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Abstract

Jackson System Development (JSD) is an operational software development method which addresses most
of the software lifecycle either directly or by providing a framework into which more specialised techniques
can fit. The method has two major phases: first an abstract specification is derived that is in principle
executable; second, the specification is implemented using a variety of transformations. The object oriented
paradigm is based on data abstraction and encapsulation coupled to an inheritance architecture that is able
to support software reuse. Its claims of improved programmer productivity and easier program maintcnance
make it an important technology to be considered for building complex sofiware systems. The mapping of
JSD specifications into procedural languages typified by Cobol, Ada, etc., involves techniques such as
inversion and state vector separation to produce executable systems of acceptable performance. However,
atpresent, no strategy exists tomap JSDspecifications into object oriented languages. The aim of this research
isto investigate the relationship betweenJSD and the object oriented paradigm, and toidentify and implement
transformations capable of mapping JSD specifications into an object oriented language typified by
Smalltalk-80. The direction which the transformational strategy follows is one whereby the concurrency of
a specification is removed. Two approaches implementing inversion — an architectural transformation
resulting in a simulated coroutine mechanism being generated — are described in detail. The first approach
directly realises inversion by manipulating Smalltalk-80 system contexts. This is possiblc in Smalltalk-80
because contexts are first class objects and are accessible to the user like any other system objcct. However,
problems associated with this approach are expounded. The second approach realises coroutine-like
behaviourina structure called a ‘followmap’. A followmap is the result of a transformation on a JSD process
in which a collection of followsets is generated. Each followset represents all possible state transitions a
process can undergo from the current state of the process. Followsets, together with exploitation of the class/
instance mechanism for implementing state vector separation, form the basis formapping JSD specifications
into Smalltalk-80. A tool, which is also built in Smalltalk-80, supports these derived transformations and
enables a user 1o generate Smalltalk-80 prototypes of JSD specifications.
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Scientific men have been repeatedly urged to co-
operate in finding the solution of the problems that
threaten our times. This is an unauthorised and indi-
vidual contribution to a subject . .. It must not be taken
as representing any but the author’s own original
Studies in the subject.

Frederick Soddy

1  Introduction and Overview
1.1 Abstraction, Development Methods and Paradigms

Alan Turing in one of his many lectures described the computer as a “Universal Machine”
[¢f. Brown90). Today, Turing’s vision of the wide use of computers is all too apparent. Computers permeate
every facet of the entire social fabric: industry, health, defence, education, transport, etc. However, the
growing need for automation and computerised systems in our day-to-day working is now becoming an acutc
problem; society’s demand for new and ever more complex systems is continually increasing in its pace
[Sommerville89]. Unfortunately, the supply of reliable, cost-effectively produced systems is not material-
ising quickly enough to quench this demand.

The approachused inthe past for building software systems presented a somewhat unfavourable picture
to that of hardware development. Unlike the latter, software development was seen as a non-cngineering
activity; the result was that products were poorly built, unmaintainable and, in many cases, unwanted
[Ratcliff87]. This view of software development has gradually shified over the last decade. An important
factor in this shift has been the concerted attempt by the software community to become a more maturc
industry. By moving out of a ‘cottage industry’ approach to building systems into one which could be seen
as a more scientifically based engineering activity, the discipline of ‘Software Engineering’ emerged
{Naur76]. Originally, this much needed move was due not to careful planning or prudence on behalf of the
software community itself, but as a reaction to the increase in hardware performance. Today, with hardware
prices continuing to fall along with attendant increases in performance and reliability, the cost and quality
of any new system centre on its software. High software development costs and poor quality can ultimately
be attributed to system complexity and our inability to deal with it — complexity in terms of both the scalc
of the problem to be solved and its intellectual difficulty. Handling system complexity is one of the software
developer’s greatest challenges. “Controlling software development and maintenance has always involved
managing the intellectual complexity of programs and systems of programs” [Shaw80].

The main approach to controlling complexity during software development is the use of appropriatc
abstraction techniques. The term abstraction relates to any mechanism which helps to reduce complexity by
separating that which needs to be seen from that which can be hidden [Shankar80, Aretz82]. As examples,
programming languages are abstractions over basic machine level semantics, procedures and functions are

abstractions over expressions and statements that capture functionality; modules permit abstraction overdata
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type behaviours. Different languages provide differing abstraction capabilities, but all abstractions are there
to help the programmer express solutions to problems at levels of representation conceptually appropriate
to the latter.

Abstraction can be used at all stages of software development inasmuch as the development of any
system can be decomposed into separate tasks. Each task applies appropriate abstraction techniques, the
results of which are used as inputs to another task. The ri gorous application of abstraction techniques in each
task can be seen collectively as a development method. Development methods partition the complexity of
solving a problem into manageable chunks. A good development method provides a criteria and techniques
to guide the user from one level of abstraction to another. A pathoftentakeninasoftware developmentmethod
follows the lines of creating an abstract specification and then successively refining or expanding the
specification to generate a more concrete representation of what is wanted, typically a program or suite of
programs. This activity can take many forms, and there are many factors which influence the ease of its
execution. Any techniques and tools, the use of which can automate or semi-automate this activity and
increase the effectiveness of its application, are to be welcomed.

From a general viewpoint, the categories in which are placed different development methods, or
programming languages, say, can be referred to as paradigms. A paradigm is a way of perceiving certain
phenomena of interest under a specific conceptual framework characterised by a collection of axioms that,
together, form a particular ‘template’ or ‘model’. For example, computation is based on state transitions in
the procedural paradigm, whereas in the functional paradigm, computation is based on mathematical
mappings from inputs to outputs. The next section briefly reviews three particular software development
paradigms which underpin this thesis, namely the operational, transformational and object oriented
paradigms.

1.2 Three Paradigms

Operational

A distinguishing feature of the operational paradigm is its approach to specification [Agresti86,
Zave84]. Stated simply, an operational specification is a formalised abstract specification which in principle
can be executed, thus generating the behaviour of the specified system. System specifications are created
carly on in the overall development process and are the basis from which programmers build the required
software. However, many development methods construct system specifications that are partly orcompletely
informal. One constraint this imposes is that it is not possible to see the behaviour of the System until parts
of the specification are realised in code, which is normally late on in the development process. On the other
hand, the execution of an operational specification gives developers an early preview of how the system will
behave when implemented. An operational approach can therefore lead potentially to a reduction in the

overall cost of development since validation of functional requirements can take place at an earlier stage than
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Of the many developmentmethods available to the systems builder, only a few belong to the operational
paradigm; examples include Paisley [Zave82, Zave84a], Gist [Balzer82), Me-Too [Henderson86] and
Jackson System Development (JSD) [Jackson83]. Of these, JSD is the one that is in commercial use in the
UK, and is the one with which this thesis is concemed with.

Transformational

A transformation is a prescription for the mechanical conversion of one formal representation into
another that preserves correctness when the representations are viewed under appropriate interpretations
[Balzer81]. An obvious example of a transformational system is a compiler. A compiler takes some high-
level programming language source code and transforms it into some target machine code representation.
These two representations are completely different in syntactic form but interpretively are the same. The
compiler embodies transformational rules which exhibit behaviour-preserving semantics. Thus, the exter-
nally observed behaviour of executing the machine code is what one would expect from interpreting the
source code specification.

The application of formal transformations to artifacts such as specifications and diagrams to generate
wanted implementations is in direct contrast to the ‘manual’ approach usually taken [Agresti86]. A strategy
for implementation which is completely informal tends to rely on the ingenuity of programmers to ‘hand
generate’ code. This approach has its problems as there is often little, if any, systematic foundation to guidc
the programmer. Transformational systems, however, address “the labour intensiveness of software
development by using specialised computer software to transform successive versions of the developing
system mechanically” [Agresti86]. Transformational tools are usually found at the implementation end of
the system development life-cycle e.g. a compiler, but are rarely found in the domain of specification
manipulation. Another hallmark of an operational approach like JSD is that it embodics transformational
techniques which enable the system builder to generate target implementations from abstract specifications.

An opportunity therefore exists to build tools to automate these transformations.

Object Oriented

Object oriented programming is a relatively recent approach to developing software systems that has
become very popular withsoftware developers overthe last decade. The encapsulation of both behaviourand
state within a single kind of entity which amalgamates all processing activity — namely, the object — is
perhaps the most significant departure from the procedural paradigm, in which behaviour and state are
explicitly separated into ‘active’ operations and ‘passive’ data respectively.

An exact definition of ‘object oriented programming’ is still being debated, but the following
characteristics are usually to be found in the object oriented languages currently available: data abstraction
and encapsulation in the form of objects, message passing to achieve processing activity, class hierarchics
and inheritance to enable code reuse, polymorphism to achieve more general abstractions and, persistence

(o manage the retention of objects. These concepts will be elaborated on in a later chapter.
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Of the many object oriented languages now available, it is Smalltalk-80 which is considered the
‘archetypal’ [Cook86], ‘quintessential’ [Wilson87] and ‘purest’ [America86] of all. The Smalltalk-80
language and environment popularised the object/message metaphor during the eighties, with the result that
many new object oriented languages have been developed, such as Eiffel [Meyer88] and CLOS [Keene89].
Additionally, the software community has seensuch potential in this new paradigm that procedural languages
such as C and Pascal have had object oriented extensions grafted onto them. It is these ‘hybrid’ languages
which are now driving the interest in object oriented technology. “Interest in the object oriented approach to
software development has been kindled by the release of extensions to support the necessary additional

functionality, and the emergence of new language variants such as C++” [Cooper90].
1.3 Scope of Research

Aim and Objectives

To date, transformations of sufficient generality exist for implementing JSD specifications in the
procedural paradigm typified by languages such as Pascal, Fortran, Cobol, etc. However, no transformations
currently exist for mapping JSD specifications into object oriented languages. The main objective of this
research has been to rectify this situation. In order to identify appropriate transformations, an exercise in
comparing and contrasting the two domains involved was undertaken. The identification of general
relationships resulting from the comparison exercise was then used to construct transformations that were
incorporated into a useful tool. The tool enables a user to prototype a system by entering a JSD specification
description and then automatically transforming the specification by generating a series of Smalltalk-80
classes which can be immediately evaluated to show the behaviour of the specification.

It is important to appreciate that the aim of the research has been neither to develop a new method for
building object oriented applications nor to modify a current development method (i.e. JSD) to cater for
implementation features such as inheritance that are found in object oriented languages. This fact is
emphasised because JSD has recently been classed as a possible object oriented design approach for building
systems [Masiero88]. Researchinto development methods which reside within the object oriented paradigm
are being undertaken elsewhere [Booch86, Bailing9, Mclintyre88, Pun89]. These methods attempttoidentify
objects and behaviours in their applied problem domains and then classify these objects to form initial
specifications. Other techniques are then applied to these specifications to formulate programs which arc
generally implemented in some object oriented language.

To summarise, the main aim of this research has been to extend the implementation capability of JSD

into the object oriented paradigm by realising the following three objectives:

. Identify the general relationships between JSD and the object oriented paradigm,;

. Construct a set of general transformations to map JSD specifications into a non-specific object
oriented language;

. Automate the derived transformations as a prototyping tool using Smalltalk-80 as the target
environment.
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Related Work

During the survey of literature, one piece of work carried out in J apan appeared to be strongly related
tothis research. The Japanese research has culminated in the generation of a tool to execute JSD specifications
directly [Kato87]. The approach taken is to describe a JSD specification in a language called JSL (Jackson
System development Language). S pecifications are entered graphically into the JDE (Jackson system
Development Environment) and then annotated using JSL. The JDE parses JSL and generates an interme-
diate representation which can then be interpreted. The interpreter is made up of five major parts: message
parser, process interpreter, scheduler, uscr interface and utility routines. An interesting point regarding the
interpreter is that it is written in an object oriented style using Common Lisp with Flavors; it currently runs
on a TI Explorer machine.

The work described here takes a different approach to that of the J apanese. Basically, a specification
is entered using a tool held within the Smalltalk-80 environment itself. The tool automatically transforms the
specification into a series of Smalltalk-80 classes, which can then be loaded and run. The major differences

between this approach and that of [Kato87] are as follows:

. Nonew languageisinvolved; JSD specifications are entered graphically and annotated directly
with Smalltalk-80.
. Entered specifications are transformed into a series of classes which can then be loaded and run

outside of the development tool. Hence, code generated from the tool can be exported and run
on any other Smalltalk-80 platform.
. Although Smalltalk-80 is the target environment used, the transformations are appropriate to
other architectural variants of the object oriented paradigm.
. Unlike the Japanese system, the implemented specification has no concurrency withinit, as this
is removed by the transformations.
In short, this thesis is fundamentally involved with general transformational systems targeted at object
oriented languages, and it is this which ultimately reflects the major difference between the two works.

Areas not covered

JSD is a comprehensive development method that uses a rich variety of techniques and concepts. As
such, this research, could not realistically encompass the whole of JSD. To make the research more

manageable, consideration of the following features of JISD specifications has been deferred:

*  Backtracking - aspecialised technique sometimes used when specifying the structure
of a process;
*  Network loops - situations in which potential deadlock occurs, i.e. when many proc-

esses are waiting for each other;
*  Controlled data streams - an additional communication primitive giving tighter control over
interaction between two processes.

The reader wishing to explore further the above elements of JSD is referred to [Jackson83, Renold8§].
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1.4 Thesis Structure

The thesisisdivided into seven majorchapters. Chapter?2 gives adetailed introductionto objectoriented
environments. A general historical introduction to the development of the paradigm is presented in the first
section. Next follows a brief review of all the concepts to be discussed throughout the chapter followed by
adescription of what objects are. There then follows three sections discussing other aspects of object systems
— object characteristics, object organisation (inheritance) and finally object communication (message
passing).

Chapter 3 presents the JSD method but from a perspective not usually adopted. Although the
presentation of the method follows the usual route of modelling, specification and implementation phases,
the activities undertaken in each phase are compared with the object oriented paradigm. This presentation
gives a firm basis on which to develop the wanted transformations, presented in the following three chapters.

Chapter 4 discusses transformational systems and the transformational approach to implementation.
A novel transformational approach specifically for the Smalltalk-80 system is presented, which involves
manipulating the run-time stack of the virtual machine. In order to understand this, a brief overview of the
Smalltalk-80 system is included. Finally, it is shown that although this approach works well, it is not a general
transformation and so has to be abandoned.

Chapter S presents a more general transformational approach to that given in Chapter 4. The approach
is based on the use of an abstraction called followsets. Basically, process structures are transformed 1o an
alternative representation to which the standard techniques of inversion and state vector separation can be
applied. It is shown that the usual single pass approach to implementation (inversion and state vector
separation are usually applied at the same time) has become a two phased approach by having to first
destructure process structures.

The penultimate chapter presents a description of the specific implementation techniques for realising
the transformational approach described in Chapter 5 in Smallialk-80. A prototyping tool, supporting thosc
transformations including some of the techniques applied in the user interface, together with features
provided to make the developer’s task more easy, are also described.

The concluding chapter presents a brief resume of the main points in the thesis, examines the extent and
success of the work accomplished, and discusses the support tool’s uses and limitations. The chapter ends

with some remarks on how the current work could be usefully elaborated as partofa future research package.
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The beginning of wisdom for a programmer is to
recognise the difference between getting his program
to work and getting it right. A program which does
notwork is undoubtedly wrong, but a programwhich
does work is not necessarily right.

Michael Jackson
2 General Characteristics of Object Oriented Languages

2.1 Historical Context

General

The comerstone of object oriented programming is the encapsulation of abstract behaviour
[Tsichritzis88], and the reuse of software components [Meyer87]. Because of these two characteristics,
object oriented programming can be classed as a ‘packaging’ paradigm [Cox86]. Its claims of improved
programmer productivity [Wilson87] and easier program maintenance make it an important emerging
technology for building complex software systems [Pascoe86]. The historical development of the object
oriented paradigm is quite difficult to trace, as there is no one person or organisation solely responsible
forits development. Most of the software community attributes the birth of object oriented programming
to the Simula language [Dahl66] and its commercial popularisation via Smalltalk-80 [Stefik86,
Harland84]. However, the historical transition from Simula to Smalltalk-80 is complicated by the fact
that many sources have, in some small way, contributed to the paradigm’s development.

The first reference to ideas about objects can be found in work undertaken c. 1962/1963 by Ivan
Sutherland at MIT [Sutherland63]. Sutherland produced a system called Sketchpad, which enabled a
user to enter graphically engineering drawings using a light pen. He “ ... believed that the pictures on
the screen should be a representation of some meaningful structure inside (the computer), and so
Sketchpad was the first object-oriented programming system: it had objects, instances and classes”
[Kay87]. Sutherland’s insistence on having internal data structures for each image on the display allowed
users to make multiple copies of objects without having to redraw them individually.

The next development took place in Europe with an extension to the Algol 60 language undertaken
at the Norwegian Computing Centre by Ole-Johan Dahl and Kristen Nygaard, who produced alanguage
specifically for simulation programming and system description. Thatlanguage was Simula-1, designed
between 1962-64 and available in 1965 [Nygaard86]. Simula-1's departure from Algol-60 was the
introduction of activities (Classes) enabling programmers to build data abstractions. Instances of these
activities, called processes (objects), could be generated in a similar fashion to copying shapes in the
Sketchpad system. The second major release of the language, Simula-67 [Dahl66], renamed activities
and processes to classes and objects respectively. The significant addition to the language was “the
inheritance concept, that ... solved the memory resource problem by making commonality between
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different classes explicit” [Goossenaerts88]. Most of the object oriented programming community see
Simula-67 as the start of the object oriented revolution [Thomas89]. However these new ideas did not
gain widespread attention until the development of Smalltalk [Tesler84] and as such have made
Smalltalk “... the principal object oriented language” [Diederich87]. As Smalltalk-80 plays a major role
in this research, a separate historical description of it can be found in the next section.

Since the commercial availability of Smalltalk-80, other object oriented programming languages
have emerged. Most of these languages are hybrids [Baines89], retaining theiroriginal constructs as well
as having object oriented extensions. Possibly one of the more interesting of these hybrid languages (the
first being Flavors, the Symbolic’s extension to its Zeta Lisp [Moon86]) was Clascal, an extension to
Pascal, developed at Apple Computer Corporation USA which first appeared on their Lisa series of
microcomputers. Clascal went through several modifications (undertaken by N. Wirth) and was renamed
Object Pascal, the language since used for most software development on the Apple Macintosh series
of machines. The success of Object Pascal lay in the fact that Apple, as well as providing developers with
an object oriented language, also provided a class hierarchy called Mac App [Schmucker86] for reuse,
similar to that provided by the Smalltalk-80 environment.

During the last decade, the popularity of the object oriented paradigm has rapidly increased, and is
becomingthe “... structured programming of the eighties” [Rentsch82]. With four European conferences
and five world conferences (the fifth was a joint European and world conference held in Autumn 1990),
research in this area is very active. The emerging favourite programming language currently seems to
be C++ [Baines89], ahybrid of the Clanguage. C++ was developed at Bell Labs (where C itself was born)
by Bjame Stroustrup. The project in which C++ emerged originally set out to correct some of the
shortcomings the C language was perceived to have. The language was released in 1984, shortly
followed by the de facto standard C++ text [Stroustrup86]. Today, C++ compilers can be found on most
Unix workstations and many PCs.

Smalltalk-80

The development of the Smalltalk language has its origins in the Flex (FLexible EXtendable)
language developed by A. Kay [Kay69]. Kay had been exposed to both Simula and Sketchpad
[Sutherland63], and incorporated their object oriented mechanisms into his language. His piece of
original thought was to devise a system to enable these objects to undertake some kind of processing
activity and communicate with each other. Thus, the idea of sending messages to objects was conceived
[Nelson80].

Smalltalk’s development was started during 1971 by the Learning Research Group headed by Alan
Kay at Xerox Parc and went through four major stages. The impetus for Smalltalk was to ... support
children of all ages in the world of information” [Ingalls78]. This goal was driven by “... the desire to
make simple things VERY simple and complex things VERY possible” [Deutsch89). The first
Smalltalk, Smalltalk-72 [Schoch79], was developed between 1971-75 and included many features found
in today’s Smalltalk platforms, one of the more notable of these features being ‘Turtle’ graphics that
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came from the Logo language. Logo is a dialect of LISP and was developed under the direction of
Seymour Papert at MIT during the late 60’s. Logo’s ability to produce (spirograph like) graphics easily
* ... largely accounts for the adoption of turtle graphics as a subsystem of languages such as Smalltalk,
Pascal, and even some implementations of PILOT” [Lawler82]. At the same time as Smalltalk-72 was
being developed, the use of objects emerged in the parallel processing community. The idea was to
Tepresent concurrent activities as actors where message passing was used for concurrent computation.
The actorabstraction was developed by Hewitt at MIT, and has since been formalised by Agha[Agha86].
It has been the basis for languages such as Plasma [Hewitt77], Actl [Lieberman87] and ABCL/1
[Yonezawa86].Itis hard to determine exactly who influenced whom at this period, but itis probably true
to say that there was much ‘cross-fertilisation’, as evidenced by the acknowledgements in Hewitt [ibid].

The next major incamation was Smalltalk-76 [Ingalls78]. This differed from Smalltalk-72 in that it
had a fixed syntax and so could be compiled into a byte code representation for efficient interpretation.
(InSmalltalk-72, “each class was responsible not only for its own behaviour and state definition, buteven
for parsing the token stream that followed a mention of an instance” [Deutsch89]). Probably the most
significant introduction to Smalltalk-76 was ... the creation of the Browser by Larry Tesler ... The
Browser was a startling innovation at the time, and is still superior to the macro-scale navigation facilities
in most environments” [Deutsch89]. It was during this period that the concept of objects was being used
by the Al community for representing knowledge, via Minsky’s frames [Fikes85]. Smalltalk-78 had no
changes of documentable significance to it, but did mark the first attempt at implementing the virtual
machine on hardware (Intel 8086) other than Xerox’s own.

The Smalltalk used today is essentially the final manifestation of the Smalltalk project, namely
Smalltalk-80 developed in 1979-80. Two important developments were reflected in this latest version.
The first was the introduction of ‘metaclasses’ and the second was the ‘Model-View-Controller’ (MVC)
architecture for building interactive applications. The first public airing of Smalltalk-80 was in August
1981 with the special issue of the Byte magazine [Byte81]. Then, in 1983, the ‘Blue Book’ was released,
which has since been the de facto definition of the Smalltalk-80 language and its implementation
[Goldberg83]. As an aside, one interesting offshoot from the release of the Smalltalk literature was an
attempt by Professor David Patterson of Berkeley to implement the Virtual Machine on an optimised
RISC-based processor. The processor was called SOAR (Smalltalk On A RISC). Some of the results of
this research can be found implemented in the current SPARC RISC processors in Sun workstations
[Sung9].

The next section will discuss object oriented systems by highlighting those features which ‘most
obviously’ provide contrast with the procedural approach. This is necessary because the task of
describing object oriented systems is not clear cut; the consensus of opinion regarding their essential
‘ingredients’ has not, as yet, beensolidified, possibly due to the paradigm’s continued evolution [Cox86,
Rentsch82, Pascoe86]". Few of the references cited in this section agree on what characteristics constitute
the ‘essentials’ of object oriented systems. However, much research into the semantics of these systems
has been undertaken [Minkowitz87, Wolczko88, Yelland89], providing a basis for a better formal

' The ECOOP'89 meeting still supported this position.
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exposition of the subject in the future. Unfortunatcly, many new software packages released for the PC
market claim to be object oriented when it is patently obvious that they are not. B jarne Stroustrup, in his
invited paper at ECOOP’87, candidly expressed this situation in the following syllogistic fallacy
[Stroustrup881:

Adais good.

Object oriented is good.
Ada is object oriented.

Some see a danger in this relatively new technology becoming a ‘bandwagon’ like the structured

programming revolution did two decades ago [Beck89, Rentsch82].

2.2 Object Oriented Concepts

Introduction

Most object oriented environments are composed of a hicrarchy of classes. Classes within
hicrarchies inherit attributes and functionality from other classes higher up in these hierarchies?. A class
is the collective description of a group of similar objects. An object is represented by internal local
variables or instance variables and a set of operations manipulating the instance variables, usually
modularised into procedures or methods. Unlike standard procedural programming, there is no implicit
separation between data and operations. “Programs are not primarily partitioned into procedures and
separate data. Rather, a program is organised around entities called objects that have aspects of both
procedures and data” [Bobrow83]. All objects in a system are unique and as such have an identity which
candistinguish one object from another, even if they are instances of the same class both having identical
states. Object identity enables objects to refer to themselves in computations, usually via a variable called
self. Classes and objects usually persist within an environment independently of the changes to the state
of the object until they are no longer needed [Danforth88].

Since an object functions as an abstraction and encapsulation mechanism, preventing external
access 1o its state, processing activity is accomplished by sending a message 10 an object and asking it
to carry out one of its operations. An object oriented program can thus be viewed dynamically as a
collection of objects sending messages to each other. The set of messages to which an object can respond
is known as its protocol. Many objects may have a similar protocol specification. However, each object
can exhibit different behaviour for the same message; this being a manifestation of polymorphism.

In a system development context, classes of objects are usually used to represent real world entities,
providing a very powerful modelling capability. However, if all objects in a system are first-class
[Strachey67], they can also be used to represent the structure and processing activity of the object
oriented system itself. Suchapotential reflective architecture enables powerful exploratory programming
environments to be devised, since users are able to manipulate the fundamental processing and

structuring mechanisms of the environment itself [Maes87].

2 Alternatives to classes and inheritance are briefly mentioned at the end of this chapter.
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Data Abstraction and Encapsulation

A “good’ abstraction is one where relevant information is presented to a user and emphasised, but
information which is immaterial is completely opaque [Shaw80]. Procedural high level languages
provide behavioural abstractions in the form of procedures, functions and primitive operations, and
control abstractions in the form of loops and conditionals. However, procedures and functions ... while
well suited to the description of abstract events (operations), are not particularly suited to the description
of abstract objects” [Guttag77].

Traditionally, variables hold onto data values to be manipulated by a program. The ‘type’ of a
variable simply reflects the values it can hold, classifying sets of values by their representational
structure. Although types in languages such as Pascal and Algol promote a more secure programming
approach [Harland88], they do not properly furnish any means of representing external entities. Data
abstraction, as its name implies, is an abstraction over how a data object is to be manipulated during
program execution. Instead of viewing similar data objects merely as a set of values all having the same
type, data abstraction perceives data objects by their behavioural characteristics, i.e. what can be done
with them. Once data is viewed in this way, abstractions reflecting external realities can be built.
Moreover, the specification of a data object’s behaviour can be presented without the need to know how
thatbehaviourisimplemented. When data objectsordata abstractionshave a representation-independent
specification of what they can do, they are classed as abstract data types [Guttag77]. The first language
to support the association of abstract operations with the entities on which they were defined as a ‘class’
construct was Simula-67 [Rowe81].

In order to use a data abstraction, it is not necessary to understand how the abstraction has been
implemented; the userisinterested merely inits behaviouras described inits specification. Implementation
of this behaviouris usually hidden, giving rise to data abstractions being used as a useful form of modular
programming [Snyder86a]. Since changes to the implementation of a data abstraction’s behaviour will
not effect users of it, changes to one part of a system should not effect another part. However, if the
internal representation of a data abstraction can be manipulated without using the specified operations,
because a language does not enforce this, then the modularisation breaks down.

“Encapsulation is a technique for minimising interdependencies among separately written modules
by defining strict external interfaces” [Snyder86a]. Encapsulation is an enforcement or ‘policing’
mechanism, typically used in conjunction with data abstractions. This mechanism guarantees that access
to an abstraction is solely via its specified operations. Encapsulation in software production is used to
reduce what is known as the ‘ripple’ effect when changing some part of a system. Once the only access
to an abstraction’s state is via its specified operations, there is less chance that changing one partof a
system will adversely affect another. Change always becomes local to the encapsulated entities, reducin g
the dependencies abstractions have on each other. Addition of new data abstractions does not have
‘knock-on’ effects throughout the system. As system size increases, the importance of encapsulation

becomes paramount [Stroustrup88].
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Objects and Classes

In an object oriented environment, objects can be viewed as encapsulated data abstractions. An
object’s state (set of instance variables) is in scope only to the operations (methods) belonging to that
object [Wolczko88] and can affect what an operation returns on completion of its execution. An object’s
state imparts to the object the property of being mutable, i.e. it can change over time. This contrasts with
the otherkind of entity used in programming languages, that of a value which isimmutable and atemporal
[MacLennang82]. Objects are created during the course of a program’s execution and, while in existence,
their state can change. In conventional programming languages such as Pascal, mechanisms which
reflect this type of dynamic behaviourinclude pointer types; most otherentities in the language are values
which are neither created nor destroyed (Integers, Reals, etc.).

Object mutability incurs problems in memory management. Objects no longer of use need to be
removed from system memory. Two possible options are either to let the programmer remove them or
let the language and environment do it automatically. The former is less attractive as the programmer
has to understand the whole system in order to manually release an object; programmers have to
guarantee that no other part of the system is using the object about to be released. However, this manual
approach s adopted by many of the hybrid objectoriented programming languages such as Object Pascal
and C++. The automatic approach involves a technique called garbage collection [Cohen81]. It is
beyond the scope of this thesis to discuss different garbage collection algorithms, but three such
algorithms, Mark and Sweep [Cohen81}, Reference Counting [Deutsch76] and Generation Scavenging
[Ungar84] are probably the most well known. All garbage collection techniques attempt to identify
obsolete objects and then reclaim the space they occupy. Garbage collection inflicts some performance
degradation on the system, but the increased programmer productivity gained is probably worth the cost
[Cox86, Pascoe86].

Class
. . . Star
Objects which share the same behaviour are T Beprfligour
var_1 method_1
grouped together into a class. In most object \_ vars motods )

oriented programming languages, classes differ

instances
(objects)

from objectsinthat aclassis used as the repository
for the description of similar objects: ... the class
concept ... is used to express the behaviourof a set
of objects which share the same semantics
operating on the same attributes” [Cointe87].
Classes have two roles, that of a general type

declaration mechanism for similar objects

[Florentin85, Thomas89], and as an organisation
mechanism (hence classes are more than just the
typesofalanguage). “Eachclassdefines a package
of behaviour; this can either be instantiated to | EXternalinterface  Internal composition

create an object that conforms to that behaviour, Figure 2.1. Class-instance relationship.
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or inherited to define new, but related behaviour.” [Wolczko88a]. An object is an instance of a class.
Objects instantiated from the same class share the same operations and as such have common behaviour
(see Figure 2.1 previous page); individual states associated with objects from the same class reflect the
differences between them. However, other languages, in particular Smalltalk-80, view classes as
instances of an even higher abstraction called a metaclass. Inenvironments such as these, the distinction
between classes and instances of classes becomes blurred.

Although abstraction and encapsulation are probably the most important attributes of the class-
object/instance paradigm, they do not enable a complete differentiation to be made with other
programming language constructs which also employ abstraction and encapsulation, such as the Ada
package [Booch83], Clu clusters [Liskov80] and Modula-2’s modules [Wirth85]. However, these
constructs are not treated as ‘first-class’ citizens, nor do they have a unique ‘identity’ that ‘persists’. To
extend this informal characterisation of objects, the attributes of identity, persistence and citizenship will

now be discussed.

2.3 Identity, Persistence and Citizenship

Object Identity

Objects populating an environment must be distinguishable in order to be usable. Distinguishability
amongst objects can be viewed in terms of: similarity, equality and identity. Similarity is where two
objects have been instantiated from the same class and hence share the same behaviour and structure.
Equality is when two objects have been instantiated from the same class (similarity) and have the same
internal states (i.e. the instance variables contain the same values). Identity is where two objects are
actually the same object. Instances of objects of the same class can be differentiated only if each object
has a distinguishing feature which is not based on the values or state which it possesses [Tsichritzis88].
Object identity is an inseparable part of an object once it is brought into being and should remain part
of the object no matter how much the environment in which it resides changes [Shilling89]. Objects
should have a unique identity during their entire lifetime [Kersten86].

Khoshafian and Copeland [Khoshafian86] highlight two domains involved in supporting identity;
representational and temporal. A distinguishing feature of differentlanguages is the degree to which they
support representational identity. The strongest form is where it is an inseparable part of an object and
built into the language itself. A less strong form is where objects are identified by user-defined name.
Finally, with the weakest form, objects are identified simply by the values they represent. Temporal
identity can be used to distinguish languages supporting representational identity (in whatever degree)
by indicating for how long that representation remains: purely for the duration of program execution,
over many executions, or even after the environment in which the object resides is completely
restructured. A consequence of languages supporting strong temporal identity is that objects must

survivelonger than the programs or activities in which they participate. Thisleads to the another attribute

of objects: persistence.
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Persistence

Persistence is an abstraction over the time that a piece of data is required and usable [Morrison87]
and underlies many current object oriented programming languages [Wolczko88]. In conventional
programming systems, the persistence of each data item has to be specifically handled by the
programmer via the two persistent mediums available, files and databases. In Pascal, for example, the
programmer has only one structured data type for persistent objects, the file type. Other types in the
language describe purely transient objects, which last for at most the duration of a program execution.

Extensions to classic von-Neumann architecture include virtual memory and secondary storage.
When a program is placed upon this view of storage, the physical properties of the store are not fully
abstracted over, so the useris still offered two types of storage medium: program variables and files. Data
within a program is therefore either short term or long term, whether data persists or not should be
completely invisible to the user. This abstraction over data“... has certain disadvantages. Firstly in any
program there is usually a considerable amount of code, typically 30% of the total, concerned with
transferring data to and from files or a DBMS” [Atkinson83]. Also, to facilitate the long term storage
of structured data, a transformation often has to be employed to ‘flatten out’ that data. Furthermore, files
do not (usually) have any scoping within programming languages and are treated as global entities; this
leads to the data stored being insecure. The programmer (when developing a program) has to decide
during the design process what attribute the data is to have during its use — to be transient or persistent.
This is an additional burden in program development. “Having this two-level storage structure imposes
ahcavy burden of storage management on the programmer and causes large space and time penalties due
to the translation and transfer of information between computational and backing storage media”
[Harland88]. Finally, most programming languages only have abstractions to manipulate internal store.
Secondary storage manipulation is usually left to either the environment’s operating system or some
DBMS. From a language design point of view: “If a high-level language can organise RAM it should
be able to do the same for disk” [Cockshott84)].

“In a persistent system the use of all data is independent of its persistence” [Morrison87a). There is
a consistent view placed on all objects, the persistence of which does not effect their use [Thatte86].
Within a persistent store, objects can outlive the programs which create and use them. Objects are kept
for as long as they are usable. Persistent stores place an additional abstraction over the physical storage
mediums which a computer system uses; hence, there is no distinction made between file store orinternal
memory. The advantages of using a persistent store are many: any type of data, ranging from complex
Lree structures to sequential processes can be made permanent. With the emergence of persistent storage
systems, “ ... the very concept of a file is rendered almost redundant” [Harland88]. An example
environment that offers a form of persistent behaviouris the Symbolics Lisp machine. Here the persistent
mechanism used is called a ‘world’; when a user restores a world, everything isin exactly the same state
as when the world was last saved. Worlds are implemented, to a large extent, on conventional file store
architectures. Because of this, the persistent nature of worlds breaks down when a user wishes to

communicate outside of a world environment; the communication mechanism inevitably has to be
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something other than an object [Merrow87]. This same restriction can be found in Smalltalk-80, which
has a weak form of persistence in the form of its ‘virtual image’ in which all objects persist. This enables
object states to be preserved between sessions of execution. However, in order to guarantee such
persistence, the virtual image has to be explicitly saved (‘snapshot’) by writing to disc a complete binary
copy of the dynamic memory [Low88, Straw89]. In both the case of a Symbolic’s world and Smalltalk-
80’s virtual image, the persistent mechanisms handle single users only and so objects cannot be shared.
To combat this deficiency, multi-user object oriented database management systems (OODBMS) have
emerged: Gemstone [Maier86, Penney87] and VBase [Andrews87, Duhl88] provide environments in
which to store and share objects amongst many users; they attempt to blur the distinction between

database and general programming, providing a unified powerful programming environment.

Citizenship

‘Citizenship’ and ‘civil-rights’ would appearstrange terms when discussing programming languages.
However, when designing a new programming language, there are several theoretical design principles
which can be used to produce a ‘good’ language [Harland84, Harland84a]. One of these principles is
known as ‘Data Type Completeness’ [Reynolds70]. This design principle states simply that all values
that the language supports, no matter what that type, should be able to be passed to functions, returncd
from functions, assigned to variables and form components of data structures. There should be no
discrimination as to what can be done to the values in the language regarding their movement; all citizens
should have equal civil-rights. Discrimination gives rise to different entities in the language being either
first-class or second-class citizens [Strachey67]. Progress in the expressive power of programming
languages can be attributed to making abstractions first-class [Friedmang84]

When classes are elevated to first-class status inan objectoriented language (as they are in Smalltalk-
80 and CLOS), itis primarily this attribute which distinguishes classes from types in standard languagcs
[Sakkinen89]. The following example, taken from the Pascal language illustrates the difference betwecn
first and second class citizens:

pProgram IncorrectProgram;
label 10, 20, 30, 40;
begin
goto <some-expression>;
20:
end.

Labels in the language are clearly second-class as they can neither be computed, passed around or
manipulated in any way. Also, it is possible in Pascal to pass as a parameter a procedure or function to
a procedure. However, since procedures and functions cannot be assigned to variables or returned as
values from procedures or functions, they are second-class [Atkinson87]. To exploit the full potential
these objects offer in a language, no restrictions should be placed on their potential usage; they should
always have first-class status [Atkinson§85].

A corollary of objects being first-class is that a language becomes extensible [Foote89]. If new

objects are defined in the language, and they have the same status as language-supplied types and objects,
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thenthe resultis a superset of the original language. With first-class objects, programmers can create new
structures in the language that do not necessarily have to be objects representing entities external to the
language system. When a language system allows objects to represent facets of the computational system
in which they reside, that system is said to be reflective. “Computational reflection is the activity
performed by a computational system when doing computation about (and by that possibly affecting)
its own computation” [Maes87]. Reflective architectures help inthe organisation of a system’s internals.
Possibly one of the best examples of reflection at work is in the development of program debuggers.
Conventional, non-reflective programming architectures cannot provide debugging facilities from
within themselves; debugging a program usually involves invoking a system debugger which is part of
the operating system. Also, programs have to be recompiled to include ‘debug’ information in order for
the debugger to operate. Debugging a program in a reflective architecture is more straightforward —
when a reflective system is running, the runtime state of that System is represented by user-accessible
first-class objects. This enables debugging and tracing facilities to be built from within the language
itself, making recompilation and the inclusion of debug information unnecessary. Debuggers in semi-
reflective systems, such as CLOS and Smalltalk-80, are superior to those offered by languages such as
Pascal and Fortran. However, there are very few completely reflective programming environments
available other than 3-KRS [Maes87a] and possibly OBJVLisp [Cointe87]. Nevertheless, programming

language designers are beginning to realise the importance of reflection [Wolczko88a].
2.4 Organisation: Inheritance

Most object oriented languages use the class as the templating mechanism for instantiating new
objects. The other main function of classes is an organisational facility via the inkeritance mechanism,
which supports software reuse [Strom86, America86]. “Inheritance enables programmers to create new
classes of objects by specifying the differences between a new class and an existing class instead of
starting from scratch each time. A large amount of code can be reused in this way”’ [Pascoe86]. When
anew class is defined, it is always a subclass (and specialisation) of another class, called its superclass.
Inheritance makes it possible to include behaviour of superclasses in new subclasses being defined as
well as new behaviour. For the subclassing mechanism to function, classes are usually arranged in a
hierarchy in which every object is an instance of Just one class; this is single inheritance. Multiple
inheritance is a generalisation of single inheritance [Madsen88] that allows a given class to have more
than one immediate superclass (the inheritance hierarchy is not a pure tree); see Figure 2.2 overleaf.

Inheritance promotes the sharing of information between classes and eases the modification of a
system, since the behaviour to be changed is always to be found in one place; changing it will affect all
classes which inherit this behaviour. “Sharing makes for a usable system by facilitating factoring, the
property of one thing being in only one place. Successful factoring produces brevity, clarity, modularity,
concinnity, and synchronicity, which in turn provide manageability in complex systems” [Rentsch82].
Another important aspect of sharing concemns the class-instance relationship. “A modification of a
method in the class is automatically reflected in the behaviour of every instance of the class” [Kafura89].
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behaviour of objects, as this can be
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of code has to appear, and hence be
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facilitates software code management

as the programmer has to write less
code [Ingalls81]. For example, if it

class L

were required that all objects be able

to give a printed representation of
themselves, and inheritance was not Figure 2.2. Single and multiple inheritance.
available, then every object would have to implement a specific print method — there would be as many
print methods as there were types of object in the system. Inheritance and code factoring overcomes this
by enabling the programmer to define a print method to be implemented at the top of the class hierarchy.
In a single inheritance architecture, every object in the system inherits the default behaviour of the class
at the root of the tree and so all objects, whatever their class, can give some printed representation of
themselves.

Inheritance is an excellent tool for developing reusable software components [America87] and an
excellent design mechanism for building taxonomies of classes [Wegner86]; it allows both the
specification of a class’s behaviour (organisational aspects) and the structure or implementation of that
behaviour (software reuse) to be inherited at the same time. However, these two aspects can lead to
confusion [Sakkineng89] as they are “... more or less mutually exclusive ...” [Hendler86]. A new class
may have to be defined which has no logical connection with its parent, except that it contains some
behaviour which can be reused [Madsen88]. Pun and Winder [Pun89] describe these two aspects of
inheritance as ‘strict” and ‘non-strict’ inheritance , where non-strict implies the inheritance mechanism
is uscd specifically for code reuse, whereas strict inheritance is used for design purposes. Some object
oriented systems allow programmers to define classes which are not allowed to be instantiated; they are
there merely for subclasses to inherit their behaviour [Sandberg86, Borning87]. These classes, known
as abstract classes, are where much of the system code factoring (methods being moved up the
inheritance hierarchy) reside.

Classes share their behaviour with their subclasses. However, if this effect is not wanted then
behaviour in specific classes can be overriden. Overriding a method in a class means defining a new

method but using the same name as one defined in the class’s superclass chain. Encapsulation offers
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object architectures the ability to define many methods having the same name in different classes. Each
method name in the system does not have to be globally unique, but only within the class in which it is
defined. However, although encapsulation and inheritance together form a potentially polymorphic
architecture (see later), the two mechanisms are not completely orthogonal. A class has two interfaces,
a specification of what its instances can do — its instance interface, and a specification of the behaviour
that can be inherited by its subclasses — its subclass interface. Subclassing in many object oriented
programming languages gives free access to the internals of classes higher up in the hierarchy, thus
violating the encapsulation mechanism (CommonObjects [Snyder86]is an example of alanguage where

this does not happen). Many object oriented languages do not encapsulate their class’s instance variables
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understanding of how a class has derived
its behaviour is needed when a new Figure 2.3. Visibility in class hierarchy.
subclass is to be defined: has a method in the parent class been newly defined, inherited or overriden?
Ah example of this confusion occurs in the Smalltalk-80 environment. A class to display information
on the screen should usually be made a subclass of the class View. However, the novice programmer will
not realise that to get this new view class working, the method displayview defined in class View has
to be overriden. The programmer has to understand how View is implemented in order to make a
successful subclass of it.

The problem in overcoming instance variable subclass visibility is to make sure that all access by
a subclass to instance variables in its superclass chain is via message protocols provided by its parents

[Rochat86]. This technique has been adopted in building the software supporting this thesis. However,
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although this partially resolves the problem, it unfortunately introduces another. Providing access to a
class's instance variables via its message protocol makes those instance variables visible to all users of
instances of that class, i.c. the instance interface. It is therefore possible for external users of an object
to change its state, when the actual objective was to hide state information. However, although
inheritance has some drawbacks, itis still a very powerful mechanism [Wegner89]. Thomas [Thomas89]
claims that it is the distinguishing feature which separates object oriented programming environments
from other programming systems and, in all probability, without it, object oriented programming would
not have gained such widespread popularity.

2.5 Communication

Message Passing

As has been shown, the potential behaviour associated with objects is specified by their protocol,
a set of message selectors which are symbol names associated with operational code. Since the only way
Lo access or change the state of an object is via its specified behaviour, initiating that behaviour is
accomplished by sending an object a message. The effect of the message passing paradigm is to shift
control from the operators to the operands (objects). For example, consider the simple expression 2 + 4.
Conventional programming languages would interpret this as: the operator (function) + takes two
parameters, the operands 2 and 4, and returns a result (6). In object oriented systems, that computation
would be viewed as: send to the object 2 the message + with a parameter, the object 4. Conceptually, as
processing activity takes place ‘inside’ objects themselves by executing methods [Ingalls78,Rentsch§82],
this example demonstrates how the object 2 is in control of the computation, not the operator (message
selector) +. ‘Outside’ an object, the only thing which happens is the arrival of messages, delivering some
request. Message senders are not concerned with how a requestis carried out (whether by procedure call,
a data packet sent on a distributed computer network, or even a message sent to another object
[Thomas891]), aslong as the requested behaviouris carried out. Generally, this conceptual shift of control
highlights how: “Function calls specify not what should be accomplished but how. The function name
identifies specific code to be executed. Messages, by contrast, specify what you want an objecttodo and
leave it up to the object to decide how” [Ledbetter85]. This distinction between specifying what should
be done rather than how it should be done is the essence of the message passing paradigm.

Message sending is a form of communication. However, as Wolczko [Wolczko88] points out:
“Communication in object oriented languages is one of the most contentious issues in the object oriented
programming community”. He points to three different models of computation. In the Actor model
[Agha86, Hewitt77], objects are autonomous processes and communication via message passing is
completely asynchronous. In the POOL model [America86], active objects send messages between each
other in an Ada style rendezvous. Finally, in the Smalltalk-80 modcl, message passing is completely
synchronous; anobject sends a message to another object and thenhasto wait forareply [McCullough87].
This last model will be used for the rest of this discussion.
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Whenan object partakesin processing activity by executing amethod, there is often aneed to execute
some other method resident in that object. In other words, amessage request needs to be sent to the object
again, except that the source of the requestis the object itself. Most object oriented programming systems
provide a mechanism whereby objects can refer to themselves during processing, usually via a variable

called self. However, if an object’s class has overriden a specific method, but needs to execute an

original definition higher up in the

Class-A
. . State Behaviour
hierarchy, sending a message to self ostance varatios P
var_1 method a
. . var 2 method b
will not have the desired effect. =~
Many systems provide an additional 4 Jmethod ¢
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super mechanism thus allows inherited
methods to be accessed in new methods
with the same name. However, with the
provisionof self, superandinheritance,
it is sometimes difficult to determine
which methods are being executed in
response to a message send, since self

always refers to the same object during
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3send self message ¢
5send self message a
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9

method g

selfc
super b

2method g found in class C
4 method ¢ found in class A
6 method a found in class B
8 method b found in class C
10 method b found in class B

Figure 2.4. The Yo-yo effect.

the execution of a method. This scanning up and down the class hierarchy searching for methods due to
selfand superisknownasthe ‘Yo-yo’ effect [Taenzer89]; see Figure 2 4. Searching the class hierarchy
foramethod also involves the act of binding, which“... is the process of making the connection between

a name and the object it refers to” [Cook86].
Binding and Polymorphism

A binding mechanism has to consider four components: a name, a value, a type and finally whether

the value bound to the name is permanent or not [Morrison88]. The following two pieces of Pascal

(Figure 2.5) highlight these four

name type name type (implied)
aspects of binding. The only I
other consideration concerning
L . . VAR x : INTEGER; CONST z = 3.,1459;
the binding mechanism is when The type and value of 2
X 1= SQRT(y); X 1= SQRT(2); cannot be changed

ittakes place. Binding caneither
take place before a program is

at any time; the binding
is therefore immutable

run or during running. The

former is called static binding

Since the value is not
known until runtime,
the binding is therefore

value

\

mutable Val ue

Figure 2.5. Binding mechanism in Pascal.

and is carried out by a language processor. The latter, known as dynamic binding, is carried out by the
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run-time environment in which the program resides. The advantage of static binding is that a
considerable amount of consistency checking can be carried out at compile time. This identifies a large
number of potential programming errors, leading to increased confidence in the correctness of eventual
running programs [ Atkinson88]. Also, statically bound programs can (usually) be optimised by reducing
the amount of run time code, since there is no need to store type information with the data itself.
Although static binding produces more ‘secure’ programs, it can sometimes be too restrictive. To
demonstrate this, the following is a piece of Pascal code (Fi gure 2.6) in which the draw procedure can

in effect accept any shape type via a variant record:
program poly;
type
shapetag = (circle, square, triangle, star):;
polygon = record
case shape : shapetag of
circle : (radius: integer;
position: point);
square : (origin: point;
length: integer):
triangle : (top: point;
left: point;
right: point);

star : (points: array[l..5] of point)
end;
procedure draw (someshape: polygon);
begin
case someshape.shape of
circle : drawcircle (someshape) ;
square : drawsquare (someshape) ;
triangle : drawtriangle (someshape) ;
star : drawstar (someshape)
end
end;

Figure 2.6. Simulated Polymorphism in Pascal.

Each time a new shape needs to be introduced to the program, types shapetag, polygon and
procedure draw will have to be modified and recompilation of the application will be necessary. This
approach to simulating polymorphism becomes increasingly more unmanageable as the size of the
application code expands.

Polymorphism “is desirable because it enables us to write extremely general-purpose programs in
a transparent manner — the bare algorithm and no frills” [Harland84). Polymorphism means that the
same message sent to different objects can give different results. As Morrison [Morrison87] states:
“Polymorphism is a mechanism whereby we can abstract over type” and cnables programmers to
produce generalised software components. Usually, ad hoc polymorphic operations in conventional
languages are provided as overloaded operations (e.g. write, read, +in Pascal). Hybrid languages such
as Object Pascal with its attendent class hierarchy MacApp, provide a limited form of polymorphism as
illustrated overleaf. The same procedure names canbe used in different objects, so providing polymorphic
operations. In the example, Figure 2.7, each shape knows how to draw itself by responding to the draw

message and invoking the draw procedure:
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program poly;
type
shape = object (TObject)
procedure draw;
end;
circle = object (shape)
radius : integer;
position : point;
procedure draw; override;
end;
square = object (shape)
origin : point;
length : integer;
procedure draw; override;
end;
triangle = object (shape)
top : point;
left : point;
right : point;
procedure draw; override;
end;

Figure 2.7. Object Pascal and Polymorphism.
However, if another class, say star, was introduced that was not a subclass of shape, butincluded adraw

procedure, the following code extract would fail at run-time if passed an instance of class star.

procedure highlight (someshape: TObject);
begin

shape (someshape) .draw; {type coerce someshape}

end.

Although the procedure highlight can accept any object type, in order to send the draw message to the
parameter of highlight, it has to be type coerced (in this case 0 type shape). This bypasses the
compiler’stype checking, as class Tob ject, the root of the MacApp class hicrarchy, doesnothave adraw
procedure. When an instance of star is passed to highlight, because it is not a subclass of shape, the
procedure crashes at run-time. To avoid problems like this, dynamic binding is needed. Arguably,
dynamic binding provides amore flexible form of (ad hoc) polymorphism in a class hierarchy than static
binding?.

Whenamessage is sent to an object, a search is initiated in that object’s class. If the specificd method
isnot found, the search continues up the class hierarchy until the method is found or an erroroccurs. Once
amethod is found, it is effectively bound to the message sclector and run. As can be seen, this model of
message passing is pre-requisite in overcoming the inevitable combinatorial explosion of routine
complexity in extendable polymorphic systems; message sending reduces polymorphic operations to
monomorphic. With the development of this form of message passing, the burden of explicit type
checking and type dispatching disappears by making the routines themselves monomorphic and
cmbedding them within system types (i.e. classes) [Ingalls86].

®  Thelanguage Eiffel [Meyer88], although it possesses dynamic binding uses static binding as much as possible.
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Twokinds of polymorphism supported by message passing are inclusionand operator polymorphism
[Cardelli85]. Inclusion polymorphism is directly attributable to the inheritance and subclassing mechanisms
present in object oriented systems. This kind of polymorphism is wherc a function will work for all types
(classes) in the system and, moreover, with the same piece of code. Hence all operators at the root of the
class hierarchy can be seen as the universal polymorphic operators, as all objects in the system can
respond to them. Operator polymorphism is a result of strong encapsulation facilitating opcrator
overloading; a system will allow many instances of the same function name to coexist. For example, if
two classes, which bear no relation to each other (one is not a subclass of the other or vice versa), have
the same name for an operation but both behave differently, this is operator polymorphism. Operator
polymorphism is demonstrated in the Object Pascal cxample.

2.6 Summary

Three essential components of object oriented systems have now been discussed along with their
attendant attributes and characteristics:

+ Composition - Objects are instances of classes and are first-class encapsulated data
abstractions, having a unique identity and persisting for as long as
they are needed.

* Organisation - Inheritance within a subclass hierarchy leads to a reuse of code with
an attendant factoring capability.

» Communication - Processing via message sending (dynamically bound procedure
calls) exploits the inherent polymorphism of object systems.

Many areas of current research have not been covered in this discussion such as alternative sharing
mechanismslike delegation[Liebermang6, Stein87, Minsky89), concurrency within object architectures
[Yonezawa87] and alternatives to class mechanisms such as prototypes {Licberman86, Ungar87], as
these concepts do not directly impinge on the research carried out. Although this chapter is intended to
be a general description of what constitutes object oriented languages, the influence of the Smalltalk-80 model

should be evident.
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She’s amodel and she’s looking good. I d like to take
her home that' s understood. She plays hard to get she
smiles form time to time. It only takes a camera to
change her mind ...

The Model — Kraftwerk'
3. JSD and ‘Object Orientedness’

3.1 Overview of JSD

Background

The development of JSD can be traced back to about 1977 [Cameron89]. Michacl Jackson'’s paper
‘Information Systems: Modelling, Sequencing and Transformations’ [J ackson80] criticized the functional
decomposition approach to software development and introduced the essence of JSD. The paper
emphasized * ... two pairs of concems: the separation of model from function, and the separation of
design from implementation”. The first reference to JSD as a system devclopment mcthod appeared in
[Jackson81]. Full details of the method were released in two books published in 1983 [Jackson§83,
Cameron83]. Ideas from Jackson’s previous work [Jackson75] played amajorrole inJSD’sdevelopment,
and as Jackson [ibid] states: “JSD has grown out of JSP? ”. The method has since evolved by the
continuing efforts of Cameron and othermembers of MJSL3, Othermajor works thathave been published
on JSD include the second addition of Cameron’s 1983 monograph [Cameron89] and [Sutcliffe88].

Since its inception, JSD has been used for a varicty of systems*, all of which can be regarded as
having a strong time dimension. The term ‘time dimension’ refers to the potential concurrency of a
system and the time-ordering constraints to which system events conform. A large proportion of real
world systems, both real time and data processing, are implicitly concurrent [Jackson81]. Since JSD
directly addresses the issue of concurrency, its use in the development of such systems is clcarly
appropriate.

The JSD method covers the technical development phases of the software life-cycle, starting from
an existing system requirement and proceeding through to a fully implemented system (see Figurc 3.1

overleaf) [Cameron&6].

From the album ‘Man-Machine’ by Kraftwerk, © 1978 Kiingkiang Music, Capitol Records Inc.
JSP is Jackson Structured Programming.

Michael Jackson Systems Ltd, now absorbed into LBMS.

See [Cameron89)] section 7; JSD Examples.

EE T
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Modelling _> Specification ’ Impi

System
Requirement

Figure 3.1. JSD overview.

The approach is systematic in that it decomposes the development task into well defined stages. In
particular, there is a distinct separation between specification and implementation. The starting point in
JSD is the development of a model of the real world subject matter on which an abstract system
specification is to based. This approach, when compared to other development methods, gives greater
insight into what is wanted by forcing a ““ ... developer to really understand what the system is about”
[Renold88]. Functions are then built upon the model to produce the required input/output activities of
the system. Finally, the specification is transformed to produce an implementation of acceptable
performance. This final attribute of JSDis “ ... attractive because itisnot based on an arbitrary life cycle

model, butsimply regards the development process as aseries of transformations between specifications”
[Potts85].

Operational Approach

Traditionally, JSD has been associated with the operational rather than the objectoriented paradigm
owing to the fact that JSD specifications are (at least in principle) executable. Moreover, by explicitly
modelling the problem domain in which the system is to operate, by making a clear separation between
specification and implementation issues and between system modelling and function, and by adopting
atransformational approachto derive system implementations, JSD firmly placesitselfin the operational
paradigm [Agresti86]. Three other operational methods worthy of mention are Gist [Balzer82, Cohen§2,
Feather82], Paisley (Zave82, Zave84, Zave84a] and Me-Too (Henderson86], which is a completely
formal based operational method.

Like JSD, Gistembeds an explicit model of the real-world problem domaininits specifications. Gist
specifications are composed of descriptions of behaviours which * ... correspond to the observable
activity in the application domain ... ” The structure of a specification itself is important only insofar

as it results in observable behaviour (i.e. changes to the modelled world) [B alzer82]. Gist specifications
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are based on the idea of having a store of states in which activities in the outside world initiate operations
in the specification to produce a new state. Unlike J SD, process behaviours in Gist specifications can be
completely nondeterministic and are specified by a series of ‘stimulus-response rules’. Constraints are
applied to the states generated by the behaviours to reduce the non-determinism within the specification.

Paisley is similarto JSD in that its major unit of specification s the ‘process’. Processes are specified
in an applicative or functional (side effect free) style by supplying a ‘state space’ and a ‘successor
function’ on that state space. A successor function defines the successor state for each given state on its
state space. A process executes indefinitely, applying its successor function to generate new states. Each
process simulates some relevant part of the problem domain under investigation and so, like JSD,
explicitly captures part of the real world within its specifications.

Mee-Too is both a development method and a language. The method is divided into three steps. The
first is to define a model in which abstract data objects and associated operations make up the structure
and behaviour of a proposed system. The next step refines the first by expressing those abstract data
objects and operations formally using abstract data types and recursion equations to produce a formal
specification. Here, the Me-Toolanguage isemployed, being amixture of Miranda [Turner86] and VDM
[Jones90]. Finally, because the notation used in the second step produces a formal specification in the
form of a functional program, the specification is thus executable. The third step executes the
specification as a prototype to see if it produces the wanted behaviour.

Identifying a link between JSD and the object oriented paradigm is not new and several references
have already made either explicit or implicit connections between the two approaches. For example,
Cook [Cook86] in his discussion of object oriented programming identifies modelling the real world as
the basis for building object oriented programs. He highlights this activity in the following way: “This
processinitselfis independent of any particular programming or designlanguage, and a good description
of the software design process in a language independent context is given in Michael Jackson’s book
‘System Development’”; in other words, he relates the modelling phase of JSD (see section 3.2) to the
initial activities of building object oriented programs. More generally, Masiero [Masiero88] concludes
that “JSD can be used as an object oriented method”. A more practical expression of the link between
JSD and the object oriented world is presented by Knudsen [Knudsen88] who discusses a bachelor level
degree programme at Aarhaus University, Denmark. This programme teaches the JSD method as part
of an object oriented programming course. Knudsen states that “the introduction to JSD is related to
object oriented programming where it is emphasised that JSD in fact is very close to an object-oriented
methodology™ [ibid]. Perhaps the most significant event® to support a tentative connection was the
invitation by OOPSLA’87 (OOPSLA is an annual international conference on object oriented
programming) to M. Jackson as special guest speaker [Jackson88].

* In the author's opinion.
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3.2 Modelling and Object Orientedness

Real World Representations

The first activity undertaken when constructing a JSD specification is to model the problem domain.
Thisexplicit shift ofemphasis when constructing systems stands JSD apart from many otherdevelopment
methods: “Instead of viewing the system as primarily a device for doing something, for computing its
outputs from its inputs, we should view it primarily as a model of the reality with which it is concerned”
[Jackson80]. The modelling phase of JSD [Cameron88] attempts to capture that part of the problem
domain in which an eventual system is to function [Cameron86]. “The JSD insistence on starting
development by explicitly modelling the real world ensures that the System user’s view of reality is
properly embodied in the specification and, eventually, in the structure of the system itself” [J ackson83].
A JSD model is therefore an abstraction of the real world that forms the subject matter of a proposed
system [Renold88]. Models scope a system by implicitly defining what functionality it can support and
therefore what it cannot support; future functional enhancements to a system will be possible only if the
model has captured that part of reality to which the new functions relate.

Conceptually, the modelling phase of JSD reflects the aims of the object oriented paradigm in that
it attempts to simulate real world entities as objects in software. It is to this first stage of JSD, the
modelling phase, that the term ‘object oriented’ can be applied most appropriately. Birchenough and
Cameron [Birchenough89] support this view by stating that “JSD is explicitly object-oriented only
during the modelling phase”. Links between modelling (in the JSD sense) and object oriented
programming have been highlighted indirectly from within the object oriented community itself. For
example, Madsen [Madsen88] considers execution of an object oriented program “as a physical model,
simulating the behaviour of either a real or imaginary part of the world”. Further, Booch’s [Booch86]
suggestion of coupling “object-oriented development with appropriate requirements and analysis
methods in order to help create our model of reality”, and then stating that “we have found Jackson
Structured (sic) Development (JSD) to be a promising match” is further support for a link between JSD
and the object oriented paradigm. Finally, McNeile [McNeile89] states that “JSD has much in common
with object-oriented approaches to software design”, but more importantly he goes on to say that “JSD
combined with suitable code generation tools, can support incremental development and prototyping ...”.
If, in this final remark, the word ‘suitable’ is replaced with ‘Smalltalk-80’, the statement would describe,

succinctly, one of the achievements of this research.
Entity and Object Formation

The representation of models (in the JSD sense) in object systems is represented by a set of message-
passing objects. However, models in JSD are somewhat different as they attempt to capture the dynamics

of the things they represent. For example, a customer orders some goods, receives them and if satisfied
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pays for them. There is an explicit ordering constraint imposed by the problem domain itself on the

activities of ordering goods, receiving goods and paying for them; you cannot receive goods before they
have been ordered. JSD views the dynamic constraints of reality as an essential part of any model that
is created.

The most natural way to capture the dynamics of entities in the real world is to state the time-ordering
of their events [Jackson82]. This approach to modelling entities is known as entity-life modelling
[Sanden89]. Candidate events, known as actions, are initially identified and grouped together according
to their time-ordering in the problem domain [Cameron86]. Actions are atomic in that they cannot be
decomposed into sub-actions; furthermore, actions are considered to happen instantaneously. Each
action has associated attributes describing its characteristics, e.g the action lend in a library systcm
would have attributes such as book-name, ISBN, lender-id and when, action attributes are the basis on
which anentity’s own attributes are formed. A time-ordered sct of actions which some real world entity
suffers or performs — called its /ife history— represents all possible (valid) orderings of those real world
actions. Life histories are described using three basic components: sequence, iteration and selection (see

Structure Diagram  Structure Text.

Book

Sequence:
A consists of one B, I T L T v |
followed by one C,

l'_Bl'—I r(l:_l f[l)—l followed by one D. Acquire Classify LoanPart EndPart

l l—"—l*'l

T
{teration: Loan Sell Dispose
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more B's.

“ A is aniteration of B. I

Lend OutOnloan Return

Selection: [
A ists of either one B,

orone C, orone D. Renew
B C D Ais a selection of B, C or D.

Figure 3.2. An entity-life history diagram.

Figure 3.2).

The identification of actions in the problem domain is the first activity an analyst undertakes when
developing a JSD specification. In developing an object oriented program, the approach adopted is quite
the reverse, as the first task is the identification of objects themselves and then their associated behaviour
and the relationships between them [Shlaer89]. Experience has suggested that it is easier for analysts to
identify events in the real world rather than entities, and that users find it is easier to describe how they
see the real world in terms of what goes onin it, not by what entities/objects reside there [Birchenough89].
However, entity formation is still one of the most difficult parts of the JSD modeclling process as it is not
always clear to which potential entity an action belongs. It is possible that candidate actions do notbelong
to any entity as they lie outside the model boundary. When an action is associated with more than one
entity, it is known as a common action. For example, in a library system, the action 1end is common to
the entity Member (a member is lent a book) and also to the entity Book (the book is lent to a member)

[Cameron88]. Common actions are similar to overloaded messages (i.e. messages with the same name)
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appearing in different classes and therefore exhibit a kind of polymorphism.

Great stress is placed in JSD upon the time-ordering of actions in entities representing objects of
interestin the real world. This emphasis on time-ordering highlights one of the many differences between
object oriented design and JSD. An object in an object oriented system has no time dimension, and no
external order imposed on method invocation. A method within an object can be activated at any time,
and any number of times. In JSD, the opposite is true in the sense that there is a strict ordering of actions
within an entity life history — the associated behaviour of each action can only be executed when the
process reaches a specific state. The principal difference, therefore, is that there exists in JSD a
prerequisite to order external real world actions to formulate process entities [Jackson83], whereas in
object systems there is not.

The lack of constraint imposition in the order of method invocation in class specifications is seen
as a distinct advantage by some. Meyer [Meyer88] states that “it is often a mistake to freeze this order
too early, as sequencing of actions is one of the aspects of system architecture that tends to change most
often during development and evolution™; he goes on to say that “the facilities of a module are there for
other modules to use in the order they desire”. Meyer quite rightly highlights lack of time-ordering in
object systems when stating that “this refusal to concentrate too early on sequential constraints is, inmy
view, one of the key differences between object-oriented design and ... JSD, Jackson’s System Design
(sic) method”. However, there are three points to Meyer’s argument in need of comment. The first is that
by stressing the ordering constraint, the abstract specification will, more accurately, reflect the activities
of the real world. The order of these actions does not change very often, as he asserts, compared to
functional requirements, which is the whole point of the modelling phase of JSD — to capture, as
accurately as possible, the stable features of the problem domain. Secondly, sequencing of actions is not
one of the aspects of system architecture in JSD, but of the architecture of processes. Process
intercommunication is the basis of system architecture in JSD specifications. Thirdly, Meyer appears to
confuse the fundamental differences between JSD specifications and their potential implementations. A
JSD specification is an abstract specification and, as such, can have many different implementations.

3.3 Specifications and Object Orientedness
Processes

A natural way of representing time-ordering of events in software systems is by using sequential
processes [Jackson84]. Thus a real world model in JSD is realised by a set of long running sequential
processes, each expressing the possible time-ordering of certain external real world events. Moreover,
entity-life histories which are realised as sequential processes are descriptions of process classes
[Jackson80]. For example, the life history of a library book described in Figure 3.2 is a description of
all possible books in a library; thus, for every single book, there will be a separate sequential process
modelling its life history. These instances of a process class realise entity attributes in state vectors —
the persistent and encapsulated data about which a system can provide information via system functions.
Basically, a state vector which is being continually updated by the owning process, keeps a historical
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record of what the process, and hence corresponding real world entity, has done.

Instances of a process class within a network appears to parallel the class/instance mechanism
employed in the object oriented paradigm. However, JSD process classes, are not templates for creating
instances in the object oriented sense; the semantics of networks is such that processes are neither created
or destroyed. On the other hand, the class/instance mechanism employed in the object oriented domain
specifically caters for instance creation. Class instances (objects) are dynamic entities in the sense that
they have a beginning and an end whereas JSD process instances do not.

Making a stronger connection between process instances and class instances can be achieved by
observing one of the constraints dictated by JSD specifications — all process instances must be
distinguishable from each other. Distinguishing between instances of a process class in JSD and
instances of a class in objectsystems is very similar. Individual states are identical in structure (instances
of a process class have the same set of entity attributes, and instances of a class have the same instance
variables) but contain different values. Each process instance inJSDhas a user-supplied unique identifier
as part of its state vector, which parallels the property of identity possessed by objects though this is
usually supplied as part of the object oriented runtime environment. However, there are moves to try to
alter this understanding of process instance identity by making the property of identity ‘external’ to the
process instance itself (i.e. not part of a process’s state vector) [Birchenough89a]. This would then
exactly parallel object identity found in environments such as Smalltalk-80.

Actions in the problem domain generate messages which are read by the system’s model processcs.
These processes then (partially) execute and thus synchronise themselves with the dynamics of the
outside real world (albeit always inevitably lagging behind [Jackson83]). It is interesting to note that the
associated behavioural representations of these actions in model processes are the only components
which can change the state of such processes. This behavioural activity is similar to the way object
oriented systems operate — methods are the only components which can change the state of an object.
The reason this similarity exists is that both support data encapsulation — processes encapsulate their
state vectors and objects encapsulate theirinstance variables. However, the degree to which encapsulation
is enforced is different. Although a state vector can be changed only by a process’s associated action
behaviour, the state vector is in a sense not fully encapsulated since its inspection takes place without
the owning process being involved (see later).

A further property which system states have in commonin the two paradigms is persistence. In object
oriented systems, it is an implicit attribute of an object: “anobject is persistentifit ‘dies at the ri ghttime’;
persistence is an observation about the lifetime of an object, namely that it exists for precisely as long
as intended, and then disappears” [Low88]. In many cases, objects can last longer than the programs
which use them [ Atkinson87]. In JSD, state vectors of model processes persist because these processes
represent the entire life spans of particular entities. State vectors become unusable only when the system
itself is of no more use, not when their associated processes come to the end of theirlives; the reason for
this is that data might be needed for historical reasons and the end of a process’s life is still a valid state®.

This position is consistent with the fact that processes themselves are never considered destroyed. Given

¢ lam indebted to Mary Carver of LBMS for pointing this out to me.
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this required persistence of process states (often realised in conventional JSD implementations in a
database), it therefore seems reasonable to assume that an object oriented system with its potential for

persistent programming [Atkinson87] is well suited in this respect to implementing JSD specifications.

Network Formation and Communication

Model processes provide only an abstract simulation of the real world subject matter under
investigation. In the second phase of JSD, incremental development is the key, as new processes are
gradually added to the model processes to specify what the system is to do; a network of communicating
processes is thus created

. Real World
(see Figure 3.3). The new Input ? Process

processes added are known
<> State Vector

asfunctionprocesses as they

i ) Input Subsystem Process D
realise the functional Process O Datastream
requirements of the system.

Function processes are D/A

connected to model

Model Process 7' Information Function
processes producing either Process

system outputs (e.g. the Re?';’"‘t’"d@—-} Process A Process B
npu

circle labelled O in Figure

3.3) or additional inputs to

the model processes (e.g. A @

the circle labelled A/C)

representing events not Real World Interactive Function
. ) Process C

explicitly available in the Input Process

real world. Other processes

Output

Figure 3.3. A System Specification Diagram (SSD).
capture data generated by

real world actions and then, aftererror checking, passiton to the relevant model processes (e.g. the circle
labelled D/A).

Processes communicate with each other by reading from, and writing to, idealised first-in-first-out
(FIFO) buffers called datastreams (the circles), and by inspecting each other’s internal states or state
vectors (e.g. the diamond labelled A). Datastream communication is asynchronous; a process is not
blocked on writing a message to a datastream, but a process is blocked when reading from a datastream
that is empty. A process “takes the same time to execute its text as the object in reality which it models,
possibly days, months, or years” [Renold88]. This long-running attribute of processes results in their
continued suspension and resumption caused by attempting to read from currently empty datastreams
at various points during their execution.

Whilst only one process can write to a datastream and only one process can read from it, processes

can read from and write to many different datastreams. Where a process is reading from several
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datastr , the order in
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communication (e.g.

Figure 3.4. Datastream M erging.

datastreams A/C, B/C and D/Cin Figure 3.4). The second strategy is where it does not matter what the

orderis and all the datastreams are effectively coalesced into one. This s roughmerging (e.g. datastreams

E/G and F/G). Where a process class has many instances, each instance will write its own datastream.

Process multiplicity is shown in Figure 3.5.
The other form of communication used,
state vector inspection, provides a read-only
access mechanism permitting one process to
inspect the state of another. The inspection
itself does not interrupt the inspected process
and the inspecting process is never blocked
from carrying out the operation. The difference

between state vector and datastream

Process A —Q—»

Process A -H—Q—»
Process A -H—O-H-»

Process B

Process B

Process B

one to one

many to one

many to many

Figure 3.5. Process Multiplicity.

communication can be seen in the relationships they create between processes [Sutcliffe88]. The

semantics of datastream communication creates a closely coupled producer/consumer relationship, and

guarantees that every message deposited in a datastream by one process is eventually consumed by

another. State vector

inspection, however,

does not impose any Process A

such coupling as it is
completely invisible

10 processes being

inspected. In effect, Process A —@* Process B

datastreams are used

L Synta
when data which is yntax

Conversational Datastream

Process B

Process A

Process A

Controlled Datastream

oz

Process B

Process B

Semantics

considered historical

Figure 3.6. Other communication primitives.

has to be passed around different processes; ‘current state’ data is handled by state vector inspection.

There are two other communication primitives available at the network level, which are controlled

datastreams and conversational datastreams [Renold88] (see Figure 3.6 for their notations). Controlled
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datastreams ensure that a writing process can write records that the reading process is ready to accept.
Effectively, this can be represented by first performing a state vector inspection and then, after ensuring
the receiver processisready to acceptarecord, executing adatastream write. Conversational datastreams
interleave reading and writing such that once a record is written, another is written back by the receiver
process. Thus, conversational datastreams couple processes more closely in the sense that only one
record needs to be buffered at any one time.

It is interesting to note that both JSD and object oriented programming call their communication
mechanisms ‘message sending’. However, the two systems are in fact quite dissimilar. The message
sending mechanism in an object oriented programming environment is an activation medium. Once a
message is sent, some activity is immediately carried out by the receiver of that message; the receiver
has no option but to carry out the message request immediately (assuming that there is an appropriate
method for the message selector). The important characteristic of the object oriented programming
message mechanism is that it can be viewed as synchronous [Wolczko88]. Objects are blocked on a
message send, since they have to wait for the receiver of the message to respond. In JSD specifications,
the message system employed in datastream connection is asynchronous as already discussed. Thus,
processes writing records to a datastream, which can be regarded as an information passing mechanism,
are never blocked. This asynchronous communication does not generally exist in the object oriented
paradigm.

As regards state vector inspection, the semantics of this mechanism does not exist in the object
oriented paradigm either. Because of the encapsulation mechanism employed, the only proper way to
observe the state of some object is for it to provide messages which returns the value of one or more of

its instance variables.

3.4 Implementation and Object Orientedness

JSD Transformations — An Overview

Whilst the semantics of JSD specifications bear some resemblance to the object oriented paradigm,
the final step in the JSD method, the implementation phase, is considerably further removed. JSD uses
a system specification directly to generate the desired implementation. This transformational approach
ensures that the integrity of the specified system does not become corrupted during the implementation
phase [Jackson83]. Generally, object oriented programs are not produced transformationally but rely
completely on the ingenuity of software engineers to create them. There are a few exceptions to this. For
example, one system called Producer [Cox87] translates Smalltalk-80 code into Objective-C [Cox86].
Although the system requires much programmer intervention, it does at least provide a transformational
path from an interpreted, dynamically bound language (Smalltalk-80) to Objective-C and then to C.

Three major transformation techniques used in JSD are inversion, state vector separation and
dismemberment. The following is a general overview of these three transformation techniques, further
detail can be found in the chapters to follow. Inversion, which is typically applied in conjunction with
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state vector separation, in its basic form converts an asynchronous producer-consumer process pair into
a routine and reentrant subroutine that are behaviourally equivalent to two coroutines [Storer88,
Sanden89]. When the reentrant subroutine is invoked, it resumes execution from where it was last
suspended. Partial execution takes place, updating internal states, until the reentrant subroutine again
suspends itself. The reentrant subroutine’s suspend points are associated with the original read (or write)
operations on the associated datastream, which the inversion transformation removes. The resulting
implementation architecture which this transformation produces when applied overa whole (sub)network,

is a hierarchy of reentrant subroutines — All input

see Figure 3.7 which is one possible (0K Scheduler

implementation of the network in Fi gure

3.3. K * ! *
JSDspecificationsoften containmany Routine D |J Routine C

instances of a process class, all of which

are executing concurrently. These many D/A * A/C

instances can be implemented by having Routine A

one copy of the process text and many A

copies of the state vectors. Each process AB *

is implemented by separating its state Routine B _@

vector from its sequential procedure and

storing those state vectors in a state vector Output

database Thus it is possible, using state ~ Figure 3.7. A System Implementation Diagram (SID).
vector separation and inversion, to implement an entire specification on a single machine if desired. A
more detailed explanation of state vector separation can be found in Chapter 6.

Dismemberment creates several new process structures from a single process structure. The
execution of each newly derived structure represents a partial execution of the original process. For
example, if instead of having a single piece of process text representing a model process, each action in
the model is represented as a single routine, then the process would be regarded as being dismembered
by state, known as process state dismemberment. By breaking upthe structure of a process into individual
modules, it is possible to schedule separately each of these modules when the system state needs to be
updated, rather than executing a single reentrant routine. Some dismemberment might be desirable, or

€ven necessary in a transaction processing environment say.
JSD Implementations and Object Oriented Architectures

One tentative connection which can be made between the two domains at this level is that the
architectural structure of both is similar, i.e. both employ hierarchies. However, there the similarity ends.
JSD implementation hierarchies contain stateless reentrant routines whereas in object architectures, the
hicrarchies are composed of classes. Further, the inheritance mechanism, whichisone ofthe distinguishing
characteristics of the object oriented paradigm, increases this gulf between the two domains as
inheritance is not exploited in JSD implementation.
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Anotherimplementation linkage relates to the realisation of roles. Althou ghthe conceptofroles falls
strictly in the modelling phase of JSD, itis pertinent to discuss them here to indicate how the inheritance
mechanism could be exploited to implement them. The domain of JSD specifications does not possess
any inheritance property, and it would therefore seem appropriate toregard inheritance as animplementation
tool [Cox86]. A role in JSD is a process which shares part of its state with another process (usually this
is only the process identifier). Roles enable separate strands of concurrent activity within one entity to
be modelled. For example, in a publishing bureau, high quality image sctters can be viewed as having
three roles. The first role models their behaviour as an asset to the company, and so activities such as their
use (they should be used as much as possible to gain the best financial return) and payment of rent, etc.,
would be included in the role model. A second and more obvious role is the operation of the image setter
itself — activities such as sending text to be rendered, indicating the number of copies required, etc.,
would be included in this role. Finally there could be a servicing role in which the aspects of loading more
film into the machine, cleaning the roller mechanics and general servicing activities would be
represented. However, the important point is that all these concurrent roles relate to the same kind of
entity, namely image setters. It would therefore appear logical to organise this topology into a kind of
inheritance hierarchy. In this scheme, there would be an abstract class representing the entity in which
reside the common state variables amongst the roles. Each role would then be a subclass of this abstract
class, all sharing the common state variables via their superclass.

Finally, another connection between the two domains involves the way object oriented systems are
actually implemented. Although this connection is comparing a physical mechanism with a conceptual
operation it is still worth mentioning. Most implementations of object oriented systems are based on
reference semantics — manipulation of pointers. Each time a new instance of a class is created, only the
instance variables are copied; the methods always reside in the class itself. A pointer to an object’s parent
class is maintained so that when a message is sent to an object, it is not the object which is searched to
find the relevant method but the object’s class instead. This physical implementation facet of object
oriented languages can be seen in JSD, where behaviour is realised as stateless reentrant update
procedures, which are themselves interfaced via some accessing mechanism to a database in which state
vectors of the system are stored. Each stateless reentrant procedure assumes the identity of a process
while executing. The result of applying state vector separation to a JSD specification resembles very
closely the mechanics employed in the physical organisation of object oriented programs — the

equivalent of state vector separation comes for free with the latter.
Summary

This chapter has sought to identify the points of congruence between JSD and the object oriented
paradigm. The table in Figure 3.8 overleaf presents some of the features which can be found in both
domains. The first phase of JSD, the modelling phase, is probably the closest to the object oriented
paradigm. In both domains each attempts to capture a representation of the real world in order to build

a stable system. There are superficial connections which have been identified at the specification phase
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of JSD such as process and
object identity, and the
persistence of process
instances and objectsinobject
oriented environments.
Finally, the implementation
phase, the connection
between the two domains
becomesnearnon-existent. In
conclusion, the differences
between the two domains are
such that JSD cannot really
be categorised as object
oriented. Probably the best
pigeonhole in which to place
JSD would be one labelled
‘operational’ as already
discussed in this chapter.
Nevertheless, identifying
links has provided a useful
indication of how to tackle
the problem of transforming
JSD specifications into object

oriented languages.

Feature

JSD

ooP

Architectures

Networks (specification)
Hierarchies (implementation)

Hierarchies

Communication

Message Passing (datastream)
& State Vector Inspection

Message Passing

Encapsulation

Process (specification) &
Reentrant Subroutine
(implementation)

Object

Identity

User-supplied

inherent part of Objects

Implementation Approach

Transformationally

Programmer Ingenuity

instantiation

Process Class '/
Process Instance

Class / Object

Message-Passing

Asynchronous (specification)
Synchronous (implementation)

Synchronous

Persistence

Processes

Objects

Polymorphism

Common Actions

Operator Overloading &
Inclusion

Real World Representation

Entities Model Processes

Message Passing Objects

Re-use

Possible at the Model/Network
level

Automatically via Inheritance

Separating State from
Behaviour

At implementation

Cannot be done’

System State Change

.3
Actions

Methods

System State Representation

State Vectors (specification)
Database Records
(impiementation)

Instance Variables

Temporal Constraints

Time Ordering of Actions

Unit of Modularity

Process (specification) &
Reentrant Subroutine
(implementation)

Class

Notes. Implementation refers to a procedural implementation via inversion and state vector separation

1. Process Classes are not templates in the object oriented sense
2. Is realised in the implementation of object oriented languages

3. For Model Processes

Figure 3.8. Overview of the features found in the two domains.
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The growth of the use of transformation theory, as
applied first to relativity and later to the quantum
theory, is the essence of the new method in theoretical
physics.

P.AM. Dirac
4  Transformation by Context Manipulation
4.1 Transformations — An Overview

Transformational programming is primarily a method for constructing programs from (formal)
specifications by the successive application of transformational rules [Partsch83]. Howcver, most
transformational systems arc used for improving program cfficiency [Balzer81], where the term
‘efficiency’ covers both speed of program cxecution and program size. One of the prerequisites of a
transformational system is that it preserves the semantics of the specification or program it transforms
i.e., the transformed program is behaviourally identical to its untransformed source. Thus, although
transformations may alter internal structure or change some of the constructs used, transformed
programs are bchaviourally identical to their sources but (usually) occupy less memory and run faster?,
Possibly onc of the main disadvantages of a transformational system is that in order to incrcase the
efficiency of programs it normally reduces their clarity. A good example of this is a compiler.
Compilation is a transformation converting source code into a machine interpretable form. The
cfficiency of executing the machine code is greater than interpreting the source code, but to a human
reader, the machine code is practically unintelligible.

In order for mechanical conversion to be undertaken, another prerequisite of a transformational
system is that the source specification must be of a semi-formal nature. In fact, the raison d’ étre of
transformational systems is that program construction can, to a certain extent, be carried out by
computers themselves. Most transformational systems are usually to be found at the implementation cnd
of the softwarc development process, a fact highlighted in the classification of transformations by
[Partsch83] into program modification, program adaptation and finally program synthesis.

Program modification systems account for most of the transformational systems in existence as the
role of compilation is placed in this category. In general, program modification systems, as their name
implies, simply modify some aspect of a program in a predefined manner by replacing data and control
structures with (semantically similar) alternatives. Usually, predefined modifications of this type are
found in compilers and arc in effect optimisations, used to improve program efficiency.

Program adaptation systems are used for converting one program written in some language to
(usually) the same language but on a different hardware platform or environment. One good example of

a program adaptation systcm is that used by the developers of the Smalltalk-80 virtual machine (see

' One way of confirming this behavioural identity is by observing if the mappings of inputs to outputs of a program are
preserved after it has been transformed.
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section 4.2). Here, a generic C program representing the virtual machine is adapted for differing
hardware platforms such as the Motorola 680x0 family of processors, Sun SPARC, MIPS RS2000, Intel
80386 and others [Deutsch89]. All implementations of the virtual machine are in C, but each takes into
account different characteristics of the host hardware.

Finally, there is the program synthesis category into which transformations used for implementing
JSD specifications fall. Program synthesis systems take, as an input, some formal representation of an
abstract specification and from it generate an exccutable system. As alrcady scen, in the case of ISD, the
specification is a network of asynchronously communicating sequential processes.

The boundary between these three categorics is not always clear cut, as many transformational
Systems cover more than one area. For example, the transformations used for implementing JSD
specifications are primarily program

synthesis but at the same time also Vertical

involve program modification. In
attempting to overcome this taxonomic
problem, a ‘two-dimensional’
catcgorisation of transformational In the
systems has been advanced by [Bass90] Small

(see Figure 4.1).

Program

=  Connectivity
‘In the small’ transformations Optimisation

Reorganisation
operate at the program construct level

whereas transformations ‘in the large’ . ¥
Horizontal

are applied to suites of programs or

modules and alter their architectural  Figure 4.1. Two-dimensional transformational space.
relationship. The vertical/horizontal axis covers the change in the level of abstraction. Vertical
transformations such as compilation involve a significant change in abstraction level. Horizontal
transformations include program adaptation systems such as the generic C program used by the
implementors of the Smalltalk-80 virtual machine. Levels of abstraction are not changed, but constructs
are replaced by alternatives of the same level of abstraction. Within this two-dimensional transformational
space, JSD falls in the ‘vertical in the large’ quadrant, as the transformations alter the architecture of the
specification — networks are mapped to hierarchies (in the large) and asynchronous communicating
processes to conventionally invoked subroutines (vertical).

As a central goal of this research is to produce a set of general transformations for mapping JSD
specifications into objcct oriented languages, the transformations derived will fall somewhere within this
two-dimensional transformational space. Before describing such a general transformation strategy,
much of the detail involves an understanding of the Smalltalk-80 environment, as this is eventually used
as the target implementation platform. For completeness thercfore, a brief overview of Smalltalk-80 will

now be given.
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4.2 Aspects of Smalltalk-80

Virtual Image

Smalltalk-80 has two fundamental components: amachine independent part called the virtual image
and the machine dependent part called the virtual machine [Straw89]. The virtual image contains all the
data structures (classes, objects) and behaviour (methods) of the system and the virtual machine
interprets the methods and manages the objects in that virtual image. The virtual image, when saved to
afile, can be viewed as a ‘snapshot’ of the contents of memory that Smalltalk-80 was occupying at the
time the snapshot was taken. Since all objects are transferred from memory to file when a snapshot takes
place, this gives objects in the environment persistence. However, this is only a weak form of persistence
because Smalltalk-80 does not support multiple access to the objects stored, and the uscris unable to save

spccific objects — either the entire image has to be saved or none at all.

Organisation — Objects, Classes and Metaclasses

Every entity in a virtual image is an object and as objects are always aninstance of some class, a class
must therefore be an instance of something else, since a classis also an object. Infact, aclassis an instance
of a metaclass. Earlier versions of Smalltalk had two types of data structure: objects, and descriptions
of objects which were themselves not objects [Macs87a]. The first move away from this dual
representation was in Smalltalk-76 [Ingalls78], where all classes were instances of the sole class called
Class. Thislead to all class protocols (messages which can be sent to classes themselves) being identical.
Smalltalk-80 overcame this restriction by making all classes in the environment (such as Browser,View,
etc.,) the sole instances of their metaclasses (Browser class, Viewclass etc.). Metaclasses are instances
of the class Metaclass and so the metaclass of class Metaclass is also an instance of the latter — the
pointof circularity inthe environment. Aseach class has areference to its superclass and to its subclasses,
this enables classes to be organised into a tree structure. The root of the tree in Smalltalk-80 is the class
Object, All messages defined here can be sent to any object in the system and can be viewed as the
universal polymorphic operators. The class hierarchy in Smalltalk-80 supports a single-inheritance
mechanism, in which methods defined in higher classes are available for use in lower subclasses. Unlike
other object oriented languages (such as Object Pascal), a programmer does not have to specify whether
a new method being defined overrides one in a superclass — the run time environment provides this

facility automatically.
Virtual Machine

Methods are made up of source code statements which are instances of the class string. When a

programmer initiates a compilation, codc is passed onto the Smalltalk-80 system compiler (written in
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Smalltalk-80) which translates this string into a stream of byte-codes (instances of class Sma11 Integer?).
Streams of byte-codes such as these are eventually realised as instances of the class Compi ledMethod
and are stored in a class’s method dictionary, an instance of class MethodDictionary. The byte-code

interpreter understands 256 byte-code instructions and executes them in a stack-oriented fashion. These

byte-codes fall into five distinct catcgories:
pushes, stores, sends, rcturns and jumps.
Figure 4.2 shows the two different
representations of the halt method, defined
inclass object. (Note that the byte-codes are
in hex format. Since it is not possible to
representall possible instructions in256 bytes,
some byte-codes have extensions of cither
one or two bytes.)

As the only behaviour which can take
place within methods is cither assignment,

sending messagesto otherobjects, orreturning

halt
"This is a simple message to use for
inserting breakpoints during debugging."

NotifierView
openContext: thisContext
label: 'Halt encountered.'
contents: thisContext shortStack

<41> pushLit: NotifierView

<89> pushThisContext:

<22> pushConstant: ‘''Halt encountered.'"’
<89> pushThisContext:

<D3> send: shortStack

<83 60> send: openContext:label:contents:
<87> pop

<78> returnSelf

Figure 4.2. Source and byte-code
representation of the halt method.

objects, it might seem that ‘low-level’ processing activity such as arithmetic and comparing results
cannot be carricd out. In fact, the Smalltalk-80 system includes so-called primitive mcthods. Primitive
methods are those which are not implemented in the Smalltalk-80 virtual image, but instcad are

implemented within the virtual machine. Such methods include: +, -, ==, suspend, resume, €tC.
Object Memory

Object memory is an additional abstraction over the store Smalltalk-80 uscs. It provides aninterface
between the byte-code interpreter and the objects occupying the virtual image. The sole piece of data
which the virtual machine uses to manipulate objects is an identifier called the object pointer. The object
pointer, because of its uniqueness across all objects, gives objects theiridentity. Since objects come into
being at run-time, they have to be stored in heap memory. Access to these objects is via an object table®.

One primitive used extensively in Smalltalk-80 is new (defined in class Behavior), which is used to
create new objects. Method new creates a new entry in the object table, allocates storage in heap memory
and gives the created object a unique identity. As objects can be created at any time, one of the great
benefits with which Smalltalk-80 provides the programmer is automatic memory management of these
objects. Access to all objects is via the object table, and so the memory allocated for each object in heap
memory can be moved around freely. When an object is no longer needed, the space it occupies is
reclaimed back for further use. Garbage collection performs the task of explicitly rcleasing unwanted

objects from memory, thereby reducing code size and ensuring sccure termination of dead objects.

2 When inspected from within the environment; the virtual machine does not actually use instances of SmallInteger.
3 This is the implementation technique used in Parc Place's Smalitalk-80 version 2.3.
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Object Communication

When an object is sent a message, the message selector is used as the key for searching a method
dictionary. First, the virtual machine determines which class the receiver is an instance of (found in the
object table). A scarch is then undertaken in the receiver class’s method dictionary. If the sclector is
found, the compiled method associated with that selector is loaded and run, binding the selector with a
specific implementation of the wanted method. However, because the environment supports inheritance,
and methods can be defined in higher classes, the selectoris not always found in arecciverclass’s method
dictionary. In this situation, the virtual machine starts searching the recciver class’s superclass for the
selector until it finds it. When a selector is not found, even after searching all the way up to the root of
the class hicrarchy (class object), the virtual machine sends to the original object the message
doesNotUnderstand: with the original selector as a parameterconverted to an instance of class Mes sage

(doesNotUnderstand: is implemented in class object and cffectively brings up the system debugger).

Blocks

A block is a special kind of object which enables a programmer to delay the exccution of a piece of

code until it is required. The following (see Figure 4.3) illustrates how the factorial function is

implemented using blocks.

4 class Integer 1\

fact

message ifTrue:ifFalse: is Tself = 0 ifTrue: [1]
ifFalse: [self * (self - 1) fact]

In this implementation, the

sent to the returned boolean

object. The parameters of this
keyword message are two blocks Figure 4.3. Control using blocks.

(since blocks are objects, they can be passed as parameters). As can be seen from Fi gure 4.4, the two
implementations of ifTrue:ifFalse: are nearly identical. Each sends the value message to the

appropriate

paramcter (bound to class True )

. ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
a block); valueis a TtrueAlternativeBlock value
primitive method |\_ )
defined in class |(_ class False

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

BlockContext and TfalseAlternativeBlock value
evaluates the block  [\_ )

represented by the ] -
P Y Figure 4.4. Implementation of conditionals.

receiver. This

arrangement of sending the value message to blocks passed as arguments of keyword messages is how
most of the standard control structures (e.g. loops, selections, etc.) arc implemented in the Smalltalk-80

environment.
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4.3 Transformational Options and Smalltalk-80

The Concurrency Question

Highly concurrent specifications present a potential problem to the implementor, A decision has to
be made as to whether an implementation should maintain that concurrency (by implementation on
parallel hardware) or whether transformations should be applied to produce a purely sequential system.
This section will discuss the advantages and disadvantages of removing concurrency from a specification,

The inversion transformation (sce [3.4]) is suitable for generating a hicrarchy of routines from a
network of asynchronously communicating processes. Nevertheless, inversion produces reentrant
subroutines which are not of the simple call-and-return kind found in most programming languages
(including object oriented). Reentrant routines have the characteristic of resuming execution from the
point at which they were last suspended. The question therefore arises as to whether JSD processes with
their collective concurrency can be accommodated in object oriented languages and/or whether the
mechanism of inversion can be effectively represented.

Within the Smalltalk-80 environment there exists the class process which can be used to represent
many threads of execution, each thread executing in parallel with the others. Smalltalk-80 is not a
concurrent programming system and was designed primarily to build sequential objectoriented systems;
hence it is not suited to building parallel or distributed programs [Foote89]. Nevertheless, a relatively
straightforward mapping could be envisaged if concurrency were to be maintained in implementation.
By making an abstract class Jsp, say, a subclass of class Process, all process classes in a JSD
specification could then be mapped onto subclasses of 3sp. Datastreams in the network could be mapped
directly onto the class sharedoueue, already presentin the Smalltalk-80 environment. Class SharedQueue
provides synchronized communication of arbitrary objects between processcs. An objectis transmitted
from one process to another by sending an instance of sharedQueue the message nextPut :. A process
reccives an object by sending an instance of sharedoueue the message next. If no object has been sent

when a next message is sent, the process requesting the object will be suspended until one is sent.
Difficulties

Onc problem with the above scheme is state vector inspection (sce [3.4]), in that access to one
process’s state from another process can only be via an instance of sharedgueue. Also, the inspected
process would have to be in a state of suspension when inspected. More fundamentally, however, the
essence of this research is to identify mappings into object oriented, rather than concurrent, languages.
Whilst it is true that processes arc themselves objects populating object memory, this does not take into
consideration the large overheads incurred when using many instances of class Process. Hopkins
[Hopkins89] highlights this fact by saying that “processes will synchronise using conventional
structures, such as scmaphore objects or monitor objects. Generally, such schemes will have a high

process overhead, and are best suited to a moderate-to-large Ievel of granularity in the expression of
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concurrency”. Moreover, due to the characteristic of (dynamic) sparsity [Hull84] present in JSD
specifications, a large proportion of long running processcs will be in a state of suspension waiting for
data; using Smalltalk-80 processes would therefore appear a somcwhat wasteful use of such a costly
mechanism,

A further point is that although this work uses the Smalltalk-80 language and environment as the
targetimplementation, the aim is to find a transformational route which is suf ficiently gencral to be used
with most, if not all, object oriented languages. Since many of the other available object oriented
languages do not provide classes such as Process, Semaphore and SharedQueue found in Smalltalk-80,
this again rules out the exploitation of concurrency.

Another problem is that the developer is presented with two programming paradigms: object
oriented and concurrent. It is claimed in [ Yokote87] that “modelling the problem in two different level
modules: objects and processes ... impairs descriptivity and understandability”. In fact, the use of
processes in the standard Smalltalk-80 environment is very sparse, partially substantiating Yokote’s
comment. Again, Hopkins [ibid] remarks on this aspect of Smalltalk-80 when he says that “a normal
Smalltalk system contains only a few processes, and typical applications using concurrency do not create
more than a few tens of processes”. This last statement is important, as thc number of (instances of)
processes inJSD specifications can be excessive and the length of time they existis conceptually forever.
Cameron [Cameron86] highlights these characteristics in the description of a library system: “In our
library, books last for up to 20 years and we have over 100 000 of them. Will our operating systems and
concurrent languages allow us to run 100 000 processes concurrently for 20 years?” The answer to his
question is probably not, but in Smalltalk-80’s case, the answer is definitcly not.

Finally, from a purely practical point of view, one hurdle which would have to be tackled in a
concurrent implementation is code debugging. It would be incvitable that code generated from a
specification could still contain bugs. The Smalltalk-80 system debugger can only dcbug code with a
single thread of control and so with a concurrent implementation of a specification, the debugger would
not function correctly. A possible solution to this practical problem would be to suspend all active
processes and then, after debugging, resume the ones which were running before suspension. This would
probably involve changes to the debugger itself and other parts of the Smalltalk-80 environment. Some
of this work has already been investigated by Hopkins [ibid]. However, it is not within the scope of this
research to re-write large portions of the Smalltalk-80 environment.

In conclusion, it is clear that the approach to implementing JSD specifications in an object oriented
language must be to remove the concurrency. This requires that the mechanics of inversion be realised.
Inversionin procedural languages is relatively straight-forward, as will be shown next. It should be noted
that although state vector separation is needed when implementing JSD specifications in object oriented

languages, its realisation is quite simple and so discussion of it will be left until a later chapter.

50




Inversion in Procedural Languages

Inversion coupled with state vector separation can be used to transform a JSD specification into a

single schedulable implementation. As an cxample, Figure 4.5 shows a portion of some hypothetical

nctwork along with the
PROCESS Example
. . VAR vl1, v2...vn
specification of one of ' »| Example _‘_. Process B BEGIN
READ (DS, vl)
the processes. One leaf-1
implementation READ (DS, v1)
IF condition-1 THEN
. BEGIN
strategy is to apply leaf-2
‘read-inversion’ Example READ (DS, v1)
END
[Ratcliff89] to all I — — ELSE
BEGIN
processes in the leaf-1 Node-1 Node-2 teaf-3
R READ (DS, v1)
nctwork converting all P— — | END
* WHILE condition-2 DO
the reads (except for leat2 °© leat-3 O} | Node-3 e
the very first which I READ (DS, v1)
) . leaf-5
gets deleted) in each leat-4 leaf-5 T )
process to suspend READ (DS, v1)
END
points and making each D Example
process a reentrant Figure 4.5. Process specification with textual representation.

procedure. To make sure that each inverted process in the specification gets its proper share of processor
time, a special-purpose scheduler process usually has to be designed that implements any timing
constraints the system must satisfy. For each datastream removed by inversion, the associated data must
now be passed to the appropriate reentrant procedure via a parameter from its controlling routine; this

is illustrated by the left hand column of code in Figure 4.6 where process Example has now become

procedur e [PROCEDURE inverted-Example (vi) PROCEDURE Inverted-Example (V1)
VAR v2...vn BEGIN
Inverted—Example BEGIN call loadSV({example, stateVector);
) leaf-1 leaf-1
The result of suspend suspend
. IF condition-1 THEN IF condition-1 THEN
applying state vector BEGIN BEGIN
leaf-2 leaf-2
separation to a iipena” suspend
END END
reentrant procedure ELSE ELSE
. . BEGIN BEGIN
canbe secnin Figure leaf-3 Year-3
TR suspend suspend
4.6, in the right hand - oD
- WHILE condition-2 DO WHILE condition-2 DO
column of code. A BEGIN BEGIN
. leaf-4 leaf-4
more detailed |  .........
suspend suspend
explanation of the leaf-5 leaf-5
. call Inverted-B({(v2} call loadSV({procB, anSV)
mechamcs Of state suspend call Inverted-B(stateVector.v2, anSvV)
. END call saveSV{procB, anSV)
vectorseparationcan END Inverted-Example suspend
END
- 1 i call saveSV{example, stateVector)
bC found n Chaplcr END Inverted-Example

6. Although a Figure 4.6. Application of inversion and state vector separation.
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stateless reentrant procedure has been generated from a sequential process, additional vertical, in-the-

small transformations are needed since most languages do not possess a suspend/resume mechanism.

The transformations used convert the suspends to returns and the required resumption is catered for by

placing a ‘dispatcher’ (a case statement with attendant Goro’s) at the start of the procedure and
embedding labels throughout the rest of its text. Fi gure 4.7 (the first column of code) represents a more

concrete realisation of the second column of code from Figure 4.6, (the additional state vector ficld

selector os keeps track of the correct resumption point of the sequential code). Also, since most block
structured languages do not allow control to jump into blocks, the code is “flattencd’; the result of this
can be seen in Figure 4.7, second column of code.,

Inversion in hybrid object oriented languages such as C++ and Object Pascal is relatively simple;

implementation
would simply rely
on the procedural
aspects of those
hybrid languages.
However, in pure
object oriented
languages such as
Smalltalk-80, it is
not obvious how to
successfully exploit
objectsand message
passing to
implement this
mechanism. As
shown above,
program inversion
architecturally
changes a
communicating
sequential processes

into a reentrant

PROCEDURE Example (someData: dsRec) ;
LABEL 1, 2, 3, 4, 5, 6, 999;
BEGIN

call loadSV(example, stateVector); BEGIN

CASE stateVector.QS OF
: GOTO 1;

ST AW N
o
E

stateVector.Qs
GOTO 8999; 2:;
IF condition-1 THEN
BEGIN

leaf-2

= 2;

stateVector.QS :
GOTO 999; 3:;
END
ELSE
BEGIN
leaf-3
stateVector.Qs := 4;
GOTO 999; 4:;
END;
WHILE condition-2 DO
BEGIN
leaf-4

]
w

stateVector.QS := 5;

GOTO 993; S:;

leaf-5

loadSV (procB, ansSV);

call B(stateVector.v2, anSV);
saveSV (procB, anSV;
stateVector.QS := 6;

GOTO 9389; 6:;

999:;

PROCEDURE Example (someData: dsRec}) ;
LABEL 1, 2, 3, 4, 5, 6,
100, 200, 300, 400, 9399;
call loadSV(example, stateVector);
CASE stateVector.QS OF
1: GOTO 1;

2: GOTO 2;
3: GOTO 3;
4: GOTO 4;
5: GOTO 5;
6: GOTO 6
END;

leaf-1
stateVector.Qs
GOTO 999; 2:;
IF NOT condition-1 THEN GOTO 100;
leaf-2

= 2;

stateVector.QS := 3;
GOTO 999; 3:;
GOTO 200;

100:1eaf-3
stateVector.QS :
GOTO 999; 4:;

200:;

300:IF NOT condition-2 THEN GOTO 400;
leaf-4

4;

stateVector.Qs := 5;
GOTO 999; 5:;
leaf-5
loadsV(procB, anSV);
call B(stateVector.v2, anSV);
saveSV{procB, anSV;
stateVector.QS := 6;
GOTO 999; 6:;
GOTO 300; 400:;
999:

Figure4.7. Code flattening in a Pascal like language.

subroutine. However, most languages including Smalltalk-80 do not possess a coroutine facility

[Haynes86, Pratt84], and so the latterhas to be simulated using available lan guage constructs. As a result,

conventional realisations of inversion necessitate the extensive use of the 'goto’ statement [Storer88].

Smalltalk-80, however, does not possess this construct. Nevertheless, inversion can be realised in

Smalltalk-80 and the next section describes a possible approach.
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4.4 Realising Inversion in Smalltalk-80

First-class Contexts and Reentrant Procedures

Smalltalk-80's sole use of the object/message paradigm for all programming activity gives rise to the
unusual feature of making the virtual machine's runtime state (consisting of mcthod activations and
blocks) visible to the programmer as data objects [Deutsch84]. In Smalltalk-80 terminology, stack-
frames are called contexts [Goldberg83]. Conceptually, when a message is sent to an object, a new
context is created for the associated method activation by the virtual machine sending the message
sender:receiver:method:arguments: 10 the class MethodContext. Since all processing throughout
the system is accomplished by sending messages, there will be many contexts in the system at any one
time. The context associated with the method currently being evaluated is called the active context. When
the method associated with the active context evaluates a message expression, the active context is
suspended and a new context is created and made active. The active context stores the context which
activated it; the latter is called the active context’s sender (which is akin to a procedure’s caller in
procedural languages) and is held in the instance variable sender. Sender contexts resume when active
contexts terminate by returning.

Access to active contexts is possible via the pseudo-variable thisContext [Goldberg83]. Contexts
accessed in thisContext are first-class objects and so give them the status of being continuations
[Haynes87]. They offer a protocol allowing inspection of the program counter, stack pointer, sender, etc.
and are used extensively by the system debu gger. Manipulation of system contexts in Smalitalk-80 to
enable the realisation of different control structures stems from the language’s (partial) reflexive nature
[Foote89]. Exploiting Smalltalk-80’s reflexive capability by manipulating contexts facilitates the
possibility of building an object which behaves like a reentrant procedure [Haynes87].

Realisation of reentrant procedures, or more accurately reentrant methods, has been achieved by
developing a new abstract class called ReEnt rantObject, a subclass of class Object (see Appendix A
for complete listof code for class ReEnt rant Object plus supporting code from class ContextPart). The
two most important messages to which an instance of class ReEnt rant Object can be sent are suspend
and resume. Note, however, that the implementation of these protocols is in the virtual image, not
primitively in the virtual machine as is the case for class Process.

Instances of class ReEntrantobject are used for storing the point in a method from which that
method has returned. Instead of using the standard return mechanism of methods (the uparrow ‘T°
construct), the message self suspendis used instead. The reason self suspend is used is that when a
method returns to its sender via the usual return mechanism, the instance of Met hodContext used to run
that method is lost. All methods in subclasses of ReEnt rantObject can potentially be suspended and
resumed over and above the usual send/return mechanisms offered by message passing by embedding
the self suspend message pattern within them.

In order to explain the operational mechanics of class ReEnt rantObject, consider the following

Smalltalk-80 code overleaf (Figure 4.8). The method controlMethod sets a counter to zero and then
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creates anew instance of class ReEnt. rantExample (2 subclass Of ReEnt rantOb ject) which is assigned
to the local variable rob ject; this instance has the message Loop sent to it. Once control returns back
0 controlMethod (ignoring for the moment how this is done), there follows an iteration which
increments the counter per repetition; the important statement in the iteration is where the instance of

ReEntrantExampleiSSent[helnessage resume.

controlMethod loop

| rObject count | | count |

count ¢« 0. count ¢« 0.

rObject ¢ ReEntrantExample new.
rObject loop.
[count < 100}

whileTrue:

[true]
whileTrue:
[count ¢ count + 1.

self suspend]

[rObject resume.

count ¢ count + 1]

Figure 4.8. Reentrant methods illustrating the use of class ReEntrantOb Jject.

loopis a method defined in class ReEnt rantExample Which simply sets a counter to zero and then
iterates forever; the important statement here is se1 suspend inthe whileTrue: block. loop returns to
controlMethod at the point self suspend; loop will continue execution whenever resumed from
controlMethod immediately after self suspend. The implementation of suspend returns control but
saves the context in which it appeared (in this case the context associated with the activation of 100p).

The resume method loads a saved context and then continues execution with the loaded context.

Implementation of suspend and resume

The above gives a general indication of what takes place when suspend and resume are used. The

next two diagrams (Figures 4.9 and 4.10), illustrate the implementation details of these two mechanisms.

someObiject rObject rObject
controlMethod savedContext suspend ” ,vedcontext

Modity this cuntext and !
place in this inst var]

=
e e o) e o o o o e o
T L
| .
receiver I stackp % ; receiver I stackp § receiver I stackp
T
sender c
¢ _sender pc method «_sender pc method ﬁ- nd p method
suspand
controlMethod t 1T°ﬁnt ) § §| savedContext « thisContaxt sender copy
| rObject ent | t « 0 sender: nil.
ent « 0. § e § thisContext
rObject ¢ ReEntrantObject new. o@‘ f UhlleTrue: " E sender: thisContext sender sender
rObject loop.
feount < 10 | PP }
whileTrue: § ;
[rObject resume. ; g
o cnt & cnt + 1] E @ ; @
v 7

receiver| stackp

sender] pe|

el pOINtS tO

message send

receiver object context object

Key

Figure 4.9. Suspend mechanism.
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In Figure 4.9, a schematic overview of the flow of control for method suspension is shown, starting with

the message controlMethod being sent to an object someObject, which creates a new context for

controlMethod’s activation; thisis at @. Within cont rolMethod, ancw instance of ReEntrantExample

1s created and assigned to the variable robject. robject has the mCSsage loop sent to it, activating

method 1oop (at @), starting the infinite itcration described carlier. Eventually, self suspend is

cvaluated in the 1oop method.

The implementation of suspendis shown at ©® where the active context hasits characteristics altered

(i.e. the context at @ associated with evaluating the suspend mcthod is accessed via the Smalltalk-80

pseudo-variable thiscontext). The details are as follows:

i.

ii.

iii.

iv.

The active context’s sender context at @ (thisContext sander) is first copied
(thisContext sender copy). The sender context is copicd because the context
associated with the suspend method (at ©) is not the one that needs to be saved but
the context which activated it (in this case the context associated with the activation
of method 100p at @). These contexts must be copied, because the next step breaks
their sender chain.

The copied context has its sender (currently pointing to the context associated with
the activation of method controlMethod at @) sct t0 nil (thisContext sender
copy sender: nil). This avoids saving the entire chain of contexts, when only the
one is needed.

The copied and altered context is now stored (savedContext <« thisContext
sender copy sender: nil) in the instance variablc savedcontext.

In order for suspend to return not to loop but t0 controlMethod, the second
statement in the suspend method achieves this by making the active context’s
sender (currently the context associated with the activation of method 1oop at @)
the active context’s sender’s sender (the context associated with the activation of
method controlMethod). This effectively re-links the context at © to that at ©.
(Note, if the context associated with the activation of 100p in (i) is not copied, it
would not be possible to now access the current active context’s sender’s sender,
since the sender chain has been broken in (ii)). Hence once suspend returns, it will
return not to the context at @ (the context associated with the activation of loop

which has now been copied and saved ) but to the context at @.
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someObiject rObject
controlMethod resume

savedContext

L] 1
receiver stackp receiver stackp
some context
< | sender pc method < sender pc method
controlMethod resume
| rObject cnt | thisContext sender:
cnt « 0. (savedContext sender:
rObject ¢« ReEntrantObject new. thisContext sender)
rOb ject loop.
[count < 10)
whileTrue:
{rObject resume.

Lo ent « cnt + 1] [@

Mew sender \

B

Meaw agnder Yeoaiver staakp
R T ‘
BLL g S0d2Y B method
ioop
HEE IO |
crt ¢ 0.
{true)
whileTrue:

feot ¢ cat + 1.

self suspend)
Figure 4.10. Resume mechanism .

Method resumption using resume is implemented as follows (see Figure 4.10). In the context
associated with the activation of method cont rolMethod, the message expression robject resume will
be evaluated, highlighted at @. Sending the message resume 10 rObject Will suspend the active context
and create a new context for that message send (at ). The resume context is now active and has its
characteristics altered thus:

i. The context which was saved in the instance variable savedContext by the
suspension mechanism described above has the value of its sender (currently ni1)
made to that of the active context’s sender, i.e. the context associated with the
activation of cont rolMethod at @ (savedContext sender: thisContext sender).
This enables the saved context to return to the correct place after it has either
finished or is suspended again (note that returning to a context which has no sender
causes the virtual machine to crash).

ii. The value for the active context’s sender (currently pointing to the context
associated with cont rolMethod) is changed by making it the context in the instance
variable savedContext (thisContext sender: (savedContext sender:
thisContext sender)). Thus, when resume returns, it will no longer return to the
context at @ but to the context which was saved in the instance variable savedCont ext
placed there by the suspend at ©.

iii. The saved contextis now re-activated. Since the context had been fai thfully copied,

it will continue execution from the point after the suspend message.
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To see why context re-activation starts immediately after the self suspend message, it is necessary
to understand part of the mechanics of the virtual machine during its interpretation of byte-codes. The
byte-code interpreter carries out three opcrations which it cycles through continuously [Goldberg83].
First, the interpreter fetches the byte-code from an instance of CompiledMethod (held in the instance
variable method shown in the preceding two diagrams) which is pointed to by the program counter
(instance variable pc). Next, the interpreter increments the program counter. Finally, the function
specificd by the fetched byte-code is performed. When the byte-code representation of the message
CXpression self suspendisevaluated, on top of the interpreter’s stack will be a message receiver (in this
casc self). The interpreter will then fetch the send byte-code [Goldberg83] (which will specify the
suspend message) and increment the program counter. Note that the state of the associated instance of
MethodContext will now have a program counter pointing to the byte-code after the current send byte-
code in the associated CompiledMethod. On performing the send byte code, the active context suspends
and a new one is created. Since the interpreter has incremented the program counter automatically, on

resumption, the suspended context will continue execution from the correctpointinthe Compi ledMethod.

Applications of ReEntrantOb jects

Although the mechanics of the suspend and resume methods are quite complicated (even though the
number of supporting methods used to implement them is small), their use is straightforward as already
demonstrated in the given example. It can now be seen that the equivalent of an inverted routine is
realisable in instances of (subclasses Of)ReEntrantObject. Asan example of using suspendand resume
in transforming JSD processes, the following (Figure 4.11) illustrates the realisation of the sequential

structure of the hypothetical process from Figure 4.5.
self leaf-1.
self suspend: #leaf-1.
self leaf-2C ifTrue: [self leaf-2.
self suspend: #leaf-2].
ifFalse: [self leaf-3.
self suspend: #leaf-3].
[self node-3C]
whileTrue:
[self leaf-4.
self suspend: #leaf-4.
self leaf-5.
self suspend: #leaf-5]

Figure 4.11. Smalltalk-80 implementation of a hypothetical process.
In this example, an extension to the suspend construct has been made such that when a context
returns to its sender, a parameter can be passed back (in this case indicating at what point suspension took
place). Code such as that shown above could be generated quite easily by a tool from a process

specification and then installed as a method in a class which was a subclass of ReEnt rantobiect.
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Another application of ReEnt rant Object is to use contexts for use as non-local exits for methods.
Non-local exits are used when some error condition or exception occurs during a computation. The
following example is based on that given by [Haynes86]. The function powerFact takes as a parameter
a list of numbers and, for each number in the list, calculates the factorial of that number and multiplics
the result by the original number. It does this for all the numbers in the list and multiplies all the results
together. For example, powerFact (1 2 3 4 ) would be:

TR L %20 %2 %31 % 3 % 41 % 4 =1 %1 %2 %2%6%3*24 %4 6912

Obviously,ifazerooccurs in the list of numbers, then the resultof powerFact is zero. There are many
potential approaches to implementing the functionality of powerFact but for the purposes of demonstrating
the power of contexts, four will be given. The first is simply to carry out the factorial computations
(recursively) and multiplications, regardless of whethera zero occurs, for all the numbers in the list. The
next approach is similar to this ‘brute force’ method but tests for zero before a recursive calculation is
done; if zerois encountered, then zero is returned but, inso doing, the stack of recursive calls is unwound.
The third approach attempts to overcome the wastefulness of the two previous approaches, by initially
scanning the entire list for a zero; if no zero is found, then the first approachis used to calculate the result.

The fourth approach makes use of contexts, and overcomes the need to scan the list initially for a
zero and carry out any calculation on stack unwind. Basically, the powerrFact function is realised as the
method powerFact: which is implemented recursively. At invocation, the powerFact : message is
tagged, i.e. its context is stored for future use. powerFact : then recursively reads in each number from
the list, but does not carry out any calculation. If no zero is detected, then on unwinding the recursive
calls of itself, the calculations are performed. If, on the other hand, a zero is encountered during the
reading of the list, then instead of unwinding the stack (and hence carrying out some of the calculation
as in approach two), powerFact : immediately returns to the tagged context and processing rcsumes

there. The implementation of powerFact: and all associated code is shown in Appendix B (class

ReEntrantExamples),

Problems

The power of contexts comes from their first-class status and the fact that any sequential control
structure can be built using them [Haynes86]. Other, more powerful, control mechanisms have been
developed such as a backtracking system (similar to that provided by Prolog [Clocksin81]) which
enables computations to have multiple solutions via the reinstantiation of contexts [LaLonde88]*.

However, the manipulation of Smalltalk-80 contexts to realise different control strategies like the
suspendand resume methods does incura small overhead (although not as great as using many instances
of class Process). The explanation for this overhead is in the way contexts are handled in the
implementation of the virtual machine [Moss87]. In order for Smalltalk-80’s performance to be
acceptable, the virtual machine uses some special optimisations relating to context manipulation giving
up to an eight-fold increase in overall virtual machine performance [Deutsch84]. It has been shown that
over 85% of all message passing within the Smalltalk-80 environment is semantically identical to the

¢ The author was unfortunately unaware of this work while developing ReEnt rantObject.
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procedure call mechanism in conventional languages — the contextual information for method
activations is never accessed. Pushing and popping of stack frame information for a standard procedure
call is supported by many processor instruction sets and $0 a large proportion of the message passing
processing can exploit this. However, 15% of message passing in the environment needs access to
contextual information, making the efficient implementation of method (and block) activations quite
difficult — an inevitable result of making contexts first-class objects.

Instead of creating anew context objectat every message send, the virtual machine creates a standard
procedure activation which is pushed onto its internal stack [Miranda87, Baden84)]. When a method
returns, the internal activation is popped off the stack. Only when a context necds to be explicitly used
does the virtual machine convert it to a real object. However, contexts which are in real object format
cannot be used by the virtual machine during byte code interpretation and so have to be converted back
to virtual machine format. This optimisation of having multiple representations of contexts [Dcutsch84]
in the virtual machine increases the performance of the system generally but becomes expensive when
the virtual machine is forced continuously to convert between these representations, as is the case for the
suspendand resume methods inReEnt rantObject already discussed. Ithas been reported in [Deutsch84]
that this conversion exercise occupies on average about 3% of the total virtual machine execution time.

Although the ReEntrantObject approach works well (contrary to [Lewis90)), it is not easily
generalisable to otherlanguage environments. As the thrust of this thesis is to produce JSDtransformations
for object oriented languages in general, it must therefore include both pure (e.g. Smalltalk-80) and
hybrid (e.g. C++) object systems. Very few programming language systems offer the capability to
manipulate run-time stack frames. On the other hand, some of the pure object oriented languages do not
offer a *goto’ construct. This situation leads to the need for developing an implementation of inversion
without using either goto’s or stack-frame manipulation, and this is the subject of the next chapter.
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The nineteenth cecumenical council declares that the
whole substance of the bread is transformed into the
body of Christ and the whole substance of wine is
transformed into the blood of Christ. This transforma-
tion is called Transubstantiation.

Council of Trent. c. 1545 - 1563
5  Followset based Transformations

5.1 Followsets

Introduction

Itis clear from the discussion in Chapter 4 that an alternative to a ‘goto’ or ‘context manipulated’
realisation of inversion is needed. The alternative which will be described relies on destructuring the
original process and reforming it into a collection of dismembered components. Once this new
representation of the original process has been derived, inversion and state vector separation can still be
applied. As the destructuring is purely mechanical, this two-stage approach is still transformational.

The basis of the new approach is the use of followsets. Followsets are not a new concept but their
use in the manner to be described here isnew. Followsets have been applicd mainly in the domain of error
detection and correction in predictive parsers originating from the world of compiler thcory [Aho85,
Stirling85]. Basically, when a program is being compiled, for any input token, there exists a set of tokens

each of whose members can follow this token. This setis the followset of the input token. Hence, for any

giveninput token, its followset defines the next [, ocess a process context-A
. begin begin
valid token set according to the syntax of the read(rec, DS2) read(rec, DS1)
call B while rec <> FIRST(A) do
: : .2 : read(rec, DS2) read(rec, DS1)
language. A token which is scanned butis notin while conditionl do  write(rec. DS2)
. . . begin read(rec, DS1)
the followset for a given context instigates the call D while rec <> FOLLOW(B) do
read (rec, DS2) read (rec, DS1)
_ 1 11111 e end while rec = FIRST(D) do
error-handling facilities of the parser. Tr condition? then  haaie
S I 11 F ite(rec, DS2)
Although originating from compilertheory, elee tead (ree. bs1)
. . . . call G while rec <> FOLLOW(D) do
one application of followsets in the domain of | end read(rec, DS1)
end
JSD has already been described by Jackson A g iEetree, bs2)
[Jackson83]. Here, followsets are used for the . . )
systematic generation of general conditions as- I —_—T
. o) F Cc
sociated with iterations and selections in proc-

ess structures. These followsets can then be Figure 5.1. Systematic process elaboration producing
used to generate context filters which detect a a contex! filter.
certain class of errors in the specification’s input subsystem.

A context filter is a special type of process whose sole function is to guarantee that only correct

messages arc passcd onto model processes. Figure 5.1 gives a simple example. The specification of the
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model process a is in both diagrammatic and textual form. The right-hand piece of text represents the
context filter for process a. Note that embedded within the text is the application of two functions FIRST
and FoLLOW (o generate the followsets which are used to filter out all data records except those the model
process is next expecting; these two functions are described in[5.2]. This simple use of followsetsin JSD
can be extended when one considers the usual representation of processes — tree structure diagrams.

JSD tree structure diagrams are a representation of regular expressions [Hughes79]. A tree structure
representation of a process therefore defines all possible state sequences the process can go through. As
such, a process structure diagram can be viewed as a form of finite statc graph, as shown in Figure 5.2,
mapping all potential states to their successor states [Put88, Zave85].

Since a followmaplet represents a mapping of all possible successor follow states (represented as a
followset) from some initial state,

it should be possible for the com-

identifier

plete semantics of a process, as I letter or digt
depicted in a tree structure dia- letter body
gram, to be represented by a col- |
lection of followmaplets, known onar
as afollowmap. The next section —T stant fetter
describes how followsets, letter i dight '
followmaplets and followmaps
Structure Diagram Finite State Graph

are generated from process struc-
ture diagrams. Before that, abrief _ " .
] o identifier = letter (letter | digit)*
overview 1S given of the con-

straints that need to be enforced Regular Expression

in the architecture of process . . . L . .
p Figure 5.2. Different representations for the definition of an identifier.
structures in order to support this

transformation.

Constraints on Process Structures

In order to realise a process as a followmap, several constraints necd to be imposed on the way
processes are specified; these are:
i. Primitive operations, which describe the low-level behaviour of a process, cannot appear in
aprocess structure in arbitrary positions. Operations can be associated only with leaf nodes.
ii. If a read operation is to be used in aleaf node, then it must be the last operation of that leaf
node (except for the very first read of the process, which is removed by inversion). This
implies that only one read (or none) can appear in a leaf node.

iil. Null leaf nodes, which occur as alternatives in certain kinds of two-way selection, cannot

have any primitive operations associated with them.




A few comments regarding these constraints are in order. Only allowing operations to be assigned
toleafnodes inthe tree structure results in the process’s potential general states being represented by leaf
nodes, making the application of followset-bascd transformations much simpler. Also, it could be argued
that it makes process specifications more understandable and maintainable by separating the concerns
of specification into two distinct levels. The first level being its overall structure and the sccond level
describing the sequential ordering of primitive operations associatcd with particular leaf nodes. Note that
no kind of selective or iterative constructs can be incorporated within Icaf node operations, all of which
are to be regarded as primitive. It should be noted that these constraints impose no limitations on what
processes can be specified i.e. all processes are still specifiable within these constraints. In fact, it is a
practice that is recommended to improve the maintainability of spccifications. Others such as [Po091]
and [Borgers90] have proposed different types of constraints, which again promote better maintainable
specifications.

The realisation of the standard ‘read-ahead’ technique is reflected in the second constraint. Read-
ahead is a strategy used for allocating reads to processes and reflects the requircment that a process must
wait for, and receive each message from, an associated datastrcam before it can determine which next
piece of text is to be executed [Jackson83].

Note that the general states in which a process can exist are defincd to correspond to those points in
a process’s representation which contain ‘read datastream’, ‘write datastream’ and ‘get statc vector’
operations [Jackson83]. This restricts the possible values an inspecting process can obtain when
performing a state vector inspection but guarantees those values to be coherent. However, the usual
restriction on state representation has been slightly relaxed herc. A process’s general states arc
considered to correspond to all its leaf nodes, whether or not those nodes have any associated reads,
writes or get state vector operations.

Finally, being unable to associate operations with null leaf node components (depicted by a dash
‘—'1in a selection leaf node) is an unavoidable consequence of the followset rules derived (sce next
section). However, when the actual usage of null nodes is considered, this restriction is not significant,
atleast for model processes. Null leaf nodes when used in model process structures represent ‘events not
happening’. Since a model process’s execution is (mainly) dependent upon events in the real world
triggering its activity, events which do not take place cannot, obviously, be captured and advance the

process’s execution.

5.2 Followset Generation
FIRST and FOLLOW

Generating followsets from process specifications is based on the successive application of two
functions F1rsT and rorLow (used in the context filter process depicted in Figure 5.1). FIrsT and FoLLOW
are repeatedly applied to a process structure as it is walked in pre-order fashion. During the walk, sets

of symbols representing leaf node general states in the process structure are generated. The definitions
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of FIrsT and FoLLOW vary according to node type. As can be seen by their specification in Figure 5.3
(based on that given by {Jackson83]), the two functions are mutually recursive; note that rules (a) and
(f) represent the non-recursive cases and also the points where actual symbols arc generated.

a. If the node is a leaf node then

FIRST (Parent) = {Parent}

b. Sequence components

i FIRST (Parent) = FIRST (Child([1}])

ii. FOLLOW (Child[last]) = FOLLOW (Parent)

iii. FOLLOW (Child[j]) = FIRST (Child[j + 1]), for j =1 .. last - 1
c. Selection components

i. FIRST(Parent) =FIRST(Child({1l]) or FIRST (Child[2]) or ... FIRST (Child[last])

ii. FOLLOW(Child[j]) = FOLLOW(Parent), for j = 1 .. last
d. Iteration components

i. FIRST (Parent) = FIRST(Child) or FOLLOW (Parent)

ii. FOLLOW(Child) = FIRST (Child) or FOLLOW (Parent)
e. If the node is a null leaf node then

FIRST (Parent) = FOLLOW (Parent)

f. If the node is the root node then
FOLLOW (Parent) = {}

Figure 5.3. Rule definition of FIRST and FOLLOW.
Figure 5.4 gives an example of applying different FIrsT and Forrow rules to different node types.
Note that node types are viewed differently depending upon whether FIRST Or FOLLOW s being used. For
example, node3 is to be viewed as an iteration when used as the argument of FIRST, but, when used as
the argument of FOLLOW, node3 is viewed as a sequence component; in the first case, rule (d)(i) applies
whereas in the second case rule (b)(ii) applies. ,

FIRST(node1): nodet isa Seq (b)(i) ;
FOLLOW(node1): nodet isaroot (f) !

nodet

—_—l ' .
FIRST(node2): node2 isa Seq (b)(i) FIRST(node3): node3d isa ltr (d)(i) .
FOLLOW(node?2): node2 isa Seq (b)(iii) node2 node3 FOLLOW(node3): node3 isa Seq  (b)(ii)
| |
FIRST(node4): node4 isa Sel (c)(i) «| FIRST(node5): nodes isa leaf (a)
FOLLOW(node4): node4 isa Seq (b)(ii) node4 nodoS FOLLOW(node5): node5 isa Itr  (d)(i)
[— — ‘
FIRST(node6): nodeb isa leaf (a) 0 0 FIRST(—):—lsa_nuII (e) )
FOLLOW(node8): node6 isa Sel (c)(ii) node6 - FOLLOW(—): — isa Sel (c)(ii)

Figure 54. FIRST and FOLLOW for different node types.

It is possible to derive followsets of all nodes in a tree using these rules. However, not all of these
sets are needed because of the constraint that primitive operations arc only associated with leaf nodes.
The only sets required are the first set of the root node and the followsets of the leaf nodes. The algorithm
for followmap generation of a process p can thus be described as:
followmaplet (root)

followmaplet (leaf[1])
followmaplet (leaf[2])

I

followmap (p)

+ + + o+

followmaplet (leaf[n])

63




As an example of applying this simple algorithm, the followmap £o1llowmap (nodel)! of the tree
structure from Figure 5.4 has been ‘traced’ below:
EIRST (nodel) = FIRST (node?2) - (b) (1)
= FIRST (node4) - (b) (1)
= FIRST (node6) or FIRST (null) - (c) (1)
FIRST (node6) = {nodeé6) - (a)
FIRST (null) = FOLLOW (null) - (e)
= FOLLOW (node4) - (c) (i1)
= FOLLOW (node?2) - (b) (i1)
= FIRST (node3) - (b) (iii)
= FIRST (node5) or FOLLOW (node3) ~ (d) (1)
FIRST (node5) = {node5) - (a)
FOLLOW (node3) = FOLLOW (nodel) - (b) (i1)
= {} - (f)
FOLLOW (node6) = FOLLOW (node4) - (c) (11)
= FOLLOW (node?2) = (b) (i1)
= FIRST (node3) - (b) (iii)
= FIRST (node5) or FOLLOW (node3) - (d) (i)
FIRST (node5) = {node5} - (a)
FOLLOW (node3) = FOLLOW (node1l) - (b) (i1)
= {} - (f)
EOLLOW (null) = FOLLOW (node4) - (c) (i1)
= FOLLOW (node?2) - (b) (i1)
= FIRST (node3) - (b) (iii)
= FIRST (node5) or FOLLOW (node3) - (d) (1)
FIRST (nodeb) = {node5} - (a)
FOLLOW (node3) = FOLLOW (nodel) - (b) (i1) L
- 0 - (£) f
FOLLOW (node5) = FIRST (node5) or FOLLOW (node3) ~ (d) (ii)
FIRST (nodeb) = {noda5} - (a)
FOLLOW (node 3) = FOLLOW (nodel) - (b) (ii)
= {} - (£)

From the trace, itis possible to deduce the next set of valid general states to follow any given general
state in the process structure by evaluating FOLLOW (givenState) , where givenstate is represented by
a leaf node. This ability to derive systematically the next valid general state set can be uscd as the basis
for realising the operational semantics of processes. From a tracc such as the one above, all the

followmaplets can be derived; these are:

FIRST (nodel) = {node6, nodeb5}
FOLLOW (nodeb) = {node5}
FOLLOW (node®6) = {node5}

The first followmaplet is for the root node and represents the first general state in which the specified
process above can be in; the other two followmaplets are for its leaf nodes, representing all other possible
general states. Note that the followmaplet FoLLOW (—) does not appear above. This is because null nodes
do not get entered into followsets (see rule (e) above) and hence there is no need for ForL.Low (—) to be

in a process’s followmap. A more comprehensive example of tracing the Book process structure (see

Figure 3.2 in [3.2]) is given in Appendix C.

' Note that the process name is usually the name of the root node.
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5.3 Guards

Run-time Behaviour

Followsets are insufficient in themselves to realise the complete behaviour of a process, since they
merely give a static representation of the process. Itis also necessary to be able to determine which actual
state in a set of states will follow a given state during a process’s execution. This run-time scmantics can
be derived by incorporating extra processing in the followmap generation algorithm.

Operationally, in order to traverse from one leaf node state (source) to a following leaf node state

(destination) in a process structure, it must be

true that on reaching this destination all condi- A

tional logic (iterations and selections) passed I

through en route have been evaluated. For exam- B **

ple, in the simple process structure diagram of

Figure 5.5, the followset associated with leaf

node Bis (D, F,G}. In order to traverse from B to follow(B) ={DFG}

G, denoted as p (B, G), the associated conditional
. o Figure 5.5. The path p (B, G) through process A.

logic at b and ¥ (the conditions c1 and c2 respec-

tively) must be false. This conditional logic for traversing from one source state to another (valid)

destination state, known as a path [Roper87], is realised as a guard.

Attached to each general state in every followset of general states is a guard representing the
conditional operations associated with selections and itcrations in a process’s structure which would be
evaluated in traversing the path from some given source state to that state. In the above cxample, using
the followmaplet FoLLOW (B) = {D, F, G}, the members of this followset have three guards g (B, D), ¢ (B, F)
and g (B, G) respectively. Each guard, when evaluated, indicates whether or not the associated destination
state is the next valid state to follow the source state. Because JSD process semantics is complctely
deterministic?, only one guard associated with any particular followset can be true at any one time
(although see section [5.4] the subsection entitled ‘null nodes’). By a simple modification to the two

functions rIrst and ForLow, guards can be derived automatically in situ of followset generation.

Guard Generation

Asatreeis walked during the application of FIrsT and roLLow, the path taken will inevitably traverse
through nodes which are iterations and selections. Each of these node types will reference its attendant
boolean logic. When encountered, the conditions at these nodes are conjoined to form composite
conditionals. These composite conditionals represent the guard functions for traversing the path from
source states to destination states. It should be noted that, for iteration nodes, the negation of the itcration

condition is conjoined because, obviously, to exit from an iteration its condition must be false. Another

2 This is for a structurally valid process where all conditions in each selection are mutually exclusive.
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way of viewing this situation is

to note that what can follow the !

lastleaf node within an iterative ) } —

subtree, is either the first leaf o e e

node of the iterative subtree or | FOLLOW(node2) = {node5, nodeg}— L C1

(when the controlling condition -

for the iteration becomes false), ) : =

some other node outside the it- e - -

erative subtree. For example, in FOLLOW(node7) = {nodeS, nodes}
the process structure shown in Figure 5.6. Guard generation for iteration nodes.

Figure 5.6, there exists an itera-
tive subtree at node3, where the leaves of that subtree are node5, node6 and node7. Using the
followmaplet FOLLOW (node7) = {nodeS, nodes }, the two associated guards would be g (node?, node5)
and g (node?, node8). This second guard would be:

g (node7, node8) =not C1
Similarly, consider FOLLOW (node2) . In orderto get from node2 to node8 the condition c1 must be false.
The guard for this state change would be:

g (node2, node8) =not Cl

5.4 General implementation of Followsets and Guards

Direct Realisation

A convenient way to show how a process can be realised in terms of followsets and guards is 1o give
an example of the result of the followmap generation algorithm being applied to a process. Using the Book
process structure (see [3.2]), its followmap based representation (Figure 5.7) is presented in a pseudo
Pascal type syntax. A name with the ‘c’ subscript, €.8. 1oan_represents the condition at that named node
in the process structure, i.e. in this case, the condition at 1oan. The complete condition before each then
keyword is an actual guard. The operation process <name> signifies invocation of the primitive

operations associated with that leaf node.

process bookProcess;
var currentState: bookStates;
begin
currentState := book;
while true do
begin
{book section}
if (currentState = book) and true
then currentState := acquire; process acquire;
{acquire section}

alseif (currentState = acquire) and true
then currentState := classify; process classify;
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{classify section}
elseif (currentState = classify) and loan_

then currentState := lend; process lend;
elseif (currentState = classify) and not loanc and sellC

then currentState := sell; process sell;
elseif (currentState = classify) and not loan_  and dispose,

then currentState := dispose; process dispose;
{lend section}
elseif (currentState = lend) and renew_

then currentState := renew; process renew;
elseif (currentState = lend) and not renew_

then currentState := return; process return;
{renew section}
elseif (currentState = renew) and renew_

then currentState := renew; process renew;
elseif (currentState = renew) and not renew_

then currentState := renew; process return;
{return section}
alsaeif (currentState = return) and loan

then currentState lend; process lend;

elseif (currentState = return) and not loan_ and sell

then currentState := sell; process sell;
elseif (currentState = return) and not loan_ and disposec

then currentState := dispose; process dispose;

{sell section}
elseif (currentState = sell)
then null;
{dispose section} ;
elseif (currentState = dispose)
then null
endWhile

aendProcess;

Figure 5.7. Format of the transformed Book process, followmap (bookProcess).

One point in need of explanation is why some of the guards have and t rue. This is because the value
for the guard associated with traversing the path from one sequence node to its immediate brother
sequence node is simply true, as there exists no conditional logic to traverse. Guard components which
are simply and t rue can of course be dropped. Note that bookP roce s s will continuously loop, eventually
‘resting’ forever in a sell Or dispose state.

The realisation of the above for any process is achieved simply by enumerating through all the
followmaplets of the process’s followmap. For each state mapping of the form:

FOLLOW (start) = {fs, fs,, ..., fs }

the following is produced:
alseif currentState = start and g(start, fs”
then currentState := fs ; process fsd
elseif currentState = start and g(start, fsQ

then currentState := fs,; process fs,;

elseif currentState = start and g(start, fs)
then currentState := fs ; process fs ;
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where g (start, £s ) is expanded into a boolean expression oris made a function which returns a boolean
value. For the very first component of the multi-way i £, the followmaplet of FIRST (root) is used since

this represents the first possible state in which a process can be.

State Dismemberment

An important point to be highlighted about the followmap representation of a process is that it is
effectively the original process dismembered into all its leaf node states. This form of dismemberment
is known as process state dismemberment. A distinguishing feature of this form of dismemberment is
that each dismembered component has no structure (iterations and selections) within it with respect to
the original process.

As the process has been process state-dismembered, the original process’s internal structure (i.e.
non-leaf nodes) has been absorbed within the guards and the followsets themselves. Since internal
structure has now disappeared, the problem of jumping into a block structure (c.g. asclection or a while
loop) whichexists with code generated from transformations discussed in [3.4]and [4.3]nolongerexists.
Iterations and selections have cffectively disappeared via the dismemberment and become a set of node
states with associated guard functions. In effect, the entire original process structure can be viewed as
one large flat multiple selection. No matter how complicated the original process, after destructuring via
the followmap algorithm, the result is reduction of the process to the simplest structure possible, an

iteration of multiple selections — see Figure 5.8.

Book

H
) 4 ) 4 ) | ) |

Acquire Classify LoanPart EndPart
* 0
Loan Selt Dispose
1
1 ) § ) |
Lend OutOnlLoan Return

Renew

Destructuring

BookProcess

I

Body

T X I I X 1
. [ : 0 0 0 o 0 [ 0
Lend Renew Return Seli Dispose

Book Acquire Classify

Figure 5.8. Destructuring of process structures.
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It should be noted that the resulting structure is not a true structure as defined by [Jackson83], and
is used here only for illustrative purposes; for example, it is clearly not pcrmissible for Acquire to be

executed more than once, which the destructured process shown in Figure 5.8 in principle permits.

Null Nodes

So far, the order in which the dismembered components within the rcaliscd algorithm have appeared

has been the same as the associated general states appear in the process structurc when traversed in a pre-
order fashion. This or-

deringhasnot been ac- node1 node1
cidental and in fact is f 1 Y I i )
Critical. ThC reason for node2 node3 node6 node2 node3 node6
thisis that when a proc- — 1 — 1

[1] 0 0
ess structure has a null noded node5 noded —

node within it, the po-
tential exists for two Figure 5.9. Null nodes and guard generation.

guards to be true at the same time. This can be demonstrated using the following two (near identical)
process structures (Figure 5.9).

It should be noted that in the first structure of Figure 5.9, FOLLOW (node2) = {node4, node5}; guard
g (node2, node4) would be equal to the condition associated with node4 and g (node2, nodes) would be
equal to the condition associated with nodes. However, in the sccond structure, FOLLOW (node2) =
{node4, node6}. Null nodes do not appear in followsct entrics as can be scen from the followset rules
(rule () in [5.2]). When the guards for FOLLOW (node2) inthe second structure arc considered, a problem
arises. g (node2, node4) is the same as forthe previous structurc i.e. equal to the condition associated with
noded, but g (node2, nodes) will always return true. The reason for this is that nodes is rcgarded as a
sequence node during guard generation, and the default guard condition for all sequences is simply true.
Clearly, if guards associated with a particular state are evaluated in any arbitrary order, the potential
exists for a guard to initiate the execution of the wrong dismembered component, e.g. code associated
with node4 in the above process structure might never be executed simply because the guard associated
with nodes was evaluated first. If the order of guard evaluation is the same as that in which leaf node

general states appear in the process structure, this potential problem never arises.

Optimisations

Representing a transformed process as a collection of dismembered components has the disadvan-
tage of being an inefficient implementation. This can be demonstrated in the following way. Suppose

a process structure is large and finishes with an iteration. The problem which ariscs is that on each cycle

of the (now destructured) iteration within the generated code, all the previous dismembered parts will

have their guards cvaluated, until processing again reaches the last component — see Figure 5.10.
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Useofacasestatement,

(unfortunately not available

elseif guard thbn currentState := <node>; process <node>;

eiseif guard then currentState := <node>; process <nodes;

inSmalltalk-80)canbe seen

as a form of optimisation. It

saves having to repeat

lastitr *

within the elseif-then {

branches every test for the

elseif guard then currentState := <node>; process <node>;

currentState and, more

importantly, reduces the

complicated and
large sub-structure

elseif guard then currentState := lastltr; process <lastitr>;

Followmapped process

search space for detecting

the next dismembered part

Figure 5.10. Worst case scenario for a followmapped process.

to be evaluated — in an implementation using a case construct, all guard start states which are the same

are collected together. For example, the followmap representation of the Book process could now be

(Figure 5.10):

process bookProcess;

var currentState: bookStates;
begin
currentState := book;

while true do
begin

casae currentState of

book:

acquire:

currentState

currentState
classify:begin
if loanc then
currentState
aelseif not loanc
currentState
elseif not loanc
currentState
end;
lend: begin
if renewc then

currentState

acquire; process acquire;

classify; process classify;

lend; process lend;

and sellc then

sell; process sell;

and disposec then

dispose; process dispose

= renew;

process renew;

aelseif not renewc then

currentState
end;
renew: begin
if renewc then

currentState

return; process return

renew; process renew;

elsaeif not renewc then

currentState

end;

return; process return
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return: begin
if loanc then
currentState := lend; process lend;
@lseif not loanc and sellc then
currentState := sell; process sell;

elseif not loanc and disposec then

currentState := dispose; process dispose
end;
sell: null;
dispose: null
endCasa
endWhile
endProcess;

Figure 5.11. Followmap optimisation using a case structure.

Note also that the superfluous and true guards have been removed.

5.5 Asynchronicity and Datastreams

Inversion Revisited

The transformation scheme discussed so far has yet to address the issue of datastreams. However,
it should first be noted that read operations in a process structure can be assigned only at the leaf node
level —the allocation of read points takes place during the specification phase of JSD, when the standard
read-ahead technique is used. As has been discussed at the start of this chaptcr, one of the constraints
imposed on a followset-based transformational approachis thatleaf nodes have only a single (orno) read
associated with them. When a read does occur, it must be the last operation occurring in a particular leaf
node. A followmapped process thus results in all the read points of that original process being at the end
of each dismembered component — no dismembered component contains within it any sub-structure,
as already shown, and so will not contain other reads. The issue at hand is how to decal with these reads
to obtain inversion.

It has previously been shown (see [3.4]) that the inversion transformation produces an architecture
of reentrant subroutines which are implemented in procedural languages by sending control to different
parts of the procedure via a multi-way goto instruction (see [4.3]). In Smalltalk-80, inversion can be
realised using context manipulation although, as already discussed, this approach is specific to that
language. goto’s are required in procedural languages to support the suspend and resume mechanism
needed to simulate coroutine behaviour. Read operations are deleted and become entry points into
subroutines. Data originally obtained by read operations is now passed to an inverted subroutine via its
parameter list. When the subroutine is called, the multi-way got o guarantees that code associated with
the next valid leaf node state is executed by resuming execution from the last suspension point. Itis clear
that such a scheme executing specific portions of code is almost identical, from an operational point of

view. to that of a followmapped process, except that the ‘scanning’ activity to find the next valid piece

of code to execute is carried out by the multi-way goto.
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procedure book (var dsRecord: bookRecord)

var currentState: bookStates;

2

begin
read := true;

while read do

begin
casa currentState of
book: currentState := acquire; process acquire; read := false:
acquire: currentState := classify; process classify; read := false;
classify:begin
if loanc then
currentState := lend; process lend; read := false;
elseif not loanc and sellc then
currentState := sell; process sell;

elsaeif not loanc and disposec then

currentState := dispose; process dispose
end;

lend: begin
if renewc then
currentState := renew; process renew; read := false;
aelseif not renewc then
currentState := return; process return; read := false

end;

endCase
endWhile

endProcedure;

Figure 5.12. An inverted followmapped process.

In order to suspend this continuous looping around the case construct, each read at the end of a
relevant dismembered component needs to be replaced by a termination of the iteration. This can be done
by simply setting a boolean flag, and making a test for its value at the start of the iteration. Data originally
retrieved by the read operation is now passed, as before, via a parameter to the transformed subroutine.
This result is inversion effected on the followmapped process (sec Figure 5.12 above).

After state vector separation is applied to the followmapped and inverted process, an entire state (i.e.
state vector) can be passed to the newly generated subroutine, which then assumes a particular process

identity, executes some guarded code, and finally suspends. Although on each cycle of the main loop,

many unnecessary guards may be evaluated in order to reached the desired state, the transformation

guarantees that the next valid dismembered component will be evaluated. An altenative view of the
structure and behaviour of a transformed followmapped process (i.e. inverted and state vector separated)

is that of an event manager akin to that found in the main event loop of the MacApp framework used for

building applications on Apple Macintosh computers [Apple90]. The operation of this main event loop

(found in class TApplication) is tO determine what behaviour the machine is to carry out depending

upon the current event (implemented by the method DispatchEvent). The behaviour of a transformed

process is to determine which dismembered component is to be evaluated depending upon the current

state of the process — both are similar in behaviour.
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Since it is possible via the followmap approach to realise inversion without having to use a goto
primitive, JSD specifications can therefore be realised in languages which do not support the goto
primitive and do not allow the manipulation of the host machines run-time stack — in other words, the
transformational approach has been made more general. Clearly, the use of followsets to transform JSD
specifications is sufficiently general forit to be applied to all general purpose procedural languages. The

next chapter shows how this transformational approach isrealised in a pure object oriented language like
Smalltalk-80.




Aselection of good tools is a fundamental requirement
for anyone contemplating the maintenance and repair
of amotorvehicle. For the owner who does notpossess
any, their purchase will prove a considerable expense,
offsetting some of the savings made by doing-it-your-
self. However, provided that the tools purchased are of
good quality, they will last for many years and prove
an extremely worthwhile investment.

Haynes Owners Workshop Manual — 1984

6  Smalltalk-80 Implementation and Tool Support

6.1 Further Transformations

State Vector Separation

The previous chapter concentrated on a realisation of the inversion mechanism by a followset-based
transformation. This chapter describes how that transformation is realised in Smalltalk-80. Note,
however, that although an alternative approach for realising inversion has been presented in Chapter 4,
the approach was abandoned due to its dependence on system stack-frame manipulation, which
Smalltalk-80 permits but most other object oriented languages do not. Before presenting the implemen-
tation details of the transformations and the tool which has been built to support them (also in Smalltalk-
80), an overview of the other mappings needed to realise JSD specifications in an object oriented
language will be discussed.

It should be recalled that a process class in a network specification represents all possible instances
of that class. Each process instance has its own unique identity and is generally in a different state o its
neighbours. Potentially, many thousands of these identical processes can exist in a network. To reduce
this multiplicity, the transformation of state vector separation is applied to cach individual process
resulting in one copy of the process text and many copies of the state vectors — the individual states of
each process.

Basically, each process is transformed by removing the (persistent) variable declarations from the
process’s specification. This collection of process variables is used as the basis for describing a
database s record structure. In addition to the declared variables, a variable (usually called os) that isused
to store the resumption points of the inverted process is also included. Each such state vector becomes
an entry in the state vector database (see SVDB in Figure 6.1 overleaf); thus, for every process instance
there will be an entry in the SVDB. This arrangement enables each process instance to run on the same
¢ reentrant subroutine, produced by inversion, to update a loaded state vector during
tine is called, its first activity is to load the state vector of the process

processor by using th

its exccution. When the subrou

instance whose identity it is to assume on that call; as an alternative, the subroutine could be passed the
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specific state vector required as a parameter. At the subroutine’s next suspend point, the (possibly
updated) state vector is written back to the state vector database.
One obvious influence

. . ) Record Structure
in deciding how to imple- ! 2
. b
It + — pt:-nncdoi' C
ment state vector separa- oz oses | oI T
nodo2; road(ds);
. . . . while C1do
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99:
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b

[
S

class when needing to ac-

cess behaviour. This re- Figure 6.1. The separation and storage of state vectors.
flects to a large degree the
objective of state vector separation. To take advantage of this feature of the language, JSD process state
variables are realised as instance variables of Smalltalk-80 classes. For example, the process variables
of the Book process (see [3.2]) include:
dateAcquired, title, purchasePrice, lastBorrower, lendCount, lendDate,
dateOfLastRenewal, inLibrary, totalTimeOnLoan

These would become the instance variables of the class BookProcess shown below:

JSD subclass: #BookProcess
instanceVariableNames: ‘dateAcquired title purchasePrice lastBorrower
lendCount lendDate dateOfLastRenewal inLibrary

totalTimeOnLoan *

N

classVariableNames:

poolDictionaries: v
category: \JSD-Process’

An alternative scheme would be to realise JSD processes as methods, and the process’s state
variables as parameters and local variables of these methods. However, this approach would be
untenable. A way of reducing the number of identical copies of these methods would be required, i.e.
a mechanism for state vector separation would be needed. This would involve the implementer
developing what was already in effect present within the run-time environment and hence ‘re-inventing

the wheel’. Directly exploiting the class/instance mechanism, which is common to most object oriented

systems, is the obvious approach to adopt.
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Processes to Classes

To effect state vector separation, all JSD process classes within a nctwork specification are
transformed to individual Smalltalk-80 classes which are themselves all subclasses of an abstract class
called gsp. The name of each class is derived from a process’s name, i.c. the root node in the process’s
structure diagram. For example, the Book process is realised as the class BookProcess (sce the cxample
subclass definition above). The extension of process guarantecs that the class name does not conflict
with any other in the Smalltalk-80 environment.

Since process classes in JSD networks are realised as actual classes in Smalltalk-80, all opcrations
in a process class are realised as instance methods. Conditional operations for iterations and sclections
in a process have a one-to-one mapping with methods. These methods always return a boolean value.
Theirnames are derived from the node in the process structure representing the iteration or sclection, but
with the extension of c. For examplc in the Book process, the four conditional nodes’ opcrations are
represented as the four methods: 1oanc, renewc, sellc, disposeC.

Method granularity for leaf operations is such that a single method encapsulates all of a given leaf’s
assigned operations. Names of such methods are the same as the names of the lcaf nodes themselves.
However, as it is not possible to have within the same class two methods with the same name, it is
therefore not possible to represent a transformed process structure with two leaf nodes with the same
name. One simple way to resolve this problem would be to assign a unique index to each leaf node during
a pre-order walk of the tree, thereby making it possible to distinguish between nodes of the same name.
This would also overcome another problem associated with non-unique names for process leaves which
relates to the generation of followsets. Although it is possible for two or more leaf nodes with the same

name to follow some other node in a

followset, only one instance of any node is
entered by the followset generation algo- A
rithm since a followset is simply a set (albeit ————
with an ordering defined over its members). B C

As regards the problem of non-unique = . -
node names, it is interesting to note that a D G
byproduct of the followset generation algo- —— ———
rithm is its potential for identifying recogni- e f /e h
tiondifficulties. If asituationoccurs whereby \
several nodes with the same name can fol- follow(B) = fe, ef/

_ 7 N
low another node, a recognition difficulty Figure 6.2. Recognition difficulty in a process.

has arisen. Recognitiondifficulties are prob-
lems which arise usually in the modelling phase of JSD where anevent in the real world cannot accurately

be trapped and separated from otherevents. Forexample, considerthe following simple process structure

in Figure 6.2.
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Here the event e occurs twice in the structure. The problem is that both e’s can follow node s and
$0 it is not possible to determine which branch the process should next enter i.e. D or 6. Recognition
difficulties are solved by one of two techniques. The first is multiple read ahead [Jackson75] where the
process executes two (or more) consecutive reads (in this case at node B). The second (buffered) read will
encounter either an £ or h message thus resolving the recognition difficulty. However, multiple read
ahcad is not always applicable, e.g. when the number of extra reads required becomes excessive or
indeterminate. Also, multiple read-ahead is rarely used in JSD! and instead the more popular approach
is to use backtracking. Briefly, a process structure incorporating a backtracking solution is onc where
the designer of the process structure posits that a certain sequence of events will occur — for example
an e followed by £; if at node £ ann is read instead, then that branch of the structure is quit and the admit

part (the G branch) of the process structure entered (see [Jackson75, Jackson83]).

Format of Process Classes

As all processes need to store their unique identification and their resumption point, two variables
common to all process classes have been defined in the abstract class Jsb called key and 0s respectively.
The values which osholds are instances of the class symbo1; the names of these symbols are derived from
leaf nodes in a process structure , (recall that leaf nodes represent all possible general states of a process).
Another important instance variable of class 5sp called suspended signifies whether an inverted process
has reached a suspend point.

Two class instance variables called instances and followMap are defined in the abstract class ssb.
These two variables enable all subclasses of Jsp to have slots for storing all their instances and to share

their followset-based rep-

resentation. The variable / Object subclass: JSD
. Instance Variables [lass Instance Variables|
instances alWayS refer- suspended TollowMap
QS‘ key instances J
ences aninstance of class
svDB (a subclass of Dic-
tionary, whichispartof ¢/~ JSD subclass: Book /~ JSD subclass: Member
. stance vanables [olass Instance Variables Instance Variables ass Instance Variables
the Smalltalk-80 envi- — — pe— —
. . kISBN, stc [ d K address, etc [ )
ronment), into which all 1 T

instances of the class can

Y

08 = lend
0 0 1 - 00l Acquire} ember {Join}
bC dCPOSlted' ThC van susp«ingzg hcquire Classily} [oin Change, Lend, Leave, Return}
i Change, Lend, Leave, Return}
_ blassif Tend, Sell, Dispose} Change
able followtap refer oot [end . Renew, Return} )_ond Change, Lend, Leave, Return}
encesaninstance of class Ronow _|Renew, Return] Sturn[Change, Lend, Leave, Return]
Roturn_[Lend, Sell, Dispose} ) oave [}

FollowMap Which is es-

Pel }

suspended
= false

koy = abc123

Pispose [}

sentially a dictionary of

FollowMaplet instances. :
A s a Figure 6.3.JSD processes realised as Smalltalk-80 classes.
FollowMaplet 18

' My thanks to John Cook of LBMS for bringing this point to my attention.
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mapping of a start state to a set of follow states, this set being an instance of class Fol lowset. Hence,
the variable followMap holds all the followsets belonging to the owning class. The previous diagram
(Figure 6.3) gives a schematic overview of the class instance and instance variables used. In
summary, the overall mappings (highlighted in Figure 6.4) are:

Process classes in the network are mapped to classes in the Smalltalk-80 environment,
which are themselves subclasses of the abstract class Jsp.

Process state variables are mapped to instance variables of a class.

Leaves of process structure diagrams are mapped to methods.
Conditions of iterations and selections are mapped to methods.

A process’s followset based representation and a simple realisation of a state vector
database are stored in class instance variables.

2

O—> BProcess —O—> AProcess —»O
AProcess Object subclass: JSD
| 1 Instance Variables [lass instance Variabled
b ) 1
nodea nodeb nodef -
® /\
nodec JSD b - AP
subclass: AProcess JSD subclass: BProcess
| Instance Variables [lass Instance Variabies]  Instance Variables [lass Instance Variables
AProcess methodsFor: #operations BProcess methodsFor: #operations
i4 bocoooocon odef nodeh
noded nodee g, nodes nodei
g ?mwnoded nodek
g £ fvooocccenodea nodei
AProcess methodsFor: #conditions BProcess methodsFor: #conditions
10decC nodehC
1odeeC nodekC
BProcess nodedG J _ nodelC )
I
L ) |
nodeg nodei node;
* 0 0
nodeh nodek nodel

Figure 6.4. Example mapping between JSD and Smalltalk-80.
A complete listing of the Smalltalk-80 representation of the BookProcess can be found in Appendix D.

6.2 Generation of Followmaps

Process Structures

Inorder to present an overview of how the two functions FIRST and roLLow are realised in Smalltalk-

80, it is first necessary to describe how process structure diagrams are represented. Four distinct classes
It rNode, SelNode and SegNode. Node i$ an

arc used to represent nodes in a process tree, namely Node,
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abstract class and the other three are subclasses of it. Each node type in the tree is represented by the
appropriate instance of one of these three concrete subclasses. A tree is simply a linked structure
composed of instances of thesc concrete node classes. Each node instance has a pointer ficld for its

potential parent, left-sibling, ri ght-sibling, and first-child, enabling nodes to be linked as shown in Fi gure
6.5. This approachto repre-

senting trees is based on

[Wilson84]. Using this ap-

proach to node linkage, any

JSD process structure dia-
parent parent
gram canbe represented and

sibling

traverscd. Also having ex-
plicit pointers for parent < <
nodcs and first sons facili- sibling sibling

tates the generation of :
followsets and guards. Figure 6.5. Node linkage in the representation of structure diagrams.
Within the four node classes described, four distinct message patterns are used in the gencration of
followsets:
first:, follow:, nonLeafFirst:, followFromChild:with:
The implementation of the messages £irst : and follow: are t0 be found in the abstract class Node. The
other two messages are each in the three concrete classes ItrNode, SelNode and SegNode, but have
different implementations foreach class. The parameter to all the messages is aninstance of aFollowMap
(the additional parameter for followFromChild:with: will be explained later). The methods first:
and follow: in class Node factor out all that is common to generating followsets, e.g. testing for the
occurrence of a root node, null leaf node, etc. However, although this reduces the amount of code, the
names of the methods in the subclasses of Node representing the remainder of the FIRsT and FOLLOW

functionality have to be different to those defined in class Node itself to avoid unwanted method

invocation.

Evaluation of first:

When an instance of one of the three concrete node classcs is sent the first: message, its

implementation is found in class Node via inheritance. first : determines whether or not its receiver is

a leaf node. If it is not, then £irst: sends the message nonLeafFirst: [0 the original receiver. The
implementations 0Of nonLeafFirst: for It rNode, SeqNode and Se1Node are shownoverleaf respectively
ot translation of the rules for followset generation for the FIRST function

in Figure 6.6; they are a dire
given in [5.2]. Note that thc messag

message children Icturns a collection of all th

e f£irstSon returns the receiver node’s first child node and the

e recciver’s immediate children.




nonleafFirst: aFollowMap
“FIRST (Parent) = FIRST (Child) or FOLLOW (Parent) ”
self firstSon first: aFollowMap
self follow: aFollowMap
TaFollowMap
nonlaeafFirst: aFollowMap

“FIRST (Parent) = FIRST (Child[1])"
self firstSon first: aFollowMap
TaFollowMap
nonleafFirst: aFollowMap
“FIRST (Parent) = FIRST (Child{1]) or FIRST(Child([2]} or ..
FIRST(Child[last])”
self children do: [:aChild | aChild first: aFollowMap] .
TaFollowMap

Figure 6.0. Implementations of nonLeafFirst : for the three node types.

As can be seen, none of these three implementations makes any additions to the followmap being
passed around. This is because the only time when anentry is added is when areceivernode is aleafnode;
the addition of leaf node symbols to the followmap takes place within the implementation of first:
itself. Note that in the event of a null leaf node being encountered, £irst : sends the receiverthe follow:

message (as null nodes do not have entries in followsets).

Evaluation of follow:

When an instance of one of the three concrete node classes is sent the follow: message, the
implementation is again found in class Node. This determines whether or not the receiver of the follow:
message is the root node. If it is not, then within the implementation of follow: the message
followFromChild:with: is sentnot to the original receiver but to the receiver’s father node. The two
parameters of the message are the receiver node (the extra parameter mentioned earlicr) and the
followmap being generated. The following (Figure 6.7) are the three implementations of

followFromChild:with: for the three classes ItrNode, SelNode and SeqNode respectively:
followFromChild: aNode with: aFollowMap
“FOLLOW (Child) = FIRST(Child) or FOLLOW (Parent) ”
aNode first: aFollowMap.
self follow: aFollowMap.
TaFollowMap
followFromChild: aNode with: aFollowMap
“FOLLOW (Child[j]) = FOLLOW(Parent) [ =1 .. last]”
self follow: aFollowMap.
TaFollowMap
followFromChild: aNode with: aFollowMap
“FOLLOW (Child[last]) = FOLLOW (Parent)
FOLLOW (Child[3]) = FIRST (Child[j+1]) [j=1 .. last-1]”
aNode isLastRight
ifTrue: [self follow: aFollowMap]
ifFalse: [aNode rightBrother first: aFollowMap].

TaFollowMap
Figure 6.7. Implementations of fol

As is cvident, the implementations arc simpl

JowFromChild:with: for the three node types.
e translation of the rules given in (see [5.2]).
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Degenerate Case

Although the essential parts of the implementation for gencrating followsets have now been covered,
the implementation so far would not work for some process structures. As has already been noted, the
way followset gencration is achieved is hi ghly recursive. The exit conditions for this recursion are when
anode is either a leaf node (in which casc a symbol is entered into a followmap) or the root node (sec

rules in [5.2]). However, consider the trace of FOLLOW (node4) shown in Figure 6.8.

nodet Rules in [52]
F?llow(node4) = First(noded4) or Follow(node3) (d) (ii)
I First (noded4) = (noded} (a)
. Follow(node3) = First (node5) (b) (iii
node2 First (node5) = i
st (node5) First (node6) or Follow(nodeb) (d) (1)
First (node6) = ({node6} (a)
I 1 Follow(node5) = Follow(node2) (b) (ii)
node3 nodes Follow(node2) = First(node2) or Follow(nodel) (d) (i1)
First (node2) = First (node3) (b) (1)
I - I - First (node3) = First(noded4) or Follow(node3) (d) (1)
noded nodet Doing First (node4) again - abandon
Follow(nodel) = {} (£)

Figure 6.8. Degenerate case when applying FIRST and FOLLOW.

As can be seen, the situation arises where FIRST (node4) is about to be derived again. The reason
this happens is because both node4 and node6 can follow node4 but at the same time both node4 and
nodes can also follow node6. This results in the implementation continually ‘flipping’ between node4
and nodes. Overcoming this problem is achieved simply by passing another paramcter (not shown in
Figures 6.6 and 6.7) with the four message patterns already discussed. This additional parameter stores
the set of leaf nodes already traversed. Updating this new paramcter is within the implementations of

first: and follow: in class Node.

Guard Generation

Guards are produced during followset generation. To achieve this, another parameter is needed with
the four message patterns described above. This parameter retains a concatenated string of conditions
ard for the leaf node whose followset is currently being generated. This string is

d, and then installed in the method dictionary of the class representing

representing the gu
compiled and realised as a metho

the JSD process class being transformed. Guard generation is undertaken within two methods described

earlicr, namely:
nonLeafFirst:with:using:condition:

followFromChild:with:using:condition:
These are the complete message pattems for nonLeafFirst: and followFromChild:with:. Overleaf

is an example of the full implementation of followFromChild:with:using:condition: in class

ItrNode:




followFromChild: aNoda with: aFollowMap using: taestSat condition:
"FOLLOW (Child) = FIRST (Child) or FOLLOW (Parent)”

condition

aNode
first: aFollowMap
using: testSet
condition: (self buildCondition: condition
with: self firstSon condition).
self
follow: aFollowMap
using: testSet
condition: (self buildCondition: condition
with: self firstSon condition, " not’).
TaFollowMap

As can be seen from this method, the second message pattern (beginning with se1£) builds the negative
of the derived condition (by appending the string not), as explained in [5.3].

Guard Format

The format of guards in Smalltalk-80 is different to that discussed in [5.4]. Instead of having an
individual and separate guard method for each state transition of the form g (source, destination), all
the guards relating to a particular destination are merged together into a single method. This results in
cach leaf node in the process structure having an associated compound guard method, its name being
derived from the leaf node’s name with the extension G. For example, the Book process would contain
the seven compound guard methods:

acquireG,classifyG,lendG,renewG,returnG,sellG,disposeG
As an example, the internal structure of the compound guard method associated with leafnode dispose

in the transformed Boox process is as follows:
disposeG
“g(classify, dispose)”
self state = #classify ifTrue:
[T(self loanC not) and: [self disposeC]].
“g(return, dispose)”
self state = #return ifTrue:

[T(self loanC not) and: [self disposeC]]
disposecreflects the fact thatonly the followsets FOLLOW (classify) and FOLLOW (return) contain

amongst their entries the element dispose. Associated with these two followsets are the two guards

g (classify, dispose) and g (return, dispose), and hence these guards are implemented in the

iti joi i message and:. This
compound guard disposeG. Note that the conditionals are conjoined using the message an

message is known as a ‘non-evaluating conjunction” — if the receiver of and: is the object false, then

the parameter to and: iS ignored and false is simply returned. Use of such messages speeds up guard

evaluation considerably.
Followsets and guards have now be

However, in [5.4], it was shown that both followsets and gu .
arts after a process has been followmapped and inverted. The current

en discussed with regard to their realisation in Smalltalk-80.

ards are closely coupled together within the

collection of dismembered p
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discussion has superficially separated the two from each other. The next section shows how the
generation of followsets and guards is integrated.

6.3 Process Communication

Scheduling

So far, the description of the state vector separation and inversion transformations has concentrated
solely on process specifications. In practice, however, the result of these two transformations on an actual
JSD specification produces an architecture whichis a hierarchy of subroutines. The root of this hierarchy
is usually a special-purpose scheduler which realises all the necessary timing constraints which are part
of a JISD specification. To reflect how the scheduling constraints are to be realised, the internal structure
of this hierarchy can be altered by the developer.

There are three potential scheduling schemes available: flat and knitting-needle scheduling
(Cameron86], and user-defined scheduling. All these schemes can optionally incorporate intcrnal
buffering of messages to help realise required timing constraints, although buffering is generally
necessary when circuits of processes in the original specification exist. Briefly, flat scheduling produces
a system where the hierarchy has only two levels, the first being the scheduler and below that, all the
transformed processes. All communication between processes is effected via the scheduler; cach process
has been read or write-inverted, as appropriate, with respect to each of its datastreams. A knitting-needle
scheduling scheme is gencrated basically by applying read inversion maximally throughout the JSD
network. All external input is fed into the scheduler which thensimply distributes those messages to their

respective transformed

processes. When a trans- @
formed process needs new

| OO HO~ [ O
data, it suspends and re-
turns control to its caller, / T

and possibly back up the |{ x Flat Scheduler "@ X Knistgﬂgérbel:? °
hierarchy until control Thw by vz VYI

reaches the scheduler. An P Q R P xyl
example of this scheme w\\

was given in [3.4] (Figure Q

3.7). As a further illustra- yﬂ
tion, the two scheduling R ->@
strategies are contrasted in
Figure 6.9.

Figure 6.9. Flat and Knitting-needle scheduling schemes.




Datastream Communication

Although process destructuring in the Smalltalk-80 environment results in a collection of classes
containing methods for leaf node operations, node conditions, guards and a collection of followsets,
communication between instances of these classes is still via message sending and is synchronous. As
was described in [5.5], read operations become assignments to a boolean flag, terminating the continuous
scanning for the next dismembered part to be evaluated in the followmapped process. Write operations
become calls to relevant transformed processes. The realisation in Smalltalk-80 is cssentially no
different. Basically, datastreams, which are instances of class Datastream, a subclass of the abstract
class JsDCommunication, are stored as class variables of the process instance’s class (for example as
class variables of BookProcess) and are therefore global to all instances. The name of the datastream
reflects the datastream connection’s name in the network, e. g. the class variable ps1 would represent the
datastream connection called DS1 in a network. A write: message (or one of its derivatives) is used to
resume a suspended process and gives the illusion that the writing of messages to datastreams in a JSD
network has been carried through into the transformed system.

Datastreamhas two instances variables called reader and writer which store the names of the
(transformed) producer and consumer processes respectively. Instances of class Dat ast reamdo nothave
any capability to buffer data, unlike their counterparts in JSD specifications. When the message write:
is sent to an instance of a Datastream, the implementation first retricves the name of the reader class.
Since each transformed JSD process class holds onto all its instances via the class instance variable
instances, the wanted instance is retrieved using its unique identification as a key. Once retrieved, the
reading process ‘wakes up’. This ‘awakening’ activity is effected by the event manager.

The event manager brings together both the followset structures (stored in the class instance variable
called £o11owMap) and compound guard methods to achieve behavioural congruence withexecuting JSD
processes. The event manager is the generic name given to the write: method which animates a
followmapped, inverted and state vector separated process in Smalltalk-80. The previous discussion in
[5.4] showed how followsets and guards were distributed over many dismembered parts which
themselves were integrated into a single procedure; this procedure continually looped round, evaluating
the correct dismembered part until terminating at a suspend point. Below is the schema of the event

manager plus a partial description of the related code:
@ Using the process’s current state (held in 0s), access the relevant followsct (found in the class

instance variable followMap).

® Foreach general node state in the set, evaluate the associated guard functions until one returns

true.
@ Sct the process’s state (o the new state.

For the state which has a tru¢ guard, evaluate the code a
o O until the process suspends (instance variable suspended becomes true

ssociated with that state.

(4]
® Repeat steps O
— see overleaf).




anInstance resume.
[anInstance suspended]
whileFalse: ©

[ (process followMap at: anInstance state) 0

detect: [:element | anInstance perform: (element , ‘G’) asSymbol (2} ]

ifNone: [TanInstance suspend] .
anInstance state: element. @

anInstance perform: element 9 ]

When a process instance wants to ‘read’ data from a ‘datastream’, the read message is sent o an
instance of Datastreamwhich simply redirects the read back to the transformed process instance which
sent it and sets the suspended instance variable 1o t rue, thus terminating the execution of the cvent
manager (this is exactly the same behaviour as described in [5.5]). In addition, the read mechanism saves
inaninstance variable of the transformed process instance the name of the datastream the process is about
to suspend on. This enables suspended processes to be queried to determine which datastream they are
waiting on — a capability needed by flat schedulers, for example.

The message interface of write: and read is necessary to guarantec that transformed processes
behave as specified. Because it is possible for any method in a class to be invoked at any time, it is
therefore possible to invoke methods relating to, say, general leaf node states in a transformed process
class. Invoking methods such as these in any arbitrary order (other than that specified by a structure
diagram) defeats the whole structuring constraint imposed, leading to transformed process instances
beingin incoherent states. Limiting all communication between transformed processes to the write : and
read messages via the event manager ensures that process instances behave exactly as specified within

network specifications.
State Vector Inspection

The implementation of state vector inspections is similar to datastrcam communications described

above; the syntax

used givestheillusion AProcess BProcess
Accesser protocol is

that the state vector provided automatically
connections within a

someAction
network are actually | aCProcess count |

CProcess aCProcess « SV1 getSVOf: #UVW123.
bCiI’lg performcd n count ¢ count + aCProcess maxValue.
DS1 write: #update to: #ABC789 with: count.

the implementation. DSQ read

Instances of class ' ‘
This suspends the execution of someAction

StateVector (an- ‘ '
When write:to:with: is sentto Ds1 ,this

other subclass of will suspend someAct ion's execution

JSDCommunication)

Figure 6.10. Example of a leaf node method.
arc again stored in

class variables of transformed JSD process classe
the network specification.

s. The class variable names arc derived from the state

vector inspections used in
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StateVector has a single instance variable called connection, Which stores the name of the
transformed process class to be inspected. The two most important message protocol of statevector
are the messages getsv and get svos: These access the transformed JSD process class in connection
and in turn access the dictionary of transformed process instances which cach transformed JSD process
class keeps. getsv returns all instances and getsvof: returns a single specified instance. When
individual parts of the state vector are required by the inspecting process, accesser protocol? is used to
return values of individual instance variables, as illustrated in Figure 6.10 (on previous page).

Process Creation

One area, an essential part of the implementation stage in JSD, not yet covered is the actual creation
of transformed process instances. Semantically, process instances in nctworks are considered to be
‘eternal’, neither being created nor deleted; specifications are deemed to have the correct number of
processes to satisfy the requirements of the system?. This approach is entircly satisfactory when viewing
the system at the abstract level of a specification, but of no use when attempting to implement that
specification. This leaves process creation entirely at the discretion of the implementer. The approach
adopted here is to create an instance of a transformed process class when the first write: message is sent

to it; process creation is thus deferred as long as possible and is carried out ‘on demand’.
6.4 The Process Browser

This last section gives a bricf overview of the tool (also developed in Smalltalk-80) which supports

the transformations de-
Process browser on BookProcess
scribed. The tool ena- e e —
. essage selector
Follow(acquir acquire ‘{:nd argument
bles process structures Follow(cassif| Fonowset classify
b d hi Follow(lend) ° . dispose names
1o be entered graphi- Follow(renew] f{@cquire} lend “comment
. - _ Follow(return renew @ 1ting purpose of
cally, the structures an Follow{sell return rssager
. se
notated withSmalltalk- | & | = & ———m @ [-ccceoe-
book | temporary
80 code, and the code — ariable names |
. ted at i I ondltlor
animated at any time T I — e
- The date the book
. ’ b k.d
durmg the structures classify dookBody dggelﬂcquire" was last renewed
. . £ title @\r borrowing
creation. The design o = 0 I DurehasePr
: c 3 * lastBorrower
the tool itself is such toan e iount
3 ad 1 lendDate
that it does not need to : Pt rLasthe]
be running in order to I ) inLib
. d renewse
evaluate process speci- len SYCIDSC
fications created by it.
Figure 6.11 is a snap-
shot of the devcloped Figure 6.11. A Process Browser on BookProcess.

i i i riables.
2 Accesser protocol comprises those messages which assign and return values of instance va

3 | am indebted to Michael Jackson for his explanation of this area.
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process browser. Itis composed of seven windows and two button clusters. The discussion of the browser

will cover the three main areas labelled within it: structure editing, leaf node and conditional node
operations, and finally process communication and process state definition.

Structure Editor

Features which have come to be expected in powerful, graphically driven software tools [Apple87]
have been incorporated in the process browser and especially within the structure editor. As can be seen
from Figure 6.10, diagrams can be scrolled around in two dimensional space, enabling the user to centre
any node within the window and to manipulate it quickly. The structure editor enables users to build
process structures by simply clicking on the mouse. As a visual feedback of what is going on, the cursor
on the screen is context sensitive; i.e. the cursor changes its shape to reflect what is allowable depending
on its position,

When the user brings the cursor near a displayed node in a diagram, the cursor changes shape to
indicate the type of node addition that is allowed. Once the cursor has changed shape, the uscr simply
clicks the mouse, and a new node will be added to the one being pointed at.

Figure 6.12 shows, amongst other things, a diagrammatic representation of an individual node (a

node template) with

. ) As seen 2

its 10 different areas 5T [6

(numbered 1 to 10). ; ’ : 1 10 3| Node Template
. g[8]7

When the cursor is I 4

over any one of these 1. addleft ES

areas, the cursor Conceptual_l — 2 add above

changes its shape to _ - , 3. addright [ Node Areas

indicate what can _j :_. [T , ! == 4 add under [j

next be done when —

5. backtrack menu B

the mouse is clicked | [ = | == =

=
-4

6. node type menu T

as mentioned above.
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For example, if the Actual 7. read datastream menu R‘

cursor is over area 8 o g 8. state vector inspection menu 3
then the cursor will I —1 9. write datastream menu Hl
change into a mini x 10. general node menu N

popup menu with the Figure 6.12. Node manipulation and visual feedback.

letters ‘S’ and ‘V’ ‘ _
nexi to it. This indicates that if the mouse s clicked, then a popup menu will appear relating to state vector

inspections. Again, if the cursor is over area 4 then the cursor will change into a mini node indicating
cked, a node will be added under the current node.
rcontext sensitivity is implemented is by having aninstance of the node

diagram as indicated in Figure 6.12. However, a more efficient

that when the mouse is cli
Conceptually, the way Curso

template for every node in a structure
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method of storing trees is simply to represent each node as a point, and attach (invisibly) an instance of
the node template to the end of the cursor. When a point (representing a node) is under the now mobile
node template and the mouse is clicked, it is merely a matter of doing a simple transformation on the
coordinates of the cursor to find the area in which the node point is located in order to determine which
activity can be carried out. The advantage of this approach is that, firstly,
information needed to be stored, and secondly,

it reduces the amount of
all changes to the makeup of a node reside in one place
— the node template. From this node template/point representation of a tree, a postscript representation
of it can be created quite easily for high quality rendering on a laser printer.

Constraints built within the structure editor force a user to create diagrams which can only be
structurally correct. These constraints are further enhanced by another aid within the structure editor
which improves the aesthetics of the diagram asit is being created, namely that it is impossible to create
an ‘untidy’ diagram. Each time a new node is added to a diagram (after the addition has satisfied the
constraints) the diagram is automatically tidied. The tidying of structure diagrams is based on the tree
tidying algorithm given by [Wetherell79].

One final point regarding the structure editor is the representation of a process in the form of a
collection of followsets (only those associated with leaf nodes and the root node). This alternative
representation is generated ‘on the fly’. Whenever a new node is added to the diagram, the list of
followsets (above the structure editor view) is automatically updated. Also, to make the display of these
followsets more useful, the followset relating to the node in the structure diagram which currently has
the cursor over it is automatically highlighted in the list. As already discussed, with each entry in a
followset there is an associated compound guard. Although there are no views in the process editor
showing guards, they are automatically generated and installed in the appropriate class. Direct editing
of guards has not been provided as this could result in an inconsistent specification being formed; also,
guards are an essential part of the mechanics supporting the transformational system and so should not

be accessible anyway — compiler writers do not usually provide means of altering how a compiler

compiles®.
Operation and Condition Editor

The area labelled with the number @ in figure 6.11 is composed of the two windows and buttons
dealing with entering operations and conditions associated with structure diagrams. The approach to
code management adopted in the process browser is to make it as simple as possible for a user. This is
that, although a process specification may be incomplete, it can never be

ew process structure, a class is automatically generated and

achieved by guaranteeing
inconsistent. When the user creates a Il
installed in the Smalltalk-80 environment. As the u

clicking, methods arc generated forall leaf nodes in thatstructure
gh this may appear an inefficient approach, since a method will be created forevery

ser creates a structure diagram by simple mouse

automatically and installed inthe newly

created class. Althou

node in the tree (and then removed when the node is no longera leaf node), it guarantees that there will

i - mpiler is available to a user.
4 Although the entire implementation of the Smalltalk-80 compl
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always be consistency between the diagrammatic specificationandits attendant code. As well as creating
methods for leaf nodes, methods are automatically created for all conditional nodes (itcrations and
selections) in the diagram. The default condition generated for these methods is to simply retum the

object true. For example, from Figure 6.11, the iterative node labelled 10an will have the associated
method

loanC

Ttrue

installed in the newly generated class. This default generated code can then easily be edited within the
browser although it should be recalled that guards themselves are not user-accessible.

In order to switch between conditional node code and leaf node code the user simply clicks the
buttons labelled ‘Operations’ and ‘Conditions’ within the browser. Leaf node code initially appears as
a blank method (i.e. a method selector on its own), under which the user enters Smalltalk-80 code to
describe what is to happen when a particular leaf node is to have its associated code evaluated. As
previously stated, these methods are automatically removed whenever leaf nodes are removed from a

structure diagram.
Communication and Process State Definition Editor

The final area (arca ® in Figure 6.11) of the process browser to be discussed concems defining
datastream read and writes and state vector inspections within a process. There are two ways of entering
this information. The first is to bring up the associated popup menu over the list area and sclect the add
option. There the user will be prompted to enter in the name of the process being inspected (if the “‘SV’
button has been selected) or the name of the reading process or writing process (if the ‘DSC’ button has
been selected). Once a new state vector connection or datastream connection has been created, the user
can then refer to that named datastream in code associated with leaf node operations within the structure,
since a new class variable will have been added to the appropriate class thus causing it to be in scope to
all methods of the class.

An alternative approach to specifying datastreams and state vectors is to bring up the appropriate
popup menu in the process browser over a particular leaf node. (Recall that the cursor changes its
appearance indicating which popup menu will be displayed when the mouse is clicked over aleaf node).
If a read datastream operation is wanted, then the system will automatically insert into the associated
method (associated witha particular leaf node)

method (see Figure 6.10 where the code DsO read ha
). If the user removes that datastream from the process specification, then the system will

t read datastream from associated methods and recompile those that have been

the datastream read operation as the last statement of that

s been automatically appended to the method

someAction
automatically remove tha
changed. Manipulating datastre
permitted, and that must be the last operati

am reads is relatively simple as only one such operation per leaf node is
on. Writes to datastreams present a problem since there can

be more than one in a leaf node and can appear anywhere within the code. Because of this, the user has

es to datastreams manually in the code. This limitation which applies to writes to

1o enter in the writ
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datastreams, also applies to state vector inspections, which are also entered into the process specification
in the same way.

Finally there is the ‘PV’ (Process Variables) button. This enables the user to enter in the state
variables of the process specification. Once a new state variable is entered, the entire newly created class
isrecompiled, just as any class in the Smalltalk-80 system would have to be when a new instance variable
is added to its specification. Once the class is recompiled, that process variable becomes in scope to all
the methods of the class.

Detailed discussion of the process browser’s design goes beyond the scope of this thesis. Suffice it
to say that the browser has been designed to enable a user quickly to enter and evaluate valid process

specifications. From the comments of those that have used it, this goal appears to have been satisfied.

Evaluating Generated Code

Once auserhas completed
specifying a process using the
process browser, the gener-
ated Smalltalk-80 code repre-
senting the process can be
evaluated. Since the code rep-
resenting transformed proc-
esses are classes, they are sim-
ply installed in the Smalltalk-
80 environment like all other
classes and so are available for
use. Figure 6.13 shows a
Smalltalk-80 workspace in
which there are several mes-
sage patterns which can be
evaluated (i.e. by selectingone
and then choosing doit from
a popup menu).

Since communication be-

tween the user and transformed

Workspace

DS0 « Datastream
connect: #LibrarianProcess
with: #Net
name: #D0S0,

DSz « Datastream
connect: #LibraryStatusProcess
with: #Net
name: #D052

Function Processes

DSO write: #acquire
DSO write: #classify
DSO write: #lend
DS0 write: #return
DS0 write: #renew

DS2 write: #report

Figure 6.13. Smalltalk-80 workspace.

processes is achieved via datastreams, in order for a user to see the behaviour of a specified process (or

a network of them), the user will have 0 ‘connect himself’ to one Or More processes of his choice. This

g instances of Datastream and connecting them to the appropriate consumer process

is done by creatin ! .
80 environment (referred to as snet) which effectively represents the ‘outside

classes and the Smalltalk-
rcal world’. All the user then ha

datastream instances. For exampl

s to do is evaluate the write: message expressions being sent to those

e, in Figure 6.13,DS0 write: #return.




Inmany cases, aprocess will startto run whichin tum mightsendwrite : messages tootherdatastreams,

thus causing further processesto be activated. However, little feedback is giventothe user when this stimulus-

response activity occurs. In order to overcome this, there isa facility in the process browser which allows the
user to turn on a tracing facility. When the tracing facility has been enabled, all write: message sends are
reported to a Smalltalk-80 system transcript indicating when the message send took place, which process

resumed execution, and what state that resumed process is now in. Figure 6.14 shows a partial trace of
evaluating DSO write: #acquire shown in Figure 6.13.

s:.rste". Transcript o — (o]

*Creating a new instance of Process -LibrarianProcess - at: 11:10:38 am
LibrarianProcess is in state acquire at: 11:10:39 am

Creating a new instance of Process -BookProcess(0) - at: 11:10:50 am
BookProcess(0) is in state acquire at: 11:10:51 am

SRR

SN

Creating a new instance of Process -LibraryStatusProcess - at: 11:10:51 am
LibraryStatusProcess is in state start at: 11:10:51 am
LibraryStatusProcess is in state acquire at: 11:10:52 am

R

Figure 6.14. Trace of activity from a small network of transformed processes.

The trace information can, if needed, be exported to a file for future reference. Although the tracing

mechanism is a little crude at present, it does give a user some visual feedback on how the specified system
is behaving.




Therewill be those who will say that I am not qualified
to undertake such awork and there will even be those
whowill say that I have no right to publish such things.

A.R.Butz

7 Conclusions

7.1 JSD and the Object Oriented Paradigm

Links between the two domains

The main thrust of this research has been in identifying a transformational path for implementing
JSD specifications in object oriented languages and demonstrating those transformations in a tool. As
well as fulfilling the original aim of the research, there have been some important byproducts which will
now be discussed

Studying both the JSD method and the object oriented paradigm was the first major activity of this
work. From that initial investigation, one conclusion which can be drawn is that JSD is not an object
oriented design/development method. Qualifying this statement slightly, the activities of modelling the
problem domain, the first phase of JSD, parallels closely the aims of an object oriented development
method, and so the JSD modelling phase could legitimately be classed as object oriented. This
observation concurs with others such as [Birchenough89]. However, as was discussed in Chapter 3, the
two diverge from each other significantly after the modelling phase, as JSD proceeds to generatc an
abstract operational specification and eventually an implementation from that specification via transfor-
mation. Points of congruence do occur in these two phases between JSDand the object oricnted paradigm
as was discussed, but not to the extent that JSD can be justifiably classified as object oriented. The pigeon
hole in which JSD found itself before the object oriented explosion was the operational paradigm.

Although object oriented techniques are becoming increasingly popular, there is still no reason why

JSD’s original catergorisation should be changed — there is little doubt that JSD is currently the most

successful example of an operational approach to software development, given the extent of its usage

in the real world.

An important result of this initial study of the two domains was identification of pointers as t0 how

f JSD specifications into object oriented languages. For example, the

best to map different aspects 0 .
e mechanism found in the implementation of object oriented languages

exploitation of the class/instanc '
on of state vector separation. Other observations from that study have

neatly realises the transformati
¢ developed transformations.

manifested themselves in th




Transformational Applicability and Application

To date, there has not been any major JSD development in which the final implementation has been

realised in an object oriented programming language'. One of the main reasons for this is that the

currently available tools supporting the method have only procedural code gencrators built within them.
Some might counter this observation about lack of object oricnted implementation by pointing out that
certain JSD systems have been successfully built using Ada. Much work has been carricd out in
identifying appropriate transformations to map JSD specifications into Ada (sce [Cameron89a]).
However, Ada is not an object oriented programming language?, which is also the opinion of others in
the field such as [Cook86, Wegner89]. Booch, an authority on object oriented design and Ada, states that
“Ada is distinctly not an object oriented programming language. Among other things, it lacks a
mechanism for inheritance” [Booch89]. Wegner [Wegner89], like Booch, places Ada in the ‘object-
based’ category of his (Wegner’s) language classification hierarchy because it does not support
inheritance or have classes. It is regarded as object-based because (according to Wegner) a package can
be viewed as a form of object.

This research has described a transformational route for realising a JSD specification in any object
oriented language and in doing so has extended the method’s applicability. Further, the transformation
of process destructuring which has been developed is sufficiently general to enable inversion 10 be
applied to any procedural language. This is highlighted by the fact that JSD specifications can now be
realised in languages such as Occam. In the case of Occam, there is no need to use the process primitive
(proc) provided in the language to implement all a specification’s potential process instances (i.c.
mapping a process instance to an Occam process); instead the approach described in this thesis can be
used?, producing amore efficientimplementation (e.g. by avoiding dynamic sparsity). Althoughit would
be valid to use the current transformational scheme to generate code in a hybrid object oriented
programming language (such as C++ or Object Pascal), the best way to implement inversion in these
languages is to simply use the procedural parts of the language. State vector separation, however, can
be implemented in these hybrid languages by exploiting the class/instance mechanism as already
described.

Other applications of the derived transformations, especially with regard to the use of followsets,
include the ability to generate automatically context filter processes (see [5.1]), part of the input
subsystem of JSD specifications. Also, handling structural problems such as recognition difficulties
highlighted in [6.1], plus the generation of a finite state machine from a process structure, are possible
uses of followsets. Some of these new areas of work are being investigated by (B ass92], and as such, this
rescarch has formed a partial stepping stone for Bass’s work. Finally, one other area on which this
research has had an influence is project PRESTIGE [Bass91]. More will be said later abo.ut thi.s project
but briefly, PRESTIGE is a workbench that enables a user to transform JSD specifications and

automatically generate code in many procedural 1anguages.

! That is, not documented as of June 1991. B
: ibibith opinlon.d realisation cannot be implemented in Occam and there is no ‘goto’ primitive.
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7.2 Paradigm Merge

Alternative Life-Cycle

Since it is now possible to realise JSD specifications in, say, Smalltalk-80 it would be reasonable to
ask who would want to implement a system in such a language? It has been shown that Smalltalk-80 is
ideal for prototyping new and complex ideas very quickly [Diederich87]. This was the main reason why
Smalltalk-80 was used for developing the process browser. However, Smalltalk-80 is scen as being too
slow and insecure as a delivery platform due to it being an entirely dynamically bound and message-
passing language (although some have countered this argument; see [Lal.onde89]). These characteris-
tics of Smalltalk-80 have prompted other researchers in trying to find an altemative delivery platform
once a prototyping exercise in Smalltalk-80 is complete [Wirfs-Brock88]. Since a potential alternative
development approach, described below, has emerged from this research, the original reason for
choosing Smalltalk-80 to realise JSD specifications simply because it was ‘the’ object oriented
programming environment can now be superseded by a better and more powerful argument in its favour.

Some years ago, the thought of using JSD as a prototyping medium would not have been considered
— JSD was always viewed as a semi-formal development method, sitting at a different place in the
spectrum of development methods compared to prototyping approaches. This thesis demonstrates that
a number of different approaches to software construction can be integrated together to form the basis
for a new paradigm for system development. This statement can be justified as follows. Initially, an
operational specification is developed via JSD by entering process specifications into the process
browser. Next transformations are automatically applied to these process specifications, generating
Smalltalk-80 code and hence a runnable system. Since the tumaround time of seeing parts of a
specification executed is small, itis reasonable to view the specification as a prototype [Feather82]. This
ability to enter specifications and see their behaviour almost immediately offers a specification
prototyping capability [Davis82], thus fully realising the operational nature of JSD. Hence, the
development of a JSD specification can now be viewed as a form of prototypic ‘implementation’. This
elopment was commented on by Balzer [¢f. Smoliar82] back in 1982: “If

view of specification dev

specifications are executable, then the original specification and all derived versions are programs, and

are from programs to programs. Further, the executable specification can and should
. Development of an

all transformations
be used as a prototype. A prototype is then simply an incomplete implementation
‘incomplete implementation’ (i.c. specification) which is executable but not very efficient, is now
possible. Smalitalk-80 and the transformational research thus far developed have highlighted JSD’s

prototyping and executable capability, but have not addressed the problem of delivering a final

implementation. This is where project PRESTIGE enters

the scenario.




Project PRESTIGE

Project PRESTIGE has taken on board most of the practical results reported in this thesis. One
feature PRESTIGE offers is the ability to adom process specifications not with Smalltalk-80 but with
alanguage called ESTEL. ESTEL is a procedural-like language, but its main strength lics in its ability
to be transformed easily into most other procedural languages. This ‘Esperanto’ characteristic of ESTEL
cnables a specification to be implemented in, say, Ada, Pascal, C, or even Occam. Now a tool set
supporting JSD using ESTEL would be a powerful tool in its own right, but what gives PRESTIGE an
even greater flexibility is that ESTEL can also be transformed into Smalltalk-80. Thercfore, all the
prototyping capabilities already referred to are now available, plus the ability to generate a final system
in, say, Ada. Hence, PRESTIGE alters the life-cycle in which JSD originally found itself. One view of
PRESTIGE's capability is that the user is now able to experiment at the specification level, and not, as
with any other tools, with the code which is generated by them. This gives the user a certain leverage over
and above what is offered by most other tools currently supporting the JSD method, and for that matter

many other development methods.

Run on
Generate Transform Generate Ada Generate
e - A -1 - ; > Target
Specification Specification Source Code Object Code Hardware
Pre-PRESTIGE I
‘ Debu%,t;’race <

-
1]

read (ds, aRec);

x := x + 45;

-

write (ds2, newRec);

' 6péra'tions
\~ Proces
c Network
te Ad Generate Run on

G rate Transform Generate Ada |y, | ; < Target
Sp:(?ifeicaﬁon Specification Source Code Object Code Hardware

Animate, Generate Post-PRESTIGE
Debug, Trace < Smaliltaik

etc Code

Figure7.1. Development life-cycle.

Figurc 7.1 attempts (0 show the impact of project PRESTIGE on the software development process.

B PRESTIGE, the tools which supported JSD enabled a user to develop a specification. and then
clore f
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transform that specification into source code largely by non-automated means (in the diagram the
language Adais used as an example). The generated code would be exported from the tool set. The next
stage in the development process would be to compile the code and then run it. Any problems in the
behaviour of the running system would be resolved by editing the generated source code. This is
indicated in the top part of the diagram, where the standard edit-compile-run-debug loop would be
continually iterated through.

With the advent of the PRESTIGE workbench and its exploitation of this research, this development
life-cycle can be improved. A JSD specification can now be transformed into Smalltalk-80. The
transformed specification can then be run within the Smalltalk-80 environment, albeit more slowly than
would otherwise be the case in a procedural language. Behavioural problems can now be intercepted at
this prototyping stage, and the specification modified. When the user is satisfied that the system behaves
correctly, the specification can be transformed into another language and have much greater confidence
that the newly generated system will behave correctly. The PRESTIGE development path ensures that
the specification is always consistent with the implementation, since all development is carried out with
the tool (except for the compilation of the generated code). Before the PRESTIGE workbench, the
implementation could easily become inconsistent with the specification, since developers would tend to
alter the generated code not via the specification tool but directly. PRESTIGE, coupled with the results

of this research, has opened up a new and potentially improved pathway for deliverable systems.

7.3 Known Deficiencies and Future Developments
Transformations

Applying inversion to a destructured process relies on the fact that each dismembered part has no
internal structure i.e. no iterations or selections. However, this necessary characteristic of the transfor-
mation process precludes a class of solutions which currently can be supported. The class of solutions
are those which use backtracking (see [6.1]). Backtracking would introduce additional structure within

dismembered parts by allowing control to switch from one dismembered part to another. At present, rules

for generating followsets from process structurcs which contain backtracking have not been developed.

Although this is a drawback, it does not completel
would benefit from the use of backtracking can be specified by using multiple nested selections instead

y restrict process specification since processes which

— an inelegant solution, but one which works.

Probably the most serious drawback is that a process structure cannot have two nodes with the same

name. At present, this rules out some potential process SLructures. However, a relatively simple way to

overcome this defect would be to assign a unique index to every node in a process structure, and using
of this defect together with that mentioned above

the actual node’s name as an alias. The remedying '
of process specifications to be encompassed.

concerning backtracking would enable the totality




Future Developments

To make the tool more comprehensive, the integration of context manipulation and followset
generation would provide even greater flexibility in process specification. Context manipulation (see
[4.4]) is the transformational path employed when realising ESTEL code in Smalltalk-80. Context
manipulation is more efficient than a followset-based approach. However, followsets have a greater
potential in terms of being applied to a variety of application areas, as already discussed. A possible
optimisation, given that in Smalltalk-80 one can add user-defined primitives to the virtual machine,
would be t0 make the suspend and resume methods in ReEntrantObject primitive. This would
undoubtedly increase the performance of the execution of suspend and resume but at the expense of
making the generated code which uses these methods unportable (since every virtual machine would
have to be modified in order to run the primitive methods).

As regards the process browser itself, thisis still not ‘correct’ from an aesthetic pointof view, or from
a functional point of view. There should exist an independent node editor for entering in executable
operations and conditions. The current portion of the browser where executable operations are entered
should be the place where individual (leaf and root) node documentation is dealt with. From a model
process view point, leaf node documentation would equate to documenting the actions which make up
a process. At present there is no direct way to document a process itself — an important aspect which
has been overlooked. Documenting the root node would alleviate this problem. Another problem which
tends to arise is the size of process specifications themselves. When the diagram gets to a certain size,
it is possible at present to scroll it around in two-dimensional space. However, if the diagram becomes
very large, merely being able to scroll it around is not enough. What is needed is the ability to hide or
‘fold’ away different parts of the diagram, and unfold them when needed. Implementing this feature is
not seen as a difficult task and would give the tool some additional ‘polish’ when being used.

In conclusion, the byproducts and offshoots of various research endeavours sometimes have greater
impact than the original research itself. This piece of research hopefully will be seen to fall into this
category. As well as being able to transform JSD specifications into any object oriented language, it has
been shown that JSD specifications can now be prototyped and transformed very quickly into runnable

systems. Cameron’s belief that “a JSD specification is ... directly executable, at least in principle”

[Cameron86], can justifiably be claimed to have now been realised, although perhaps not in the way he

was originally envisaging. It is this author’s belief that, now th
re work on improving the capabilities of

at the practical results of this piece of

research have been incorporated into PRESTIGE, and withmo

gth tool, the full potential of JSD as a

the workbench, eventually evolving it into an industrial-stren,

powerful development method will have been realised.
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Appendix A. Code Supporting ReEntrantObject.

Object subclass: #ReEntrantObject

instanceVariableNames: ‘continuation savedC
classVariableNames: «
poolDictionaries: “

category: ‘Control-Mechanisms’

ontext parameter’

I am an abstract superclass representing re-entrant objects. | am able to re

(except suspend anq resume) by sending myself the n;essage suspend. Not‘;'f;?ajlrfzha:r{ a:n riteht(r?;gd
returns, the context it returns fromis lost. | save that context before returning in my instance variable
‘saved(?ontext * When a sender wishes to continue the suspended methods activity from the point
where it last returned (suspended), the message resume is used. NB. In order for this class to

function, two additional protocol need to be filed in. These are sender: and contextCopy in class
Context.

instance variables:

savedContext <Contextor nil> a copy of the receivers current context
for future resumption.
continuation <Context or nil>  the context which the receiver will return too.
parameter <Object> an object to facilitate the passing of parameters
between suspend and resume

Colin Lewis 01:12:89
ReEntrantObject methodsFor: resumption

resume
“Resume the activity of the receiver from the point where it
was last suspended. First test to see if there is any context
to actually resume. If there is them make the saved
context’s sender to that of this context's sender, and then
make this context's sender to the saved context. Finally, nil
out the saved context. NOTE do not override this method ! ! "

savedContext isNil if Tnue: [Tself exitBlock]. .
thisContext sender: (savedContext sender: thisContext sender).
savedContext « nil

resume: aParameter _
“Resume the activity of the receiver from the point where it
was last suspended. This implementatio_n allows a parameter
to be passed to the receiver on resumption. NOTE do not
override this method ! ! "

parameter « aParameter.
self resume

resumeWith . :
“Resume the activity of the receiver from the point where it

was last suspended. Make a copy of the receivers sggger
so we can, if needed, return to it. NOTE do not overn

this method ! !'!”

continuation « thisContext sender deepCopy-
self resume
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resumeWith: aParameter

“Resume the activity of the receiver from i i
the point where it

was last su§pended. Make a copy of the receivers sender

so we can, if needed, return to it. Thig implementation allows

a parameter to be passed to the receiver on resumpti
NOTE do not override this method ! 1 1* ption.

continuation « thisContext sender deepCopy..
parameter <— aParameter.
self resume

resumeWith: aParameter returnTo: aContinuation
“Resume the activity of the receiver from the point where it
was last suspended. Save the parameter ‘aContinuation’
so we can, if needed, return to it. This implementation allows
a parameter to be passed to the receiver on resumption.
NOTE do not override this method ! 1 I

continuation < aContinuation deepCopy.
parameter « aParameter.
self resume

ReEntrantObject methodsFor: suspension

suspend
“Suspend the activity of the receiver in such a way that the
receiver can be resumed, from the point where it was last
suspended. NOTE do not override this method ! ! I”

self save: thisContext

suspend: returnParameter
“Suspend the activity of the receiver in such a way that the
receiver can be resumed, from the point where it was last
suspended. This implementation allows a parameter to be
returned to the sender on suspension. NOTE do not
override this method ! ! I”

self save: thisContext.
TreturnParameter

suspendTo
“Suspend the activity of the receiver in such a way that the
receiver can be resumed, from the point where it was last
suspended. Return control not necessarily tq m’y sender, but
to the continuation context held in ‘continuation’. NOTE do
not override this method ! ! 1"

y sender: nil.

savedContext « thisContext sender shallowCop
MhisContext sender: continuation deepCopy




suspendTo: returnParameter
“Suspend the activity of the receiver
receiver can be resumed, from the
suspended. Return control not nec
to the continuation context held in
implementation allows a paramete
continuation on suspension. NOT
method ! I

in such a way that the
point where it was last
essarily to my sender, but
‘continuation’. This

r to be returned to the

E do not override this

savedContext « thisContext sender shallowCopy sender: nil.
thisContext sender: continuation deepCopy.
TreturnParameter

ReEntrantObject methodsFor: tagged computation

escapeWith: aParameter
“Some condition has arisen in which we want to continue
execution from the context saved during the tag: message.
The first statement in this method merely helps the garbage
collector to remove to chain of contexts by breaking their
connections with each other. NB. Start releasing contexts
from my sender, not here since this context would not be
able to return the parameter at the end. Next make this
context’s sender to that of the saved context in continuation.
Finally, return the passed parameter, aParameter.”

thisContext sender releaseTo: continuation.
thisContext sender: continuation.
TaParameter

tag: aComputation
“Tag the current contexts sender, so in the event of
encountering an escapeTo: message we can continue
execution from this context’s sender.”

continuation « thisContext sender.
TaComputation value

ReEntrantObject methodsFor: accessing

continuation: aContinuation
continuation « aContinuation

parameter: aParameter
parameter « aParameter

savedContext: aContext
savedContext « aContext




ReEntrantObject methodsFor: private

exitBlock
self error: ‘Can not resume’

save: aContext
“Suspend the activity of the receiver
receiver can be resumed, from the p
suspended. Do this by saving the co
savedContext. Break the chain of contexts which aContext
has, since on resumption, the copied context will have a new
sender assigned to it. (NB. it also reduces the size of the

object to be saved). Next make aContext’s sender to that
of its sender’s sender.”

ip such a way that the
oint where it was last
ntext aContext in

savedContext « aContext sender shallowCopy sender: nil.
aContext sender: aContext sender sender

ContextPart methodsFor: ctrl mechanisms support

coroutineWith: aBlock
“Start the first coroutine off, and pass the second one as a parameter. Note
that the second coroutine biock at present does not have any value for its
sender, so make it the context in which it was defined.”

Tself value: (aBlock sender: aBlock home)

deepCopy
sender isNil
ifTrue: [Tself shallowCopy]
ifFalse: [Tself shallowCopy sender: self sender deepCopy]

sender: aContext
“Make the receivers sender aContext.”

sender « aContext

transfer o
“Transfer control to my other coroutine. Aithough the implementathn is very
small, its mechanics are quite subtle. First temporarily gtore the active
contexts sender (which will be a block, the other coroutine). Next, make the
value of the active contexts sender to that of the receiver. This can be done
because the receiver is a block context ([}). Finally, return as a value the
temporarily saved coroutine. When | return, } will return to the conte>t(t Since
represented by the receiver of the transfer mesgage, a block contex : IlanIOCk
the format of coroutining two blocks (see coroutine example) has atST%v eh ora
parameter, returning temp here will become the coroutines parsme fué N sage
can subsequently transfer control to. Note that we do not use the va

to evaluate the other coroutine.”

[temp |

temp « thisContext sender.
thisContext sender: self.
Ttemp
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Appendix B. Code for Clagg ReEntrantExamples

ReEntrantObject subclass: #ReE
instanceVariableNames:
classVariableNames: «
poolDictionaries: “

category: ‘Control-Mechanisms’

ntrantExamples

nisms in my abstract class.

ReEntrantExamples methodsFor: example-coroutine

flrstCoroutine

Transcript show: ‘In firstCoroutine for the first time’; cr.
self secondCoroutine.

Transcript Show: ‘In firstCoroutine for the second tirne’; cr.

self resume.

Transcript show:

self resume.

Transcript show:

self resume.

Transcript show:

self resume.

Transcript show:

self resume.

Transcript show:

self resume.

Transcript show:

self resume.

Transcript show:

self resume.

Transcript show:

self resume.

Transcript show:

self resume.

Transcript show:

self resume.

Transcript show:

secondCoroutine
Transcript show:

self suspend.

Transcript show:

self suspend.

Transcript show:

self suspend.

Transcript show:

self suspend.

Transcript show:

self suspend.

Transcript show:

self suspend.
Transcript show:
self suspend.

‘In firstCoroutine for the third time’; cr.

‘In firstCoroutine for the forth time”: cr.

‘In firstCoroutine for the fifth time’; cr.

‘In firstCoroutine for the sixth time’; cr.

‘In firstCoroutine for the seventh time’; cr.
‘In firstCoroutine for the eighth time’; cr.
‘In firstCoroutine for the ninth time’; cr.

‘In firstCoroutine for the tenth time’; cr.

‘In firstCoroutine for the eleventh time’; cr.
In firstCoroutine for the twelfth time’; cr.

‘In firstCoroutine for the last time’; cr

‘In secondCoroutine for the first time’; cr.

‘In secondCoroutine for the second time’; Cr.
‘In secondCoroutine for the third time’; cr.
“In secondCoroutine for the forth time’; cr.
4n secondCoroutine for the fifth time’; cr.

‘In secondCoroutine for the sixth time’; Cr.

‘In secondCoroutine for the seventh time’; cr.
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Transcript show:
self suspend.
Transcript show:
self suspend.
Transcript show:
self suspend.
Transcript show:
self suspend.
Transcript show:

‘In SecondCorouting for the eighth time’; cr.
‘In secondCoroutine for the ninth time'; ¢r.

‘In SeécondCoroutine for the tenth time’; cr.

‘In secondCoroutine for the eleventh time: cr.

‘in secondCoroutine for the last time’: cr.

Thil
ReEntrantExamples methodsFor: example-loop
loopTest

| count |

Transcript show: 1 amin the test’; cr.

count « 0.

[true]

whileTnue:

[Transcript show: ‘count value s -
count «— count + 1.
self suspend)]

‘, count printString; cr.

ReEntrantExamples methodsFor: example-continuations

powerFact: aStream
“Calculate the factorial of each (integer) element in aStream,
multiply the result by the original number. Do this for all the
elements in the stream and multiply all the resuits together.
NB. If a zero is encountered during the stream read, then
exit powerFact: immediately without unwinding the stack of
contexts which has been created during the successive
recursive calls of powerFact:. Only perform the actual
calculations when the entire stream has been read in while
the stack is unwinding.”

| value |
aStream atEnd ifFalse: [T (value « aStream next) = 0
ifTrue: [self escapeWith: value]
ifFalse: [(self powerFact: aStream)
R * value factorial * value]].
1

powerFactWithoutZero . t
“Calculate the powerFact function on the created stream. Tag this curren
context so it can be returned to if a zero is encountered in the stream.

aStream
laStream (_I ReadStreamon: #(123456789 1011121314 151617 18 1920 21 2223 24

25 26 27 28 29 30). e
Transcript show: (self tag: [self powerFact: aStream]) printString; cr
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powerFactWithZero

| aStream |
aStream « ReadStream on: #12345
26 27 28 29 030), 67891011 12 13 14151617 18 19 20212223 24 25

Transcript show: (self tag: [self PowerFact: aStreamy)

ReEntrantExamples class
instanceVariableNames: «

printString; cr

ReEntrantExamples class methodsFor- examples

examplei
“ReEntrantExamples example1.”

“This is a simple test of the coroutining mechanism. Follow
the output in the System Transcript.”

| rObject |
rObject « self new.
rObject firstCoroutine

example2: maxValue
“ReEntrantExamples example2: 50.”
“This is a simple example of being able to suspend the
execution of a method (loopTest) and resuming it from the
point last suspended.”

| rObject cnt |
cnt « 0.
rObject « self new.
rObject loopTest.
[cnt < maxValue]
whileTrue;
[rObject resume.
cnt « cnt+1]

example3a
“ReEntrantExamples example3a.” .
“This example shows the behaviour and use of contir_matlons.
The powerFact algorithm does not do any multiplications
until all values have been read in off the stream. If.at any
time during the recursive call of powerFact a zero is
encountered in the stream, powerFact simply returns to t?e
outermost context (continuation) which has been tagged.

Tself new powerFactWithoutZero

example3b oab
‘RekE les example3b. o
“Tf?isr:;zrr]rtlgreagzws the bshaviour and use of_ cqntlpuatlons.
The powerFact algorithm does not do any multiplications
until all values have been read in off the stream. If'a‘tt any
time during the recursive call of powengct azerois e
encountered in the stream, powerFact simply returns tod h
outermost context (continuation) which has been tagged.

Tself new powerFactWithZero
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Appendix C. Trace details of the Book Process.

Function Result of Function des o [
FIRST (Book) - = FIRST (Acquire) - rule (b) (i)
FIRST (Acquire) = {Acquire} - rule (a)
FOLLOW (Acquire) = FIRST (Classify) - rule (b) (iii)
FIRST (Classify) = {Classify} - rule ()
FOLLOW (Classify) = FIRST (LoanPart) - rule (b) (iii)
FIRST (LoanPart) = FIRST(Loan) or FOLLOW (LoanPart) - rule (d) (i)
FIRST (Loan) = FIRST (Lend) - rule (b) (i)
FIRST (Lend) = {Lend} - rule (a)
FOLLOW (LoanPart) = FIRST (EndPart) - rule (b) (iii)
FIRST (EndPart) = FIRST(Sell) or FIRST (Dispose) - rule (c) (i)
FIRST (Sell) = {Sell} - rule (a)
FIRST (Dispose) = {Dispose} - rule (a)
FOLLOW (Lend) = FIRST (OutOnLoan) - rule (b) (iii)
FIRST (OQutOnLoan) = FIRST (Renew) or FOLLOW(OutOnLoan) - rule (d) (i)
FIRST (Renew) = {Renew} - rule (a)
FOLLOW (OutOnLoan) = FIRST (Return) - rule (b) (iii)
FIRST (Return) = {Return} ~ rule (a)
FOLLOW (Renew) = FIRST (Renew) or FOLLOW (OutOnLoan) - rule (d) (ii)
FIRST (Renew) = {Renew)} - rule (a)
FOLLOW (OutOnLoan) = FIRST (Return) - rule (b) (iii
FIRST (Return) = {Return} - rule (a)
FOLLOW (Return) = FOLLOW (Loan) - rule (b) (ii)
FOLLOW (Loan) = FIRST (Loan) or FOLLOW (LoanPart) - rule (d)} (ii)
FIRST (Loan) = FIRST (Lend) - rule (b} (i)
FIRST (Lend) = {Lend)} - rule (a)
FOLLOW (LoanPart) = FIRST (EndPart) - rule (b) (iii)
FIRST (EndPart) = FIRST(Sell) or FIRST (Dispose) - rule (c) (1)
FIRST (Sell) = {Sell} - rule (a)
FIRST (Dispose) = {Dispose} - rule (a) N
FOLLOW (Sell) = FOLLOW (EndPart) - rule (c¢) (%%)
- rule (b) (ii)
FOLLOW (EndPart) = FOLLOW (Book) Crule ()
FOLLOW (Book) =4 ~ rule (€) (id)
FOLLOW (Dispose) ~ FOLLOW (EndPart) ~ rule (b) (ii)
FOLLOW (EndPart) = FOLLOW (Book) Cule (a)
FOLLOW (Book) =40

The followmap of the Book process is:-

FIRST (Book) = {Acquire}

FOLLOW (Acquire) = {Classify} .
FOLLOW (Classify) = {Lend, Sell, Dispose}
FOLLOW (Lend) = {Renew, Return}
FOLLOW (Renew) = {Renew, Return%
FOLLOW (Return) = {Lend, Sell, Dispose}
FOLLOW (Sell) =g

FOLLOW (Dispose) =g




Guards for the Book process

g (Book, Acquire)

g (Acquire, Classify)
g (Classify, Lend)
g(Classify, Sell)

g (Classify, Dispose)
g (Lend, Renew)

g (Lend, Return)

g (Renew, Renew)

g {Renew, Return)

g (Return, Lend)

g (Return, Sell)

g (Return, Dispose)

true
true
Loan
c
not Loanc and Sellc

not Loanc and Dispose
c
Renewc

not Renewc

Renewc

not Renewc

Loanc

not Loanc and Sellc

not Loanc and Disposec
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Appendix D. Smalltalk-80 répresentation of the BookProcess

JSD subclass: #BookProcess

instanceVariableNames: ‘dateAcquired title purchasePrice lastBorrower

lendCfaunt lendDate dateOfLastRenewaI inLib
totalTlmeOnLoan author ¢

classVarlableNames: 'DS1 DS’
poolDictionaries:
category: ‘JSD-Process’

BookProcess methodsFor: operations

acquire
“The library acquires the book”

key « parameters at: 1.
dateAcquired « parameters at: 2.
title «— parameters at: 3.
purchasePrice « parameters at: 4.*
author « parameters at: 5.
lendCount « 0.

totalTimeOnLoan « 0.

inLib « false.

DS2 write: #acquire.

DS1 read

classify
“The book is classified and catalogued”

inLib « true.
DS2 write: #classify.
DS1 read

dispose ' )
“The book is disposed of. It is no longer on the library catalogue

inLib « false.

DS2 write: #dispose

lend ‘
“Someone borrows a book (the library lends it)

lendCount « lendCount + 1.
lendDate « Time totalSeconds.
inLib « false.

DS2 write: #lend.

DS1 read

renew ”
“The borrower renews the loan on a book

lendCount « IlendCount + 1. '
dateOfl astRenewal « Time dateAndTimeNOW.
DS2 write: #renew.

DS1 read
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return
“The borrower returns the book to the library”

inLib « true.

totalTimeOnLoan « totalTimeOnLoan +
DS2 write: #return.

DS1 read

Time totalSeconds - lendDate).

sell
“The book is sold”

inLib « false.
DS2 write: #sell

BookProcess methodsFor: guards

acquireG
self state = #book ifTrue: [Ttrue]

classifyG
self state = #acquire ifTrue: [Ttrug]

disposeG
self state = #classify ifTrue: [Tself loanC not and: [self disposeC]).
self state = #return if True: [Tself loanC not ang: [self disposeC]]

lendG
self state = #classify ifTrue: [Tself loanC].
self state = #return ifTrue: [Tself loanC]

renewG
self state = #lend ifTrue: [Tself renewC].
self state = #renew ifTrue: [Tself renewC]

returnG
self state = #lend if True: [Tself renewC not].
self state = #renew ifTrue: [Tself renewC not]

sellG

self state = #classify ifTrue: [Tself loanC not and: [self sellC]).
self state = #return ifTrue: [Tself loanC not and: [self sellC]]

BookProcess methodsFor: conditions

disposeC
Tmessage = #dispose

loanC
Tmessage = #lend

renewC
Tmessage = #renew

sellC
Tmessage = #sell
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BookProcess methodsFor: private

author
Tauthor

author: anObject
author « anObject

dateAcqulired
TdateAcquired

dateAcqulred: anObject
dateAcquired « anObject

dateOfLastRenewal
TdateOfLastRenewal

dateOfLastRenewal: anObject
dateOfLastRenewal « anObject

InLib
TinLib

InLib: anObject
inLib « anObject

lastBorrower
TlastBorrower

lastBorrower: anObject
lastBorrower «— anObject

lendCount
TlendCount

lendCount: anObject
lendCount « anObject

lendDate
TlendDate

lendDate: anObject
lendDate « anObject

purchasePrice
TpurchasePrice

purchasePrice: anObject
purchasePrice « anObject

title
Ttitle

title: anObject
title « anObject
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totalTimeOnLoan
TtotaiTimeOnLoan

totalTimeOnlLoan: anObject
totalTimeOnLoan « anObject

BookProcess class
instanceVariableNames:

BookProcess class methodsFor: inst var comments

authorComment
T'This is the author of the book’ asText

dateAcquiredComment
T'The date at which the book was acquired by the library’ asText

dateOfLastRenewalComment
T'The date the book was last renewed for borrowing’ asText

InLibComment
T'Boolean value representing whether or not the book is currently in the library’ asText

lastBorrowerComment

T"The unique identifier accessing the last borrower of this book (ie will reference a memberid)’
asText

lendCountComment

T'The number of times this book has been lent to members of the library since the book was
acquired’ asText

lendDateComment
TThe date the book was last lent out’ asText

purchasePriceComment
T'The price of the book in british sterling’ asText

titleComment
T'The title of the book’ asText

totalTimeOnLoanComment o
TValue indicating the total amount of time this book has been has been out on loan since it was

acquired’ asText
BookProcess class methodsFor: private

DS1
TDS1

DS1: anObject
DS1 « anObject

DS2
T™DS2

DS2: anObject
DS2 « anObject

keyField
T#isbn




