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Thesis Summary

For optimum utilization of satellite~borne instrumentation, it is necessary to
know precisely the orbital position of the spacecraft. The aim of this thesis is
therefore two-fold — firstly to derive precise orbits with particular emphasis placed on
the altimetric satellite SEASAT and secondly, to udlize the precise orbits, to improve
upon ammospheric density determinadons for satellite drag modelling purposes.

Part one of the thesis, on precise orbit determinations, is particularly
concerned with the tracking data - satellite laser ranging, altimetry and crossover
height differences — and how this data can be used to analyse errors in the orbit, the
geoid and sea-surface topography. The outcome of this analysis is the determination
of 2 low degree and order model for sea surface topography.

Part two, on the other hand, mainly concentrates on using the laser data to
analyse and improve upon current atmospheric density models. In particular, the
modelling of density changes associated with geomagnetic disturbances comes under
scrutny in this section. By introducing persistence modelling of a geomagnetic event
and solving for certain geomagnetic parameters, a new density model is derived which
performs significantly better than the state-of~the-art models over periods of severe
geomagnetic storms at SEASAT heights. This is independently verified by
application of the derived model to STARLETTE orbit determinations.
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CHAPTER 1

INTRODUCTION

Precise orbit determination is a pre-requisite for the useful application of
satellite data to such diverse phenomena as space geodesy, oceanography and
atmospheric density evaluation. Improvements in precise orbital determination are
associated both with improved modelling techniques of the orbital perturbations and
the availability of high quality tracking data, the latter often being the stimulus for the
former. The motivation behind this thesis is thus twofold. Firstly, part one
concentrates on the derivation of precise orbits from the inclusion of altimetry as
tracking data whilst part two details improvements in atmospheric density modelling.
Throughout, the satellite utilized for this study is SEASAT, being the best available
source of altimetry and laser tracking data.

In detail, part one concentrates on the derivation of precise orbits using
SEASAT data, with particular emphasis placed on altimetry, both in normal mode and
as crossover height differences. In normal form, altimeter height measurements are
contaminated by geoid uncertainties and are thus an inaccurate type of tracking data.
Crossovers however, do not contain this geoid error, since it is the same on both
tracks. This establishes crossover height differences as a more accurate form of
tracking data with crossover residuals providing a good representation of global radial
ephemeris error. To process, utilize and analyse both altimeter and crossover data,
the existing software has been greatly modified and expanded. The data processing
stage is described in chapter 3, together with other software modifications such as the
implementation of multiple drag coefficients, various atmospheric density models and
the NASA ‘area tables' for SEASAT. The usefulness of the two types of altimetry in
tracking data studies is investigated by analysis of orbits computed with both the full
network of available laser range data and also a sparse amount. Results of this work
are presented in chapters 4 and 5. Analysis of the altimeter and crossover residuals

leads to information on the type of errors within the orbit, the geoid and the sea
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surface topography, once the radial orbit error due to the gravity field has been
separated. The mathematics necessary for this separation is developed in chapter 6
and the solution for once and twice per revolution errors, a constant altimeter range
offset and an altimeter time tag bias is detailed in chapter 7. Chapter 8 reveals how
altimetry can be used to determine a low degree and order model for sea surface
topography, concluding part one of the thesis.

Part two is concerned with the crux of the research, namely that of.using
precise orbits to analyse and determine atmospheric densities at SEASAT heights.
Densities are determined by analysing the variation within the recovered drag
coefficients from long-arc orbits. By producing modelled and observed density
profiles from this density determination work, it is possible to predict where a good
orbital fit using a single drag scale factor will occur and hence gain insight into the
applicability of certain density models.

Reliable along-track information, as supplied by the laser data, is a necessity
for the drag coefficients to be well determined. At the outset of this research project,
it was amici;iated that altimetry would play an important role in this aspect, hence one
of the reasons for its implementation into the software. However, analysis has shown
that for adequate laser coverage, the supplementation of orbits with altimetry does not
significantly affect the solution, especially in the along-track direction. In
consideration of the extra computing time required to process altimetry, it was decided
that orbits used in the subsequent density analyses should be computed using laser
range data only.

Results of the density analyses and determinations can be found from chapter
9 onwards, wherein current state-of-the-art atmospheric models have been compared
and found deficient in their representation of density changes associated with
geomagnetic activity. In an attempt to rectify this problem, new variants of the
geomagnetic models are derived using several different techniques. The uses of a

smoothed geomagnetic planetary index, K’ and a new geomagnetic index based on

raw auroral electrojet data, the modelling of persistence of a geomagnetic event and
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the derivation of coefficients within certain geomagnetic models using a combination
of data from several SEASAT arcs, are all investigated. This results in the derivation
of a new density model called JHA B, which proves very successful in representing
density changes associated with severe geomagnetic storms. Its validity is
independently assessed by employing it in orbit determinations of STARLETTE.

It is anticipated and indeed hoped, that the work in this thesis, particularly in
part two, will prove useful in improving the modelling of future non-altimetric and
altimetric satellites such as ERS-1, thus enabling full use of the onboard instruments

for their designated purposes.
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CHAPTER 2

The SEASAT satellite, launched on June 28, 1978 was a proof-of-concept
mission to show that the monitoring of oceanographic phenomena and features.could
be achieved from space. During its operational lifetime of 104 days, six hours and 52
minutes [1], SEASAT collected an unprecedented amount of global data representing
various oceanographic and atmospheric phenomena. The onboard equipment
included a Synthetic Aperture Radar (SAR) to image the ocean surface, a Microwave
Scatterometer System to measure surface wind speed and direction, a Scanning
Multichannel Microwave Radiometer (SMMR) to measure sea surface temperature and
atmospheric water content, a Radar Altimeter to measure significant wave height and
the altitude of the spacecraft above the instantaneous sea level and a Visual and
Infrared Radiometer to measure sea surface and cloud top temperatures. Also on
board were an S-band Transponder, a TRANET/Geoceiver doppler beacon and a
laser retroreflector array, all to assist in the tracking of the spacecraft. Figure 2.1
depicts the in-flight configuration of the satellite.

Of particular interest to the oceanographic community is the altimeter data, but
to utilize it most effectively to model the marine geoid and dynamic-ocean topogra;phy
to decimetre accuracy, it is necessary to know the radial component of the spacecraft's
position to a similar accuracy. Attempts to achieve this high level of orbital precision
were based on data from a global network of high quality tra’cking' stations which

included Unified S-Band (USB), TRANET/Geoceiver doppler and laser stations.
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Figure 2.1 : Seasat in~flight configuraton.

Aston University

Hustration removed for copyright restrictions
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The decimetre level of radial accuracy has not, as yet, been attained due mainly
to errors in the modelling of the Earth's gravity field, solar radiation pressure (SRP)
and atmospheric drag forces. However, the data collected from SEASAT has helped
greatly in improving the models of the gravity field [2, 3, 4] and, as explained in the
introduction, the second part of this thesis is concerned with using the SEASAT laser
data to improve on the current atmospheric density models.

A list of the laser tracking stations together with their locations and assigned
accuracies can be found in Table 2.1 [5]. Also listed in the table are the number of
passes and observations obtained from each station although it should be noted, in
view of their poor quality, certain stations were not used in any of the orbital
determinations described subseqently. These included Helwan, San Fernando,
Wettzell and Grasse. In addition, the data from Orroral had to be corrected for a range
and time-dependent range bias for dates occurring prior to September 16 (MID
43767, MID being the modified Julian date) [5]. Figure 2.2 shows the observability
circles for the laser sites as applied to SEASAT at a nominal height of 800km, with
cut-off elevation for the laser ranges set at 20°, The diagram clearly shows the

limited geographic distribution of the laser tracking data.
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Eigure 2.2 : Geographic distribution of SEASAT laser sites with 20° elevation
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The orbits of SEASAT can be characterized by two distinct repeat periods plus
an interim period. The launch orbit had a nominal 17-day closure at 1°67 sub-
satellite track spacing whilst the final orbit, achieved on September 10 (MJD 43761)
after various manoeuvres initiated on August 15 (MJD 43735), almost exactly
repeated every three days [6]. Approximate orbital elements for the SEASAT
trajectory, together with details of the satellite itself, are presented in Table 2.2 [7].

Table2.2:  SEASAT characteristics

‘a ~ 7163km A 2531m?
e ~ 0.001 m  2195.0kg (August 15)
i ~ 108°.0 Afm  1.14 x 10-2 m%kg
M~ 5153°3/day Shape cylindrical with appendages

In Table 2.2, a i§ the scmi—méjor axis of the orbital ellipse of eccentricity, e; i the
inclination of th'e orbital plane relative to the equatorial plane and M the rate of change
of the mean anomaly. (Full definitions, to écthcr with geometrical interpretation of all
the orbital elements can be found in Appendix 1.) A is the average (constant) cross-
sectional area of the spacecraft and m its ma$s on August 15, 1978. Note that the

mass decreases slightly throughout the lifetime of the spacecraft due to fuel

expenditure.

§2.2 History Of Orbital Improvements For SEASAT

One of the major advances in orbital improvements over the last few years has
arisen from improved modelling of the Earth's gravity field. As mentioned in section
2.1, SEASAT data has helped considerably in this progress, from the tailored
preliminary gravity solutions, PGS-S3 [2] and PGS-S4 [2], up to the state-of—
the-art general purpose model GEM-T1 [3], (with subsequent versions GEM-T2
and GEM-T3 expected to be published in the near future). Radial rms accuracies of
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SEASAT with PGS~S3 are of the order of 1.2m [3] compared with 50cm for
GEM-T1 [3] and 30cm for GEM-T3 [4], approaching the required 10cm precision
for optimum altimetric utilization. (Projected orbital accuracies of GEM-T3 applied
to TOPEX trajectories show radial rms values of 15cm [4].) In“conjunction with
these gravity field improvements are substantial improvements in the long wavelength
geoid, as expected since the latter is an equipotential surface of the gravity field
supplemented with the rotational potential.

Other modelling improvements have not been so dramatic, particularly the
determination of atmospheric densities for satellite drag purposes. This problem is
addressed further from chapter 9 onwards.

The original model for the cross-sectional area, A, of SEASAT consisted of
the constant value listed in Table 2.2 and the unrealistic assumption that the satellite
could be approximated by a sphere. This approximation was employed in the drag
and solar radiation pressure (SRP) force models but proved inadequate, especially for
SRP. Hence, NASA commissioned the derivation of variable area models for both
the drag and solar radiation pressure forces. These are given in tabular form and are
subsequently referred to as the NASA 'area tables' [8] when utilized in orbit

determinations. They are described in more detail in section 3.5.
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CHAPTER 3

SOFTWARE AND ITS DEVELOPMENT

The software employed at Aston University for the orbit determinations used
throughout this thesis is described in this chapter. Section 3.1 briefly outlines the
main software modifications undertaken as part of this study, whilst subsequent
sections reveal mathematical detail about the force modelling, the least squares
differential correction procedure, multiple drag coefficients and the NASA ‘area
tables' for SEASAT [8].

§3.1 The SATAN Software Package And ts Modifications

The SATAN (SATellite ANalysis) software package [9] is a series of
FORTRAN programs for analysing the orbits of satellites of low eccentricity. Inits
original form, SATAN generates an orbit by numerically integrating the equations of
motion using an eighth-order Gauss-Jackson method [10]. The integration step
length is constant with a value of 30 seconds being used throughout this thesis. By
fitting the generated orbit to laser range observations using a least squares differential
correction procedure, it was possible in the original form to solve for a state vector at
epoch, a multiplicative factor, Cg, for solar reflectivity, a scale factor, Cp, for air-
drag, a dragrate, éD, and certain other coefficients such as laser station coordinates
and earth rotation parameters. The programs were written in such a2 way as to
facilitate modifications, several of which have been undertaken as part of this study.
These include modifications to air-drag, solar radiation pressure and the use of
altimetry for tracking purposes. A preliminary study of sea—surface topography was
also performed.

Air-drag, as computed in subroutine DRAG, has been modified to use and

solve - for multiple drag coefficients since the extra degrees of freedom introduced to

23



the system by such a model, greatly improves the orbital fit. The subroutine has also
been updated to accept a number of different atmospheric density models including
CIRA 72 [11], JS84 [12], MSIS-1/2 [13,14], MSIS-83 [15] and DTM [16]. In
two of these models, CIRA 72 and JS84, it is possible to’estimate certain
coefficients within the geomagnetic' activity component. The details of this can be
found from chapter 9 onwards. The incorporation of the NASA ‘area tables’ for
SEASAT (8] for air-drag and normalized solar radiation pressure accelerations has
also been achieved. ‘

Altimetry has been introduced as tracking data, both in its normal form and as
crossover height differences, the processing of each being described in [17]. Various
software has been written for its analysis, for example the orbit correction program
has been modified to solve for certain errors in the altimeter data including once—and
twice-per-revolution terms, a time tag bias and a constant offset. In addition,
programs have been developed to recover the spectral frequencies of the altimeter
residuals and the sea surface topography, the latter by analysing data accumulated
from several SEASAT arcs. As an integral part of the sea surface topography analysis
any altimeter offset is estimated. | -

The force model and differential correction procedure incorporated into the
original SATAN suite is now described (sections 3.2 and 3.3) with the modifications
to the dra'g and solar radiation pressure models described in sections 3.4 and 3.5.

§3.2 Force Model And Parameters

The orbit generation program involves integration of the satellite's equations
of motion using an eighth-order Gauss—Jackson numerical integrator [10]. These

equations can be written succinctly as

X =E(x % B) ' G.1)
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where x is the position vector of the satellite at time t, X and X, the corresponding
velocity and acceleration vectors respectively, whilst B is the vector of all initial
parameters within the accelerating force, F. For instance, B will consist, amongst
others, of the initial state vector, gravity field coefficients, drag coefficient(s) and a
solar reflectivity coefficient, Cz. In SATAN, the accelerating force, E, models the
gravitational attraction of the Earth, Sun, Moon, Venus, Mars, Jupiter and Saturn;
earth tides; atmospheric drag and solar radiation pressure, both direct and ‘earth
reflected. Parameters and constants within each of these force models are governed
according to the Merit Standards [18].

Reference Systems

The numerical integration is performed in an inertial reference frame based on
the position of the equatorial plane and vernal equinox on Jan. 0.0 in the year 2000,
sirhply referred to as J2000. However, the calculation of the acceleration due to the
Earth's gravity field is most conveniently done in a reference frame fixed within the
earth defined by the Greenwich Meridian and the true of date equatorial plane.

Transformation from J2000 to the true of data equator and equinox is
performed by accounting for the effects of precession of the earth's spin axis about
the pole of the ecliptic and the superimposed periodic motion known as nutation.
- This introduces two rotation matrices, P for precession and N for nutation. In
addition, transformations from this true-of-date frame to the earth-fixed frame
rcquircs‘ accounting for sidereal time and polar motion. This introduces a third
rotation matrix, S. Hence, if X7 is the earth fixed position vector and Xj00 iS

the vector in J2000, then

xr = S.N.P. Xp000 (3.2)

»

For a fuller explanation of the S, Nand P rotation matrices, see [19].
At every step of the numerical integration, the position of the satellite is

transformed, using equation (3.2), to the earth-fixed reference frame and the
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acceleration of the gravity field is calculated. The acceleration is then transformed to

the J2000 frame for the numerical integration step.

Earth Gravity
The acceleration due to the gravitational attraction of the Earth at an external

point, X, is expressed as the gradient of a potential V, where

V= G—rME- 1 -Z ( P a(sin ¢) + 22 an(sm ¢) [Com

n=2 ) =2m 1

cos mA + Sp, sinmA]) (3.3)

wherein G is the universal gravitational constant; Mg the mass of the earth of radius
Rg; r the radial distance of the point X, the position of the satellite from the centre of
the earth; ¢ the geocentric latitude of this point; A its geocentric longitude; J;, the
zonal harmonic coefficients of dégrcc n; Cyn and Sy, the tesseral harmonic
coefficients of degree 0 and order m, respectively and P,(-) and Pon(?) the
Legendre and associated Legendre polynomials. For a derivation and more detailed
explanation of equation (3.3) see Theory of Satellite Geodesy by Kaula [20].

Third Body A .

Third body attraction is calculated for the Sun, Moon, Venus, Mars, Jupiter
and Saturn. Referring to Figure 3.1 the accelerating force, Xrp, at the point X is

givenby_ [21]
%p = 2 GM, {x_-r"_l - ﬁ} . G49)

where r=1xl, ; = [5] and 4; = |x - x;[. M; represents the mass of the jth

body with the summation being taken over all those bodies just mentioned.

26



Eigure 3.1:  Third Body Attraction

Satellite, X

Earth's Tj %;, Planet j of
centre mass M;
Solid Earth And Ocean Tides

Time dependent tidal accelerations are caused by the lunar and solar
gravitational forces acting on different parts of the rotating earth. These effects are
supplemented by the effects of the orbit of the moon about the earth and the earth
about the sun. For a rigid earth, the frequency independent tidal potential, AU,, due

to the moon and sun is given by [22]

GM; RS 1

AU () = z ?l £k G-cosz S - 5) (3.5)
: i

with notation as defined previously and by Figure 3.1. In equation (3.5), k, is the

second degree Love number [23] and M; represents either the mass of the moon or

sun. The induced tidal acceleration (frequency independent) is found by taking the

gradient of AU,. Frequency dependent solid earth tides (diurnal and semi—diurnal)
are modelled as variations in the standard potential coefficients Cy, and Sy, using
the Wahr model as given in the Merit Standards [18].

Ocean tides in SATAN , are modelled according to Schwiderski's model as
presented in the Merit Standards [18].

Atmospheric Drag

The acceleration, Xp, dﬁc to the density of the atmosphere is modelled 'by
assuming that drag can be expressed according to the classical equation from

aerodynamics, namely
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o = -3(&) CoP v % (3.6)

u}hém (A/m) is the cross—sectional area-to—mass ratio; Cp a scaling factor, called the
drag coefficient; p the atmospheric density; v, the velocity of the Spacecraft relative
to the ambient atmosphere and v, = |y,|. The density, p, is calculated from a static
density model specified prior to orbit computation (see chapter 9 onwards).

Solar Radiation P SRP:
The acceleration due to direct SRP, zs;P. is modelled by [24]

e ’ A AU2
= -1 Cif{—| P ——m————— 3.7)
i = = i) — (

where v is the eclipse factor (which equals zero if the satellite is in the umbra, one if
it is in total sunlight with a sﬁ:ootlﬁng function to account for the transition between
the two, i.c. when the satellite is in the penumbra); Cp is the solar reflectivity
coefficient to account for the reflectivity characteristics of the spacecraft (normally
taking a value of between 1.0 and 2.0); (A/m) the cross—sectional area-to—mass
rﬁtio; P the force per unit area exerted at the Earth by the Sun whg.:n its geocentric
distance is one astronomical unit (AU) in km; X the position of the satellite; xsyn the
position of the sun and &5 a unit vector from the satellite to the sun, all in the

geocentric reference frame, J2000. |

Earth reflected and infrared (IR) radiation are modelled by [25]
Senp = A) dA
dXsrp = - [CR Y Pcos 6 + Pm/c]cos a(m) 2 &4 (3.8)

where v is the albedo (proportion of direct radiation which is reflected from the earth)
of the surface element, dA; © the angle between the surface normal and the sun; P

the emitted infrared flux of the surface element; ¢ the angle between the surface

element's normal and the satellite; ¢ the velocity of light; d the distance of the
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% = -3(g) Cop v x (3.6

v)hcrc (A/m) is the cross-sectional area-to-mass ratio; Cp a scaling factor, called the
drag coefficient; p the atmospheric density; v, the velocity of the §pacecraft relative
to the ambient atmosphere and v, =|y,|. The density, p, is calculated from a static
density model specified prior to orbit computation (see chapter 9 onwards).
1 iation P
The acceleration due to direct SRP, xs;P. is modelled by [24]

@ A AU2
= -1 Cp/—~| P ——— 3.7)
KSRP R(m) |1$"2€sm~l|2 25 (

where v is the eclipse factor (which equals zero if the satellite is in the umbra, one if
it is in total sunlight with a sﬁnoothin g function to account for the transition between
the two, i.c. when the satellite is in the penumbra); Cp is the solar reflectivity
coefficient to account for the reflectivity characteristics of the spacecraft (normally
taking a value of between 1.0 and 2.0); (A/m) the cross—sectional area-to—mass
ré.tio; P the force per unit area exerted at the Earth by the Sun wht.:n its geocentric
distance is one astronomical unit (AU) in km; x the position of the satellite; xgyy the
position of the sun and &5 a unit vector from the satellite to the sun, all in the
geocentric reference frame, J2000.
Earth reflected and infrared (IR) radiation are modelled by [25]

oo A) dA
dXsgp = - {CR Y Pcos 6 + Pmlc]cos a(m) 3 €4 (3.8)

where 7 is the albedo (proportion of direct radiation which is reflected from the earth)
of the surface element, dA; 6 the angle between the surface normal and the sun; P

the emitted infrared flux of the surface element; ¢ the angle between the surface

element's normal and the satellite; ¢ the velocity of light; d the distance of the
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satellite from the surface element and e; a unit vector from the satellite to the surface
element. If 6> 7/2 then y=0. The total earth reflected and IR radiation should be
calculated by integrating equation (3.8) over the surface of the earth visible to the

satellite. This integration is in fact approximated by summing over 13 surface

elements as in [25].
Total Force

The total accelerating force, F, is the sum of all these terms and is given by

13
X=E(x.% B) = UV + kp + VAU, + % + Xspp + 2 dXggp (3.9)
' . i=1

where dZéRP is the accelerating force due to earth reflected and IR radiation for the it

" surface element. In equation (3.9) it is assumed that the potential coefficients of V

have been corrected for frequency dependent solid earth tides and ocean tides.

§3.3

The orbital parameters and other coefficients estimated in the data reduction

process are calculated using a least squares differential correction procedure. This is

now described.
Assume there are N observations, d:’ of a type of distance measurement to

a satellite, each with an 'a priori' standard deviation, ¢;. These measurements might

comprise laser range observations, altimeter heights or crossover height differences

for example. At the time of each observation, t;, SATAN calculates a corresponding
distance d;, dependenton m initial conditions. This is written

E=d®,i=1.,N (3.10)

where P isan m-vector with components p;, j=1,...,m. P will include the state

vector at epoch, thé drag coefficient(s), the solar radiation pressure coefficient and all
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other orbital or geodetic parameters, some of which may be estimated in the reduction
procedure.
Assume P* is the value of P sought in the data reduction procedure but that

ﬁ is the best available approximation prior to solution. Then
A
P*=P + AP (3.11)

for some vector of corrections, AP. Itis this vector which is being estimated.
The most accurate orbit is obtained when the computed distances d;, most

closely resemble the observed values df in the least-squares sense. This is

cquivalent to minimizing the function I given by

N

I= 2 [d;’- d (p;«)]2 o; (3.12)

i=1
where ®; is a weight assigned to each observation depending on its ‘a priori'

accuracy. The value chosen is

. .}; (3.13)

I is minimized with respect to all the components of P for which corrections are

sought. This gives m’ equations of the form

N
¢
L2V o, (d:_dg(z*))i‘l‘-m*) =0 (3.14)

for j=1,...,m and m’Sm. Forbrevity, d’(B*) is written as d;° and df(P)

as 3? . Then, by Taylor's theorem and equation (3.11)
¢° =d + Ap. ¥ d° + 0(aP?) (3.15)

wherein i&‘f refers to the m’-vector of partials aﬁffapj. j=1,...,m’, Also
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A
— = — + 0(aP). (3.16)

Upon substituting (3.15) and (3.16) into (3.14)

J

N A
2 (do -&-aAp. ¥ d- 0(AP2)) (-a-p—+ O(AP)} =0. (3.17)

-
]
—

Assuming (clf = 3:) is of the order 0(AP), then to order 0(AP) (3.17) can be

written
N A N A
ad ad§
E: 3‘" = 2 ; (dl - df)a—- (3.18)
i= i=1 :
for j=1,..., m’. In matrix form this is
DAP =) (3.19)
: NP N 3ds ads
where D isthe m’xm’ matrix with elements ij = Zm- = == AP isthe
i=1 Opy dp
N

m’-vector of corrections and b is the m™-vector with components b; = Z ®;

(d" -d )-gg—- Equation (3.19) represents the so called normal equations and has

Pj
a solution provided D is invertible. This turns out to be the case provided there are

sufficient observations, since D is then a symmetric positive definite matnx.
In order to calculate D and b in the programs, the partials ad"/apj must be

calculated for each observation time, t;, together with df itself. This is achieved
using the eighth-order Gauss-Jackson numerical integrator [10] to derive both

Ac Ac . . . . .
dd;/dp; and d, assuming p; is an orbital parameter, ic. p;€ B. (It' pj isa
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parameter that does not affect the orbital position, e.g. station coordinates, then

A
9d;/3p; can be calculated directly from the definition of Sf)

The equations of motion have been expressed by equation (3.1). The solution
of this at each observation time, t;, gives the values x{ and X[ . Using x{ itis

straightforward to calculate 3;‘ depending on the type of observation, d; . For

- - » A -
instance, if df is a laser range measurement then the one-way laser range d;  is

givenby

G E AT 620

where x{ = (xil, x?, xf) and (x:t. xft, x::'t) = X, give the coordinates of the

laser site in J2000. (See Figure 3.2.) Note that 3‘:' could be calculated in the true of

date reference frame since distances are invariant under rotation.

Figure 32: Laser Rahgc Measurement.

P
("iv X xi)

satellite orbit
d’
1
laser range)

. . 1. 2 3
Lasersite x,, = (xn, Xgp xst)

To calculate aﬁf/apj , for p;e B, éciuation (3.1) must be differentiated with
respect to p;. Hence

% _Edx  ERX, IE o (3.21)
dp; Ox dp; Ox dp; Op; |
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where JE/dp; are the explicit partial derivations. Since E is only weakly dependent
on X - it appears 6n1y in the drag force — the middle term of equation (3.21) can be

omitted. Then, upon interchanging derivatives

d2 (dx) _OE 9x . oF
— ] =R = 3.22
dtz [aij dx dp; ¥ op; G-22)

Equation (3.22) is a second order ordinary differential equation in dx/dp; and can be
integrated using the Gauss-Jackson process to obtain a;;?/ap,- at time, t; . "Again

a&f/apj can be obtained from these partials, depending on the type of observation.

For example, in the case of a laser range measurement, differentiating equation

(3.20) yields

Similar calculations for the altimeter heights and crossover height differences can be
found in the appropriate sections describing these forms of observations — chapter 4

for pure altimetry and chapter 5 for crossovers.
§3.4 Multiple Drag Coefficients

' For long-arc analysés, ryp1ca]1y afew déys in length, large errors océur 1n the
orbital solution of SEASAT when solving for either a single drag coefficient [6, 26]
or a drag coefficient plus a dragrate [6]. Apparently, the current atmospheric density
models are unable to cope with certain short-term variations in density such as those
due to geomagnetic disturbances. The accuracies obtained when using a linear
dragrate model are generally better than those obtained from the single coefficient
model since the extra degree of freedom within the system helps to absorb some,

though not all, of the along~track error. By introducing multiple drag coefficients to
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the system, the number of degrees of freedom is increased, absorbing more of this
error. This is a somewhat artificial means of absorbing unwanted along-track error,

but can be justified by the improved orbital accuracies which are obtained. Table 3.1

shows the rms of fit to laser range observations, together with the recovered Cy

values, for an arc computed using each of the three forms for the drag scale

parameter,

Table 3.1: Comoparison of the laser residual rms and recovered Cy values for the
six day arc spanning MJD 43728 to MJD 43734 (August 8 to August
14, 1978). In each case, the orbit is relative to the GEM-T1 gravity
field, the CIRA 72 atmospheric model and the NASA ‘area tables' for

SEASAT. Solution of each orbit required estimating for a state vector
at epoch, a solar reflectivity coefficient, Cy, and the parameters

within each of the drag models.

1 For P T ms(m) Cr
constant drag (Cp) 240 093
linear dragrate (Cp, &) 1.57 132
daily drag coefficients (CDi’ i=1, .., 6) 0.61 1.55

The orbit computed with the daily drag coefficients is regarded as the more acceptable,

both in terms of the rms value and the recovered solar reflectivity factor, Cg.

Numerous long-arc analyses, spanning the entire lifespan of SEASAT, have shown

that the value of Cg is in the region 1.5 to 1.7, when utilizing a multiple drag

coefficient model.

Sof Descrinti
The modifications to the software, to use and solve-for multiple drag

coefficients, is now described.

The force model for air-drag is given by equation (3.6). Solving for the

coefficient, Cp, as part of the orbital solution, results in absorption of some of the
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errors in A, p and other along-track forces such as the gravity field and SRP.
Hence Cp loses its physical significance, becoming a scaling factor for the
inadequacies of the modelled along-track forces. By using multiple Cp's more of
this error can be absorbed, so improving the orbital fit.

The normal equations for the orbital solution are given by equation (3.19).

The equation for the partials with respect to a single drag coefficient is therefore

N A N A
A.. Odf adf | ads
o; (d? - 47 —— = . A'.Vd+AC 3.24
Z‘ (O 9) 3, Z“"{R "acn}ao G294
= 1=

A,
where AP’ is the vector of corrections to all parameters except Cp and ¥'d; is the

vector of all partials except with respect to Cp,.

However, if it is rcquired to use and solve-for a number, Nprag > 1, of

drag coefficients, Cp, i=1, ..., Nprags cach spanning a separate time interval of

the arc length, this equation needs ;EO be altered slightly.
A distance measurement, d; calculated at time t; during the time spanned

by C]:;.j is dependent on the drag coefficient at this time plus all previous drag

coefficients, For example :-

A A h ' . j
A A

dip = di (Cp,Cpy),
5 5 - ; (3.25)
A A .
d?j = d?j (CDI'an’ ceey CDj)s

n N :

diNg,g = diNnm (CDI' CDz, ...+ Cp Nnnm)' )
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Hence the drag coefficients are not strictly independent and if one is estimated, then
all should be estimated. The notation for the partial derivatives is simplified by

writing the drag coefficients in vector form. Thus

adfy _ (adf )
= v 0, ., 0],
3Cy  |3Cp,
ads, _ ads, 3y 0 0
BS_Q_ BCDl ' ach o ’
A: A . A: | A > (3'26)
oy _ (245 : ad?i. -aiicio. v 01,
3Cp (3o, ' 3Cp," " 3Gy
N; Ac : e Ac
adeRAG = adiNDluG a d NDRAG ad NDRAG ]
o | o, | oy, ' ECh )
Equations (3.26) can be written more succinctly as
ad;  (ads ad; ) _ [a&“; S G327
a& aC];)1 aCD aCD‘i j - 1

where E)&;’/BCDj is taken to be identically zero for all drag coefficients, C,;;,j , after

which the observation occurs. Equation (3.24) then becomes

N A N Nprag
Aey OdS A ad ad§
o dc LI . ’ r ¢ '-AC ontinat
Zm‘(d‘ ‘)a D 2“" aR'. X d‘+z oCp, P 13Cp
i=1 k=1
i=1

fOl' j = 1' veey NDRAG.
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The above has been implemented into the software with time-intervals
specified as input data. For convenience as much as anything, it is customary to use

daily drag coefficients for SEASAT.

§3.5 ArcaTables

As well as absorbing errors associated with density mismodelling, multiple
drag coefficients can absorb errors due to the uncertainty in the spacecraft's cross—
sectional area, A. The original SATAN package employs a spherical approximation
for the cross-sectional area of SEASAT, in both the drag and the solar radiation
pressure force models. However, close inspection of the in-flight configuration of
SEASAT (Figure 2.1) shows this to be an over-simplification which could lead to
large discrepancies between the modelled forces and the actual forces at any instant.
The shape of SEASAT is basically cylindrical with appendages attached, the main
ones being the solar panels with a surface area of 14.88m2 and the SAR with a
surface area of 28m2 [27]. Since the satellite is stabilized, the body always points to
the centre of the earth and so is perpendicular to the along—-track direction. Hence, for
air-drag purposes, this component of the satellite's cross—sectional area does not
vary. The SAR is fixed relative to the body and points in the direction of motion,
i.e. along-track, so the area of this component is also constant for drag purposes.
However, the area presented by the solar panels in the direction of the velocity vector
will vary because of their continuous rotation towards the sun. Hence, for drag
purposes, the satellite area varies by about 25% throughout an orbital revolution, the
average of which is pretty much the same from one day to the next. Consequently
any error in the modelling of this area is virtua.ily constant from one day to the next
and scales the drag coefficients accordingly, not affecting their relative variation.

In the sun-satellite direction, the variation in cross-sectional area is more
significant and is due to all three main spacecraft components. The area of the body

and SAR in this direction, vary due to the satellite's orbital motion, whilst that of the
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solar panels varies because they can only rotate about one axis. This limits the
maximum area which can be presented to the sun at any particular instant. Variations
of the spacecraft's area in the sun—satellite direction can cause large variations in the
computed SRP force, very significant at SEASAT heights. In particular, this force
can have a significant along-track component, any mismodelling of which will be
absorbed by the drag coefficients. This can cause meaningless Cp values to be
recovered, such as very small or even negative values.

To account for the variations in cross—sectional area, NASA commissioned
the derivation of a set of tables for SEASAT [8], tabulating areas for drag and
normalized accelerations for SRP at various viewing angles. These tables, which
have been incorporated into the software to give a more realistic model for the
satellite's cross—sectional area than the constant value assumed in the spherical
satellite approximation, are now described. _

The area tables have been derived in a coordinate system fixed within the
satellite. This is the so called Body Coordinate Frame (BCF) and is given by three

orthonormal vectors Rpcp, 9pcp and 2pcp relative to the inertial reference system

J2000. Specifically

% = =20,
acF = (2ac1= x .‘.'u)/riBCF 2%l
Rpcr = (QBCF x eacp)/ |93cp X 2-BCFI

is a unit vector in the
=x(t)/lxo)l .

Computation of the area, A, for drag modelling at time t is performed by

where x(t) is the satellite’s position in J2000 at time t and v,
direction of the satellite's velocity, Xt), also at time t, i.c. Vv,

tri-linearly interpolating within the drag table for three different angles. The values of
A are tabulated as a function of the latitude, ¢,, and longitude, A,, of the relative

velocity vector, v,, in the J2000 system and also the right ascension, o, of the sun

about the solar panel axis. These angles are given by
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(!: . £BCF)
'\l(!r : ﬁaCF)z + (% - QBCF)ZJ
A() = tan-! {%ﬁ)

¢v(t) = tan"l[

¥ - XBCF
3 KSUNBCF)

o, = tan-! 3

where 23 = ﬁsp X ﬁBCFo 22 = P.g X ﬁ,p. ﬁsp being the unit vector defining the
direction of the solar panel rotation axis and XSUN, the position of the sun all'in the

BCF reference frame. Diagrammatically,

Ay(t)
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(Sincc for SEASAT, a-sp =(x,y,0) for x,y # 0),
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For SRP modelling, the tables represent vectors of normalized accelerations in
* ok N .
the BCF reference frame, written as A* = (Al s Agy A3) The acceleration Xspps

due to direct SRP is given by

Leon = vCgP  AU?  ATz000
SRP = ~— g
lx-xsunl~ CR

(3.29)

- . - - - * . L] . L
where Cy is the reflectivity coefficient being used, Cg is the effective reflectivity

coefficient used in the derivation of the normalized accelerations, is the

*
AHOOD

normalized acceleration in J2000 and all other terms are as defined in equation (3.7).
The values of A, i=1,2,3 are tabulated for two angles, the right ascension, «,

of the sun from the satellite and its dec_linal:ion, 0. These are defined to be

o = tarl (xSUNm/zSUNBG)‘ - 0 < a < 360°
0= ‘I tan-1 [YSUNBCF / V (XEUNBCF + ngNBQ’)J -90°€ § < 90o
where ASUNgp = (xSUNncF' YSUNp e ZSUNg cx-‘) : Diagrammatically,
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BCF
A bilinear interpolation is used to obtain the value of A* at the required time and

position. This defines a vector in the BCF coordinate frame which needs to be

rotated to J2000 to be used in equation(3.29), i.e.

*
Appee = B A*

where B is the rotation matrix whose column vectors are 2pcg, dpcp» 25cE- |

By using the tables in orbit detcrmination§ it is assumed that mismodelling of
the SRP force has been reduced, especially for the purposes of this study, in the
along-track direction. Hence, variations in- the recovered drag coefficients, when
employing the area tables are not dominated by solar radiation, an important
assumption for the work on density determinations described from chapter 9
onwards.

During initial testing of the area tables, the satellite was found to be fairly
insensitive to the drag table areas with similar drag coefficients obtained when using
either the drag area tables or a mean cross-sectional area. However, this is not the
case for the normalized SRP accelerations which must be precisely derived for
meaningful drag coefficients to be recovered.

The effect of the area tables is observed when computing an orbit both with
and without them. Resulting drag coefficients for such an analysis are given in Table

3.2 together with the rms of fit to the laser data and the estimated SRP coefficient,
CR.
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Table 3.2: Comparison of recovered daily drag coefficients for the six days arc
spanning MJD 43728 to MJID 43734, both with and without the
NASA ‘area tables' for SEASAT. Both orbits are relative to the
GEM-T!1 gravity field and the CIRA 72 atmospheric model.

Cp,

5

Area model ms(m) Cg NoObs Cp Cp, ©Cp, Cp, ©Cp

Spherical satellite 0.56 1.61 1488 0.85 1.63 140 047 172 1.57
NASA tables 0.61 1.55 1488 4.05 5.51 5.15 3.79 499 4381

A remarkable similarity between the recovered Cg and rms values is noted for each
of the models. This indicates little difference between the two orbits, a fact which is
vindicated by a comparison of the radial, along-track and cross—track components of
position for cach ephemeris. Table 3.3 shows this comparison which is plotted in
Figure 3.3.

JTable 3.3: Comparison of the radial, along-track and cross-track components
of position for the orbits of Table 3.2.

Differences in metres(max/rms)
Radial Along-track Cross-track
0.64/0.21 3.76/1.10 2.64/0.95

As suggested earlier in the text, the drag coefficients have absorbed the along-track
modelling errors to give orbits of a similar quality, with Cy being determined from
the radial and cross—track components of SRP. The lower rms value of the spherical
satellite model is not deemed significant. Of more importance is the variation within
the recovered drag coefficients. Use of the area tables results in a variation by a
factor of 1.5 whereas for the spherical satellite model, the variation is by a factor of
3.7. Also, according to Cook (1965) [28], a realistic value for Cp should be above
2.0 for a satellite which is basically cylindrical. In view of these observations, it was
decided to adopt the NASA 'area tables' in all future orbital computations of
SEASAT.
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Figure 3.3 : Orbital comparison for an arc computed both with and without the
NASA ‘area tables' for SEASAT when utilizing multiple drag

coefficients.
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CHAPTER 4

ALTIMETRY
§4.1 Altimeter Data

The SEASAT altimeter data, spanning July 6, 1978 to October 9, 1978 (MJD
43695 to MID 43790), was supplied by POL Bidston on three magnetic tapes called
Geophysical Data Records (GDRs) [29]. These tapes were created by the Instrument
Data Processing System at the Jet Propulsion Laboratory (JPL) in California, with the
purpose of providing all necessary information for using altimetry as a radial
observation of the satellite's orbit and/or to monitor various oceanographic
phenomena. This chapter describes the processing necessary to obtain radial

measurements and their subsequent use in SEASAT orbit determinations.
§4.2 Definitions

In the current study, the radial altimeter measurements are defined relative to
the reference ellipsoid, an oblate spheroid of revolution whose surface approximates
as closely as possible, that of the geoid, an equipotential surface of the Earth's
gravitational field and centrifugal rotation. Intuitively, the geoid is the height that the
mean sea level would attain if there were no ocean circulation phenomena, sea density
variations or winds. In reality, there is a difference between the two and this is
termed the sea surface topography.

Figure 4.1 depicts, in simple form, the concept of altimetry. To derive the
satellite height above the reference ellipsoid, from the raw altimeter measurement,

various corrections need to be added.” These corrections, together with the raw
measurement itself, are listed on the GDR tapes. The observed satellite height, b, at

time t; is expressed by



by’ = hyag + By + hyg + hsgre + hopre + hione + hwet + hary + Ringe = 0.0711§T 4.1)
where the terms on the right hand side of equation (4.1) are defined as follows:-
hew 3 raw altimeter measurement above the instantaneous sea surface

hg : geoid height relative to the reference ellipsoid

B ¢ barotropic correction

hsgre ¢ solid earth tide correction

hoerc ¢ (Schwiderski) ocean earth tide correction

bians ¢ ionospheric delay correction

by ¢ wet tropospheric correction

hyy @ dry tropospheric correction

Bl sum of corrections to account for the offset from the centre of gravity

of the altimeter and any electronic delays

hy - significant wave height to accommodate sea state bias [30].
k)

The geoid height, hg, on the GDR tape is the so called GEM-10BD geoid based on

the GEM—10B gravimetric geoid produced by Goddard Space Flight Centre [29].

Figure 4.1: - Altimetry.
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Close inspection of equation (4.1) reveals that there is no term to account for
the sea surface topography. A mean sea surface height does exist on the GDR tapes,
derived by James Marsh of Goddard Space Flight Centre (GSFC), using the NASA
orbit from the 18 days of data spanning July 28, 1978 to August 14, 1978. Any
geographically related error in the NASA orbit will however, propagate into these
mean sea level heights and hence into the sea surface topography, values of which
can be recovered by differencing the mean sea level and the geoid. Hence, it was
decided not to use this correction term in the calculation of h{ and consequently, the
altimeter residuals will contain an error component due to the omission of the sea
surface topography. Analysis of the altimeter residuals can therefore lead to the
dctcmﬁﬁaﬁon of a model for sea surface topography. This is addressed in chapter 8.

The processing of equation (4.1) is performed using the FORTRAN program
CONVERT, described in [17].

\§43 Altimetry As Tracking Data

The radial information offered by the altimeter observations can be used to

minimize errors in this component of the satellite's position. If the satellite's
position, x':, is calculated at the time, t;, of an altimeter observation, the height

above the reference ellipsoid, h{ can be derived. Then the difference between hy’ of

equation (4.1) and h{ defines the altimeter residual, Ah, i.e. Ah=h—h{, For

consistency however, both values must be determined relative to the same reference
ellipsoid. Since SATAN determines positions relative to the inertial frame J2000, the
reference ellipsoid for the calculated position, h{ will be different to that for the
observed position which is defined by the true of date equatorial plane and Greenwich
Meridian. In order to calculate the altimeter residual therefore, h{ must be computed
relative to this same ellipsoid. This is achieved by determining h; from the true of

date position, z;i‘, where
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K.; =R K.f (4.2)

for the rotation matrix R = S.N.P. of equation (3.2), transforming J2000
coordinates to earth-fixed coordinates.

It should be noted here that such a transformation was not'necessary on the
laser range calculations since they are defined by vector differences which are
invariant under rotation. For the altimeter height calculations, this does not hold,

since the position of the reference ellipsoid varies under rotation.
The computed satellite height, hf. is now derived from Ef by referring to

Figure (4.2) [31].
Figure 42:  Altimeter Height.

zh
P=(x v %)
5
i
fi]
Q= (xq. Yo
Cor o )
N 0 reference ellipsoid
R

x Greenwich Meridian
Assume the satellite is at point P, (x;, y;, 2;) = X;, in the earth—fixed reference

frame. It is desired to find the normal height, h{, of P above the reference

ellipsoid. Let Q be the point (le, yQ, ZQ;)’ on this ellipsoid, obtained from the

projection of P along the ellipsoid normal. Then from [31]
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XQ, cos ¢; . cos A;
X, = Yo, | = N | cos ¢;. sin A; (4.3)
«Q (1-€2) sin ¢;

wherein ¢; is the geodetic latitude, A; the geodetic longitude, e the eccentricity of
the reference ellipsoid and N the radius of curvature in the prime vertical at (¢ i li)

on the reference ellipsoid, given by

1
N = Rg/(cos2¢; + (1 - €2) sin2¢;) 2. (4.4)
In equation (4.4), Rg is the radius of the ellipsoid at the equator. From Figure (4.2)

X = X + b n; (4.5)
where p; is the unit normal at (¢;, A;) on the ellipsoid, given by
cos ¢; . cos A;

n; = | cos ¢;.sinA; |. (4.6)
sin ¢;

Combining equations (4.3), (4.5) and (4.6)

(N + hf) cos ¢; cos A;

Xi
=|yl= (N = hf) cos ¢;sin Ay | 4.7)
Z; (1-e2)N+ hf] sin ¢;
Using cq"ua-tion'(4.7)
1
2 + v2)2
B RE () e (4.8)
cos ¢;
4 = tat | —H (1 ! Tl (49)
i N + hf
(xt + y?)?
A; = tan-! (Yi xi) , (4.10)
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Equations (4.4), (4.8), (4.9) and (4.10) are solved iteratively, the procedure started
by using the value of ¢; on the GDR tapes as initial input to the system.
The minimization of the altimeter residuals is performed by identifying h’

and hf with d;’ and 3‘:, respectively, in section 3.3. Hence jt is necessary to
calculate the partial derivatives ah;’/Bp ; for each parameter, p;, to be adjusted. Now
b = (%) (4.11)

where x_: = 1:(2) and P contains the initial state vector, relative to J2000. .From

equations (4.11) and (4.2)
e ]
* _ v c 98 (4.12)
Sk ¢
and ox _ p 95 4.13)
Bpj apj
¢ ¢
so that . M v X (4.14)

The partial derivatives 0x; /Bpj are determined as part of the orbit generation

program, as is R, so all that remains to be calculated is Vh? . From equations (4.4)

and (4.8)
1

po G y))?

1
L Re/(cos2¢; + (1 - e2) sin2¢,) 2. (4.15)

Dropping the i subscripts and differentiating with respectto x

ohe X 1 L sin¢ 9 o)

= A + 2+ 22-—-—-—-—_R ZF—— 4.16
ox  cos ¢ (3 + y2)%' (x2+y ) cos2p ox B (4.16)
whiere F = sin ¢ cos ¢

T
(1 -e?sin2p)?

sin ¢ cos ¢

3
| [sin 26| (1-¢2)7
S 7 <3

Now IFl = 3
(1-¢2 sin2¢)§-| 21 - e2 sin2¢[?
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therefore [Fl= %-4- 0(e?) and Rge? F~0(e?). Therefore, the last term of equation

(4.16) is small compared to the previous terms and is omitted. From equation (4.9)

z : e2N -1
o=t (12
(x2 + y2)2

Ignoring terms of order 0(e?) and differentiating with respect to x yields

% . ___ =

1
ox (x2 + yz)'z' 52

where 12=x2 +y2 + 22, Substituting this into equation (4.16)

ohe ~_X 1 ztan ¢
F) L r2
X cos¢ (x2 i y2)2
and since he is symmetricalin x and y

oh¢ _ vy 1 ztan ¢
: - 1 o 2 .
dy cosd (x2 : YZ)T r

Differentiating equation (4.15) with respectto z

3h° ()(2 2)2 Sln ¢ RECzF ad)
cos2¢ oz 0z
which simplifies to
E-l}: sm ¢
oz

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

upon ignoring terms of order O(ez). Equation (4.22) has been derived by solving for

d¢/dz from equation (4.17) and substituting into equation (4.21).

Note that if a spherical earth approximation is adopted in determining the

partial derivatives then equations(4.19) and (4.20) simplify to

50



dh® _ x
—_—== (4.23)
ox T

and LS (424)

dy

Having derived mathematically the altimeter residuals and partial derivatives
and modified the software accordingly, altimetry can be used as tracking data in orbit
determinations. It must however, be supplemented by laser range data. Orbits
derived from altimetry alone, have little or no constraint in the along-track and cross—
track directions causing the normal equations to be ill-conditioned and generally
indeterminate,

Various experiments have been undertaken to test the usefulness of altimetry
in laser orbits. Preliminary work involved supplementing orbits computed from the
full network of laser tracking data over the periods being analysed. One such case
was the six day arc spanning August 8, 1978 to August 14, 1978 (MJD 43728 to
MID 43734), with laser data coverage as listed in Table 4.1.

Table4.1:  Laser data coverage for MID 43728 to MJD 43734,
Station number  Number of passes Number of observations ~ Rms of fit

accepted to referenc

(3m rejection level) orbit (m)
7069 5 239 0.51
7062 10 414 0.30
7067 6 112 0.64
7907 12 465 1.07
7833 3 97 0.51
7929 1 12 1.08
7943 5 106 1.53

Total rms of fit to laser data for reference ephemeris = 0.50m.
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In Table 4.1, the column headed 'ms of fit to reference orbit', refers to the
accuracy of the observations at each laser site for the reference ephemeris, an orbit
computed with all the laser data listed, when solving for a state vector at epoch, a
solar reflectivity coefficient, Cg, and six daily drag coefficients. The gravity field
employed was GEM-T1 and the atmospheric model, CIRA 72. Next, this reference
orbit was supplemented with altimetry weighted with a standard deviation, ¢, of 2m
and sampled at a minimum of 30 second intervals. This had very little effect on the
orbital solution, thus it was decided to increase the weight on the altimetry by
applying an 'a priori' standard deviation of 0.5m. Both these ephemerides were
compared radially, along-track and cross—track with the reference ephemeris, the
results of which are plotted in Figures 4.3 and 4.4. Both figures confirm that the
information altimetry contains in the along-track and cross—-track directions is limited,
whilst also showing that to affect the radial component, altimetry must be weighted
unrealistically high. For a well determined laser orbit, the conclusion is that altimetry
does not add much extra information to the solution. However, the small effect it
does have, is investigated further in chapter 7.

In view of this and the computing time needed to process altimetry, there may
seem little point in doing so, but the altimeter residuals have other uses apart from
correcting orbital parameters. They can be used to analyse errors in the gravity field,
geoid, orbit and sea surface topography, as well as determine the latter, as will be
explained in chapter 8. The true worth of altimetry as tracking data is seen when it is
supplemented to orbits computed from a sparse amount of laser data, subsequently

referred to as sparse laser orbits.

§4.4 Supplementing Sparse Laser Orbits With Altimetry

SEASAT altimetry provides a near global set of observations, covering

virtually all the ocean areas between latitude 70°S and 70°N, though much of that

south of 60°S was contaminated by sea ice effects. Consequently, much useful
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orbital information is contained therein. Section 4.3 showed that this information
added little to an orbit derived from a good set of laser observations. However, as
the amount of laser data is reduced, there will be a point when altimetry begins to
provide the orbital information lacking in sparse laser range data. Experiments have
been performed both in the Netherlands [25] and at Aston University to find the point
where this occurs. Results of the work performed at Aston were presented in a paper

at the UKGA-11 conference in Durham in April, 1987 [32].

Table 4.2 summarizes some of the results presented in Table 4.1 of [32] for the arc

spanning MJD 43728 to MJD 43733.

Table 4.2: Orbital differences between orbits computed using 10 passes (425
observations) of Arequipa (7907) laser data supplemented with

altimetry and the reference orbit.

Altimeter data Orbital differences (max/rms)
o(m) sampling interval - radial along-track  cross—track
(minutes) (m) (m) (m)
oo - 5.66/2.55 117.2/24.81 0.95/0.66
2.0 1.0 1.62/0.68 29.85/6.24 1.13/0.77
1.0 1.0 1.32/0.58 17.43/4.32 1.00/0.68
0.5 1.0 1.35/0.60 12.01/3.64 0.52/0.35
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Figure 4.3 : Orbital comparison of an arc comﬁutcd with laser data only and laser
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Figure 4.4 :
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In Table 4.2, the reference orbit refers to the orbit computed relative to the
PGS-S3 gravity field [2], the CIRA 72 atmospheric model, a spherical satellite
approximation for cross-sectional area modelling and daily drag coefficients when
utilizing the full network of laser data. The results show that altimetry has a beneficial
effect, both radially and to a lesser extent, along-track when it is supplemented to a

very sparse network of laser observations. As the observational standard deviation,

o, is reduced on the altimeter, the orbital differences decrease with the Arequipa plus
0.5m o altimetry orbit most closely approximating the reference orbit. For this orbit,
the altimeter and laser data points are each of equal weight, whilst the ratio of
altimeter to laser range measurements is of the order 10 : 1. Despite this
predominance of altimetry, the laser range observations are still able to constrain the
cross—track component of position. However, decreasing the 'a priori’ standard
deviation on the altimeter to 0.1m caused the laser data to have minimal effect and the
solution failed to converge. Hence, care must be taken not to 'over-weight' the
altimetry in such analyses.

Explanation for the orbital improvements radially is quite straightforward
since altimetry provides direct information of this component. Along-track however,
the improvement is not so easy to explain since the information from altimetry is
limited in this direction. A little thought about the geometry of the situation may help
to resolve this matter. Referring to Figure 4.5 it is seen that observations from the
laser sites at each end of an arc help to fix all three components of the satellite's
position at these points. This leaves the trajectory in a somewhat freer state in
between. For the sparse laser orbits just mentiohcd, the length of the gaps between
laser sites will obviously be larger than those for the orbits computed from the full
laser network. Consequently, there will be longer periods unconstrained by
observational data. Adding altimetry will help to fix the radial component of position
during these periods directly, but the constraint along-track is a little more subtle.
Due to the Earth's ellipticity and also to some extent, that of the satellite's orbit, the

radial altimeter height above the reference ellipsoid will vary quite considerably
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throughout the orbit (Figure 4.6). For instance, at the most northerly point of
SEASAT's orbit, the altitude was approximately 810km. Conversely, at the most
southerly point, it was near 824km whilst at the equator, it was near 798km. This
variation helps to pin-point a group of radial altimeter observations in terms of their
latitude, so providing some secondary along-track information.

Figure 4.5: Laser Sites.
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The practicality of supplementing altimetry to sparse laser orbits may be
realized when the European Remote Sensing satellite, ERS—~1 is launched, since there
is some doubt as to the amount and distribution of laser coverage which will occur for
this spacecraft. ERS-1 will also carry the Precise Range and Range-rate Experiment
(PRARE) but as the name suggests, it is an experimental system. In the event of
poor laser coverage or failure of PRARE, the results of Table 4.2 show that accurate

orbits can still be obtained upon utilization of altimetry.
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CHAPTER 5

CROSSOVERS

§5.1 Formulation Of The Crossovers From Altimetry

A crossover point occurs where ascending and descending satellite ground-
tracks intersect, a satellite ground track being the projection of the satellite's trajectory
onto the Earth's surface. Figure 5.1 [33] depicts in simple form, the crossing—arc
point between two arcs, i and j.

Figure 5.1:  Crossing-Arc Point.

R’ t; descending arc j

[+ ]
B;
" - - ' ocean surface
& =
crossing-arc point at intersection
of ground-tracks on ocean surface

In Figure 5.1, R} and R;-" refer to the calculated geodetic heights of the

spacecraft at the crossover point for time t; on the ascending arc and t; on the
descending arc, respectively. Observed hi and h] denote the corresponding

altimeter measurements at these times, including all correction terms, as defined in
equation (4.1), except the geoid correction. Numerical values for h; and h;' are
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found by interpolating within the GDR files at times t; and t; respectively. The
observed crossover height difference, C:; is then defined to be

Ch = h - h;’ (5.1)

|
if t; is earlier than t; and
o 0 0

if t; is later than t;. Similarly, the calculated crossover height difference, Cii: is

ij*

defined to be .

C; = Rf - R/ (5.3)
for t; earlier than t; and

Cgi = R;’ - R} (5.4)

AC; = C; - Ci. . (5.5)

Equation (5.1), for example, illustrates the reason for omission of the geoid
correction in the definitions of b and h;’; being identical on both tracks, it cancels

in the equation. This cancellation removes a large part of the altimctﬁc uncertainty
from the crossover measurement, thus providing a more accurate form of radial
observation than pure altimetry. For example, the precision of a crossover height
measurement is governed by the precision of the altimeter plus the various correction
terms, in particular that due to the ocean tides and results in a measurement accuracy
of about 20cm rms. Conversely, an altimeter height measurement is greatly affected
by the geoid accuracy which is precise to about 1m rms and therefore produces an
observation with a total rms accuracy in excess of 1m. Apart from the orbital
contribution, the measured crossover height difference includes time dependent terms
such as the difference in the sea state bias and ocean tides for the two epochs. Sea
surface topography has not been modelled in cquatibn (4.1), so any difference in the
time dependent or dynamic component (e.g. due to eddy currents) will propagate into

the crossover residuals. Over periods of a few days, these oceanographic topography
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variations however, are expected to be small, so that analogous to the geoid height,
the sea surface topography is the same on both tracks. Consequently, the main
contribution to the crossover height residuals, will be radial ephemeris error, but it
should be notcgi that geographically correlated terms will cancel at the crossover
points rendering part of this radial difference unobservable [34].

The processing of the crossovers is described in [17] and involves
determining the two epochs of the crossover points from an initial reference
ephemeris. Since this ephemeris is not updatcd at each iteration of an orbital solution
and since in any event, this ephemeris is not the 'true’ ephemeris, these epochs do not
correspond to the "true’ crossover epochs that actually occurred for SEASAT. For an
accurate reference ephemeris however, the computed epochs will be sufficiently near
to the 'true’ crossover epochs so that the geoid height is the same on both tracks at
these points. Hence the crossovers described throughout this thesis are strictly

speaking, only pseudo-crossovers and not ‘true’ crossovers.
§5.2 Crossovers As Observational Data

The minimization of the crossover height residuals using least squares can be
used to solve for certain orbital and geodetic parameters as described in section 3.3.
To do this, the partial derivatives of the residuals, with respect to these parameters,

need to be determined. For instance, if p is an orbital parameter, then

9

= (G5 - C5) = - 5 (8- R) (5.6)

assuming that t; is earlier than t, on using equation (5.3). The partial derivatives
oR;{ /dp and E-JR;= op are determined from equation (4.14) upon identifying R{ and

R] with h{ and hf, respectively.
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As for pure altimetry, crossovers provide mainly radial information on the
measurement residuals but, unlike pure altimeter residuals, the crossover residuals are
almost entirely a consequence of radial orbit error. Hence the rms of the crossover
residuals provides an independent check on global radial orbital accuracy, whether

crossovers are used in the orbital solution or not. The rms of the crossover residuals,

R,, can be written

N

R, = Z aCi [y 6)

k=1

where ACy = Cj; - Cj; is the residual of the kit crossover out of the total N

considered in a long-arc analysis. Writing AC, as
AC = (h‘;k & h;k) = (ng - R;k) (5.8)

where hj,, h), refer to the observed altimeter measurements for the earlier and later

arcs, respectively and Rj,, R%,, the calculated geodetic heights for these two arcs,

then
N 1

2 -—
R, = E [(hfi- 05 ) ‘N(Rfk- RF)] |*
k=1

(5.9

Now let hj, =Rj, —h, and hj, =R, —h, where h, is the precise geoid height at
the crossover point. Then equation (5.9) can be written

N

1
. : 2 |7
Rc ~ Z L(h?k_ hlck) ';q(hfk— h2ck)] 2 . (5.10)

k=1

Expanding (5.10) gives
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N N 1
R = Z @‘N‘ﬁ- —%i(h‘{k-h‘;kxha—h;‘)i-;@%}it G.11)

For a large sample, the first term in this expression can be expected to have value Rg.

where R, is the ms of the orbital radial component, (this term is devoid of any
geoid error). Forlarge N, R, can be considered independent of location so that the
last term can also be expected to have the value R:. Similarly, the value of the

central term can be expected to be zero so that

L
R, = (2R2)’ (5.12)
giving R, = R/N2. (5.13)

It should be noted that, although this values gives an independent check on
the global radial orbit rms, it is only approximate, since part of the error is

unobservable at the crossover points [34].

§5.3 Crossovers And Sparse Laser Orbits

As with pure altimetry, crossover data can be supplemented to orbits with
spare laser data and the resulting ephemerides compared with reference ephemerides,
determined from a full network of available laser data. One such orbit was the six
day arc spanning September 19 to September 25, 1978 (MJD 43770 to MJD 43776).
The reference ephemeris was obtained relative to the GEM-T1 gravity field, the
NASA ‘area tables' for SEASAT and the CIRA 72 atmospheric model, solving for a
state vector at epoch, daily drag coefficients and a single solar reflectivity coefficient.
Initial comparisons were made with orbits determined using laser data from the

Arequipa station (7907) only, and then supplementing this data with either pure
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altimetry sampled at half minute intervals or crossovers utilizing various weights.
The weight applied to the Arequipa laser data was the nominal 0.5m standard
deviation for this station ‘as given in Table 2.1, Results of these comparisons are

shown in Table 5.1.

Table 5.1: Orbital comparisons for MID 43770 to MJD 43776.

Reference ephemeris Difference in metres (max/rms)

o mdial  slong-irack  cross-rack
Arequipa laserdataonly 0.79/0.30  5.95/1.81 1.21/0.76
Arequipa plus 2m ¢ altimctfy L 0.45.0.13  5.52/1.93 1.25/0.77
Arequipa plus 1.25m o crossovers T 0.51/0.24  10.28/2.39 .  1.07/0.66
Arequipa plus 0.5m & altimetry * 0.42/0.15 3.81/1.52  2.62/1.80
Arequipa plus 0.3m o crossovers * 0.35/0.10 6.53/1.73 1.07/0.65

The T and * symbolsin Table 5.1 indicate a similar level of significance applied to

altimetry and crossovers for the respective comparisons, i.e.

where Ny, (= 10,558), N (=4119) are the number of altimeter and crossover data
points, respectively, for the six day arc and w,;, and @, their respective weights as
given by equation (3.13).

Several points can be noted from Table 5.1. Both pure altimetry and
crossﬁvcrs have a beneficial effect, at least radially, on an orbit determined from
sparse laser data. The Arequipa plus 2m o altimetry orbit gives a closer fit to the
reference orbit than the 'similarly weighted' Arequipa plus 1.25m ¢ crossover data.
Ipcrcasin g the weight of the pure altimetry does not improve the radial component of
position, but the along-track component improves at the expense of a deterioration in

the cross—-track position.



However, increasing the weight on the crossovers to a similar level of
significance continues to improve the radial component of position without affecting
the cross—track component. The along-track component improves to a similar level
of accuracy as that obtained from using the Arequipa data only.

It is difficult to infer any hard and fast conclusions from Table 5.1, but it does
suggest that pure altimetry contains more along-track information than crossover
data. This may be a consequence of the geometry as explained in section 4.4, but it
should be noted that crossovers implicitly contain along—track information since they
are a function of two epochs. If the along-track position is determined incorrectly,
the crossover will be slightly out of place on both tracks, hence magnifying any error.
Evidently, this type of along-track information is not as strong as that contained in
the geometry of pure altimetry.

It was anﬁcipatcd that crossovers would provide greater radial accuracy than
pure altimetry since, being devoid of any geoid error, they are inherently more
accurate. That this did not occur for the Arequipa plus 1.25m G crossover orbit as
compared to the Arequipa plus 2m & altimetry orbit, could be due to non-similarity of
weighting.. Altimetry provides a good global coverage of observational data, whereas
crossovers are predominantly at high latitudes. It is possible that the adopted
weighting strategy has not provided enough significance to the low latitude
crossovers. However, the radial accuracy of the Arequipa plus 0.3m o crossover
orbit is an improvement upon the Arequipa plus 0.5m o altimetry orbit, showing that
for more realistic weights of crossovers, they provide the anticipated improvement in
radial orbit accuracy. .

Finally, it should be noted that the cross—-track component of position is in
most agreement with the reference orbit when the Arequipa data is supplemented with
crossovers (of any weight). This is strange, since crossovers do not contain strong
cross~track information and is probably a quirk of the data. To confirm this, it was
decided to repeat the above analysis on another six day arc, September 25 to October
1, 1978 (MID 43776 to MID 43782). For this arc, a reference ephemeris was
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obtained as before, except that two half daily drag coefficients were estimated on
MID 43780, on account of the severe geomagnetic storm on this day. A comparison
of the resulting reference ephemeris was made with an ephemeris determined using
laser data excluding the NASA laser stations 7062, 7063, 7067, 7068 and 7069.
This was the so called sparse laser orbit. Next, this sparse laser orbit was
supplemented with 1m o crossover data and compared with the reference orbit. The
results of these tests, presented in Table 5.2, show that crossovers improve the
sparse laser orbit both radially and along-track, but have a detrimental effect cross—
track. Evidently, the good cross—track fit of the previous six day arc when using

crossovers, must have been coincidental.

Table 5.2: Orbital comparisons for MJD 43776 to MJD 43782.

Reference ephemeris Difference in metres (max/rms)
versus

radial .  along-track  cross-track
Sparse laser orbit 2.57/1.03 19.35/4.81 0.91/0.62
Sparse laser orbit plus Im o crossovers . 0.35/0.18 6.59/2.63 1.20/0.84
Sparse laser orbit plus 0.5m o crossovers  0.71/0.40 9.72/3.14 1.53/1.02

Sparse laser orbit plus 0.3m o crossovers  1.90/1.23 16.53/5.19 2.27/1.44

Returning to Table 5.1, it is to be noticed that the level of orbital improvement
of the Arequipa data, when supplemented with either altimetry or crossovers is slight.
This is because the Arequipa only orbit, is itself fairly accurate. To place a more
stringent test on the use of crossovers in sparse laser orbits, the decision was taken to
omit the last pass of laser data from Arequipa and repeat the above experiments.
Results of the ensuing comparisons are detailed in Table 5.3 and plotted graphically
in Figures 5.2 to 5.4.
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Table 5.3: Orbital comparisons for MID 43770 to MID 43776.

Reference ephemeris Difference in metres (max/rms)
versus

rdial along-track  cross—track

Arequipa laser data minus
(1) pass on last day 12.24/2.48 613.12/113.06 1.26/0.75

As (1) but supplemented 1
with 2m ¢ altimetry
As (1) but supplemented T

with 1.25m ¢ crossovers
As (1) but supplemented *

@ 0.34/0.13 4.82/2.22 1.78/1.18

(3) 0.51/0.27  4.90/2.07 1.24/0.78

@) with 0.5m o altimetry failure to converge
s As (1) but supplemented *
©) ith 0.3m G crossovers 031/0.10  4.52/1.64  1.06/0.65

Again T and * refer to data of similar weights as defined by equation (5.14).

Once again, it is seen that the sparse laser orbit supplemented with 0.3m o
crossovers is in most agreement with the reference ephemeris. From Figure (5.2), the
poor pcrformanc_c of the sparse laser orbit is due solely to the errors on the last day
associated with an ill-determined drag coefficient. Supplementing this orbit with
either 2m ¢ altimetry or crossovers constrains this coefficient to give highly accurate
results. As before, the 2m ¢ altimetry performs better radially that the 'similarly
weighted' 1.25m o crossovers. However, increasing the weight of the altimetry to
0.5m standard deviation causes the system to become ill-conditioned and non-
convergent. This is probably due to the limited cross—track information on the last
day. The similarly weighted 0.3m o crossover orbit does converge and gives the
most accurate ephemeris probably because the low latitude crossovers have now been
given a realistic weight.

Obviously, care must be taken not to over-weight pure altimetry in sparse
laser orbits since it contains only radial and slight along-track information with no
cross-track constraint. Caution must also be exercised with the weight applied to the
crossovers since there will be a point when they also, become ill-conditioned. This

is examined in the next section.
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Figure 52 : Orbital comparison of the reference ephemeris of MJD 43770 to MJD
43776 versus the orbit computed using Arequipa laser data minus the
last pass.
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Figure 53 : Orbital comparison of the reference ephemeris of MJD 43770 to MID

43776 versus the orbit computed using Arequipa laser data minus the
last pass plus 2mo altimetry.
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The results of this section have shown that crossovers are equally, if not more
useful than pure altimetry when used as tracking data in sparse laser orbits and their

use can minimize the radial error.
§5.4 Crossover Weighting Strategy

The results of section 5.3 have shown a strong dependence, at least radially
and along-track, on the weight applied to the crossovers. For instance, both Table
5.1 and Table 5.3 have shown that the most accurate sparse laser orbit for
MID 43770 to MID43776 was obtained when supplemented with 0.3m © crossover
data. Upon increasing the weight of the crossovers to a standard deviation of 0.1m it
was found that the cross-track component of position began to deviate considerably
from the reference orbit, showing that the point where crossovers are over-weighted
lies somewhere between a standard deviation of 0.3m and 0.1m for this orbit.

Other tests on ill-conditioning were performed using the MJD 43776 to MJID
43782 arc. Here the sparse laser orbit was supplemented in turn, with 1.0m o, 0.5m
¢ and 0.3m o crossover data. Comparison of the resulting orbits with the reference
orbit have been presented in Table 5.2, clearly showing the deterioration in orbital
accuracy as more significance is applied to the crossovers. The reason that this
happens for a lower crossover weight than in the other orbital arc is unclear, but
could be a consequence of the different laser data sets. Apparently, the distribution,
both spatial and temporal, of the laser data, plays an important role in defining the
optimum weight to be applied to the crossovers. If it is wished to supplement
crossovers to orbits using the full network of available laser data, then the standard
deviation applied to them should be of the order of 0.15m since their accuracy is

comparable to that of the NASA laser stations as given in Table 2.1.
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§5.5 A Note Of The Derivation Of The Crossovers

The analysis of section 5.3 was performed using crossovers which had been
derived using reference ephemerides (see [17]). This may seem artificial in that if
only a sparse network of laser data is available, a highly accurate initial orbit may not
be obtainable. There are two solutions to this problem. Firstly, it is possible to
supplement the sparse laser orbit with altimetry and derive an ephemeris which the
comparisons of section 4.4 suggest is of good accuracy. Using this, it is then
possible to derive the crossovers and apply them as in the previous analysis. A
simpler solution is to calculate the crossovers from the sparse laser orbit directly,
without resorting to the use of pure altimetry. Since the crossovers determined are
not 'true’ crossovers, but psuedo—crossovers, all that matters are the epochs and
height difference. It is not that crucial for the latitudes and longitudes of the
crossover points to be 'true', since for along-track errors of the order of tens of
metres, the geoid component of any height measurement will still be the same on both
tracks. Hence, as long as the sparse laser orbit is not 'bad' in the sense of the above
along-track error, it is realistic to use it to determine the crossovers. Confirmation of
this is shown in Table 5.4 where crossovers have been derived using the reference
ephemeris and a sparse laser ephemeris. The results show there is virtually no

difference between the two methods.

Table 54: Orbital comparisons for MID 43776 to MID 43782.

Reference ephemeris Difference in metres(max/rms)
versus '

radial along-track  cross—track
Sparse laser orbits plus

Im o crossovers derived from 0.35/0.18 6.59/2.63 1.20/0.84
reference ephemeris

Sparse laser orbit _plus

1m o crossovers derived from 0.34/0.18 6.56/2.63 1.20/0.84
sparse laser orbit
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CHAPTER 6
RADIAL ORB RD D

In this chapter the radial orbit error, Ar, associated with mis-modelling of the
Earth's gravity field is developed, in order to obtain the dominantacrror frequencies
for separation of orbital, geoidal and sea surface topography frequencies, in the
altimeter residuals. Consequently, it is unnecessary to derive the exact ampﬁmflcs of

these terms and thus Ar is only expanded to order e° in the eccentricity.

§6.1 The Disturbing Potential
The gravitational disturbing potential, V, has been expressed by Kaula [20]

as
o0 I}
eI S v 6D
=2 m=0 ‘

where

|J.Rn 9 o c!-m even Sﬂ-m even

E . .
va = aﬂ"’l Z Fﬂmpcl) Z GQP‘!(C) [_Sﬂ;:]] COS\]IQmpq + [CEQ::] smwmpq
p=0 q= oo Q-m odd Q-m odd

(6.2)

wherein a is the semi-major axis of the orbital ellipse; | the gravitational constant

multiplied by the mass of the earth; Rg the radius of the earth at the equator; Fp(i)

inclination functions expressing the rotation, i, of the potential from the equatorial to

the orbital plane; Gypq(e) eccentricity functions transforming from true to mean
anomaly in an elliptic orbit; Cpp,, Sg, the spherical harmonic coefficients of degree

2 and order m and
Vimpq = (2 = 2p+q)(@ + M) - qu + m (Q - 6,). (6.3)

In equation (6.3) ® is the argument of perigee, M the mean anomaly, Q the

argument of ascending node and 6, the sidereal angle (see Appendix 1).
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§6.2  Linear Radial Perturbations

Using the geometry of Figure A.1 (Appendix 1), the radial distance, r, is

expressed in terms of the eccentric anomaly, E, by
r = a(l — ecos E). (6.4)

Now equation (6.2) expresses the disturbing potential in terms of M, the mean
anomaly. Hence it is necessary to transform equation (6.4) to the same élcmcr{t. For
small eccentricity (as is the case for SEASAT), the transformation is simply given by
cos E=cos M so that

r=a(l — ecos M) + 0(e?). (6.5)

Achangein r duetoanerrorin the harmonic coefficients Cpy, Spm isthen
(to order eo)

Ar = Aa - alAecosM + a eAMsinM (6.6)

where Aa, Ae and AM are the corresponding errors in a, ¢ and M due to errors
ACpm, ASpy, in Cpp, Spm, Tespectively. Equation (6.6) is of order ¢ since AM
is of order ¢!, but is sufficient for analysis of the required frequencies. Aa, Ae
and AM are found by solving Lagrange's planetary equations [20] with V as the
disturbing potential.

Let & denote any of the Keplerian elements a, ¢, i, ®, Q or M. Lagrange's

planetary equations express E in terms of all the other elements plus the disturbing

potential. Hence «‘; can be written in the form
E=L:(a,e,i, 0,2, MV, ) (6.7)

with known function Le. Consider a change in E, due Ito an errorin V. Then

74



. L aLg aC;
15300 T
J

i=1

where C;e (a,¢,i, @, Q, M) and Bje (Coms Spm)g,m i itisassumed

that the errorin V is caused by an error in one or more of the harmonic coefficients

which define V. For simplicity consider an error in a single coefficient, Cpp, say.

Then
6
. aL aLg oC;
A — AC — —— AC (6.9)
S=3 Cpr M T ac; 3Gy,
i=1
or
A = AC E L" AC, (6.10)
aCﬂm Qm o
i=1
where AG; = 20 ACyn, . (6.11)
acﬂm

The first term of equation (6.10) represents the first order approximation of the error

in &, whilst the second term accounts for second order effects which arise from the
interactions of the first order terms with all the harmonic coefficients. These terms

are ignored in this first order analysis so that

. oL
Ak = —- AC,. (6.12)
9Cym
For example, if £ = a, then from [20]
YRR ¢ AA DY (6.13)
3Cy (M2 oM

which upon substitution from equations (6.1) and (6.2) yields

Q-m even
ad = am Z Fgmp@) Z Gpm(c) (2 - 2p+q) -[ ] SiNYpmpq +
Q=00 ﬂ-m odd
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[As“‘:] CONgmpq [ - (6.14)

In equation (6.14) the error ASp,, in Sp,, has also been included.

Equation (6.12) is integrated using the well-known method of linear
perturbations (Kaula [20], Colombo [34] and Engelis [35]) in which the elements a, e
and i are assumed fixed and ®, Q and M are assumed to vary linearly with time,
under the action of earth oblateness. However, for precise frequency rccovc;y the
elements used in this method should not be osculating elements but mean elements,
that is, elements which define a secularly precessing reference ellipse in which all
periodic variations due to the second degree harmonic, C,g, have been removed. As
an example, the mean value of the semi-major axis, @, given by Kozai [36] is

oo .34 R,
a=a+ 5 Cy —= sinli cos [2(0 + M)] (6.15)
where a,i,® and M represent osculating values. The secularly precessing ellipse

is then defined by

&=0(t-1t) + & (6.16)
M= '1\71‘(:-10) + M, (6.17)
Q-0, (Q B)(t-to) (90—9,0) (6.18)
wherein ® = g— nC [—)1 (500321 - 1) (6.19)
—ﬁ: u-r [1 — %Czu (RB (1 - ESinzf)} (620)
0=37 Cy (T cosi . (6.21)
- _

In equations (6.16) to (6.21) the bars signify mean elements; the O subscripts in
equations (6.16) to (6.18) signify the values of those mean elements at time tg, from

which all subsequent perturbations are derived; é, is the rate of change of the
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- sidereal angle, i.c. the rotation rate of the carth; @ is the (mean) mean motion and all
other symbols are as defined previously.
Equation (6.14) can now be integrated to give

Q-m even
Aa = m—— Z anp() Z Ggm(c) [ ] COS\[IQmpq .
p:: qﬂ—“ Q—m odd

[ASQm] inp Q_ﬂ+ K, - (622)

SINY prm
Acﬂnn:m odd i ¥ dmpq

where K; isa constant to account for Aa being zero at time t =t;. The
summations in equzition (6.22) are taken over all values of p, q for which '\Tf 9mpq =
(2 —2p+q) (Eﬁ + ﬁ) ~q®d +m (ﬁ - é,) is non-zero. ypn, can equal zero
for all zonal terms (m = 0) and be near to zero at resonance. For the zonals, if '\Tf is
zero then \ must be constant and integration of equation (6.14) will lead to a secular
term for the change in a, which for this analysis, is ignored. At pure resonance, the
change in a would also be secular, but SEASAT only encounters shallow resonance.
The frequency of such terms, is therefore low and the method of linear perturbations
is as accurate as special perturbation methods for resonance, e.g. Gedeon [37].

The planetary equations for Ae and AM are solved similarly resulting in

f-m even

fm
n'ﬂ+3' z Fﬂmp( ) z Gﬂpq(c)q [_ ﬂm] cos‘l’ﬂmpq +
p=0 q_—w R-m odd
Sﬂ-m even
A =
[ X C"‘“] SinV gmpa [ —— + K2 (6.23)
Q{!n-‘m odd Vompq

and

R o

Vompq .

1



3 AT A
X e fm|  — 3n
+ ; Gp_pq(e) '_nTé'] [-as&}m\ym— [A w&m -I%Kl (t—fo) +K3
-m odd f-m odd

a (6.24)
where K, and Kj are constants to account for Ae and AM being zero at time t,.
In equation (6.24), AM contains the interaction of Aa with the inverse square
component of force. Equations (6.22), (6.23) and (6.24) are substituted into
equation ('6.6) and truncated at order ¢0. The even zonals, odd zonals and tesserals
(m # 0) are dealt with separately. For example, the periodic perturbations in r due to

errors in the even zonal harmonic coefficients can be expressed, to order e’, by

2
-1

- 0
- g -2
Argo = ACy s 4 E Fnop( )COS \lfnopo( P)

2.0 =042,
periodic; na \Fggpo

Qeven P“O

ZFQOP(l) z& Gm(c)[q:s M(cnsqgopq - Qs cmm) +sn M (smq.ﬁom

q=1l

p=0
— sin Cgopq) ]/ aopa }. (625)

wherein cpgp, = (Q 2p+q)(mo + Mn) -qiy + m (Qo ~ 8,0/ gives the inital

mean angular argument. Now

—cos[(ﬂ - 2p)(6'} + -M-)] and

cos M cos Yoy + Sin M sinPpop;- = cos [(Q - 2p)(c‘ﬁ + ﬁ)]

—cos M cos Yoop-1 + sinM sin Yoop-1

so that the frequencies in equation (6.25) are at '1\71' and (Q - 2p) ('54' H)
for p=0,..., QI'Z 1. These are equivalent to one cycle and (Q - 2p) cycles per
revolution, respectively since @ is small for SEASAT (approximately 1°/day).

However, the lower even zonal harmonic terms are accurately known and such errors
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are relatively small. Also, due to the altitude attenuation factor (RJE ) 9. these

errors become less significant for high Q.

Similarly, the odd zonals yield error frequencies of one cycle and (Q - 2p)
cycles per revolution, where p # (D & 1)/2. Once again, because the lower odd
zonal coefficients are accurately known, such errors are relatively small. The tesseral
harmonics yield frequencies of one cycle per revolution and (Q 2p+q) (c’ﬁ + M)
+m (Q - 9,). Since many of these coefficients are poorly determined, these terms
may lead to large errors, particularly when \finmpq is small, that is for low
frequencies.

Hence it is concluded that the dominant radial orbit errors associated with
gravity field mis-modelling occur near to one cycle per revolution, that is of low
frequency. This confirms the earlier work of Marsh and Williamson [38] and Wagner
[39] who show that the main radial orbit error occurs b@lgw two cycles per revolution.
A similar analysis and conclusion was drawn by Engelis [35]. Both Wagner and
Engelis have plotted spectral graphs to show the frequencies of these error terms.

Spectral graphs of this nature have also been derived using numerical rather
than analytical techniques. Figure 6.1, for instance, shows the spectrum of the radial
orbital differences between the coefficients (including the central term, u) of the
GEM-T1 and PGS-S3 gravity fields when applied to SEASAT. This graph has been
obtained by converging the orbits using each gravity field and then comparing the
radial differences which are plotted in Figure 6.2. As anticipated from the theory, the
main error frequencies are seen to occur near to one cycle per revolution. If the
spectrum is derived from numerical integrations using the same state vector for each
| grairity field, then the results are as plotted in Figure 6.3. Here, there is a large (6m)
once j:cr revolution term and a significant (60cm) twice per revolution term.
Evidently, most of the once per revolution term can be accommodated by a change in
the initial position, whilst all of the twice per revolution term can be so absorbed.
Equation (6.6) shows how a change in the initial position can reduce the amplitude of

the once per revolution term, i.e.
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Aryy = Aa; — Ae; cosM + 3éAM; sinM (6.26)

Ary; representing a first order change in r due to changes in the initial values of a, e
and M, represented by Aa;, Ae; and AM, respectively. Since the cos M and
sin M terms are multiplied by Ae; and AMy, respectively, changesin e and M at
the initial epoch can accommodate a once per revolution term. To explain the twice
per revolution term of Figure 6.3, it is necessary to refer to Engelis [35] once more.

His equation (32) is

Ary = Eé(%%dauyt - to) sinM + %E Cm(-?- [%—f_:—Aao + M+ c'n'f)
x (t=1t) sin?i sin [2(ﬁ + c‘o‘)] (6.27)

where Ar, is the second order change in r due to interaction between a constant
error in the semi-major axis, Aay, with the central force term and second degree
harmonic. In equation (6.27), M and G* represent long period and secular
variationsin M and ® due to resonance. Expressions for these terms can be found

in Engelis [40]. Equation (34) of Engelis [35] shows that the second order radial
error, Arpy, due to an error in the initial position has the form

x (t - to) sin¥ sin [z(M + ca-)] (6.28)

which is almost identical with equation (6.27) but with opposite sign. Hence
adjustment of the initial state vector in the orbital solution can simultaneously remove
both Ar; and Arj, as must have occurred for Figure 6.1. In the case of Figure 6.3,

the majority of the constant error in the semi-major axis arose from using different

values for the central force term, p for the two gravity fields. If the same value of j
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is used and the differences compared from the same state vector, then the once per
revolution term reduces to 2m and the twice per revolution term to 20cm.

The above analysis is adequate for deriving the dominant frequencies of radial
orbit errors due to errors in the gravity field. For precise amplitude recovery of these
frequencies it is necessary to expand Ar to order e and include certain interaction
terms, particularly those with the central force term and the second degree harmonic.

Such an expansion can be found in either Engelis [35] or Wagner [39].
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Figure 6.2 : Orbital comparison of the ephemerides
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PGS-S3 gravity fields and the same state vector for the period MJD

Spectral analysis of the ephemerides computed using the GEM-T1 and
43770 to MID 43776.
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§6.3 Radial Orbit Error At A Crossover Point

For a near circular frozen orbit, that is an orbit with @="/2,® =0 and e
having a specific value (see Cook, 1966 [41]), the crossover points occur near to M,

=M on the descending arc and M, =-M on the ascending arc (Figure 6.4).

Figure 64: Projection Of Satellite Ground Track Onto Earth's Surface For

Inclination Greater Than 90°.
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For each arc, the radial orbit error at the crossover, Ar;, i=1,2 can be

expressed by equation (6.6). Hence

Ar; =Aa -3 AecosM; + 3é AM sin M, (6.29)

Ar, =Aa - dAecosM; + @€ AM sin M. (6.30)

SEASAT's orbit was not precisely frozen, nor a perfect repeat. Therefore My =M +¢€

and My =~M + 1 for small € and 1. Hence

Ary - Ar, =228 AM oo =5 L) sinM + 28 Acsin Msin (S5 L) (6:31)

If € and 1 are small, equation (6.31) is approximately equal to 22€ AM sin M,

showing that the part of the radial orbit error associated with Aa and Ae is

unobservable at the crossover point [34].
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CHAPTER 7

ERRORS ASSOCIATED WITH ALTIMETRY AND CROSSOVERS
§7.1 The RMS Error Of Fit “

The physical precision of the SEASAT altimeter, i.e. the precision of the raw
altimeter measurement, was 10cm [1]. However, to use altimetry as a pseudo-radial
orbit measurement, the geoid height above some reference surface, in this case the
reference ellipsoid, must be added. This provides the largest source of uncertainty in

the altimeter observations, producing an overall rms accuracy of between one and two
metres. Thus, even though altimetry provides a more global distribution of tracking
data than laser range observations, it is in general, not as accurate and leads to the
higher rms values of laser plus altimeter orbits as compared to laser only orbits.
However, sections 4.3 and 5.3 have shown that such orbits differ only slightly from
reference orbits determined using laser data only. Hence the rms can sometimes be
misleading as to the accuracy of an orbit. One way of viewing the rms is as a measure
of orbital accuracy at points where data exists. The rms of the laser only orbits
indicates good local accuracy near to the laser sites but is uninformative about the
accuracy elsewhere in the orbit. For the laser plus altimeter orbits, the rms is much
more global but is a combination of both orbital and geoidal accuracies. In order to
obtain a global radial orbital rms it is preferable to use the value derived from the
crossover residuals as described in section 5.2, even though some of the orbital error
is unobservable by this method. Typical values of the rms radial error determined
using the GEM~T1 gravity field when solving for daily drag coefficients over six day
arcs, are in the region of 50 to 60cm. These values agree very well with those derived

by Zandbergen et al [42] when analysing three day arcs.
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§7.2 Altimetry

The altimeter residuals are mainly a consequence of errors in the orbit, the
geoid and omission of sea surface topography. Spectral analysis of these residuals
will recover the frequencies of the main error terms, giving an insight into their origin.
To this end, the methodology devised by T. Ponman [43] which can reproduce
spectral frequencies for irregularly sampled data such as altimetry, is utilized. By
applying this method to various data sets from different gravity fields and geoids,
graphs of the form of Figures 7.1 to 7.3 can be plotted.

Quantitative conclusions cannot be derived from these graphs since Ponman's
method does not recover precise amplitudes and also, by using different gravity fields
and geoids, different numbers of altimeter observations satisfy the rejection criteria.
However, a qualitative feel for the nature of the errors, is possible. For instance,
Figure 7.1 depicts the altimeter error frequencies for the six day arc spanning MJD
43770 to MJID 43776 determined relative to the GEM~T1 gravity field and derived
geoid. Here, there is a large twice per revolution term and very little noise. Evidently,
all of the orbital once per revolution error has been absorbed into the initial position.
Since there is no sizeable orbital twice per revolution error (see chapter 6), the two
cycles per revolution term in Figure 7.1 must be due to geoid error and sea surface
topography omission. A similar conclusion can be drawn from figure 7.2 where the
altimetry now refers to the GEM~10BD detailed geoid [44], for the same orbital arc,
Once again, there is no once per revolution term but the twice per revolution term is
larger. This must be a consequence of geoid error and not the fact that a different
amount of data is accepted when using the two geoids, since in the case of the GEM~
10BD geoid, less data is accepted. It can be concluded that the twice per revolution
error is larger for GEM-10BD than for the GEM-T1 derived geoid. It should also be
noted here, that all even zonal harmonic coefficients can contribute to the twice per
revolution geoid error — it is not caused solely by C,o which is known very

accurately. For instance, let h, represent the geoid height with respect to the
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reference ellipsoid. From [45] this can be represented by a spherical harmonic

expansion of the disturbing potential and Bruns formula, i.e.

hy = % 2 ( )0 z { cos mA + Spp, sin ml} Pym (sin ¢) (7.1)

where (¢, A, r) are the geocentric coordinates of the subsatellite track, 7y the

normal grav:ty on the reference ellipsoid, Pp.(*) the associated Legendre funcnons
and C ng the harmonic coefficients of the disturbing potential. The C

coefficients are related to the potcnﬁal coefficients, Cpp, by

%
C,. * Ctm ~ Cpy. (12)

with all C;;i being zero except for the even degree zonal terms. (These coefficients

represent the potential of the reference ellipsoid.) Using the transt'ormauons of Kaula
[20], it is possible to map an error in hn' due to errors ACQ and ASp, in C

and Sy, respectively, into the orbital plane. For a near circular orbit this produces a

radial orbit error, Oy, of the form [46]

Q

m = Zanp(i) [Agm cos Vomp + Bym sin Vomp) (7.3)
p=0

for constants Ap,, By, dependent upon AC}:m, ASpms M, Rg, ¥ and a. In

equation (7.3) Wpmp=(2 - 2p)(0 + M) + m(Q - 8,). For the even zonal

harmonic terms, m =0 and @ is even. Hence as p takes on the values 0 upto 2,

(Q - 2p) will take all even values between —Q and 0. In particular, it is seen that
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all even zonal terms will contribute to an error term of frequency 2((':) + IVD that is,
twice per revolution.

Returning to Figure 7.2, it is also pertinent to note here, that there is an
increased noise level when using GEM-10BD, with significant error frequencies at 3,
5, 6 and 7 cycles per revolution. This provides a strong case for the continued use of
the GEM-T1 derived geoid in altimeter processing.

Figure 7.3 depicts the error frequencies for the same orbital arc as Figures 7.1
and 7.2, but now the orbit is determined relative to the PGS-S3 gravity field and
GEM-T1 derived geoid. As explained above, this graph cannot be compared
quantitively with Figure 7.1, but is is apparent that PGS-S3 contains a more
significant once per revolution error than GEM~T1, together with significant errors
near to one cycle per revolution. Comparison of these two graphs shows clearly the
orbital improvement due to the general purpose gravity field, GEM-T1 over the
SEASAT tailored field, PGS-S3, for the three day repeat orbit. Similar graphs have
also been plotted for arcs occurring during SEASAT's 17 day repeat orbit and show
the same trends. However, one difference noticed, is a significant once per
revolution term for the GEM-T1 gravity field over this period. Evidently, for the 17
day repeat orbit, it is not possible to absorb all of the orbital once per revolution term
into the initial position, showing that GEM-T1 ‘fits' the three day repeat orbit to a

higher level of accuracy.
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Figure 7.1 : Spectral analysis of the altimeter residuals for the period MID 43770 to

MID 43776 relative to the GEM~T1 gravity field and derived geoid,
CIRA 72 atmospheric model, daily drag coefficients and NASA ‘area
tables' for SEASAT. Laser data nominally weighted. Altimetry
weighted according to an 'a priori' standard deviation of 2m.
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As for Figure 7.1 except using GEM-10B geoid.
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As for Figure 7.1 except using the PGS-S3 gravi
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§7.3 Crossovers

Since crossover residuals provide a measure of orbital error, it is possible to
obtain an indication of the observable geographically related orbit error by analysing
crossover residuals in blocks of latitude and longitude on the earth's surface. Such
residuals are grouped together in various blocks and the rms and mean values of each
block calculated. Table 7.1 illustrates the results for the six day arc spanning.MJD
43764 to MID 43770, determined relative to the GEM-T1 gravity field when
estimating a state vector at epoch, daily drag coefficients and a single solar reflectivity
coefficient. The orbit was derived from laser data only (nominal weight), that is,
with zero weight applied to the crossovers. Note that there is a northern-southern
hemisphere bias in the values of the means from each region, this bias being
manifested as positive in the north and negative in the south. Further, the rms values
are larger at the higher latitudes.

Table 7.2 details the same information but with crossover data included and
assigned a 0.5m standard deviation. In this case, both mean and rms values decrease
relative to their corresponding values in Table 7.1. Such an occurrence has also been
observed by Wakker et al [5] who relate the offset to a time-dependent eccentricity
error, the likely cause of which is solar radiation pressure mis-modelling resulting
from poor quality data [47]. In the case of this arc, the poor data occurs on the last
two days of the laser only solution. Adding crossovers, particularly over this period,

helps to constrain the solar radiation pressure coefficient.

93



Crossover residuals for MJD 43764 to MJD 43770. Laser data

Table 7.

weighted nominally. Zero weight applied to both altimetry and

Values are rms (cm), mean (cm) and number of

Crossovers.

crossovers, reading downwards.

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 09t
(51 A1 6 6 S 61 67 Ly
1S vy 688L £S5  6RAAE 0!I vEpS R 00Z6° 6= 6820 ¢~ SYEB LE- 6BAFE 6I-
PLIE6F  ZASE'OF  OLBE9E 1S0L" Gk E86L°6Z 1822 °09 FZEP 1L LOEl 96
.............. el 11 1 >
71 LZ (4] ' 4 | 6 Lz L4
0sLL"91 L9988 ZC FILG LI L5581 62~ 0009°91- EEED "SI - LyLsS'BZ- SLE9 " FpZ-
L110°S8 06y 9% EELS B9 ZOvPS LY 0000°0 6rZ8°SE SIDD"EL LPEL" 1O
o e e ——meeemme————— DOE
9z E Sl E z i 61 or
Z69L° 15 EEEB bV 0086° 91 0008 "6Z~- 0O00E"ZZ 9€91 " £1- ZvEAF SrP- 05S9 BE-
girz 0L EGLA LV 0Z69° ¢S 60E6°EZ ooor ' ¥ 9890 88 BESD 9S SZLL'w9
||||||||||||| e S O O o . g e 8, e e 1 e 3 i i (Y
51 i E ol ot 61 EE (4]
EESE"ET gooB" Lzl EEEL" 1L oowL'o02 0oLy 92 000z "Z- 6069 ¥~ BEOD 91 -
69€8 " LG Q0000 9EEZTIE E109° 0V 6098 ¢t 80Z9 "v9 LBBE "SL F6ZS LL
|||||||||||||| e ittt e e e e e 1 | ' 4
62 g1 61 ri ] L 62 S9
GlLEZ"S¥ BLZZ "BS 91E8°LE LSBL '8 L99L 6~ SEZS'EE- BSLS'ODE- 9¥VOL IS~
gEZy 98 LovZ 9L tLL0° 08 S9€ES "5S¢ Oor9S° 62 6Z59°S9 LB869° 89 |gze"18
e T T T T e s e mm e dmm s — e —————— ——————— —————————— -——-- 012
EE v L 1t 9 1z ez ts
9Ls51 1§ EBSI "rr 000S OV 0001 "0~ CEEF'O LSEl "9~ 0089 °8Z- (C8I0°8E-

§111°99 S6Z9°'tE 0i1Z9°LS BBLO'9r Sv96°9r 0BOE'9S E€IZIZS'¥Yy  18Z0 68
........... T el - I
8z 9z st 6 L vl vz ag
zz@1'62Z  BOEE'Z-  000S°0Z ZZZL'PE  EPIP'OE- PIZE'ZI- ©S6S°Sk- 000L'¥Z-
£E69°88 0SZZ°66 ©6r8°90L B1Z8°85 ZEY9°'9Z 9S9Z°09 LZEB'98  vE86°vE

e ———— m———— B e B e e s -1

E £ [N 9 v ¥ -1 EZ
EEEB PSI 000091 Z818° w1 EEEE "SI 0se8 "z 0szZ9°Z oveL Sv- OQOEIS vZ-
0568 ° 95 60r9 "BV Sv95°99 YEOE " 0OS 099v - LL Z90Ss 0L B¥I0°ES OEPL ¥
e e e o . o e e ozi
0 0 | 9 ] gt 4 El
0000°0 00000 000S° 0~ EEEP "P- SLEY " LI - 6889 'Ly~ 906\ °'¢v9- O000Z'EE-
00000 o000 0 gooo0°'0 L98r " ZS LEOLE9 096¥°LY9 oLzs'19 L8B3 86
.................... i+ .-
1] 0 ! o1 S 0z 1E Lt
00000 0000° 0 0006°0L- O0OOEE"Ll~- 00BL°ZZ- OQOOEE S¥v- B96V'1S- ESEG'9E-
ooo0°0 ogoo’ o 00o00°0 91Z1° PSS 5585°511 EZ16°89 EO0LL D9 ESLB ZO1L
O o TSk S ki, A Ve e e i S Yo e s e e o s S L ke Y
1z 0 0 S S 61 SE ZE
BEZI 1S 00o00° 0 oooo‘o 0O00E " wi ooBezZ " | IZYE"BE- GZED 6S- BA9L"ZZ-
SE9L IS 0000° 0 pooo‘o0 9S510° LS B00S 0L 600E°Z9 LLOB " ZL 916Z°'r8
o e e o o e | o e 1 e e e e e e e e e o e S e e e (1]
o€ € ) Z E ] EE vE
EE98°9E L99L've 000E"BE1 00s9° LI EEES" ¥ 9SSZ°'EE- 9FPSL'SE- ZI66°ZZ-
0509°ZS SvrZp - Sv 0000°0 D0SL EV GL1I0°EL 9800°9¢L ETZSL B9 Levz Ll
- - - ——— - e e e - G
o8 09 ov 0z 0 oz~ ov- 09- o8-
JagniioNo

< 3aNLi1Liv

94



th an assigned standard

ing crossovers wi

95

As for Table 7.1 except us

able 7.2

on of 0.5m.

1an

dev

15 a1 6 5 5 61 652 6F
LStz ZZZ8'DE  6880°¢- EEEO"S 00ZL't-  9ZSZ'S 8ZB0 11- LVE6 E-
Z65Z°Zr  9riB°'9F SESZ'0E  SEOD 9r  BZ39°9F PIEF N9  98S6°G9  ZZB1 96
......................... e e e e e e mmmm s e —a——- =~ DEE

a1 Lz vl L 1 5 Lz £5
D0SO"El- (99¢ ¥ L5801 98ZZ \E- 000Z°Zl- LLLB P- Le08° 8- 1S511°22-
Z5L1 9L IESO° 1S BreL *0 SelL Iy 00000 Z9z9°'0E (BE6'ODL  S961°Z6
e e e e oot

ez € sl [ z t 81 iy
1L0L°SE  000Z°6L 0O0BL'E- 0D006°SZ- D0DO0B'FE  SSPE°f-  (ELE"GZ- ZEL9 vZ-
€ZZE°69  9808°0L  0L63 IS 1SE0‘PZ 0009w 99(S°v8  SrZ0'6S  wr9l &9
............................................................................ owe

S ! £ ot ot 51 1 Z5
EELY 92 000L° L6  000L'E 00rZ "8\ 00S¥ 62 1Zro st 0089°0Z- IELS 1~
L1Z1°z6 0000°'0 Ive9° 9z PED6BE 9965 1L 6E6E€°Z9 96EE°6L  BERI ¢
e m—maaaea e e =-=-= 0¥

62 Ch 61 v 9 L 62 99
OlEE L1 1L1e°9c  E@S10°€E2Z LSESE 00SL L~ vP6EZZ 0Z- GFEL'6- G151 °¥Z-
SrZL 6L Z196°69  BEOL'¥L \ZLL'ze  vS8L°ST BLSL°S9 FLEB'E9 ZZZE'LL
e e e ---- 012

EE v Ll it 9 (k4 8z €9
6LBS ¥Z £E8SE 0Z  LPIE"SZ Z8lL v~  00S8°1 18EB v 98zZv ¢t~  £091°9Z-
9G£5°95 6LZB°08 6BOC'ES 6669 °ZF BSLE'EY  SOZPTIS  S5959°lv  LLLL'16
B e B ---- 08!

8z 9z st 6 L rt vz SE
E6E1°91 8€09°LZ- 008E"S 9550°ZE  GZPVE'BZ- 62Z¥B'0- B0ZZ SZT- 98ZL781-
seiiL'08 L19ZE°00! B986°L0L 0S66°19 EZLE'PI  BEDB'SS  6G9Z°68  ES08 6L
B -==---- 0S|

£ € it 9 v L4 52 9z
0001 "6EL  EEEL"¥ 9£9E v EEBGEL 0SZE'9 0SZE'S! 00967 1Z- LELS 9I-
IELE'6S  LSL9°PS  HPEE'S9  BP6E6°LP  LYZI'EL BZPL 09 S¥IS'SP  E6Z9 b6
....................................................... e P4

0 0 1 9 8 C1) vE £l
000070 000070 000Z°v-  EEEVP 'P-  SLEP'Il- EEBZ'BZ- BISE'BF- SBEV W®I-
0000°0 00000 00000 SLLE'LS  ODPEP 6§ I6LL°09 69E0°F9  9119°Z6
........................................ B e 1

0 0 1 o1 5 \z L€ 81
0000°0 0000°0 0001 °SL- ODEv'61- O0OOOE'B1- BvOP Ov- BIE6 BZ- LZZL vZ-
0000°0 0000°0 00000 L009°1S ®SE¥ LIl 1BO¥V 1L ©SPZ'ES  6110°Z0I
mmmmmm e B 09

1z 0 0 ] S 61 SE (44
018L°ZE  0000°0 0000°0 00z1Lzt 0008 v 0008°€Z- LLED'BE- BEFPL'Z
9vLE'6F  0000°0 0000°0 LI6¥°9S  £GL¥'B9  GBIP'LS EB61°'L9  9SHE'EW
||||||||||| B e e e T e 1 1>

0oe £ i 4 £ 6 EE EE
L99E" ¥ £99¢L° 1\ 000Z°98  00SS°Z!I £99Z2°S zzzz'8l- B06Z 'FlI- 190E°LIL-

BZBF LY G998V 8V 0oo00°0 0059 "Sv 08L0°'9 Lier 2L 60EZ " L9 ZEVZ 0NN
e e e e e S e T e B
()] 09 or oz o oz- ov- 09~ o8-
3ONLIDNOT

< Janiiivd



d standard

igne

th an assi

Ing crossovers wi

As for Table 7.1 except us

.
.

e 72

iation of 0.5m.

dev

(B a1 6 A S 6l 34 b
LsSLr 1z ZZZB8 "0t 68807 - EEED S ngzL L~ 9ZsZ°S gZeo’ Lt~ LYEG E-
ZESZ LV 9rL8 9E SESZ OE SEOQD 9r 8299 9¢ PLEF 09 996K 59 zzZel 96
B oR s S e N ot i T T, k) i S e e - e S e B S e e 0€E

g1 A 4 vi [ ] | 6 Lz £5
00SO'El - t99v - ¢ LS80 EL 98zZZ 1€~ oooZ"zZt - 1118 r- LEOB B- IS1t°22-
FA-VA I : ¥ LESD 1S Bv8L PO SELL Y oooo° 0 Z9Z9 0¢ LBEB OL S961 2R
................ e e e D « [ ] X

B8z £ 1 £ z L a1 ir
LLOL"SE 000z "8t 008L"E~ 0006°SZ - 0006 ¥FE SSyYE'C- LELE ST~ ZEL9 ' PEZ-~
EZZE B9 9808 01 OLE9 IS ISED" w2 0009 v 899L5 r8 SrZ0°E6S rroi 69
||||||||||||||||| TS e T e - e (T

S | £ Dt ot 61 SE zs
EECLY 92 000L " LG 000L" € oorZ "B\ oosr 62 1Zr0 'St 0089 °'0Z - LELS 1~
LIZL°Z6 o000’ 0 ZvB9° 92 vED6 " 6E 9965 1L GEBE 29 96EE 6L B8E89 " 9¢
el LA e Nk o ol e o W e ) S o [ e o == me e e e T

6z at 61 Fi 9 Ll 62 99
DIEB LI LR A | BSI0'EZ LSES'E 00se"L- v6ZZ°0Z- SrEl "6- SISt pZ-
SvZL 6L ZI96° 69 GEOL WL \ZLLteL rS8L"SZ 6L5L°59 PLEB E9 ZTZE LL
e mem s e s s s e m——————— i e e T e e e e e e —cmmaeaaa oIz

£E v L [N 9 (4 B8z €9
6LBS P2 EBSE 02 L¥9E "SI ZalL'e- 00se 18EB " ¥ 98Zr’ L~ £091 92~
9SE5°95 6LZG 08 E660E"ES 6669 Z¥ 6SLE 'E¥ S9Zv’ IS 5959 1\ ¥ LLLL 16
e e ————— e e - e e e —————— --=- 081

k4 92 Si 6 L Fi vz SE
EGEL "91 BEO9'LZ- O0OO0OBE'S 9SS0°ZE 6ZVE 6T - 6Zr8°0- BoZZ "SZT- 9B8ZL"8I-
SviLlL 08 L9ZE DOL B986° L0 0s66°19 ETLE VT 6ED8 ' SS 6S9Z "898 ESO8 6L
e e e —m e m e et me e e e e — e — - - 051
£ £ i 9 [ v 5z 9z
0001 "6EL EEEL ¥ 9E9E V¥ EEBBEL 052Z€°9 0SZE’'SI 0096° (1 Z - lELS 91~
LELE 6S LSLI ¥S BFEE"G9 BrE6° LY LvZI EL azZvL 09 SvZIS'Sv EGZ9 V6
ey L i A e i e e e e e s e e e o e ozt

0 0 1 9 ;] 81 vE £l
o000 D 0000°0 000Z " ¥~ EEEVP " P - SLEFP'I1- EEBZ'BZ- GISE BF- SBEY k| -
oooo°o 0000° 0 00o0°" 0 SLLE IS OvEV " 6S I16LL709 69ED0° ¥9 9119°26
e e T B e e 06

0 1] I ot 5 (4 lE CH
oo000°0 00000 0001 "SL- OOEr'6l- OO00E'BI -~ BvO¥Y "OF- B966°8Z- ZZTL w2 -
0000°0 00000 ooo0°0 L009°1S FSEFLIL LBOWCLL PSPZES 6L10°Z01L
|||||||||||||||||||||| e e S i i . }

1z 0 0 S S 61 SE 4
owv8LZE 00000 0000°0 oozl zZy 0008° ¥ 0008 "EZ- LLED BE~ gEFL "2
OvLE 6V 00000 poooo‘o LI6Y 9SS LSLy 69 S69b " LS £661°L9 9GEE'ER
o P S - b e e o€

0E £ | z £ ] EE EE
L99E W1 L99eL° 1 ooo0Z 98 D0SS " Z 1 L£99z°s ZZIZ'\Ail- E€BOBZ ¥ - 190E° L1 -
6ZBY LY cogr’av 00000 0059 "Sv 08L0°9 tigr 2L 60EZ L9 ZEPZ 0L

IIIIIIIIIIII e e A e - Q
o8 09 or 0z (] 0z- ov- 09- o8-
3anN119N0T

< 3anLilivi

95



h an assigned standard

imtery wit

. As for Table 7.1 except using al
deviation of 1m.

Table 7.
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Consequently, supplementing the laser only orbit with pure altimetry should have a
similar effect. Results of this analysis are presented in Table 7.3 where altimetry has
been utilized with a standard deviation of 1m. The table shows very good agreement
with Table 7.2 proving that a more global set of data helps to reduce the north-south
bias which occurs in the crossover residuals due to poor determination of the solar
radiation pressure coefficient.

The example cited above is an extreme case and the offset quite large. In
some cases the bias is much smaller, zero or even negative in the north and positive in
the south. For instance, there is only a very small offset in the laser only orbit of
MID 43770 to MJD 43776 and adding altimetry or crossovers has little effect.
However, this orbit has been derived from a much better laser tracking data set so that

the solar radiation pressure coefficient is well-determined.
§7.4 Time Tag, Offset An And Twi volution E

As yet unmentioned, is the effect of a timing error on the altimeter
measurements. Such an error will cause the calculated satellite position to be earlier
or later than the corresponding altimeter height measurement, depending on the sign
of the error. Whichever is the case, the resulting altimeter residuals will experience
two maxima and two minima (see Appendix 2). This determines a twice per
revolution error and consequently, a time tag bias on the altimeter is indistinguishable
from a geoid or sea surface topography error at this frequency. However, calibration
of the SEASAT alﬁmet& resulted in the derivation of a —=79.4ms time tag bias which
has been removed from the time tags on the GDR tapes [29]. Any residual error,
should therefore be small, but cannot be recovered from altimetry directly. A
combination of pure altimetry and crossovers is needed to separate a twice per
revolution term from a time tag error on the altimeter measurements. At the crossover

point, the twice per revolution error in the geoid and sea surface topography will be
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the same on both tracks and hence unobservable. The time tag error however, would
propagate into an orbital error and so will be observable from the crossovers.

In practice it is possible to use pure altimetry to determine once and twice per
revolution terms as well as a constant offset, whilst using the crossovers to determine
a time tag bias plus the portion of the once per revolution error which is observable at
the crossover (see section 6.3). In this method, the various terms are estimated from

altimetry and crossovers separately.

Let Ah; denote the ith altimeter residual and Ah]' the modelled residual

given by
Ah" = AjcosM; + BysinM; + A; cos 2M; + Bysin2M; + Cy (7.4)

wherein M; is the mean anomaly of the ith observation and A, B, A;, B, and C,

are the coefficients to be determined. Solution of these coefficients is achieved using
a least squares fitof Ah{" to Ah; fori=1, ..., N; N being the total number of

altimeter residuals satisfying the rejection criterion. Then

& 2
minz (Ahi-Ah';‘)
i=1 '

is equivalent to solving
N
OAhT
Z (Ahi—Ah'.:‘) —=0
Lt op
1=

forpe (A, By, Ay, By, Co). This results in the solution
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( idhi cos M; \
i=l
N
Ay >, Ahgsin M,
Bl l-;‘l
gz = D-1 12 Ah; cos 2M; , (7.5)
2 N
Co Y ah, sin 2M,
i=l
N
Ah
&)

N
_ L JALT JAMT
where D isthe 5x5 matrix with elements Dy;= s e fOT
E Pk an

kj=1,..,5 where py=A;, p;=B;, p3=A; ps=B; and ps=C,.

Similarly, let AC; denote the ith crossover residual and AC" the modelled

crossover residual given by :

ACT = AGAt + A" §; (1.6)
wherein AC; is the difference in the rate of change of the spacecraft altitude at the ith
crossover point; At the constant time tag bias to be determined; A’; the amplitude

of the part of the once per revolution term observable at the crossover point,

S; = sin M;; —sin M,; and My; and My, represent the mean anomaly at the ith

crossover point for the ascending and descending arcs, respectively. Minimization of
the discrepancies between AC; and AC{" in a least squares sense results in the

solution
N’ Nl‘ \-1 (N’ \
4 |
ZAci P Y ac a¢
At i=1 i=1 o jml
[ A'I) = | e (1.7)

EA(:‘ o 28% ZACisi

\ ! =t ) A= Y,
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where N’ denotes the total number of crossovers satisfying the rejection criterion.
Note that the term, AC;, is calculated as part of the crossover processing program,
CROSS [17]. -

Results of this analysis, for the arc spanning MJD 43716 to MID 43722 are
given in Table 7.4.

Table7.4:  Resulting time tag error, offset and once and twice per revolution
terms for altimetry and crossovers for the arc MID 43716 to MID
43722. Orbital solution computed relative to the GEM-T1 gravity

field and derived geoid.
Number of altimeter observations, N = 0722
Number of crossover observations, N° = 3737
Values derived from altimetry :- Valype (cm) Standard error

(cm)

Offset (Cy) 94 2
1/rev (cos term), A, -4 2
1/rev (sin term), B, 44 3
2/rev (cos term), A, =75 3
2/rev (sin term), B, -5 2
Values derived from crossovers :-
1/rev (sin term only), A, -3 ' 1
Time tag bias, At 0.41ms 0.13ms

The large offset of 94cm in Table 7.4 is a consequence of the altimeter height

bias, miscalculation of the semi-major axis of the reference ellipsoid (Marsh et al

derive a value of 72cm [48]) plus any constant height in the sea surface topography.

The once per revolution term represents orbit error whilst the large twice per

revolution term represents sea surface topography and maybe geoid error. Such a
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term could be reduced upon the introduction of a model for sea surface topography in
equation (4.1).

It is also encouraging to note the small time tag bias as derived from the
crossover data, thus confirming the value on the GDR tapes. Further analysis of the
time tag bias is beyond the scope of this thesis and is anyway unlikely to contradict
the GDR value, given the extensive analysis of SEASAT in the early 1980's [38].

A more realistic solution than the one described above, would be obtair}ed by

combining the two data sets and solving for the terms simultaneously.
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CHAPTER 8

SEA SURFACE TOPOGRAPHY

The sea surface topography is the difference in height between the oceanic
geoid and the mean sea level, caused by ocean circulation phenomena, water density
variations and winds. This height varies with season and so can be considered in one
of two ways. The dynamic sea surface topography or DST can be regarded.as the
instantaneous value or at least the value averaged over a short period of time, whilst
the stationary sea surface topography or SST can be regarded as the mean of DST
over a long period of time, (at least one year). The model determined for sea surface
topography, in this chapter, utilizes SEASAT altimetry over a 70 day period and so
will be the DST for this time span.

Figure 8.1 depicts the sea surface topography in relation to the oceanic geoid

and reference ellipsoid.

Figure 8.1:  Sea Surface Topography.
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In Figure 8.1, hy,,, refers to the raw altimeter height above the instantaneous sea
level; he the calculated geodetc height; hy the geoid height above the reference
ellipsoid; h, the instantaneous sea surface topography and MSL the height of the

mean sea level above the reference ellipsoid. Note that h, is positive if the mean sea

level is above the geoid and negative otherwise.

§8.1 Mathematical Formulation .

The altimeter residual is assumed to be a sum of errors from the orbit, the
geoid, non-modelling of the sea surface topography plus any remaining timing error
on the altimeter (known to be small, as shown in chapter 7). Other correction terms
of equation (4.1) are assumed exact for this analysis. This assumption may be false
over certain parts of the earth for the ocean tidal corrections, but in general will be
valid. |

Chapter 6 showed that the orbital error frequencies occur near to one cycle per
revolution, so that higher frequency terms in the altimeter residuals must be due to
geoid error and non-modelling of the sea surface topography. Hence it is possible to
derive the sea surface topography relative to some fixed (exact) geoid by assuming
that any ocean tidal errors appear as random noise and are small. The method adopted
is to expand the sea surface topography in terms of surface spherical harmonics, the
most natural functions, as they characterize behaviour on a sphere. The coefficients
of this expansion can then be recovered using a least squares method upon fitting the

model to observed altimeter residuals. From Figure 8.1, the observed sea surface
topography, h:i , attime ¢ is
o o
hy, = MSL;-hg '

= hf - (Praw, + comsEinngy = hg 4 &)
= hg’ - hli:

—(altimeter residual); J
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wherein the i subscript refers to the ith observation and h; is the observed

altimeter height of equation (4.1). The sea surface topography model h':1 , is given

by

' n
hft = 2 (C’am cos mA; + S’y sin mA;) Py (sin ;) (8.2)

n=0 m=0

wherein A; is the geographic longitude of the ith observation; ¢; its geographic
latitude; P,,(-) the associated Legendre functions of degree n and order m and
Clams S'nm are the coefficients to be determined. The least squares process involves
minimizing the function I, where .
I= Z (h;: - h‘:l)z : (8.3)
i=1

N being the total number of altimeter observations that satisfy the rejection criterion.

Equation (8.2) can be written more compactly as

*° N 2
-3 3y A *
n=0m=0a=1
¢’ [Py (sin ¢;) cos mA;; « =1
where ¢® =9 ™ YS =
nm ’ nm; . .
S Pom (sin ¢;) sin mAr;; o =2

Simplification of the computer coding of this model is achieved by reducing the three

summation signs in equation (8.4) to just one. Define a new variable, k, by

k=n2+n+2m+ (8.5)

where ae= 1,2 foreachvalueof m=0,...,n and n=0,..., . Then
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8.6)

where I(k=cf:,‘l and ?ki = Ymrlmi for k defined by equation (8.5). For example,

m=n=0 and @ =1, comespondto k=1 sothat K;=C'y.

Likewise,

K, = S’ etc. It is pertinent to note here, that all terms of the form S, are zero.

They are kept in the numbering system only as a simplification of the computer

coding and are not actually solved for in the minimization of L. In practice, equation

(8.6) must be terminated at some integer, k,,,, determined by the maximum degree,

Npnax and order, mg,., of the harmonic expansion. Then equation (8.3) can be

written

Kmas
Z [ 1% E‘IK" %]’

i=1

Minimization of this is equivalent to solving

for j=1,...,

for j=1,..

i=1

| s
aKj =2 Z [_h 12'11(" %] % =0

k.ax- Upon rearranging, equation (8.8) can be written as

| N
2 sz Y |9 = 2 by Y,

i=1 i=1

w» Kaxe In matrix form this reduces to

AK=h
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N N
where b; = Z h“;i ?ji ,  Agj= izl ?Ei Y, Rj=1 ... Kpa for
i=1 =
knlu. kﬂl“ kmu
h=(b1)j=l 4 A=[AQJ]QJ__.1 2 andK'=(KJ)j = l.

A is a symmetric positive definite matrix and so can be inverted to give the

solution
K = A1), (8.11)

Equation (8.10) expresses the normal equations for the coefficients of the
harmonic expansion for the sea surface topography. These equations could be
incorporated into the orbital normal equations with all the other parameters to be
estimated, but the solution would then be orbit dependent and determined from only a
limited number of altimeter observations. For a better determined solution, it is
preferable to combine data from several orbital arcs having initially removed all of the
orbit dependent parameters. This procedure is called the Helmert-Wolf Blocking
Process and is described in more detail in Appendix 3.

The procedure is applied to several reference orbits determined throughout the
operational lifetime of SEASAT, where in this context, a reference orbit is a six day
arc in which a state vector at epoch, daily drag coefficients and a solar radiation
pressure coefficient are all estimated. The data used in these arcs includes all laser
data, weighted nominally as given in Table 2.1, crossover data, weighted with a
standard deviation of 0.5m and altimetry, weighted with a standard deviation of 2m
so as not to affect the orbital solution. (The state vector, drag coefficients and solar
radiation pressure coefficient are the so called orbit dependent parameters which are
removed as a result of the Helmert-Wolf process.) Throughout the computations, the
GEM-T!1 gravity field and derived geoid were employed.

Each orbital arc is converged, using the procedure outlined in [17] and the
normal equations (8.10) separated using the Helmert-Wolf process. These equations

are stored and added to those from previous arcs. Once all have been stored and
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summed, they can be solved using an appropriate method for matrix inversion. That

chosen for this work is due to Choleski [49].

§8.2 Numerical Results

The method described in section 8.1 has been applied to five SEASAT arcs,
the details of which are listed in Table 8.1.

Table 8.1: Arcs used in the Helmert-Wolf Blocking solution for a sea surface

topography model.
MID 43716-22 17-day 9722
MID 43722-28 17-day 10112
MID 43728-34 17-day 9483
MID 43764-70 3-day 7186
MID 43770-76 3-day 10558

Total 47061

Use of this data, should provide sufficient coverage of both the 17 day and 3 day
repeat orbits, with the addition of extra data not expected to significantly alter the
results. For solution, the rejection level on the altimeter residuals was set at Sm after

removing a 70cm range bias from the observed altimeter heights [48].
Equation (8.7) has been implemented into the software with k., determined

from ng,, =mqg,, =10, thatis with k.., = 132, This determines a sea surface
topography model up to degree and order 10, but initial tests have shown the ‘a
posteriori' standard errors on some of the coefficients to be large (Table 8.2), as large
as the coefficients themselves in fact. Such coefficients have not been well
determined, probably due to a measure of inseparability between them. A more

modest approach is to determine a model upto degree and order six only. With
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hindsight, this model should be more representative of the actual sea surface
topography at these wavelengths since the method assumes that the geoid is known
exactly, and upto degree and order six this is a fair assumption for the GEM-T1
derived geoid.

The results will be contaminated in three ways. There will be the near once
per revolution orbit error which cannot be separated from the once per revolution sea
surface topography terms; there will be aliasing of the high frequency sea s:.}rfacc
topography terms into the low frequency terms due to omission and there will be the

effect of the altimeter time tag bias and other temporal variations, such as tidal errors.

Determination of the once and near once per revolution coefficients, C'yp, C';; and
S’yy will absorb some of the near once per revolution orbit error, aliasing their
recovered values which may be unrepresentative therefore, of the actual sea surface
topography values. However, total omission of these first degree terms is
inadmissible due to aliasing into other terms. It was therefore decided to solve for
these coefficients bearing in mind these facts. The aliasing of the high frequency
terms is not deemed too serious, since it is known from oceanographic studies that
the sea surface topography has most of its power at the longer wavelengths [50]. The
remaining altimeter time tag bias, as determined from crossovers (section 7.4) is of
the order of 1ms, which translates into a 7mm radial orbit error. Considering the
method has various underlying assumptions conceming the geoid and orbital
accuracy, this level of error is deemed insignificant. Other temporal errors, such as
tides, should be random in nature and thus unlikely to be absorbed into the solution.
The resulting 6 x 6 model coefficients are listed in Table 8.3 with contour plot

being given in Figure 8.2.

§8.3  Discussion Of Results

Table 8.3 gives the recovered coefficients and standard errors for the sea

surface topography model upto degree and order six. The C’(0, 0) term represents

108



an altimeter range offset and is not necessarily a component of the DST. The value
recovered is 15.78cm which, when added to the 70cm already removed from the
altimeter residuals produces a total range bias of 85.78cm, in reasonable agreement
with the 72cm offset determined by Marsh et al [48]. The C’(2, 0) termis -51cmin
Table 8.3, in fair agreement with the -42cm determined by Marsh et al (however see
below). In contrast, the value recovered by Engelis [50] is —23cm but this could be a
consequence of the different geoids and definitions used in each of the methods. For
instance, Engelis employs a GEM-L1 derived geoid [51] for referencing the sea
surface topography, whereas the method of section 8.1 uses a GEM-T1 derived
geoid whilst Marsh et al derive the geoid in a simultaneous solution with SST. In
both section 8.1 and Marsh et al the geoid does not include the permanent tidal effects
of the sun and moon which will be experienced by the altimeter signals. The geoid
used for referencing the sea surface topography should include these terms. The
'zero’ geoid is defined as an equipotential surface of the Earth's gravitational field and
centrifugal rotation that would exist without the direct influence of the sun and moon,
but including the indirect effect due to the permanent yielding of an elastic earth. The
'mean’ geoid however, is that equipotential surface that would exist with the sun and
moon present [52). In order to obtain the ‘zero' GEM-T1 derived geoid it is

necessary to add the quantity

c; = —-0.198k, (%sinzq: - }Z) metres

to the geoid heights [53], where k, is the second degree Love number (= 0.30) and

¢ 1is the geocentric latitude. Then, to obtain the 'mean’ geoid the quantity

¢, = —0.198 G-sin% - %) aetres
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must be added. This is equivalent to adding 25.74cm to the recovered value of
C’(2, 0) resulting in a value of ~ —25cm, relative to the 'mean' GEM-T1 derived
geoid. A final tidal correction which should also have been applied is a zero
frequency correction to the sea surface heights due to the vertical displacement of the
ocean bottom. (See Rowlands [54].) This correction is equivalent to adding another
12cm to the value of C’(2, 0) thus yielding a final derived value of ~ - 13cm. This
value is in disagreement with the value derived by Engelis but there is confusion? asto

the precise definition he uses for the geoid. Engelis accounts for the vertical

displacement of the ocean bottom plus the induced solid earth deformation, c¢;. Itis
unclear from the literature though, whether he includes the correction ¢, in the
derivation of his —23cm for C’(2, 0). Assuming that Marsh et al account for the
vertical displacement of the ocean bottom then their value of —42cm agrees very well
with the value of ~39cm obtained in this chapter (when also accounting for that
correction term). The contour plot of Figure 8.2 has been drawn using the value of
-13cm for C’(2, 0) since this refers to the 'mean' geoid. However, the contour
plots of Figures 8.3 and 8.4 have been drawn using the values of -42cm and —23cm,
respectively, for C'(2, 0).

With hindsight, correction for these tidal terms would have been simpler at the
altimeter data processing stage where the geoid height is calculated. However, if a
model for sea surface topography is to be introduced to equation (4.1), such terms
can automatically be accounted for there.

Comparison of some of the other coefficients shows marked differences
between all three methods, but it is encouraging to note that the majority of the
coefficients of largest amplitude in Table 8.3, agree with those of Marsh et al. For
instance, the method of section 8.1 has recovered the C’(6,0), C’(2, 1) and
S’(4,4) terms with similar amplitudes to those derived at GSFC. This must account
for the high level of qualitative agreement between Figure 8.2 and Figure 8.3, which
show the contour plots for these two models. Figure 8.4 depicts the plot for the

model by Engelis and again, there is good qualitative agreement with the other two
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plots. For example, all models show virtually the same topographic mounts and
troughs, although some are slightly displaced and have differing amplitudes for each
of the plots, especially that due to Engelis. Again, this is a likely consequence of the
geoid definitions adopted in each method.

Discrepancies between model coefficients is related to the methodology
employed in each solution. Marsh et al use a heavily edited altimeter data set
sampled at 15 second intervals, giving a spatial distribution of approximately 100km
between measurements. Sﬁrfacc gravimetry is used and a simultaneous solution for a
10 x 10 sea surface topography modél and gravity field terms is performed. Further,
the sea surface topography is constrained relative to the oceanographic solution of
Levitus [55], allowing determination of a 10 x 10 field. Such a method will therefore
separate the gravity field and in i);micular the geoid terms, which would otherwise
contaminate the sea surface topography. By definition, this method is more
sophisticated than that presented here but such a method could not be performed at
Aston without the use of land gravimetry and this data is not available at the present
time. _

Comrr'érscly, the method adopted by Engelis is non-dynamic relying on
removal of the long-wavelength orbit error by averaging the repeat arcs and
simultaneously minimizing the crossover discrepancies in a least squares sense. For
the non-repeat era, a similar method is used whereby the crossover discrepancies are
minimized in four separate regions.

It should be emphasized that the method presented in section 8.1 is merely a
preliminary engineering exercise to show how altimetry can be applied in analysing
oceanographic phenomena. It is not intended to recover precise DST and should not
be viewed as such. However, the foundation of a capability has been developed at

Aston for more detailed studies in the future, especially for ERS-1.
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Figure 82 : Contour plot of a 6 x 6 sea surface topography model relauve to the
GEM-T1 derived 'mean’ geoid as determined using five SEASAT

dIcs.
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able 8.2

Recovered coefficients for a 10 x 10 sea surface topography model as

derived from five SEASAT arcs.
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Table 8.3 : Recovered coefficients for a 6 x 6 sea surface topography model as

derived from five SEASAT arcs.

MAXIMUM DEGREE AND ORDER OF EXPANSION = 6
TOTAL NUMBER OF PARAMETERS EVALUATED = 49
INDEX COEFFICIENT VALUE STANDARD ERROR

(k) (cm) (cm)
1 c'o0 0 -15.78378 2.20124
3 evq 9 -13.87815 2.14648
5 ery 1 -6.63967 1.91592
6 8 1 1 -20.17560 2.36805
7 cr2 0 -51.42929 1.72106
9 cr2 1 -10.66097 1.61827
10 g* 2 1 -7.48703 2.76029
11 cr2 2 -2.06860 2.08179
12 52 2 -7.58432 1.90746
13 c'3 o0 7.96496 1.70300
15 '3 1 -1.98534 1.59584
16 '3 1 -14.31960 2.34474
17 cr3 2 0.58516 2.35167
18 gt 3 2 -1.52029 1.81364
19 e¥'3 3 4.03687 1.82018
20 53 3 0.74719 1.94160
21 c'4 0 0.54259 1.94528
23 c'4 1 5.84981 1.51387
24 §' 4 1 -7.64642 1.59723
25 cr 4 2 15.08968 2.12952
26 S' 4 2 -1.27809 1.83019
27 c'4 3 -6.60788 1.83826
28 S' 4 3 ~-1.86741 2.04104
29 C*4 4 -4.84317 1.62077
30 S' 4 4 -12.01962 1.87686
31 c's 0 0.22761 1.98066
33 e''s 1 -3.84842 1.28375
34 s*'5 1 -0.00544 1.71535
35 c' 8§ 2 5.43717 1.64303
36 s'5 2 1.23434 1.54818
37 e* S 3 ~5.45165 1.65692
38 §*'s 3 3.57818 1.94261
39 C'Ss 4 -5.93535 1.82183
40 s'5 4 -5.52697 1.76655
41 c's5 5 5.04286 1.69673
42 §'S5 S -0.58840 1.73126
43 cC'6 0 14.05591 1.71243
45 c'6 1 -5.85064 1.32941
46 s'6 1 -1.65355 1.75025
47 c* 8§ 2 -1.41642 1.34871
48 S' 6 2 -0.96051 1.33411
49 c'6 3 0.87113 1.45989
50 S'6 3 2.86656 1.53651
51 c'é6 4 3.64714 1.57704
52 S'6 4 -0.92748 1.53937
53 C'6 5 5.34524 1.58065
54 S'6 5 -1.58725 1.61254
55 C'6 6 6.03507 1.68515
56 S'6 6 0.71660 1.56113
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CHAPTER 9

DENSITY

This chapter introduces the second part of this thesis; namely that of
atmospheric density analysis and determination using SEASAT data. As will be seen
later, precise orbit determination is a pre-requisite for accurate density recovery,
hence the significance of part one of this thesis. However, results from earlier
chapters have shown that altimetry has little effect on orbits determined with a good
set of laser tracking data, a fact that was not foreseen at the outset of this research — it
was initially anticipated that altimetry would provide extra orbital information which
would prove useful in density analysis. Since this is not the case and in consideration
of the extra computing time required to process altimetry, it was decided to perform
the density analyses of the remaining chapters using laser data' Ionly.

Chapter 10 compares current state-of-the—art atmospheric models showing
that large discrepancies exist, particularly in the representation of a density change
associated with geomagnetic activity. Inchapter 11, densities are derived at SEASAT
heights by utilizing the recovered drag coefficients from long-arc so_lutions. Finally,
chapter 12 reveals how these derived density values can be applied to new modelling
techniques. This leads to the investigation of using a new index for geomagnetic
activity modelling, namely the auroral electrojet index and the estimation of certain
coefficients in geomagnetic activity models.

To introduce the subject, this chapter addresses a few basic concepts about
density, the atmosphere and describes the CIRA 72 atmospheric model [11],

commonly adopted in orbital analyses.
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§9.1 The Atmosphere

The atmosphere can be regarded as a series of several layers or 'spheres'
defined in one of two ways, either on a thermal basis, or the basis of chemical

composition. Both definitions are illustrated by the following diagram.
Figure 9.1:  The Atmosphere.
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The troposphere, stratosphere, mesosphere, thermosphere and exosphere are
defined on a thermal basis; the layers between them are named by substituting the
suffix 'pause’ for the suffix 'sphere’. If the classification is by chemical composition,
the main regions are the heterosphere, where a number of processes such as
diffusion, mixing and photodissociation occur and the homosphere where the
composition is unchanging. The homopause is the region between the two, where the
composition begins to change; _ |

For satellite orbital analysl,ts,‘ the main region of interest is the thermosphere
where the temperature increases with height until it reaches a constant value at the
exosphere. The heat input to the thermosphere has various effects upon the chemical

composition in this region due to diffusion, mixing, photodissociation and ionisation.
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Hence in terms of chemical composition the thermosphere is also called the
heterosphere. Just below it is the homopause, an important layer since it provides the
boundary conditions from which the diffusion equation is integrated in order to
determine the number density of each individual atmospheric constituent within the

thermosphere.

§9.2 Number Density

Above the height of the homopause (at about 100km in general) the
composition of the atmosphere is dependent upon the temperature. The number
density of each atmospheric constituent obeys the diffusion equation :-

%=-%g.dz-$(1+a;) 9.1)

where n; is the number density of species i, of molecular mass M;; R« the

universal gas constant; g the gravitational acceleration of the earth at height z above
ground level; T the temperature at this height and o;” the diffusion constant of

species i. The main atmospheric constituents of the thermosphere are Hydrogen
(Hz), Helium (He), Argon (Ar), Nitrogen (N2), and Oxygen; Oxygen occurring
in both atomic (O) and molecular (O;) forms. The proportion of each varies with
altitude and temperature, but for SEASAT heights the dominant constituents are

generally Helium and atomic Oxygen as can be observed from Figure 2 p.262 of
CIRA 1972 [11] for instance.

In CIRA 72, Jacchia gives an expression for the temperature profile T, used
in equation (9.1). The form of this profile necessitates numerical integration of the

diffusion equation. However, Walker [56] has derived an analytical approximation

by modifying T slightly :-

T = T = (Tw - Tizs) exp [~ s(z-125)(Rg+125)/(Rg+2) ] 9.2)
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where T,, is the asymptotic exospheric temperature; Tjys the temperature at 125km,
the height of the homopause in this case; s a parameter variable with T,, and Rg the
radius of the earth. It is the analytic approximation which is implemented in the
SATAN software package. However, both numeric and analytic versions give
almost exactly the same results as verified by Tables 9.1 and 9.2 which show the
orbital differences for the two versions when applied to the three day SEASAT arc

spanning MJD 43770 to MJD 43773. Both orbits are relative to the GEM-T1 gravity
field, the NASA ‘area tables' for SEASAT and utilize daily drag coefficients, Cp,

i=1,2,3 and a single solar reflectivity coefficient, Cg.

Table9.1: Orbital results for the arc MID 43770 to MJD 43773 using the analytic
and numeric versions of CIRA 72.

Model mms(cm) Cp, Co, Co, Cr
Analytic 50.81 2.70 2.54 2.25 1.63

Numeric 50.80 - 2.73 2.56 2.28 1.63

Table 9.2: Radial, along-track and cross~track differences between the analytic
and numeric versions of CIRA 72 for the arc of Table 9.1.

letms.mn.m:m (max/rms)

Radial Along-track Cross—track
0.005/0.002 _ 0.013/0.004 0.0005/0.0003

The solution of equation (9.1) using the analytic approximation to T
(equation (9.2)) has been derived since certain.-partial derivatives of the number
densities are required later when coefficients are estimated in the density models. Itis
detailed in section 10.5
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Returning to equation (9.2), T,, is a function of several variables, notably the

level of solar activity as measured by the solar flux, the local solar time and the

geomagnetic activity. Each is now described in turn,
§9.3 - Solar Activity

. The extreme ultraviolet radiation or EUV emitted from the sun is responsible
for heating the upper atmosphere. This radiation comprises two components, one
due to the solar disc, variable over a period of 11 years and the other due to active
regions on the disc itself. These active regions are caused by areas of higher
temperature due to the formation of sun-spots and solar rotation. This component
varies rapidly from day to day and has a 27 day cycle, commensurate with the solar
rotation rate.

The most readily available index for the EUV is the 10.7cm solar flux or Fyp 7
measured in units of 10-22 Wm~2 Hz-l. This index is measured at daily intervals

and consists of the two EUV components, which can be separated by statistical

methods. An increase in the EUV emissions as indicated by an increase in the Fg 4
index causes an increase in the temperature of the thermosphere and exosphere. The

reaction of the atmosphere due to each component of the EUV is different but has

been empirically modelled by Jacchia (in CIRA 1972 [11]) as
T, = 379 + 3.24 _F-IO.T +.13 (F10.7 _-FID.?) K (9.3)

for zero geomagnetic activity, i.e. K, =0 (see section 9.5). In equation (9.3)F g7
is the mean of F,q7 taken over four solar rotations (108 days) centred on the day in

question and T, represents the night-time minimum of the exospheric temperature in

degrees Kelvin. The first two terms of the equation model the temperature variation
due to the disc component, whilst the last term models the day to day variation of the

active region component.
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§9.4 Diumnal Variation

The position of the sun with respect to the atmosphere has a significant effect
on the exospheric temperature due to heating by the EUV. Satellite drag observations

have shown that the maximum densities occur at around 2pm local solar time (LST)

and at a latitude approximately equal to the sun's declination, &,. Similarly,
minimum densities are seen to occur at around 3am LST with a latitude of —3,. This
is the so called diurnal variation, the temperature Ty of which, is modelled by a
function of T, in CIRA (1972) [11].

§9.5 Geomagnetic Activity

The earth can be regarded as a huge magnet having an associated magnetic
field, the first approximation to which is a dipole orientated along the spin axis.
Successive approximations incorporate multipoles and cause the magnetic poles to be
misaligned from the spin poles. The geomagnetic field pervades the region close to
the earth, extending outwards in what is called the magnetosphere, the radius of
which varies but is several earth radii. The field controls the motion of the charged
particles in the atmosphere and so affects the temperature and density.

Variations within the geomagnetic activity such as that due to interaction with
the solar wind, cause tempcrﬁturc changes due to particle precipitation in the auroral
zones and subsequent joule heating in the atmosphere. This in tumn causes the density
variations observed during geomagnetic storms and is an important part of
atmospheric density modelling.

Several empirical indices have been used to describe the level of geomagnetic
activity [57], one of the most common being the geomagnetic planetary index, K,
- This is an average value from 12 world-wide observatories and provides a uniform

index over the globe, CIRA 72 incorporates this index into the model for the change

in exospheric temperature, Ag T.., associated with a geomagnetic disturbance as
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8 T = (A1 K, + By exp(Kp)) 9.5)

where A;=28.0K, B;=0.03K and Ag T, is lagged at 6.7 hours behind the
K, input. .

This is a very simple representation of geomagnetic activity and attempts to
model the effects as observed from low resolution satellite drag data. In no way does
it attempt to represent the actual physics of the phenomenon which in reality are very
complex. For instance, high resolution in—situ data collected from satellites such as
ESRO 4 have shown that at the outset of a geomagnetic storm, there is an immediate
increase of temperature and density in the thermosphere above the auroral zone and
that the atmospheric perturbation propagates, reaching the equatorial regions
considerably weakened some hours later. This transport of energy is complex and
very difficult to model - one of the reasons why geomagnetic disturbances cause
large uncertainties in density models. More advanced models of the geomagnetic
effect, such as those due to Slowey [12, 58], attempt to take these features into
account by introducing terms dependent on the latitude, longitude and time of
propagation (delay time). A fuller description of Slowey's models can be found in

chapter 10.

Jacchia's model for exospheric temperature T,,, is the sum of the diurnal

term, Tp, and the geomagnetic variation, i.e.
Te =Tp + &g T... (9.6)

This value is used in the temperature profile equation (9.2) to determine the number
density in equation (9.1).

The importance of the geomagnetic activity component on density can readily
be seen from Table 5 of CIRA (1972) p.291, where at 800km for instance and a solar
flux level of ~ 125 x 10-2 Wnr2 Hz"!, an increase of 100k can cause the density to

virtually double. Such a temperature increase occurs for K, above 4, i.. for

moderate geomagnetic activity and above. This is more significant than at 400km for

example, where the density increase for the same activity is only about 50 per cent.
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CHAPTER 10

MPAR PHERI! DE

At the outset of this research project, all orbit computations utilized the CIRA
72 atmospheric density model [11]. Other models such as DTM [16] and MSIS-1/2
[13,14] were already implemented into the SATAN software package, but were not
employed as a rule as CIRA 72 proved adequate for most orbital analyses, particularly
if multiple drag coefficients were estimated as part of the orbital solution. Later,
MSIS-83 [15] was added to the software, together with the modified geomagnetic
activity component to CIRA 72, due to Slowey, JS84 [12]. At this stage it was
decided that a comparison of the models was required in order to assess which
performed 'the best' in most situations.

Initial work involved analysing the effects of Slowey's model, JS84, for
geomagnetic activity, as implemented in CIRA 72, in place of equation (9.5). This
led to experimentation and modification of the time constant, ¢, in JS84 and certain
other parameters within both CIRA-72 and JS84. The mathematics involved is
outlined in section 10.5.

Finally, it was decided to analyse the performance of the MSIS type models as
a different approach is adopted to CIRA 72, in modellin g the total density. MSIS-83
was chosen for this work, in view of it being an updated version of the MSIS-1/2

model.

§10.1 Orbits Chosen For Analysis

To obtain a representative sample of atmospheric conditions, orbital arcs were
chosen from the entire operational life-span of SEASAT. Table 10.1 lists the main
characteristics of the arcs involved. Each orbit was derived relative to the GEM-T1

gravity field and employed the NASA ‘area tables' for drag force modelling and
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normalized SRP accelerations. The parameters solved for in each orbit were a state
vector at epoch, a single solar reflectivity coefficient, Cp and either a single drag
coefficient, Cp, a dragrate (CD, C‘D) or multiple drag coefficients, as specified.

Table 10.1:  Orbital arcs used for density model comparisons.

Identification Number ~ Epoch(MJD) indays indays
1 43722.0 6 17
2 43728.0 6 17
3 43748.5 6.75 interim
4 43764.0 6 3
5 43770.0 6 3
6 43774.0 9 3
7 43778.0 4 3
8 43784.0 5 3
9 43791.0 5 3

§10.2 Orbits Derived Relative To CIRA 72

Analysis of CIRA 72 involved computing many of the orbital arcs listed in
Table 10.1, with all three forms for the drag parameter, that is, single Cp, linear Cp

and multiple Cp's. Tables 10.2 to 10.4 present the results of those arcs tested in this

manner.,
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Table 10.2:

E

O 00 N Sy v A W N e

Orbital results relative to CIRA 72 and single Cp.

Rms (m)

1.33
2.45
1.59
3.38
5.32

23.69
7.78

13,05
1.70

Co

4.23
3.58
215
2.05
2.58
3.72
3.90
4.28
3.35

Cr

1.51
0.93
1.38
0.62
1.69
2.76
1.73
1.82

L7

Table 10.3:  Orbital results relative to CIRA 72 and linear Cp.

Orbital Arc  Rms (m)

[SY

O o NN oy i R W N

0.88
1.57
1.50
0.91
2.24
12.67

141
1.64

Cp

4.90
5.02
1.98
3.57
1.71
2.85

4,73
3.40

126

%
-0.10
-0.27

0.04
-0.26

0.28

0.15

-0.19
-0.02

Cr

1.75
1.32
1.35
1.54
1.42
1.64

1.71
1.73

Number
of observations
972
1488
1481
1101
1993
2165
1005
978
933

Number
of observations

971
1488
1481
1101
1992
2161

978
933



Table 10.4:  Orbital results relative to CIRA 72 and multiple Cp's .

' Number
Orbital Arc Rms (m) Cp range Cr  ofobservations
2 0.51 3.79-5.54 1.57 1448
3 0.67 2.65-3.58 1.55 1481
4 0.45 1.57-3.52 1.43 1000
5 ' 0.55 2.03-3.03 1.58 1956
6 201 2.33-4.08 1.51 2096

* All arcs utilized daily drag coefficients except for arc 3 which employed a final drag
coefficient spanning 1,75 days.

Several conclusions can be drawn from these three tables. Firstly, the rms of
fit when employing a single drag scale factor, is generally very poor (Table 10.2).

This is most evident for arcs 6 and 7 which experience a severe geomagnetic storm on

MID 43780 (Figure 10.1), where the 3 hour global geomagnetic index, K, reachesa
value of 8.0. There is also a large variation between arcs, in the recovered Cy
values, for the single Cp parametrization. Evidently, some of the along-track
modelling error has been absorbed by the solar radiation pressure coefficient. This is
vindicated by the results of the linear drag model (Table 10.3) in which the rms of fit

reduces for each arc and the recovered Cp values became more consistent than for

Table 10.2. Apparently the extra degree of freedom within the system has helped to

accommodate more of the along-track error, reducing the contamination of Cg.

Similarly, the multiple drag coefficient model accommodates the along-track error to
an even greater extent, with sub-metre rms values being obtained in all cases except
arc 6. Again, this is attributed to the severe geomagnetic storm over this period. For
multiple drag coefficients, the recovered Cy values show less variation than for the
linear drag model with a range of 1.43 to 1.58 for the five arcs of Table 10.4.

These results justify the use of multiple drag coefficients in long-arc orbital

determinations and indicate the inadequacy of a single drag coefficient
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parametrization. However, it must be remembered that multiple drag coefficients are
purely an artificial device to absorb errors in atmospheric density modelling and have
no other geophysical significance. The aim of the ensuing density analysis is to strive
towards the accuracies achieved with multiple drag coefficients, when using a single

drag coefficient only.
§10.3 Orbits Derived Relative To JS84

Variation of the recovered multiple drag coefficients shows a marked

correlation with variation in the geomagnetic index, K, as observed in Figure 10.2
_for the orbital arc spanning MJD 43770 to MJD 43783, This phenomenon has been
noticed by Wakker et al [6] and Noomen [59]. Apparently, short-term density
variations associated with geomagnetic disturbances cause large uncertainties in
density modelling which multiple drag coefficient solutions attempt to accommodate.
It is the geomagnetic activity component therefore, which has come under scrutiny
and is the main concern of the remainder of this study.

The first step towards geomagnetic at.;,tivity modelling improvement was to
implement Slowey's 1984 model, J SS4 [12] into the CIRA 72 model. The
components of this model are now described.

JS84 models the change in the logarithm of the number density, Ag log;o n;,

due to geomagnetic activity for each individual atmosphere constituent, i, by
Aglogion; = Arlogion; + Aglogion; + A.logon; (10.1)

where Arlog;on; is the thermal component, Ay logyon; the component due to the

change in the height of the homopause and A, log;o n; the component due to the

equatorial wave, in which the number densities of all constituents increase in the same

proportion centred on the equator.
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The thermal component is evaluated assuming an increase in exospheric
temperature Ag T.., given by

AgT. = AF(¢,1) (10.2)
where A = A1 K, [1+ Ajexp(A; K,)] (10.3)
with A’y = 515K, Ay = 04, A = 0.027
and F = 0.1425 + 0.81 37 sinp +

cos?p (0.1184 sin A - 0.03604 + cos &) +
sin 2¢ (~0.073 54 sin A +0.1038 cos A) +
sin%$ sin 2¢ (0.3706 sin A - 0.1441 cos A) . (10.4)

In equations (10.2) and (10.4), ¢ and A represent the geomagnetic latitude and

local magnetic time, rés;:cctively. Persistence is modelled in equation (10.3) by

assuming K, to be the weighted mean of the lagged 3-hourly K, geomagnetic
index taken over the 41 values in the preceding five day interval :-

t

z Kp(t) °-C(t-ti)

4= t-5
K’ (t+134) = - (10.5)

z c“‘("’ t)

L= t-5

where t is the time in days, c the time constant equal to 1.0d-! and Tg is the time

lag given by
Ty = 005 + 0.1cos?p  (day). (10.6)

In equation (10.4) n takes the form 5.0 -K’,/3.0.

The model for the homopause variation is
AH lng n =0 AZH (10.7)
where Azy (metres) is calculated from
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AZH'—'ZIAGT..

with Z, =22.0 and the oy's given by

a(Ar) =
%(0;) =
o(Nz)
a0 =
o(He) =

+3.07 x 103
+1.03 x 105

0.0

-575 x 105
-6.30 x 105

Finally, the equatorial wave component is given by

(mks)
(mks)

(mks)
(mks).

. Ae logm n = El tanh [OWG(Z - 100.0)] A COSZ(D

where E; =6.55x 104, z is the heightinkm and A is as in equation (10.3).
Figure (10.1) plots the K, index compared with the instantaneous K, index
for the periods spanning the orbital arcs of Table 10.1.
Results of computing these orbits with JS84 implemented in CIRA 72 are

tabulated below.
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Figure 10.1 : Values of geomagnetic indices K, (full line) and K’; (discontinuous

line) for the arcs of Table 10.1. Horizontal scale is days from MJD
43700.
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Figure 10.2 : Recovered drag coefficients from CIRA 72 and K, index for the 13
day arc MJD 43770 to MJD 43783.
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Table 10.5:  Orbital results relative to JS84 and single Cp.

Number
Obital Ae~ Rms(m) = Cp. Cr  ofobservations
1 2.83 4.26 0.97 972
2 1.61 4.83 1.34 1488
3 1.08 2.66 1.54 1481
4 2.77 267 1.15 1101
5 6.35 3.08 1.83 1993
6 34.38 5.12 3.71 2165
7 8.32 590 - 3.45 1005
8 8.00 4.70 1.95 978
9 4.19 3.78 1.61 933
Table 10.6:  Orbital results relative to JS84 and linear Cp,.
- - Number
Orbital Are Rms(m) =~ Cp. S Cr  ofobservations

1 0.97 7.75 045 2.08 971
2
3
4 138  3.61 -0.17 1.66 + 1101
5 1.60 1.81 0.39 1.52 1993
6 16.62 3.44 ©0.30 2.10 2165
7
8 2.82 6.05 -0.56 1.69 978
9 1.03 3.30 0.22 1.36 933

133



Table 10.7:  Orbital results relative to JS84 and multiple Cp's .

Number
Orbital Arc Rms (m) Cp range Cr  ofobservations
2 ' 0.58 4.40-6.57 1.58 1488
3* 0.60 223-3.08 1.57 1480
3 . 0.60 231-349 1.60 1990
6 - 1.06 240-6.80 1.71 2164
8 ' -0.36 3.61-5.80 1.69 973

*All arcs employed daily Cp's except arc 3 which used a final drag coefficient of
1.75 days in length.

Tables 10.5 to 10.7 reveal much the same pattern as Tables 10.2 to 10.4 with
the most accurate orbits being obtained when multiple drag coefficients are employed
as part of the orbital solution. The results, when solving for a single drag coefficient,
are still poor in some cases (Table 10.5), for instance arcs 5, 6, 7, 8 and 9.
Evidently, thc more complex geomagnetic activitjr modelling as derived by Slowey,
has not improved upon the simple form given in CIRA 72 (equation (9.5)), at least
for SEASAT heights. ' -

It is pertinent to note here, the similarities in results, between CIRA 72 and
JS84, for the orbital arcs 2, 3 and 5 when using multiple drag coefficients (compare
Tables 10.4 and 10.7). From this, one concludés that multiple drag coefficients
absorb the errors in any density model, resulting in orbits of a similar quality. This is

an important observation for the density determination work of the next chapter.
§10.4 Modifications To CIRA 72 And JS84

CIRA 72 is a general purpose satellite drag based density model but, as
explained in sections 10.2 and 10.3, is inaccurate in representing short-term density

variations associated with geomagnetic disturbances. The incorporation of the JS84
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geomagnetic model into the software was a direct response to this deficiency, but as
Table 10.5 shows, there has been no improvement. This may be a consequence of
the height at which JS84 is being applied — approximately 800km. In general, the data
used in the derivation of JS84 came from lower in the atmosphere, in particular the
model incorporated ESRO 4 data collected in the 240-320km height band.
Extrapolation to higher altitudes might thex;cfore prove erroneous with certain
coefficients inapplicable at such heights. -

Therefore, in order to apply JS84 to SEASAT heights, it was decided that
modification of some of the coefficients might prove beneficial and also indicate the
main modelling deficiencies. This modification involved solving for certain
geomagnetic coefficients as part of the orbital solution.

The accelerating force, F, on the satellite can be written

E=E(B.,p) (10.10)
where B is a vector of parameters upon which E depends, for instance gravitational
coefficients, position, SRP coefficient, etc. and p is the atmospheric density,
dependent upon the exospheric temperature, T.. From equation (9.6), T, isa

function of Ag T.., the component due to geomagnetic activity. Hence equation

(10.10) can be written

E=E(Bp (Tu(2eT-®),B*)) (10.11)
where P is a vector of all parameters in the geomagnetic activity model and P* a

vector of parameters defining other atmospheric density charactcristics, e.g. diurnal

variation, semi-annual variation, etc. Then, for p € P, the chain rules gives

1%
i
&

Q

—. 10.12)
p op (10.12)

Q
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Using equation (10.12), it is possible to solve for individual p € P by the method of

least squares outlined in section (3.3). In order to do this, it is necessary to derive a
form for JE/0p. This is now described.

To calculate the partial derivatives 9F/dp, it is necessary to solve the
diffusion equation (9.1). SATAN adopts the analytic approximation given by Walker
[56] in which the temperature profile, T(z), is given by equation (9.2). Equation
(9.1) is integrated from the height of the homopause, taken to be 125km. Hence

n;

J'd“‘ 2 f%dz (1 + o) de (10.13)

n,(125)

wherein n;(125) is the number density of species i at 125km and all other notation is
as defined previously. From [11] g(z) = 9,80665 R%/(RE + z)2 ms-2 so that

substitution of g(z) and T(z) into equation (10.13) yields

In[n;] - ln[nt(IZS)] =I+(1+a%) m[r"s] (10.14)

upon integration. In equation (10.14)

M, 9.80665 R2 (Rg + 2)7?
I= . 10.15
Ry Ta (1 - A exp[-s2]) & (1813
125

To=T -

where A =—r"= (10.16)
,  (z-125)(Rg + 125)

and 2 = et 9) (10.17)

I is integrated using the substitution u=1-A exp [—sz’] -
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9 1-A exp[-sz']

M; 9.80665 Rg du

= 10.18

Ry Ta f s(Rg + 125)2 u(l - u) ( )
1-A

_ M;g(125) T s(z - 125)(Rg + 125)

=SSR T {'"[Tm] YT Ret o) (1013)

where g(125) is the value of g(z) at z = 125km. Hence the solution to equation
(10.13) is given by |

_ Mig(125) . .Y, [Trs] Mig12s) ,
In[ni] = ln[ni(lzs)] + (Wn—-l- 1+« i) 1 T] _T*T:-—z . (10.20)
This equation expresses the natural logarithm of the number density of species i as
derived from integrating the diffusion equation with boundary conditions at 125km.
This applies to N, O,, O and He. For H, diffusive equilibrium occurs above

500km. Hence equation (9.1) must be integrated from 500km. The method is

similar, resulting in the equation

_ 2
My 129 | 1) L) Mqg129 @ - S0Rs + 125 o)

in[ng] = In[n500] + (_sl??i‘._ T 17 R, T (Rg + S00)(Rg + 2)

wherein the subscript H refers to hydrogen. (Equation (10.21) has been derived

assuming a value of zero for a'H.)' The total atmospheric density, p, is then

N,
n; M;
p = 2 A, (10.22)

i=1

calculated from

where N, is the total number of atmospheric constituents each with corresponding
number density, n; and molecular mass, M;. A, is Avogadro's number.

As an illustration of the mathematics involved in calculating dE/dp, equation

(10.12) is developed for the coefficient, A’; in JS84. For this parameter
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9E _9E 9p

—— . (10.23)
BA'I ap BA'I
From equation (3.6), dE/dp is simply
- oF 1/A
5 - ‘I(E) CpV; ¥ (10.24)
with notation as previously defined, whilst dp/dA”; is given by
NS
I I S M 10.25
dA", oA’ Av (10:25)
i=1
Y
Let L';=In[n;] whence n;=¢ = and in particular
) oL,
i ’ (10.26)

A, haAn

In JS84, L’; is calculated by solving the diffusion equation (9.1) and adding the

corrections for the homopause height variation and the equatorial wave. Thus
L;=L; + Ay ln[ni] + A, ln[ni] (10.27)
where L; is the natural logarithm of n; as given by equation (10.20) or in the case

of hydrogen, equation (10.21), Ay In[n;] is the homopause correction and A, In[n;]

the equatorial wave correction. From equations (10.7), (10.8) and (10.9)

Ay Infn;] = 1n[10]. . Z; . AgT.. (10.28)

and A, ln[ni] = In[10] . E, . tanh [0.006 (z - 100.0)] . A . cos? (10.29)
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with notation as already defined. Therefore, differentiating equation (10.27) with
respectto A’y yields

O 9 A

ﬁ' o ]n[O]a,ZiaA' (& T.) + 101 E;. tnh [0.006(z — 100)] . s = a (10.30)
where aA, (8 T.) = Kp[1+ Asexp(A, K] . F(6,1)  (1031)
and ;9:, K, [1 + Ag exp(A2 K’p)] ~(1032)

upon differentiating equations (10.2) and (10.3), respectively. The first term of
equation (10.30) is calculated using the Chain Rule,

oL; _oL; dT.
0A’; OT. 0A%

(10.33)

For N,, O,, O and He, 9L;/dT.. is calculated by differentiating equation (10.20)
with respect to T.., whilst for H, equation (10.21) is differentiated. The resulting

equations are
oL; 0 d 1 Tyas , 1
...:. —[lnn(l25)]+—:(s 1)1 T]+(I+ai+?ﬂi')’

.a% [1n (% _ -?:(m). Z (10.34)

for N, O,, O, He and

st (g P ()= ()
d (z - 500)(Rg + 125)?
- ?aT__,(HE) (Rg + 500)(Rg, + z)

(10.35)

for hydrogen. In equations (10.34) and (10.35)
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1 M;g(125)

H ™ Ry Te

1 My g(125)

Hi & Ry Toe

The explicit form for s = s(T.,) is given by [60] as

s = 0.0057 +

os

17.6
+

- 17.6

so that

Also from [60],

|

aT.. (T +244.0)%

. bi
Iogw [I'li (125)] = q; + TTC;

for constants a;, b; and c; dependent upon species, i, so that

B'Ti... [ln n; (125)] =

From [11] the equation for the hydrogen concentration at S00km, ny(500), is

logyo ny(500) = 79.13 — 39.4 logyo Tso + 5.5 (10810 Tso0)’

.o O
yielding E [In ny (500)] =

In[10]

m(—39.4 + 11 logyo Tsoo)

upon differentiation with respectto T.,.

N. d 1y _ 1 |1 0
() m|f o
. R

where di :

aT..  Mig(125)°

ML
H ot

s bi
(T + c-)2

Lad 1

aTSOD
daT.

Equations (10.42) and (10.43) hold for all species, i, including H. Also

2P

where Tj,s is givenin[11] as
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(10.37)

(10.38)

(10.39)

(10.40)

(10.41)

(10.42)

(10.43)

(10.44)



Tps = 2 + b Ta + ¢ exp(k T..)

for constants a,b,c and k. Therefore

dTy,s

E—=b+ck exp(kT...).

dT/dT,, is calculated by differentiating equation (9.2) with respect to T, :-

dT.

oT | - [1 _ aT ;s

By substituting z = 500 into equation (9.2)

Tsoo = T = (T = T125) exp [~ 52’500]
. (500-125)(Rg + 125)
where #3500 = T (Rg + 500)

Hence 9Ts0/0T.. is given by

aT dT '
=1 [1 - B’I‘HJ °XP[- Sz’soo] + (T- -Tm) Z'500

s

Y - r
°XP[ 325001 T

SORE

— J exp[- s2’] +(T. - T?zs) Z exp [~ s2’] -;r—s- ..

(10.45)

(10.46)

(10.47)

(10.48)

(10.49)

(10.50)

for all species. These equations solve equations (10.34) and (10.35) so all that

remains to calculate is 9T..[0A"; . But T.=Ty+ Ag T.. sothat
_ - ;
dA"; 0A’
which is given by equation (10.31).

§10.6 Preliminary Results

(10.51)

The evaluation of equation (10.12) has been undertaken for the coefficients
A; and B, inthe formula for Ag T. in CIRA 72, equation (9.5), and also for
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the parameters c, the time constant, Ay, Z;, E;, A; and A3 inJS84, (equations
(10.3) to (10.9)). Some of this processing is utilized later in this thesis, when new
models for geomagnetic activity are derived, in particular, solving for A; and B, in
equation \(9.5). ' However, some initial experiments were performed on the
coefficients in JS84 and several conclusions drawn.

FirstI).r. it is not possible to estimate all the coefficients from one orbital arc,

simultaneously. Likewise, if drag coefficients are also estimated, certain parameters

such as A’; are difficult to derive on account of the high correlation between the
two. This occurs because both A’; and the drag coefficients have the same effect of
scaling the derived density values. Successful determination of one, requires that the
other must be constrained in most circumstances. Also, estimation of the time
constant, ¢, requires a very accurate initial approximation on account of the high non—
linearity of equation (10.5). Consequently, much of the analysis performed on ¢
was executed using various fixed values instead of actually deriving a value. Results

of this preliminary work are presented in Table 10.8.

Table 10.8:  Solution of certain parameters in JS84 from arc 6 (MJD 43774 to
MID 43783) with drag coefficient model as described.

. Number
Orbital Description Rms(m) Cprange Cg ofobservations Notes

Daily Cp's. Solve for :- 0.59 3.14-545 1.68 2163 ¢ — 424!

X ifE.D_Q cRa c

Daily Cp's, ¢ = 4.2d"! (fixed). 0.61 3.14-5.35 1.67 2164 A, — 041

Solve for :- x, X, Cp , Cg, A,

Single Cp. Solve for :- 3.37 1.82 144 2096 c = 4.7d-1

X ii CDr CR: A'I) Az, c A’I — 144
A, — 033

Single Cp. Solve for :- 4.63 222 1.52 2098 A’y - 117

Xy Cp» Crs A'l
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Arc 6 was analysed as it provided excellent variation in geomagnetic
conditions over a large time span (Figure (10.1)). Using this period, Table 10.8
indicates that a time constant of ¢ = 1.0d-! is too small and that ¢ =4.2d-! is more
appropriate for SEASAT heights. It was therefore decided to apply this value to all
the arcs listed in Table 10.1 when solving for a single drag coefficient, so that it's
performance could be compared to CIRA 72 and the original JS84. Results of this
analysis are presented in Table 10.9.

Table 10.8 also indicates that A, might be too small, ie. that JS84,
underestimates the density change associated with geomagnetic activity at 800km.

Estimating A, with c fixed at 4.2d-! has little effect, eitheron A, itself or
the orbit.

Results of solving for Z;, E; and A3 have not been produced at this stage
since these coefficients are also highly correlated with A’;. This is to be expected
when one considers that equations (10.2), (10.8) and (10.9), are all dependent upon
the amplitude function A (equation (10.3)).

Table 10.9:  Orbital results relative to JS84 with ¢ =4.2d-! and single Cp.

Number
Obitalac  Rmsm)  Cp Cr  ofobservations

1 1.05 5.27 170 972
2 2.01 4.34 1.12 1488
3 1.51 2.60 1.44 1481
4 3.66 2.25 0.67 1101
5 628 2.8 177 1993
6

7 5.12 5.09 2.55 1005
8 5.19 4.81 1.91 978
9 1.51 3.77 1.65 933
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The use of ¢ =4.2d-! in JS84 has shown significant improvement over
c= 1.0d-! in four out of eight arcs with one (arc 5) remaining virtually unchanged.
Apparently, the smoothed index, K'p(c = 1.0d- 1). is not applicable in many
instances and Figure (10.1) may help to explain why. In most cases, the K’ index
all but removes the extreme geomagnetic variations and in particular it seems to have
the effect of reducing the significance of blocks’ of K. These blocks are noticeable
in arcs 7, 8 and 9, precisely those arcs for which ¢ = 1.0d-! performs badly.

To assess the effects of a further increase in the value of ¢, it was dccic'lcd to
recompute the eight arcs of Table 10.9 using a value of infinity. This is equivalent to
using the instantaneous values of K, as opposed to K’p (see equation (10.5)).
JS84 then takes on a very similar form to the geomagnetic activity component of J77
[61] which employs a time lag 777, equal to 0.1 + 0.2 cos2¢ (day). Consequently,
both this value for © and the value given by equation (10.6) were analysed, the
results of which are presented in Table 10.10.

Table 10.10: Orbital results relative to JS84 using a value of infinity for ¢ and two
values for 7, Tgq =0.05 + 0.1 cos2¢ (day) .and T3 = 0.1 + 0.2cos2¢

(day).

A Rms@m Cp Cr Rmstm) Cp  Cp ofobservarions
1 0.99 - 35.47 1.86 0.88 3.51 1.76 972
2 240 - 3.99 098  2.18 4.15 1.05 1488
3 1.85 2.52 1.41 1.66 2.52 1.41 1481
< 3.98 2.07 0.50 3.81 2.15 0.58 1101
5 - 6.63 281 © 174 644 2.83 1.74 1993
6

7 1.56 4.61 207 497 - 4.61 1.96 1005
8 4.22 4.84 191 436 4.834 1.91 978
9 1.79 3.72 1.69 132 - 372 1.69 933
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Both values of T give results of a similar quality to those of CIRA 72 (Table
10.2) and JS84 with c = 4.2d-! (Table 10.9), except for the case of arc 7 with Tg,.
For arc 7 the rms of fit is greatly reduced, the value being 1.56m on using 7Tg,4
compared to the value of 4.97m with 1t7. This is a significant improvement.
Confirmation that the reduced time lag was responsible for this improvement was
obtained when arc 7 was recomputed relative to CIRA 72 using 1g for the time lag.
The rms of fit reduced to 1.31m with recovered Cp of 3.85 and Ci of 184,
However, this is not conclusive evidence that such a time lag is the required value
overall, since the 3-hourly geomagnetic index, K, is too coarse to give anything

but a crude indication.

§10.7 MSIS Type Models

The method of atmospheric density modelling adopted in the MSIS type
models [13, 14, 15, 62] is different to the approach of CIRA 72. Such models,
derived using in situ measurements, are more complex and attempt to represent the
physical composition and temperature to a much\grcatcr accuracy than the drag based
CIRA 72. There are many coefficients in the models, derived by assuming that the
physics of the situation can be represented in terms of a spherical harmonic
expansion. Consequently, the MSIS type models are generally more capable of
representing individual constituent number densities.

One of the diffcrcnccsf between CIRA 72, JS84 and the MSIS type models is
the way in which persistence of a geomagnetic event is introduced into the modellin g.
CIRA 72 does not model persistence, JS84 attempts to account for it by smoothing
the geomagnetic index, K, whereas the MSIS type models [15, 62] have a
component which averages the effects of the activity itself. As seen in sections
(10.2), (10.3) and (10.6), there are instances when CIRA 72 and JS84 are
inaccurate, thus it was decided that an MSIS type model should also be analysed and
compared with the results from CIRA 72 and JS84. The model chosen for this task
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was the 1983 version, MSIS—83 [15], since it is an updated version of MSIS-1/2
[13,14] and also has a formulation for geomagnetic persistence. Results, both with
(MSIS-83A) and without (MSIS-83) this persistence modelling, are presented in
Table 10.11.

Table 10.11: Orbital results relative to MSIS-83 and a single Cp. MSIS—83 refers

to the simple formula for geomagnetic activity (equation A23 of
Hedin, [15]) whilst MSIS—83A refers to the summation formula A24.

MSIS-83 MSIS-83A

Orbital Number Number
A Rms(m) Cp  Cr ofobservaons Rms@m Cp  Cp  ofobservations
1 1.50 484 1.92 972 0.89 4.71 1.84 972

2 201 342 112 1488 1.84 3,51 117 1488

3 1.74 238 139 1481 134 240 144 1481

4 405 193 0.55 1101 374 2.06 0.69 1101

5 7.06 263 1.63 1928 6.40 2.66 1.61 1917

6

7 506 475 1.89 1005 128 5.09 215 1005

8 6.07- 519 198 978 6.27. 5.11 1.95 978

9 3.06 398 1.64 933 3.04 397 162 933

These results are of a similar quality to those of Tables 10.2 and 10.9, with certain
arcs (1, 2 and 3) improving over those relative to CIRA 72 and JS84 and others
deteriorating (8 and 9). Hence, the overall modelling of total density, the sole
requirement for satellite drag purposes, is in general, no better than for CIRA 72.
Combined with the extra computing time required to utilize MSIS-83, this advocates

the continued use of CIRA 72 in orbit determinations.
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There is also a similarity in both the rms values and recovered Cy values

between the two MSIS-83 versions, with MSIS-83A proving slightly the better.
However, a significant improvement in the rms values occurs for arc 7 where MSIS—-
83A is by far the most accurate model examined. This confirms the findings of
Hedin [15] that the model performs well over large well-defined geomagnetic storms,

but is only comparable to the simpler model in the majority of situations.

§10.8 Discussion

!

Results of computing SEASAT arcs with various density models, when
estimating a single drag coefficient, have been compared. Models employed,
included the simple drag based CIRA 72, CIRA 72 modified with JS84 for
geomagnetic activity modelling and two versions of MSIS-83. The results have
shown that, in general, CIRA 72 performs as good as, if not better, than the more
recent and complex models in reprt;sentin g the overall total atmospheric density. A
great deal of progress is therefore required in order to attain the orbital accuracies
obtained when employing multiple drag coefficients in the orbital solution.
Evidently, the short-term density variations associated with geomagnetic activity are
very difficult to accommodate with the later models not proving too successful.
There are several explanations for this. Firstly, attempts to represent the dynamics of
the atmoéphcrc by static density models is an oversimplification which causes large
uncertainties at SEASAT heights. Further, the majority of data employed in the
derivation of the models analysed is from lower in the atmosphere (below 400km in
general), where geomagnetic disturbances and hence temperature and density changes
are not as significant as at 800km (section 9.5). Extrapolation to SEASAT heights
might therefore prove inadequate as was suggested when A’; was estimated in Table
10.8, indicating that the density may be underestimated at such altitudes. Also, the

parametrization of geomagnetic activity using K, might be erroneous for certain

periods. For example, arc 5 is very poorly determined for all the models analysed
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whereas all the other arcs have a reasonable fit for at least one model. This could be
the consequence of either poor data or the inadequacy of K, in representing the
geomagnetic effect over this period. This is investigated further in chapter 12.

Much of the work of this chapter has been summarized and published in a
paper entitled "A Comparison of Geomagnetic Activity Models using SEASAT Laser
Range Data", [26].
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CHAPTER 11

DENSITY DETERMINATION

Figure 10.2 shows a marked correlation between the recovered drag
coefficients and the geomagnetic planetary index, K, for the period MID 43770 to
MID 43783. The implication is that the variation in the drag coefficients is in some
way related to the variation in atmospheric density associated with geomagnetic
activity. A similar correlation has also been observed by Wakker et al [6] and
Noomen [59]. It has been noted that multiple drag coefficients absorb along-track
modelling errors and, as shown in chapter 10, highly accurate orbits are derived in
this way. Further, very similar orbits were obtained when using different density
models provided multiple drag coefficients were estimated as part of the orbital
solution. This suggests that multiple drag coefficients absorb errors in such a way as
to produce an orbit as close to the real orbit as possible. Variation in the recovered
values must therefore implicitly contain information about the true orbit and in
particular about the true density.

This chapter aims to recover true aﬁnosphcﬁc densities over daily intervals by
analysing the variation in drag coefficients recovered from long-arc solutions of
SEASAT laser data. Section 11.1 develops the mathematics necessary for such an
analysis with the results of applying this method to two arcs presented in section
11.2. Section 11.3 assesses the effects of errors in some of the assumptions implicit

in section 11.1, namely that the gravitational and SRP forces are modelled precisely.

§11.1 Atmospheric Densities From Multiple Drag Coefficients

Assume the modelled along-track position of the spacecraft at time t =t;, is
TiM. whilst the actual position is T‘ir. After a time interval At =t ~t;, the modelled

along-track position, 'lﬂl. can be written as
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Ty = T + AT} (11.1)

1 1 1

where AT{“ represents the total modelled along-track perturbation due to all forces

(i.e. drag, gravity, SRP and third body attraction). An analogous equation exists for

T};l. Although the estimated position at any instant may differ from the true position,

this difference is assumed negligible for precise orbits derived from laser range data
where the rms of fit is typically below one metre when estimating for multiple drag
coefficients as part of the orbital solution (Table 10.4, Marsh et al [3] and Zandt;.:rgcn

et al [42]). Hence it is reasonable to equate

AT] = AT}, (11.2)

Assuming that third body attraction is modelled exactly, expansion of equation (11.2)

into the principal sources of along~track perturbation gives

AT} (DRAG)+ AT, (GRAVITY) +AT; (SRP) = AT, (DRAG) + AT (GRAVITY) + AT"(SRP)  (11.3)

where the terms in brackets refer to the force concerned. If, in the first instance, all

along-track mis-modelling is attributed to atmospheric effects then

AT} (DRAG) = AT(DRAG). (11.4)

Equation (11.4) basically expresses, in mathematical form, the observation made at
the end of section (10.3), namely that multiple drag coefficients absorb deficiencies in
atmospheric modelling.

Now, representing AT in angular form

%(AT) = An = _%{‘;Aa (11.5)

upon using Kepler's Third Law and dropping the T and M superscripts and the i

subscript for brevity of notation. In equation (11.5), An and Aa are the

corresponding changes in the mean motion, n, and the semi-major axis, a,
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respectively, due to atmospheric drag over a certain period of time. But, from King-
Hele [63]
2
@=ttE (1L.6)

where v is the satellite velocity, p the gravitational constant and Fp the along-

track force given by
Fr = -%(%) Cp V2 p. (11.7)

In equation (11.7), the notation is as defined for equation (3.6). Integration of

equation (11.6) gives

C t
Aa = ——k Iazv (A) V2 p ar (11.8)
>

where Cp, is the drag coefficient assumed constant over the interval [ti. t]. Hence,

integration of equation (11.5) yields

a1 t

3C’5‘ J' f azv( )v p dt’ dt (11.9)

upon substitution of equation (11.8). In equation (11.9) Cni is now assumed

constant over At;. To recover density variation it is necessary to represent equation

(11.9) in terms of an effective density, p;, defined by

l 1‘10
i~ 2}1 i ( )
where
tiq-l t

f faﬁv ( ) V2 d dt. (1L11)

From equations (11.4) and (11.10),
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T =T T - M
ChRL=Com (11.12)
there being only one true drag coefficient, C};. For precise laser orbits, I’f = I?‘ SO

that

Cp 7 = Cp, Bi- (11.13)

Since C}; is unknown, the absolute true effective density, 6}'. cannot be

determined. However, the relative effective density is given by

- - -M M M
Ap}‘ = pi+;r = p? - C'Dlhfl Pis1 — Cp, Pi
=T =T M =M
Pi Pi Cp, Pi

(11.14)

upon using equation (11.13)

Note that equation (11.14) éould have been written immcdiatcly upon
assuming be;.(i absorbs density modelling errors, but the identification of p;

(equation (11.10)) as the effective density is casily overlooked. Simply taking p; as
the average density over At; will lead to anomalous results since cﬁ,‘i is a scale factor

to adjust the along-track position so as to satisfy equation (11.4).

§11.2 Relative Effective Densities

The method developed in section (11.1) has been applied to two long-arc
SEASAT laser orbits with relative effective densities being determined over daily
intervals in the main. One orbit was a 14 day arc spanning July 27 to August 10,
1978 (MJID 43716 to MJD 43730), the other a 13 day arc spanning September 19 to
October 2, 1978 (MID 43770 to MJD 43783). The former of these two arcs occurred
during the 17 day repeat period, the latter during the 3 day repeat. Both orbital arcs
were initially computed relative to the GEM~T1 gravity field in conjunction with the
NASA ‘area tables' for SEASAT and daily drag coefficients for all days except MID
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43780. On MJD 43780, two half daily coefficients were utilized because of the severe

geomagnetic storm over this period. All orbital solutions involved estimating a state

vector at epoch, a solar radiation pressure coefficient, Cg and multiple drag
coefficients as described above.

Validation of the method was assessed by comparing the observed or 'true’
densities as derived from several atmospheric density models. Equation (11.14)
implies independence from the atmospheric model so that the observed densities
derived from alternative models should be comparable. -

The 13 day arc was computed relative to the atmospheric models CIRA 72,
MSIS-83A (described in chapter 10), DTM and JS84, the results of which are
presented in Tables 11.1 and 11.2. Figures 11.1 and 11.2 depict the density

variations relative to p;, for the modelled and observed values, respectively, upon
using

i
fa=i (1va) 113
J -

where «; = Apjlﬁj of Table 11.2. These graphs show the so called density

profiles.
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Table 11.1:  Recovered drag coefficients and modelled effective densities for the 13
day arc spanning September 19 to October 2, 1978 (MJD 43770 to
MID 43783) using the GEM-T1 gravity field and NASA ‘area tables'
for SEASAT.
CIRA 72 MSIS-83A DTM JS84
KR=1.62 G=16, =163, G=1.65,
ms=97am ms =83an ms=8am | ms=%mm
i Span of CDi ﬁ x1014 CDi [-},x 104 c]:)i P x 1014 CDi ﬁx 1014
Cp's (kgrd)]  |(erd)|  |(kgn?)  |(kgor®)
1 43770-71 2.69| 1.29 |2.53| 1.31 }2.53| 1.34 |2.60| 1.29
2 71-72 2.57| 1.35 {2.47| 1.41 |2.37| 1.45 |2.69| 1.33
3 72-73 |2.06| 1.94 |2.22| 1.75 |2.17| 1.86 [2.59| 1.50
4 73-74 3.04} 1.79 |3.22} 1.78 |3.18| 1.81 |3.52| 1.62
S 74-75 2991 2.15 |3.44] 191 |3.39]| 1.93 |3.66| 1.84
6 75-76 2,75 2.03 {290 1.83 |2.86| 1.86 |2.87 | 1.83
7 7677 331 2.39 {397 ] 2.06 |3.79| 2.17 [4.55| 1.84
8 77-18 3.16 | 2.75 |4.18| 2.22 |4.15| 2.25 [4.30] 2.17
9 78-79 3.63| 2.83 [4.51] 2.26 |4.44| 2.28 [4.41| 2.31
10 79-80 3.78 | 3.34 |5.19| 2.37 |5.23 | 2.35 |4.94 | 2.45
11 80-80.5 | 5.67 | 2.99 |4.92| 2.86 |6.69| 2.47 |6.63| 2.52
12 80.5-81 3.11] 7.11 |5.41| 4.72 |8.02) 3.04 {7.11] 3.19
13 81-82 2.641 2.23 |3.33| 1.92 |3.17| 1.80 |2.14| 2.55
14 82-83 3.86| 193 [3.97| 1.70 {4.13| 1.77 |4.05] 1.95

Table 11.2:  Observed (O) and modelled (M) relanve densities for the 13 day arc as
derived from four atmospheric models and equation (11.14).

CIRA72 MSIS-83A DT JS84

i | O M 0 M .| O M (o)

0.0
+0.15
+0.37
+0.18
-0.13
+0.42
+0.11
+0.18
+0.23
+0.34
+0.31
-0.73
+0.27

+0.05
+0.44
-0.07
+0.20
-0.06
+0.18
+0.15
+0.03-
+0.18
-0.11
+1.38
-0.69
-0.13

+0.05
+0.12
+0.47
+0.15
-0.20
+0.54
+0.14
+0.10
+0.21
+0.15
+0.81
-0.75
+0.06

+0.08
+0.25
+0.01
+0.08
-0.04
+0.13
+0.08
+0.02
+0.05
+0.21
+0.65
-0.59
-0.11

+0.01
+0.18
+0.42
+0.14
-0.19
+0.55
+0.13
+0.09
+0.21
+0.35
+0.47
-0.77
+0.28

+0.08
+0.29
-0.03
+0.07
-0.04
+0.17
+0.04
+0.02
+0.03
+0.05
+0.23
-0.41
-0.02

+0.07
+0.08
+0.47
+0.18
-0.22
+0.59
+0.12
+0.09
+0.19
+0.38
+0.36
-0.76
+0.44

+0.03
+0.12
+0.08
+0.14
-0.01
0.0
+0.18
+0.07
+0.06
+0.03
+0.27
-0.20
-0.24

O 00 N OV bW -

— s s s
WD =0

154



Figure 11.1: Modelled density profiles for MID 43770 to MJD 43783.
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Figure 11.2: Observed density profiles for MJD 43770 to MJD 43783.
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The observed density profiles of Figure 11.2 show excellent agreement between all
models, with a slight discrepancy over the period of the two half-daily drag
coefficients.(This is attributed primarily to the limited amount of data and shows the
difficulty in deriving densities over periods of less than a day. Density values are
only meaningful if the drag coefficients have been well-determined, a criterion which
places a limit on the time span of their derivation. Consequently, this study was
restricted to determining daily relative densities except on MJD 43780.) On a
cautionary note, the last drag coefficient from any orbit is less well-determined than
prcvic;us values as there is no subéequcnt data to act as a constraint. Results from the
last day of any analysis should not be judged too critically.

In comparison, the modelled variations of Figure 11.1 exhibit considerable
differences with‘only CIRA 72I (full line) approaching the level of increase as
predicted from the data. Also..thc modelled densities increase over the first ten days,
at a rate less than the required variation. Such an error is unlikely to be systematic, as
the total change in observed and modelled densities are in accord over the full 13 day
period. | _‘

Figures 11.1 and 11.2 élso reveal where a good orbital fit with a single drag
scaic factor wﬂl occur For instance, MSIS—83A performs well over MID 43778 to
MID 43782 with a single drag coefficient (Table 10.11). From the figures, it is
apparent that, apart from scale, the shapes of the observed and MSIS-83A modelled
density profiles over this period, are basically similar. Conversely, the poor
performance of a single drag coefficient over MID43770 to MID 43776 and MJD
43774 to MID 43783 with any density model (Tables 10.2, 10.5, 10.9, 10.10 and
10.11), can be explained since all models fail to match the observed profiles over
these periods, even allowing for a scale difference. In particular, these figures reveal
the inadequacy of the K index in representing the change in density due to
geomagnetic activity over MID 43772, This confirms the hypothesis of section 10.8
which suggested that in certain instances, K, might be unrepresentative of actual

density change. Apparently the increase in K, on MID 43772 does not correspond
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to an increase in density and hence no density model based on the K index, will be

able to represent the true variation over this period.

Equivalent results for the 14 day arc, relative to CIRA 72 and MSIS-83A
only, were also analysed. They are presented in Tables 11.3 and 11.4. In order to
synchronize the observed profiles, the density variations were determined relative to
P in this case to eliminate the offset introduced by the difference in the initial Cp p
product. This offset is attributed to the differences in along-track position as derived
from the initial state vectors, since the modelled densities are similar over MJD 43716
(Table 11.3). Hence results from the first day of an orbit should also be treated with
caution. The method is therefore most applicable to long-arc orbits which give
maximum constraint on the intermediate drag coefficients. For this reason the above
analysis was restricted to two arcs only, since other arcs of comparable length could
not be extracted from the limited SEASAT data set.

As shown in Figure 11.3, both profiles of modelled density for MJD 43722
to MJID 43728, agree well with the observed profile of Figure 11.4, as expected from
the low rms values in Tables 10.2 and 10.11.

Both arcs have confirmed the validity of the method, with near identical

observed profiles being derived irrespective of the density model used.
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Table 11.3:  Recovered drag coefficients and modelled effective densities for the 14
day arc spanning July 27 to August 10, 1978 (MJD 43716 to MID
43730), using the GEM-T1 gravity field and NASA 'area tables'.

CIRA 72 MSIS-83A

Gg= 163 crms = 86cm|Cy = 1.58 rms = 90cm

i Span of Cny Mx 1014 Ch px 1014
Cp's (kgm ) (kgm )

1 | 43716-17 5.64 0.54 4.25 0.63°
2 17-18 4,64 0.58 4.10 0.68
3 18-19 6.59 0.47 5.08 0.59
4 19-20 5.32 0.51 4.44 0.61
5 20-21 5.25 0.45 4.02 0.55
6 21-22 5.48 0.48 4.42 0.60
7 22-23 4.93 0.48 3.90 0.57
8 23-24 4.13 0.59 4.12 0.67
9 24-25 4.27 0.87 4.66 0.82
10 25.26 4.29 0.70 4.02 . 0.75
11 26-27 4.29 0.82 4.57 0.79
12 27-28 4.93 0.68 4.12 0.75
13 28-29 3.92 0.67 3.39 0.75
14 29-30 5.81 0.62 4.79 0.74

Table 11.4: Observed (O) and modelled (M) relative effective densities as derived

from Table 11.3 upon using equation (11.14).

CIRA 72 MSIS-83A
i 0 M 0O M
1 -0.12 +0.07 +0.05 +0.08
2 +0.14 -0.20 +0.08 -0.13
3 -0.11 +0.10 -0.11 +0.02
4 -0.13 -0.12 -0.18 -0.09
5 +0.12 +0.07 +0.20 +0.09
6 -0.11 -0.01 -0.17 -0.06
7 +0.19 +0.24 +0.24 +0.18
8 +0.32 +0.46 +0.40 +0.23
9 -0.19 -0.19 -0.21 -0.09
10 +0.18 +0.18 +0.19 +0.05
11 -0.06 -0.18 -0.14 -0.05
12 -0.21 -0.01 -0.17 0.0
13 +0.37 -0.07 +0.40 0.0
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Figure 11.3 : Modelled density profiles for MID 43716 to MJD 43730.
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Observed density profiles for MID 43716 to MJD 43730.
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§11.3 The Effect Of Gravity Field And SRP Errors On The Density Values

The method of density determination developed in section 11.1 assumes that
no errors exist in either gravity field or SRP modelling. The orbits of section 11.2
are highly accurate, both in terms of the rms of fit to laser range data and the
consistency within the recovered Cg values. Due to this accuracy, it was decided
that the assumptions of section 11.1 were basically valid. This section is concerned
with assessing the effects of non-negligible errors in both gravity and SRP forces on
the derived density values.

Gravity field error effects were assessed by recomputing the two arcs of
section 11.2 relative to the tailored SEASAT gravity field, PGS-S3 [2], whilst SRP
error effects were assessed by using a fixed value of 1.5 for Cg in conjunction with
the GEM-T1 gravity field. For both cases, the orbits were derived relative to the
CIRA 72 atmospheric model only, again using the NASA 'area tables' for SEASAT.
The results are presented in Tables 11.5 and 11.6 with graphical plots being given in
Figures 11.5 and 11.6. Also plotted for comparison, are the profiles determined
from GEM-T1 with CIRA 72. Note that the profiles are relative to p, due to large
discrepancies in the first drag coefficient from each of the models.

For the 13 day arc (Figure 11.5), there is good agreement in shape at least,
between all three profiles, indicating that small gravity field and SRP errors have little
effect on the derived densities over this period. This is attributed to the relatively high
level of base density, a response to the level of solar activity for this time span
(Figure 11.7). One discrepancy however, is the scale offset on the profile derived
relative to the PGS—S3 gravity field. This disappears upon calculating the densities
relative to p; and is due to the inter-dependence between the first two drag
coefficients of this orbit — the very high initial value causes the second one to be low,
to compensate. Evidently, the initial along-track position as given by the state vector
at epoch, contaminates the first two coefficients in this case. Such deficiencies

however, are expected to be reduced for the significantly more accurate GEM-T1
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gravity field. Asa measure of the orbital improvement with GEM~T1, the rms of fit
to the laser measurements for the 13 day arc when using GEM~T1 with CIRA 72 is
0.97m compared to 1.52m for PGS-S3 with CIRA 72, (Tables 11.1 and 11.5).

o Conversely, the PGS-S3 profile for the 14 day arc, deviates significantly
from the GEM-T1 based profiles (Figure 11.6). Over this period, the low solar

activity (Figure 11.8) and hence low base density, gives more significance to gravity

field errors. However, a small errorin Cg, again has little effect. This is explained
upon examination of the recovered drag coefficients, Cé"s. from the 14 day arc with

Cr fixed at 1.5, (I'ziblc 11.5). Comparison with the values c“,ﬁ. from the same

orbit with Cy allowed to vary, (Table 11.3), shows an almost constant scale factor
difference, (1 - B). Hence from equation (11.14)

s 1.5 =15 ~1.5 =1.5
[p{ft- Pi - Cp,,, Pisi = Cp;” Pi
-T 1.5 .5

Pi  Jog=1.5 Cp; P

_ (1- B)[Cnf, Fis1— Cpy' 5?{]
(1-B)Cp, b1
(- 87)

=T
Pi Cp allowed to vary
o =15 =M =15 . . ‘ ‘h 3
since p;” = p;” where p; is the modelled effective density over the i interval

for the orbit with Cy = 1.5. Hence, both models for Cg give the same results for

relative density, irrespective of the level of base density. The point at which an error

in Cg is sufficient to corrupt the solution will depend on when the recovered drag

coefficients are no longer scaled by a constant (1 - B), relative to the original,

values.

This modification to Cg effectively scales the radial, along-track and cross—

track perturbations identically. In practice, this is unrealistic since along-track errors
due to SRP will be absorbed within the drag coefficients with Cy constrained by
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radial and cross-track effects. Thus equation (11.13) can be incorrect and should be

replaced by
Ch p; =Cp, Pt + & (11.16)

where §; is the required correction for SRP absorption in CI‘DAl . Equation (11.14)

then becomes
- o M =M MM
Pia—pi _ Cp,, Pisn—=Cp, Pi + 8i+1 = 9;

(11.17)
= M =M
Pl Cp, P1 +9

where i=1 isadopted in the denominator. Over consecutive days, §;,; =~ J; given
the slowly varying orbital geometry. Letting 8; =Y CBDJ for some constant ¥,

then .
T Dy Fitl™ =Dy Vil -1 T
a7 = pT + pT - (11.18)
p-u-l (1+7)CM M‘ 1 i
M -
CDgﬂ pii-Cp, pin 5T, Cnbf pY' =Cp,, Pi-l| ¢ 5T
. » 1 — 1 .-l
| (1 +v)Co) A1t (1 +7) Cp, P :
with the final result
i
~T 1 =T
Pra =1+ - z B; ¢ P (11.19)
ia1
(CD pjsi— Co, Pj)
where j = —
CD P1
Simplifying equation (11.19) gives .
T (CD P,+1 Cml Plxu) 1120

For y = 0, equations (11.14) and (11.20) are equivalent. From equation
(11.20) it is seen that precise SRP modelling is crucial for density determinations.

Use of the NASA ‘area tables' for normalized solar radiation pressure accelerations is
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a direct response to this criterion. The tables were derived for SEASAT in
consideration of the visibility, reflectivity and diffusivity of a surface for various
orientations of the spacecraft and thus are expected to reduce along-track SRP errors.
However, comparison of the recovered drag coefficients from the two arcs analysed,
show this not to be the case. Averaging the first six coefficients from each arc (to
reduce uncertainties due to geomagnetic variation) then relative to CIRA 72, a mean
value of 5.49 is obtained for the earlier arc compared with 2.68 for the later one. In
comparison, values of 4.39 and 2.80 were derived relative to MSIS-83A,
respectively. Although partly a response to the differing levels of solar activity
(Figures 11.7 and 11.8), the higher values during the earlier arc indicate absorption
of SRP effects, particularly as the NASA tables yield larger along-track perturbations
during the early part of SEASAT's operational life. However, the close
. correspondence between the observed and modelled densities over MJD 43716 to
MID 43730 indicates that this absorption has been by a near-constant scale factor, as
expected for a period of low density variability. -For the more interesting 13 day arc,
the drag coefficients have more physical realism and coupled with the higher level of
base density, are not expected to be influenced by SRP to any significant extent.

§11.4 Density Profiles

The method of density determination can be used to plot observed or 'true’
density profiles over long-arc orbits. Such profiles have been plotted for two long-
arc SEASAT laser orbits, using daily drag coefficients in the main. Although coarse,
the profiles show the general trend of the 'true’ density variation, with very similar
results being obtained for any atmospheric model (provided that a good gravity field
is employed). Gravity field and SRP errors were shown to be negligible over high
levels of the base density as determined by the level of solar activity. For lower
levels however, gravity field errors become more important but, by using the

GEM-T1 model, it is anticipated that they are minimal. The development of more
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accurate gravity models such as GEM-T3 for instance, (soon to be published),
should enable the recovery of more reliable density values for even lower levels of
base density and hopefully shorter time intervals than one day. Future work of this
nature could be performed using ERS-1 data, which hopefully, will cover a longer
time span than the SEASAT data, thereby experiencing a large degree of atmospheric
variability and conditions.

Comparison of modelled and observed density profiles reveals the reason for
poor orbits being obtained, in many cases when estimating a single drag coefficient
only. However, by such a comparison, it is possible to predict where a good orbital
fit to a single drag scale factor will occur. This technique has implications for new
density modelling, since the observed profile indicates the shape that a modelled
profile should follow. Use is made of this observation in the next and penultimate
chapter in which new density modelling techniques are examined.

The work of this chapter has been published in a paper entitled "The
Determination of Relative Effective Atmospheric Densities at 800km using SEASAT
Laser Range Data", [64].
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Table 11.5:  Recovered drag coefficients for orbits with gravity field and SRP

errors, using CIRA 72 and the NASA ‘area tables'.

13 day arc 14 day arc
(MJD 43770 to MJD 43783) | (MJD 43716 to MID 43730)
PGS-S3 G = 15, PGS-S3 G = 15,
i G = 165 | (GEM-T1) | G = 1.60 | (GEM-T1)
rms = 1.52m| rms = 1.61lm |rms = 1.63m | rms = 0.99m
1 3.25 2.15 5.23 539"
2 2.22 2.60 4.35 4.32
3 2.06 2,01 7.63 6.35
4 3.28 2.99 4.92 5.02
5 2.77 2.93 4.67 5.13
6 2.83 2.75 5.37 5.06
7 3.42 3.28 5.90 4.68
8 3.07 3.13 4.09 446
9 3.56 3.60 3.89 4.15
10 3.95 3.78 5.26 4.04
11 5.65 5.40 3.91 4,16
12 3.03 3.30 4.00 471
13 2.53 243 4.71 3.62
14 4.82 3.40 6.38 4,99
Table 11.6:  Observed densities from Table 11.5 and equation (11.14).
13 day arc 14 day arc
(MJD 43770 to MJD 43783) | (MJD 43716 to MID 43730)
i PGS-S3 G =15 PGS-S3 G=15
1 -0.29 +0.27 -0.11 -0.14
2 +0.34 +0.11 +0.41 +0.18
3 +0.47 +0.38 -0.29 -0.13
4 +0.01 +0.18 -0.17 -0.10
5 -0.04 -0.12 +0.24 +0.06
6 +0.42 +0.40 +0.09 -0.08
7 +0.04 +0.10 -0.14 +0.18
8 +0.19 +0.19 +0.39 +0.36
9 +0.31 +0.24 +0.09 -0.21
10 +0.28 +0.28 -0.13 +0.21
11 +0.28 +0.45 -0.16 -0.07
12 -0.74 =0.77 +0.17 -0.24
13 +0 .64 +0.21 +0.26 +0.28
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Observed density profiles for MID 43770 to MJD 43783.

Figure 11.5:
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Observed density profiles for MID 43716 to MJD 43730.

Figure 11.6:
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Figure 11.7: Solar flux, Fjp7 and geomagnetic planetary index, K, for
MID 43770 to MID 43783.
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Figure 11.8: Solar flux, Fjp7 and geomagnetic planetary index, K, for
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CHAPTER 12

W DE MODELL

As gravity field models continue to improve, the errors associated with other
forces, such as air-drag, will increase in significance, even when estimating for
multiple drag coefficients. In order to attain the decimetre accuracy required for
altimeter satellites, there will be a need in the near future, for improved modelling of
these forces. This chapter aims to address this requirement for the drag force. '

Chapters 10 and 11 have shown that current atmospheric density models are
deficient in their representation of density changes associated with geomagnetic
activity. It was seen that several of the more recent and more complex models for the
geomagnetic activity component of the density model, performed no better than the
simple drag based CIRA 72 density model, when employed in orbits using a single
drag coefficient.

Nevertheless, CIRA 72 is itself deficient in modelling the persistence of a
geomagnetic event. This aspect is examined in section 12.1. In that section,
persistence is introduced to the CIRA 72 model using a summation formula, similar to
that used by Hedin in his MSIS—83 model [15].

As suggested in chapter 10 and verified in chapter 11, there are instances
(M.Tﬁ 43772 for example), when the geomagnetic planetary index, K, does not
represent the actual density variation associated with geomagnetic activity. In
response to this deficiency it was decided to assess the performance of an alternative
index representing geomagnetic activity, the Auroral Electrojet or AE index.
Definitions and subsequent modelling of this index are described in section 12.2.

Finally, the decision was made to estimate certain coefficients in the CIRA 72
and JS84 geomagnetic models, plus some of their variants. This analysis is
addressed in section 12.3.

An assessment of the performance of the model derived in section 12.3 and

discussion of its merits are presented in sections 12.4 and 12.5, respectively.
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§12.1 ion Techniques Applied T 4

The summation formula given by equation A.24 of MSIS-83 [15] is designed
to introduce persistence of a geomagnetic event into density modelling. Persistence is
not modelled in CIRA 72, whilst in JS84, it is accounted for by smoothing the K,
index. This has the unwanted effect of all but removing the extremes of geomagnetic
variation. Hence the decision was taken to introduce persistence, both to CIRA 72

and JS84, by using a summation formula of the geomagnetic effect A g(*), similar to

that used in MSIS-83, as follows :-

4
- Ag(ay) + 121%(&“’) exp(~c0.125i)

Aot +1) = - : (12.1)
1+ ) exp(-<0.1250)
i=1

In equation (12.1), T is identically set to zero in accordance with the time lag of
MSIS-83; Ag(+) is to be identified with Ag T,, in CIRA 72 (equation (9.5)) and
the components of Ag log n; in JS84 (equation (10.1)); a, is the K index at time
thrs, a; at t—3 hrs, a3 at t—6 hrs, etc. and c is setat 3.0d-! giving a time
constant of 8 hrs, in close agreement with the values recommended by Hedin [15] in
his summation formula A.24. (Hedin employs separate time constants for each
atmospheric constituent, but an average value was chosen here to simplify the
procedure.)

Results of computing the orbital arcs defined in chapter 10, relative to both
CIRA 72 and JS84, with the summation formula of equation (12.1) and a single drag

scale factor, are presented in Tables 12.1 and 12.2, respectively.
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Table 12.1:  Orbital results relative to CIRA 72 using the summation formula of
equation (12.1) when solving for a single drag coefficient in
conjunction with the GEM-T1 gravity field and NASA ‘area tables'

for SEASAT.
Orbital Are  Rms(m) Gy Gy o it
1 091 458 173 972
2 254 346 0.88 1488
3 1.73 221 1.40 1481
4 3,86 195 051 1101
5 " 5.56 2.57 Cm 1993
6 -
7 244 408 222 1005
8 278 436 . 183 978
9 1.44 334 170 933
Table 12.2:  As for Table 12.1 but using JS84.
Orbital A Rms(em) o Cx  orObservarions
1 083 549 184 972
2 220 4.15 1.04 1488
3 1.71 255 141 1481
4 387 213 0.56 1101
5 6.75 284 175 1993
6 o
7 2.98 4.82 2.37 1005
8 458 483 191 978
9

1.92 3,71 1.68 933
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Employing the rms of fit to the laser range residuals as the sole guide to
orbital accuracy, equation (12.1) applied to CIRA 72 improves on the original model
(Table 10.2) in four of the eight arcs tested. However, the level of orbital
improvement far outweighs the degradation in accuracy, with arc 7 improving by
5.34m (primarily a response to the reduced time lag), arc 1 by 42cm, arc 8 by 30cm
and arc 9 by 26cm. The degradations are 48cm in arc 4, 24cm in arc 5, 14cmin arc 3
and 9cm in arc 2. A similar pattern is noted when equation 12.1 is applied to JS84
(compare Tables 12.2 and 10.5). -

Comparison of Tables 12.1 and 12.2 reveals similar levels of accuracy apart
from arc 8, where CIRA 72 performs significantly better. Although tentative, these
results demonstrate that the introduction of persistence through a summation formula
such as equation (12.1), can lead to more realistic drag force modelling. The
summation in equation (12.1) over.the preceding 12 hour interval was purely
arbitrary but computations made by extending the summation over 24 hours had

negligible effect.

§12.2 The Auroral Electrojet, AE

- As mentioned in section 9.5, the earth's magnetic field extends, in
approximately dipole fashion, to distances of a few earth radii, beyond which it is
influenced by the solar wind. This influence causes the field to be confined within a
boundary known as the magnetopause, the whole structure being called the
magnetosphere. On the day side, this structure extends to about 10 earth radii whilst
on the night side, the field is drawn out into a long tail which extends at least as far as
the moon's orbit, 60 earth radii away. -

Various upper atmospheric phenomena are linked with the structure of the
magnetosphere and with the population of energetic particles contained therein. For
instance, there is a domain of "auroral” particles intersecting the earth's surface in two

bands, encircling the geomagnetic poles. These bands may be identified with the
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"auroral ovals" which are the loci of precipitation of energetic particles causing
aurora. Particle precipitation induces ionospheric currents which, through Joule
dissipation is a significant heat source for the global thermosphere. Hence, the
energy input to the auroral regions is related to the temperature changes associated
with geomagnetic activity and can therefore be used for geomagnetic modelling
purposes. An index, based on this energy input, is published by the World Data
Centre A at hourly intervals. It is called the Auroral Electrojet or AE index and is a
global measure of the auroral zone activity resulting from enhanced ionosl;hcric
currents during a magnetic disturbance [65, 66]. AE is a summation of the
magnitudes of the auroral electrojet indices AL and AU, which are designed to
measure the strengths of ionospheric currents in the westward and eastward
electrojets, respectively [67]. This index can be used in place of the K, index, in
modelling geomagnetic activity, though it should be noted that it is not regularly
computed. |

Figure 12.1 plots the AE index f_or the period spanning August 2 to October

15, 1978 (MJD 43722 to MID 43796), a period covering all orbits of chapters 10 and
11. Also plotted for comparison, is the 3 hourly K, index for the same period. As
seen from the figure, the AE index shows a close correspondence with the K, index

for the vast majority of geomagnetic storms, as is to be anticipated since both indices
measure geomagnetic activity. It should therefore be possible to derive a model
representing geomagnetic activity, based on the AE index. However, the erratic
behaviour of the 1 hourly AE values suggests that, initially, some form of smoothing
is necessary, since the atmosphere cannot react to such short-term geomagnetic
fluctuations. Such a smoothing function has been defined by Nisbet et al [67] in his

attempt to relate neutral air density variations to magnetic activity.
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: Plots of K, and AE indices for the period MJD 43722 to MJD 43796.
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The function is given by

AE'[u(t) =

ol Lo

f AE(Y) e g (12.2)

where t; is a time constant in hours and AE(t’ ) is the auroral electrojet index at time
t" hours. The time constant, t., effectively defines a level of smoothing and also
implicitly models persistence of the AE activity. The value used however, is open to
contention. Nisbet's work involved assessing various values ranging from 1 hour
upto 24 hours and his results su ggested' a smaller value is required for the onset of a
storm as compared to the decay of a storm. This indicates that the atmosphere reacts
more quickly to the onset of a geomagnetic disturbance, but that its return to quiet

time levels is much slower, corroborating the need for some form of persistence.
Figures 12.2(a) to (d) depict the AE’,‘= index for the values t; =1, 6, 12 and

24 hours, respectively, where AE’t, has been defined according to the approximation

of equation (12.2) given by
St o
@ = ?12 2 AE (t - 5t, + 1) exp[~(5t. - i)/t] (12.3)
i=0

where the increment i is in hourly intervals. The summation is terminated at St

hours prior to the current time t, as beyond this, the exponential term is negligible.,
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: A.E',‘ index for the values (a) 1 and (b) 6 hours for ¢, .
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: A-E'r: index for the values (a) 1 and (b) 6 hours for t. .
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Figure 12.2 : AE’, index for the values (c) 12 and (d) 24 hours for t..
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All the graphs reveal a similar overall trend for the shape of the geomagnetic
variation. However, Figure 12.2(a) shows that the value t. =1 hour, has little effect
in smoothing the AE index, whilst a value of 24 hours has removed 2 good deal of
the extreme variation (Figure 12.2 (d)). That value of t; chosen for initial analysis
was decided upon, by comparing the AE’, profiles with the observed density
profiles of chapter 11. For the value t, = 6 hours, there is a large peak in the index
during MJD 43776 (approximately 3/4 of the way along the horizontal scale in
Figure 12.2(b)), which is almost as significant as the peak during MJD 43780. Since
this does not correspond with the observed density profile for this period (Figure

11.2), t. = 6 hours was excluded from the subsequent analyses. Further, from
Figures 12.2(c) and (d), the nearest profile to that required, is given by t. =24
hours. However, this value under-estimates the density drop on MJD 43781
whereas t, = 12 hours is more appropriate here. Likewise, the profile of the AE"
index over MID 43748 to MID 43756 is not as expected from the K, data, whereas
the AE’y, index is similar to the K; profile for this period (Figure 12.1).
Consequently, initial analysis of an index based on the AE data, was performed with
a value of t, = 12 hours in equation (12.3). This also happens to be the median value
of those analysed by Nisbet et al [67]. For this index, (Figure 12.2(c)), there is a
near one—to—one correspondence with the K, index (Figure 12.1), at least to within

a scale difference. A scaled form of this index, can therefore be implemented directly
inplace of K, for geomagnetic modelling purposes in equation (9.5). Figure 12.3

plots the correspondence between various K, and AE’y, values as taken from

Figures 12.1 and 12.2(c). Clearly, there is a linear scale difference by a factor of
almost 1/100.0. Hence the index chosen for initial analysis, AE, is given by

AE®t) = AE’15(1)/100.0. (12.4)

In view of the results of section 12.1, where persistence is best modelled by a

summation of the geomagnetic effect, the decision was taken to implement this index
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in place of K, in the CIRA 72 atmospheric model when using the summation
formula of equation (12.1).- Initially, the values of A; and By, in equation (9.5)
were taken to be the CIRA 72 values of 28K and 0.03K, respectively.

Results of computing eight of the nine orbital arcs defined in chapter 10,
relative to this new model, solving for a single drag coefficient, are given in Table
12.3.

Table 12.3:  Orbital results relative to CIRA 72, AE index and summation
formula equation (12.1), when solving for a single drag
coefficient. GEM-T1 gravity field and NASA 'area tables' for

SEASAT utilized.
Number
Orbital Arc Rms(m) Cp Cr  of Observations
1 323 293 064 972
2 1.97 3.85 1.17 1488
3 2.21 ' 1.80 1.40 1481
4 200 266 1.09 1102
5 431 2.91 1.81 1993
j L
7 5.64 378 2.53 1005
g 241 426 173 978
9 3.79 3.86 1.65 933

Comparison of these results with those of the ori ginal CIRA 72 model (Table
10.2) show rms improvements in five of the eight arcs tested, though some are only

marginal improvements. Strictly speaking, this model should be compared to CIRA
72 when using the summation formula (equation (12.1)) with the Kj index (Table

12.1). In this comparison, only four of the eight arcs improve when using the AE

index and several of those that deteriorate, arcs 1 and 9, for instance, do so severely.
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However, this index is not totally without worth and will be examined more closely
in the next section when certain coefficients are determined in the modelling.

Of particular interest to this analysis is the result of arc 5 (MJD 43770 to MID
43776), where an rms of 4.31m has now been obtained. This is the lowest yet
recorded for this arc and gives an indication that density variation due to geomagnetic
activity over this period, is much better represented by an index based on the Auroral
Electrojet than K. Examination of the AE’}, profile over this period may help to
explain this phenomenon (Figure 12.4). This figure shows, in more detail, the
AE’;y index for MJID 43770 to MID 43776 (and also the K, index for comparison).
The AE’y, index is in better agreement with the observed density profile for this
period (Figure 11.2), than the K, profile. Hence, a form of modelling based on
AE’}, will be preferred over this period than a model based on K.

Various experiments were also performed with values of 3, 6, 18 and 24

hours for t.. Using these values, certain arcs improved relative to t, = 12 hours,

whilst others deteriorated in accuracy. No value performed significantly better than

any other and consequently, t. = 12 hours was adopted as the nominal time constant
for the subsequent coefficient retrieval.

(One possibility for future research, is a more thorough investigation into the

optimum time constant, t,, particularly for the onset and decay of a geomagnetic

storm where different values should ideally be utilized. For instance, a model could

be developed which uses a smaller value of t, at the beginning of a geomagnetic

disturbance, being increased toward the end. However, the problems of

discontinuity which this introduces must be overcome.)
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Figure 12,3 :. Geomagnetic planetary index, _K.,. versus AE'j; index showing least

squares fit.
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Figure 12.4 : K, and AE’}, indices for the period MJD 43770 to MJD 43776.
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§12.3 Recovery Of Geomagnetic Modelling Coefficients

1 in

Section 12.2 revealed that an index based on raw AE data can be used to
model geomagnetic density variations to a similar standard as the K, data in many
instances. The smoothed AE index, Ah. was implemented into a version of CIRA
72, whose geomagnetic modelling coefficients A; and B, (equation (9.5)), were

based on K, data. A decision was therefore taken to allow A; and B, to vary

when employing KE, so that more realistic solutions would be obtained. Partial
derivatives for A; and B; have already been described and implemented into the

software. Nevertheless, it was still necessary to develop a method of solution for A,
and B, using all eight orbital arcs of Table 12.3.

The method chosen, could have been the Helmert-Wolf Procedure described
in Appendix 3, A; and B, being the outer parameters. However, such a method
removes the inner parameters from the solution and usually requires no second
iteration. Since a second iteration would provide a check on the convergence of the
solution it was considered unwise to remove the inner parameters in this way. Hence
a slight variation of the Helmert-Wolf Procedﬁm was developed which would enable

solution for a state vector at epoch, a single drag coefficient and an SRP coefficient

from each orbital arc, as well as for A; and B,;. This solution provides the values

from which to iterate a second time. Such a method is now described.

Let the normal equations from arc i, where i=1,...,9, i# 6, be written as
Ag=DY (12.5)

where ¢; is the vector of corrections to the state vector at epoch, X;, the drag
coefficient, Cp, and the SRP coefficient, Cg, forarc i andalsoto A; and B,.

&; isthe 10 x 10 matrix of partial derivatives and b; is the 10-vector whose
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components are the sum of the observation residuals multiplied by the partial

derivatives as defined in equation (3.19). Equation (12.5) is partitioned thus

A —
A A , b.
<T ,AB [Agl]= %B (12.6)
A A - b
Ny 8

A or; Y or;

where A = —L[—L for pp.pce &
dpy | 9P
i=1 Rk =1

and the transpose of &; = (xi, Yir Zio Xis ¥i» % Cp,s CR;) is the state vector at
epoch plus CD; and Cp forarc i. AR, isthe correction to this 8-vector whilst N;

is the number of observations from arc i and

[ N; N; 3\

Y (... g Yag.

axi aAl aCRi E)Al

o =1 |
N; Ni. ’

» ) Z' [ﬂlﬂ

Bxi BBI BCR‘ aBl
\Jj=1 j=1 J2:8

N; N; 3\
z: O z: [
A, 3A, | 9B,
i=1 j=1
&ZAB= N; N: ,
Z‘ o5 Y3 9
\j-l j=1 )2;2
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A or;
ji=1
N; '
or
A _ o
where b = 2 (rj-r';)aj;
ji=1
Ni or
B _ o _ %) —L |
and b; (x:I IJ)BB,
j=1

The symbols r}’ and rj represent the observed and calculated laser ranges,

' e
respectively anda—;is %-3- for any parameter p € ‘(Qi. Ay, Bl). The correction

AR to £; is dependent upon the observations from arc i only, whereas the

corrections AA; and AB; to A; and By, respectively, are dependent upon all the

observations. Hence the full set of normal equations can be written

(%,

A,
R
A A
o ™. F
A

9

RA-R.KY A"
1=1
\ i6 Js6xs6
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i=1
i#6

i=1 =1
where ZA"-‘B= N ’ ’

%)
> o
9 i=1
AB i#6
D pi =] '
i=1 B
iz6 .Zlbi
=
i26 )
9 N’
sz= r?-rfﬂj-
' (J 1)oA,"
=é j=l
N’
20 30,
! J 1) 9B
i#6
_ g ,
i=1
i#6

Inversion of Qquation (12.7) determines the 66-vector
(A%y, ..., ARy, AA,, :‘.\Bl)'r and in particular corrections to A; and B,.

This methdd of solution using two iterations has been applicd to the model
described in secﬁon 12.2 using the AE index to rcprcscnf geomagnetic activity and

the summation formula equation (12.1), to rcprcserit persistence. The resulting

values for the coefficients A; and B; converged to the following :-
A, = 36.14 + 022K,
‘B, = 0.054 + 0.0008K.

These values were then used to recompute the orbits of Table 12.3 relative to the

same atmospheric model. Results are presented in Table 12.4.
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Table 12.4:  Orbital results relative to CIRA 72 using the summation formula of
equation (12.1) and the AE index with A, =36.14K and
B, =0.054K. Single drag coefficient estimated when utilizing the

GEM-T! gravity field and NASA ‘area tables' for SEASAT.

Orbital Ac~ Rms(m) Co Cr N
1 3.72 2,05 0.33 972
2 2.27 3.25 1.03 1488
3 2.95 1.26 1.31 1481
4 2.54 2.63 1.19 1102
5 2.89 2.68 1.75 1993
6
7 3.16 2.53 1.96 1005
8 2.25 3.78 1.59 978
9 3.72 3.63 1.70 933

These results are not as accurate as hoped in that no orbital arc has an rms of
fit to the laser observations of below 2m. Conversely, no orbital arc has an rms of fit
over 4m, something not achieved for any of the previous modelling techniques. In
pa:ﬁcular, it is noted that the rms of fit for arc 5 is below 3m, confirming once again
that the AE',, profile fits the predicted density profile very well over this period.
Also, the reduced rms of this arc is evidence for the predicted profile being in good
agreement with the actual density profile. However, this vast orbital improvement
has been to the detriment of arcs 1 and 9 which are now poorly determined. These
two arcs are instances where the AE index does not represent the necessary density
variation associated with geomagnetic activity.

Overall, the effect of this form of modelling and method of solution has been
to remove the extremes — none of the orbits are particularly accurate but conversely,
none are particularly poor. This could be a consequence of oversmoothing the raw

AE data, in a similar manner to how Slowey's smoothing of the K, index all but

removes any geomagnetic variation. The summation formula of equation (12.1)

190



effectively smooths the density variation associated with geomagnetic activity, whilst
equation (12.3) also smooths the AE index itself. The above modelling has utilized
both these forms of smoothing in an attempt to represent persistence and remove
erratic behaviour from the index. Since the smoothing introduced by equation (12.3)
implicitly defines a certain amount of persistence, it was decided to recompute the
orbits of Table 12.4 omitting the summation formula of equation (12.1) from the

modelling. That is, the next model analysed was CIRA 72 using the AE index with

no summation formula and A; and B, re-estimated using equations (12.5) to
(12.7). This ahalysis yiclded the following converged values for A; and B, :-

A, = 3481K

B, = 0.071K

Results of the ensuing orbital computations relative to this model are presented in

Table 12.5.

Table 12,5:  Orbital results relative to CIRA 72 using AE index and estimated
values of 34.81K and 0.071K for A; and B,, respectively. Single

drag coefficient estimated when using the GEM-T1 gravity field and
NASA ‘area tables' for SEASAT.

Ot Are  Rms(m) & & 000N

1 3.48 227 0.47 972
2 2.33 3.25 1.01 1488
3 3.21 1.26 1.26 1481
4 291 2.54 1.06 1102
5 2.88 2.68 1.74 1993
6 |

7 133 243 1.69 1005
8 1.97 3.89 1.63 978
9 3.42 3.67 169 933

| Compared with Table 12.4, these results show rms improvements in four

cases with two others remaining virtually the same. Also, arcs 7 and 8 have rms
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values below 2m, whilst the worst rms of 3.48m is still lower than the worst of Table
12.4 (3.72m). Itis thus concluded that the latter mod.cl for geomagnetic activity is to
be preferred over that of Table 12.4, probably due to the oversmoothing within the
previous model. It should be stressed however, that arcs 1, 3 and % performed badly
once again, as seems to be the case with all models based on the AE index.

Consequently, it was decided to re~examine geomagnetic modelling techniques based
onthe K, index.

Models Usine The K. ind

In a similar manner to the solution of A; and B; with the AE index,
geomagnetic coefficients were also estimated for the models of section 12.1, that is
A, and By in CIRA 72 and A’y, Z;, E;, A; and A; in JS84 both with the
summation formula (equation (12.1)). The method of solution for A; and B, is as
described in equations(12.5) to (12.7). The parameters in 7S84 are solved similarly
except that Ithcy must be constrained due to high correlation between the coefficients.
The mathematics of this constraint method, Least Squares Collocation, is explained
fully by Moritz [68] but is briefly outlined below.

* Least Squares Collocation involves minimizing the function Q defined by

Q=0"Wr+zTWgz (12.8)

where  is the vector of observation residuals; W the diagonal weight matrix
associated with r; z the vector of small changes to the original values of the

constrained parameters and W the diagonal weight matrix whose elements are

wy=1 /Ejz ; Gj being the 'a priori’ standard error of zj€ z. Givenno 'a priori’
knowledge G; was set at 2-;- % of the original parameter value for this analysis,

Let N be the number of observation residuals and M the number of

constrained parameters. Then
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M

2- i (¥ 'r‘) D (Poj"Pj)zws_ (12.9)

i=1 jﬂl

where p,; is the 'a priori' value of parameter j and p; the estimated value after
solution; r? the ith observed laser range and rf its corresponding computed value

and w; the diagonal elements of W. Now r'f = rf(_x) where X is the vector of all

orbital and geodetic parameters, some of which are to be constrained in the orbital

solution. Let x = [y, p] be the partitioning of X into those components, y, which

are unconstrained and those, p, which are constrained. Then Ax= [Ax. Ap_]. The

least squares methodology is to minimize Q with respect to each component of x,

thus

o . ()5 "22(Poj-pj)—’-wj=0<12w>

i=1 j=1
where x = (xk)ﬁ. p 2 being the total number of estimated orbital and geodetic
parameters. If X =P, for some value of s, then 9p,/ox, = 1, otherwise it is
identically zero. Therefore
N . . L
Z (I'? - r:)'_l' w; + (pos i p:) W = 0 (12.11)

if x, =p, for some value of s and

i (r-r)-—wﬁ N (12.12)

i=1
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if x #p;, all j=1,..., M. Priortothe (n+ 1)® iteration, n20, £ and p; are

the most accurate estimates of r; and p;, respectively, such that

S
_r'.f =1 + A_z.-a—- +_Ap_.$-

and p;= pJE‘ +Apj, where Ap = (Apj)jM, 1+ Upon substitution into equations

(12.11) and (12.12) these yield

N
Ac Ac Ac
E E—‘- Ay + a-l-.-i- Ap -aﬂ- w; + Apy W,
oy op Jp;
i=1
- ar§
-y (- ?f) 5. " * (Pos—P1) W (12.13)
i=1 "

N

or o o S oty B

—. Ay + —.Ap | — w; = - oS 12.14
i= _ -

for k=1,..,2-M.
In equations (12.13) and (12.14), terms of order A? have been ignored in a
similar fashion to the method of Least Squares outlined in section (3.3).

In matrix notation, equations(12.13) and (12.14) can be written more

succinctly as
[Aﬂ"l _ [ ATWA  ATWB 1 [ATW (12.15)
ap] ~ LB™WA BTWB +W BTWr + W(po - p°) '
where AT = [Aij]' Aij = al'N:/an » YiE Y i=1L...N; j= l,....0 =M
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BT = [BIJ]’ Bl_] ,= Bi'\f/apl ’ p.l ED i= 1,...,N; j= 1....,M

Do=[py] and po= [p}‘] v j=1.,M

This defines the normal equations involving constrained parameters. The
method of solution of these parameters using multiple arcs can then be performed by

applying equations (12.5) to (12.7). The straightforward method of least squares has
been appliedto A; and B, in CIRA 72 in conjunction with the summation formula

of equation (12.1). Recovered values for A; and B; were as follows :-

3845 £ 0.21K,
0.0312 £ 0.0004K.

,. "
B,

Similarly, the method of least squares collocation has been applied to Ay, Z,, E,,
A, and A; in JS84, again in conjunction with the summation formula of equation

(12.1). Converged values for these parameters were as follows -:-

=
I

§7.09 + 1.50K,
Z, = 2486 * 074m,
0.00105 + 0.00002,
0338 + 0005,
As = 0023 + 0001

>t
%] —
won

Results of computing the orbits of Tables 12.1 and 12.2 with these estimated values
are presented in Tables 12.6 and 12.7, respectively.
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Table 12.6:  Orbital results relative to CIRA 72 with Kp index, summation

formula equation (12.1) and estimated values of 38.0K and
0.031K for A, and B, respectively. Single drag coefficient

estimated when using the GEM~T1 gravity field and NASA 'arca
tables' for SEASAT.

Smital_m. Rms(m) Cp QR N;

1 1.20 (1.05) 3.53 1.59 972
2 3.18 (2.87) 2.54 0.56 1488
3 2.21 (1.98) 1.64 ' 1.35 1481
4 3.87 (3.86) 1.74 - 043 1102
5 4.50 (4.97) 2.24 1.63 - - 1993
6 o | |

7 1.25 (1.52) 2.88 1.87 1005
8 0.96 (1.24) 3.80 1.70 978
9 1.87 (1.53) 2.92 1.76 933

Table 12.7: . Orbital results relative to JS84 with K, index, summation formula

equation (12.1) and estimated values of 87.07K, 24.86m, 0.00105,
0.338 and 0.023 for A’y, Z;, E;, A; and A,, respectively. Single

drag coefficient estimated when using the GEM-T1 gravity field and
NASA ‘area tables' for SEASAT.

ObinlA  Rmsm)  Cp & 00N
1 1.21 (1.09) 3.77 1.64 972
2 3.18 (2.90) 2.76 0.62 1488
3 2.39 (2.29) 1.65 - 1.34 1481
4 4.00 (3.88) 1.80 0.45 1102
5 4.64 (5.24) 2.32 1.65 1993
s .
7 1.30 (1.26) 2.82 1.87 1005
8 0.90 (1.25) 3.93 1.72 978
9 1.94 (1.54) 3.02 1.77 933
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Comparison of Table 12.6 with 12.7 reveals little difference between the
results when estimating either the coefficients A; and B; in CIRA72 or A", Z,,

E;, A;, and A; in JS84, showing that the five coefficients in JS84 offer no

advantage over the two in CIRA 72, when allowed to vary. Apparently, the JS84
coefficients are so inter-related that when constrained, the effect is the same as
allowing total freedom in just two coefficients.

Comparison of Table 12.6 with Table 12.1 and Table 12.7 with Table'12.2,
respectively, reveals that although some orbits improve in accuracy others deteriorate
when computed using the estimated values for the model coefficients. In general, no
model performs significantly better than any other, although by estimating the model
parameters, a better overall fit is obtained. In detail, the rms of the orbits of Table
12.1 is 3.29m compared to 2.88m for those of Table 12.6. The reason that this
improvement is not as significant as hoped, could be due to the poor fit of arc 5 in
Table 12.1. It is by now well established that this arc performs badly with any model
which utilizes K, data as the measure of gecomagnetic activity. Using this arc in the
estimation process of the model coefficients will cause the solution to minimize the
overall errors and in particular the large errors of this arc. The solution is thereby
pulled in a direction which reduces the errors of arc 5 at the expense of the other arcs.
Consequently, it was decided to omit arc 5 from the estimation process, estimate new
model coefficients and recompute all eight arcs relative to these values. In the case of

CIRA 72 the estimated coefficients were as follows :=

A, = 3331 + 018K,
B, = 0.03355 + 0.0003K.

For JS84, the new values were :-

Ay = 1242 £ 1.23K,
Z, = 1776 + 0.75m,
E, = 0.00082 + 0.00002,
A, = 0358 =+ 0.005,
A; = 0026 =+ 0.001.
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Orbital rms values with these new models are given by the bracketed figures in Table
12.6 and 12.7. For brevity the model using CIRA 72, the K, index, summation

formula equation (12.1)and A; =33.31K and By =0.03355K is hereafter labelled
JHAB,;.

Comparison of JHA;B; with the rms results of Table 12.1 shows slight
degradations for arcs 1, 2, 3 and 9, no change for arc 4, a slight improvement for arc
5 and vast improvement for arcs 7 and 8. Similarly for the new model with 7S84,
arcs 1, 2 and 3 deteriorate slightly, arc 4 remains unchanged, whilst arcs 5, 7, 8 and
9all ixﬁpmvc greatly, particularly arc 8, compared to thc results of Table 12.2. Once
again however, there is little to choose between the results from the CIRA 72 model

(IHAIB 1) or JS84 and conscqucntly, subsequent analysis is restricted to the simpler

JHA,B,.

§12.4 Further Computations Using JHAB,

Section 12.3 revealed that the model labelledJHA B, was possibly the best of
those yet analysed. In order to assess its performance more thoroughly, various
additional experiments have been run using arcs with both single and multiple drag

coefficients. These arcs were not utilized in the estimation of the model coefficients

A, and B,, so providing an independent check on the appiicability of the model.
For comparison, the arcs were also determined relative to the original version of
CIRA 72. |

One of the multiple drag coefficient arcs analyscd spanncd the six days from
MID 43776 to MJD 43782 so that the severe geomagnetic storm of MJD 43780 was
covered. Daily drag coefficients were utilized throughout except on MJD 43780
when two half daily coefficients were estimated. Results of the orbital computations

relative to both CIRA 72 and JHA, B, using the GEM-T1 gravity field and NASA
'area tables' for SEASAT are presented in Table 12.8.
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Table 12.8:  Orbital results for MID 43776 to MJD 43782 using multiple drag
- coefficients as described in the text.

Number
Model Rms(m) Cp Range . Cr  ofObservations
CIRA 72 1.10 2.76-5.74 - 1.67 1585
JHAB, . - 0.57 . - 2.62-3.50 - 170 1585

Table 12.8 reveals that JHA B, has greatly improved the orbital fit to the laser range

observations compared to CIRA 72. The reduced variation in the recovered drag
coefficients when utilizing JHA;B,, shows that this model has accommodated the

actual density variation more accurately than CIRA 72. Consequently, such a model
for density should produce more reliable orbits from which to derive the density
profiles of chapter 11, at least for periods of high geomagnetic variability, Therefore
the two long-arcs of that chapter were recomputed relative to JHA B, and the
recovered drag coefficients used to derive the density profiles as described
previously. Resulting observed and modelled profiles are plotted graphically in
Figures 12.5 to 12.8. Also plotted for comparison, are the profiles as derived from
several other density models.

As expected, the observed profiles derived from JHA B, over both periods,
are in good agreement with the observed profiles derived from other density models.
Such agreement once more validates the method of relative density determination
described in chapter 11. Of more significance however, is the modelled profile of
JHAB, over the period MJD 43770 to MJID 43783 (Figure 12.6). The shape of this
profile is very similar to that of the observed profiles (Figure 12.5) and explains the
excellent fit of JHA,B, over MID 43776 to MJD 43782 (Table 12.8). In particular,
it is noted that the model represents the persistence of MJD 43779 very accurately,
showing that JHA B, performs very well over periods of high geomagnetic activity.
However, for the earlier arc (Figure 12.8), the modelled profile from JHA,B, is not
in as good agreement with the observed profiles (Figure 12.7) as is the CIRA 72

modelled profile for instance, though much of the discrepancy is due to a scale
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difference. Evidently, JHAlB; represents density variation no better than CIRA 72
over periods of low geomagnetic activity.

Strictly speaking, the orbit of MJD 43776 to MJD 43782 does not provide an
independent check on the applicability of JHAB, since the four day arc MJD 43778

to MJD 43782 was utilized within its derivation. Consequently, it was necessary to
compare JHA;B, and CIRA 72 using several 'independent' SEASAT arcs. At this
point however, difficulties arise because SEASAT data becomes scarce or
problematic. For instance, after the power failure on October 10, 1978 (MJD
43791), the solar panels must have ceased rotation, thus producing problems in the
along-track SRP force modelling. Also, the data from the early part of SEASAT's
operational lifetime is greatly inﬂﬁcnced by small radial SRP perturbations coupled
with relatively large along-track SRP perturbations. Any error in the modelling of
the NASA ‘area tables' will be particularly significant in the along-track direction
over this period.

Despite these uncertainties, three additional orbital comparisons were made
with SEASAT laser data. One arc spanned the six days from MJD 43700 to MJD
43706, another the six days from MJD 43716 to MJD 43722 and the third, the five
days from MJD 43805 to MJD 43810. Of these three arcs, MJD 43716 to MID

43722 is the least problematic in the sense described above. Results of the ensuing
computations with CIRA 72 and JHA B, are presented in Table 12.9,
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Modelled density profiles for the period MJD 43770 to MJD 43783,

Figure 12.6
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files for the period MJD 43716 to MJD 43730.
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Figure 12,8 : Modelled density profiles for the period MID 43716 to MJD 43730.
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Table 12.9:  Orbital results using CIRA 72 and JHA, B, for three 'independent’

SEASAT arcs.
: Number
Orbit Rms(m) S Cr or observations
43700-43706
JHA,B, 291 2.90 -0.46 1447
(single Cp)
CIRA 72 2.37 3.22 -0.14 1447
(singlc CD)
4371643722
JHAB, 1.83 4.99 1.44 744
(single CD)
CIRAT2 * 1.77 530 1.52 744
(single Cp)
JHA,B, 1.02 4.09-5.80 1.37 743
(daily Cp's)
CIRA 72 1.02 4.19-6.01 157 743
(daily Cp's)
43805-43810
JHA;B, - 097 3.35 1.50 665
(single Cp)
~CIRA 72 3.06 - 3.66 1.49 665
-(singlc CD)

It is seen that for the earliest arc, CIRA 72 performs better than JHA;B,, for

MID 43716-MID 43722 there is little to choose between cither model whereas for the
latter arc, JHA,B, performs significantly better than CIRA 72. As anticipated, the

MID 43700 to MJD 43706 orbital arc, when solving for a single drag coefficient, has
experienced problems with the modelling of SRP with a high correlation (= 0.9 99)

between Cg and Cp. Therefore it is dangerous to attach too much significance to

the results of this orbit. For the least problematic of the three orbits (MJD 43716 to
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MID 43722), the results are very similar for both CIRA 72 and JHA,B, as expected

for a period of low geomagnetic variability (Figure 11.8). Conversely, the vast

improvement of JHA,B; over CIRA 72 for the last orbital arc is probably a
consequence of the medium-high geomagnetic storm over this period (Figure 12.9).
Overall, these comparisons are not conclusive either in favour of JHA;B, or
CIRA 72, though for large, well-defined geomagnetic storms, JHAB, seems to be
the most appropriate model to use. A more thorough examination of the applicability
of JHA,B, can only be achieved by analysing data from another satellite. The
satellite chosen for this task was STARLETTE, spherical in shape of cross—sectional
area 0.04524m?2 and mass 47.295kg [18]. Its orbit is at inclination ~ 50° with
eccentricity ~ 0.02 and semi-major axis ~ 7300km [69]. Since this orbit is of similar
altitude to SEASAT's orbit, the coefficients of JHA B, should be applicable and a
valid comparison of CIRA 72 with JHA,B, can be made. However, STARLETTE
was designed specifically for gravity field and tidal studies with minimal drag and
SRP effects. Consequently, drag is less significant than for SEASAT by a factor of
ten. Nevertheless, large geomagnetic disturbances need to be well modelled since
they are still important. The amount of data available from STARLETTE provides
sufficient coverage of geomagnetic disturbances, including one of very high severity
over the period MJD 46467 to MJD 46473. In all, 17 STARLETTE orbits were
analysed, 15 being consecutive (with the exception of data outages), the other two
chosen to occur during high geomagnetic activity. The 15 orbits spanned the period
22 September, 1984 to 9 December 1984 (MJD 45965 to MID 46043), each orbit
being five days in length. The geomagnetic activity for this period, as measured by
the K, index, is plotted in Figure 12.10. As for the other two orbits, one was a six
day arc spanning 6 February, 1986 to 12 February, 1986 (MJD 46467 to MID
46473), the other a five day arc spanning 24 April, 1984 to 29 April, 1984 (MID
45814 to MJD 45819). As shown in Figure 12.11, the six day arc occurred during

the aforementioned severe geomagnetic storm.
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Figure 129 : Geomagnetic planetary index, K, for MID 43805 to MJD 43810.
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Six days were chosen for this arc length in order to constrain the solution after this
geomagnetic event, in view of the sparse data on MJD 46472.

Comparisons of JHA;B, with CIRA 72 for all 17 arcs relative to the GEM—~
T1 gravity field when employing single drag coefficients, can be found in Table

12.10, showing the recovered rms values only. For all arcs except the six day arc,

Cr was held fixed at 1.14. For the six day arc, Cg had to be allowed to vary for a
realistic solution to be obtained. Apparently, for both CIRA 72 and JHAB, there is
contamination between drag and SRP during the severe geomagnetic storm of this
period.

Table 12.10 reveals that JHA;B; performs better than CIRA 72 in the
majority of cases, with a significant improvement for the six day arc. Evidently,
JHA B, has dramatically improved the modelling of severe geomagnetic storms
without significantly deteriorating the modelling of low level geomagnetic activity.

The first 15 arcs of Table 12.10 were also employed in the estimation of the

coefficients A; and Cg in a similar manner to the estimation of A; and B, in
section .1'2.3. The resulting values were 34.80 and 1.25, respectively. B; could not
be successfully recovered on account of the low sensitivity of STARLETTE to
density variations. However, the results in no way contradict the values derived from
SEASAT. Adding the final two arcs to the estimation process caused problems since

they dominated the solution. Large correlations occurred between the drag

coefficients of these arcs and A, implying that separation was difficult. The value
recovered for A; when using 17 arcs was 29.58 which is lower than anticipated, but
all the drag coefficients increase correspondingly to compensate. Due to the high
correlations, not much credence can be placed on this solution.

Of more importance are the improvements in the final two arcs over CIRA 72
when using JHA B, showing that progress has been made in satellite drag
modelling, at least over periods of high geomagnetic activity.

As a final test of JHA,B, , the last two arcs of Table 12.10 were computed

relative to MSIS-83A for comparison. The resulting rms values were 21.19cm for
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the five day arc and 35.58cm for the six day arc, showing JHA B, to be slightly
worse than MSIS-83A over the medium-high geomagnetic storm of the earlier arc

and better over the severe geomagnetic storm of the later arc.

Table 12.10: Orbital rms results for 17 STARLETTE arcs. CIRA 72 versus
JHA B, relative to the GEM-T1 gravity field and utilizing single drag

coefficients.
mms for mode] (cm)
Arc MID) CIRA 72 JHA B,
45965-45970 28.41 27.68
4597045975 26.51 26.92
45975-45980 16.81 16.70
45981-45986 32.50 | 32.39
45986-45991 17.29 17.31
45991-45996 22.65 22.16
45996-46001 20.53 20,99
46002-46007 18.80 18.30
4600746012 21.88 21,76
4601246017 22.88 22,81
46017-46022 19.30 19.68
46022-46027 18.89 18.89
46028-46033 19.23 19.27
4603346038 33.30 33.03
46038-46043 17.93 17.98
46467-46473 41.64 30.94

45814-45819 28.37 25.65
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Figure 12.10 : Geomagnetic planetary index, K, , for MID 45965 to MID 46043.
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Figure 12.11 : Geomagnetic planetary index, K, for MJD 46467to MJD 46473,
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Figure 12.12 : Geomagnetic planetary index, K, for MID 45814 to MJD 45819,
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§12.5 n f the NASA 'Area Tables'

During the preparation of this thesis a coding error in the utilization of the
NASA 'area tables' for drag came to light. The error arose from a mistake in the
GEODYN documentation which, in any case, is inappropriate for the SRP modelling
as ascertained at the outset by discussion with GSFC personnel. That the error was
inevident early on was a result of the limited effect of the variation in cross-sectional
area on drag effects, any scaling error being absorbed in Cp whilst the say, 25%
variation in area over an orbit being close to the sensitivity of the data. Correction of
the coding error in no way invalidates any of the results of this study, being irrelevant
for the effective density calcualations of chapter 11 and having only a small qualitative
effect in the comparisons of chapter 10 and modelling in chapter 12, Errors in the
cross-sectional area were common to all comparisons, scaling the rms
(and Cp values) by a common factor. This can be verified by comparing Tables
12.1 and 12.2 with the equivalent results in Tables 12.11 and 12.12, respectively, as
derived from the corrected program. Qualitatively, the comparisons are unaltered, the
rms values exhibiting identical trends for results for a particular arc. Furthermore,
even excluding arc 9, being after the power failure anyway, the 'area tables'
incorboratcd correctly, do not lead to any significant improvements compared with
the incorrect version and for several arcs yield higher rms values. In fact, similar
results could have been derived by using the spherical satellite approximation for
drag, although the SRP accelerations are essential. It was evident from an early stage

that incorrect alignmcn_t of the satellite body fixed axes as deduced from the

GEODYN documentation lead to either zero or negative Cp values and/or negative
Cr values. However, the insensitivity to area in drag modelling covered the drag
coding error. It is clear from this work that adoption of 'black box' routines and
tables from other institutions is hazardous and that derivation of ‘in~house' software

the best solution. However, the construction of equivalent area tables would have
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been time consuming, drastically reducing the scientific output of this project and

adding little to the results.

Table 12.11: Orbital results relative to CIRA 72 using the summation formula of
equation (12.1) when solving for a single drag coeffitient in
conjuction with the GEM-T1 gravity field and the corrected NASA
‘area tables' for SEASAT.

Otbital Ae Rmsm) Gy G of Obseseations

1 0.99 5.18 1.71 972
2 2.76 3.65 0.81 1488
3 1.74 2.37 1.43 1481
4 4.05 1.89 0.42 1101
5 5.05 2.46 1.73 1993
6

7 211 354 2.8 1005
8 335 3.44 1.86 978
9 239 273 179 933

Table 12.12: As for Table 12.11 but using JS84.
Orbitl At~ Rms(m) [N Ce of Obsemetsions
1 0.85 6.22 1.71 972
2 2.41 4.45 0.99 1488
3 1.72 2.72 1.45 1481
4 4.07 2.06 0.47 1101
5 5.99 272 178 1993
6 |

7 2.50 4.18 2.35 1005
8 531 384 1.94 978
9 3.10 3.04 1.78 933
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Upon using the corrected program to estimate the model coefficients of

section 12.3, the following values were obtained for JHAB, :-

A, = 3577 + 020K,
B, = 0.0287 + 0.0003K.

These are in close agreement with the previous values of 33.31K for A; and
0.03355K for B,. Likewise, the recovered values of the coefficients in JS84 when

using the summation formula equation (12.1) and the K, index were :-

A" = 7673 % LI3K,
Z, = 17.87 % 0.6lm,
E, = 0.00088 * 0.00002,
A, = 0327 £ 0.004,
A; = 00253  0.0009.

ﬁ'hich arc .a.llso in fcry good agreement with their original counterparts. As for the
STARLETTE comparisons, there are no significant changes to the orbital rms values
when usfng JHA,B, with these new coefficients. Over the severe geomagnetic
sto;m (MJD 46467 to MJID 46473), the rms improves from 30.94cm to 30.18cm
whilsi for the medium-high storm (MJD 45814 to MJD 45819) the rms deteriorates
from 25.65cm to 26.50cm. This does not alter any of the qualitative results or

conclusions drawn from this analysis.
§12.6 Discussion

Part two of this thesis was concerned with computing orbital arcs using
SEASAT laser range data relative to various models for atmospheric density and, in
particular, geomagnetic activity. Evaluation of model performance was achieved by
comparing orbital results when estimating for a single drag coefficient only, multiple
coefficients absorbing drag modelling errors. Some of this work was presented in a

paper entitled "A Comparison of Geomagnetic Activity Models using SEASAT Laser
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Range Data" [26], which concluded that the modelling of geomagnetic activity was
best performed using a summation technique on the effect rather than the index of
activity. However, instances occur when this technique is still poor if used in
conjunction with the geomagnetic planetary index, Kp This motivated a new index,
LE 1o be derived based on raw auroral electrojet (AE) data the use of which
improved on the K, index in certain instances. However, its overall performance
was found to be !css successful than K, in modelling the exospheric temperature
increase associated with a geomagnetic disturbance. Apparently, the 3 hour global
i_ndcx K, is still to be preferred in orbital studies rather than the more detailed, but
localized, AE index. _

The most promising results were obtained upon estimating certain coefficients
in the models for geomagnetic activity. Results of this work, presented in section
12.3, showed that many of the coefficients determined tended to increase the values
of the modelled densities relative to the original model values. The inference is that
the state-of-the-art density models under-estimate the density changes associated
with geomagnetic activity at SEASAT heights. Such a phenomenon was observed in
chapter 11 when modelled density profiles were compared to their observed
counterparts. |

A model, JHA;B4, was derived in section 12.3 using data from seven

SEASAT arcs, which consisted of a Hedin-type summation formula to represent
persistence and rcquifcd determination of the coefficients A; and B; in equation
(9.5) for geomagnetic activity. In the majority of cases the model performs as good
as CIRA 72, but over large, well-defined geomagnetic storms, it is significantly

better. That this is the case is readily observed from Figure 12.6 where the modelled
density profile of JHAB, is in excellent agreement with the observed profiles.

Further analysis of JHA B, required utilizing laser data obtained from the

STARLETTE satellite, in an orbit of similar altitude to SEASAT. The results of this
independent analysis confirmed the applicability of JHAB, for modelling severe

geomagnetic activity. Evidently, the introduction of persistence modelling is very
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important over periods of high geomagnetic activity; a criticism of CIRA 72,
Conversely MSIS-83A accounts for geomagnetic persistence and for medium-high
geomagnetic activity, performs as well, if not better than JHAB, (section 12.4).
Howcvcr, for the severe geomagnetic storm of MID 46467 to MID 46473, MSIS-
83A performed noticeably worse. Apparently, there is a limit to the geomagnetic
activity for which MSIS-83A is applicable, above which it begins to deteriorate in
accuracy. Again this could be a consequence of the under-estimation of a density
chahgc aséociated with a geomagnetic disturbance at 800km, as observed in Figure
11.1, for all the density models. Estimation of the coefficients A; and By wasa
di'rcct attempt to chrcomc this deficiency and has succeeded for high gcomagné:tic
activity, However, there has been no improvement for low geomagnetic activity
which is hardly surprising since A; and B; are effectively biased towards high
values of K, only. |

The results of this analysis have shown that satellte laser range data can be
used to examine the deficiencies of current state-of-the—art atmospheric density
models as well as determine atmospheric densities. The capability now exists to
dcrivé coefficients within aﬁnosphcric models which, with better data will produce
more accurate models. It is anticipated and indeed hoped, that ERS-1 data will
provide a more thorough investigation into the effects of geomagnetic activity on
atmospheric densities, which in turn will produce even more accurate density models.
A necessary pre-requisite for this analysis IS the ﬂcrivation of precise arca modelling
for the satcmté. in both drag and SRP forces.

Although th.c density modelling techniques of this thesis, when used in
conjunction with a single drag scale factor, have not produced the level of accuracy
obtained from using multiple drag coefficients, in time it is hoped they will do so.
Nevertheless, the model derived in this study, JHA,B,, has still shown a dramatic
improvement over current state—of-the—art models when used in conjunction with

multiple drag coefficients as shown in Table 12.8.
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CHAPTER 13

ION RECOM A

§13.1 Conclusions

The SATAN software package has been modified to accept two additional
types of satellite tracking data. As well as laser range observations, SATAN can now
determine orbits using pure altimetry and crossover height differences. Extensive
software has been written for the processing, utilization and analysis of these latter
two types of tracking data. Software validation was achieved using data from the
SEASAT satellite but modification to accept ERS-1 data is straightforward. Other
software modifications include the implementation of multiple drag coefficients, the
NASA ‘area tables' for SEASAT and several atmospheric density models.

: Investigation into the use of altimetry and crossovers for tracking purposes
revealed that little additional information is obtained from an orbit computed using
adequate laser range measurements. However, if only sparse laser data is available,
supplementation with either altimetry or crossovers yields orbits of a similar quality to
those derived from a good network of laser data. Such findings could prove
beneficial in the tracking of ERS-1 for which as yet, it is unclear how much laser
coverage there will be.

Apart from satellite tracking applications, altimetry and crossovers can be used
to analyse certain orbital and oceanographic features. By analysing the frequencies of
terms comprising the altimeter residuals, it is possible to determine which errors are
orbital in nature and which are due to the geoid and/or sea surface topography. Such
an analysis provided the means to determine a low degree and order sea surface
topography model which was found to be in good qualitative agreement with the
models derived by Engelis[SO] and Marsh et al [48]. For a more detailed study
however, it is necessary to separate high degree gravity field terms which requires the

use of more extensive data, including land gravimetry.
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Analysis of the crossover height residuals revealed that a north-south bias
may occur in the orbit when utilizing poor laser data, a consequence of a time-
dependent eccentricity error caused by a poorly determined solar radiation pressure
coefficient, (Moore and Rothwell [47]). Supplementation of the orbit with either
altimetry or crossovers reduced this bias. Also, being devoid of any geoid error, the
rms of the crossover height residuals provides an independent check on global radial
ephemeris accuracy.

The implementation of the GEM-T1 gravity field and associated laser station
coordinates, the SEASAT ‘'area tables' for air-drag and normalized SRP accelerations
and multiple drag coefficients into the SATAN software package has resulted in rms
accuracies of between 50 and 60cm when computing six day SEASAT arcs. These
values, which are confirmed by both the fit to laser range observations and the
independent values derived from crossover height residuals, are in good agreement
with those derived by Zandbergen et al [42] when computing three day arcs. Such
precision is a vast improvement over the two metre rms accuracies which were
obtained three years ago, at the outset, when employing the PGS-S3 gravity field and
associated laser station coordinates, a spherical satellite approximation for cross—
sectional area modelling and a linear rate of change for the drag parametrization.
However, the decimetre accuracy required for optimum altimetric utilization has not as
yet, been attained, primarily due to mis-modelling of the Earth's gravity field. It is
anticipated that the introduction of the GEM-T3 gravity field and associated laser
station coordinates into the SATAN package will help to alleviate this deficiency.

Other major sources of orbital error, at least for SEASAT, result from errors
in the NASA “area tables' for normalized SRP accelerations, particularly early on in
SEASAT's operational lifetime and the modelling of atmospheric densities using static
density models. Comparisons of state—of-the-art density models revealed
deficiencies in several aspects, particularly the ability to represent density changes
associated with geomagnetic activity. Variations within recovered drag coefficients

from long-arc orbits are highly correlated with the geomagnetic planetary index, K,
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and motivated the determination of relative effective atmospheric densities at SEASAT
heights, something that has never been previously attempted. The density profiles
derived during this analysis revealed where a good fit to a single drag scale factor will
occur and hence indicate which density models represent actual density variation.
These profiles reveal that the state—of-the-art density models underestimate density
changes associated with severe geomagnetic disturbances at SEASAT heights. It was
seen here that, for such disturbances, persistence modelling is required, a deficiency
of the CIRA 72 atmospheric model commonly adopted in orbital determinations.
However, instances occur when the geomagnetic planetary index, Kp, does not
represent density variations associated with geomagnetic activity, no matter which
density model is employed. The use of a new index based on raw auroral electrojet
data alleviated this problem in some cases, but on the whdlc was not as appropriate as
K, in representing density changes associated with geomagnetic activity.

Using a Icombination of laser data from several SEASAT arcs, it was shown
that recovery of certain coefficients in the geomagnetic parametrization of CIRA 72

and its variants, was possible. When used in conjunction with a model for

geomagnetic persistence, this method produced a new density model called JHAB,
with coefficient values of 33.31K and 0.03355K for A; and .BI of equation
(9.5), respectively. The performance of this model is significantly better than CIRA
72 over periods of high geomagnetic activity without deteriorating in accuracy over
periods of low geomagnetic activity. The general applicability of JHA;B; at 800km
and the validation of the coefficients A; and B, , were confirmed when similar
conclusion were drawn from analysing STARLETTE data, showing that good
progress has been made in the modelling of atmospheric densities at SEASAT
heights. This progress could prove significant when JHA,B, is applied in ERS-1
orbit determinations, ERS-1 having a similar altitude to that of SEASAT. It is
anticipated that more progress will be made in density modelling using the techniques
of this thesis, when data from ERS~1 is eventually analysed.
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§13.2 Recommendations For Further Work

This research pfoject has pﬁvcd the waj' f(;r several areas of further study.
The implementation of altimetry into the software means there is the capability for
further developments in océanographic applications of satellite data. For instance, the
groundwork in sea surface topography recovery has been undertaken and a more
thorough analysis and simhltaneous solution for gravity field coefficients is the next
logical step.  This will require the use of land gravimetry, Once this has been
achieved, a séa surface topography model cain be implemen‘:cd into the altimeter data
processing (equation (4.1)).

With the advent of more accura@ u&cﬁn g data, particularly laser range data, it
should be possible to recover relative effective atmosphcﬁc densities over shorter time
spans than one day. This requires that the drag coefficients be well determined which
in turn requires very accurate along—track modelling of non-drag forces (gravity field
and SRP). Such accuracies could be realized when GEM~-T3 is applied to ERS~1 for
instance. However, an accurate 'area table’ for ERS-1 is a necessary pre-requisite
for this work.

The analysis of a geomagnetic index based on raw auroral electrojet data was
only briefly investigated. Further analysis could be performed with ﬁarticular
attention paid to the atmospheric response at the onset and decay of geomagnetic
storms. |

Finally, ERS~1 data could be utilized to determined new atmospheric density
models and/or geomagﬁeﬁc mbdelling coefficients, using the techniques developed in
this thesis. .It is hoped that ERS-1 will provide more data than did SEASAT during
its three month 6pcrational lifetime, thereby producing more realistic models than

those derived in this study.
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Appendix 1: Definitions Of Orbital Elements And Geometry

Figure A.1

Auxiliary circle

4o

(=)

Orbital ellipse

Figurc A.1 depicts the orbital ellipse and its associated auxiliary circle of
radius a, the length of the semi-major axis. The ccccntﬁcity, e, of the ellipse, with
focusat C,is defined tﬁ be the ratio OC/OA. Hence C is at a distance ac from O,
the centre of the auxiliary circle. A point, P, on the ellipse can be identified using

two quantities, r and f, as shown where

r= m%-—;, . (A.I)

The angle f is termed the true anomaly of the point, P; p is the semi-latus rectum,
equalto a(l - €2). If BP is projected vertically upwards, it intersects the auxiliary

circle at a point Q. The angle A 6 Q defines the eccentric anomaly, E.




Assuming the point‘ P moves round the ellipse in time T, the period of the
motion, the mean motion, n, is defined by
. | n = 2n/T. (A2)
If the time of perigee passzigc is t then after a time interval t-<,’ the point P will
have swcp't through an angle f. However, if the rate this angle had been swept out,
was equa.l to n, then it would be different from f. This angle is denoted by M and
is called the mean anomaly, Mathematically, ,
. M=n-1). (A.3)
Figure A2

Celestial sphere

Prdjection of point P

ion of perigee

orbital plane

Figure A.2 depicts the orientation of the orbital plane relative to the equatorial
plane of the earth. The x-axis points along the direction to the First Point of Aries, ¥,

a fixed point on the celestial sphere. The y- and z-axes are constructed so that z
points to the North Pole and all three axes form a right handed system. NN’ defines

the line of nodes, the intersection of the orbital plane with the equatorial plane, N,

228




being the ascending node, N* the descending node. The angle ¥ &N defines Q, the
argument of the ascending node whilst the inclination, i, is given by the angle
between the equatorial and orbital planes. The argument of perigee, ®, is the angle
between N and the projection of perigee onto the celestial sphere, as shown. Hence
the point P can be identified by six quantities called Keplerian elements. They are
a,e,M, Q,o» and i. The first three elements relate to the size and shape of the
orbital ellipse as well as the position within this ellipse. The latter three clc'mcnts
relate to the orientation of this ellipse in space. Such a set of Keplerian elements is not

unique.
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Appendix 2: Maxima And Minima For Altimeter Emrors (simple form)
Figure A3

Perigee

r | intersection of orbital
h plane with Earth's

Y cllipsoid of revolution
ro ﬁ
>x

Figure A.3 shows in simple form, the orbital ellipse in relation to an
ellipsoidal section through the earth. For a near circular orbit with perigee frozen at
T/2 r is given by

o r = a(l —ecos M) (A.4)
where a is the semi-major axis of the orbital ellipse of eccentricity e. M is the mean
anomaly (approximately equal to the angle shown in the diagram). Then from Figure
A3

‘Zr-1 (A.5)
where h’ is the radial height of the orbit above the earth's surface with ry as shown.
Note that h” is not as measured by the altimeter height which is effectively normal to

the ellipsoid of revolution. However, for a first order analysis it is assumed that h’
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is the measured altimeter height. The equation of the section through the Earth's

ellipsoid shown in Figure A.3 is
x2 y’l
— e e = 1 A.
R b2 (4.9

where x"=r1ysinM and y’ =rycos M. Substituting these into equation (A.6) and
solving for ry yields

Rg b’ 1 -
I = | ————— . . A7
¢ 7 (b’%sin2M + R cos? M)2 4D

From equations (A.4), (A.5) and (A.7)

Rg b’

b = atl— _ Reb’ L
Al —ecos M) (b'2sin2M + R cos? M)?-

(A.8)

It is desired to find the number of maxima and minima in the error function
AN’ of 4, due to an error in the time tag of the altimeter measurements, At. Now
M=nt (A.9)
sothat AM = nAt, Therefore
b’ sin Mcos M (b2 -Rg
Ah" = aesinM (nAt) + Rg - ( ) (nat) (A.10)
D2

where D = b2 5in?M + R: cos?M. The maxima and minima of Ah’ are found by

differentiating with respect to t and equating to zero. Hence

o Reb’ cos2M (b2 =R2)
-é—lf (ah") = -aecos M AMn +— :_E E)
' D2
. 2 r
- %(h'z _ R%) 2‘2_3_“%5&*’_ AMn = 0. (A.11)
D2

Assuming D= Rﬁ (since the Earth is spherical to first approximation) and e small,

equation (A.11) can be written
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v(b2 - RZ b2 — R2
0= ( 5 ) AM l:cos2M—% ——=|sin22M (A.12)
Rg Rg
or -
v(b2-R7) n_R2
0= ( " :) am |3 (2528 (cos2aM - 1) + cos m]. (A.13)
Rg Rg
Equation (A.13) has solution
_ o z
cos2M ==L+ IK (A.14)
=,
taking the + sign only, where K=%-[E-—§?I5§-} .
E

Therefore there are four stationary points as M travels through one orbital

revolution. From equation (A.11) it can be shown that for AM >0

S(@n) <0 for M=0

. f@)>0  for M=m2

g—t-(Ah' <0 for M=x

and d@ary>o  for M=3F

with the converse for AM <0.
Hence these four stationary points define maxima and minima, two of each.
Thus a time tag error on the altimeter measurements manifests itself in the form of a

twice per revolution radial error.
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Appendix 3: Helment—Wolf Blocking

This method is used to determine a number of arc-independent parameters
from multiple arcs by rémoving from each arc the dependent parameters.

Assume that the normal equations from a particular arc, k, can be written as
N®AX = p&) (A.15)

where N®) is the matrix of partial derivatives, Ax the vector of corrections (to be
determined) and b®) is the vector involving the residuals. [See equation (3.19) for a
full definition of the normal equations.] Then equation (A.15) can be separated into

arc-dependent (inner) parameters and arc-independent (outer) parameters thus
(k)
N Np \° (85" {h:}m A16
Nio Ngo Axo by

with I denoting the inner parameters and 0 the outer parameters. Expanding
(A.16) gives ;

N o + NP 50 = 1P a7
Nﬂ? A;Ek) + Ngg Axy = hg:) . (A.18)
From equation (A.17)
-1
Ax.[(k) - (Ng}) (b{(k) - N'];t()k) AK.O) (A.19)

since N is invertible, and on substituting (A.19) into (A.18)

N*®) Axy = b*® (A.20)
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)

- (x)
where N*® =(N00 - Nyg N7 N'{o) and b*® = (ho - Nio Ny br) -

The combination of the normal equations from each arc, k, is then simply
performed by adding all the N*®&) matrices and all the h*®) vectors, respectively, so
that .

[E N*(k)] Axp = X, b*® (A.21)
k k )
which yields the solution
1
Axy = (2 N*(k)] (2 n*tk)]. (A.22)
K K
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Abstract

Precise orbit determination’'is becoming incrgaéingiy a pre-requisite

for optimal utilisation of satellite-borne experimentation.

The most’ accurate tracking data of satellites is obtained by laser
ranging, but' for long-arc determination a good geographical distribution
of ground stations is essential. For satellites carrying an altimeter
as well as laser retro-reflectors the altimeter data can be used to
supplement the laser data in the dynamical solution. Results of
experiments"wiillﬁé presented using laser and altimeter data from
SEASAT. Selection criterion and appropriate weighting for the data
“"'Y{11 be diScussed. In particdular it will be seen that accurate ephemerides
7"7can be ‘obtained from a limited number of laser passes supplemented

with altimeter data. Applications to ERS-1 will be discussed.




1s Introduction ’

Precise orbit determination is rapidly becoming a pre-requisite for

many oceanographic and geodetic purposes. For example the European
remote sensing satellite, ERS1, and the polar platform of Columbus

will demand high accuracies in satellite positioning, particularly

the radial measurement, during the next decade. Accuracy of satellite
ephemerides depends not:onlyon expertise in modelling orbital perturbations

but also on a global distribution of high quality tracking data.

Of the tracking data available, the laser ranger is the most precise

with current range measurements accurate to within 5cm. Unfortunately

laser ranging is expensive, restricted by weather and occasional operational
problems, whilst the distribution of sites gives incomplete global coverage.
It is important to recognise that, although a computed orbit may fit

the tracking data in the sense that the range residuals are 'small',

the true orbit may differ appreciably from the computed orbit particularly
over regions of thé world where no tracking data is available. The rms

of fit of tracking data is effectively a measure of local rather than

global accuracy, especially for sparse data.

Other tracking data include unified S-band range-rate measurements.

These have the advantage of all weather capability but the precision is
downgraded by atmospheric effects. Doppler data derived from an extensive
global network of stations is an alternative to the above types but

again the accuracy is impaired by atmospheric refraction.

For satellites carrying a radar altimeter it has been demonstrated
(Wakker et al, 1983) that altimeter measurements over the sea surface

can be used as tracking data. The altimeter measures the satellite
height to the instantaneous sea surface. Although theoretically accurate

to near 10cm the measurement relative to a reference ellipsoid, as required



* . for precise orbit determination, involves knowledge of the mean sea-surface
height, ie the geoid. Quoted accuracies for the geoid eg GEMIOC tLerch
et al, 1981) are in the order of lm rms, but individual values may be in
error by 5m or more Bver 6cean mounts or trenches. ﬁffectively altimetry
is a radial measuremen£ although along-track orbital information is derived
by frequent sampling of the h§;ilab1e déta set. No cross-track information
can be recovered, however. in the folléwing experiments altimeter data
is used to supplement lﬁsér range data for Seasat (7806401) for both long
énd medium arcs. It will be seen, in confirmation of the results obtained
by Wakker.et ;1 (1983), that sparse laser data augmented By altimeter data
can-givé orbital accuracies-comparable to those derived from an extensive

network of laser-ranging sites.

Seasat was the first satellite launched specifically for oceanographic
monitoring and-repgeseﬁted a proof-of-the;concept mission. During igs fs

day operatidnal life before a short-circﬁit terminated all activity, the
satellite relayed an unparalled quantity of data from on-b;ard instrumentation,
including the ﬁltimeter. Launched on 26 June 1978, the satellite orbited

at an inclination of 108°. at a height of near 790 km. Initially the satellite
was placed iﬁto an orbit, the so-called launch orbit, that nearly repeated

its ground-track evef& 17 days. A series of manoeuvres initiated on

18 August and completed on 10 September géve a precise repeat ground-track

of period 3 days. The arc selected for analysis corresponds to the launch orbit.
2. Computational Procedure

Analysis was undertaken By implementation of the SATAN satellite analysis
software préﬁucéd at the RGO (Sinclair and Appleby,1986) and modified at |
Aston University. Computation within the package is by means of a Gauss-
Jackson 8th order numerical integrator using a sﬁep-length of 0.5 min in
this instance. The package is impleﬁentéd on a VAX 8650. The computational

model is in strict accordance with the MERIT standards (Melbourne et al, 1983)



-and“is sunharised in Tablell.

For experinental purposes data was selected for a 5 day period corresponding
to the 17 day repeat orbit. The five day aro MJID 43728-MJD 43733 exhibited
fa1r global coverage with data from 8 laser stations, with data from Arequipa
available for at least 2 passes/day Two types of orbit were considered,
namely long arcs and ;edium arcs. Typically a long-arc is of length several
days or more, the incomplete tracking data necessitating arcs of this length.
This places considerable burden on orbital modelling, particularly the gravity
field and atmospberic drag. A medium arc, here defined to be of length of a

few revolutions of the satellite, depends toa greater extent on the availability

of dense tracking data. and is less susceptible to dynamic modelling errors.

_ v .
Given that the true orbit is unknown a reference orbit for comparative purposes

i

was computed using the laser range data and criteria summarised in Table 2.
The data per pass was restricted by regular sampling to give a degree of
equality between stations and passes. A priori observational standard
deviations (sd) uere ascribed to the stations in accordance with the accepted
accuracies of the data in 1975.. The NaSA stations were the most accurate
whilst the“European and SAO stations uere each ascribed accuracies of 70cm

except for Arequipa where 50cm was assumed. The rms range residuals after

fit testify to the greater reliability of the NASA stations. At the time of

computation the Orroral data had not been corrected for the range-dependent

error resulting from incorrect instrumentation (Latimer 1979).

For each long arc computation a state vector at epoch 5 daily drag coefficients,

and a solar reflectivity coefficient were estimated. The estimation of
daily drag coefficients is an artificial device to give a good degree of fit,

however its use can be easily justified. The computational model utilised

1

a constant area to mass ratio for air- drag and solar radiation. Given the

time dependence of the space-craft geometry the assumption of uniformity is

rlaarly dnannranstanra Waseainn w Ala ot Lov schlmadtae of datTe dua=
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coefficients 1s'£¢£ the uncertainty in the effective cross-sectional area
gut deficienoies in‘tne atmospheric model associated with short-term
disturoanoes paftioolarly those indicated by variations in the geomagnetic
indic es Ap or Kp: Uithout these'eatfa degrees of freedomlthe rms for the
laser range residuals is unrealisticallﬁ hign. Figure 1 shows the orbital
differences between the'reference-orbit and an orbit‘computed using the
same data Gut where only a single drag coefficient was adjusted.

e

3. Altimetry and precise orbit determination

To utilise altimeter measurements as-traoking data corrections for atmospheric
refraction, bceéﬂ tides, atmospheric pressure,‘the geoid etc. are applied
to the-pfocessed altimeter'data. All corrections were taken from the Seasat
'Geoonysicaléﬁata ﬁeoord*tbﬂR) tape.nnless stated otherwise.- In particular
the soJoalledhCEﬁ;lﬁhD‘geoid'nas.used. 'During its operational life the
altimEtef‘on‘Seasat yielded.an unednalled amount of data; Used in its
.'enti;ety-tﬁe.data would dominate the solntion unless a minute weight was
.assigned. iFot‘some‘aoplications,Ieg gravity field determination, regular
sampling of the‘altimeter data-mas lead to correlations with short-wavelength
geoidal model errors. This is not a oroblem if only a state vector and

drag and solar reflectivity coefficients are solved for. In the subsequent

computations altimeter data was selected at least 1 or 2 minutes apart,

although 0. 5 min and 10 min intervals were used on occasions. The total

number of data points at the sampling intervals is summarisad in Table 2.

Also given ‘there is an indication of the number of altimeter data points
“processed the actual number will depend on the weighting strategy and the

quality and quantity of the laser data.

" S a b R H
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To illustrate the effect of augmenting sparse laser tracking data an
orbit was computed using the 11 passes from Arequipa. Comparison against
the reference orbit, computed by attaching zero weight or infinite s.d.
to the altimeter data, is summarised in Table 3. Surprisingly, the
oroital differences were relatively small particularly in the radial and
cross;track oirections. Augmenting the laser data with altimeter data
leads to a substantial improvement along track and, to a lesser extent,

Cross- track Computations using various observational standard deviations

are summarised in Table 3.

Decreasing the observational standard deviation from 2m to 1lm, that
is placing a greater emphasis on the altimeter data, leads to over 157

s e ™

"oy

improvements in the along-track and cross-track directions although

the radial accuracy morsens. ‘For the computation with. a sampling interval
of 10 min the observational standard deviation was increased to 0.44m to
give equality of weighting with altimeter data at 1 min interval and

sd 1. 4m . The computed orbits are nearly identical with max/rms differences
between the orbits of 0.08/0.03; 1.05/0.21; 0.02/0.01 metres respectively
in the radial along-track and cross-track orbital directions.

Figure 2 typifies the orbital differences.

A more stringent test on the influence of altimetry was provided by

deletion of the second of three passes on MJD 43730. The computations
using just the 10 remaining passes over Arequipa and altimeter data
are summarised in Table 4. Using only the laser data the orbit differs

by 2.55m and 24.8m rms from the reference orbit in the radial and along*track
directions; Processiné altimeter data yields substantial improvement in

the orbit: The along-track improvement is further qualified by the observation
that 3 of 5 daily drag coefficients for the orbit derived from just laser

data are negative; a situation remedied by adding altimeter data.

—tt



The drag coefficients are discussed further.in Chapter 5.

Inspectifn oflTaole 4 reveals that the orbital differences decrease as
the.obseruational standard deviations are reduced. For a standard deviation
of 0.5m the altineter andllaser data ooints are each of equal weight, whilst
the ratio of altimeter to laser range measurements is of the order 10:1.
Despite the predouinance of altimetry the laser range measurements are

still able to.constrain the inclination, i, and right ascession of the
ascending‘node, n,ie“the Jcross-track orbital elements. However, when the

a priori standard deviation for the altimeter was set at 0 Im the laser

data had minimal‘effett and the computer run failed to converge. Comparison

f e to.
of iterations exhibited a strong oscillation cross-track indicative of

>

data yielding only radial and along track information.

S TR

Three computer runs were undertaken using different sampling strategies

for the altimeter data‘but with the obserrational standard deviation

adjusted aczordingly to compensate for thelrarying quantity of data.

The results identified by an asterisk in Table 4 exhibit remarkable similarity.
In detail. a comparison of the results using 1 and 10 min sampling periods
yielded maximum differences of 0 14m, 2 31m and 0.01m respectively in

the radial, along-track and cross-track direction, the rms difference

being 0. 52mha1ong-track. Evidently. within certain bounds, it is the

-effective weighting of altimetry to laser range data that is important.

bowroo s - “ #
R = 16 il

rather than the sampling frequency of the altimeter data set. Figure 3

illustrates the orbital differences for altimetry and 10 passes of 7907

-~ \1‘
data relative to the reference orbit.



4, The geoid

Inaccurate knowledge of the geoid is the principle source of error in

the altimeter tracking data. Throughout the computations the GEM-10BD
'geaidal'heights. as avaiiable on the GDR tape, wete utilised. The so-called

GEM-10B detailed geoid is based on the GEM-10B gravity field (Lerch et al,

1981) augmented by 1°x 1° gravimetric data. As an alternative to GEM-10RD,

geoidal heights derived from PGS-S3 were used in one experiment. PGS-S3

(Lerch' et al, 1982) was computed by combining the gravity model normal

-
T

equations for GEM- 1OB which 1nc1uded GEO0S3 altimetry, with Unified S
2 iE
Band and laser tracking data for Seasat. The more refined PGS-S4 gravity
field, derived by supplementing the PGS-S3 normal equations with Seasat

altimetry, was not available at Aston at the time of writing.

Theléegree‘at fit ot the altimetetlmeasurements to the reference orbit
using GEM-IUﬁD aad;PGS-SB was oatained by assigning infinite observational
standard deviation, ie zZero weight to the altimeter data. The results

of Table 5 give the rms of fit of the altimeter measurements, this value
beinéhthe rms difference of the computed height minus the observed height
of the.satellite‘aaove the geoid, with all residuals in excess of 7m

Ly et

deleted. Contributions to the rms of fit arise from both radial errors in the
derived aatellite‘eosition and to errors in the applied corrections. The results
using PGS 53 are significantly better in the rms of fit and the number of
altimeter data points within t 7m of the reference orbit. Wakker et al (1983)
showed similar imprevement with the PGS-S& geoid. The latter is more expected

given the use of Seasat altimetry within its formulation.

Further experiments were undertaken to quantify the effect of altimetry
on sparse laser tracking data when the geoid, and other corrections, are
known precisely or exhibit a random error. Using the reference orbit a

set of altimeter data residuals was computed. When added to the observed



measurements a data set called 'exact altimetry' was constructed, with

zero rms error relative to the reference orbit .-

R

ok

Orbits were computed with the exact altimeter data set and only 5 passes

- L

of ?907 laser data' the passes one for each day of MJD 43728 MJD 43733,
L r LR Y ]f’ '!' -~ L 8
heing selected to lie as near midday as possible. The results are
SR T - L ’
summarised in Table 6 and illustrated in figure 4.1t is seen that for exact

*
SN a0 h

r‘altimeter measurements, ie geoid knoWn precisely, excellent ephemerides

can be derived from a small number of laser passes. Modifying the exact

altimeter data set by allowing for a random error of rms O. 6m,

i.e. lm, resulted in negligible change. Although hyperthetical and

ey € g

idealistic, these results indicate the level of accuracy achievable with
sparse laser tracking when the geoidal height, is known to within the.

tolerance of the altimeter.
5, Drag and Solar reflectivity coefficients

£k A

3, peres ! groes 1

Estimation of drag coefficients within the data reduction procedure absorbs

zIerrors that result from deficiencies in the gravity

S o0 L P

field as well as errors in the atmospheric model and effective cross-sectional

along-track modelliné

area. Daily drag coefficients and the solar reflectivity coefficient
derived in the aforementioned data reductions are sum;arised in Table 7.
The high correlations between the estimated daily drag coefficients and
thealong-track orbital differences of figures 2-4 is self-evident.

Little variation is observed in the solar-reflectivity coefficient.



6. Medium-length arcs
. - : b g
To investigate the influence of altimetry on arcs over shorter periods

two medium-length arcs were selected from the five day long arc, the

temL.

tracking data being summarised in Table 8. Each arc of time span 0.2 day
was approximately 2. ?5 orbital revolution, Seasat having orbital period
104 min. For each arc a state vector at epochlwas estimated; the drag
coefficient and.solar reflectivitf coefficient being‘taken from the .long-arc

solution.

The small number of altimeter measurements necessitated relatively high
weights to affect the data reduction procedure. Accordingly observational

standard deviations of 0.5m or_O.lm were ascribed to theveltimeter,data.
Orbital differences relative to the long-arc solution for the various
weighting strategies are summarised in Table 9 and illustrated in figure 5.
Again the influence of altimetry is positive leading to substantial
improvements in the radial and along-track directions. Inspection of
Table 9 reueals.that decreasing the observational standard deviation leads
to contradictcry rcsuits; This nay be-coincidental and anyway is not
considered significant along-side the overall improvement. However, it
must be remembered that arcs of this length are more susceptible to

/’vagaries in the tracking data than long-arcs.

‘ ke



7.

(1) -

(2)

(3)

(4)

Conclusions and applications to future altimetry missions

eg ERS 1

-The  usefulness of the altimeter as a tracking device has again

‘been demonstrated.  Long-arc solutions determined from tracking

data from one or two laser stations augmented with altimeter
data closely approximate orbits generated from a dense network
of laser sites. As the gravity fields tailored for Seasat
yield radial errors of order lm rms the differences in Table 3
are not significant. The short-periodic differences of figures

2-4.areonce per revolution effects, the long-periodic differences

- the effect of variations in the daily drag coefficients.

The geoidal height corrections are well-known to be the principle
error in altimeter tracking data. More accurate geoid models would
greatly improve the practicability of altimetry for precise orbits.
The PGS-S3 geoid derived from the gravity field of that name is
apparently more accurate, at least for the ground-track of Seasat,
than the GEM-10BD geoid tabulated on the Seasat GDR tape.
Experiments using exact altimetry establish that a few passes of
laser data from éne station and precise altimetry at say 1 min

intervals yields minimal radial error.

Altimetry improves the along-track determinations and daily drag

coefficient 'estimation' for long-arc solutions.

Altimeter tracking data can have significant implications for precise
orbit determinations over arc-lengths of a small number of orbital

revolutions.



(5)

(6)

The optimum weighting strategy for the altimeter and laser data
is a complex issue dependent on several orbit related specifications,

notably the quality, quantity and distribution of the laser tracking

. data .and the accuracy of the geoid along the satellite ground-track.

However, the sampling. interval appears to be unimportant as near

identical orbits:can be derived by adjusting the weight of the altimeter

measurements accordingly.

The empirical approach adopted in this study is invaluable for

-~insight into the ulitisation of altimetry as tracking data.

Future studies -could. investigate errors in the radial and along-track

directions perhaps using the correlation-covariance matrices of the

‘data reduction procedure.

=«1%7=
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Table 1

The SATAN computational model utilised in the Seasat analysis.

Force model and constants

Gravity field PGS-S3 s

a, = 6378.138 Km; GM = 398600.64 Km3/s?; C = 299792.458 Km/s

Atmospheric ‘model . Jacchia 1971

S = 25.3m? ’ m = 2216.7 Kg

). ,

Third body attraction (sun,moon and planets) JPL DE-96 ephemeris.

Solar radiation (direct, Earth reflected and infra-red radiation)
; _6
S '= 25.3m? ; pressure at 1 AU = 4.5605x10 N/m?

Body Tides,.
Force K, = 0.3 , Wahr's frequency dependence

Station displacement h, = 0.609, 1, = 0.0852

Ocean Tides Sgar Mp» Mg Qus Ouy Puy Ky, Npy Mz, S, K,
Schwiderski amplitudes and phases.
Nutation Wahr

Polar motion and UTI data BIH "

Parameters estimated

State vector at epoch
Daily drag coefficients, Cp .

Solar reflectibity coefficient, CR



Table 2

Laser data summary. Reference arc

MID 43728 - MJD 43733

Maximum no. of observations/pass 55
Rejection criterion

Station

No. Location
7062 Otayl

7067 Bermuda
7069 Patrick AFB
7907 Arequipa
7801 Helwan

7833 Kootwi jk
7929 Natal

7943 Orroral¥*

5m
No of Total no of observations/ rms range
Passes observations processed residual
after fit
(m)

10 886/414 0.56

6 | 297/114 0.82

©5- 996/241 0.64

11 . 458/438 1.71

3 98/35 2.09

2 50/50 1.52

1 12/12 0.97

4 116/53 3.41

* not corrected for known range dependent error.

Altimeter data summary.

Rejection criterion 7m

Sampling interval

(min)
1
2

10

Total no of
data points

5785
3040

645

Approx. ‘-no processed
(orbit dependent)

4000
2000

440

a priori
sd (m)

0.15
0.15
0.15
0.50
0.70
0.70
0.70

0.70
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altimeter measurements with 0.lm sd versus the reference
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E=CH(6)
DO 610 K=1,10
NI=K-1
WRITE (S3,51) NI
IF (S3.EQ.E) THEN

=NI
GOTO 620

END IF
CONTINUE
CONTINUE
J=J+1
WRITE (CH(6),51) J
CH(7)='0"
GOTO 700

END IF

IF (J.EQ.100) THEN
CH(5)='1"
CH(6)='0"
CH(7)='0"

END IF

CONTINUE

IF (N.EQ.NFILE) STOP 'FINISHED NUMBER OF FILES'

N=N+1

GOTO 201

CONTINUE

CLOSE(UNIT=2)
CLOSE(UNIT=5)
CLOSE(UNIT=20)

STOP.
END
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PROGRAM TO FIND THE CROSSOVER HEIGHT DIFFERENCES
INPUT FILES EPH.DAT EPHEMERIS
£ ORBIT.DAT NO. OF STEPS
: REDIN,DAT - TIME SPAN

WORKFILES : EQUAT.CRS - EQUATOR CROSSINGS
: REV.DAT , = ORBIT IN HALF REVS

OUTPUT FILES HDIFF.DAT - CROSSOVER DIFFERENCES

DOUBLE PRECISION XX1(3),XX2(3),57T(2),T1,72,7T
o XV X2 NV Y2,Z1,22, %, Y, LAMDA,FACTOR,PI, P12
,DUM1 ,DUM2

COMMON/TIME/NREV,NST,ILNG,HMIN,IND,PI ,PI2
DATA PI1/3.1415926536D0/
PI2=2.D0*PI

OPEN (UNIT=6,NAME='[=-]ORBIT.DAT’,TYPE="0LD")
READ(6,6) HMIN,NST

FORMAT(//F10.2,16)

CLOSE(UNIT=6)

GET LENGTH OF HALF REVOLUTION -
SEASAT'S PERIOD IS APPROXIMATELY 101 MINUTES,
THIS NUMBER SHOULD BE CHANGED FOR ERS_1

ILNG=101*INT(0.5/HMIN)

OPEN (UNIT=1,NAME="EPH.DAT',FORM='UNFORMATTED’,TYPE="'0LD"
LACCESS='DIRECT’,RECL=14 ,MAXREC=NST)

OPEN (UNIT=3,NAME =‘'[-]REDIN.DAT',TYPE='0LD")
READ(3, " (A) ‘) JUNK

READ(3,11) STMJD,ENDMJD

FORMAT (2F9.2)

CLOSE(UNIT=3)

NUMBER OF HALF REVOLTUIONS FOR SEASAT.
AGAIN THIS SHOULD BE CHANGED FOR ERS_1

NREV=NINT(43./3.*(ENDMJD-STMJUD)+0.5)*2

OPEN (UNIT=9,NAME='EQUAT.CRS',FORM='UNFORMATTED',TYPE="UNKNOWN"’

+ACCESS='DIRECT’,RECL=4 ,MAXREC=NREV~-1)

DO 13 I=1,NREV-1
ST1=0.0
WRITE(9'I)STI
CONTINUE
INDEX=0
IE=0
IT=1
READ(1°IT) ST(1),(XX1(1),1=1,3)
IF (IT.EQ.NST) GOTO 101 ;
IT=IT+1
IF (XX1(3).LT.0.D0) IEQ1=0
IF (XX1(3).G6T.0.D0) IEQi=1
IF (XX1(3).EQ.0.D0) THEN

1E=1

GOTO 20
END IF

READ (1°IT) ST(2),(%XX2(1),1=1,3)
IF (IT.EQ.NST) GOTO 101

IT=1T+1

IF (XX2(3).LT.0.DO) IEQ2=0
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IF (XX2(3).GT.0.D0) IEQ2=1
IF (XX2(3).EQ.0.D0) THEN
IE=2
GOTO 20
END IF

IF (IEQ1.EQ.IEQ2) THEN
DO 30 J=1,3
XX1(J)=XX2(J)
CONTINUE
ST(1)=S8T7T(2)

GOTO 10

END IF

COME HERE IF AN EQUATOR CROSSING HAS OCCURRED

CONTINUE

IF (IE.EQ.1) THEN
T=ST(1)
Y=XX1(2)
X=XX1(1)
LAMDA=DATANZ2(Y,X)
LAMDA=DMOD( (LAMDA+PI2),P12)
INDEX=INDEX+1
WRITE(9'(INDEX)) T,LAMDA
GOTO 40

END IF

IF (1E.EQ.2) THEN
T=ST(2)
Y=XxX2(2)
X=XX2(1)
LAMDA=DATAN2(Y,X)
LAMDA=DMOD( (LAMDA+PI2),PI2)
INDEX=INDEX+1 )
WRITE(S9‘(INDEX)) T,LAMDA s
GOTO 40

END IF

INTERPOLATE LINEARLY TO FIND TIME AND LONGITUDE OF CROSSING

Z1=XX1(3)

22=XX2(3)

T1=ST(1)

T2=5T(2)
T=T2-22*(T2-T1)/(22-21)
X1=XX1(1)

X2=XX2(1)

Y1=XX1(2)

Y2=XX2(2)
FACTOR=(T2~-T)/(T2-T1)
X=X2=(X2=X1)*FACTOR
Y=Y2-(Y2-Y1)*FACTOR
LAMDA=DATAN2(Y,X)
LAMDA=DMOD( (LAMDA+PI2),PI12)
INDEX=INDEX+1
WRITE(9'(INDEX)) T,LAMDA
CONTINUE

GOTO 5
CONTINUE

ARRANGE EPHEMERIS 'INTO HALFRV REVOLUTIONS

CALL HALFRV
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CALCULATE THE CROSSOVERS

CALL CROSSO

CALCULATE THE CROSSOVER HEIGHT DIFFERENCES
CALL CHT

STOP
END

I I s s s A R R R R R R R R

-SUBROUTINE HALFRV

SUBROUTINE TO ARRANGE EPHEMERIS INTO HALF REVOLUTIONS
DOUBLE PRECISION X(3),ST,LAMDA,A(200),8(200),PI,PI2
COMMON/TIME/NREV,NST,ILNG,HMIN,IND,PI,PI2

OPEN (UNIT=10,NAME='REV,DAT’,FORM="UNFORMATTED* ,TYPE='UNKNOWN"
+ACCESS='DIRECT’,RECL=4%ILNG,MAXREC=NREV)

11=1

N=1

1T=1

READ(1°IT) ST,(X(I1),I=1,3)

IT=IT+1

LAMDA=DATAN2(X(1),X(2))

A(1I1)=DMOD((LAMDA+PI2),PI2) ! CONVERT TO 0-2PI RANGE
B(II)=ST

11=11+1

IF(X(3).GT.0.DO)IND=1 ! STARTING POSITION IN NORTHERN HEMISPHERE

IF(X(3).LE.O.DO)IND=2 ! STARTING POSITION IN SOUTHERN HEMISPHERE
CONTINUE :

IF (X(3).GT7.0.D0) THEN
READ(1°IT) ST,(X(I),I=1,3)
IF (IT.EQ.(NST)) GOTO 101
IT=1T+1
LAMDA=DATANZ2(X(2),X(1))
IF (X(3).LE.D0.DO) THEN
IF ((II-1).,LE.ILNG) THEN
WRITE(10'N) (B(J),A(J),Jd=1,11-1)
ELSE
TYPE*,"ARRAY TOO0 SMALL AT',N
sSTOP
END IF
I11=1
A(II)=DMOD((LAMDA+PI2),PI2)
B(I1)=ST
IISII+1
N=N+1
GOTO 10
END IF
A(II)=DMOD((LAMDA+PI2),PI2)
B(II)=ST
I1=11+1
GOTO 30
END IF

IF (X(3).LE.O0.DO) THEN
READ(1°1IT) ST, IX(I),1%1.8)
IF (IT.EQ.(NST)) GOTO 10!
IT=IT+1
LAMDA=DATAN2(X(2),X(1))
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IF (X{(3).GT.0.D0) THEN
IF ((II-1).LE.ILNG) THEN
WRITE(10'N) (B(J),A(J),Jd=1,11I-1)
ELSE
TYPE*, ARRAY TOO SMALL AT’,N
STOP
END IF
I11=1
A(ITI)=DMOD((LAMDA+PI2),PI12)
B(II)=ST
II=I1+1
N=N+1
GOTO 10
END IF
A(11)=DMOD((LAMDA+PI2),PI2)
B(11)=ST
II=I1I+1
GOTO 40
END IF

CONTINUE

IF ((II=-1),.LE.ILNG) THEN
WRITE(10°'N) (B(J),A(J),Jd=1,11-1)

ELSE
TYPE®*,'ARRAY TOO SMALL AT’,N
STOP

END IF

RETURN

END

EESRSEREBRBERASEREBEES SRS AR SRS B S S REEE XX SR EA BN ESIRS SRR ES
SUBROUTINE CROSSO

SUBROUTINE TO CALCULATE THE CROSSOVERS

INPUT FILES : REV.DAT - TIMES OF.EACH INTEGRATED POSITION )
SPLIT INTO HALF REVOLUTIONS

TIMES AND LATITUDES OF EQUATOR

: EQUAT.CRS

CROSSINGS
: EPH.DAT - EPHEMERIS FILE AT EACH INTEGRATION
STEP
WORKFILE : CROSS.DAT - DATES OF CROSSOVERS

OUTPUT FILE : REJCRO.DAT = CROSSOVER INFORMATION

DOUBLE PRECISION L1,L2,L3,L4,L5,L6,T1,T2,T3,T4,75,T6,LL(2,200)
.ST(2,200),LAM(4),TL(4),L(2,2),T(2,2),LT(4) ,EE,E(2,8)
.SX,SY,SZ,5xD,SYD,szp,C(8),R2,DSXY,LD(2,8),PHI(2,8),DLDX,DLDY
,DPDX,0PDY,DPDZ,DLIDT(2,8),DPIDT(2,8),0L(2,2),DP(2,2),DETIJ,DTI
,DTJ,D(8B),PI,PI2,TI,P(2,2),SXY,LTP1,LTP2,L12,P12,H7,LAMD(4)
,LSUM,PIBY2

COMMON/TIME/NREV,NST,ILNG,HMIN,IND,PI PI2
DATA D/-5040.D0,720.D0,-240.D0,144.D0
,~144,00,240.00,-720.D00,5040.D0/

NUMBER=0
PIBY2=P1/2.DO

H7=DBLE(HMIN) **7
NOS=0
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NDELT=0 ! COUNT OF REJECTED CROSSOVERS
ND=(Q

NACC=0 ! COUNT OF ACCEPTED CROSSOVERS

IF IND =1, FIRST HALF REVOLUTION (OR PART THEREOF) IS IN THE
NORTHERN HEMISPHERE AND SO THE START OF ALL NORTHERN ARCS ARE

IDENTIFIED BY AN EVEN INDEX IN EQUAT.CRS.
FOR IND =2,THE REVERSE OF THE ABOVE APPLIES.
CONTINUE

OPEN (UNIT=5,NAME='CROSS.DAT’,TYPE=‘NEW"’)

OPEN (UNIT=8,NAME=‘REJCRO.DAT’,TYPE='UNKNOWN"')

WRITE(8,302)

FORMAT(’ FILE OF CROSSOVER INFORMATION *,//

3! TIME ON ARC J TIME ON ARC 1°‘,//7)
CONTINUE

NOS=NOS+1

DO 25 K=1,2
DO 25 J=1,2
L(K,J)=0.D0O
CONTINUE

DO NORTHERN HALF REVOLUTIONS FIRST

IF (IND.EQ.1) JI=2
IF (IND.EQ.2) JI=1

DO 30 J=JI,(NREV=4),2
READ (9°J) TL(1),LAM(1)
READ (9°(J+1)) TL(2).LAM(2)

DO 35 1I=1;2
IF (TL(I).EQ.0.0) GOTO 30
CONTINUE

DO 40 I=(J+2),(NREV-2),2
READ (9°1) TL(3),LAM(3)
READ (9°(I+1)) TL(4),LAM(4)
DO 45 K=3,4

IF (TL(K).EQ.0.0) GOTO 40

MAKE SURE LAMDA IS IN RANGE 0 - 2PI

DO 46 K=1,4

LAM(K)=DMOD( (LAM(K)+P12),P12)
IF (LAM(K).EQ.0.D0) LAM(K)=PI2
LAMD(K)=LAM(K)*180.D0/P1I
CONTINUE

APPROXIMATE CROSSOVER
LSUM=(LAM(1)+LAM(2)+LAM(3)+LAM(4))/4.D0
ICR=1

CONDITIONS FOR A SINGLE CROSSOVER
(ALL LAMDA’S ARE CONVERTED TO 0-2PI RANGE)

IF ((LAM(2).LT.LAM(1)).AND.(LAM(3).LT.LAM(4)).AND.(LAM(1).LE.
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LAM(4)).AND.(LAM(2).LE.LAM(3)))THEN
L(1,1)=DMOD((LSUM-PIBY2+PI2),P12)
GOTO 49

END IF

IF ((LAM(1).LT.LAM(2)).AND.(LAM(3).LT.LAM(4)).AND,.(LAM(1).LE.
LAM(4)) .AND.(LAM(3).LE.LAM(2))) THEN
L(1,1)=DMOD((LSUM+PI+PI2),PI2)
GOTO 49
END IF

IF ((LAM(1).LT.LAM(2)).AND.(LAM(4).LT.LAM(3)).AND. (LAM(1).LE.
LAM(4)).AND. (LAM(2).LE.LAM(3))) THEN
L(1,1)=DMOD((LSUM+PIBY2+P12),PI2)
GOTO 49
END IF

IF ((LAM(2).LT.LAM(1)).AND.(LAM(4).LT.LAM(3)).AND.(LAM(4).LE.
LAM(1)).AND.(LAM(2).LE.LAM(3))) THEN
L(1,1)=DMOD((LSUM+PI2),PI2)
GOTO 49
END IF

IF ((LAM(2).LT,.LAM(1)).AND.(LAM(3).LT.LAM(4)).AND.(LAM(4).LE.
LAM(1)).AND. (LAM(3).LE.LAM(2))) THEN
L(1,1)=DMOD((LSUM+PIBY2+PI2),P12)
GOTO 49
END IF

IF ((LAM(1).LT.LAM(2)).AND.(LAM(4) . LT.LAM(3)).AND,(LAM(4).LE.
LAM(1)).AND. (LAM(3).LE.LAM(2))) THEN
L(1,1)=DMOD((LSUM-PIBY2+PI2),PI2)
GOTO 49
END IF

CONDITIONS FOR A DOUBLE CROSSOVER

IF ((LAM(1).LT.LAM(2)).AND.(LAM(3).LT.LAM(4)).AND.(LAM(1).LE.
LAM(4)) .AND.(LAM(2).LE.LAM(3))) THEN
L(1,1)=DMOD((LSUM+PI2),PI2)
L(2,1)=DMOD((LSUM+PI+P12),PI2)
GOTO 47
END IF

IF ((LAM(1).LT.LAM(2)).AND, (LAM(3).LT.LAM(4)).AND.(LAM(4).LE,
LAM(1)) .AND. (-.AM(3).LE.LAM(2))) THEN
L(1,1)=DMOD((LSUM+PI2),PI2)
L(2,1)=DMOD((LSUM+PI+PI2),P12)
GOTO 47
END IF°

L(1,1)=DMOD((LSUM+PIBY2+P12),PI12)
L(2,1)=DMOD((LSUM=-PIBY2+PI2),P12)
ICR=2

L(2,2)=L(2,1)

CONTINUE
L(1,2)=L(1,1)

ICR= NUMBER OF CROSSOVERS BETWEEN TWO REVS (1 OR 2)
DO 50 K=1,ICR

ND=0
DO 100 JJ=1,2
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IF (JJ.EQ.1) THEN
Ji1=Jd+1
I1=I+1

ELSE IF (JJ.EQ.2) THEN
J1=1+1
I1=Jd+1

END IF

READ (10°J1) ((ST(JJ,LN),LL(JJ,LN)),LN=1,ILNG)
LL(JJ,1)=DMOD((LL(JJ,1)+PI2),PI2)
LTP2=DMOD((L(K,JJ)+(PI2=-LL(JJ,1))),PI2)

DO 60 LN=1,ILNG
LL(JJ,LN)=DMOD((LL(JJ,LN)+PI2),PI2)

MOVE ORIGIN TO START OF REVOLUTION TO COMPARE LAMDA'S

IF (LN.EQ.1) THEN
LTP1=PI2

ELSE IF (LN.GT.1) THEN
LTP1=DMOD((LL{JJ,LN)+(PI2=LL(JJ,1))),PI2)

END 1IF

IF (ST(JJ,LN).EQ.0.DO) THEN
LK=LN=1
IF (DABS(LL(JJ,LK)=L(K,JJ)).LT.0.015D0) GOTO 61
IF (DABS(LL(JJ,1)~L(K,JJ)).LT.0.015D0) GOTO 261
STOP 'ERROR SOMEWHERE'

END IF ,

IF (LTP1.GT.LTP2) GOTO 60 ! SEASAT IS IN A RETROGRADE ORBIT

T(K,JJ)=(ST(JJ,LN)+ST(JJ,LN=-1))/2.D0

GOTO 70

CONTINUE

LK=ILNG

DUM1=DABS(LL(JJ,LK)=L(K,JJ))

DUM2=DABS(LL(JJ,1)~-L(K,JJ))

IF (DUM1.LT.0.015D0) GOTO 61

IF (DUM2.LT.D.015D0) GOTO 261

TYPE *,DUM1,DUM2

STOP *‘ERROR IN APPROXIMATE LAMDA’

CONTINUE

T(K,JJ)=ST(JJ,LK)+DBLE(HMIN)/2.DO

GOTO 70

T(K,JJ)=5T(JJ,1)-DBLE(HMIN)/2.D0O

CONTINUE

CONTINUE

CONTINUE

DO 300 JJy=1,2

IF (JJU.EQ.1) THEN
J1=J+1
I1=1%1

ELSE IF (JJU.EQ.2) THEN
J1sI+1
I1=u+1

END IF

DO 65 M=(ILNG*(J1-2)+1) ,ILNG*(J1+1)

READ(1°M) EE

IF (EE.LT.T(K,JJ)) GOTO 65

IF (EE.GE.T(K,JJ)) THEN
DO 66 N=1,8 ,
IF ((M+N).LT.6.0R.(M+N).GT.(NST+5)) STOP °‘OUT OF LIMITS
READ (1'(M=5+N))E(JJ,N),SX,SY,S2,8XD,SYD,SZD
R2=SX*SX +SY*SY +SZ*SZ
SXY=SX*SX +SY*SY
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DSXY=DSQRT(SXY)
LD(JJ,N)=DATAN2(SY,SX)
LD(JJ,N)=DMOD((LD(JJ,N)+PI12),P12)
PHI(JJ,N)=DATAN2(SZ,DSXY)
DLDX==SY/SXY
DLDY=SX/SXY
DLIDT(JJ,N)=DLDX*SXD +DLDY*SYD
DPDX=-SZ*SX/(R2%¥DSXY)
DPDY=DPDX*SY/SX
DPDZ=DSXY/R2
DPIDT(JJ,N)=DPDX*SXD +DPDY*SYD +DPDZ*SZD
CONTINUE
GOTO 80

END IF

CONTINUE

TYPE *,EE,T(K,JJ)

GO TO 50

STOP "LAMDA NOT FOUND’

CONTINUE

CONTINUE

WORK QUT INTERPOLATION COEFFICIENTS

DO 200 JJ=1,2
TI=T(K,JJ)
DO 68 N=1,8
C(N)=(TI-E(JJ,1)) *(TI-E(JJ,2)) *(TI-E(JJ,3
*(T1-E(JJ,5)) *(TI-E(JJ,B6))*(TI-E(JJ,7)) *(
((TI-E(JJ,N))*D(N)*H7)
CONTINUE

)) #(TI=-E(JJ,4))
TI-E(JJ,.B))/

IF INTERPOLATION RANGE IS GREATER THAN 1B0 DEGREES ADD ON 360
DEGREES TO ALL POINTS BELOW 1B0 DEGREES SO THAT WE GET A
CONTINUOUS FUNCTION FOR INTERPOLATION

-

IF (DABS(LD(JJ,1)-LD(JJ,B)).GT.PI) THEN

DO 76 N=1,8

IF (LD(JJU,N).LT.PI) LD(JJ,N)=LD(JJ,N)+PI2

CONTINUE
END IF
L(K,JJ)=DMOD((LD(JJ,1)*C(1) +LD(JJ,2)*C(2) +LD(JJ,3)*C(3)
+LD(JJ,4)*C(4) +LD(JJ,5)*C(5) +LD(JJ,6)*C(6) +LD(JJ,7)*C(7)
+LD(JJ,B)*C(8B)),P12)

P(K,JJ)=PHI(JJ,1)*C(1) +PHI(JJ,2)*C(2) +PHI(JJ,3)*C(3)
+PHI(JJ,4)*C(4) +PHI(JJ,5)*C(5) +PHI(JJ,B6)*C(6) +PHI(JJ,7)*C(7)
+PHI(JJ,.B)*C(8)

DL(K,Jd)=DLIDT(JJ,1)*C(1) +DLIDT(JJ,2)*C(2) +DLIDT(JJ,3)*C(3)
+DLIDT(JJ,4)*C(4) +DLIDT(JJ,5)*C(5) +DLIDT(JJ,6)*C(86)
+DLIDT(JJ,7)*C(7) +DLIDT(JJ,B)*C(8B)

DP(K,JJ)=DPIDT(JJ,1)*C(1) +DPIDT(JJ,2)*C(2) +DPIDT(JJ.3)*C(3)
+DPIDT(JJ,4)*C(4) +DPIDT(JJ,5)*C(5) +DPIDT(JJ,6)*C(6)
+DPIDT(JJ,7)*C(7) +DPIDT(JJ,8)*C(8B)

CONTINUE

IF (DABS(L(K,1)-L(K,2)).GT.PI) THEN
DO 212 N=1,2
IF (L(K,N).LT.PI) L(K,N)=L(K,N)+PI2
CONTINUE

END IF



c CHANGE IN TIMES

L12=L(K,1) -L(K,2)

P12=P(K,1) =-P(K,2)

DETIJ==DL(K,1)*DP(K,2) +DL(K,2)*DP(K,1)
DTJ=(-DP(K,2)*L12 +DL(K,2)*P12)/DETIJ*1440.D0
DTI=(=-DP(K,1)*L12 +DL(K,1)*P12)/DETIJ*1440.D0

T(K,1)=T(K,1) -DTJ
T(K,2)=T(K,2) =DTI
IF (DABS(DTI).GE.DBLE(HMIN/2.0).0R.DABS(DTJ).GE.DBLE(HMIN/2.0))
1 THEN )
ND=ND+1
IF (ND.GT.2) THEN
NDELT=NDELT+1
WRITE(B,303) T(K,1),J,T(K,2),I
303 FORMAT(D20.12,16,2X,D20.12,186)
GOTO 50
END IF
GOTO 72
END IF

IF (DABS(DTJ).GT.1,.D-09.0R.DABS(DTI).GT.1.D-09) THEN
NUMBER=NUMBER+1
GOTO 71

END IF

NUMBER=0

WRITE(S,110) TIK 1) J,TIK2),1
110 FORMAT (D20.12,16/D20.12,186)
NACC=NACC+1
50 CONTINUE
40 CONTINUE
30 CONTINUE

REPEAT FOR SOUTHERN HEMISPHERE

oOOoOomon

IF (NOS.LT.2) THEN
IF (IND.EQ.1) THEN
IND=2
GOTO 22
ELSE IF (IND.EQ.2) THEN
IND=1
GOTO 22
END IF
END IF

WRITE(B8,301) NDELT,NACC
301 FORMAT{//‘ TOTAL NUMBER OF CROSSOVERS REJECTED DUE TO
1 CHANGE IN INTERPOLATION INTERVAL = *,16//
2 ," TOTAL NUMBER OF ACCEPTED CROSSOVERS = *,16)
CLOSE(UNIT=8)
CLOSE(UNIT=10,DISPOSE='DELETE’)
CLOSE(UNIT=9,DISPOSE=‘DELETE’)
CLOSE(UNIT=1)
RETURN
END
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SUBROUTINE CHT

SUBROUTINE TO INTERPOLATE THE CROSSOVER HEIGHTS

o000 o000
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INPUT FILES : STEPS.DAT - USED FOR LEAP SECONDS
: ORBIT.DAT - USED FOR ARC LENGTH
s START.DAT - USED TO GET BASE EPOCH
CROSS.DAT - TIMES OF CROSSOVERS
GDOR‘S.DAT - ALTIMETER OBSERVATIONS
(GDR‘S ARE IN TOE_EEE.DAT FORMAT)

: TAPE.DAT - NAME OF FIRST TAPE TO BE READ IN
WORK FILE : HEIGHT.DAT - INTERPOLATED HEIGHTS AT CROSS-
OVERS. (1ST APPROXIMATIONS)
OUTPUT FILE : HDIFF.DAT - CROSSOVER DIFFERENCES AFTER
EDITING

DOUBLE PRECISION T(20000),HT(4) ,DBASE,DATE,STL(2),HTL(2)
,TSTART,H,HMIN,DAY,DATE1,DATE2,VAL,ST(4),TI ,RT(4),R,DATEB
,VALDOT

CHARACTER*29 GDRDAT,CHAR®*11,STRING*11
CHARACTER®*1 S3,E,CH(11),0%2,52%2,C*3,51*3
DIMENSION IX(20000)

INTEGER*4 I1(8),1J(8,4),11,12
INTEGER*2 JI(9:31),JJ(9:31,4)
BYTE KI(32:33)
EQUIVALENCE (CHAR,CH(1))

COMMON/TIME/NREV ,NST,ILNG,HMIN,IND,PI,PI2
COMMON/DINFO/DATE1 ,DATEZ2,MLA,IRETURN,I ,M

OPEN(UNIT=1,NAME='[-]STEPS.DAT’,TYPE='0LD")
OPEN(UNIT=4,NAME=‘[=-]START.DAT',TYPE='0LD"*)
OPEN(UNIT=7 ,NAME="HEIGHT.DAT',TYPE='UNKNOWN"
,FORM=°*UNFORMATTED’)

OPEN(UNIT=16 ,NAME='[-]HDIFF.DAT’,TYPE="UNKNOWN")
OPEN (UNIT=6,NAME=‘'TAPE.DAT',TYPE='0LD")

OPEN AND READ TAPE INFORMATION

INTERP=1 = USED FOR CUBIC INTERPOLATION

=2 - USED FOR LINEAR INTERPOLATION
STRING = NAME OF FIRST ALTIMETER TAPE TO BE READ
NFILE -~ NUMBER OF FILES TO BE READ

READ (6,767) INTERP
FORMAT (I1)

READ (6,2) STRING
FORMAT (A11)

WRITE (CHAR,2) STRING
READ (6,6) NFILE
FORMAT (13)

CLOSE (UNIT=6)

IRETURN=0
ST(2)=0.D0
DO 7 N=1,8
1J(N,2)=0
DO B8 N=9,31
JJ(N,2)=0
NREJ=0
DATEB=0.D0

H=HMIN/1440.D0
STLNTH=FLOAT(NST) *SNGL (H)
READ(4,10)JUNK

FORMAT (A1)
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READ(4,20)DBASE,TSTART
FORMAT(2D12.5)
DAY=DBASE+TSTART/1440.D0
DATE1=DAY+12.D0O*H
DATE2=DAY+DBLE(STLNTH)
MBASE=IDINT(DBASE)

SET UP LEAP SECONDS

MLA=0

VALUE=0.0

CONTINUE

MLB=MLA
READ(1,40,END=50)MLA,VALUE
FORMAT(2X,15,3X,F7.4)
IF(MLA.LE.MBASE) GOTO 30

GOTO 60

MLA=60000 ! DUMMY END VALUE
CONTINUE

CLOSE (UNIT=1)
CLOSE (UNIT=4)

PUT CROSSOVER TIMES INTO CHRONOLOGICAL ORDER
CALL CHRONO (T,IX,K)

GDRDAT='[~-.TAPES] ‘//CHAR

M=1

OPEN (UNIT=2,NAME=GDRDAT,TYPE=‘0OLD’,FORM='UNFORMATTED")

DO 200 I=1,K

IEND=0

READ (2,END=101) (II(J),y=1,8),(JI(J),J=9,31),(KI(J),J=32,33)
IF(KI(32).NE.O) GOTO 5

AGC=JI(25)#*1.E-0D2
1IF (AGC.GT.36.0) GOTO 5

I1=11(1)

12=11(2)

CALL DATES (It1,I12,DATE)

DATE=(DATE-DBASE)*1440.D0 ! TIME IN MINUTES FROM BASE EPOCH

IF (DATE.LE.DATEB) GOTO 5
IF (IRETURN.EQ.1) THEN
IRETURN=0
GOTO 5
END IF
IF (IRETURN.EQ.2) GOTO 202
IF (DATE.LT.T(I)) THEN
ST(1)=S7(2)
MM1=M
ST(2)=DATE
DATEB=DATE
MM2=M
DO 140 N=1,8
IJ(N,1)=IJ(N,2)
IJ(N,2)=II(N)
CONTINUE
DO 150 N=9,31
JJ(N,1)=JJ(N,2)
JJI(N,2)=JI(N)
CONTINUE
GOTO 5
END IF

IF (DATE.GT.T(I)) THEN
ST(3)=DATE
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DATEB=DATE

MM3=M

DO 160 N=1,8
IJ(N,3)=II(N)

CONTINUE

DO 170 N=9,31

JJ(N,3)=JI(N)

CONTINUE

IEND=1

READ (2,END=101) (IJ(J,4),J=1,8).(JJ(J,4),J=9,31)

~LKT(J),d=32,33)
IF(KI(32).NE.O) GOTO 105
AGC=JJ(25,4)*1.E-02

IF (AGC.GT.36.0) GOTO 105

11=1J(1,4)
12=1J(2,4)
CALL DATES (I1,I2,DATE)
IF (IRETURN.EQ.2) GOTO 202
DATE=(DATE-DBASE)*1440.00 ! TIME IN MINUTES FROM EPOCH
IF (DATE.LT.DATEB) GOTO 105
ST(4)=DATE
DATEB=DATE
MM4=M
END IF

IF (DATE.EQ.T(I)) THEN
DATEB=DATE
CALL RAM (II,JI,VAL,R)
T(I)=T(1)/1440.D0 +DBASE
WRITE(7) T(I),VAL,IX(I)
GOTO 200

END IF

NOW WE HAVE CROSSOVER IN THE MIDDLE OF THE INTERPOLATION RANGE

CONTINUE

IF (INTERP.EQ.2) GOTO 301

DO 300 N=1,3

IF ((ST(N+1)=ST(N)).GT.0.1D0) THEN
NREJ=NREJ+1
GOTO 200

END IF

CONTINUE

CONTINUE

CALCULATE ALTIMETER HEIGHT

DO 210 N=1,4
DO 230 J=1,8
I1(J)=1J(J,N)
CONTINUE

DO 240 J=9,31
JI(J)=JJ(J,N)
CONTINUE

CALL RAM (II,JI,VAL,R)
HT(N)=VAL
RT(N)=R
CONTINUE

INTERPOLATE USING EITHER CuBIC LAGRANGE OR LINEAR INTERPOLATION

TI=T(I)
IF (INTERP.EQ.1) CALL CUBIC (TI,ST,HT,VAL,VALDOT,IERR)
IF (INTERP.EQ.2) THEN

STL(1)=ST(2)



STL(2)=ST(3)
IF ((STL(2)-STL(1)).GT.0.1D0) THEN
NREJ=NREJ+1
GOTO 200
END IF
HTL(1)=HT(2)
HTL(2)=HT(3)
CALL LINEAR (TI,STL,HTL,VAL,VALDOT,IERR)
END IF
IF (IERR.EQ.1) THEN
TYPE*, 'ERROR IN INTERPOLATION TIMES AT LOCATION’,I,M
STOP
END IF
TI=TI/1440.00 +DBASE
WRITE(7) TI,VAL,VALDOT,IX(I)
GOTO 200
101 CONTINUE
CLOSE(UNIT=2)
IF (M.EQ.NFILE) GOTO 202
M=M+1
IF (CH(S5).EQ.'0‘.AND.CH(6).EQ. 0") GOTO 400
IF (CH(5).EQ.'0’) GOTO 500
C=CH(5)//CH(B)//CH(7)
DO 330 KK=1,200
NI=KK
WRITE (S1,325) NI
325 FORMAT (I3)
IF (S1.EQ.C) THEN
J=NI
GOTO 401
END IF
330 CONTINUE
401 CONTINUE
JEJ+
J1=M0OD(J,10)
J2=MOD((J=-J1),100)/10
J3=(J=10%J2-J1)/100
WRITE (CH(5),51) J3
WRITE (CH(6),51) J2
WRITE (CH(7),51) J1

51 FORMAT (I1)
GOTO 700
500 CONTINUE

D=CH(6)//CH(7)
DO 510 KK=1,99
NI=KK
WRITE (S2,520) NI
520 FORMAT (I2)
IF (S2.EQ.D) THEN
J=N]
GOTO 530
END IF
510 CONTINUE
530 CONTINUE
J=J+1
IF (J.EQ.100) GOTO 600
J1=MOD(J,10)
J2=(J=J1)/10
WRITE (CH(6),51) J2
WRITE (CH(7),51) J1
GOTO 700

400 CONTINUE
E=CH(7)
DO 410 KK=1,10
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NI=KK=1
WRITE (S3,51) NI
IF (S3.EQ.E) THEN
J=NI
GOTO 420
END IF
CONTINUE.
CONTINUE
J=d+1
IF (J.EQ.10) GOTO 600
WRITE (CH(7),51) J
GOTO 700

CONTINUE
IF (J.EQ.10) THEN
E=CH(6)
DD 610 KK=1,10
NI=KK=1
WRITE (S3,51) NI
IF (S3.EQ.E) THEN
J=NI
GOTO 620
END IF
CONTINUE
CONTINUE
J=J+1
WRITE (CH(6),51) J
CH(7)="'0"
GOTO 700
END IF
IF (J.EQ.100) THEN
CH(5)="1"
CH(6)="'0"
CH(7)=‘0"
END IF
CONTINUE
IF (CHAR.EQ.'TO1_114.DAT’) CHAR=°T02_001.DAT"
IF (CHAR.EQ.'TD2_112.DAT*) CHAR=°'T03_001.DAT"
I (CHAR.EQ.'T03_078.DAT‘) GOTO 202
GDRDAT='[~-.TAPES]'//CHAR
OPEN(UNIT=2,NAME=GDRDAT,TYPE='0LD’,FORM=*UNFORMATTED")
IF (IEND.EQ.1) THEN
IEND=0
READ (2) (1J(J,4),J=1,8),(JJ(J,4),J=9,31)
s (KI(J),J=32,33)
IF(KI(32).NE.O) GOTO 105
AGC=JJ(25,4)%1.E-02
IF (AGC.GT.36.0) GOTO 105

1181 J (] 4)

12=1J(2,4)

CALL DATES (11,I12,DATE)

IF (IRETURN.EQ.2) GOTO 202

DATE=(DATE~-DBASE)*1440.D0 ! TIME IN MINUTES FROM BASE

IF (DATE.LE.DATEB) GOTO 105
ST(4)=DATE
DATEB=DATE
MM4=M
GOTO 360
END IF
GOTO 5
CONTINUE
CONTINUE

CLOSE(UNIT=2)
REWIND(UNIT=7)

EPOCH
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CALL HDIFF
CLOSE(UNIT=7,DISPOSE='DELETE"’)
CLOSE(UNIT=16)

RETURN
END
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SUBROUTINE RAM (II,JI,VAL,R)

DOUBLE PRECISION RAMM,GEOHT,BARC,SETC,O0ETC,DIONC,DRYTC,WETTC
+ VAL ,DHGHT ,HTT(9:18) ,DAE,DF,DF2,DCF,DC2,DSF,DS2,DSL,DCL . X,Y,2Z
.R,RDDG,FI,LONG,EN,DCC,DCS,ENT, SWH

INTEGER*4 11I(8B)
INTEGER*2 JI(9:31)

DAE=63781370.D-07

DF=298257.D-03
RDDG=1.745329251994D-02
FI=(DFLOTJ(II(3))-90,D06)*1.D0-06*RDDG
LONG=DFLOTJ(II(4))*1.D-06*RDDG
DF2=(1.D0-1.DO/DF)*(1.00-1.D0/DF)
DCF=DCOS(FI)

DC2=DCF*DCF

DSF=DSIN(FI)

DS2=DSF*DSF

DCL=DCOS(LONG)

DSL=DSIN(LONG)

DCC=DCF=*DCL

DCS=DCF*DSL
EN=DAE/DSQRT(DC2+DF2*DS2)

CALCULATE ALTIMETER HEIGHT
RAMM=DFLOTJ(II(5))*1.D-03 ! RAW HT IN METRES
GEOHT=(DFLOTJ(11(8))-15.D+04)%1,D-03 ! GEOID HT I} METRES

DO 10 J=9,18

HTT(J)=(DFLOTI(JI(J))=-15000.D0)*1.D0-03 ! CORRECTIONS
CONTINUE

SWH=DFLOTI(JI(20))*1.D-02 ! SIGNIFICANT WAVE HEIGHT

BARC =HTT(9) ! BAROMETRIC CORRECTION IN METRES

SETC =HTT(10) ! SOLID EARTH TIDE CORRECTION IN METRES
OETC =HTT(11) ! OCEAN TIDE CORRECTION IN METRES

DIONC =HTT(13) ! IONOSPHERIC CORRECTION IN METRES

IF(HTT(15).NE.9.999) THEN
WETTC=HTT(15)

ELSE
WETTC=HTT(14)

END IF

WETTC =HTT(14) IS FNWC WET TROPOSPHERIC CORRECTION IN METRES
WETTC =HTT(15) 'IS SMMR WET TROPOSPHERIC CORRECTION IN METRES

DRYTC =HTT(16) ! FNOC DRY TROPOSPHERIC CORRECTION IN METRES

DINSTC=HTT(18) ! NET INSTRUMENT CORRECTION IN METRES

DHGHT=RAMM+GEOHT+BARC+SETC+0ETC+DIONC+HTT(14) +DRYTC+DINSTC !

DHGHT=DHGHT-0.07D0#*SWH

METRE




VAL=DHGHT*1.D-06 ! ALTIMETER HT IN MEGAMETRES

RETURN
END
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SUBROUTINE CHRONO (T,IX,K)

PUTS CROSSOVER TIMES INTO CHRONOLOGICAL ORDER

oo OO0

DOUBLE PRECISION T(20000),8B,D
DIMENSION IX(20000)

REWIND (5)

K=1
5 READ(5,10,END=101) T(K)
10 FORMAT(D20.12)

IX(K)=K

K=K+1

GOTO 5
101 CONTINUE

K=K=1

N=K

100 CONTINUE
B=T(1)
J=1
DO 20 I=2,N
D=T(1I)
IF (B.GE.D) GOTO 20
B=T(1I)
J=1
20 CONTINUE

INTERCHANGE BIGGEST WITH LAST

o000

T(J)=T(N)

T(N)=B

L=IX(J)

IX(J)=IX(N)

IX(N)=L

N=N-1

IF (N.GT.1) GOTO 100
CLOSE(UNIT=5.DISPOSE='DELETE')
RETURN

END
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SUBROUTINE CuBIC (T,ST,H,VAL,VALDOT,IERR)

INTERPOLATES THE CROSSOVER HEIGHTS USING THE DATA FROM
THE ALTIMETER GDR’S

ooOnon o000

DOUBLE PRECISION T,ST(4),H(4),VAL,D(4),C(4),VALDOT,DC(4)
1 ,TST(4),ST12,ST13,5T14,5T23,5724,5T34
COMMON/DINFO/DATE!,DATE2,MLA,IRETURN,I M

1ERR=0

IF (T.LT.ST(4).AND,T.LT.ST(3).AND.T.GT. 57(2) AND.
1 T.GT.ST(1)) GOTO 10

IERR=1

RETURN
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. CONTINUE

ST12=ST(1)-5T(2)
ST13=ST(1)=ST(3)
ST14=ST(1)=-5T(4)
ST23=ST(2)-5T(3)
ST24=ST(2)-ST(4)
ST34=ST(3)=-ST(4)
D(1)=ST12*ST13*ST14
D(2)=-ST12%ST23*ST24
D(3)=ST13*ST23*ST34
D(4)=-ST14*5T24*5T34

DO 15 N=1,4

DC(N)=0.DO
TST(N)=T-ST(N)

CONTINUE

DO 20 N=1,4
CIN)=TST(1)*TST(2)*TST(3)*TST(4)/(TST(N)*D(N))
DO 30 M=1,4

IF (M.EQ.N) GOTO 30
DC(N)=DC(N) +C(N)/TST(M)
CONTINUE

CONTINUE

VAL=H(1)*C(1) +H(2)*C(2) +H(3)*C(3) +H(4)*C(4)
VALDOT=H(1)*DC(1) +H(2)*DC(2) +H(3)*DC(3) +H(4)*DC(4)

RETURN
END

T T T T T R T T T I
SUBROUTINE DATES (I1,I2,DATE)
COMPUTES THE MJD OF THE CROSSOVER

DOUBLE PRECISION DATE,DATE1,DATE2,DDY,DBASE,FDDY,FRDY
INTEGER®*4 I1,1I2

COMMON/DINFO/DATE1,DATE2 ,MLA,IRETURN,I M

DDY=DFLOTJ(I1)/B6400.D0 ! INTEGER PART OF TIME TAG IN DAYS
FDDY=DFLOTJ(12)*1.D0-06/86400.D0 ! FRACTIONAL PART
DDY=DDY+FDDY

IDY=IDINT(DDY)

MJD=1IDY +43509 ! MJD OF START OF 1978 1S 43508
FRDY=DDY=-DBLE(IDY)

IF(MJD.GT.MLA)FRDY=FRDY +1.D0/86400.D0 ! ADDING LEAP SECOND
DATE=DBLE(FLOAT(MJD)) +FRDY
IF (DATE.LT.DATE1) THEN
IRETURN=1
RETURN
END IF
IF (DATE.GT.DATE2) THEN
TYPE#*,’ EXCEEDED TIME SPAN AT TAPE’,M
TYPE®*,I
IRETURN=2
END IF
RETURN
END

Y
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SUBROUTINE HDIFF
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COMPUTES THE CROSSOVER DIFFERENCE AFTER MATCHING THEM UP
AGAIN

DOUBLE PRECISION T(20000),H(20000),TT,HT,DIFF,HDOT(20000)
,DIFDOT,HD
DIMENSION IND(20000)

I=1

READ (7,END=101) T(I),H(I),HDOT(I),IND(I)
I=I+1

GOTO 5

CONTINUE

I=1I-1
N=1

_ CONTINUE

L=IND(1)

M=1

DO 20 J=2.N

IF (L.GE.IND(J)) GOTO 20
L=IND(J)

M=J

CONTINUE

IND(M)=IND(N)
IND(N)=L
TT=T(M)
T(M)=T(N)
T(N)=TT

HT=H(M)
H(M)=H(N)
H(N)=HT

HD=HDOT (M)
HDOT (M) =HDOT(N)
HDOT(N)=HD .
N=N=1

IF (N.GT.1) GOTO 10

HEIGHTS ARE NOW IN ASCENDING ORDER OF INDEX - COMPARE

DO 40 J=1,1

IF (MOD(IND(J),2).EQ.0) GOTO 40

IF (IND(J+1).EQ.IND(J)+1) THEN
DIFF=H(J)=H(J+1)
DIFDOT=HDOT(J)=HDOT(J+1)
WRITE(16,60) DIFF,DIFDOT.T(J).T(J+1)
FORMAT (4F20.12)

END IF

CONTINUE

RETURN

END °
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SUBROUTINE LINEAR (T,S,H,VAL,VALDOT,IERRL)
SIMILAR TO SBR CUBIC EXCEPT THE INTERPOLATION IS LINEAR.
DOUBLE PRECISION T,S(2),H(2),VAL,D(2),C(2),VALDOT

IERRL=0

IF (T.LT,S(2):AND.T.GT.S(1)) GOTO 10
IERRL=1

RETURN

CONTINUE



20

D(1)=S(1)-5(2)

D(2)==-D(1)

DO 20 N=1,2
C(N)=(T=S(1))*(T=-S(2))/7((T-S(N))*D(N))
CONTINUE

VAL=C(1)*H(1) +C(2)*H(2)
VALDOT=(H(1)=-H(2))/D(1)

RETURN
END



SHB=HTT(12)
GA=VAL
GOTO 100

101 CONTINUE
CLOSE(UNIT=6)

IF (CH(5).EQ.'0'.AND.CH(6).EQ.'0') GOTO 400
IF (CH(5).EQ.'0') GOTO 500
C=CH(5)//CH(6)//CH(7)
DO 330 K=1,200
NI=K
WRITE (S1,325) NI
325 FORMAT (I3)
IF (S1.EQ.C) THEN
J=NI
GOTO 401
END IF
330 CONTINUE
401 CONTINUE
J=J+1
J1=MOD(J,10)
J2=MOD( (J-J1),100)/10
J3=(J-10*J2-J1)/100
WRITE (CH(5),51) J3
WRITE (CH(6),51) J2
WRITE (CH(7),51) Jl
51 FORMAT (Il)
GOTO 700

500 CONTINUE
‘ D=CH(6)//CH(7)
DO 510 K=1,99
NI=K
WRITE (S2,520) NI
520 FORMAT (I2)
IF (S2.EQ.D) THEN
J=NI
GOTO 530
END IF
510 CONTINUE
530 CONTINUE
J=J+1
IF (J.EQ.100) GOTO 600
J1=MOD(J,10)
J2=(J-J1)/10
WRITE (CH(6),51) J2
WRITE (CH(7),51) Jl
GOTO 700

400 CONTINUE
E=CH(7)
DO 410 K=1,10
NI=K-1
WRITE (S3,51) NI
IF (S3.EQ.E) THEN
J=NI
GOTO 420
END IF
410 CONTINUE
420 CONTINUE
J=J+1 :
IF (J.EQ.10) GOTO 600
WRITE (CH(7),51) J
GOTO 700

600 CONTINUE
IF (J.EQ.10) THEN



SHB=HTT(12)
GA=VAL
GOTO 100

101 CONTINUE
CLOSE(UNIT=6)

IF (CH(S).EQ.'0O'.AND.CH(6).EQ.'0') GQOTO 400
IF (CH(S5).EQ.'0') GOTO 500
C=CH(5)//CH(6)//CH(T7)
DO 330 K=1,200
NI=K
WRITE (S1,325) NI
325 FORMAT (I3)
IF (S1.EQ.C) THEN
J=NI
GOTO 401
END IF
330 CONTINUE
401 CONTINUE
i J=J+1

b E—— g e s

J1=MOD(J,10) .

. J2=MOD( (J-J1),100)/10

J3=(J-10*J2-J1)/100

WRITE (CH(S5),51) J3

WRITE (CH(6),51) J2
: WRITE (CH(7),51) J1
i 51 FORMAT (Il)
GOTO 700

| 500 CONTINUE
i : D=CH(6)//CE(7)
DO 510 K=1,99
NI=K
F; WRITE (S2,520) NI
% 520 FORMAT (I2)
§ IF (S2.EQ.D) THEN
J=NT
GOTO 530
END IF
510 CONTINUE
530 CONTINUE
J=J+1
IF (J.EQ.100) GOTO 600
J1=MOD(J,10)
J2=(J=J1)/10
WRITE (CH(6),51) J2
WRITE (CH(7),51) J1
) GOTO 700

400 CONTINUE
E=CE(7)
DO 410 K=1,10
NI=R-1
WRITE (S3,51) NI
IF (S3.EQ.E) THEN
J=NI
GOTO 420
END IF
410 CONTINUE
420 CONTINUE
J=J+1
IF (J.EQ.10) GOTO 600
WRITE (CH(7),51) J
GOTO 700

600 CONTINUE
IF (J.EQ.10) THEN

N~
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CALCULATE ALTIMETER HEIGHT

RAMM=DFLOTJ(II(5))*1.D-03 ! RAW HT IN METRES
HTB=RAMM

SEAHT1=(DFLOTJ(II(7))-15.D+04)*1.D-03
GEOHT=(DFLOTJ(II(8))-15.D+04)*1.D-03 | GEOID HT IN METRES

IF (IGEOID.EQ.2) THEN
READ(20,129) NNN,VAL
FORMAT(I6,D12.6)
IF (NNN.NE.NUM) STOP 'ERROR IN INDICES'
DIFG=GEOHT-VAL
GB=VAL
END IF

DO 200 J=9,18
HTT(J)=(DFLOTI(JI(J))=-15000.D0)*1.D-03 ! CORRECTIONS IN METRES
CONTINUE .
HTT(12)=HTT(12)*1.D+01 | SEASAT MEAN SEA SURFACE
SWH=DFLOTI(JI(20))*1.D-02 ! SIGNIFICANT WAVE HEIGHT
SHB=HTT(12)
DEDT=9999.D0
IF (NUM.NE.l) THEN

DEN=(DB-DA)*86400.D0

IF (DEN.LE.1.5D0) THEN

DHDT= (HTB-HTA) /DEN

END IF
END IF .
JORNO=JI(31)
HTT(17)=HTT(17)*1.D+0l ! RADIAL S/C DIFFERENCE (DOD-GSFC)
DODGOD=SNGL (HTT(17))
SCHT=DFLOTJ(II(6))*1.D-03 ! COMPUTED S/C HT WRT REF ELLIPSOID
WRITE(S5,701) SCHT,NUM,DODGOD,JORNO,DHDT
FORMAT(D20.12,16,F12.5,16,D16.8)

BARC =HTT(9) ! BAROMETRIC CORRECTION IN METRES

SETC =HTT(10) ! SOLID EARTH TIDE CORRECTION IN METRES
OETC =HTT(1ll) ! OCEAN TIDE CORRECTION IN METRES

DIONC =HTT(13) ! IONOSPHERIC CORRECTION IN METRES

IF(HTT(15).NE.9.999) THEN
WETTC=HTT(15)

ELSE
WETTC=HTT (14)

END IF

WETTC =HTT(14) IS FNWC WET TROPOSPHERIC CORRECTION IN METRES
WETTC =HTT(15) IS SMMR WET TROPOSPHERIC CORRECTION IN METRES

DRYTC =HTT(16) ! FNOC DRY TROPOSPHERIC CORRECTION IN METRES
DINSTC=HTT(18) ! NET INSTRUMENT CORRECTION IN METRES

IF (IGEOID.EQ.2) GEOHT=VAL
DHGHT=RAMM+GEOHT+BARC+SETC+OETC+DIONC+HTT (14)+DRYTC+DINSTC ! METRES
DHGHT=DHGHT-0.07D0*SWH ! SEA STATE BIAS CORRECTION
DHGHT=DHGHT-DELHC ! SOLID EARTH TIDE CONSTANT OFFSET RE-INSTATED
DDHT=DHGHT*1.D-06 | ALTIMETER HT IN MEGAMETRES

DIFF=DHGHT-SCHT - , ’

WRITE(2,300)DATE,NUM,DDHT, FI,LONG
FORMAT(F20.12,16,D17.9,2(1X,F12.8))

NUM=NUM+1
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READ(1,40,END=50)MLA,VALUE
FORMAT (2X,I5,3X,F7.4)
IF(MLA.LE.MBASE) GOTO 30

GOTO 60

MLA=60000 ! DUMMY END VALUE
CONTINUE T

CLOSE (UNIT=1) .
CLOSE (UNIT=3)
CLOSE (UNIT=4)

N=1

TYPE*, 'WHAT IS THE FIRST FILE TO BE READ IN?'

READ (6,110) STRING

WRITE (CHAR,110) STRING

FORMAT (All)

TYPE*, 'HOW MANY FILES ARE REQUIRED?'

ACCEPT*,NFILE

CONTINUE

IF (CHAR.EQ.'T01_114.DAT') CHAR='T02_001.DAT'

IF (CHAR.EQ.'T02_112.DAT') CHAR='T03_00l.DAT' .
IF (CHAR.EQ.'T03_078.DAT') STOP 'NO MORE ALTIMETER DATA FROM
SEASAT'

GDRDAT=' [ ROTHWELLDA.TAPES ] ' //CHAR

OPEN (UNIT=6 , NAME=GDRDAT , TYPE='OLD' , FORM= ' UNFORMATTED" )
READ(6,END=101) (II(J),J=1,8),(JI(J),J=9,31),(KRI(J),JI=32,33)
IF(RI(32).NE.O) GOTO 100

AGC=JI(25)*1.E-02

IF (AGC.GT.36.0) GOTO 100

AGCS=JI(26)*1.E-02

COMPUTE TIMES OF ALTIMETER MEASUREMENTS

DDY=DFLOTJ(II(1))/86400.D0 ! INTEGER PART OF TIME TAG IN DAYS
FDDY=DFLOTJ(II(2))*1.D-06/86400.D0 ! FRACTIONAL PART

DDY=DDY +FDDY

IDY=IDINT(DDY)

MJID=IDY +43509 | MJD OF START OF 1978 IS 43508
FRDY=DDY-DBLE(IDY)

IF(MJD.GT.MLA)FRDY=FRDY +1.D0/86400.D0 !t ADDING LEAP SECOND
DATE=DBLE(FLOAT(MJD)) +FRDY
IF (DATE.LE.DATEB) GOTO 100
IF (DATE.LT.DATEl) GOTO 100
IF (DATE.GT.DATE2) THEN
TYPE*,' EXCEEDED TIME SPAN'
GOTO 13
END IF
DATEB=DATE ;
IF (DABS(DATE-DLAST).GE.DIV) THEN
DLAST=DATE
GOTO 111 ;..
END IF
DA=DATE
HTA=DFLOTJ(II(5))*1.D-03 ! RAW HT IN METRES
GOTO 100
CONTINUE
DB=DATE
FI=(FLOAT(II(3))-90.E6)*1.E-06 ! FIRST APPROX TO PHI.USED IN RGO

CALCULATION OF GEOCENTRIC SOLID EARTH TIDE
(REF.:- GDR USERS HANDBOOK)

DELHC=0.202D0*(1.5DO*SIND(FI)*SIND(FI) - 0.5D0)*H2

LONG=FLOAT(II(4))*1.E-06 ! NADIR LONGITUDE
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PROGRAM CONVERT
REVISED AUGUST, 1989.

TO CONVERT THE ALTIMETER GDR TO THE REQUIRED SATAN USABLE
FORMAT.

REAL LONG

DOUBLE PRECISION HTT(9:18),DDY,FDDY,FRDY,RAMM,GEOHT,BARC,
SETC,OETC,DIONC,WETTC,DRYTC,DINSTC, DHGHT ,DBASE, DATE , DDHT , SCHT
+TSTART,H,HMIN,DAY,DATELl,DATE2,DLAST,DIV,DIFF,DREJ,DIF, VAL
,DIFG,DATEB,DA,DB,HTA,HTB, SHA, SHB,GA,GB, DHDT, DEN, SWH,H2 , DELHC

CHARACTER*1l CHAR,STRING,CH(11)*1,S51*3,C*3,52*%2,D*2,53*1
+E*1,GDRDAT*19

INTEGER*4 II(8)

INTEGER*2 JI(9:31)

BYTE KI(32:33)

EQUIVALENCE (CHAR,CH(1l))

DATA H2/0.609D0/

OPEN(UNIT=1,NAME="'STEPS.DAT',TYPE="'0OLD')
OPEN(UNIT=2,NAME='ALTOBS.DAT',TYPE="'NEW',FORM="'FORMATTED")
OPEN(UNIT=3,NAME='ORBIT.DAT',TYPE='0LD"')
OPEN(UNIT=4,NAME='START.DAT',TYPE="'0OLD"')
OPEN(UNIT=5,NAME="'SCHT.DAT',TYPE="'NEW' , FORM='FORMATTED"' )

TYPE*,'ENTER IN A 1 TO USE GDR GEOID'
TYPE*, 'ENTER IN A 2 TO USE OWN GEOID'
ACCEPT*, IGEOID

IF (IGEOID.NE.l.AND.IGEOID.NE.2) GOTO 11

IF (IGEOID.EQ.2) OPEN(UNIT=20,NAME='[.EXS]INTERP.DAT',TYPE='0OLD"

¢ FORM="'FORMATTED"' )
WRITE (5,14) IGEOID
FORMAT (Il)

TYPE*, 'TYPE IN MINIMUM TIME INTERVAL BETWEEN MEASUREMENTS'
TYPE*, ' (INTERVAL MUST BE IN MINUTES BUT CAN BE FRACTIONS OF A
MINUTE)'

ACCEPT*,TIME
DIV=DBLE(TIME)/1440.D0
RESID=0.D0

DSUM=0.D0

NUM=1

DATEB=0.D0

READ(3,'(A)') EPHEMFILE
READ(3,'(A)') FIELD
READ(3,250) HMIN,LENGTH
FORMAT(D10.2,16)
H=HMIN/1440.D0

STLNTH=FLOAT (LENGTH) *SNGL (H)
READ(4,10)JUNK

FORMAT(AL)

READ(4,20)DBASE, TSTART
FORMAT(2D12.5)
DAY=DBASE+TSTART/1440.D0
DATE1=DAY+12.D0*H
DATE2=DAY+DBLE(STLNTH)
MBASE=IDINT (DBASE)

SET UP LEAP SECCNDE

MLA=0
VALUE=0.0
CONTINUE
MLB=MLA
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CALCULATE ALTIMETER HEIGHT

RAMM=DFLOTJ(II(S))*1.D-03 ! RAW HT IN METRES
HTB=RAMM

SEAHT1=(DFLOTJ(II(7))~15.D+C4)*1.D-03
GEOHT=(DFLOTJ(II(8))-15.D+04)*1.D-03 ! GEOID HT IN METRES

IF (IGEQOID.EQ.2) THEN
READ(20,129) NNN,VAL
FORMAT(I6,D12.6)
IF (NNN.NE.NUM) STOP 'ERROR IN INDICES'
DIFG=GEOHT-VAL
GB=VAL
END IF

DO 200 J=9,18
HTT(J)=(DFLOTI(JI(J))=-15000.D0)*1.D-03 ! CORRECTIONS IN METRES
CONTINUE .
HIT(12)=HTT(12)*1.D+01 ! SEASAT MEAN SEA SURFACE
SWH=DFLOTI(JI(20))*1.D-02 ! SIGNIFICANT WAVE HEIGHT
SHB=HTT(12)
DEDT=9999.D0
IF (NUM.NE.l) THEN

DEN=(DB-DA)*86400.D0

IF (DEN.LE.1.5D0) THEN

DHEDT=(HTB~HTA)/DEN

END IF
END IF
JORNO=JI(31)
HTT(17)=HTT(17)*1.D+01 ! RADIAL S/C DIFFERENCE (DOD-GSFC)
DODGOD=SNGL(HTT(17))
SCHT=DFLOTJ(II(6))*1.D-03 ! COMPUTED S/C HT WRT REF ELLIPSOID
WRITE(S,701) SCHT,NUM,DODGOD,JORNO,DHDT
FORMAT(D20.12,16,F12.5,16,D16.8)

BARC =HTT(9) ! BAROMETRIC CORRECTION IN METRES

SETC =HTT(10) ! SOLID EARTH TIDE CORRECTION IN METRES
OETC =HTT(1ll) ! OCEAN TIDE CORRECTION IN METRES

DIONC =HTT(13) ! IONOSPHERIC CORRECTION IN METRES

IF(ETT(15) .NE.9.999) THEN
WETTC=HTT(15)

ELSE
WETTC=HTT(14)

END IF

WETTC =HTT(14) IS FNWC WET TROPOSPHERIC CORRECTION IN METRES
WETTC =HTT(15) IS SMMR WET TROPOSPHERIC CORRECTION IN METRES

DRYTC =HTT(16) ! FNOC DRY TROPOSPHERIC CORRECTION IN METRES
DINSTC=HTT(18) ! NET INSTRUMENT CORRECTION IN METRES

IF (IGEOID.EQ.2) GEOHT=VAL
DHGET=RAMM+GEQHT+BARC+SETC+OETC+DIONC+HTT(14)+DRYTC+DINSTC ! METRES

DHGHT=DHGHT-0.07D0*SWH ! SEA STATE BIAS CORRECTION
DHGET=DHGHT-DELHC ! SOLID EARTH TIDE CONSTANT OFFSET RE-INSTATED

DDHT=DHGHT*1.D~06 ! ALTIMETER HT IN MEGAMETRES
DIFF=DEGHT~SCEHT

WRITE(2,300)DATE, NUM,DDHT, FI,LONG
FORMAT(F20.12,16,D17.9,2(1X,F12.8))

NUM=NUM+L
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READ(1,40,END=50)MLA,VALUE
FORMAT(2X,I5,3X,F7.4)
IF(MLA.LE.MBASE) GOTO 30

GOTO 60

MLA=60000 ! DUMMY END VALUE
CONTINUE '

CLOSE (UNIT=1)
CLOSE (UNIT=3)
CLOSE (UNIT=4)

N=1

TYPE*, 'WHAT IS THE FIRST FILE TO BE READ IN?'

READ (6,110) STRING

WRITE (CHAR,110) STRING

FORMAT (All)

TYPE*, 'HOW MANY FILES ARE REQUIRED?'

ACCEPT*,NFILE

CONTINUE

IF (CHAR.EQ.'TOl_114.DAT') CHAR='T02_00l.DAT'

IF (CHAR.EQ.'T02_l112.DAT') CHAR='T03_001.DAT' #
IF (CHAR.EQ.'T03_078.DAT') STOP 'NO MORE ALTIMETER DATA FROM
SEASAT'

GDRDAT=' [ROTHWELLDA,TAPES]'//CHAR

OPEN(UNIT=6,NAME=GDRDAT, TYPE="OLD', FORM='UNFORMATTED" )
READ(6,END=101)(II(J),J=1,8),(JI(J),J=9,31),(RI(J),J=32,33)
IF(KI(32).NE.O0) GOTO 100

AGC=JI(25)*1.E-02

IF (AGC.GT.J36.0) GOTO 100

AGCS=JI(26)*1.E~02

COMPUTE TIMES OF ALTIMETER MEASUREMENTS

DDY=DFLOTJ(II(1))/86400.D0 ! INTEGER PART OF TIME TAG IN DAYS
FDDY=DFLOTJ(II(2))*1.D-06/86400.D0 ! FRACTIONAL PART

DDY=DDY +FDDY

IDY=IDINT(DDY) )

MJD=IDY +43509 ! MJID OF START OF 1978 IS 43508
FRDY=DDY-DBLE(IDY)

IF(MJD.GT.MLA)FRDY=FRDY +1.D0/86400.D0 | ADDING LEAP SECOND
DATE=DBLE(FLOAT(MJD)) +FRDY
IF (DATE.LE.DATEB) GOTO 100
IF (DATE.LT.DATEl) GOTO 100
IF (DATE.GT.DATE2) THEN
TYPE*,' EXCEEDED TIME SPAN'
GOTO 13
END IF
DATEB=DATE
IF (DABS(DATE-DLAST).GE.DIV) THEN
DLAST=DATE
GOTO 111
END IF
DA=DATE
HTA=DFLOTJ(II(5))*1.D=03 ! RAW HT IN METRES
GOTO 100
CONTINUE
DB=DATE
FI=(FLOAT(II(3))-90.E6)*1.E-06 ! FIRST APPROX TO PHI.USED IN RGO

CALCULATION OF GEOCENTRIC SOLID EARTH TIDE
(REF.:- GDR USERS HANDBOOK)

DELEC=0.202D0*(1.5D0*SIND(FI)*SIND(FI) - 0.5D0)*H2

LONG=FLOAT(II(4))*1.E-06 ! NADIR LONGITUDE
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1.

Introduction

This document is intended to give a brief description of the altimeter and
crossover processing software required to produce satellite observational data
compatible with the SATAN software package [1]. Also contained herein are
computer listings of the programs CONVERT (altimetry) and CROSS
(crossovers).

The program CONVERT

CONVERT is a FORTRAN program to transform the altimeter data from GDR
[2] format into SATAN [1] usable form. It is designed to be run interactively
since various "TYPE *' statements appear, which require responses. Several
input files are required by the program, namely STEPS.DAT (giving the times

of leap seconds in the UTC system, where UTC = Universal Time
(Coordinated) [3]), START.DAT (giving the epoch for the UTC scale),
INTERP.DAT (if it is desired to use a derived geoid) and obviously the
altimeter GDR's. More information on the GDR's can be found in section 4.
Prior to running CONVERT, the above files should contain the required
information for the orbital arc to be analysed.

Upon running CONVERT, the first TYPE *' statement asks to which geoid the
altimeter measurements should be referred. A response of '1' indicates that the
GEM-10BD geoid [4], that which is on the GDR tapes, should be utilized
whilst a response of '2' specifies using that which is contained in the file
INTERP.DAT (see section 5).

The next 'TYPE *' statement asks for the sampling interval in minutes, the

minimum value possible, being 1/60. An interval of 1 or 2 minutes usually
provides an adequate sample of data with a higher sampling rate not necessarily
adding any extra orbital information, whilst greatly slowing down the
processing. Also it should be noted that a large amount of altimetry, can
'swamp' other observational data unless it is down-weighted appropriately in
the data reduction program.

The final 'TYPE *' statement asks for the name of the first GDR file to be
processed, together with the total number of files. The response must be made
inthe T @ * —1ij k.DAT format (see section 4). The number of files specified
should be sufficient to span the length of the orbital arc to be analysed.

The program processes the GDR files until one of two conditions occurs. It
will stop when it has either processed all the input files, or it has reached the end
of the orbital arc length. If the former of these conditions occurs, the message
"FINISHED NUMBER OF FILES" will appear on the screen. This could
mean that insufficient data was input to the program so it is necessary to check
the time of the last altimeter observation in the output file ALTOBS.DAT. A
large time difference between this and the end of the orbital arc means that the
program should be re-run inputting more GDR files. If the message
"EXCEEDED TIME SPAN" appears, then enough data was input to the

program.

The ouput file ALTOBS.DAT contains the date, index, altimeter height
measurement, latitude and longitude of each sampled observation. This file is
used in program SORTS to chronologically order the altimeter observations
with other observational data and in the data reduction program to minimize the
altimeter residuals. The output file SCHT.DAT contains information on the
NASA GSFC and DOD computed orbits for each sampled altimeter
observation. It too, is used in the data reduction program.

m



lgorithms within CONVERT

CONVERT contains two main algorithms, one to determine dh°/dt, h° being
the observed altimeter height and one to process the altimeter measurement -

itself. The value of dh®/dt is written as DHDT in the program and is used in

the data reduction program to determine a timing error on the altimeter. The
algorithm in CONVERT is

DHDT = (HTB-HTA)/DEN (1)

where HTB is the raw altimeter measurement at the point in question, HTA is
the same at the previous measured point and DEN is the time span between the
two in seconds. If DEN is larger than 1.5 seconds, DHDT is flagged as
unreliable, being given the value 9999.D@. Such a value is not used to
determine the timing bias. Typically DEN = sampling interval of GDR tape.

The altimeter observation is written as DHGHT within the program. It is
evaluated using the following algorithm :-

DHGHT = RAMM + GEOHT + BARC + SETC + OETC + DIONC + WETTC

+DRYTC + DINSTC - 0.07* SWH - DELHC 2)
where RAMM is the raw altimeter measurement
GEOHT is the geoid height with respect to the reference ellipsoid
BARC is the barotropic correction
SETC is the solid earth tide correction
OETC is the ocean earth tide correction
DIONC is the ionospheric correction

WETTC* is the wet tropospheric correction
DRYTC is the dry tropospheric correction
DINSTC is the instrument correction

and SWH is the significant wave height, h, .

3

All of these terms are contained on the GDR files except perhaps the geoid
height which could be read from INTERP.DAT if this is desired.

Further, DELHC = 0.202 @ sin2¢ — 17) hy, ¢ being the geocentric latitude

(taken as the geodetic latitude within the program) and h, is the second order
Love number (hz = 0.609).

*WETTC can be chosen from two values, the FNWC or SMMR value. Both
exist on the GDR files but data outages occur for the SMMR value. Hence the
FNWC value is used throughout.

This algorithm does not account for sea surface topography, but once a model
for this is derived, a term can be added to equation (2).

The GDR files

The GDR files were originally recorded on three magnetic tapes in binary
format. They were converted to decimal integer format as explained in [2]. Tg
remain consistent with the original numbering system the files are named T 2

—1jkDAT where * represents 1,2 or 3, indicating the tape numberand ijk

is an integer ranging from @31 to 113, for the file number of that specific tapg.
Since the altimetry spans July 6 to October 9, T@ 1 - QQI'DAT °%“‘?§p§§fs
to data beginning on July 6. The rest follow in chronological order. 2y 53 24
which files correspond to a particular time period, it is nr:ce:ssarirl tct)ht;eg sl
printouts which give the first five records of each file on each of the e

3



The first integer of each record corresponds to the observation time, in seconds,
from the start of 1978. This can be readily converted to MJD format thus
identifying the first GDR file needed as input to CONVERT.

Derived geoids

The FORTRAN progam LEG [5] is used to compute the height of the geoid
above the reference ellipsoid, given any set of geopotential coefficients, i.e. the
gravity field. The output from this program, LEG.DAT, contains this geoid

information for a %-o x %-o grid on the earth's surface. In order to compute the

derived geoid height at each altimeter observation time, it is necessary to f’pst
run CONVERT (to get the observation times) and then to run INTERP which
interpolates the geoid heights at these times. The output from this program,
INTERP.DAT, can then be used in CONVERT if desired. Note that this
process involves running CONVERT twice so it is essential that the same
sampling interval is used in both instances. Also, the procedure can be
performed once a converged orbit has been obtained. The reduction program is
run using altimetry referred to each derived geoid in turn. There is no need to
re-run the orbit generation program. Analysis of the differences in the results
from using different geoids can give insight into the errors therein.

The program CROSS

The method adopted to determine the position of the crossover points is a
geometrical one due to Rowlands [6]. The processing is executed in the
FORTRAN program CROSS which also calculates the crossover height
differences at these points for any given ephemeris.

Initially, the ephemeris is read in from the file EPH.DAT, an output file from
the orbit generation program. This is used to determine the equator crossings of
the orbit, by checking for a change in sign of the z—coordinate of position. The
two points either side of the equator, are then used to linearly interpolate the
time and longitude of the actual crossing. The equator crossings divide the
ephemeris into half revolution arcs, the start and end of each arc being identified
by one crossing. Since northern hemisphere arcs can only intersect with other
northern hemisphere arcs and likewise for the southern hemisphere, data from
each hemisphere is processed separately.

Subsequent processing involves comparing every arc from one hemisphere with
every other arc from the same hemisphere. Using the longitude of the equator
crossings of two arcs it is possible to approximate the longitude of the crossover
point between them (see Figure (1)).

Figure 1: Schematic description of crossover point in northern hemisphere
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The approximate longitude, A, of the crossover point between arcs j and k
can quite easily be found from the geometry, as shown in Figure 1. However,

care is needed in deriving a mathematical formula for Ay in terms of A;;, A,

Ax1» Ayp due to the discontinuity at the Greenwich Meridian. Simply averaging

all four values as Rowlands does, could gwe anomalous results. In pracucc, it
turns out that there are six different situations which can arise, giving rise to six
different mathematical formulae for a single crossover between any two arcs.

For a double crossover (which can arise because Ay ; —Ayp > 180") four
extra conditions could arise. All need to be checked.

Once calculated, the approximate longitude, A, is compared to a time-
longitude map derived from the ephemeris, to find tj\e approximate times t; and

t, of the crossover on arcs j and k, respectively. The position and velocity
at t; (respectivcly tk) are then used to calculate A, (rcspcctivcly lk). a
more accurate longitude of the crossover point, ¢; (respectively ¢,),
the latitude of the crossover and 0A;dx, a¢}-/a_&.
(respectively 9, /dx and 00, /0x).

These values are used to differentially correct the times t; and t, to give more

accurate values. The procedure depends on the fact that the latitude and
longitude of the crossover point is the same on each arc.

Assume that t;, t are the corrected crossover times on the two arcs. These
give rise to the more accurate values of latitude and longitude, ¢”;, ¢ and 1,
A’y respectively. Then

0 = 9% (3)
and N o= Ny (C))
? do;
where ¢ = ¢ — dy ['(Ttl) (%)
and di. = ¢t - t.

Similar equations to (5) exist for ¢’y, A’;, Ay. On substituting these into (3)

and (4)
A - dy (%‘) P [%—k) ©
¢; — dy; (d?i?) = ¢ — dty (dq"‘} )

the solution of which is given by
(dtj) _ dAy/dt —dA,/dt —lk ®)
dte) ~ {do/de —d¢k/dt
Then t’j = tj - dtj and t'k =t - dtk-

New values of A, Ay, etc. are found by interpolating within the ephemeris at

tj and t, TCSPCCHVCIY The procedure is repeated until some prescribed
toIerancc levelon |dy| and |dt| is attained.




(1]

[2]

[3]
(4]

(3]

[6]

Finally, the crossover times t;, t, are used to interpolate, either linearly or
cubically, in the GDR files to find the pseudo-altimeter height at each point. The
observed crossover height difference is then the difference between the two
pseudo-altimeter measurements.

i : There is an input file to CROSS called
TAPE.DAT. This contains the information about how to interpolate within the
altimeter GDR's as well as which GDR file is the first to be used as input.
These parameters should be checked prior to running CROSS, which is most
conveniently performed as a background job due to its processing time.
Running the programs
1)  Obtain appropriate state-vector named START.DAT.
2) Edit REDIN.DAT, ORBIT.DAT accordingly.
3) Run OBSSEL to select laser observations for required period.
4) Run N@6Q to obtain planetary polynomial data for same.
5) EditREDIN.DAT to accept OBS.DAT the output from OBSSEL.
6) Run PASS, to sample the laser data, output in OBSERV.DAT.
7) Edit REDIN.DAT to accept OBSERV.DAT.
8)  Check for first altimeter GDR file to be read.
9) Run CONVERT ensuring that enough GDR files are input.
10) Run CROSS to obtain crossover data output to HDIFF.DAT (note this
needs ephemeris data from a previous run of the orbit generator).
11) Run SORTS incorporating any/all data types (laser data should always be
incorporated).
12)  Run orbit generator.
13) Run data reduction program solving for certain parameters, output to
SOLNCP.DAT.
14) Rename SOLNCP.DAT to START.DAT.
15) Goto 12).
16) Repeatsteps 12) to 15) until convergence is attained.
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