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Summary

The development of increasingly powerful computers, which has enabled the use
of windowing software, has also opened the way for the computer study, via
simulation, of very complex physical systems. In this study, the main issues
related to the implementation of interactive simulations of complex systems are
identified and discussed.

Most existing simulators are closed in the sense that there is no access to the
source code and, even if it were available, adaptation to interaction with other
systems would require extensive code re-writing. This work aims to increase
the flexibility of such software by developing a set of object-oriented simulation
classes, which can be extended, by subclassing, at any level, i.e., at the problem
domain, presentation or interaction levels. A strategy, which involves the use of
an object-oriented framework, concurrent execution of several simulation mod-
ules, use of a networked windowing system and the re-use of existing software
written in procedural languages, is proposed.

A prototype tool which combines these techniques has been implemented and
is presented. It allows the on-line definition of the configuration of the physi-
cal system and generates the appropriate graphical user interface. Simulation
routines have been developed for the chemical recovery cycle of a paper pulp
mill. The application, by creation of new classes, of the prototype to the inter-
active simulation of this physical system is described. Besides providing visual
feedback, the resulting graphical user interface greatly simplifies the interaction
with this set of simulation modules.

This study shows that considerable benefits can be obtained by application
of computer science concepts to the engineering domain, by helping domain
experts to tailor interactive tools to suit their needs.
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Chapter 1

Introduction

1.1 Scope and Aims of Research

The development of increasingly powerful computers, which has enabled the
use of windowing software, has also opened the way for the computer study,
via simulation, of very complex physical systems. In chemical engineering, for
example, simulation is typically used for steady-state calculations, which include
process flowsheeting and design, and transient-state calculations, i.e. the study
of the dynamic response of the process to disturbances, used in tuning control
systems or determining the parameters of the process model. If the analysis
of process dynamics under conditions of start-up, grade changes, emergency
outages and shutdowns is desired, software for dynamic simulation is necessary
(Shewchuk et al., 1991). Dynamic simulators are also being increasingly used
to support employee education and training (Ragnemalm, 1993). The goal of
training is to increase the operator’s understanding of the process, for which it
is necessary to design and implement tools that can be used by operators to
improve their skills in diagnosing faults and solving operational problems. The
migration of simulation tools from “simulation experts” into the hands of process
engineers and operators will be accelerated by the availability of effective user
interfaces (Shewchuk et al., 1991).

Graphical User Interfaces (GUI's) have taken over user interface develop-
ment in the last few years, and a number of GUI's have recently been devised
for systems that range from genetics applications (Drury et al., 1992) to eco-
nomic analysis (Jensen and King, 1992) and spectral data processing (King and

Horlick, 1992). However, although GUI’s have been developed for a wide range
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of applications, few GUI’s are related to on-line scientific simulations, i.e., the
computer simulation of physical systems of arbitrary dimension and complexity,
described by mathematical models whose solution requires intensive application
of specialized numerical methods. Most problems found in engineering belong
to this class and many are still solved by batch runs. Advantage is not taken
of interactivity and there is a considerable waste of time due to the migration
of result files to different environments, and, in most cases, preparation of the
results for graphical representation.

On the other hand, although the application of object-oriented concepts to
software development has proven to yield significant benefits, such as increased
modularity and reusability, only recently have these concepts found their way
to general process engineering computations (Stephanopoulos et al., 1987). Tra-
ditional procedural simulation programs take the form of calls of lengthy pro-
cedures of numerical methods, required for the solution of the mathematical
models that describe the physical systems. Most of these procedures are avail-
able in standard libraries written in high-level procedural languages such as
Fortran77 or C. Although considerable research efforts are now being directed
towards the problem of implementing object-oriented versions of advanced nu-
merical methods, full general-use libraries of OO implementations of numerical
methods do not yet exist, which is the main reason why few complex systems
are at present simulated using these concepts.

Additionally, very complex problems may not be suitable for on-line simu-
lation due to the execution time, which can lead to unacceptably long response
times. However, parallel processing techniques may significantly reduce execu-
tion times; the development of parallel algorithms for the solution of problems
typically solved sequentially is currently a major field of research. Software has
also been recently developed that enables inter-process communication and the
use of networked machines, such as UNIX workstations, as a single distributed
memory machine thus making it possible to implement parallel processing tech-

niques on commonly available computer networks.
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Finally, if the interactive application is to be developed in a structured way,
the graphical user interface must be kept separate from the domain-specific
component. GUI toolkits (collections of graphical objects, or widgets, such as
windows, menus, scrollbars, etc.) alone do not provide a framework for the
application, which tends to become a large agglomeration of intricately related
widgets. The MVC (Model-View-Controller) framework originally developed in
Smalltalk (Goldberg and Robson, 1983; Goldberg, 1984) is ideally suited to the
development of this kind of application. The model objects map directly to
the components of the physical system, whereas the view objects represent the
type of display desired for the output of the models, and the controller objects
enable the user to interact with the models and the views. As an alternative
to Smalltalk, client-server based windowing systems like X Window (Scheifler
and Gettys, 1986) provide more flexibility (and in most cases a greater execu-
tion speed), allowing full advantage to be taken of heterogeneous networks of
computers.

Clearly, a number of different issues are involved in the development of inter-
active software for complex simulations; an effective approach must merge the
different solutions found for each aspect into a coherent whole. This problem

therefore involves:

1. development of a strategy to define a physical system on-line, using pre-
defined object classes. This implies creation and deletion of objects at
run-time, as well as a methodology to connect them mathematically, and

a tool to enable the user to perform these operations graphically;

2. means to re-use existing code, encapsulated by an object-oriented environ-

ment;

3. use of parallel processing techniques, either at the level of the solution
algorithms, or, at a coarser level, assigning each object to a (possibly

different) processor;

4. use of a windowing environment that also allows full advantage to be taken

of the available machines in the network;
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5. an integrated environment to organize the numerical data, perform and
control the simulation, and organize and display its results. A framework
must therefore be provided, so that a clear separation is retained between

the GUI and the domain-specific component.

The basic aim of this research is to identify, discuss, and propose solutions
to the main problems related to the implementation of interactive simulations of
complex systems. In the chemical process engineering domain, for example, the
model representations and modelling tools provided by established process sim-
ulators do not sufficiently address the practitioner’s needs especially if detailed
and non-standard models are required (Marquardt, 1992). The current trend
of research aims to explore the benefits of an object-oriented approach together
with the existence of powerful graphical user interfaces (Stephanopoulos et al.,
1987; Bar and Zeitz, 1990; Shaw, 1992; Zobel and Lee, 1992), as an alternative
to the use of conventional hardware and software environments (e.g. ASPEN,
1988). KEE (Knowledge Engineering Environment) (Fikes and Kehler, 1985),
a LISP-based expert system building tool, has been used by Stephanopoulos
et al. and Bar and Zeitz to describe the domain knowledge base (e.g. process
units, control loop components, etc.) in the first case, and to implement the
user interface in the second. Stephanopoulos et al. used Flavors (Symbolics
Inc., 1986) for the development of the user interface, together with graphical
objects available in SYMBOLICS 3640 and 3650 computers. Bar and Zeitz also
used a SYMBOLICS LISP workstation with high resolution bitmapped graphics
for the graphical user interface, but implemented the numerically-intensive com-
putations in Fortran77. Another approach (Shaw, 1992), although claiming to
be object-oriented, uses C for the graphical user interface, and Fortran or C for
the numerical calculations. Finally, Zobel and Lee used C and Borland C++
(Borland, 1990), together with Microsoft Windows constructs, for the graphical
interface and to define the object base. From the above, it is obvious that the
current software state-of-the-art provides many alternatives, most of which have
not been fully explored yet.

In this work, a totally open architecture is aimed at, either at the level of the

domain-specific component (by adding new types of model objects or refining
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existing ones), or at the level of the graphical user interface (e.g., by providing
different types of graphical representation of the variables or even by changing
the user interface, or the interaction techniques, offered by the simulator itself).
This degree of openness can only be achieved in a structured way if a clear, uni-
form, fully object-oriented environment such as the one defined by frameworks
like MVC is imposed. A possible solution is to develop a set of object-oriented
class libraries, which are easy to extend or modify, rather than developing a self-
contained product. The possibility of inserting user-defined simulation modules
in a straightforward manner is offered in most of the latest simulators and is
especially important if interaction is desired with non-standard models, which
will not normally be present in domain-specific libraries. In this work, one step
beyond is taken, since the type of display and interaction must also be flexible
and easy to change. As mentioned before, toolkits per se are insufficient for the
creation of structured large applications. Since special emphasis is placed on
the graphical user interface, a means to make a more effective use of toolkits
must be provided. Rather than developing a specific simulator for a specific
problem, this work therefore aims to provide the tools for interactive simulator
development.

Depending on the complexity of the process model, response time will in most
cases become a problem. The possibility of implementing parallel processing
techniques and using them on-line (which has not been referred to in any of the
previous simulators mentioned above), in order to make an effective utilization
of the network resources and minimize response times, is.to be studied. No
limitations must be imposed on the type of paradigm used, since, for maximum
efficiency, this is problem-dependent.

The selection of the software used has major consequences on the degree
of portability of the resulting system. In order to achieve the highest possible
degree of portability, the programming languages and graphics systems must
be standard; the use of graphical objects available only in a specific machine
is a severe restriction. X Window has become a de facto standard for Unix
workstations, and can also be used in other (e.g. VMS) machines. C++ and

Fortran77 compilers are almost universally available, justifying their use in this
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work.

In order to exemplify the approach taken, class libraries must be developed
and a tool implemented using these classes which, in addition to enabling the
graphical definition of the model for the physical system, also allows the user to
interact with the simulation. This tool must take into account the dynamic na-
ture of the application (the model for the physical system is to be defined and/or
altered during run-time) and enable the incorporation of concurrency/parallel
processing techniques if desired (remote processes may be created and destroyed
at run-time). Finally, the prototype developed must be tested by application to
an example of a real system, representative of the problems faced.

The example selected was the chemical recovery cycle of paper pulp plants,
which has gained renewed interest in recent years due to both environmental
considerations and the high price of fuel. This involves the development and
implementation of detailed mathematical models for the units that comprise
the cycle; no such collection of models is available in the literature. Although
the prototype developed must be domain-independent, its application to this
case study is an interdisciplinary approach that enables the identification of the
potential benefits of the techniques listed above when applied to engineering

areas.

1.2 Thesis Structure

This work is composed of eight chapters and five appendices.

This chapter (Chapter 1) provides an overview of the areas involved and the
aims of this research.

Chapter 2 introduces the object-oriented paradigm and its basic concepts,
namely the existence of objects, classes, messages, abstraction, encapsulation,
polymorphism, inheritance and delegation. The basic methodology for object-
oriented design is reviewed, and the most commonly used object-oriented pro-
gramming languages are listed. A brief reference is also made to the exception-
handling mechanisms provided by object-oriented languages.

Chapter 3 provides an overview of the main aspects involved in Human-

Computer Interaction (HCI). This is a very extensive field and only the most

17



important aspects are presented, covering both computing and human-factors
aspects. These include the analysis of the type of interaction that the GUI offers
to the user and a list of the main issues usually referenced in human-factors
guidelines. User interface design is briefly outlined and mention is made of the
available toolkits and graphics systems, with special reference to the X Window
windowing system and the XView toolkit. The requirement for a framework is
stressed and, finally, several techniques for the evaluation of the usability of the
interface are outlined.

Chapter 4 presents the main issues related to currently available concurrent
software and hardware systems. The client/server paradigm is described, with
reference to the Remote Procedure Call (RPC) libraries and to the client/server
structure of X Window. An introduction to different types of parallel comput-
ers is made, as well as to the more recent message-passing languages (namely,
actor-based languages and concurrent object-oriented programming languages).
Finally, a novel software system (PVM) which enables inter-process communi-
cation without enforcing any type of paradigm is introduced, and the need for
effective operating system support for concurrent applications is stressed.

Chapter 5 presents an introduction to mathematical modelling of physical
systems and to the existing simulation languages. The main issues related to
object-oriented interactive simulation are identified and discussed. The basic
principles used in the prototype developed in this work are described. These
include the decomposition of the overall physical system into sub-models, the
use of modules written in procedural languages for the computationally-intensive
sections, and the development of a framework adequate for the management of a
(potentially large) number of entities in a structured way. Finally, two different
distribution approaches, based on RPC and PVM (Parallel Virtual Machine),
implemented during different iterations of the prototype, are described and dis-
cussed.

Chapter 6 describes in greater detail the standard class libraries developed
in this work. It also presents the strategy used for the control of the execution
status of the remote processes created by the interface. The methodology used

to join the C++ classes developed with the underlying X Window and XView
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layers, and the problems encountered, are listed. Finally, the tool developed
for the on-line definition of the physical system and the management of the
simulation is described.

Chapter 7 presents a case study, namely the chemical recovery cycle of a
paper pulp plant. A brief description of the industrial process is made, with
special reference to the complexity of the mathematical models developed. The
specification of the functions that the interface must perform for this case is
outlined and the extension of the base class library is described. Quantitative
results are presented that enable the visualization of:

— typical physical behaviour of the industrial units involved;

— the effect of the decomposition of the overall model on the accuracy of
the results;

— the effect of the concurrent execution of simulation processes on the re-
sponse time.

Finally, Chapter 8 presents a summary of the work developed and the con-
clusions that may be drawn from this study. It also suggests further avenues
of research which may either enhance the efficiency of the prototype or provide
alternative methods of solution for the problems posed.

The mathematical models developed for the simulation of the chemical re-
covery cycle of a paper pulp mill are presented in Appendices A, B, C, and D.
Appendix A presents both the dynamic and steady-state models for the lime
kiln, the most energy-consuming unit in the cycle. Appendix B presents a set
of models developed for the causticizing units. They include a detailed model
for the solid particles, determination of the steady-state of the causticizing re-
actors, and a dynamic model for the causticizing battery. The dynamic model
for the white liquor clarifier is presented in Appendix C and, finally, Appendix
D includes an approximate model for the lime mud filter. Appendix E lists all

the files used by the prototype as well as the directory structure in which these

files are arranged.
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Chapter 2

Object-oriented Programming

2.1 Introduction

The evolution of the technological means available, since Charles Babbage’s
“Analytical Engine”, for the creation of computing devices, has been matched
by an evolution in both the programming languages and the design principles
applied. Among these, Object-Oriented Programming (OOP) offers a program-
ming paradigm which is more efficient than any before to handle applications
which are ever increasing in complexity (Yip and Dessey, 1991). Object-oriented
technology results in significant re-use of code, design, and analysis; reduced
number of development cycles; and a more efficient way of processing require-
ments (Kamath et al., 1993). This is due to the fact that object-oriented anal-
ysis fits right into the problem domain (Coad, 1991). It is possible to keep the
problem domain organizational framework intact, with the consequence that the
relationship between analysis and design and between design and programming
is evident since all of them are organized like the problem domain itself (Coad,
1991). The exact combination of attributes which must be present in an object-
oriented language has not been universally agreed upon and, furthermore, the
expression “object-oriented” has been used with several meanings (Gray and Mo-
hamed, 1990). Although different authors tend to emphasize different aspects,
the basic features of object-oriented programming together with the associated

terminology will be introduced next.
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2.2 Basic Concepts

The concepts involved in object-oriented programming are commonly referred
to as abstraction, encapsulation (or information hiding), polymorphism, and
inheritance or delegation. As a practical means to implement these concepts, an
object-oriented language must, among other requirements, be class and object-
based. Some languages are class or object-based only; these languages cannot be
considered truly object-oriented. A brief definition of object-based, class-based
and object-oriented languages is given in section 2.2.3.

In the object-oriented programming paradigm, the attention is focussed on
objects (Pokkunuri, 1989). An object is a unit, or entity, characterized by data
attributes, stored in variables, and procedure attributes (methods). It executes
one of its methods as a result of receiving a message from another object (client);
an object interacts with other objects and the outside world through messages
which it sends and receives. Methods can be divided into two categories (Meyer,
1993): commands and queries. A query returns some information about an
object, whereas a command may modify the state of the object. Some authors
state that messages should have the same status as objects, since “an object-
oriented system is a collection of objects that accomplish prescribed activities
by sending messages to each other” (Dean, 1991). Behavioural compositions,
i.e., groups of interdependent objects cooperating to accomplish tasks, are an
important feature of object-oriented systems (Helm et al., 1990). The fewer
assumptions an object makes about its environment (and vice-versa) the easier
it becomes to translate it into a different environment (Wilson, 1990). In this
context, “environment” means the rest of the program, or related objects in the
system.

It can sometimes be useful to think of objects as people. The anthropo-
morphization of objects helps assimilate the concept that objects, like people,
can be thought of as sentient to some degree. They know things about their
own state, how to perform certain tasks, and how to communicate with other
objects (Crenshaw, 1991). Failure to fully use these concepts results in thinking
of objects as passive entities, not capable of initiative, which in turn leads to

not taking full advantage of the object-oriented approach.
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In object-oriented languages, objects are organized in classes, and the data
structures and methods are not described individually for each object. Rather,
for a group of similar objects, the description is stored in the definition of the
class that the objects belong to. An object of a certain class is referred to as an
instance of that class; its internal data are referred to as the instance variables.
A subclass must be created whenever the behaviour of a method needs to be
changed, a new method must be added, or more instance variables must be added
(Think C, 1991). Programmingin OOP therefore consists basically of identifying
entities and concepts in an application and modelling them using classes. In
class-based languages, the class is a mould, used to manufacture objects (Cointe,
1987); in most languages, like C++, a class itself is not an object. Languages
like Loops and Smalltalk-80 introduced the concept of metaclass (i.e., the class
of a class) to provide greater abstraction, allowing the description of a class
by another class. From the user’s point of view, metaclasses define the class
methods, which make it possible to send messages to classes, and the instance
variables at the class level, which enable the user to parametrize classes (Briot
and Cointe, 1989).

2.2.1 Abstraction and Encapsulation

Abstraction can be defined as “extracting essential properties of a concept” (Ege,
1992), or “representing the essential features of something without including
background or inessential detail” (Graham, 1994). Examples of abstraction in
procedural programming are the concepts of functions and primitive data types.
Rather than considering the specific details of a specific function, all functions
can be grouped together in a general category, since they all share the same basic
properties. A class is an abstraction which describes the general behaviour of
a group of similar objects; it is an implementation of an abstract data type. In
practical terms, data abstraction is the separation of an object’s implementation
from its abstract behaviour (Purchase and Winder, 1991). It implies that the
sender of a message to an object need not concern itself with how the request is
satisfied; that is the exclusive responsibility of the receiving object. It is therefore

possible to create and use an object without being directly involved in its internal
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structure. The programmer can concentraﬁe more on what the interactions
should be than on how they will be performed, and the design effort is directed
towards problem specification rather than implementation details (Pokkunuri,
1989). Abstract data types, unlike primitive data types, may be defined by
the application developer, rather than by the designer of the language used
(Graham, 1994). Data abstraction can be viewed as a generalization technique
and is usually accompanied by encapsulation (Coplien, 1992).

Encapsulation is the process by which a client is restricted, in its interaction
with another object, to the external interface of that object (i.e., the available
methods)(Snyder, 1986). Encapsulation can be viewed as an information hiding
technique (Coplien, 1992). The external interface of a class serves as a contract
between the class and its clients, that is, the objects that communicate with
instances of that class. If the clients depend only on the external interface,
the class can be reimplemented without affecting any clients, as long as the
new implementation supports the same or a compatible interface. This assures
designers that compatible changes can be made safely, which facilitates program
evolution and maintenance (Snyder, 1986). Furthermore, because each object
has a limited view of the other objects and a limited access to the other objects’
data, accidental corruption of data is minimized.

Cook and Daniels (1992) use the metaphor of the boiled egg, where the yolk
represents the data structures, the white the implementations of the methods
and the shell the interface or protocol (see Fig.2.1). An object sends a message
as part of the actions implemented in its methods. Therefore, when a message is
sent, it originates in the white. It then collects data from the yolk and is sent to
the shell of the receiving object (Graham, 1994). Note that this is a simplistic
metaphor, ideally suited for languages like Smalltalk, where all the instance
variables are hidden and all the methods are exposed. C++, for example, offers

a wider choice of encapsulating measures that cannot be represented in such a

simple way.
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Methods

Interface or Protocol

Figure 2.1: The egg metaphor.

2.2.2 Polymorphism, Inheritance and Delegation

The concepts of polymorphism and inheritance are again strongly related. In-
heritance allows a new class to be built upon an existing one. The new class is
called a subclass, derived class or child class of the existing one (superclass or
parent class), and inherits all the general characteristics of the superclass (Yip
and Dessey, 1991). The subclasses can add new data and behaviour properties,
thus becoming more specialized. The ability to re-define an inherited method
is called overriding. This is the actual mechanism by which classes can replace
methods inherited from the superclass with their own. As an example, objects
of the class LinearRandom (Mitchell, 1993) generate random numbers. The vari-
able Seed, which initializes the numerical process, is hidden, and the method
SetSeed is used to manipulate it. The method NextRandom generates the next
random number, according to a linear algorithm. Class GaussianRandom inherits
from class LinearRandom (see Fig.2.2). This means that it contains some parts
of a LinearRandom; however, the algorithm for generating the random numbers
must be different, namely, it must be the average of 12 numbers generated by
the LinearRandom algorithm. In order to achieve this, method NextRandom has
been overridden (re-defined) by class GaussianRandom.

In most OOP languages, the binding of the operator to a particular oper-

ation takes place at run-time (dynamic or late binding); the actual method to
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Figure 2.2: Class GaussianRandom is a subclass of class LinearRandom.
(From Mitchell, 1993).

call is determined during execution. This means that the same message takes
different forms — hence the term polymorphism, from the Greek “many shapes”
— depending on the class of the object that receives it. Polymorphism is based
on the assumption that the type (or class) of a variable need not match the
type (or class) of the object that the variable refers to; a variable declared to be
of a certain class may refer to objects of that class, or objec;ts of any subclass.
Functions that would be coded as large case statements in conventional lan-
guages (one function only, which would perform different operations depending
on the value of the arguments) are distributed over classes, with a consequent
improvement in the structure of the program (Grogono and Bennett, 1989).

Since new classes can be created which take full advantage of existing ones,
yet without changing them, inheritance promotes code reusability, allowing the
programmer to draw fron? and extend large amounts of existing code. It is
the object-oriented concept that contributes most to the productivity increase
attained by object-oriented languages (Ege, 1992). Also, the modularity of the
program is increased by the class description. It acts as the module that allows
the separation of the program into smaller sections.

The concept of delegation, although sometimes used in a similar context as
inheritance, is however subtly different (Mullin, 1989). Delegation is not directly
supported by C++ but can be found in other OO languages. If delegation is
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supported, a member function applied to one object can be transparently for-
warded to another object, and data member references can be similarly deferred
from one object to another. The second object’s member function executes in
the context of the first object. Delegation is usually used in classless languages;
since class inheritance does not exist, this mechanism avoids duplication of code
(Graham, 1994). The equivalent of delegation in class-based languages like C++
is inheritance. Delegation means more than inheritance: its primary function is
to distribute the workload of an object to more specialized objects linked to it
(Mullin, 1989).

Other concepts such as persistence and concurrency are also referred to in an
object-oriented context. Persistence can be defined as “the property of an object
through which its existence transcends time (i.e., the object continues to exist
after its creator ceases to exist) and/or space (i.e., the object’s location moves
from the address space in which it was created)” (Booch, 1991). Concurrency
can be defined as “the property that distinguishes an active object from one
that is not active” (Booch, 1991). Whereas persistence is not fundamental in
this work and will not be referred to further, concurrency is an important issue

and will be addressed in greater detail in Chapters 4 and 5.

2.2.3 Object and Class-based Languages

There are several programming languages which, while not strictly obeying all
the object-orientation requirements, provide some object-oriented features. Al-
though this classification is not universal, such languages are usually categorised
into object and class-based languages.

An object-based programming language supports encapsulation and object
identity (in the sense that each object has a unique identifier) (Graham, 1994).
However, set abstraction (existence of classes) is not supported. Objects do not
belong to classes, and there is no support for inheritance. Ada is an example of
such a language.

Class-based languages, such as CLU, include all the features of object-based
ones, and in addition support the existence of classes from which objects are

instantiated. They do not however support inheritance between classes.
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Finally, object-oriented languages merge the characteristics of both object
and class-based systems (Graham, 1994). In addition, they also support inheri-
tance between instances and classes, and classes and classes, i.e., both instances
and classes inherit the methods and attributes of the class(es) they belong to.
C++ and Smalltalk are examples of object-oriented languages. For more on
language classification, see Wegner (1987).

Examples of object-based alternatives to the class model are the actor model
(Agha, 1986) or the prototype metaphor for object creation as in Self (Ungar
and Smith, 1987), which allow other organizations of knowledge. In Self, some
objects are designated by convention as exemplars or prototypes, from which
other objects with similar properties are “cloned”. After being cloned, they
may be modified and fine-tuned by changing properties associated with classes

or objects in class-based languages.

2.3 Object-oriented Software Life Cycle

Classical systems analysis and design techniques include the requirements anal-
ysis, requirements specification, system design, detailed design, and implemen-
tation (Ince, 1991). Each of these stages produces some kind of output which
is then fed to the next stage. In object-oriented programming, the fundamental
decomposition criterion is the search for objects or classes that model problem
domain entities or concepts (Caromel, 1993; Mitchell, 1993). If classical tech-
niques are applied to OOP, the system design stage can thus be split into a)
object identification and b) definition of the interface of each class and of the
dependencies among classes. Detailed design corresponds to the specification of
each class (Caromel, 1993; Mitchell, 1993), i.e., which variables are required and
which functions.

This model for the software life cycle, in which each stage must be complete
before the next one starts, is known as the waterfall model (Sommerville, 1992).
Although improvements to this model include feedback loops between stages,
these are still confined to successive stages (Fong, 1993). The waterfall model
does not account for iteration in software development and is therefore espe-

cially inadequate to describe the development of object-oriented software, which
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places a strong emphasis on software re-use and is fundamentally incremental
and iterative in nature. Moreover, as Fong (1993) points out, the waterfall
model relies on the elaboration of fully finished documents during the analysis
and specification stages before design can proceed. Although this can work well
if a fixed set of requirements is known from the beginning, it does not allow for
the uncertainty in the requirements which exists in many projects.

In practice, these sharp boundaries between stages are not present during
the development of object-oriented software, since interest is always focussed on
the same entities, objects, throughout analysis and design. Information derived
during the analysis stage can be directly used during design, instead of pro-
viding a mere starting point for a separate stage. Alternatives to the waterfall
model are the fountain model (Henderson-Sellers and Edwards, 1990), the clus-
ter model (Meyer, 1989) and the spiral model (Wasserman and Pircher, 1991).
In the fountain model, the top of the “fountain” corresponds to software use,
from which it can fall to previous stages due to maintenance needs or to further
development. In the stages before it reaches the top, however, it can always fall
to the previous stage and start climbing again from there (hence the name of
the model). The cluster model groups related classes into clusters; each cluster
is fairly independent from the others and therefore the fountain model can be
applied, concurrently, to each cluster of classes. Although alterations in the re-
quirements may cause major changes or even dismissal of a cluster, the rest of
the software will not be greatly affected since the system will not be put together
until later (when all the surviving and refined clusters have been implemented).
Finally, the spiral model as presented by Wasserman and Pircher (1991) is con-
ceptually similar to the fountain model since it emphasises the iterative nature
of the software life cycle and considers that no sharp boundaries exist. Since
it is dedicated to object-oriented programming, each stage corresponds to a
specific function in OO analysis and design (e.g., Find Classes/Objects; Find
Methods/Behaviours; Define Classes, etc.).

Superimposed on each of these stages, other activities must be continuously
applied, to ensure that the system carries out the specified tasks correctly (ver-

ification), and that it meets user requirements (validation) (Ince, 1991). In the

28



case of graphical user interfaces, another important activity is evaluation (see
Chapter 3) which includes the rating of the subjective satisfaction experienced
by the user when s/he interacts with the system. These activities imperatively
require that software be developed in an iterative manner, i.e, the waterfall
model is inadequate for the development of this kind of software system.

Fong (1993) and Graham (1994) present, in greater detail, an overview of
object-oriented design methods; see also Coad and Yourdon (1991) for object-

oriented analysis.

2.4 Overview of Object-oriented Languages

The flexibility and support offered by the latest high-level procedural languages
such as Fortran, ALGOL, C or Pascal is considerable when compared to machine
code or assembly language (Pokkunuri, 1989). However, software development
methods of the past have encouraged the creation of long modules, full of func-
tionality, which are highly connected and dependent on each other (Ince, 1991).
The procedure-oriented (PO) paradigm views programs as collections of inter-
acting functions and procedures (Purchase and Winder, 1991). The primary
conceptual units of programming are the procedures, which usually take the
form of lengthy functions or routines with long series of arguments, and the prin-
cipal structuring mechanism is the nesting of procedure invocations. The code is
therefore decomposed according to an algorithmic approach. These procedures
can seldom be re-used without modification, which can range from changing an
argument list to re-writing the program from scratch. The data variables and
values are passive, and are either global to all the procedures, local to one, or
passed between them as necessary (Crenshaw, 1991).

Object-oriented programming concepts, which aim to significantly increase
modularity and reusability, were first introduced during the 1960’s, with the
programming language Simula (Dahl and Nygaard, 1966). Since the days of
Simula, the OOP approach has been implemented in a variety of languages and
environments. OOP langages can be divided into two groups: pure and hy-
brid (Yip and Dessey, 1991). Pure languages such as Smalltalk (Goldberg and
Robson, 1983; Goldberg, 1984) and Eiffel (Meyer, 1988) are designed from the
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beginning according to OOP principles. Hybrid languages such as C++ (Strous-
trup, 1986), Objective C (Cox, 1986) and CLOS (Keene, 1989) are extensions
of existing non-object oriented languages, so that the resulting language has
the ability to implement fundamental object-oriented concepts. This approach
allows programmers to learn the new concepts in a more gradual way and with
less frustration. However, a stronger programming discipline is required in this
case, since it is easy for programmers unfamiliar with the new principles to slide
back into a procedural programming style.

Of all the pure OOP languages, Smalltalk is perhaps the most commonly
referred to, as it spearheaded the object-oriented era in computing. Since, in
the early 70’s, Alan Kay and others developed the Smalltalk system at the Soft-
ware Concepts Group of the Xerox Palo Alto Research Center, Smalltalk has
undergone a long series of modifications and improvements (Wirfs-Brock, 1991).
In 1983, Xerox released the first commercially available version of Smalltalk-80;
a class library and virtual machine for the IBM PC (called “Methods”) was
released by Digitalk in the same year. A successor product, called Smalltalk/V,
followed in 1986. In 1987, Adele Goldberg and others formed a spinout com-
pany called ParcPlace Systems, which is the one today associated with current
versions of Smalltalk. The most significant change Smalltalk has undergone is
perhaps the fact that the latest versions run under control of the host computer
operating system, rather than being standalone systems like the experimen-
tal versions at Xerox. Furthemore, the latest version (Objectworks/Smalltalk
4.0 from ParcPlace Systems) now has the ability to use the standard window
manager of the host computer instead of taking total control of the display envi- -
ronment. As an object-oriented programming pioneer, Smalltalk had to develop
its own graphics kernel, window system, and multitasking executive. Nowadays,
it has had to delegate to its supporting platform a number of the functions it
provided, in order to guarantee compatibility with the graphical user interfaces
it inspired (Udell, 1990).

Smalltalk’s advantage over its competitors is the sophistication of its environ-
ment and the cleanliness of its implementation of the object-oriented pa.ra,digm‘.

It comprises the Smalltalk language, extensive class libraries, and the program-
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ming environment that enables a programmer to input, test and run Smalltalk
applications. Among the facilities provided by the environment are a set of tools
consisting of a graphics interface, code and object browsers, symbolic debug-
gers, and many other facilities besides the language compiler itself (Duimovich
and Milinkovich, 1991). However, the insularity of the environment is one of
Smalltalk’s disadvantages normally pointed out, as normal Smalltalk applica-
tions cannot be separated from the environment and must be run from within
it.

As an alternative, C++ implements all the major object-oriented features
and is one of the most widely used object-oriented languages (Ege, 1992). The
history of C++ is not as exciting as Smalltalk’s, mainly because it was born
in an era when object-oriented programming had already been pioneered by
Smalltalk and its benefits were becoming apparent. The ancestor of C++, C-
with-classes, was born in 1980 (Coplien, 1992). By the summer of 1983, C-with-
classes had entered the academic and research world. Further developments,
which led to C++, benefited from the experience of users and from the progress
in object-oriented programming — still a maturing paradigm — in the rest of the
computing community. In C++, a balance had to be made between the influence
of C (Kernighan and Ritchie, 1978), which provides efficiency and close access
to the machine, and the implementation of the new concepts. An overview of
the main differences between C and C++ is made by Jordan (1990).

Plain C++ does not offer standard library classes like Smalltalk, nor does it
come with a programming environment. External libraries must be developed
or bought for more advanced applications, such as graphical user interfaces. -

The National Institute of Health, in the United States, created the best
known class library for C++ (Gorlen et al., 1990), which is loosely modelled
after the Smalltalk class library (Ege, 1992). Another library of classes has
been developed by the Free Software Foundation, the GNU C++ class library.
Although intensive use of developed class libraries is the basis of reusability,
compatibility of classes from different libraries is still not guaranteed (Ege, 1992).

A recent software tool (ObjectVision, 1990) allows the visual programming
of objects. It is possible to build object-oriented applications simply by-drawing
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the desired hierarchy of objects on the screen; ObjectVision then converts the
diagram into commented, ready to compile C++ or TurboPascal code. Further
details are given in the ObjectVision Package and Manual document (ObjectVi-
sion, 1990). A PC version of C++, Turbo C++ (Borland, 1990) has also recently
come up with the typical Borland environment, which includes an editor and a
debugger.

Other languages which are accepted or gaining wide acceptance are Objective-
C, Eiffel, an object-oriented version of Pascal (i.e., Turbo-Pascal) and the Com-
mon Lisp Object System (CLOS) (Keene, 1989).

Objective-C is another hybrid language which, like C++, extends the pro-
gramming language, but in a Smalltalk style which shows in its terms and basic
concepts. It is a mixture of C and Smalltalk; for example, while it uses Smalltalk
message sending style, it reverts to C for its control structures. It comes with
a large standard library class that allows the construction of new applications
from pre-defined components. The classes are organized into two main libraries:
the basic class library ICPak101 and the graphics class library ICPak201, which
provides classes to allow the development of graphical user interfaces. ICPak201
is an user interface toolkit written in Objective C (Knolle, 1989). Furthermore,
Objective C also provides a compiler, class browser and tracing and debugging
facilities in the programming environment.

Eiffel (Meyer, 1988) is a newer entry in the set of object-oriented program-
ming languages. It is a pure language in the sense that it was developed from
scratch to fully support all the object-oriented concepts. The basic style of Eiffel
has a Pascal flavour (Ege, 1992). It provides a large library of pre-defined classes
which range from kernel and data structure classes to advanced graphic classes.
It also provides several useful tools for program development such as a compiler,
class browser, and an editor.

Hybrid object-oriented versions of Pascal are the latest appearances in the
OOP language market. Turbo Pascal from Borland International and Quick
Pascal from Microsoft have extended Pascal with most of the object-oriented
concepts. For example, TurboPascal supports the basic concepts of object, class,

method, message, and inheritance. The contribution given by object-oriented
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versions of Pascal is again that, like extensions of C, they open a learning path
for many Pascal trained programmers.

Finally, the Common Lisp Object System was designed, starting in 1986, as
an attempt to unify previous versions of object-oriented extensions to Common
Lisp (Keene, 1989). One of them was Flavors, developed by Symbolics Inc.
(Symbolics Inc, 1986), and the other was CommonLoops, developed by Xerox
PARC.

A detailed comparative survey of object-oriented programming languages is
made by Micallef (1988) and an overview of other developments, such as object-

oriented COBOL, Trellis, BETA, and others, is presented by Graham (1994).

2.4.1 Brief Comparison Between Smalltalk and C+4+

Smalltalk has a complete object-oriented organization throughout and does not
allow stand-alone classes. This means that it is not possible to define a class
which does not have a superclass. The root of Smalltalk class hierarchy is
class “Object”, which implies that all the classes are subclasses of this class.
Smalltalk is a weakly typed language; its variables can refer to an object of any
class. In such languages, little emphasis is placed on defining the type of objects
at compile time, and it is often unknown until run-time. This is in practice
done by allowing the programmer to specify code without an immediate check
of whether or not it will execute correctly. Since methods are looked up at
run time, one of Smalltalk’s typical errors is that a certain message cannot be
understood.

C++ is a strongly typed language, which means that the exact type of each
and every object is explicitly stated in the source code. Although more work
has to be performed by the compiler to thoroughly type-check all the program,
strongly-typed languages tend to produce faster and more robust executables.
The source code is however less flexible since any modification in the types used
will lead to re-writing a portion of the program. As the advantages of both
weak and strong typing are still a subject of discussion, it is likely that both will
continue to co-exist.

In Smalltalk it is not possible to hide an instance method. Encapsulation
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is achieved by hiding all instance variables and exposing all instance methods.
C++, in contrast, supports a powerful series of different encapsulation measures
(private, protected, friend, public). Its capabilities to control access to the
members of a class are the best of all the object-oriented languages.

Smalltalk and C++ support inheritance like all object-oriented programming
languages. The new subclasses may well have their own version of existing
member functions. In C++, to ensure that the method belonging to the new
class will be called, rather than the method that belongs to its superclass, the
superclass must have that method declared as virtual if it is likely that it may
be extended in that way. Functions are always virtual in some OOP languages
for this reason. However, in C++ it is up to the programmer to specify which
functions are virtual. The disadvantage of declaring a function virtual is that
the program has to determine which function to call at run-time, which is more
time-consuming (Mitchell, 1993).

Smalltalk does not support multiple inheritance, that is, the capacity of a
class to inherit from more than one parent classes, as provided by C++. On
some occasions this restriction is undesirable and leads to unnatural coding styles
or the duplication of code. Although earlier versions of Smalltalk-80 allowed
multiple inheritance (Borning and Ingalls, 1982), this feature was never well
supported and finally dropped in the latest version of Objectworks/Smalltalk-
80.

2.5 Exception Handling Mechanisms

Exception handling mechanisms are a means for a part of the program to in-
form another part (which can hopefully do something sensible about it) that an
“exceptional circumstance” has been detected.

Object-oriented languages can be classified into three categories, depending
on their exception-handling possibilities (Dony, 1988). In languages such as
Smalltalk, handlers for all exceptions can only be attached statically to classes.
Languages which are extensions of procedural languages have in general been
done without modification of the standard or existing exception handling mech-

anisms (e.g. C++) and do not provide solutions to associate handlers with
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classes. Finally, other languages built on top of procedural or functional ones
(e.g. Loops or Objvlisp) choose a compromise. Some exceptions relative to
object manipulation are raised and handled as in Smalltalk, whereas the other
ones depend on the underlying language. It is impossible, for example, to attach
a handler for divide-by-zero to a class in this last category. As a consequence,
the handling possibilities are unequal. A discussion and comparison of several
existing exception-handling strategies is made by Dony (1988) and Dony el al.
(1992); Dony (1988, 1990) proposes a specification of an object-oriented excep-
tion handling system.

Koenig and Stroustrup (1990) have proposed a mechanism for exception
handling in C++. The process proposed consists of raising objects and catching
classes; a copy of the object raised is passed to the handler. For example, in
the case of an integer overflow happening, an object of the class Int_overflow
would be created by the function where the exception happened. A copy of this
object would be caught by the exception handler, which in turn is declared to
accept objects of class Int_overflow. The type of object raised is used to select
the handler in approximately the way in which the arguments of a function call
are used to select an overloaded function. The classification of exceptions into
classes is a natural one; for example, one could imagine a Matherr exception
that includes Overflow, Underflow and other possible exceptions. The syntax
of the handling mechanisms is described by Koenig and Stroustrup (1990) and
Coplien (1992) and includes new keywords like try and catch. However, these
mechanisms are not part of C++4 yet. Most C++ environments, such as the
C++ compiler used in this work, do not support exception handling other than

the one already provided by C.

In conclusion, the object-oriented programming paradigm offers several ad-
vantages over the traditional procedure-oriented paradigm, namely increased
modularity and re-usability. A large number of object-oriented languages has
been developed in recent years; Smalltalk and C++ are among the most suc-
cessful. Object-oriented concepts are invaluable for the development of graphical

user interfaces, as will be shown in the next chapter.
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Chapter 3

Graphical User Interfaces

3.1 Introduction

Software that functions but is difficult or confusing to use rarely actually gets to
do anything. (Rimmer, 1992)

During the last decade, the computer world has been revolutionized by a
steep decrease in hardware price and by the development of increasingly power-
ful computers, which has enabled the use of windowing software. Computers are
now used by a very broad range of users, and for a large variety of tasks. As a
consequence, the importance of user interfaces has risen accordingly. Based on
software ergonomic investigations, the conclusion that graphical user interfaces
(GUI’s) are the interactive man/machine means of communication of the future
is now widely accepted (Encarnagio et al., 1991). Recent studies have shown
that users in a GUI environment work faster, more accurately and with lower
frustration and fatigue levels than users in a text-based environment. Consider-
able increases in both productivity and accuracy of completed work are achieved
using GUI's (Peddie, 1992). As audio/speech technology becomes increasingly
available, research is currently being conducted on the conjunction of audio tech-
niques and visual ones, which seems to result in a significant improvement in
performance (Williams et al., 1990).

However, Human-Computer Interaction (HCI) is a discipline that integrates
both psychology and computer science (Harrison and Thimbleby, 1990). The

fusion of these two subjects is not simple and research work on this area often
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takes an approach which is specific to one or the other. Whereas the computing
approach usually focusses on the development of toolkits, frameworks, and win-
dowing and graphics systems, the psychological approach is almost exclusively
devoted to what is known as human factors, including cognitive aspects, user

models and evaluation. An overview of both approaches is made in this chapter.

3.2 Type of Interaction

In batch systems, the interaction between the system and the user is restricted
to the submission of the batch job. The first generation of user interfaces was
therefore not interactive (Nielsen, 1993), since all the user’s commands had
to be specified as a whole before the result was known. The next generation
of interfaces consisted of text-based, line-oriented interfaces (Nielsen, 1993). A
single line acted as the command line and, after the <Return> key had been hit,
no further changes could be made to the command. Initially, these interfaces
were implemented on tele-typewriters (TTY’s), and later in terminal screens.
Because the text was “frozen” as soon as it scrolled above the command line,
these interfaces were sometimes called “glass TTY’s”. Some time later, full-
screen interfaces were introduced, taking advantage of the modifiable nature of
the entire screen. An example of such an interface, still widely used today, is
vi (visual editor) on UNIX systems. Performance times with full-screen display
editors are about half as long as with line-oriented editors (Shneiderman, 1992),
which represents a considerable improvement.

As early as 1962, Ivan Sutherland’s Sketchpad system (Sutherland, 1963),
a drawing tool based on the use of a light pen, was developed, and is today
often considered the first graphical user interface. However, GUI’s did not see
widespread use until the early 1980’s. The graphical user interface for the Star
computer (Smith et al., 1982), developed in 1982 at Xerox Corporation, Palo
Alto, USA, introduced concepts which are still used by most GUI's. It presented
the use of the Physical Office Metaphor, today commonly known as the Desktop
Metaphor, in which physical objects in an office such as paper, folders, file cab-
inets, mail boxes, etc. are represented by icons on the display screen. Selection

was made by pointing to the desired item of data with the mouse and clicking
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the mouse buttons, thus introducing a practical example of direct-manipulation,
as will be discussed later. The Star also introduced new commands, “univer-
sal” or generic commands (MOVE, COPY, DELETE, SHOW PROPERTIES, etc.),
that could be used throughout the system. Each of them performed the opera-
tion as suited to the type of object currently selected, as is still done today by
the Macintosh GUI. This probably represented one of the earliest uses of the
object-oriented approach in graphical user interfaces.

Shneiderman (1983) was the first to use the term direct-manipulation. Since
then, both the terminology and the interaction style have become increasingly
popular. Direct-manipulation interfaces are normally associated with WIMP
(Windows, Icons, Menus and Pointing Devices) interfaces. Note that keyboards
remain the most efficient tool for the entry of text and digits (Deininger and Fer-
nandez, 1990). Exactly what defines the direct-manipulation type of behaviour
is often unclear (Harrison and Dix, 1990). Main characteristics are that there is
a close relationship between input and function (often one keystroke or mouse
click per command) and that the data manipulated by the user interface (and
therefore the effects of all commands) are immediately visible; the user is pro-
vided with a response in real time that represents the action taken (Deininger
and Fernandez, 1990). This gives the user the impression of operating directly
on objects in the computer, rather than carrying on a dialogue about them (Ja-
cob, 1986). Moreover, the designer is forced to find simple solutions for the
problems posed by the interface, since if something is hidden it cannot be used,
thus avoiding hidden and sometimes unnecessary complexity (Thimbleby, 1990).
In a direct-manipulation interface, the entry of commands in some (usually) ar-
bitrary language is replaced by a “point and shoot” style of interaction, where
the fundamental operation is a selection rather than a command (Chignell and
Waterworth, 1991).

Soon after the Star, WIMP interfaces spread to the Macintosh computer
via the graphical user interface for the Lisa computer (Williams, 1983). Later,
they spread from the Macintosh to other types of microcomputers and, with the
development of windowing systems such as X Window, to UNIX workstations.

WIMP interfaces provide several advantages, allowing the user to visualize
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the progress of the task, recognize operations instead of having to recall com-
mands, transfer knowledge about the architecture of the physical interface from
one application to another and achieve a direct relationship between input and
response (Chignell and Waterworth, 1991). Newer interaction styles, such as
virtual reality and remote control, are further topics for research (Shneiderman,

1992).

3.2.1 Mode

Mode can be defined as “the variable information in the computer system affect-
ing the meaning of what the user sees and does” (Thimbleby, 1990), or “a state
of the user interface that lasts for a period of time, is not associated with any
particular object, and has no role other than to place an interpretation on oper-
ator input” (Larry Tesler, cited in Smith et al., 1982). A user interface may give
different meanings to the same input, depending on the current mode. Modes
are confusing and a frequent source of user error and frustration (Nielsen, 1993),
especially because a computer system usually gives the user no clue as to how
it got to its present state or what exactly that state is (Thimbleby, 1990). If
they cannot be completely avoided, they should be explicitly recognized in the
interface design. If states are shown clearly to the user, feedback can be pro-
vided, thus helping the user not to mistake the current mode. As Jacob (1986)
points out, although graphical user interfaces appear to be modeless, in reality
they have many distinct modes. Direct-manipulation user interfaces divide the
screen into small mode areas — areas on the screen that interact with the user
differently from the surrounding areas. Different modes are accessed moving
the cursor to a different object on the screen, because the range of acceptable
inputs is reduced and the meaning of each of these is determined. However, the
disadvantages associated with moded interfaces do not appear to be present in
direct-manipulation interfaces. An explanation to this lies on the fact that mode
is so obvious and easy to change that it no longer causes confusion or effort to
change (Jacob, 1986).
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3.3 Human Factors Considerations

Although “design is a creative process and hence there are few absolutes that
must be adhered to” (Rubin, 1988) human factors considerations must be incor-
porated in every stage of the design of user interfaces. Failure to do so results
in tiring, confusing or awkward to use systems. This is critical in applications
like medical systems, air traffic control or nuclear power plant control, where it
can result in the loss of lives or a major disaster. The number of recommended
guidelines has risen exponentially during the last few years. Typical collections
sometimes reach more than a thousand rules to follow (see Apple, 1987; Gilmore
et al., 1989; Rubin, 1988; Shneiderman, 1992; Smith and Mosier, 1986) and, if
anything, the sheer number of guidelines available is more of a hindrance than
a help. Furthermore, some of them are contradictory in their design recommen-
dations. In this section, a brief overview of the main areas normally covered by

human factors is made.

3.3.1 Consistency

Although the exact definition of consistency is still unclear, it has become a very
important feature in user interface design (Schiele and Green, 1990). It refers
to regularity in various aspects of the interface, which allows users to make
generalizations based on their previous knowledge. If users know that the same
action has always the same effect, they feel more confident to use the system,
and are encouraged to explore it, thus improving the learning process (Nielsen,
1993). Several aspects must be considered, namely the actions necessary to
perform tasks, the feedback provided by the system, the spatial layout of the
screen, the appearance of visual objects, etc.. An example of inconsistency is,
in Unix workstations, the fact that the “delete” operation may be invoked in
a variety of ways depending on context: deleting a window by pointing to it
with a mouse and selecting an operation from a pop-up menu; deleting a file by
typing “rm” and the file name; deleting a character from a file by invoking an
editor, moving the cursor to the desired location, and typing ‘x’, etc. (Dewan
and Solomon, 1990). In spite of the importance given to consistency, Pangalos

(1992b) states that few users use completely consistent user interfaces.
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TAG (Task Action Grammar) (Schiele and Green, 1990) has been proposed
to measure the property of consistency formally and quantitatively. When sev-
eral tasks are similar, and are achieved by actions which are similar, the how-
to-do it knowledge can be expressed by a schema which encapsulates several
low-level, individual rules. The number of schemas that describe an interface
gives an indication of the consistency or quirkiness of the interface language;
the proponents of TAG believe that the fewer the schemas, the more likely it is
that the user can generalise from partial knowledge. TAG therefore represents

an attempt to use a formal notation to represent a human factors concept.

3.3.2 Use of Colour

Although colour is an excellent means of improving the comprehensibility of
displays such as pie and bar charts (Rubin, 1988), the use of colour must be ju-
dicious to avoid visual interaction that results in communication-damaging noise
and that can produce strong after-effects. According to cartographic principles,
background dull colours are more effective, allowing the smaller, bright areas to
stand out with greater vividness (Tufte, 1992). Rubin (1988) also states that
the use of colour in a man-machine interface should be as consistent as possible

with everyday usage.

3.3.3 Minimization of User Memory Load

The limitations in the way the human brain processes information requires that
displays be kept simple. Every additional feature or item of information on a
screen is something else to learn, possibly misunderstand, and search through.
Displaying too many objects and attributes results in a relative loss of salience
for the ones of interest to the user (Nielsen, 1993).

The terminology used should be based on the user’s language and not on
system-oriented terms. Commands should be consistent, “guessable” and, wher-
ever possible, described by short words. Where appropriate, on-line access to
command-syntax forms, abbreviations, codes, and other information should be

provided (Shneiderman, 1992).
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To minimize the users’ memory load, the system should be based on a small
number of pervasive rules that apply throughout the interface. If a very large
nu;nber of rules applies, the user has to learn and remember all of them, which
is a burden (Nielsen, 1993). For more on human short and long term memory,
see Thimbleby (1990).

3.3.4 Feedback

It is in general far easier for a user to recognize information than having to recall
it without help (Nielsen, 1993). As an example, when learning a foreign lan-
guage, the passive vocabulary is always much larger than the active vocabulary.
The system should keep the user updated about what it is doing and how it
is interpreting the user’s input, thus providing positive feedback (even if only
partial) as soon as it becomes available. Feedback should not wait until an error
situation has occurred; for every action, there should be some system feedback
(Shneiderman, 1992), although the response can be modest for frequent and

minor actions.

3.3.5 Response Time

Response time is closely related to the issue of feedback. If the system has long
response times for certain operations, feedback becomes especially important.
For delays longer than 10 seconds, users will want to perform other tasks while
waiting for the computer to finish. Feedback is thus necessary as to when the
computer expects to be done. Rubin (1988) presents a table of recommended
system response times, which range from 0.1 seconds (for the effect of the move-
ment of an input device such as a mouse to be detected) up to 5 seconds (request

for a complex service).

3.3.6 Easy Escape Routes

To avoid giving the user the feeling of being trapped by the computer, thus
increasing his/her feeling of control over the dialogue, ways out should be offered
of most situations. For example, all dialog boxes and system states should have

a clearly marked exit, such as a cancel button or other escape facility (Nielsen,
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1993).

3.3.7 Adequacy to User’s Level of Expertise

The experienced user usually wants to perform frequent operations especially
fast, using dialogue shortcuts. Typical accelerators include abbreviations, spe-
cial keys that package an entire command in a single keypress, clicking on an
object to perform the most common operation on it, buttons available to access
important functions directly, and the possibility of defining macro commands

(Nielsen, 1993; Shneiderman, 1992).

3.3.8 Error Messages

Error situations represent situations where the user is in trouble and is poten-
tially unable to use the system to achieve the desired goal. They also present
opportunities to help the user understand the system better, since at this stage
the user is normally alert and will pay attention to the contents of error mes-
sages (Nielsen, 1993). However, better than having good error messages is to
avoid the error situation; as much as possible, the system should be designed so
that the user cannot make a serious error (Shneiderman, 1992). Erroneous com-
mands should leave the system unchanged, or it should give instructions about
restoring its state. Many situations are error-prone and systems can often be
designed to avoid them, for example by asking the user to select a filename from
a menu rather than typing it. If a user is about to save a document with the
same name as an existing one, he should be warned before the action is com-
pleted. “Undo” facilities are also useful. The reversibility of actions relieves
anxiety since the user knows that errors can be undone, thus encouraging the
exploration of unfamiliar options (Shneiderman, 1992). If an error still occurs,
error messages should be clear and concise (Rubin, 1988). They should be polite
and never imply blame on the part of the user; furthemore, they should offer

some constructive advice, to help the user recover from the error.
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3.3.9 Help and Documentation

Besides the fact that there is no need to learn the command language, which
allows for productivity in a very short time, menu-based interfaces offer several
other advantages (Kantorowitz and Sudarsky, 1989): the possibility of exploring
the operations provided by simply browsing through the menus and, if an ade-
quate help system is installed, no need for a manual in most cases. However, in
some cases, documentation cannot be avoided. Most user interfaces have suffi-
ciently many features to warrant a manual and possibly an off-line help system.
Also, regular users of a system may want documentation to enable them to ac-
quire higher levels of expertise, which should be available. Rubin (1988) states
that any kind of help can bring a dramatic improvement in performance, and
that allowing users to choose when to initiate a help request is better in terms
of speed of task and frequency of errors. Lastly, at least novice users seem to

prefer hard-copy help rather than on-screen help.

3.3.10 The User-centred Approach

As the number and variety of users increased, user interface designers recognized
the need to learn more about the user (Marcus and Van Dam, 1991). An example
of this user-centred approach is the capability that lets users alter the look and
feel of their user interfaces, selecting characteristics such as colour and layout.
In the future, it may mean users will be able to decide on feedback modes, for
example audio or visual.

Most people do not acquire expertise in all parts of a system, in spite of the
fequency of usage (Nielsen, 1993). The degree of expertise of a user can be,
moreover, classified according to several different sets of dimensions. Nielsen
(1993) proposes that users’ experience be considered to differ along three main
dimensions: experience with the system, with computers in general, and with
the task domain itself (see Fig.3.1). Other possible dimensions are the degree to
which the user was the producer or consumer of information, whether the user
had any part in developing the system, and the authority the user possessed

concerning decisions over the system (Nielsen, 1993).
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Figure 3.1: Three main dimensions along which users’ experience differs.
(Adapted from Nielsen, 1993).

In practice, differences between user levels of expertise depend on the qual-
ity of the model which the user has of the system. Rubin (1988) distinguishes
between three basic models: the Design Model (DM), the User’s Model (UM)
and the System Image (SI) (see Fig.3.2). The Design Model is the conceptual
model that the designer has as a whole of the system to be built. The User’s
Model is the mental model that the user holds of the system. It is each indi-
vidual’s personalized interpretation of the system. The System Image is what
everybody that interacts with the system sees, hears and feels; it is therefore
what the system offers and presents, in objective terms, to the human users, as
well as the accompanying literature and training material. The designer aims
to produce a system and a SI that, as accurately as possible, corresponds to the
nature and working of the conceptual model (DM). As an example, the designer
may have designed a drawing tool for three dimensional sketching. However, if
the rotation operation can only be accessed after a long search through several
menu levels, whereas the move and resize operations are displayed in the menu
bar, the user may not realize it is possible to rotate graphical elements at all. In
this case, the User’s Model is not close to the Design Model, mainly because the

System Image is not ideal in the sense that it does not offer the user a clear idea
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Figure 3.2: The Design Model, System Image and User’s Model.
(Adapted from Rubin, 1988).

of all the available operations. The better the SI reflects the designer’s intentions
(the DM) the closer the model formed by the user (the UM) will be to the DM.
If the UM is close to the DM then the user will be able to exploit the design
to its full potential, since the model that a user has of an interactive system
governs his/her interactions with it (Barfield, 1993). Careful consideration must
therefore be taken during design and implementation so that the mental model
the user develops is clear and close to the real system. Note that the existence of

consistency is an important factor for the construction of a coherent user model.

3.4 User Interface Analysis and Design

The user interface is not the only component of an interactive software system;
the functionality of the application for which the interface is being developed
must also be considered. Hix and Hartson (1993) recommend that, for interac-
tive software systems, analysis be decomposed into several stages:

The needs analysis establishes that a new system is in fact needed, and
determines the basic goals, purpose, and features desired.

The user analysis combines specific information about job functions and
tasks of potential users, plus social and organizational considerations. The result
is a set of user class definitions.

The task analysis — defined by Sutcliffe and McDermott (1991) as the HCI

equivalent to systems analysis — provides a complete description of the tasks,
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subtasks, and methods involved in using the new system, identifying resources
necessary for the users and the system to perform these tasks cooperatively. Task
analysis usually results in a top-down decomposition of detailed task descrip-
tions. The functional analysis, similar to task analysis, results in an internal view
of the technical functions to be designed into the computational (non-interface)
component of the system.

The task/function allocation produces decisions about which parts of the
tasks will be performed by the human user and which will be performed by the
system. Some tasks may be manual (user) while others are automated (system).

The requirements analysis, as mentioned in Chapter 2, is the formal process
of specifying design requirements for the system. In order to set formal require-
ments for design, requirements analysis is based on needs analysis, user analysis,
task analysis, and functional analysis.

In recent years, several methods for analysis, specification and design of
the user interface have been proposed in order to integrate the development of
the interface with structured systems analysis and design. Another aim is to
cover as much as possible of the systems design life cycle. Kuo and Karimi
(1988) have proposed the use of Data Flow Diagrams (DFD) to derive user
interface specifications in a systematic way. Sutcliffe and McDermott (1991)
have proposed a five-step method which covers task and user analysis, interface
specification and dialogue design. Cugini (1989) also proposes a methodology
to address the problem of user interface design, based on a top-down approach,
in which the analysis scheme is based on several different levels.

Most of these methods involve the use, at some point, of formal notations.

3.4.1 Formal Methods

Formal specification techniques are useful because they can specify user interface
behaviour, independently of software implementation (Kuo and Karimi, 1988).
In addition, user interface specifications can be used to predict user errors before
implementation.

The most frequent techniques are those which draw on the linguistic model

and are derived from traditional language specification and analysis, namely
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BNF (Backus-Naur form) and state-transition diagrams (Alexander, 1987; Green,
1985; Jacob, 1983). Frame-based and knowledge-based techniques are also refer-
enced by Alexander (1987). The User Action Notation (UAN) is a new notation
developed specifically for the specification of user interfaces (Hix and Hartson,
1993). Most interfaces today include both sequential and asynchronous styles
of interaction. In an asynchronous style, many tasks are available to a user at
one time, and the state of each task is independent of the state of the other
tasks. Other notations adequate for asynchronous interaction are based on
events (Green, 1985) and object-oriented techniques (Alexander,1987; Jacob,
1986). These last two are relevant to this work and are introduced next.

The notation for the dialogue control component based on events or event
handlers, loosely based on the object-oriented approach to user interface design,
is especially adequate for asynchronous interaction (Green, 1985). Each user
input or system output is viewed as an event and is sent to the appropriate
event handler, a software routine associated with a class of events. When an
event handler receives an event the associated procedure is executed. These
procedures can perform calculations, send events to other event handlers, and
send tokens to the presentation component and application interface model. The
dialogue control component consists of a collection of event handlers that can
change dynamically.

Another technique uses an object-oriented approach (Alexander, 1987; Ja-
cob, 1986). Note that an object-oriented approach does not necessarily imply an
object-oriented language, although the implementation of the underlying con-
cepts are significantly easier if one is used. Jacob (1986) defines the interface
using interaction objects. Each locus of dialogue is described as a separate object
with a single-thread state diagram, which can be suspended and resumed, but
retains state. In the object-oriented style, each object specifies its data and pro-
cedures, as well as its dialogue with the user. High-level object classes contain
default behaviour, yet can be specialized for specific behaviour. This inheritance
mechanism is provided to avoid repetitiveness in the specifications. |

There are some important similarities and differences between the event-

based and object-oriented techniques. The event handlers perform the same
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function as objects and classes — receive events, or messages, and take appro-
priate action. However, there is no explicit inheritance mechanism for event
handlers. Furthermore, as Green (1985) points out, messages in OOP are syn-
chronous whereas events are asynchronous. When an object sends a message,
it suspends its execution and transfers control to the receiving object. When
the receiving object completes its computation, control returns to the sending
object. In the case of events there is no handshaking betwen the sending and
receiving event handlers. The sending event handler may not suspend its exe-
cution when it generates an event, and the receiving event handler may receive
the event any time after it was generated.

With the development of windowing systems such as X Window, which will
be described in greater detail in the next section and in Chapter 4, the structure
of the interface is best described by a fusion of event handling and object-
oriented techniques. Event handlers are associated with objects, and therefore

the distinction between event handlers and methods is not clear.

3.5 Toolkits and Graphics Systems

Although standardization has many benefits, at present there is a considerable
number of graphics and windowing systems. Examples of windowing systems
and graphical user interfaces are the X Window System for UNIX workstations,
MS Windows and Presentation Manager for IBM Personal Computers, the Mac-
intosh software for Apple computers, GEM for the Atari and Intuition for the
Amiga (Nicholls, 1990; Pangalos, 1992a). A characteristic that varies widely is
the level of integration between the GUI and the operating system. Some GUI’s
are tightly bound to the system, appearing automatically when the computer
is turned on (Hayes and Baran, 1989), such as the Mac, Amiga, or NeXT com-
puters. By contrast, Microsoft Windows and most of the X Window GUI’s that
run under Unix must be specifically invoked.

In the UNIX-based world the de facto standard, developed by MIT (Schei-
fler and Gettys, 1986), is usually known as the X Window System or simply
X. It is not a GUI, but rather a common windowing system across networks

connecting machines from different vendors, as well as a foundation on which
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to build graphical user interfaces (Peddie, 1992). Since the X Window system
is in the public domain and not particular to any hardware platform or operat-
ing system, and its distribution is not subject to the commercial interests of a
single supplier, it may well become the standard windowing environment for all
sorts of computers. Any machine that supports multitasking and interprocess
communication and has a C compiler can support X (Moore, 1990). The lowest
X programming level is the X Protocol. It is similar to machine language, and
programming with it is complex, cumbersome and error-prone. On the next
higher level, XIib is a library of over 300 C language functions used to gener-
ate X Protocol. In practical terms, X relies on the development of graphical
user interface toolkits, which make extensive use of Xlib function calls. Toolkits
are sets of widgets, or building blocks, such as dialogue boxes, menus, buttons,
scroll bars, etc. — each with a consistent appearance and behaviour, that assist
the application developer do his work. They are usually implemented in the
form of libraries of user interface objects. X Toolkits employ concepts used in
object-oriented programming; this is quite a feat as they are written in and for
the C language, which does not directly support objects (Miller, 1990). The X
Toolkit Intrinsics, also known as Xt Intrinsics, is part of the X Window sys-
tem itself (Lainhart, 1991). The uppermost programming level for X Window,
and the one currently used by most programmers, consists of extensions to the
X Toolkit Intrinsics and is proprietary. Proprietary toolkits come with their
own window manager — the window manager is a special application which
is responsible for manipulating windows on the screen — and graphical user
interface. A windowing system does not, per se, provide a direct-manipulation
environment, since the user still has to type a command line for file management
or to start any program (Judge, 1990). The “desktop manager” is an application
program, which uses icons to give access to all the other programs, and turns
file management, communications and administration into visual tasks, guiding
the novice user through cryptic UNIX commands using dialogue boxes. Both
Motif (developed by Open Software Foundation and a number of others such as
DEC, Hewlett-Packard, Microsoft, etc.) and OpenLook (AT&T and Sun) style

interfaces are implemented on top of X by proprietary toolkits which provide a
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consistent object look and feel throughout the interface. A comparison between
the OpenLook and the Motif toolkits need not be made here. Advantages of
one over the other seem to rely on portability alone, which in turn relies on the
number of vendors and third-party supporters. No other major differences have
been reported. One of the current arguments is over which X-based GUI, espe-
cially Motif or OpenLook, should be the standard. It is not a trivial question
and not something to be dismissed lightly, as there is a large amount of money
involved. However, this is a commercial problem rather than a technical one.

Applications written for X at the lowest levels are synchronous and proce-
dural. Somewhere in the heart of the program there is an infinite loop and
a switch/case statement, with appropriate procedure calls made to respond to
each incoming event. With an application containing many windows, this can
be a difficult program to understand and maintain. The toolkits, mercifully,
hide this complexity from the programmer. They present a different and more
useful model of event-driven programming, which is apparently asynchronous
and object-oriented (Lainhart, 1991).

A library of user interface objects enables the programmer to write the GUI
code in terms of high-level function calls, thus hiding much of the complexity
of GUI programming. However, since even relatively simple applications re-
quire hundreds of lines of code to run in a graphical environment, the use of
traditional languages like C still imposes a steep learning curve and long devel-
opment times (Urlocker, 1989). A survey of commercial programs showed that
display generation and management code constituted 40-60% of the source text
of the programs sampled (Dewan and Solomon, 1990). The demand placed on
programmers to create structured, modular, portable, and reusable code, and
the complexity of developing code for GUI's, have made object-oriented pro-
gramming (OOP) the development methodology of choice. Objects are natural
for representing the elements of a user interface and supporting their direct
manipulation. Experience shows that user interfaces written in object-oriented
languages are significantly easier to develop and maintain (Linton et al., 1989).
Unfortunately, experience also shows that developers who are used to design-

ing function-oriented user interfaces have serious difficulties in changing over to
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designing object-oriented interfaces (Nielsen, 1993).

There are relatively few applications that run under X Window today. It
may be some years before applications are generated at a higher rate, much the
same situation that was experienced by Microsoft Windows. It will be just a
matter of time, however, until there is a wide selection to choose from (Peddie,
1992). Since X Window was the windowing system used in this work, together
with the X Window-based toolkit XView, a brief description of both follows.

3.5.1 The X Window System

X Window, or simply X, is the result of two separate groups at MIT (USA)
having a simultaneous and urgent need for a windowing system (Scheifler and
Gettys, 1986). In the summer of 1984, the Argus System at the Laboratory for
Computer Science needed a debugging environment for multiprocess distributed
applications; Project Athena was faced with large numbers of workstations with
bitmap displays and needed a windowing system to make the displays useful. An
operating system-independent windowing system seemed to be the only solution
for both problems, leading to the development of X.

X differs from all previous systems in the degree to which both graphics
functions and “system” functions are application functions, and in the ability
to tailor desktop management transparently. X can display output windows
from several applications at once in one screen, and these programs can run
simultaneously on different machines. The machines do not have to be the same
type or run the same operating system (Moore, 1990).

One of the goals of X was to impose no style of interface on its users, and
to provide hooks (mechanism) rather than religion (policy). For example, since
menu styles vary dramatically among different user interfaces, the window sys-
tem must provide primitives from which menus can be built, instead of just
providing a fixed menu facility (Scheifler and Gettys, 1986).

The base window system is the substrate on which applications, including
special applications like the window and input managers, are built. The window
manager implements the desktop portion of the management, controlling the

size and placement of application windows, and sometimes application window
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attributes, such as titles and borders. The input manager implements the re-
mainder of the management interface, controlling which applications see input
from which devices (e.g., keyboard and mouse).

The basic characteristics of the X base window system are listed next (greater
detail is given by Scheifler and Gettys, 1986). The system

— is implementable on a variety of displays;

— is network-transparent;

— supports multiple applications concurrently;

— can support many different management interfaces;

— supports overlapping windows, including output to partially obscured
windows;

— supports a hierarchy of resizable windows, and an application is able to
use many windows at once;

— provides high-performance, high-quality support for text, 2-D graphics,
and imaging;

— is extensible.

Finally, applications are device-independent.

The client /server architecture of X Window is presented in greater detail in

Chapter 4.

3.5.2 The XView Toolkit

Although written in the C language, XView behaves as an object-oriented
toolkit. All the widgets can be considered objects from specific packages, a
set of properties being associated with each package. XView is based on the
fundamental principles of object-oriented programming (Heller, 1993):

— objects are represented in a class hierarchy;

— objects have attributes which can be set via message passing functions.

Furthermore, objects may have associated procedures that are triggered by
events (event handlers or callback procedures), which correspond to methods in
OOP.

For example, frame is a subclass of the class window, which is in turn a

subclass of the class drawable. In XView, a package is often referred to as a class,
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Figure 3.3: XView class hierarchy.
(From Heller, 1993).

meaning a set of related functional elements. The classing system is extensible,
so new classes, based or not on existing ones, can be created. Chain inheritance
is used as a part of XView’s object-oriented model. This means that all objects
in a particular class inherit the properties of the p-arent class (or super class).
Each class contains properties that are shared among all objects of that class.

The XView class hierarchy is shown in Fig.3.3.

Handles

A handle is returned, for a specific object, at the time of its creation. This
handle is then used to identify that object, and is passed to the appropriate
function to enquire about its state or manipulate it. Handles are opaque in the
sense that it is not possible to see through them to the actual data structure

that represents the object.



Attribute-Based Functions

The problem of how the client is to manipulate the objects must be carefully
analysed in a system such as XView which is based on complex and flexible
objects. XView provides a small number of functions, which take a variable-
length list of attributes as arguments. For a given call to create or modify an

object, only a fraction of all the available attributes will be of interest.

The Notifier Model

The various GUI event models differ in three fundamental ways: how events
are distributed, who receives events, and what types of events are supported
(Nicholson, 1991). In some GUI’s, such as X Window-based, the application
registers event handler routines with the system. When events occur, the system
calls the appropriate event handler. This means the application has control only
when one its event routines is called. The Notifier acts as the controlling entity
of user processes. It reads input from the operating system and formats it into
higher level events, which it then distributes among the different XView objects.
It is the Notifier that calls out the various procedures which the application has
previously registered. These are usually designated callback procedures or notify
procedures. The advantage of this kind of system is that each component of an
application receives only the events the user has directed towards it. XView has
a two-layered scheme in which the packages that support the various objects —
panels, canvases, scrollbars, etc. — interact directly with the notifier, registering
their callback procedures. All the application has to do, in turn, is to register
its own callback procedures with the object. The normal sequence of XView
applications is to create the various windows and other objects and then register
the callback procedures associated (if any) with each of them. Control is then
passed to the Notifier, which takes over the task of managing the event-driven

environment,

3.5.3 User Interface Management Systems

User Interface Management Systems, normally referred to as UIMS, introduce a

separate software layer between the user and the actual code that implements the
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GUI (Nielsen, 1993). This term covers multiple meanings and different levels of
software services (Coutaz and Balbo, 1991), namely toolkits, frameworks (which
will be described in the next section) and interactive software that allows the
on-line definition of the interface in a direct-manipulation style. Nowadays, the
term UIMS is usually applied to this last type, since the current state-of-the-art
of user interface technology makes it possible for the user to define what the
interface is to look like (i.e., to select and position the desired widgets) without
actually having to write any source code. (Note however that the functionality
of the interface, i.e., the functions it is to perform, still has to be implemented in
a conventional way, i.e., writing code). Examples of this last category are Sun’s
DevGuide and the Macintosh’s HyperCard, where the widgets that compose the
interface can be selected from menus and dragged to the desired location on the
base window.

Other terms employed in the same sense are “user interface development
tools” (or “environments”), “user interface toolkits”, “user interface builders”

and “dialogue management systems” (Nielsen, 1993).

3.6 Frameworks

Although libraries of user interface objects hide much of the complexity of GUI
programming, there are still some difficulties stemming from the fact that the
user interface remains intertwined with the application (Urlocker, 1989).

X toolkits provide a set of interactive widgets, but no framework for design is
provided by X or its toolkits. Large applications tend to become unstructured,
non-transparent and tailor-made, and reusability of the interface code is severely
impaired. If the interface is meant to interact with complex applications, such as
simulation of physical systems, extensive portions of the GUI code may have to
be re-written in order to accomodate even minor changes in the physical system
or the mathematical models used.

An application framework is an interlocking set of objects, according to pre-
defined relationships, that provides a shell for application programs (Schmucker,
1988). Frameworks are useful to classify, according to the function they imple-

ment, and organize in pre-defined relationships, the several GUI components.
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Figure 3.4: The MVC Paradigm.

They reduce the code required in applications, make maintenance easier, and
encourage consistency. Different approaches for organizing components in a
framework have been described in the literature. Some of the best known ones
are the Seeheim model (Green, 1985), the Seattle model (Lantz et al., 1987), the
Lisbon model (Duce et al., 1991), the MVC (Model-View-Controller) paradigm
(Goldberg and Robson, 1983; Krasner and Pope, 1988; Ayers, 1990) and its
more modern successor PAC (Coutaz, 1987a). Application frameworks have
also been developed in MacApp (Schmucker, 1986), EZWin (Lieberman, 1985),
PPS (Ciccarelli, 1984), GWUIMS (Sibert, 1986), ET++ (Weinand et al., 1988)
(based on the architecture of MacApp), InterViews (Linton et al., 1989), Ser-
pent (1989) and Mode (Shan, 1990a, 1990b). Many of these approaches are
similar to, or variations of, the MVC concepts. A comparative analysis of sev-
eral architectures and the PAC model is presented by Coutaz (1987b). One of
the latest developments is the Arch model and its generalized counterpart, the
Slinky metamodel (Bass et al., 1992).

The Smalltalk language and environment introduced the well known MVC
paradigm. In Smalltalk, everything is an object, including models, views and
controllers. Applications can be systematically factored into these three com-
ponents to provide an organizational framework. The components of the MVC
triad are related by a triangular relationship (see Fig.3.4). Basically, the model

represents the data and knowledge associated with the problem; the controller
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provides the user with the means to interact with the software system and the
view enables the graphical display of the output of the model, thus providing
interactive feedback (Bourne, 1992).

Relationships between objects can be created in Smalltalk using the depen-
dency mechanism; any object can register itself as a dependent of another object.
Furthermore, any object may send the message changed to itself, when its state
changes. When this occurs, each of its dependents receives automatically an
update message. The dependent objects must know how to update themselves,
executing their own updating methods. This mechanism is especially important
in the relationship between the model and the view, since one or more views are
always registered as dependents of a model.

A model can be associated with more than one view-controller pairs. Un-
like the model, which may be involved in multiple MVC triads, each view is
associated with a unique controller and vice-versa. The view and the controller
are tightly coupled; a view’s instance variable controller points to its controller
and a controller’s instance variable view points to its view. Because both must
communicate with their model, each has an instance variable model that points
to the model object. However, the model does not have a pointer to its view
or its controller. This implies that the only way for the model to communicate
with the other objects is using the dependency mechanism, i.e., send a changed
message to itself. The dependent view(s) and controller(s) respond by querying
the model and updating themselves to reflect the change. The view takes re-
sponsibility for establishing this intercommunication within a given MVC triad
(Burbeck, 1987). Communication among the MVC components is handled by
the dependency mechanism and by sending direct messages.

In this work, an MVC-based framework was developed and used. The mean-
ing of each object is somewhat different from the one in Smalltalk and will be
described in Chapter 5.
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3.7 Evaluation

The best designs start by considering people, not things. (Jacobson, 1992)?

Because user interface design is an indefined area, which normally follows an
iterative pattern, several authors recommend that it be paired with evaluation,
which can used to feed back the design process (Perlman, 1988). Methods
used in user interface evaluation can be divided into two major groups. The
traditional orientation is empirical, based on measurement and data collection
methods, and to a lesser extent, in data analysis. This group of methods is
sometimes referred to as laboratory usability testing (Jeffries and Desurvire,
1992). Other methods such as heuristic evaluation (Nielsen, 1993) are intended
to augment usability testing, either by being applicable early in the design cycle
when usability testing is not possible, or as “discount methods” when resources
(money, trained evaluators, etc.) are not available.

The other orientation is based on predictive or theoretical models, which
can be viewed as part of the design itself. However, a full understanding of
these methods requires an empirical background. Models exist for predicting
performance measures such as task completion time, learning time and screen

layout.

3.7.1 Usability

Usefulness is the issue of whether the system can be used to achieve some desired
goal. It can be divided into two categories: utility and usability (Grudin, 1992).
Utility is the question of whether the functionality of the system can do what is
needed, and usability is the question of how well users can use that functionality.
Usability is thus only one of the factors that determine the system’s acceptability
(see Fig.3.5). The current draft of ISO standard ISO 9241-11 (guidance on
usability specification and measures) defines usability as (Brooke, 1993):

The effectiveness, efficiency and satisfaction with which specified users achieve

specified goals in particular environments.

! About virtual worlds.
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Figure 3.5: Attributes of the acceptability of the system.
(From Nielsen, 1993).

If this definition of usability is used, it is clear that usability is not an absolute
value. Rather, it is defined relative to a context, and therefore depends on the
situation. Systems and applications are usable or unusable through virtue of
being used in appropriate circumstances.

Usability itself is not a single, one-dimensional property of a user interface. It
has many components and is normally associated with five usability attributes
(Shneiderman, 1992): learnability (ease of learning), efficiency (speed of user
task performance), memorability (user retention of commands over time), user

error rate, and subjective user satisfaction.

3.7.2 Usability Testing

A usability attribute, as mentioned above, is a general usability characteristic
that must be measured as part of the evaluation of a user interface (Hartson
and Hix, 1993). A measuring instrument is the method used to provide val-
ues for a usability attribute. It can be either objective or subjective, but it
always provides quantitative values. Objective measuring instruments provide
measures of observable user performance while performing tasks with the inter-
face. Subjective measuring instruments provide measures based on the user’s
opinion about the interface. Objective measures are commonly associated with

a benchmark test, and subjective measures are commonly associated with a user
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questionnaire. The value to be measured is the metric for which data values are
collected during an evaluation session with a participant.

Several such studies have been conducted. Most of these are questionnaire-
based, where subjects are asked to rate or in some way give their opinion about
several aspects of the interface (Myers and Rosson, 1991; Carr, 1992; Montazemi,
1991; Hix and Schulman, 1991).

3.7.3 Heuristic Evaluation

The “discount usability engineering” method proposed by Nielsen (1993) is based
on the use of the following four techniques:

— user and task observation;

— scenarios;

— simplified thinking aloud;

— heuristic evaluation.

Heuristic evaluation is thus the last step in this technique. First, the ba-
sic principle of early focus on users should of course be followed. It can be
achieved in various ways, including simple visits to customer locations. Sec-
ondly, scenarios are a cheap kind of prototype. Prototyping consists of reducing
the complexity by eliminating parts of the full system. Horizontal prototypes
reduce the depth of functionality and result in a user interface surface layer,
while vertical prototypes reduce the number of features and implement the full
functionality of those chosen. Scenarios are the ultimate reduction of both the
level of functionality and of the number of features; they can only simulate the
user interface as long as a test user follows a previously planned path. For any
reasonably complex system, the scenario representation is necessarily incomplete
(Carroll and Rosson, 1991). Scenarios can be implemented as paper mock-ups
or in simple prototyping environments.

The thinking aloud method involves having one test user at a time use the
system for a given set of tasks while being asked to think out loud. By verbalizing
their thoughts, users allow an observer to determine not just what they are doing

with the interface but also why they are doing it.
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Finally, heuristic evaluation is done by having an evaluator looking at the
interface and emitting an opinion about what is good and bad about it. The
goal of heuristic evaluation is to find the usability problems early, in the user
interface design, so that they can be attended to as part of an iterative design
process. In order to keep the problem manageable, Nielsen (1993) proposes using
only ten rules, i.e., ten aspects about which the evaluator must specifically emit

_ an opinion:

1. simple and natural dialogue;

2. speak the users’ language;

3. minimization of the users’ memory load;
4. consistency;

5. feedback;

6. clearly marked exits;

7. shortcuts;

8. good error messages;

9. error prevention;

10. help and documentation.

3.7.4 Theoretical Methods

The prediction of the usability of the user interface even before testing is ap-
pealing to many usability scientists. Such a method would make user testing
unnecessary, and also estimate the trade-offs between different solutions with-
out having to build them (Nielsen, 1993). The best known analytic method is
GOMS (for Goals, Operators, Methods and Selection Rules)(Card et al., 1983).
It involves listing possible user goals (i.e., what the user wishes to perform),
the elementary operators available to users (e.g., click the mouse), the meth-
ods users compose as sequences of operators, and the selection rules necessary

to decide what to do next if the user has several goals pending or if there are
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several methods that will accomplish the same goal. Obviously, a model of a
realistic interface will be huge. Each operation and selection rule is modelled as
taking a certain amount of time to carry out, and then the analyst can finally
calculate the time needed to perform various tasks by adding up the time for all
the individual steps.

One of the few examples of a practical application of theoretical methods is
the SANe toolkit (Bdsser, 1994; Bosser and Melchior, 1992), which is able to
produce analytical measures of usability. A SANe model represents the user-
visible functionality of a device and the tasks performed by the user, i.e., the
interaction model of the device.

In many cases, it is advisable to include more than one technique in the
evaluation repertoire (Jeffries and Desurvire, 1992), since all the methods have
advantages and disadvantages. Advantages of heuristic evaluation are that it is
fast, cheap, and finds a lot of problems. Disadvantages are that it requires mul-
tiple evaluations, works best with expert evaluators, and finds a high number
of minor problems. Advantages of usability testing are that it overwhelmingly
finds severe problems, and it finds problems that affect real users. It has its
disadvantages too, the primary ones being cost and that it can only be applied
late in the development cycle. The most important limitation of the GOMS
model is its limitation to error-free performance by expert users. Modifications
to the model are dealing with some of these weaknesses, but due to the need to
know a large number of research results and modifications, GOMS and similar
approaches are still seen as intimidating by most interface developers (Nielsen,
1993). In equal circumstances, a usability test probably provides the highest

quality assessment of an application.

In conclusion, graphical user interfaces are still a major field of research,
due to the large number of related issues and the somewhat disparate nature
of the two disciplines involved (computer science and psychology). Together
with sound software development practices, consideration must also be given to
human factors guidelines during the development of a GUI. Formal notations

can be useful by making it possible to specify the interface in an implementation-
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independent manner. Many windowing and graphics systems are available, most
of which are non-standard and non-compatible. Evaluation of the interface
can be performed during different iterations of the prototype and by several
different methods; some are theoretically based whereas others rely heavily on
experimental data collection.

In the simulation of complex systems, response time may be so long that it
jeopardizes the interactive nature of the application. An introduction to dis-
tributed software systems, which enable full advantage to be taken of existing
computational resources thus possibly reducing execution time, will be made in

the next chapter.
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Chapter 4

Distributed Software Systems

4.1 Introduction

A common concurrency problem occurs when several users make simultaneous
demands on the computer’s processing ability. Current techniques to deal with
this situation include multi-tasking operating systems, in which processor time
is divided among the several users, and locking strategies in databases (Graham,
1994). A different concurrency situation occurs when two or more related com-
puter processes actually execute simultaneously, which is commonly known as
parallel processing. With the development and increasing availability of work-
stations and efficient networks, distributed software systems, in which related
processes can be spread throughout the network and executed concurrently, are
becoming common. Although these systems are considerably more complex to
program than their centralized counterparts (Achauer, 1993), parallel processing
techniques can lead to a dramatic improvement in performance, as reported by
Shandle (1990).

In this chapter, an overview of distributed software systems is made.

4.2 Parallel Processing

Increased parallelism may help meet performance requirements of the future
(Colbrook, 1993). This is due to the fact that improvements in non-parallel
systems have been achieved mainly by the development of better integrated cir-
cuits (in that smaller sizes allow for faster processor clock speeds). However,

such components are approaching the limits of miniaturisation, arising from
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quantum mechanics. For very small sizes, electrical behaviour undergoes sig-
nificant changes and such components can no longer operate on a reproducible
basis. _

Parallelism can be divided into data parallelism, which allows the same oper-
ations to be independently performed on different aggregates of data, and control
parallelism, which allows multiple threads of execution (Agha, 1989). Control
parallelism is more general since it implies that each thread of execution may
involve distinct data. Control parallel computers can be divided into two broad
classes: shared-memory machines and message-passing concurrent computers
(multicomputers).

Shared-memory computers have multiple processors, typically 16 to 32, and
share a global memory, i.e., the same data space. Shared-memory designs give
a price/performance ratio similar to that of PC’s (Graham, 1994). The High
Performance Fortran (HPF) initiative promises to yield an attractive shared-
memory programming model for these architectures (Colbrook, 1993).

Multicomputers use a large number of smaller, programmable computers
(processors each with their own memory) which are connected by a message-
passing network. The performance of multicomputers with only 64 processors
is comparable to that of conventional supercomputers. Software recently devel-
oped, which will be described in greater detail in section 4.6, enables the use of
separate computers such as Unix workstations, linked by a network, as a single
distributed-memory computational resource. In the remainder of this chapter,
a distributed-memory paradigm will be assumed.

Parallel processing involves identifying independent tasks to be executed si-
multaneously. A distinction can be made between “low level” and “high level”
parallelism (Vegeais and Stadtherr, 1992). Low level parallelism is associated
with fine-grained parallel tasks, at the DO-loop level or lower, that can in prin-
ciple be identified and executed automatically without user intervention. High
level parallelism is associated with opportunities for coarse-grained parallelism
that must be recognized by the algorithm developer, based on the knowledge of
a specific problem or class of problems, which cannot normally be imparted to

a compiler.
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Critical to the wide aceptance of parallel processing is the availability of
software applications that are used in many branches of science and engineering
(Colbrook, 1993). Few are currently available, but as demand for improved per-
formance increases, more are likely to be moved to parallel architectures. Parallel
processing techniques may significantly reduce execution times and algorithms
are being developed that implement the simultaneous solution of partial prob-
lems (Navon and Cai, 1992; Delsanto et al., 1994; Carey et al., 1994) leading to
significant reductions in the solution time of the overall problem (e.g., domain
decomposition techniques). However, the development of software is still a pri-
mary issue, and programming parallel systems efficiently remains a challenge.
Not all applications will run effectively on parallel systems, since the problem
domain and solution technique chosen must contain a degree of paralellism (Col-
brook, 1993).

Objects in OOP, which encapsulate both data and methods, are a very nat-
ural unit of distribution for distributed implementations. Furthermore, both
object-oriented software systems and distributed software involve the notion of
message passing (although, in the case of parallel computations, these are mes-
sages in the physical sense, as opposed to metaphorical messages in OOP). The
analogy is so pointed that object-oriented programming emerges as the natural

solution for structuring concurrent software (Graham, 1994).

4.3 Message-passing Mechanisms

Procedure call is a well-understood mechanism for the transfer of both control
and data in a single address space. In distributed-memory systems, which rely
on message passing, the programmer is required to deal with the additional tasks
of message packaging and locating the message target.

Message passing primitives can be classified into two categories: synchronous
and asynchronous (Gehani and Roome, 1989). In a synchronous message send,
the process that sends a message waits (blocks) until the recipient has accepted
the message. In an asynchronous message send, the sender may block until the
data has been successfully copied into a buffer, and then continues execution

without waiting for the recipient to accept the message. The difference between
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synchronous and asynchronous message receives is similar. Asynchronous com-
munication is more complex to implement than synchronous communication.
An asynchronous model requires buffer allocation (and freeing), and then copy-
ing the message into the buffer (Gehani and Roome, 1989). In the synchronous
model, no buffer allocation is required and the data can be copied directly from
the sender process to the recipient.

Only uni-directional inter-process communication is allowed by both syn-
chronous and asynchronous message passing facilities. The “extended rendez-
vous” model, which is an extension of the synchronous message-passing model,
allows bi-directional communication, in which arguments are used to transmit
information from the caller to the recipient and back. This model is used in

remote procedure calls (RPC) which will be described in the next section.

4.4 The Client/Server Paradigm

There are several models of distributed programming, of which one of the most
widely used is the client/server paradigm. In this model, the server offers ser-
vices to the network, which can be acessed by the client. In other words, servers
provide resources, whereas clients consume them (Corbin, 1991). An application
can behave simultaneously as a client and a server. Clients and servers can be

either computers or processes.

4.4.1 The RPC Library

The RPC (Remote Procedure Call) library uses the client/server model (Corbin,
1991). In RPC, the familiar procedure call abstraction is provided. Commu-
nication between processes is made by making a procedure call, although the
procedure may not reside in the same address space of the calling process; the
remote service can be accessed and used as if it were a set of procedures in the
local program.

The local thread of control is passed over to the remote computer where
the procedure is executed and then back to the local application when the pro-
cedure returns (see Fig.4.1). Most of the details of control and data transfer

are hidden from the programmer (Birrell and Nelson, 1984). However, the pro-
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Figure 4.1: Graphical representation of a remote jump to subroutine call.
(From Corbin, 1991).

grammer is still responsible for locating the target of the call, i.e., the machine
or process. Furthermore, the local and remote computers may have different
integer or floating point representations. This means that the remote proce-
dure may not interpret properly the values passed to it, the same happening
to the local application concerning the values returned. The programmer must
therefore, in addition, develop routines in which the conversion of all the argu-
ments to a specific remote procedure is performed, from the local format into a
machine-independent format (eXternal Data Representation — XDR) and vice-
versa. These routines must be used to code the values sent and to decode the
values returned back into the local format. The individual conversion routines
for each primitive data type are available in the XDR library, together with the
RPC routines.

Synchronous Distribution

The most conservative distribution proposal is built using synchronous commu-
nication between sequential processes. An example of this model is the basic
jump to subroutine call in RPC (Corbin, 1991). A procedure is a routine that
takes input arguments, performs processing and returns values to the caller. If
a remote procedure is invoked on another machine, the process running on the
local machine will not resume processing until the procedure returns. The client
sends an RPC request and then waits for the server’s reply (or times out waiting

for it).
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Asynchronous Distribution

When a behaviour closer to one-way messaging, or an asynchronous behaviour
is desired, RPC provides means to get around the basic synchronous communi-
cation scheme. Three facilities can be used: non-blocking RPC, callback RPC,
and asynchronous broadcast RPC. Non-blocking RPC can be used when a sim-
ple one-way message passing scheme is needed, and is in practice implemented
by setting the timeout for the call to zero. If a reply is required, the client must
make other arrangements, such as callback RPC, to get the results. Callback
RPC allows fully asynchronous RPC communication between clients and servers
by enabling an application to be both a client and a server. In order to initiate
a RPC callback, the server needs a program number to call the client back on.
The client registers the callback service, and the program number is then sent
as a part of the RPC request to the server. When the server is ready to do the
callback RPC, it initiates a normal RPC request to the client, using the given
program number. The client must be waiting for the callback either explicitly
or via a call to a custom routine that processes incoming RPC requests. Note
that callback is not being used here in the sense of event handler attached to
an object, as in Chapter 3, section 3.5.2. Finally, in broadcast RPC, the client
sends a broadcast packet for a remote procedure to the network and waits for
‘numerous replies. Broadcast RPC treats all unsuccessful responses as garbage

by filtering them out.

4.4.2 Client/Server Architecture of X Window

The client /server paradigm is also the heart of the X Window system and forms
the basis of the device-independency of X applications. Any X Window system
performs two tasks: running the user application and handling the graphics
(Reiss and Radin, 1992). Clients, in this case, are application programs, whereas
servers are the display units. Clients communicate with servers over the network

(see Fig.4.2)
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Figure 4.2: Client/Server architecture of the X Window system.
(From Reiss and Radin, 1992).

The client

The client is an application program that makes requests to the server to draw
windows, text, and other objects. X Window clients do not communicate directly
with the user. Inputs to the application, such as a keypress or a click of a mouse
button, are sent to the application by the server. The client then executes
X Window commands which in turn request the server to draw graphics. A
server may be attached to several clients, which is\/tl:e\reason why output from
applications running in several machines can be displayed in the same display

unit. The display unit itself can be composed of several physical screens.

The server

The server program runs on each workstation, drawing the required objects on
the display. As mentioned before, the server passes user input to the client
and decodes client messages (such as the instruction to move a window on the

screen). It also maintains complex data structures which reduce client storage
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needs and diminish the amount of data transmitted over the network.
Each workstation has its own server, which contains the hardware-dependent
drivers for that workstation. An X server controls not only the screen but also

the keyboard and a pointing device with up to five buttons (Pountain, 1989).

The link

X Window uses currently available networking protocols to transfer data between
the client Jand the server, such as TCP/IP, DECNet, and STREAMS. X Window
developers need not know the protocol actually used as X was designed to make
use of protocols transparent to the user. Specialized software is needed to send
appropriate data and control bytes between the client and the server, i.e. there
must be a formal definition of the data stream between clients and the server.
The client communicates with the server by sending packets of instructions con-
forming to the X protocol, which is, in effect, a high-level graphics-description
language (Pountain, 1989), similar (as mentioned in Chapter 3, section 3.5) to
machine language. The bulk of the X Protocol is asynchronous (Miller, 1990).
Data is buffered in both directions and is processed by the receiving end at
“some point in the future”. To aid debugging, X applications can however force

their server connection to be synchronous.

X Protocol Messages

X Protocol messages take one of four formats: request format, reply format,

error format or event format.

1. Requests are one-way protocol messages that do not require a system reply.
Xlib functions called by the application are translated by Xlib into a protocol
request message in the appropriate format, and the message is stored in a special
memory buffer. When the buffer is full, Xlib transmits all the accumulated
requests. The application continues processing and sending additional requests
without waiting for a reply from the server.

2. Replies are used when the application cannot proceed without a specific reply
from the server; processing resumes only when the server returns the required
information. These special requests are known as round-trip protocol request
messages and force the client-server communication to become temporarily syn-
chronous; as such, they can cause considerable delay.

3. If a given request causes an error, an X protocol error report is generated and
printed. When an X application has enabled synchronization of its connection
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to the server, requests are not buffered. The system accepts a request, blocks
processing, transmits the request to the server, and waits for a reply. Although
synchronization makes it easier to determine the function that caused the error,
it slows down performance drastically (Reiss and Radin, 1992).

4. The X server recognizes many (33) event types including pointer motion, key
press, button press and release, window entry and exit, input focus switching,
exposure of previously covered windows, etc.. Events are usually packets sent
to clients by the server, asynchronously, to notify them that something has
happened in or to a window (Miller, 1990).

Available on practically all Unix-based platforms, X manages input and out-
put to the display of the workstation both locally and across a heterogeneous
networking environment. The server encapsulates all device dependencies; the
communication protocol between clients and servers is device independent. If a
different display type is used, only a new server implementation must be per-
formed, and no changes in the application itself are required (Pountain, 1989).
Applications are thus device-independent as mentioned in Chapter 3, section
3.5. At present X Window is the only windowing system that really works in a
multiuser, multicomputer, networked environment, allowing, for example, win-
dowing software to be run on a supercomputer and the result to be seen on a

personal desktop machine.

4.5 Object-oriented Concurrent Distribution

The importance of object-oriented concurrent plrogra.mming, still a new field for
researchers, is assured by the fact that distributed and client/server architectures
must involve concurrency for an effective use of resources. Furthermore, no
other programming style offers a clear model for such a complex, cooperating
concurrent system (Graham, 1994).

The optimal extension to object-oriented software that can address the needs
of concurrent and distributed computing as well as those of sequential comput-
ing is still unclear. Object-oriented concurrent systems, which support object-
orientation, concurrency and dynamic adaptation, are very complex (Yoon,
1992). A large number of languages and compilers has been developed in recent
years, although the survival of some of them is yet to be determined. In this

section, a brief overview of related languages is made.
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4.5.1 Message-passing Languages

Message-passing languages can be divided into object-oriented languages and
actor languages (Carré and Cléré, 1989). Although both rely on the same general
ideas, they do not offer the same functionality to the programmer. The common
idea to both these languages is that an application is designed as a set of entities
that communicate by messages, hence the general denomination message-passing
languages. Each entity has a prescribed behaviour that describes how it reacts
when it receives a message.

Other analogies exist between objects and processes, or more accurately be-
tween the underlying abstractions: classes and process types (Meyer, 1993).
Both categories support local variables (attributes of a class, variables of a pro-
cess or process type), persistent data (which keeps their value between succes-
sive activations), encapsulated behaviour (a single behaviour for a process, any
number of methods for a class), and restrictions on how modules can exchange
information.

From these basic rules, research has diverged in different directions (Carré
and Cléré, 1989). An important difference between actors and object-oriented
languages is how behaviour is defined. Whereas the behaviour of an actor is de-
fined in itself, i.e., actor systems do not possess the property of inheritance, the
behaviour of an object is normally obtained from its class and superclasses. A
system of actors can be seen as a set of relatively independent entities; the only
relationship is a dynamic one created when a communication occurs between
two actors via asynchronous message passing (Agha, 1990). Conversely, an ap-
plication designed with an object-oriented language builds a set of entities linked
together by a dynamic and complex graph, due to all the connections between
objects: instantiation, inheritance, possibly dependency dictionary, etc.. Actor
languages offer a simpler model of communication, whereas object-oriented lan-
guages offer better structural properties. The distribution of objects among the
different elements of the architecture offers many problems in object-oriented
languages, due to the many links between the objects. No solution has been
found so far that allows efficient execution of object-oriented distributed appli-

cations. It can be doubted whether this approach is able to live in a distributed
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environment (Carré and Cléré, 1989).

Actors Languages

In the actor paradigm, the universe contains computational agents called actors,
which are distributed in time and space (Agha, 1989). The actor model of
computation is based on the idea that concurrent systems in the world can be
modelled as systems of objects known as actors (pools of cooperating workers
or experts), acting only on local information and interacting solely through
message passing (Manning, 1989). An actor has defined responsibilities, needs
and knowledge about collaborators (Graham, 1994).

Actors have unique permanent identity. Each actor has a local state, a loca-
tion (its mail address) and a behaviour. The behaviour defines what it will do
when it receives a message and can be divided into a script, i.e., the instructions
which the actor must follow (similar to a method), and the acquaintances, i.e.,
the mail addresses of other actors the actor knows about (similar to instance
variables). Acquaintances determine the other actors with which the actor may
communicate; an actor with no acquaintances is a candidate for garbage collec-
tion.

When an actor receives a message, it reacts to it using the information avail-
able. It may make simple decisions, create new actors, send messages to the
other actors it knows about, or specify a replacement behaviour (Agha, 1990).
If it does not have a method to handle the message, the actor may delegate to
a prozy, which is an actor nominated among its acquaintances. No methods are
inherited in delegation, i.e., no code is copied; all that takes place is message
passing. Some or all of these actions may occur concurrently.

The only way one actor can influence the actions of another actor is to send
the latter a communication. The integrity of the two communication units must
be maintained, implying that there must be some mechanism for serializing in-
coming communications. This can be achieved by requiring a sender to wait
until the recipient is free to accept a communication and then blocking the re-
cipient from accepting any other communications until it has finished processing

the first communication.
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Most actor-based and concurrent object-oriented languages provide more
than a collection of objects which communicate via message passing. Distributed
techniques for resource management, object addressing, garbage collection, and
computation management must be addressed, especially if objects are dynami-
cally created and discarded as the program executes (Bensley et al., 1989).

Some actor-based languages have been developed as extensions to Smalltalk,
by creation of new classes. Examples are Actra (Thomas et al., 1989), where
an object from the class actor encapsulates a community of objects intended to
execute concurrently with other communities. Another actor-based extension
of Smalltalk is Actalk (Briot, 1989), where an actor is built from a standard
Smalltalk-80 object by associating a process with it and by serializing the mes-
sages it can receive into a queue.

PLASMA II (Lapalme and Sallé, 1989) (an extension of Plasma, the first
actor language originally proposed by Carl Hewitt), Acore (Manning, 1989) and
Cantor (Athas and Boden, 1989) are other examples of actor-based languages. In
general, actor languages are very low-level and difficult to use (Graham, 1994).

Message Driven Computing (MDC) is a generalization of actors. It is based
on two fundamental characteristics, namely the fact that messages, not sequen-
tial processes, convey both control and data (there are no sequential processes
unless they are programmed explicitly in terms of messages) and computation
is invoked by the presence of a collection of messages at the same location. It

is possible to implement an actor system using MDC; for further details, see
Christopher (1989).

Other Languages

Integrating distribution and object-oriented languages has attracted much atten-
tion in recent years (Achauer, 1993). However, the evidence that concurrency
blends well with the object paradigm comes mainly from systems which are .
object-based, not object-oriented; as mentioned before, inheritance is rarely in-
volved (Lohr, 1993). Different degrees of integration may be considered when

comparing object-oriented languages that support concurrency:
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1. no integration: the object-oriented features and the concurrency features
are independent of each other. Although such a language is both object-
oriented and concurrent, it cannot be considered a true concurrent object-
oriented language (COOL). An example is concurrent C++, which results
from the fusion of two separately developed extensions of C: Concurrent
C (Gehani and Roome, 1989) and C++ (Stroustrup, 1986).

2. partial integration: concurrency is integrated into the object-based lan-
guage, allowing the existence of synchronized objects, active objects, and
asynchronous object invocation. Inheritance, however, does not apply to
active and/or asynchronous classes. Such a language is not a pure COOL
either; it could be termed “concurrent object-based with inheritance”. An

example is GUIDE (Decouchant et al., 1989);

3. full integration: a real COOL supports inheritance hierarchies that include
active classes. An example is POOL (Parallel Object Oriented Logic)
(Koegel, 1989).

Furtherr.nore, several degrees of concurrency are possible. Objects can be
classified as single thread objects, objects that may service only one request at
a time but may create multiple threads internally for servicing it, and objects
that may service multiple requests concurrently (Papathomas, 1989). Note that
increasing synchronization support must be provided with an increasing degree
in concurrency.

Numerous proposals have tried to combine concurrent programming with
object-oriented programming. Three distinct approaches for introducing con-
currency to object-oriented systems can be identified (Karaorman and Bruno,
1993), namely designing a new concurrent object-oriented language, extending
an existing object-oriented language, or, finally, using an existing object-oriented
language, provide concurrency abstractions through external libraries. Most of
the earlier systems take the first approach, i.e., designing a new object-oriented
language with built-in concurrency. The extensions to existing sequential object-
oriented languages introduce concurrency using some combination of the follow-

ing techniques:
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1. inheritance from special concurrency classes that the modified compiler
recognizes. An example is Parallel Eiffel (Eifell//) (Caromel 1989, 1993);

2. special keywords, modifiers or preprocessing techniques to modify or ex-
tend the language syntax and semantics. An example is CEiffel (Lohr, 1993).

Finally, concurrency can be introduced by the creation of new libraries,
namely a class definition of Process. Since the latest trends for object-based
concurrency emphasize issues such as reusability and compatibility, the library-
based solutions are attractive, as they do not replace the existing software de-
velopment platform. The library approach is the most recent one and has been
influenced by most of the earlier work on concurrency (Karaorman and Bruno,
1993).

Distributed concurrent object-oriented programming involves more than ob-
Jjects statically residing in several address spaces; when objects are allowed to
reside on multiple nodes, ways to address and locate them must be provided
(Jazayeri, 1989). Their migration from one node to another at run-time is also
a desirable feature. Furthermore, the amount of message traffic is crucial to
the efficiency of the system and must be minimized. Also, if a set of objects
is responsible for managing a distributed data structure, it is important to be
able to change the distribution of the data among the member objects, since the
right distribution leads to higher performance. Finally, once multiple threads of
control are allowed, synchronization and concurrency control must be supported.

Some systems that offer both location-independent invocation and object
migration are Emerald (Black et al., 1987), which is a strongly typed, object-
based language, Amber (Chase et al., 1989), which augments a subset of C++
with primitives to manage concurrency and distribution, and DOWL (Achauer,
1993), which is a proxy-based (see section 4.5.2) extension of the Trellis object-
oriented language.

Many other concurrent object-oriented languages have been developed in re-
cent years, such as DOCASE (Mihlhauser et al., 1993), Interwork II (Bain,
1989), Heraklit (Hindel, 1989), MACE (Gasser, 1989), and MELD (Kaiser,
1989). Karaorman and Bruno (1993) propose the introduction of concurrency to

the object-oriented language Eiffel through a set of class libraries. No changes
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Figure 4.3: An invocation on a remote object is intercepted by the prozy object.
(From Steele, 1992a).

are made to Eiffel or its run-time system. Although sometimes this is not ex-
plicitly stated, some of these languages rely on concepts which are very similar

to actor concepts.

4.5.2 The Prozy Paradigm

The object-oriented programming paradigm, with its notion of synchronous mes-
sage passing between distinct objects, maps neatly onto the client/server model
of distributed systems (Steel, 1992a). The object-oriented and client/server
paradigms can be combined to provide a distributed object model. A mecha-
nism similar to RPC can be used, remote method invocation (RI), to provide
transparency to the programmer.

DPS is a prototype system based on an implementation of Smalltalk, BHH
Smalltalk (Xu and Dollimore, 1992). If the implementation of a remote opera-
tion invocation has the same interface as the local operation invocation, it is a
transparent remote operation invocation. The transparency is achieved by auto-
matically providing a local prozy for each remote object upon whom operations
can be invoked by a local object. The function of a proxy is to behave like a
local object towards the message sender, but instead of executing the message,
it forwards it to the remote object, thus hiding the complexity of inter-machine
communication from the user (see Fig.4.3). Proxies behave exactly like the ob-
ject they represent (Achauer, 1993). The proxy blocks the local activity thread
until the result of the remote invocation is returned. The operation is then
performed at the object’s actual location. Any values or exceptions raised are

transmitted back to the proxy, which then returns the result, just as in local
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invocation, so that the local activity thread continues. The RI model can be
viewed as keeping the data (or objects) in a fixed place and moving the thread
of control to where the data resides. This mechanism therefore provides a se-
quential type of object-oriented distribution.

Although Remote Invocations encapsulate the complexity of inter-process
communication, RI suffer from being inherently synchronous, since the calling
task cannot continue until it has received a reply from the called procedure.
When results are not required, or a request needs to be multi-cast to several

different receiving tasks, RI is not an ideal model.

4.6 Inter-process Communication Enabling Soft-
ware

PVM (Parallel Virtual Machine) is a recent software system which enables inter-
process communication. A user-defined collection of serial, parallel and vector
computers can be made to behave as one large distributed-memory computer
(Geist and Sunderam, 1993; Geist et al., 1994), referred to as the virtual ma-
chine.

PVM supplies functions to automatically start up tasks (units of computa-
tion analogous to Unix processes) on the virtual machine and allows the tasks
to communicate and synchronize with each other. Applications, written in For-
tran77 or C, can be parallelized using message-passing constructs common to
most distributed-memory computers. By sending and receiving messages, mul-
tiple tasks of an application can cooperate to solve a problem in parallel. PVM
supports heterogeneity at the application, machine and network levels. It han-
dles all data conversion that may be required if two computers use different
integer or floating point representations, thus avoiding the need for lengthy
programmer-defined routines to convert arguments to and from their XDR rep-
resentations.

The PVM software is composed of two parts. The first part is a daemon that
resides on all the computers making up the virtual machine. The second part is
a library of user callable routines for spawning and coordinating tasks, passing

messages between them (any task can send a message to any other PVM task),
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and modifying the virtual machine (add and delete hosts). There are routines
to send signals to other PVM tasks, and find out information about the virtual
machine configuration and active PVM tasks. It also includes routines that
enable a user process to become a PVM task and to become a normal process
again.

Synchronization is ensured since PVM provides asynchronous blocking send,
asynchronous blocking receive and non-blocking receive functions. In PVM’s
terminology, a blocking send returns as soon as the send buffer is free for re-use
regardless of the state of the recipient. A non-blocking receive returns immedi-
ately with either the data or a flag that the data has not arrived, and a blocking
receive function returns only when the data is in the receive buffer. The PVM
model guarantees that message order is preserved. The maximum size of the
messages that can be sent or received is limited only by the amount of available
memory on a given host.

Notg that PVM is not a distributed object-oriented system, nor does it en-
force any distribution paradigm. However, the transparency with which it pro-
vides inter-process communication and task management is an important feature
and allows the programmer to implement an adequate concurrent paradigm with
greater flexibility than other systems. Chapter 5 describes the use made of PVM

in this work.

4.7 Distributed Operating Systems

As mentioned in previous sections, many attempts have been made to extend ex-
isting object-oriented languages with support for distributed objects by adding
message-passing facilities. However, this extension is in general an inefficient
‘approach (Lea et al., 1993) due to the fact that traditional operating systems
were designed before networking became commonplace and hence provide little
support for inter-process communication (Steel, 1992b). Most of them provide
abstractions that were not designed to support modern programming languages
or distributed applications, treating each process as an independent entity for
the purposes of resource management (Lea et al., 1993). For distributed ap-

plications, spanning multiple address spaces, the compiler support breaks down
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because it is not aware of the environment outside a single address space. Also,
some languages support lightweight activities or active objects, whereas most
systems support a heavier notion, a process. Finally, current operating systems
provide distributed interprocess communication using protocols designed for un-
reliable networks as an “add-on” feature. These communication mechanisms are
often too costly to support applications built of fine-grained objects that use a
large number of inter-object invocations.

Some recently developed architectures and operating systems aim to directly
address these problems. The Rosette architecture (Tomlinson et al., 1989) is an
actor-based architecture formed by two major components, namely an interface
layer and a system environment. The interface layer includes a set of actors that
represent the processing, storage and communication resources. The system
environment contains actor communities which provide monitoring, debugging,
resource management, and compilation facilities.

Choices is an object-oriented operating system built in C4+ (Campbell et al.,
1993). The advantages of C++ are that it is efficient, portable, and available on
a variety of platforms. Objects are used to model both the hardware interface,
the application interface, and all operating system concepts including system
resources, mechanisms and policies. High level features that are available in
other less efficient languages were built using C++ language primitives, classes,
and subclasses. User, server and system objects can be defined, created and
deleted dynamically.

Another solution to this problem is the use of microkernel architectures as
CHORUS, Amoeba and Mach, which provide a basic set of abstractions designed
to allow programmers to build operating systems (Lea et al., 1993).

The practical acceptance of any of these approaches is yet to be determined.

To summarize, parallel processing is at present an answer to the ever in-
creasing demand on computer power. The feasibility of combining concurrency
with object-orientation is still under study. Most software systems of this type
are object-based (e.g., actor languages) rather than object-oriented, due to the

difficulty of transferring the many links between objects and classes into a dis-
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tributed environment. However, actor languages are low-level and difficult to
use. Software like PVM allows the introduction of concurrency into higher-
level languages such as C++, which in turn have immediate access to high-level
user interface software such as the X Window-based toolkits. This approach
was therefore selected in this work, where the construction of sophisticated user

interfaces is sought, and will be described in the next chapter.
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Chapter 5

Interactive Object-oriented
Simulation

5.1 Introduction

The activity of building models of the real world and simulating them on a com-
puter is usually referred to as modelling and simulation (Zeigler, 1976). Three
main elements are involved in this process: the real system, the model, and the
computer. To model a system is to replace it by something which is simpler
and/or easier to study, and yet equivalent to the original in all important as-
pects (Mitrani, 1982). Modelling and simulation may serve several purposes,
namely to understand how the real system behaves, to optimize certain aspects
of its operation, or because experimentation with the real system is costly, time
consuming, or impossible. Furthermore, computer experiments are completely
repeatable and non-destructive; they can be re-started at any point without
destroying the subject of the study.

Howevér, simulation practices in the scientific community have not accom-
panied the evolution in hardware performance and in software development con-
cepts (Peskin et al., 1989). Computers are primarily used as numerical produc-
tion tools, instead of tools for interactive prototyping. In spite of the recent
(and increasing) importance given to graphical user interfaces, most simulation
programs still do not benefit from an interactive environment or the application
of object-oriented concepts. Consequently, decision makers are unable to ex-
plore a.ﬁd solve complex problems in an interactive and graphical environment

(Armstrong and Densham, 1992).
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Object-oriented concepts are invaluable for the development of structured
interactive software. In the special case of interactive simulation, OO concepts
provide support at three levels: firstly, they are essential for the definition and
manipulation of the widgets that compose the interface. Secondly, they make it
possible to retain a clear separation between the domain-specific component and
the graphical user interface, by utilization of an adequate framework. Thirdly, in
what concerns the simulation itself, the elements that compose the system being
simulated can be treated in a fully modular fashion, i.e., as objects, which is
essential for the creation and deletion of objects at run-time, and for adaptability
to changes in the configuration of the system.

In this chapter, the main issues related to the implementation of interac-
tive simulation of complex systems are identified and discussed. Solutions are
proposed and the basic principles and features of the working prototype devel-
oped in this work are presented, namely the framework used for design and the
type of distributed approach implemented. The prototype is further described
in greater detail in Chapters 6 and 7.

5.2 Mathematical Modelling

Models can be classified into several categories, according to the basic assump-
tions used (Zeigler, 1976). Common to the simulation of all types of models are
the notions of events and the need to keep an internal clock. The system state
changes in the course of an operation path; these changes of state are called
“events”, which occur at certain times (“event times”). The passage of time is
represented by incrementing the value of the internal clock.

The most immediate classification relates to the time base on which model
events occur. A model is a continuous time model if time is specified to flow con-
tinuously, i.e., the clock of the model advances smoothly toward ever-increasing
values. A model is a discrete time model if, in contrast, time flows in jumps,
i.e., the clock advances periodically, jumping from one value to the next.

A second classification is related to the type of values assumed by the vari-
ables that describe the model. The model is a discrete state model if its variables

assume a discrete set of values; it is continuous state if their ranges can be rep-
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resented by real numbers (or intervals of these) and mized state if both kinds of
variables are present.

Continuous time models can further be divided into discrete event and dif-
ferential equation classes. A model specified by differential equations is a contin-
uous time - continuous state model in which state changes are continuous, i.e.,
both the effects of the events and the intervals between event times are infinites-
imal. The time derivatives (rates of change) of the variables are governed by the
differential equations. If more than one independent variables exist in a differen-
tial equation, it is classified as a partial differential equation. Systems described
by this type of models are called distributed-parameter systems (Karplus, 1977).
If the model is formed by a set of difference or ordinary differential equations,
these systems are referred to as lumped-parameter systems (Karplus,’ 1977). In
both these cases, the simulation consists of constructing one or more functions
that uniquely satisfy the differential equations for given initial and boundary
conditions; integration is the heart of continuous-system simulation. This type
of continuous modelling has been used extensively in this study and is one of
the primary concerns of this work.

In a continuous time - discrete event model, even though time flows continu-
ously, state changes can occur only in discontinuous jumps. A jump is triggered
by an event, and (since time is continuous) these events can occur arbitrarily
separated from each other. An operation path is completely determined by the
sequence of event times and by the discrete changes in the system state which
take place at these moments. In between two consecutive event times, the system
state may vary continuously.

In discrete time models, the system is considered only at selected moments
in time (the operation paths of these models are sequences of system states,
typically evenly spaced in time); any changes of state are noticed only at obser-
vation points. It is therefore assumed that events in the real system are allowed
to occur only at certain moments. Continuous systems can be approximated by
a discrete time model to any degree of accuracy by choosing a sufficiently small
time increment. In discrete event systems, the simulator must keep track of the

passage of time, generate the events that change the system and implement the
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resulting changes.

A third classification is related to the incorporation of random variables in
the description of the model. In a deterministic model no such random variables
appear. Differential equation models are essentially deterministic in nature. A
probabilistic or stochastic model contains at least one random variable. The
incorporation of random variables in the model may, or may not, reflect the
absence or presence of random phenomena in the system being modelled. Both
discrete time and continuous time - discrete event models are normally stochastic
models.

After the model has been defined, the solution can be obtained in a num-
ber of different ways, namely using analytical or numerical methods (Mitrani,
1982). Analytical solutions provide a closed-form expression for the desired sys-
tem characteristics. Such solutions, while clearly advantageous, can usually be
obtained only for the simplest models. Numerical solutions can, in principle, be
applied to models of arbitrary complexity, especially as the processing power of
digital computers increases. They have however the disadvantage of producing
results only for isolated points in the domain.

The behaviour of the clock of a simulator may be very similar to a real
one: at every tick, the value of the clock is incremented by a given (constant)
amount. Such simulators are called “fixed time increment” or “synchronous”.
As mentioned above, it is always possible to simulate the passage of real time by
making very small, fixed increments in the model’s time variable and changing
the system as required at each increment. This tends to a “quasi-continuous”
view of the world and is the basic approach to continuous systems simulation.
However, this is not necessary for a discrete event system; the clock may be
incremented directly from one event time to the next event time, taking on each
occasion the appropriate actions, regardless of the time interval that separates
the events. Simulators of the second type are called “variable time increment”
or “asynchronous”. The choice of simulator structure depends on the nature of

the system being simulated.
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5.3 Simulation Languages

Analogue computers were originally used for the simulation of continuous mod-
els (Kreutzer, 1986). In more recent times, the operation of these hard-wired
machines has been emulated on digital, stored-program computers, with a con-
siderable gain in programming convenience and computational accuracy. Con-
tinuous simulation languages evolved from attempts to replicate the functioning
of analogue computers. In this section, a brief overview of the languages for
continuous simulation will be made.

The IFIP Conference on Simulation Programming Languages in 1968 was
a major milestone in the history of simulation; since then, the development of
new systems has progressed at a much slower rate. The first special-purpose
languages for continuous-system simulation were Fortran-based; in fact, this
is still the case nowadays (Kreutzer, 1986). Because of the number-crunching
nature of numerical solutions to differential equations, run-time efficiency and
accuracy are overriding concerns. Most research is consequently targeted on
these areas. Fig.5.1 shows the lineage of some of the best known systems. The
best known discrete-event simulation languages are probably SIMSCRIPT II.5,
GPSS and SIMULA (Mitrani, 1982). For an overview of the evolution of the
most important families of discrete-event simulation languages, see Kreutzer
(1986).

Primitives for dealing with concurrency, creation of dynamic objects, and
handling of dynamic relationships between them are not well supported by most
of the widely-used programming systems. Fortran and Fortran-based simulation
packages have several deficiencies, namely the fact that arrays and routines are
the only structuring devices, only static storage management is allowed (which
requires compile-time dimensioning of all data structures) and names up to six
characters only can be used. Although at first these limitations may appear to
be minor inconveniences, they in fact prove to be severe handicaps for writing
readable and well-structured programs (Kreutzer, 1986). These deficiencies grow
worse at an exponential rate as model complexity increases. Eventually, the
source code consists of a tangled mesh of variables representing entities and links

between them, event routines and scheduling references (Kreutzer, 1986). Such
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Figure 5.1: Origin and evolution of some continuous-system simulation lan-

guages.
Combined discrete/continuous languages are underlined. (From Kreutzer, 1986).
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models are very difficult to understand, communicate, debug and verify. They
are obviously totally inadequate for graphical interactive environments, where
the definition of the physical system is done at run-time, usually by choosing
the desired components from menus. The only advantage that can be attributed
to Fortran-based simulation systems is their wide availability and portability.
Fortran has served its purpose well, but it was designed for an environment
characterized by batch operation, expensive processor and memory resources,
and an absence of any guidelines for the design of good cognitive tools; the
computing scene is now radically different. Kreutzer (in 1986) considers Fortran
to be an outdated tool.

Since a major requirement for a simulation language is entity manipulation
(creation of new entities, destruction of old ones, placement of entities into and
removing them from ordered and unordered sets, etc.), the object-oriented pro-
gramming style is particularly appropriate for the design and implementation of
simulation programs. As the pioneer of object-oriented programming languages,
SIMULA (Dahl and Nygaard, 1966) deserves here a special reference. The first
version of SIMULA, SIMULA I, was especially designed as a tool for discrete-
event simulations. SIMULA 67, the current version, has been totally redesigned
and has become a powerful general-purpose language, which contains a slightly
modified ALGOL60 as a subset. A major addition to ALGOL was the class
concept. Two pre-defined classes (classes SIMSET and SIMULATION), especially
dedicated to simulation purposes, were built into the system. Class SIMSET
supplies entity and set manipulation facilities, including linked lists, and class
SIMULATION supplies a clock routine and an event list, manipulation of paral-
lel processes, and timing and scheduling primitives. Various random number
generation procedures are provided. Also, SIMULA supports co-routines as one
of its main control structures. Co-routines implement a less restrictive control
paradigm than the master-slave paradigm, used in conventional function and

procedure calls.
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5.4 Development of Interactive Simulation Soft-
ware

In spite of the benefits provided by the application of object-oriented concepts,
OOP has not seen widespread use in the domain of the simulation of com-
plex systems, mostly due to the absence of powerful object-oriented packages
of numerical methods. This is especially true in the case of continuous time-
continuous state models, which are of interest to this study. The mathematical
models that describe this type of system may include sets of ordinary differential
equations (ODE’s), partial differential equations (PDE’s), differential-algebraic
equations (DAE’s), linear or non-linear algebraic equations, evaluation of inte-
grals, etc.. Most mathematical models for systems of interest in engineering
areas, for example, fall in this category, such as the lime kiln of a paper pulp
plant (Pais and Portugal, 1993a, b) or the simulation of stresses and strains
in a structure, such as a bridge withstanding traffic (Kimbrell, 1989). Tradi-
tional procedural simulation programs have the form of calls of specialized and
usually lengthy procedures available in standard libraries such as NAG or spe-
cific solution routines such as LSODI, DDASSL, DRKMXX, CONLES, JCOBI,
DFOPR, etc.. Most or all of these procedures are written in high-level proce-
dural languages such as Fortran77 or C. Considerable research efforts are now
being devoted to the OOP implementation of advanced numerical methods, such
as the linear and non-linear finite-element methods (Zimmermann et al., 1992;
Dubois-Pélerin et al., 1992; Menétrey and Zimmermann, 1993), where an anal-
ysis of the algorithm is made in order to determine the adequate class hierachy.
Full general-use libraries of object-oriented numerical methods do not exist yet.

Another problem associated with interactive simulation lies in the fact that
very complex problems may not be suitable for on-line simulation due to the
execution time, which can lead to unacceptably long response times. Even if
object-oriented numerical methods exist for the problem in question, this is not a
guarantee of faster execution. Indeed, and although Smalltalk has been proposed
to implement simulation studies of simplified industrial units (Lazarev, 1991),
execution may take considerably longer if essentially interpreted languages like

Smalltalk are used. Parallel processing techniques can solve complex models at
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high speed, therefore significantly reducing response times, and enabling decison
makers to quickly see the results of revising parameters and criteria (Armstrong
and Densham, 1992). As parallel programming environments become common-
place in the coming decade, the need for suitable parallel versions of sequential
algorithms will increase. Software (e.g. the PVM libraries) has also been recently
developed that enables inter-process communication and the use of networked
machines, such as UNIX workstations, as a single distributed-memory, multi-
processor machine, thus making it possible to use commonly available network
configurations as a multicomputer.

Finally, several advantages are provided by the separation between the graph-
ical user interface and the domain-specific component (Dodani et al., 1989). The
interface can be altered without repercussions on the application code. It can
also be further subdivided into smaller, re-usable components, which may be
used without a detailed understanding of the underlying implementation. This
facilitates the modification of the interface in order to be used in other appli-
cations. This approach also allows the interface to be developed in an iterative
manner, where successive prototypes are produced until a satisfactory one is
completed; successive iterations can be coupled to the same domain-specific
component. This separation can be achieved by application of an adequate
framework, where the overall application is systematically factored into pre-
defined components linked by pre-defined relationships.

In this work, a prototype was developed which aims to address the main
problems associated with interactive object-oriented simulation. C++ was used
as the programming language for the graphical user interface. This choice was
made due to several reasons, namely its object-oriented features, efficiency of
execution of the compiled code, simple interface with Fortran77 (in which the
numerically-intensive modules were written) and, since the windowing system
selected was X Window, due to the advantages pointed out in chapters 3 and
4, immediate access to X Window and X-based GUI toolkits (specifically, the
XView toolkit). Sun’s SPARCompiler C++ 3.0.1 and SPARCompiler Fortran
2.0.1 were used, running under the Solaris 2.3 Unix operating system. The

windowing environment was Sun’s Openwindows V.3.3, implemented on top
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of X Window V.11 (X11) using the XView toolkit. A Model-View-Controller-
based framework was developed for the interactive application. Concurrency
was introduced to the C++ language, in a limited form, by means of external

libraries (PVM libraries, see section 4.6).

5.5 Decomposition of the Overall System Used
in the Prototype

The need for the decomposition of the overall model into several submodels
for the solution of complex systems has been recognized and described for sev-
eral types of problems, among which chemical process flowsheeting (Vegeais
and Stadtherr, 1992). The modular approaches consist of dividing the overall
model into modules, or sets of smaller equations, which can then be solved ei-
ther sequentially or simultaneously. In steady-state calculations such as process
flowsheeting, the solution of the individual modules can be repeated as many
times as necessary until convergence is achieved. Note that, in this case, decom-
position of the system into smaller subsystems is used as a numerical technique
and does not lead necessarily to an approximate solution.

If the physical process is continuous in time, as in most dynamic simulations,
a straightforward decomposition corresponds to an approximate solution. The
transient state of a system is typically described by — or can be transformed
into, using finite differences, orthogonal collocation, or other methods — sets of
simultaneous ordinary differential equations. In a procedural approach, a vector
of unknowns is fed to the solution routine, where the unknowns are computed
simultaneously for the specified time step and the results are returned to the
main program. Although this approach is accurate — excluding the approxima-
tions involved in the numerical methods applied themselves — the flexibility of
this type of solution is virtually nil. Extensive code re-writing and debugging
has to be done if, for example, more variables must be inserted between existing
ones, and this approach is obviously not suited to applications where the system
is to be defined on-line.

If an object-oriented approach is taken, then a decomposition of the system

into suitable objects is made. Each object must be able to evaluate its own state,
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Figure 5.2: Decomposition of the overall model into objects.

according to its instance variables and methods, for the desired conditions. The
coarser the decomposition — which corresponds to fewer objects each with a
high number of instance variables and complex methods — the closer the final

algorithm will be to that obtained by a non object-oriented approach.

5.5.1 The Unit and Stream Paradigm

The decomposition of the system into units and streams, which have fundamen-
tally different natures, is proposed in this work. Each unit is a data processing
object. It possesses instance variables which can be divided into independent
variables T = (z1,%2,...,Zm), dependent variables § = (y1,¥2,---y¥n), and param-
eters a = (ay,as,...,a,). More elaborate models can include other classifications
such as observed variables, manipulated variables, etc.. The dependent variables
define the state of the system and are evaluated by the object by application of
adequate methods. These methods must therefore include all the information
needed to solve the problem. Fig.5.2 represents a simple system, where units 1
and 2 are connected by a stream (object 3). If, for example, the mathematical
model that corresponds to unit 1 is or can be transformed into a set of first
order PDE’s, depending on one spatial dimension and time (Z = (z;, z,), where
z; = z and z; = t) then its updating method must solve the mathematical
model defined by

1 1
fi(ta zayl) %?t_, %161) = 0: i= lanl (51)

Initial and boundary conditions must be included and were omitted here for
the sake of simplicity. Now, let the updating method for unit 2 be such that it

implements the solution of the following system of algebraic equations:

fi(§2'52) =0,i=1,n; (52)
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Figure 5.3: Example of decomposition of the overall model into objects (set of
two continuous stirred tank reactors).

Ca = Concentration of Species A (mol/m?)

K = Kinetic Parameter (s™)

Q = Volumetric Flowrate (m?®/s)

V = Volume (m3)

These objects may correspond each to a physical object, part of it or even
a set of physical objects, as desired — the granularity of the decomposition is
not fixed. Objects can be related by simple relationships, or by more complex
relationships which require themselves some form of calculation. In either case,
these are performed by the stream objects. Although a stream may have some
form of connotation with a physical object, it is used here simply as an object

that represents a relationship. The updating method for object 3 must include:
fi(@,d,5%,@,a) =0, i=1,n; (5.3)

Each stream object must always have an origin and a destination units.
This allows the differentation of the streams, according to the units they link; if
necessary, units can be artificially added to the system. For example, if a certain
unit is subject to inputs of two different kinds, these can be easily associated
with two streams, which have source units of different classes, and the same
destination unit.

As an example, let us consider the simplified case of the simulation, in tran-
sient state, of a set of two isothermal continuous stirred tank reactors without
level control, where first-order reaction occurs (see Fig.5.3).

The updating method for Unit 1 corresponds to the solution of egs.(5.4) and
(5.5) below (initial conditions omitted for simplicity):

dvilgall

= QillCail! — KCallvil — Qolticl (5.4)
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dvil 0t ;
= Qilh — Qolt (5.5)

Similarly, the updating method for Unit 2 corresponds to the solution of:

dvVPCal
dt

)
d‘; = Qild — Qo (5.7)

= QilCail® — KCaAV 1 — QoltCql? (5.6)

The updating method for the source unit can be empty, which means the
values of Cal***¢l and Qo*****? remain constant in time, or it can possibly
re-define Cal*>¥reel and Qol**“r¢el, Let us take the updating method for the sink
unit to be simply Cal*™* = Cail*"*, After all the units have updated their
state, the update message is sent to the streams to re-establish the relationships
between the units. The physical system is thus considered to be composed of
7 objects (4 units and 3 streams). Three unit classes are involved: source unit
class, sink unit class, and the class that unit 1 and unit 2 belong to. Three dif-
ferent stream classes are involved (i.e., all the streams have potentially different

different methods). For stream 1, we have:
Qil'l = Qoleevred (5.8)
Cail'l = Cglsovred (5.9)
For stream 2:
QilYl = Qo' (5.10)
Cail = Cal] (5.11)
For stream 3:
QilH = Qol (5.12)
Cail*™ = Cal¥l ‘ | (5.13)

The streams possess all the necessary information to relate the adjoining

units. Whereas the units possess an internal state, streams have the important
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mission of storing the structure of the process. Zobel and Lee (1992) describe
some problems when interconnecting units in a similar system, due to dimen-
sional incompatibility or different scaling constants. They suggest two methods
to solve this problem: either to provide for outputs and inputs of more than one
type for each object, or to allow the user the facility for modifying the object to
achieve compatibility. The approach taken in this work overcomes these consis-
tency problems. The exact description of every input and output is known by
the stream, which transforms outputs into the expected type of inputs. There
are several stream classes; the choice of which stream object is created at run-
time depends on the class of the units it connects. The user need not be aware of
this distinction since the choice is automatic. Because they store the structure
of the process, streams implement, in practice, relationships (which function as
constraints) between the instance variables of the unit model objects. These
constraints are generated at run-time and depend on the configuration of the
process model that has been selected by the user. Since the streams are the only
objects that possess this information, they can be used to make the view ob-
jects consistent with these constraints (e.g., disable editing of a panel item if the
value it displays is determined by some constraint and can no longer be freely
changed). If the system is being applied to dynamic simulation, and the process
is continuous in time, a sampling period short enough to follow the process dy-
namics must be selected. All the units update their state independently for that
time step, after which the relationships between them are restored by sending
updating messages to the streams. As mentioned before, this is an aproxima-
tion, since all the variables are interdependent and the system should be solved
simultaneously. The numerical process will tend to the simultaneous solution
as the sampling interval tends to zero. This kind of decomposition lends itself
immediately to concurrent calculation of the state of each unit.

A similar form of decomposition, although for a different purpose, has been
used in the Stream Machine (Barth, 1986), which consists of concurrently exe-
cuting modules (equivalent to units), that communicate through data streams

(equivalent to streams).
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5.6 Object-oriented Wrappers

A considerable amount of existing software is available in non-OOP languages.
Hybrid development environments, which graft object-oriented concepts onto
existing procedural languages, are necessary to maintain existing systems. Ad-
vantage can be taken of implementing computation-intensive operations in a
native procedural environment and attaching them to an object-oriented sys-
tem (Forde et al., 1990; Kamath et al., 1993). In this case, existing software
can be “wrapped” inside a purpose-designed, service-based interface (Coad,
1991). In practice, Fortran77 still emerges as one of the languages most used in
numerically-intensive scientific simulation, sometimes in conjunction with other
languages for the graphical user interface (Bir and Zeitz, 1990; Shaw, 1992).
This is mostly due to the wide number of specialized routines of numerical
methods available.

In this study, C++ classes were developed for the objects, and all the relevant
data are stored in the object’s instance variables. However, calls to functions
or routines in another language (in this case, Fortran77) may be wrapped by
updating method(s) attached to classes. The fact that methods may call proce-
dures written in different languages does not interfere with the concept of data
abstraction since the external interface of the object is not affected.

The interactive application is structured according to object-oriented con-
cepts, and Fortran77 is used only in localized and encapsulated sections of the

program, i.e., the computationally-intensive operations.

5.7 MVC-based Framework Developed for the
Prototype

In the previous section, the decomposition of the domain-specific component into
objects, as used in this work, has been described. However, in order to develop a
structured interactive application, this component must now be integrated with
the graphical user interface components. As mentioned before, a solution to this

problem is the definition and implementation of a suitable framework.

Smalltalk’s Model-View-Controller MVC (Goldberg and Robson, 1983) para-
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digm is ideally suited for the development of this kind of application. The model
objects map directly to the components of the physical system, whereas the view
objects represent the type of display desired for the output of the models and
the controller objects enable the user to interact with the models or the views.

Besides the fact that Smalltalk is not likely to provide fast execution, window-
ing systems like X Window provide more flexibility (e.g., running the simulation
programs either on a mainframe or spread through the network, and display-
ing the results visually on a workstation, X Window-based PC or X terminal),
allowing full advantage to be taken of heterogeneous networks of computers.

In this work, a modified version of the MVC paradigm has been developed
in the form of C+4+ classes and is described next. The objects used in the
modified MVC framework are at a higher level than the objects in Smalltalk and
will be described in greater detail in Chapter 6. The selection of a framework
— and therefore the selection of an object-oriented paradigm — is a major
design decision in which, by analysis of the functions that must be performed
by the application, a suitable behavioural composition, and therefore the main
groups of classes needed, is chosen. Although the classical waterfall model (see
Chapter 2) can be used to describe the software development so far, it becomes
inadequate as soon as the design of each inheritance tree and individual classes
starts due to the fact it does not provide for iteration. Chapter 6 will further

refer to the actual design of the classes for each inheritance tree.

5.7.1 Modified MVC Paradigm

The application is basically composed of model, view and controller objects.
Most additional objects (either widgets provided by the toolkit or smaller, aux-
iliary objects like graphical items) are attached to one of the above.

In this context, models are sets of data and behaviour functions (methods)
that are intended to simulate physical entities. Models can be units or streams

(if related to the domain component), or objects that manage the structure of

the application.

All the visible elements such as drawing areas, menus, panels, buttons, etc.

(toolkit widgets) belong to a view. A view is an entity which displays, totally or
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partially, the state of the system. Because user input is received by the displayed
objects, i.e., the currently mapped windows, views receive and recognize physical
events.

Finally, because controllers control user input, a view immediately redirects
user input to its controller, executing its appropriate method. Controllers are
therefore, basically, collections of user input handling methods.

Since the overall system is decomposed into smaller components, i.e., several
models, the existence of supervisory objects is necessary to coordinate the inter-
actions between them. In MVC terminology, that corresponds to the existence
of a super triad, i.e., one super model, one super view and one super controller.

The super.model manages the interactions in the sense that, among other
data and functions, it keeps an updated linked list of all the current models and
sends updating messages to all of them. If a model is deleted so are all its views
and associated controllers. Note that the actual structure of the process is not
stored by the super.model. |

As in Smalltalk’s MVC, each view knows its controller and its model; each
controller knows its view and its model. However, in this extended version of
MVC, each model knows its view as well, although its knows nothing about its
type. This makes communication between the model and the view (for example
when updating the view) direct, instead of indirect as in Smalltalk.

Although each model may have more than one view, it is associated with
a primary view-controller pair only. This is defined in the Open_.View method
of the View class, where the relationships between the elements of the triad are
set. The dependency mechanism has been implemented in a different way from
Smalltalk’s. When a new view is created and assigned to a model, the view
instance of the model is checked. If it has not been set yet, the view is set as
the model’s primary view; if it has, then the new view will be added at the end

of the series of views for that model.
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(a) (b)

Figure 5.4: Extended MVC-based framework.
(a) Organization of the MVC triads. (b) The views as the navigational elements.
M = Super Model, V = Super View, C = Super Controller. M contains a linked list
of all the models (M1 and M2). V1 = Primary view of model M1, V2 = Primary view
of model M2, V3 = Secondary view of model M2. Note that M2 does not know V3.
(a); an update message would first be sent to V2 and then, in case V2 pointed to a
secondary view, to V3 (b).

Each view has a pointer to a dependent view, which may or may not have
been set; if it points to something, then at least one secondary view exists for the
same model. The update message propagates through all the dependent views
until one is found which leads to no further views. |

Each view also has a pointer to its previous view, as well as the already
mentioned following view, allowing for navigation along the views that have the
same model. Each view has a pointer to the super_view of the system, which in
turn knows the super-model, making it possible to access views and controllers
corresponding to any of the currently existing models.

Fig.5.4 shows the structure of the MVC triads. The super.model contains
all the global data necessary to the simulation (in this case, the numerical pa-
rameters for the integration) and has views of its own as well. It keeps track
of time, i.e., the clock is associated with the super.model. Since this type of
decomposition of the overall model into submodels results, as stated above, in
an approximate solution, another object which may in the future be associated
with the super.model is an accuracy checker, which can check if the currently

employed time step after which the interactions between the objects are reset
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is suitable or must be decreased. Note that this time step is not necessarily
the same used in the integration of the differential equations that describe the
state of the units (the integration step may be considerably smaller, if appro-
priate, and different for each unit). In this version of the implementation, the
super.view is a non-visible, non-interactive view, and the super._controller is a
dummy controller. The super_view is however used as the owner (using XView
terminology, its frame is the parent frame of the other frames) of all the other
views. Since the super.view is destroyed only when the application exits, this
guarantees that any currently existing window can be dismissed and later re-
trieved. Further mention to the parenthood relationship will be made in Chapter
6. For the sake of efficiency, the super.view may in future implementations per-

form other functions as well (such as keeping a list of all the views).

5.8 Distributed Structure of the Prototype

As mentioned before, the hardest problem found in simulation is usually provid-
ing adequate response time; this factor becomes critical in interactive software.
"The ideal situation occurs when an arbitrary number of parallel processors exe-
cutes simultaneously the updating procedures for each object, similarly to what
happens in the real world (Rumbaugh, 1991).

In this study, two different distribution approaches were implemented. In
the current version of the prototype, PVM is used to distribute concurrently
the computationally-intensive methods throughout the network. This approach
blends well with the object-oriented paradigm and resulted from an analysis of
the main deficiencies of the distribution scheme used in the previous version of
the prototype, based on RPC. An overview of both approaches is made in this

section.

5.8.1 PVM-based Distribution Approach

XWindow provides already a certain degree of distribution, since the machine
where the application is executed does not have to be the same one where
the results are displayed. However, in order to decrease response time, the

application itself must be able to start multiple concurrent threads of control.
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Such a facility was implemented in this study using the PVM (Parallel Virtual
Machine) software.

Parallel processing can be implemented at several levels, namely at the ob-
ject level (in which objects are allowed to reside in different nodes) or at the
algorithm level (where a method uses a parallel algorithm). As mentioned in
Chapter 4, the feasibility of a distributed object-oriented approach in a dis-
tributed environment is subject to discussion (Carré and Cléré, 1989). On the
other hand, the development of parallel versions of numerical algorithms is out
of the scope of this work. A third alternative consists of the development of a
master program, written in an object-oriented language, together with the dis-
tribution of methods throughout the network, which may be an effective way of
taking the best advantage of both existing computational resources and software.

In the prototype developed, each object can make its computations locally or,
alternatively, start a PVM process which can be executed on another machine
(among those which are currently part of the virtual machine). This decision
must be made by the programmer based on load balance considerations but, in
general, a fully distributed approach will lead to lower response times. Further-
more, because PVM allows calls to be made from either C (or C++) programs
(used in the case of distributing the methods throughout the network) or For-
tran (used in the case of implementing distributed versions of the algorithms),
parallelism can be implemented at any level. The spawned processes themselves
may be written in an OOP or procedural language, mostly depending on the
available software. Because PVM enables concurrency, all the updating meth-
ods can be executed concurrently. The pattern used in this work is a typical
master-slave paradigm in which the GUI module is the master and the created
processes, which execute the numerically-intensive calculations, are the slaves.
Synchronisation is ensured since PVM provides asynchronous blocking send and
asynchronous blocking receive functions. A blocking receive function returns
only when the data is in the receive buffer. Before starting the calculations,
each slave waits until the data it needs are available. The master module then
waits for messages from all the slaves, after their computations are done, before

resuming execution (see Fig.5.5). Afterwards, all the slave processes wait for an-
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other message from the master before continuing the calculations. This has the
advantage of keeping the simulation processes in stand-by, therefore preserving
the state of all the previous calculations, which would not happen in the case of
a distribution strategy such as the use of RPC (unless all the variables involved
were declared static or similar).

This strategy consists of the implementation of distributed methods, i.e, the
spreading of computationally-intensive methods, or parts of methods, through-
out the network, to reduce execution time; it does not aim to become the im-
plementation of a distributed object-oriented language. Standard software (lan-
guages and compilers) is used. The model classes include methods to create,
send messages to resume calculations, receive messages after calculations are
done, and kill or send other UNIX signals to PVM processes running on the
network. The remote processes can also send UNIX signals to the interface.
Both the interface and the processes are provided with signal handlers, which
will be described in greater detail in Chapter 6. Fig.5.5 shows a diagram of the
distributed structure of the prototype.

If a model object chooses to use a PVM process for its calculations, the
updating process must be divided into two stages. Resuming the execution
(the process must have already been created) is performed by the Start_Update
method, whereas the End_Update method waits for a message from the remote
process after completion of the calculations. Otherwise, the updating procedure
is performed in the Update method and the default Start_Update and End_Update
methods are not overridden (do nothing). The order of the updating messages
sent by the super.model must be the one shown, so that the local computations
are executed simultaneously with the remote ones and do not hamper the pro-
cess. Other methods of the model classes necessary to the management of the

distributed structure include Create_Process, End_Process and Send_Signal.

5.8.2 RPC-based Distribution Approach

The prototype was initially designed as a graphical user interface to facilitate
the interaction with a specific set of programs, namely for the dynamic simu-

lation of the chemical recovery cycle of a paper pulp mill (Pais et al., 1994).
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Figure 5.5: Simplified distributed structure of the prototype.
(See also Fig.5.3).
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The programming language used was C, which enabled the use of the selected
windowing system (X Window) and its toolkits. Since the configuration of the
physical system was known, the simulation routines (written in Fortran77) were
all called from a module also written in Fortran77. This implied that the in-
tegration process was performed simultaneously for all the components of the
physical system, i.e., there was only one simulation program. This approach
soon revealed itself to be highly inefficient. In the first place, the structure of
the interface became, due to the absence of a framework, a large agglomerate
of intricately related widgets. In the second place, the fact that minor changes
in the physical system involved code re-writing and re-compiling was an over-
powering disadvantage. Even if the physical system of interest is basically the
same, the software used must allow minor changes to be made on-line. It is not
practical to edit the source code files and re-compile whenever, for example, an
extra valve is added to the current configuration. None of these disadvantages
are present in the latest, object-oriented version of the prototype.

Still, the first version provided the possibility of executing the simulation
program in a machine other than the one where the application was executed,
and, furthermore, “freeing™ the application (e.g., for analysis of results obtained
so far) in the meantime, so that the interface and the simulation processes
were executed concurrently. Communication of the interface with the remote
simulation program was done in two ways, namely by means of normal RPC

requests, and via flags written to log files.
Sequential RPC Calls

Whenever the response time of a request was short enough to be acceptable for
on-line purposes (e.g., when initializing the simulation data), a sequential RPC
call was made and direct transfer of parameters was employed. The RPC pack-
age was used to link the local C interface application to a remote C procedure
which in turn called the remote Fortran77 simulation routine. A C/Fortran77
interface was developed for this purpose (see Fig.5.6). Current parameters were
transferred to and from the remote C routine using the UDP transfe-r mecha-

nism. This made it necessary to develop XDR (eXternal Data Representation)
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Figure 5.6: C/Fortran77 structure in the first version of the prototype.

routines which transform data particular to a specific machine into a machine-

independent format.

Signal Handling Routines

Initialization (reading all the default parameters) was done via an RPC call
that would normally have a successful return; sending the simulation parame-
ters to the simulation program was also done via an RPC request. However,
execution time of the simulation program was normally quite long and impre-
dictable, since it depended to a great extent on the particular combination of
parameters used for that run. In order to avoid blocking the interface until the
remote routine returned, a short timeout for the RPC call was specified. An
unsuccessful return occured and was ignored, while execution continued in the
remote machine. To compensate for the loss of the initial client/server link, flags
were written to a log file whenever a change occurred in the execution status
of the simulation program (see Fig.5.7). This change could be the availability
of new results or events such as abnormal termination (e.g., due to arithmetic
exceptions) of the simulation programs. This led to the installation of a series
of system signal handling routines in the simulation programs, which caught

signals generated by the system and wrote the appropriate flag to the log file.
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Figure 5.7: Communication between the interface and the remote simulation
program in the first version of the prototype.

The interface possessed a routine that periodically checked the log file and took
apropriate action according to the flag value, such as displaying a dialog box
to alert the user to the crash of the simulation programs. This methodology
made it possible to know what was happening to the simulation programs while
the interface remained free for the analysis of results produced so far. System
signals could be generated either by the system — and intercepted and handled
by the signal handling routines — or by the user (e.g., to stop, pause or resume
the integration) and sent to the remote program.

This approach was a way to get around the basically sequential function-
ality provided by RPC. Note however that communication via data written to
files, besides being inefficient in the sense that it takes time to open a file, read
data and close the file, was also dependent on the fact that both the local and
remote machines shared the same virtual file store, with common pathnames,
and therefore all the files used were transparently available to both processes. It
would be far more complex to implement if the local and remote machines had

separate file spaces.
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In conclusion, procedural languages such as Fortran77, albeit suited to numer-
ically-intensive calculations, are inadequate for the on-line definition of the pro-
cess model. Languages like C++ provide both efficiency of execution and object-
oriented features which enable the utilization of an object-oriented framework.
The application can then be systematically factored into the components of the
framework, which include objects related to both the problem domain and the
graphical user interface. In this work, an extension of the MVC framework was
developed which provides classes for the management of the simulation. Each
object may create a separate process which performs concurrently the calcula-
tions associated with the updating methods.

So far, the foundations used in the development of the prototype have been

described; Chapters 6 and 7 provide a more detailed insight.
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Chapter 6

Standard Class Library of the
Prototype

6.1 Introduction

The user of a simulation package should not be expected to be a simulation
expert or even familiar with the technical simulation details and terminology
(Treu, 1988). Simulation programs are often poorly understood by the user,
which results in the inability to use them to their full potential (Wright et al.,
1990). Though modelling and simulation have become an important part of most
engineering disciplines, many well-known and accepted programs have become
extremely large and complex, precluding use by inexperienced professionals.

The complementation of simulation programs with a graphical user interface,
which provides graphical representations of the physical system itself and of its
state, and specifically indicates how to perform the activities associated with
the simulation, makes it significantly easier for users to take full advantage of
simulation packages. The interactive interface must be flexible enough to let the
user manipulate the system model and the specified parameters, preferably using
graphical tools. After the results of the simulation are returned to the interface
for user viewing, thus providing visual feedback, the user must be allowed to
change some of the specified parameter values or constraints or even return to
modifying the configuration of the system model itself.

The prototype UIMS (User Interface Management System) developed in this
work aims to offer a structured framework on which to build graphical user in-

terfaces for interactive simulation, providing a tool for the on-line definition of
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the configuration of the physical system and management of the correspond-
ing simulation. Rather than presenting an interface for interaction with a spe-
cific simulation model (or even problem domain), it offers a means by which
user-written simulation programs (not necessarily written in an object-oriented
language) can be imported into an object-oriented, interactive graphical envi-
ronment with minimum effort. It takes full advantage of the widget libraries
provided by toolkits (in this case, XView), grouping widgets into higher-level
view objects, which make it easy to create complex displays, such as interactive
line charts, at run-time. Although it is written in C++, which does not directly
support concurrency, it uses the PVM libraries to enable the creation and man-
agement of concurrent processes, not necessarily on the same host machine but
rather on a desired set of hosts available in the network. These functions are en-
capsulated by object-oriented methods so that the complexities of concurrency
management are hidden from the user.

As mentioned in Chapter 5, C++ was the language selected for the proto-
type, together with the windowing system X Window and the XView toolkit.
This ensures a high level of portability since only standard and widely available
software is used. In Chapter 5, the framework and the type of distribution devel-
oped for the prototype were described. The current chapter describes in greater
detail the class hierarchies created and the methodology used to merge this layer
of software with the underlying X Window and XView layers. The C++ base
classes, or standard classes, follow a pre-defined structure and include features
specifically dedicated to interactive simulation (including concurrency, as men-
tioned before). Please note that the term standard is applied, in this and the
following chapters, to the domain-independent class libraries developed in this
work, not to the (very few) class libraries provided by plain C++. Views that
offer common types of graphical representation, such as line and bar charts, are
also provided. User-defined classes can be sub-classed from the standard classes
provided by the prototype in order to enable the application of the UIMS to any
problem domain area. This chapter thus describes the design principles used
in the prototype, together with some relevant implementation details. Further-

more, it describes the graphical tool developed to enable the user to define the
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system model on-line. The prototype developed has been tested by application,
together with simulation routines developed in Fortran77, to the generation of
a graphical user interface for dynamic simulation of a chemical process system;
further details of this case study are given in Chapter 7. Due to the extent of
the source code written during this work, only a list of the files used by the
prototype is presented in Appendix E, including the class protocols (*.h) and
implementations (*.C). The domain-specific classes necessary for the application
of the prototype to the case study, which will be presented in Chapter 7, are
also listed in Appendix E. A tar file (XProc.tar) containing the source code itself
is available via ftp (see Appendix E, section E.1).

6.2 Classes Provided by the Prototype

The working prototype is composed of interacting objects, most of which can be
created and deleted at run-time. The framework itself is composed, as described
in Chapter 5, of model, view and controller objects. Although the basic “triad”
element is formed by the same components as in Smalltalk, the implementa-
tion of each component is totally different, as well as some of the functions it
performs, i.e., no attempt was made to reproduce Smalltalk’s class libraries.

In addition to the three main types of classes (models, views and controllers),
three other inheritance trees were found to be necessary, namely model-view
adaptors (which enable the view classes to be independent from the model
classes), graphical items (which enable the graphical definition of the process
model) and exception handlers (which enable detection of abnormal situations
and increase the robustness of the program). The design of each of these trees
proceeded in an iterative pattern, where sometimes the addition of a new derived
class made it necessary to change its superclasses. This phenomenon is especially
important in C++, where the base classes must have declared as virtual all the
methods that may be later required by the derived classes. Each inheritance tree,
or parts of it, can be thought of as a cluster, or set of related classes, as defined
in Chapter 2; the development of this software followed, basically, the cluster
model. A difference lies however in the fact that simplified implementations of

each cluster were assembled and tested together, several times, before any of
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Super_Model Stream_Model Unit_Model

Figure 6.1: Standard model class hierarchy.

them reached its final st‘age. This enabled an evaluation of the performance of
the system as a whole at early stages of the cluster life cycle and resulted in
input to the next analysis/design/implementation stages of most clusters.

In this section, a description of the class protocol for the standard classes of

each inheritance tree is made.

6.2.1 Models

The model objects, which intend to simulate physical entities, are essentially
domain-specific; this implies that the standard classes contain a very limited
number of model classes. If the UIMS is to be applied to a specific problem or
set of problems, then libraries of more specialized classes can be created which
will reduce the work and amount of code involved in creating the classes needed
by the application. F(;r example, if the UIMS is to generate interfaces associated
with the simulation of chemical processes, then the library of model objects could
include the Valve, Pump, Reactor, etc. base classes. In the present stage, the
model classes provided by the UIMS (domain-specific model classes are described
in Chapter 7) are presented in Fig.6.1. The notation used is that proposed by
Rumbaugh et al. (1991), where each class is described by a rectangle with the
name of the class in it. The rectangle can be divided into several regions, where
the top region is reserved for the name of the class, the middle region for its
instance variables and the lower region for its public methods. Some of these
regions may be omitted as appropriate. As mentioned above, in order to fully
use the inheritance and polymorphism capabilities provided by C++, the base
classes must contain, declared as virtual, all the methods which are likely to be

overridden by the derived classes. The definition of the protocol of the Model
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base class is therefore not trivial (see Fig.6.2.). Coplien (1992) warns against the
encapsulation of instance variables only to provide means (methods) to access
and change them. However, in this specific case, the objective of the interface
is exactly, among other things, to access and modify the parameters used in
the simulation, i.e., the data of the models; this is performed by the controller
objects, which manage the interaction with the user. This led to the need to
provide for, in the base class, public methods to access and alter the data of the
model. This approach minimizes the possibility of accidental corruption and was
thought preferable to declaring the data themselves public. Furthermore, the
model subclasses can, in the re-definition of these methods, prevent alteration
of certain instance data and issue a warning message (or return an error value)
if this is attempted. Because the data specific to each model is not known, and
must be unrestricted, generic functions like Return_Double_Data are provided,
which take a string as a parameter and, depending on its value, return a specific
datum or an error value (if the string is not recognized by the model). Although
this is an implementation detail, the definition of generic methods to handle
the data of the models is necessary in a system where the new model objects
that are created at run-time can belong to any class and have any type and
number of instance data. The method Initialize refers, as it indicates, to the
initialization of the model (usually reading data from a file); the following group
of methods refers to the management of the simulation, either concurrently or
non-concurrently (as described in Chapter 5), Write writes the results to files,
and Reset resets the state of the model to its initial state. The next group of
methods is dedicated to the management of the system model and was included
specifically for use by the super_model (see Fig.6.3). As mentioned in Chapter
5, the super.model contains a linked list of all the models that compose the
currently defined system model. Methods First_Model_List and Next_Model_List
provide the means to handle this linked list, returning its first element and the
next element, respectively. Methods Add and Clear add a new model to the list

and delete the whole list, respectiveiy.

114



Model

Model

Model
~Modsl

Set_View
Return_View

Set_Int_Data
Return_Int_Data
Set_Float_Data
Return_Float_Data
Set_Double_Data
Return_Double_Data
Set_Pointer_to_Int_
Data
Return_Pointer_to_Int_
Data
Set_Pointer_to_Float_
Data
Return_Pointer_to_
Float_Data

Set_Pointer_to_Double_

Data
Return_Pointer_to_

Double_Data
Set_Data
Return_Data
Return_Name
Return_Type

Initialize

Update
Create_Process
Start_Update
End_Update
End_Process
Send_Signal

Wirite
Reset
First_Model_LIst
Next_Model_List

Add
Clear

view
filename
name

type
tids

Unit_Model

Unit_Model
~Unit_Model

Stream_Model

t
from_model
to_model

Stream_Model
~Stream_Model

Figure 6.2: Protocol and instance variables of the standard model classes.
(~ denotes the destructor method).
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Figure 6.3: Super_Model class protocol and instance variables.
(~ denotes the destructor method).

116



|Supar_View l lFrama View | IComma.nd_Frame_Waw'
/N

[Command_Panel_View |
Canvas_View Panel_View 7

AN 2\
LLine_Style_View | [Paletto_View |

Integration_Data_
[Warl View | | Canvas_and_| Panel Viewl View E;a_wtdm__\ﬁaw | lSan_V'W_]
F %
|Canvas and_Two_Panels Vseﬂ Chart_View [Fm_Style_\ﬁew | |Save__F'|40_Vi0W |

N\
IDraw_View ] IBar_Charl__Viow I ILk)a_Chan_\ﬁew ]

Figure 6.4: Standard view class hierarchy.

6.2.2 Views

To take direct advantage of the toolkit objects, and make it easier for the user
to create views that are formed by several widgets, views are toolkit specific. In
XView, a frame is a container for other windows (Heller, 1993). It manages the
geometry and placement of subwindows such as canvases, panels, text subwin-
dows and scrollbars. These subwindows cannot exist without a parent frame to
manage them. Although frames can overlap, subwindows within a frame occupy
fixed, non-overlapping positions.

Using XView terminology, a view is associated with a frame. A canvas is a
drawing area, and a panel is a control area. Standard classes of views that make
direct use of XView widgets have been created, such as the basic classes Can-
vas_View, Panel_View, Canvas_and_Panel_View, Command_Panel_View, etc. (see
Figure 6.4). The Canvas.and_Panel.View class, for example, creates a frame, a
canvas and a panel and registers the appropriate procedures as callbacks. The
standard view classes provide the basis for the creation of specific types of views,
but they still have to be customized by the user. For example, several panel ob-
jects may be created for each panel (buttons, sliders, etc.). Therefore, the stan-

dard view classes contain empty methods for, for example, the generation of
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the corresponding panels. The user creates new subclasses of the standard ones
where these methods are over-ridden. If the user wishes to create a view with
a canvas and a panel, he can subclass his view from the Canvas_and_Panel_View
class. New standard classes can, at any point, be added to the library. For
example, it would be straightforward to create a Canvas_and_Three_Panels_.View
standard class, which would inherit from a Canvas.and_Two_Panels_View class.
This approach is somewhat similar to the one proposed by Szekely (1990) and
can be viewed as adding “a layer of software on top of traditional user interface
toolkits” (sic). In this specific case, this is necessary because the types of views
desired for the output of the models may be complex and include several widgets.
The definition of views as high-level objects makes it possible to keep related
widgets together. When a new view is created, all the widgets that compose
it are created with it. Fig.6.5 shows the protocol and instance variables of the
standard View classes.

The first set of methods is similar to the Model class. Whereas these meth-
ods are necessary, in the previous case, to access and change the data of the
models, they are also necessary in this case since some of the views, such as the
Line_Chart_View and Bar_Chart_View views, are highly interactive. These views
present a range of options to the user such as colour of all the elements, text
font size, line width, colour and style (for the line chart) and bar colour and fill
pattern (for the bar chart) (see Fig.6.6). This implies that the user is allowed
to modify fonts, colour, line styles, etc., interactively; once again, the controller
objects must be able to access and change the data of the respective view. The
number and type of data are not restricted in any way and so generic access
methods must be provided.

The Update, Show and Hide methods update the view when the state of the
model changes, and display or hide the frame, respectively. The last two encap-
sulate directly XView functions calls. The XView toolkit gives the programmer
the possibility of attaching callbacks to widgets. For example, if the user resizes
or exposes a previously obscured window (which generates WIN_RESIZE and
WIN_REPAINT events), the respective event handlers are called. The prototype

encapsulates this event handling mechanism into a message-driven one. When
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Figure 6.5: Protocol and instance variables of the standard view classes.
(~ denotes the destructor method).
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Figure 6.5 (cont.): Protocol and instance variables of the standard view classes.
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Figure 6.5 (cont.): Protocol and instance variables of the standard view classes.
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Chart_View classes.

(Lime Kiln_Line_Chart_View and Caust_Battery_Bar_Chart_View — see Chapter 7).
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such an event is generated, a message (e.g., Canvas_Repaint) is sent to the view
that contains the affected canvas, and the corresponding view method (equiv-
alent to the event handler) is executed. This enables the event handlers to be
defined as methods of a class, rather than unbound C functions. Note that not
all event handlers have been associated with the views; rather, most of them
have been associated with the controllers and will be described in the next sub-
section. These two specific event handlers have been associated with the views
since they are directly related to the display characteristics of the view. The
Open_View method has already been referred to in Chapter 5 and establishes the
relationship between the elements of a specific triad. The Load_Data_File and
Save_Data_File methods perform, as their names indicate, the retrieval and sav-
ing of view data from/to a file. Finally, the last group of Return methods enable
the controller of a view to access its data, which is necessary in order to respond
to certain user requests (e.g., which model parameter is changed depends on the

panel item activated).

6.2.3 Controllers

Several approaches to the role of the controller objects have been described in
the literature. Urlocker (1989) suggests that, in GUI’s that couple graphical
rendering and user interaction, the responsibility of the MVC view and control
can be combined into the single view object. He maintains that the separation
performed by the MVC approach (the user input directed to a view is handled
by its controller, whereas the output of the model, equally directed to the view,
is handled by the view itself) is difficult to learn and adds unnecessary com-
plexity. On the other extreme, Shan (1990a, b) states that Smalltalk does not
offer orthogonality, i.e., independence, between the objects that compose the
framework, which severely impairs class reusability. Each controller is tightly
coupled to its respective view; furthermore, the fact that the view must query
the model before updating itself inserts knowledge of the application into the

user interface and therefore the model, view and controller objects are in fact

coupled.
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Figure 6.7: Standard controller class hierarchy.

Although it is true that creating a new view subclass, for example, will in
most cases make it necessary to create a corresponding controller class, the
approach used in this work for the definition of the functions performed by the
controllers is similar to Smalltalk’s and was thought to be the most balanced.
The existence of controllers as such is beneficial since

a) the input/output management functions are distributed across two ob-
jects, thus avoiding very large and complex view classes;

b) if two views are to look the same, but respond differently to user input,
only the associated controller must be different, avoiding subclassing of the views
based on the way they behave, rather than look.

Because, in X Window and XView, event handling routines are typically
associated with (take as arguments) objects that belong to the views, associating
them to the controller objects leads to the need for constant transfer of data
between the view and the controller. Fig.6.7 presents the standard controller
classes and Fig.6.8 shows the protocol and instance variables of the standard
controller classes.

Most controller classes are directly subclassed from the base class Controller.

These classes are basically collections of user-input handling methods, i.e., event
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Figure 6.8: Protocol and instance variables of the standard controller classes.
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(~ denotes the destructor method).
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Figure 6.8 (cont.): Protocol and instance variables of the standard controller
classes.

handlers which are not directly related to the appearance of the view and have
been encapsulated in an object-oriented environment.

Masui (1991) points out what he considers to be a weakness of the X Win-
dow and X-based software: because the application can wait for only a single
input stream, all the inputs are sent to it as “events”, which have the same
structure for all the inputs. This leads to the fact that event-handling routines
tend to become complicated. This is quite true and led, for example, to the
development of a complex Draw_Controller class, since the respective view (from
the Draw_View class) receives input from both the mouse and keyboard. If sev-
eral input processes can be created, each of which deals with the input from a

different device, the structure of the program becomes simpler.

6.2.4 Adaptors

The existence of model-view adaptors is necessary because most models produce
results which, although necessary for determining the state of the system, are

irrevelant for graphical display. An example is the case where numerical meth-
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Figure 6.9: Standard adaptor class hierarchy.

ods such as orthogonal collocation in fixed finite elements are used; among the
dependent variables are spatial derivatives which will not usually be included in
graphical displays. In a generic case, a selection has to be made of the results
in order to prepare the data for graphical display; this stage corresponds to the
graph evaluation as described by Nielson (1991). This task must not be assigned
to the model, because it must not know which kind of view(s) it is associated
with; it must not be assigned to the view for the same reason. The view is an
entity that, given a convenient set of data in a pre-defined format, will display it,
for example as a line chart. There must therefore be an adaptor, or converter,
which converts the results from the model into convenient data sets for each
view. This implies that each model-view pair must have an adaptor. Adaptors
can be of different types: they may convert the current data of the model into
a suitable form for display, or they can store the value of a certain variable over
a period in time and represent the evolution of that variable in time.

Fig.6.9 presents the standard adaptor class hierarchy and Fig.6.10 presents
the protocol of the standard adaptor classes. The only function of the adaptor
objects is to retrieve the data of the model, perform whatever operations are
necessary, and set the internal data of the view accordingly.

If a view is to display results from several models, for example for comparison,
an obvious strategy is to create a composed model, which contains pointers to
the individual models. The model-view adaptor would have all the information
necessary to retrieve the data from the various models and prepare them for

display.
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~Adaptor ~Model_Adaptor

Convert_Data

Figure 6.10: Protocol and instance variables of the standard adaptor classes.
(~ denotes the destructor method).

6.2.5 Graphical Items

~ Widgets (pseudo-objects provided by the toolkit, since they are written in C)
used by the prototype will not be listed here. For a complete description, please
see Heller (1993).

Few toolkits pay attention to the graphical aspects of user interface program-
ming, being specifically directed towards dialogue programming (Laffra and van
den Bos, 1990). Buttons are extensions of function keys, which are accelera-
tors for typing a command. Menus allow for the input of commands in a more
friendly way. Entering lines and circles, indicating regions of interest in a work
area, and direct manipulation of graphical items (and resulting semantic feed-
back) are examples of graphical interactions that are badly supported by existing
toolkits (X toolkits included). This implied that constant use had to be made
of the Xlib primitives and new classes of graphical objects had to be created as
X is not a graphics system and does not offer any rule or guideline on how to
handle graphics such as, for example, GKS (Peddie, 1992).

Figure 6.11 presents the C++ class hierarchies developed which, besides en-
abling the creation of the graphical representation of the elements that compose
the physical system, also provide the basic editing operations which enable the
user to define the system on-line. Fig.6.12 represents the protocol and instance
variables of the Basic_ltem class and derived subclasses. The first group of meth-
ods enables access to the instance variables of the objects. The second group

corresponds to the basic editing operations that can be performed on the graphi-
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Figure 6.11: Standard graphical item class hierarchy.

cal items provided by the prototype. Some operations, like Move and Resize, use
algorithms which will not be described here; see source code for details. Meth-
ods such as In_Selection_Area and In_Resize_Area are used to determine if mouse
input has been received in certain areas of the graphical item, which result in
selection of the graphical item and possibly trigger operations like Move and
Resize. Method Check_Connections checks the links between the graphical items,
and method Translate translates each graphical item into its corresponding mod-
els, views and controllers. Finally, Load_Data and Save_Data enable the user to
load and save shapes, i.e., pre-defined collections of graphical items, from files.
An instance of the class Shape_List is, basically, a linked list of graphical
items, which are currently being used to define the configuration of the physical
system on-line. The Shape_List class therefore includes methods to manage and
handle the operations associated with the list. Fig.6.13 represents the protocol
and instance variables of the Shape_List graphical class. Fig.6.14 represents the
protocol of the Init graphical class. The Init class contains only the constructor
and destructor, which deallocates memory assigned during the creation of an
instance of that class. The constructor initializes the X Window connection to
the server and creates all the X and XView resources necessary to the rest of

the application such as colormaps, cursors, fonts, etc.. The Init class is therefore
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Figure 6.12: Protocol and instance variables of the Basic_ltem and derived
classes.
(~ denotes the destructor method).
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Figure 6.13: Protocol and instance variables of the Shape_List class.
(~ denotes the destructor method).
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Figure 6.14: Protocol and instance variables of the Init class.
(~ denotes the destructor method).
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Exception_Handler

Figure 6.15: Standard exception handler class hierarchy.

a class which initializes and supports the use of graphics and is used intensively

by the graphical items and view classes.

6.2.6 Exception Handlers

Only the top, abstract base class was included in the standard library for the
exception handlers (see Fig.6.15). Fig.6.16 represents the protocol of the stan-
dard exception_handler class. The base class for the exception_handler hierarchy
thus contains empty methods to handle all Unix signals. Subclasses can then be

created where the methods that catch the signals of interest are overridden.

6.3 Control of the Exeéution Status of the Sim-
ulation Processes

In the Unix operating system, if a user process asks to be informed about asyn-
chronous I/O events, it is informed of such events by Unix signals. Upon recep-
tion of a Unix signal, execution jumps to a procedure normally called the signal
handler for that event. When the signal handler has completed, execution of the
" process resumes where it left off. Because simulation calculations are especially
prone to the occurrence of exceptions resulting from numerical problems (e.g.,
combinations of parameters which lead to unstable integration and eventually to
floating point exception), an exception handling strategy was implemented in the
prototype in order to recover from and alert the user of such occurrences. The
strategy followed in this work consists of installing exception handlers in all the
processes, both master (interface) and slaves (simulation processes). Whereas
these functions are performed by an object on the interface side, the language
used for the implementation of the slave(s) determines how these functions are

performed.
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Exception_Handler

Exception_Handler
~Exception_Handler

Catch_SIGHUP
Catch_SIGINT
Catch_SIGQUIT
Catch_SIGILL
Catch_SIGTRAP
Catch_SIGIOT
Catch_SIGABRT
Caich_SIGEMT
Catch_SIGFPE
Catch_SIGKILL
Catch_SIGBUS
Caich_SIGSEGV
Catch_SIGSYS
Caich_SIGPIPE
Catch_SIGALRM
Caich_SIGTERM
Catch_SIGUSR1
Catch_SIGUSR2

Figure 6.16: Protocol and instance variables of the standard exception_handler
class. '
(~ denotes the destructor method).
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The remote processes are therefore able to catch Unix signals generated dur-
ing execution, such as normal or abnormal termination, the occurrence of floating
point exceptions, etc.. Exceptions are caught by the exception handlers of the
remote processes and a UNIX signal is sent to the interface using a PVM func-
tion, where it is caught by the exception handling object and the appropriate
method is executed. The exception handler of the remote process also sends the
identity of the process to the interface, as a message, so that the interface knows

which remote process caused the exception to occur.

6.4 Conjunction with X and XView

The prototype developed in this work consists of a layer of software which has
been superimposed on the X and XView software. It uses X and XView, albeit
encapsulated in an OOP environment, intensively and must therefore provide
compatibility with the functions they provide and the mechanisms they are based
upon. Because X and XView are written in C, some problems occurred and had

to be overcome.

6.4.1 Subclassing Methodology

In XView terminology a canvas (drawing area) is an object which belongs to
a specific package, or class. As has been mentioned already, canvases take as
attributes (among other things) pointers to functions which are registered as
callbacks and executed if the corresponding event is generated. If an instance
of the Canvas class is resized, the appropriate event handler is executed (CAN-
VAS_RESIZE_PROC). Each instance will therefore respond in a different way,
depending on the callback registered with the specific object. This implies that
instances of the same class have, in practice, different methods. It also holds for
objects from other XView packages.

Two approaches are now possible for the definition of object behaviour. One
possibility would be to use the standard classes directly, create instances of
those classes, and send a pointer to the desired function as a parameter during
the creation (or possibly later) of the view. This mechanism is advocated by

Menga et al. (1991) and is described as the run-time definition of methods. It
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customizes the behaviour of objects having the same data structure, avoiding
the need to define a new class only to reimplement one method. It is employed
by X to pass function attributes and leads to a high number of procedures which
are not bound to any object or class. Although possible in C++, this situation
should be avoided. Therefore, the standard view classes contain empty methods
for, for example, the generation of the coi‘responding panels. The user must
create new subclasses of the standard classes where these methods are over-
ridden by the desired procedures. Methods are not passed as function attributes,
neither are they re-defined at run-time. For example, two different diagram views
(a diagram view presents a schematic representation of the physical entity being
simulated) belong to different classes, since although both have the same type
of methods (draw the diagram), the methods are in fact different (they draw
different things). Although this leads to the generation of a higher number of
subclasses, some of which may have only one instance, both the structure of the

program and behaviour definition of the objects become clearer.

6.4.2 Pass-through Procedures

The views receive, as the visible elements, user input, which must then be re-
directed to the view’s controller. In X programs, when user input is received by
the application, the callback procedure registered with the object for that event
is called, as mentioned above. Because X toolkits are not written in an object-
oriented language, some problems occur. One of them is that callback routines
cannot be methods of objects. This means that it is not possible to register di-
'rectly, as the procedure to be called when an event occurs on a certain view, any
handling procedures that belong to its respective controller. This led to the need
for a series of pass-through event-handling procedures, which are used as call-
backs, and are automatically registered when the corresponding view is created.
The pass-through (which is therefore a free, non-bound procedure) retrieves the
controller associated with the view and calls the appropriate method. In order
for this to be possible, the controller must be attached to one of the parameters
which is sent to the event handler; extensive use of the XView XV_.KEY_DATA
attribute, which enables data to be attached to any XView object, was there-
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fore made. For example, when a canvas is created, the controller of the view
it belongs to is attached to the canvas, so that it can be retrieved later. This
implies that special care must be taken concerning the order in which objects
and widgets are created, so that the data attached actually refer to existing
objects.

Pass-through procedures are transparent to the user, i.e., they have no func-
tion other than to redirect user input to the appropriate method of the view’s
controller. They are the only non-bound procedures of the software developed.
Installation of the callback routines in the standard objects is made by the stan-
dard views. Installation of these in customized views are the responsibility of
the user.

The implementation of exception handling objects presented the difficulties
referred to above, since the event handling routines cannot be directly installed
as methods of classes. This means that a further pass-through procedure was
needed, which is executed when an Unix signal is received by the interface, and in
turn calls the appropriate method of the event handling object. When an excep-
tion handling object is created, it must install the signal-handling passthrough
procedure (a non-bound C procedure) for all the exceptions of interest. It will
therefore not change the default event handlers for the other exceptions. Then,
depending on the type of exception that the passthrough receives, it will call

the appropriate method of the exception handler.

6.4.3 Object Deletion

Because objects are created and deleted at run-time, all the memory allocated
for an object must be returned to the heap at the time of its destruction. The
C++ destructors must therefore ensure that they delete all the data (including
other objects) for which memory has been dynamically allocated by the object
being destroyed. Because the prototype is used in conjunction with XView,
the parenthood relationship specified by XView must be respected. The XView
objects that compose a view are normally owned by the base frame of that
view (unless otherwise specified). Rather than calling xv_destroy (the XView

function for deallocating memory) for all the widgets that compose a view, a
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single call for the base frame will propagate down to the descendents and destroy
them all (Heller, 1993). Objects which have other owners (e.g., server.images
are owned by the server) must be destroyed separately. Destructors must be
carefully implemented since C++ provides no garbage collection mechanism and
in this type of application, where objects are constantly created and destroyed
at run-time, an untidy management of the allocated memory may lead to out-

of-memory situations.

6.5 On-line Definition of the Physical System

Using the classes presented above, a drawing tool has been developed, the “Pro-
cess Builder” (see Fig.6.17), which enables the user to define the system graphi-
cally, choosing the desired units and streams from a displayed menu. Most GUI’s
employ icons, which represent real-world objects, to represent the elements from
which the system model is constructed. Such elements may be elementary, such
as a resistor or an integrator, or complex, for example a distillation column or
steam turbine (Zobel and Lee, 1992). Each unit or stream will later translate
itself, upon reception of the Translate message, into a model object and the as-
sociated view-controller pairs. The main window of the “Process Builder” is a
view of the super_.model. In the prototype, defining a physical system proceeds
in two stages, namely composing the graphical representation of the system
(which corresponds to the creation and manipulation of graphical items) using
standard drawing operations, and the translation of the resulting shape into
models, views and controllers.

The basic operations provided by the “Process Builder” are similar to the
ones necessary to create diagrams graphically (Dolado, 1991): addition of a
symbol (in this case a unit), and addition of a relationship (a stream) between
symbols. The reciprocal operations are the deletion of a relationship, which
implies the deletion of a coupling (or maybe graphical rearrangement) and the
deletion of a symbol.

The icons on the left represent all the major editing operations such as SE-
LECT (thick slanted arrow), ERASE (eraser), access to the available units (rect-

angle icon), access to streams (thin arrow) and access to text (A icon). “At-
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tributes” gives access to the color and fonts views, which enable the user to
change the color or text font of graphical items currently displayed. “File” gives
access to the Load and Save_File_Views, which enable the user to load a shape
(collection of graphical items) or save the current shape. “Grid” enables the user
to show or hide the grid and “Clear Flowsheet” deletes the current shape. Two
interaction modes (explicitly indicated in the drawing area) exist: Edit Mode
and Simulation Mode. “Edit” is the default mode. When the shape represents
the desired system, “Done” translates the current shape into its corresponding
models, views and controllers, and the system is ready for simulation. Editing
operations are disabled at this stage and Simulation Mode is entered. To go
back to Edit Mode, which will be necessary only if the user wishes to change
the configuration of the physical system, the “Edit” button must be pressed.
The “Integration Data” button displays a view, belonging to the super.model,
that contains the data corresponding to the integration process (time step, etc.).
“Update” updates the state of the system by one time step. This is done by the
super_model which sends updating messages, in turn, to all the units, waits for
reply messages when completed, and then repeats the process with the streams.
When the “Done” button is pushed, the message Translate is sent to all the
graphical items in the current shape. Each graphical unit or stream item then
creates its corresponding unit or stream model, view(s) and controller(s). The
interactions between the several models are determined by their position in the
drawing area, so that different configurations of the system can be created. From
this point on, in Simulation Mode, graphical display of results is handled by the
views just created. Finally, “Quit” deletes all the current models, views and
controllers; sends termination signals to the processes created (if any) and fin-
ishes the connection to the server. All the model objects possess an access menu,
associated with the respective primary view. The access menu is a pop-up which
displays itself by clicking the Menu mouse button on the graphical representa-
tion of the object and gives access to all the views of that object. It must be
created by the user, according to the types of views desired for a spéciﬁc unit or
stream. These views may include schematic representations of all units, display

of instant internal profiles, design characteristics of the units, physico-chemical
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data, and others (see Chapfer )i

The translation step is important for two reasons. The first one is that there
is a considerable economy in time since the translation is performed only once,
when the system is defined, rather than after every graphical operation. Some
of the translations are time-consuming because the model associated with the
graphical item may have several complex view-controller pairs. Furthermore,
the translation operation is the ideal time to perform consistency checking, i.e.,
to determine if the system represented graphically is mathematically and phys-

ically meaningful (e.g., there may an unallowed connection between two units).

To summarize, the prototype developed in this work can be described as
a fusion of simplified versions of a graphical user interface framework and a
simulation language. It is composed of a set of domain-independent model, view
and controller classes. In addition to the widgets provided by the toolkit used,
other classes include exception handlers, model-view adaptors and graphical
classes. In order to join the C++ layer with the underlying X and XView
software, several problems had to be overcome. Application of the prototype to
a specific domain area consists of the creation of new classes, subclassed from
any of the standard classes. A case study, in which the prototype has been
applied to the interactive simulation of the chemical recovery cycle of a paper

pulp mill, is described in the next chapter.
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Chapter 7

Case Study: Dynamic
Simulation of the Recovery
Cycle of a Paper Pulp Plant

7.1 Introduction

Process simulation is one of the most widely used tools for the design, optimiza-
tion or simply the study of the behaviour of industrial units in steady or transient
states. The attention devoted to the chemical recovery cycle of kraft paper pulp
plants has increased in the last decade due both to the need for energy econ-
omy and to comply with stricter environmental protection laws. Because of its
practical interest, and also because, due to its complexity, it is representative of
the problems posed by interactive simulation, the chemical recovery cycle was
selected as a case study for the software package developed in this work. The
prototype was therefore applied to the on-line construction of an interface for the
dynamic simulation of this industrial process. Detailed dynamic mathematical
models were developed and implemented for the main units involved in the cycle.
In some cases, this corresponded to mathematical problems of large dimension
and difficult solution, leading to long execution times. The management of the
large amount of data involved was another factor to take into consideration, as
well as the automatic preparation of the results for graphical display.

In this chapter, a brief description of the industrial process is made. The
application of the prototype to a specific problem corresponds, in practical terms,
to the creation of user-defined classes, sub-classed from the base classes listed

in Chapter 6, which have been referred to as standard classes. The extension of
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the standard class library in such a way is described, taking into account the

objectives to be attained by the resulting graphical user interface.

7.2 Industrial Process

The manufacture of paper pulp consists basically of the transformation of wood
into a fibrous mass, which requires the rupture of the bonds that form the struc-
ture of wood. Mechanical, thermal or chemical methods can be used. Among the
chemical methods, the most widely used are the kraft, the soda and the sulphite
processes. The kraft process corresponds to over 60% of the total north-american

production (Smmok, 1986). It is composed of the following operations:

Preparation of Wood

The bark is removed, the wood converted into chips and the chips sieved.

Cooking of Wood

The chips are sent to the digestor where cooking (dissolution of hemicelluloses
and lignin) with white liquor (aqueous solution of sodium hydroxide and sodium
sulphide) takes place. The black liquor which results from this operation is later
separated from the pulp. The pulp itself is washed and undergoes bleaching and

finishing operations.

Recovery of Chemicals

The loss of sodium is compensated for by addition of sodium sulphate in the
recovery boiler, which is the reason why this process is also designated as the
sulphate process. The black liquor resulting from the cooking of the wood is
burnt in the recovery boiler, producing the smelt (molten inorganic compounds,
mainly sodium carbonate and sodium sulphide). The smelt is dissolved imme-
diately after leaving the recovery boiler forming green liquor. At this stage, the
green liquor contains a considerable amount of suspended solids (dregs) consist-
ing of insoluble inorganic compounds (compounds of heavy metals, silicates and
aluminates from the refractory lining of the boiler and, on a smaller scale, fine

carbon particles) and needs to be clarified. After clarification, the green liquor
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is made to react with quicklime (calcium oxide) from the lime kiln, in order to
regenerate the white liquor. To carry out this operation, a slaker is used where
the calcium oxide is hydrated (slaking reaction) and where the transformation of
the resulting calcium hydroxide into calcium carbonate (causticizing reaction)
begins. The reacting slurry goes through a classifier where the larger particles
(grit) are removed and then through three or four causticizing tanks where the
causticizing reaction approaches equilibrium. There is an upper limit to the effi-
ciency of the conversion due to the reversibility of the causticizing reaction. The
white liquor is then separated from the calcium carbonate in a clarifier in order
to achieve an adequate degree of clarification and the lime mud — basically
a suspension of calcium carbonate in water — is washed and thickened. The
thickened lime mud is calcinated in a lime kiln where the calcium carbonate is
converted into calcium oxide so that it can be used in the slaker again. Fig.7.1
illustrates the sequence of operations involved in paper pulp manufacture. The
continuous nature of the process involves a high number of unit operations: fil-
tration, classification, mixing, sedimentation and storage and transportation of
solids, as well as storage and pumping of liquids. It is sometimes useful to visu-
alize the chemical recovery process as a closed loop operation, where solids are
involved in one cycle and the liquor in another (see Fig.7.2). Contact is promoted
between the solids and the liquor in order to produce the white liquor used in
cooking. Each of them is later recycled and reconverted into the required chem-
ical forms. The loop has become, over the past few years, progressively more
closed, due to economic and environmental requirements. This fact, which aims
to reduce the amount of polluting effluents, results in a build-up of undesirable
compounds in both cycles (Tran et al., 1990). A continuous addition of make-
up lime, usually in the form of limestone, is necessary in order to compensate
for constant losses in the slaking/classification and calcination operations, and
constitutes one of the sources of impurities. Figs.7.3 and 7.4 show the general
arrangement of the equipment of the chemical recovery section and a side view
of the causticizing tanks, respectively. The approach used in this study was
to develop detailed mathematical models for the main units involved in the cy-

cle. Only a simplified version of the cycle itself was considered (see Fig.7.5).
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Figure 7.1: Simplified diagram of the kraft process for the manufacture of paper
pulp.
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Figure 7.3: General arrangement of the equipment in the chemical recovery zone.

(Courtesy of SOPORCEL — Leirosa, Portugal)
1 - Lime Kiln; 2 - Lime Bin; 3 - Slaker; 4, 5, 6 and 7 - Causticizers
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Figure 7.4: Side view of the causticizing tanks.

(Courtesy of SOPORCEL — Leirosa, Portugal)
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Figure 7.5: Simplified diagram of the chemical recovery cycle of a paper pulp
mill.

A mathematical model for the steady state of the lime kiln was implemented,
based on a previous model found in the literature. A dynamic model for the
transient state of the lime kiln, the most important unit energetically due to
fuel consumption, was developed and implemented (see Appendix A). A micro-
scopic model for the solid particles undergoing the causticizing reaction was also
developed (see Appendix B, section B.2.1), and used in a detailed model for the
steady-state of the causticizing reactors (see Appendix B, section B.2.2). Be-
cause the simulation in such detail, in transient state, of the causticizing battery
does not seem to be feasible with current computational means, an approximate
model was developed and used in the simulation package (see Appendix B, sec-
tion B.3). A dynamic model was also developed and implemented for the white
liquor clarifier (see Appendix C). Finally, a simplified model was implemented
for the lime mud filter, in which it was considered to be in steady-state at all
times (see Appendix D). Previous attempts to simulate the chemical recovery
cycle as a whole used either very simplified models for all the units (Jacobi and
Williams, 1973a; Jacobi and Williams, 1973b) or a totally different approach in
which transfer functions were used to simulate the response of the system and

the gains and parameters were determined experimentally (Uronen et al., 1976;
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Uronen and Aurasmaa, 1979). The collection of models presented in Appen-
dices A through D represents the most detailed approach yet to the simulation
of the chemical recovery cycle as a whole. All the mathematical models were
implemented in Fortran77 and integration of the differential equations in time
was done using the LSODI routine (Hindmarsh, 1980), which uses the BDF

(Backward-Difference Formula) for integration of stiff differential equations.

7.3 Specification of the Graphical User Inter-
face

The enforcement of a structure for the application, the on-line definition of the
physical system and the control of the simulation are domain-independent and
are provided by the standard classes of the prototype. In the following step,
which is the application of the prototype to a specific system, it is first of all
necessary to determine the objectives that the resulting interface must attain.
This will, for example, determine the type of new views to be developed and
the functions they must provide. The objectives aimed at are therefore domain-
specific. In this case, they include the graphical representation of the process and
individual units, the organization and easy access to simulation and numerical
data, the graphical representation of results, and the possibility of using some
form of concurrency, whilst retaining control of the status of all the simultaneous
processes. Other desirable features, such as the implementation of an on-line
help system and error warning and recovery (simplified versions of which were
included in the first version of the prototype), are not the direct objective of this
research. In this section, a brief description of the requirements specification is

made, together with the solutions found.

Graphical Representation of the Process Model and Individual Models

An essential requisite is the existence of a graphical representation of the model
of the physical process, where graphical items symbolize the model objects into
which the overall model has been decomposed. As mentioned before, the primary
view of the super_.model is a non-interactive, non-visible view, which at present is

the owner of all the new views created at run-time, and which may in the future

150



be attributed other functions as well. The secondary view of the super.model,
the draw_view, is an instance of class Draw_View, and consists of an interactive
diagram (in this example, a very simplified flowsheet) of the process, which
therefore displays the current configuration of the process model.

More elaborate symbols can be used to represent the units, although the
implementation of the basic editing operations like Move and Resize, currently
supported, will in this case be considerably more complex; graphics primitives
such as the ones provided by GKS (Peddie, 1992) would be extremely helpful
for this purpose. X Window, per se, offers very little support to structured
graphics (see list of graphics primitives in Nye (1990, 1990a)). The graphical
classes may also be extended to include grouping and composition of graphical
objects, possibility of moving them to the “back” and “front” of the diagram,
etc., all of which are normally found in specialized drawing applications such as
MacDraw for the Macintosh.

No limitation must be imposed on the number, or type of views, for each
model; among these are the schematic representation of the industrial units,
display of design dimensions, display of physico-chemical properties used in the
simulation, graphical representation of current variable profiles (in the case of
distributed systems, modelled by partial differential equations), or evolution of
selected variables in time. A number of view classes must therefore be developed
that performs these functions; see Fig.7.9 for a list of the new view classes.

Furthermore, since these views are created at run time, a means to access
them, also dynamically created, must be provided. The draw._view, which con-
tains the information concerning the overall model, can be used to achieve this
objective. After the translation step, each graphical item that composes the di-
agram displayed in the draw_view knows the model it corresponds to. Pressing
the Menu button of the mouse over the graphical representation of a unit (or
stream) displays a pop-up menu (the access_menu) which lists and gives access

to all the views available for that unit (or stream) model.
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Organization and Access to Simulation Data

The data used in the simulation may come from any source, either as default
values from a commercial database of physical properties or from data files
(which is the current case). However, as mentioned before, all the values used in
the simulation must be available and the user must be allowed to change them
through the interface. A means to achieve this is to create views that display
interactive data panels, each of which contains any number of panel_items that
indicate the name of the data item and the units in which its value is expressed
(e.g. (m) or (Kg/s)). Among the data are the above-referenced dimensions of
the unit and physico-chemical parameters such as heat transfer coefficients, ac-
tivation energies and Arrhenius constants for the chemical reactions (see section
7.4.2). This also allows the grouping of the data into different categories, each
of which corresponds to a different view, and therefore makes it easier to access

the desired value.

Access to Integration Data

The data used in the management of the simulation, such as the time step after
which the interactions between the models are reset or the frequency with which
the results are written to files, must also be available. Since the super.model is
the entity that coordinates the simulation, it is logical that these data be dis-
played in a view associated to the super.model. Therefore, one of its secondary
views must be a data panel that displays and allows the user to change these

parameters.

Graphical Representation of Results

The graphical display of the state of the models is an essential feature. The
most common types of representation are line and bar charts, so views that
provide this type of representation must be provided. Depending on the possible
models they may be associated with, and also because even if they are associated
with the same model they will display different sets of variables (i.e., different
aspects of the model) different model-view adaptor classes must also be created

to maximize reusability.
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Control of the Execution Status of the Simulation Processes

Exceptions occurring during the execution of the simulation processes, especially
arithmetic exceptions, must be detected and the user informed. The exception
handling strategy described in Chapter 6, sections 6.2.6 and 6.3, enables the
remote processes to catch any Unix signals generated during execution, such as
normal or abnormal termination or the occurrence of floating point exceptions.
This information is then sent to the interface. This enables detection and re-
covery of errors indirectly — and sometimes unpredictably — caused by the
user, such as sending numerically unsound sets of parameters to the simulation

processes.

Error Warning and Recovery

If errors are made by the user on the interface side, such as trying to load a non-
existent file, error detection is performed by checking the value returned by the
respective function. When an error value is returned, a dialog box is displayed
(see Fig.7.6). The current implementation of the prototype does not cover all
the possible user errors; rather, it exemplifies an effective strategy, similar to
the one used by other well-known graphical user interfaces (e.g., OpenWindows

and the Macintosh interface).

Additional Features Supported in the First Version of the Prototype

Including some UNIX commands as menu options was thought to be a convenient
feature in the first version of the prototype. The aim was to provide a very
simple interface to the operating system in order to perform operations such as
listing result files or checking the processes currently being executed. If the user
wanted direct access to the operating system, a terminal emulator window was
created by the interface. However, because the interface will, in any case, need
the OpenWindows environment to run, which in itself enables the creation of
command tools, shell tools, etc., this feature was considered unnecessary and
dropped in the current version.

Also, the first version offered a help system, in which help buttons existed

in every window which, when pressed, displayed a text read-only window which
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Figure 7.6: Attempt to load a non-existent data file.
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contained summary information. This was a form of context-sensitive help (i.e.,
help information that is related to the particular point the user has reached),
which gives users the option to make help requests only when desired and seems
to be better in terms of speed of task and error frequency (Rubin, 1988). How-
ever, in order to be effective, the optimal structure of such a help system has to
be seriously thought through (and tested) and was considered out of the scope
of this work.

7.4 Extension of the Standard Class Library

The simplified version of this cycle includes the lime kiln, the causticizing bat-
tery, the white liquor clarifier and the lime mud filter (see Fig.7.5). Each of these
correspond to a different model class. All the streams correspond to different
classes as well, since they connect units of different classes. Every stream must
have a source and a sink, i.e., it must start in a unit and end in another. In cases
where several feeds exist to the same unit, this enables the distinction between
the different streams (e.g, in this case we must have a fuel storage unit and a
limestone bin unit).

All the windows are scalable. No limitation was imposed on the maximum
number of windows that can be displayed simultaneously. Windows can at any
time be reduced to their closed, or iconic state (icons have been attributed to
all of them), and they can also be dismissed and later retrieved, so avoidance of

a cluttered screen was left to the user.

7.4.1 New Model Classes

A number of new model classes has been created using the existing standard
classes (see Fig.7.7) They include classes for the simulation of all the units in-
volved in the cycle, as well as stream classes for all the physically meaningful
connections between the units. Although the updating methods for the streams
are usually quite simple numerically, they can include very complex numerical
procedures for the units. The lime kiln, for example, involves the solution of
a system of nearly one thousand stiff ordinary differential equations, resulting

from the discretization (using orthogonal collocation) of the spatial indepen-
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Stream_Model Unit_Model

From_Caust_Battery_to_Wic_ Caust_Battery_Model
Stream_Model

Mud_Filter_Model
From_Filter_to_Kiln_Stream_Model

Lime_Kiln_Model
From_Kiln_to_Slaker_Stream_Model

Wic_Model

From_WiIc_to_Filter_Stream_Model

Green_Liquor_Storage_Model

From_Fuel_Storage_to_Lime_Kiln_
Stream_Mcodel Limestone_Storage_Model

From_Limestone_Storage_to_Lime_ Fuel_Storage_Model
Kiln_Stream_Model ~ B

From_Green_Liquor_Storage_to_
Caust_Battery_Stream_Model

Figure 7.7: Problem-specific model classes.

dent variable of hyperbolic partial differential equations. The updating method
for the white liquor clarifier involves the solution of a variable number of ordi-
nary differential equations, which implies re-ordering and re-numbering of the
vectors for the dependent variables. Moreover, these classes provide concrete
implementations of methods where the creation of remote processes is made and
the inter-process communication is managed (see Fig.7.8). Note that the updat-
ing step is performed, for a certain unit, either locally (in which case the Update
method is re-defined and used) or remotely (in which case the last five methods -
presented in Fig.7.8 are used). These two sets of methods are therefore never
used simultaneously for the same unit. For details, see the source code of the

respective class implementation.

7.4.2 New View Classes

All the view classes developed assume a colour machine, while retaining the
consistency associated to the same default background colour through all the

windows (light grey). Where possible, colour was used to convey information
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Initialize:

initialize the instance variables of the mode! (usually
reading data from a file);

send Update message to the primary view of the model
(which propagates through all the secondary views).

Update:
call procedure that updates the state of the model;
send Update message to the primary view of the model.

Create_Process:
create remots slave pvm process(es) which waits for the
simulation data.

Start_Update:

send simulation data to the remote slave process(es)
(asynchronous non-blocking send); slave starts computations
after receiving data.

End_Update:

receive updated data from remote slave process(es)
(blocking receive);

send Update message to the primary view of the model.

End_Process:
send Unix signal SIGTERM to the remote slave
process(es).

Send_signal:

send a specified Unix signal to the remote process(es)
(including user-defined signals SIGUSR1 and SIGUSR2).

Figure 7.8: Functions performed by the methods of the model classes related to
the simulation.
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Bar_Chart View

[caust_Battery_Bar_Chart_View | { Lime_Kiln_Line_Chart_View
Panel_View
[Caust_Battery_Dimensions_View | Canvas_View

[Caust_Battery_Physical_and_Chemical_Data_View |

|Lime_Kiln_Dimensions_View | | Diagram_View |
[Gime_Kiin_Physical_and_Chemical_Data_View |

| Causticizer_Diagram_View |

|Green_Uiquor_Storage_Data_View |

| Staker_Diagram_View |

| Ume_Kiln_Diagram_View |

[ command_panel_view |

| Mud_Filter_Diagram_View |

Y

. White_Uquor_Clarifier_Diagram_View |

Figure 7.9: Problem-specific view classes.

about the physical system itself. Units where green liquor is processed are coded
green, units where lime is the main reactant are coded yellow, and so forth. In
the lime kiln diagram, for example, colour goes from yellow to red as temperature
increases.

A number of new view classes has been created using the existing standard
classes (see Fig.7.9) They correspond to:

a) access to all the parameters used in the simulation (Caust_Battery_Dimen-
sions_View, Caust_Battery_Physical_and_Chemical_Data_View, etc.);

b) “static” views, adequate for novices, presenting schematic representations
of the industrial units (all the views subclassed from the Diagram_View class);

c) dynamic views, presenting selected sets of data, which are automatically
updated when the calculations of the respective model (integration of differential
equations in time) are done (Caust_Battery_Line_Chart_View and Lime_Kiln_Line.-
Chart View;

d) a view which lists, in the form of panel items, all the units currently

available in the model class library (Units_View).
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The types of panel items used to access the data of the models can be differ-
ent; for example, sliders may be used instead of data items. It is up to the user to
customize the standard views. Figs.7.10 and 7.11 show, respectively, the views
corresponding to the lime kiln and the causticizing battery models. When a
view is to be used as a primary view, it must both create the access menu and
include, in the methods of its controller, the actions to be taken when the menu
is used (i.e., display the other dependent views). The classes sub-classed from
the Line_Chart_View and Bar_.Chart_View simply extend these in a way that these

functions are performed.

7.4.3 New Controller Classes

A number of new controller classes has been created using the existing standard
classes (see Fig.7.12) Note that now more closely related controller classes have
been created (e.g., classes Lime_Kiln_Line_Chart_Controller and Caust_Battery_Bar.-
Chart_Controller inherit from Line_Chart_Controller and Bar_Chart_Controller, re-

spectively, since they simply add the creation and control of the access menu).

7.4.4 New Adaptor, Graphical Item and Exception
Handler Classes

A number of new adaptor, graphical item and exception handler classes have
been created using the existing standard classes (see Fig.7.13) The adaptors
know exactly which kind of data to retrieve from the model, and which are the
view instance variables that depend on that data. They therefore insulate the
domain knowledge from the interface. They perform their function (method
Convert_Data) only when the Update message is sent to the view. _

The new graphical item classes (see Fig.7.13) correspond to the graphical
symbols used to represent all the units available for this problem. For simplicity,
they all correspond to a rectangle, inside which there is a text code that indicates
the type of unit. This means that they share most of the editing operations
provided by the standard Unit.ltem class. No new stream graphical items are
required since their representation is always the same (a plain line with an arrow

at the end).
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Figure 7.10: Views for the lime kiln model.
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Figure 7.11: Views for the causticizing battery model.



| Bar_Chart_Controller |

I Caust_Battery_Bar_Chart_Controller ] IUnis_Cmtroller ]

ICamt_Baneq_Dimenslons_Ccantroller I

Caust_Battery_Physical_and_

| Uine_Chart_Controller _ | Chemical_Data_Controller

[ Lime_Kiln_Dimensions_Controller |

| Lime_Kin_Line_Chart_Controller | Lime_Kiln_Physical_and_Chemical_
Data_Controller

[Mud_Fmer_magram_Conuouer |

White_Liquor_Clarifier_Diagram_
Controller

Green_Liquor_Storage_Data_Controller

Figure 7.12: Problem-specific controller classes.

Mode!l_Adaptor Unit_Item
Caust_Battery_Model_Bar_Chart_Adaptor i
Unit_CB_ltem
Caust_Battery_Model_Line_Chart_Adaptor
Unit_LK_ltem
Kiln_Model_Line_Chart_Adaptor
Unit_MF_Item
Unit_ WLC_item
| Exception_Handler
/N Unit_FS_ltem
Unit_LS_ltem
PALN
Master_Exception_Handler Unit_GLS_ltem

" Figure 7.13: Problem-specific adaptor, graphical item and exception handler
classes.
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Finally, the new exception handler class created (see Fig.7.13) simply defines
the exceptions which must be detected in this specific application and what
actions must be performed in each case (overriding the methods of the Excep-

tion_Handler class).

7.5 Simulation Results
7.5.1 Sample Simulation Results Obtained

Results were obtained for the individual mathematical models used in the simu-
lation and are presented elsewhere (see Pais and Portugal (1993a, b) for results
concerning the lime kiln, and Pais and Portugal (1994a, b, c) for results con-
cerning the causticizing battery). Several simulation results for the model used
in the white liquor clarifier are presented by Attir et al. (1976), although not
for the same set of parameters. This type of detailed study will therefore not
be repeated here; only a selected set of simulation results are presented, so that
both the type of output presented by each model and the complexity of the
simulation are outlined.

Fig.7.14 presents the variation of the temperatures in the lime kiln along
its axial coordinate, and Fig.7.15 presents the variation of the concentrations
along the same coordinate. Since the dynamic state of the kiln is described
by a set of partial differential equations (see Appendix A) in space and time,
these profiles are time-dependent, i.e., the values represented correspond to a
specific moment in time. Colour coding greatly increases the ease of percep-
tion; compare Fig.7.15 with Fig.7.10. (The line chart also offers different line
styles, and the bar chart offers several fill styles, to enable colour-independent
differentiation between the lines and the bars.) Figs. 7.16 to 7.19 present the
evolution of the concentrations in the slaker and causticizing tanks during start-
up, i.e., when lime starts to be added to the slaker tank, initially filled with
green liquor. Notice the delays as the system becomes of higher order (first,
second and third causticizing tanks).  Fig.7.20 presents a typical variation of

the solids concentration with depth in the white liquor clarifier.
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Figure 7.14: Variation of gas, solids, and inner and outer wall temperatures of
lime kiln with distance from solids feed end.

(Adimensionalization constant is 1667 K; all temperatures are expressed in K.)

Tg = Gas Temperature, T's = Solids Temperature, Tw = Inner Wall Tempera-
ture, Twp = Outer Wall Temperature.
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Figure 7.15: Variation of concentration of solid and gas phases in kiln with
distance from solids feed end.

Xi = Mass Fraction of Compound i; see Appendix A for more details.
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Figure 7.16: Evolution of concentrations in the slaker during start-up.
Adimensionalization constant is 5000 mol/m3,
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Figure 7.17: Evolution of concentrations in the first causticizer during start-up.
Adimensionalization constant is 5000 mol/m3.
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Figure 7.18: Evolution of concentrations in the second causticizer during start-

up.
Adimensionalization constant is 5000 mol/m?3.
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Figure 7.19: Evolution of concentrations in the third causticizer during start-up.
Adimensionalization constant is 5000 mol/m?3.
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Figure 7.20: Typical variation of solids concentration with depth in the white

liquor clarifier.
Depth = 0 corresponds to the top of the clarifier.

7.5.2 Effect of Decomposition of the Overall Model

Since the mathematical model for the physical process has been decomposed
into several submodels which interact only at discrete moments in time, rather
than continuously, the effect that this approach may have on the accuracy of
the solution obtained must be investigated. The overall model, which was ini-
tially described by a continuous time-continuous state pattern (see Chapter 5),
has been replaced by an approximate model, which is continuous time-discrete
event. The state of each individual model still varies continuously with time,
but the events that trigger these changes are allowed to happen only at discrete
times (when the interactions are established, or when the user changes some
parameter).

As a practical example, let us consider the case where the concentration of
the liquor from the green liquor storage, which is fed to the slaker, suffers a
continuous variation in time, given by Cppz- = 1150 + 200s21(0.02t)mol /m3.
One of the input variables to the slaker is the concentration of this stream. Up-

dating the interactions at certain time intervals only, rather than continuously,
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Figure 7.21: CO3" concentration from green liquor storage: update every 20s.

corresponds to keeping the inputs to a unit constant during that interval, and
updating them only at the end.

If the interactions between the green liquor storage tank and the slaker are
reset every 20 s, the input to the slaker is represented in Fig.7.21. The time in-
terval is short enough, in this case, to capture the process dynamics, i.e., Fig.7.21
offers a good approximation to the real input (sine wave). If the interactions
are reset every 100 s, which is a much coarser approximation, the input to the
slaker is represented in Fig.7.22. This time interval is obviously too long and
leads to a corresponding degradation in the quality of the solution (see Fig.7.23).
However, the response of the concentration in the slaker is very close for time
intervals of 10 and 20 s, and can be taken as an acceptable approximation in
these cases. The maximum value of the acceptable time interval after which
the interactions must be reset is obviously problem-dependent, and some kind
of study must be performed in order to ensure that the dynamics of the real

system are being correctly captured.
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Figure 7.23: CO3™ concentration in slaker: effect of different interaction inter-
vals.
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7.5.3 Effect of Concurrent Execution

Another important factor is the extension of the benefits obtained by distributing
the numerically-intensive calculations throughout the network, i.e., the advan-
tages it brings in terms of ezecution speed. In the configuration of the system
that corresponds to the chemical recovery cycle (i.e., one lime kiln, one causti-
cizing battery, one white liquor clarifier and one mud filter), the execution time
is totally dominated by the integration of the equations that describe the lime
kiln, since it can take up to, and in some cases more (depending on the initial
conditions), than 20 minutes to perform the first integration (from ¢ = 0s to
t = 10s). An obvious conclusion is that the model for this unit is too heavy,
in terms of computational speed, to be used interactively. In this case, in or-
der to be effective, the use of parallel processing techniques must be done at
the algorithm level, using a parallelized algorithm to integrate stiff differential
equations, as well as at the object level.

In a general case, for a coarse decomposition (i.e., few model objects, each
described by a computationally demanding model) the difference between one
and more available processors will not be very large, since execution time will in
any case be close to the time it takes to update the “limiting”, i.e., the slowest,
unit. This is a consequence of inserting procedural routines in an object-oriented
environment — it is no longer possible to deal only with lightweight objects,
whose behaviour is described by simple and short functions.

In order to clearly determine the effect of the availability of several processors
to execute, concurrently, the numerical calculations associated to the updating
step, the execution time was measured for systems composed by one up to ten
causticizing batteries (see Fig.7.24). Note that here ezecution time is not being
employed in the sense of CPU time, but rather as the real time elapsed between
the start and the end of the updating process, as determined by calls to the
Unix system function date at these moments. Each point corresponds to the
mean of three measurements. Note that this data are intended as a qualitative
measure only. Two main factors influence the performance of the distributed
version, namely the number of processes executing in the machines where the

remote processes are spawned, and the time necessary to send and receive the
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Figure 7.24: Duration of the updating step (from t = 0s to ¢ = 10s) as a function
of the number of causticizing batteries.

Each processor corresponds to a different Sun Classic workstation, model 4/15N-16-
P40.

messages with the data, which is strongly dependent on network traffic. In or-
der to determine the quantitative influence of both these factors, a deeper study
would have to be performed and is out of the scope of this work. However, it
is obvious from Fig.7.24 that in the case of a single available processor the time
required for the first updating step is additive, i.e., directly proportional to the
number of causticizing battery units of the system (which is to be expected,
since the calculations are executed sequentially). In the case of twelve available
processors, for one and two causticizing battery units, the time is either equal
or higher than the time required in the case of a single processor, but then
increases only slightly. This is also to be expected since, for one causticizing
battery, the distributed version involves an additional step, which is to send and
receive messages. This overhead rapidly becomes negligible as the number of
units increases and the effect of updating them concurrently outweighs the time

required to send and receive the messages.
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In conclusion, the standard classes developed in this work provide a frame-
work into which different types of model, view or controller objects can be
inserted. The range of applicability of this software system is obviously strongly
dependent on the number and diversity of the model classes available; as long
as new classes are subclassed from existing ones, they will be compatible with
the framework. An example of the application of the prototype to the simula-
tion of an industrial system is presented. The approach proposed has enabled
the interactive simulation of a set of very complex simulation modules, thus
offering not only visual feedback to the user but also a simpler way of defining
the configuration of the process model and access the parameters used in the

simulation.
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Chapter 8

Conclusions and Future Work

8.1 Introduction

As mentioned in Chapter 5, section 5.8.2, the initial aim of this project was to
develop a simulation package for the chemical recovery cycle of a paper pulp mill.
The package should include both the implementation of detailed mathematical
models for the main industrial units involved in the cycle, and a graphical user
interface to enable on-line interaction with the simulation modules. The math-
ematical models were not available to the required degree of detail. Possibly
due to the limitations, in those days, on computational power, previous work
on the simulation of the cycle as a whole used very simple models (Jacobi and
Williams, 1973a,b).

The first step was therefore to develop (either by adapting published math-
ematical models for similar units, or by developing entirely new models) and
implement a series of Fortran77 subroutines which simulated the behaviour of
the main units. Although unsuitable for a number of applications, especially
those in which dynamic allocation of memory must be performed, Fortran77 is
still a powerful tool for the implementation of procedures where intensive use
is made of numerical calculations. This is due to the fact that the language
itself was designed for that purposé, i.e., to enable a straightforward transla-
tion of equations into the programming language (Fortran stands for FORmula
TRANSslation) and also because of the wealth of standard, freely available im-
plementations of currently used numerical methods. The simulation of the lime
kiln, for example, required the solution of a set of hyperbolic partial differen-

tial equations, in space and time. A possible solution of the model consists of
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discretizing the spatial derivatives using finite differences, and integrating the re-
sulting system of ODE’s in time. A better approximation to the spatial profile is
however obtained if a piecewise polynomial approximation is used, i.e., the spa-
tial domain is divided into finite elements and a different third degree (Hermite)
polynomial is used to approximate the profile in each of them. The resulting
system of ODE’s can then be integrated in time. Just for this module, two
different groups of standard Fortran77 software were used, namely the LSODI
integrator (Hindmarsh, 1980) for stiff differential equations and the orthogonal
collocation routines developed by Villadsen and Michelsen (1978).

After some of these routines had been implemented, i.e., a very large amount
of result data was being produced, work started on the first version of the pro-
totype interface. At first, no consideration was given to the need to allow for
changes in the physical system; its configuration was taken to be a typical one,
i.e., one which prevailed in a number of paper pulp mills. X Window, as a
windowing system, offered a great number of advantages, as mentioned before.
Although not impossible, it is very complicated — and ineffective — to use
plain X Window, without taking advantage of available higher-level software
(toolkits), for the development of complex GUI's. Since Sun workstations are
widely spread in the scientific community, the XView toolkit, which follows the
OpenLook guidelines (Hoeber, 1988) and has become a Sun standard, was used.
Although this may somewhat reduce the portability of the resulting software
(especially for those who advocate Motif as the look), no differences in perfor-
mance have been reported between the two. At first, only the Xlib primitives
and XView toolkit were used to generate the GUI, i.e., no framework was pro-
vided for the application. The first version of the GUI was implemented in
C.

Several problems soon became apparent. The size of the application made it
difficult, without using any type of framework, to know which event handler(s)
(non-bound C procedure) had been registered with each widget, and then to de-
termine which widget(s) was related to each simulation module. This occurred
in spite of a careful division of functions among files. Also, the system was

not flexible since any change in the configuration of the physical system would
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require source code re-writing, and a careful determination of all the repercus-
sions this might have throughout the rest of the application. Although one of
the functions of graphical user interfaces is to hide the complexity of the under-
lying system from the user, and this objective was attained, this clarity should
not be obtained at the expense of a badly structured application code which
suffers from poor modularity and re-usability. As an example, none of the types
of display provided would be easily re-used since they had all been tailor-made
for this specific application.

At this point, the need for a different approach became obvious. If the
interface was to be applicable to a wider range of problems, a framework and
a greater degree of flexibility would have to be provided. The main objective
of the work shifted from the development of a specific simulation package to
that of a general-use simulation framework, which should provide hooks that
allowed application developers to insert user-defined simulation modules and to
define the types of display and interaction adequate for their specific problem.
This shift represents the first conclusion that can be drawn from this work:
toolkits per se are not enough to develop a structured application. They provide
pre-defined sets of interactive objects, usually created by a simple function call,
thus significantly reducing the amount of code to be written by the application
developer; they also provide a consistent widget appearance and interaction
behaviour (e.g., how the appearance of a button changes when it is pressed)
throughout the application. However, they do not separate the interface from
the problem and, if a large number of widgets is needed, the existence of a
framework in which to insert them in an organized way becomes essential.

Since a framework can be defined as a group of interdependent objects which
cooperate to accomplish a certain task (this corresponds to a behavioural com-
position, as mentioned in Chapter 2), the use of object-oriented concepts is
essential for the design of the framework. C++, according to some the most
widely spread object-oriented language in and out of academic environments,
was selected as a convenient means to implement the framework. It also pro-

vided the possibility of continuing to use the X and XView C-interface function

calls.
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The integration of the simulation modules for the chemical recovery cycle into
the framework would be a good test of the effectiveness of the approach since it
represents the migration of a set of complex, non-standard routines written in a
procedural language into an object-oriented graphical interactive environment.
A working prototype which exemplifies the application of the framework to this
problem was therefore developed and has been described already in previous
chapters. The main conclusions that can be drawn from this work are presented

in the next section.

8.2 Conclusions

At present, there is a gap between new emerging concepts such as object-orient-
ation and graphical user interfaces, and the traditional approach to complez sim-
ulations, i.e., batch runs of long procedural codes. The object-oriented approach
was developed and is especially dedicated to systems that do not involve the use
of complex numerical algorithms in order to determine the state of each object.
Although the overall system may be quite complex, and composed of many ob-
jects, the behaviour of each of these is assumed to be fairly simple and described
by short functions; typical examples of object-oriented concepts include graph-
ical user interfaces and library and information systems. For systems like an
industrial unit, or a solid catalyst particle undergoing chemical reaction, which
are normally described by sets of equations (often partial differential equations),
the notion of object becomes somewhat blurred. Two approaches are possible to
simulate these systems in an object-oriented environment: either to treat them
as high-level objects, whose behaviour is described by complex sets of equations,
or to decompose them into simpler objects. In this last case, the decomposition
must usually be made according to something which is not directly related to the
physical problem domain — the mathematical algorithm used for the solution”
of the model. This will determine the class hierarchies required and can give rise
to entities like equation, finite element, partial derivative, time increment, etc..
From this, it follows that a purely object-oriented simulation of such systems de-
pends primarily on the development of OO numerical algorithms. In this work,

the first approach was used, i.e., procedural simulation modules were imported
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into an object-oriented environment and “wrapped” by methods; although this
is not a strictly OO approach, it represents a way of re-using existing software.
Moreover, the efficacy of OO concepts for numerically intensive applications is
still under study, as it involves a higher number of function calls (or similar,
depending on the implementation language) than its procedural counterpart,
which can represent an unsurmountable time overhead. If OO proves ineffec-
tive for some numerical methods, the insertion of procedural pieces of code may
be the only way to port this kind of simulation into a graphical, interactive
environment.

Secondly, the main deficiency of ezisting simulators is lack of flexibility; this
can be avoided if a library of simulation classes is developed, rather than a spe-
cific simulator. Most simulators offer simulating facilities for a specific problem
domain only, although some of them are now turning to the simulation of mixed
domain areas (Zobel and Lee, 1992). For a specific domain, the configuration
of the system can be defined on-line, and in most cases user-defined simulation
modules added. However, the interface presented by the simulator itself is not
adaptable, nor are the types of display available; i.e., each simulator offers a
specified and fixed set of functionality and presentation options. As stated by
van der Meulen (1987) (sic), “most simulation systems are closed, i.e., there is
no access to the source code. Even if they were open, one would have to read
and modify a lot of source code”. This work aims to increase the flexibility of
such software by developing a set of simulation classes, which can be re-defined
and extended at any level, i.e., at the problem domain, presentation or inter-
action levels. Toolkits represent a higher level than the graphics/windowing
systems they are based upon. Although they may be sufficient, per se, for small
applications which have few windows (e.g., the XView interfaces for the Inter-
net Newsgroups, the mail tool, or the debugger), large applications become a
tangled mess of procedures, as mentioned in the previous section. In order to
create easily new types of displays, where a single window may possess any type
and number of widgets, and, most importantly, to know which presentation and
interaction objects are related to each information model, an even higher level is

needed. A possible approach is to create an object-oriented framework in which
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the widgets are grouped to form higher level objects, such as the views devel-
oped in this work. The event handlers registered with all the widgets related
to a view can then be grouped as methods of another object: the cont:;oller of
that view. This has greatly simplified the application code itself, as a complex
view is generated simply by dynamically creating a view object of the desired
class. It also immediately establishes which widget(s) are related to which part
of the problem, since each view-controller pair is related to one model object
only; therefore, if a view is registered as a dependent of a model, all its widgets
relate to that model. The definition of views as high-level objects which group
widgets has made the use of the toolkit considerably easier.

As stated above, the strength of this approach is the possibility of refining ex-
isting classes, in order to develop a simulator which is ideally suited for a specific
problem. For example, the main window of the simulator is, in the prototype
developed, an object of class Draw_View. New subclasses can be created in which
the functionality of this class is extended or re:deﬁned, thus effectively changing
the way in which the model for the pysical system is defined on-line. Such a de-
gree of freedom is especially important in the case of non-standard user-written
simulation modules, which are normally not present in available simulators, and
for which any type of display, from line and bar charts to contour charts, may
also be required. The existence of an integrated environment, which includes
editors and class hierarchy and object browsers, would allow the application
developer to introduce those changes to the system on-line. Such environments
have been developed in Smalltalk (Goldberg, 1984) and KEE (Fikes and Kehler,
1985; Filman, 1987). KEE also supplies two different types of graphics packages,
namely one that contains pre-determined images such as gauges and dials, and
one which which consists of even more basic components such as lines, circles,
etc. (Kempf et al., 1987). C++ does not provide graphics capabilities by de-
fault, although they can be introduced as class libraries (as was done in this
work). Moreover, no generally available C++ environment supports the run-
time creation and integration of new types into running processes, although this
is possible (Jordan, 1990). Although this means that the changes to the class

library have to be made off-line, using an editor, the absence of these features
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in the C++ language allows it to be used in a wider set of system environ-
ments than other object-oriented languages (Jordan, 1990). The introduction
of such an environment has another detrimental effect in this specific case, in
which graphical user interfaces composed by several displays each with a pos-
sibly large number of widgets are likely to be created: it consumes computer
power, thus effectively reducing the amount which can be dedicated to the appli-
cation itself. The advantages gained by providing a fully integrated environment
must be weighed against its consumption of computer resources, especially when
the application itself is likely to be computationally heavy. Most simulations of
real systems fall in this category and both the interface and the entities asso-
ciated with the problem domain may need these resources. A situation which
occurred several times during trial runs of of the prototype was the impossibility
of debugging it using the debugger due to memory limitations.

In this work, an MVC (Model-View-Controller) framework was developed,
which is specifically prepared for the existence of several (possibly many) sub-
models, views and controllers. Although the functions performed by the objects
are similar to the ones provided by Smalltalk, no attempt was made to repro-
duce either its class library or syntax. A “triangular” framework such as MVC
makes it possible to update the view objects without intervention from the re-
spective controllers. This makes it easier to insert adaptors between the model
and the view objects then it would be if the PAC (Presentation-Abstraction-
Control) framework (Coutaz, 1987) were used, since the Control components
stands between the Presentation and Abstraction components. Except for this
implementation detail, any other framework can be used, as long as the separa-
tion between the problem domain and the presentation and interaction levels is
retained. The framework developed in this work is a very light one, in which
the task of the objects is fundamentally to relate in an organized manner data
entities which would be present in any case; i.e., the framework itself does not
impose a heavy additional burden. Most of the frameworks referred to in Chap-
ter 3 could be used to perform the same functions.

Although the base class library developed consists of only the base classes

needed for this specific application, the number of classes related to the view
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hierarchy is quite large. Some of these classes provide an immediate way to
create views associated to operations that occur very frequently such as loading
or saving a file (Load_File_.View and Save_File_View), input a string (String_View)
choosing a font (Fonts_View) or a colour (Palette_View). Once again, the defini-
tion of views as high-level objects promotes re-usability and e&se of use.

The simulation of models which are computationally demanding raises the
need for concurrency/parallel processing techniques. In order to conjugate con-
currency and objects, actor languages immediately come to mind. However,
actor languages are very low-level (Booch, 1991) and difficult to use; their appli-
cability to problems where the algorithms needed are themselves very complex
and where a high degree of sophistication is required for the GUI is doubtful.
As a carefully designed hybrid, which has profited from a considerable amount
of practical experience, C++ offers both the advantages of an object-oriented
language and an easy access to procedural languages such as C or Fortran; most
importantly, it does so while retaining all the execution efficiency provided by
C. It does not, per se, offer concurrency features. The development of software
libraries such as PVM, which is still evolving at this date, offers two major ad-
vantages. The first one is that no limitations are imposed on the type of concur-
rency paradigm used. At a first level of distribution, the framework developed in
this work provides the possibility of distributing the updating methods for each
object throughout the network. However the user is free to use either sequen-
tial or p‘arallelizcd algorithms; any of these are perfectly compatible with the
framework. The spawned process that performs the evaluation of the state of a
model may spawn other processes itself, each of which performs a certain share
of the necessary calculations. This is possible since PVM does not impose any
type of paradigm, i.e., a spawned process is at the same level as the process that
created it. Secondly, because concurrency is introduced in the form of libraries
(which is the current trend for developing concurrent software), no changes were
made to the standard C++ language and the standard C++ compiler for Sun
Sparc workstations was used. Introduction of concurrency by means of libraries
such as PVM, rather than by modifying the language and therefore having to use

a modified compiler, provides a greater degree of portability without imposing
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restrictions on the type of paradigm used.

The implementation of computationally heavy algorithms as separate pro-
cesses, on other machines available in the network, offers another advantage
which is not immediately obvious: it distributes the memory load thus avoiding
the occurrence of out-of-memory situations in the local host. Since the graphi-
cal user interface itself consumes a great amount of memory, this situation may
occur in cases where the objects need, for their updating functions, to store
large scale arrays and vectors, which is not uncommon in cases where implicit
methods are used for the integration of differential equations. The distributed
approach taken in this work effectively allows the local host (specifically, the
host where the application is running, not necessarily the one where the display
of the results is performed) to be relieved from the number-crunching tasks.

The implementation of this software system was an arduous task, mostly
due to the number of languages and libraries used (C++, Fortran77, X Win-
dow and XView, PVM, standard Fortran77 routines of numerical methods) and
the need to interface them correctly. Moreover, as mentioned before, X and
X-based toolkits provide little support for graphics. However, in addition to
greater difficulties during the software implementation stage itself, development
of an application of this dimension without a well-defined framework would have
resulted in, at best, a monolithic, virtually non-reusable application. Interactive
simulation of real systems is inherently complez; the methodology proposed in
this work has enabled the construction of a highly structured and very flezible
prototype.

8.3 Future Work

As mentioned above, plain C++ does not provide editing/browsing tools. This
means that the application developer (who may well be the end-user) is not able
to generate new sets of derived classes on-line, or to access a graphical repre-
sentation of the class hierarchies. Although the existence of a fully integrated
environment also has disadvantages, as pointed out in the previous section, some
light-weight facilities, such as a class browser, would help the developer visualize

the existing class hierarchies and could greatly increase the ease with which the
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framework can be applied to different problems.

The problem-domain hierarchies developed in this work are very basic, since
the purpose was to develop the framework rather than a problem-specific set
of model libraries. As a consequence, the model classes used were subclassed
directly from the top model classes unit and stream. For effective re-use, spe-
cialization must be progressive, allowing incremental refinement of the model
characteristics until the desired behaviour is attained. If application of the
framework to a specific problem domain is desired, then full model class hier-
archies, enough to simulate most of the physical systems in that area, must be
available. Note however that if the simulation of non-standard physical systems
is desired, it is still possible to subclass any such model class directly from the
base classes at the top of the standard hierarchy.

A general event recovery framework, such as the one proposed by Wang and
Green (1991), would be an important asset. In this specific case, it could applied,
among other things, to the retrieval of the state of the models for previous values
of time and combinations of parameters.

As mentioned in Chapter 7, the lime kiln takes a considerably longer time
to update itself than all the other units. When this situation occurs, and if
the response time of a certain unit is so long that it jeopardizes the feasibility
of an interactive approach, then a parallelized algorithm must be used for that
unit. The development of such algorithms is primarily of a mathematical nature
and out of the scope of this work. However, if models are high-level objects,
this need is likely to arise in most simulations, and the possibility of using a
distributed algorithm for the integration of differential equations would be a
valuable addition to the system.

Other than the possibilities for improvement mentioned above, it would be
highly desirable for the application to become totally independent from Fortran
source code. Although at present it seems to be the only solution, the inser-
tion of calls to Fortran subroutines makes it necessary to use both the C++
and Fortran77 compilers. Moreover, the C++ (or C)/Fortran 77 interface is
compiler-dependent, which decreases the degree of portability of the applica-
tion. C++ is equally well-suited both for graphical user interfaces and, due to
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its performance capabilities, to numerical calculations. The fact it was used as
the main programming language will enable progressive replacement of proce-
dural routines by object-oriented classes that implement numerical methods (if
these prove to be feasible in practice).

Two levels of usage may be associated with the prototype developed. One of
them is the end user, who need not know the internal structure of the applica-
tion, but for whom the GUI must provide a simpler and clearer way to interact
with complex simulations, whilst offering the advantages of visual feedback. An
example of such a user is the operator of an industrial plant, for whom this type
of software represents a learning tool, providing a safe way of getting acquainted
with and learning how to interact with the industrial system itself. An example
of a different type of user is a process engineer or designer, who may wish to
adapt the tool for teaching purposes (e.g., to train the staff as mentioned above)
or to study the effect of different new industrial configurations or equipment.
This work is aimed at this last type of user, who will need to know the standard
class library in order to be able to extend it in the desired way.

This study has tried to bridge the gap between the traditional approach to
complex simulations and new concepts such as object-orientation and graphical
user interfaces. The work developed shows that the application of computer
science concepts to the engineering domain can yield considerable benefits by

helping domain experts to tailor interactive tools to suit their needs.
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The Lime Kiln
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A.1 Introduction

The lime kiln has been used since the 1910’s, and first made its appearance in
the paper industry in North America in the mid 1920’s (Kramm, 1979). It is
usually a rotary type unit where drying and calcination of the lime mud from the
causticizing plant take place. Calcination is described by the following equation

CaCO4(s) = CaO(s) + CO,(g9) + (—AH¢) (A.1)

yielding calcium oxide which is the main reactant in the transformation of green
liquor into white liquor. The other main phenomenon which takes place is the
evaporation of water from the lime mud, according to

H0(l) —» Hy0(g) + (~AHw) (A.2)

Fuel must be burnt in order to supply the necessary energy for the endothermic
decomposition reaction to take place.

The lime mud (a mixture of lime, basically calcium carbonate, and water)
enters the kiln in what will henceforth be referred to as the solids feed end.
The gaseous stream (a mixture of fuel and air) enters the kiln in the other end
so that the two streams flow in counter-current. A chain system at the solids
feed end assists in the evaporation of water from the lime feed, and also acts as
a curtain or dust arrestor. A schematic representation of the lime kiln is pre-
sented in Fig.A.1. Detailed descriptions of current kiln design are common in

Figure A.1: Schematic representation of the lime kiln.

the literature (Kramm and Schultz, 1985), as well as descriptions of existing in-
dustrial installations (James, 1992). A privileged trend of current research is the
possibility of using alternative fuels to reduce the dependency of the mill from
external purchase of expensive fossil fuel (e.g. Richardson et al., 1990). Another
major subject of research is the study of new refractory types and configurations
(e.g. Gorog and Adams, 1987c; Adams, 1992; Stiles, 1991). The reduction of
emmissions of environmentally detrimental compounds has also gained increased
interest in the last few years, mostly due to the need to comply with tightened
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pollution regulations (Lewis, 1979; Mehra, 1981). Common operational difficul-
ties are listed by Ford and Chen (1991). A common problem is the formation
of balls and mud rings inside the kiln, which may result in spill back or kiln
cycling (Tran and Barnham, 1990; Tran et al., 1991; Notidis and Tran, 1993).
The research associated to energy economy ranges from the determination of
industrial configurations that reduce fuel requirements (Mumford et al., 1989;
Perry, 1989) to studies of the variables which offer the best potential for decrease
in operational costs (Lima et al., 1983). Computer simulation has revealed itself
as a powerful tool in the analysis and prediction of the performance of the lime
kiln.

Originally, lime quality was determined by visual appearance. Kiln operators
would observe the coloration of the lime mud and, based on their experience,
adjust the fuel flow to the burner (Ataide, 1990). Because of decisions based
on subjective evaluation, the temperature target would vary from operator to
operator and from day to day. To avoid this, computer-based control systems for
the lime kiln have proliferated during the last two decades (Uronen et al., 1976;
Elsila et al., 1979; Blevins and Rice, 1983; Guimaraes et al., 1986; Crowther et
al., 1987; Charos et al., 1991; Mcllwain, 1992).

A.2 Formulation of Mathematical Models

Simulation of an operating kiln makes it possible to know in advance the effect
of variations in the operating parameters, showing the necessary corrections for
the improvement of the operation and for the optimization of the kiln for a given
production (Guimaraes et al., 1986).

Mathematical models for the steady and transient states of cement kilns
were first developed in the 60’s and 70’s (Lyons and et al., 1962; Sass, 1967;
Spang, 1972). Because the lime kiln can be thought of as a simplified cement
kiln, models for the lime kiln followed (Koivo and Chase, 1972; Pearce, 1973;
Dekkiche et al., 1980; Guimaraes, 1980; Guimaraes and Edwards, 1985; Bailey
and Willison, 1985; Gorog and Adams,1987a, 1987b, 1987c, 1987d, 1987¢).

The model proposed by Guimardes (1980) has been used extensively for the
study in steady-state of the behaviour of the lime kiln (Lima et al., 1983; Ed-
wards and Singh, 1984). In the nineties, two dynamic models were presented by
Hsieh et al. (1990) and Ribeiro et al. (1992). However, these two latest models
do not include differential mass balances to the gas phase and therefore cannot
be used to predict the instant composition of the exhaust gas. In transient state,
significant differences exist between the response time of the gas phase in the
chain zone (up to 10 min) and in the combustion zone (very fast) (Guimarées et
al., 1986) which is undoubtedly due to the differences in gas convection velocity.
This factor is taken into account in the dynamic model developed in this study
as local gas convection velocity is evaluated in each integration step as a function
of local gas temperature, pressure and composition.

Basically, the assumptions made in the model developed are:

* Mass flowrates of burden and nitrogen are constant throughout the kiln, which is a
reasonable assumption for small disturbances in the flowrates.
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* No inerts are considered in the solids phase or impurities such as the presence of traces
of sodium, silica and potassium compounds. Their major eflect in the behaviour of the kiln
would be to promote ball or ring formations. Sodium is known to cause sintering of calcium
carbonate particles. However, experimental or theoretical correlations do not exist yet.

* Dust losses are considered negligible for the same reason.

* The length of the flame is approximately constant and the rate of the combustion reaction
can be described by a linear relationship (Guimaraes, 1980).

* The flame is considered to be a homogeneous mixture of air and fuel.

* No pressure gradients are considered throughout the kiln (constant atmospheric pres-
sure).

* The gas phase is assumed to behave as a perfect gas.

* Profiles in the radial and angular coordinates are assumed to be negligible compared to
the ones in the axial direction.

* The kiln wall is supposed to be thin enough, compared to the dimensions of the kiln, to
be considered as a boundary.

* Heats of reaction and latent heat of vaporization are considered constant, as well as the
conductivity of the kiln wall. Solids density and heat capacity are also considered constant.

* The kinetics of the thermal decomposition of calcium carbonate can be represented by
an Arrhenius-type expression (Satterfield and Feakes, 1959).

The correlations presented by Spang (1972) and later by Guimaraes (1980)
for the estimation of heat transfer coefficients were used. A considerable number
of correlations has been published and a comparison is made by Edwards and
Singh (1984), where it is noted that estimates for the gas-solid heat transfer
coefficient can vary as much as four times depending on the correlation used.
Thus no accurate estimates can be made a priori and the unknown parameters
must be adjusted to the case under study.

" The equations that describe the dynamic model are listed in Tab.A.l and
the ones corresponding to the steady-state model (Guimaraes, 1980) in Tab.A.2.
The additional relationships used in both of them are listed in Tab.A.3.

The dynamic model was solved using orthogonal collocation (Villadsen and
Michelsen, 1976) in fixed finite elements (Finlayson, 1980) to discretize the
spatial coordinate, followed by integration by the BDF method — subroutine
LSODI (Hindmarsh, 1980) — using the method of lines (Davis, 1984). The
steady-state model was solved using the method proposed by Guimaraes (1980)
which is basically a shooting method — it is a two point boundary value prob-
lem — and consists of arbitrating a profile for the solids, integrate the gas phase
variables along z using these values, and then integrate the solids phase along
z using the just calculated gas-phase profiles. The profiles of both phases are
stored in a number of points (npoints) separated by a distance Az so that when
one of the phases is integrated, interpolated values for the other phase in the
same 2-location can be evaluated. This procedure is repeated until no significant
variation occurs for the gas or solids variables between consecutive integrations.
Integration along z was also performed using the LSODI subroutine.

A study of the transient behaviour of the kiln for several disturbances has
been made and is presented elsewhere (Pais and Portugal, 1993a; Pais and Por-
tugal, 1993b). The mathematical model for the steady-state of the lime kiln
has also been used to determine the optimal kiln refractory distribution for a
specific set of operating conditions (Pais and Portugal, 1993b).
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Initial conditions:
X1(0,2) = X1in(2), X2(0,2) = X2in(2), X3(0,2) = X3;n(2),
Yi(0,2) =Ysia(2), Y1(0,2) =Y1a(2), Y2(0,2)=Y2n(2),
Y3(0,2) = Y3in(2), Ya(0,2) =Y4in(z), Y,(0,2)=Ygin(2)

Boundary conditions:

X1(1,0) = X1o(t),

Xa(t,0) = X20(2),
Y,(t,0) =Yso(t), Yi(t,ztot) =Y1o(t), Ya(t,ztot) =Y2(t),

X3(2,0) = X34(t),

Ya(t, ztot) = Y3o(t), VYa(t,ztot) =Y4o(t), Y,(t, ztot)=Ygo(t)

(A.3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

Table A.1: Differential energy and mass balances for the lime kiln in transient

state.
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dY; _ 32m+8n-—16p
i e b
dYs 44m Meco, Rp my
— i - Mt i A.l19
dz Mp Rr Mcao vy m, ()
dYs _ 9n Ry my
R -M—PRF - T,--mj (A.20)
dYy _

i Rp (A.21)

v, _ Qi+Q2-Qr
Mco, / Ts / T m,
+ R Cpo,dT+ R C d7 | —— A.22
( Weoo 2 ) P0,dT + Rw # PHI04T | T (A.22)
Boundary conditions:
Xi(z=0)=X1o, Xzi(z=0)=X2, Xa(:=0)=x3n,
Y,(z=0)=Ysy, Yi(z=1ztot)=Y1o, Ya(z=ztot)=Y2,

Ya(z = ztot) = Y3s, Ya(z=ztot)=Y4o, Y,(z=ztot)=Ygo (A.23)

Table A.2: Differential energy and mass balances for the lime kiln in steady
state.
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A, = x4, Q1 = Aihy(T, -T.)
A, = ;‘-E:: Q: = A2h2(Tg _Ts)
A; = :rrdz(l -— -—') Qs = Aaka(Tw - T,)
Az = di sm(‘:r ) Q4 == A4h4(Tw = Twp)
Ay = 1rdz-—36—3- Qs = Ashs(Tup, —Ta)
Ay = I*Ei:d' Q1 = Qs+Q
As = =do Qs = Qs

Cpn, . YiCroy Y:CchzTYsCPH;a Y,Cpp
Cp, = e +Y:C;’?+Ya+;:yao = x10°
Cpi = a;i+bT+ct?+dit?
Kp = Acezp(-AEp/RT,)
KW = cha:p( AwaRT,)
by = fi+5.73x 10 %,e,(T +T;T +T,T? + T3)
By = fo4 5.3 x 1078, (TS + TET, + T, T2 + T3)
hy = f3+573x 10-2eye,(T2 + T2T,, + T,T2 + T%)
h" = o--d:
hs = fo+578 x 10-eu(T3, + T5,Ta + T2 + T3)
mb = "'1+xzn_ozn‘+x t.'.

Zmet M, 4
My = W;}: EMmet = lmclMCH‘,+2ctMCQ§f+zperC.‘3H.
ne = .
QW == RWAHW ZMet = ImuMcH‘+l¢:'bfcc;21::s+2poyMcaﬂr.
Qp = RpAHc y
- - ZpropMCy Hy

QF — RFAHFW;;. ZMprop= zmetMci,tzesMc, Hg +2propMcy Hy
Rp = KpX;
Rr = Y AHF == zmmctAHfmet i 5 zmclAcht'l'

I—2Is

+  zmypep AH f prop
p — [ Ewif X320l
W =\ 10KwX; if X3 < 0.1

Bl T~
v, = 00547395
P - 1+Y1-LY1+Y:+Y1 Ny X 103

Flﬁ+ﬂoz nco, +imo FL
W, = (1+X572+Xa)Ws W, = Wu(1+Yi+%+Y:+Y)

Table A.3: Additional relationships for the lime kiln models.
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Notation

Ay = Area of contact gas-wall per unit length of kiln (m?/m)

Az = Area of contact gas-solid per unit length of kiln (m?/m)
As = Area of contact solid-wall per unit length of kiln (m?/m)
Ay = Area for heat transfer across wall per unit length of kiln (m?/m)
As = Area of contact outer wall - ambient air per unit length of kiln (m?/m)
Ac = Arrhenius factor for the decomposition reaction (s~!)

A, = Cross sectional area of the kiln occupied by solids (m?)

A = Cross sectional area of the kiln occupied by gas (m?)

Aw = Arrhenius factor for the evaporation of water (s~})

Cp, = Heat capacity of the gas phase (J/KgK)

Cpi = Heat capacity of gas component i (J/molK)

Cp, = Heat capacity of the solids phase (J/KgK)

di = Inner diameter of the kiln (m)

d; = Inner diameter of the kiln in zone 1 (m)

dp = Inner diameter of the kiln in zone 2 (m)

d3 = Inner diameter of the kiln in zone 3 (m)

do = Outer diameter of the kiln (m)

g = Gas emissivity factor

&, = Solids emissivity factor

ey = Inner wall emissivity factor

Cup = Outer wall emissivity factor

h = Parameter in expression for ky (J/sm?K)

fa = Parameter in expression for hy (J/sm?K)

fa = Parameter in expression for h3 (J/sm?K)

fs = Parameter in expression for hs (J/sm?K)

hy = Heat transfer coefficient gas-wall (J/sm?K)

ha = Heat transfer coefficient gas-solid (J/sm?K)

hs = Heat transfer coefficient solid-wall (J/sm?K)

hy = Heat transfer coefficient inner-outer wall (J/sm?K)

hs = Heat transfer coefficient outer wall - ambient air (J/sm?K)
K = Thermal conductivity of kiln wall (J/smK)

Kp = Kinetic parameter for the decomposition reaction (s~?!)
Kw = Kinetic parameter for the evaporation of water from the solids phase (s~!)
mp = Mass of burden per unit length of kiln (Kg/m)

m, = Mass of N; / unit length of kiln (Kg/m)

m,nandp = Parameters of the general formula for fuel Crn H,0,

Mcao = Molecular mass of CaO (g/mol)

Mco, = Molecular mass of CO; (g/mol)

Mcy, = Molecular mass of CHy4 (g/mol)

Me,u, = Molecular mass of C3Hg (g/mol)

Mc,n, = Molecular mass of C3Hj (g/mol)

Mu,0 = Molecular mass of H30 (g/mol)

My, = Molecular mass of N3 (g/mol)

Mo, = Molecular Mass of O; (g/mol)

Mp = Molecular mass of fuel (g/mol)

npoints = Number of points where the gas and solids profiles are stored
ny = Number of moles per m® (mol/m?)

n, = Rotation speed of kiln (Rpm)

in the steady state model
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Xlim X2a'n| X3in
X1g,X20,X30

Ys

"

Yz

Ys

Yy

Yl

Y5in,Y lin,
Y2im Yal'rn
Y4i'ru Ygl'n
YSo, Yla,
Y 2,Y 30,
Y40,Yg0

(LI I | € (£ (O I |

1l I mwuwnuwmwnpuwnn

(LI | O I { I

Atmospheric Pressure (Pa)

Heat transferred from gas to wall (J/ms)

Heat transferred from gas to solids (J/ms)

Heat transferred from wall to solids (J/ms)

Heat transferred from inner to outer wall (J/m/s)
Heat lost to the surroundings (ambient air) (J/ms)
Heat consumed by the decomposition reaction (J/Kgs)
Heat generated by the combustion of fuel (J/ms)
Heat consumed by the evaporation of water (J/Kgs)
Perfect gas constant (J/molK)

Rate of decomposition reaction (Kg/Kgs)

Rate of the evaporation of water (Kg/Kgs)

Rate of the combustion of fuel (Kg/Kgm)
Inclination of the kiln (%)

Time (s)

Ambient temperature (K)

Gas temperature (K)

Solids temperature (K)

Adimensionalization constant for the gas temperature (K)
Adimensionalization constant for the solids temperature (K)

Inner wall temperature (K)

Outer wall temperature (K)

Solids convection velocity (m/s)

Gas convection velocity (m/s)

Kg free CaO/Kg burden (Kg/Kg)
(burden = free CaO + combined CaO)
Kg combined CaO/Kg burden (Kg/Kg)
Kg H30 in solids phase /K g burden (Kg/Kg)
Initial conditions for X;, X2 and X3
Boundary conditions for X;, X3 and X3
Ts/T,0 (K/K)

Kg O2/KgN2 in gas stream

Kg CO2/KgN2 in gas stream

Kg H20/KgN2 in gas stream

Kg Fuel /KgN?2 in gas stream

Tg/Tg

Initial conditions for Y;, Y}, Ys,
Ys,Yq, and 1",

Boundary conditions for Y,, Y],
Y2,Ys, Y4 and Y] .

Burden mass flowrate (Kg/s)

Total solids mass flowrate (Kg/s)
Total gas mass flowrate (Kg/s)
Nitrogen mass flowrate (Kg/s)
Distance from solids feed end (m)
Location where refractory zone 1 ends
(measured from solids feed end) (m)
Location where refractory zone 2 ends
(measured from solids feed end) (m)
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Zet
Zmet
Zprop
ZMmet
zm;f
2Mprop
Ztot

z5

i nuwnnwnan

Molar fraction of ethane in fuel

Molar fraction of methane in fuel

Molar fraction of propane in fuel

Mass fraction of methane in fuel

Mass fraction of ethane in fuel

Mass fraction of propane in fuel

Total length of kiln (m)

Start of flame (distance from solids feed end) (m)

Greek Letters

AEp

AEw

AHe

AHp

AH fret

AH fes

AHyrep
Hw

Az

Ps

Ps

[}

¢

wmnmwmnuwnnngmn

Activation energy for the decomposition reaction (J/mol)
Activation energy for the evaporation of water (J/mol)
Heat of reaction for the decomposition reaction (J/Kg)
Heat of the combustion of fuel (J/Kg)

Combustion heat of methane (J/Kg)

Combustion heat of ethane (J/Kg)

Combustion heat of propane (J/Kg)

Latent heat of vaporization of water (J/Kg)

Distance between points in the steady state model numerical resolution (m)
Density of the gas phase (Kg/m?)

Density of the solids phase (Kg/m?)

Fill angle of the solids (°)

Angle of repose of solids (°)
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Appendix B

The Causticizing Battery
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B.1 Introduction

The slaking and causticizing operations are a fundamental part of the chemical
recovery process in kraft paper pulp mills. They are carried out in a series of
continuous stirred tank reactors (see Fig.B.1). The reburned lime from the kiln

Lime
CaO(s) @it
Green | [= =) =) (= =) Lime Mud
Liquor  [siaker/ Caust.1 | Coust2 | Caust3 >
» Classifier
Na €O (aq) NaOH (aq) +
2 3 CaGC_)‘ (s)

Figure B.1: Schematic representation of the causticizing battery.

is conveyed into the slaker at a rate adjusted to suit the amount of sodium
carbonate present in the green liquor. The main chemical reactions that take
place are the reaction of quicklime with water to form calcium hydroxide (slaking
reaction)

Ca0(s) + Ha0(1) 3 Ca(OHYa(s) + (~AH,) (B.1)

and the reaction of calcium hydroxide with sodium carbonate to form sodium
hydroxide (causticizing reaction):

R,
Ry
Although the values for the heat of reaction found in the literature differ from
author to author (Kojo, 1979b; Mehra et al., 1985; Dorris and Allen, 1986;
Leiviska et al., 1987) the slaking reaction is highly exothermic and the causti-
cizing reaction is normally taken to be nearly athermic. Especially in the slaker,

evaporation of water takes place due to the rise in temperature due to heat
generation, according to

H,0(l) » H,0(g) + (~AH,) (B.3)

Ca(OH);(s) + Na;CO3(aq) T CaCOs(s) + 2NaOH(aq) + (—AH,) (B.2)

No other reactions are considered in this study. In the slaker, both the hy-
dration of calcium oxide and the formation of calcium carbonate take place
simultaneously. Lime can normally be considered totally slaked when it leaves
the slaker, and in most cases only the causticizing reaction takes place in the
causticizing tanks. The lime slurry is classified in the slaker to remove sand,
stone, improperly burned lime and larger particles (grit). Maximum conversion
for the causticizing reaction requires additional agitation of about one and a half
hours after the slaker, and three or four agitated causticizing tanks are generally
employed in series.
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Advanced control systems provide automatic responses to lime quality vari-
ations, changes in green liquor composition and operating rate adjustments.
However, the influence of common disturbances on key measurements must be
understood (Mittet, 1994) and, if possible, quantitatively predicted. Computer
simulation is invaluable for the achievement of both these objectives.

In this study, a microscopic model for the solid particles undergoing the
causticizing reaction was developed and applied to the determination of the
steady state of the causticizing units (Portugal and Pais, 1989; Pais and Por-
tugal, 1994a; Pais and Portugal, 1994b). An approximate pseudo-homogeneous
dynamic model was also developed and implemented for the transient state of
the system (Pais and Portugal, 1994c).

B.2 Formulation of Mathematical Models —
Heterogeneous Approach

B.2.1 Mathematical Model for the Solid Particles

Heterogeneous fluid-solid reactions are usually influenced to a high degree by
heat and mass transfer processes (Doraiswamy and Sharma, 1984). A general
heterogeneous reaction, where reactants and products can be either in the solid
or fluid phases, can be represented by

VAA(f) + vrR(s) = veB(f) + vsS(s) (B.4)

In the case of the causticizing reaction, liquid reactant A corresponds to
C03~, liquid product B to OH~, solid reactant R to Ca(OH); and solid product
S to CaCO;.

The causticizing reaction (Angevine, 1983; Dorris and Allen, 1985; Dorris
and Allen, 1986; Blackwell, 1987) is an example of a non-catalytic fluid-solid re-
action. Two basic types of models have been considered so far for non-catalytic
fluid-solid reactions: the sharp interface model, (SIM) (Yagi and Kunii, 1955,
Levenspiel, 1972) and the homogeneous model. Several extensions to the basic
SIM have been proposed (Park and Levenspiel, 1975; Park and Levenspiel, 1977;
Georgakis et al., 1979; Ranade and Harrison, 1979). In the homogeneous model,
the fluid penetrates deeply into the solid and reaction takes place throughout
the particle. Comparison between these two models has been made by several
authors (Ishida and Wen, 1968; Ramachandran and Doraiswamy, 1982; Do-
raiswamy and Sharma, 1984).

Earlier authors (Rydin, 1978; Kojo, 1979b; Kojo, 1980) suggested dissolution-
reaction-precipitation mechanisms for the slaking and causticizing reactions.
Nowadays, it is generally accepted that they proceed via a heterogeneous mecha-
nism at the solid-liquid interface (Angevine, 1983; Dorris and Allen, 1985; Dorris
and Allen, 1986; Blackwell, 1987; Dorris, 1993). Also, the causticizing reaction
is described as being strongly dependent on internal diffusion limitations. A
study of the mechanism of the slaking reaction has been made by Dutta and
Shirai (1980).
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Figure B.2: Schematic Representation of the SIM model.

No studies have been found in the literature concerning the possibility of
a sharp interface model when the reaction is reversible, which is the case of
the causticizing reaction. An analysis of the applicability of the sharp interface
model to this case is made elsewhere (Pais and Portugal, 1994b; Portugal and
Pais, 1989). It is shown that, under certain circumstances, a sharp interface
may exist for reversible reactions.

In this work, a sharp interface model has been developed for reactions of
the type described by eq.(B.4) for cases (such as most liquid-solid reactions)
where the pseudo-steady approximation is not valid. The model relies on the
assumptions that mass transfer (either through the ash layer or fluid film) is
the limiting step, reversible reaction is instantaneous, and spherical particle is
isothermal. If the rate of both forward and reverse reactions is high compared
to the rate of mass transfer, then chemical equilibrium exists at the reaction
interface. Physical properties of the solid are allowed to be different in the inner
shrinking core (zone 1) and ash layer (zone 2), as well as effective diffusion coef-
ficients for liquid species A and B in both zones. Fig.B.2 represents graphically
the classical SIM pattern, where zone 1 corresponds to the inner shrinking core
and Zone 2 to the ash layer. If the exponents in the equilibrium relationship
are taken to be equal to the stoichiometric coefficients in the reversible reaction,
then the model is described by the set of partial differential equations presented
in Table B.1, where r. represents the position of the reaction interface.

Eqgs.(B.9) and (B.10) state that:

a) for a certain amount of reacted A, a corresponding amount of B is pro-
duced, according to their stoichoimetric relationship;

b) concentrations at the reaction interface obey to the equilibrium relation-
ship.

Together with eq.(B.6), they imply that the rate of advance of the reaction
front is such that the concentrations at the interface, momentarily disturbed by
the diffusion process, return to their equilibrium values.

After the reaction front has reached the center of the particle, only one zone
will remain, where diffusion alone occurs. For numerical purposes, this happens
as soon as r. becomes lower than an arbitrary value so that the two zones still
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aC Dk (8°C 28C
E-2(5+%) (B.5)
O0<r<r(De=De,ce=¢)and r.<r < R(De = Dej,e =¢3),C=Cx,Cs
dr. _ 1 vgp 8&) 304)
a4~ Cgua [&“ ) e T o
Boundary conditions:
ac
5_0 r=0,C=C4,Cs (B.7)
0 ac
K (C°-0C)= De:g r=R,C=C\yCp (B.8)
0Ca 0Ca _ va 0Cg dCp
i w),:, e "57),_. D71 i i T S
r=r.
Cy® _ -
Coa =Kg r=r; (B.10)
Initial conditions:
C=C" t=0,C=C4,Cs (B.11)
re=ri® t=0 (B.12)

Table B.1: Microscopic model for the solid particles in the causticizing tanks.
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remain. When this is the case, then equality of mass fluxes must be specified on
both sides of the interface and egs.(B.9) and (B.10) are replaced by (B.13) and
(B.14):

oCa\ _ 9Ca _

&43 -E'_),;i- = .&41 -Ta-;—)r: r=r. (B.13)
8Cs\ _ dCp _

Deg,y -5-) B Depy — )r._ r=re (B.14)

Table B.1 (cont.): Microscopic model for the solid particles in the causticizing
tanks.

As a consequence, the reaction interface ceases to advance.

The model was solved using orthogonal collocation (Villadsen and Michelsen,
1976) in both the unreacted core and the ash layer, using eqs.(B.9) and (B.10)
or (B.13) and (B.14) to couple the two zones. The resulting set of ODE’s was
then solved by the BDF method using subroutine LSODI (Hindmarsh, 1980).
In order to immobilize the moving boundary, a change of variables similar to
the one used by Stamatakis and Tien (1991) was made. A detailed description
of the solution process is given elsewhere (Pais and Portugal, 1994b). The effect
of reversibility is similar to a decrease in the driving force for diffusion due to
an increase in the concentration of A at the reaction front compared to the
irreversible case.

B.2.2 Steady State Model for the Causticizing Units

Information concerning the behaviour of non-catalytic heterogeneous CSTR’s is
scarce; the exact description of these systems is very complex for steady state
as, even if the concentrations of the liquid phase are constant, the solids phase
will always be in transient state. In this study, the macroscopic model for the
CSTR has been coupled to the microscopic model for the solid particles presented
above. Some of the assumptions used by Tsai and Tsao (1991) are also valid for
this model:

— fluid is perfectly mixed and the solid is homogeneously suspended so that
there are no concentration gradients in the bulk liquid;

— system is isothermal.

However, in the case under study the concentration at the surface of a certain
particle is a function of both its age ¢ and diameter D (R = D/2) and therefore
there are concentration differences at the surfaces of the solid particles. If the
residence time distribution of the solid particles in the reactor is given by e(t),
and the distribution of diameters in the solids feed is given by f(D), the in-
finitesimal number of particles of age ¢ and diameter D (per slurry unit volume)
is Eﬁ((géﬁ)@d}? dt. If the particles are spherical, each has an outer superficial area

2
of 47 (%-)2. The rate of disappearance of reactant A from the bulk liquid per
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slurry unit volume, here designated by rg4, is thus

400 p4o0
ra= [ [ 6e(t) 5/(D)K1A(C4 — Caren(D,1))dD dt (B.15)

Although ry4 is in fact a mass transfer rate, it will henceforth be referred to as
the reaction rate, since for practical purposes it represents an apparent reaction
rate. For liquid-phase product B we have (rg < 0)

= [ [ 6e(t) 5 f(D)K1y(CY ~ Cpen(D,0))dD e (B16)

If the CSTR is assumed to be ideally mixed, and supposing that the residence
time distribution is similar in both phases, which is a reasonable assumption for
the causticizing system (Hypponen and Luukko, 1984), we have e(t) = 38-%!.

In steady state, then

Q(l=a)Ci - Q(1 —a)Cl =1,V (B.17)
and similarly for product B,
Q1 —a)Ci - Q1 —a)Cy =rgV (B.18)

Equations (B.5-B.8), (B.9-B.10) or (B.13-B.14), and (B.15-B.18) must be
solved simultaneously in order to determine C§ and C$, the steady state bulk
concentrations of the liquid phase of the reactor. D is normally used, rather
than R, in size distribution functions, explaining its use here. The full set of
equations that describe the particles must be solved for all different combinations
of ages and diameters (theoretically, from D =0 to D = +4c0 and from ¢ = 0 to
t = 400, although in practice only limited ranges need be considered).

After the solution is found, the mean volumetric solids conversion can be
readily evaluated (Levenspiel, 1972):

+oo0 p4oo
T= fm i ~ e(t)f(D)z(D, 1)dD dt (B.19)

A detailed description of the iterative procedure used to solve the equa-
tions presented here is given elsewhere (Pais and Portugal, 1994a), as well as a
study of the effect of variation of the parameters that describe the model. This
model makes it possible to evaluate the steady state concentrations for two-
phase continuous stirred tank reactors, based solely on the characteristics of the
particles and operational parameters. However, the computational solution is
highly time-consuming due to the very high number of discretization points for
the residence time distribution that must be used (for some cases tried, the order
of magnitude was of hundreds of thousands).
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Notation

c = Concentration (mol/m? liquid) except C}p (mol/m? solid)
D = Particle diameter (D = 2R) (m)
D = Effective diffusion coefficient (m?/s)
e(t) = Residence time distribution function
E(t) = Cumulative residence time function
f(D) = Diameter distribution function
Kg = Equilibrium constant ((mol/m3)"2 /(mol/m3)"4)
Ki = Mass transfer coefficient (m/s)
r = Spatial radial coordinate (m) (except r4, rp and r¢)
re = Location of the reaction front (m)
rA = Rate of disappearance of A from the bulk liquid
referred to unit volume of slurry (mol/m?3s)
rB = Rate of disappearance of B from the bulk liquid
referred to unit volume of slurry (mol/m3s)
R = Outer radius of the particle (m)
t = Age of the particle (s)
z = Volumetric conversion of particle
z = Mean volumetric conversion of particles inside the reactor

Greek letters

a = Volumetric fraction of solids inside reactor (equal,
in steady state, to the fraction in the feed slurry)

€ = Porosity of the particle

v = Stoichiometric coefficient in reaction
Superscripts

i = Referred to the inlet of the reactor

in = Referred to initial conditions

0 = Referred to bulk concentration
Subscripts

A = Referred to species A

B = Referred to species B

¢ = Referred to the reaction front

R = Referred to species R

S = Referred to species S

1 = Referred to inner zone (unreacted core of particle)

2 = Referred to outer zone (ash layer of particle)

B.3 Dynamic Model for the Slaking and Caus-
ticizing Units — Pseudo-homogeneous Ap-
proach

In recent years, a considerable number of experimental studies have been carried
out in order to determine the kinetic laws that govern the slaking and causticizing
reactions (Rydin, 1978; Turc et al., 1982; Lindberg and Ulmgren, 1986; Dotson
and Krishnagopalan, 1990). The type of lime has a determinant influence on
the reaction rates, giving rise to different values for the Arrhenius constants
and activation energies. Experimental studies have also obtained values and
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Solution containing Na;CO3 | Synthetic green liquor
only initially

In(ky) | =32 +4.25 ~319 1 6.66
In(k) | —%3% - 8.30 389 725

Table B.2: Kinetic parameters for the causticizing reaction.
(Dotson and Krishnagopalan, 1990).

correlations for the apparent equilibrium constant as a function of concentration
(Lindberg and Ulmgren, 1983; Lindberg and Ulmgren, 1986; Dorris, 1990).

In this study, the rate of reaction for the slaking reaction was assumed to be
given by the following expression (Rydin, 1978; Turc et al., 1982):

RCGO = "'leCaO (B.QO)
where (Turc et al., 1982):

In(60k;) = _?_65_5_ +19.72 (90% of causticizable CaQ) (B.21)

(The factor 60 is necessary to convert k,, originally expressed in min~?, to s71).
The kinetic expression used for the rate of the causticizing reaction was
(Dotson and Krishnagopalan, 1990):

RNa;co; = [Nay;COs), (Kj[Na;CO5* — K[NaOH]?) (B.22)

where [Na;C03), is the initial sodium carbonate concentration of green liquor.
Optimal adjustment was found to correspond to @ = 1 and b = 3. This expres-
sion corresponds to R; = [Na;C0;),k53[NaCO;3)° and

R3 = [Na;COs),K[NaOH)}. [Na;CO;) and [NaOH] are expressed in gNa;O/1.

In this work, exps.(B.20) and (B.21) were used for the evaluation of the rate
of the slaking reaction. Exp.(B.22), together with the parameters obtained by
Dotson and Krishnagopalan (1990) (see Table B.2) for synthetic green liquor,
were used for the evaluation of the rate of the causticizing reaction. Note that
an adequate unit conversion (to S.I. units) must be done before k} and k} can
be used in the model.

The model for the slaking and causticizing units is based on the model pro-
posed by Galtung and Williams (1969), although these authors presented no
simulation results. Jacobi and Williams (1973a, 1973b) later chose not to use
the Galtung and Williams model due to its complexity and used a more ap-
proximate model. All concentrations are related to the slurry unit volume. The
‘equations that describe the behaviour of the slaker are presented in Table B.3.

Note that -RGcO = RHQO == R], Rco; = .Rz - Rs, ROH" = 2(R3 a Rg),
Rcacos, = Rs — R; and Reeony, = —Ri + R2 — Rs. Similar equations hold
for the causticizing tanks, with the relevant changes, and will not be repeated:
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dViCoo3- |

—ar - =%Ceor-, =~ ACeot-, = Roo-
d[wc(;(:H-I] = Q.Con-o, — Q1Con-1 = Ro-11
d[ViCH,0,
= dfm 1. QoCr,0, — QiCH,0y = Ru,0,Vi = Evario,
d[ViCca
d{ViCca 2
i cdt(OH} ] = ~Q1Cca(0H)2y — RCG(C’":)IVI
d[\iC
[ 1 j:cosll - FC«C’O;(I — ﬁ) — QlCCGCOHI - RC&COuV}I.
d‘/l PMCGO PMCaCG;
— =Qo+ Fcao(l = B)—— + Fca 1- B
i = Qo+ Feao(l = A)——222 + Fouco,(1 - f)=— 22
=Q1 = Evinos Pnfoo
d[W\WT;
oo AT _ 0 CpopeTs +

dt
+FC'aOCpC'nOPMCaOTC¢O + FCaCO;CPC'aCO; PMC’aCO,TC" s

—BFca0Cpceo PMcaoT = BFcacosCpPcacos PMcaco,T1 =
—(RjAH, + (Rz - R3)AH )W - Evy,0,AH, -
—Evy20Cpa,0PMi, 0Ty = QiCpipnTh = 1

Initial conditions:

Ccog- l(t =0) = f:'.'no;' 1
Con-1(t=0) = Cgy-y
CH,0,(t=0) = C.I'?,O]
Ccaso:(t = 0) Cg:o:
Ccatomy,(t=0) = Cg‘a(om,l
Ccacos(t=0) = CCucos,
Vi(t = 0) yin
Tit=0) = T

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)
(B.33)
(B.34)
(B.35)
(B.36)

(B.37)
(B.38)
(B.39)

Table B.3: Pseudo-homogeneous model for the slaking and causticizing tanks.
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here (Fca0 and Fg,co, Will be replaced by the incoming flow from the previous
tank).

'I?he specific system considered here is composed of one slaker and three
causticizers and removal of grit takes place in the slaker only.

Each tank consists of a set of eight variables dependent on time. All the
differential equations were integrated simultaneously which corresponds to a set
of thirty two ODE’s. The equations were integrated using the LSODI integrator
(Hindmarsh, 1980).

B.3.1 Additional Assumptions
Evaluation of the Amount of Evaporated Water

If the temperature reaches the boiling point, an estimate for the amount of
vaporized water can be made assuming that the boiling temperature is never
exceeded.

Taking egs.(B.29) and (B.30), and assuming that 4It = 0, it is possible
to replace the expression for 42 in eq.(B.30) and obtain an algebraic equation
which involves the amount of evaporated water, Evy,0, so that the temperature
balance yields a variation of zero in Tj. Solving for the amount of water actually
evaporated, we obtain

Ev = 1
H;O PM
( At PHa0 PH, Ha( l)

[(FeaoCpcao PMcao + FoacosCpoaco; PMcacos )(Tcao — BTh)

PM¢, PM¢,
—p;CplTl(l — ﬂ) (FCaO L + FCcC()a_"EE"a') 2 = QopoCPaTo - q1
PCa0 PCaCO,
‘+’(Rl AH: + (RZ - Rs)AHc)Vl -_ Qopl CPITI] (B40)

Application of exp.(B.40) to evaluate Evy,0o corresponds to the occurrence of
boil-over. If Ty < T}, however, the temperature of the liquid is below boiling
point. In this case, Evy,o can be evaluated by

EUH;O = AgK, (P;ho o PH,O) (B.41)

where Py, is the average water vapour pressure in the air volume of the vessel
and Py o is the water vapour pressure at the surface of the liquid. For a limited
temperature range, Pf,o can be approximated as a function of temperature
(Perry and Chilton, 1973).

Heat Losses to the Surroundings

In a similar way, the heat losses to the atmosphere ¢ can be evaluated assuming
losses by convection only:

q = Ah(T - T,) (B.42)
Both k and K can be estimated for normal operating conditions (Welty, 1969).
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Level Control

Proportional-only level controllers were included in the the slaker and causticiz-
ing tank models, according to:

Qi = Q0; + K(V; = V0;) (B.43)
where V0 is the desired set-point for the volume of slurry and K is a propor-
tionality constant.

Grit Losses

Grit losses were assumed to be a fraction of the solids feed, that is,

G = B(Fcao + Feaco,) (B.44)

Liquor losses due to the removal of grit are not considered.

Estimation of Slurry Heat Capacity and Density

The heat capacity and density of the slurry in the causticizing tanks are consid-
ered to be equal, at any time, to those in the slaker. However, to compensate for
changes in the green liquor concentration and solids feed rate, the heat capacity
and density of the slurry in the slaker are recalculated at the beginning of each
integration.

If m,q is the mass of solids per unit volume of slurry,

Myo = Ccao PMcao + Cea(on), PMca(on), + Ceacos PMcaco, (B.45)

and V,, is the volume of solids per unit volume of slurry, i.e.,

Cca0 PMcao + Cca(on), PMca(on), + Ccaco, PMcaco,

el PCa0 PCa(OH), PCacO; (But6)
then
Pausp = Mot + (1 = Viot) i (B.47)
and
CPsusp = 1 (Cca0PMcaoCpcaot

myo + (1 = V:ol)ﬂl
+ Ceo(on), PMca(om),Cpca(ony, + Coacos PMcaco, Cocacos+
+ (1= Via)piCpi) (B.48)

In the slaker, p, = pi, p1 = pasusp, Cpo = Cp; and Cpy = Cp,u,p. Values for
pi as a function of concentration and temperature can be obtained from Kojo
(1979b). Cp, is considered to be constant.

The dynamic response of the tanks to start-up conditions and several distur-
bances is presented elsewhere (Pais and Portugal, 1994c).
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Notation

A = Area(m?)
C = Concentration (mol/m3, unless otherwise specified)
Cp = Heat capacity (J/KgK)
Ev = Rate of evaporation of water (mol/s)
F = Molar flowrate (mol/s)
G = Flowrate of grit (mol/s)
h = Heat transfer coefficient (J/m?sK )
[] = Concentration of species { (9Na,0/l)
kE; = Reaction rate constant for Ry (1/s)
% = Reaction rate constant for R3 (I/gNa;0min)
Ey = Reaction rate constant for R3 ((I/gNa;0)%/min)
K = Constant in proportional level controller
K, = Mass transfer coefficient for the gas phase (m/s)
m = Mass per unit volume (Kg/m®)
P = Partial pressure (Pa)
PM = Molecular weight (Kg/mol)
q = Heat losses to the surroundings (J/s)
Q@ = Volumetric flowrate (m®/s)
Q0 = Set-point for volumetric flowrate (m?/s)
R = Rate of slaking reaction (mol/m?s)
Ra = Rate of forward causticizing reaction (mol/m®s)
R; = Rate of reverse causticizing reaction (mol/m?%s)
R = Universal gas constant (J/molK)
t = Time (s)
T = Temperature (K)
T = Ambient temperature (K)
V. = Volume(m?)
V0 = Set-point for volume of reacting slurry (m?)
Greek Letters
B = Fraction of solids feed to the slaker removed as grit
AH = Enthalpy of reaction or vaporization (J/mol)
p = Density (Kg/m3)
Superscripts
in = Referred to initial conditions in the slaker (¢ = 0)
¢+ = Referred to the gas phase in equilibrium with the liquid phase
(at free surface of slurry)
Subscripts
b = Referred to boiling temperature
Ca0O = Referred to chemical species CaO
Ca(OH); = Referred to chemical species Ca(OH),
CaCO5 = Referred to chemical species CaCO3
Cco;- = Referred to chemical species CO2~
H,0 = Referred to chemical species H,0
OH~- = Referred to chemical species OH~
c = Referred to the causticizing reaction
l = Referred to the liquor
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lat

sol
susp

LT T I

Referred to the lateral area of the tank

Referred to inlet to slaker

Referred to the slaking reaction

Referred to the total amount of solids present

Referred to slurry

Referred to the surface of the slurry (on top of the tank)
Referred to vaporization of water

Referred to slaker (except R;)
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Appendix C
The White Liquor Clarifier

233



C.1 Introduction

Continuous clarification and thickening of solid-liquid slurries by gravity is an
essential unit operation in many processes. In the chemical recovery cycle, the
slurry from the causticizing units (lime mud) contains solids which must be
removed from the white liquor before it is used for cooking the wood. The clari-
fication of the white liquor is normally carried out in traditional gravity settlers
(see Fig.C.1) Although design procedures for steady state operation are well

- R Overflow
L —*‘
Feed Clarified White
— Liquor
Lime =
Mud JY Rake

|

~

Underflow
] ———

- Thickened
Lime Mud

Figure C.1: Schematic representation of the conventional gravity settler.

established, the transient operation of the sedimentation process is not fully
understood yet. Several attempts at dynamic simulation of continuous sedi-
mentation have been reported (Alkema, 1971; Chi, 1974; Tracy and Keinath,
1974). All such simulation models are based on the known steady state be-
haviour of settling units, in which only discrete concentrations can exist, defined
by the limiting fluz for the system. Petty (1975) has obtained exact solutions
to the equations that describe the transient state for certain feed and underflow
changes, finding that the discrete-layer solution can include unallowable shock
waves in the system. The correct solution may contain zones where the vari-
ation of the concentration with height is continuous; such solutions are known
as rarefaction waves for analogous problems in gas dynamics. In some cases,
the process dynamics differ markedly from prediction of models which admit
unallowable discontinuities (Attir et al., 1976). The possibility of the existence
of zones where the variation of the concentration with height is continuous has
therefore been accounted for in the model used in this work.

C.2 Formulation of Mathematical Model

The model used was based on the models proposed by Alkema (1971) and Chi
(1974). It assumes the settler to be composed of four zones (bottom zone, Zone
1, Zone 2 and clarification zone) (see Fig.C.2). It is based on the following
assumptions (Chi, 1974):

% solids flux theory is valid;

* the settler can be modelled as a series of completely mixed tanks;
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Aston University

Hustration removed for copyright restrictions

Figure C.2: Zones considered in the model for the gravity settler.
(From Chi, 1974).

* the solids concentration is uniform within each layer;
* no chemical reactions occur in the settler;

* a higher concentration layer cannot exist above a lower concentration layer at any
instant.

The second and third assumptions imply that there are finite discontinuities
in the solids concentration at certain levels. As shown by Kynch (1952), in
this case the differential equation of continuity no longer applies and must be
replaced by a mass balance around the discontinuity (Shannon et al., 1963). The
propagation velocity of the discontinuity between concentrations C; and Cjyq,
d;, is given by:

Gi — Gin
Ci—Cin
where the solids flux G is defined as

G=C(u+v) (C.2)

and u= %4,
The solids flux in the clarification zone is given by

Gc = C(ua " V) (0.3)

where u, = —%

Since it has been assumed that the depth of the bottom zone and of the
clarification zone remain constant, and that the feed well is at a fixed position,
it follows that:

60 = 61 = 6N+M+1 = 5.-_: =0 (04)

&= i=2, N+ M (C.1)
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The depth of layer i, h;, changes with rate

dh;

?= i-1—6 t=1,N+M+1 (C.5)

A mass balance around layer i yields

Z(5iC) = (Gens = Cinai) — (Gi — Cifica) (C.6)
Substitution of eq.(C.5) in eq.(C.6) gives

h,-‘%fi = (Gis1 = G) = 6(Cisr —C)) i=1,N+M+1 (.7)
From eqs.(C.1), (C.4), (C.5) and (C.7) it follows that:

ddct" = G’};G‘ (C.8)

h,-%:o G0 N M (C.9)
and

4N+ _ { (Gen — GNnymua)[bngmn M f 0 (C.10)

dt 0 M=0

where the solids flux into the thickening zones, Gy, is given by

The equation that governs the concentration in the clarification zone is ob-
tained making a mass balance:

fl_c'é__ .lGaI/hc G¢>0and G,%O C.12
dt | (IGs| = |Gc|)/he otherwise (C.12)
where
G, = ~(Gen — Gn1) Gn1 < Gopand M =0 (C.13)
0 otherwise

A flux into the clarification zone will take place only when an overloaded
condition occurs, i.e., when the sludge blanket reaches the level of the feed well,
thus M = 0, and the solids feed flux to the clarifier exceeds the maximum
handling capacity of the settler, thus Giyx > Gn41. The solids concentrations
of all layers in Zone 2, except possibly the top layer, and in Zone 1, are time
invariant. The depth of each layer will however change with a rate given by
eq.(C.5). If Zone 2 exists, i.e. when hyyap41 # 0 and M # 0, then the solids
concentration of the top layer varies with time according to eq.(C.10).
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During a transient run, both the solids concentration and flowrate of the feed
can change, as well as the underflow rate. New layers may form and existing
layers disappear. The conditions for the appearance and disappearance of layers

are as follows:

* When the underflow rate is changed, a new layer of infinitesimal depth having a solids
concentration equal to the limiting concentration Cp;n, corresponding to the new underflow
velocity, forms somewhere in Zone 1. This new layer will develop in depth in time if the solids
flux coming into it from the layer above is greater than its own flux, the limiting flux Gpm;n.
When this occurs, N is increased by 1.

* At any instant, if Gy is less than Gy 4ar41, which may happen if the feed condition
and/or the underflow rate are changed, a new top layer will form in Zone 2, thus M = M +1.
The concentration of this new layer is that concentration which yields G5 at the particular
u value at this instant, i.e., Cya. The depth of this layer changes according to eq.(C.5). On
the contrary, no top layer will form in Zone 2 if Gy > Gn4+m+1. Instead, the concentration
of the layer imediately below the feed well will change accordingly to eq.(C.10).

* The condition under which a layer i will disappear is simply that h;(t) < 0 or Ci_; < Ci.
In the latter case, h;_; is replaced by (h;—1 + h;) if h; > 0.

The dynamic equation for continuous sedimentation has been solved for step
changes in the feed flux and underflow rate by Petty (1975) using the method
of characteristics. If a comparison is made between the results of the model
proposed by Chi (1974) and the solution obtained by Petty is made, striking
differences can be observed. The simulation models fail because they consider
only discontinuous, layered solutions, and solutions of this type must sometimes
be excluded because of a condition known as Laz’s generalized entropy condi-
tion. A discontinuity between two adjacent layers is not allowed if either of the
following two conditions is satisfied (Attir et al., 1976):

dG; _ Git1(Ciy1) — Gi(Cy)
aC. > G =0, (C.14)
dG; _ Gi(C:) = Gi-1(Cixy)
aC. < 6= G (C.15)

If condition (C.14) is violated, then the discontinuity between layers i and
t + 1 is an unallowed shock. The exact solution requires continuous variation
of concentration with height in this region (a rarefaction wave); for simulation
purposes, a series of discrete layers which span the concentration range may be
inserted. Similarly, if condition (C.15) is violated then the discontinuity between
layers ¢ and ¢ — 1 is an unallowed shock. The layers adjacent to the clarification
and compaction zones are always retained, even if the concentration difference
from an adjacent layer is less than the preset tolerance.

The system of ODE’s was solved using subroutine LSODI (Hindmarsh, 1980).
Because the solution at certain depths can be either continuous or discrete, de-
pending on the verification of eqs(C.14) and (C.15), and, moreover, layers may
appear or disappear, the number of dependent variables is not fixed. The vari-
ables must be re-ordered and re-numbered when layers are inserted or deleted,
which leads to the need to reset the numerical process.
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C.3 Settling Velocity

A very important parameter in either steady or transient state calculations is the
solids settling velocity (v). In dilute slurries, the settling velocity of a particle
can be assumed to be independent of the presence of other particles, according
to Stokes’ Law:
o (pa = PI)QD:
v = 18s (C.16)

The settling velocity of the lime mud has been recognized to depend on
a large number of factors such as the causticizing time (Uronen et al., 1976,
Bryce, 1980), the causticizing temperature (Olsen and Direnga, 1941; Uronen
et al., 1976; Uronen and Aurasmaa, 1979; Bryce, 1980; Mehra et al., 1985;
Olsen and Direnga, 1941), the ratio between the flowrate of lime feed and green
liquor to the slaker (Uronen and Aurasmaa, 1979; Bryce, 1980; Kojo, 1980), the
green liquor concentration (Uronen et al., 1976; Campbell, 1981), the mixing
conditions during slaking and causticizing (Olsen and Direnga, 1941; Dorris and
Allen, 1987; Theliander and Grén, 1987), the calcination time (Uronen et al.,
1976), the calcination temperature (Uronen et al., 1976), the size of the calcium
carbonate particles (Uronen et al., 1976) and the exposure of lime to air before
slaking (Olsen and Direnga, 1941; Uronen et al., 1976). The effect of each factor
may be more or less obvious, but they all contribute to modifications in the
chemical or physical properties of the solids particles and therefore to different
behaviours in sedimentation. The unhindered settling velocity depends therefore
on so many factors that it must be individually and experimentally adjusted for
each specific case.

For concentrated slurries (hindered settling), moreover, the settling velocity
depends on the local concentration C, i.e., v = v(C). A large number of corre-
lations has been found in the literature that attempts to describe the functional
form of the settling velocity.

It is accepted (Shannon et al., 1963) that the sedimentation velocity for rigid
spheres is given by Richardson and Zaki’s (1954) equation:

V _ _4ss
B (C.17)
Scott (1968) has analysed several experimental results (Tory, 1961; Comings,
1940; Hassett, 1964-65) for the sedimentation of calcium carbonate slurries,
finding important discrepancies between them. Scott concluded that calcium
carbonate slurries cannot consist of individually dispersed calcium carbonate
particles. If the particles are assumed to be aggregated into sedimentation units
with properties similar to flocs, the discrepancies can be explained. Michaels and
Bolger (1962) have shown that such units immobilize a relatively large volume of
water thus reducing the apparent settling velocity. The degree of aggregation,
which determines the settling velocity of the slurry, is unknown and must be
experimentally determined.
Other authors determined the settling velocity dependency with concentra-
tion by adjusting the sedimentation velocity curve, usually determined by ex-
perimental batch tests, to an interpolation function. This approach was used by
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Chi (1974) and Jacobi and Williams (1973a, b). Jacobi and Williams, based on
the results presented by Kinzner (1968), determined vy by an empirical regres-
sion correlation and then formulated the dependency of the hindered settling
velocity with concentration by adjusting a piecewise linear appproximation to
experimental data (approach similar to Chi’s).

Another approach uses the values of the estimated slurry density and vis-
cosity instead of the values for the liquid in Stokes’ Law expression (Foust et
al., 1980). For the specific case under study, the viscosity and density of the
white liquor can be estimated using the correlations presented by Kojo (1979b,
c). This was the approach used in this study.

The effective viscosity of the slurry can be estimated by

BB _ 10!.82(1—.%’)
2= (C.18)

where X is the volume fraction of liquid in the slurry, ie., X =1 - £,
Similarly, the density of the slurry can be calculated from the den51t1es of
the liquid and the solids, and the solids concentration:

pp=C+Xp (C.19)

This leads to the following expression for the dependency of the solids settling
velocity with concentration:

_(ps = (C+ Xp))gD;X
- 18u101-82(1-%)

(C.20)

As referred to above, the values for the density and viscosity of the liquid
were estimated using the correlations presented by Kojo (1979b, c), and are
taken as the values for the incoming stream from the last causticizer.

Notation

Cross-sectional area (m?)
Solids concentration (Kg/m? slurry)
Average particle diameter (m)
Gravity acceleration (m/s?)
Solids flux (Kg/m?s)

Height of layer (m)

Number of layers in Zone 2
Number of layers in Zone 1
Volumetric flowrate (m?/s)
Underflow velocity (m/s)
Settling velocity of solids (m/s)

Y L LTS

LI | T I I |

Greek Letters

Propagation velocity of concentration discontinuity
Effective porosity of slurry

Viscosity of liquid (Ns/m?)

Density (Kg/m®)

Volume fraction of liquid in slurry (¥ =1— £)

muuwun

}g'btﬂh
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Subscripts

oo

Referred to slurry

Referred to clarification zone
Referred to feed

Referred to layer i

Referred to liquid

Referred to minimum flux for specified operating conditions
Referred to overflow
Referred to solids

Referred to thickening zone
Referred to underflow
Referred to Stokes velocity

240




Appendix D
The Lime Mud Filter
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D.1 Introduction

Liquid filtration is a fundamental unit operation which involves the separa-
tion, removal and collection of a discrete phase of matter existing in suspension
(Cheremisinoff and Azbel, 1983). In the chemical recovery cycle of kraft paper
pulp mills, caustic soda and water removal are essential before the calcination
of the lime mud (Jacobi and Williams, 1973a), and are normally performed in
a vacuum rotary pre-coat filter. This type of filter, where solids are discharged
from the surface of a rotating drum by means of a scraper, air blowback, or a
belt (Uronen, 1985), is essentially continuous. Periodical stops are still however
necessary to clean the filtering medium. Fig.D.1 presents a schematic represen-
tation of a pre-coat filter; for a detailed description of the filtration equipment
used in the industry, see Orr (1977). A fundamental issue is whether the lime

Rotation
Scraper

¢ Slurry Level

Innefective
Formation

Figure D.1: Schematic representation of a rotary drum filter.

mud forms a compressible or a non-compressible cake. In the first case, if an
accurate model is desired, then a set of partial differential equations as proposed
by Stamatakis and Chen (1991) must be solved in order to determine the poros-
ity profile across the cake. This profile can be used to, coupled to integration in
time, determine the overall filtrate flowrate across the filter as the drum turns.
If, on the other hand, the cake formed is incompressible, or if its compressibility
is negligible, then a simplified model can be used in which both the porosity
and the specific resistance of the cake are considered constant. Experimental
data indicate that calcium carbonate slurries exhibit weak compressibility at
low concentrations and appear to be incompressible for higher concentrations
(Rushton and Katsoulas, 1984).
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Figure D.2: Elementary area elements considered in the drum.

D.2 Mathematical Model

The following assumptions are considered in the model for filtration used in this
work:

* flow of filtrate through pores is laminar (large filter areas);

* pressure drop is constant throughout filtration;

* the amount of solids passing through the cake with the filtrate is negligible;

* the resistance of the filter medium is negligible compared to the resistance of the cake.

The basic equation for filtration is (Azbel, 1983)

L ldv_ AP
~Adt u(Rs+R.)

The differential area of the element located at position 8 (see Fig.D.2) is dA =

rLdo.
The amount of filtrate that passes, per second, through the cake element

located at position 6 is

_ rLAP
- #[Ry + R(0)]

Through all the submerged area of the filter, per second, the amount of filtrate
collected is

60 rLAP
v= |, iy + R .

It is now necessary to determine R.(f), since the resistance that the cake opposes
to the filtration process depends on the height of cake formed so far. R.(f) can be
expressed as R.(0) = r,h. where h, is the height of cake formed. Furthermore,
let z, denote the ratio of cake volume to filtrate volume, i.e., z, = ﬁg,ﬁ; this
implies that % = ﬁ‘%ﬂ. If this expression for '% is used in eq.(D.1), then

(D.1)

udA do (D.2)

dh, ZAP

@~ W(Ry o) {0A)
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which upon integration between 0 and ¢, and between 0 and k. (AP, z,, s, Ry
and r, are assumed constant in time) yields

hi =z2,AP
th +I"92 = z t

The relationship between ¢ and 8 is immediate (t = o) so eq.(D.5) is equivalent
to

(D.5)

- 2 QrQ:EAPB %
he = 1 + (R : ) (D.6)

Eq.(D.6) represents the dependency of k. with 8 (or t) and can be used in
eq.(D.3) yielding

rLAP 6 do -
qgine = / el (D.7)
(Rf + Hnip )
If Ry is assumed to be negligible, then upon integration
1
2APn,0,\?
a=rL | ——2 D.8
qfin =7r ( roTofl ) ( )

It is sometimes preferable to use r,, and z,, such that z,, is the mass of solids
deposited in cake per unit volume of filtrate, i.e.,

Cfeed
Ty = c[" e €Cleed (Dg)
1-¢)ps

In this case r,, corresponds to the specific mass cake resistance and is such that
TwZw = ToZo. Eq.(D.8) becomes

1
dv oL (2APn,e,) :

FT = Ftal (D.10)

Furthermore, if the characteristics of the cake are known, it is possible to evaluate
all the volumetric flowrates involved:

dav

9 =—r (D.11)
dv 1

Qousp = 'B_t‘l — ‘tp“‘ = ¢1c-:,: (D.l?)

Cfeed ECfeed ] (D.13)

If drying is assumed to reduce the water in the cake by a fraction of fy,, i.e.,
the amount of water present in the cake per unit volume of cake is £p; f4ry, then
the mass fraction of solids in the lime mud that goes to the kiln is

(l - €)p,

e (1 =€)ps + €pifary {Bi8)
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Mass flowrates, after drying, from the mud filter can be evaluated by simple
mass balances. The model for the lime mud filter used in this work is a very
simplified model, where the dynamics of the filter are neglected (i.e., the filter is
supposed to be in steady state at all times) and factors such as periodical stops
for cleaning, etc. are ignored. Also, the washing stage was not considered and
the model for the drying stage is again a simplified one, and is simulated simply
by reducing the amount of liquid left in the cake by a specified fraction.

Notation
A = Filtration area (m?)
C = Concentration of solids in feed slurry (Kg/m3)
firy = Fraction of water in cake remaining after the drying process
fror = Mass fraction of solids in the lime mud to the kiln
h = Height of cake formed (m)
L = Length of the drum (m)
n, = Rotation speed of drum (rad/s)
P = Pressure (Pa)
q = Volumetric flowrate (m3/s)
r = Radius of the drum (m) (except r, and r,)
To = Specific volumetric cake resistance (m=32)
Yo = Specific mass cake resistance (m/Kg)
R = Resistance to flow (m=1)
t = Time (s)
u = Linear velocity of filtrate through cake (m/s)
4 = Volume of filtrate (m3)
E 3 = Ratio of cake volume to filtrate volume
z, = Ratio of mass of solids in cake to filtrate volume (Kg/m?)

Greek Letters

A = Difference (of pressure)

€ = Porosity of cake

p = Viscosity (Ns/m?)

p = Density (Kg/m®)

§ = Angular coordinate of drum (rad)
Subscripts

c = Referred to cake

f = Referred to filter medium

feed = Referred to feed slurry

filt = Referred to filtrate

l = Referred to liquid

0 = Referred to volume

8 = Referred to solids

susp = Referred to suspension

w = Referred to mass

1 = Referred to end of submersion
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Appendix E
Software Developed

E.1 Installation of the Prototype . . . .. ... ... ... .. .... 247
E.2 XProcSim Directory . . . . . v vt i i it ittt e e 247
E.3 XProcSim/binSubdirectory .. ... ¢ civeeecuiosas 247
E.4 XProcSim/datafiles Subdirectory . . . . .. ... ... ... .. 247
" B8 XProcSim/icons Subdirectory . . i o v s s s e s ws e 247
E.6 XProcSim/include Subdirectory . . ... ...... ... ... 248
E.7 XProcSim/include/adaptors Subdirectory . ........... 248
E.8 XProcSim/include/controllers Subdirectory . . . ... ... ... 248
E.9 XProcSim/include/controllers/chemrec Subdirectory . ... .. 249
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E.1 Installation of the Prototype

In order to install the software developed in this work, download, via anonymous
ftp, the XProc.tar file from the cs.aston.ac.uk site, bg/write.me/fatima directory,
and place it in your home directory. Extract the XProcSim directory and subdi-
rectories with tar xvf XProc.tar; change your working directory to the XProcSim
directory (cd XProcSim) and type make to compile. (A makefile is supplied in
the XProcSim/object_files directory). The final executable will be placed in the
XProcSim/bin directory under the name simul. The PVM software must also
be available and properly installed; please see the PVM 3 User’s Guide and
Reference Manual (Geist et al., 1994) for further instructions.

E.2 XProcSim Directory

total 28

drux====== 9 paisfic cs_rsrch 1536 Jan 24 17:51 .
drux===--= 28 paisfic cs_rsrch 1636 Jan 24 17:33 ..
drux===--= 2 paisfic cs_rsrch 512 Jan 24 17:47 bin
drux===-== 2 paisfic cs_rsrch 512 Jan 13 18:24 data_files
drux==--=-= 2 paisfic cs_rsrch 1536 Jan 13 18:32 icons
drux------ 8 paisfic cs_rsrch 512 Jan 22 16:13 include

-rex--x--x 1 paisfic cs_rsrch 34 Jan 24 17:48 make
drux=-==== 2 paisfic cs_rsrch 1024 Jan 24 1995 object_files
drex===-=-- 2 paisfic cs_rsrch 1636 Jan 24 13:57 result_files
drex=-=-=-=-- 8 paisfic cs_rsrch 6512 Jan 24 17:51 src

E.3 XProcSim/bin Subdirectory

total 3526

drux=====- 2 paisfic cs_rsrch 512 Jan 17 16:46 .
drux====--- 13 paisfic cs_rsrch 1636 Jan 18 13:44 ..
=rux=-=-=-== | paisfic cs_rsrch 255208 Jan 17 16:46 dbat_slave
=rux==~=== 1 palsfic cs_rsrch 374416 Jan 17 16:46 dk_slave
=rux--==== 1 paisfic cs_rsrch 253852 Jan 17 16:46 delc_slave
=rux====-= 1 paisfic cs_rsrch 875540 Jan 17 16:46 simul

E.4 XProcSim/data_files Subdirectory

total 66

drux~==--- 2 paisfic cs_rsrch 512 Jan 13 18:24 .
drex--=---- 9 paisfic cs_rsrch 1636 Jan 24 17:51 ..

bt 1 inecbenes - paisfic cs_rsrch 676 Jan 13 16:02 bat_bar.d
ergeee—ce- paisfic cs_rsrch 323 Jan 13 15:42 bat_line.d
ry====e== paisfic cs_rsrch 439 FNov 13 14:32 chemrec.d
' 1 haean paisfic cs_rsrch 2250 Jul T 1994 dbat.d

=pyrecescs paisfic cs_rsrch 14988 Jun 15 1994 dk.d

palsfic cs_rsrch 444 Nov 14 12:51 dmf.d

paisfic cs_rarch 646 Nov 30 17:44 dwlc.d

paisfic cs_rsrch 340 Jan 5 13:26 kiln_line.d
paisfic cs_.rsrch 4688 Jan 6 16:11 old_kiln_line.d

paisfic cs_rsrch 284 Jun 16 1994 shape

P ——
b 4 Rl O LT
—r~——————

=P =—————
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[P e———

E.5 XProcSim/icons Subdirectory

total 134
drux===--=- 2 paisfic cs_rsrch 1536 Jan 13 18:32 .
drox==----= 13 palsfic cs_rsrch 1636 Jan 18 13:44 ..

-ry-===-=== | paisfic cs_rsrch 222 Feb 16 1994 Cross_hair_cursor.icon
=ryg-==-=--= 1 paisfic cs_rsrch 1278 Feb 16 1994 Deletion.icon
=rg======= 1 palsfic cs_rsrch 222 Feb 16 1994 Hand_cursor.icon
=ry======= | paisfic cs_rsrch 1278 Feb 16 1994 Selection.icon
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mpgeeee———

-

paisfic cs_rsrch 222 Feb 16 1994 Selection_cursor.icon
paisfic cs_rsrch 222 Feb 21 1994 Text_cursor.icen

—rgeee————

[

bt 1 S 1 paisfic cs_rsrch 2192 Apr 6 1994 bar_chart.icon

=rg-r=-r-= 1 paisfic cs_rsrch 1997 Apr 6 1994 causticizeri_diagram.icon
=re-r=-r== 1 paisfic cs_rsrch 1997 Apr 6 1994 causticizeri_diagram mask.icon
=re-r==r== 1 paisfic cs_rsrch 1997 Apr 6 1994 causticizer2_diagram.icon
~rg=r==r== 1 paisfic cs_rsrch 1997 Apr 6 1994 causticizer2_diagram_mask.icon
=re-r=-r-- 1 paisfic cs_rsrch 1997 Apr € 1994 causticizer3_diagram.icen
=re=-r=-r== 1 paisfic cs_rsrch 1997 Apr 6 1994 causticizer3_diagram mask.icon
=ru=====-=-= 1 paisfic cs_rsrch 2183 Apr 6 1994 data_panel.icon

=re=r==r== 1 paisfic cs_rsrch 1997 Apr 6 1994 data_panel_mask.icon

-re-r--r== 1 paisfic cs_rsrch 2190 May 4 1994 draw.icen

=re-r==r== 1 paisfic cs_rsrch 1997 Apr 6 1994 green_liquor_clarifier_diagram.icon
=re-r=-r== 1 paisfic cs_rsrch 1997 Apr 6 1994 green_liquor_clarifier_diagram_mask.icon
-re-r=-r== 1 paisfic cs_rsrch 1997 Apr 6 1994 lime_kiln_diagram.icon

=re=r==r== 1 paisfic cs_rsrch 1997 Apr 6 1994 lime_kiln_diagram_mask.icon
=ru-r=-r-- 1 paisfic cs_rsrch 1997 Apr € 1994 line_chart.icon

=-re-r--r-= 1 paisfic cs_rsrch 1997 Apr 6 1994 long_flowsheet_diagram.icon
=re=r=-r-- 1 paisfic cs_rsrch 1997 Apr 6 1994 main.icon

=re=r==r== 1 paisfic cs_rsrch 1997 Apr 6 1994 main_mask.icon

=re=r==r== 1 paisfic cs_rsrch 1997 Apr 6 1994 mud_filter_diagram.icon

=rg-r=-r== 1 paisfic cs_rsrch 1997 Apr 6 1994 mud_filter_diagram_mask.icon
=ru~r=-r== 1 paisfic cs_rsrch 1997 dpr 6 1994 slaker_diagram.icon

-re-r--r-- 1 paisfic cs_rsrch 1997 Apr 6 1994 slaker_diagram_mask.icon
-ru-r--r=-= 1 paisfic cs_rsrch 1997 Apr € 1994 wait.icon

=re-r--r-= 1 paisfic cs_rsrch 1997 Apr € 1994 vait_mask.icon

=re-r==r== 1 paisfic cs_rarch 1997 Apr 6 1994 white_liquor_clarifier_diagram.icon
=re-r==-r=- 1 paisfic cs_rsrch 1997 Apr 6 1994 vhite_liquor_clarifier_diagram_mask.icon

E.6 XProcSim/include Subdirectory

total 26

druz=evees 8 paisfic cs_rsrch 512 Jan 22 16:13 .

drex====== 9 paisfic cs_rsrch 1536 Jan 24 17:51 ..

=rg~====== 1 paisfic cs_rsrch 813 Jan 17 13:13 Xfiles

drex-===-= 2 paisfic cs_rsrch 6512 Jan 22 17:45 adaptors
drax===o== 3 paisfic cs_rsrch 1024 Jan 22 17:40 controllers
drex====== 2 paisfic cs_rsrch 612 Jan 22 17:50 exception_handlers
drux--=-=--= 2 paisfic cs_rarch 512 Jan 22 17:47 graphical_items
drux=====-= 3 paisfic cs_rasrch 512 Jan 23 17:08 models

=ru======= 1 paisfic cs_rsrch 519 Nov 24 13:36 passthrough_procedures.h
-ry-==-=-=== 1 paisfic cs_rsrch 1423 Jan 22 17:26 simul.h

drex-===== 3 paisfic cs_rsrch 1024 Jan 22 17:30 views

E.7 XProcSim/include/adaptors Subdirectory

total 18

drux==-=-- 2 paisfic cs_rsrch 512 Jan 22 17:45 .

drux=-=-=-=-- 8 paisfic cs_rsrch 512 Jan 22 16:13 ..

=ru======= 1 paisfic cs_rsrch 73 Nov 22 17:44 Adaptor.h

~rg======= 1 paisfic cs_rsrch 233 Fov 14 12:35 Caust_Battery_Model_Bar_Chart_Adaptor.h
-rg====-== 1 paisfic cs_rsrch 236 Nov 14 12:36 Caust_Battery_Model_Line_Chart_Adaptor.h
=rg======= | paisfic cs_rsrch 209 Nov 14 12:36 Kiln_HModel_Line_Chart_Adaptor.h

b 1 ittt 1 paisfic cs_rsrch 185 Nov 14 12:37 Nodel_Adaptor.h

R e———

-

paisfic cs_rsrch 196 Jan 22 17:47 adaptor.h
-ry-----== | paisfic cs_rsrch 164 Sep 12 09:37 adaptor_class.h

E.8 XProcSim/include/controllers Subdirectory

total 48

drux====== 3 paisfic cs_rsrch 1024 Jan 22 17:40 .

drex=-====- B paisfic cs_rsrch 512 Jan 22 16:13 ..

-ru-=-==== 1 paisfic cs_rsrch 202 Jun 17 1994 Bar_Chart_Controller.h
=rg===---= 1 paisfic cs_rsrch 669 Nov 14 12:32 Controller.h

=ry======= 1 paisfic cs_rsrch 396 Jun 17 1994 Drav_Controller.h
~gge====== | paisfic cs_rsrch 205 Nov 14 12:58 Draw_Fonts_Controller.h
=rg======= 1 paisfic cs_rsrch 218 Nov 14 12:59 Drav_Load_File_Controller.h
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erge==== =~ 1 paisfic cs_rsrch 211 Nov 14 13:00 Draw_Palette_Controller.h

=rg======= 1 paisfic cs_rsrch 214 Nov 14 13:01 Draw_Save_File_Controller.h
=rg======= 1 paisfic cs_rsrch 205 Nov 14 13:02 Fill_Style_Contreller.h
“rg====- == 1 paisfic cs_rsrch 190 Nov 14 13:02 Fonts_Controller.h

erg=e=eesa 1 paisfic cs_rsrch 220 Nov 14 13:18 Integration_Data_Controller.h

—rg=m———— paisfic cs_rsrch 202 Jun 21 1994 Line_Chart_Controller.h
paisfic cs_rsrch 205 Nov 14 13:05 Line_Style_Controller.h
paisfic cs_rsrch 205 Nov 14 13:05 Line_Width_Controller.h
paisfic cs_rsrch 202 Nov 14 13:06 Load_File_Controller.h
paisfic cs_rsrch 196 Nov 14 13:08 Palette_Controller.h

1
1
1
1
1
=rg======= 1 paisfic cs_rsrch 200 Nov 14 13:09 Save_File_Controller.h
¥
1
2
i
1

L3 S Attt
—rETme————
L 3 el D il

=rgem—————

rg======= paisfic cs_rsrch 190 Nov 14 13:11 String_Controller.h
paisfic cs_rsrch 190 Nov 14 13:11 Units_Controller.h
paistic cs_rsrch §12 Jan 20 15:39 chemrec

paisfic cs_rsrch 1145 Jan 22 17:45 controller.h

paisfic cs_rsrch 912 Nov 8 17:08 controller_class.h

drux====-—

—rgeeee——

—_rgm———— -—

E.9 XProcSim/include/controllers/chemrec Sub-
directory

total 22
drox==-=-= 2 paisfic cs_rsrch 512 Jan 20 15:39 .
drux-=-=---- 3 paisfic cs_rsrch 1024 Jan 22 17:40 ..

=rg======= | palsfic cs_rsrch 253 Nov 14 13:14 Caust_Battery_Bar_Chart_Controller.h
=rg======= | paisfic cs_rarch 244 Jun 21 1994 Caust_Battery_Dimensions_Controller.h
=rg===——== 1 paisfic cs_rsrch 295 Jun 17 1994 Caust_Battery_Physical_and_Chemical_Data_

Controller.h
-rg-==-=-=-- 1 paisfic cs_rsrch 320 Nov 8 17:56 Green_Liquor_Storage_Data_Controller.h
=re--=---= 1 paisfic cs_rsrch 235 Jun 17 1994 Lime_Kiln_Dimensions_Controller.h
=rg======= 1 paisfic cs_rsrch 246 Nov 10 13:30 Lime_Kiln_Line_Chart_Controller.h
=rg=-=-==-= 1 paisfic cs_rsrch 286 Nov 14 13:22 Lime_Kiln_Physical_and_Chemical_Data_
Controller.h

~rg=--==-= | paisfic cs_rsrch 229 Nov 14 13:23 Mud_Filter_Diagram_Controller.h

=rg-=--=== 1 paisfic cs_rsrch 265 Jun 17 1994 Vhite_Liquor._Clarifier_Diagram_Controller.h

E.10 XProcSim/include/exception_handlers Sub-
directory

total 14

drex==----- 2 paisfic cs_rsrch 512 Jan 22 17:50 .

drex=-===-- 8 paisfic cs_rsrch 512 Jan 22 16:13 ..

=rg======= 1 paisfic cs_rsrch 1428 Nov 24 13:12 Exception_Handler.h
=rg===-==- | paisfic cs_rsrch 224 Jan 5 15:48 Master_Exception_Handler.h
=rg=-==-==-= 1 paisfic cs_rsrch 70 Jan 22 17:51 exception_handler.h
=rg===-=-- 1 paisfic cs._rsrch 58 Nov 14 15:03 exception_handler_class.h

E.11 XProcSim/include/graphical_items Sub-
directory

total 52

drux====-- 2 paisfic cs_rsrch 512 Jan 22 17:47 .

drux=~==-=- 8 paisfic cs_rsrch 512 Jan 22 16:13 ..

paisfic cs_rsrch 1878 Jan 9 13:04 Basic_Item.h
paisfic cs_rsrch 90 Nov 14 13:32 Graphical_Item.h
paisfic cs_rsrch 250 Nov 14 13:32 Grid_Item.h
paisfic cs_rsrch 1379 Jan 23 09:55 Init.h

paisfic cs_rsrch 203 Nov 14 14:09 Node_Item.h
paisfic cs_rsrch 2428 Dec 2 17:27 Shape_List.h
paisfic cs_rsrch 1417 Dec 2 17:56 Stream_Item.h
paisfic cs_rsrch 611 Jan 9 13:05 Text_Item.h
paisfic cs_rsrch 268 Nov 14 14:39 Unit_CB_Item.h
paisfic cs_rsrch 258 Nov 14 14:40 Unit_FS_Item.h
paisfic cs_rsrch 266 Nov 14 14:41 Unit_GLS_Item.h

Bl 4 ALttt
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=rg==---=-- 1 paisfic
ot 1 Bt 1 paisfic
=rg=-=--=== 1 paisfic
=rg-=-==== 1 paisfic
=rg==--=-=-=- 1 paisfic
-rg--=--=-=- 1 paisfic
=ryg~==-==--= 1 paisfic

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rarch
cs_rsrch
cs_rsrch

633 Nov
264 Nov
264 Nov
264 Nov
271 Nov
1655 Jan
318 Jan

24
14
14
14
14
22
22

16:10 Unit_Item.h

14:51 Unit_LK_Item.h

14:54 Unit _LS_Item.h

14:56 Unit _NF_Item.h

14:57 Unit_VLC_Item.h

17:50 graphical_item.h
17:50 graphical_item_class.h

E.12 XProcSim/include/models Subdirectory

total 20

drgx=====-= 3 paisftic
drex------ 8 paisfic
-rg===-=-=--- 1 paisfic
-ry--===--=_ 1 paisfic
=rg===-==== 1 paisfic
-rg=--=--=-== 1 paisfic
drex====== 2 paisfic
=-rg=-====-= 1 paisfic
=rg===--== 1 paisfic

cs_rarch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

512 Jan
512 Jan
1922 Jan
216 Jan
797 Jan
133 Jan
1024 Jan
808 Jan
591 Jan

23
22
21
21
20

20

20
23

20

17:08 .

16:13 ..

15:53 Model.h

15:53 Stream_Model.h
15:61 Super_Nodel.h
15:51 Unit_Model.h
16:51 chemrec

17:04 model.h

15:51 model_class.h

E.13 XProcSim/include/models/chemrec Sub-

L]

directory
total 42
drux===== -~ 2 palsfic cs_rsrch
drex------ 3 paisfic cs_rsrch
=rg====-=-=-= 1 paisfic cs_rsrch
~rg=--===- 1 paisfic cs_rsrch
ereee———— 1 paisfic cs_rsrch
-rg---=--- 1 palsfic cs_rsrch
Hodel.h
—pg=———— -= 1 paisfic cs_rsrch
Stream_Nodel.h
=rg=~====- 1 paisfic cs_rsrch
=rg====-=== 1 paisfic cs_rsrch
Nodel ,h
-rg---=---- 1 paisfic cs_rsrch
apgee—== -- 1 paisfic cs_rsrch
=rg======= 1 paisfic cs_rsrch
-rg==-=-==- 1 paisfic cs_rsrch
=rg======= 1 paisfic cs_rsrch
=rg===-==== 1 paisfic cs_rsrch
=rg=-=-==-- | paisfic cs_rsrch

1024 Jan
§12 Jan
2415 Nov
507 Nov
468 Nov
247 Nov

370 Nov

593 Dec
278 Nov

434 Nov
134 Nov
447 Nov
2700 Nov
164 Nov
811 Nov

20
23
28
11
14
14

11

5
11

11
11
11
11
14
i5

15:51 .

17:08 ..

14:08 Caust_Battery_Nodel.h

10:43 From_Caust_Battery_to_Wlc_Stream_Model.h
15:15 From_Filter_to_Kiln_Stream_MNodel.h

15:15 From_Fuel_Storage_to_Lime_Kiln_Stream_

11:30 From_Green_Liquor_Storage_to_Caust_Battery,

10:37 From_Kiln_to_Slaker_Stream_Rodel.h
11:33 From_Limestone_Storage_to_Lime Kiln_Stream_

11:35 From_Wlc_to_Filter_Stream_NModel.h
11:36 Fuel_Storage_Model.h

11:40 Green_Liquor_Storage_Nodel.h
10:39 Lime_Kiln_KNodel.h

15:22 Limestone_Storage_Rodel.h

09:42 Mud_Filter_Nodel.h

1893 Fov 28 15:09 Wlc_NModel.h

E.14 XProcSim/include/views Subdirectory

total 72

drex------ 3 paisfic
drex--=--- 8 paisfic
=rg===-=== 1 paisfic
-rg=-=--=- 1 paisfic
paisfic
paistic
paisfic
paistic
paisfic
paisfic
paisfic
paisfic
paistic
paisfic
paisfic
paisfic
paisfic
paisfic

b 1 Sttt
===
L8 3 bl D o
—ge—————
—fge—————
eIgemm————
B 3 At T T
e —————
b 3 e L T
—[grm—————
b 3 e T
b 3 Rl

L 3 e

L

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_Tsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

1024 Jan
512 Jan
1205 Jan
317 Jan
315 Jan
316 Nov
1879 Jan
207 Jan
258 Jan
625 Nov
478 Nov
439 Nov
155 Jan
490 Nov
1202 Nov
477 Rov
452 Nov
317 Nov

22
22
13
17
17
18

6
17
17
18
26
26
17
i8
22
26
26
26

17:30 .

16:13 ..

12:44 Bar_Chart_View.h

10:43 Canvas_View.h

10:21 Canvas_and_Panel_View.h
10:50 Canvas_and_Two_Panels_View.h
17:08 Chart_View.h

10:00 Command_Frame_View.h
10:44 Command_Panel_Viev.h
10:53 Draw_View.h

12:31 Fill_Style_View.h
12:32 Fonts_View.h

09:59 Frame_View.h

11:10 Integration_Data_View.h
17:43 Line_Chart_View.h
12:32 Line_Style_View.h

12:35 Line _Width _View.h

12:35 Load_File_View.h
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=rg======= | paisfic cs_rsrch 311 Nov 26 12:36 Palette_Viev.h
=rg====-=== | palsfic cs_rsrch 255 Jan 17 10:44 Panel_Viev.h
=rg====-==-=- 1 paisfic cs_rsrch 324 Yov 26 12:37 Save_File_View.h
ot § e = 1 paisfic cs_rsrch 283 Nov 26 12:36 String_Viev.h
Spgeseas == 1 paisfic cs_rsrch 114 Jan 17 10:02 Super_Viev.h
-rg======= | palsfic cs_rsrch 587 Nov 26 12:37 Units_View.h
~rg======= 1 paisfic cs_rsrch 2619 Dec 2 17:38 View.h

—ry=—==- == 1 paisfic cs_rsrch 293 Nov 18 11:06 Vait_View.h
drux====--= 2 paisfic cs_rsrch 1024 Jan 20 17:11 chemrec

mpge—————

paisfic cs_rsrch 1304 Jan 22 17:52 view.h
paisfic cs_rsrch 1028 Dec 1 13:33 view_class.h

-

===

E.15 XProcSim/include/views/chemrec Sub-
directory

total 30

drex=-=-=-=- 2 paisfic cs_rsrch 1024 Jan 20 17:11 .

drux==-=== 3 paisfic cs_rsrch 1024 Jan 22 17:30 ..

=ry======= 1 paisfic cs_rsrch 344 Yov 18 11:06 Caust_Battery_Bar_Chart_View.h

=rg=====-= 1 paisfic cs_rsrch 735 Nov 18 11:07 Caust_Battery_Dimensions_View.h
=ry======= 1 paisfic cs_rsrch 628 Nov 18 11:08 Caust_Battery_Physical_and_Chemical_Data_
View.h

~ryg===-==-= | paisfic cs_rarch 338 Yov 18 11:09 Causticizer_ Diagram View.h

=rg===-=== 1 paisfic cs_rsrch 787 Nov 18 11:09 Diagram_Vies.h

=gg======= 1 paisfic cs_rsrch 478 Wov 18 11:21 Green_Liquor_Storage_Data_View.h
=rg======= 1 paisfic cs_rsrch 346 Nov 18 11:10 Lime_Kiln_Diagram_View.h

-ry-=-=-==-=- 1 paisfic cs_rsrch 544 Nov 18 11:11 Lime_Kiln_Dimensions_View.h

=ry======= 1 paisfic cs_rarch 336 Fov 18 11:11 Lime_Kiln_Line_Chart_View.h

-rg-=-==-- 1 paisfic cs_rsrch 861 Nov 18 11:12 Lime_Kiln_Physical_and_Chemical_Data_View.h
mpg=m———— = 1 paisfic cs_rsrch 382 Nov 18 11:12 Mud_Filter_Diagram _Viev.h

=rg~=--=== 1 paisfic cs_rsrch 324 Nov 18 11:13 Slaker_Diagram_View.h

e e 1 paisfic cs_rsrch 417 Nov 18 11:13 Vhite_Liquor_Clarifier_Diagram_View.h

E.16 XProcSim/object_files Subdirectory

total 9642

drex====== 2 paisfic cs_rsrch 1024 Jan 24 18:13 .

drux=---=--- 9 paisfic cs_rsrch 1536 Jan 24 17:51 ..

=—pgwe———— 1 paisfic cs_rsrch 342800 Jan 24 17:65 adaptor_meth.o
1 paisfic cs_rsrch 474576 Jan 24 17:56 controller_meth.o
1 paisfic cs_rsrch 51160 Jan 24 18:12 dbat.o
1 paisfic cs_rsrch 15932 Jan 24 18:10 dbat_init.o
1 paisfic cs_rsrch 188336 Jan 24 18:12 dbat_slave_wrapper.o
1 paisfic cs_rsrch 6500 Jan 24 18:10 dbat_to_delc.o
1 paisfic cs_rsrch 9736 Jan 24 18:10 dbat_writer.o
1 paisfic cs_rsrch 224244 Jan 24 18:11 dk.o
1 paisfic cs_rsrch 17444 Jan 24 18:10 dk_init.o
1 paisfic cs_rsrch 150480 Jan 24 18:11 dk_slave_vrapper.o
1 paisfic cs_rsrch 3432 Jan 24 18:10 dk_to_dbat.o
1 paisfic cs_rsrch 11768 Jan 24 18:10 dk_writer.o
1 paisfic cs_rsrch 6620 Jan 24 18:10 dmf.o
1 paisfic cs_rsrch 6508 Jan 24 18:10 dmf_init.o

=ry---=-=== 1 paisfic cs_rsrch 41136 Jan 24 18:13 dvlc.o
1
1
1
1
1
1
1
1
i
1
i
1
1
1

—geeceaas
—pge—————
L 3 At
- m————
B 3 et
b 3 bttt
—rg=————=-
e ————
—fgem—————
—-rmee—ee-
_-rme———-
erjeeessee

elgemecane

mrge————— paisfic cs_rsrch 9516 Jan 24 18:10 delc_init.o

paisfic cs.rsrch 187040 Jan 24 18:13 dwlc_slave_srapper.o
paisfic cs_rsrch 2744 Jan 24 18:10 dwlc_to_dmf.o

paisfic cs_rsrch 9544 Jan 24 18:10 dwlc_writer.o

paisfic cs_rsrch 334860 Jan 24 18:10 exception_handler_meth.o
paisfic cs_rsrch 504664 Jan 24 17:57 graphical_item_meth.o
paisfic cs_rsrch 4548 Jan 24 18:10 init_dk_to_dbat.o
paisfic cs_rsrch 107148 Jan 24 14:16 1s.o

paisfic cs_rsrch 13255 Jan 24 18:01 makefile

paisfic cs_rsrch 8624 Jan 24 18:10 measure.o

paisfic cs_rsrch 483064 Jan 24 17:55 model_meth.o

paisfic cs_rsrch 328366 Jan 24 17:54 passthrough_procedures.o
paisfic cs_rsrch 3367652 Jan 24 17:52 simul.o

paisfic cs_rsrch 843508 Jan:24 18:09 viev_meth.o

p————
L 4§ btttk
—pee———
—-rEee————
—rmeee———
—-rm—m————
orme———
—reeeeeee
_-rEmmm==——
—rTeee——
I eeeeee

L2 % e

I m————-
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E.17 XProcSim/result_files Subdirectory

total 36
ﬁr'x--—---
drgx======

e ——

—pge——————

e m———

E.18

total 38

drux======
drux====-=
drax=====-=
drux======
drux==eee=
drux-====-==

drex-==---

E.19

total 24

mpgee——— -

eI e—————

SN, Y

arge—————

E.20

total 100

drgx=====-
drux====--
—pge————— -
-r".- ssew
arge=ee= -
ergececese
T —
T T SR—
—rgeme———-
—pge————
S PR
rge——e——
- r" -—————-
o -
argeeesees
B
-:‘ -— -
e P -
-" -——--—
-r' - - -
drug=cie=

—rgem———e—-

2 paisfic
13 paisfic
1 paisfic
1 paistic
1 paisfic

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

2048 Jan
1636 Jan
827 Jan
12199 Jan
313 Jan

18 13:54 .

18 13:44 ..

18 13:563 dbat.r0
18 13:53 dk.r0
18 13:53 dwlc.r0

XProcSim/src Subdirectory

8 paisfic
9 paisfic
2 paisfic
3 paisfic
2 paisfic
2 paistic
3 paisfic
1 paisfic
1 paisfic
3 paisfic

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

512 Jan
1536 Jan
512 Jan
1024 Jan
512 Jan
512 Jan
512 Jan
2773 Jan
5941 Jan
2048 Jan

24 17:51 .

24 17:561 ..

24 17:41 adaptors

24 17:42 controllers

24 17:42 exception_handlers

24 17:42 graphical _items

24 17:42 models

24 17:53 passthrough_procedures.C
22 18:48 simul.C

24 17:41 views

XProcSim/src/adaptors Subdirectory

2 paisfic
8 paistic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

512 Jan
512 Jan

62 Jan
946 Jan
2054 Jan

24 17:41 .

24 17:51 ..

23 17:03 Adaptor.C

23 17:03 Caust_Battery_Nodel_Bar_Chart_Adaptor.C
23 17:03 Caust_Battery_Model_Line_Chart_Adaptor.C

2870 Jan 23 17:03 Kiln_Model_Line_Chart_Adaptor.C

150 Jan
214 Jan

23 17:03 Model_Adaptor.C
23 17:14 adaptor_meth.C

XProcSim/src/controllers Subdirectory

3 paisfic
8 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1

1

1

1

1

1

-

paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
2 paisfic
1 paisfic

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

1024 Jan
612 Jan
1721 Jan
667 Jan
15743 Jan
1094 Jan
1445 Jan
748 Jan
1347 Jan
544 Jan
716 Jan
2185 Jan
2056 Jan
569 Jan
475 Jan
1349 Jan
397 Jan
1298 Jan
500 Jan
1747 Jan
1536 Jan
1164 Jan

24 17:42 .

24 17:51 ..

23 16:58 Bar_Chart_Controller.C

23 16:58 Controller.C

23 16:58 Draw_Controller.C

23 16:58 Draw_Fonts_Controller.C

23 16:68 Draw_Load_File_Controller.C
23 16:58 Dravw_Palette_Controller.C
23 16:568 Drav_Save_File_Controller.C
23 16:58 Fill_Style_Controller.C

23 16:58 Fonts_Controller.C

23 16:58 Integration_Data_Controller.C
23 18:59 Line_Chart_Controller.C

23 16:59 Line_Style_Controller.C

23 16:59 Line_Width_Controller.C

23 16:59 Load_File_Controller.C

23 16:59 Palette_Contreoller.C

23 16:59 Save_File_Controller.C

23 16:59 String_Controller.C

23 16:59 Units_Controller.C

21 15:00 chemrec

23 17:13 controller_meth.C
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E.21

total 50

drex======
drax=-=---
P ——
[ —
[ ——
Controller
S —
S —
P —
P ——
Controller
ap———

erge——————

E.22

total 14

drgx======
drux======
e pee————
g ——

B % et

E.23

total 168

drux======
dryx====-=
e mp—
[ p—
[ —
[ —

-pmee=——

—rge—————
—rge——————

—pge——————

erge—————-
crEe—ee——
—rgm—eman=
-
eremee—

B0 1 R L

E.24

total 30

drux=====--
drux====--
- r' - -
e pge——— -
e T pu——

drux=====-

.C

.C

XProcSim/src/controllers/chemrec  Sub-
directory

2 paisfic
3 paisfic
1 paisfic
1 paistic
1 paisfic

paisfic
paisfic
paisfic
paisfic

]

o

paisfic
1 paisfic

cs_rsrch
cs_rsrch
cs_trsrch
cs_rsrch
cs_rarch

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

cs_rsrch
cs_rsrch

1638 Jan
1024 Jan
2103 Jan
1701 Jan
2036 Jan

1644 Jan
1955 Jan
1475 Jan
6232 Jan

418 Jan
488 Jan

21 16:00 .

24 17:42 ..

23 17:00 Caust_Battery_Bar_Chart_Controller.C

24 14:26 Caust_Battery_Dimensions_Controller.C

24 14:38 Caust_Battery_Physical_and_Chemical_Data_

24 14:38 Green_Liquor_Storage_Data_Controller.C
24 14:28 Lime_Kiln_Dimensions_Controller.C

23 17:00 Lime_Kiln_Line_Chart_Controller.C

24 16:07 Lime_Kiln_Physical_and_Chemical_Data_

23 17:00 Mud_Filter_Diagram_Controller.C
23 17:00 White_Liquor_Clarifier_Diagram_Controller.C

XProcSim/src/exception_handlers Sub-
directory

2 paistic
8 paisfic
1 paisfic
1 paisfic
1 paisfic

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

512 Jan
512 Jan
1697 Jan
1114 Jan

89 Jan

24 17:42 .

24 17:51 ..

23 17:03 Exception_Handler.C

23 17:03 Master_Exception_Handler.C
23 17:14 exception_handler_meth.C

XProcSim/src/graphical_items Subdirectory

2 paisfic
8 paisfic
paistic
paistic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic

A e b e e e e e

[

- e e e e

cs_rsrch
cs_rsrch
cs_ rsrch
cs_rarch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rarch
cs_rarch
cs_rsrch
cs_rsrch

512 Jan
512 Jan
3480 Jan
87 Jan
1090 Jan
6315 Jan
1153 Jan
7268 Jan
17350 Jan
7427 Jan
7451 Jan
1377 Jan
1638 Jan
9200 Jan
5027 Jan
1382 Jan
1376 Jan
1423 Jan
417 Jan

24 17:42 .

24 17:51 ..

23 17:01 Basic_Item.C

23 17:01 Graphical_Item.C
23 17:01 Grid_Item.C

23 17:01 Init.C

23 17:01 Node_Item.C

23 17:01 Shape_List.C

24 14:44 Stream_Item.C
23 17:01 Text_Item.C

23 17:02 Unit_CB_Item.C
23 17:02 Unit_FS_Itea.C
23 17:02 Unit_GLS_Item.C
23 17:02 Unit_Item.C

23 17:02 Unit LE_Item.C
23 17:02 Unit_LS_Item.C
23 17:02 Unit_NF_Item.C
23 17:02 Unit_WLC_ Item.C
23 17:14 graphical_item_meth.C

XProcSim/src/models Subdirectory

3 paisfic
8 paisfic
1 paistic
1 paisfic
1 paisfic
1 paisfic
2 paisfic
1 paisfic

cs_rsrch
Cs_Tsrch
Ccs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

512 Jan
512 Jan
2045 Jan
211 Jan
5326 Jan
134 Jan
1536 Jan
827 Jan

24 17:42 .

24 17:51 ..

23 16:51 Model.C

23 16:51 Stream_HModel.C
24 16:02 Super_Nodel.C
23 16:52 Unit_NKodel.C
21 15:06 chemrec

23 17:13 model _meth.C
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E.25

total 428
drux======
dr'!------

—rEem———
-r‘---—-;-
—-pem—————
ergeeeenan

Model.C

—-rgme—eees

XProcSim/src/models/chemrec Sub-
directory |

2 paisfic
3 paisfic
1 paisfic
1 paisfic
1 paistic
1 paisfic

1 paisfic

Stream_Nodel.C

i ———
Model.C
R

e

B 3 Dt

L o Bttt
bl 4 hee bl ]

—pEee——-———

epgeeeeen.
B S et T
—pgeeeecsne

—pm——— —-—

—P=——————

e m————

bl 8 bttt

L 8 ettt

ergeresess

- m————
b 4 b D
S Attt

L 3

E.26

total 266
drux======
drux=====-

I Em——————
L 4 ettt
g e———=—
b 4 bttt
e m——e—-
—rgne———— -
I me————
B 1 et L
-y —————
—rgTee————
—rgem————
—-rge———— -
L 4 ettt
b 4" Attt
- m————
e
—pEem————
ergeeceses
—-rEeee———
e

L 3 Dttt

1 paisfic
1 paisfic

1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfie
1 paisfic
1 paisfic
paisfic
paisfic
paisfic
paisfic
paisftic
paisfic
paisfic
paisfic
paisfic
paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic
1 paisfic

O T N

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

cs_rsrch

cs_rsrch
cs_rsrch

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rarch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch

1536 Jan
512 Jan
12080 Jan
2746 Jan
2233 Jan
286 Jan

€96 Jan

3276 Jan
306 Jan

1806 Jan
136 Jan
1074 Jan
12696 Jan
161 Jan
3133 Jan
8847 Jan
18984 Dec
3074 Jan
6928 Jan
2088 Dec
1509 Jan
63188 Dec
3084 Jan
7460 Jan
1396 Dec
4570 Jan
2146 Dec
783 Jan
18361 Dec
1361 Jan
5424 Jan
557 Jun
1502 Jan
1889 Dec
2318 Jan

21 15:06 .

24 17:42 ..

23 16:52 Caust_Battery_Nodel.C

23 16:52 From_Caust_Battery_to_VWlc_Stream_Nodel.C
23 16:52 From_Filter_to_Kiln_Stream_Nodel.C

23 16:52 From_Fuel_Storage_to_Lime_Kiln _Stream_

23 16:52 From_Green_Liquor_Storage_to_Caust_Battery._

23 16:52 From_Kiln_to_Slaker_Stream_Nodel.C
23 16:52 From_Limestone_Storage_to_Lime_Kiln_Stream_

23 16:563 From_Wlc_to_Filter_Stream _Nodel.C
23 16:53 Fuel_Storage_Nodel.C
23 16:53 Green_Liquor_Storage_Model.C
23 16:53 Lime_Kiln_Nodel.C
23 16:53 Limestone_Storage_Nodel.C
23 16:53 Kud_Filter_Nodel.C
23 16:53 Wlc_Kodel.C

1 17:27 dbat.f

12 11:03 dbat_init.f

23 17:32 dbat_slave_wrapper.C

5 16:09 dbat_to_dwlc.f

12 11:17 dbat_writer.f

1 15:44 dk.?t

12 11:08 dk_init.f

23 17:32 dk_slave_vwrapper.C

5 10:35 dk_to_dbat.f

12 11:18 dk_vriter.f

1 09:55 dmf.f

12 12:28 dmf_init.f

1 17:23 dwlc.t

12 11:11 delec_init.f
23 17:32 dwlc_slave_wrapper.C

11 1994 dwlc_to_dmf.f

12 11:25 dwlc_writer.f

5 10:35 init_dk_to_dbat.f

10 18:03 measure.f

XProcSim/src/views Subdirectory

3 paistic
8 paisfic
1 paisfic
1 paisfic
paisfic
paisfic
paisfic
paistic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paistic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic
paisfic

P S O S S e e S T T I I T

cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rarch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rsrch
cs_rarch
cs_rsrch

2048 Jan
512 Jan
30892 Jan
1537 Jan
560 Jan
500 Jan
9071 Jan
590 Jan
334 Jan
8218 Jan
4888 Jan
4179 Jan
560 Jan
3062 Jan
27203 Jan
4699 Jan
3835 Jan
769 Jan
2170 Jan
423 Jan
778 Jan
629 Jan
211 Jan

24 17:41 .

24 17:51 ..

24 17:569 Bar_Chart_View.C

23 16:54 Canvas_View.C

23 16:54 Canvas_and_Panel_View.C
23 16:64 Canvas_and_Two_Panels_View.C
23 16:54 Chart_Yiew.C

23 16:54 Command_Frame_View.C
23 16:54 Command_Panel _View.C

24 18:03 Draw_Vies.C

23 16:54 Fill_Style_Vievw.C

23 16:64 Fonts_Vien.C

23 16:54 Frame_View.C

24 18:03 Integration_Data _View.C
24 18:03 Line_Chart _Viev.C

23 16:55 Line_Style_Viesn.C

24 15:51 Line_Width _View.C

23 16:55 Load_File_View.C

23 16:55 Palette_Vien.C

23 16:556 Panel_View.C

23 16:55 Save_File_View.C

23 16:55 String_View.C

23 16:56 Super_View.C

254
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e m———
e ee———

dreg==-===

—pg——————

E.27

total 280
drgge=====—
dryg======

—pgem———

—rge—————

g -
View.C

apgreeenns
apgee—me——
R T
=rgemere——
epgee—————
‘r‘----—-
R
Vieu.C

—pgem—————
argeeem———

.pge————

1 paistic
1 paisftic
1 paisfic
2 paisfic
1 paisfic

cs_rsrch
cs_rsrch
cs_ rsrch
cs_rsrch
cs.rsrch

6467 Jan
4275 Jan
1598 Jan
1024 Jan
1323 Jan

23
23
23
24
23

16:56 Units_View.C
16:56 View.C
16:56 Wait_Viev.C
18:07 chemrec
17:13 viev_meth.C

XProcSim/src/views/chemrec Subdirectory

2 paisfic
paisfic
paistic
paisfic
paisfic

(N ~ ]

paistic
paistic
paistic
paistic
paisfic
paisfic
paisfic

L T

paisfic
1 paisfic
1 paisfic

cs_rsrch
cs_rarch
cs_rsrch
cs_rsrch
cs_rsrch

cs_rsrch
cs_rsrch
cs_rerch
cs_rarch
cs_rsrch
cs_rsrch
cs_rarch

cs_rsrch
cs_rsrch
cs_rsrch

1024 Jan
2048 Jan

24
24

18:07 .
17:41 ..

1353 Jan 23 16:56 Caust_Battery_ Bar_Chart_View.C

6903 Jan
5408 Jan

9944 Jan
3648 Jan
3447 Jan
20412 Jan
5590 Jan
1166 Jan
13432 Jan

28803 Jan
11045 Jan
22147 Jan

24
24

24
23
24
24
24
23
24

24
24
24

18:04 Caust_Battery_Dimensions _Viev.C
18:04 Caust_Battery_Physical_and_Chemical_Data_

18:04 Causticizer_Diagram_View.C

16:56 Diagram _Vies.C

18:06 Green_Liquer Storage.Data View.C
18:00 Lime _Kiln_Diagram_ View.C

18:05 Lime_Kiln_Dimensions_View.C

16:57 Lime_Xiln_Line_Chart_View.C

18:06 Lime_Kiln_Physical _and_Chemical_Data_

18:06 RMud_Filter_Diagram _View.C
18:05 Slaker _Diagram_Vieu.C
18:06 White_Liquor_Clarifier_Diagram_View.C
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