

ACCESSING N
A USER INTERFACE D

199
Summary

This research investigates the general
services. Some of the problems .
procedures to invoke networked s

by means of menu-based 1
inconsistencies ex1st between t

A p1ot0type system has been d

services. This consists of softwal_

interface with the various services.

interface and it includes the following a
Services; electronic mail; file editor. The protot
facility to assist users using the ‘system:. ‘

The prototype can be divided into two pa
interaction with the user; the communica
with netwmked services to take place :

are ObJSCtS The essentlal cha1
encapsulation, inheritance and pc
and implementation of the proto
methodology has been the fra
interface.

The purpose of the development wa
networked services, Having comple
use the system to evaluate its effectivene
on observation, i.c. observmg, the W

”.Kfeywoyrd»s: ~ user interface des'ign; objec
. _ networked services, elect

. . -
0 .. \

. - o
. ..
.
i 7 i

o
o
.

L
e
.

Title :

Authors

Conference Name

- . .
. ...

Conference Place : T, L.anad . 4

e

Conference Date

i

o
i
L

i
o
.

i
L

.

-
..
o
.

. e
nr e
e

: .

o . n e

this thesis.

e
L

T also wish to acknowledge the Univeit31ty’/ of Technology

.
.
.

|

. Services Department of Malaysia for providing financia

L support of thi

My special gratitude to both my parents, my wife Rohane ‘my children Umar, =
nd understanding during the period
Wty -

CHAPTER 1 : INTRODUCTION

1.0
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.2
1.3

BACKGROUND
NETWORKED SERVICES

ELECTRONIC MAIL

LIBRARY SEAR

BATH INFORM:!

USENET NEWS

DIRECTORY SERVICES

FILE TRANSFER

NATIONAL INFORMATION SERVICES AND.
PROBLEMS OF NETWORKED SER
STRUCTURE OF THE THESIS ,

CHAPTER 2 : LITERATURE REVIE

2.0
2.1
2.2
2.3
2.4
24.1
2.4.2
243
244
24.5
2.5
2.5.1
252
2.6

DEFINITION OF USEF
REVIEW OF USER INTER
DIRECT MANIPULATION
GRAPHICAL USER INTERFACE

WINDOWS |

ICONS

MENUS

POINTERS

CONTROLS
USER INTERFACE (U

APPLE MACINTOSH

OPEN LOOK UL DESI
ONLINE HELP

Ty

i
G

. @
. o SHRV(a0 o
SRR 1 A A .- o
... = s o
. : .
. . .
L : .

USENET NEWS
TIN
XVNEWS

34.1
3.4.2
3.5

CHAPTER 4 : DESIGN ISSUES FOR USER INTERFACESAND

o

NETWORKED SERVICES

i e

. e

o o

.

SCROLL LIST VIE}

45 NOTEVIEW

46 BUTIONS
47 POP-UPMENUS
48 POINTERS
49 ONLINE HELP
410 ESTABLISHING C

5.0
5.1 ELECTRONIC MAIL
52 BATH INFORMATION D

LE MANAGER/ EDITO

v T r G i R s e
i M Goara S o
: -

o
.

60
6.1

6.2

6.3

6.4

6.4.1
6.4.2
6.4.3 ER
6.5 IMPLEMENTATION OF] /
6.6 IMPLEMENTATION OF THE PROTO
6.6.1 IMPLEMENTATION OF ELECTRONIC MAIL

6.62 IMPLEMENTATION OF BIDS

6.63 REUSING AND REFINING EXISTING CO]DES-

CHAPTER 7 :

70 INTRODUCTION
7.1 ° RESULTS OF THE
72 RECOMMENDA

73 QUESTIONNAIRER

CHAPTER 8 : CONCLUSIONS

80 INTRODUCTION |
8.1 GUIDELINES TO USER
8.1 DESIGN OF THE PROTO
82 IMPLEMENTATION O
84 EVALUATION OF
8.3 FUTURE DEVELOP)
84 SUMMARY

BIBLIOGRAPHY

REFERENCES

e

Cl
C2
C3

D

.

.
S
...

o

e

..

e ”rhr;;\,;\;‘,;\z/&} o {\;,j\,z,;;,,\".\;;\\gifga :
-

o

USER DETAILS
TEST TASKS-1
TEST TASKS-2
QUESTIONNAIRE

e

L
L

-
-
e

i \ s e

ELECTRONIC MAIL WINDOWS .
BIDS WINDOWS | s =

o
e
Lo e
.
e

e e

.
-
.
.

e
.

, -0
L .
- . o
: ..
- e e
; i ..

L

G - e -
... . . L
‘ ..., - .
: . « o b
R o e
% 2 o e e S
. x - o - i ";Zg/y
: pa : r' T
G R . B e

1.1

1.2

1.3

2.1

“.

2.2

2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
3.1
3.2
3.3

2.3(a)

2.3(b) Superpaint Pull-down Menu

General Médéfl\”of,Elé.cu,;

NISS‘Main Menu

Birmingham University Cahifnjé Infor

Form Fill-in

Degree of Direct Manipulatiq,nfi

MacDraw Icon Representation

Example of a Mail Box

Pull-Down Menu

Pop-Up Menus

Macintosh Pointer Images

Buttons in a Dialogue Box

Set of Radio Buttons
Set of CheckBoxes
Scrolling List

Alert Box

Progress Indicator

ClarisWork Shortcuts

Help Balloon
Help Window

Quipu Machine Menu

Library Introductory S'Cfééf

Partial Menu System of Geac /

Different Menus in the Library Menu System

Subject Selection Menu
Search-Menu
Search Session

Subscribed Newsgroup

Main List
Comp.Lang.Smalltak Newsgroup .
3.15 Display of the Selected Article
3.16 Help Screen
3.17 Subscribed Groups
3.18 Listof All Groups

Articles in a Group:

Content of a Message

4.1 Mouse Buttons

4.2 Prompter
4.3 Main Menu

4.4 Dialogues before Quitting

4.5 Relation between Main Menu; Pi/
4.6 General Layout of the Primary Wmdow
4.7 Prompter - Typical Subservient Wlndo

4.8 Folder:Browser

System 7 Advising Capability .
4.11 Labelling Buttons. ‘
4.12 Different States of Buttons

4.13 Pointer Image in Microsoft Word 5.1

10 e

Launcher

Electronic Mail Primary Wi
Send Window

Reply Window

Sending/Replying to a Message

Folder Window

Activating Folders Using A hierarchical Menu /

5.7 Refile Window

5.8 Addresses Window

59 Two-Field Prompter

5.10 Status Indicator

5.11 = BIDS Primary Window =
5.12 BIDS Prompter
513 Scroll List and Note-View
5.14 History Window
5.15 Save Window

5.16 Retrieve Window

5.17 Preferences Window

5.18 Help Window (For the Author Bﬁttéﬁjﬁf ~
5.19 File Manager e
5.20 File Editor Pop-Up Menu
5.21 Smalltalk Confirmer
5.22 File Editor Confirmer

6.1 Dependency Mechanism
6.2 Model-View-Controller ’
6.3 ValueHolder and PIuggableAdaptor - -
6.4 ValueHolder :

11

Creation of New Classes
EMail and its Subclasses
Bids and its Subclasses
6.14 Communication between Bids and Terminal

6.15 Partial Subclasses of the Class View

7.1 Modal Window

Response time vs. User's Beh
Steps to view three Books
Classification of Secondary WlndOW,S; /

Different Pointer Images

Functions Supported by Electronic Mai

Electronic Mail Text-Editor

Functions of the Folder Window:

Functions of the Address Window

Classes supported by Object-Oriented Languages(Bourne, 11.99_-)
Categories of Views 2 -
EMail Class Variables

Bids Class Variables

1.0 BACKGROUND

The last ten years have seen a tremendous thWthzih: th

As a result, users who are familiar with the?net work may easily *.access Varlous;f .

networked services from their own depa1tments Ba51ca y, the networke

the applications that use the network facility and can be accessed through the” o1

network. These include the services provided by the different departments in t\'

organisation such as the online library search, electronic mall famhhes and othe1 serv1ces‘ -

provided by other external or gan1sat10ns such as the ISI Bath //fo mation and Data' '

Services (BIDS).

Accessing networked services can

Users need to know where the services are locat

from various disciplines. The majority of users

popular software tools such as word pfoees’:so’r
which are widely available on personal{’/b :

tool to enhance their p1oduet1v1ty and they ex

ﬂex1b1hty from the netw01ked serv1ces as they experlence

tools (Colomb 199 1)

14

An aspect of ne

Sadowsky (1993) p

primitive and tools to gLude users«td fiy
A well designed user interface 1s requi
achieved. The interface not only eﬁai)lés use :
but also enables them to navigate the servjrces;l: -~

This chapter discusses the networkedS’erv&/ési which ble at fther-'.As-;‘ofn;"

University. A brief introduction to some of ’thé"servjt;es is given. General p roblems

which are related to the networked services are also identified.

1.1 NETWORKED SERVICES AT ASTON UNIVERSITY

he essence of

diversity of information-based services is req

to excel in research and teaching.

A campus wide network has been developed

follows:
1. Electronic Mail Facih’ties,,‘ '
2. Library Search and Infor
3. Bath Infor_nia't\\;\io‘r'i}’D,ét’a\iy Ser
4. USENET News. '

5. Directory Services.

is : -

File '1?\1;\a\n~sfe

1.1.1 ELECTRONIC MAIL

Electronic mail is the most successful network applica

firm (Reinhardt, 1993) reveals that the number o’f: ei’é&go’ni’ m ers m the U.S. ‘fosezé‘"ﬁ

60 percent in the year 1992 and will rise anoth’;i;éé’fi centthe following year. By the

year 1995, the number of users in the country could reach 38 million.

Plattner and Lubich (1988) list a number of advantages of electronic mail that
contributes to its popularity. Firstly, electronic mail does not require the recipients to be
present at the time the message arrives. This i,,S:“e/speé/'éHfiﬁr/a‘ctical when the '

communicating parties are on different continents, where the working hours are not the

electronic mail is usually an integral component of office automation §;

mail message can be printed, copied into another document, filec

send and receive mail. An advanced user agent m

the folders for messages and management of pe;

originator to the recipient. Itis analogous to the electronic post office

system a letter may visit a few post offices befor :béiﬁg:~fd¢13-{/:éi;e&.

16

message may have to pa

destination.

- User Agent

- Message Transfer Agent

‘Figure 1.1 : General Model ofElgc:troniqi,}Mail,

The Library is an important service in any academic institui

interrogate the library catalogue, search for books or

j_pum&lsi by t

author and reserve them if they wish. Us¢1‘§;a/,l;s’g)};11j;i /

network. With the service on the network, users q

from their desk, such as accessing the catalogue, placing bo,

renewing loans. They are no longer requir,edl /to:: vis ;he: ibrary ‘buii_élii;'gj‘e;\kefy time th :

wish to access such services.

17

The campus network i k

Kingdom via JANET (]

library catalogues of other institutions (Lib

other library catalogues may be require

publications produced by differentfinstituti'éns.”U’s.,e

libraries for journals related to their field of researgh. They may vis t the umvelslty .

which holds journals which interest them.

1.1.3 BATH INFORMATION & DATA SERVICES (BIDS)

The BIDS ISI Data Service was launched in February 1991. The S\ervifi_c,’e‘w:l\‘.\;\’)rl\d:\‘li.d@;'s -
access to four databases supplied and owned by the Institute for Scientific Infmmatlon, -
USA (ISI). These databases contain details of articles‘drawn from over 7000 selected
journals worldwide, and details of Scientific &VTechn'ical‘ Proceedmgs of over 4000

conferences per year (Morrow, 1992).

The GEAC online service only allows ‘il_/isqu‘},t/g search fo
by the library. It does not contain detaﬂs of thef‘;l{, icles in ¢
complementary service to the GEAC online ser\;i’cek. k' Ijseful fa01 :
include a service for users to retrieve articles in all sc;icntjfic,j@yim‘-al”s:ib_f‘

or authors or optionally retrieve all articles found in any selected journal. -

information they wish to retrieve and the librarian.
18 assumed that the librarian is prepared to spend time gaining the

a quick and effective search.

18

i1s a flat-rate annual fee, connect tim

understood interface is crucial to its success.

1.1.4 USENET NEWS

The USENET news (Erickson,1993; Tanenbaum; 1;989.);@1@5?huﬁﬁﬁ@ds of nefW‘s,gr,Olipjs'

on a variety of topics. There are groups for most areas of computer S.cienc_g,

many sciences, hobbies, political and social interests. The subscribers to an-y

newsgroup may read any of the messages posted to that group and they may also p‘(‘);st‘

messages of their own.

The newsgroups are divided into a fe

Examples of these categories include:

1.

comp.ai.genetic and comp.windows.x. /
2. Alt: Alternative groups that do not fit into ailgiljj:/gthe
further classified under various topics such asspor
rock-n-roll. -
3. News: The news system itself andfi:t/siojraé;t/lo
policy issues and technical aspectsofUSENE
session regarding USENET. ‘

There are thousands of groups and each g1oup mamtam a list of artlcles summ

subject and author. Users need news reader softwaIe to pa1t1¢1pate in USENET A

19

news reader offe
newsgroups and articles, sea

any group.

these services will be replaced by online directory service (Tah/éhbaum, 1989). The

service allows users to look for detailed information on-a named person or institutio

The implementation of an international directory service is not that easy. Different
countries have different ways of implementing their directo’rj} systems. As an example,

h’é countries that

academic degree.

An international standard directory service has be

differences in naming and addressing conventios

1.1.6 FILE TRAN

commands remotely. Examples of such commands

folders. The service prevents users from aceessing other omputer's fﬁ?léf ‘

system.

Most archive sites contain text files that provide additional descriptivé infOl'l‘l"lati’OI%Eﬂ‘,D\.Ql}
the contents of the site, a particular directory or files. These informaytion_\\ﬁ\lé\s’:y;\i@g’:\“\gﬁe\'
named readme’ and 'index' (Hahn & Stout, 1994). The value of these files depenéis, o
the completeness, clarity and currency of the information provi‘de(d,/ ‘

There are many reasons why users transfer files amo'hg a variet of machines.

Researchers may retrieve remote progr

provides computer disseminated information for the

services are freely accessible for JA/N,KE'TKK users

the services users are able to roam t,hro@gh t,h@./‘glojb@

national barriers. The NISS main menu is shown in figure 1.2.

21

NISS Bulletin Board

NISS Bulletin Board

NISS Public Access Collection .

NISSWALIS Service - free text searchin

NISS Newspapers and Journals Service

Library Catalogues (OPACsS)

Campus Information Systems

Bibliographic Services (e.g. BUBL, FlrstSe

Directory Services (e.g. Yellow Paoes Paradise

Archive Services (e.g. HENSA, Mallbase/ BIRON) .
General Services (e.g. Guest-Telnet, AS ANET NEWS); "

(H) Help (Q) Quit (F) Find
Please email comments to: gateway @uk.ac.niss

Please enter your selection:

Figure 1.2 : NISS Main Menu

The NISS Campus Information System allows users to access 1nf0rmat10n about
different universities in the United chrdom and Umted States Wthh are connected to
the service. Figure 1.3 shows the mam menu of the Blrmmgham Ut 1vels1ty Campus
Information Services. Usels may access

using the service.

Maim Hey

—_

About the University

Research and Publications
Foculity end Schoolis .
information and Library 5eru1:e5
Other Support Services

firound the Campus i

Around the Region

fibout the CI5

LV w N [() Y T S

Figure 1.3 : Birmingham Univéfsﬂy Cam

Some NISS services such as NISS Newspapers a

for demonstration. The Newspapers Services allow users

articles by specifying selected topics. The Journals S,e_rvic,_e“‘
feasibility studies of electronic journals. Whgn/ the’sefviées_f are ‘a.v('_

access research journals through the network.

22

1.2 PROBLEMS OF

Networked services provide effective mea
information. There are still many issues rela
research. Problems such as access controls, cop

services are still unresolved.

Networked services only operate in a networked envirohment/ Despite the advantages
of networking, installation and maintenance of a computer network is quite costly for

some organisations. Costs have to be allocated for the followings activities:

¢ Wiring of a complete building or several buildings.

* Special networking equipment and dedicated computers to manage the
communications within the organisation and with the outside World ‘

* Personnel to look after the development and maintenance of the netwmk

* Integrating existing equipment from different vendors.

example, it is impossible for users to send mess

ag
colleagues if they are not connected by théénetwéljk; Ins
systems and the network that tie them together are ¢

planning. Each organisation purchases equipment

members from other organisations.

23

The computer network is evolving from a purely resea

has now developed into a mesh of interc'onn’e’cte’dnetW’drks onnect researchers,

industry and government agencies across the world. The 'exponentlal g1owth of the*
network creates many problems. Dixon (1993) points out the followm g problems:
e Current address space is insufficient.

* Routing equipment can no longer cope with the growing number of networks.

* There is no automatic means of updating all the routers in the world when a new .

network is connected.

* The rate of development of new applications is slow.

Comer (1988) also states other problems with

science community and they are not interested in t

something that they can plug-inand turnon.” =

The ease of interaction becomes increasingly importan

ervices. penetrate

not aware that networked services are available and @thers are put off. by dlfflCLﬂtleS m_ -

using the services.

1.3

the roles of online help facilities and discusses the proced 0 evaluate user

interfaces.

Chapter 3 reviews the user interfaces of some of the networked services. It'st,ar’ts'ub -
describing the general problems and difficulties in using services. Discuééioh on som
of the networked services at the Aston University, i.e. the library services, Usenet
news, Bath Information Data Services and electronic mail are also given. The problems

in using these services are highlighted.

Chapter 4 discusses general design issues for the user intérfaces and_net,wor:k,,ed*

services. The issues include the ways us'ers,’; N

taken as guidelines.

Chapter 5 discusses the design of the prototype. The general }dééi:gn issues have.s.f te_ady,‘v -

demgn wh1ch 1s~.’ -

been discussed in chapter 4. This chapter discusses a refir c

specific to the application being developed. The/p,r(‘)tzoftyp‘ consists of user 1nterfaces tos |

two networked services, i.e. electronic mail and Ba/t'h:'I/fifOr ation Data ,Sfervice's} T he

prototype also includes a file editor which funcuo ,,'suppo,r;t;'fserV{i"c,e:-'to',:fthég -

networked services.

Chapter 6 discusses the implementation issues of the prototype. D1scussmn mclude thef

advantages of implementing the prototype using ob]ect—onented approach The reasons k

25

Smalltalk MVC framework and it

the approaches taken in imp’lementing the

discusses the rating given by the users.

Chapter 8 concludes the thesis by summarising the author's work. Suggestidri"skéf’ie, also

given for future development.

26

2.0

INTRODUCTION

The literature shows a widespread grbwth of research inf;imjany asp ts of the user
interface in recent years. It is beyond the scope of this theSifé,{’tbf give a bompleté review
of research and findings which are related to the whole of the ‘fi’eld./ Only those aspects

which have laid the groundwork for the development of this research are pre}s‘entgd'\i=r'1,,"'\

this chapter.

This chapter discusses the general aspects of user interface design. It starts with the
definition and a brief overview of the history of userinterfaces. It 1s followed-then by
various discussions which are related to the graphical user interface. This includes

discussion on direct manipulation, tools invc

design principles and online help facilities.

2.1 DEFINITION OF USER INTERFACE

Apple (1992) defines the user interface as "'threiitul s and ‘c';_onr\zchtfé‘

computer system communicates with the person operating it.

The term 'user interface' will be used in this thesis to des;
the user. According to Grudin (1993), the term assumés h

of reference. The same assumption applié‘s:‘Whenfcfl

discussed in the literature. For example, novice or naive

field, but as far as the use of computer is concerned, they are begi ners.

27

Dialogue is another term whi

2.2 REVIEW OF USER INTERFACES

In the early days of computing, physical switches on the'frontjpélnel of a computer we;’r.e

manipulated to load program instructions into the machine. Then, the opelatm would

press a run' switch to execute the program. This was a primitive user 1nte1face and 1t-' .

was quite cumbersome to use.

In the 1970's, the TTY-type terminal was introduced along with the' emergenee of time-
sharing systems. The terminal allowed the development of plompt and cornmandv ~,

language style interfaces (Morse & Reynolcls 1993). In th

le ﬂi;nter;:_faee,‘ ‘@he; .

COBOL and ALGOL were de51gned f01 a non 1nteract1ve compute1 envnonment ',

Programmers would write hundreds or thousands hnes of codes and then cornplle and.

28

un to get the result. This was

manipulate the screen presentation and control the mq

It is beyond the scope of this thesis to discuss the diversi om and lian‘guja@es',;’
The style of the interface is very powerful and flex1ble but due toits complemty, this '
style of interface is confined to expert users only Large amounts of time and efforts

are required to understand the system. Learning the full capabzht]es of the system is

normally acquired through external instruction, such as training and manuals rather than

by using the system itself (Coats & Vlaeminke, 1987). Once understood, users‘ ha;\ize- to -
recall the most appropriate commands and their respeétive syntax. Error messages and
online help are hard to provide because there is no way for the system to know what
users wish to do. Furthermore, since this type of interface may require extensive

keyboard entry, it could be tiresome and error-prone.

Menu-based interfaces were introduced tb//elill’iinate/many of the lmmauons found in the' ~
command-based interface. This interface 1equnes CRT‘technolo y, wh
screen display capability. The list of the items is displayed On't_hefy screen @

can be made by a mouse click or few keystrokes. This style of interface is ¢

since it requires little learning and eliminates the need to memorise complex commands.

Menu-based interfaces can be easily supported by_Q’riiiﬁ help and e_frbf hahdlingf;, .

facilities. Different types of menus, such as pull dow menaﬁ“wiﬂ be

nenu des1gn have
ion on thls issue lS :

given by Paap (1988) and Shneiderman (1992).

Menu-based selection is only appropriate when users néeci to select .fr;(‘)iil. a list of

commands or items. In the case where data eﬁtry is réqi]il*é‘d, the form fill-in ét'yle of

29

user interface is recommend

fill-in. This style of Lisélm n

form. Most of the information is visible, th

Name Finder

First Name lvx*w I

Surname | 4

Department | 3

CANCEL | oK |

Figure 2.1 : Form Fill-in

interface, thus making them easier to learn. This makes them appealing to novice users

and fairly intuitive for infrequent tasks" (Maguire, 1990).

Due to the importance of direct manipulation fi/n:t;hé{:;de\)e)

interface, a detailed discussion on this topic is given in the next se

2.3 DIRECT MANIPULATION

Shneiderman (1983) first coined the term 'direct manipul-ation.'iﬁtélffaé.‘ to.

interface having the following characteristics: continuous representation of the objects

30

of interest; rapid incremental

interest is immediately visible; andaphySir;gl% actions suet

mstead of complex syntax and command n

systems as examples of direct manipulation

the 'What You See Is What You Get' pllllClple pr

applications and video games.

Several other authors attempt to describe the central idea behind direct manipulation.
According to Booth (1990), direct manipulation is when "user's actions should directly

affect what happens on the screen to the extent that there is a feeling of physically

manipulating the objects on the screen". Hutchins er al. (1986) describe direct
manipulation as "the feeling of involvement directly with a world of objects rather than

of communicating with an intermediary".

In addition to Shneiderman's description, Hutchlns et al (1986) glve a thomuch

discussion on the concept of direct manipulation. Ihey elal .1pu1a11®n to c

concept of directness which comprises of two factors, L.e. distance and envaoement .

Distance refers to the gap between a user's thouohts and phy31ca1. re Lu éme

accomplish the tasks and engagement refers to the degree of i-nvo.lve C]

experiences with the system.

Berry (1992) classifies the different interaction techmques according to the deg1ee of

direct manipulation. The typed command s at one end of the 1din

'g the least -

feeling of direct manipulation. Drag and dfoij :t’ééhn u e opposn;e end ;j“'

providing the most direct manipulation feel. Pop—u b a

11 down menus arein

between the two. Figure 2.2 shows the deglee 'of dlrect mampulatxons: amon

interface techniques. Berry considers pop-up menu pI’OV’ldCS a h1ghe_\ru deﬂ e

manipulation than pull-down menu. This is due to the fact that the fofmer_dfynarjmc I

31

ears beside the object of interes

S current context.

Menu Bar PopUp Menu

Figure 2.2 : Degree of Direct Manipulation

The summary of advantages of direct manipulation are: (Shneiderman,1983)

Novices can learn basic functionality quickly.

Experts can work extremely rapidly.

- Casual users can retain operational concepts.
Error messages are rarely needed. .
- Users can immediately see if their action are funhelmo then Ooals

Users experience less anxiety because the system is comprehen31ble and actions are

casily reversible.

Hutchins et al. (1986) and Benbasat & Todd (1993) argue that none of these advantages

e

less errors and they were generally more satisfied with the mtelface ACC ¥ ,kmg_

authom this was due to the facts that users do not have to recall commands and the

32

efficient handling of the mouse an

interface.

Benbasat & Todd (1993) conducted an expenmen

manipulation compared with the menu- based 1nterfa

carry out number of simple tasks using an elect10mc maﬂ system The study reveals

that subjects working with direct manipulation interfaces completed the task faster than
those with menu-based interface. However, this d1fte1ence n tlme was not significant
when the task was repeated for the third time. This indicates that the advantage of direct

manipulation diminishes after a learning period. There was no difference in the

numbers of errors made by using direct manipulation as compared to menu-based

interface.

The problem of direct manipulation interface is that users may have to spend more time

with the objects (Morse & Reynolds, 1993) Users have to select obJects 1epeatedly

and then select the operations to perform on thos ,‘/objects ough 1ubbe1 band -
grouping of objects is supported, it may be qu1cke1 for an expeuenced USGIS to use the -
‘wildcard' feature provided by many operating systems. In general, direct ;mampqla X

nterface is not that powerful and flexible in comparison with 00111“1112111da]z}n'g_;,, ag

(Myers, 1992; Buxton, 1993).

Direct manipulation interfaces are mostly 11nplemented ina Glaphf | Usel Irnterface

(GUI) environment (Bourne, 1992; Nielsen, 1993a) A contlnuous 1ep1esentat10n of;'

objects is manifested in a GUI as 1nf01mat10n or icons in a Wmdow Phys1cal actlons

are normally implemented by point and click metaphor and reyv.

al of actions are easil-y' \

effected in the typical GUI format.

33

2.4 GRAPHICAL USER I

The Graphical User Interfaée (GUI) ﬁl'ig;iinatéd from the 1es :

GUI were adopted from the development of Smalltdlk, étag al
Research Center (Gosling er al., 1989). The iﬁtroduétidﬁ of {Ii:l/é/fl\/iacint’osh,wasﬁa'
commercial success. The Macintosh GUI has caused/a/wide;spreqadziaicceptéhce -émoﬁg '
nontechnical users who were traditionally unreceptive toward éorﬁputjn_g. Bﬁecaﬁse -of '
its success, the Macintosh has became a model by which GUIs are judged (Mérg'us,\ .

1992). The definition (Hayes & Baran, 1989) of the Macintosh GUI includes:

- Pointing device, typically a mouse.
- Menus that can appear and disappear under the control of pointing device and cause
execution of program code.

- Windows that graphically display what the computer is doing. -

- Icons that represents applications files,,,directgrigs and
- Graphic metaphors such as dialogue boxes. an’dib;jtﬁtﬁns*thq

computer action.

classified into three major camps. The first campisihe IBM’s System Ap}ili@ﬁfi@ﬁ”"

Architecture (SAA), which includes Microsoft's Windows and ‘Pre‘se.n,tati_dn, ‘Manager. -

34

The second camp is the UNIX systen

based NeXT is one major exceptlon since it does not us

Macintosh.

Developing a GUI software is not an easy task. Thi 1S ¢ he fact 'th‘«a\t'su‘ch' '

software is concerned with handling asynchronous events and 1ts pnmaly intention is to

conceal the complexity from users (Gay, 1993 Huan Chao 1991) Furthelmole
developers have to adopt object-oriented methods rather than traditional functional
methods (Powell, 1990; Nielsen, 1993a). In one recent study, N1elsen (1993a) found.

that it is quite difficult for interface designers to change from a functlon or1ented

interface to object-oriented one.

2.4.1 WINDOWS

A Windowing system allows the display of information about multiple apphcatidns at

1

the same time. The system includes the programming

windows, menus, dialogue boxes and other items on di It manages how
windows are created, resized and moved on-screen, and how the user moves from one

window to another, among other functions (Hayes & Baran, 1989).

Version 11 of the X Window System is accepted as an mformal standard by many;‘ -

vendors and is being developed asa formal standard. Orlcma Iy ‘de.vel'oped.b‘y

Massachusetts Institute of Technology (MIT), X Wmdow mplem ts e;‘i*cil‘;iemjt-‘svefvéi‘;

model for distributed computing environments. The net

display information on one or more workstations. A number of chen

running on a display device, whose function is to display client output and return -

messages from the user interaction to the client (Gosling et al., 1989).

35

X window is not a complete user 1nte1face smce 1t does not.d‘

the application. It is just a Wmdowmg system S

2.4.2 ICONS

The introduction of the icon-oriented user interface was the result of research in object-
oriented programming, where computer scientists believed that typical human
communication is object-centered (Blankenberger & Hahn, 1991). The effectiveness of

this form of interfacing, however, has been a controversial issue. There are those who

regard the use of icons as an efficient means of interaction and there are those who.
argue that in many applications the use of icons causes more confusion since they fail to

represent their intended meaning.

In support of their use, it has been claimed by dedihg (1983) that icons can reduce the

complexity of the system, thus, make it easier ‘t(/),le,arn.;Th

it of icons in L user |

interface are also discussed by Marcus (1992) Icons are Vlsually apﬁeahng, \ asy tof
understand, use less space than the equivalent in wo,rdsand more importantly, they c..anz
replace written languages and contribute to a form of communi’caﬁi\qr\ls\;’V\Wv:hie'y\\
potential of being globally meaningful. k |

The use of icons as a form of communication does not really live up to its CXpCCtaUODS—' -

(Roger, 1989). On some occasions, the 1ntended mean':

c ns a1e easﬂy

understood, and for others icon representations may be Imsleddmg ’“lefelent meanmgs .

can be attributed to a single icon. An icon used by MacDr Sent Zo,om‘ izn--a‘nd_ . -

functions are not easy to guess. On the other hand the Superpamt program uses a

down menu with the entries zoom in and zoom out to represent the_.‘same-\fun\

36

(a)
Figure 2.3

(a) MacDraw Icon Representation
(b) Superpaint Pull-Down Menu

Figure 2.4 is a mail box that has been widely used in the United States. An icon of this

is been adopted by xmh (Peek, 1991) to represent an electronic mail application. The -
icon should be appropriate for the users in the United States, but may not be prac_ticai
for users from different countries where the mail box used in their countries 1s not the -
same as in the United States. The function of the mail box is not the same from one
country to another. In the United States, people send and reg:e,ivg: letters through the
mail box, but in England, mail box is /Qpl}/ us§d to send letters. Therefore, to ’desig’r}

icons for an international recognition is not an easy task.

N

Figure 2.4 : Example of a Mail Box

Recent research by Benbasat & Todd (1933) on the performance of casy l us,e,i'syon a -

electronic mail system reveals that there were no advantage associated with iconic’

representation as compared to text-based representation. The authors claim that the

finding are consistent with a number of earlier studies carried out by diffe

researchers.

2.4.3 MENUS

A comparative study of GUIs by Marcus (1992) ShOW :

systems provide a menu as a mean for users to issue

mostly adopt select-and-operate command paradigm. User ‘Séle'ctr the object to

which operation is to apply, then choose the command from the menu.

Different windowing systems provide different types of menu which can be classified

according to their appearance and behaviour.

Pull-Down Menus

Pull-down menus appear as an extension of a horizontal menu bar (Ziegler & Fahnrich,
1988). The menu bar constantly holds the titles of the pull-down menu. A pul’l—ddwn‘
menu appears below its title when the title is selected. A pull-down menu is more

useful than pop-up menu especially when there are many functions represented. An

example of a pull-down menu are as:/S_howno in figure 2.5, The figure shows that th,e‘

title edit is selected and the edit menu is displayed.

Format Document Font I

Paste S
Clear

Figure 2.5 : Pull-Down Menu

Pop-Up Menus

A pop-up menu appears in response to a click with a pointing device such

within a particular region of the display. The region could be an entire screen or some

well-defined area such as a window or a view of a window.

38

Interactions in a Smalltalk system is m&i:nly- t%h-rou'g_hf kp?(})ipyf—

Robson, 1983). Different pop-up menus are p10v1ded by plessa g ,h-

on a mouse. Figure 2.6 are two examples of pop- up menus ‘ plemented m Smalltalk— -

80 which are obtained by pressing the middle and I‘l(’ht mouse b ftons respectlvely ina

workspace window. The left mouse button is reserved for :I?X/tf; le’jc,tion. The menu
displayed by pressing the middle button holds commands related @Qithe, s_electedyview.
Since the workspace window contains editable text, the commands pfovided are related
to text manipulation. The menu obtained by pressing the right button hold commands

related to the window itself.

HF——= Workspace H F——— Workspace
[— = e %]

The time now is 20:15 The time now is_ 20:15
again
undo
copy
cut
paste
do it
print it
inspect
accept
cancel

new label
refresh
move

Figure 2.6 : Pop-Up Menus

Permanent Menus

Both menus, the pull-down and pop-up menus are displgyed onl when us,,ei‘s. make a

heir selection on

as PC paintbrush and MacDraw. A combination of permanent and pull;do:w}h:menm

39

are stay-up menus. Users have the choice

displayed on the screen or just behave as a pull-down menu.

2.4.4 POINTERS

A pointer is associated with a pointing device such as a mous 11, or a joy stick

(Tullis, 1988). When users move the pointing device, the corresponding pointer makes
the same movement on the screen. Users’ actions such as mouse clicks causes an

object over which the pointer is positioned to be selected.

The different images of pointers provide users with a meaningful visual feedback to

indicate the current state of the system or which modes of actions are available.
Changing the shape of the pointer image is very effective because users' attention is
focused near the cursor. Figure 2.7 shows typical examples of pointers and their

effects in some of the Macintosh applications.

Pointer Name Functions

k Arrow Seiect_iiig:&/ diiéggiljlg;-obj, ots,
scrolling & closing window

-+ Crosshair Drawing or stretching gfaphic .
objects .
I I-Beam Selecting and inserting text
op Plus sign /Sélec't(iﬁg;fi‘érldzinr a
Wristwatch : Indicating,thét : .
- inprogress '

Figure 2.7 : Macintosh Pointer Images

40

2.4.5 CONTROLS

of controls include buttons, checkboxes, radio buttons, sliders and séfolljng lists.

Buttons
A button is usually an image which resembles a pushbutton. Figure 2.8 shows three

typical buttons in a dialogue box. The title of the buttons represent commands that can

be performed in a particular system. Unlike other controls, buttons have the ability to
produce an immediate system response. Unlike menu system, users are not required to

navigate through the menu entries to make a selection (Marcus, 1992).

Figure 2.8 : Buttons in a Dialogue Box

Radio Buttons

Radio buttons act like the buttons on a car radio, whereby only one button can be on at

one time (Apple, 1992). Figure 2‘.9/sh§);WSVa:typicr:.aflféet of r,aidib buttons. The active

setting has a dot in the middle of the button. Fi’gﬁré 2.9 sho S hat A4 Letter size paper

is selected. Clicking one button in a group activates that particular button and turns off

whichever button was on before.

Paper: (O USLetter (& AdLetter (O Tab'°'d \
O ustegal (O B5 Letter '

Figure 2.9 : Set of Radio Buttons

41

Checkboxes

Unlike radio buttons, checkboxes?"“éi;lil'ow-‘« users to make mt

choices offered. Users can select all, some /
checkboxes to display or suppress the checkfrr/r/iajrki: In ¢

2.10, characters and words are selected.

Characters
Words

[] Lines

[] Paragraphs

Figure 2.10 : Set of Checkboxes

Scrolling Lists

Scrolling lists are used to present an unbounded list of items in a small well-defined
region (Sun Microsystems, 1990). A scrolling list in its basic form comprises of a list -

items such as a list of customer names and a scrollbar through which users can look at

more items in the list that aren't currently available. Figure

ws an example of a4

scrolling list which is used by the Smalltalk-80 system browser. Typieally, a scrolling
list is a read-only control and users may click on an item in the list to select it or t

may scroll through the list to browse through its content without selecting anything

v

Interface-Dialogs
Interface-Lists
Interface-Text
Interface-Menus

i

Figure 2.11 : Scrolling Lis

Dialogue Boxes

A special window which can be regarded as a control is a dialoguégbax(’% '
A dialogue box usually displays messages and requests for more. ianrmatidn_a rom.

users or allows users to select options (Apple, 1991). An example of a dialogue box is

42

the alert box which is designed to warn users
work or quitting an application. Figure 2.12 shows an alert b

when users try to quit Smalltalk-80 from the Macintosh Menub E

Eﬁ If you quit, your current
work will be discarded ! ||

() (owe)

Figure 2.12: Alert Box

2.5 USER INTERFACE DESIGN PRINCIPLES

Numerous authors discuss the general design principles of user interface. A

comprehensive discussion of the principles is given by Shneiderman (1992). He =

suggests eight golden rules of dialogue design. 'Sr/gijt?h;et al. (1990) discuss the
principles used in the design of the Star User Interface. Apple (1987) _also,._:lays,-do'Wn‘ -

its own principles in designing user interface.

Most of the principles are potentially good advice but they are too ﬁgcneral, to be difre“ctyl'y-

applied (Smith, 1986). Thus, careful consideration i(S/,I;ff:;qui;I;CI_,di to interpret the

principles so that it is appropriate in a particular design. .

2.5.1 APPLE MACINTOSH USER INTERFACE DESIGN PRINCIPLES

Apple (1987) describes ten fundamental principles of the AppIQ'DéSktopf InterfaceThe
Macintosh Human Interface Guidelines (Apple, 1992) includes one moreprmmple, ie.

the principle of modelessness. The principles are relevant to a graphical user interface \

43

environment. The explanation of the prineiple

from various sources. The principles are as follows:

1. Metaphors From the Real World

The use of real world metaphors for computer proceéseg is to tak /‘égiiva‘mtage of us;er’s"’
direct experience with their immediate world. For example; users oféﬁuse file folders
to manage their paper documents. Therefore, it makes sense to users ‘to store computer
documents in folders that look similar to folders in their offices.- Folders also can be

renamed, moved around the desktop and deleted by throwing them in the trash.

The disadvantage of such a metaphor is that there is a limit to its capability. Many
physical objects do not have enough power to manage the complexities of information

technology (Smith et al., 1990).

2. Direct Manipulation

Maguire (1990) states "direct manipulation is an interface ich the user points

at a visual representation of the task, manipulates it and immediately observes the

results”. The discussion on direct manipulation is already given in _sec"t'i'o,11;f2j._'3y,,

3. See and Point

The traditional command-line interface requires users to recall the appropriate

commands and type them into the computer with the right syntax. Users have to focus

more on the complexity of the interface and this ‘makeSfthemfdi:Sgtr;ai ed from their main

task.

The see-and-point interface allows users to interact directly with the screen, selectir

objects and performing actions by using pointing devices, typ,i'e,a‘}\ly'”g-g ‘mbuié

Macintosh see-and-point interface can be categorised into two paradigms which are

based on noun-then-verb user actions. In the first paradigm, the users select an object

44

of interest (the noun) and then perfo

second paradigm, the users drag an object (the noun) onto son

action (the verb) associated with it (Apple, 1992).

4. Consistency

The very first principle suggested by Shneiderman (1992) is to/ Stuve for consistency'.

The importance of consistency is stressed by Sun Microsystem (1989), by stating that
"consistency enables users to apply previously gained knowledge to a new areas
without having to learn from scratch. Users can figure out consistent products by

detecting and learning the similar patterns.”

Grudin (1989) challenges the principle of consistency. He forwards an example from -
everyday life of deciding where to keep different knives. Table knives, butter knives
and steak knives should be placed in the same drawer. Such an arrangement of knives

would make it consistent, easy to learn and easy to remember. But then, the most

appropriate place to keep the putty knife is'in a WQl'kbeﬁchf:dié wer in he garage and the; .
Swiss army knife packed away with the camping gear in the bdsement By keepmg the»
knives at different places, we have introduced inconsistency and 1'nc‘rea_s.ed the t
find them, but, common sense tells us to organise them according to the :‘w

used and the task they are involved. Grudin suggests that primary empha‘-sis-..sh‘oul;da e

placed on the users' work environment rather than to strive for consistency.

terface, there are

Although the Macintosh desktop is one of the most consi,steﬁfﬁsé

action, but the results are different.

45

5._WYSIWYG (What You See is What °

WYSIWYG is a phrase to describe what users can see from

choice is immediately displaye;

he has got (Thimbleby, 1990). The result of users'

the screen. In a WYSIWYG word processing en/\'kii/rqnm/(?n;t;users.»E_:a’,n ‘éee' .dii’e‘ctly \tf“ﬁe
effect of making selected words bold or changing their zféni T ont 5126 Therefore,
users do not have to figure out themselves of how their documents éhéwnf on the screen
will appear when they are printed on papers. This is due to the fact that ‘ther.é 1S no
significant difference between what users see on the screen and what eventually gets ’

printed (Apple, 1987).

6. User Control il
"People learn best when they're actively engaged” (Apple, 1987). Thus, users have to
be the 1nitiators of actions rather than the responders (Gaines, 1981). In the case where
users attempt to do something risky, the computer may interrupt them and warn them

against the consequence of their action, but allow the action to proceed if users confirm

that this is what they want. This strategy seeks to "protect users but allows them to

remain in control” (Apple, 1992).

7. Feedback and Dialogue

Provision of immediate feedback is required in order to keep users aware of what is

going on. Smith er al. (1990) state "it is disastrous to the user's model when YO.-,IIJ,

1

invoke an action and the system does nothing in response’.

‘Since no immediate

feedback is provided by the system, some users of Openw1 M vfosyfsf‘gem, 1991)

click an entry from the main menu several times. They keep on repeating their request

because they are not sure whether the system has heard them‘ or not. After some time

users find that the screen is full with the same Wmdows éduivjalent to the _numbé-r; of

requests they have made.

Feedback provided should be simple enough for users to understand (Apple, 1-9-92). :

Most users would not know what to do when they encounter messages such as 'The

46

application unexpectedly crashed. ID:

well explained, for example 'Not enough memory was avail

complete the task'.

Nielsen (1987) categorises different types/ of /feédback/’:accrordiiiagj fQ; their degrees of -

persistence in the interface. Some feedback is only relevant for a certain period of time.
For example, transformation of the image pointer into a rolling ball is only relevant until
processing is completed. Other feedback is relevant until the user explicitly

acknowledges it. An example in this category would be a confirmer requesting whether

the user really wants to delete a file. Finally, some feedback is so important that it has
to remain as part of the interface. An example might be the remaining free space on a

hard disk.

Feedback is very important especially for operations which require a longer time to

complete. Card er al. (1991) provide the basic guidelines regarding response times and

the user's feeling and behaviour. The time limit versus the user's behaviour is =~

summarised in table 2.1.

The time limit User's Feeling/Behaviour
in second
0.1 the system 1s reacting instanta'neously‘i
1.0 flow of thought stays uninterrurptcd/ .
10 attention still focuses on the dialogqé :/,;:,i _

Table 2.1 : Response Time vs. User's Behavm

Myers (1985) suggests that percent-done progress ffidigatoﬁs_sh‘oul'd' be'u's_ed' for

operations which are longer than 10 seconds. Figure 2.1:5"‘_'sho;w,s the Macintosh

progress indicator. The advantages of using progress indicators are: (Nielsen, 1993b)

* They indicate that the system is currently working on the user's problem.

47

They indicate approximately how lon;

They provide something for the user to look at, thus?m&kin:g

Items remaining to be copied:

Reading: chapter2

| Stop

e

Figure 2.13 : Progress Indicator

Using the percent-done progress indicator for operations which require between 2 and
10 seconds would violate the principle of display inertia (Nielsen, 1993b). The
indicator displays itself for a short while and then disappears. The display happens so

fast that 1t causes irritation to the user.

8. Forgiveness

Apple (1987) defines forgiveness as ".. letting users do dnythmg 1easonable lettmg
them know they won't break anything, always wammg them when they are eme11n0= -
risky territory, then allow them either to back away glacefully or plung - ahe

knowing exactly what the consequences are". This principle eneouxages usels lear

to use the application by exploration. They can test various functions supported;by the

application without damaging the system.

9. Perceived Stability

The computer environment changes as users interact w1th it, bu sers Should teel that,

there are some stable reference points to count on (Apple]987). The Apple Desktop

interface uses a two-dimensional space on which objects are p]aced and defme a number, .

of graphic elements such as menu bar and window border to dCthVC V1sua1 sense off

stability. To achieve a conceptual sense of stability, the interface provides a finite set of

48

bjects and a finite set of actions to perf@ j

‘available, they are not eliminated from a drsplay, but are me, '

10. Aesthetic Integrity

Aesthetic integrity means that "information is well org”arilised‘ ind consistent with the

principles of visual design" (Apple, 1992). A discussi/o/nzorl the/*is/sue of good visual
design has been given by Tullis (1988). Some of the guidelines on screen design are:
eliminate unnecessary information; a balanced layout - this is to avoid having too much
information on any side of the screen; use plenty of empty spaces especially around

block of text; group related information logically.

The guideline is not only for aesthetics reason. An empirical study by Tullis (1981)
shows that users complete tasks 40% faster when a screen format is improved.
Therefore the way information is presented on the screen partly determines the success

of the user interface.

Some users have to spend quite a long time at the computer screen. Hence, the
pleasantness of the interface is quite important. Users also gain some impress'i'on.,,ab‘dutﬁ'
any application from the way it looks. Generally, they are likely to be afraid o - an

application which is visually overwhelming (Sun Micr'osystenls, 1990).

11. Modelessness

The idea of modelessness is to allow users to do whatevér"thej://'Waﬂf, 1en 'the,y"'want to

on the computer and in an application (Apple, 1992) Thrrnbleby ,(1990) states that the

user find modes difficult because much 1mp01tant mforrnatron is :rdden Therefore it

can be easily forgotten or not noticed by the users. Furthermore a mode may lock the-

user into one operation until that operation is completed (Apple 1992)

49

This does not means that modes should be

states that modes do have advantages for the user. Modes prof

mistakes and help the user avoid interface clutter

2.5.2 OPEN LOOK USER INTERFACE DESIGN PRINCIPLES

OPEN LOOK (Sun Microsystems, 1990) suggests three basic user interface principles.

These principles are simplicity, consistency and efficiency.

1. _Simplicity

Users want a quick success which, in turn give them the impression that the
applications are easy and intuitive (Sun Microsystems, 1990). This encourages further

exploration of the capabilities of the system.

One of the factors that contribute to simplicity is clearly labelled controls and the term

used should be simple enough for users to underst d. B 199 points out that the

term ‘composed' is a technical term and. it is not appropriate f‘oir}u‘sers‘. This term is -

widely used by many electronic mail applications.

Simplicity is one of the principles pursued in the designed of the Star user ii]t@ljfaj

(Smith ez al. 1990). Smith er al. (1990) state that “typically, a trade-off exists between |

easy novice use and efficient expert use. The two goals are not always compatible”,

They suggest the rule stated by Alan Kay to approach this pr(/)gbie//’*th‘at‘kis:_‘Sjmple .

things should be simple; complex things should be possible’ Smlth eral. ‘further‘s'tate, ,

that "simplicity, like consistency, is not a clear-cut principléa‘f: :

2. Consistency

This principle has already been discussed in section 2.5.1.

50

3. Efficiency

1e mouse. In some

cases users may use both the keyboard and the mouse simultanéously %

Recent word proceséing applications provide short-cuts by having buttons which can be
turned on and off on the screen so that users can héve a fast access to the most.
frequently used functions. Figure 2.14 shows the ClarisWork 2.0 short-cuts facility.
Expert users can access commonly used functions such as copy, cut and paste simply

by clicking on the right buttons.

Figure 2.14 : ClarisWork Shortcuts

Macintosh System 7 provides a short-cut by allowing users to acces}s-l,aﬁ

document or disk by putting it or its alias in the Apple menu (Apple Comp.uter, 19

Figure 2.15 shows that the Microsoft Word application can be,ﬁipyoked by selecting the
entry from the menu. Usually users have to carry out a,nu‘m’b;‘ of s eps t‘o,‘jnveké ;the ,
application: open the hard disk; find and open the folder that :épnt- 1 the applziicationv;, ~

invoke the application; close the opened windows to prevent screen clutter.

® Alarm Clock
Calculator
CD Remote

= Chooser
Control Panels
Key Caps

=1 Macintosh HD

 Microsofflord

Figure 2.15 : Invoking Microsoft Word from the Apple Menu

Sun Microsystems also suggests the concept of 'progressive disclosure' to increase the
efficiency of applications. The concept is derived from the design of cbnsumer
appliances and stereo systems. For example, a stereo system has its complex controls
placed behind panels. The idea of such arrangement is to make the system looks simple
but provide the advanced features desired by the advanced USers.. Pop up menu and
pop-up windows are similar to the controls behind the panel of a steleo system Only*

those commands that are frequently used are visible on the screen.

2.6 ONLINE HELP FACILITIES

Shneiderman (1992) points out that "even though increasing attention is being paid to
improving user interface design, there will always be a need for supplemental ‘ma,teri'alfs

that aid users, in both paper and online form".

Duffy et al. (1992) define online help as the online deliizéfy ’617 perfgo,rm'ance.—‘@ifiented‘ ,

information. Itis designed to answer the question 'how-do 17", Thefusen off/online,h‘e,lp .
is trying to complete some task in an application. They also distinguish the o line

system from other types of online assistance. The following examples are not reg-"a_r\de\d\'

as online help: online tutorial; error messag

online services such as databases of newspaper articles.

Duffy et al. (1992) and Shneiderman (1992) discuss the advantages of having online

help available on the computer. The summary of ad;laﬁté{g :

are: informeftioﬁ is
available whenever the computer is available; extra work space ié ﬁb},t/required to open
up manuals; information can be easily updated at low cost; electronic indexing and text
searching facility can be incorporated; less expensive to store, reproduce and distribute:

graphic, sound and animation may be used to explain complex actions.

A study by Elkerton (1988) reveals that many online help systems fail to help users
solve their current problems. He identifies a few reasons why such failure occurs. One
of the most important reasons is that designers regard online assistance as nothing more
than an electronic version of a printed manual. These types of online manual may be

useful for skilled users, but completely ineffective for novice and intermittent users.

Sellen and Nicol (1990) list five main reasons why users avoid using help"'i‘?_acilities’:
difficulty in finding information; failure to obtain /relevant information; difficul /
switching between the help and the working context; complexity Of‘th\"e_ helpmtelfdce
and; the quality and layout of help information. They recommend different hc‘l‘pj\‘
interfaces for different kinds of help, from the basic introduction to the applic.étiom ito"

procedural and navigational questions.

When users need help, they must switch from a problem—,sdli/in‘g{fﬁode to a ‘learnin-;g»

mode. Clark (1981) found that the mode switch sometimes causes users to forget why

help was requested in the first place. Houghtbhr(1984)1//§uggests that, one way of
making help messages less disruptive is to place them on the screén.si‘mﬁi’tﬁﬁ‘éb I

with the problem.

53

mode change and are not required to memorise help me a -f eurctur;ni‘ng to their

application.

Macintosh System 7.0 (Apple, 1991) is the first system to provide a context-sensitive

online-help on the Macintosh. The help is displayed in a small balloon next to the

object pointed by the mouse pointer. The help describes menu commands, dialogue
boxes, icons and windows. Users may turn on and off Balloon Help from the menu
bar on the top right of the screen. Once Balloon Help is turned on, the balloon for an
items appears when the user move the pointer to an item and stays on the screen until
the user move the pointer away from the item. Figure 2.16 shows an example of a help

balloon.

Thiz iz & folder—a place
to ztore related files,
Folderz can contain files
and other folders.

Objectworks®

Figure 2.16: Help Balloon

A context-sensitive help is also supplied by OPEN LOOK(Sun iMiérst_stems 1989).

The way to obtain the help messages is slightly dlfferent from'the System 7 context—

sensitive help. Users have to move the pointer to the obJect for Wthh they requlre hel""
and then, press HELP key on the keyboard. A pop-up window will then dlsplay

information relevant to the specific object pointed by the mouse pointer. The window is

54

shown In figure 2.17. Users may re 1eve add

12
by pressing the button labelled More' in the help window.

Figure 2.17 : Help Window on OPEN LOOK

2.7 MEASURING USABILITY

The purpose of the evaluation is to measure the usability of the prototype by different

categories of users. Visvalingam (1988) defines usability. as 'the features that a system

possesses, over and above its basic functions, which promote ease of use'.

Nielsen (1993b) states "usability has multiple components and is tradiﬁonally a.s's)b;_.‘criaté'

with these five usability attributes:

 Learnability - the system should be easy to learn so that the user can rapidly start

getting some work done with the system.

* Efficiency - the system should be efficient to use, so that once the user has

learned the system, a high level of productivity is possiblg; :

¢ Memorability - the system should be easy to remembe:

r, so that the casual user is

able to return to the system after some period of not having used it, without having

to learn everything all over again.

55

Errors - The system should have a

during the use of the systeiﬁ, and so that if they do mak

recover from them. Further, catastrophic errors must not occur.

Satisfactions - The system should be pleasant to use, sothat users are relatively

satisfied when using it; they like it".

Nielsen also suggests methods to measure usability. Learnability can be measured by
selecting users who have not used the system before and measuring the time for them to

reach a specified level of proficiency in using it. The system's error rate can be

measured by counting the number of mistakes made by users while accomplishing
some tasks. Subjective satisfaction can be measured by asking the users their own

opinion about the system.

To measure the usability of the prototype, users are requested to execute a sequence of

tasks given to them and then, answer questionnaires based on their experience using the

prototype. Two types of data are to be generated from the evaluation. They are:

e Qualitative - These are non numeric data and results, such as problems user “ha\‘
while using the system. The data are acquired by observing users while ¢

tasks and from users' verbal or written opinions.

* Quantitative - These are numeric data which are acquired from users’ opinion

rating based on their experience using the system.

Even though qualitative data are not used in the measurementrof‘u’sability_, they are 'quiter
important in determining the problems with the 1nterface These ddta are Seconddry data

which may complement the measurement of usablhty Usels may WlSh to expless;, '1

reasons why they are satisfied or dissatisfied with the interface.

56

Hartson, 1993):
e Selecting appropriate test users.

e Developing tasks for users to perform.
* Preparing questionnaires.

e Determining procedures for the evaluation session.

1. SELECTING TEST USERS

One of the first activities in the evaluation of the prototype is to select users for the
evaluation. Recently, terms such as test users, participants and usability evaluators are
used in human factors literature to indicate representative users taking part in evaluating
user interface (Nielsen, 1993b; Hix & Hartson, 1993). This is to emphasis that it is the
system that is being tested and not the users. The users are volunteers who help

designers to evaluate the systems.

Test users and users will be used throughout this chapter to refer to users participating

in the experiment. These test users should be chosen randomly among theexpected .
users of the prototype. This means that they should also be representative of diffegréﬁt
categories of users within the targeted users population. Since the proto.tycpc is‘
developed for academic communities, test users for the evaluation of the prototype
include different categories of academic population such as the lecturers, computer

officers, secretaries and post-graduate and undergraduate students.

Nielsen (1993b) found that users with knowledge of the problem domain of the
interface usually provide more useful feedback than those who do not have this s‘p‘eci_fi'c
knowledge. In the case of the evaluation of the prototype, users should héve some

experiences using electronic mail or BIDS. This does not mean that users who do not

57

have any knowledge of the probltem’fdernfa: 1 ;

They are still potential users of the system and their ~.op."i-,nionsfab,\

way they react to it can be compared with the group who is familiar wi

domain.

The different backgrounds and experiences of users are regarded as important
information for the evaluation. They are required when analysing the results of the
evaluation. Due to its importance, the information is recorded before the evaluation

starts and is placed at the beginning of the questionnaire form.

Hix & Hartson (1993) point out that "it is always nice and sometimes necessary to offer
bribes to get users". Bribes could be any appropriate and inexpensive token for the
time, ideas and cooperation given by users. These could be just refreshments such as

free coffee and biscuits.

2. SELECTING TEST TASKS

Test tasks should be selected to represent functions supported by th.evf protetype. The
tasks should be able to demonstrate general capability of the syslem They should al’\”’of
provide a reasonable coverage of the most important parts of the user mtelface(Nlelsen .
1993b). They are the ones that users are expected to perform often, and therefore

should be easy for users to accomplish (Hix & Hartson, 1993).

The instruction to carry out these tasks are listed On a paper in the Qrder n whieh, users

will be asked to perform them. The instructions are p10v1ded in buei dnd should

mention what the users should do rather than how the users Should do it (Hlx &
Hartson, 1993). Hence, users have to explore the system in order to accomphsh the .

task successfully. A well-designed user interface should provide enough feedback and’:{; :

guidance to help users using the system.

58

Ravden & Johnson (1989) state six advantages of

during evaluation. The summary of those advantages are:

* Tasks represent the work for which the system 1sdesugned Hence, the prov ide

the most effective way of demonstrating the system

;sifu/ng i0

e LEnables users to see the application as a whole and not jﬁst a series of screens and
actions. |

¢ Users can be exposed to different aspects of the user interface.

* Many significant problems and difficulties can only be realised after carrying out

tasks.

* Insome cases, aspects of usability can only be measured by using the systen.
* Important information can be gathered by observing and recording problems and

difficulties experienced by users when interacting with the system.

3. DEVELOPING QUESTIONNAIRE

Questionnaires provide the most effective and the least expensive method for evaluating

a system. Karat (1988) points out that usability can be evaluated simply by asking
users about their experience in using the system. Since the selected test users are
among the potential users of the system, their opinions about the s;y-st\elﬁ,vj.\r

evaluated have to be considered.

The effectiveness of the questionnaire is quite obvious fof sorﬁe aspects which are h'dld ‘
to measure objectively such as the users' subjective Satisfacti01/lf(N1je/1/{;(i3h, i993b). The
replies given by users to such questions are subjective, but whenrephes from multiple
users are averaged together, the result is an objectiveé:rrﬁeié/lis“ufe; of the system's |
pleasantness. Nielsen (1993b) further states that the qﬁje/stionnairé is the mbst, :

acceptable method of assessing the usability of a system.

59

Several researchers have laid down some g

(Nielsen, 1993b; Hix & Hartson, 1993):

It is recommended to use a short questioﬁgléutc, prossable, hrmtthequestlonnalre
to a single page. A short questionnaire stands a be/tteV:/r/C}/}é]&éébf’feceiyihg ;attentié“n
from the users. -

e Ask questions to which you really want to know the aﬁswéf. |

* Rating scale should be the same throughout the questionnaire.

e At least 30 users should be involved in the evaluation.

* Pilot tests are required to prevent misunderstanding.

4. DETERMINE PROCEDURES FOR EVALUATION SESSIONS

The success of an evaluation depends on the feedback of the users. Ravden & Johnson
(1989) point out that users must be given a clear explanation of the system, the purpose

of the evaluation, the importance of their participation and what are expected from them

at the different stages of the evaluation.

The evaluation of the prototype can be divided into two main stages:

* Executing tasks - During this stage, users are required to execute the test tasks

which are assigned to them. These are the minimum number of tasks which allow

them to have an insight into the system. They are not limited by the tasks assigned

to them. They are encouraged to explore the system further in order to have a better

understanding of the system.

e Answering questionnaire - Users are requested to answerj/thé questionnaire. The
answers to the questionnaire should be based on their experiences using the system.
Root & Draper (1983) reveal that users give more useful answers if they are given

questionnaire immediately after using the system.

60

It is also important to stress to the users that the p:

the interface and not to evaluate them. Some users may be afra

.

this kind of session reflects their own weaknesses in using computs

Users are given written instructions about the evaluation and its procedures. This is the
casiest way to make sure that all users are given similar instructions before they start
their evaluation. This will ensure consistency and remove some of the variances from

the test sessions (Hix & Hartson, 1993).

An evaluation form which comprises information regarding the evaluation, procedures
of evaluation, selected test tasks and questionnaires are given in advance to the users.
The form will be given when they have consented that they are ready to volunteer and
they have made an appointment for that. They are expected to bring the form during the

evaluation session.

Some authors like Hix and Hartson (1993) require users to sign iuj??agr‘eement‘. before

participating in evaluation. Nielsen (1993b) argues that signing an agreement will

create negative results such as anxiety for the users participating in evaluation.

Information regarding the evaluation include the following:

e The description of the system.

e Why the system requires evaluation and the aim of evaluation.
» Why they are being asked to participate.

* The time required for the evaluation session.

e What are the evaluation procedures.

* What are they supposed to do.

Preparations for the evaluation such as reservation for the workstation that runs the

prototype, paperwork and some refreshments for the evaluation should be ready by the

61

ime users come to the laboratory. O,nlyi}ioﬁe test |

_session at a time. It is assumed that the users have read all the 1ns

the evaluation by the time they come to the evaluation laboratory. If they ha

5o, then, they are given time to read the instructions. Users are then asked ,Wh‘ethe:‘f

they have any questions regarding the evaluation.

The facilitator has to make sure that the session runs smoothly and efficiently. The
room where the evaluation is conducted should be free from any form of noise or
disruption. The users should settle comfortably in front of the prototype after they

know the purpose of evaluation and what are they suppose to do.

The facilitator will observe how users perform tasks which have been instructed to
them. In general, the facilitator should avoid giving any instruction on how to complete
a task with which the participant is struggling. The most that the facilitator should do
Is to ask the participant, "do you need a hint for this task?". If the participant manages

to complete the task after a hint is given, then the facilitator should note down that a hint

1s given to the users to complete the task.

The facilitator will take the following notes:

* The number of mistakes committed to complete each task.

* Questions asked as well as critics and suggestions pointed out by the users.

« Facilitator's observation.

The number of mistakes is the number of wrong actions tal{enf,by the users to
accomplish the given task. The mistakes include clicking a wrong button or selecting a

wrong command from a pop-up menu in application windows. They exclude clicking

wrong mouse buttons or invoking pop-up menus to see available commands.

Questions, criticisms and suggestions collected during evaluation are qualitative data

which could yield useful information in identifying trouble areas in an interface where

62

users find difficulties using

modification to the system.

Users are requested to answer the questionnaire after they have ‘(;Xe,cuted all the test

tasks. They are allowed to access the system when answering the questionnaire, so that
they can remind themselves of problems and explore other aspects of the system if they
wish to do so. The facilitator will stay away from the users when they are answering

the questionnaire, unless they have something to ask.

63

CHAPTER THREE

REVIEW OF USER INTERFACES TO NETWORKED SERVICES"

3.0 INTRODUCTION

This chapter reviews user interfaces to networked services. It starts with a general
review of existing user interfaces to some networked services. The difficulties involved
when interacting with the services are highlighted. The user interfaces to the following
services are reviewed:

e Geac Library System.

» Bath Information Data Services (BIDS).

* Usenet news reader (Tin and Xvnews).

e PP electronic mail.

3.1 REVIEW OF USER INTERFACE PROBLEMS

Some of the services were developed at the time when relatively little attention was pai’df' '

to the design of the user interface. Most of the user interface deugns wele babed 01

page screen display. Since the user interface part is embedded in the ploglam codes \
reconstruction of the user interface is almost impossible. Henee‘, users have to accept -

the difficulties in order to use the system.

Some networked services are old-fashioned menu-based interfeees even though they

may be presented within a window of a graphical user interfac’e;., Menu systems are

generally too modal. Users have to move from one menu to another n the hleralchy of

menus in order to acquire the needed 1nformat10n USCIS are not in control of the" "

interface. Since most of the interactions use scroll mode, lengthy’ infol:mat_i'e,n may

scroll up and pass the window.

64

To use the networked services, users must fir
resides. Then they must log on to the machine by invoking

logged-on, different procedures need to be carried out to be connecte:

services. BIDS users are usually required tolog-on to a special host in their local
institution that supports a connectivity service to BIDS. Havirféloggc.d-on to the host,
users have to log on to the service that provides the connectivity to BIDS. Finally users

have to recall a special identification and password to be connected to BIDS.

Graphical user interfaces (GUI) have been developed for some networked services.

The use of the modern GUI technology alone is not enough if consideration of other
aspects of user interface is neglected. For example, users must be given some kind of
notification such as a status indicator or transformation of the pointer to indicate that the

system is currently busy and not ready to accept any input from users.

Most of the developments of user interface to the networked services are carried out

independently by different developers. Thus, inconsistencies b,eftfwéa_n the interfaces for

different services are unavoidable. For example, most menu systems require the users

to select their choice by typing an entry and then hit a carriage return, but in the case of

NISS and Tin (a Usenet news reader), the users just need to enter an entr

automatically accepted by the system. As a result of inconsistencies, users have to keep

on learning different styles of interaction every time they use-a new service.

Inconsistencies among the user interfaces include the use: of,,mz{n‘yfdifferent terms to
refer to the same action. For example, different services use different terms to mean

quit from the system. Examples of terms include exit, g (or quit}),:fehd5 bye and logout.

Thus, it is not surprising to see users leave the services without quitting after using

them. They simply do not know how to quit.

65

Not all services support a help facility. The servie:

provide any indication that such facility is available and the way

are not the same from one service to another. As a result not many USCIS o

help facility even though they are having dlfﬁcultles in usmg‘the serv1ces They Would

rather consult their colleagues or attempt to use the services by tr‘i-alz’an,d error or abandon

the services completely.

3.2 UNIVERSITY LIBRARY SERVICES

When the library computer was first connected to the network, an access to the service

could be carried out by the command:
telnet library

The network would respond with the following messages:
Trying 134.151.16.73 ...

Connected to library.aston.ac.uk.

Escape character is 'N]'.

A carriage return had to be entered immediately after the:aboﬁv!c/ ﬁiessages, cherw-i-se the
connection would be closed. Since, no instruction was given by the system to entel a
carriage return, users who were not familiar with the system were waiting wnhout domg
anything and timeout occurred. The request for a carriage return was not ti‘czm th,e_: \

computer library, but from a gateway in the network. The gateway is used to solve :

incompatibility problem between the computer library and the network. To purchase a
new gateway which can carry out an automatic connection.:re,quﬁje;d;ian.jnvestment of

thousands of pounds.

The connection to the library was then rerouted through the Quipu M‘achin,e., In'v‘o'kingi,,'

the command telnet library will automatically establish a connectlon to the machm

An alternative is to specify the name of the machine with the command ie. telnet‘m’

66

quipu. The machine will respond with the menu

Users have to enter library at the login prompt to get connected to ¢

Welcome to Aston University

login as de to use the X.500 directory service
login as library to use the LIS OPAC system
login as tx to use the X29 (PAD) service
login as lynx to browse WWW (set term=vt100)

(NO PASSWORDS are required)
login: library

Figure 3.1 : Quipu Machine Menu

Once the connection to the library is established, users are prompted with the library
introductory screen. The screen is shown in figure 3.2. Users are instructed to press a

carriage return to start the dialogue with the library.

067 ASTON UNIVERSITY - GEAC LIBRARY SYSTEM - ALL *INTRODUCTION

e o e o S e S T e i
e S T o DLy FEs s

++ ++

++ WELCOME TO ASTON UNIVERSITY LIBRARY ++

++ & INFORMATION SERVICES ++

++ ko
++ THISIS THE GEAC 9000 SERIES e
++ ONLINE COMPUTER SYSTEM e

++ ++

e S o o o U N SO RIS MBS ok i
I e 2 o o S S SN A SRR A SR RSN SRAE ST R W S PRt 05 15 0% 1

Now press CARRIAGE RETURN to begin

Figure 3.2 : Library Introductory Screen

User interaction to the library is through a hlelarchlcdl menu system The inter actlon is
too modal. This 1s due to the depth of the menu hlerarchy Users hdve to 1ntelact w1th

several menus before they could successfully find their books or Joumals '

Furthermore, some menus do not provide the required information to navigate throug_h

the menu system. A partial menu system of the library menu is shown in figure 3.3.

67 SIDIAYIS HOILYWHOLNL
any AHVHEH

SELECT PROCESS _]
' e

CHOOSE SEARCH
I
TITLE SEARCH AUTHOR SEARCH
(Enter Search) (Enter Search)
[TITLESEARCH | [AUTHORSEARCH

(summary) (summary)
TITLE SEARCH | AUTHOR SEARCH

(display) | (display)

Figure 3.3 : Partial Menu System of Geac

The menus for Select Process, Choose Search and Title Search are shown in figure 3.4.
Select Process is the main menu and to return to this menu at an? stage can be made by
entering sto as instructed on the screen. Users may also terminate the session at aily
stage by entering end. Users who choose the first choice, i.e. cat Ayt not see the last p
but an important instruction at the bottom of the menu, that is the 1nsuuct10n to use stOJ .
to return to the main menu and end to end the session at any stage of the dialqule..

These instructions may not be available at different stages of the dialogue.

Assuming that users wish to search for books or journals by title from the Select
Prosess menu. First of all, users have to enter 1 or cat to get the Choose Search menu
and then enter 1 or til to get the Title Search menu. The Title’S{eaféhmenu allows users

to input the title that they wish to search. This means that users have to go two stages

down the hierarchy of menus before they can input the title.

68

066 ASTON UNIVERSITY - GEAC LIBRARY SYSTEM - AEL;*SE{L"

Which option do you wish to select?

1. CAT - Search the library catalogue

2. USR - Find out about your fines, loans, holds, user record ‘

3. RES - Find out about recommended reading lists

Enter STO at any stage to return to this screen
or END to end your session

Enter number or code, then press CARRIAGE RETURN

a) Select Process Menu

066 ASTON UNIVERSITY - GEAC LIBRARY SYSTEM - ALL *CHOOSE SEARCH

What type of search do you wish to do?

—

TIL - Title, journal title, series title, etc.

AUT - Author, editor, organization, conference etc.
A-T - Combination of author and title.

SUB - Subject heading assigned by library.

NUM - Class number, ISBN, ISSN, etc.

BOL - Multiple keyword search (Boolean search).

N s LN

LIM - Limit your search by date, language or type of material.

Enter number or code, then press CARRIAGE RETURN

b) Choose Search Menu

066 ASTON UNIVERSITY - GEAC LIBRARY SYSTEM - ALL *TITLE SEARCH . 7 l

Start at the beginning of the title and enter as many

words of the title as you know below.

Eg: Bringing women into business

Eg: Expert systems and intelligent

Enter title, then press CARRIAGE RETURN

c) Title Search Menu

Figure 3.4 : Different Menus in the Library Menu System

69

f users are at the Title Search Menu and they

Mlenu, the most obvious way is to return to main menu by ent

o get the Choose Search Menu and finally enter 2 or aut. Three instructions, sto,
cat, aut are required. There is a shortcut for that, that is by entering the command aut.
Unfortunately, there is no information on the Title Search Menu to indicate that users are

allowed to enter sto or aut command.

There is another flaw in the design of the dialogue. From the Title Search Menu, users

may input dog and the word is taken as an input by the dialogue and a search for the

word dog 1s made. But if users enter cat, cat is considered a command and users will
| be prompted with the Choose Search Menu. This means that the dialogue does not
allow for a search of the word car. Similarly, if users input lam from the Author Search
Menu, a few successful matches are made, but users simply cannot input /im because

lim 1s regarded as command.

When users enter their input at the Title Search Menu, they are prompted with a menu

that displays a list of headings which are related to the search. Figure 3.5a shows a list
of headings when a title search for the word unix is made. Only the title and the numb”elj,
of citations are listed on the screen. To see the detail of any book, users havetoent
the book number. Figure 3.5b shows the details of the book number 4. ‘It~contaii‘is\.\ .

detailed information about the book such as author, publisher and status in the library.

Users can see a complete citation of the book by using the ful command. This means

that users have to step further down the hierarchy of the menu.

70

066 ASTON UNIVERSITY - GEAC LIBRARY SYSTEM - ALL *TI

Your title: UNIX matches at least 10 titles

~ No. of citations
e inenfirecatalog
1 The UNIX for beginners book : a step-by-step introduction 1
2 UNIX - the book 1
3 The UNIX C shell field guide 1
4 UNIX and C : a tutorial introduction 1
5 UNIX communications 1
6 UNIX : the complete reference : system V release 3 1
7 UNIX : first contact 1
8 UNIX installation security and integrity 1
9 Unix made easy 1
10 Unix : the minimal manual : mail files and directories : word pro> 1

Type a number to see more information -OR-
FOR - move forward in this list BAC - move backward in this list
CAT - begin a new search END - to end your session

Enter number or code, then press CARRIAGE RETURN

3.5 a) Title Search - A List of Headings

066 ASTON UNIVERSITY - GEAC LIBRARY SYSTEM - ALL *TiTLE SEARCH
This title: UNIX and C : a tutorial introduction has 1 citation / '

AUTHOR: Cornes, P. (Phil)

TITLE: UNIX and C : a tutorial introduction
IMPRINT: London : Van Nostrand Reinhold , 1989
CLASS NUMBER: 005.435 UNI/COR

Loan Class
Location Type Number Status ,
LEND MEDIUM 005.435 UNI/COR On Loan 24-02-93.24:00
FUL - see complete citation IND - see list of headings

CAT - begin a new search END - to end your session
CMD - see additional commands B ik

Enter code, then press CARRIAGE RETURN

3.5 b) Title Search - Detailed Information of the Selected Book

71

After seeing the details of the book, users have to ty
ist of headings. This means that, if users wish to see details of

’ hey have to follow the following steps (table 3.1).

Steps Results

1 Type in the number of the first book | Details of the first book

2 Type ind List of heading
3 Type in the number of second book | Details of the second book
4 Type ind List of heading

S5 Type in the number of third book Details of the third book

6 Type ind List of heading

Table 3.1 : Steps to view Three Books

Users have to keep on moving up and down in the menus by typing the book number

and ind command alternately.

Another problem 1s, the number associated with each book is not fixed. Assumingfthat

users wish to see the details of book number 4. After seeing the details, users type 1nd.'

to return to the list of heading. The book number 4 which users have JUSt see ”the
details is placed on top of the list and becomes book number 1. The first three b_ooks”
previously listed disappear from the screen. Users have to use the bac command, if

they wish to review those books again.

There 1s no clue at all to indicate the availability of help facility. But, if by accident
users enter a carriage return twice, a context sensitive help is displayed on the screen.
Figure 3.6 shows the help screen when users invoke it from the Choose Search Menu.

It provides a further explanation about the commands provided by the current menu.

72

073 ASTON UNIVERSITY- GEAC LIBRARY SYSTEM - ALL *CHOO $
There are several ways you may search for ltems in the Onhne Catalogue

Type in the number or three-letter code for the type of searchzyou w;sh to. do

1. TIL - Use when you know the title of the book, journal, series, eté. /

2. AUT - Use when you know the name of the author, editor, illustréﬁor:
corporate author (conference, company name, government agency,
university name, etc.).

3. A-T - Use when you know both the author and the title.

4. SUB - Use when you know the subject heading assigned by the library.

5. NUM - Use when you know the call number, ISBN, ISSN or another number.

6. BOL - Use to search combinations of title, author or subject keywords.

7. LIM - Use to limit your searches to a portion of the catalogue.

Figure 3.6 : Help Screen for Choose Search Menu

Other libraries in the United Kingdom can be accessed via NISS. A g¢view of some of

these libraries reveal other flaws in the design of user interface. One of the uhivefsity ,
libraries does not provide a way to quit the system. The system could be designed for a
specialised hardware that accepts quit from its keyboard. The problem arises when the ?
system is accessed using different machines that do not support a similar haldwale .

function.

73

Similar to the library service, BIDS can be accessed via the Qulpu »
machine, users must first log on to the X.29 (PAD) service by typing tx at the ‘I.Ogm
prompt. When users enter tx, an introductory inform@tidn about the service is

displayed on the screen. Figure 3.7 shows the information about the X.29 gateway.

login: tx
SunOS Release 4.1.1 (YAFK) #2: Mon Mar 8 13:53:28 GMT 1993
QUIPU is now running ISODE 8.0 and X.25 patch 10.

LR R R R AR R R R Rt R o R R S L S R 3 S propr gy

* This is the Aston University Telnet to X.29 gateway *
* Please note that this gateway is only available to Aston users only; *
* other users must “quit" this service immediately. *

KK R K K ok ok kT ok ok Kk ke ok ok ke ok ok ek ko kR R ok R ok o ok ok ok ok ok ke ok Tk ok ok ok ok ok ok ok ok ok ko kK ok

For instructions or help type: help
For the latest network news type: news
For leaving this service type: quit

KR KA KA KK AR IR KK AR A K kAR A A IR A A I AR Ak ko ko kkkE Ak Ak A A kA Ak ok k kI ok kE ok kA hh ok kkkdekkkkk ok

* Please ensure that you logout of the service that you have called *
* correctly, including this gateway machine. Ny

Fohkhh Ak I A A R K AR A I I A AR AR A AR A A I AR AR T IR KA A A d ok hh ko ko khohhkk ko kR Kk h ok kk h Kok kkk ok ko

PAD to : bids

Figure 3.7 : PAD Introductory Screen

The Quipu Machine has to access BIDS through the X.25 public network. The PAD

(Packet Assembly/Disassembly) is needed to serve as an interface between the users
machine and the network. The PAD accepts characters from the user machine and sends
them across the network; it accepts packets from the network, filters the headers and

displays the information on the user machine.

Users have to type bids at the 'PAD to:' prompt to invoke a connection to BIDS.

BIDS will then request users to enter a valid identification and password before they can

successfully access BIDS. This means that, from a terminal, users must-know how to

74

access the Quipu Machine and PAD system and ;

wish to use BIDS.

The BIDS service provides a combination of pro/mptfsféndzweﬂ structured hierarchical

_menu-based interface. Users have to interact with fthé S,éf&liiﬂce~ by selecting an
appropriate choice from the presented menus and the system responds by displaying
another menu or a prompt. Figure 3.8 shows a sequence of menus and prompts before
users can successfully retrieve their searched articles. Since the syétem 1s highly modal,

1t takes some time for novices to learn the system.

SUBJECT SELECTION MENU

SEARCH MENU

Enter
Expression

SEARCH MENU

|

DISPLAY MENU

l D ~Prompt

Enter

Menu

Article nos

Figure 3.8 : Hierarchy of BIDS Menus

Once logged in, users are presented with some introductory screens, followed by the

Subject Selection Menu as shown in figure 3.9.

-- SUBJECT SELECTION MENU --

S - Science Citation Index

C - Social Sciences Citation Index

A - Arts & Humanities Citation Index

I - Index to Scientific & Technical Proceedings

or type HELP or EXIT : or type HELP or EXIT : ¢

Figure 3.9 : Subject Selection Menu

75

earch Menu contains a choice of fields to search on. Figure 3.10 shows the

Menu. The user is currently connected to the 1993 Science Citation Index and the

system prompts the user to input a title expression when t (a search by title) is selected

from the menu.

-- SEARCH MENU --

T - Word(s) In Title

B - Word(s) In Title / Keywords

A - Author Name(s)

J - Journal Title

R - Research Front

[- Cited Patent

N - Corporate Address

F - Save/Retrieve Sets

U - Use Previous Sets

Z - Repeat Current Search for Previous Year

or go to Display(D) Output(P) Options(O) Citations(C) Issues(E)
ortype HELP or EXIT: T

Enter a title expression
or go to Search(S) Options(O) Citations(C) Issues(E)
or type HELP or EXIT :

Figure 3.10 : Search Menu

Figure 3.11 shows an example of a search session. In the example, the title/key-words;

search is chosen. The input for the search is user interface and 15 articles match. The
articles are not displayed immediately. Users have to enter d (display) if they wish to
see the details of the articles. The system will then display ;che Display Menu where
users can choose one of the display formats. In the given example, only the first article
is selected for display. Users may also view several articles at a time. For example,
typing £10 will display the first 10 articles and typing all wil;l%/disp]ay all the articles.

Several different input formats are available from the help facility.

76

Enter a title/keywords expression ;
r go to Search(S) Options(O) Citations(C) Issues(E)
r type HELP or EXIT : USER INTERFACE

==== Science Citation Index for 1993 ====

>>>>>>>>>>>>>>>>>>>> Saved as set number 1 <L LLLLLLLLLELL L
SSE>BS>55>>>>55>>55>> 15 hits CLLLLLLLLLLLLL L LELE

-- SEARCH MENU --

- Word(s) In Title

- Word(s) In Title / Keywords

- Author Name(s)

- Journal Title

Research Front

- Cited Patent

- Corporate Address

- Save/Retrieve Sets , "
- Use Previous Sets

- Repeat Current Search for Previous Year

NCTZ—TD<>»m—H

or go to Display(D) Output(P) Options(O) Citations(C) Issues(E)
ortype HELP or EXIT : D

==== Science Citation Index for 1993 ====

DO IOIOOOOOOD DI L LLCLL L L L L L L L L L LLLLLLL
>> Set1:(USER INTERFACE)@(TI,WAKP) <<
>> 15 hits <<
' '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

- DISPLAY MENU - e - . .

- Title only , -
- Journal, authors & title .
Full record (excl. citations & r.fronts)

- Full record

- Journal, authors & title in downloading format
- Full record in downloading format

OW— XA

or go to Search(S) Output(P) Options(O) Citations(C) Issues(E)
of type HELP or EXIT : I

Enter article nos. for display (total 15) - .
or go to Search(S) Display(D) Output(P) Options(O) Citations(C) Issues(E) .
or type HELP or EXIT : 1 ; ,

Article 1 (total of 15 in this set)

(1) TEMULTILINK - AN INTERMEDIARY SYSTEM FOR MULTI- DATABASE ACCESS
AU: WU_G, AHLFELDT_H, WIGERTZ_O
JN: METHODS OF INFORMATION IN MEDICINE 1993 VOL.32 NO. 1 PP 82 89

Enter M to mark article, or Q to quit display
or go to Search(S) Display(D) Output(P) Options(O) Citations(C) Issues(E) ; -
or type HELP or EXIT : .

Figure 3.11 : Search Session

77

BIDS provides a powerful facility which allows

ommand in a single line. The commands have to be separated b'_ ,
example typing d;t;f5 after a successful search will dlsplay the first ﬁve a1t1___les 1in tit

only format.

By default users are connected to data for the current year only. Users who wish to
search for all articles for the last 5 years have to repeat the current search for the
previous year 4 times. Repeating the current search for the previous year can be carried
out by selecting z from the search menu. Every time users carry out a search for the
previous year, the current year will be set to the year before. If users wish to make
another search for all articles for the last number of years, they have to reset the current
year to 1994 (current year) and keep on repeating the search a number of times. The
option menu can be used to change various settings, including switching the current

year to different year.

Users may view all articles for a particular journal by selecting j from the search menu.
For the year 1992, if users input ieee software, after selecting j, 161 articles are found.
But if users input computer, more than 3,000 articles are found. There is a journal

named Computer, but the number of hits for this input is large because the Systrem_ \

includes all journals that contain the word computer in their titles. Users who wish to

view articles in the Computer Journal have to browse through a list of more than 3,000

articles.

Users may retrieve all articles in the Computer Journal only by specifying at least the
volume of the journal. If users input computer + v25, all articles in the Computer
Journal volume 25 will be selected. This means that users must know the journal and its

volume number before they carry out the search. The search can be more selective by

specifying the volume and the number of the journal. If users input comp\uter + 125 +

N2, all articles in the Computer journal volume 25 number 2 will be selected.

78

notices:

a) make a note of the identifier for future use. .

b) the set will be deleted if not accessed within 3 months.

¢) the sets may only be used from within the current username.

The given unique identifiers are usually codes which are difficult for users to recall

when they wish to retrieve the saved searches. Thus, it is easier for users to redo the

search rather than keeping note of the identifier. They have to search for the note
whenever they wish to retrieve the saved search. An alternative is to copy the searches

in their own files and assign an appropriate name to them.

Users may obtain one or more screens of help by typing help at any prompt. The

help screens contain the most recent enhancement to the system.

79

.4 USENET NEWS

Two USENET news reader are 1eV1ewed They are T1n and Xvn

user interface and Xvnews is a graphical user 1ntelface

3.41 TIN

Tin is a full-screen user interface that helps users to read USENET news. To invoke
Tin, users have to log-on to the Uhura Machine and then type tin at the Unix prompt.

The following prompts are displayed on the screen when tin is invoked.

% tin

tin 1.1 PL7.uhura.l (c¢) Copyright 1991-92 Iain Lea.
Connecting to sunserverl...

Reading news active file...

Reading newsgroups file...

The messages which are appended by the '..." are feedback given by the system to
indicate different activities involved before information can be fully accessed. The
feedback 1s essential because it informs the users that their request is currently being

processed.

Figure 3.12 is the Tin display when it first starts up. It is at the group selection

level and it shows all the three newsgroups the user subscribes to.

Group Selection (sunserveri 4) h=help

-> 1 126 comp.human-factors Issues related to human-computer interact 7
2 265 comp.lang.smalltalk Discussion about Smalltalk 80. . .
3 35 comp.mail.mh The UCI version of the Rand Message Hand| .
4 246 comp.mail.misc General discussions about computer mail.

*** End of Groups ***

Figure 3.12 : Subscribed Newsgroups

80

Jsers may also obtain the main list, that is the list of all neWs;gItQup
nd return to the subscribed list by pressing léttelj Y. Itis impc)‘r%ta" it
are not required to enter a carriage return aftef enteung acornmand Figure 3. 13 S‘hofws
_ the first page of the main list. There are currently 2613 n’e:wséﬁoqpé and users Ihay

subscribe to any of them. Letter u shows that the newsgroup is not subscribed by

users.

~ The arrow on the screen can be moved up and down by using up and down arrow keys
respectively. The arrow indicates that the pointed newsgroup is the selected newsgroup.
Pressing a carriage return will bring the user to the selected newsgroup level. Since the
_ arrow is pointing at the comp.lang.smalltalk newsgroup, pressing a carriage return
causes a display of the details of the newsgroup. Figure 3.14 shows the

comp.lang.smalltalk newsgroup and a list of articles posted to the newsgroup.

Group Selection (sunserverl 2613) h=help "
u 86123639 comp.lang.pascal Discussi
u 86217779 comp.lang.perl Discussi
u 863 826 comp.lang.pop Pop11 an
u 864 11806 comp.lang.postscript The Post
u 865 5059 comp.lang.prolog Discussi
u 866 4216 comp.lang.rexx The REXX
u 867 4728 comp.lang.scheme The Sche
u 868 168 comp.lang.scheme.c The Sche
u 869 64 comp.lang.sigplan Info & a

-> 870 274 comp.lang.smalltalk Discussi
u 87112876 comp.lang.tcl The Tcl
u 872 1576 comp.lang.verilog Discussi
u 873 2361 comp.lang.vhdl VHSIC Ha
u 874 1725 comp.lang.visual Visual p
usgss 3 comp.laser-printers Laser pr
u 876 1936 comp.lsi Large sc
u 877 2607 comp.lsi.cad Electric
u 878 1059 comp.lsi.testing Testing
u 879 3347 comp.mail.elm Discussi -
u 880 379 comp.mail.headers Gatewaye

Figure 3.13 : Main List

81

comp.lang.smalltalk (63T 107A OK OH) h=help

141 STV JoergRade

2 + Legalities of publishing STAWB stand alones - 1 - Ryan .

3 GNU Smalitalkk and X-windows - Bill Gunshannon;
4 +4 calling between ST and C/C++ - Peter Mullarkey,
5 + 2 Serious numeric error in Smalitalk/\/ John Nagle

6 + 2nd CFV and VOTE ACK: comp.databases.object Mark James

16 + 1 tokenizing in St80 Bill-Punch

-=>17 1 Help! (fwd) Joerg Rade
18 1 ST80/X11R5 Font Mapping Problem Charles Lawrence
19 1 Responsibility-driven design beeler@rcf.mayo.ed
20 + copy guestion Terry

Figure 3.14 : Comp.Lang.Smalltalk Newsgroup

Fri, 05 Mar 1993 15:30:22 comp.lang.smalitalk Thread 17 of 63
Article 5971 Help! (fwd) 1 Response
jrade1 @ GWDG.DE Joerg Rade

I'm posting this for somebody else, so please reply to the sender adress
as given below and not to me.

g

Forwarded message:
>Hello !
>
[am a new user of this list. | use SmallTalk/V 1.1 for Windows, and |
>have a problem when trying to update a window while the program is running.

>and in case of stopbing, I want to do it properly (file closing, etc.). |
>can do it by pressing <CTRL-C>, but it is not very user-friendly! (e.g. can

-More-(69%) [1453/2080]

Figure 3.15 : Display of the Selected Article

Similar to the previous screen, an arrow 1s used to indicate the selected item. Pressing a

carriage return causes a display of the selected article. The selected article is displayed

in figure 3.15. It contains the details such as sender's address, date sent, subject and

body of the article.

82

p

commands for the level. Users can quit the help screen by pressing q.

Tin does have a way of trapping user error. If users by mistake type an irrelevant

_ command, the system may terminate and return a core dump to users.

Group Selection Commands (page 2 of 2)

r Toggle display to show all / only unread subscribed to groups
su Subscribe (u=unsubscribe) to current group

SuU Subscribe (U=unsubscribe) to groups that match pattern

v Show version information

w Post an article to current group

w List articles posted by user

y Yank in subscribed/unsubscribed from .newsrc

Y Yank in active file to see any new news

Z Mark current group as unread] -

/? Group forward (?=backward) search
! Shell escape

PgDn,End,<SPACE> AD-page down.PgUp,Home,b,AU - page up. <CR>,q - quit

Figure 3.16 : Help Screen

83

4.2 XVNEWS

he Xvnews is a USENET news reader which is based on a gi?ai;)hical us

Jser interaction to the system is mainly by invoking the buttons or Séli,ectin'g items in the
scroll list view. Each button represents a command to the system and a scroll list
~ontains either a list of newsgroups or a list of articles. All of them are clearly displayed

nside a window.

Figure 3.17 shows the arrangement of buttons and views in one of the Xvnews
‘Windows. The scroll list view at the top of the window holds the list of subscribed
newsgroups. It is not appropriate to label the window according to the name of the
.ipplication especially when the application contains many windows. The content of the
list scroll list is printed at the bottom of the window. Such important piece of
information should be made as the label of the window because it describes the main

object the window 1s holding.

l _ XVNEWS
comp.human-factors 103 total unread articles
comp.lang.smalltalk 223 total unread articles
comp.mail.mh 132 total unread articles

(quit] [rescan] [cachup] (unsubscribe]

(update] (read group] (view groups J { Properties] (Post |

Subscribed groups with unread articles

Figure 3.17: Subscribed Groups

84

Jsers have to wait for quite some time before]

side it appears on the screen when users first invoke Xvnews. It

lakes some time for the system to read the USENET news. The system does not
_provide any feedback at all about what is going on. Users are generally suspicious
_when they do not find any immediate result to their request. Thinking that their request

s not accepted by the system, some users might invoke the reader again.

Rather than keeping users waiting without knowing what is happening, the system
could at least prompt a simple message indicating that users request is being processed.
A better approach is to open a status window and inform users about the progress of the

processing.

The naming of many buttons is confusing and there is no help facility to explain the
function of each of the buttons. A name such as ‘catchup' does not really describe its
function. The read group' and 'view groups' names almost carry the same meaning.

There is also a problem of inconsistency in naming of buftt;Qné%.;fInﬂanOther window the

name 'goto group' 1s used instead of read group' even though both of them carry out

the same function.

In a modern graphical user interface based application, users are likely to expect buttons
that represent currently invalid operation to be disabled or greyed out. Some 6perations
are valid only when certain conditions are fulfilled. For example, the 'read grr(,)ﬁp"and
‘unsubscribe’ buttons on the window are only effective when one of the items in the
scroll list view is selected. Since the buttons are not disabled, usei;si/nay still pre.:ss any
of these buttons without doing any selection. Users get the iﬁlp;'eééion that an operation

is taking place when they see the buttons change colour when pressed and released.

Disabling of buttons to show invalid operation is a way of preventing users from

making mistakes. An alternative is to prompt users with an instruction to redo the

85

sabling of button nor providing informative feedback technique i

Xvnews user interface.

Figure 3.18 will be displayed when users press 'view groui)s' ffcém the fifst window:
(figure 3.17). It contains thousands of newsgroups which can be subscribed to by
users by selecting the item from the list and then press 'subscribed’. One of the
functions which is important but not provided by Xvnews is a search function. Using a
search function, users can easily search for certain groups without browsing through the

whole list of groups which can be time consuming.

| XVNEWS VERSION2.0

comp.edu unsubscribed
comp.edu.composition unsubscribed
comp.emacs unsubscribed
comp.fonts unsubscribed
comp.graphics unsubscribed
comp.graphic.animation unsubscribed
[done] (sortnewsrc) [unsubscribe]

[goto group] [SUbSCl‘ibe]

Group Articles Description

comp.graphics.animation 8133 Technical aspects of computer animation

All groups displayed

Figure 3.18 : List of All Groups

86

\nother window will be displayed when users select \aig’ (0}

rom the first window or 'goto group' from the second windoy

own in figure 3.18 and it holds a list of articles posted to the seié‘éted: glOUp Th

elected article is displayed on the main view below. Aigain, the title is pl‘ei'ced, at_fhe -

';bottom of the window.

[XVNEWS VERSION 2.0

What is the best Smalitalk mac Stephane Huaulme
Good Book for Smalitatk Mohammad Osman
Comments on SmalitalkAgents Grg Sowder
QKS Proj. Mgt & Delivery Issues dbuell@QKS.COM
Info on V Window Upgrade jumes@bnr.ca()

[GUI Test Tools: Anyone from using any for St-80 John Ahlstrom j

[done] ‘prev art] (catchup | (unsubscribg [kill] (search |
save | |nextart | [all articles) (print) (mark unread] (Post_)

We have seen tools from Mercury, Segue and Performance Associates.

Segue told use we would have to customize their "agent” for
Smalltalk widgets.

Has anyone out there already done that?

Can you give an idea of the effort?

Are your customizations available either directly

from you or from Segue?

Anyone willing to give a recommendation about these or any
other tools?

John Ahlstrom
Boole & Babbage
San Jose CA

Currently in comp.lang.smalltalk 94 unread articles

Figure 3.19 : Articles in a Group

87

5 PP ELECTRONIC MAIL

~ Most of the email applications are monolithic. To use email, users have to start the mail
program, usually by entering its name, such as mail, at a shell prompt. Then the
program takes over, and within the program users may execute commands which are

related to email. For example, users may read, print and delete email messages. Users

are in the mail program until they quit out of it.

Unlike most email applications, users can use PP commands from a UNIX shell
prompt. The commands are available at any time and users are not required to start or
quit the mail system. In PP, each command is a separate program, and the shell is used
as an interpreter. Hence, PP can fully utilise the power of UNIX shells such as pipes,
redirection, aliases and so on. For example, users may send the output of a command
to the printer directly by using a pipe. In addition, since PP is not monolithic, PP
commands can be used in UNIX shell scripts or called from programs in high-level

languages like C.

which holds all mail messages together. The mail system usually provides limited
facilities to manipulate the messages such as splitting them into separate messages.
Unlike monolithic mail systems, PP keeps each message in a separate file. The filename
is the message number. The messages can be kept in one or more folders, which are
actually UNIX directories. The PP setup offers many advantages. A disadvantage is

that 1t takes more space to store the messages.

There are too many features of PP to be discussed in the section. Only a brief review of

some operations provided by PP are described.

88

Monolithic mail systems keep all of the message in the system mailbox, a single file

Composing and sending a message.

Invoking the command causes it to respond by ,prompting the fme.s*s,afgi-‘

users will be asked to enter the recipient address; ca’rbon copy and subject of the
message. Users must include at least the recipient address in the;/i/ne:ssage header. After
completing the message header, users are prompted with the message body. They may
type their message in the message body. Users may quit the message body by entering
ctrl-d after placing the cursor at the start of a new line. The message body is enclosed

by the line "------m---

Users are prompted with What now? by the program. Users have to type send if they
want to send the message, or quit if they want to quit without sending the message.

Figure 3.20 shows a session to compose and send a message.

$ comp

To: abdullah

cc: research_group
Subject: Meeting - April

Group meeting will be held on 13/4/94, Room MB268
Thank you

(CTRL-D)

What now? send

Figure 3.20 : Composing and Sending a Message

* Incorporating new message

Users have to type the inc command to incorporate new messages from the system

mailbox into their account. The mailbox is the place where all new mail are kept. The

incorporated mail will be placed into the default folder, inbox.

89

Listing of messages
0 obtain a listing of messages in the current folder, users have to type the scan

command. Examples of a listing of messages is shown below.

05/09 Renu Budhiraja Binary enclosures<<Hello ! I wanted to add a new
04/14 Howard Jeffrey - Sunnet X.25 error<<I have been getting an error
04/27 Giles Christian earn-relay and letterbox<<A brief outline of the
04/28 Tim Goodwin Re: If not PP, what?<<> Out of interest what wou
04/29 Richard Letts Re: Wanted: local channel & hostname help<<David
6+ 05/02 Susan B. Jones Re: SigD0Oc '94<<Your proposed paper has been acc

R S S

There is a one-line summary of each message. The summary shows the message
number, the date when the message was sent, who sent it and the subject of the
message, if any, is numbered and the current message is indicated by the '+ after the
message number. If there is room, the first few words of the message body are also

mncluded.

PP provides the facility to format the display of any command. For example, the
spscan is a formatted scan command. The command aligns the subject of the
messages and the words from the message body are excluded. The dispiay of spscan

is as follows:

1 05/09 Renu Budhiraja #Binary enclosures

2 04/14 Howard Jeffrey - Cranf #Sunnet X.25 error

3 04/27 Giles Christian #earn-relay and letterbox

4 04/28 Tim Goodwin #Re: If not PP, what?

5 04/29 Richard Letts #Re: Wanted: local channel & hostname help
6 05/02 Susan B. Jones #Re: SigD0Oc '94

Users may specify the range of messages they would like to see. For example, to scan
the range of messages number 3 through 5 inclusive, they have to type scan 3-5.

Users may also specify their scan format.

90

Displaying the content of a message

sers may display the content of a message by using the sl

ommand will display the content of the current message. Figure 3.21 shows t

ontent of a message.

Date: Mon, 02 May 94 09:25:15
To: Hanan Abdullah <A.Hanan@quipu.aston.ac.uk>

From: sbjones@MIT.EDU (Susan B. Jones)
Subject: Re: SigD0Oc '94

Return-Path: <sbjones @edu.mit>
Delivery-Date:

Your proposed paper has been accepted for presentation at SIGDOC '94.
In the near future, you will receive a Preliminary Agenda showing the
date, and time of your presentation. All speakers are expected to
register for SIGDOC'94. A registration form will accompany the
Preliminary Agenda.

Susan B. Jones

SIGDOC'94 Program Chair

Figure 3.21 : Content of a Message

* Replying to a message

The repl command is used to reply to the current message. Users may specifyy- which
message to reply to by including the message number, for example, repl 3, if they
wish to reply to message 3. The command prompts with the message header filled-up
by the system. Users have to type the message and then follow the séme procédures as

for a new message.

Refiling messages
The refile command is used to move messages from one folder to another. The
command refile +myfolder will move the current message to a file named myfolder.

Users may check whether the message has been moved to the specified folder by using

91

the command scan +myfolder. The list of all messages in the

displayed.

* Removing messages

The command for removing messages is rmm. The command rmm 6 8 would
remove messages 6 and 8 and rmm 6-8 would remove messages 6 to 8 inclusive.
After removing and refiling messages, there can be gaps and disorder in the numbering
of messages. To renumber the messages, i.e., so that they are in the right sequence the

command folder -pack may be used.

* Finding messages
The pick command can be used to search for messages. The command usually
contains a switch, which allows users to specify the field of the search. The following

are examples of the use of the pick command.

Commands Explanations

. : find messages that contain the word email
a) pick -search email

anywhere in the message

b) pick -from joed find messages sent by joed

¢) pick -after -7 find messages sent the last 7 days

The pick command returns the message numbers of the messages that match the search.
The UNIX backquote can be used to collect the list of messages and pass it to other
command. For example, to obtain a listing of message sent by joed, the scan * pick

-from joed™ command may be executed.
* Folders and Folder operations

By default, all users’ messages are kept in a single folder called inbox. PP also

provides operations which are relevant to folders.

92

The command folder can be used to obtain the current folder and the
content. The response to the command below shows that the current folder is test and it
has 6 messages. The message numbers range from 1 to 6-and the current message is the

message number 6.

$ folder

test+ has 6 messages (1- 6);cur= 6.
The command folder +report will make the folder report as the current folder if it
exists. If the folder does not exist, then the system will enquire whether users wish to

create a new folder named report. If users respond positively, the folder will be created.

The command folders will display all the folders and their summary. The command
does not display any subfolder if there is any. To see all the folders and all the
subfolders, users have to use the recurse switch. The following command displays

folders, subfolders and the detailed information is suppressed by using the fast switch.

$ folders -recurse -fast
archive

colleague
colleague/england
colleague/wales

fskuk

inbox

test

* Aliases
Aliases can shorten the email address and hence make it easier to remember. Instead of

typing a long address, users may simply use a short and easy to remember alias.

Aliases also can be assigned to a group of addresses. The alias can be used whenever

users send a message to the group.

Users have to update the alias file from time to time. Users may add new alias, delete or

change an existing alias. To display the alias file, users have to type the ali command.

93

e Online Reference

PP provides a UNIX style online reference which can be accessed by using the man
command. Detailed information about any command can be reviewed. For example,

man pick will display a complete information about the command.

A review of switches provided by each command can be accessed by the help switches.

For example, scan -help will display all the switches available with the scan

command.

Users may enquire about all the possible options available by entering carriage return
when they are prompted to enter the next command. For example, when they are
prompted with what now?
What now? (RETURN)
Options are:

display [<switches>]

edit [<editor> <switches>]

list [<switches>]

push [<switches>]

quit [-delete]

refile [<switches>] +folder

send [<switches>]
whom [<switches>]

The discussion on facilities provided by PP is to demonstrate the flexibility and power
of the system. Unfortunately, it is hard to use and only expert users can utilise the
power of the system. For example, to send an email message, users have to use a
primitive line editor and then quit the editor using the UNIX command ctrl-d, which is

quite awkward for non-expert computer users.

94

CHAPTER FOUR

DESIGN ISSUES FOR USER INTERFACES
AND NETWORK SERVICES

4.0 INTRODUCTION

Networked services are highly interactive applications which require effective and
efficient user interfaces. It has been established that properly designed graphical user
interfaces (GUIs) are effective for interactive applications as they support both an
intuitive presentation of information on the screen as well as easy interaction with the

underlying system (Kappel & Min Tjoa, 1992).

This chapter discusses general design issues related to the prototype which is to be
developed. The issues include the way users input commands and c}eita to the system;
how information and commands are presented on the screen; management of windows;
feedback mechanisms to assist users interacting with the system such as transformation

of pointer images; implementing online help facilities.

The design is based on a graphical user interface and it makes use of user interface

design principles that were reviewed in chapter 2 section 2.5.

4.1 INPUT DEVICES

In some applications, the keyboard is the primary input device. Users type in |
commands and the application responds with typed responses or prompts. - Users'
Interaction with the prototype is mainly by a pointing device. A pointing, device.
supports the implementation of direct manipulation, which is an important aspect of a
user interface. Using a pointing device, users may invoke or quit an application or

activate various commands in an application.

95

A pointing device is essential for implementing the concept of see-and-p

which can be manipulated are available on the screen. Users may sel

objects and perform activities related to the object. The result of the users' action is

immediately displayed on the screen.

The pointing device used for the interaction with the prototype is the mouse. The
mouse and the three buttons are shown in figure 4.1. The first two buttons, namely the
select and operate mouse buttons are used to communicate with the prototype. For
the remainder of the thesis, <select> and <operate> will be used to describe the two
mouse buttons respectively. Left and middle mouse buttons are used when describing

the buttons to users.

WINDOW

OPERATE

Figure 4.1 : Mouse Buttons

In the interest of consistency, the prototype defines standard functions for each of the
mouse buttons. The <select> mouse button supports two main functions:

* Selecting objects to operate on.

* Manipulating objects and controls. These include selecting an item from a menu,

clicking a button and moving a window.

The <operate> mouse button also supports two main functions:
* Accessing pop-up menus.
° Activating the online help facility.

The <window> mouse button is not used by the prototype.

96

A decision has to be made regarding the number of mouse buttons to be usec

prototype. The advantage of using all the three buttons is that moi'e;;un it
be placed on the buttons. For example, the Smalltalk-80 uses both the <opéx‘até> and
<window> buttons to invoke different pop-up menus. The disadvantage of using many
buttons is that novices have to recall the association between the butfon and function

every time they want to carry out a certain task.

Some of the basic mouse vocabulary which is commonly used are 'move’, 'press' and
click’ (Apple, 1992; Sun Microsystems, 1990). The meaning of these terms are:

Move - slide the pointer without pushing any mouse button.

Press - push a mouse button and hold it.

Click - press and release a mouse button while the mouse remains stationary. These

terms will be used through out the thesis to describe users’ interaction with the

prototype.

Even though the mouse is the main input device for the protofypé, thé keyboard is still
an effective device especially for functions that require text entry. A window or an
editable view that accepts keyboard entry usually contains a special C‘ursof which
points to the next input character. A prompter is a special dialogue window that asks a
question and waits for a response. The response must be a textual entry, where users

have to key-in using the keyboard. An example of a prompter is shown in figure 4.2.

Save file as:

Figure 4.2 : Prompter

42 THE MAIN MENU

Access to the networked services can be made by the see-and-point paradigm. The

prototype would display most of the networked services available on the main menu

97

and users may invoke any of the applications simply by pointing on tt

clicking the <select> button. Figure 4.3 shows a typical example of a ma

__Main Menu_

Application]
Application?2

Quit

Figure 4.3 : Main Menu

When users invoke any of the items on the menu, the prototype would carry out the
task of establishing the connection to the service. This simplifies the learning process
to use the system because users have only one process to deal with, i.e. clicking a
selected application as opposed to keying in variety of commands to establish the
connection. Furthermore, the chances of users making 1llisj:al§¢$ would be greatly

reduced because then the users would no longer be required to key in any command.

To invoke any of the items in the menu, users have to move the pointer onto the item
in the main menu and press the <select> button. The item highlights to give users a
feedback indicating that the item has been selected. It is a sort of ackn.owledgmnént
that the system has heard the users' request. Releasing the <select> button while the
item is highlighted causes the invocation of the selected item. Moving the pointer
away from the item and releasing the <select> button removes the highlight from the
item and cancels the invocation of the item. Such a visual communicdtion 18 essential
because it would make users feel that they are in control of the interface. A similar

visual feedback is adopted for other controls such as buttons and pop-up menus:

The main menu is displayed on the screen every time users invoke the system and
stays on the screen until users quit from the system. The continuous display of the

menu is essential for the stability of the user interface. Since it displays all the choices

98

which are available, it is the central point of reference by whlchus
various applications or to quit from the system. Users may iconise the m
wish to work on other applications. They may access the main menu "ég-‘ain by double-

clicking on it.

Activating Quit from the main menu causes the system to display a confirmer

requesting a confirmation from users whether they really want to quit or not. If there

are applications which are still active, the system would include a statement in the
confirmer that all active applications will be turned-off by the system. Examples of

confirmers are shown in figure 4.4.

Quit System?

. All Active Applications
Quit System? will be forced to quit

ICanceq LCK7 lCanceﬂ [CK]

Figure 4.4 : Confirmers before Quitting

If users activate the OK Button, the system would further check. for editing works

which are not yet saved by users. A discussion on this subject is given in section 5.3,

A confirmer is a simple prompt from the interface that requests the users to confirm
their action. Users have the choice, either to press the OK Button to confimﬁ their
action or press the Cancel Button to reverse their action. This is an example of
reversibility where users are given the opportunity to return to the state just before they

actuvated the command (Hix & Hartson, 1993).
A confirmer is also used to warn users if they choose a command which may cause a

loss of data. This facility is essential because activating commands to the interface is

SO easy that users may by mistake choose a destructive command.

99

4.3 WINDOW MANAGEMENT"

Users interact with the prototype through windows. Windows create a sense of
perceived stability because they allow users to vie\;v and interact with all‘the différé.nt
kinds of data (Apple, 1992). Since more than one window is usually required for the
interaction and each one of them may behave differently, a proper management of

windows is essential.

The prototype windows are mostly non-modal. Non-modal windows provide flexible
teraction with applications. More than one window can be opened and users may

work with more than one task a time.

Windows of the prototype can be classified into two types: primary and secondary
windows. A primary window is the main window which is opened when users invoke
an application from the main menu. It is through the primary window the main
interaction between users and applications takes place. The interaction may be assisted

by secondary windows.

A secondary window is a window which is generated through a primary window. The
relation between the main menu, primary window and secondary window is
hierarchical, i.e., a primary window is generated from the main menu and a secondary

window is generated from a primary window. The relation is shown in figure 4.5.

Main Menu

Primary Window

Secondary Window

Figure 4.5 : Relation between Main Menu,
Primary and Secondary Window

100

Even though the windows are hierarchical, users' Interaction is 1

working with any non-modal secondary window: can s_imultaneouslyy-o‘k a

or secondary window. Users may also quit from any point in the system ‘Wji_‘thout

having to back up through previous windows.

In some cases, a relation between the window and application has to be established. In
a text editing environment, for example, warning must be issued if users try to close
the window without saving changes to the text. Another example is the window that
contains a running process, such as a process that checks for any new mail. The

process must be forced to terminate whenever users close the window.

4.3.1 PRIMARY WINDOW

The primary window is an anchor for users; especially as, after opening so many
windows, users can easily get lost and may wish to return to the primary window as a
sort of restarting point (Hix & Hartson, 1993). Thus, there must be only one primary

window for every application.

Since the primary window is the main place for interaction, its presentation is quite
complex. It has to allocate space for variety of controls for users to input commands
and to display different aspects of the application. In addition, the window has to

allocate a supplemental view to help users in using the system.

Figure 4.6 shows a general layout of the primary window. It containsﬁ set of bﬁttons,
main display, scroll list view, heading view and note view. The title of the window
displays the name of an application and the heading view displays one impoi'tant
aspect of the application. In an electronic mail application, the heading view holds the

name of the current folder.

101

APPLICATION NAME

T HEADING VIEW ©

MAIN DISPLAY

SCROLL LIST VIEW

[NOTE VIEW iy

- BUTTON

Figure 4.6 : General Layout of the Primary Window

The left part of the window is the main control area. The control area is like a control
panel where users may input commands to the system. The area holds a set of buttons

and each one of them is labelled according to its function. The buttons represent the

main functions of the application and they are placed on the main window so that users e

are aware of the functions supported by the user interface.

The scroll list view is regarded as another control area since users may scroll the list or
make a selection on any of its items. The scroll list view works ~t§géth’er with the main
display. The scroll list only holds a summary of items, and the content of the selected
item would be displayed on the main display. Similar to the scroll list, the main
display provides a scroll bar to allow users to view facts which are larger than the
display. Both the scroll list and main display contain pop-up menus which can be

invoked by pressing the <operate> button.

102

using the interface. For example, the note view notifies users if they press the mouse
button which is not used by the system. The view is described in greater detail in

section 4.5.

4.3.2 SECONDARY WINDOW

The reasons for classifying the window are to simplify the management of windows
and to make the user interface consistent. The secondary window can be further

categorised according to its function. The summary is shown in table 4.1.

Change the [No. of windows| Close with the

Types of Window Primary allowed to open Primary
Window Window
1 Subservient
Yes one Yes
window
2 Independent B
eper No one No
window o »
- ~1' - P
3 Text editor Depends on more than one No
window function

Table 4.1 : Classification of Secondary Windows

A subservient window is the window that causes a change to the primary window. The
change may happen immediately or after users press the OK Button or enter a carriage
return from a secondary window. Apple (1992) states that deciding when users’ input
on a non-modal window affects the primary window is an issue thaf needs to be further
studied. In some cases, the users’ input on the secondary window immediately updates
the primary window and in other cases the users’ input updates the primary window:

after pressing the OK Button.

103

A typical example of a subservient window is a /i;)mmpt'er., Figl
prompter and the primary window. After users have entered their request,

placed on the primary window, i.e., on the scroll list view.

Enter title of article

A Command
window

I N

Figure 4.7 : Prompter - A Typical Subservient Window.

An independent window does not cause any change to the main window. Its functions
are normally completely detached from the main window or /(/)/t‘her'Windows n thé
system. A typical example of an independent window is a window that maintains a list
of names and email address. Users may update the list and the result is placed in the
window itself. Another example of an independent window is a help window. The |

window displays information required by users.

The prototype allows users to open only one subservient or independent window for a
particular function at one time. If users try to open any of these windows which are

already open, the prototype would activate that particular window. This means that, if
for example, the window is overlapped by three other windows, it would be placed oﬁ

the top of all the three windows.

Unlike a subservient or independent window, a new text editor window is opened

every time users invoke the function causing this window to open. Users may wish to

104

open more than one text editing window so that?t;hey may Comp

contents from one document to another.

Quitting an application causes the primary window to close. This causes subservient
windows which are dependent on the primary window to close.” Some of independent
windows which are related to the primary windows, such as help windows are also

closed. All text editor windows are left open when the primary window closes.

This means that the system must maintain a list of all windows which must be closed
when the primary window closes. All the windows in the list are forced to close with

their primary window when users quit the application.

4.4 SCROLL LIST VIEW

The scroll list view is used extensively by the primary as well as by the secondary
windows of the prototype. The scroll list view can be divided into three types
according to the number of item(s) that can be selected. Selection can be made by

moving the pointer to an item and clicking the <select> button.

Exclusive selection - where only one item is selected at a time. Selecting another item

will automatically deselect the current selected item.

Exclusive (Variation) selection - where one or none of the item can be selected.

Users can have none of the items selected by clicking the selected item.

Non-exclusive selection - where none, one or multiple items can be selected. Users

may select one or many items from the list.

A browse through a collection of items with hierarchical structure can be made using a

combination of two or more coordinated views or windows (Shneiderman, 1992). The

105

Smalltalk-80 System Browser contains four scroll list Views to he

through the class categories, classes and methods supported by the syj\s;ts-i

The prototype uses a combination of two scroll list views toi/help users- browse through
the hierarchy of folders. The folder browser is shown in figure 48 The arrow buttons
below the views help users to browse through the different levels of folders. The view

at the top displays the pathname of a selected folder.

| Smalltalk |
Backup Project.im
(Word Processing) Project.changes
(Smalltalk) Demo-FH.st
Graphic

| < | [>» 7]

Figure 4.8 : Folder Browser

The advantage of using scroll lists for browsing through folders is that users can view
a subfolder without opening any additional window. Figure 4.9 shows the method of
viewing a subfolder as implemented by the Apple Macintosh. Users have to open a
window every time they want to look for files and folders in a subfolder: Sometinﬁes a\
new window overlaps over the main window and users have to keep closing window,

otherwise the screen will be full of windows.

106

Hard Disk
Name Size Kind
I .

O = Smalltalk4.0 =———p
03 Excel Name Size Kind
[Game 0 project.changes 620K Objectworks®\g{ >
) Paint [project 1,3... 0bjectworks®\$[:
B Smalltalka 0 | [Demo-FinancialTools st 10K Objectworks®\9
™M Siictam D) Jani2 1K Objectworks®\4

[Folder1 class-defineBtt. . 3K Objectworks®\

<]| YidaetController-beTri 1K _Obiectworks®\g

Figure 4.9 : Opening a Folder on the Macintosh System

4.5 NOTE VIEW

The note view can be regarded as a multiple purposes view. The main task of this
view is to help users using the interface. The note view can be broadly categorised '

into the following five functions:

* Describes the function of command buttons in brief,
* Helps users to complete a task.

* Advises/Navigates.

* Checks for errors.

* Indicates status.

The note view briefly describes the function of the button that contains the pointer on
it. Users can review the function of other buttons by moving the pointer onto the
buttons. Every button is labelled according to its function. The label is usually a
single word which does not precisely describe its functions. A label "TITLE' may i'éfer
to a title of an article, a title of a book, a title of a conference or a combination of any

of them.

107

Completion of some tasks may require the user to execute morethan ('
the right sequence. For example, the creation of an alias for ele.c-troﬁmﬂ;
more than one step. After users have entered an alias, the next step is to include ‘fhe
real electronic mail address in one of the edit view. Since the sequence of actions may

not be clear to users, the note view has to describe the next action in the sequence.

A similar interface design is implemented by the Excel version 4. The software
contains a panel at the bottom of the screen that describes different commands on the
pull-down menus and navigate users in using the system. Some tasks, such as building
a graph, require the users to carry out more than one instruction. After users have
selected the graph icon on the interface, the panel instructs users to drag the pointer to
obtain the result. Such an instruction is a valuable piece of information for novices
and infrequent users because it encourages them to explore the interface with

confidence.

A pop-up menu can be activated from the scroll-list view. Theadvanlage of this type
of menu is that it requires less screen space. The disadvantage lS that, users may not
realise that a pop-up menu is available with the view. The note view advises users to
make a selection when the pointer is on the scroll list view and the view is not empty.
If a selection is already being made, the note view informs users about the presence of

the menu.

On some windows the note view displays errors committed by users. For example,
users may try to delete folders which are not empty and creates//ﬁ/l&s{ psing previously
used names. The note view on the primary window displays a/:s/p/ecial message if users
invoke a mouse button not used by the system. In a graphical user interface

environment, invoking an inappropriate mouse button can be regarded as an error.

System 7 on the Macintosh offers users an advice-giving capability when users commit

errors. For example, the system prompts a message when users try to install Flash-It

108

facility in the system folder, rather than in the control panel. The mes .
figure 4.10. The system also takes the task of correcting the error if user P

Button.

Control panels need to be stored in the
Control Panels folder or they may not
work properly. Put “Flash-1t 3.0.2” into
the Control Panels folder?

(Cancer) (M

Figure 4.10: System 7 Advising Capability

The note view is also used as status indicator. The number of articles found can be
quite large and to retrieve them may require a considerable length of time. The note
view displays a counter showing the number of articles that have been retrieved. From

the counter users may estimate how much longer they have to wait.

4.6 BUTTONS

Buttons of the prototype system may either immediately execute a command or open a
window. The two buttons are shown in Figure 4.11a and 4.11b respectively. The
button that causes a window to open is usually marked with the ellipsis character ()
after its label. The ellipsis character is a hint to users that they sh/qul{dﬁexpect a window
when they invoke a button. According to Apple (Apple, 19/92)73/the/ ¢ijsis character is

used to inform users that the command requires more information to execute.

a) | HELP ..

b) QUIT

Figure 4.11 : Labelling Buttons

109

The use of ellipsis character to indicate a dialogue is adopted by pop‘ui’

Macintosh, OPENLOOK and Window 3.1 (Apple, 1992; Sun Microsystems, 1990:
Microsoft Corporation, 1991; ParcPlace Systems, 1992). ParcPlace Systems recently

incorporated this character for Smalltalk-80.

A consistent visual feedback is an effective means of informing users what is
happening. The buttons of the prototype can be in normal, Inactive or busy state.
Different visual feedback are used to present the different state of the buttons. Figure

4.12 shows the three visual responses to represent different states of buttons.

a) Buttonl

b) Button?

Figure 4.12 : Different States of Buttons -
a) Normal b) Inactive ¢) Busy

The following is the description of the behaviour of a button during the three states:

Normal - this means that the command represented by the: button is ready for an
execution. To activate the command, users have to movethe pointer onto the
button and press on <select> mouse button. This C;ﬁSéS fhe button to be
highlighted and the command will be activated oﬁly whenusers release the mouse

button. If users move the pointer off the button before releasing <select>, the

highlight will be removed from the button and the command will not be activated.

110

Inactive - this means that the command represented by the 'buttf'o.nr-is; ne
execution. This could be due to the fact that the command is not v.

particular time or the application is busy executing other commands. Pressing the

button at this time will not have any effect.

Busy - this means that the command represented by the button is being executed. This
state 1s represented by the button in the highlighted state. Pressing the button at
this time also will not have any effect. When the execution is complete, the button

will return to its normal appearance.

4.7 POP-UP MENUS

The pop-up menu contains commands which are relevant to its view. The advantage
of pop-up menu is that users are not required to move the pointer away to execute
commands. For example, after selecting an item from the scroll list, users may press
on the <operate> button and execute delete from the pop-up menu to delete the item.
Furthermore, a pop-up menu supports the concept of progressive diédosure. Functions
which are of secondary importance are available but not displayed on the window.
This makes the interface look simple for novices but provides sufficient functionality

for expert users.

Many graphical user interfaces use a greying-out technique to represent functions

which are currently invalid. Such a technique helps users to avoid errors by making
invalid functions unavailable. The greying-out approach can lead to frustration if users -
do not know why the desired function is not available (Hix & Hartson, 1993). Some
views of Smalltalk-80 flicker to indicate that pop-up menu is not available when users
press the <operate> button on them. Such kinds of feedback discourages users using

the system.

Rather than greying out the pop-up menu, the prototype displays a help message in the

note view whenever users try to prompt the pop-up menu without making any

111

selection. The help message would request users to make: a sele_citi{mi béfo'fe:] nV)
pop-up menu. If there is no selection to be made, the help message simply sa:

the view 1s empty.

4.8 POINTERS

Changing the image of the pointer is another effective way of communicating with
users. This is due to the fact that for most of the time, users' attention is on the pointer.
A common example is a word processing environment that changes its pointer from
the I-beam pointer image to a normal pointer image when users move the pointer from
the text editing window to the scroll bar. The text editing image indicates that users
are in text editing environment and the normal image indicates that users are in direct

manipulating mode.

Microsoft Word version 5.1 allows users to select a column in a box by a click of a
mouse when the pointer image is transformed into a down pointed arrow. Users are
effectively informed about the capability of the application by the proper

transformation of the pointer. Figure 4.13 shows the difference in the image pointer ’

when users move the pointer to the top of a box.

Figure 4.13 : Pointer Image in Microsoft Word 5.1

Different pointer images of the prototype used by the prototype are displayed in table

4.2. Each of these images represent its own meaning.

Pointer Name Uséd_ F01 .
k Arrow Normal mode
@ Pointing Hand Selecting mode (e. g. clicking)
I I-beam Text-editing mode
Hour-glass Busy mode

Table 4.2 : Different Pointer Images

The following is the description of the behaviour of the pointer:

Normal - the pointer shows that the system is ready for an execution. ’U‘sers may click

any button or select any item from the scroll list view.

Pointing - the pointer changes to a pointing mode when users move the pointer onto a
button or onto a scroll list. It will not change to pointing mode if the application is
busy or the scroll list view is empty. The pointing image would help users to
differentiate between a passive display and a control. They may click <select>

mouse button when a pointing image appears.

Text - the text mode pointer is used for a text editing view. This type of pointer is the

most appropriate for text editing because users can easily insert the next input

character precisely.

113

Busy - the pointer changes to a busy mode when the applfi’ea‘?ti;c)h
executing a command. During this mode, the system will not re«s‘poh

from users.

4.9 ONLINE HELP

One of the buttons on the primary window is labelled 'HELP'. This button functions as
a navigator which explains to users how to obtain the online help. Activating this
button by clicking <select> causes a help window to be displayed. The window and
its content are shown in figure 4.14. A help window is displayed on the top right side

of the screen so that it may not block the primary window.

To obtain help information about any of the
buttons, move the pointer onto the button where
help is needed, then, press the middle button |

Figure 4.14 : Help Window

Activating the same button by clicking the <operate> button causes a help window thét
holds information about the application itself. When users press the <operafe> mouse
button on any button on the primary window, a single entry pop-up menu labelled
HELP" appears. If users release the mouse button without moving ithg?oin,ter away, a
help window is displayed on the screen. Figure 4.15/sh0/v§/s the beﬁaviour of the

button when users press the <operate> mouse button.{)

TITLE S

Figure 4.15 : Activating HELP

114

Activating Help will cause an online help information to be display
window similar to the one shown in figure 4.14. The system automatically pufs- users
into a relevant subset of help information based on the request made by users. Fért |
example, if they request help from a search button, information regarding the subject is
provided to them. They are not required to browse through an index and select the

most appropriate keyword.

The Help Button is placed at a strategic place, i.e. together with other command
buttons on the primary window so that users know how to obtain help when they need
to know more nformation about the interface. A navigator that explains how to obtain
help is as important as the help information itself. Many users are not using help

simply because they do not know how to obtain it.

Duffy er al. (1992) point out the design flaw of accessing help in Microsoft Word 3.0
for the Apple Macintosh. The same design is adopted for Microsgft Word 5.1. To
access the help system for this word processing application, users rr;luis/t/pu‘l/l/:down the
apple menu, choose 'About Microsoft Word', and then, when the dialogue box is
displayed, they must click on a button that says 'Help'. The problem with this design is
that, the help command is not continuously visible on the screen and this is
compounded by the fact that novices may not even realise the existence of pull-down

menu behind the apple icon.

Openwin is an example of an interface that does provide enough Clues 101 use1s to
access its massive context-sensitive online help. Users may obtari;n /iﬁférmation on
almost every object on the screen by moving the pointer onto‘ theobJect ana press the
keyboard labelled 'HELP'. In a graphical user interface environment, the user's
attention is directed towards the object on the screen and the main i.nteraction is
through the pointing device. Since the keyboard is only a secondary input device,

there is a tendency for the user not to be aware of the HELP key. Furthermore, the

115

reliance on the keyboard would restrict the portabi‘l;ity: of the system. Fo -

Macintosh may not have the HELP key on its keyboard.

The online help of the prototype is similar to the online help of the Openwin in the
sense 1t 18 not modal. This is opposed to the System 7 Apple Macintosh online help
which requires the users to be in help mode in order to access the online context-
sensitive help. The online help facility can be turned on and off by users. When the
facility is on, it keeps on displaying a balloon help whenever users move the pointer
around and passes through different objects on the screen. The facility displays a
balloon help for every object even though users may need help only for one or two
objects. Users may lose concentration on the task they are working on by the balloon

which keeps on flashing on the screen.

Duffy et al. (1992) highlight other points which are related to the design of help
system. First, the help information must be displayed in less than eight seconds on the
screen. Second, users must be advised to seek help when they commit érrors. These

points have been considered in the design of the prototype.

4.10 ESTABLISHING A CONNECTION AND TIME OUTS

The prototype is communicating with various applications on different computers
through a communication network. Some of these applications reside on computers in
the university and others reside on computers in different parts of the United
Kingdom. Some of these applications may require a longer time to be initialised. This

could be due to several factors, such as distance, large database, and network traffic.

Some require user login validation.

Since invoking applications may require some processing time, the pointer image has
to be changed into a busy mode. This shows that the prototype is establishing a

connection or the applications need time for initialising. For applications which

116

require a much longer time, such as BIDS, the display of status indicat
because it displays the estimated total time and the elapsing time of the operation. T

indicator also gives information about the different stages of the operation.

Some applications have time-out facility where they are automatically disconnected if

users do not enter anything for a certain period of time. Inappropriate time-outs, such
as a window suddenly disappearing would strip users of the feeling that they are in
charge of the interface (Hix & Hartson, 1993). A proper time-outs facility should
prompt confirmer asking users whether they still want to work with the application.

The application would be closed if users select 'NO' from the prompter or if users

disregard the window for some time.

117

CHAPTER FIVE

USER INTERFACE DESIGN OF THE PROTOTYPE

5.0 INTRODUCTION

A prototype has been developed to illustrate user interaction with certain networked
services. This consists of software which gives the user access to an electronic mail
application, Bath Information Data Service (BIDS) and file editor. The file editor

serves as a support service for the networked service applications.

The general design issues related to the prototype have been discussed in chapter 4.
This chapter discusses issues which are specifically related to the application being

developed.

Users interact with networked services by means of functions provide/d/by the
applications. Functions are activated by controls and the results or the output of these
functions have to be placed on displays. Decisions have to be made in order to
distribute controls and displays in the most effective way, so that it is easy for users to

execute these functions and obtain their results.

5.1 ELECTRONIC MAIL

The first electronic mail systems simply consisted of file transfer protocols that hold
the recipient's address on the first line of every file (Tanenbaum, 1989). Users have to
edit a file, then save the file and quit the editor and finally invoke a fﬂe transfer
program. At that time, the application was used by computer experfs who needed to
communicate among themselves. These people understand how computers work and

they do not have much problem using the application.

118

Since there are many advantages provided by electronic mail, the a t
introduced to professionals in various fields. These people are mostly non-c

experts and they wish the application to work the way they think rather -than_ ‘bc_izn'g‘ -

dictated by the system.

The basic functions of electronic mail are creation of messages and, sending and
receiving of messages. Other functions such as archiving of messages and aliasing are

also important in order to make the use of the application more effective.

Invocation of electronic mail and other applications supported by the prototype can be

made by selecting the application from the Launcher. The Launcher is shown in

figure 5.1.

Electronic Mail

Library
BIDS

File Editor
Quit

Figure 5.1 : Launcher

Figure 5.2 shows the primary window of the electronic mail application. The window
contains a number of components which are needed by users to interact with the
application. These include the heading view at the top of the window that displays the
current folder. The scroll list view displays the list of messages in the folder. The
buttons represent the commands which are supported by the application. The
explanation of each of these commands is placed on the note view at the bottom of the

window. The explanation of any of the buttons can be accessed by placing the pointer

on the button.

119

ELECTRONIC MAIL o ‘ =

| Folder >/Inbox (HEADING VIEW)
| SEND.. | =
| REPLY..]
| READMAIL... [(MAIN DISPLAY)
| FOLDERS...
[ADDRESSES...]
| HELP. |
B | (SCROLL LIST VIEW)

NEW MAIL
| (NOTE VIEW) |

Figure 5.2 : Electronic Mail Primary Window

A function comprises two components, i.e. a control and a display. A,’éoritl'o] 1S a
means whereby users input a command to the system and a display represents a
means whereby the result of users commands can be obtained. Since the primary
window represents the main place of interaction to the system, it has to accommodate
as many functions as possible. By viewing the primary window users may have ideas
about the capabilities of the application. Proper judgements have to be made because
placing so many functions on a window causes clutter and this reduces the

effectiveness of users’ interaction.

The electronic mail application uses buttons to represent a grdup of related functions.
For example, the Folder Button represents functions which are related to the folder
operations such as activating and creating folders. Invoking the button causes the
Folder Window to open. The window provides all the functions which are related to

the folder.

120

Table 5.1 displays the functions of electronic mail which have h,é,e,n

primary window of the prototype.

Functions

Controls

Displays

1) Send a new mail Send Button (Send Window)*

2) Reply to a selected message Reply Button (Reply Window)*
3) Read new mail Readmail Button | Main Display

4) Folders management Folders Button (Folders Window)*
5) Address management Addresses Button | (Address Window)*
6) Obtain the online help Help Button (Help Window)*

7) Quit the application Quit Button

8) Display the contents of a message Scroll list view Main Display

9) Deletion and refiling of a message

Pop-Up Menu

10) Display the current folder

(Folder Window)*

Heading View

11) Display the summary of messages

(Folder Window)*

12) Mail arrival notification

Scroll-list view :

Display View

13) System and error messages

Note View

(window)* the display is in a secondary window

Table 5.1: Functions Supported of the Electronic Mail Primary Window

Send and Replv Functions

Send and reply are the basic functions of electronic mail. Users may wish to send new

mail or reply to mail sent to them. Both the functions operate in two stages:

° COD]pOSC a message

* Send a message

Composition refers to the process of creating messages for electronic mail

communication. Although any text editor can be used to create the content of a

message, a speclal purpose electronic mail text editor usually provf es an
for a message header where users can enter the name of the recipients, subject of the
message and carbon copy. In the case of replying to a message, the editor extracts the

sender's address and automatically places it on the message header.

Figure 5.3a) and b) show the Send Window and Reply Window respectively.

SEND

To:
Cc:
Subject

SENDMAIL

Figure 5.3a) : Send Window

To: nazri @earn.utmjb
Cc: .
Subject appointment

In-reply-to: Your message of 12/10/92

SENDMAIL

Figure 5.3 b) : Reply Window

Some electronic mail interfaces such as Ope’nwin'and. Xmbh contain a;,
'‘Compose’ on their primary window. The word '‘Compose! is a technical Wmdﬁ aﬁd 1t 1
not an appropriate word when communicating with users (Berry, 1992). Activa ing
this button causes a text editor window to open. Users may send their messages aftér
editing by activating a button labelled 'Deliver'. The button IS located on the text
editing window. The reason for placing the Compose Button on the primary window
is that users have to compose a message first, then send the message by using the
Deliver Button. The problem with such an arrangement is that the primary function,

i.e. send is hidden by the function compose.

The differences between send and reply functions are as follows:

* The send function is always valid. The reply function is only valid when a
message is specified. Hence, the Reply Button is greyed to indicate that the

function is not available when no message is specified.

* The reply function automatically fills-up the message header of the text editor.
The send function leaves the message header empty and it has to be filled up by

Uusers.

* The pop-menu in the text editing view of the send/reply function supports the
basic text editing functions such as copy, cut and paste. The pop-up menu for the
reply function contains an extra feature, 1.e. include. The feature allows users to
extract the sender's message into the editing view and at the beginning of each line

the character '>' is inserted.

123

The send function has to provide an extra text-editing view for the més.,s, g¢

The view provides the following capabilities:

» Basic editing functions such as copy, cut and paste. The function paste f‘or

example, allows users to paste an address which has been copied from any

electronic mail message.

« Scanning the users input. If the input is an alias name, the system converts it into

a real electronic mail address.

» Error-checking capability. The system will make sure that at least one recipient is
specified in the message header. An error message is prompted on the window if a

message 1s sent with an inappropriate address.

Table 5.2 summarises the functions of the electronic mail text editor window.

Functions Send Message Reply Message/ |
Send the message SendMail Button | SendMail Button
Quit the edit window Quit Button Quit Button
Edit the content of the message Edit View Edit View
Edit the content of message header Edit View m ei?iggl;)é a?zlfe o)

Table 5.2 : Electronic Mail Text Editor Window

Sending or replying to a message can be activated by using the SendMail Button.
Sending/replying is a process that requires more than one step. The steps include
scanning of the message header (send function only), users’ confirmation, address

validation and sending the message.

The flowchart for the sending process is shown in figure 5.4. Sending a message is an
irreversible action. Once sent, the message is transmitted through the network and the

action cannot be cancelled or reversed. Hence, a confirmer is prompted to the users

124

whenever they activate the SendMail Button. Users are given a chance to ré

message before they confirm that the message is complete and ready for transmission.

Activating
SendMail Button

Scanning Message

Header error msg | f———f

: Users select 'No'
Sending the message? 2

Users select 'OK!

Sending the message..

System checking? error msg | ——@»

The message has been sent

¢

I Stop l

system and error message

a confirmer

Figure 5.4 : Sending/Replying to Mail Messages.

The SendMail Button is highlighted and the pointer image is chariged into an hour
glass until the message is completely sent. This is to indicate that the system is
sending the user’s message. Messages are displayed according to the status of the
sending process. If the message is successfully sent, a note confirming that the
message has been sent is displayed in the note view. Simularly, if the operation fails, a

note mentioning its problem is displayed.

125

Feedback messages regarding

following reasons:

+ Users are informed that the message has been sent by the application.

« There is no other way for users to check whether the message haé been sent or not.
In the case of other commands such as delete a file, users may display a listing of
a directory to confirm that the file has been deleted.

« Users may be interrupted by phone calls or visitors while working with the
application. By the time they return to the application they have to recall where

they stopped and whether they have sent the message or not.

Whenever users send or reply to a mail, a copy of the message is kept in the users'
current folder. Users may wish to review the message that they sent before they

communicate with the same person the next time.

Read New Mail

The electronic mail application contains a process that checks for any new incoming
mail. The purpose of the function is to keep users informed whenever new mail

arrives. Users who are expecting mail do not have to check their mail manually.

Whenever any new mail arrives, the following actions take place:

* A message 'New Mail' in Red Colour is displayed at the lower left of the primary
window. This indicates that there are new messages which are not yet read by

USsers.

* The ReadMail Button becomes normal. The ReadMail Button is similar to the
Reply Button in a way that it is greyed unless the command is valid. In the case of
the ReadMail Button, it is greyed when there is no new mail (the mail has been

read) and turned to normal when new mail arrives.

126

« A message is prompted informing users to click the Re,a,dM'aﬂ_, Bu on tO:Q’L

new mail.

Whenever new mail arrives and users invoke the ReadMail Button, the new mail is
placed on the scroll list view of the primary window and the 'New Mail' message

disappears from the window. Users may read new mail by selecting the summary

from the scroll list.

An alternative design is to open a special read mail window that holds all new mail
messages. When the window is closed, all the messages are placed on the primary
window. The advantage of this approach is that, 1t is much easier for users to review a
list of new messages because they are placed on a special window. This design is

appropriate if users receive many messages every day. The disadvantage is that

opening an extra window is required, thus interaction is difficult for novices and

cumbersome for experts.

Electronic Mail messages

An electronic mail message can be viewed in two ways:

* Its summary - a single line description about the message. A summary of
messages can be regarded as a simple index for users to access the real content of
the electronic mail message. Since a message summary is smaller in size, more

information can be placed on the screen without occupying a large area.

* Its content - a complete electronic mail message which comprises a header and a
body. The content of an electronic mail message occupies a relatively larger area.

The number of electronic mail messages displayed at one time must be controlled

so that 1t does not clutter the screen space.

127

Many electronic mail applications simply place the sender's address f'in&rthe:ﬂ.’
summary. Hence, the users own address appears in the summary if it is an ouﬁgoiﬁg
message. It is more meaningful for users if they can identify:
« whether the message is a copy of their own message that they have sent out or the

one they have received from somebody else.

 with whom they are communicating. This means that the summary should holds

the recipient address if it is an outgoing mail.

The summary of a mail message of the application may appear in either one of the
formats below:
« Ifitis areceived message:

< date > < sender's name > < subject >*

* - subject may not appear in the summary if it is not available in the message.

e Ifitis a sent message:

< date > To: < recipient's name > < subject >*

A mail message usually contains sender/recipient names and real mail addresses in the
‘To" or 'From' component of its header. For example, the 'To' component in a message
is as below:

To: Giles Christian <GNC1@uk.ac.rutherford.ibm>

The mail address is enclosed in the '< ... >' brackets and the name is the word that
appears before the address. The summary of messages contains the name of the
sender/recipient rather than the real address because the name is the way the

senders/recipients wish to identify themselves. If the name is not provided by the

message, then the address is extracted.

128

The summary of electronic mail messages is placed on the scroll list view: The sc

list view is a special view since it has the following capabilities:

« Displaying of information - A list of items is displayed on the view.
+ Acting as a control - Users can select an item from the list.

* Scrolling capability - This allows an indefinite number of items to be placed on

the view.
Functions that can be applied on electronic mail messages are: display, delete, refile
and reply.

 Display - selects any of the message summary in the scroll list view causes a

display of its content on the main display. The scroll list view holds a summary of

messages of a current folder. Users simply click on the message summary if they
wish to view its content. They are not required to enter a message number to

select a message.

* Delete - the interface prompts a confirmer when users try to delete a message.

After users have confirmed that they want to delete, then the message is deleted.

* Refile - a refile window is opened when this function is activated. The function

allows users to move messages from one folder to another.

* Reply - a reply window is opened when this function is activated. On the primary
window, the reply function is placed on a button. An alternative is to place the
function in the scroll list select menu. It is placed on a button because, it is an

important function for electronic mail.
A combination of the scroll list view and main display is an effective way of

controlling the screen from clutter. Only the selected message has its content

displayed on the main display at one time. Selecting another message-deselects the

129

current selection and the content of a newly selected message is pl'ziéed-, on *tfh‘e,‘ mai

display.

Folders Management

Smith (1991) states "the most valuable enhancement on any electronic mail front end
is the facility for managing folders, ". After using electronic mail for some time,
users may find their directory full with messages. They may wish to organise and

archive their messages in different folders as they normally organise their files.

The folders management function of the prototype is delegated to the Folder Window.
The Folder Window contains a heading view which displays the active folder.
Browsing through the hierarchy of electronic mail folders is assisted by a pair of scroll

list views and a pair of navigational buttons. Figure 5.5 shows the Folder Window of

the application.

[Folder> Colleague/Department
Research Oversea
Colleague United Kingdom
GUIGroup Departmental -

<L >>>
DONE

Figure 5.5 : Folder Window

The Folder Window also contains commands such as creation and-deletion of folders.
The commands can be accessed from the pop-up menu in the scroll list yiews. The

window informs users about the presence of those commands when users select

folders in the scroll list view.

130

Table 5.3 summarises functions which are supported by the window.

Functions Control/Display

Display of current folders Heading View

Browsing through folders A pair of Scroll List View
Creation and deletion of folders Pop-Up menu

Moving up and down in the hierarchy | the button labelled

of folders '<<<'and '>>>'

Refiling messages Pop-Up menu

(on the primary window)
Quit the Folder Window Done Button

Table 5.3 : Functions of the Folder Window

Selecting a folder in the scroll list view causes the selected folder to be the current

(active) folder of electronic mail. When the active folder is changed, the following

immediate results appear:

* The heading views on the Folder Window and on the primary window display the

current folder.

* The scroll list view of the primary window displays the summary of messages of

the new active folder.

The Folder Window is an example where the effect of users' choices on a non-modal
window are immediately displayed on the primary window. The immediate result of
the users’ selection on the Folders Window is essential because users can see the

summary of messages in different folders while browsing through their folders.

[nitially a hierarchical menu was devised to help users to select folders. The
advantage of using a menu is that users are not required to open a window whenever

they wish to activate other folders. The menu system is shown in figure 5.6.

131

Department

Research

Overseas

Figure 5.6 : Activating Folders Using A Hierarchical Menu

The problems with the menu are:

o It becomes messy when the number of folders or/and the depth of the folder
hierarchy increases.

It is not easy to incorporate other folder operations such as create and delete

folders

Refiling messages from one folder to another can be invoked from the pop-up menu

on the primary window. Activating refile function causes the Refile Window to open.

The Refile Window is to assist the user to select the target folder. The window is
similar to the Folder Window. It contains an extra button, the Refile Button to allow

users refile messages. Figure 5.7 shows the Refile Window.

REFILE

®

| Folder> Colleague/Department |

Research Oversea

Colleague United Kingdom

GUIGroup Department
<< >>>

REFILE DONE

Select target folder

Figure 5.7 : Refile Window

The difference between the Folder Window and Refile Window: éﬁe’:

» Selecting or browsing through folders on the Refile Window does not c_au,éé dny
change to the primary window.

« Folder operations such as creation and deletion of folders is not available on the
Refile Window.

o The Refile Window contains the Refile Button to allow users to refile the selected
message. The refiled message is moved to the selected target folder. The Refiled

Button is greyed if no message is selected by the users or the target is not folder.

Address Management

Electronic mail addresses are usually long and hard to remember. The following is an

example of a valid electronic mail address:

ESAMEUK . AC . BIRMINGHAM . ACADEMIC-COMPUTER-SERVICE.VMS1

It is also noted that users prefer to archive messages because they can simply reply to
that message rather than sending new mail when they want to commun/i,éate:\x;ith; the
same person. By replying to a message, users do not have to recall and fill-in the
recipient's address which is quite cumbersome. The disadvantage of replying to a
message 1s that users are not able to specify the subject of the message. The old
subject of the message remains with the new message, even though the content of the

message is different.

Using the Address Window, the prototype provides the facility to maintain electronic
mail addresses. The Address Window contains alias electronic mail addresses. The

use of aliases is convenient because users may associate aliases which are easy to

remember with different electronic mail addresses. Instead of writing a complete
address, users may simply specify a valid alias whenever they send new mail. Figure

5.8 shows the Address Window.

133

Other Details

DONE

Figure 5.8 : Address Window

Table 5.4 shows functions supported by the Address Window.

Functions Control/Display
Display a listing of aliases Scroll List View
Creation and deletion of aliases Pop-Up menu
Storing the real addresses Edit View (top)
Storing other information -such as Edit View (bottom)

address and phone and fax number

System and error messages Note-View

Quit the Address Window Quit Button

Table 5.4 : Function Supported of the Address Window

Users may access a pop-up menu from the scroll list in order to add or delete an alias.

Adding a new alias is an example of a task that requires more than two actions. The

actions are:

* Invoke the pop-up menu from the scroll list and select new alias. This causes a
prompter to be displayed to allow users to input a new alias.

* Enter a new alias at the prompter.

* Enter the real electronic mail addresses in the top left view.

134

If the new alias entered is a duplication of an existing alias, the alias is rej cted and ah"
appropriate error message is displayed in the note view at the bottom of the wmdow
Having input a valid new alias, the note view reminds the users to include the

corresponding proper electronic mail address in the top left view.

A two-field input prompter is used to allow an easy creation of aliases. Using this
prompter, Users may create an alias and its real address on the prompter itself.
Interaction is easier because the whole task of creating an alias can be carried out in a

single view. Figure 5.9 shows the two fields input prompter.

=———

Enter Alias

A

Enter Email Address

Figure 5.9 : Two-Field Prompter

The window supports two edit views (the views on the right of the window). The first
view is to allow users to enter a real electronic mail address. The facility also allows
users to store a mailing list. Mailing lists are usually aliases pointing to groups of
users. Using the mailing lists facility, users can send a message to the whole group of
recipients at once by specifying its alias. Users may enter as many addresses in the

view as they like for a given alias. The addresses have to be separated by a space.

The second view allows users to include other details which are related to the selected

alias such as departmental address, phone and fax number or comments. Both edit
views allow users to update the information if there are any changes. They are
supported by the basic editing functions. This allows users to copy an address or

other information from a message and paste it on to it.

135

Window Management

The table 5.5 shows the classification of secondary windows of electronic mail. The
way the windows are classified determines its behaviour in relation to the primary

window. The discussion on the classification of windows has already been given in

chapter 4.
Windows Classification
Send and Reply Window Text-Editing window
Folder Window Subservient window
Address Window Independent window
Help Window Independent window
Table 5.5 : Classifications of Secondary Windows

136

52 BATHINFORMATION & DATA SERVICES (BIDS)

Users in the past have had to visit the library if they wish to carry out any
literature search. Librarians are always available to assist them if they have any
difficulty with their search. BIDS was introduced to provide the service which
allows users to carry out search from their own departments. The information they
need can be accessed through the network. Since users have to work out for
themselves how to search for information, a good user interface is an important

factor that determines the success of the application.

BIDS is accessible via the Janet computer network and it takes more than two

minutes to establish a connection to the service. Since the waiting time is

considered long, a status window is displayed on the screen when users activate
BIDS. The window holds a status bar which displays the estimated length of time
to complete the operation. The window also informs users from time
about the different stages to establish the connection. Even though users haveif(/)

wait for some time, they are being informed about what is going on with the

system. Figure 5.10 shows the status indicator.

"ACCESSING BIDS %

Installing the System

[DISCONNECT |

Figure 5.10 : Status Indicator

Establishing a connection to BIDS is not easy. First, users havg to\log-on to-an
intermediate host that supports a connectivity service to BIDS. Having logged-on
to the host, users have to execute different procedures and enter a valid

ID/password combination in order to be connected to BIDS. The prototype takes

137

the task of establishing the connection to BIDS every time users activate (I

service. Hence, users are not required to recall the procedures and ID/pass_\i/or.di to

access the service.

There is a question of access control since users are no longer required to enter
their identification and password to access the application. It is noted that only
members of subscribed organisations are allowed to use the application. Since the
prototype is developed in a UNIX environment where only registered users (they
are members of the organisation) can access it, to request BIDS identification and

password is unnecessary.

BIDS may not be available at certain times of the day. This could be due to
system maintenance. If the service is not available, the status window prompts a
message indicating that BIDS is currently out of service. During a peak time,

users have to queue before the connection to BIDS can be established. The stat

window prompts a message that users have to wait in a queue. The window
provides users with the Disconnect Button to allow users to quit the service and

try it later.

Figure 5.11 shows the primary window of BIDS. The layout of the window and
its components such as the heading view and main display are similar to the
electronic mail application. The functionality of these components are sllghtly
different. For example, the heading view displays the current 7)/62}1‘ /glr:lqrrdata‘l?as/e,

the application is currently connected to.

The main display displays BIDS logo and introductory information about the
BIDS services. The information is quite essential especially for users who have

never used the services. It helps them to get started with the service.

138

TITLE...

AUTHOR...
The ISI Data Service at Bath
JOURNAL... Release 3.00
Use the buttons on the window to carry out search by
HISTORY... title, author, journal

PREFERENCES..

RETRIEVE...
| SAVE..
| HELP..
| aur

Figure 5.11 : BIDS Primary Window

Searching for articles is the most important function of BIDS. The first three
buttons on the primary window allow users to carry out searches by title, author
and journal respectively. Activating any of these buttons causes a prompter to be

displayed on the screen.

A prompter is a special window that requests users to enter word(s) for the search
and it accepts input from the keyboard. The Smalltalk Prompter (see figure 4.2)
does not contain any button to help users accepting or cancelling the operation.
Using the prompter, users may cancel operations by entering an empty input.

Such a procedure is not obvious for users who are not familiar with Smalltalk.

Figure 5.12 shows the prompter used by the prototype to allow users to input their
search. When users invoke the OK Button or enter a carriage return, the input is
accepted by the system and the prompter is closed. Users may also cancel the

Operation by invoking the Cancel Button.

120

Enter word(s) in title

|CANCEL| [OK |

Figure 5.12 : BIDS Prompter

Other functions which are related to the service are also provided. Users may

access these functions via buttons which are available on the primary window.

Table 5.3 summarises the functions of BIDS which have been placed on the

primary window of the prototype.

Functions

Controls

Displays

1) Search articles by title

Title Button

(prompter)

2) Search articles by author

Author Button

(prompter)

3) Search articles by journal's name

Journal Button

(prompter)

4) Review of previous searches

History Button

(History Win*)

5) Set the citation index and year

Preferences Button

(Preferences Win*)

9) Quit the application

Quit Button

0) Retrieve saved searches Retrieve Button (Retrieve Win*)
7) Save searches Save Button (Save Win*)
8) Obtain the online help Help Button (Help Win*)

10) Display a summary of searches

Scroll list view

1) Display the result of a search

Scroll list view

Main Display

12) Select citation index and year

(Preferences Win*)

Heading View

13) System and error messages

Note View

Win* - window

Table 5.3 : Functions Supported by the BIDS Primary Window

Searching Process

When users enter a search, the button for the search is darkened until the search s

found. This is to indicate which search operation is being processed. The pointer
is also changed into a wait mode pointer. To change the pointer also has its own

advantage because users’ attention is always at the pointer.

Table 5.4 shows the three steps involved when users carry out a search.

Step | Commands Results
1 Press a search button A prompter is displayed
2 Enter search The summary of the result (number found) is

displayed on the scroll list view.
(The view flickers 2 times)

3 Select the items The result is displayed on the main display

Table 5.4 : Searching for Articles using BIDS

After users have entered a search from the prompter, its partial result is placed on
the scroll list view of the primary window. The scroll list view flickers to bring
users' attention to the results of the search. The partial result is a one-line

summary of the result that contains the following information:

* the number of articles found.
* the words that users have entered.

* search type, i.e., title, author or journal.

The summary of the result is of dual function:

* Allows users to recall back the search that they have made.

* Puts the users in control of the interaction. Users may decide whether they
wish to see the list of articles or not. If the number of articles found is too

high, it takes more time to retrieve the search and it is harder to browse

141

For example, if the number of articles found for the word 'interface’ is too

high, users may re-enter another search such as 'user interface'.

If the search was not successful, i.e. no record was found, the summary of search
will contain a note stating that there is no record found. At the same time, the note
view prompts a message advising users to consult the online help facility. The
failure to obtain a result could be due to improper input from users. As an
example, users have to input 'dialog’ rather than 'dialogue’ because only American
spelling is accepted by BIDS. If users try to select the summary, a message 18

placed on the main display of the primary window stating that 'No record found'.

If the search is successful, the summary of the result indicates the number of articles
found. The pointer is forced to move so that it points to the summary of search and a
message is displayed on the note view at the bottom of the window requesting the
users to select from the summary of search in the scroll list to see the result. Figure
5 13 shows the scroll list view and note view after users activated the Title Button and
entered 'smalltalk' from the prompter. Eight articles having the word 'smalltalk’ in

their title are found.

8 Record (title search) ~ smalitalk

b

rSeIeCt the item in the list to display search J

Figure 5.13 : Scroll List View and Note-View

Selecting the summary in the scroll list view causes a complete display of the
result on the main display. Since to retrieve the complete result takes some time,

the pointer is changed into a busy mode pointer. The note view also provides a

message stating that search 1s being processed and the record number of the

current processed record is printed on it.

There are only three steps required to obtain the final result of a search. Keeping a

pumber of steps small makes the search easy for novices and less cumbersome for

experts. In addition, entering commands to the system is mostly done by clicking

4 mouse button on the right item. As a review, the steps to search for articles are:

Click the search button.
Enter the words to be searched at the prompter.

Select the search summary in the scroll list view.

Main Display

The main display is a read-only view on the primary window. The display

occupies the largest area of the primary window. Its primary function is to display

the result of a search. It contains a pop-up menu which supports the following

functions:

Copy - allows users to copy part or all of the information on the main display
to a text-editing view such as a file editor.

Copyright - obtains an information regarding copyright issues of the service
Messages - obtains an information about the message of the day from the
service. The message may contain information about shut down time or any
update in the services.

Hardcopy - allows users to obtain a hardcopy of the search listing.

Search.. - allows users to search for the word specified by users. Such
function is useful especially when the listing is quite long. If the word that
users are looking for is found, the note view informs users to carry out repeat

function to find the next word.

142

. Repeat Search - allows users to search for the next word in the listing after

they had carried out the search function.

History Function

The history function allows users to review the searches that they have made so
far. Whenever users activate a new search, the previous search is kept in a history
and it can be reviewed using the history function. The function can be activated
by the History Button and this causes the History Window to open. Figure 5.14
shows the History Window. The window holds a summary of archived searches

in its scroll list view.

5 Records (Title search) Smalltalk
13 Records " (Title search) User Design
23 Records (Author search) Smith_J1

[cance] [x|

Figure 5.14 : History Window

The scroll list view is modified to allow users to carry out multiple selection.
Users may select zero, one or more items from the scroll list view. When users
select the OK Button, the window is closed and all the selected items are displayed
on the primary window, i.e. the scroll list view. Users may review the full listing

of searches on the main display by selecting the items.

Save/Retrieve Function

The save function allows users to save to the disk the searches that they have
made. Activating the Save Button causes the Save Window to open. The figure

5.16 shows the Szfve Window of the application. Similar to the scroll list view of

1AA4

the History Window, users may select one, two or more items which they wish to "

save. Figure 5.15 shows the Save Window.

SAVE

5 Records (Title search) Smalltalk
13 Records (Title search) User Design
23 Records (Author search) Smith_J1

Save as r J
[cancel] [x|

Figure 5.15 : Save Window

The window contains a special view for users to write the name of the file where
the searches are to be saved. Users may write the most appropriate file name so
that it would be easy to retrieve the next time. The system will make sure that a
valid input is entered by the users, otherwise an error message is displayed on the

note view.

The Retrieve Button allows users to retrieve searches they have saved. Activating
this button causes the Retrieve Window to open. The window is shown in figure

5.16.

GUIL

Electronic mail
Usability
Interface Design

[cance] [|

Figure 5.16 : Retrieve Window

1A

The window displays the filenames that contain previoué <ived searches The
display of files help users recall back the files that they had saved. When users
select files and click the OK Button, all the summaries of searches in the selected

files are displayed on the scroll list view of the primary window.

Preferences Function
The preferences function is used to change various settings of the interface. The
window contains a set of radio buttons to represent the different database indexes.

Figure 5.17 shows the Preferences Window of the application.

PREFERENCES j
® Science Citation Index gg;‘
(O Social Sciences Citation Index r:ggf
(O Arts and Humanities Citation Index 1228
1988
[cance] [ok | 1987

Figure 5.17 : Preferences Window

The use of radio buttons is appropriate in this case because the number of items
available are constant and exclusively one item can be selected. Likewise, only
one item has to be selected for the year selection. In the case of the year selection
a scroll list view is used because the list can easily accommodate an increase in
number of items in it. Each year the interface must automatically increment the

selection list to include the current year.

Selecting the Science Citation Index and the year 1993 causes the interface to be
connected to the index for 1993. The result of the selection is placed on the

heading view on the primary window. Any search carried out will be referred to

articles in the selected index and year.

1AL

The secondary windows of BIDS are mostly subservient‘ windows andthusthey '
are dependent on the primary window. They are closed whenever users quit BIDS
from the primary window. Only one window of the same function 1s allowed to
open at one time. Invoking an active function (window for the function already

open) causes the window that supports that function to be activated.

Users may access help facility by bringing the pointer onto the button where help
is needed and press the <operate> button. Figure 5.18 shows the help window

when users invoke help from the Author Button.

“: HELP (AUTHOR) i

To find Articles written by: Enter the Author Expression

1. John D' Abo Senior dabo_j

2. D'Abo (initial not known) dabo_*

3. D'Abo and W J Van den Berg dabo_* + vandenberg_w]
4. K Al Jalili or K Morgan-Jones aljalili_k, morganjones_k
5.

M H Thatcher and Ho Chi Minh thather_mh + Minh_hc

Figure 5.18 : Help Window

147

53 FILE MANAGER/EDITOR

A file editor is essential in a networked service environment. Information
obtained from a library search, BIDS or USENET can be copied onto a file,
manipulated and sent for printing. Users also may wish to access some or all of

the information in a file and send it to colleagues via the electronic mail facility.

The file manager is the primary window which allows users to carry out various
operations which are related to files and folders. Figure 5.19 shows the file

manager of the prototype.

FILE MANAGER |

[abdullah> Stalk]
NER sample mailing.st
Testing (Tutorial)
[opEN (Stalk) - oldfile
Email
QUIT
| <<< ;l r >>> J

Figure 5.19 : File Manager

When the file manager is opened, the left scroll list view displays all folders and
files in the users home directory. For security reasons, files which are not related
to the system are not displayed by the manager. A folder can be differentiated
from a file by a pair of brackets which enclose its name. Selecting a folder causes
its content to be displayed on the right scroll list view. Using the arrow bqt’tons
users may traverse through the hierarchy of folders. The heading view at the top

of the manager displays the path of the selected folders.

1AQ

Table 5.5 shows the functions supported by the manager.

Functions Control/Display
Open a new file New File Button
Open an existing file Open File Button
Quit the File Manager Quit Button
Display of current folders Heading View
Browsing through files and folders A pair of Scroll List View
Creation and deletion of folder Pop-Up menu
Moving up and down in the the button labelled
hierarchy of folders '<<<"and >>>'
Deletion of files Pop-Up menu

Table 5.5 : Functions of the File Manager

The New Button allows users to create a new file editor. Pressing this button
causes 2 new file with a title 'newFile' to open. If users open another new file
before closing the 'mewFile', the title of the new file is 'newFilel". Similarly,
opening subsequent new files before closing older ones creates a new file with the
same title, appended with a different integer. However, these are temporary titles

and users are prompted to input a title of their choice when they save their work.

New files or folders are created under the current selected folder. The current
folder is specified by the heading view of the file manager. The result of the
creation or deletion of folders or files 1s immediatelyrdirs/played on the file
manager. This immediate display of the result of the user actibn is very important
because users will gain confidence with the interface. They aré confident that the
interface is responding according to their request. This is an encouragement for

them to explore the system further.

The Open Button is used to open an existing file. This button requires u:'s;‘ersf:td’
select a file from the manager before clicking on it. If no selection is mad’e,: ‘t_hé,"
button is greyed to indicate that the command is not available. The button also
helps users to differentiate between a folder and a file because the button appears

normal when a file is selected and turns grey when a folder is selected.

It takes more time for users to open a file in a windowing environment. The file
manager transforms the pointer into an hour-glass to indicate that the computer 1s
processing the users' request. Such a feedback may seem trivial because it appears
only a few seconds on the screen, but the lack of any feedback causes anxiety to
the users. There is a tendency that users make more mistakes with the interfaces

that do not provide any feedback.

Operations which are related to folders and files can be carried out from the pop-
up menu which is available on the scroll list. The operations include creation and
deletion of new folders and deletion of files. Figure 5.20 shows an example of a

file editor and its pop-up menu.

/MyFolder/myfile

A file editor is essential in a networked service
environment. Information obtained from a library
search or a search using BIDS or USENET can be
copied onto a file, manipulate them and send for
printing. Users also may wish to access some or all
information in a file and send it to colleagues through | COPY

the electronic mail facility. cut

paste
undo
save
save as ...
hardcopy
done

Figure 5.20 : File Editor Pop-Up Menu

A file editor window supports the following functions:

undo - reverses the most recent cut or paste.

copy - places acopy of the highlighted text in memory.
cut - places a copy of the highlighted text in memory, then delete the text.
paste - deletes the highlighted text (if any), then place the most recently
copied or cut selection in that location.

save - saves the edited text to the file. If itis a new file, and the filename is
not yet specified by users, the system would prompt for a filename.

save as... - the system would prompt for a filename. The text would be saved
in the file specified by the users. The system would check for any error in
specifying filename. Ifitisa duplicated filename, users have the choice of
either cancelling the operation or overwriting the existing file.

hardcopy - prints a copy of the text on paper.

quit - quits text editing and close the window.

Whenever users close a text-editing window, the system checks to make sure

changes made are saved by the users. If the content is not yet saved, a confirmer

is prompted on the screen. Figure 521 shows a confirmers prompted by

Smalltalk.

R

The text showing has been altered.
Do you wish to discard those changes?

yes

Figure 5.21 : Smalltalk Confirmer

The Smalltalk confirmer does not allow users to save edited works directly. Users

has to select 'no' from the confirmer and then save their work using a pop-up menu

1 1

p1~ovided. Such an implementation should be suitable fbr Sméllfalk. o) thét; the

gmalltalk codes are protected from any accidental input from the keyboard. .

The confirmer for file editor is modified to allow users save their work directly

from the confirmer. The confirmer is shown in figure 5.22.

Save changes before closing?

[yes] [no | |cancel |

Figure 5.22 : File Editor Confirmer
File editors reside on text-editing windows which are independent of the file
manager window. Thus, users are allowed to open many file editors at one time

and closing the file manager does not effect file editing window.

Snaphots of the prototype windows are placed in appendices C.

CHAPTER SIX

IMPLEMENTATION ISSUES

60 INTRODUCTION

This chapter discusses issues related to the implementation of the prototype.
Discussion includes the advantages of an object-oriented approach and the Smalltalk
language. The chapter also reviews the concept of Model-View-Controller (MVC)
methodology adopted by Smalltalk and examines each of the components in depth,
using simple examples and experiences from developing the prototype to illustrate
variations of the MVC theme. The source code of the prototype is available from

cs.aston.ac.uk ftp site in the bg/write.me/hanan folder

61 OBJECT-ORIENTED APPROACH

The importance of object-oriented programming for the development of modern user
interface is emphasised by Graham (1991). He states "the sheer complexity of modern
GUI makes object-oriented programming a necessity rather than a luxury: if it didn't
exist then GUIs would have forced us to invent it". He quotes the example of Apple
Lisa that requires 200 man years of effort, much of which was dedicated to the
development of the interface. It was inconceivable for Apple to move to the newer

series of hardware without reusing the Clascal code used for the Lisa.

The human mind and object-oriented systems are similar in a way that they perceive a
world problem as a hierarchy of elements which interact with one another. Object-
oriented programming helps programmers to think at a higher level about a problem
and thus reducing the gap between programming and the way a programmer thinks

(Che Mee, 1990). Unlike object-oriented programming, conventional programming

153

forces the programmers to think according to the way the machine works,
Four key concepts that explain the advantages of object-oriented appro_.acﬁane,;

abstraction, encapsulation, inheritance and polymorphism.

The meaning of abstraction given by the Oxford English Dictionary closest to the
meaning intended in this discussion is "the act of separating in thought”. Graham
(1991) defines abstraction as "representing the essential features of something without

including background or inessential detail".

Encapsulation means that an object contains both a state and the operations that can be
performed on that state. An object contains everything it needs, and by doing it this
way, no other object need ever be aware of the object's internal structure (Graham,

1991). Data can be obtained from the object by sending a message to the object.

With encapsulation, users do not have to bother how an object performs its function
and, more important, what it can and cannot do. They can be confident that adding an
object to an existing code will not cause unpredictable things to happen to different
parts of the program. They can also try out the objects' behaviour on the spot to
determine whether they have chosen the right objects before incorporating them in

their program.

Inheritance is a mechanism that allows a new class (subclass) to inherit characteristics
from an existing class (superclass). In this scheme, classes higher up the structure

represent more general abstractions, and classes lower down the structure describe

specializations of the former.

Inheritance promotes software reuse. Reusing rather than reinventing code speeds up

the development of large applications. For example a Cat class can be created by

inheriting all the methods from Animal class and adding all the methods that are

1 0A

needed to make its definition complete; there is no need to duplicate the me

contained within the class Animal.

A conventional programmer might reuse code by copying and editing, but an object-
oriented programmer can accomplish this automatically by creating a subclass and
overriding some of its methods. A method in a descendant can override a method in a

ancestor class simply by creating a new method of the same name.

Furthermore most object-oriented languages provides a large library of classes
covering basic abstractions such as collections and dictionaries, as well as graphical
classes which include interface components such as windows and scrollbars. Class
libraries may also provide frameworks such as the Model-View-Controller framework

for building graphical user interfaces, as discussed in section 6.4.

Inheritance also eases maintenance because code shared by several classes in an
inheritance chain is found in one place only. Hence, any change needs to be carried
out at that particular place only, and this change is automatically propagated to all the

subclasses (Cox, 1984).

Polymorphism is "the ability of different objects to respond differently to the same
message" (Thomas, 1989). Sending the draw message to a Circle invokes its draw
method; sending the same message to a Square invokes a different method. Without
polymorphism, separate draw functions such as drawCircle and drququare are

required for each type of object.

62 SMALLTALK-80

Smalltalk was developed in the early 1970s by Alan Kay and his colleagues at Xerox

Palo Alto Research Centre. Smalltalk evolved from a simulation language, Simula

and it became the first language to introduce the o,bject—orientéd ggncgpt;‘?iht.jghé;,ﬁelld;_;of",:‘ '

computing. The language went through three major versions: Smalltalk;72~,_ Small
76 and Smalltalk-80. Smalltalk has become a model for many modern oj‘écteoriént‘ed
programming languages and yet still retains its popularity, partly due to the robustness

of its large class library (Bourne, 1992).

Smalltalk was selected for the development of the prototype. Object-oriented systems
in general and Smalltalk in particular offer several advantages to developers.
Smalltalk is not just a language, but a complete programming environment. Users
work within an object-oriented framework of browsing the class library, deleting
objects, experimenting and testing them out and incorporating them into their
applications. More importantly, Smalltalk forces users to adopt the object-oriented

approach (Thomas, 1989).

As far as reusability is concerned, the different Smalltalk systems can regarded better
than any other object-oriented languages. Smalltalk provides an extensive class
library which permits rapid creation of new classes by inheritance. Bourne (1992)
compares the number of classes supported by four commercial object-oriented
languages, Smalltalk-80, Smalltalk/V, Objective-C and C++. The comparison of these
languages is shown in table 6.1. Objective-C allows purchase of additional classes to

support user interface creation.

Name Number of Classes
Smalitalk-80 (release 4) ~ 330
Smalltalk/V ~ 175
Objective-C >20

additional classes > 60
C++ ' 0

Table 6.1 : Classes supported by Object-Oriented Languages(Bourne, 1992).

Another outstanding feature of Smalltalk-80 is portabilﬁy:,_i/.cbjd'e -g_énéfrated;én- @ne .
platform will run without any changes on different platforms. Such a capability
achieved because the system is composed of two main components, the image, whiéh
consists of objects that make up the development systems and layered applications,

and the virtual machine which executes the image on a given platform (Udell, 1990).

One of the essential requirements of the development of user interfaces is the massive
use of memory. It is noted that some languages, like Lisp and Smalltalk manage
memory more efficiently. Both languages support automatic garbage collection, 1.¢,
both languages reclaim any unused memory space by removing objects or pointers
that are no longer used. Smalltalk Release 4 implements an incremental garbage

collector which runs as a background process within the image itself (Cook, 1991).

Compared to other object-oriented languages, Smalltalk's performance is relatively
slow (Winblad, Edwards & King, 1990). Execution speed was once an important
factor for choosing between languages. However, this factor has become less
significant as computer performance has increased and the COSt4Of expanding

computational power has decreased.

Smalltalk is not easy to learn. This statement is based on the author's experie,ﬁée and
it is in agreement with other Smalltalk users (Diederick & Milton, 1987; Nielsen &
Richard, 1990; Hix & Hartson, 1993). Hix & Hartson (1993) pqints out that it takes
about 3 months for programmers who are familiar with a procedﬁral épproabh to
become proficient in Smalltalk. Object-oriented methodology is Completely different
from the conventional approach with which most programmers are familiar. Learning
object-oriented languages, such as Smalltalk is like trying to adapt to. a new culture

(Che Mee, 1990).

Browsing through the Smalltalk classes can be a diffiéﬁlt and frusnatmgtask
(LaLonde efc al., 1985). The operations associated with a class are distribute
throughout a hierarchy of classes. The system browser only displays operations which
are relevant to a particular class. In most cases, this forms only a small subset of the
operations for that class. Finding the whole set involves browsing through each

individual class in the superclass hierarchy.

An enormous amount of time has to be spent investigating the class libraries and
extensive experimentation may be required to understand how these classes work.
Despite the difficulties, it is still worthwhile putting the effort to master the language.
After the learning period, the flexibility and expressive power of the language as well
as a large class library of predefined classes make it easier and faster to develop most

applications.

6.3 DEPENDENCY MECHANISM

The world is full of objects which are dependent on other objects. For exalnple; a
light is dependent on a switch. When the switch is turned on, the light is on and when
the switch is turned off, the light is off. A similar relation can be created in Smalltalk.
Any object can be made dependent on another object by using the dependency

mechanism.

The followings are properties of every object in Smalltalk relevant to the dependency

mechanism: (ParcPlace System, 1992).

Any object is allowed to register itself as a dependant of another object.
* Any object may send the message changed to itself. The message is to notify that
the object has changed. When the object sends changed to itself, each of its

dependants automatically receives an update message.

The dependants have to implement their own update: methodél j They may"r,e‘:digplayf -

themselves or take other updating action.

This mechanism is particularly important for the implementation of the Model-View -
Controller (MVC) (see 6.4). In the MVC methodology, one or more views is
registered as a dependant of a model. Whenever the state of the model changes, the
model sends a changed message to itself. The view (and any other objects that are
registered as dependants of the model) automatically receives the message update.
The default method for the update message in the Object class is to do nothing, but

most views have a protocol to redisplay themselves whenever they receive an update

message.

Figure 6.1 shows a dependency mechanism between a model and its views. The
model holds a collection of dependants, that is objects which are dependent on it. The
dependants are viewl and view2. When the model sends change to itself, the
dependency mechanism notifies the views to update themselves. In many cases, a
view has to obtain the latest information about the model before updating itself

accordingly. A view is usually associated with one model, but a model can have many

dependant views.

changed

aModel

dependants

view1

view?2

update

update

view2

Figure 6.1 : Dependency Mechanism

view1

A variety of changed messages are supplied by the dependency mechanism. Th
variants are as follows:

aModel changed
aModel changed: aSymbol

aModel changed: aSymbol with: Parameter

The argument 'aSymbol' allows the model to inform which aspect has been changed
and the corresponding view can take an appropriate action by examining the
‘aSymbol'. The model also may wish to provide an extra information and send it as a
parameter with the changed message. As an example, the following changed message

is sent by a model to its dependant (a window):

self changed : #windowLabel with: " TestWindow '
Sending the message above causes the window to update itself by changing its label to

"TestWindow'

64 MODEL-VIEW-CONTROLLER (MVC) METHODOLOGY

Interactive applications usually consist of two parts:
L. The information model, which handles data storage and processing.

2. The user interface which handles input and output.

Separation of the user interface from the application has several advantages (Dodani,
Hughes & Moshell, 1989). First, the user interface can be further sub,divigied into
components that can be glued together. Developers may use these C@mpon,en"tg,
without a detailed understanding of the underlying implementation; Second, the
interface can be rapidly modified to be reused in other applicationé. Third, the,.‘ j
interface can be altered without having any adverse effect on the application codes.
Finally, the interface can be developed in an iterative manner, where successive

prototypes are produced until a satisfactory one is completed.

1 7 N

The Smalltalk interface paradigm implements a similar principle of separ—at
application model from the user interface. It further separates the user interface into
two components, i.e. the view and controller. The functions of the three components

are as follows:

. The model deals with the underlying functionality.
« The view presents the model on the display screen.

« The controller manages the interaction of the system with the user.

The combination of the three components is called the Model-View-Controller

methodology or MVC.

Communication among the components of MVC is shown in figure 6.2. The
communication is handled by sending messages and by the dependency mechanism of
Smalltalk. The view and controller are tightly coupled. The view stores an instance
variable that points to its controller and vice versa. The view and tﬁe controller also
store an instance variable pointing to the model. This means that both the view and

the controller may directly access information about each other and the model.

The model is slightly isolated in the MVC triad. It neither has a pointer to its view nor
its controller. Hence, the model is incapable of displaying itself or interacting with the

user. Using the dependency mechanism, the model must notify changes to its view

and controller whenever one or more of its aspects are changed. The view and

controller respond by querying the model and update themselves to reflect the change.

The model may be associated with more than one view-controller pair so that different

aspects of the information can be displayed.

MODEL other dependents (if -anyf)

Update Mechanism ——8

CONTROLLER

Figure 6.2 : Model-View-Controller

The Smalltalk MVC methodology is a powerful tool that allows an easy and
systematic development of an interactive application. Most of the components
required to build an application based on this methodology are available in the
Smalltalk library. The same methodology is also used by the Smalltalk itself for
implementing the tools of the programming environment, for example the System
Browser. The System Browser consists of five views, and its information model is the

library of Smalltalk classes.

6.4.1 MODEL

A Model can be a simple object that holds an integer or complex applications‘ such as
a word processor or an electronic mail. An information model is usually created as‘a
subclass of class Model. The class Model contains an instance variable dependents
that holds all the dependants of a model and it has the machinery for notifying its

dependants when it is changed.

The concept of an adaptor was introduced to make views adaptable to multiple models
(ParcPlace Systems, 1992). An adaptor can be thought as a’translatof that provides a
flexible communicaton between a View and a model. There are two classes which
serve as adaptors, i.e. ValueHolder and Pluggableadaptor. Both classes are |

inherited from the class Model, and their parent class is valueModel. The

hierarchy is shown in figure 6.3.

149D

Object

Model

ValueModel

T

ValueHolder Pluggable Adaptos

Figure 6.3 : ValueHolder and PluggableAdaptor

A valueHolder acts as translator for simple objects that do not have the mechanism
to behave like a model. The objects include numbers, strings and booleans. They
must be placed in ValueHolder before participating in the MVC triad. The
valueHolder then assumes the responsibilty of registering dependent objects and

notifies any change in itself to its dependants.

For example, suppose a simple application needs to display a counter in one of its
views. An integer can be the model for the application. Creating a new class and
developing the integer acting as the model requires writing extra code. A more simple
solution is found by placing the Integer in a valueHolder. The ValueHolder has
the capability of accessing the value of the integer and acting as a model for the view.
Figure 6.4 shows a ValueHolder that holds an integer and assumes the task of

informing the view when the value 1s changed.

<
T | 30
A ValueHolder A View

Figure 6.4 ValueHolder

1472

A pluggableAdaptor acts as a translator for a compliéafed model whlchhasa
different vocabulary from the view. For example, the adaptor can be used as_ﬂaz‘l{lh
petween a button and the main information model. The use of PluggableAdaptor

class is shown in the listing in Figure 6.5.

button := LabelledBooleanView new.
button beTrigger.

button controller beTriggerOnUp.

button beVisual: 'Search’ asComposedText.

button model: (
(Pluggable Adaptor on: aModel)
getBlock: [:model | false]
putBlock: [:model :value | model doSearch]
updateBlock: [:model :value :parameter | false]).

Figure 6.5: PluggableAdaptor (Program Code)

A temporary variable button 1s used to represent a button. The first group of
expressions creates the button and assigns its attributes. The second group of
expressions links the button to the main information model, 'aModel'. The group

consists of three expressions:

+ The getBlock - to acquire the current state of the model. The information may be

used to adapt the appearance of the button depending on the status of the model.

* The putBlock - the expression 18 executed when users click the button. Execution

of this expression causes 'doSearch’ to be sent 1o the model.

* The updateBlock - the block provides the option to include the following

arguments: the model, the aspect of the model that has changed and the extra

parameter in the changed message, if any. In the listing above, the value returned

is always false. This indicates that there is no updating to be done.

164

Figure 6.6 shows the communication between the button and the infdrmationffﬁodél_

The button is an instance of LabelledBooleanView. Asits name suggests,
returns true or false. The method beTriggerOnUp defines the behaviour of the button.
A boolean true is sent when users click the button (press and release without moving
the pointer away). In the given example, PluggableAdaptor can be regarded as a

plack box that accepts a boolean true as input. Upon receiving the value true, the

pluggablerdaptor sends the method 'doSearch’ to the information model.

Pluggable Adaptor
(Translator)

Search

Information

Send true when model

d !
button the clicked Send doSearch

when true

Figure 6.6 : Application of Pluggable Adaptor

642 VIEW

Views are what users see on the screen within a2 ScheduledWindow. A
ScheduledwWindow is a subclass of Window which provides a controller that allows
users to move, resize and close the window. A ScheduledWindow usually holds a

VisualComponent, the abstract class that defines the common behaviour of views

and other displayable objects.

VisualComponent can be classified into:
. Visible type - such as view, image and text
. Supporting type - this has 2 components
1) A Compos itepPart and its subclasses hold a collection of other visual
components.
2) A Wrapper and its subclasses which provide services such as placement and

bordering to a visual component.

The relation between between the different subclasses of VisualComponent is

shown in figure 6.7.

VisualComponent
VisuLlPart
- | |
CompositePart Wrapper DependentPart
Translatinl gWrapper ViIeW
Boundelerapper
Bordered!Wrapper

Figure 6.7 : Visual Components and its Subclasses

Figure 6.8 shows the way different visual components are layered on top of a window
in an application. A window containing two Views would require a composite that

contains two wrappers, each of which holds one of the views.

Figure 6.8 : VisualCompenents and ScheduledWindow

Every view has to be enclosed in a Wrapper. AWféépér is am a
forwards messages from its container (CompositePart) toits cémponent (j"\zle
and vice versa. The Wrapper and its subclasses also provide the kneeded
bookkeeping information such as translation, clipping and borderiﬁg. The primary
role of a CompositePbart is to pass messages to the correct subcomponent as users

move the mouse pointer from one subcomponent to another in a window.

Views are numerous in the Smalltalk class library and they can be divided into four
categories. Table 0.2 shows examples of the four categories of views and their

respective controllers.

Type Name of the View Controller

Text CodeView CodeController
(text editing)

List SelectionInListView SelectionInListContrQl‘ler

(select an item from a list)

Dialog DialogView DialogController
Dialogs (e.g.fill-in the blank)

Graphic BarChartView No controller

(supplied in Tutorial)

Table 6.2 : Categories of Views

A view must be redisplayed after the following events:
* the model updates - the view has to respond accordingly.
* Window damage repair for example, the window is refreshed or an overlapping |

window is moved.

methods are:

0 displayOn: - this is a display driver that allows the view to redisplay itself. It ;
should always consult the current state of the model.
. update: - This method should send an invalidate message to itself. This is an

inherited method which ultimately invokes the view's displayOn. method.

[mplementing displayOn: and sending the self invalidate message in the update:
method allows a view to respond to any redisplaying situations in a unified way. The
invalidate method will manage the redisplay especially when both events occur

simultaneously.

6.43 CONTROLLER

The controller accepts input from the user, normally via the mouse or the keyboard

and informs the view and the model of pertinent user actions.

The host operating system passes control to ControlManager when a Smalltalk

window is activated. Control in this context refers to ownership of the user input.

ControlManager then passes control to the window which contains the pointer.
The window takes control if the <window> button is pressed, else it offers control to
its component containing the pointer. That particular component may accept control
depending on the design of its controller. For examples, the controﬂer for a button or

a check box usually accepts control only when the <select> button 18 pressed.

ScheduledController is a global variable which is an instance of ControlManager.
Itis the function of this variable to pass control O the active window's controller. The

controller for the window is the StandardSystemControl1er. This controller

requests the window to check whether any of its views wants control. Each view then

- 70O

asks 1ts controller isControlWanted. The controller that rGSpdnds e S R a sta

S

message by the ControlManager.

Once a message startUp is sent to a controller, the controller initializes itself, goes into
a control loop, and finally performs a termination routine. The process is shown in
figure 6.9. Initialization is carried out by a controllnitialize method. Many controllers
do nothing in response to this message. This method can be reimplemented in the
controllers class so that some special action can be carried out such as changing the
pointer image. For example, in a text editing view, it is more appropriate to change

the normal pointer image to a text editing image pointer.

(ScheduledControHerﬂ

controller

controllnitialize

|
controlLoop v

——&| poll

isControlActive

true

controlActivity

control Terminate 4

Figure 6.9 : Controller Activities

In the controlLoop, polling is carried out to se€ if there has been any activity. If there

1S no activity for a certain period, a flag(semaphore) is set and the polling can stay idle

until a signal is received indicating that there i activity. When activity resumes, a

controller verifies that the condition for maintaining control »(,i:s'Conzi;,»*@-lg@fﬁzef;);i;s‘;S-ﬁﬂg"
true. 1f SO, it sends controlActivity to itself, but if the test fails; control revevrté"/’to h

ScheduledController, which resumes polling to find a new control receiver.

The controlActivity is the method that decides how the controller should respond to
the user input. The controlActivity method for the StandardSystemController
is to respond to the <window> button. When this button is pressed, the controller
prompts the standard pop-up menu for a window. The controlActivity method for the
codeController (text editing purposes) is to respond to the <select> and

<operate> mouse buttons and the input from the keyboard.

Most controllers gives up control when the pointer passes out of its view. However,
modification can be made to the isControlActive method to change that policy. For
example, the DialogController refuses to yield control until an answer to the

dialogue is accepted by its model.
Understanding the controller mechanism is essential if the behaviour of the controller
is to be customized. The controller for the button of the prototype is described in the

next section.

Since ScheduledControllers is a global variable, it is used by the prototype to close a

window and to find out the status of different windows, e.g. open or clpse._ The

messages below shows how ScheduledControllers

a) is used to close the current window (the window which contains the:poi’nter). \

ScheduleduledControllers activeController close.

b) is used to close the System Browser.

ScheduleduledControllers ccheduledControllers do:
[113 view label) = ' System BrQwser‘ ifTrue: [i closel].

5 [MPLEMENTATION OF MODEL-VIEW-CONTROLLER

In the prototype, the different stages involved in establishing a connection to BI‘DiSf:Si-s.

displayed on a status window. Figure 6.10 shows the communication between the

communication process and the display process. The display process is represented by

the status window. Both processes run simultaneously.

Communication
Process

— > | N

Display Process

Figure 6.10 : Displaying the Status of the Comminucation

The communication process has a dual function:

« To read information from the communication port. The reading from the port

must be properly synchronised so that all the information is captured.

¢ To act as a model for the status window. It has to inform the window about the

different stages of connectivity by using the MVC mechanism

By default, a window updates itself when its receives a checkForEvents from its

controller. The standard controller sends that message each time it is polled for

activity. In the case of the status window, the indicator does not update itself

immediately when it receives an update

message. Since, more than one process is

competing for the processor, there is a significant delay between the time the model

changes and the view is updated.

4 1

An immediate update of the status window can be achieved in 2 ways: .

) Forcing the view (of the status window) to update by sending the message

2)

6.6

The prototype comprises of two main parts:

The implementation of the prototype can be described two phases:

L

every time self changed message is sent by the model.

By changing the default value in the invalidateRectangle method. The method is

ScheduledControllers checkForEvent

in the VisualPart class. By default, Smalltalk implements lazy repair damage, 1.e.,
delaying any update until the processor is free. Changing the parameter for

repairNow to true enables the message to override the implementation.

self invalidateRectangle . aRectangle repairNow: true

IMPLEMENTATION OF THE PROTOTYPE

The communication part - manages the communication between the Smalltalk

image and networked services.
The user interface part - manages user interaction and displays of output. It

translate users' actions into commands which are understandable to networked

services and transforms the output from the services before it is displayed.

Establishing the communication with network services

This first phase in the implementation of the prototype is o ensure that Smalltalk

is able to communicate with the outside services which are available through the

computer network. These services aré the model for the prototype.

The first step after the connection is established is to start a preliminary test on the

model. Since, at this stage the user interface part is not yet constructed, existing

facilities provided by Smalltalk are used to simuiate»the iﬁput and the ‘Oﬁfp t
model. The Smalltalk DialogView is used to create a dialogue window. 1
window is prompted to accept input for the model and the result is displayed Oﬁ .‘
the Transcript Window. During the initial testing phase, the procedure to establish
the connection, such as entering the login name and password is carried out
manually by using the dialogue window. Interactions to the services are carried
out by entering appropriate commands and the results are printed on the Transcript

Window.

2) Developing the user interface

The development of the user interface is based on the MVC methodology. Most
of the components which are required for the interaction, such as windows, buttons
and pop-up menus are available in Smalltalk class library. Initially, a simple
interface that comprises of a few buttons to represent commands and a main
display is constructed on a window. The buttons are then linked to appropriate
commands and the output from the networks services is captured as a variable and

displayed on the main display.

The interface is further developed by including more buttons and incorporating
pop-up menus so that more commands can be attached to the interface. Different
types of views to display different types of information are also incorporated.

These views are then tested to make sure that they produce the exp,ected:results.

Other aspects of the user interface which help users to interact with the system are

finally included. These include changing the behaviour of th(f, /{mou:se pointer -

image (e.g. changing it to waiting mode during the processing time) and adding

system messages and online-help facilities.

&Wiener (1988) define incremental problem solving as "adding incremental C:ap.é il

(o an existing base of workable software (the image)". This approach is well

Supported by Smalltalk.

The implementation of the prototype is based on incremental problem-éblvm ‘

[ncremental problem solving includes the following activities:

. finding the right class and reusing it rather than reinventing new codes.

. creating new classes to reduce complexity.

. implementing an inheritance hierarchy in a way that facilitates the addition of new

functionality.

« improving interaction between objects.

Three classes, namely EMail, Bids and Editor are created to represent the three
applications of the prototype. They are declared as subclasses of Model (see figure
6.11). The Model class is selected because it has the machinery for notifying

dependent objects (views and controllers) when it is changed. Model holds the

collection of dependants in an instant variable.

OBJECT

|

MODEL

EMAIL

BIDS

EDITOR

Figure 6.11 : Creation of New Classes

The dependency mechanism is also

dependants in a global dictionary.

any object, but with the advantage that dependants ¢a

collector.,

provided by the Object class. Object stores

This provides universal dependency relation for

nnot be removed by the garbage

6.61 IMPLEMENTATION OF ELECTRONIC MAfL

pmail is the parent class that provides the following functions:
Maintains the information related to electronic mail application. These include the
list of folders and electronic mail messages.

Runs a process that constantly check for any new mail.

. Delegates some of electronic mail functions to its subclasses.

gMail stores some of its information in class variables. This allows the class and all
its subclasses to access and modify the content of the variables. Figure 6.12 shows the

mMail class, its class variables and subclasses.

EMAIL

Class Variables Accessed by Subclasses

MailCollection - EMailFolder, MailEditor, Refile |

CurrentFolder - EMailFolder, MailEditor

Folders - Folder

SelectView - EMailFolder, MailEditor, Refile
EMAIL-EDITOR FOLDER MAILADDRESS

EMAILFOLDER REFILE

Figure 6.12 : EMail and its Subclasses

The followings are Email subclasses and methods provided by the Emall

access themm:

. EMailEditor invoked by the doSend and doReply methods.
. EMailFolder invoked by the doFolder method.
. Refileinvoked by the refile method.

. Mailaddress invoked by the seeAddress method.

This methods are executed whenever users execute controls, i.e. buttons or a pop-up

menu on the electronic mail primary window.

Table 6.3 describes the EMail class variables:

Class Variables Class Types Descriptions

MailCollection Dictionary Hold a list of all email messages in
different folders. Folder is the key of
the association. ’ =

Folders String Holds a list of folders

CurrentFolders String Holds the selected folder

SelectView SelectionInListView | Displays the summary of messages

FolderView DisplayTextView | Displays the current folder

Table 6.3 : EMail Class Variables

SelectView and FolderView are declared as class variables so that they can be/ iipdated

from other windows (objects). SelectView also holds inforniation:nee‘ded by the

subclasses, such as the selected message.

EMailEditor provides the mail editing capability. This class has to access

information from its parent class when doReply is invoked. It has to know which

message to reply to, the sender and the content of the message.

in a class variable PersonalData. The variable is of class type Dictionary
EmailEditor needs to communicate with MailAddress if the alias ié ﬂspeciﬁé‘d: ‘
in the message header. Specific methods have to be sent to MailAddress to access

aliases from the class variable .

The Folder class is an abstract class. The primary function provided by the class is
to browse through the hierarchy of email folders. Two classes, namely
EMailFolder and Refile are defined as subclasses of Folder. Both subclasses
need to browse through the email folders. There are some differences in terms of the
functionality provided by the two subclasses. EMailFolder provides functions

which are related to folder operations. These include activating, adding, deleting a

folder. In the case of Refile, users need a folder browser to specify target folders in

order to refile electronic mail messages.

EMail and its subclass (EMailEditor) communicate with the UNIX mail’faciﬁty
by sending cshOne: or cshBullet: messages to UnixProcess. The parameters of the
messages are valid UNIX commands. The difference between the two messages is

that only cshOne: returns a result.

6.62 IMPLEMENTATION OF BIDS
The class Bids provides the following functions: 7 T /
Maintains the information of BIDS application such as the"yéér ’and'da/‘tiabaﬂse the

application is connected.

* Manages communicatons with networked services.

* Searches articles by title, author and journal in BIDS databases.

Deleg‘dtes some of the tasks to its subclass, BidsTasks.

Figure 6.13 shows Bids and its subclass, BidsTasks .

BIDS

Class Variables
Communication
Year

Index

History

BIDSTASKS

Figure 6

.13 : Bids and its Subclass

The followings are methods and their respective functions provided by Bids. These

methods cause the invocation of BidsTasks.

« seeHistory
+ doSave
* doRetrieve

» doPreferences

Table 6.4 describes the Bids class variables:

_reviews a list of searches made.
_saves searches on the hard disks.
- retrieves saved searches.

_ alters connection to BIDS such as the effective year of search.

Class Variables | Class Types Descriptions
g . Provides communications between Bids
Communication Terminal
and networked services
Year Integer Holds the effective year of search
History OrderedCollection | Holds a collection of searches .
Holds integer to represent the selected
Index ValueHolder
I database

Table 6.4 : Bids Class Variables

The implementation is carried out using Smalltalk Release 4; B_ut this Vers"vi‘
provide any class that manages interactive communication between the Sm 11
environment and external programs. Such a facility is provided by-’the. elfas-:s';"
Terminal in Smalltalk Release 2.5. Hence, this class was filéd dut ﬁ;om the

gmalltalk image and incorporated into Smalltalk Release 4.

Communication is an instance of Termi s er
minal. It is created when the message
getC.S‘hTerminal is sent to the class Terminal. The message invoke a fork system

call and it executes a UNIX C Shell program. This means that Communication is a

child process which runs concurrently with the user interface.

Figure 6.14 shows the communication between Bids and Terminal. Terminal
provides two methods for receiving and sending messages to networked services. The

methods are:

o« sendAll: (arg) -accepts argument(user input) and sends it to networked

services.
« getData _ The information received from the networked service 1s stored
in one of the instance variables of the communication channel.
The method returns the information to the sender (Bids).
sendAll:(user input)
e : =
Networked
Services
getData :
The Usel' BIDS TERMINAL
Interface

Figure 6.14 : Communication between Bids and Tel‘nljnal

One of the functions of Bids is to manage communication with the ne
services. For example, Bids will not allow data to be sent to Terminal w?heﬁ ti
the process of receiving information from networked services. This is done by ‘”

disabling command buttons and changing their colour to grey.

6.63 REUSING AND REFINING EXISTING CODES

Reusability of software components is one of the major benefits of structured and
object-oriented programming. Existing codes can be reused in the construction of
applications rather than writting program from scratch. New classes may also be
created by refining some of the existing classes. The amount of programming by

refinement is proportional to the amount of difference between the desired behaviour

and the behaviour of existing classes that are being refined (Goldberg & Pope, 1989).

In mature object-oriented systems such as Smalltalk, the amount is quite small.

Smalltalk provides an extensive class library which permits rapid Ci‘eafidﬁ of new
classes by inheritance. Figure 6.15 shows the class View and some of its subclasses in
the Smalltalk class library. Only those classes which are related to the creation of
views on the window for the electronic mail and BIDS aplications are displayed.
Classes such as DisplayTextView and ReadOnlyView are created using the

inheritance mechanism.

s - [SCROLLINGVIEW | . . oo 00000000 -
SEaReRiNg [T [BOOLEARWIDGERVIEWT] - ©© @ 02)

S [STRINGHOLDERVIEW [

[DISPLAYTEXTVIEW | [READONLYVIEWI | SPECIALBUTTONVIEW

[:] Smalltalk-80 Classes

Figure 6.15 : Partial Subclasses of the Class View

Some existing classes are reused for the construction of the prototype. Fm*{:,e;gample,
the class Select ionInListView is used by the Scroll List View of tﬁé‘pfotot"ype.
CodeView provides text-editing capabilities and it is used by Smalltalk as one of the
views in the System Browser. This view 1s reused by the File Editor and Mail EditQL'
Window of the prototype. Examples of capabilities provided by the view are copy; _cut'
and paste. Large amounts of code would have to be written if such views were not

available for reuse.

The creation of any view automatically defines a link to a model or-an as,péct of a
model. For example, in the electronic mail application, the model for ttﬁm;{ iSéroH List
View (an instance of SelectionInListView)is the list of mgssggeS‘ in the current
folder. If the aspect of the model is defined as #messageList; the view would}c‘hécky.

the new list of messages in the current folder whenever the model se_n‘ds; self

changed:#messagelist.

Existing views may not provide all the behaviour 're,q‘uire.d:by the prototype
qubclass are created to provide the prototype with the required behaviours.
example, a new class SpecialButtonView is created as a s_ubclta‘ss:f f
LabelledBooleanView (1ts controller is WidgetControllet:),/;;The,;éjlassi

[abelledBooleanView (and its controller) provide the following behaviour:

. Perform the specified command on clicking using the <select> mouse button. The
command is specified during the creation of the button.
« The colour of the button darkens when pressed (using the <select> mouse button)

and returns to its normal appearance when released.

The controller for SpecialButtonView is SpecialButtonController,
which is a subclass of WidgetController. The view and controller pair inherit all
the behaviour of their parents. In addition, they also provide the following

capabilities:

o Transform the pointer into a pointing finger image when the pointer is inside
button area.

* Display a description of the command performed by the button in the note view of

the window.
* Open a help window when clicked using the <adjust>mouse button.
« Make the button inactive when the command 1s not available. During the inactive

period, the label of the button is greyed. This facility is used by the Ré?\,dM‘ 11

Button to indicate that there i$ no new mail.

A conventional programmer might reuse code by copying and §d1t1ng5 but an object-

oriented programmer can accomplish this automatically by creating a subclass and.

- : i ethod in
overriding some of its methods. A method in a descendent can override a method | “

e le
an ancestor class simply by creating a new method of the same name. For example,

SpecialButtonController overrides the controlLoopBody of 1ts parent by

implementing a new controlLoopBody. The new methbd, /add o

checks whether the <operate> mouse button is pressed.
Similarly, ReadOnlyController supresses the keyboard input by rreirriple:mér’x’ting' |
its own readKeyboard method. The method ignores any input from the keyboaf d
DisplayTextView supresses the highlighting of selected text by reimplementing

the selectionShowing method and assigning selectionShowing variable to false.

Each of these classes has its own controller. For example, the controller for the class
view is Controller and the controller for the class CodeView is
codeController. The method defaultControllerClass is implemented by each

class to specify its controller pair. If the method is not implemented, the view will

assume the controller of its superclass.

CHAPTER SEVEN

EVALUATION OF THE PROTOTYPE

70 INTRODUCTION

Evaluation of user interfaces using real users provides some performance indicator on
how the design is likely to perform in everyday usage (Johnson, 1992). Evaluation
also provides invaluable information on how users use the system and what their

problems are with the interface being tested.

The main activities for the evaluation of the prototype were:

+ Selecting test users.

o Conducting the evaluation session. During the session, users were requested to
run test tasks and then answer the questionnaire. User details forms (see appgndix_
A2), an introduction to the procedure of the evaluation (see appendix Al) and a
list of test tasks (see appendix A3) were given (O test users at the begihning of the

session. The questionnaire (see appendix AS) was given after users had completed

the test tasks.

* Analysing the result of the evaluation.

This chapter discusses the results of the evaluation and analyses the rating of the

prototype. Recommendations are given based on the results of the evaluation.

71 RESULTS OF THE EVALUATION

Thirty test users participated in the evaluation of the prototype. The users had

different computer backgrounds. Some of them were familiar with the Macintosh and

IBM PC only. Others were familiar with Sun workstation. Generally, users who have

some experience using Sun are familiar with the IBM P—C or Maéintosh '
lacintosh, o
them.

The majority of test users had some kind of experience with/wéi-d

Approximately eighty percent of the test users had used electlomc maﬂ//befme

Generally, test users who were from departments such as English and Pharmacy‘wele

not familiar with electronic mail. Twenty percent of the users mennoned that the

facility was not useful for them because most of their colleagues were not using it

There were not many users who had used BIDS before. The study showed that only
researchers and some computer technicians had experience using BIDS and they used
the service occasionally. Users who never used BIDS said that they had heard about
the service but they simply had not found time to investigate what was BIDS all about.

Others mentioned that they disliked BIDS because it was hard to use.

Generally, users do not use any service until they know its advant@gies; 01:’ if there is an
immediate need. In the case of word processing, users had to use it Beéause. th’ey' weife
expected to do assignments using computer word processing. A similar findi’ng,is ~
discussed by Thomas and Kellogg (1989). They point out that a motivational factor

plays an important role in the real world. The convenience of having access to cash 24

hours a day has led thousands of customers to master a variety of teller machines,
often with inconsistent user interfaces. On the other hand, setting the clock on the

VCR, a task of comparable complexity is rarely mastered.

: bt 0 minutes.
Most test users were able to complete the given tasks in betwgg 20 to 50 nu@

: ; o i he prototype
This was quite fast considering that they never had any experience using the p yp

st t Jectronic mail and
before. For some test users, it was the first time they had used electronic me

o i -onfidence and
BIDS. Experienced users were testing the prototype with more cgn ; :

Completed the given tasks faster.

It was observed that test users who were not familiar

following difficulties:

view where they wished to enter data before they typed using their keyboard

» They faced problems using the Sun 3-mouse buttons. It took them some time to

make sure that their fingers pressed the right button.

» The pop-menu were also new for them. It took some time for them to familiarise
themselves to press the <operate> button and hold it to view all the possible

choices on the menu and then select a command.

System message are used by the system to guide users using t

printed on the note view at the bottom of the window. Th@,;m

could be due to the absence of such facility in many applications. Once they realisc;&

that the facility was there, they gave more attention to the view ¢

complete the subsequent tasks that followed faster. This s

that they had gained after doing a number of tasks.

1t was noted that the way users approached their pro
another. Some users preferred to use the help facility w‘hene\
how accomplish the given task. Others preferred to éa,rry out taSké by a trial an
method. When they were stuck and had no other options, they Stél‘té o “
help facility. Since the Help Button is continuously displayed on:tl;e rima

users are reminded to use the facility to accomplish the task

Observation: Users Carrying Out Test Tasks

Observing users carrying out test tasks is very useful because it identifies the
mismatch between how the designer expected the system to be used and how the user

actually uses 1t.

« Electronic Mail ; 4

Reading new mail is an easy task. Users were able to read new mail without any error.
The Readmail Button is explicitly displayed on the primary window. When the but

is activated the new mail is placed inside the scroll list view of the prim:

The procedure to send a mail message is also quite straightfor
following three steps: - .
* First, press the Send Button. The button is explicitly displayed on the primary

window. This causes the Send Window to open.

to confirm his action.

Most test users were able to send a mail message successfully without

One test user was confused with the buttons SendMail and Done 1

. ; osed the mess
She thought that she had to press Done to indicate that she had compose the mes

and then to press SendMail to send the message.

187

Most users pressed the right button, L.e., the Address Button wh

that allows users to add new alias. A few users commented thatj W 1: b
ould be

easier if the command was placed on a button. It was not surprising:fhat the task

slightly difficult because it adopted the concept of progressive disc’losu’rei and was no

designed for beginners.

Creating a new folder was not that difficult for many users. They started to reaiise /that
the pop-up menu was available and may be accessed from the view on the window by
using the operate mouse button. One test user criticised the design that users who
were not familiar with Smalltalk may not be able to associate the <operate> mouse

button with a pop-up menu.

Refiling a message into another folder was quite hard for many user
to carry out previous tasks were available from the secondary
opened by activating one of the buttons. Many users assumed‘*t/h_
be accessed in a similar manner. Some of the users thought that the comman ca

found in the Folder Window because it is related to folders.

Bath Information Data Services

*he fir t',‘/-swtfe, '/w/as, -
The search for articles by title involved two mam steps. The f1rs p

tlvate the rlght
Straightforward because the was a button labelled Tltle Most users ac ‘ |

putton to start a title search. One ygey was confuse
thinking that the button can be used to retrieve 4 search MO‘st o
the search on the prompter and then pressed the OK Button 01; eﬁte d.

r entered a ¢

return.

The second step, i.e., selecting the summary of the search is not easy for
even though the prototype implements at least two Navigating strategies /i
the pointer to point at the summary of the search and the use of thé n e vie

requesting users to select the summary. This was partly due to the following feéso’n’s/ ~
S L 19, i

o Users did not realise that they had to carry out another action to complete thé :taskj,
They expected to obtain the final result after entering the search.
* Since the retrieval of the summary requires some time, it was observed that many:
users did not concentrate much on interface changes. Some users were 1oo’king‘ at
the test tasks, "what to do next". Others were trying to discover various f@aﬁﬁreg ‘
supported by the prototype. It was also noted that some users had the ha /ti’o/f;/
moving the mouse to the place where their attention was /}Ofc;u,se

failure to the navigating mechanism of the prototype.

Most users pressed the Save Button when they were asked to save searches. This
caused the Save Window to open. An instruction was written at the bottom of the.
window requesting users to select the summary of searches and enter a file name.

Many users simply did not care to read the message at the bottom of the windo

Most of the users had the experience of saving a file by ju

followed by pressing the OK Button. They repeated the Samé/”e:)ij/

: - i . summar
Save because the system requires an extra step, 1.€., selecting the e

e d for many. USErS.
The label 'Preferences’ on one of the buttons was quite straightforward ve

i ed other names to
Others found it hard to understand its meaning and they suggest

189

ake it more understand:

- able. But once the right windo

was easy. They simply selected the Year in the year Jigt

It was also noted that users moved ang clicked the pointer on the headi i
‘ ling yi

yiew that holds the information to be manipulated, thinking that by clic

pop-up menu would come out. Whenever users moyeq the pointer onto the vie
, the vie

note view prompted a message informing users to use the Preference ‘Bﬁtt -
HIelces Button to

change the selection.

When users were given the task to search by author whose surname was ‘Célb;n;)':,
most users simply mput the name without checking the input syntax. It was observed4
that even a librarian who was one of the test users did the same mistake. Since
entering surname alone is acceptable by the library service, they just assume it is the
same for BIDS. /

"

BIDS requires users to append the character "_*" whenever authc
unknown. The majority of the users did not input the name with the
this was why no record was found. Generally users were anxious

prompted a message stating that no record was found. They asked whethel

entered the right spelling or they had not input the name in the right way.

prototype has made an unfriendly interface usable".

The file editor/manager was generally easy 0 Use. Most of theiuser -
their gred
carry out the given tasks without any difficulty. A few of them exPYCSSCd h ir gre

satisfaction using the file manager and they praised it lot.

190 -

72 RECOMMENDATIONS

Recommendations given are based on the results of th
e evaluatlon U,
Cr's comm
during the evaluation are placed in appendix B3, |

[t was noticed that users faced difficultieg after they had opened a:ééc

Some of them asked whether 4 help facility was available. Hence it 18; mp t
, ortan

place a Help Button on every secondary window. The help 1nformat10 Should b

related to functions supported by the current window.

In between test tasks, users were asked at random to carry out sifnp/l/e actions that we?e :
related to the given tasks. For example, users were asked to scroll a view to see a
complete display. It was found that some users had difficulty with scrolling because
the Smalltalk scroll bar was quite slim. The width of the scroll bar should be

increased so that it 1s more convenient for users to scroll.

It was noticed that test users faced no problem executing tasks that we
buttons. Thus, it is recommended that more buttons should be place
because they are simple and easy to use. The trade-off is they occup

the window.

B re mor
uthor. It should be able to accept other standard formats Whl? et

.o ieio taken as a surname by the
users. For example, if users enter 'Colomb', then 1t 1=s,vt§ken ‘ ,

ensure successful completion of the search . They would also have an élterﬁa ve if

they wish to cancel the search. Figure 7.1 shows a suggested modal window.

Title Search

(user interface)
23 articles found

Do you want to view a complete search?

Figure 7.1 : Modal Window

7.3 QUESTIONNAIRE RATING

The average rating of the prototype is given in the appendix B1.

Nielsen and Levy (1993) carried out a study on 127 user interfa : l‘ating ’s,calep_‘f

1-5 was used with 1 being the worst and 5 the best. They found that the average rating
satisfaction for a scale rating of 1-5.

In the present study a similar scale rating of 1-5 was 1 ‘
and 5 is taken as the worst. Hence, a rating nf)t. WOrse than |

) : alue is derived from the
Statements that require subjective evaluation. ‘The value 1s eIl o

conducted by Nielsen and Levy (1993).

The rating for statement | (learning to use the system isréa‘vsy‘ $20.

| agreed that the prototype was easy to use. The rating is better than

which were designed for advanced users.

Statement 7 (The system is protected from problems due to operating system or
network) receives the best rating, i.e. 1.2. No crash occurred during the test SCSSiOI,l."
Statement 6 (The prototype is reliable, ..) receives a worse rating compared to
statement 7. This was probably due to bugs which still exist in the program: A few
test users refused to give rating to statement 6 and 7. They argued that if durilzl;g‘ their
testing no crash occured did not means that the system was robust. It ,C‘O,lﬂdZOC‘CUKI' /‘afit

other times.

Statement 8 (The Email application is better that the package I usually use) receives
the worst rating, i.e. 2.4. Some users mentioned that they still prefer the email '
package that they were using because the email of the plototype does not p1ov1de th .

functions which are supported by their packages. The ratmg of thls state 1ent Was ‘

. good rating, i.e. 1.4. This is due to the lack of good user inferface - softwares f

Tr . aphical us
Itis also an indication that users like interfaces Whlch are based on a gt p ;

Interface,

Statement 6 (Help system ig good) is the. subjecti

rating. The rating is 2.2, thus i¢ 1 stil] acceptable (better than

The author believes that the rating for thig Statement is poor becayse £t
O0I because of]

reasons:

« Low usage of the system during the test session
» Design problems, for example, there is 10 help facility on secondarriy':iwr
Appendix B2 shows the grouping of test users according to their j“baé
experience. It also compares the rating given by the different groups of use

average rating given by each group is in the range between 1.75 to 2.0Which is better

than the average rating for the scale 1-5. There is no significant difference between
the rating given by different groups of users. There are many factors that affect the
judgement of test users. Experienced users may give a worse rating because of their
experience using a wide range of software applications. On the other han/d,fheyjm‘y
give a better rating because of their appreciation of the prototype. ‘Inexpériénéed//users
may give a worse rating due to problems using the system and extra effort m learning
to understand new applications. There is also a possibility that the

justified rating, blamin g themselves for difficulties in using ;t/h/é

knowledge and experience with the system and the applicati

Further research with greater number of users and a rev1$e -
_ . D dieel ot computer bac
fequired in order to study how different users with dlfferent_ COIPl v

fespond to the systen.

CHAPTER EIGHT

CONCLUSIONS

§.0 INTRODUCTION

, Software tools

that help users access and use networked information are stil] lagging behind (Dilation éz \:
al., 1993). Recently, several books related to networked services have been publi

(Kahn & Stout, 1994; Dern, 1994: Tolhurst, 1994: Gardner, 19794).7 Mo:st of th/e/m:
describe how to use disparate tools to access networked serviées. ThlS reflects /

range and the complexity of the problem.

Prototype. The referral to user interface guidelines wefe\hele_‘ﬂ -‘?Veq

. N on common sense and past
the Interaction mechanisms could be designed bas«,‘?-d-s@“ Son / .

experience with other software tools. Since it was the first time
1 oL UINE: NOr
user interface software, there was a tendency to overlook some important
nt sp
design. The guidelines also helped to reinforce some of the decmons nim
p‘

the design.

Numerous guidelines to user interface design have been proposed in 'théili'tefét&e’ - dﬁlyf
those guidelines which were applicable to the application to be developed were sélecfed
Most of the guidelines were generally defined and required further interpretation when

applied to specific tasks.

Some of the guidelines that were given greater emphasis in the design of the prototype

user interface were:

« Simplicity - the concept of “progressive disclosure” is adopted so that the system

appears simple but provides the advance features desired by advanced users.

+ Consistency - consistency is enforced within an application and also among all
applications of the prototype. Experiences gained from using an application can be

applied when using other applications.

* Feedback - the system keeps users aware of what is going on. Diffe,rent feedback

mechanisms are used to indicate the status of the computation. ‘D;i:fferen‘t: pointer

images are also used to indicate different types of modes on’the{:ji‘htéfface

* User control - the prototype windows are mostly non—mod 1 wmdo

. o ~ than
provide a flexible interaction with the application. Users may work thh more

one task simultaneously.

§.2 DESIGN OF THE PROTOTYPE

The prototype is completely independent of networked sy
separation between the prototype and application codes of netwo’fked

advantage offered by the separation is that, the prototype can be irripl 1]
knowing the detailed implementation of the service and can be altered w

any adverse effect on the application codes.

Most interactions to networked services are through full-screen meny based intéffac.es.
The advantage of this kind of interface is that it can be supported by low-cost terminals,
Since the prototype is based on a graphical user interface, it runs only on powefful.
platforms that support bit-mapped screen displays. Advances in microelectronics
technology today have made powerful hardware available at a reasonable plji/ce/.: E

The prototype integrates different application programs into a single application. The

The prototype has been developed using an object-oniente languag

of objects such as menu, scrol

reuse. The class library :

Existing views may not provide al] the behaviour needed by the p1'0t6type

Smalltalk inheritance mechanism, new subclasses are
created to provide the
prototype

with the required behaviours (see 6.6.3). The inheritance mechanism permit :

creation of new classes by refining existing classes.

Smalltalk has been recognised as being an effective tool for the construction of

interactive graphical interfaces. The Smalltalk Model-View-Controller (MVC)

methodology has been used as the framework for the construction of the prototype

user interface. The methodology is based on three classes - Model, View, and -

Controller. These classes work together as components of an interactive system.

Communication between the components is handled by passing m

dependency mechanism of Smalltalk. (Dependency mechanism - se

The prototype has proved that Smalltalk is also capable of communicating with difffei'éi

computers and applications in a networked environment. The\‘comm‘uniﬁca‘t?ion is

implemented by using UNIX pipes and forks, in that the output from the application is

piped into the interface objects. Existing codes were reused for this purpose an

of the development time has been saved.

quickly without disr upting other parts of the application. Such

changes whenever there are cha ges

because the prototype has to accommodate

~ tetwork configuration. During the development of the p,.rO.

development of the user interface of the pr ototype is not influenced by the Smallt 1k
a

interaction mechanisms and widgets. Some of them may not be apProPriate for us
for user

interaction with networked services. For example, the Smalltalk scrol] bar and

prompter.

The Smalltalk-80 version 4 has been used for the coﬁstruction of the prototype. This
version is rather robust compared to the earlier version 2.5. The Smalitalk image of the
prototype never crashed during its development. For future development, a’l‘la,té1;
version of Smalltalk, i.e. version 4.1 or VisualWork 2.0 is proposed. These,Vé;sii)né 4‘
provide more mature objects which are needed for the construction of us /
Some of the recommendations to the prototype such as to incr,éaséfh
were not implemented, partly because they could be easily developed

were to be used.

8.4 EVALUATION OF THE PROTOTYPE

The evaluation of the prototype with actual users was carried out to tes

Stages:

' , users use th ‘
them. During this stage the facilitator observed and noted the way ;

. P e prototype.
system. Users were also encouraged to give their OPmIQHS /about th P . yp -

« Answering questionnaire -

Users were then

answering the questionnaire.

The evaluation was carried out after a review of literature that described
evaluation. Observing users executing test tasks and /ratin;g th ystem u

questionnaire are common approaches for evaluating an interface and they are ea

cheap.

Observing users executing test tasks and users’ opinions about the system were help/ﬁllu
because the advantages and disadvantages of each design aspect could be identified.
The data obtained from this process was used to suggest further improvement to the

prototype. A new version of the prototype was not reconstructed due to'the time
constraint. Had time permitted, iterative design and evaluation could have been carried

out until a satisfactory interface was produced.

The result obtained from users’ rating indicated that the prototypei?\&a/
generally liked the interface. The prototype incorporates an 6hline |
system. However, there were no conclusive results obtained/frb ‘
regarding the effectiveness of the help facility. Some usability probléms‘: wete identified

during the evaluation. The online help facility requires further research.

The results of the evaluation were not comprehensive because
novices. They were considered novices because it was the firs

prototype.

8.5 FUTURE DEVELOPMENT

1 databases. Searches can be.

BIDS provides access to various bibliographic citatio

; totype has
made by selecting various fields such as title, author and journal. The b

200

provided all these functions within 4 graphical ﬁser interfa

of the evaluation showed that users preferreq the protokt‘ype‘ <
EEIPNYDPE user

the current menu-based interface,
The prototype has proved the effectiveness of employing database séarcl; .
in

Further research is needed to include advanced database search which is more
mo

complicated. Further research may include other techniques such as naturél laﬁggége

processing and form fill-in to enhance its effectiveness.

The interface could be developed to allow developers or advanced users to customise
the interface according to their requirements. This is due to growing requirement for
users participation in interface design. Frequent and expert users may wish to have
more controls of the interface. For example, users who do not usually use a carbon
copy function may not like the function to appear on the message header of{ihe’if

electronic mail.

The prototype was developed on a Sun Sparcstation that runs Sun’s ope iting system.
Since Smalltalk is portable, the prototype should also run on other hardware élat;forms, .
The prototype was tested on the Macintosh LC. It worked fine but a few alte;a_t;jonsﬁ
were required. For example, the prototype windows had to be resized to su1t the
Macintosh LC small screen. Communications with the networkedjs:c:ryacgs cou ot be

established because the prototype used the object Terminal for corrnm&hi"cftiif
object uses Unix commands, thus it is not compatible with other platf'OI'mS:_/

Further development to allow the prototype to run on the Macmtosh Was 1mpede

f
hardware constraint. The four megabytes of RAM available durlng the time 0

hich
development were just enough to run the prototype O the platform. An object whi

201

allows the prototype running op other platfo
orms

services could be incor

Visvﬂlingaln (]988) pOintS out one Of t] e /
- Challenges ill i
to accol modu[e changing user I'e(] 1ir I e f
11 uements h W. /
€atures th We

regarded as helpful became tiresome ang i 1rritati
ng. Some usefy] 3 -
pproache have

suggested and thus require further research.

The prototype can be developed further so that it include other networkéd . 5
services.

Communications between these services could be automatically established by the
prototype. For example, after carrying out searches using BIDS, users usually access
the local library to check whether the journals that they wish to review are available.
Instead of having users logging on to the libr ary in order to carry out another search, the

prototype may provide options to users if they wish the prototype to carry out the geafch -

for them.

graphical user interface environment is rare..

8.6 SUMMARY

This research has demonstrated the effectiveness of accessing networked se
Be user interaction is aided by a well designed user interface. A -proto‘t_ype‘ha,ys;‘

’\ \dﬁ\(eloped to help users interact with the services. The prototype PfOVl.QeS- ?C?CSS 10

202

electronic mail, Bids and file Manager/editor apq it adopt

of interaction.

The design of the prototype user interface were based on the guide
nes o

design. Even though user interface guidelines are generally defined, yng
‘unde

the guidelines helps produce a usable user interface.

Developing graphical user interface software is not ap easy task. ThlS Tesearch h

shown that Smalltalk is an effective tool for the construction of such an 1nterface Th

Smalltalk Model-View-Controller fr amework is a powerfy] paradigm which separates
interactive appli

ications into three main components that can be Jinked tooether The

Smalltalk class library contains many objects which are needed for construcnon of the

prototype user interface and the object for the prototype to communicate wit}i hetw rkec

Services.

An evaluation followed the completion of the prototype. Thejrrezs;li/
indicated that the prototype was usable and users generally liked the
evaluation also has identified some difficulties faced by users whe int

prototype. The results of the evaluation have been used to recommen improvements fo

the interface.

203

BIBLIOGRAPHY

Allwood, C. M. (1986), "Novices on the Computer: a revie

. W of the literatyre"
International Journal of Man-Machine Studies 25(6) op. 6 iterature!’,

33-658.

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, HF&Secr& A(19
World-Wide Web", Communications of the ACy 37(8), pp. 76-82.

Berry, R. E. & Reeves, C, J. (1992), "The Evolution of the Common User Acc
Workplace Model”, IBM Systems Journal 31(3), pp. 414-428,

Black, U. (1987), Computer Networks - Protocols, Standards and Interfaces, Prentlce-
Hall International Inc.

Brennan, R., Thompson, K. & Wilder, R. (1991), "Mapping the X Window onto
Open Systems Interconnection Standards", JEEE Network Magazine 4(2), pp. 32-40.

Brown, J. R. & Cunningham, S. (1989), Programming The User Interface -'Priﬂéij:)lé;sé
and Examples, New York: Wiley. /

Burbeck, S. (1987), "How to Use the Model-View-Controller : Apphcatlo
Programming in Smalltalk-80", Softsmarts Inc.

CCITT (1988), Data Communication Networks Message Handling Systems, CCITT
Blue Book, Vol VIIIL.7, Recommendations X.400-X.420.

Carroll, J.M. & Mazur, S. A., (1985), "Lisa Learning", Computer 19/(;1/’1’ .

Davis, F.D. (1993), "User Acceptance of Information Technology Sys
Characteristics, User Perceptions and Behavioral Impacts”, Intemafnona
Man-Machine Studies 38(3), pp. 475-488.

de Souza F.L. & Bevan, N. (1990), "The use of Guidelinesj/ir}f:Me u Inte
Evaluation of a draft standard”, in Diaper,D., Gilmore, D., Cockton, G

(eds), INTERACT *90 : Human-Computer Interaction, pp- 435-440

- ; i don:
Ege,R. K. (1992), Programming in an Object-Orzented Environment, Lon
Academic Press.

204

Eglowstein, H. & Smith, B. (19,94_), "E-Mail Fr

Erlinger, M.A. (1993), "Networking - Centerplece of ACadennc Cer?npu
Transactions on EDUCATION 36(1), pp. 9003 o

Gray, P. A. (1991), Open Systems: a business sz‘rategy for the]990s McGraw Hﬂl
Book Company.]

Gray, P.D. & Mohamed, R (1990), Smalltalk-80 - APractzcal Introductzon P1tman
Publishing, UK.

Grimm, R. & Heagerty, D. (1989), "Recommendation for A Shorthand X.400 Address
Notation", Computer Networks and ISDN Systems 17(4), pp. 263-267.

Gould, J. & Grischkowsky, N. (1984), "Doing the same work with Hardcopy and
Cathode Ray Tube (CRT) terminals", Human Factors 26, pp. 323-337.

Hansen, W. J., Doring, R. & Whitlock, L. R. (1978), "Why an examination was
slower on-line than on paper", International Journal of Man-Machine Studies 10, pp.
507-519.

Henshall, J. & Shaw, S. (1988), "Message handling'systems,:X 400/MOTIS", 0SI
Explained: end-to-end computer Communication Standards, Chichester: Ellis
Horwood, pp. 158-200. o

Kahn, R. E. (1994), "Viewpoint: The Role of Government in the Eyolution of the
Internet", Communications of the ACM 37(8), pp. 15-21.

Krasner, G.E. & Pope, S.T. (1988), "A Cookbook for Usmg The Model-View-
Controller User Interface Paradigm in Smalltalk-80", Joumal of Object—Orzented

Programming 1(3), pp. 26-49.

& Schlcker P. (eds) Message Handling Systems and Dsm “'t,ed;Applzcatl’Onﬁé‘. pp-

115-128, Amsterdam: North- Holland.

Lebeck, S, K. (1989), "Implementing MH,
Jacobsen, O.J. & Schicker, P. (eds), Messagf Han
Applications, pp. 101-114, Amsterdam: North-Holla

Marcus, A. (1993), "Human Communications Issues in Advancedi
Communication of the ACM, 36(4), pp. 100-109.

Manros, C. (1989), The X.400 Blue Book Companion : CCI ‘
ISO/IEC MOTIS, UK: Technology Appraisals.

Monk, A., Wright, P., Harber, J. & Davenport, L. (1993), Impréﬁﬁg Ybur Human-
Computer Interface- A Practical Technique, Prentice-Hall International.

Nielsen, J., Frehr, I. & Nymand, N.O. (1991), "The Learnability of HyperCard as an
Object-Oriented Programming System", Behaviour and Information Technology
10(2), pp. 111-120. | |

Osborne, D.J. & Holton, D. (1988), "Reading from Screen versus Paper: There is no
Difference", International Journal of Man-Machine Studies 28(3), pp. 1-9.

Pangalos, G.J. (1992), "Consistency and Standardization of Ursérﬂh‘lt‘ér/faces",
Information and Software Technology 34(6), pp. 3 403

Potosnak, K.(1988), "Do Icons Make User Interface:lgésief to us EEE Software
5(3), pp. 97-99. ‘

Prasad, K. V. K. K. (1990), "On the User Interfaces for Electronic Mailsystem",
Telematics and Informatics Vol 7(2), pp.145-149. \

Raymond, D.R. (1992), "Flexible Text Display with Lector", Computer 25(8), pp. 49-

Reenskaug, MLELT. (1981), "User-Oriented Descriptions of Smalltalk Systems®, Byte

7(8), pp. 75-81.

Samuelson, B. (1993), "Smalltalk Benchmarking Revisit
2(8), pp. 16-21.

Schicker, P. (1989), "Message Handling §
Stefferud, E., Jacobsen, O.J. & Schickef P. (édsf
Distributed Applications, pp. 3-41, Amsterdam: North-IJ an&

Shan, Y (1990), "MoDE: A UIMS for Smalltalk"

258-268 . ECOOP/00PS
pp. 258-268.

Plaisant, C. & Shneiderman, B. (1992), "Scheduling Home'z(/lo’ﬁtfol :DeviceSii)esign
Issues and Usability Evaluation of Four Touchscreen Interfaces”. Juze o
of Man-Machine Studies 36(3), pp. 375-393. :

ternational Journal

Six, HW. & Voss, J. (1991), "User Interface Development:Problerhzs‘and
Experiences”, in H. Maurer (Ed) Lecture Notes Computer Science 555, pp- 306-319.

Simmonds, C. (1993), "Searching Internet Archive Sites with Archie - Why, What,

Where, and How", Online 17(2), p.50.

Smith, S. L. & Mosier, J.N. (1986), Design Guidelines for Designing User Interface

Software. Technical Report MTR-10090, The MITRE Corporation, Bedford, USA.

Steele, D. (1992), Human Computer Interaction, BritishStfén stitution, London,

Sweeney, M., Maguire, M. & Shackel, B. (1993), "Evaluating/Uééf—Computel‘

Interaction: A Framework", International Journal of Man-Machine Studies 38(4,);

Thimbleby, H. (1994), "Formulating Usability", SIGCHI 26(2), pp. 59-64.

Tognazzini, B.(1992), Tog on Interface, Massachusset: Addison-Wesley.

Tarouco L.M.R. (1984), "User Friendly Interface for Messagjng /S‘y’s/tgms_”, in Smith,
H.T. (eds), Proceedings of the IFIP WG 6.5 Working Conference ’qﬁ«Computer-Based ,
Message Services, Nottingham, England, pp. 167-175, May 1984.

Ulich, E., Rauterberg, M., Moll, T, Greutmann, T & Stroh . (1991), "Task

Orientation and user-oriented dialogue design”, International Journal of Human-

Computer Interaction 3, pp. 117-144.

Westlake, D.R. (1992), Geac: A Guide fo
Ashgate Publishing Limited.

Wwilbur, S. (1991), "Impact of Electronic Mail on Orgamsatlonal Structu

International Conference on Information Technology in the Workpla

Wilson, P.A. (1984), "Structures for Mailbox System Apphcamonsn - Smlth H T
(eds), Proceedings of the IFIP WG 6.5 Working Conference on Computer—Basea,’
Message Services, Nottingham:England, pp- 149-166, May 1984

Wirfs-Brock, A. (1991), "Getting to the Mainstream"
Programming 4(2), pp. 51-54.

» Journal of Object—O?iented

Wirfs-Brock, A. (1991), "Surviving in the Mainstream", Journal of Object-Oriented
Programming 4(3), pp. 64-66.

Wright, P. & Lickorish, A., (1983), "Proof-reading texts on screen and paper”,
Behaviour and Information Technology 2(3), pp. 227-235.

REFERENCES

Apple Computer, (1992), Macintosh Human Inge

rface Guidelin‘eis';. a
Addison-Wesley.

Apple Computer, (1991), Macintosh Reference: System 7. -

Apple Computer, (1987), Apple Human Interface Guidelines: Thé Ap}ﬂe Desktop
Interface, Massachusset: Addison-Wesley.

Benbasat, I & Todd, P. (1993), "An Experimental Investigation of Interface Desj gn
Alternatives: Icons vs. Text and Direct Manipulation vs. Menus", International Journal
of Man-Machine Studies 38(3), pp. 369-402.

Berry, R.E. (1992), "The designer's model of the CUA Workplace", IBM System
Journal, 31(3), pp. 429-458.

Blankenberger, S & Hahn, K. (1991), "Effects of Icon design on Human-Computer
Interaction", International Journal of Man-Machine Studies 35(3), pp- 363-378.

Booth, P. A. (1989), An Introduction To Human-Computer Iniérqcfiq , Hove :

Erlbaum.

Bourne J.E. (1992), Object-oriented Engineering: Building Bngineering Systems Using
Smalltalk-80, Richard D. Irwin, Inc.

Brindley, L.J. (1990), "The Electronic Campus and the Challenges of the 1990s”,
University Computing 12(4), pp. 154-158.

Buxton, B. (1993), "HCI and the Inadequacies of Direct Manipulation ;S;}fstems”,;
SIGCHI Bulletin 25(1), pp. 21-22. - ’

Card, S. K., Robertson, G.G., & Mackinlay, J.D. (1991), "The“ln/f«(fiffﬁation
Visualizer: An Information workspace. Proceeding of ACM CHI'91, Conference (New

Orleans, LA, pp. 181-188, April/May 1991

Che Mee, 1. (1990), A Smalltalk-80 Electrop,

Computer Assisted Learning, Phd Thesis, Univers;

Chen, J. (1990), "Providing intringic support for user interface mo or
Diaper.D., Gilmore, D., Cockton, G. & Shackel, B. TER

: (eds), INTERACT ‘o,
Computer Interaction, pp. 415-420). CT

Clark, I. A. (1981), "Software Simulation as a Tool for Usablél;ro

du t Desi n",IBM
System Journal 20(2), pp. 273-295. . :

Coats, R. B. & Vlaeminke, . (1987), Man-ComputerInte;faces: An jﬁti oduct

on to
Software Design and Implementation, Oxford : Blackwell Scientific. \

Colomb, R. M. (1991), "Use of a Personal Workstation to Access Open Network
Services", Australian Computer Journal 25(1), pp. 7-13.

Comer, D. (198), Internetworking with TCP/IP - Principles, Protocols and
Architecture, USA: Prentice-Hall Inc.

Cook, S. (1991), "A new Smalltalk", EXE Magazine 5(8), pp. 43-48.

Cox, B.J. (1984), "Message/Object Programming: An Evolu/tidﬁai'y/‘@ha/ gein
Programming Technology", IEEE Software 1(1), pp. 50-61.

Dern, D.P. (1994), The internet guide for new users, McGraw-Hill.

Diederich, J. & Milton, J. (1987), "Experimental Prototyping in Smalltalk", JEEE
Software 4(3), pp. 50-64. .

Dillon, M., Jul, M., Burge M. and Hickey, C., (1993), "Assessing Information on the
Internet: Toward Providing Library Services for Compute;—McdigtedtCommqnication",

Internet Research 3(1), pp. 64-69.

Dixon, T. (1993), "Obstacles on the Road to Global Networking", Computer Networks
and ISDN Systems 25(1), pp. 9-15. o

Dodani, M. H., Hughes, C. E. & Moshell, M. J. (1989), "Separation of Powers®,
Byte 14(3), pp. 255-262.

Duffy, T.M., Palmer, J E. & Mehlenbvaj
Evaluation, New Jersey: Ablex.

Elkerton, J. (1988), "Online Aiding fo Human-Computer fnterféce"'
(ed), Handbook of Human-Computer Interaction, pp. 345-364. Cce

Erickson, C. (1993), "USENET as 3 Teaching Tool"

. SIGCSE Bulletin 25(1), pp. 4.
47. - -

Gaines, B. R. (1981), "The Technology of Interaction - Dialo

. gue Programming
Rules", International Journal of Man-Machine Studies 14, pp. 133-1 50.

Gardner, J. (1994), A Dos User's Guide to the Internet: email, netnews, and file
transfer with UUCP, New Jersey: Prentice-Hall.

Gay, B. (1933), "Object-Orientation, User Interfaces and Reflective Computation”,
unpublished paper, Department of Computer Science, Aston University.

GEAC (1991), GEAC Implementation at Aston University Library Information
Services, available from Aston University Library.

Goldberg, A & Pope, S.T. (1983), "Object-Oriented Program ing is not Enough”,
American Programmer 2(7&8), pp. 46-59. ’ ~

Goldberg, A & Robson, D. (1983), Smalltalk-80 The Language and its Implementation,
Massachusset: Addison-Wesley. .

Gosling, J., Rosenthal, D.S.H. & Arden, M.J. (1989), The News Book, An -
Introduction to the Network/Extensible Window System, New York: Springer-Verlag.

Graham, 1. (1991), Object-Oriented Methods, Massachusset: Addison-Wesley.

Grudin, J. (1993), "Interface - An Evolving Concept”, Communicqtiqﬁ of the ACY
36(4), pp. 110-119. ’ “

Grudin, J. (1989), "The Case Against User Interface Consistency”, COmmuﬁica-in” Of -

the ACM 32(4), pp. 72-81.

Hahn, H. & Stout, R.(1994), T, Interne
McGraw-Hill.

Hayes, F. & Baran, N. (1989),"A Guide to GUIS", Byte 147, pp

Houghton, R.C. (1984), "Online Help Systems: A Cons

pectus”, Communications of
ACM 27(2), pp.126-133. - ey

Hix, D. & Hartson, R. (1993), Developing User Inte'faces Ensurmg Usabzllly
through Products and Process, New York: Wiley.

Huan-Chao, K. (1991), Comprehensive Support for Developing Graphical, Highly
Interactive User Interface Systems, PhD Thesis, Oregon State University, USA.

Hutchins, E.L., Holland, J.D., & Norman, D.A. (1986), "Direct Manipulation”
Norman, D.A. & Draper, W.S. (eds): User Centered System Design: New

Perspectives in Human-Machine Interaction, London: Lawrence Erlbaum,

In

Johnson, P. (1992), Human Computer Interaction - Psychology, Task, Analysis and
Software Engineering, London : McGraw-Hill.

Kaehler, C. (1988), HyperCard Power: Techniques and Scrzpts Mas/ ch
Addison-Wesley.

Kappel, G. & Min Tjoa, A (1992), "State of Art and Open Issues on Graphical User
Interfaces for Object-Oriented Database Systems", Information and Software *
Technology 34(11), pp. 721-730.

Karat, J. (1988), "Software Evaluation Methodologies" in Helander, M. (ed),
Handbook of Human-Computer Interaction, Amsterdam : North-Holland, pp. 891-
903. :

Krivine, F. (1989), The Aston Information Strategies, available from Aston University

Library.

Lalonde, W.R., Pugh, J.R. & Thomas, D.A. (1985), Smalltalk : Discovering The
System, SCS-TR-80, School of Computer Science, Carleton UniverSItY::Qt-t?‘Wa"

212

Library & Information Services (19.93'), nybo,
Guide to Networked Services g1 Aston Univeréi’
Library.

Lodding, 1. N. (1983), "Leonic Interfacing", 55 Computer Graphic ang.
3(11), pp. 11-20. r Graphic an,
Maguire, M.C. (1990), "A Review of Human Factor Guid

: elines and Technique fo the
Design of Graphical Human-Computer Interfaces” cnique for the

»in Preece, J. & Kéllér, L. (eds),

Human-Computer Interaction, Hempstead : Prentice—Hall—Open University, pp. 161-

184.

Mandelkern, D. (1993),"Graphical User Interfaces: The Next Generation-
Introduction”, Communication of the ACM 36(4), pp. 36-39.

Marcus, A. (1992), Graphic Design for Electronic Documents and User Interfaces,
Massachusset: Addison-Wesley.

Margono, S. & Shneiderman, B. (1987), "A Study of File Manipulation by Novices
using Commands vs. Direct Manipulation", 26t Annual Technical Symposium,
Chapter of the Association of Computing Machinery, Washington D.C =57-62.
June 1987 : .

Microsoft Corporation (1991), User's Guide: A Microsoft Window./ 4

Morrow, T (1992), "Bids ISI - A New National Bibliographic Data Service for the UK
Academic Community", Computer Networks and ISDN Systems 25(4-5), pp. ,44
453. -

Development", Communication of the ACM 36(4), pp. 72-81. ’

Myers, B.A., (1985), "The Importance of Percent-Done PrOgr?éf:s I/ d{i’c}at(;j‘r;forfﬂ' ’
computer-human interfaces", Proceeding of ACM CHI'85 Conference, San nyanclsco_,

pp. 11-17, April 1985.

Myers, B. D. (1992), "Demonstrational Interfaces: A Step Beyond Direct Manipulation f,’ _
Computer 25(8), pp. 61-73.

213

Nielsen, J. (1987), "Classificationof Dialog Tech
19(2), pp- 30-35. .

Nielsen, J. (1993a), "Noncommand User Interfac

es’, COmmumcatzon Fthe /
36(4), pp. 82-99. - on of the

Nielsen, J. (1993b), Usabiliry Engineering, UK: Academic Press Limited

Nielsen, J. & Levy, J. (1994), "Subjective User Preferences versus:Objecti\}e Interface
Performance measures", Communication of the ACM 36(4), pp. 66-73. o

Nielsen, J. & Levy, J. (1994), "Measuring Usability - Preference v

s Perfomance”,
Communication of the ACM 37(4), pp. 72-81.

Nielsen, J & Richards, J.T. (1989), "The Experience of Learning and Using
Smalltalk”, IEEE Software 6(3), pp. 73-77.

Paap, K. R. (1988), "Design of Menu", in Helander, M. (ed), Ed. Handbook of
Human-Computer Interaction, Amsterdam: Elsevier, pp. 205-235.

ParcPlace (1992), Objectworks for Smalltalk-80, Release 4.];*/Usé
Systems, Inc. ’

Peek, J. D. (1991), MH & xmh: E-Mail for Users and Progrdiﬁmer&, OReilly &
Associates, Inc.

Pinson, L.J. & Wiener, R.S. (1988), An Introduction to Object-Oriented Programming
and Smalltalk", Massachusset: Addison-Wesley.

Plattner, B. & Lubisch, H. (1989), "Electronic Mail Systems and >rotocols. Overview
and Case Study", in Stefferud, E., Jacobsen, O.J. & Schicker, P. (eds), Message
Handling Systems and Distributed Applications, pp. 55'10 am: yor
Holland. |

Powell, J.E. (1990), Designing User Interfaces, Microtrend Books, Slauson

Communications, Inc.

Ravden, S. J. & Johnson, G. 1.(1989). Eyg, in

Interfaces : a Practical Method, Chichester Eﬂis.

Reinhardt, A. (1993), "Smarter E-Mail is Coming”, Byze 1?’8'(3‘)"pp

Reisner, P. (1990), "What is Inconsistency", i
& Shackel, B. (eds), INTERACT “90 : Huma

Rogers, Y. (1989), "Icons at the interface: their usefulness"
Computers 1(1), pp. 105-117.

Root, R. W. & Draper, S. (1983), "Questionnaires as aSoftware Evaluatlon Tool",
Proceeding of ACM CHI']983 Conference , Boston, MA, pp. 83-87, December 1983

Sadowsky, G. (1993), "Network Connectivity for Developing Countries",
Communications of the ACM 36(8), pp. 42-47.

Sellen, A. & Nicol, A. (1990), Building User-Centered On-Line Help. In Laurel, B.
(ed). The Art of Human-Computer Interface Design., Massachusset: Addison- -Wesley.

Shneiderman, B. (1983), "Direct Manipulation: A Step Beyond Programmmg
Languages", Computer 16(8), pp. 57-69.

Shneiderman, B. (1992), Designing the User Interface: Strategies for Eﬂectzve Human-
Computer Interaction: (2nd ed), Massachusset: Addison- -Wesley.

Smith, D.C., Irby, C., Kimball, R., Verplank, B. & Harslem, E. (1990), "Designing
the Star User Interface", in Preece, J. & Keller, L.(eds), Human- Computerlntemctwn ‘ '

Hempstead : Prentice-Hall-Open University, pp. 238-259.

Smith, S.L. (1986), "Standards versus Guidelines for Demgmng User Interface
Software", Behaviour and Information Technology 5(1), 47-61..

Sun Microsystems, inc., (1991), OpenWin : User's Guide, Massachuss;”
Wesley. -

Sun Microsystems, inc., (1990), OPEN LOOK Graphical User Interface Applzcatzon
Style Guidelines, Massachusset: Addison-Wesley.

Sun Microsystems, inc., (1989), OPENL

Specification, Massachusset: Addison~W:e$1éy

Tanenbaum, A.S. (1989), Compuger Networks (2nd edy N‘eWJ’éfsé

Thomas, J.C. & Kellogg, W.A. (1989), "Minimizin

. g Ecological Ga _s_i‘n.l‘:t' .
Design", IEEE Software (1), pp. 78-86. e PS 1n Interface

Thomas, D. (1989), "What 's in ap Object?", Byre 14(3) PP.231-240

Thimbleby, H. (1990), User Interface Design, New York : Addison—Wé;iéy

Tolhurst, W.A. (1994), The Internet Resource : Quick Reference,

Indianapolis : Que
Corporation.

Tullis, T. S. (1981), " An evaluation of Alphanumeric, Graphic, and Color Information
Displays", Human Factors 23 pp. 541-550.

Tullis, T. S. (1988), "Screen Design", in Helander, M. (ed), Handbook of Human-
Computer Interaction, Amsterdam: Elsevier, pp. 377-408.

Udell, J. (1990), "Smalltalk-80 Enters the Nineties”, Byre 121'(7) /
Verplank, W. L. (1988), Graphic Challenges in Designing Object-Onented User
Interfaces, in Helander, M. (ed), Handbook of Human-Computer Intemctzon '

Amsterdam: Elsevier, pp. 365-376.

Visvalingam, M. (1988), "User Interface Design: Differing Reqmrements of N 0v1ces
Occasional and expert users", University Computing 10(2), pp. 80-85,

Winblad, A. L., Edwards, S. D. & King D. R. (1990); Objer
Massachusetts: Addison- -Wesley.

216

The prototype consists of three applications. The thre,

o e applications and their respective
functions in brief are as follows: - p -

 Electronic Mail - allows one to send and receive electronic messages

 Bath Information Data Service - allows users to search for articleg by titles; authors'

or journals' name.

* File Editor - provides users with a simple word processing capability.

The prototype is based on a windowing environment and the interaction is mainly by
using the mouse pointer. Only the left and the middle mouse pointer will be used by
the system.

During the evaluation session, you will be asked to perform seivcfail/,fp cific ,
will be given some time to explore the system further, if desired so. | ase talk.aldu‘d_',:
Le. to say what you are doing and why you are doing it. You méjéritﬁiéi‘se and s_u'gge’"'svt:
improvements to the system. No doubt, your criticisms, suggestions, and épinions are
invaluable that will help the facilitator/designer to understand more about the sys
being evaluated.

Again, you are reminded that the facilitator is not evaluating you. Your performance in "
carrying out the tasks will be used to measure how well the systein'ﬁggrves, the users. ’
Please complete the questionnaire to rate the system after you have finished using it. If .

you wish, you may review the system while you are answering the questio naire.

The session should last about one hour.
Drinks and biscuits will be provided after the session.

217

USER DETA[

Please tick (__) the following which is/are r
I am a student '

elevant to

Undergraduate student
Postgraduate student
I am staff

(Please specify : ,)

Please describe your Computer/application experien

ce by using the
following scales: S

0- never used

1 - used but not thoroughly familiar
2 - familiar

A) Hardware

Sun workstation
Macintosh

IBM/IBM Compatibles
Others (Please specify:

B) Applications

Word Processing

(Please specify which package(s):

Electronic Mail Services

(Please specify which package(s):

Bath Information Data Services

Word Processing

Electronic Mail Services

Bath Information Data Services

(user's copy)

1-12 are the test tasks to be evaluateq during this session

Using Mail, send a short message to abdullah’@é&ilf ‘

Activate Electronic Mail from the Launcher,

1 Read new mail - the message that you have sent.

2) Create an alias name for your email address.

If you don't have an emaj] address - use abdullgh @aston.uhurg,

3) Send a short message to your address OR to abdullah@aston. syn,
4) Create a new folder.
5) Refile the message into the new folder.

Activate Bath Information Data Services.

6) Search for articles that contain a title 'user interface’.

7 Save the articles in a file.

8) You are connected to the Science Citation Index Databasé» or he year »994.

Change the connection to the year 1993.

9) Search for all articles by author whose surname is 'Colomb' Q(i’.e.ffor ‘19:92'),,."

Activate File Editor.
10) Open a file 'evaluation’. The file is in a folder named ‘experiment.
1) Copy articles found in (9) and paste to the file 'evaluation’. .

12) Delete a folder named 'temporary' together with its content.

Appendix |
TEST TASKS-2 (facilitator's cop

Read new mail - the message that you haye sent.
Create an alias name for your email addregs
Send a short message to your address OR 10 abdyljgh @aston. sun,
Create a new folder. :

Refile the message into the new folder.
Search for articles that contai
Save the articles in a file,

Change the connection to the year 1993.
Search for all articles by author whose surname is
Open afile 'evaluation' . The file is in a folder n

Copy articles found in (9) and paste to the file 'e
Delete a folder named 'te

n a title 'user interface',

‘Colomb' (i.e. for 1992).
amed 'experiment',
valuation',
mporary" together with its content.

User's actions and comments

Facilitator's notes

220

Appendix A5

QUESTIONNAIRE

1. Strongly Agree
2. Agree

3. Not decided

4. Disagree

5. Strongly disagree

N/A Not Applicable

Learning to use the system is easy -
Commands and information are wel] presented on the screen
The system keeps users informed about what it is doing.

Messages provided by the system are helpful - -
Help system is good - - - -

AN AW N =

The prototype is reliable -

(e.g. users' input did not cause the system to hang).
7. The system is protected from problems due to operatin
or network - - - - B

i

The Email application is better than the package I usua]]y usé -
9. The BIDS application is better than the package I usually use

Please write any comment about the system in the space below, if you have any.

Statements

Learning to use the system is easy

Commands and information are well presented on the screen ¢

The system keeps users informed about what it is doing,

Messages provided by the system are helpful 1.8 0.8
Help system is good - 2.2

The prototype is reliable - 1.5

(e.g. users' input did not cause the system to hang)

The system is protected from problems due to operafing 12

system or network

The Email application is better than the package I usually use

The BIDS application is better than the package Iusually Se

222

Appendix B2

GROUPING oF TEST USERS

——

Familiar with Sun

Familiar with Group 1 (13 test users)

Application Domain Group 3 (8 test users) .

Not Familiar with Group 2 (5 test users) | Group 4 (4 test ﬁgers) :

Application Domain

RATING GIVEN BY DIFFERENT GROUPS OF TEST USERS

Group | Stmel | Stme2 | Sime3 | Stmig

Groupl [1.85 |1.54 |1.77 {1.92
Group2 | 2 2 1.8 |14
Group3 12.25 |1.75 [1.88 |2
Group4 [2.25 1.5 |25 |2

223

USERS' COMMENTS

The system is really robust provided that ope jg famlhar w ‘.h ,

training right before its use wij facilitate the yger.

I found it a bit hard to hit the button (may be because I’ m so used to Macmtoshes)

I think the system would be quite easy to use given more practice.”

Larger font and scroll bar for people with poor eyesight, Use of middle button for

pop-up menu slightly unexpected. A good feature is the amount of button so that\

users need not remember t0o many command.

With the Bids system, I would like to see slightly more sophisticated search

window. I would like to see help on start-up.

On mail I would like to see feature which permits the éditing one. m :headef. 'hlaii' ‘,

message undelete is handy.

On the file editors, the “--new file --” message should disappear when
typing. A drag and drop zone would be useful. More help buttons instead of pop

up menus. Good system overall.
Too many windows opening lead to confusion- need more seq

The idea of using the middle button for help is not 1ntu1t ve unless
Smalltalk users. Perhaps an extra help button on each §CI¢§I! UId better M Y

usual email is simple UNIX mail. This version is much better than the openw;ndowf -

mailer.

224

The BIDS application is gl an impr

such as the way author nameg are presented to

that window is really needed.

In general I found that thjg package more friendly than mq tUNIX ot
! A Mterfaces

There are a few spelling mistakes. The word "Retrieve" 0&&1&% button is confﬁ -
button is confusing.

I thought the function of the button was to carry out search

The word "Preference" should be changed to "Data-bage” Wh/ich o

appropriate.

Pop-up menu should stay on the screen al] the time.

Excellent Potential and I like it very much. It makes an extremely unfriendly system

usable.

I like the appearance of the interface. It is simple. Not lik the CD-ROM 'hterfziCer'I‘

am irritated by its colours.

The system is easy to use and useful. 1 think it is nicer and easier if commands are

visible on the screen.

Done is word that means that I am finished doing something. Close should be,‘g; -
better word - this means that you just want to close the windoy whether OU’:‘haVC':

done anything or not. Another suggestion is to add anoth?# button lab

A message at the bottom of the window is good - it gives a clu “fabOlllfth?lnt@f?c?-_ .

There is not much different between the read-only views, buttons and write Views

(where you have to input your information)

225

I didn’t see the message at til’e,’Bottem

message just beside the buttong

The name send is slightly confusing. The js no clear re]atlon be

send and the opening of window for you to write your ; ‘messag

send my mail.

226

T
.

7
>
77

/’% / /)4/,

‘;;:,

—

.

.

include

7

7 %// // .
e

7
...
// W%///’ /
T - x

REPLY WINDOW

5

R
-

&

T

..

i G

SR
RN

_

.

=

/
o ,:zg/}/é%%%
o /’//,/”?:
7 / -
%

e
.

L
e

STATUS WINDOW

B
' T

. ﬂ%{%{‘e% o

-

%
.

o :

7 . : . :

] ...

i - S
. o .

.
L

.
...
o

: e
G
=

,J,'\;/:\&.Q, :
.
S

.

o

CONFERENCE PAPER

Implementing an Interface to Netw

Abdul Hanan Abdullah! & Brian G,
Aston University, Birmingham, yk.~
Email - 1 abdullah@aston. ac. uk; 2bgajz@aston’a”c

Abstract) ...
computers connected to the university network from their

| o own department. These services include electaanin oo
This paper highlights the general problems and and access to the Jocal liniversity 1211;?;56;122;22“12 o

difficulties in using networked services. A prototype has facilities allow users to send and receive elect
been developed to help user interact with networked m G

services. General design principles which arise in =
implementing a prototype user interface to networked
services are discussed. The construction of the prototype
is based on an object-oriented approach. The way it require such services
communicates with networked services and a help facility

are also described. Remote services z vid | by remote hos

. al services, users may acces
1.0 Introduction

Networked services are a rapidly growing environment
and they facilitate communication among users and
encourage the creation and dissemination of information.
Even though the services have undergone rapid changes,
the development and implementation of methods of
describing and accessing information are still lagging
behind (Dillion et al., 1993). User friendly software tools
are rare. As a result, locating, accessing and using
information provided by networked services can be quite
complicated even for computer experts.

An aspect of networked services that requires research
attention is the user interface. Sadowsky (1993) points
out that the current state of networked services is
relatively primitive and tools to guide users to find items
of significant interest are still

inadequate. A well designed user interface is required if
an effective use of the service is to be achieved. The
interface not only enables users to access various

networked services, but also enables them to navigate the
services. :

A number of networked services provided in a university
environment have been studied. The services provided
can be divided into two: local and remote services.

Local services are provided by local hosts in the
university. Users may access these services using

Hence, users have to accept the difficulties in order
the system. ' -
Some networked services are old-fashion
interfaces even though they may be pre
window of a graphical user interface. M,
generally too modal. Users have to mov,
to another in the hierarchy of menus i
the needed information. Users are not
interface. Since most of the interactiong
lengthy information may scroll up and pa:

ed menu-based.
sented within o
€nu systems are

e from one meny
order to acquire ign I for Tser
n contro] o% the rl?zzfivg: .Issu‘es_ f‘or -

use scroll mode, e
$s the window. dservice

To use networked services, users must first knouw on 22(: gley/retm
which machine the service resides. Then the uger',"‘fﬂfesta/bjhs‘
on to the machine by invoking its unique na the IS‘:ler aces are.
logged on, different procedures need to be carried out to ¥ Support}

be connected to different services. BIDS users are
usually required to log on to a special host in thejr local
institution that supports a connectivity service to BIDS.
Having logged on to the host, users have to log on to the
X.29 (PAD) service. The PAD service functions as an
interface between the users machine and X.25 public
network. At the PAD prompt users have to enter the
address of BIDS. BIDS will then request users to enter a
valid identification and password before they can be
connected to the service.

Yy must log
me. Once

Sparcstation that up
4.12.

S Sun's operating systém
The sections that follow discuss interaction m hanis'

. with the networked seryi the
Graphical user interfaces (GUI) have been developed for s oncdby the Qr

some networked services. The use of the modern GUI 31
technology alone is not enough if consideration of other
aspects of user interface is neglected. For example, users
must be given some kind of notification such as a status Windows create a sense of perceived: stability because:
indicator or transformation of the pointer to indicate that they provide a standard way for users to view and interact
the system is currently busy and not ready to accept any with different kinds ‘ nce more
input from users. than one window-is usuall
and each-one of

Prototype Windows

Users interact ‘with the prototype through windows:

Most of the developments of user interfaces to networked
services are carried out independently by different
developers. Thus, inconsistencies between the interfaces
for different services are unavoidable. For example, most
menu systems require the users to select their choices by
typing their choice and then pressing return or enter, but
in the case of NISS and Tin (a Usenet news reader), users
just type the selection and it is automatically accepted by
the system. As a result of inconsistencies, users have to
keep on learning different styles of interaction every time
they use a new service.

Inconsistencies among the user interfaces include the use
of many different terms to refer to the same action. For
example, different services use different terms to mean
quit from the system. Examples of terms include exit, q
(or quit), end, bye and logout. Thus, it is not surprising
to see users leave the services without quitting after using
them. They simply do not know how to quit.

Not all services support a help facility. The services

which support the facility may not provide any indication
that such a facility is available and the ways to access the

233

: t'f;:‘:;:

yTrvrere
b

L

o7

Secondary window

L

AL s
s

@ Science Citation Index e
O Social Sciences Citation Index -
O Arts and Humanitieg Citation Tndex

Bty ek
A %
:‘ﬁ‘%#:y’ % #414-#‘4
A SR

&

ICANCEL' l OK l

l TICET l

I Qur__]

A secondary window is a window generated by a primary
window. The relation between the main menu, primary
window and secondary window is hierarchical, i.e., a
primary window is generated from the main menu and a
secondary window is generated from a primary window.
The relation is shown in figure 2.

LMain MenuT
l

l PrimaryWindow]

l Secondary Window—l

Figure 2 : Relation between Main Menu,
Primary and Secondary Window

Even though the windows are hierarchical, user
interaction is not modal. Users working with any non-
modal window can simultaneously access any primary or
secondary window. Users may also quit from any point

in the system without having to back up through previous
windows.

Some kind of coordination has to be established between
dependent windows. Shneiderman (1992) suggests an
automatic opening and closing of dependent windows. In
the case of the prototype a number of secondary windows
are defined as dependent windows. The Preferences
Window in figure 1 is an example of a dependent
window. This type of window closes with the primary

234

Primary window \5

Figure 1 : BIDS Windowing System

w?ndpw whenéver users: quit the application, ie. by
clicking the Quit Button on the primary window. -

1992). The Smalltalk-80.S; c
scroll list views. to help. users browse throug
categories, classes and methods support
A scroll list view:is a special vie
which users may select items by’

- Z 7 7 e :-. z #‘4"77 AT " ‘V‘VT =
T

—)

Backup Project.im

(Word Processing) Project.changes understand (Ap

o Demo-FH s¢ What to do when they, ep, {

Small computer unexpectedly -
Graphic helpful if the messag

complete the tagk!

Figure 3 : A Folder Browser n (1987) Caifigo
according to their de

Some feedbac is onl
time, For example; 7

into' a rollin

3.2 Reversibility

Reversibility is widely used especially for text-editing
and graphics by executing undo.' The commz?nd reverses
the effect of the user's previous operaglon.. Such
mechanisms for allowing users to reverse thexr‘acn’on will wants-to dele{u_aza ﬁ
encourage users to learn to use the_ apphcanqn by anortamlthat‘lt/has e
exploration. For example, users may wish to exper;ant d.nkexamp e might ?9 the rem
with various features supé)ortc.d byda Fext(—jfagltmg 1SK.

ication such as changing font size and using different . ‘
ggggcfi[rmatting. If by accident they delete a paragraph, Feedil;acakkl)g;1 ver{xm
they simply execute undo to recover the deleted require ger tim
paragraph.

Other
explicitlyfackfmwl,edge
would be a confirme;

in as part of the inte fac
aining free space on g h rd

portant especially for operations
¢ to complete, Aftera]
user may have forgotten to which action the ma
responding (Smith & Mosier, 1986). Card er
provide the basic guideline regarding respons

f reversibility where users are given the the user's feeling and behaviour. Thé time
oApI})c?r);?]rr?iIt)ﬁooreturn to the ztate just before they activate ~ the user's be}f?‘f“?“r“ls Summarised in table .
the command is the confirmer (Hix & Hartson, 1993).

This is a simple prompt from the interface that requests
users to confirm their action. Figure 4 shows a conﬁrrper
before users send a mail message. User's have the c‘ho1'ce,
either to select 'yes' to confirm their action or press no' to
reverse their action.

A T T |

34 |

N Kool

Do you want to send this message?

Lyes | [mno |

indicators are: (Nielse

They indicate that the system

Figure 4 : A Confirmer on the user's problem,

A confirmer is also used to warn users if they chooqs;}efa
command that may cause irretrievable data loss. This
facility is essential because activating commands is so

easy that users may accidentally choose a destructive
command,

33 Feedback

Provision of immediate feedback is required in °rde9r98()’
keep users aware of what is going on. Smith e al. a K
state "1t is disastrous to the user's model wh'en you invo. "e
an action and the system does nothing in response”.
Since no immediate feedback is provided by the SYSTZL’ ope :
some users of Openwin (Sun Microsystem, 1991) ile u T
an entry from the main menu several times. They keep com n.

&% ACCESSING BIDS % %

Initialising the System

Shment,
I € for novice
guidance includes g pr

a]a_rmg; Prompts, and 1a
—mm materials to he i

Figure 5 : BIDS Progress Indicator

BIDS may not be available at certain timeg of the day. igfs{opn;t ,,
This could be due to system maintenance, Duringapeak For :))(n; :Qid!§pla¥ me
time, users have to be in a queue before the connection to availaglme[.) €, 1 /§¢
BIDS can be established. The status window prompts a on the o 1(1} ¢ library
special message informing that the system is currently . ndo
out of service or the users have to wait in a queue. The
window provides users with the Disconnect Button to corner (’)f the
allow users to quit the service and try it later. attention.” Th
Using the percent-done progress indicator for operations
which require between 2 and 10 seconds would violate
the principle of display inertia (Nielsen, 1993). The
indicator displays itself for a short while and then
disappears. The display happens so fast that it causes
irritation to the user.

The prototype places the user guid
note View at-the bottom of the win €
this view is to help users. using the interfac

view‘can be broadly categorised into th
functions:

34 Progressive Disclosure Describes the function of command b

Helps users to complete a task.
Smith er al.(1990) state "Typically, a trade-off exists Advises/N p .

between easy novice use and efficient expert use. The
two goals are not always compatible". Networked
services are inherently complex, resulting in a user :
interface which is also complex. However, as Alan Kay The note view briefly de
(1977) suggests, user interface can be designed in such a currently indicated by
way that simple tasks should be easy for the user, and T
complex tasks should be possible.

Sun Microsystems (1991) also suggests the concept of
"progressive disclosure" so that the system looks simple
but provides the advanced features desired by the
advanced users. The concept is derived from the design
of consumer appliances and stereo systems. For - .
example, a stereo system has its complex controls placed ~ Completion of some tasks may require
behind panels. more than one command in the righ
example, the creatio]
Apple (1992) implements progressive disclosure by requires more than one step
presenting the most common options in the dialogue box alias, the.next step Is I incl
when it initially appears on the screen. The box holdsa address.
button named More Choices and when the users click the
button, the box expands to display more information and
the button name changes to Fewer Choices.

The prototype hides the complexity of the interface by
delegating a group of related functions to a secondary
window. For example, invoking a button named Folder
causes a folder window to open. The window holds-
commands which are related to folders such-as
activating, creating and deleting folders.

236

and infrequent users because it encourages them
explore the interface with confidence, -

The note view displays errors made by. users.
examples, users may try to delete folders that are
empty or create files using previously used names.
note view on the primar
message if users invoke a mouge button which is not
by the system. In a graphical user interface environ
invoking an inappropriat
as an error.

ment,
€ mouse button can be regarded

The note view is also used as status in
information from a networked service may take a
considerable length of time. The note view displays a
counter showing the number of articles that have beep

retrieved. From the counter, users may estimate how
much longer they have to wait.

dicator. To retrieve

4.0 Online Help

Sellen and Nicol (1990) list five main reasons why users
avoid using help facilities: difficulty in finding
information; failure to obtain relevant information;
difficulty in switching between the help and the working

context; complexity of the help interface; the quality and
layout of help information.

When users need help, they must switch from a problem-
solving mode to a learning mode. Clark (1981) found
that the mode switch sometimes causes users to forget
why help was requested in the first place. Houghton
(1984) suggests that, one way of making help messages
less disruptive is to place them on the screen
simultaneously with the problem.

The solution to the problem is to develop a context-
sensitive help, whereby help messages are displayed
within the user's working context (Apple, 1992;
Shneiderman, 1992). This type of help allows users to
see problem and solution simultaneously, and the user's
application remains active or in control. Therefore, users
are not bothered by the mode change and are not required
to memorise help messages before returning to their
application.

Duffy er al. (1992) point out that users may not even
realise that online help exists unless the means of access
is explicitly spelled out on the screen. One of the buttons
on the primary window of the prototype is labelled
'HELP'. The button reminds users to consult h61‘p
Whenever they encounter any problem. Activating this
button causes a help window to be displayed. The
window explains to users how to obtain the online help
and provides an overview of the application software that
aids users in effectively using the system.

When users press the middle mouse button on any button
on the primary window, a single entry pop-up menu
labelled 'HELP' appears. If users release the mouse
button without moving the pointer away, a context-
sensitive help window is displayed on the screen. Figure
6 shows the behaviour of the button when users press the
middle mouse button.

For
not
' The
Y window displays a special
used

nages the display of output

Input. The user interface also has
actions into commands that are
understandable to. networked services and transform
the-output from the communic'ation'channél before it

is displayed on various views on a window.

the communication channel that sends and receives
data from networked services through the computer

port. The channel has to read data at an appropriate
speed, otherwise; some of the data would be lost.

A communication chanpel is created whenever users
invoke a networked service: ' More than one
communication channel is created if many services are
accessed at a time.- ‘A communication channel is a child
process that runs concurrently with the user interface
process. It is.created using a fork system call that
executes the UNIX C Shell program.

communication
communicate b

channel provides two n
messages. The methods are:

sendAll:(arg) - accepts ‘arg‘ments 1 sebj npu
provided by the sender and sends it to.the network;
service,

+ getData - The information recei

The

<> Networked

getData Service

User Interface
Program

Communication
Channel Procesg

Figure 7 : Communication between User Interface
Program and Communication Channe]

6.0 Object-Oriented Approach and Smalltalk-80
The prototype is developed using an object-oriented
language, Smalltalk-80 (Goldberg & Robson, 1983).
Smalltalk is not just a language, but a complete
programming environment. Users work within an
object-oriented framework of browsing the class library,
deleting objects, experimenting and testing them out and
incorporating them into their applications. More
importantly, Smalltalk forces users to adopt the object-
oriented approach (Thomas, 1989).

As far as reusability is concerned, the different Smalltalk
systems are better than any other object-oriented
languages. Smalltalk provides an extensive class library
which permits rapid creation of new classes by
inheritance (Bourne, 1992). An interface can be built
more quickly using pre-existing library objects such as
menu, scroll bar, buttons and dialogue boxes to construct
an application. Objects created for one application can
be reused as building blocks for other applications.

The prototype utilises the Smalltalk-80 Model-View-
Controller (MVC) framework for the construction of its
interface. The methodology provides a powerful tool that
allows an easy and systematic development of an
interactive application. The model deals with the
underlying functionality, the view presents the model on
the display screen and the controller manages the
interaction of the system with the user.

Communication among the components of MVC is
shown in figure 8. The communication is handled by
sending messages and by the dependency mechanism of
Smalltalk. The view and controller are tightly coupled.
The view stores an instance variable that points to its
controller and vice versa. The view and the controller
also store an instance variable pointing to the model.
This means that both the view and the controller may
directly access information about each other and the
model.

The Smalltalk MV.C met odology is a powerful tool that

allows an easy ahd_s{ys/tematic development of an ‘

Interactive application. Most of the components required
_ Dbased on this methodology are
available-in the Smalltalk library. The same
methodology is also used by Smalltalk itself for
implementing the tools of the programming environment,
for example, the System Browser.. The System Browser
consists of five views, and its information model is the
library of Smalltalk classes: - . '

Reusability of software components is:one of the majo
benefits of structured and object-oriented programmin
(Graham, 1991). Initially, programmers have to invest
some time reading and testing existing code. They may
reuse this code in_the construction of their ‘application.
rather than writing program from scratch: They may:also
create new classes by refining some of the existing
classes. The amount: of, programming by. refinement is
proportional to- the' amount of difference between the
desired behaviour and the behaviour of existing classes
that are being refined (Goldberg & Pope, 1989). In
mature object-oriented systems such as Smalltalk the
amount is quite sm: . '

prot
know:the:detailed implementation ,

be ‘altered. without having any adverse effe
application codes: ' -

because
command. =

code. For example, BIDS users are connected tﬁo‘lt

database for the selected year only. Users who wish to
search for all articles for the last 5 years have (o e

the current search for the previgug year 4 times.
Repeating the current search for the Previous year can be
carried out by selecting z from the search menu. Every'
time users carry out a search for the previous year, the
current year will be set to the year before, If users wish
to make another search for all articles for the Jast number
of years, they have to reset the current year to 1994 (the
current year) and keep on repeating the search a number
of times. The option menu can be used to change various
settings, including switching the current year.

The prototype allows users to define the range of years
for which the search is effective. Users may specify the
range by using the Preference Window (see figure 1).
They may select the range by using the mouse, The
prototype automatically carries out the search for the
years that are specified by users.

The prototype integrates different application programs
into a single application. The integration provides users
with a consistent method of accessing and using the
services. For example, the existing library and BIDS
services do not provide a consistent way of accepting
input when users carry out a search. The library users
may specify the surname of the author if the initials are
unknown, but BIDS users have to specify the surname
and append it with ' _*'. The prototype ensures a
consistent input to these services by scanning user input
to BIDS. If the characters '_*' are not appended by the
users, the prototype appends it to the input before
executing the search.

An evaluation was carried out on the prototype. Users
were given a number of tasks to execute. When they
were asked to search by author whose surname was
"Colomb" using the BIDS services, most users simply
input the name without bothering to check the input
syntax. Since typing the surname alone is acceptable by
the library service, they just assume it is the same for
BIDS.

Integrating the services provides the opportunity for
services to communicate with one another. The BIDS
services display a list of articles in different journals if a
search is successful. Users then have to log on to the
library services if they wish to check whether the journals
listed are available in the library. They have to search for
the journals one by one. If the services are integrated, the
search can be carried out automatically by the prototype.
This facility is not yet implemented by the prototype.

Smalltalk is not easy to learn. This statement is based on
the authors' experience and it is in agreement with other
Smalltalk users (Diederick & Milton, 1987; Nielsen &
Richard, 1989; Hix & Hartson, 1993). It takes about 3
months for programmers who are familiar with a
procedural approach to become proficient in Smalltalk.
Once learnt, the flexibility and expressive power of the
language as well as a large class library of predefined
classes make the development of the prototype easier and
faster,

239

Capability js ';SSCDV,I.
accommodate changes whene
network configuration or network ed

Acknow_ledgeméntsf .

’I‘hq authors would like to thlank‘anoiiyméu‘s: '
reviewers, Mary Finean and Sharon Penfold f

comment‘s on earlier drafts of this paper: Abd anan" |
Abdullah's research is sponsored by the Government of
Malaysia, — .

References

Apple Computer, (1992), Macintosh Human Intérﬁzc,e -
Guidelines, Addison- Wesley. '

Card, S. K., Robertson, G.G.; & Mackinlay, I.D. (1991,
"The Information Visualizer: An Information
workspace", Proceeding of ACM CHI'9] Conference,

New Orleans, pp. 181-188. .

Diederich, J. & Milton, J. (1987), "Expeﬁm_ental
Prototyping in Smalltalk”, JEEE Software 4(3), pp. 50-
64. -

Clark, L. A. (1981), "Software Simulation as a Tool
for Usable Product Design", IBM. System Journal,
20(2), p.2.

Dillon, M., Jul, M., Burge M
"Assessing: In
Providing:

E. & Mehlenbacher, B,
Online Help: Design and Evaluation, Ablex.

Goldberg, A & Pope, S.T. (1983), "Object-Orie.
Programming is not Enough", American Programmer
2(7&8), pp. 46-59. . . '

Goldberg, A & Robson, D. (1983), Smalltalk-8!
Language and its Implementation, Addison

Graham, L. (1991), Object-Oriented Methods, Addison
Wesley. . ' -

/ ’(1953 Developing User

Hix, D & Hartson, ; -
rough Prodycis and.

Interfaces: Ensuring U
Process; Wiley.

Houghton, R.C. (198
Conspectus”, Communic
1330

Magérs, c;s,,:(83), “An Experimental E:

online HELP: for x}qn—pfbgrgmme’_rs, In Proceeding

CHI'83 Human Factors in Computing Systems , pp
281.

Min Tjoa & Kappel, G. A. (1992), "State of Artand
Open Issues on Graphical User Interfaces for Object-
Oriented Systems", Information and Software
Technology 34(11), pp. 721-730.

Morrow, T. (1992), "Bids ISI - A New Nationa]
Bibliographic Data Service for the UK Academic
Community", Computer Networks and ISDN Systems
25(4-5), pp. 448-453.

Myers, B.A. (1985), "The importance of Percent-Done
Progress Indicator for computer-human interfaces",
Proceeding of ACM CHI'SS Conference., San Francisco,
pp. 11-17.

Nielsen, J. (1987), "Classification of Dialog Technique”,
ACM SIGCHI Bulletin 19(2), pp. 30-35.

Nielsen, J. (1993), Usability Engineering, Academic
Press.

Nielsen, J. & Richards, J.T. (1989), "The Experience of
Learning and Using Smalltalk", JEEE Software 6(3), pp.
73-71.

Sadowsky, G. (1993), "Network Connectivity for
Developing Countries”, Communications of the ACM 36(8),
pp. 42-47.

Sellen, A. & Nicol, A. (1990), Building User-Centered
On-Line Help. In Laurel, B. ed. The Art of Human-
Computer Interface Design. Reading, MA: Addison-
Wesley.

Shneiderman, B. (1992), Designing the User Interface:
Strategies for Effective H uman-Computer Interaction:
2nd ed. Addison-Wesley.

Smith, D.C., Irby, C., Kimball, R., Verplank, B. &
Harslem, E. (1990), "Designing the Star User Interface”,
in Preece, J. & Keller, L.(eds), Human-Computer
Interaction , Prentice-Hall-Open University, pp. 238-259.

Smith, S. L. & Mosier, J.N. (1986), Design Guidelines
Jor Designing User Interface Software. Technical Report
MTR-10090, The MITRE Corporation, Bedford, USA.

Sun Microsystems, inc. (1991), OpenWin : User's Guide,
Addison-Wesley.

Thomas, D. (1989), "What 's in an Object?”, Byte 14(3),
pp. 231-240.

