the required transfer within a
given time period. By using the virtual process count and process queue length a
[ocal host can reply (o requesis received from remoie hosts between time period 7 and

¢ + [ according to the number of processes it has already agreed to negotiate with

)

C

other remote hosts. The advantage of this measure is that it imposes fewer overheads
compared to the other methods considered. Increment and decrement operations are
supported in hardware and can be performed as a by-product of other event handling

processes for evenls such as an expired 1 eply-message timer or the arrival of a

Based on the measured processor load, a local host can be in one of three states:
Overloaded, Balanced, or Underloaded. The state table in Table 4.1 represents the
transition between these states. One or more threshold values may be used to define
the load state. A local host is said to be overloaded if its virtual load rises above the
maximum threshold value, and underloaded if it falls below the minimum threshold
value. The state of a local host is said to be balanced if its load remains within the
minimum and maximum threshold values. A fixed threshold value of two was found
to give better overall system performance across a wide range of sysiem loads., For
the dynamic algorithms implemented a host with three or moare processes is
considered to be overloaded, balanced with two processes, and lightly loaded with

One or Zero Processes.

InTable 4.1 the ARRIVAL event represents both processes that are generated locally

and arriving from a distani host. The REMOVAL event represenis processes thai

107

i
i
i
!
i




either complete on the local host or are due to be migrated to a remote host as a result
of negotiation. Thus, if a local host is overloaded, the removal of a process will cause

the local load to be decremented and a change of state will only ensue if the resulting

N

load measure is less than or equal to the threshold value. Whilst it is possible for a

local host in the overloaded state to move to the underloaded siai

1%

as a result of
instantaneous process completion and negotiated transfers, the effect of forcing such
instantaneous evenis to occur in sequence means the local host would be in the

balanced state if only for a transitory period before it became underloaded.

Process Process
Event ARRIVAL REMOVAL
Siaie
OVERLOADED | Inc(Load): Dec{Load)
OVERLOADED. pZ: BALANCED.

not pa:

OVERLOADED.
BALANCED Inc(Load); Dec(Load);
pl: p3:
OVERLOADED. UNDERLOADED
not pl: not p3:
BALANCED BALANCED
UNDERLOADED | Inc(Load); Dec(Load);
p3: UNDERLOADED
UNDERLOADED
not p3:
BALANCED

pl: Load > [MAX (Threshold)].
p2: Load in [RANGE(Max, Min)].
pd: Load < [MIN(Threshold)].

Table 4.1: System Siate Transition Table




The significance of the load state for local hosts is governed by the granularity of load
activation and process transfer decisions. Fine-grained decisions may require the
local host to be operated systematically and sequentially through each available state,
whilst coarse-grained decisions are not concerned with transitory states but only the
final state which results from aggregate behaviour. The load balancing decisions in
this study are coarse-grained in nature as such decisions are based on the load staie ai
the time of reading. Thus, a sender-initiated load balancing policy will remain active

whilst the local host is perceived to be overloaded and inactive otherwise.

Overload
* REMOVAL& p2
Dec(load);
ARRIVAL&p1 Disable(LBal)

Inc(load):
Enable{LLBal)

Y + START

Reset(load);
Balance Caliberate(LBal)

ARRIVAL&p2 A

Inc(load):
Disable(LBal)

REMOVAL& p3
Dec({load);
Enable(LBal)

Y pl: Load > [MAX(Threshold)].

p2: Loadin [RANGE(Max, Min)].
Underload p3: Load < [MIN(Threshold)]

Figure 4.5 State Transition Diagram for Adaptive Load Sharing Policy

In contrast, a receiver-initiated policy remains active in the underloaded state and
inactive in the overloaded or balanced staie. Adaptive policies are only inaciive in

cases where the local host is perceived fo have a balanced load. Figure 4.5 shows a
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typical state transition diagram for an adaptive load sharing policy which is disabled

if there are no imbalances in the workload when compared to the threshold.

The local host will continue in its present staie providing the respective predicates pl,
p2, and p3 of the available states remain irue after successive process arrival and
departure events. The following sub-sections discuss a range of load balancing
algorithms used in this study and tailored to perform across a range of network

diameters. In all cases, with the exception of the Random Policy, timeouts are used to

avoid hosts waiting indefinitely for replies to requests made on behalf of user

processes for suitable location and subsequent execution.

4.6.1 The Random Policy

Ihe random load sharing policies are characterised by the absence of stale
information pertaining to the remote hosts in the system. However, a variety of
implementations exist for the transfer and location policy. A pre-emplive transfer
policy would permit the transfer of one or more runnable processes which may be
selected at random. Without state information the local host operating a sender-
initiated policy must select a remote location at random and initiate process
migration. The remote site cannot refuse the transfer and must therefore enter 4
dialogue with the local host to ensure the successful transfer of the process and its
context. This implementation makes use of only one type of Protocol Data Unit
(PDU) for communication between the peer entity of the load balancing protocol,
namely:

PRC ARI MSG Migrating process in transii for host.

The receiver-initiated policy would result in a lightly loaded host demanding work

from one or more remaote hosts. In this case two types of PDUs are required:
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PROBE_MSG Probe message sent by underloaded host.
PRC _ARI MSG Migrating process in transit for host.

The recipient of a probe message should in principle, migrate a process irrespective
of its present load state or ignore the demand. A scalable random policy without
system state information will need to avoid one or more of the following: process
thrashing through multiple migrations of the same process; predominant transfers
involving processes with the shortest remaining service time; and locations that have
communication delays, due to distance, which is greater than the remaining service
time of a migratable process. Further, a receiver-initiated policy should be avoided as
performance degrades if lightly loaded hosts demand work from other lightly loaded
hosts. In the case of a sender-initiated policy, an overloaded local host receiving
processes from a remote host can opt to migrate one of its own processes (o another
host thus limiting performance degradation. A simplified random policy protocol is

shown in Table 4.2.

ENABLE DISABLE PRC_ARI MSG
IDLE Select (Process); IDLE Enqueue (Process);

Rnd_Select (dest); Inc(Load).

Migrate(Process,

dest); IDLE

Dec(Load).

IDLE

Table 4.2: State Transition Table for Random Policy

The main events are Enable or Disable load balancing, and Process Arrival messages

(PRC_ARI MSG). The latter description embodies the execution of the pracess

)

g

migration protocol.  During the execution of the protocol the virtual load is

incremenied. This may result in a corresponding transfer of a local pracess should the

it
oy
oy




site become overloaded as a result of its virtual load. The arrival of a migrated
process at the local host is placed in the queue of runnable processes, the virtual load

is decremented, and the actual load incremented.

The transfer policy is non-preemptive as processes that have started execution are not
cligible for transfer. Further, processes received from remote hosts cannot be re-
migrated and must be executed locally. Therefore, only locally created processes
waiting to be scheduled for execution are eligible for migration. Such processes will
benefit most by being migrated 10 a lightly loaded remote host. Whilst processes for
migration are selected on 2 first-come-first-serve basis, the location is randomly
selected. It is important that all hosts, irrespective of distance, are considered to be
potential destinations, thus increasing the likelihood of success in pairing heavily
loaded and lightly loaded hosts. Such a policy is potentially scalable as only locally
created processes with the longest remaining service time are candidates for

migration; and a much larger pool of possible destinations is available.

4.6.2 The Threshold Policy

Unlike the previous protocol, the threshold policy negotiates each process transfer.
The scatability of the sender-initiated implementation is supported by non-preemptive
remote scheduling. That is, the transfer policy considers newly creaied local
Processes as potential candidates for migration to a remote host. The creation of a
local process whilst in the overloaded state, Initiates the location policy (o negotiaie
the transfer. The policy on the local host randomly selects a remoie site, sends ii a
probe message seeking permission to initiate a process transfer, then awaits a reply.

The following pseudo-code illustrate the

P

€]

teps taken by the remote host once a probe

message arrives:

i
—
E




PROBE MSG: IF load < Current_Threshold
THEN  Transmit(Site; Acceptance);
Increment virtual load;
Set_Timer (Wait_For Process);
ELSE

Transmit(Site;, Rejection),

If the remote site is also overloaded, process transfer will be refused and the local
host must continue negotiation with another randomly selected site. An underloaded
remote site will reply favourably to probing, increment its virtual load and set the
timer to await the initiation of process transfer. Failure to initiate migration within

the timeout period will cause the virtual load to be decremented.

The scalability of the algorithm imposes certain constraints. Firstly, the time given (o
negotiating a process transfer should be directly proportional to the service and
delivery time for a migratable process. In terms of the number of negotiations,
research studies have shown that a probe limit of three remote sites produced the best
overall performance for algorithms of this nature[Johnson88], [Zhou88)}, [Eager86].
If a local host fails to find a suitor, having reached the probe limit, the candidate
process will be executed locally. Further, the duration of each negotiation should be
minimised resulting in a reduction in message traffic and subsequent message delays.
In this study, the remote host packs the present load state with its reply to any probe
message it receives. Furihermore, once the remoie site has agreed to accept a
process, it is committed and cannot continue to prolong the dialogue inorder to revoke
ihe transfer because of a recent change in its own load state. However, praviding (he
candidate process is still available to the remote site, the local host will initiate the
transfer. If a reply is delayed the local host has no guaraniee ihat the reply would

have been favourable and must also use a timeout, afier which it may commence
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The problem with negotiating on behalf of individual processes is that the
implementation requires memory space and timers proportional to the number of
waiting processes. It is possible to reduce the resources required by means of a single
set of resources consisting of a timer and memory space to keep track of those sites
ihat have been probed. Candidate processes would be scheduled using a queue

discipline and negotiation is conducted without specific reference to an individual

D

process. The maximum probe possible is dictated by the length of the queue and
needs to be recalculated each time a process is created or scheduled, and decremenied

for every refusal received. The location policy can choose 1o respond (o delayed

responses from underloaded sites a

such replies are not specific o any of the

]

candidate processes.

A location policy that negotiates on behalf of individual processes was selected for
the following reasons. Firstly, the implementation was relatively simple, and offered
greater flexibility without increasing its computational requirements. Furthermore,
newly created processes can be started earlier. This is beneficial because the longer a
process remains in a queue the less likely it is to benefit from being migrated on the
third attempt. It is possible for a remote host to be the recipient of enquiries on
behalf of two or more processes. However, the potential benefit of probing an
underloaded host that can accept multiple process transfers, far outweighs ihe
potential cost of sending multiple requesis to an already overloaded host.  Finally,
the memory space required is a fraction of the space available to user processes and a

lower level of tolerance is acceptable for timers implemented in a user's workspace.

The implementation of an equivaleni receiver-initiated policy needs to make use of

pre-emptive process scheduling. Therefore, in response o a work requesi, the transfer
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policy of an overloaded host must determine which of the available processes have
the longest remaining service time. Such a decision requires a priori knowledge of
the processes, or the use of statistical or heuristic methods. Figure 4.6 shows two
alternative implementation for the location protocol. In figure 4.6(a) fewer messages
are exchanged compared to the sender-initiated protocol. That is, an overloaded
remote host will initiate a process transfer on receipt of a "Work Request" message.
Such a policy is effective, providing the local host awaits a response before initiating
further requests. In Figure 4.6(b), a much lengthier dialogue is undertaken as the

remote host awaits confirmation for the transfer o take place. Such a confirmation

may be necessary if the local host has initiated multiple requests. TR
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Figure 4.6: Message Exchange for Receiver-Initiated Threshold Policy
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The implementation in Figure 4.6(b) requires three types of PDUs:

WRK_RQST_MSG Probe message sent by underloaded host.
WRK_RPLY MSG ReplylAcknowledgement sent by remote host
PRC_ARI_MSG Migrating process in transit for host.

In this study the reverse policy implemented, initiates multiple requests, using the
location protocol illustrated in Figure 4.6(b). Table 4.3 represents the sender-

initiated, non-preemptive implementation of the threshold policy used.

4.6.3 Threshold Neighbour Policy

This policy differs from the threshold probe by simultaneously sending probe
messages to neighbouring hosts. Remote hosts are considered o be neighbours if
their distance, in terms of the number of hops, from the local host are within a
predefined range. Thus, remote hosts that are a single hop away from a local host are
considered to be immediate neighbours of that host. Thus, probe messages can be
sent directly without the need for routing via one or more intermediate remote sites.
The selection of a site with which to conduct process migration can vary in
complexity and effectiveness. In the case of probe messages sent to immediate
neighbours, a local host may simply decide to initiate a migration dialogue with the
first remote site to respond favourably despite the fact that other neighbours may exist
that are in greater need of load sharing. A local host that awaits all responses before
selecting a location, will delay the confirmation of process fransfer with those sites
that responded favourably and therefore runs the risk of increased competition from

other hosts for such sites. Further, in the case of messages senl (o sites that are two ar

remote sites that are furthest away from the local host if their need for load balancing

L]

is greater than more immediate neighbours according to their load and distance ratia.
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To attain scalability in terms of a range of network sizes and system workload, the threshold
neighbour policy was restricted in a number of ways. Firstly, the location policy selected
the first site to respond favourably to a probe message. This was justified on the basis that
any delay in sending a confirmation message to respondents would be minimised. Further,
a remote host whose reply arrives late as a result of a routing delay may cause a further
propagation of delays if such a host was selected for process migration. Whilst the idea of
pairing the most imbalanced hosts has many benefits in facilitating multiple process
migration, its effectiveness relies on the use of preemptive process scheduling. With non-

preemptive scheduling only a single process is considered for migration thus making the

actual load capacity of all hosts within a specified distance of less significance.

Secondly, the geographical distance over which probe messages are sent should be limited
especially where only a small set of migratable process exists. That is, the number of probe
messages sent should be proportional to the number of processes available for migration.
Thus, as the number of migratable processes increases, the distance considered for sending
probe messages should increase. However, a distance no greater than two hops, resulting in
the local host sending a maximum of five probe messages simultaneously, was considered
scalable for this particular algorithm. Whilst it is conceivable that limiting the probe
distance may result in imperfect pairing of light and heavy loaded hosts, over a period of
time the load should balance through the propagation of any excess load from a local

region (determined by distance) to a neighbouring region.

4.6.4 Communicating Set Policy

The Communicating Set Policy aims to minimise the message traffic between processors.
In addition, the policy attempts to avoid instances in which many overloaded hosts send
processes to the same lightly loaded site, causing the recipient host o be overloaded.

Processor thrashing may arise as the recipient hosts also embark on fruitless load balancing
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activity to find a host able to accept responsibility for process execution without further load
instability. Based on the concept of a working set model developed by
Denning[Denning80] to reduce the frequency of page faulting, the communicating set of a
local host is an essential component in managing the load balancing activity. That is, a
local host will not initiate load balancing unless it has adequate state information for the

members of 1ts communicating set.

In the working set model the reduction in page thrashing is based on the assumption that a
process's behaviour is generally characterised by a predictable sequence of local page
references over a given period of time. Similarly, it can be argued that processor thrashing
can be reduced if one assumes the existence of a predictable set of processors with a
tendency to overloading or underloading. Over a period of time such nodes should become
members of one anothers communicating set. The consequence of applying the
communicating set model is a reduction in the level of message traffic. In particular, at high

system loads, the policy should also remove fruitless migrations.

In building the communicating set for a local host the load balancing policy needs to retain
a historical record of remote sites that have participated in successful exchanges of
processes. Such sites would then be targeted in any future requirements for load sharing.
Each host maintains a list of preferred sites. Preference may be governed by available load
capacity or distance from the host. The former lays emphasis on maximised load balancing
whilst the latter is more concerned with minimal message traffic. Two approaches to
updating the preference list were considered. Firstly, each host sends periodic state
information to members of its preference (or communicating set) list. An additional PDU

type is introduced to represent the state information of broadcasting hosts, namely,

LOAD STATE Load State of Remote Host
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The amount of messages generated is proportional to the duration period between the
exchange of messages. Thus, although a shorter period results in more accurate state
information, the side effect is greater message traffic. An alternative strategy is that the
preference list is only updated when load balancing is activated. Message traffic will be

further reduced by packaging state information with the request and reply messages sent by

paired sites.

Based on the "stable marriage" assignment problem in [Pickard92], the suite of
communicating set algorithms should in principle result in the optimal pairing of overloaded
and underloaded processors. In the "stable marriage" problem nodes make proposals to
other nodes. The recipient will continue to accept or reject one or more of the proposals
received until all marriages are stable. That is, all nodes are paired with their most preferred

partner. The two major facets of the algorithm are:

(i) given the initial assignments (or pairing) of nodes, no reassignment should be made
that would leave both paired nodes worse off.

(ii) if paired nodes are both better off as a result of reassignment, the previous
assignment is deemed to be unstable.

Therefore, the basic communicating set algorithm for the local host PE; during an unstable
load state will send proposal requests to each of its preferred sites until an acceptance reply

is received or the preference list is exhausted:

IF PE; detects(load imbalance) THEN
REPEAT
Sitej = Next_Member (PreferenceList))
Transmit (Site J, Proposal),
UNTIL Received(Site / Accepiance) OR Empiy(Preference List))




On receiving a proposal message the remote host will send an acceptance message if it is

the first or only proposal received. However, if the proposal is the worst received, the

remote host will reply with a rejection message.

IF First_to_Arrive (Sitey, proposaly)
Transmit (Site;, Acceptance)
ELSE

Site; = Worst_Proposal (proposal;, Preference Lz'stj)

Transmit (Site;, Rejection);

In this study, a proposal is judged according to the available load capacity of the proposer.
As state information is packaged with the PDUs transmitted, the proposal is evaluated each
time an enquiry or response is received. Thus, a sender-initiated threshold policy would

execute the following steps:

CASE Message Type OF:
PROBE MSG: IF OverLoaded
THEN AsCending Order(Preference List);
ELSE Descending Order(Preference_List);

End Case;

If the local host receives a probe message in the overloaded state, the preference list is
sorted in ascending order of underloaded hosts. A probe message in the underloaded state
would result in reordering based on the most overloaded communicating remote host. It is
important to note that re-ordering the preference list involves the update and re-evaluation

of the state of existing members responsible for the probe message.

In an attempt to attain scalability and performance, the communicating set model was

applied to the threshold policy using the preference list to target neighbouring or randomly
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selected hosts.  The communicating set model was also applied to the global average

algorithm discussed below.

4.6.5 Global Average Policy

In contrast to the policies discussed earlier global average algorithms attempt to ensure that
the load threshold used by each host is within range of the average system load. One
strategy is for all hosts to collect state information from all the other hosts and compute the
average load threshold. However, such a policy is susceptible to network delay resulting in
inaccurate and incomplete state information. Furthermore, the algorithm is not scalable as
any increase in network diameter results in a significant increase in message traffic. The
implementation selected was based on the algorithm suggested by Johnson et al[Johnson88]
which used a series of time-outs to control the global average maintained by each node.

The algorithm is activated periodically and is represented by the following pseudo-code:

IF' PE} is Overloaded THEN
BroadCast(HIGH LD _MSG);
Set_Timer(High Load TimeOut);

ELSE
IF PE; is Underloaded THEN

Set_Timer(Low_Load TimeOut);

If the local host (PE}) is in the overloaded state a probe message is broadcast and a timer is
set. However, an underloaded host merely sets a timer for its current state. There are four
types of Protocol Data Units(PDUs) exchanged by the peer entity of the load balancing

protocol. These are:

HIGH LOAD _MSG Probe message sent by overloaded host.
PRB_RPLY MSG ReplylAcknowledgement sent by remote host
NEW_LOAD_MSG New Load Threshold Value
PRC_ARI_MSG Migrating process in transit jor host.
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The state transition table for handling the different message types as incoming events
is shown in Table 4.4. Should the local host timeout before it receives a reply or an
enquiry from an underloaded host, it assumes that this is due to a low system load
threshold such that all hosts are in the overloaded state. The local host therefore,
increments its current load threshold and broadcasts this new value to all remote hosts.
Likewise, if the local host is found to be in the underloaded state, a timer is set within
which it might reasonably expect to receive an enquiry from an overloaded remote
host. If no enquiry is forthcoming and the timer expires, the policy assumes that this
is because the system load is too high. Consequently, the current load threshold is
decremented and the new load value is broadcast to all remote hosts. The steps
described are represented by the following pseudo-code for handling load state

timeout events:

CASE Signal Type OF
HIGH TOUT: IF load > Current_Threshold
Increment (Current_Threshold);
BroadCast(New_Load Msg, Current_Threshold);

LOW_TOUT: IF load < Current Threshold
Decrement (Current _Threshold),
BroadCast(New_Load Msg, Current_Threshold);

The implementation discussed is referred to as a sender-initiated global average
algorithm because load enquiry messages are only sent in the overloaded system state.
In this study, a receiver-initiated global average algorithm was also implemented
where only work request messages are transmitted by underloaded hosts. In a similar
manner to the sender-initiated strategy, an overloaded host that does not receive a
work request enquiry will assume that the threshold is too low, increment the current

threshold, and broadcast this new value on the network.
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To address the issue of scalability for such algorithms a number of constraints have
been imposed. Firstly, the distance over which enquiries are made is restricted.

Secondly, no host can make multiple broadcasts of enquires within the timeout period.

4.7 PROCESS IMPLEMENTATION

In implementing the system and process objects described, two possible
representations were available. Each object in the system could be represented as a
UNIX process, an ADA task or a relatively simple data structure of the
implementation language. For example, each host entry in the configuration file could
be configured as a UNIX process spawned by the System object by means of the
configuration service. In addition, the communication links between hosts would be
represented by I/O streams using the UNIX "pipe" or "socket" abstractions. This is

represented in the following pseudo-code:

Procedure System::Configure()
{
while next configuration incomplete(Configuration_File)
Begin
Host[i] = Read(Host_Id, Links, Configuration_File);
SetUp_IO_Stream(Links);
Host[i] = fork();
if (Host[i] == CHILD)
wait(SYNC);
break;
END

In the code extract above the system object maintains the table named Host that
contains the UNIX process IDs for all the hosts in the simulation model. The system
call to spawn a process (fork()) has the effect of creating another system object with

Its own separate data area but the same code segment as its parent. Thus, the only
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means by which a host can identify itself is by checking its table, Host[i]. A host will
then await a synchronisation signal to indicate completion of system configuration.

The process spawning method of UNIX when used to model a distributed system can

be unwieldy resulting in fairly complex code.

In comparison, the ADA tasking abstraction is more intuitive and easier to use. Thus,
one can define process task types such as cpu-intensive, [O-intensive, or
communicating groups, where each object task instantiation will behave according to
its type definition. For example, a CPU-intensive task type can be defined as follows:
task type Cpulntense Task is
entry Restart_Signal (node_id : in integer);
entry Suspend (node_id : in integer);

end Cpulntense Task;

task body Cpulntense Task is
-- local declarations

begin
loop
select
accept Restart_Signal (node_id: in integer) do
exit when computation_complete;
-- perform computation
end restart_signal,
or
aceept Suspend (node_id: in integer) do
-- block process
end restart_signal,
or
-- blocked
end loop;

Termination_Signal (My_Id);
end cpulntensive Task;

In this case, each cpu-intensive process object will only accept calls made to the
Restart_Signal and Suspend entry points by other process objects. However, in a
time-sliced scheduling environment, only the scheduler process is likely to make such
calls. The body of the process task is to loop continually answering calls until the
computation terminates. In ihe latter case the process makes a call to the scheduler
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(via its entry point Termination_Signal) and sends its process identification number.
On receiving a "restart signal” call, the computation will continue until it completes or

a "suspend signal" call is received.

Whilst the use of ADA tasks directly or indirectly represented as spawned processes
connected through the use of pipes and sockets would give the model a sense of
realism, it does have some major drawbacks. Firstly, each process created occupies
valuable memory space, and restrictions on the number of processes that can be
spawned by another process may severely limit the total number of hosts and
processes that can be created. Secondly, the host operating system (in this case
UNIX) will spend considerable time managing such processes along with the other
very real processes of other users. The model developed by Johnson [Johnson88]
used spawned processes which resulted in a restricted simulation model limited to a
three-by-three processor network. Furthermore, the model was found to run
extremely slowly, taking anything from eight to 24 hours to complete a single
simulation run [Johnson88]. Therefore, the approach adopted in this study was to
implement host objects (and user processes) as internal data structures, such as a
series of dynamic linked lists, where each entry represents a host (see Appendix C for
further details). Further, the simulation of message-passing within the network is
accomplished by time-stamping each message with the expected time of arrival at its
intermediate/final destination node. These messages are then queued at the receiving
processors where they will only be processed if they have reached or exceeded the
time-stamped due date. This approach was found to deliver the required performance
for a range of network diameters and, as demonstrated in the next chapter, produced
similar results when given near-identical parameters to those used in models designed

by other researchers.
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CHAPTER 5

MODEL VALIDATION

5.1 VERIFICATION

The areas of the model that formed the major focus for verifying the simulation runs
were the accuracy of the send-receive cycle for message passing, consistent time
keeping, and the reliability of the results produced. A 16-processor mesh was
generated and routing tables were automatically created using NodeO as the initial
starting point. Figure 5.1 shows the potential message routing traffic bottlenecks
based on the pre-specified shortest-route tables generated . It can be seen that nodes
5 9,10, 11, 13, and 14 would be the most heavily used switching points in the
network. Likewise, nodes at the edges of the mesh (0, 3, 12, and 15) represent

potential areas of light message re-routing activity.

()

Routes: 5 - 8

Routes: 9-13

Routes: 14 - 24

Figure 5.1. Automatic Distribution of Message Routing Load From Node0
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Figure 5.2 represents the route distribution resulting from selecting node6 as the
initial starting point for route table generation. Clearly a better distribution is attained
as the more central nodes take more routes away from the edge nodes. Given that the
variation in the distribution of routes is dependent on the node chosen to initiate the
generation of route tables, a possible solution could be the use of a 3-dimensional
Torus topology. Each node would have four connected links which in turn eliminates
any routing imbalance caused by edge nodes with only two or three links in the case
of a two-dimensional mesh. However, such a topology is more complex and would
limit the variation in communication distance between all nodes in the network. The
net effect is that the portability of load balancing algorithms may be limited to

networks organised around equi-distant nodes.

@)

Routes: 5- 8

Routes: 9-13

Routes: 14-18

Figure 5.2. Automatic Distribution of Message Routing Load From Node6

5.1.1 System Parameters

In terms of this study it is important that the route distribution does not distort the

performance of the host processors concerned. For example, it is possible that nodes
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representing potential communication bottlenecks may have a poorer performance as
more of the processor time is devoted to switching messages. Thus, the simulation
model was run using the different routing tables generated against a group of load
balancing algorithms. All the results produced were comparable and the relative

ranking of the algorithms remained consistent.

The parameters of the model were also selected to aid in the validation of the model
(discussed in the next section). Each processor's raw CPU speed was set to one MIPs.
The speed of the communication medium was set to 10Mbits per second with protocol
stack processing overheads of 1000 machine instructions per transmitted message.
Thus, the timeout period for the transmission and receipt of a reply or
acknowledgement message was primarily governed by the size of each message and

the distance travelled. This was represented by the formula:

Txp=Mgy D (Trx + Ty ) + Ty (5.1)

where Txp is the timeout period in milliseconds; Mg, is the message size in bytes; D
represents the distance in terms of hops to the destination: and Trx and Ty represents
the respective receive and transmit times for the protocol layers of the system. Given
the point-to-point nature of the network topology, it is assumed that each intermediate
host between the source and destination will receive the complete message and
retransmit to the next node en route. Further, it is recognised that network loading
will have a variable effect on the expected message arrival times. In this study a
constant value Ty is used to represent the overall effect of such delays, and a fixed
period of 200 milliseconds was found to be sufficient time for the completion of the

send and receive cycles irrespective of the system load.
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The workload consisted of independent, cpu-intensive processes with average
response times of one second. Local scheduling was performed using the 'round-
robin' scheduling discipline. A time-slice of 50 milliseconds was used with process
context-switching overheads of 200 microseconds. The period 10 milliseconds
between each simulation phase was found to be of sufficient resolution to capture and
respond to messages exchanged between processors. Further, all processors were
synchronised with the global simulation clock at 50 millisecond intervals. Given the
parameters outlined, it is possible that the timeout period for a process on whose
behalf load balancing negotiation is effected can represent as much as 50% of the
service time. Therefore, in such cases it is imperative that any negotiation that takes
place results in the migration of the waiting process to a remote site where its
expected service time can be improved. Otherwise, the resulting delay may well
degrade the performance of the system imposing overheads that are absent in cases

where load balancing is not practised [Mirchandaney&9].
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Figure 5.3. Processor Response Times After 500 Seconds
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Figure 5.3 shows the average response time per host, after 500 seconds of simulation
time, using the threshold load balancing policy under heavy system load. The nodes
offering the best average run time performance were nodes 0 5 6,8 9 10, and 15.
The simulation was then run and sampled over a longer period of time, the result of
which are shown in Figure 5.4. Whilst the average response time has increased
overall, the run-time performance of nodes 4, 71, 13, and 14 have improved.
However, nodes 5, 6, 9, and /0 continue to yield better than average performance

despite the increase in response times.

It is clear from the results produced that there is little correlation between message
bottlenecks and runtime performance. However, the 'edge effect' is evident as the
central nodes, each connected to four processors, produced the better overall run-time
performance. This is primarily due to their proximity to each other and to all the other

nodes in the network.

n( nl n2 n3
O—o——0

Figure 5.4. Processor Response Time After 6500 Seconds
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5.1.2 Load Balancing Protocols

After identifying the possible effect of message bottlenecks resulting from route
distribution, it was important to also examine its impact, if any on the operation of the
load balancing protocols. Therefore, the simulation model was run for a range of
policies with debugging information enabled. Statistics were obtained for the whole
system and for each host for every 500 (simulated) seconds. The following extract
represent the output from the model during the first period of the simulation run for

the threshold load balancing policy.

SIMULATION no.1 STARTED ON Thu May 19 16:24:27 1994
*%% erand48 seeds are: 17757, 22851, and 10394 ***

No. of Processors = 16  Load value =0.80
Total No. of jobs = 350000 Ld Balancing Alg. = Threshold L/B Policy

Threshold Level =  2.00 Probe Limit = 3
Convergence to < 2.00%

TIME VAR. LOAD DIFF. RTime %Conv MIG. Tx  %JOB

500.00 1.2915 29026 3.8620 2.2819  1.44 0.3155 7.3187 1.83

N: 0 Mg:170.00 L: 3 Rt 216 Tx: 13 Imm: 141 Dth: 431
N: 1 Mg:175.00 L: 4 Ru 226 Tx: 18 Imm: 146  Dth: 433
N: 2 Mg:138.00 L: 3 Rt 231 Tx: 17 Imm: 144 Dth: 392
N: 3 Mg:165.00 L: 4 Rt 229 Tx: 12 Imm:162  Dth: 401
N: 4 Mg:152.00 L: 2 Rt 255 Tx: 22 Imm:14] Dth: 404
N: 5 Mg:150.00 L: 3 Rt 214 Tx: 23 Imm:171 Dth: 387
N: 6 Mg:151.00 L: 3 Rt 207 Tx: 20 Imm:182  Dth: 377
N: 7 Mg:158.00 L: 4 Rt 224 Txt 21 Imm:160  Dth: 399
N: 8 Mg:128.00 L: 5 Rt 218 Tx: 19 Imm: 182 Dth: 361
N: 9 Mg:158.00 L: 3 Rt 2.09 Tx: 34 Imm:164  Dth: 388
N: 10 Mg:162.00 L: 1 Rt 2.14 Tx: 34 Imm: 164 Dth: 413
N: 11 Mg:159.00 L: 2 Rt 269 Tx: 31 Imm: 141 Dth: 378
N: 12 Mg:176.00 L: 2 Rt 246 Tx: 16 Imm:159  Dth: 416
N: 13 Mg:155.00 L: 4 Rt 275 Tx: 33 Imm:153  Dth: 369
N: 14 Mg:161.00 L: 3 Rt 2.61 Tx: 31 Imm:158  Dth: 388
N: 15 Mg:166.00 L: 3 Rt 213 Tx: 19 Imm: 155 Dth: 410

The output produced by the model for the purpose of statistical analysis include, the

average load variance (VAR), average workload (LOAD), the maximum difference in
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processor workload (DIFF), the average response time (R77me), the average number
of migrations per second (MIG), and the average number of messages transmitted per

second (7x) by the time the system dump was made (7/ME in seconds).

Using the output from the run trace, the average load per processor (L:) was
examined to see whether improved run-time performance (Rt:) is the result of having
a light system load. In the simulation run conducted using a fixed threshold, a host is
considered to be overloaded if its process queue is at least four processes long. Thus,
the actual load state of the hosts after 500 seconds and displayed in Figure 5.5, would
indicate the overloaded hosts to be nodes 1, 3, 7, 8, and 13. Likewise, the
underloaded hosts were nodes 4, 10, 11, and 12 with process queue length of two

processes or less. Only node /0 had a response time that was well below the average.

O Normal Load

® Underloaded

@ CIS @ Overloaded

Figure 5.5. Average Process Queue Length Per Processor

However, a more indicative measure of a processor's load is its activity over a period

of time rather than at a specific instance in time. Therefore, by examining the number
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of process migrations relative to the number of migrants received by each host one
can determine the load characteristics of 2 given host. That is, a local host will be
considered as having a propensity for overloading if it has migrated many more
processes (at least 10 in the case of hundreds of processes) than it has received. Thus,
in Figure 5.6 nodes 0, 1, 4, 11, 12, 15 would appear to be the overloaded nodes, whilst
nodes 5, 6, and § are underloaded. These three underloaded hosts also had response

times that were well below the average.

To gain insight into the threshold probe load balancing algorithm the message
dialogue between nodes was output and examined. Given the size and volume of
information and the level of activity in a 16-processor mesh the trace focused on the
message dialogue of one node that is currently underloaded (node/0) and one that is

overloaded (noded).
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O Normal Load

® Underloaded

@ Overloaded

Figure 5.6. Workload Distribution Based On The Processor Send-Receive Ratio
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The trace extracts used in this section represents the dialogue just before and after the
first period of the simulation. Only the message end-points are output in order (o
simplify the descriptions given. The intermediate destinations are less important at

this stage.

Node8 reccives Packet N6-N8:: node 8 receives Exit msg {pre:: 6325 at node:6]

Nodel0 receives Packet N2-N10:: Node2 -overloaded- has asked node10 TO accept
Nodel0 GMT 497.497  TripT0.254 TIMER:WAITP_TOUT Etime: 497.751
Nodel0 receives Packet N2-N10:: node 10 RECEIVES process6357 {load = 2] FROM node 2

In the above extract, Node§ receives an exit message from Node6 for process 6325.
This process originated at Node8 and was migrated to Node6 where its execution was
completed. In the case of Nodel0, a probe message is received from an overloaded
Node2. As Nodel( is underloaded, an accept message is returned, and the "wait for
process" timeout is set. Subsequently, Process 6357 then arrives from Node2 and the

timer 1s cancelled.

Node8 receives Packet N15-N8:: node 8 receives Exit msg [pre:: 6344 at node:15]

Node8 receives Packet N2-N8:: Node2 -overloaded- has asked node8 TO accept

Node10 receives Packet N2-N10:: Node2 -overloaded- has asked node10 TO accept
Node10 reccives Packet N5-N10:: node 10 receives Exit msg [pre:: 6343 at node:5)
Nodel0 receives Packet N9-N10:: Node9 -overloaded- has asked nodc10 TO accept

Node8 receives Packet N12-N8:: Nodel2 -overloaded- has asked node8 TO accept
Node8 GMT 498.771  TripT0.252  TIMER:WAITP_TOUT Etime: 499.023
Node8 receives Packet N12-N8:: node 8 RECEIVES process6366 [load = 2] FROM node 12

In this extract NodeS8 receives an exit message for process 6344 at Nodel5 followed
by a probe message from an overloaded NodeZ. Nodel0 was also probed by the latier
as well as by Node9 and both were rejected. When Node& was probed by NodelZ2, the
former was found to be underloaded, the timer was set, which was later followed by

the arrival of process 6366 from NodelZ2.




Node8 receives Packet N14-N8:: Nodel4 -overloaded- has asked node8 TO accept
Node8 GMT 499.049  TripT0.256  TIMER:WAITP_TOUT Etime: 499.305
Node8 receives Packet N14-N8:: node 8 RECEIVES process6369 [load = 3] FROM node 14

Node8 GMT 499.369  TripT0.254  TIMER:PRB_TOUT  Etime: 499.623
Node8 reccives Packet N13-N8:: Node8:Time:499.475283 Nodel3's reply (pre6386) was 4
Node8 GMT 499.476  TripT0.260  TIMER:PRB_TOUT  Etime: 499.736
Node8 receives Packet NI-N8::  Nodel -overloaded- has asked node8 TO accept
Node8 GMT 499.479  TripT0.258  TIMER:PRB_TOUT  Etime: 499.737
Node8 GMT 499.583  TripT0.252  TIMER:PRB_TOUT  Etimc: 499.835

Node8 receives Packet N9-N8&::

Node8::Time:499.658963Node9's reply (prc6392) was -2

node 8 sends process6392 [load = 6] to node 9

Node8 GMT 499.672  TripT0.252  TIMER:PRB_TOUT  Etimc: 499.924

Node8 receives Packet N15-N8:: Node8:Time:499.723590 Nodel5's reply (pre6391) was 4

Node8 GMT 499.725  TripT0.252  TIMER:PRB_TOUT  Etime: 499.977

Node8 receives Packet N3-N8:: Node8:Time:499.725599 Node3's reply (prc6386) was 3

Node8 GMT 499.727 TripT0.256 TIMER:PRB_TOUT  Etime: 499.983

Node8 receives Packet N9-N8::  Node8::Time:499.780016 Node9's reply (pre6393) was 3

Node8 GMT 499.781 TripT0.256 TIMER:PRB_TOUT  Etime: 500.037

Node8 receives Packet N9-N8::  Node8::Time:499.782025 Node9's reply (pre6391) was 3

Node8 GMT 499.783 TripT0.256 TIMER:PRB_TOUT  Etime: 500.039

Node8 receives Packet N11-N8::

Node8::Time:499.959678Node11's reply (prc6393) was -2

node 8 sends process6393 [load = 6] (o node 11

Node8 receives Packet N14-N8:: Node8::Time:499.972901 Node14's reply (pre6386) was 3

Node8 receives Packet N1-N8:: Node8::Time:499.973906 Nodel's reply (pre6391) was 4
In the final extract above, NodeS§ is probed by Nodel4 resulting in the migration of
process 6369 from the latter to the former. However, subsequent to the migration, the
creation of local process 6386 at NodeS has resulted in the overloaded state.
Therefore, Node8 sends a probe message to Nodel3 and sets the probe timer. As
Nodel3 is unable to accept the process, another node is selected and a probe message
sent. During that time Node§ also receives a probe message from Nodel, and a
further local process (6392) is created. The now overloaded site (Node8) probes
Node9 and sets the probe timer. As Node9 is underloaded and willing to accept,
process 6392 is migrated. In addition Nodes 75, 3, and 9 were also probed on behalf
of processes 6391, 6386, and 6393 respectively but all indicated their over capacity.

Subsequently, Node9 was probed on behalf of process 6391, and Nodell on behalf of
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process 6393. Only the latter was able to accept a process. The overloaded site also
sent probe messages to Nodel4 and Nodel on behalf of process 6386 and 6391
respectively, but both were rejected. Therefore, the latter two processes were

executed locally. After 6500 seconds of simulated time, the following output was

produced by the model:

N: O Mg:1863.00 L. 4 Rt 2.48 Tx: 14 Imm:1783 Dth: 5197
N: 1 Mg:2041.00 L: 3 Rt 241 Tx: 18 Imm:2064 Dth: 5253
N: 2 Mg:2044.00 L: 3 Rt: 2.50 Tx: 18 Imm:2022 Dth: 5323
N: 3 Mg:1913.00 L: 3 Rt 2.56 Tx: 14 Imm:1965 Dth: 5132
N: 4 Mg:1948.00 L: 3 Ru 2.52 Tx: 20 Imm:2008 Dth: 5160
N: 5 Mg:2075.00 L: 3 Ru 2.29 Tx: 25 Imm:2175 Dth: 5268
N: 6 Mg:2022.00 L: 3 Ru 2.38 Tx: 25 Imm:2081 Dth: 5272
N: 7 Mg:2063.00 L: 3 Rt 2.43 Tx: 22 fmm:2098 Dth: 5192
N: 8 Mg:2054.00 L: 5 Rt 2.59 Tx: 24 Imm:1957 Dth: 5194
N: 9 Mg:2036.00 L: 2 Rt 2.36 Tx: 36 Imm:2120 Dth: 5178
N: 10 Mg:1945.00 L: 3 Rt 2.28 Tx: 36 Imm:2192 Dth: 5040
N: 11 Mg:2058.00 L: 2 Ru 258 Tx: 31 Imm:1937 Dth: 5123
N: 12 Mg:2010.00 L: 2 Ru 261 Tx: 18 Imm:1888 Dth: 5266
N: 13 Mg:2050.00 L: 2 Ru 2.61 Tx: 35 Imm:1945 Dth: 5205
N: 14 Mg:2071.00 L: 3 Ru 246 Tx: 34 Imm:1986 Dth: 5258
N: 15 Mg:2010.00 L: 5 Rt 249 Tx: 20 Imm:1982 Dth: 5185

In terms of the ratio of processes sent to those received nodes 5, 9, and /0 can be
identified as having a propensity for the underloaded state, whilst nodes 0, 8, 11, 13,
and /4 to the overloaded state. In this instant, given that thousands of processes are
being considered, a host is regarded as having a tendency to an unstable load state if
the difference in migration activity is significantly greater than 50 processes. It is
noticeable from Figure 5.7 that only nodes 0 and /7 are still members of the
overloaded set, and only node 5 of the underloaded set. Further, members of the
overloaded set have response times that are worse than average whilst underloaded set
members have better than average response times. It is clear from the workload
distribution sets developed after 500 and 6500 seconds of simulation time, that
members of the overloaded and underloaded sets tend to be edge nodes and centre

nodes respectively. Over a period of time, the underloaded edge nodes will become
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overloaded as they experience difficulty in off loading their excess workload.
Further, by using the threshold policy it is more likely that edge nodes will receive
many more probe messages than the central nodes given their-greater numbers in the
network. Therefore, such a policy is unlikely to reduce to a satisfactory level the
variation in response time between the different processors in a two-dimensional mesh

topology.

O Normal Load

O Underloaded

@ 2] Overloaded

Figure 5.7. Workload Distribution Over An Extended Simulation Period
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The detailed simulation traces were conducted and their output analysed for all the
main load balancing protocols. Further message trace profiles for these algorithms
can be found in Appendix A. All the algorithms exhibited the behaviour expected
under various load conditions. Therefore, having resolved the issue of message
routing and the integrity of the implemented load balancing protocols, the validation

of the model could commence.
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5.2 VALIDATION

In order to validate the system model, it is important that the model is able to
reproduce the results obtained by other researchers in the field, such as Eager et al
[Eager86], Zhou [Zhou88], and Johnson [Johnson88], given identical parameters for
the system characteristics and the load sharing algorithms selected. The system
considered consisted of nine loosely-coupled homogeneous processors configured in
a mesh network. The performance measures of particular interest are the average
variance in processor load and the average response time. The former will give an
indication of the system stability and balance in the workload between sites, whilst
the latter will indicate the effectiveness of the policy in pairing overloaded sites with
underloaded sites. Thus, the successful pairing of sites should result in an overall
improvement in system performance. The average processor load is also of interest as
this may provide a context in which one can assess the accuracy of both fixed and

variable threshold values.

The threshold values for the random and threshold algorithms were fixed at a level of
two processes as this was found by other researchers, and confirmed in this study, to
yield the best performance results over a range of system loads. In the case of the
threshold algorithm, the probe limit was fixed at a maximum of three probe messages;
thereafter a process considered for migration must run locally. The period for the
global average algorithm (implemented by Johnson [Johnson88]) was fixed at 250
milliseconds, and the timeout period governing any alteration to the threshold level
was based on the time required to complete the send-reply cycle discussed earlier.

These values were found to yield the best overall performance.

140




Finally, each simulation run was terminated whenever the average response time for
all sites converged to within less than two percent of each other. An average of 20
simulation runs was found to be sufficiently reliable for the purposes of analysis. The
algorithms considered were threshold (SndProbe), random, global average broadcast
(GsndHop4), and the no load balancing case (NoBal). The response time and load
variance results produced by the model and illustrated in Figures 5.8 and 5.9 were
similar to the findings of other studies, namely that systems undertaking load
balancing activities outperformed those that do not across all system loads both in

terms of the average response time and the equitable distribution of workload.

Even the random policy, widely regarded as the lowest common denominator for load
balancing algorithms exhibited a better performance than the no load balancing case
across all system loads. For example, the improvement in performance of the random
policy over the no load balancing case at 50% and 80% system loading, varied

between 25% and 45% respectively.

The results illustrated in Figures 5.8 and 5.9 also demonstrate a strong correlation
between load variance and the run time performance of the algorithms considered.
Thus, low load variance generally implies a corresponding improvement in response
time and, therefore, the relative ranking of the algorithms are similar. It is clear from
Figure 5.9 that at a 90% system loading, only the global average and threshold
algorithms appear to retain a reasonable level of system stability whilst the random

policy exhibits an exponential growth rate in load variance.
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Figure 5.9. Average Load Variance Using Independent Processes

In Tables 5.1-5.3 the performance results of the model used in this study is
represented alongside the published results (enclosed in parenthesis) found in the
study conducted by Johnson [Johnson88] for a range of system loads. The tables
show that for the three measures selected (mean, variance, and difference in
workload) the results produced are of a similar magnitude and range to those
recorded by Johnson with an almost identical ranking [Johnson88]. At very low
system load, shown in Table 5.1, the more complex global average algorithm
exhibited better overall load distribution profile than the much simpler random
and threshold algorithms. Given that the resulting mean load for the algorithms
considered is approximately one process, the simpler algorithms which make use
of a fixed threshold value of two, will undertake load sharing less often as each
host must have a minimum of two processes. In contrast, the variable threshold of
the global average algorithm does mean that a host with two processes can share

that workload with an idle host.
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Load Variance Mean Load Load Difference
Random 0.246 £ 0.004 1.236 +£0.003 1.121 +£0.010
0.219) (1.204) (1.010)
Threshold 0.249 +0.004 1.236 +0.004 1.128 £0.013
0.214) (1.204) (1.01)
NoBal 0.311 £0.01 1.250 £0.004 1.255 +£0.021
(0.441) (1.309) (1.160)
Global Average 0.202 £ 0.01 1.220 +0.004 0.980 +0.020
0.227) (1.204) (1.09)

Table 5.1 Overall System Behaviour for the 3-by-3 Mesh Model (Load 20%)

In Table 5.2, showing the results produced under moderate system loads, the
performance improvement is more marked in systems where load balancing is
active. However, it is noticeable that as in Table 5.1, the random policy has a
marginally better performance than the threshold policy. This success is due to
two factors: firstly, at low and moderate system load there is a high probability
that a randomly selected remote host will be underloaded, therefore its location
policy does not have the communication overheads that characterise the threshold
policy; secondly, the selection policy implemented will only allow a single
migration for any newly created process. Thus, the migration overhead is kept to

a level similar to that of the threshold policy.

A mean load, of around two processes allows a greater amount of load sharing for
all the algorithms. However, as in Table 5.1, the ability of the global average
algorithm to share processes during the peaks and troughs in workload, resulted in
better overall performance. It has been argued by some researchers that the
improvement in performance achieved by the more complex algorithms at low and

moderate system load was marginal and more than outweighed by the overheads

of its implementation.
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Load Variance Mean Load Load Difference
Random 0.687 +0.009 1.739 £0.008 2.034 +£0.016
(0.693) (1.769) (1.970)
Threshold (.696 +0.008 1.743 £0.007 2.065 £0.014
0.609) (1.742) (1.930)
NoBal 1.966 +£0.106 2.000 £0.019 3.553 +0.078
(2.107) (2.091) (3.160)
Global Average 0.506 +0.016 1.660 +0.006 1.720 +0.021
(0.694) (1.750) (1.950)

Table 5.2 Overall System Behaviour for the 3-by-3 Mesh Model (Load 50%)

However, at high system loads (shown in Table 5.3) the random policy yielded a
significantly poorer performance as there is a greater likelihood of its location
policy selecting sites that are already heavily loaded. In contrast, the performance
of the threshold and global average policies are significantly better with the latter
giving a consistently lower variation in workload between sites. Nevertheless, the
relative success of the threshold policy is attributable to one major factor, namely
the reduced level of process migration that takes place. No migration takes place
unless a receiving host is willing to accept the process in response (0 a probe
message. Furthermore, the processes that are eligible for migration are those with
the longest remaining service times. Such processes, which have not been started
on the local host are more likely to benefit from migration. In addition, as a
process can only be migrated once, the process will have a "higher priority” than

the newly created processes on the selected remote host.

In the case of the global average algorithm the variable threshold policy manifests
inherent limitations on its performance potential at high system loads. Whilst the
policy ensures that each host has a local workload in range of the average system

Workload, it promotes many more migrations especially of processes whose
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service time may be far less than the sum of the process transfer and the run queue
service time of the local host. The lack of real performance is even more marked

(relative to the threshold policy) in cases where processes are selected randomly

from the run queue without due regard for their remaining service times.

Load Variance Mean Load Load Difference
Random 3.429 £0.376 3.187 £0.069 4.898 £ 0.213
(4.188) (3.138) (4.320)
SndProbe 1.355 £0.052 2.866 £0.043 3.202 £0.057
(1.449) (2.817) (3.260)
NoBal 20.356 t2.164 5.050 *0.157 12.163 £0.622
(21.059) (4.983) (10.310)
Global Average |  0.999 *0.02 2.826 £0.043 2.754 £0.028
(1.208) (2.893) (2.980)

Table 5.3 Overall System Behaviour for the 3-by-3 Mesh Model (Load 80%)

The results presented so far lend support to the proposition of Eager et al
[Eager86] that simple load balancing algorithms such as the random and threshold
policies perform at least as well as more complex global average algorithms and
should therefore be the algorithm of preference given the low overheads imposed
and the simplicity of their implementation. However, whilst it may be impossible
to justify complex algorithms for small distributed systems such as a three-by-
three mesh, larger systems may present a plausible case for them as well as for
newer and, perhaps less complex, algorithms. Furthermore, it is important that
simple algorithms remain stable under extreme load conditions which, on the basis
of the three-by-three mesh, is certainly not the case for the random policy at high
system loads. The remaining sections of this study extends the analysis of the
standard load balancing algorithms studied by other researchers both in terms of

their scalability for systems consisting of 16 or more host processors, and their
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relative ranking. The results presented will attempt to highlight some key issues

in this regard.
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CHAPTER 6

EXPERIMENTAL RESULTS

6.1 LIGHT-WEIGHT INDEPENDENT PROCESS MODEL

A flexible load sharing algorithm needs to be: adaptable and scalable across all system
sizes, stable across all system loads, and induce minimum overhead and maximum
performance from the system. These properties are very much dependent on the
ability of the algorithm to avoid poor process allocation decisions given little or no
state information on processing activity within the system. In addition to the average
variance in processor load and the average response time, this study also considers the
hit ratio suggested by Kremien et al [Kremien92], and defined as the ratio of remote
execution requests concluded successfully. Further, the relative run-time performance
improvement of a load balancing algorithm is represented as a percentage by the

formula:

Tk —Tx

Speedup (x, k) =100 *
peecir Tk 6.1)

where x represent the load balancing algorithm under consideration, k£ represent the
baseline (in this case no load balancing), and 7y and T} are their respective average
response times. Given that the performance differences between algorithms were
minimal at very low system loads (20%), this study focused (in later sections) on their

performance under moderate (50%), heavy (80%), and extreme (90%) load

conditions.

The load balancing algorithms considered consisted of a range of sender (Snd), and
receiver (Rcv) initiated implementations. These categories are then sub-divided

according to the distance over which state information is collecied, from the mosi
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immediate neighbour (Vbor) to the complete network (Hop4 in the case of the nine-
processor topology).  Algorithms such as threshold (Tsnd), threshold neighbour
(TsndNbor), and threshold broadcast (7sndBcast) will accept and reply to the first
positive reply received as they do not retain, neither maintain, state information for
the nodes interrogated. In contrast, the more complex algorithms such as the global
average (prefixed by the letter G) and the communicating set models (letter C prefix)
attempt to keep track of system state. The sender-initiated and receiver-initiated
global average algorithms will be referred to as GsndBcast and GrcvBceast
respectively. The global average algorithms do not retain state information on any of
the nodes in the network but attempt to ensure that all nodes are within range of the
average system load using appropriate message request, reply, and timeout sequences.
In the case of the communicating set model, state information is retained for a
restricted set of nodes which may be updated either through the broadcast of periodic
state information (Cp), or as a by-product of any information exchange events
between hosts (Ce). Therefore, an event-driven communicating set implementation of
the sender and receiver initiated policies are referred to as Tsnd_Ce and Trcv_Ce

respectively.

6.1.1 Nine-Processor Mesh Topology

The experimental environment consisted of an interconnected mesh of nine
homogenous processors with communication channel speeds of 10Mbits per second.
Other parameters included the raw CPU speed for each processor of one MIPs, and
protocol stack processing overheads of 1000 machine instructions for every
transmitted message. The workload consisted of lightweight independent, cpu-
intensive processes with average response times of one second. In all cases, each
simulation run was terminated whenever the average response time for all sites

converged to within less than two percent of each other.
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The parameters of the fixed threshold policies were set to the optimum values given in
the literature. This is typified by the value two for the threshold level, and an
activation period of 250ms in the case of the global average algorithm. Further, an

average of 20 simulation runs allowed a statistical analysis to be conducted.

The three-by-three mesh was the smallest configuration used in the experiments
conducted. The results obtained for the algorithms are tabulated in tables 6.1 to 6.2.
Table 6.1 shows the ranked performance of the algorithms for a lightly loaded system.
Using lightweight processes with an average service time of one second, the system is
said to be lightly loaded as the average arrival rate is one process per second. Thus, it
is possible that at any instant in time one of the hosts will be busy whilst eight others
are idle. In Table 6.1, it is clear that the global average algorithms (Gsnd and Grev) in
many instances produced the best performances both in terms of the overall response
time and the redistribution of workload. This is primarily due to their ability to share
workload below the fixed threshold level of two processes common to many of the

other algorithms.

As evidenced in Table 6.1 the sender-initiated algorithms are more successful than
their receiver-initiated counterparts. These include GsndBCast, TsndBCast, and
Tsnd _CeBCast. In addition, algorithms which limit the distance over which transfers
are negotiated tend to yield a better performance than those where distance is
unrestricted. For example, algorithms such as GsndNbor, GrevNbor, and TsndNbor
produced better response times than GsndHop2, GrevBCast, and TsndBCast

respectively.

The success of the sender-initiated algorithms is mainly due to the minimisation of the
communication overheads in negotiating process placement. Such negotiations only

takes place when a new process arrives. Furthermore, given the greater number of

it
G
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idle hosts in the system, there is a very high probability that such negotiations will
end successfully. This also favours algorithms that restrict the distance over which
negotiation can take place, as there is also a greater likelihood of finding an
underloaded host locally. It is also true to say that, under light system loads, the
communication costs involved in finding and transferring a process to a remote

location will far outweigh the benefits.

The algorithm GsndNbor produced the best overall performance with the best
response time and the lowest load variance values of 7.055 seconds and 0.181
processes respectively. In addition, its hit ratio of about two messages for every
process migration is amongst the highest. This success is attributable to factors
mentioned previously, namely sender-initiated, and constrained negotiations. In
contrast, the response time and load variance figures for GsndBCast (broadcast
implementation) are 7.087 seconds and 0.202 processes respectively. However, the
performance difference is more marked in the case of the receiver-initiated
implementation, GrcvBCast.  Whilst the load variances of the global average
algorithms are of a similar magnitude, only GrevBCast (with average response time of

1.208 seconds) produced a poorer speedup improvement of approximately 3%.

It is clear from the results produced at low system load, that the underloaded hosts in
a receiver-initiated load sharing strategy were less successful at finding overloaded
sites. This is typified by the very low hit ratio of GrevBCast which required around
526 messages for every successful migration. The problem is further compounded in
the case of the global average algorithms where underloaded sites incorrectly assume
that the lack of success may be the result of a high load threshold and therefore
broadcast new threshold values. The reasons why the system does not become
unstable in this casé is due to the low level of process activity and the fact that the

variable load threshold cannot fall below one process.
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It is the more restricted algorithms GrevNbor, and GrevHop2 which produced
speedup performance comparable to the sender-initiated global average algorithms,
namely 14% and 10% respectively. Furthermore, their load variances are comparable
to the broadcast implementation and lend support to the proposition that, at low

system load, any variation in workload tends to be localised.

In the case of the fixed threshold implementation, Table 6.1 shows that the
communicating set implementations (Ce and Cp) performed worse than their
equivalent non-communicating set versions. Further, with the exception of the nearest
neighbour implementations, algorithms which rely on the periodic updating of the
communicating set performed worse than the no load balancing case and are
characterised by a greater amount of message traffic with a correspondingly poorer hit
ratio. It is this message traffic overhead which has degraded performance. The period
selected for broadcasting state information could be increased in order to reduce this
communication overhead. However, the consequence of such a change are three-fold:
firstly, the state information is likely to be less timely; secondly, the communication
costs are less significant for the nearest neighbour implementation; and thirdly, the
equivalent event-based communicating set algorithms (such as 7rcv_CeBCast and
Tsnd_CeBCast) represents the performance baseline on which a communicating set

model could operate.

The speedup values for the algorithms TsndNbor, Tsnd_CeNbor, and Tsnd_CpNbor
are around 6%, 5%, and 4% respectively. Although the difference in performance is
quite marginal, the results produced by the communicating set implementations also
highlights the possibility that at low system loads there is a high degree of
unpredictability regarding the accuracy of the state information maintained.  For
example, as the overall system load is often below the threshold level for long periods,

the information on individual sites may be inaccurate in the case of sender-initiated
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algorithms and as such, these sites will alternate more frequently between load states.
Alternatively, this state information may be highly accurate in the case of the receiver-
initiated algorithms, but is characterised by communicating sets that are frequently

empty. The net result is that more expensive message exchanges must take place in

order to rebuild the sets.

The results in Table 6.1 also shows that the random policy performed as well as, and
in some cases better than, many of the other fixed threshold algorithms. It has the best
hit ratio given that no host can refuse to accept any process it wishes to send, and
delivers a speedup performance of around 6%. Given the overheads of load balancing
and preemptive process migrations, Kremien et al [Kremien92] argues that any policy
that relies on negotiating the migration of processes can only be justified by showing
at least a 10% improvement in performance over the random policy and the no load
balancing case. At light system load, only the global average algorithms
demonstrated performance of this magnitude and many of the other algorithms would
not be considered. Further, it is notable that the preemptive global average algorithms
produced an average of three migrations every 100 seconds compared to one
migration for the fixed threshold receiver-initiated and non-preemptive sender-
initiated algorithms. Given the greater overheads of the preemptive migrations, it is
only reasonable to reject the other algorithms considered if they are consistently

outperformed across a range of system loads.

The results of the experiments conducted at moderate system loads, where the average
arrival rate is around four processes per second, is shown in Table 6.2. It is clear
from these figures that all the algorithms demonstrated improved run-time
performance over the no load balancing case with speedups varying between 6% and

37%.
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Compared to the random policy, the relatively poorer performance figures for many of
the periodic state gathering communicating set algorithms (in particular 7rcv_Cp, and
Tsnd_Cp) continues to reflect their excessive communication overheads. This is
especially the case for the broadcast algorithms Trcv CpBCast and Tsnd CpBCast
where, on the basis of the hit ratio, every successful remote execution required the
exchange of at least 140 load-related messages. A brief examination of the threshold
algorithms will provide further insight into the effectiveness of the communicating set
algorithms. These algorithms are: Tsnd_Probe which randomly selects and probes a
remote host; Tsnd_CeProbe which probes in turn, its set of remote sites with the least
process loads, where the state information used is a by-product of the most recent load
sharing dialogue between both sites; and Tsnd_CpProbe which only probes those sites

with the least process loads at the time of their last periodic state broadcast

From Table 6.2, it is clear that the performance speedup of 25% and 27% for the
threshold algorithm (7sndProbe) and its event-based communicating set counterpart
(Tsnd_CeProbe) respectively, are significantly better than the 15% speedup for the
equivalent periodic state collecting implementation (Tsnd_CpProbe). The
performance of Tsnd_CpProbe is hindered by the resulting increase in message
traffic. However, the much improved performance of Tsnd_CeProbe implies that an
overloaded host is more likely to find success in sharing its workload amongst those
lightly loaded remote hosts that have previously accepted some of its workload. Thus,
in contrast to the results produced at light system loads, the communicating set for an
overloaded host is less likely to be empty, and more likely to possess one or mare
members whose load state will have changed relatively slowly. It may be argued that
for the algorithms Tsnd_CeProbe and Tsnd_Probe, the former is characterised by
marginally fewer migrations, more messages per second, and a lower hit ratio which
reflecis failure rather than success. However, such results are also a refleciion of the

quality of the decisions made. That is, the migrations that takes place results in

=)
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genuine performance improvement as the load state of the selected location becomes

relatively stable over a period of time.

Generally, the regionalised non-communicating set implementations (from TsndNbor
to TsndBCast) exhibited comparatively better load stability and run-time performance
than their communicating set counterpart. These algorithms are characterised by a
greater number of process migrations, where algorithms such as TsndNbor results in
10 process migrations  every 100 seconds compared (o nine processes for
Tsnd_CpNbor, and eight processes for Tsnd_CeNbor. In the case of the
communicating set implementations the results produced are a product of the general
accuracy of the state information collected, where the periodic information is more
accurate and results in a greater number of successful migrations. However, the
improved performance is expensive in communication overhead as indicated by the
very low hit ratio of 31 load related messages for every migration compared to about 2

messages for Tsnd_CeNbor.

Only the immediate neighbour implementation (Tsnd_CpNbor) produced the best
performance for algorithms of this category with a speedup value of 26%. This latter
result lends further support to the proposition made for the performance achieved
under light system loads, namely that state information collected from the most
immediate neighbour is generally more accurate, and load variations tend o be
localised. Therefore, during periods of moderate system loads, an overloaded host
will be just as likely to find an underloaded host amongst its most immediate
neighbours. However, even where communication overheads are negligible, the
marginal improvement in performance for Tsnd_CeProbe compared to Tsnd_CpNbor,
is the result of the greater choice of underloaded sites, and the greater number of

Successful migrations.
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Whilst all algorithms studied exhibited performance results well above those systems
where load balancing is absent, it is evident that only the global algorithms are
anywhere near the target set by Kremien et al for outperforming the random policy by
as much as 10%. Clearly, the ability of the global average algorithms to adapt its
threshold level according to prevailing load conditions has a beneficial effect on
performance. In comparison with algorithms that makes use of fixed threshold values,
the threshold level of the global average implementation varied between two and four
processes, resulting in more equitable load distribution, and better response times.
Further, algorithms based on locality (GsndNbor and GsndHop2) were characterised
by a greater threshold range, a higher hit ratio, and better overall performance. At
moderate system load, the communication overheads of the global broadcast
algorithms (GRcvBCuast and GsndBCuast) clearly had an effect on their performance as
the majority of load imbalance problems and solutions that occurs between two or

more hosts are likely to be successfully identified and resolved locally.

In the case of the receiver-initiated implementations of global average, a by-product of
their relatively low response time and load variance were the significantly higher
amount of message traffic and the relatively poorer hit ratio. For example, GrevHop2
generated around 37 messages per remote execution compared to 7 messages for
GsndHop2. However, the hit ratio has improved significantly on the results obtained
when the system was lightly loaded. Again, these results are due to many
underloaded sites sending requests for work to remote sites which are likely to be
common to other sites, and receiving a reject-without-explanation message or no reply
at all.  Subsequently, an underloaded local site will time out, and assume the
community threshold to be too high and, as a consequence, broadcast a lower

threshold value. However, this activity occurs less frequently compared to the results

produced at light system loads.
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The performance of the algorithms under heavy load conditions is shown in Table 6.3.
The majority of algorithms produced performance speedup results between 30% and
59%. Even the random policy produced speedup results of around 45%. The
periodic state algorithm Tsnd_CpBCast was the only algorithm (o yield a performance
inferior to systems where load balancing is inoperative. Given the increased process
load and general shortage of suitable sites, the load balancing algorithms need to
minimise the state information collected and the number of migrations that takes
place. Certainly, Tsnd_CpBCast lacks the ability to adapt to the increased workload,

and its general performance reflects this weakness.

Of particular note is that, with the exception of the majority of periodic
communicating set algorithms, other complex state collecting algorithms such as the
event-based communicating set and global average algorithms exhibited significant
performance improvement. The relative ranking of the three threshold algorithms
Tsnd_CeProbe, Tsnd Probe and Tsnd Cprobe, remains the same although the
performance differences are even more marked with approximate speedup values of
58%, 54%, and 28% respectively. Likewise, the communicating set implementations
are characterised by a lower migration rate of three processes every ten seconds
compared to four processes for Tsnd Probe. The lower migration rate is welcome
given the load conditions, but the message traffic overheads of 7snd Cprobe accounts
for its poor performance. Further, given that many more sites are overloaded, thus
increasing the level of load negotiation activity in the system, the state information of

Tsnd_CeProbe is likely to be at least as accurate as Tsnd_Cprobe.

In terms of the sender-initiated, fixed threshold regional algorithms such as
Tsnd CpNbor, Tsnd_CeHop2 and TsndNbor, only the nearest neighbour
implementations continue to display a similar performance pattern to that produced

under moderate system load. Multiple requests over greater distance under heavy load
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conditions would seem to result in poorer decision-making, evidenced by the
relatively low hit-ratio, which in turn is the consequence of state information that is
out of date. Furthermore, when compared to their nearest-neighbour counterpart, it is
clear that such algorithms are grossly inefficient in cases where a local host with only
one process above the load threshold has multiple requests sent on its behalf to remote
sites outside their immediate vicinity. This is in marked contrast to the regional
global average algorithms where the variable threshold level is a significant factor in

their general performance.

The global average algorithms continue to perform well under heavy load conditions
both in terms of load redistribution and response time. In Table 6.3 it can be seen that
for the regional algorithms, a regional distance of two hops produced better results
than for those over greater distances or implementations based on the nearest
neighbour. As mentioned earlier greater distances imply better stability but longer
delays for a decision-making local host. However, shorter distances results in greater
load variance as a result of a more incomplete picture of system load, although it is
possible to optimise the response times within the general locality. Thus, a distance
of two hops is an appropriate compromise that allows a local host to view and
respond to the perceived system state, and be influential during the establishment of

common goals such as load targets.

It is interesting to note that the sender-initiated global average algorithms (GsndNbor
and GsndHop2) performed better than their receiver-initiated counterparts (GreviNbor
and GrevHop2) with speedup up performances of 58% and 55% respectively. The hit
ratio of the receiver initiated global average algorithms would imply that at high
loadings they are twice as likely to fail in their load balancing decisions. At high
system loads there are many more overloaded sites and, with the receiver-initiated

implementation, such sites are more likely to timeout if a request for work had not
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been received resulting in the broadcast of a higher threshold value. It is unlikely that,
given the contention amongst overloaded hosts during high system loads, that
underloaded hosts will have the opportunity to influence the global state other than by
responding directly to individual requests. Thus, the sender-initiated implementations

are more likely to prosper in this environment.

The results also re-emphasise the relative success of the simple fixed threshold
algorithm Tsnd_Ceprobe which performed as well as, and in some cases better than,
the global average algorithms. The performance of Tsnd CeProbe can also be
explained in terms of the following: the greater success in filling the communicating
set and pairing overloaded and underloaded sites; and the propensity of overloaded
sites to remain in the overloaded state over a period of time. This further emphasises
the earlier finding that an overloaded host when paired with an underloaded remote
site will be successful in sharing their workload over a period of time rather than at

any instant in time.

In Table 6.4 the performance of the algorithms are examined under extreme load
conditions, where the average arrival rate is about eight processes per second. The
average speedup in performance ranged from 19% for TsndBCast to 67% for
Trcv_CeHop2. Tt is under such load conditions that the random policy can be seen for
what it is, namely the lowest common denominator of performance attainable through
load balancing. Although the average speedup is around 32%, the distribution of
workload is significantly unstable with load variance of about 37 processes. Many
more of the algorithms implemented exhibited better load stability and exceeded the

performance speedup of the random policy by at least 10%.
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The results in Table 6.4 also illustrate the predominance of receiver-initiated, fixed
threshold algorithms with Trcv_CeHop2 and Trev_CeBCast producing speedup
performances of 67% and 66% respectively. These algorithms dominate as load
balancing activity is initiated and controlled by a small number of underloaded sites.
The communicating set is updated each time a local host is probed by an overloaded
host.  Given that excessive load conditions prevail, the local host will possess a
complete communicating set. Thus, whenever the load of the local host falls below
the fixed threshold, it will send a request for work to all the members of its

communicating set.

The success of this strategy is confirmed by improved response time, but extreme load
conditions will mean that a fixed threshold value that is too low will result in marked
inequality in workload between sites of at least four processes. In particular, the fixed
threshold value of two is well below the average system load and this results in fewer
migrations, such as three processes per second. The poor load distribution of
Trcv_CeNbor is due to a very limited set (nearest-neighbour) of potential load sharing
partners, compared to Trcv_CeBCast which makes use of message broadcast over a

much greater distance.

The ranking of the threshold algorithms 7snd_CeProbe, Tsnd_Probe, and Tsnd Cp
remained the same at 90% system loading. However, this is purely on the basis of
response times. Whilst it was the case that 7snd _CeProbe delivered better load
variance and response time than 7snd_Probe at 80% loading, only the response iime
is benter under extreme load conditions. In this case it is likely that the majority of
averloaded sites have near-identical communicating set members.  Thus, the
likelihood of many local hosts reaching their maximum limiis for rejections is high in
comparison with Tsnd_Probe. This facior is borne out in the hit ratio for boih

slgorithms of about eight and five messages respectively, Furihermore, the focus of
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Tsnd_CeProbe on the most underloaded sites is likely to facilitate further load

instability as such sites become the focal point of dialogue with the majority of

overloaded sites.

The fixed threshold, receiver-initiated communicaling sel algorithms delivered the
best response (imes but, with the exception of GsndNbor, the global average
algorithms exhibited much better workload distribution. In particular, the load
variances for GrevNbor, GsndHop2, and GsndBCast were in the region of two
processes.  Unlike GsndBCast, the race condition developed in GrevBCasi (nol
shown). As a consequence of excessive nelwork delay, the greater number of
overloaded hosts will time out, update and re-broadcast a new load state. These
frequent changes in the load state by different overloaded sites makes for an exiremely
unstable environment resulting in system saturation. This is particularly the case for

¢ broadcast beyond the immediate neighbours of the local host. 1t is possible

s
-

to minimise the race condition over longer distances by increasing the timeout period.
However, the management of an adaptive timeout period would introduce further

complexity to an already complex algorithm.

The race condition was not evident in GsndBCast as the smaller number of
underloaded sites were regularly probed and had a lower threshold limit of one
process. What is clear from the results produced so far for moderate and heavy
system loads is the durability of a global average algorithm based on a regionalised
load sharing strategy where the send-receive cycle delay is small and changes in the
load threshold have a ripple effect through the network as each local host shares iis

workload with neighbouring hosts.
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6.1.2 16-Processor Mesh Topology

The larger 16-processor mesh topology may well affect the performance of some
algorithms in a number of ways and thus alter the relative ranking obtained for
smaller mesh networks. For example, implementations that rely on broadcasting
requests to all remote sites will almost double the message traffic as each local host
will now target 15 (as oppose to eight) remote hosts. In the case of the threshold
probe algorithm (Zsnd_Probe), over 50% of remote sites will be at least two hops
away from the requesting local host. Similarly, for the nearest-neighbour
implementations, a greater proportion of hosts possess three or more links, whereas
the opposite was true for the smaller mesh. The communicating set algorithms, given
the size of the network may need to maintain larger sets and thus impose greater
storage and processing overheads. The results presented for the 16-processor mesh,
should provide further insight into the scalability of load balancing algorithms and the

impact of network size on their performance and relative ranking.

The results at moderate system load for a 16-processor mesh is presented in Table 6.5
and exhibit a similar ranking to that of the nine-processor mesh. The relative ranking
of the algorithms selected shows the global average implementations continuing to
display a much beiter overall performance. Similarly, the threshold neighbour
algorithms performed better than their communicating set counterparts both in terms
of response time and load variance. It is notable that the receiver-initiated threshold
algorithms, omitted in the nine-processor model, performed worse than the no load
balancing case and significantly worse than the random policy. The explanation for
such poor performance rests in the inability of these algorithms ia lacate overloaded
sites.  Further, their load balancing dialogue tends to be rather lengthy as an
underloaded site, having found an overloaded remate host, must then requesi (he

transfer of the process. However, given the fime delay beiween the request being
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made and the process transfer being confirmed, the process on the remote host may no
longer be available and the overloaded state cleared. The nature of the dialogue also

affects the est-neighbour implementation as an overloaded host will be common

to many underloaded sites. In contrast, the communicating set implementation of the

receiver-initiated policy produced speedup factors of at least 12% over the no loa

balancing case.

This clearly reflects the success of the communicating set policy in

ensuring that an underloaded site successfully receives work from sites that have

been overloaded in the recent past.

Variance MeanLd RunTime Hit Ratio SpeedUp

GrevHop2 0.404 £0.003 | 1.631 £0.006 | 1.260 £ 0.015 | 32.207 *0.828 | 36.800 * 1.619
GrevNbor 0.492 £0.006 | 1.643 £0.007 | 1.279 £ 0.019 | 12.845 *0.269 | 35.700 * 1.567
GrevHopd 0.395 £0.006 | 1.691 £0.010 | 1.388 +0.015 | 60.746 + 2.169 | 30.300 % 1.567
TsndNbor 0.688 +0.005 | 1.762 *0.006 142_4 +0,ﬁaf; 1.517 £0.011 | 28.350 = 1.604
TsndHop2 0.777 +0.009 | 1.880 +0.008 | 1.432 +0.008 | 4.807 + 0.037 | 27.950 + 1.605
Tsnd_CeProbe | 0.656 * 0.008 | 1.727 +0.008 | 1.451 t&ﬁ]ﬁ.g 2.324 £0.022 | 27.1G0 £ 1.969
SndHop4 0.818 £0.023 | 2.098 £0.017 | 1.461 +0.008 | 13.416 +0.098 | 26.550 + 1.638
Tsnd_CpNbor | 0.673 £0.008 | 1.732 £0.006 | 1.463 +0.009 | 13.771 £0.371 | 26.550 + 1.538
Tsnd_CeNbor | 0.711 +0.013 | 1.739 £0.010 | 1.470 +0.026 | 1.269 +0.011 | 26.400 + 1.897
Tsnd_CeHop2 | 0.706 +0.010 | 1.739 £0.009 | 1.471 £0.019 | 3.205 + 0.037 | 26.300 + 1.829
Random 0.690 +0.009 | 1.738 £0.006 | 1.477 +0.008 1.000 25.800 *1.196
Ce SndHop4 | 0.723 £0.012 | 1.747 £0.009 | 1.488 +0.024 | 7.541 +0.096 | 25.500 + 2.068
Tsnd_Probe 0.726 +0.009 | 1.761 +0.005 | 1.492 *0.008 | 2.035 % 0.022 | 25.000 * 1.298
cP TsndHop2 | 0.686 +0.007 | 1.748 £0.006 | 1.498 +0.009 | 31.059 * 0.604 | 24.850 + 1.461
Trev_CeHop2 | 0.802 £0.011 | 1.783 +£0.010 | 1.562 0.020 | 19.903 + 0.829 | 21.600 * 2.066
Ce RcvHopd | 0.763 +0.008 | 1.798 £ 0.009 | 1.593 +0.018 | 46.940 + 1.722 | 20.000 + 2.0535
Trcv_CeNbor | 0.953 +0.019 | 1.811 +0.012 | 1.614 +0.033 | 7.072 £0.234 | 18.900 + 2.283
Tsnd_CpProbe | 0.700 +0.006 | 1.807 £0.008 | 1.617 +0.008 | 68.734 +1.478 | 18.700 * 1.689
¢P RcvNbor | 0.948 +0.012 | 1.819 £0.007 | 1.638 £0.009 | 29.244 +0.717 | 17.600 + 1.536
cP RevHop 2 | 0.816 £0.008 | 1.825 +0.007 | 1.653 £0.010 | 68.230 +1.753 | 17.000 * 1.686
cP_RcvBCast | 0.797 £0.007 | 1.870 £0.007 | 1.745 £ 0.006 | 97.320 + 2.597 | 12.400 % 1.729
NoRal 1.982 £0.110 | 2.002 £0.015 | 1.991 +0.038

RevHop2 1183 +£0.023 | 2.797 £0.015 | 2.155 £0.022 | 8.231 £0.107 | -8.300 + 3.234
RevNbor 1.875 £ 0.058 | 2.873 £0.014 | 2.283 £0.022 | 2.833 £0.035 |-14.600 + 3.273
RevHop4 1.008 +0.048 | 3.017 £0.021 | 2.392 £0.031 | 19.199 £ 0.249 |-20.200 + 3.882
RevRCasl 1.163 +0.043 | 3.104 £0.022 | 2.498 £0.03 | 21.866 +0.263 |-25.400 + 3.078

Table 6.5 : Overall Performance for the 4-by-4 Mesh Model (Load at 50%)
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The global average algorithms produced the lowest load variance and average
response times. In particular, the load variance improves over much greater distances
(see  GrevHop4) but the increased communication overheads results in a
comparatively poorer response time compared to GrevNbor and GrevHopZ. Whilst
the results in Table 6.5 might re-emphasise the effectiveness of the global average
implementations at moderate system loads, it also supports the argument for more
regionalised load sharing strategies, given larger disiributed systems. Thus, the
results produced at this stage lends support 1o the proposition of Kremien et al that:

"Activities related to remote execution should be bounded and resiricted to
a small proportion of the activity in the sysiem"[Kremien92].

regionalised global average algorithms, with the nearest neighbour implementation
GsndNbor delivering a speedup performance of around 59%. The global broadcast
algorithms GsndBCast and GrevBCast produced better load distribution but a speedup
performance of only 44% and 35% respectively. It is also notable that the receiver-
initiated threshold algorithms have an improved performance under heavy loads and
TrevHopZ2 is amongst the top three algorithms yielding a performance speedup of 57%
and a smaller variation in workload when compared with GsndNbor. Thus, in
contrast to its performance under moderate system load, RevHopZ2 is characterised by
a higher degree of success in the negotiation of workload. Given the greater number

of overloaded sites, underloaded hosts are likely 1o have a steady stream of waork.

In comparison with the results obtained for the smaller mesh size, the communicating
set implementations performed worse than the standard threshold implemeniations.
For example, the perfarmance difference between the threshald neighbour algorithm

(TendNbor) and its communicating set counterpart (Tsnd_CeNbor) has become more
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marked with the TsndNbor implementation exhibiting much better load distribution
and response times.  These results imply that by using the communicating set poorer
decisions were being made which invoked migrations that increased load imbalances
and overall system response times. A key factor in the improvement of TsndNbor is
the greater number of hosis with links (o three or more immediate neighbours. Thus,
under heavy load conditions, a broadcasi (o all neighbours is likely to result in at least
one positive response. In contrast, the communicating set implemeniation may have a
more restricted set of underloaded neighbour sites to which it sends requests, and it is
likely that other overloaded neighbours will have that site in common. Thus, the oad
state of the targeted node will fluctuate more erratically in response (o requests made
by many of its neighbours. The consequence is a greater likelihoad of rejeciion for
the local host and the need to broadeast the requesi to all its neighbours. In addition,
it can also be seen that the overall performance of TsndNbor is within siriking

distance, if not comparable to that of the receiver-initiated global average

implementations.

In order to illustrate the problem faced by a communicating set model, a simulation
trace, based on the communicating set implementiation of the threshold probe policy
(Tsnd_CeProbe), is described. In this implementation the set is built up as a by-
product of load balancing events such as the receipt of, or reply fo, a probe message.
For example, after 500 seconds of simulation time, Nodel('s view of the network in
its overloaded state only identifies nodes 9 as an underloaded site for fruitful load
sharing activities. In the case of Node8, its communicating set is empty as it is unable

o find an underioaded site.

M 10 Mg:173.00 L. 3 Ri: 2.26 Tx: 35 lmm: 176 Dih: 412
CommSet:[9-52 |

N: & Mg:120.00 L. 4 Ri; 208 Tx: 23 Imm: 163 Dih: 361
CommSet:|]



Variance

Meanl.d

RunTime

Hit Ratio

SpeedUp

GsndNbor

1.369 £ 0.049

2.771 £0.039

2.057 £0.039

2.349 +0.020

59.000 +2.211

GsndHop2

0.961 $0.022

2.946 +0.041

2.088 +0.043

7.120 +£0.044

58.300 £ 2.406

TrevHop2

1.183 £0.023

2,797 +0.015

8.213 +0.077

D

W

57.100 £ 1.59¢

GrevNbor 1.481 £0.027 2.762 £0.051 2.160 £0.032 4.926 £0.195 57.000 +2.052
TsndNbar 1.749 £0.156 2.903 +0.036 2.144 +0.048 1.687 +0.017 56.800 + 1.576
Trev_CeHop2 1.599 +0.034 2.824 +0.044 2.250 +0.027 5.692 0,111 55.150 +1.927

GrevHopZ2

2.827 £0.063

12,103 £0.587

TrevMbor

2.873 +£0.014

2.827 +0.026

Tsnd_CpNbor

™
S
O
(o8}
I+
<
—
ot
oo

2.856 +0.029

Trev_CpHop2

2.861 £0.022

12.796 +£0.174

Tsnd_CeNbor

o
ey
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fus
H
<
—
[AS]
~J

2,899 £0.047

2,096 +0.040

Tsnd_Probe

._.
N
o

(98]
I+

~C;
o
Do
=

2.883 1 0.026

54.600 4 2.011
54.000 £ 1.944
53.800 4 2,098
53.550 + 2.305
52,633 4 1.542

Trev_CeHop4

—
a3
o
3
H
ey
o)
[ AN

2.922 +0.050

TandHop2

3.649 +0.044

52,805 £ 1.487

Trev_CpNbor 2.063 +£0.058 2.909 *0.025 2.373 £0.034 6.073 £0.063 52.600 +2.171
TrevHop4 1.098 +0.048 3.017 +0.021 2.392 £0.031 19.158 +0.168 | 52.300 +1.947
Trev_CeNbor 2.283 +0.080 2.935 £0.039 2.394 £0.033 2.323 +£0.042 52.150 +2.231
Tsnd_CeHop2 2.364 +0.162 2.993 £0.096 2.399 £0.049 6.103 +£0.205 52.050 £ 2.585
Tsnd_CpHop2 2.494 £0.155 2.988 £0.038 2.458 £0.045 14.209 +£0.156 | 50.900 +2.079
TrevBCast 1.163 £0.043 3.104 +0.022 2.498 +0.031 21.820 +0.249 | 50.200 +2.044
Tsnd_CpProbe 1.890 £ 0.078 3.036 +0.030 2.530 +£0.038 19.332 40.214 | 49.600 +2.319
GsndHop4 0.755£0.016 3.576 £0.069 2.641 +£0.087 20.366 +0.138 | 47.100 + 3.695
Trev_CpBCast 2,016 £0.129 3.189 *0.041 2.724 +0.062 22.672 £G.185 | 45.600 +2.271

Random 3.284 +£0.212 3.176 £0.051 2.725 +£0.073 1.000 45.133 +1.925
GsndBCast 0.759 +0.015 3.777 £0.079 2.833 £0.091 23.951 £0.151 | 43.500 + 3.629
GrevHopd 0.867 +£0.019 3.418 £ 0.106 2.847 £0.126 25.948 +0.160 | 43.200 +4.367
GrevRCast 0.853 +£0.013 3.742 £0.169 3.239 £0.218 29.417 £0.212 | 35200 *+6.125
TsndHop4 12,638 +£0.709 5.857 £0.090 3.403 £0.140 18.599 £ 0.410 | 31.684 +3.215
NoBal 20.081 £ 2.065 5.0 £0.13640 4.974 £0.170

Table 6.6 : Overall Performance with Sysiem Load at 80%
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The following trace focused on the message dialogue of node/0 and node§ just before

and after the first period of the simulation run.

Node8 receives Packet N6-N8::  Node8::Time:496.556486  Node6's reply (pre6344) was 3

Node8 GMT 496.557 TripT0.252 TIMER:PRB_TOUT Eiime: 496.809
Node8 receives Packel N4-N8::  Node8::Time:496.659295  Noded's reply (pre6344) was 3
Node8 GMT 496.660 TripT0.256 TIMER:PRB_TOUT Etime: 496.916
Nodel0 receives Packet NO-N10:: Node0 -overloaded- has asked nodel0 TO accepi
Nodel0 GMT 496.759 TripT0.258 TIMER:WAITP_TOUT Etime: 497.017

Node8 receives Packet N14-N§::

Mode8:Time:496.812504 Nodel4's reply (pre6344) was -2

node B sends process6344 [load = 4] 1o node 14
As the communicaling set for Node8 is emply, nodet and noded were probed al
random. Both nodes were found o be overloaded, and anoiher remaoie site (nodel4)
was selecied at random. The probe was successful as nodeld was found io be
underloaded and therefore it automaiically became a member of the communicaling
set for node§. Process migration then takes place as node8 sends prc6344 to nodel4.

Similarly, when Nodel0 is probed by Node0, it was also found to be underloaded, and

initiated the "wait timer" for the remote process to arrive.

Nodel0 receives Packet N7-N10:: node 10 receives Exit msg [pre:: 6318 at node:7]

Nodel0 receives Packet NO-N10:: node 10 RECEIVES process6347 [load = 3] FROM node 0
Node10 receives Packet NO-N10:: Node0 -overloaded- has asked nodel0 TO accept

Nodel0 GMT 497.333 TripT0.258 TIMER:WAITP_TOUT Etime: 497.591

Nodel0 receives Packet N7-N10:: node 10 receives Exit msg [pre:: 6320 at node:7]

Nodel0 receives Packet NO-N10:: node 10 RECEIVES process6354 [load = 3] FROM node 0
Node10 receives Packet N14-N10:: Node14 -overloaded- has asked nodel0 TO accept

In the protocol fragment above, an exit message is received by nodelt) from node7
for one of its original processes (prc6318) followed by the arrival of pre6347 from
node0. As nodel0 is a member of the communicating set for node0 a further probe
message is sent by the latter resulting in the subsequent migration of prc6354 1o
nodel(), A further probe message by nodeld was rejecied as nodel() is no longer
underloaded.
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NodeB8 receives Packet N9-N8::  Node9 -overloaded- has asked node8 TO accept
Node8 receives Packet N14-N8:: node 8 receives Exit msg [prc:: 6344 at node:14]
Node8 receives Packet N9-N8::  Node9 -overloaded- has asked node8 TO accept

Node8 GMT 499.383  TripT0.256 TIMER:PRB_TOUT Etime: 499.639
Node8 GMT 499.487  TripT0.256 TIMER:PRB_TOUT Etime: 499.743
Node8 receives Packet N14-N8:: Node8::Time:499.588688  Nodel4's reply (prc6386) wus 4
Node8 GMT 499.590 TripT0.252 TIMER:PRB_TOUT Etime: 499.842
Node8 GMT 499.593  TripT0.254 TIMER:PRB_TOUT Etime: 499,847

Node8 receives Packei N4-N8::
Node8::Time:499.645715 Noded's reply {pre6386) was -2
node 8 sends process6386 [load = 5] to node 4

In its previous overloaded state node§ performed a successful migration {prc6344) to
nodel4. Therefore, given ils current state two probe messages are sent 1o nodel< on
behall of the excess local processes. However, these requesis are rejecied and another

iwo consecuiive probe messages were sent to randomly selecied hosis. Noded was

found to have available capacity and pre6384 migraied (o it

Node8 GMT 499.659 TripT0.252 TIMER:PRB_TOUT Etiime: 499,911
Node8 receives Packet N14-N8:: Node8::Time:499.710342  Nodel4's reply (prc6391) was 4
Node8 GMT 499.711 TripT0.252 TIMER:PRB_TOUT Etime: 499.963

Node8 receives Packet NO-N8:: Node8:Time:499.712351  NodceO's reply (pre6392) was 3

Node8 GMT 499.713  TripT0.252 TIMER:PRB_TOUT LEtime: 499.965
Node8 receives Packet N4-N8:: Node8::Time:499.766364  Noded's reply (prc6393) was 3
Node8 GMT 499.767 TripT0.256 TIMER:PRB_TOUT Etime: 500.023
Node8 receives Packet N4-N8::  Node8::Time:499.818773  Noded's reply (pre6391) was 3
Node8 GMT 499.820 TripT0.256 TIMER:PRB_TOUT Etime: 500.076
Node8 receives Packet N4-N8::  Node8::Time:499.820782  Noded's reply (prc6392) was 3
Node8 GMT 499.822 TripT0.258 TIMER:PRB_TOUT Etime: 500.080

Node8 receives Packet N14-N8:: Node&::Time:499.923591  Nodel4's reply (pre6393) was 3
Node8 GMT 499.925 TripT0.258 TIMER:PRB_TOUT Etime: 500.183

Node8 receives Packet N15-N8:: Node8:Time:500.026400  Nodel5's reply (pre6392) was 4
Node8 receives Packet N1-N&::  Node&:Time:500.027405  Nodel's reply (pre6391) was 3

Node8 receives Packet N2-N8::  Node8:Time:500.179610  Node2's reply (pre6393) was 3
Node8 GMT 500.281 TripT0.254 TIMER:PRB_TOUT Etime: 500.535

In the example above node8 sends consecutive requests fo the only member of s
communicating set (node4) on behalf of processes 6397 (o 6393, bur receives in turn,

consecutive rejections. This is alsa the case for requests sent (o nodes /4, 0, 15, 1,
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and 2. These results highlight a key weakness of the communicaiing set
implementation under heavy system loads where consecutive process arrivals occur.
In such cases, probe messages would have been seni to members of the
communicating set before the first reply was received and the local host is able (o

update the set. A possible resotution of this problem is to increment the load eniry for

=
9]
ow
=
-
o
[9¥]
-
<
—t
—_

he communicating set that is probed. Potentially, this may result in
the load entry being inaccurate and may also require the introduction of additional
mechanisms 1o test for continued membership. However, it has the advantage of
significanily reducing the number of consecutive messages sent to a remoie site which
may only be in a transitory underloaded state. An alternative method is o simply
remove the node entry from the set. If the probed site is siill underloaded as a result
of the state information returned, an up-to-date eniry can be made in the
communicating set. Consecuiive process arrivals will be forced ta seck allernative
sites until the reply is received for a previous probe message from a member of the

communicating set for the local host.

The results in Table 6.7 are also similar to those achieved under extreme load
conditions for a nine processor mesh topology. The results show that the better
response times were atfained by the regionalised, receiver-initiated algorithms with
performance speedup of up to 72%. However, in the case of the random policy, the
speedup improvement was only 16% compared (o 32% for the smaller mesh system.
The run time performance of the regionalised global average algorithms were
generally poorer than the receiver-initiated algorithms but continue to exhibit a greater
degree of load stability. This is particularly true for GrevNbor achieving a workload
variation of about three processes beiween sites; whilst algorithms such as TrevNbor
praduced the better run time performance. Only TrevHope produced the besi

response time and comparable variations in workload 1o that of the global average
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algorithms.

The sender-initiated algorithm TsndNbor produced a performance

speedup of 67% but the level of load imbalance was significantly worse at around

seven processes between sites.

Variance MeanLd RunTime Hit Ratio SpeedUp
TrcvHop? 2.866 +0.357 | 3.684 £0.077 | 2.926 +0.091 | 6.580 +0.046 | 71.800 £1.751
TrovNbor 4.034 £0.249 | 3.790 +0.072 | 3.067 £0.090 | 2.299 +0.017 | 70.500 = 1.900
Trey_CeHop2 | 4.202 £0.326 | 3.923 +0.073 | 3.209 +0.085 | 4.175 +0.068 | 69.000 +2.055
GsndNbor 2.526 £0.097 | 4.083 £0.114 | 3.266 +0.100 | 2.409 £0.014 | 68.400 +2.59]
Trcv_Cpibor | 5.090 +0.435 | 4.006 £0.074 | 3.302 +0.091 | 4.885 £0.071 | 68.286 + 1.799
Trev_CeNbor | 5.604 £0.488 | 4.092 +0.083 | 3.402 +0.096 | 1.765 +0.025 | 67.300 & 2.627
Trey_ CpHop 2 | 5139 +0.772 | 4164 £0.114 | 3.444 £0.115 | 10.337 +0.169 | 67.000 + 2.000
TsndNbor 7.399 £1.543 | 4126 £0.166 | 3.396 £0.167 | 3.126 £0.127 | 67.000 +2.63]
Troy_CeHopd 5028 +0.685 | 4.228 £0.098 | 3.533 +0.120 | 9.149 = 0.127 | 66.400 & 2.547
GicvNbor 2834 20175 | 4.285 £0.134 | 3.594 +0.168 | 3.994 +0.043 | 65900 & 2.644

TrevHopd 4.884 £0.505 | 4.346 £0.115 | 3.666 £0.146 | 15.527 £ 0.088 | 64.500 £ 2.224
Tsnd_CeNbor | 9.814 +0.943 | 4.559 £0.128 | 3.905 £0.146 | 3.630 £0.151 | 62.900 + 2.998
Tsnd_Probe 3.985 +0.530 | 4.530 £0.139 | 3.909 +0.144 | 4.727 £0.192 | 62.071 +2.129
TrcvBCast 5.828 +0.667 | 4.582 £0.134 | 3.936 +0.158 | 17.836 +£0.116 | 62.100 + 2.644
Tsnd_CpNbor | 11.690 £3.261 | 4.710 +0.167 | 3.982 +£0.149 | 9.050 £0.299 | 61.857 £2.116
GsndHop? 1.597 £0.060 | 4.933 +0.269 | 3.987 £0.259 | 7.161 £0.023 | 61.300 +3.368
Tsnd_CeHop2 | 14.227 £1.994 | 5.306 +0.221 | 4.670 £0.210 | 14.399 +1.027 | 55.200 + 3.706
GrevHop?2 2.082 +0.162 | 7.158 £1.377 | 6.647 £1.303 | 10.245 £0.050 | 45.600 +7.152
Random 58.628 +18.131| 8.779 +0.801 | 8.566 +0.856 1.000 16.538 +6.827
NoBal 97.999 +17.230| 10.430 +£0.595| 10.321 +0.627

Table 6.7: Mesh16 Overall Performance with System Load at 90%

Under extreme load conditions, the global average algorithms which aperate beyond a

distance of two hops were extremely unstable. Again, in contrast (o the smaller nine

processor mesh size, the excess message traffic and communication delays rendered

these glohal algarithms completely ineffective. Thus, GrevBCast and GsndBCast

were equally susceptible fo the race candition.
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It is noticeable that the regionalised sender-initiated communicating set algorithms
performed significantly worse than their receiver-initiated counterparts in terms of
response time and load distribution. One of the major problems for such algorithms is
the inaccuracy of the state information collecied as a result of excessive delays in the

network.  Again, many overloaded sites will have a small set of underioaded

rocessors in common. As a resuli of excessive requests to the same underloaded site,
it is more likely for the state information received to be cutdated or replies failing 1o
arrive within a given time frame. Whilst the sender-initiated implementation may
result in many overloaded hosts sending requests to the same underloaded site, the
receiver-initiated algorithm allows a few underloaded siies to send requesis 10 many

and ofien muiually exclusive overloaded hosts.

70.00
60.00
50.00 . . ~-— @ Random
A SndProbe
2 40.00 1 g ce_SndProbe
E ¢
£ 3000 - SndNbor
& - - c8_8SndNbor
20.00 | ¢ ’ v oo GrevNbor
. L © “ - ‘j
10.00 & . R
[} . @ ® &
0.00 | ~ i S T
0.50 0.60 0.70 0.80 0.90

Sysiem Load
Figure 6.1 Hit Ratio for Load Balancing Algorithms
Figure 6.1 shows how the hit-ratio of a selection of algorithms varies with system

load. In particular, the hit ratio of the receiver-initiated global average algorithm

improves the greater the system load and continues fo rise dramatically under extreme
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load conditions. In contrast, the sender-initiated algorithms exhibited a poorer hit

ratio at around 70% loading which continues to fall the greater the load.

The results produced by the threshold policy up until now have been primarily due to
the removal of message timers, as implemented in other siudies. Whilst this strategy
is simple, ils consequence is that an overloaded host will wait for an unspecified
period of time for a reply (o be returned from a remote host when probed. The main
problem is that a newly created user process may have to wait for long periods befare
being started locally or remotely. But more importantly, ils susceptibility (o netwaork
failure may result in suspending the user process indefinitely. Therefore, a timer-
hased version of the communicating sel model was also implemenied and the resulis
are presenied in Table 6.8. It is clear from the itable thai ihe real difference in

wance occurs under heavy system load. Under those circumsiances, message
delay 1s significant. The timer-based implementation times out more frequently and
has to make decisions without the information it requires. Thus, at 80% loading the

performance speedup for Threshold and Threshold Timer are 56% and 52%

respectively, and at 90% system load, a speedup of 65% and 47% was attained.

Furthermore, under extreme system load the timer-based implementation is extremely
unstable with variance in workload of around 18 processes. The communicating set
model implemented without timers produced a speedup of 65% compared to 62% for
the standard threshold algorithm, but the latter exhibited beiter load stability.
However, given that it is generally unacceptable to make user processes wait
indefinitely, the timer-based implementation reflects the achievable performance of

threshold policies.
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6.1.3 25-Processor Mesh Topology

1 a 25 processor mesh the maximum possible distance that a message can travel in
order to reach all nodes is 10 hops. Thus, given the average service time for user
processes, the relative communication costs will have a significant impact on

serformance for the unrestricted broadcast algorithms. It is in networks of this size

L

that the fixed threshold broadcast algorithms are at their weakest, as it is no longer
cost effective to send requests to all hosis on behalf of a single process. The relative
ranking of the algorithms are presented in Table 6.9 to 6.11 for 50%, 80% and 90%

foadin ng e 'p&CiiVBI}

Al moderate sysiem load (see Table 6.9) the algorithms exhibited similar ranking io

ihe previous mesh iopologies siudied. In particular, the regionalised global average
algorithins continue (o produce ihe lowesi load variance and the betier response times.

However, there is also a moderate increase in speedup for most algorithms, given the
greater proportion of idle nodes in the sysiem.  Whilst attempting to maintain the
global average over greater distances would tend to result in better load distribution,
the results indicate that, even at moderate system load, the impact of communication
delay places an upper limit on the network diameter considered by a load balancing
algorithm. For example, the algorithms GsndHop2, GsndHop4, and GsndHop6
f)t'oduceci load variance results of 0.39, 0.38, and 0.4 respectively with corresponding
performance speedup of 39%, 31%, and 23%. Further, the difference in the process
migration rate is marginal with 21 processes migrated every 100 seconds for
GsndHop6 compared to 22 processes for GsndHop2, and GsndHopd.  Although the
receiver-initiated algorithm GrevHop6 produced the lowest variation in workload, its
apeedup performance was only 22% with a resulting process migration rate of 30

processes every 100 seconds.
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The lower variation of Grev over greater distances can be accounted for by the
accuracy of the system state information maintained by the collective efforts of a
significant number of underloaded sites and the lengthier load balancing dialogue
under moderate load conditions. However, the higher migration rate does not equate
with improved response time because the remaining service time of the greater
number of migraied processes may be far less than the time taken (o complete the
rransfer. Therefore, a sender-initiated strategy is preferable under low to moderate

system load conditions.

The performance of the algorithms under heavy load conditions is shown in Table

6.10. Again, the pattern of performance is consistent with thai of the previous mesh

sizes examined as the relative ranking and overall performance of the algorithms are
similar. The performance of resiricied algorithms such as TsndNbor, GrevNbor, and
Tsnd _CeProbe continue 1o improve with the increased mesh size over less resiricled

implementations.

The performance of TsndNbor is commendable and comparable to the more complex
global average algorithm GsndNbor. 1In particular, it exhibits very low load variance
and a high hit ratio of around one message for every migration that takes place
compared to two messages for GsndNbor. Algorithms that attempt to operate the load
b‘alancing policy over distances of more than two hops performed badly. Thus,
TsndHop4 produced an average speedup of 41% but exhibited load instability
variations of up to 17 processes. In contrast, GrevHop4 produced the lowest variation
in workload, but one of the poorest response times. In terms of their process
migration raie, both algorithms migrate about four processes every ien seconds hut
the message traffic is three times as great for GrevHopd. The network delays arising
from the reduced bandwidih seriously impaired the average process response (ime

eapecially where pre-emptive migrations are involved.

180



181

ZUIPROT 908 1B [SPOIA USSJA 10SS3001J C7 B I0] INOIARYSq Wa1SAS ()1°0 24GE)

E s

66'8YC £ [I'8LL| ZETT £ 00E'TY | ETET £ T6516 | BOL0 £ SLE°0 |[€TV'21 360601 1281 +L6S€ [8H91  ¥8SET| 2080 £ 5201 wmm{%ww
9Z1'052€0°S | €090 3 ¥86'91 | 0010 €60°C | 08% 1 E¥60T fegoN|
YTz SLBOY | IV8°0 £ SLOTT | VOO ¥OP'2T | 1000 €510 | 0L005686C | SEC0F0Z9L | 2900 SOVE | LIS0 7977 | $O0HST pusy
EE6'T £ 00570V | €910 £ 6ZCTL | €8E0 £ ¥EBZE | L0005 FOF0 | €80°05L86T | SLTO569SF1 | 65005 61L°C | 2450 79991 pooppus)
PEZ L 5 LOT WY 000'T 9500 £ Z5€°C | BOO0OFOS0 | 19003 608C | 26105 €10L | SSO0OF9VTE | ¥610x625€ wopuey
YO T3 LOVIS | 9E0°0 £809°C | VB0 0818 | 90005 [LV0 | ZE005SHPT | 2SO0 5¥SEY | 1€0°0 59567 | ¥200 6161 SqOIdPUS )
Y8r'y £ 68815 | LLSO £ 0L8Y | 6VBO£BLES | OI00 58620 | 06205 61¥T | 29505 80LY | 822056467 | ¥€1°0 72961 |B8G0IIET PUSL
L06°0 £ €£€E7CS | 082°0 £ 8SOTT | LIV 0 £ 80T | Y0005 0SE0 | 620056657 | 2S00 2¥Ly | 2S00 V967 | €V00 €951 | #A0HST AGiL
PO T £ 995728 | 0610 £ VET'S | 9ST0£ €259 | €000 8810 | 1v00+88€7 | LLI0£628C | ¥OI056667 | 960706567 | Z0OHED pus]|
8660z Pr6ZS | 9€00 5 1681 | TG00 6ETE | £000£852°0 | 1€00599€C | 1ZI05909°GC | w005 V167 | 8900+ 6£77 | JOGNST AL
08€°L £ 00€7€S | 2S00 L80S | €8I0 6IECL | Y000 €6£°0 | €S0°05€PET | 80705 656L | 8€0°0 £ S8 € | €610+ 6277 gdoHpus]
9501 £ 950'VS | ££0°0 8691 | V0058827 | Z000 €020 | SE007€0ET | SSTO5SE8S | ¥S00 €887 | 0010 1667 | OGNS Dusy
EPZL £ 11965 | 01670 5 LIZ'0T | vISTT £ 8B0°CE | Y0005 L89°0 | 6€005+ETT | ¥SO0¥¥6E | 990052587 | bE00S6L1 Zdopaauny
CEB0 68865 | LOIOx9I8Y | 5610 vET0L | €000 5070 | 92005 812°C | 6L0058Y9% | Ly00 8087 | 1€00£2SC1 | gdOHaD ADLL
0L6°0 7 €€€7LS | €L105€66°C | ZLSO £ 69 EL | G000 500 | OVO06E1C | 0L005¥ZEY | 2900 0SLZ | 800+ 1161 IOgNASID)
09T £ 00E'85 | £E0056IT9 | 6105 BLEBL | FOOOz6¥F0 | 0v00 5 S0LT | 0S0°05269°€ | €500 5926 | LZ0°0 5 L¥O'1 ZdoHpusy
607°1 5 052°85 | 8000 £ 6881 | €700 L79°C | Y000 £ T6E0 | 0E005201C | LST0z 167 | 0200 £¥687 | 00105921
080°1 £ 005°65 | 8000 9¥6'L | 9S00 5 LT¥5 | ¥OOD6IFD | 1€0°0 5 €V0°T | LS00 SLLY | 6200+ Y927 | OSU0590% 1
dnpoeds IV M B/X L s/815 swiuny SoUBIRIY PIuEspy souELIBA




The communicating set algorithms operating at a two hop radius produced lower

variation in workload, but marginally poorer response times, than their setless

counterparts. The results for Tsnd_CeHop4 show workload variation of about four

processes compared to the more unstable TsndHop4. In terms of the process

L T,

gration and message transmit rate the communication model had 50% fewer

i
[]'C.

e
T

migrations per second (two processes per second) and 30% less transmiis. Thus,
although its hit rate might suggest poor decision making activity in Tsnd_CeHopd, ihe

level of stability in workload would suggest otherwise.

It is under exireme load conditions of 90% (see Table 6.11) that the random policy
truly becomes inferior io the no load balancing case. So far, as the mesh size has

Hic

t‘L:

reased the performance of ihe random policy has been relaiively consisient

A el B

between sysiem loads of up to 80%. 1t is under chaotic ioad conditions that this
T sirategy has demonstrated progressive increases in load instability and poor run i

performance for every increase in the mesh size.

The migration rate for the random policy is around eighi processes per second
compared o a maximum of five processes for the other algorithms. The restricted
global average algorithms still exhibit better load stability but the fixed threshold
receiver-initiated algorithms produced better overall response times. If one examines
the results for the top two algorithms it is noticeable that the migration rate for
Trev_CeHop2  was under four processes every len seconds compared to five
processes for GsndNbor. At exireme load, the fixed threshold nearest neighbour
algorithm TsndNbor is less stable but, nevertheless, is able to deliver a performance
apeedup of 66%. The sender-initiated communicating set implementation of threshald
and nearest neighbour performed worse than their setless counterpart. The poorer
performance is atiributable to untimely state information for Tsnd_Ceprobe, and a

very limited choice of sites in the case of Tsnd_CeNbor.
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6.1.4 36-Processor Mesh Topology

The results produced for the 36-processor model are summarised in tables 6.12-6.14.
The relative performance ranking of the algorithms was similar to that of the 25-
processor mesh. However, at moderate system load (see Table 6.12) the effect of
neiwork delay on the performance of the global average algorithms operating outside
a four hop radius is evident. For both the sender and receiver-initiated
implementations the load variance and performance speedup is worse. In particular,
the speedup performances for GsndBCast and GrevBCast were 14% and 12%

These algorithms are also characierised by very low hil raies. The

respectively.

significant variation in workioad although a speedup of approximately 25% was

achieved. However, the scale of the variation in workload under moderaie sysiem

to multiple process placements. But, to do so under moderate system load would
result in fewer migrations and a reduction in system performance. Therefore, the

nearest neighbour implementation is preferable.

Under heavy system load (see Table 6.13) the results are similar to those for the 25
processor mesh where the nearest neighbour implementations produced the best
overall performance. It is interesting to note that Tsnd_CeHopZ2 exhibit a significanily
greater degree of load stability than TsndHop2 but a marginally poorer response time.
Further, the former produced 50% fewer migrations per second but with a comparable
hit ratio. Again, the stability of the communicaiing sei implementation is to be

preferred given the minor differences in their respective average response time.

Under exireme load conditions (see Table 6.14) the fixed threshold sender-iniiiated

algorithms are extremely unstable whilst the restricted domain adaptive algorithms
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such as global average are relatively stable. The exceptional case however, is
GrevHop2. Whilst it produced a speedup performance of 18% for a 25 processor
mesh, this has fallen to less than 3%. What is particularly noticeable is the very high
load average compared to the other algorithms even though its process migration rate
and hit ratio are comparable to GsndHop2. This indicates that many of the dominant
overloaded sites are noi being probed regularly by underloaded sites. Therefore, an
underloaded site will assume the threshold (o be too high, which may not be case,

decrement the average, resulting in a further increase in the average number of

—

processes per host. In contrast, the relatively small number of underloaded sites for
GsndHop2 are probed regularly by overloaded sites which ensures that the global

average being used is relatively accurate.
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6.2 HEAVY-WEIGHT INDEPENDENT PROCESS MODEL

In previous sections, the performance and relative ranking of the load balancing
algorithms were considered with light-weight processes. One of the primary faciors
in this case is the effect of communication distance on average response time.
Clearly, for the larger mesh models, a migration undertaken by an unresiricted
algorithm may be successful in terms of correctly placing a process ai the most
underloaded site, but unsuccessful as a result of the communication cost outweighing
the performance advantage. Therefore, it was considered imporiani to examine the
relative rankings of such algorithms againsi more restricted implemeniations in cases
where ihe communication cost is of less significance. Whilst the communication
parameters remained the same, the average run time of a process was increased o 10
seconds. Tables 6.15, 6.16, and 6.17 shows ihe performance resulis obtained for a 16-

processor mesh at moderate, heavy, and extreme system loads respectively.

Under moderate system load (see Table 6.15) the speedup was significantly greater
compared to light weight processes with increases in performance ranging beiween
20% and 47%. In addition, the results show the continued dominance of the global
average algorithms but also the resurgence of the receiver-initiated global average
implementation over greater distances in terms of load stability and run time
performance. In contrast, the sender initiated implementations were most effective
aver shorter distances. The fixed threshold receiver-initiated algorithms were less
effective than the sender initiated implemeniations and the eveni-based
communicating set policies were marginally worse than their setless counterparis.
However, it is the periodic communicating set algorithms which produced the worse

performance in terms of their overall hit ratio and response times.



Whilst the results at moderate system loading show similarity in ranking between the
algorithms for light-weight processes in terms of fixed threshold policies, there are
differences under heavy load conditions. In Table 6.16 the improvement in
performance for all algorithms is significantly greater varying between 32% and 73%
compared to a maximum 60% for lightweight processes.  Furthermore, the
performances of the nearest-neighbour algorithms were inferior to the majority of

regionalised implementations operating within a radius of two hops or more.

In terms of the algorithms TsndNbor, Tsnd_CeNbor, and Tsnd_CpNbor, the
performances speedup were 57%, 55%, and 58% respectively with a correspondingly
low variation in workload. The improved performance of Tsnd_CpNbor is due to the
greater accuracy of the state information used which also resulis in a moderaiely

Righer process migration rate.

Under exireme load conditions (see Table 6.17) the speedup performance for all
algorithms was in the range 44% to 80%. The global average algorithms exhibited a
high level of stability but the nearest neighbour implementations were surpassed by
the simple threshold probe algorithm and the fixed threshold receiver-initiated
algorithms over a distance of two hops. A particular characteristic of the top ranking
‘algorithms is their higher process migration rates of around four processes per second

compared to between two and three processes for other algorithms.
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6.3 ALGORITHM SCALABILITY

The run time performance for light weight processes are summarised in Figures 6.2
and 6.3 for a selection of algorithms against mesh sizes under low and extreme load
conditions respectively. The graph in Figure 6.2 show that the performance of all
algorithms, even the random policy, are scalable and produced a speedup factor of at
least 20% for all network sizes. Further, the performance of the nearest-neighbour
algorithms for both the restricted global and threshold policies were consistently high

and unaffected by network size.
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Figure 6.2: The Scalability of Algorithms at 50% Loading

Under extreme system loads (see Figure 6.3), the effectiveness of the random policy
is clearly affected by system size. Iis performance proved (o be unscalable with a
response fime that exhibit exponential growth against network size.  Further, iis
performance is significanily worse than the no load balancing case for netwark sizes

greater than 16 processors. In contrast, the algorithms that engage in negotiation



within a limited network domain were scalable and produced consistently high

speedup performance of at least 50%.

The broadcast algorithms were quite effective at low to moderate system load, bu
became increasingly unstable at high system load due to the greater intensity of the
communication traffic generated. This is a problem that is further compounded with
larger network sizes. It is concluded therefore, that the performance of global
broadcast algorithms are not scalable across different network sizes especially in
environmenis where light-weight processes are dominant. Further, with the exception

of nearesi-neighbour implementations, the periodic communicating set model proved

lo be unscalable also, because of the excessive message traffic it generates.
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Figure 6.3: The Scalability of Algorithms at 90% loading.

The event-based communicating set madel proved to be scalable acrass network sjzes
exhibiting better load stability than the non-communicating set model, hut a poorer

response time. Further, the sender-initiated algorithms were mare effective under



light system load whilst the receiver-initiated model performed well at high system
load. Thus, an adaptive communicating set model able to take advantage of this fact
would be beneficial. However, it may be necessary for a host to maintain sets for
underloaded and overloaded hosts. The load balancing mode could then be selected
on the basis of the larger set size. The main disadvantage of this method is its
additional complexity. Firstly, the storage spaced required for the sets would increase

and additional effort invested in ensuring that the two seis are up (o daie.

On the basis of the resulis produced for heavy-weight processes, where ihe
communication delay relative to the process service time is of less significance, ithe
performance of all algorithms are exceptional. In particular, the performance of
policies operating over greater distances is expecied to scale with neiwork size.
However, one would expect the critical mass for such policies to be reached with
neiwork sizes of hundreds and thousands of processors. Therefore, one would expect

algorithms that operate within a prespecified boundary to be more effective.

The global average algorithm is scalable both in terms of the network size, the load
conditions, and the workload characteristics of this study. The restricted algorithms
have demonstrated consistently low load variance and good response times. It may be
argued, that the results of the global policy represent the most optimistic performance
achievable given its reliance on identifying processes with the longest remaining
service time, preemptive migrations, and reliable timers. Therefore, the performance
of simple fixed threshold policies over different network sizes are more representative
of the realistic level of optimisation achievable through load balancing. Certainly, the
response times of such algorithms are within range of the global policies, but there is
no denying the fact that system stability is enhanced considerably using the global

average algorithm. Its performance in this respect cannot be improved on hy even the
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relatively simple communicating set model developed in this study. It is generally the
case that by selecting short intensive CPU processes for migration using a "round
robin" discipline, the response time of the global average algorithm did not
significantly improve on that of the simple threshold algorithm. Nevertheless, the

variance in workload was much lower.



CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 SUMMARY

In this study a range of load balancing algorithms have been studied with particular
emphasis on the scalability of performance across various sysiem sizes and the
relative behavioural stability across a range of workload intensity. The disfributed
system size ranged from a small nine processor mesh (o a much larger 36 processor
nefwork. The algorithms considered included a selection of sender-initiated and
receiver-initiated policies of varying complexity.  Algorithms fram ihe simple
threshold policy to the more complex global average algorithms were examined and
adapted to enhance their useability and scalability. The experiments conducted
covered light to moderate, and heavy to extreme system load conditions. The
majority of experiments used short CPU-intensive processes, but "heavy-weight"

processes of ten seconds duration were also used in the 16 processor network model.

Clearly, from the results obtained, real performance benefits are attainable from the
simplest of algorithms to the more complex. The speedup performance was typically
in the range of six percent at light system load to 72% under exireme system loading.
However, near perfect speedup was unattainable given the resulting communication
averheads associated with the load balancing activity. The sender-initiated algorithms
were most effective in instances where the system was lightly loaded, whilst receiver-
initiated policies produced their best response times under heavy system loads. The

sender-initiated random policy, which represented the most basic load sharing
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strategy, produced highly respectable performance results at relatively low and
moderate system load, but was found to be inferior to algorithms that engaged in
negotiation with potential hosts in the transfer of processes under heavy and exireme

load conditions.

The load sharing policies that adopted a variable load threshold value exhibited better
load distribution and systern stability across all system loads. The more complex
global average policies attempted to combine both receiver and sender initiated
sirategies by means of a variable threshold value. However, those implementations
that rely on conducting process negotiation, and maintaining siaie information across
the complete network did not scale particularly well even under moderate system load.
For example, the global average algorithm exhibited good load disiribution
characieristics and matching response time performances across a range of network
sizes. But, in using the broadcast mechanism under heavy system load, significant
message traffic was generated and the resulting network delay had a tendency to
initiate the "race condition" and system instability, especially under extreme load
conditions. Thus, to minimise the risk of instability and, at the same time maximise
performance, the regionalised global average algorithms were developed. Such
policies were found to be most effective across all system load and system sizes

within a radius distance of two hops.

It could be argued that the consistent performance attainment of the global average
policy was the result of using a preemptive process migration strategy. Therefore, iis
performance would have been achieved at considerable expense in terms of managing
any potential incidence of residual dependency. In this study only independent, CPU
intensive processes were considered, rendering residual dependency of less

significance. Given more 1/O intensive, and caoperatlive process groups one can
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expect the performance of the global average algorithm (o degrade across all system
loads, and in some cases reach unacceptable levels. In this regard, simple non-
preemptive algorithms that are able to compete with the more complex global average
policies are worthy of consideration. In this study, simple fixed threshold algorithms
that make use of "local" state information were considered. It is true to say that of the
simplest "negotiating" algorithms, SndNbor was consisiently in the top three in 1erms

of its overall response time performance for all sysiem loads.

Whilst these results may support the view that (he response time performance of
simple algorithms are not generally bettered by more complex algorithms, one should
not underestimate the importance of ensuring load stability across all hasis. 1t is in
areas such as this thai the global average algorithms have proved successlul. The
research has demonstrated thal regionalised algorithms are scalable using pariial but
relatively accurate information without sacrificing overall performance . However,
global policies based on state information from immediate neighbours represent the
minimum level of state information required. Preliminary work conducted to date
indicates that state information collected from remote hosis that are at most (wo hops

away from the local host exhibit the best performance.

To attain minimum communication overheads, the load balancing algorithm should
only be executed if there is a propensity for successful pairing of underloaded and
overloaded sites relative to their difference in workload. That is, load balancing is
invoked more frequently, the greater the difference in loading beiween various sifes,
and less often in cases of marginal workload differences. The communicating sef
algorithms attempted to keep track of successful pairings, but their perfarmance was
limited by the level of membership commonality between the seis for different sijes,

Thus, at high system Joads, an underloaded site will tend to be comman amongst the
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sets of many overloaded sites. It is possible to limit the frequency of activation such
that the policy operates only when the complete communicating set has been
constructed for an overloaded or underloaded site. The problem with this method is
that set membership and set size are very difficult to predict given the workload
characteristics, the communication patterns, and the load conditions. Further, the load
state for the members of the set must be accurate and stable over time. Therefore, the
implementation used invoked the policy whenever an imbalanced load siate is
defecied, even if this results in merely updating the load state for members of the
current set.  Performance maximisation may require all underloaded nodes (o be
paired with overloaded nodes and migration effected between them. Al low gysiem
load each host would need to retain set membership capacity for the complefe
network.  Thus, the tables required for such sels will grow arithmetically with the
network size. In this study, the average sel size was typically four processes although
a limit of nine was set for the regionalised algorithms. In the majority of experiments
conducted the communicating set implementation performed better than their

equivalent non-communicating set algorithms.

7.2 CONCLUSIONS

Load balancing is an important resource management activity for any modern
distributed system.  The results of this study reaffirms the findings of other
researchers in the field highlighting the performance benefits of such policies to
system users. Modern disiributed operating systems have mechanisms in place for
facilitating load sharing. However, the implementation of policies has been rather
sparse and, in some cases, limited to merely utilising spare processing capacity for
limited periods, via a centralised scheduler. Such a cautious approach reflects the

limited and incomplete knowledge and information currently available to aysiem
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developers about resource management in a loosely-coupled distributed system
environment.  Further research is required in areas such as: the range and
characteristics of load sharing algorithms and user processes; process group
interaction and thread-based scheduling; and data management and residual

dependency in distributed environments.

This study has attempted to highlight the behavioural characteristics of a selection of
load sharing policies in loosely-coupled environments. In particular, special emphasis
was given to their scalability, on the basis that the distributed operating systems of the
future will have responsibility for sysiems consisting of tens of thousands of
processors. In the words of Kriemen ei al,

"Algorithm stability, which is a precondition to scalability, is an indication of

the ability of the algorithm to avoid poor allocation decisions." [Kriemen92].
The results of this study demonstrate that regionalised load balancing algorithms are
scalable and relatively stable Qsing a variable load threshold parameter bounded by a
multicast distance of up to two hops. In addition, amongst the simple fixed threshold
algorithms, the communicating set implementations performed well and further
improvements are expected  in environments where inequality in the workload
generated by users is a persistent problem. The algorithm could be extended to
conform to the ideal of the working set model [Denning82], used to manage the
incidence of page faults, by suspending any load balancing activity until a requesting
host is in possession of its complete set of remote hosts. However, given the high
level of unpredictability in workload patterns for each host, size and composition of
the set are related 1o the size of the network and the patiern of pracess migrations
elsewhere in the network. On this basis, the resulis produced indicate that sets with a

maximum size of nine members was adequale.
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The study is limited to distributed systems using a mesh network configuration and
does highlight some of the issues pertaining to message routing between hosts.
Experiments have not been conducted for other topologies such as the hypercube, tree,
or bus. It is anticipated that the algorithms developed in this study are generally
portable and should produce results of a similar magnitude in other architectures. In
terms of the single bus topology such as Ethernet, the cornersione of many
Commercial LANSs, the level of network traffic generated through load balancing may
result in more moderate improvements in performance. Further, the network model
developed can be extended to explore issues in load sharing for Wide Area Networks
(WANSs) where dynamic routing, interneiworking, and transmit-and-send reliability
are important issues. These factors could become additional parameters for the

location, selection, and transfer components of a load sharing strategy.

The workload characterisation in this study has focused on independent CPU
intensive processes with minimal residual dependency problems. The study can be
extended by also giving consideration to load sharing policies on systems whose
workload is dominated by dynamic seis of interacting processes. Whilst some
researchers have examined static member sets, where the set itself is the unit of
distribution (for load sharing purposes), the development of process thread schedulers
~in modern operating systems creates new areas for load balancing research. For
example, the effect of using set membership as the unit of disiribution may well
highlight issues on the merit and ranking of load balancing algorithms.  The
confinued growth in object-oriented development and applications consisting of
abjects with static and dynamic sets of methods may speed up developments in this

area.
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This study sought to explore the relative ranking of simple and complex load
balancing algorithms in terms of their scalability across a range of network sizes. The
findings support the general observation made by Eager et al [Eager86], regarding the
effectiveness of simple dynamic policies compared to more complex global average
strategies. However, it is clear from the algorithms developed in this study that the

simple fixed threshold policy is ineffective at high system load where network delay
is significani and timers are necessary. Further, a nearest-neighbour implementation
which relies on the propagation of the average through the network performed
consistently well across all system sizes. Finally, the performance of the simple
communicating set model is proportional (o the level of workload inequality generaied
at individual sites. Thus, the greater the inequalily the beiter the load disiribution and

One cannot underestimate the significant degradation in performance that can occur
where load balancing is absent. Under heavy system load, instability is high and load
variation can fluctuate between 20 and 100 processes with response times to match.
Any load balancing strategy able to keep load variation below three processes, and
demonstrate performance improvements of at least 30%, across all system sizes and

system loads is worthy of serious consideration.
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