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Summary

With the advent of distributed computer systems with a largely transparent user
interface, new questions have arisen regarding the management of such an
environment by an operating system. Onefertile area of research is that of load
balancing, which attempts to improve system performance byredistributing the
workload submitted to the system by the users.

Early workin this field concentrated onstatic placement of computational objects to
improve performance, given prior knowledge of process behaviour. Morerecently
this has evolved into studying dynamic load balancing with process migration, thus
allowing the system to adaptto varying loads.

In this thesis, we describe a simulated system whichfacilitates experimentation with
various load balancing algorithms. The system runs under UNIX and provides
functions for user processes to communicate through software ports; processes reside
on simulated homogeneousprocessors, connected by user-specified topology, and a
mechanism is included to allow migration of a process from one processor to another.

Wepresentthe results of a study of adaptive load balancing algorithms, conducted
using the aforementioned simulated system, under varying conditions; these results
showtherelative merits of different approachesto the load balancing problem, and we
analyse the trade-offs between them. Following from this study, we present further
novel modifications to suggested algorithms, and show their effects on system
performance.
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HAPTER1

INTRODUCTION

With the traditional Von Neumannarchitecture reaching the physical limits ofits

capabilities, the trend in computer systems has been towards distributing processing

power over a numberof processors executing in parallel and connected via a

communications medium. This can be viewed as a natural extension to the

multiprogramming mechanism usedto share a single CPU between a numberofuser

processes, which, through careful managementby an operating system appear to have

exclusive access to the CPU,but are in fact being given periods of processortime,

interleaved with their peers; thus when more than one processoris available much of

this pseudo-parallel execution becomestruly parallel.

However, the advancesin distributed processor technology need to be followed by

similar developments in the design and implementation of operating systems capable of

managing this new environment. Theart of operating system design for uniprocessor

architectures has made significant steps forward since the "monolithic monitor"

concept, but new problemsarise for distributed systems. Weare interested in such

systems where processors are autonomous,each having their own local memory and

resources, and therefore the questions of mutually exclusive access to data structures

referring to the state of the overall system, synchronisation of operation and general

consistency have added complexity over the uniprocessorcase.

One of the most important questions which mustbe resolved to gain the maximum

benefits of a distributed system, is that of allocating user processes to physical

processors, since these are now a multiple rather than a shared resource. Initial work

in this field concentrated on placing individual modules which constitute a user
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program on different processors in a static manner, taking into consideration the data

flow between modules, and attempting to minimise interprocessor communications

costs; thus the thread of control of a program would movefrom one processor to

another. This static allocation method, however, does not take accountof the load

imposed on processors in the system, and doesnot adapt to changes in the nature of

user processarrival rates. Given this observation, researchers have striven to develop

systems where the assignmentof processes to processors is performed in a manner

which balancesthe overall system loadin order to avoid certain processors being

overloaded whilst others remain idle.

Load balancing is an intuitively worthwhile goal, but necessitates some means of

maintaining a global view of system activity, and a negotiation mechanism for

redistributing processes to nodes on a network where they will most benefit in terms

of execution time. A simple approach would beto havea central allocation processor

which wasperiodically sent load information from all other processors, and make

process placement decisions based onits last-knownstate of the system. This

approach, however, presents a single point of failure and could create a bottleneck.

Analternative method is to distribute the responsibility for load measurement amongst

all processors and to allow them to cooperate in making process-to-processor

allocation. Again this approachisintuitively worthwhile, but adds complexity to the

system in dealing with possibly out-of-date state information.

Studies have been madeof the various methods which present themselves for solving

the aforementioned problems, but they have generally been restricted to an

environment where processes are considered as independententities, with little or no

interaction. The aims of the study which we are conducting are threefold : first we

develop a simulated network of loosely-coupled processors, with an operating system
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kernel, capable of supporting the creation, execution and destruction ofgroups of user

processes, communicating through a message-passing mechanism; secondly we

investigate a numberof load balancing algorithms, on the simulated network, whose

workloadis typified by small, independentprocesses,in order to gain insightinto the

detailed operation of such algorithms and the effect this has on overall system

performance; finally we investigate load balancing algorithms working in an

environment of cooperating process groups, and study the relative merits of each

algorithm, together with further improvements which can be madebyanalysis ofthe

trade-offs involved betweencreating a stable, balanced system andthe costs incurred

in bringing this about. Thestructureofthe thesis is outlined below.

In Chapter 2, we presenta brief overview of issues which are inherentin the design of

"supervisory software” for distributed systems, to describe the environment for which

our studyis targetted.

Chapter 3 examines the approaches taken by other researchers to the problem of

processorallocation;the first two parts of this chapter deal with the initial work in this

area, based mainly onstatic allocation policies; the third part reviews approaches taken

to adaptively allocate processes to processors, dependent on the current load on the

system, and presents methods which have been used to achieve processor cooperation

in this task.

Chapter 4 gives details of the design and implementation of both the simulated

loosely-coupled system which we have developed, together with the operating system

kernel whichruns on each processor.

Chapter 5 describes the manner in which the simulated system was usedin order to

18



investigate a numberof different methods for achieving adaptive load balancing under

varying workloads.

Finally, in Chapter 6, we offer our conclusions, made on the basis of the study which

we have performed, as to the relative merits of the load balancing algorithms

investigated.

Appendices A and B give detailed results in graphical form of our study of load

balancing algorithms, in environments of independentuser processes and cooperating

process groups,respectively.

The programlisting for our simulated system is included in Appendix C,together with

a numberof technical implementation notes.
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HAPTER 2

DISTRIBUTED SYSTEMS

Thepotential benefits of distributing the processing requirements of a computer system

over a number of individual computation units has long been recognised

[Kleinrock85]. Such systems canbe categorised in a variety of ways [Enslow77], but

we have chosen to group them asbeing either tightly-coupled or loosely-coupled

systems.

In a tightly-coupled system, processors share access to a commonset of memory

modules, with an arbitration mechanism ensuring that the contents of this shared

memory remains consistent and, normally, there will be a central clock used for

Synchronisation purposes. This environment gives very fast interprocess

communications facilities for use in fine-grained parallelism, but suffers from

contention problemsfor the shared memory modules when the numberof connected

processors increases.

A loosely-coupled system, on the other hand, consists of a numberoftotally

autonomous processors, each with its own clock and local memory whichis

inaccessible to its peers, connected via an external interprocessor communications

medium. A processor will also have its own physical resources, such as disk drives,

which are underits control, and thus access to these resources by other processors

must be negotiated through the use of interprocessor messages. Since the cost of

communications between user processes residing on separate processors in this

environment is non-negligible, loosely-coupled systems offer only reasonably

coarse-grained parallelism in the developmentof user applications. It is towards this

type of system that the work presentedin this thesis is directed, where in addition all
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processors are identical and will thus allow code written and compiled for one

processor to run on any other node in the network. Hence weare interested in

loosely-coupled systems of homogeneousprocessors.

In order to control a loosely-coupled architecture, operating systems need to be

designed to handle the additional complexities of truly parallel execution, and to extract

its maximum benefits. In the following sections we present a broad overview of

operating system considerations, categorised as Network Operating Systems (which

have generally been designed as a networking extension to existing system software)

and Distributed Operating Systems (which have been designed from their original

conception for a distributed environment).

2.1 NETWORK OPERATING SYSTEMS

Network Operating Systems (NOS) can be viewedasa first step from thetraditional

uni-processor design, towards an Operating System whose whole conceptual basis is

centred arounda fully distributed environment. The early motivation to build such

systems wasessentially the ability to login to a remote machine andperform file

transfers across the network. The first significant example of a NOS wasthe

ARPANET[McQuillan77] which was developed in the 1970s; nodes on this network

are very widely dispersed and its main use is for exchange of technical and research

data, and the ability to access specialised hardware belongingto otherinstitutions,

whose use is not frequent enough to warrant purchasing such equipment. With the

rise to prominence of the UNIX operating system [Ritchie74] there have been many

networked versions, with varying degrees of sophistication, developed by research

groups and commercial concerns[Blair82; Brownbridge82; Karshmer83; Luderer81;
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Rowe8?2].

NOSsare generally constructed by placing an extra layer of software either "on top of"

or "within" an existing conventional operating system, to provide facilities for

accessing remote resources;the distributed nature of the system is not hidden from the

user, and so such operationsas file access and program execution are performed with

very little transparency(the actual location of objects is explicitly stated in the naming

mechanismsused).

To enable processes to access data remotely, a file system suitable for a network of

loosely-coupled nodes is required. In a typical NOS one canidentify two main types

of file system. The least sophisticated of these provides no access to remotefiles by

system calls, but instead uses simple file transfer software to move the data concerned

from the processor on whose secondary storageit is held onto the processor which

requires access to it. Examplesofthis are the "uucp" program [Nowitz79] to copy

files from one UNIX system to another, and the "Kermit" package, designed to Carry

out file transfer across a variety of manufacturer's computer systems. A more

sophisticated solution is to establish some form of "super root" for the file system

which spans the whole network and can be thought ofas being placed "above" each

processor's ownrooted file system assuminga hierarchical structure; for example a

pathnamegiven as "/../mc1/ian/project/kernel.c" will refer to a file called "kernel.c"

residing in a directory "ian/project"' on the "mc1" processor (with "mcl"placed directly

"below" the super root). Two useful examples of such file systems are those of the

Newcastle Connection [Brownbridge82] and Sun NFS [SUN86], which are both

enhancements of standard UNIX systems and hence weclass them as NOSs,since

they were not designed from scratch for a distributed environment.
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A further noteworthy aspect of a NOSis the question of program execution. A very

elementary solutionis to require users to explicitly login to a remote machine, and then

to execute programsin an entirely local fashion (thus needing very little additional

operating system support). Alternatively a facility may be provided enabling the user

to execute programs remotely whilst remaining loggedin to just one machine;in this

case the environmentof the program (e.g. current working directory, user privileges

etc.) are transferred to the processor on which the program is to execute, and when

execution terminates, the environment of the user returns to his local machine.

Another approach is to have a system call, say, creat eprocess (), to whicha

parameter is passed,givingthe identity of the processor on which the process should

execute; this remote process could then make a system call similar to the UNIX

exec () to execute a program.

2.2 DISTRIBUTED OPERATING SYSTEMS

Weshall now consider the design of operating systems intended, right from the

conceptual stage, to be run on a distributed machinearchitecture. Such systems are

typified by their highly transparent user interface, hiding the underlying structure of

the network, providing what appears to be a single, large, powerful machine. A

number of important considerations can be identified which are raised by the

distributed nature of a collection of autonomous loosely-coupled computers:

- communicationsprimitives

- naming conventions

file systems

fault tolerance

resource allocation
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2.2.1 Communications Primitives

Since each processor has its own local memory whichis inaccessible to its peers,

interprocess communication must be achieved via a message-passing mechanism,

provided by system calls in the operating system kernel. Considerable effort has been

made by researchers [Liskov82] to determinethe relative merits of making messaging

primitives (i.e. SEND and RECEIVE) function in a blocking or a non-blocking

manner. The advantage of non-blocking primitives is that they allow flexibility in

program writing, since computation can be performed in parallel while waiting for I/O

operations to complete; however this does have drawbacksin that it introduces

non-determinism into process execution, because ordering of events may vary for

different scheduling situations. Blocking primitives have often been used to

implement a client-server model of computation, where a "client process" sends

messages requesting a specific operation to be carried out by a "server process"; when

the server has processed the request, it sends results back to the client. As can be seen

this is similar to the procedure call-return mechanism in a sequential program and has

been used to implement Remote Procedure Call (RPC)facilities [Saltzer84].

2.2.2 Naming Conventions

In centralised systems, information concerning the state of objects is held in readily

available central tables, but in a fully distributed system,this is often not possible and

is anywaynot desirable since this would create a single point offailure in the network.

Onesolution to this problem,is to elect a processor as a name server whichis then

used to map locally-known names onto unique network identifiers [Needham82];

additional robustness can be achieved by passing this responsibility onto another

processorif the main server goes down. Alternatively a broadcast mechanism could
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be used, where the nameofthe object to be accessedis sent to every other processor,

and a reply is sent back from the processor holding that object; however this does tend

to create added interprocessor communications overheads.

2.2.3 File Systems

In contrast to most NOSfile systems, in a true Distributed Operating System, the

location ofa file is not usually includedas part of its pathname (analogousto thefact

that in a centralised system,a file's physical location on a disk is not mentionedin that

file's name). The operating system implicitly handles the local or remote nature of a

file, and it is not necessary for the user to explicitly mount remotefiles into local

directories. As a consequenceofthis access transparency,files can be freely migrated

around the network without changing their accessibility to user processes; this

migration has advantagesin that it allows easy network reconfiguration, but mayresult

in files being moved far away from the processes wishing to use them, and sothis

must be managedvery carefully.

In order to increase resilience in the face of processor crashes, many systems use

replicas of files which can be used when the original becomes corrupted or

inaccessible; this introduces the problem of keeping copies up-to-date, i.e. consistent

[Svobodova84]; depending on the application's environmentthis consistency can be

either weak (files are eventually up-to-date) or strong (files are guaranteed to always be

up-to-date).

2.2.4 Fault Tolerance

Due to the separate nature of components in distributed systems, they offer great
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potential for building fault-tolerance into the operating system: one processor going

downshall nothavethe catastrophic effect it does in a centralised system; "back-up"

processes and processors which are activated when crashes occur can significantly

increase the "up time” of the network. Multiple versions of files can also be

maintained, and considerable research has been conducted into methodsof providing

atomic actions on these files [Lampson81], and solving the problem ofserialising

access to ensure that the user processes’ view ofa file remains consistent.

2.2.5 Resource Allocation

A feature of operating system design which hasextra difficulty and importance in a

distributed system is that of allocating resources to processes; since processes on one

processor can now request and be given resources residing remotely, there must be

some form of co-operation strategy employed to ensure that this environmentis

correctly maintained. Indeed since no central resource tables exist, problems of

synchronisation, deadlock and efficient resource management become even more

complex anderror-prone, as the controlling system may haveto deal with out-of-date

information regardingthestate of the system.

Onevital resource whose allocation must be carefully considered is the CPU of each

node on the network. Since we nowhavethe potential of running user processestruly

in parallel, rather than the pseudo-parallelism of time-shared uni-processor systems,

the full benefits of this can only be realised by sensible process-to-processor

assignment. We can identify two main approachesto solving this task, and we term

these network scheduling policies, and load balancing policies. In a network

scheduling policy, some co-operation is needed to ensure that the correct processes are

being scheduled on each processorat any onetime; hence the problem is viewedas in
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a traditional uni-processor system, but with the added complication that the "process

table" is now distributed across the network, thus makingthe findingof available slots

a much moredifficult exercise. Load balancing policies, on the other hand, assume

that each processortakescare of its own process scheduling, independently of other

processors, and that the most important consideration is where to place processes on

the network and, once placed, whether they should be migrated to an alternative

processor as the nature of the system load changes. This area has received much

interest and remainsa fertile field for research; it will be discussed in considerably

more depth in the next chapter, since it formsthe basis for this thesis.

2.2.6 Example Distributed Operating Systems

In the following sections wepresent a brief description of three Distributed Operating

Systems, which webelieve to have features, desirable in the environmentfor which

weare studying load balancing algorithms. In particular such features as distributed

file systems (LOCUS), process migration mechanisms (DEMOS/MP)andthecreation

of cooperating process groups (V-System). This is far from an exhaustivelist of such

systemscurrently available, but highlights certain essential considerations.

2.2.6.1 LOCUS

The LOCUSDistributed Operating System [Walker83; Popek85] was developed at

UCLAto run on an Ethernet network [Metcalfe76] of 17 Vax-11/750's , in a manner

which makes it upward compatible with UNIX. Ofparticular note in LOCUS,are the

mechanismsprovided for maintaining a network-wide file system andfor creating and

executing processes remotely.
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The LOCUSfile system is a single-rooted tree, consisting of a collection offilegroups,

where a filegroup corresponds to a standard UNIX file system. The tree is

constructed by a series of mountoperations with a considerable amountofreplication

of directory entries to increase tolerance of the system to individual site failure and

network partitioning. The userinterface to this tree structure is entirely transparent

downto the system call level, in that the physical location of a resource which is being

referred to, cannotbe discerned from its pathname.Allfile operationsare divided into

three logical parts defining the Using Site (the site from wherethefile is being

accessed), the Storage Site (where the file is physically held) and the Current

Synchronization Site (the site responsible for controlling mutually exclusive and

consistentaccess to thefile). This division is transparent to the user process which

uses the standard UNIXfile operations in the usual manner, leaving the operating

system to resolve all location and consistency issues. Resistance to system faults is

increased byallowingfile replication. In order to maintain file consistency a shadow

page mechanism is usedto keep both the original and changed versionsofa file until

an atomic file commit operation is performed;facilities are also includedfor resolving

conflicts due to inconsistent versions of replicated files after the network has been

partitioned and subsequently recovered [Parker83].

Processes can be coated with equal ease either locally or remotely, with process

location being entirely underthe control ofthe user (thus the operating system does not

perform any kind of load balancing). The usual method for remote process execution

is via a local fork () system call (as in UNIX) followed by a remote exec ();a

token mechanism is used to support system data structures shared between parent and

child processes (such as open file descriptors which are passedto the child uponits

creation). UNIX provides a numberof software signals to announceeither child or
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parentprocess failure, and in LOCUS these have been augmentedby signals referring

to failure of the node on whicha parentorchild process is executing.

2.2.6.2 DEMOS/MP

The DEMOS/MP operating system [Powell83], developed at the University of

California in Berkeley, is a modification of the DEMOS[Baskett77] system allowingit

to run in a loosely-coupleddistributed environment; the addition of an efficient process

migration mechanism is of particular interest and relevance to our work. The

designers of the system intended that such a mechanism would be useful for load

balancing considerations, moving processesclose to the resources which they use, and

providing fault tolerance; they also pointout that operating systems whichefficiently

allow process migration are a rare commodity.

All interactions between processes in DEMOS/MP are message-based,including those

between a processor's kernel and its user processes and between kernels resident on

separate processors. The kernel of a processoris responsible for controlling access to

its own local resources, but kernels cooperate via message-passing to provide a user

process with a network-wide transparent interface. Whilst the kernel provides all

primitive functions of the system such as process execution and the message-passing

mechanism,all higher-level operating system tasks are carried out by a numberof

system server processes.

The fundamental underlying feature of DEMOS/MP which implements the

message-passing primitive operationsis that of the "link". A link is an address which

specifies the destination process to which a message should be sent, and this address

consists of a network-wide unique processidentifier, together with the identity of the
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processor which wasthe last knownlocation of that process. Whilst the former of

these two parts of a link never changes,the latter will be modified when a process

migrates from one processorto another. The migration ofa process will thus involve

updating all network-wide links to that process (since its last known location will now

be different); in addition to this, any messages for the migrant process must be

guaranteed delivery, even if they were sent to the process's previous location. In

order to deal with the problem of message re-routing, DEMOS/MP places a

forwarding address on the processor from which a process has just migrated; any

messages whichhad already arrived for the migrant processare transmitted along with

its code and data segments when it moves, and any subsequent messages will be sent

on using the forwarding address. Since the designers of DEMOS/MP wishedto avoid

searching the entire system in order to update all links which are out-of-date due to

process migration, whenever a message is forwarded,a further special messageis sent

indicating the new valuefor the link for which the message wasoriginally intended.

In this manner,links to a migrant processareall gradually brought up-to-date.

Since all requests for service from the kernel are made via the link mechanism,this

makes process migration considerably easier, and thus preempting a process and

movingit to another location can be performedatvery little extra cost (since the only

information which needsto be sentto a process's new location, in addition to its code

and data, are its swappable and non-swappable state which amountto 600 bytes and

250 bytes respectively).

2.2.6.3 The V-System

The V-System [Berglund86; Cheriton84] was developed at Stanford University as a

distributed operating system for a number of SUN workstations connected via
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Ethernet. Its basic philosophy is to create an environment where inexpensive

processes can run with an efficient interprocess communications mechanism. The

V-Kernel carries out operations which can be categorized as process and memory

management, interprocess communication and device management; all other system

resourcesare controlled by server processes which implement a client/server model of

interaction, by using synchronous send andreceive primitives to pass messages

between a requesting user process(the client) and the appropriate server process (the

server).

Closely cooperating lightweight processes are created as a "team", executing in a team

address space under the control of team server processes; the team address space is

used for fine-grain data sharing, andall processes in a single team must execute on the

same workstation. Processes communicate by using synchronous sendandreceive

primitives to exchange messagesdirectly, or to pass permissions to read from orwrite

to their address space. A numberof logically related processes can be collected

together to form a process group with a unique groupidentifier, and the members of

such a group may execute on different processors; within a group, the system supports

either one-to-one communication or one-to-many communication (i.e. one process

broadcasting a messagetoits entire group [Cheriton84]).

The process group mechanism is used to enable a user to request remote execution of

one or several of his processes. All of the team servers are considered to be one large

group, and so a request for remote execution is simply broadcast using the

one-to-many communicationsfacility, and team servers on available processors reply

by announcingtheir willingness to accept work; whena suitable destination processor

has been found, the team server on that processoris sent a message requestingit to

begin execution of the required task.
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HAPTER

ROCESS ALLOCATION ATEGITE,

Since it has been shown [Zhou86b] that the CPU is the resource which is most

contended for in a computer system, an efficient mechanism must be found for

performing processorallocation in a distributed system. Below wepresentpreviously

studied approachesto this problem, in three main categories:

- distributed scheduling

- static load balancing

- adaptive load balancing

3.1 DISTRIBUTED SCHEDULING

The question of how to schedule processesin a distributed manneris normally posed

for tightly-coupled multiprocessor architectures [Gonzalez77; Tuomenoksa82; Kain79;

Hwang85] where there exists some easily maintainable source of global time control.

In loosely-coupled systemsit is usual for each processor to independently apply a local

scheduling policy to the processes which have been assignedtoit in a globally-agreed

fashion. The following two approachesillustrate important points in the choice of a

processorallocation strategy.

3.1.1 The Medusa Approach

Work conducted by Ousterhout [82] for the Medusa Operating System [Ousterhout80]

running on the Cm* multi-microprocessor [Swan77]is of particular interest, sinceit
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tackles problemsof obtaining maximum parallelism and minimising process waiting

due to interprocess communications costs, which are non-negligible in loosely-coupled

systems. Ousterhoutstates that, in a uni-processor system, assuminga client-server

model ofprocess interaction, a process which requests a service from oneofits peers

must relinquish the CPU so that the servicing process may be allowed to run, thus

incurring the overhead of two context switches for this operation. If, however, we

have a multiple processor system and the two processes are executing on different

processors, these context switches may notbe necessary, since they mayruntruly in

parallel. In order to gain the full benefits of this fact, processes whichinteractin this

manner, form a process working set and should be scheduled at the sametime, similar

to the way in which page working sets should be co-resident in virtual memory

management systems [Denning80]. Identifying process working sets dynamically is

too difficult and time-consuming so in Medusa the programmer mustspecify this

statically by grouping them into a task force. A task force is said to be coscheduledif

all its runnable processes are executing simultaneously on different processors,

otherwiseit is said to be fragmented.

Ousterhout strives to maximise the degree of coscheduling using three different

allocation and scheduling strategies; his model assumes a system consisting of P

processors each having Q slots available in their process table, providing a

system-wide process space of size P xQ; the assumption is also made that no task

force has greater than P processes.

In Ousterhout's first algorithm, known as the matrix method, the available process

space is organized conceptually as a Q-row, P-column 2-dimensional matrix, where

column p represents the process slots on processor p, and row q contains one process
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slot per processor. When task force arrives at the system, a scan is madeofthe rows

of the matrix, starting at 0, until one is found with enoughfree slots to accommodate

all the processes making up the task force. The scheduling policy also follows the

matrix arrangement:in a particular time slice t (0 <t < Q), row t is given the highest

priority for scheduling on each processor; since task forces are assigned to single

rows, this method ensuresthat all processes in the task force are coscheduled. This

procedure continuesuntil all rows have been dealt with, so that after one such sweep,

every task force has been coscheduled once, then another sweep begins at row 0 and

so on. When a row has been chosenfor scheduling, a processor p mayfind that the

correspondingslot[q,p] is either empty or thatthe allocated process is blocked waiting

for some external event (such as input from an interactive terminal); in this case p

scansits column of the matrix until a runnable process is found and executesit instead;

these processes are known as alternates, and they will generally only constitute a

fragmentof another task force to the one being coscheduled. Selectionof alternatesis

also performed by the other two algorithms described below.

Since the matrix method assigns task forces only to a single row of the 2-dimensional

process space, it results in the creation of a number of unused slots, to which

processes will not be allocated, since they cannot accommodate a wholetask force; this

phenomenonis akin to internal fragmentation in paged memory management schemes.

In an attemptto alleviate the rigidity of the above allocation strategy, the second

algorithm proposed by Ousterhout, named the continuous algorithm, considers

process space as being a contiguous sequence of slots, where P consecutive slots

belong to different processors. When a task force is to be assigned to the available

machines, a window of width P slots is placed at the left-hand end of the sequence and

movedalongit (stopping when an empty slotis at the left most end of the window,

with a full slot directly to its left) until the number of empty slots (not necessarily

34



contiguous) is sufficient to allocate the entire task force. The P-slot windowis also

used for scheduling purposes. For each time slice, the window is movedto the

leftmost process of a task force, which has yet to be coscheduled. Moving the

window in this manner, rather than singly on to the next task force regardless ofits

previous scheduling activity was found to give the most equal treatmentto both small

and large task force sizes. If slots within the scheduling window are empty or contain

unrunnable processes then alternate selection is used as in the matrix method. The

continuous algorithm packs task forces more tightly than the matrix algorithm and

hence reducesinternal fragmentation; howeveras unallocated holes, dispersed over a

wide distance, are used for newly arriving task forces, this results in external

fragmentation, and Ousterhout shows by simulation that this phenomenonseriously

degrades performance.

In order to remove external fragmentation, the undivided algorithm, the third proposed

by Ousterhout, uses the same methodfor processorallocation, except with the proviso

that a task force's processes must occupy contiguous slots in the available space.

Althoughthis algorithm does not pack processes quite so densely as the continuous

method,it does reduce external fragmentation.

In the simulation experiments conducted over a wide variety of system parameters,it

was found that the undivided algorithm performed consistently the best of the three,

with the continuous algorithm performing worst, probably due to its external

fragmentation problems; the matrix method's performance wasnotsubstantially worse

than that of the undivided approach, and, due to its ease of implementation, it was

chosen for the Medusaoperating system.
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3.1.2 The Wave Scheduling Approach

Van Tilborg and Wittie [Van Tilborg81] have developed a method of assigning

processes to processors for the MICROSoperating system [Wittie80] running on the

reconfigurable, multi-microprocessor system MICRONETatthe State University of

New York [Wittie78]. For simplicity, they assume that nodes in the network are

monoprogrammed,andthat all processes to be executed are of unit-size. Process

arrival is in the form of task forces, which consist of sets of related processes,

co-operating to perform specific task. Given the above assumptions,the problem of

processorallocation becomesoneoflocating sufficient idle nodes in the network to

accommodate an arriving task force; the approach used,utilises the hierarchical control

structure of MICROS(whichis a logical hierarchy and hence does not assume any

particular physical interconnection topology) to carry outthis allocation. Task forces

mayarrive at any "manager" nodein the network, whosejob it will be to find enough

idle "worker" nodes on whichto execute them.

Whena task force requiring S worker nodesarrives at some noden (S beingstatically

specified by the programmer), this node becomesits Task Force Manager (TFM)and

strives to reserve for it, the resources it needs. Node n will have a reasonably

up-to-date view of available workers in the subtree which it manages, since status

information regarding the numberofidle nodesis regularly passed up the "hierarchy

of command". The TFM computesa value R 2 S, which is the number of workersit

needs to reserve in order to be fairly sure that it will receive sufficient workers to

execute the task force. Choice of R must be very carefully calculated, since if R is too

big then a large numberof unrequired nodes will be reserved, only to be relinquished

later; if R is too small then the necessary number of nodes S maynotbe reserved,

resulting in an unsuccessful scheduling attempt. The request for R nodesis then
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divided into a numberof subrequests, and these are passed downthe hierarchy to the

TFMssubordinate managers; this wave of requests permeates downuntil it reaches the

lowest-level managers which have accurate, fully up-to-date information regarding

workeravailability. These managers then reserve the required number of workers and

report this fact to their superior manager.In order to avoid deadlock, TFMswait for a

time-out period, and then assumethat their request could notbe satisfied. If at the end

of the time-out period, the numberof worker nodesreservedis greater than S, then the

TFM sends a message back downthe hierarchy, telling all managers to begin

execution of the task force, and to release any unnecessarily reserved workers;

otherwise it sends a message releasing any reserved workers and puts the task force

back in the queueto try again later. If the numberof unsuccessful scheduling attempts

exceeds somethreshold, then the task force is passed one level up the hierarchy to

increase its chancesoffinding sufficient resources.

Using this method, the averagecost (T.,) of successfully reserving a task forceof size

S, can be expressedas:

pee ceh a fre. et Bye?

where

Cy = cost of reserving a single nodeat level h of the hierarchy

F = mean numberoffailed scheduling attempts

ng = mean numberof nodesreserved on a failed scheduling attempt

= mean number of excess nodes reserved on a successful

scheduling attempt.

These mean values obviously depend on the probability of finding any particular node

37



idle at a particular time t; since each high-level manager regularly receives summary

information regarding nodeutilisation,it is possible to estimate the above probability

with reasonable accuracy and then to calculate an optimal value of R by the equation :

where a is some simple function of nodeutilisation. Van Tilborg and Wittie found

that even constant values for a (calculated from previous experience) were

sufficiently good for node utilisation up to about 70%. The performance ofthe

algorithm was shown to perform satisfactorily relative to a Markov queueing modelof

a central scheduler having total knowledge of system-wide nodeavailability.

3.2 STATIC LOAD BALANCING

The approaches to allocating processes to processors presented above, do not

explicitly take into consideration the execution costs of such processes,neither do they

make allowance for the overheads incurred by communicating with their peers or

accessing files across machine boundaries. Typically in a computer network,

interprocessor communicationscosts are significant relative to intraprocessor costs and

will have a substantial effect on system performance. In order to reduce these

overheads, an allocation strategy must be designed to calculate an assignmentof

processes to processors which minimizes execution and communicationscosts.

Early solutions to this problem assume a program to consist of a number of modules,

which maybe run separately on any processor in the network, and which exchange

data by some communications mechanism. The cost of executing a particular module

38



on a particular processor is assumed to be known a priori, as is the volumeof data

which will flow between modules. The problem then becomesoneofassigning

modules to processors in an optimal mannerwithin the given cost constraints. Since

such approaches do not consider the currentstate of the system when makingtheir

placement decisions, they are referredto as static load balancing algorithms and can be

grouped into three major categories: graph theoretic, 0-1 integer programming and

heuristic. Although these approaches have many aspects in common,this

categorisationillustrates the different conceptual viewstaken of the problem.

3.2.1 The Graph Theoretic Approach

In the graph theoretic approach [Stone77; Stone78; Rao79; Bokhari81] to static load

balancing, a program's modulesare represented by nodes in a directed graph, with

edges in the graph used to show intermodule linkages and weights on these edges

giving the cost of sending the appropriate volumeof data from one moduleto another,

if they reside on separate processors (intraprocessor communications costs are

normally assumedto be zero).

Stone [77] recognised the similarity between this model of program structure and work

carried out for commodity flow networks. Such networks consist of a number of

source nodes which are capable of producing an infinite quantity of some commodity,

which is directed to a number of sink nodes, capable of absorbing this infinite

quantity; edges from source to sink, via intermediate nodes, represent a commodity

flow through the network and weights on these edges give the maximum capacity of

an edge. The sum ofthe net flows out of the source nodes, and henceinto the sink

nodes, is termed the value of the commodity flow. A feasible flow through the

network hasthe following properties:
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i) the sum of flows into a node is equal to the sum of flows out of

that node

ii) flowsinto sinks and out of sources are non-negative

ili) flows do not exceed capacities

If a flow is found which is maximum amongall feasible flows, then it is known asthe

maximum flow. A cutset determines the set of edges which, when removedfrom the

network, totally disconnect source and sink nodes, and the weight of a cutset is

defined as the sum of the capacities of edges in the cutset.

Fig. 3.1 shows an example of such a network, where circles labelled with letters

represent modules of a program, and edges between these modules are labelled with

numeric weights to show the amountof data passing from one module to another;

processors are represented by the two nodes S1 and S2. In this example

two-processor system, edges are added from each "module" node to each "processor"

node, such that the weight of an edge from a "module" node to (say) Sj gives the

execution cost of that module on processor P» and vice versa (if a module cannot be

executed on a processor then the weight on the appropriate edgeis set to infinity).

Execution costs of a module will vary from processor to processor dependent on

facilities available, for example specialised floating point hardware. The minimum

cutset for the networkin fig. 3.1 is shown as a broad line. Stone showsthat a cutset

in this graph represents a particular module assignment (S; and S> in separate

partititons), and that the weight of a cutset is therefore equal to the cost of the

corresponding module assignment. Hence an optimal assignment can be found by

calculating the minimum weightcutset in the graph, using an algorithm developed by

Ford and Fulkerson [62]. If one of these two processors has limited memory,then the
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problem becomes much more complex, butit has been shown that techniques exist for

complete solution of certain problems under memory constraints and a reduction in

complexity for others [Rao79].

This network partitioning method can find an optimal assignment reasonably

efficiently for two processors, and cantheoretically be extended to an n-processor

network, where n cutsets need to be found; this can be done by exhaustive

enumeration, but its computational complexity makes it thoroughly undesirable. Stone

Suggests that the n-processor problem could be considered as a number of

two-processor assignments, but significant difficulties exist in this solution, since

nodes may be placed outside a minimum costpartition by successive two-processor

solutions.

Although the max-flow, min-cut algorithm presented aboveis not easily extendable to

n-processor systems for general programs, it has been shown [Bokhari81] that an

efficient implementation is possible if the program has a tree-structured call graph

(knownas an invocationtree) for its modules. Again assumingthat all execution and

communications costs are known, an assignment graph can be constructed from the

invocation tree, where each node represents assignment of a module to a processor

shownbya pair of numbers(ie (i,j) means that module i is resident on processorj); an

edge between nodes(i,p) and (j,q) has a weight equal to the cost of assigning modulej

to processor q, given that module i has been assigned to processor p. An algorithm

which then finds the least costly path through the assignmentgraph, constructs an

assignment tree which gives the optimal module-to-processor allocation; such an

algorithm has been shown by Bokhari [81] to execute in time O(mn”) where m

modules are assigned to n processors.
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Chou and Abraham [82] also use a graph model of module assignment, with nodes in

the graph representing modules, but edgesare usedto indicate precedencerelations.

They introduceprobabilistic branch points where the flow of the program may follow

any one of two or more branches under a probability constraint; at fork points,

execution will continue along eachof the possible branches. A semi-Markovprocess

with rewards is used to model dynamic execution of the program andthis is

augmented by "policies" which indicate module-to-processor assignments. By

iteratively examining the possible state transitions under eachpolicyit is possible to

find an optimal assignmentfor n-processor systems. Concurrent module executionis

also built into the model. The disadvantage of this method isthat it relies heavily on

the accuracy of available data regarding program behaviourandthe authors recognise

that load balancing which adapts its placement decisions dynamically with the current

system state is desirable, but would betoo costly using their policy iteration algorithm.

3.2.2 The 0-1 Integer Programming Approach

Dueto the limitations of the graph-theoretic approach, other researchers [Chou82]

have adopted an integer programming methodfor processorallocation. Again in this

model, it is necessary to identify the execution and interprocess communications of

modules, hence the following quantities are used:

Cij : coupling factor = the numberofdata units transferred from

module i to modulej

dj; : imterprocessor distance = thecost oftransferring one data unit

from processork to processorl.

dik : execution cost = the cost of processing modulei on processork.
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If i and j are resident on processors k and | respectively, then their total

communications cost can be expressed as Cij * diy. In addition to these quantities the

assignmentvariable is defined as:

{ 1, moduleiis assigned to processor k

= {
{ 0, otherwise

Using the above notation, the total cost of processing a number of user modulesis

given as:

> ta ay Xd (cs, * diy BX Xsi )
1 ls

The major advantage of a programming solution to static load balancing is that

constraints can be easily incorporated into the model, which is difficult, if not

impossible, using graph theoretic techniques. For example, to ensure that processor k

has sufficient memory available to process modules assigned to it the following

constraint can be applied:

Die Xi = Sy

where M; = memory requirements of module i

S, = memory capacity of processor k

Constraints such as real-time requirements and processor speedscan also be expressed



in a similar manner. Module allocation can then be performed by minimising the

above cost equation subject to the constraints imposed, by non-linear programming

techniques,or further constraints can be addedto linearise the problem. It has been

shown [Chu80], however, that on a CDC 6000 series mainframe, a problem involving

15 processors and 25 modules will take a few minutes to solve, and should hence be

performedoff-line in realistic environments.

Analternative approachis to use a branch and branch method [Ma82] to construct and

search in a depth-wise manner,a tree of possible assignments; henceforallocating m

modules, a tree of m levels is constructed where a branch at each level represents

assignmentof that moduleto a particular processor. Asthis tree is being expanded,

the constraints imposed on a solution are applied via branching nodes,thus eliminating

the necessity to further expand certain branches, since they do notsatisfy the

constraints. A path from the root of such tree to a lowest level node represents a

complete assignmentfor all modules, and the optimal assignmentis the lowest cost

path. It is known that an optimal solution to searching a tree is an NP-complete

problem, but Maet al [82] show that the elimination of certain branches using

constraints reduces the complexity considerably.

The major disadvantage of integer programming techniques using constraints, is that

they are heavily parameterised and require substantial effort on the part of a system

designer in specifying which constraints should apply in order to achieve a realisable

load balancingsolution.

3.2.3 The Heuristic Approach

Since finding optimal solutions to the module assignment problem is so
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computationally expensive, a numberof heuristic approaches have been proposed to

find a suboptimal solution [Gylys76; Efe82; Lo84]. The essenceof these algorithms

is to identify clusters of modules which pass a large volumeof data between them and

to place them on the sameprocessor.

One such algorithm [Gylys76] finds the module pair with most intermodule

communication and examines whether the constaints imposed on their execution

allows them to be coresident on one processor. This continues until all possible

pairings are found, but has the problem that it does not guarantee that the resultant

numberof clusters found will not be greater than the numberofavailable processors.

A variation on this approach again due to Gylys [76] is to define a "distance function"

between modules, which is a measure of communications between two modulesi and

j, relative to communications between i and all other modules and j and all other

modules. Using this function a "centroid" of a possible candidate cluster can be

found, and aniterative algorithm is then used to join modules having the lowest valued

distance function from the centroid into the centroid's cluster. The centroid is then

appropriately adjusted to take accountof this addition. Theiterations are stopped

whenan upperlimit is reached or when no module clusters change.

This concept has been extended by Efe [82]. In his algorithm, clusters are formed as

above, whilst recognising that certain "attached" modules must be executed on a single

processor or a subset of the available processors, and hence these modules can form

the "centre" of a cluster. When clustering is completed, a queue length constraint can

be imposed on each processor, and modules are then moved from processors whose

load lies above the expected average plus some tolerance threshold onto a similarly

underloaded processor, whilst still maintaining the restrictions of interprocessor
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communications cost. Efe showsthat an optimal assignmentwith respect to execution

cost and communications cost may not necessarily result in the most efficient

assignment when queuelengths are considered.

This additional constraintis also investigated by Lo [84], who identifies an extra cost

to be considered, resulting from the contention for shared resources, such as CPU

cycles in a multiprogramming environment, which she termsthe interference cost

defined as :

p G

where

Ig (1,7 = total interference cost of executing modulesi andj

on processor q

p

Ig (1,3) = processorinterference cost of i and j on processor q

c

i g (153) = communications interference cost due to contention

for the communications mechanism byi andj

running on q

Lo also states that an increase in parallelism (i.e. running i and j on separate

processors) reduces interference costs and hence assignments should have a weighting

which consists of execution, communications andinterference costs. This is achieved

by limiting the numberof clusters which can be assigned to a single processor.
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It has recently been suggested [Chu87] in a studyofstatic load balancing algorithms

for real-time systems, that since queueing delays at a processor are non-linear with

increasing load, then the major limiting factor on system performanceis a single

bottleneck processor which becomes overloaded; hence improvement can only be

achieved by minimising the chancesofa bottleneck being created. A heuristic method

of ensuring this, is to create module clusters in a mannersimilar to Lo [84], and then

to solve the equation:

min { max [ EXEC (r;x) + IPC (r;x) ey
x LSrSs

where EXEC(r; x) is the total execution costs of modules assigned to processorr,

and IPC (r ; x), the total communicationscosts of this assignment.

Simulation runs conducted using this method performed significantly better than

previous results obtained from simply minimising execution and communications

costs.

3.3 ADAPTIVE LOAD BALANCING

The limitation of static load balancing is that this method assigns processes to

processors in a once-and-for-all mannerandsolutions require a priori knowledge of

program behaviour; most approaches ignore the effects of interference in a system

comprising multiprogrammed nodes. Livny and Melman [82] have shownthat in a

distributed system the probability that at least one process is waiting for service at one

node, whilst at least one processoris idle can be calculated as:
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ie > (iO5 1-P*) (1-Ps -(i-Ps))

where

Qi = Pt is the probability that i processors are idle

Hi. is the probability that i processors are not idle

and one process waits for service

Py is the probability that a processoris idle

N is the numberof processors

They proposethat if P,,; can be reduced bytransfering processes from one processor

to another, then the expected turnaround time for processes in the system will also be

reduced; it is also to be noted that for systems with greater than 10 nodes, and with

loads ranging from moderately light to moderately heavy, P,,; is high, unless process

transfer is performed.

This importantresult, and the conclusions which can be drawnfrom it, suggest that if

the currentstate of the system can be observed, then by maintaining a balancedload,

performance improvementcan be achieved. Wechooseto refer to algorithms which

dynamically react to system state in this manner, as adaptive load balancing

algorithms. Many researchers have suggested that such algorithms are the most

effective way of managing processorallocation [Tantawi85; Carey85; Leland86].

Althoughthe adaptive approachis intuitively worthwhile, a number of new questions

are raised. A load balancing algorithm mustensurethat it has a reasonably up-to-date
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view of the systemstate; this could be achieved by using a centrally-located allocation

processor [Zhou86a], but this gives a single pointoffailure, and so a fully-distributed

solution is favoured ; however care must be taken that co-operation between different

processors does not overload the communications mechanism used, as load

information is exchanged. In addition, since an adaptive load balancing algorithm

transfers processes from lightly-loaded to heavily-loaded processors, it must guard

againstinstability [Kratzer80], caused by many processors all sending processesto the

samelightly-loaded node, makingit heavily-loaded. In this case processes will spend

most of their time migrating around the network, fruitlessly looking for a suitable

execution location; this phenomenon has been termed processor thrashing, and is

analogousto thrashing in virtual memory management schemes.

Weidentify the following components of an adaptive load balancing algorithm, and

review some approaches taken to providing efficient implementations of these

components, and the relevant issues involved:

- processor load measurement

- information exchange

- transfer policy

- co-operation and location policy

3.3.1 Processor Load Measurement

In order to begin making sensible placement decisions for processes in a

multi-computer environment, it is necessary to have available from the operating

system a measure of the current load on each processor; due to the loosely-coupled

nature of the systems weare considering in this study, this measure will be calculated

independently by each processor, and then communicated through the networkto its

50



peers. Since the value representing a processor's load will be frequently calculated

during normal operation,it mustbe efficiently evaluated and be a reasonable indicator

of what service a process will receive running on that processor. Also the value

should adapt swiftly to changes in load state, but not so much that out-of-date

information will be held at other locations in the network [Alonso86]. If possible, the

method of load measurementused in a policy should be generalizableso that it can be

used in a variety of operating system environments.

One simple solution to this question is to use a specialised load estimation program

[Ni85], which constantly runs, determining the time intervals between periods whereit

successfully acquires use of the CPU;if the interval is great, then processor loadis

high, and conversely,if it is small, then this indicates low processor load. Although

this approachis very easily implementable, it suffers from the problem thatit relies

heavily on the local process scheduling discipline used, and may therefore not provide

a sufficiently accurate estimate of load; additionally it introduces a further process onto

each processor, which goes against the principle of trying to improve system

performance.

A measure used by the Maitre d' [Bershad85] load balancing program is the UNIX

five-minute average which gives the length of the run queue exponentially smoothed

over a five-minute period. This value gives a gross indication of processoractivity but

does not respond quickly to load changes; a quantity which doesso,is the numberof

processes ready to run on the CPU at a given instant (instantaneousprocessorload),

but this will fluctuate very rapidly, because many processes may be waiting for I/O

operations to complete, thus giving the false impression ofa lightly-loaded processor;

this problem can further be exacerbated when process migration is introduced to

offload processes from a heavily-loaded processor, since these will not yet be included
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in the recipient processor's ready queue. The problem is thus one of maintaining

stability. We adopt the definition of a stable system due to Kratzer and Hammerstrom

[80], as being one where the costs of adaptive load balancing do not outweighits

benefits over a system using no load balancing. Such a situation would be caused by

a large numberoffruitless migrations, resulting from use of out-of-date or inaccurate

state information. In order to use a measure with a reducedfluctuation, it has been

suggested [Krueger84] that the instantaneous load value should be averaged over a

period atleast as long as the time necessary to migrate an average process. Extra

Stability is then introduced by using a virtual load value, being the sum of the actual

load on a particular processor augmented by the numberofprocessescurrently in

transit to that processor.

The local load measurementused by Barak and Shiloh [85a] is a further enhancement

of the instantaneousload value. A timeperiod t is divided into a number, 1,of atomic

time units or quanta of length q; if W; is taken to be the numberof ready processes on

a processorin the time interval (qj-1>4j), 1=1,2,..., pu, and if w of the quanta

were unavailable due to operating system overhead, then the load over time t (denoted

by V; ) can be given as :

uu

SrVo Sees
t es

Bryant and Finkel [81] have proposedthatif the remaining service time of processes

can be estimated (i.e. the time which they still require to complete execution), this

value can be usedto calculate the expected response time for a process arriving at a
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processor,andthat this is an indication of processor load. They investigated the use

of probability distributions in the evaluation of remainingservice time, of a process at

time t (denoted by Rg(t)) but found that a simple and quickly calculated valueis to

assume that Rp(t) = t (in other words a processis expected to require the sameservice

timeas it has already received). If J(P) is used to denotethe set of jobs resident on

processor P, and wetake a job K ¢ J(P) then the expected response time of K on

processor P (denoted by RSPg(K,J(P))) is calculated using the following algorithm:

R:= Rg (th);

for all j in J(P) do

begin

if Rg(t)) < Rp(t,)

then R :=R+ Rg(t))

else R :=R+ Rp(ty)

end;

RSPxE(K,J(P)) := R;

Hence this method ofcalculation can be used to provide an estimate of a processor's

load by evaluating RSPp(K’,J(P)), where K' is a job whose remaining service timeis

equal to the average overall service time of processes in the network.

The queue of ready processesis not the only queue which givesan indication of the

activity on a processor. Ferrari [85] has studied the possibility of using a linear

combination of all main resource queues as a measure of load, where coefficients in
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this equation are given by thetotal time a process spends in a particular queue.

Employing a queueing model ofeach processor, and using mean-value analysis, he

seeks to define the response time of a given UNIX commandasa single-valued

function ofthe currentload, in termsof resource queue lengths. In other words, given

the expected resource usage of a command "C" on an otherwise empty processoritis

possible to calculate how "C" will perform when a known mix of commandsis

concurrently executing with it. Unfortunately, Ferrari's "load index" (the name he

gives to this measure of processor load) assumes a steady-state system, and the

queueing theoretic analysis used only holds for certain queueing disciplines for

resources. This may well notapply in a practical system [Zhou86b], since process

arrival and departure are dynamic in nature. In addition, since the calculation of the

load exerted by a commandis dependenton its known resource usage, changes in

commandcode will necessitate changing the coefficient values in the load index

equation. In fact Cabrera [86] has suggested that load balancing algorithms based on

commandnameswill be detrimental to user process performance.

3.3.2 State Information Exchange Policy

In order for an adaptive load balancing policy to make placementdecisions for

processes arriving for service at a particular node, there must be a mechanism by

which information regarding processor load (whose measurement wasdiscussedin the

previous section) is passed throughout the network. Since the network architectureis

loosely-coupled,this information will vary in its degree of accuracy ofthe true system

state since it will be out-of-date, but accuracy mustbe sufficient to avoidinstability (as

defined previously); however, frequent load exchange will result in added overhead

and will, in the extreme, lead to performance degrading to a level worse than that

achievable withoutload balancing.
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3.3.2.1 The Limited Approach

It has been suggested [Eager86] that load information exchangecan be very limited

whilst still achieving the goal of maintaining a global view ofoverall system load. In

their study of the merits of very simple load balancing policies, Eager et al [86]

proposethat load information from other processors in the network should only be

requested whenan individual processorbelieves itself to be overloaded based purely

on local data; in their threshold and shortest algorithms a number of random

processors are probed, in an attempt to find a processor to which processes can be

offloaded. They showedvia simulation that performance improvements are possible

even with this limited exchangepolicy.

3.3.2.2 The Pairing Approach

A "pairing" approach has been put forward by Bryant and Finkel [81]. In their

algorithm, each processor cyclically sends load information to eachofits neighbours

in an attempt to "pair" with a processor whoseload differs greatly from its own; the

load information sent consists ofa list of all local jobs, together with jobs which are

currently migrating to the sender of the load message. Underthis scheme, the number

of such message exchangesandpairings is reduced by introducing a relaxation period

whenthe loadsofall neighbours have been queried, in order to avoid excess overhead

in this policy.

3.3.2.3 Load Vector Approach

Someresearchers have chosen to maintain a load vector in each processor, which

3



gives the most-recently received load value for a limited subsetof the other processors

in the network [Hac86]. Load balancing decisions can then be madeonthebasis of

the relative difference between a processor's ownload, andthe loadsof those held in

the load vector.

In the adaptive load balancing algorithm [Barak85a] developed for the MOSdistributed

operating system [Barak85b] at the Hebrew University of Jerusalem, such an

information exchange policy has been studied in detail. A load vector L is used, of

size v, where the first componentcontains a processor's own local load value, and the

other v - 1 components contain load values for a subset of the other processors.

Updating the load vector is performed periodically; every unit of time t (which is a

parameterof the algorithm) each processor executes the following operations:

i Update ownlocal load value

- Choose a random processori

3 Sendthe first half of the load vectorto processori.

Whena processorreceives a portion of another processor's load vector, it merges this

with its own load vector using the mappings:

Li] <>  L[2il,«)<i<vf 1

Lrli] ~ L2i+1],0<i<v/2-l

where Lpisthe received portion.

It can be seen from this description that the subset of processors whose load values

will be known, changes as the above mergingis carried out and a load vector may
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contain duplicate entries for a particular processor; it is essential to choose an

appropriate value for v, large enoughto ensurethatsufficient information is available

to each processor, but small enough to avoid unnecessary overheads. In orderto

investigate choice of both v (the load vector size) and t (the update interval), it was

shownthat using the strategy described above,atleast logyv load vectors need to be

received in order to guarantee that a processor's vector is totally updated in time

interval T; in a system with a large numberofprocessors the probability that processor

X will be selected at the next update period by k processors is approximately equal to

1/(ek!). Using these results, Barak and Shiloh tabulated a numberofpossible values

of v, together with the probabilities that a processor's load vector will be updated in a

particular time interval. This allowsthe designerto tune the load exchange mechanism

to the characteristics of the system.

Analternative load vector approach is taken in the distributed drafting algorithm

[Ni85]. The load of each processor is considered to be in oneofthreestates: light,

normal or heavy; a processor holds its most recent view of the load state of its

neighboursin a load vector, which is updated when statetransition occurs; possible

transitions are light-to-normal, normal-to-light, normal-to-high or high-to-normal

(L-N, N-L, N-H, H-N). It would be possible for a processor to broadcast its new

state every timea transition occurred, but this would greatly increase networktraffic

and the algorithm is intended to be network topology-independent, henceit should not

rely on an efficient broadcast mechanism being available. A strategy has been

developed to minimisethe traffic causedbystate transitions, whilststill maintaining a

reasonably up-to-date accountofthe state of all neighbouring processors. In order to

avoid many messages being sent when a processor frequently changes between H-load

and N-load or between L-load and N-load, an "L-load" message is only broadcast to
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its neighbours as the N-L transition is made, if the previous processor state was

H-load. If a similar approach were taken to N-Htransitions, Niet al [85] show that

this could have a detrimental effect on the performanceoftheir algorithm; they choose

to broadcast N-H transitions and only notify neighbours of an H-N transition when

process migration between two processorsis being negotiated, thus further reducing

message traffic. They also note it would be easy to relax these restrictions if the

underlying communications network allowedefficient broadcasting.

3.3.2.4 Broadcast Approach

Certain adaptive load balancing policies adopt broadcasting for their load exchange

component. In the Maitre d' system [Bershad85], daemonprocesses(i.e. processes

whosesole purposeis to listen for and react to events in the system) play a prominent

role. One such process executes on each processor and periodically examines the

UNIXfive-minute load average and decides whether this will permit user processes to

be imported from other processors; a processor will then broadcast this availability,

and the appropriate daemon process maintainsa list of processors currently willing to

accept work. Since load balancing is fairly "coarse-grained" and only applies to

certain long-running processes which have been modified to run under Maitre d’, this

method is adequate and does not exert a lot of extra load on the communications

subsystem.

Livny and Melman [82] have made a detailed study of algorithms using a broadcast

approach. In the simplest of these algorithms, when the load state of a processor

changes(in other words on the birth or death of a process), its load value is broadcast

throughout the network, thus each processor has an accurate view of all other

processors’ loads delayed only by the speed of the communications network. They
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foundthat this accuracy of information improves performance for small numbers of

processors, but as the size of the network increases, then the additional

communications overhead results in performance degradation. To overcomethis

overhead, a modified version of the information policy was introduced whichpurely

broadcasts a message whenthe processor becomesidle, thus announcing willingness

to accept migrating processes. It should be notedthat this form of policy is only

applicable to networks with a broadcast communications medium.

3.3.2.5 Global System Load Approach

The information exchangepolicies presented thusfar, have dealt with the exchange of

the load valuesofparticular processors. It has been suggested [Krueger84] that rather

than exchanging specific local load values, processors shouldstrive to calculate the

load on the whole system andto adjust their own load relative to this global value.

This approachhasthe desirable feature of being moreableto detect overall heavy and

light loads on the system, in which case attempting to move processes from one

processor to another maybeoflittle benefit.

The "above average” algorithm [Krueger84] developed at the University of Wisconsin

uses a policy which exchanges each processor's view of the global average system

load. Whenevera processor's localload is significantly different from this average,

andit is unable to find another processor whoseload is in the complementary stateit

modifies its value for the global average, and broadcasts this fact to all other

processors; for example if a processor is overloaded and is unable to find an

underloaded processor, then the global average value should be increased. The

amount by whichprocessorloads are permitted to differ from the average before load

balancing is attempted, needsto be set at a level which is not so small that processors
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spend mostof their time migrating processesin order to maintain their load close to the

average, and not so large that many possible fruitful migrationsare neglected.

The Gradient Model algorithm [Lin87] views global load in termsof a collection of

distances of each processor from

a

lightly-loaded processor. If the distance between

two processorsi and j is denoted by dij then in an N-processor network, the diameter

of the network is defined as:

DWN) = max {djj , iandj e N}

A processori has a gate value g; whichis set to zero if the processoris lightly-loaded

or Wimax Otherwise where Wi, = D(N) + 1. The proximity (W;) of a processoris

calculated as its minimum distance from a lightly-loaded processorhence:

W; = min {di, over k, where g, = 0}

1 ee k|g, =0

W; = W if for all k, g, = Wynay:
max’

Since a processor's distance from itself is zero, the proximity of a lightly-loaded

processor is zero. Global load can then be represented by a gradient surface whichis

the set of all proximities GS = [Wy W2, W3,... Wx]. Such a measure of global

load is useful, since it not only gives a network-wide indication of light-loading, but

also gives a route to a lightly-loaded processor with minimum cost, from anywherein

the network.
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Since proximities cannot be calculated with absolute certainty due to communications

delay in the network,it is necessary to define an approximation to a proximity, which

is termed the propagated pressure. This approximation is based on the fact that the

information received from a processor's direct neighbouris likely to be more accurate

than information obtained from further away in the network. Hence the propagated

pressure of processori (P;) is calculated as:

P; = min {g;, 1 + min {Pj over all j, where dij = it}.

So the propagated pressure of a lightly-loaded processor will be zero (as expected),

andthat of a moderate or heavily-loaded processor will be one greater than the smallest

propagated pressure of its direct neighbours. The collection of all propagated

pressures is termed the propagated surface and approximates the gradient surface.

This method quickly reacts to the absenceoflightly-loaded processors in the network,

and thus prevents fruitless migrations when the entire network is under moderate or

heavy load. An example gradient surface for a 9-processor network, is shown in

fig.3.2, where a lightly-loaded processor (P3) is shaded, and the values associated

with each processorgive its proximity (Wj).

3.3.3 Transfer Policy

The transfer policy componentof an adaptive load balancing algorithm deals primarily

with the questions of deciding under what conditions is migration of a process from

one processor to another to be considered, andif it is, then which processes are

eligible for migration.
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A very simple, but effective, method for determining when process movement may

occuris to use a static threshold value [Eager86], which, when exceededindicates that

a processor's load is too heavy and work may needto be offloaded to another node in

the network. This threshold should be chosen by experimentationto find a load value

where performance degrades sharply without load balancing;if the thresholdis too

high then processors will remain heavily loadedfor too long, butifit is too low many

pointless migration attempts will occur. Lin and Keller [87] use two thresholds in

order to categorise a processor's load as light, moderate or heavy, and consider

migration only when the heavy threshold is exceeded.

The abovetransfer policystrives to identify overloading to trigger process migration,

but some researchers [Ni82] have taken the opposite view that an underloaded

processor should seek to accept processes from its peers in order to balance the load

over the network. One extremeversionofthis policy is to only consider migration to a

processor whenit becomesidle. In the distributed drafting algorithm [Ni85] possible

process migrationis triggered when a processor makesthestate transition from normal

to light-load, whereupon it indicates its willingness to offload processes from

processors whosecurrentstate is shown as heavy in its most-recently received entry in

the load vector.

Sometransfer policies approach this question by using the difference ofa processor's

load from that ofits peers as the majorcriterion for process migration. In Stankovic's

algorithms [Stankovic84]this difference is calculated explicitly andif it exceeds some

bias then migration is a viable proposition. The above average algorithm [Krueger84]

also bases its transfer policy on difference in load, but achieves this implicitly by

maintaining a global average load value, and considering migration when local load

differs from the average by a tunable acceptance threshold. Another method used
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whichimplicitly considers load differenceis to periodically examine the response time

which local processes would receive if migrated to another processor, based on the

current estimate of the remote processor's load; if the response time would be

significantly better, taking into account the overhead of migration, then movementof

that process is desirable [Barak85a].

Once it has been established that a process, or a numberof processes, need to be

executed remotely, part of the transfer policy is to decide which processes should be

moved. A simple and easily implementable method is to only consider newly-arriving

processes for migration;this is only really applicable where a thresholdis being used

in the transfer policy, so that an arriving process causing the threshold to be exceeded

is the one chosen for migration. Migrated processes can betreated exactly the same as

newly-created ones, but Eageret al [86] have shown thatthis introducesinstability into

the system, and under heavy loads, processes may be constantly passed around, trying

to find a suitable destination processor; this problem can bealleviated by limiting the

numberof times that a process is permitted to migrate (Ni et al [85] chose to limit

migration to once only).

If the maincriterion usedin the transfer policy is migrating a process to a processor

where its response time will be improved,then the processto be sent is taken as the

one which will benefit most from remote execution, assuming that a methodis

available for estimating a process's remaining service time. In order to be of

maximum use, the transfer policy should only migrate processes which have been

executing for some minimum amount of CPU time on particular processor

[Barak85a]; this will help maintain stability and prevent a process from migrating too

often.
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Krueger and Finkel [84] have established a numberofessential considerations when

choosing a process to migrate:

1 Migration of a blocked process may notprove useful, since this may not

effect local processorload.

Extra overhead will be incurred by migrating the currently scheduled

process.

The process with the best current response ratio can better afford the cost

of migration.

Smaller processesput less load on the communications network.

The process with the highest remaining service time will benefit most in

the long-term from migration.

Processes which communicate frequently with the intended destination

processor will reduce communications loadif they migrate.

Migrating the most locally demanding process will be of greatest benefit

to local load reduction.

All of these factors are of varying importance on theeffectivenessofa transferpolicy,

and a load balancing algorithm should incorporate those features which bestfit the

system environment. Using a preemptive transfer policy (in other words one which

migrates executing processes) has considerable advantages in that it adapts more

quickly to changes in processor load; however someload balancing algorithms [Ni82;

Bershad85] do not use preemption, either because the operating systems for which

they have been designed do not support such a facility, or because the costs of such

migration are believed to be too high. These costs are significantly reduced if the

distributed operating system has been developed with process migration in mind

[Powell83].
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3.3.4 Co-operation and Location Policy

Once mechanisms for measuring local processor load, exchanging load values and

deciding when process migration should occur have been established,a load balancing

algorithm must define a method by which processors co-operate to find a suitable

location for a migrating process. Manycategorisations of co-operation and location

policies are possible, but we choose to group them into sender-initiated (where an

overloaded processor attempts to find an underloaded processor) and receiver-initiated

(where the reverse applies) since we feel that this captures the most fundamental

differences in approachingthe load balancing problem [Eager85].

3.3.4.1 Sender-initiated Approaches

Initiating load-balancing from an overloaded processor is by far the most studied

method of co-operation policy. Eageret al [86] examined the question of what levelof

complexity was appropriate for a load balancing algorithm, by evaluating the

performanceofthree very simple policies which maketheir migration decisions based

purely on local load information. Their goal wasnotto identify a suitable algorithm in

absolute terms, but to analysethe relative merits of varying degrees of complexity; the

transfer policy used in all three algorithms is a simple static threshold policy. The

simplest of their algorithms chooses a destination processor at random for a process

migrating from a heavily-loaded processor, and the numberoftimesthat a processis

permitted to migrate is limited to once only. Since this policy has no regard for

whetherthe destination processoritself is equally loaded or more heavily-loaded than

the source processor, an enhancement wasproposedfor a second algorithm knownas

threshold. Underthis policy a random destination processor is chosen as before, and

this processor is then sent a probe message to determine whether migration of a
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process would cause that processor's load to exceed the static threshold; if so, then

another processor is chosen and probed,until either an appropriate destination is

found, or the numberof probe messagessentis greater than statically set limit;if this

limit is exceeded then the process is executed locally. The probe limit was introduced

in order to prevent unbounded probing whenthe global system load is high. In the

third algorithm investigated known as shortest, an attempt was made notonly to

determine whether a potential destination processor would have a load abovethe

threshold, but also to establish the "best" destination; this was achieved by polling a

fixed numberof processors, requesting their current queuelengthsand selecting the

processor with the shortest queue.

In order to evaluate the performanceofthese algorithms under simulation a queueing

model wasused, and to establish boundary conditions a k-processor network was

modelled as k independent M/M/1 queues and an M/M/k queue,to represent the no

load balancing and optimal load balancing cases respectively. Results indicatedthatall

three algorithms provided substantial improvementoverno load balancing, and further

that threshold and shortest provided extra improvement beyond a system load of above

0.5 (where system load of 1.0 is used to denote saturation); also the difference in

performance between threshold and shortest was found to be negligible, with shortest

performingslightly better. This led the authors to conclude that simple policies are

adequate for adaptive load balancing, and that gains to be obtained from additional

complexity are questionable.

The Maitre d' load balancing system [Bershad85] uses daemonprocesses running on

each processor to implement its co-operation and location policy. It works on a

client/server basis where a local daemon knownas maitrd runsonthe client processor

and negotiates remote process execution with a gargon daemon running on the server
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processor;in a typical configuration all nodes in the network can be both clients and

servers dependingontheir relative loads. Communication between maitrd, garcon and

application processes modified to run under Maitre d' is achieved using the socket

mechanism of UNIX 4.2 BSD. Whenthe user requests execution of an application,

the local maitrd process receives a message at a known socket address; if the UNIX

five-minute load average for the local processor is lower than static threshold,then

the application will runlocally;if the load average exceedsthe threshold, a messageis

sent to a remote garcon process, which has announcedits processor's availability for

importing work, again using sockets. The policy used to choose a remote processoris

simply the one to which a remote request wasleast recently sent. When the garcon

process accepts the request, it forks another copyof itself to act as a controller for the

remote application process and a socket connection is set up back to the originating

processor. In this manner both original maitrd and garcon processes can continue

listening on their control sockets for further requests. Although this method showed

significant performance improvements on the University of California VAX machines,

it suffers from a need for application processes to be explicitly modified to use load

balancing, and will only work for processes which usetheir standard I/O channels in a

"well-behaved" manner; there is also considerable difficulty in dealing with faulty

processes whichare part ofa pipeline.

Stankovic [84] has proposed three algorithms which are based on therelative

difference between processor loads. The information exchange policy usedin all

three, is to periodically broadcast local load values. In the first of these algorithms, the

least-loaded processor is chosen as a potential destination for migrating processes if

the difference between that processor's load and the local load exceeds a tunable bias

value.
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A similar method is used in Stankovic's second algorithm, but in this scheme a

processor compares its load with each other processor in turn; for all differences

greater than a value bias1, one process will be migratedthere; if the difference exceeds

bias2 then two processes are moved. In order to preventinstability, a static limit is

imposed on the total numberof processes that can migrate in a single pass through the

load vector.

The third algorithm developed uses exactly the samepolicy asthefirst, except that

when migration occurs to a particular processorthis fact is recorded and no subsequent

migrations will be performed to that processor for a time window ofdt evenifit is

found to be underloaded. Results were obtained through simulation, and considerable

analysis was carried out on the effect of changing the tunable biasses and time window

length. The major conclusion of this analysis was that parameterchoiceis a difficult

and crucial question for the algorithmsstudied, and the second algorithm gave greater

performance improvementthan theothers, only if appropriately tuned. This leads to

the suggestion that an algorithm should, as muchas possible, adaptto its environment

by using variable parameters which do notneedto bestatically assigned.

The distributed scheduling algorithm designed at the University of Wisconsin

[Bryant81], also used the load difference between processors to achieve load

balancing. When a processor finds that it has more than two processes currently

resident it enters what is termed the "pairing state", whereit attemptsto locate one of

its neighbours to which it can offload processes; in the pairing state, queries are sent

cyclically to all neighbours, and a neighbourwill respond by acceptingpairingifit is

sufficiently underloaded(ie it has less than two processes executing onit). Oncea pair

has beenestablished both processors reject any further queries from their neighbours,
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and process migration is performed using expected service time improvementas

explained in the previous section on transfer policies. The pair is then broken by

common consent. An enhancement to this approach was investigated, whereby

queries made during pairing would not be rejected if the querier's load differed

significantly from that of the queried processor, but would be postponeduntil after the

pairing state was left, in order to avoid missing possible fruitful migrations. A

simulation of 25 processors connected in a square mesh topology showedthatthis

method results in an evenly loaded network, and that even when a lightly-loaded

processoris surrounded by heavily-loaded neighboursit does not get "swamped" by

migrating processes.

A later algorithm [Krueger84] from the same group ofresearchers at the University of

Wisconsin uses a globally-agreed average load value (as previously described) to

negotiate process migration between processors. When a processor becomes

overloaded,it broadcasts this fact and waits for an underloaded processorto respond

with a message accepting migration of a processto it. The underloaded processor

increasesits local load value by the numberof migrant processes whichit believesit is

going to receivein order to prevent subsequent overloading, but reduces its load when

a timeoutperiod expires indicating that another processor was chosenfor migration. If

the overloaded processoris unableto find a suitable location for offloading work, then

it assumesthat the global average value is too low and broadcasts an increased value.

The advantage of this approach is that it adapts better to load fluctuations than the

co-operation and location policies which migrate processes based ona static threshold

for under- and overloading. It has the desirable feature of diminishing load balancing

effort when the system is in a generally stable state, and increasing this effort when

anomalies in load distribution occur. Simulation of a 40-processor network showed

that this method drastically improved both mean processor load and average process
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responseratio.

The Gradient Model load balancing algorithm [Lin87] uses the concept ofa pressure

surface approximationofthe current network load distribution to makeits process

migration decisions. When a processor hascalculated its own local load an action is

taken depending on whetherthis is light, moderate or heavy. If local loadis light then

the processor's propagated pressure is set to zero and propagated pressures from

neighbours are ignored; if load is moderate, the propagated pressure is set to one

greater than the smallest propagated pressureofall direct neighbours, but no migration

is attempted. Migration occurs only at heavy load: if the propagated pressureofall

neighbours indicates that no lightly-loaded processors exist, then the network is

saturated and migration will serve no purpose; if however this is not the case, then a

process is migrated to the neighbour whose propagated pressure is minimal. It should

be noted that using this method, processes are not necessarily migrated directly to a

lightly-loaded processor, but by definition are guaranteed to migrate towards them

following the route implied by each processor's propagated pressure. The algorithm

hencestrives to achieve global load balancing by series of local migration decisions;

if the intended destination of a migrant process becomes overloaded whilstit is in

transit, the algorithm will react to this and divert the process elsewhere. Theuse ofthe

bounding value W,,,, (as described in the previous section ontransfer policies)

prevents unnecessary migrations and also serves as an indicator that a processor has

failed.

In the MOSdistributed load balancing algorithm [Barak85b], a quite complex

combination of elements are taken into consideration when choosing a destination

processor for local processes, which are caused to contemplate migration in a
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round-robin mannerby special system process. Firstly an estimation is made ofthe

response time that a process can expectif it executes on each of the processors whose

load is currently held in the periodically-exchanged load vector. This estimate includes

communications costs with other processors, where the process's resources may

reside and also a weighting to take into account the overheads oftransferring the

process basedonits size. The processor chosenis the one whichapparently offers the

best expected response time. Tests using this algorithm were conducted using a

network of four PDP-11 computers connected by a 10Mbit/second communications

ring; a number of I/O-bound and CPU-boundprocesses were used and observed

speed-up in processing was tabulated for variousinitial process placements; these

results showed significant improvementover the no load-balancingcase, butit is not

clear whateffect a larger network, with a greater variety of process behaviour would

have.

3.3.4.2 Receiver-initiated Approaches

Receiver-initated location policies work with underloadedoridle processors requesting

processes from more heavily-loaded parts of the network. They have been less

well-studied than sender-initated policies, but Eager et al [85] showed that they can

perform well, especially at high overall system load. Similarly to their work on

sender-initiated policies they investigated the level of complexity necessary to achieve

efficient load balancing; as in their other study they based their policies on a simple

threshold transfer policy. In an algorithm which they term "receiver", when the load

on a processorfalls below the static threshold (T), it polls random procesorsto find

one wheretransfer of a process from that processor would not cause its load to be

below T; again unsuccessful probes are constrained bya static probe limit. In an

attempt to remove the overhead of migrating an executing process, a modification to
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the above approach, knownas the reservation policy was investigated. When a

processor's load falls below the threshold

T

it polls its peers exactly as in the

"receiver" policy, but instead of accepting a process currently running on a particular

processor, a reservation is made to migrate the next newly-arriving process, provided

that no other reservations are already pending; a static probe limit is used as above.

Simulation results using a queueing model indicated that despite the reservation

policies avoidance of costly preemptive migration it did not perform as well as the

receiver policy; it was also noted that the receiver policy performed better than an

equivalent sender-initiated algorithm atloads greater than 0.7.

The distributed drafting algorithm [Ni85] is also an example ofa location policy where

lightly-loaded processors seek work from their heavily-loaded neighbours. Since the

algorithm is intended to be network topology-independent, the processors which are

candidates for migration are defined with regard to communications costs. When a

processor enters the light-load state, a "draft request" message is sent to all

heavily-loaded candidate processors which then respond with a "draft age" message;

the draft age is calculated by consideringthe characteristics ("ages") of all processes

which are suitable for migration and will have a value ofzero if the processor's loadis

no longer heavy. Whenthe original drafting processor has received all such draft

ages, it selects the processor which sent the highest draft age value and sends it a

"draft standard" message based on the draft ages received. Finally, the receiver of the

draft standard will then migrate any ofits processes to the drafting processor whose

ages exceed the standard; if there are no such processesit replies with a "too late"

message. The major drawback ofthis approachis that it containsa large collection of

parameters which must be carefully tuned to suit the network topology(e.g. draft

ages, draft standard, time-out periods). A five-processor simulation showedthat this

method can perform well, with correct parameter choice.
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In a study of load balancing algorithmsin broadcast networks, Livny and Melman [82]

proposed tworeceiver-initiated policies. Under the first of these a node broadcasts a

Status message when it becomesidle and receivers of this message carry out the

following actions:

Assuming n; denotes the numberof processes executing on a processori :

1 if n; > 1 continueto step 2, else terminate algorithm.

Wait D/n; time units, where D is a parameter dependingonthe speedofthe

communications subsystem; by making this value dependenton processor

load, more heavily-loaded processors will respond more quickly.

Broadcast a reservation message if no other processor has already done so

(if this is the case terminate algorithm).

Waitfor reply.

If reply is positive and n; > 1, migrate a processto the idle processor.

It was thoughtthat this broadcast method may overload the communications medium,

so a second algorithm was proposed which replaced broadcasting by polling when

idle. In this algorithm the following steps are taken whena processor's queuelength

reacheszero:

Select a random setofR processors(a;, . . ., ap) and set a counter j = 1.

Send a message to processor aj and wait for a reply.

The reply from aj will either be a migrating processor an indication thatit

has no processes.
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4 If the processorisstill idle and j < R, incrementj and goto step 2 else stop

polling.

A large number of queueing model simulations with varying numbers of processors

were performed, and it was found that both algorithms resulted in similar

improvements in process turnaroundtimeand similar overall communicationscosts.
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HAPTER 4

STIMULATED SYSTEM DESIGN AND TMPLEMENTATION

4.1 RATIONALE AND INTENDED GOALS

From the previous chapter, which reviewed a numberof different methodsfor tackling

the question of load balancing, it can be seen that the approaches taken for each

componentof a load balancing algorithm arelegion, andthat an analysis of how these

components interact and the trade-offs to be considered, are complex. It is necessary

to investigate the underlying nature of the problem and to examine how the design of a

policy to achieve performance improvementthroughredistribution of the load across a

numberof processors is influenced by system characteristics and overheads.

Manystudies of load balancing have made simplifying assumptions in order to use

queueing theoretic models in their analysis [Zhou86a]; the overheadsof executing a

load balancing algorithm are often ignored [Cabrera86], and thecosts of interprocessor

communication are not included in the model, or if they are then they are only

considered in the context of messages used for load balancing [Krueger84], thus

excluding messages generated by user processes executing on a processor which does

not hold the resources accessed by those processes. Whenalgorithmsare usedin real

distributed systems, their performanceis often only studied for very small numbers of

processors, with a limited workload environment [Barak85a].

Dueto the apparent limitations of queueing models [Ni85], simulation has suggested

itself as a viable method for analysing the complex nature of a loosely-coupled

distributed system [Reed83], and we have adoptedit for our work in that area. Our

goal is thus first to provide a flexible simulation vehicle for studying the behaviour of
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such a system, and thento use this vehicle to investigate the adaptive load balancing

problem. The simulated system is structured in a manner which allows the

specification of a number of parameters defining the physical characteristics of the

network, and provides support for the execution of a variety of user processesin this

environment. Our simulation is thus divided into three major components:

- the simulated processors connected via a communications mechanism, with

a specifiable speed and topology

- adistributed operating system kernel, providing fundamental facilities to user

processes running on the network

- ameans of developing and analysing the performance of load balancing

algorithms under varying system loads.

By using a completely simulated system of this kind, we are not constrained by

available hardware aspects, or the limitations of attempting to add load balancing

features to an operating system which wasnotoriginally designed with this in mind.

4.2 DEVELOPMENT ENVIRONMENT

The simulated system was developed and implemented on an NCR Tower XP running

UNIX System V, with 2Mbytes of user-addressable RAM and two 35Mbyte hard

disks. Due to the large number of processes created during system execution the

UNIX kernel wasrelinked with an increased process table and openfile descriptor

table size, and the optional shared memory system calls were included. All software

for the simulation was written using the C programming language and totals some

10,000 lines of source code. C was chosen as an implementation languagesinceit
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provides a well-defined interface with UNIX,and has features appropriate for the

development of operating system software. A listing of the program is given in

Appendix C.

The system is structured in a way which will optimiseits flexibility and allow usto

study a variety of approaches to adaptive load balancing, by creating an abstract

machine environmentatthe lowestlevel and writing the higher-level software (such as

provision of kernelcalls for interprocess message-passing) in terms of a numberof

primitive routines which simulate physical processor operation. Various

characteristics of processor speed, communications speed, network size, local

processor scheduling and performance monitoring are parameters of the system held

in a collection of "#include"files.

Eachofthe three major components of the system listed in Section 4.1 was designed,

tested and debugged incrementally to ensure its correct operation, before being

combined for our experiments on load balancing algorithms. Thus we began by

creating the simulated processors connected via a network topologyandtested them by

sending a number of interprocessor messages through the network, gathering

considerable trace data to ensure that they reachedtheir correct destination via the

correct route. This trace data also involved checking that the passage of real time

functioned as required.

Having established the underlying network in this manner, the operating system kernel

was developed, and each function provided for user processes in the system was

incrementally added and tested, by writing a numberof typical user process groups

with a large variety of interactions. To ensure that all system data structures were

correctly maintained, these were regularly dumpedto trace files and examined before
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and after a particular operating system function was performed.

Finally wetested the modules of our kernel which support the implementation of load

balancing algorithms, including a mechanism for performing process migration.

Again a numberof user processes were written and executed on our system, and we

migrated these processes acrossthe simulated network, monitoring their progress, to

verify that they behaved as expected. Whilst recognising that in a highly concurrent,

complex system suchasours, it is not possible to test every eventuality, we are sure

that the above method ensures the validity of our results.

4.3 SIMULATED PHYSICAL NETWORK

The "simulated network" module of the system deals with the creation of simulated

processors, the maintenance of a global time source, and elementary interprocessor

communications following a specified topology, and hence includes most of the code

which would need to be modified to port the software onto a "real" network (in fact the

code to simulate the passageofreal time would no longerbe necessary atall).

4.3.1 The Start-up Process and Simulated Processors

It was decided that processors in the simulated network should each be represented by

a separate UNIX process, with every processor running the same program (hence they

are homogeneous), providing the underlying architecture on which to run the keel of

an operating system designed for a distributed environment. This method was chosen

since it neatly encapsulates the concept of autonomousprocessors with no shared

memory, where data exchange can only occur by a message-passing mechanism using
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a communications medium. These processes are created from the mainstart-up

routine, which is called when the system is first activated. This routine takes

information regarding the numberof processors in the network, the numberof user

processes which will be created during this simulation run, and the rate at which these

arrive, from a main configurationfile (these values can also be inputinteractively from

a terminal if required); thus these parameters can easily be changedto create different

environments. Once these values have beenestablishedthestart-up routine creates a

file of user processarrival times for each processor and a numberof namedpipes

which simulate interprocessor communications. Both of these aspects are described in

more detail in later sections.

Having set up this environment the number of processors specified in the

configuration file are created using the fork () system call; in orderto distinguish

between processors each oneis given a unique "machine identifier" (an integer value)

which will be used during interprocessor communications and as an extensionto all

filenamesrelating to a particular simulated processor. This value is stored in the global

variable this_mc. The UNIX processidentifiers (pids) of all forked processes are

held in the mainstart-up routine to allow limited debugging ofthe system if a future

modification causes a processor "crash" (e.g. addition of extra operating system

facilities); the pids are also passed as an array indexed on machineidentifier to every

processor, since they will be used in the kernel call and process migration mechanisms

of the distributed operating system.

The first task of each processor is to open its owntrace file which is written to

periodically to give performance information (trace files have the name "trace"

followed by the machine identifier number), and will also contain appropriate error
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messages if a system fault occurs. The simulated network topologyis then created, by

reading relevant data from per-processor configuration files (named "config" with an

extension formed by the machineidentifier) and opening the necessary named pipes

(as describedlater).

Whenthe network has thus been configured all processors wait to be booted by

making a pause () system call; booting is achieved by sending a SIGINTsoftware

signal to all processors, either from the keyboard (usually the RUBOUT key)or from

a provided shell script startsys which scans the UNIX process table and uses

kill() tocreate the desired effect. This ensures that all processors begin executing

at the same time(a fact which is important for the maintenance of simulated real time,

as described below). Aninterrupt handler in all created UNIX processes which

catches the SIGINTsignal, either begins running the distributed operating system

kernel(if the process is a simulated processor) or a master routine(if it is the start-up

process); the purpose of the master routine is to maintain global simulated time

consistency. An outline of the operations performed at system start-up is shown in

fig. 4.1.

4.3.2 Simulated Time Maintenance

A fundamental aspect of network activity which must be accurately simulated is the

passage ofreal time, used for establishing the interval between userprocessarrivals,

overheads incurred by interprocessor communications, process execution time (both

user time and OS time), overheads of carrying out load balancing and process

migration, and for providing performance evaluation information. This is achieved in

our simulation by maintaining a local view of time held independently by each
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processor and, since these are running as asynchronous processes on a

multiprogrammed system and will update their value for time at varying rates, the

Start-up processis used to ensure that a senseof consistent global timeis correctly

maintained.

4.3.2.1 Time Definition

Each processorhas a variable sys_real_time(of type double) whichit usesto

record the passage of simulated real time; the unit of time used is microseconds, so

incrementing this variable by one represents the elapsing of one microsecond ofreal

time. A parameter of the system (the manifest constant AVE_INST)is introduced to

specify the length oftime in microsecondsrequired to execute one machineinstruction,

and this is then used as the basic unit by which to update time as necessary. Each

operation ofa simulated processor which would take someperiod ofreal time can then

be defined in terms of a number of average instructions (for example sending a

message onto the communications medium,or processinga user's kernelcall).

The basic routine in the simulated system which maintains local time (ie the

processor's own view of the quantity of real time which has passed since it was

booted) is time_update(). Itis called at every point in system operation where

simulated time needs to be advanced,andis passed the numberof microseconds which

have elapsed, together with an indication as to whether the elapsed timeis due to user

process or operating system activity, and, if the formeris the case, a pointer to the user

process in the simulated kernel's process table. This routine is responsible for

maintaining several timing aspects of the system, the most fundamental of these being

to increment sys-real-time by the amountof time that has elapsed;it is also
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necessary to update various per-process items oftiming information. If the elapsed

time is dueto user processactivity, then timeupdate () appropriately increments a

countfor that process (using the process table pointer) regarding both the amount of

time for which it has been executing since it was created, and also the time that

execution has been continuing on this processor. This quantity may be different to

total execution timeif a preemptive load balancing policy is being used, and will be

useful for deciding which processto migrate to ensure that processes spendatleast a

minimum period of time on a particular processor before becoming eligible to be

moved. The above values relate to the currently executing process, but time

informationis also recorded for all processes whichare resident on a processor when

real timeis incremented. This information concernsthetotal time that a process has

existed in the system (regardless of which processorit has previously been running

on) and the total time that it has been resident at its current location; hence

time_update() scansall process table entries adding the elapsed time to these two

entities, whetherelapsed timeis user time or operating system time.

Forcertain load balancing strategies, time needsto not only be consideredin termsof a

single instant, but must be divided into a numberof quanta, so that local processor

load duringa particular quantum can be notedin order to provide a load value averaged

over a numberof such quanta [Barak85b]. To this end, an array of time quanta,

where each element holds details for a single quantum is manipulated by

time_update(); the length of a time quantum in microseconds and the numberof

past quanta whichare retained, are tunable parameters of the system; hence when

sys_real_time is incremented, the appropriate quantum entries are updated,

wrapping aroundto the beginning of the array whenitis full, to guarantee that only the

most recent NQUANTAentries are kept (where NQUANTAis the manifest constant
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specifying how many quanta should be retained). When an entire quantum has

elapsed, the numberof non-blockeduser processescurrently resident on the processor

is recorded for load balancing policy purposes. In addition, a note is made of the

amountof OStime usedin a quantum,to providedetails of quanta when the processor

was unavailable to user processes due to OS overheads.

4.3.2.2, Processor Synchronisation

If the simulated processors were permitted to update their view of real time in an

unrestrained manner, since they will receive variable periods of service from the

UNIX scheduler, there would be no consistent value for simulated real time overthe

whole network; consistency is hence achieved in our system byusingthestart-up

process to synchronise processor operation. Under this schemeevery processoris left

to independently update its local time value for a limited period of time; this period is

specified by a parameter (SYNC_INTERVAL), which should be kept small to ensure

that processors’ time values do not differ by more than a few microseconds. The

start-up process andall processors are attached to a shared memory segment which

contains a time at which processors must synchronise with each other, and an array of

flags indicating which processors have reached the synchronisation time. As soon as a

processor's sys_real_time exceeds the next synchronisationtime,it sets its flag

in the shared memory segmentand waits (using pause () ) until it is informed by the

start-up process to continue. Thestart-up process constantly scans the shared memory

segmentarray offlags until all are set (in other wordsall processors have reached the

synchronisation time), and then establishes the next synchronisation time

(incrementing it by SYNC_INTERVAL)and sendseach waiting processor a software

signal to instruct it to continue operation. In this mannerall processors’ simulatedreal
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time values are always within less than SYNC_INTERVAL microseconds of each

other.

A diagrammatic outline of the operation of this synchronisation mechanism is shown

in fig. 4.2.

4.3.3 Communications Medium

As previously stated, since we are studying loosely-coupled distributed systems,all

communications between processors must be achieved without the use of shared

memory, and hence using a message-passing mechanism on an external

communications medium. It was decided that using named pipes to simulate

interprocessor links is an appropriate way of creating a network environment with

these characteristics; thus when a processorreads from a namedpipeit is simulating

receiving a message on a communications link, and writing to a pipe simulates

message transmission; since pipes in UNIX are uni-directional, a duplex connection

between two processors is represented by two pipes, with the processors being

readers or writers of the pipes as appropriate. The necessary pipes for

communications simulation are all created by the start-up process, before the

processors are forked; pipe names are formed by taking the string "own_p" and

appending the machineidentifier of the processor which will read the pipe (e.g. the

pipe read by processor 0 is "own_p0"); as soon as processors are booted they open

their "own"pipes for reading, to accept incoming messages.

4.3.3.1 Network Topology

The network topology is specified separately for each processorin terms of its direct
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neighbours and routes to all other processors; this information is either entered

interactively from the terminal or stored in per-processor configurationfiles, each of

which has the name "config" with the machine identifier as an extension (e.g.

"config.O" for processor 0); see appendix C for a description of the configurationfile

format.

Whena processoris first booted, it establishes connections to its immediate

neighbours; the numberofsuchlinksis the first value read from the configuration file,

followed by the machineidentifier of the neighbouring processor on each successive

link. In order to be able to send messagesto a neighbour,its communicationspipe is

opened for writing. Details concerning links are held in a table (named

phys_link[] in the program listing), indexed on link number, where each entry

contains the machine identifier of the neighbour on the correspondinglink, together

with the UNIX file descriptor returned when the neighbour's pipe was opened for

writing; the maximum numberofpossible links a processor can haveis a parameterof

the system (MAXLINK). This procedure ensures that processors can only send

messages directly to their immediate neighbours. Fig. 4.3 shows an example

interconnection topology, with the corresponding physical link table for one of the

processors given.

4.3.3.2 Network Routing

In order for processors to communicate with their peers, a mechanism to route

messages throughthe network has been introducedto the simulated system. Since our

interest is not primarily in adaptive network routing algorithms, we have adopted a

simple fixed routing approach. Each processor maintains a routing table (named
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route_table[] in the program listing), indexed on machine identifier, where each

entry gives an index into the physicallink table, thus specifying the link on which a

message should besentfor all other processors in the network;the entry also contains

an integer value giving the distance in "hops" of each processorfrom the sender;this

informationis held in the configuration files as link/distance pairs, ordered by machine

identifier. Using this methoda route to a particular processoris not fully-specified at

the sending processor; the sender only knowsthe identity of the immediate neighbour

to which it must route a message, and does not know the identity of any further

intermediate processors which will be used in the message's full path to its destination.

This approach was adoptedsinceit will allow routes to be easily changed without

considerable updatingoftables, if an adaptive routing algorithm werelater addedto the

system. Anillustration of how the route table and physical link table interact is shown

in fig. 4.4, giving the appropriate table entries for Processor 0 assumingthe topology

of fig. 4.3 .

4.3.4 Interprocessor Communications

Oncethe basic network structure has been established as described above a meansis

needed by whichto send and receive messages over the simulated communications

medium. The lowest level I/O in the system is provided by two general utility

functions pwrite() and pread();pwrite() writes a specified numberof bytes

from a given address onto a pipe whose UNIX file descriptoris given as a parameter;

similarly pread() reads a specified numberofbytes, from a given pipe into memory

at a given address. Both of these functions consider messages as uninterpreted byte

streams (interpretation being provided by higher level functions), and perform

low-level error checking (eg whetherthe relevant pipe is open, or whether read/write
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errors occur on that pipe). All functions which require I/O operations on the pipes

representing interprocessor connections, use these two functions to perform them.

Messages which are exchanged between processors are defined as having a header and

a body. The message header (em_hdr)containsan indication of the message type (an

integer constant specifying whether the messageis for a particular operating system

function, or is a user interprocess message), the identity of the sending processor, the

intended destination processor, and (for certain messages only) the nameofthe user

process on whosebehalf the message is being sent. The message bodyisof variable

size and contains fields specific to its particular type (see appendix C for further

details).

When a message needsto be transmitted through the network, both the header and the

bodyare passed to the high-level I/O function Tx () ; this function usesthe identity of

the intended destination processor held in the message headeras an index into the

routing table, in order to find the correct interprocessor link, on which the message

should be sent. The appropriate pipe file descriptor taken from the physical link table

is passed to pwrite(), together with the messageitself (which is transmitted as an

uninterpreted byte stream) and the message size. In order to simulate the overheads

involved in message transmission, a parameter of the system (TX_BYTE_TIME)is

used to indicate the amount of time needed to send one byte of information onto a

communications link; this therefore represents the speed of the communications

medium,and is passed to time_update() multiplied by the size of the message to

be sent. In addition, a fixed software overhead for using a communicationsprotocol

(PROTOCOL_TIME)is included, measured in terms of the number of machine

instructions neededto send or receive a single message; this value is also a parameter
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of the system. Since certain messages need to besentto all other processors on the

network, a broadcast () function has been provided; howeverthis does not mean

that an underlying multicast mechanism is available [Frank85], andis in fact purely a

series of transmissions to each processor; because this research is not concerned with

network communications algorithms, no attempt has been madeto include a more

"intelligent" broadcasting method, but the system is written in a way which would

makeits addition easy.

Receipt of a message at a processoris controlled by the I/O function RX(). This

function is responsible for receiving the message header and then, depending on the

type of message whichis being received,for calling pread() to read the message

body into a suitably large area of memory. Similarly to TX () , each time a messageis

received the fixed software protocol time, and the parameterindicating the time

required to receive one byte (RX_BYTE_TIME)are taken into accountbycalling

time_update() as appropriate. Since messages may pass through several

intermediate processors before reaching their destination, the function

check_forward() is called every time a message arrives at a processor; this

function examines the destination processoridentifier in the message header, and

retransmits the whole messageif it has notarrivedatits destination.

The interactions of TX(), RX(), pwrite() and pread() areillustratedin fig. 4.5.
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4.4 DISTRIBUTED OPERATING SYSTEM KERNEL

4.4.1 General Structure

The simulated environment described above provides a mechanism forcreating a

numberof processors connected via a communications medium in a chosen network

topology. In order to control this environment we need an operating system which

will use the interprocessor communications and time managementfacilities of each

processor, and allow the execution of user processes. To this end we have developed

an operating system kernel, with many of the features which we considered desirable

from the systems reviewed in Chapter 2, which runs independently on each processor,

thus makingcontrolof the networktotally distributed; global information regarding the

network state can thus only be maintained by co-operation between all of the

autonomouskernels using the underlying message-passing facilities. The kernel in

each processoris identical and begins running as soon as the simulated network is

booted using software signals as previously described; when messagesare exchanged,

the identity of the sending and receiving kernels is established using their relevant

machine identifier numbers.

Theprincipal motivation behind the design of the kernel, and in fact that of the whole

simulated system, is to provide an environment in which to experiment with load

balancing strategies, and hence the features which we haveincludedare not intended to

be a full set of kernel services, but are tailored to our needs; however, considerable

effort has been madeto allow realistic user processes to be written and run on the

system, thus distinguishing our approach from a purely mathematical model

simulation.
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The main functions of our kernelare thus:

a) creation, execution and destruction of user processes

b) amessage-passing mechanism for interprocess communication

c) ameansfor kernels to exchange global state information

d) local process scheduling

e) transparent process migration

f) performance monitoring

The requests for service which the kernel receives can be groupedinto twocategories:

a) dealing with a user process kernelcall

b) dealing with a message from a remote kernel

Each requestis identified by an integer constant which is used as an index into two

arrays of pointers to functions (kcvec[] for kernel calls, and emvec[] for external

messages); in this manner, further kernel services can easily be added by writing a

function to deal with that service and then entering its address in the relevantarray.

The current system deals with 11 different types of kernelcall, and different external

messages; a more detailed description of the kernel's operation is given in later

sections.

4.4.2 User Process Support

User processes, which represent the workload submitted to the simulated system,also

run as separate UNIX processes underthe control of our distributed operating system

kernel. Since the typical user process environment which weenvisage for our system,
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would consist of sets of processes co-operating to achieve a commongoal, we

introduced the concept of process groups. Execution ofa process group begins with

the synthetic workload generation part of the system creating a parentprocess, thus

simulating a user requesting program execution from aninteractive terminal, typically

through a process similar to the UNIX "shell"; the parent process then creates a

numberof child processes to act as servers providing a service to perform the desired

task, thus forming a "process group" [Cheriton85].

4.4.2.1 Process Naming

A process naming convention was chosen which, whilst providing network-wide

unique process names, would not directly associate a name with the processor on

which a process is executing; this allows processes to migrate freely around the

networkandtostill be readily identified.

As machine identifier numbers are guaranteed to be unique, and given that a process

group mustat least begin executing on a single machine, we adopted a process naming

scheme which consisted of the machineidentifier of the originating processor, together

with a "process group number" (where a new group numberis allocated each time the

synthetic workload generation function is called) in order to uniquely identify a

process group, and then a unique characterstring to namea process within that group.

This combination of process group and name within group, guarantees network-wide

uniqueness of process names. Hence weuse the following C data types to specify a

process name (PROCN):
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typedefstruct {

int gmc; /*original mc on which group wascreated*/

int gnum ; /*group identifying no.*/

} PGRP;

typedef struct { PGRP pgroup /*process group identifier*/

char pname [MAXPNAME]; /*process identifying string within

group*/

} PROCN;

4.4.2.2 Kernel Call Interface

User processes execute in our system by making requests for service via "kernel

calls". Similarly to the method used to simulate interprocessor communication, we

employ named pipes to implement the kernel call mechanism; when a userprocess

makes a kernel call, it writes its request on its processor's pipe and, when the kernel

has processedthecall, the user process receives the result on a further return pipe. In

order to makethis interface transparent to user processes, a numberoflibrary routines

are provided which need to be linked with the user process code before execution.

These library routines present a function call interface for making kernelcalls, and deal

with sending and receiving on the correct pipes and returning theresult; hence the user

process view of our kernel call mechanism is similar to that of UNIX system calls.

For a more detailed description of the exact operation of this mechanism, see section

4.4.4 on "Kernel Call Mechanism".

Webelieve that using UNIX processes to simulate user processes on each processor,

with a controlled interface to our kernel creates a realistic environment in which to

carry out our experiments, and that the use of pipes for the kernel call/return
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mechanism accurately mirrors a separate kernel anduser address space.

4.4.2.3 The Process Table

Since the processors in our system are totally autonomousand loosely-coupled, and

since we wishto restrict the overheads caused by excessive exchangeof information

between machines, we have adopted the approach that each processor maintains

information concerning only those processes which are resident on it. This implies

that any global information regarding for example the current numberofprocesses on

a particular processor, or any process-specific information, can only be maintained

through the information exchange policy of the load balancing algorithm whichis

being used. All local process information is held in the kernel's process table (named

processtable[] in the program listing), and the maximum numberofpossible

entries in this table is a parameter of the system (MAXPROCS), where each entry

refers to a single user process. The process table is a fundamental data structure for

our implementation and a diagram showing its most importantfields is given in fig.

4.6.

The process' name(field proc_name)is essential sinceit identifies the process in a

network-wide unique manner. As processes may migrate from one processor to

another underthe controlof a load balancing algorithm,a record is kept of the machine

identifier numberof the processor where a process wasfirst created (field origmc),

for implementation-specific purposes, since user processes are created by a UNIX

fork() system call, and failure to execute a wait () call by the original creating

processor would result in many "zombie" UNIX processes being left in the system.

The process’ size is given in bytes, to be used to calculate the overheads caused by
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process migration.

In order for our kernel to schedule its processes correctly two flags are included for

each processentry, oneto indicate if the process can be scheduled (it may have been

chosen for migration and be waiting to find a destination processor, in which case it

should not be locally scheduled) and anotherto indicate if the process is blocked

waiting for an external event(for instance it may be waiting to receive confirmation of

a kernelcall which resulted in a request being sent to a remote processorforservice).

The UNIX identifier of the user process is also included for scheduling and kernel

call/return purposesas described later.

Timing information is held for each process (appropriately updated as simulated real

time elapses), which is used for performance evaluation, and may be used for the more

sophisticated load balancing algorithms. This information concernsthe total real time

that has elapsed since the process was created (exist_time), the total time that the

process has spent executing, i.e. the number of CPU cycles it has used

(exec_time). Also included are totals of the amountof time that a process has been

resident on its current processor, because it may have migrated (residencytime),

andthe time it has spent executing on that processor (exec_heretime). These are

the per-process values which are maintained by the simulated processor function

time_update().

Since our system is intended to support an interprocess communications mechanism,a

process table entry also has an array of pointers into the software port table, whose

structure is discussed later, holding a record of the ports which a process currently

owns, and through which it will communicate with its peers. The number of such
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ports which are owned is also held in each process table entry (in the field

ownp_length).

4.4.3 Interprocess Communications Mechanism

In order to allow user processes to co-operate in the parallel solution of a common

goal, a means must be provided for them to efficiently exchange data. In a shared

memory multiprocessor environmentthis could be achieved throughthe use of shared

variables, but the loosely-coupled nature of our network makes this approach

infeasible; in fact, we note that shared variables introduce problems of mutual

exclusion and synchronisation when concurrently accessed, and thus result in

unnecessary complexity [Manning80]. We have thus adopted a message-passing

mechanism for performing interprocess communication.

Message-passing has a numberofdesirable attributes. As each user process executes

in its own disjoint address space, it can only operate on its own local data; with

messages being the only way of performing data transfer, the interface between

processes, and the side-effects which they may have, can be clearly defined and

controlled by the programmer. Messages can either be used purely as a means for

distributing data, or to enable one process to request service from another. Thelatter

of these two possibilities can be used by processes to implement a remote procedure

call mechanism, where the requesting process sends a message containing an

indication of the service required, together with any input parameters, and the serving

process returns its results via a further message back to the requester. It is thus

possible to "disguise" the message-basedinteraction in terms of procedurecalls,if this

is more familiar to the programmer. Accessto critical variables is guaranteed to be

102



mutually exclusive, since they are passed in messages between processes, and hence

can only be operated on by one processat a time; process synchronisation can also be

achieved using message exchange. In such a system the verification of a set of

concurrent processes can be achieved by verifying each process independently,

considering its external effects purely in terms ofits message sending and receiving

activity.

4.4.3.1 Message-Passing Primitives

The kernel of an operating system which supports message-passing between user

processes must provide primitives for sending and receiving interprocess messages

[Liskov79]; these primitives can operate in either a blocking or a non-blocking

fashion,and,since it has been suggested that both modesare appropriate to different

application environments [Manning80], our kernel allowsuser processes to perform

blocking or non-blocking send andreceive operations (which we henceforth denote as

b_send, nb_send, b_rcv,andnb_rcv respectively). Absend operation is

usedif the calling process requires an acknowledgementof messagereceipt(since the

sender will block until the message has arrived at its destination or an error is

reported), but an nb_sendallowsthecalling process to continue regardless of what

happensto the sent message. Ab_rcv operation blocksthe calling process until the

expected message arrives, whereas an nb_rcvis just an announcementof willingness

to accept a message (which may not necessarily arrive); the willing process continues

its execution and is signalled upon message receipt. Thus user applications can be

constructed using any combination of the available modes to work in a

fully-synchronous (b_send/b_rcv), half-synchronous (b_send/nb_rcv,

nb_send/b_rcv)or fully-asynchronous (nb_send/nb_rcv) manner,to suit their
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needs.

User processes send messagesin a totally location-independent manner;it is the

kernel's responsibility to deal with whether the intended destination for a messageis

local or remote; if the former is the case then message sending is performed by

appropriate manipulation of internal pointers by the kernel, and in thelatter case the

message is transmitted onto the network androuted to its correct destination.

4.4.3.2 Software Ports

When a message is sent, a means must be provided for specifying that message's

destination. A flexible mechanism for establishing endpoints for communication

which has been proposedis that of the "port" [Silberschatz81]; we have usedthis

approach in our kernel. In avoiding using process names in a message's intended

destination (as is used by Hoare [78] in CSP), the mechanism is more transparent, in

that a sending process is not concerned with the identity of the process which will

receive the message andwill service it; messages are sent and received using the port

concept. Each port has a single owner, which is the only process permitted to receive

messages on it, but messages may be sent to multiple ports belonging to other

processes. A typical use of a software port in this environment would be to associate a

separate port for each service which a process provides to a potential client; a message

arriving on a particular port is thus a request for its corresponding service. In order to

ensure that messagessent to a port are of the kind which the receiving process expects,

each port is assigned a "type" whenit is created by its owner process; the type of a

port restricts messages whicharrive at that port to those of the appropriate type, andis

a user-defined integer constant. This restriction only applies to messages sent to a

port; a message of any type can be sent from a particular port, regardless of that port's
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type.

Having defined ports as endpoints for communication, the kernel must provide a

means by which user processes can connect their ports, thus allowing message

passing to be performed. We have chosen touse the conceptof a uni-directional link

to implementthis connection mechanism. If a process, P1, wishes to send messages

from oneofits ports, port1, to another port, port2, which may be ownedbyany other

process (or indeed ownedby the sending process), it must create a link from portl to

port2. This link will permit messagesto flow from portlto port2, but not vice versa;

if a bi-directional connection is required then the ownerprocessof port2 must create a

link from it to portl. This link mechanism allowsuser applications to be developed

with well-defined interfaces and data flow connectionstosuit their requirements. An

example process group with ports connected in various combinations is shown infig.

4.7.

User process sending and receiving of messages can thus be expressed in terms of

operations on ports and links. A "receive" kernel call (brcv ornb_rcv) applied to

a port owned bythe calling process, results in any pending messages which have

arrived at that port being delivered to the caller (ie copied into its address space); a

"send" kernel call (b_send or nb_send) is made through port via a link, and

results in the user-supplied message being sentto the destination port which has been

connected on that link. Hence in the example in fig. 4.7, if Process B performs a

receive operation onits port B1, then it will be delivered a message which may have

comefrom either Process C's port C2 via its link L1, or from Process A's port Al, via

its link L1. Alsoin this figure, if Process C performs a send operation throughits port

C1's link L1, the message will be sent to Process A's port Al.
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4.4.3.3 User Message Format

Messages passed between user processes in our system consist of two parts: a header

and a body. The message header contains all information necessary to guarantee

correct delivery and possibly acknowledgement; this informationis given in fivefields:

the first two of thesefields specify the names of both the destination and sourceport of

the message (the source being includedin case the receiving process needs to know

where the message came from,or if the message wassent in blocking mode and

therefore receipt needs to be acknowledged). The three remainingfields give an

indication of the length of the message in bytes (whichis used to calculate the time

necessary to transmit and receive the message), a flag which records whether the

message wassentin blocking or non-blocking mode,andfinally a user-defined integer

giving the type of the message, which will be used to check thatit is valid to be

received on a particular port.

The message body is an uninterpreted stream of bytes; for the purposes of our study

we have used a small fixed-size array of characters for this part of a message, but the

system can easily be modified to handle large dynamically allocated message bodies.

4.4.3.4 The Port Table

Associated with each software port across the network is a correspondingentry in the

"port table" (named port_table[] in the program listing), a copy of whichis

maintained by the kernel of each processor. The pointers in a process table entry

whichrefer to the ports ownedbya userprocess (see previous section on the process

table), are thus set up to point at entries in this port table. The maximum numberof
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ports which can be extantat any one time is a parameter of the system (MAXPORT).

Since ports will migrate from one processor to another, if their owner processes

migrate, the kernel must knowtheport's name,the identity of its owner process and

the identity of the processor on which theport is currently resident, for all created

ports (both local and remote). This will enable the kernelto correctly route messages

sent betweenports, and to keep this routing transparent to user processes. In order to

makeports uniquely identifiable on a network-wide basis, each port is given a name

(specified by the user process when it creates the port) and wheneverthis port is

referred to by the kernel it is taken together with the groupidentifier of its owner

process (which is guaranteed to be unique). By enforcing the rule that no two ports

used by a process group can have the sameuserprocess-specified name, port names

are thus unique across the whole network.

Further information (as described below)needs to beheldfor all ports which are local

to a particular kernel, to allow them to be successfully linked to otherports (both local

and remote) and to deal with message-sending and -receiving operations. By

maintaining full information on local ports and only essential details regarding remote

ports, we have attempted to reduce the overheads caused by increased interprocessor

communications which are necessary to keep each kernel's view ofthe port table

consistent. A diagrammatic representationofthe structureof the port table is shownin

fig.4.8.

In order to record the interconnections betweenports, each port table entry holds two

arrays which specify all links which the correspondingport has to or from otherports

(these are fields links_to and linksfrom respectively); the arrays contain
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pointers to other port table entries (whose corresponding ports may be both local or

remote), and their sizes are parameters of the kernel (MAXLTO and MAXLFROM

respectively).

Since messages mayarrive at a port before the owning process has performed a

corresponding receive operation (either blocking or non-blocking), a queue of such

messages is maintained in a linkedlist for each port, with pointers to both the head and

the tail of the queue. In our implementation, when a process requestsreceipt of a

messageit is given the messageat the head of the queue, andfurtherarriving messages

are appendedto thetail of the queue; hence messagereceipt is on a FIFO basis, but

this could easily be modified if, for example, a priority scheme was deemed more

desirable. Also held for each port is an integer value giving the type of message which

can be received on that port (msg_t ype); this value is specified by the owning

process andis used to check that the type of messages arriving at the port is correct.

Port entries also contain a numberof pointers into the owning user process address

space. When a messagearrives at a port, and the port's owner has requested a

non-blocking receive operation onthat port, the location in the owner's address space

where the message should be depositedis held in the pointer field nb_msg_loc; in

addition, the owner process may have specified that a particular function should be

called upon receipt of a message (in non-blocking mode), and the address ofthis

function is held in the field rcvfunc. Finally, when the port is destroyed at the

request of its owner, a pointer in the corresponding port table entry (the field

destruct), gives the address of the user process function to be called upon port

destruction.
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In order for the kernel to maintain the currentstate of a port, various counts are held in

a port's profile. This gives values for the numberof ports to which a port is

linked, the numberof links connected from otherports, and the currentlength ofthe

incoming-message queue;also heldin the profile are two flags, indicating whether

non-blocking or blocking receive operations are pending for this port, in fields

nb_pending andb_pendingrespectively.

4.4.4 Kernel Call Mechanism

4.4.4.1 The User Process View

As previously mentioned, user processes interact with the kernelof the processor on

which they are resident through UNIX namedpipes; each processor has twopipes for

this purpose, one for receiving kernel call requests, and one for returning

corresponding results. Since many user processes will be sharing these pipes, the

kernel enforces mutually exclusive accessto them using a "lock"file.

User processes view requests for service from the kernel as normal C function calls

(as in the UNIX system call mechanism); the value returned from such "kernelcalls"

will vary depending on the service being requested, but we have adopted the general

convention that a return value of -1 (cast to the appropriate type if the expected valueis

not an integer) denotes failure of the kernel call. Similarly to UNIX, weusea global

integer variable (called err in our system) to indicate to the user process the reason

whya particular kernelcall failed; also as in UNIX,this variable holds the reason for

failure of the last failed kernel call, and is not reset when subsequentsuccessful calls

are made.
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In order to implementthis "function call" interface, two pre-compiledfiles of routines

("kealls.o" and "interface.o") must be combined with a user process whenitis linked.

The first of these files deals with packaging the parameters for each kernelcall into a

form convenientfor transmission to the kernel via a namedpipe, and with correctly

returning results to the user process (setting err appropriately if an error has

occurred). The second file implements the low-level details of interaction with the

kernel through namespipes (both sending requests for service and receivingresults)

and with various software signals which are used for sychronisation.

Whena user process is createdits first action must be to call a provided function

(set_up ()) which sets a numberof global user process variables, which are used

for implementing the kernel call mechanism, the most important of these being the

UNIXfile descriptors of the call/return pipes and the UNIX process identifier of the

processor on whichthe user process is running; these values are passed to the user

process through the main () function argumentlist argv [].

4.4.4.2 Kernel Call and Return

Given the above environment, a user process makesa kernelcall in the following

manner:

return-value = Kcall (parameters)

where Kcall is any of the available kernel calls, namely:

cproc () - create a user process

exit-proc() - end process execution
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cport ( ) - create a software port

dport ( ) - destroy a previously created port

Iport () - create a uni-directional link between two ports

uport ( ) - removea previously created port-to-port link

b_rmsg ( ) - receive a message(blocking)

nb_rmsg( ) - receive a message (non-blocking)

b_smsg () - send a message (blocking)

nb_smsg( ) - send a message (non-blocking)

Whenthe user process executes a statementof the above type,this results in a call to

the appropriate kernel call interface routine (linked in "kcalls.o"). It is this routine's

responsibility to place the parameterlist for the kernel call into a "parameter block"

which is a suitable C struct data structure. This parameter block (p_b1k),

together with an integer representing the required kernel call (kc_type)are then

written to the kernel through its namedpipe; the user process then pauses waiting for

the kernelto service its request. This sequence of events can be thoughtofas placing

an integer function code in a machine register (representing the operating system

service required), and pushing parameters onto the stack.

The kernel uses kc_typeto indexits vector of available services (kc_vec[]). The

appropriate service routine reads its p_b1k from the pipe (whichis akin to poppingit

from the stack), and then carries out its required action, provided this does not violate

any constraints (in which case the kernel call has failed). In order to satisfy a

particular request, the kernel may need to co-operate with kernels on other processors
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(for example linking two software ports together whichreside at different locationsin

the network) butthis remainstotally transparentto the calling user process. Results of

the kernel call are written back on a separate pipe and a software signalis sent to the

user process to notify it of this fact; the kernel pauses until the user process

acknowledgesreceipt of such results.

Whenthe user process receives the software signal announcing completion of the

kernel call, an interface routine reads the result from the return pipe and, after

signalling the kernel to acknowledgereceipt, the kcall routine returns the result to the

calling user process. These actions can be thought of as popping results from the

stack.

Finally when the kernel is sure that the results have successfully been received,it

updates the passage of real time by an amountappropriate to the execution of the

particular kernel call which was invoked; this will include any overheads incurred by

sending messages to a remote kernel if this proved necessary. The full kernel call

mechanism is summarised diagrammatically in fig. 4.9.

4.4.5 Kernel Call Implementation

In this section we will discuss in more detail, the actions of the kernel on receiving a

request for service from a user process, and present pseudocodedescriptions of the

routines in the kernel which provide the services listed above, and also those which

deal with interprocessor messages used to perform remote operations. The readeris

referred to appendix C, for further details in the full programlisting.
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Each kernelcall routine can be summarisedas carrying out the following foursteps:

i) read kernel call parameters from the appropriate named pipe

ii) perform the necessary operations on behalf ofthe calling process

iil) return results to the calling process

iv) update the passage ofreal time appropriately for this kernelcall

Wehave chosento group kernelcalls into three categories, namely:

-  process-related

-  port-related

- message-related

4.4.5.1 Process-related Kernel Calls

The kernel calls which deal with user process creation and destruction are cproc ()

and exit_proc(). Cproc() is used to create a new user process and expects as

parameters character strings giving the process' nameand the nameofthe executable

UNIX file in which the program to be run resides; on successful process creation,

cproc() returns the network-wide unique namefor that process. Exit_proc()

is called by a user process whenit wishes to terminate execution. The pseudo code

description of these kernel callsis:

CPRGK. () /* routine for creating a new userprocess */

if (process is of a new "group"created by the "shell’’)
Assign it a new group number;

Incrementprocess counts;
Enter information into a new processtable entry,ie

- name
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- Originating processor
- parent process name

FORK a new process:

Child /* ie user process */ Parent /* ie Kernel */

Set up argumentlist for process Enter UNIX pid of new process
which will be used for making in processtable;
Kernel calls;

Return SUCCESSto caller;
Exec new program

Make newly created process schedulable;

/* if load balancing is to be performed on
process creation then codeis inserted
here.

a)

EXIT_PROC( ) /* routine to deal with user process exit */

if (calling processstill has open ports)
return FAIL to calling process;

else
{

return SUCCESSto calling process;
if (calling process wasfirst created on this processor)

wait for processto die;
else /* process originated elsewhere,ie it migrated */

send notification of process exit to originating processor;
Re-initialise process table entry;
Decrementprocess counts;

}
}

EXTT:;MaG €3 /* routine to deal with notification of existing process

which originated on this processor */

Wait for processto die;
/* This is necessary for implementation reasons, since under UNIX a child

process will remain in a "zombie" state upon death, unlessit is waited for
by its immediate parent */

}
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4.4.5.2 Port-related kernelcalls

Kernel calls which concern manipulation of a user process's software ports are

cport(), dport(), lport() anduport(). Cport () is called to create a

port (which will be owned by the calling process), and expects as parameters the

port's name, an indication of the type of message which can bereceived on thatport,

the address of a user process routine to be executed whentheport is later destroyed,

and the address of the user process routine to be invoked when a messagearrivesat

the port following a non-blocking receive operation. If successful, cport () returns

the port identifier, which should be used in subsequent kernel calls which relateto that

port (e.g. receiving messages on it), which is similar to use of a UNIX openfile

descriptor. Whena port is created, the creating kernel broadcastsits name and message

type to all other processors.

Dport () deals with a user process request to destroy one ofits previously created

ports, and expects the relevantport identifer as a parameter, returning a flag indicating

the success or failure of the port destruction request. If dport () is successful, then

the identity of the destroyed port is broadcastto all other processors, allowing them to

removethe port from their local port tables. Cport () and Dport(), together with

the kernel routines to deal with the broadcast messages which they generate are shown

in pseudocode below:

Crost so /* routine for creating a port */

{
if (process owns too manycreated ports)

return FAIL to calling process;
Set pointer to new port table entry in calling process's

ownedportslist;
Enter port information in new port table entry, ie

- name
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- Ownerprocess name
message type for this port
pointer to user process's port destruction function
pointerto user process's function called for non-blocking

receive/messagearrival;
Broadcastport's name and message typeto all other processors;
Increase migration size of calling process;
Return Port Identifier to calling process;

CPORT_MSG() /* routine to deal with receipt of a message from a remote processor

announcingport creation */

if (too manyports exist in the network)
SYSTEM ERROR;

else

Enter information for remote port in new port table entry,ie
- name
- owner process name
- message type
- processor on whichport is resident

DPORT() /* routine for destroying a port */

{

}

if (port to be destroyed" does notexist)
return FAIL to calling process;

else
if (messages pending in "port to be destroyed")

return FAIL to calling process;
else

{ : :
Removeport from calling process's ownedportslist;
Decrementcalling process's migration size;
Decrement numberofportsin table;
Re-initialise port table entry;
Return address of destruction function to calling process;
Broadcast notification of port destruction to all other processors;

DPORT_MSG () /* routine to deal with receipt of a message from a remote processor

announcing port destruction */

Find specified port in local port table;
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Re-initialise port table entry;
Decrement numberofports in local port table;

The two kernel calls which deal with linking and unlinking ports are lport () and

uport () respectively. Lport () expects as parametersthe port identifier of the port

ownedbythecalling process from whichthe link is to be created (which we term the

"link from"port), and the nameofthe port to which the "link from"port is to be linked

(which weterm the "link to" port); if the link operation is successful lport () returns

a unique identifier for the newly-createdlink,to the calling process. If the two ports to

be linked are resident on different processors, the kernel deals with the necessary

exchangeof interprocessor messagesto achieve the link, transparently to the calling

process.

Uport() is called to removea previously created link, and can only be invoked by

the owning process of the "link from"port; it expects the port identifier of the "link

from"port, and the identifier of the link to be removed as parameters. Again, any

interprocessor message exchange due tothe linked ports being on separate processors

is handled by kernel routines. The pseudo codeto deal with port linking and unlinking

is thus:

LPORT () /* routine for creating a link between twoports */

{
if (“link from" port does not exist)

return FAIL to calling process;
else
if (“link to" port does notexist)

return FAIL to calling process;
else
if (“link from" port has too manylinksto otherports)

return FAIL to calling process;
else

if (“link to" port is local)
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if (“link to" port has too manylinks from otherports)
return FAIL to calling process;

else

{
Update link information for "link to" port;
Increment"link to" port's owner's migration size;
Update link information for "link from"port;
Incrementcalling process's migrationsize;
Return SUCCESSto calling process;

}

else /* ie "link to" port is remote */

Markcalling process as blocked;
Send a message requesting a port link to the processor on which
"link to" port is resident;

}
}

LP_REQ () /* routine to deal with receipt of a message from a remote processor

requesting a port link */

Find the "link to" port in the port table;
Find the "link from"port in the port table;

if (“link to" port has too manylinks from otherports)
Send a FAIL messagebackto the processor whichsentthis request;

else

Update link information for "link to" port;
Increment"link to" port's owner's migration size;
Send a SUCCESS messagebackto the processor whichsentthis request;

}

LP_ACK( ) /* routine to deal with receipt of a SUCCESS message from a

remote processor to whicha port link request had been sent */

Find "link to” port in the port table;
Find "link from"port in the port table;
Update link information for "link from" port;
Incrementoriginal calling process's migration size;
Markcalling process as unblocked;
Return link identifier to caller;
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LP_NACK() /* routine to deal with receipt of a FAIL message from a remote

processor to which a port link request had been sent */

Markoriginal calling process as unblocked;
Return FAIL to calling process;

}

UPORT() /* routine for unlinking twopreviously linked ports */

{
if (“link from" port does notexist)

return FAIL to calling process;
else
if ("link to" port doesnotexist)

return FAIL to calling process;
else

{
Update "link from”port's link information;
Decrementcalling process's migration size;
if (“link to" port is local)

Update "link to" port's link information;
Decrement"link to" port's owner's migration size;
Return SUCCESSto calling process;

else /* ie "link to" port is remote */

Markcalling process as blocked;
Send message requesting a port unlink to processor on which "link
to” port is resident;

;

}

UP_REQ ( ) /* routine to deal with receipt of a message from a remote processor

requesting a port unlink */

if (“link to" port no longerexists)
Send a FAIL messageback to the processor whichsentthis request;

else

Find "link from"port in the port table;
Update "link to" port's link information;
Decrement "link to" port's owner's migration size;
Send a SUCCESS messagebackto the processor whichsent this request;

}
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UP_ACK()/* routine to deal with receipt of a SUCCESS message from a

remote processor to which port unlink request had been sent*/

Markoriginal calling process as unblocked;
Return SUCCESSto calling process;

}

UP_NACK() /* routine to deal with receipt of a FAIL message from a remote

processor to which a port unlink request had been sent */

Markoriginal calling process as unblocked;
Return FAIL to calling process;

4.4.5.3 Message-related Kernel Calls

Message-related kernel calls deal with sending and receiving of messages by user

processes throughtheir softwareports.

Whena user process wishes to receive a message on oneofits ownedports, either in a

non-blocking or blocking mode,it uses the kernel calls nb_rmsg() and b_rmsg()

respectively. Nb_rmsg () takes as parametersthe identifier of the port on which the

message is to be received, and a pointer into the calling process's address space,

where the messageis to be delivered; it returns a flag indicating success orfailure of

this operation to the calling process. B_rmsg() expects just the appropriate port

identifier as a parameter, and returnsa pointerto the subsequently delivered message

in the caller's address space. For both of these routines, if the received message was

sent in blocking mode, then the sending processis notified by the kernel of message

receipt. The routines are described in pseudo code below:
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NB_RMSG( ) /* routine for performing a non-blockingreceive operation */

{
if ("receive" port does notexist)

return FAIL to calling process;
else
if (a receive is already pending onthis port)

return FAIL to calling process;
else

return SUCCESStocalling process;
if ("receive" port has a message in its queue)

if (message in queue wassent in blocking mode)

if (sending processis local)
Inform sending process of messagereceipt;

else /* ie senderis remote */
Send "notification of receipt" message to processor on
which sending processis resident;

}
Return message and addressof function to deal with non-blocking receive, to
calling process;
Remove message from headofport's queue;

else /* no messages havearrived on "receive" port */
mark port as pending a non-blockingreceive;

I

B_RMSG() /* routine for performing a blocking receive operation */

{
if "receive" port does not exist)

return FAIL to calling process;
else
if ("receive" port has a messagein its queue)

Return messageto calling process;
if (message in queue wassent in blocking mode)

if (sending processis local)
Inform sending process of messagereceipt;

else /* ie sender is remote */
Send "notification of receipt" message to processor on
which sending processis resident;

}
Remove message from headofport's queue;

else /* no messages havearrived on "receive" port */

Markcalling process as blocked;
Markport as pending a blocking receive;

}
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Sending a message between twolinkedports in either blocking or non-blocking mode

is achieved by a call tob_smsg() ornb_smsg() respectively. Both of these

routines expect as parameters the identifier of the sendingport, the identifer of the link

from that port on which the messageis to be sent, the length andtypeofthe message,

and finally the messagetext itself. Nb_smsg() returnsan indication of success or

failure immediately to the calling process (since in non-blocking modethe user process

does not wait for acknowledgement of message receipt); b_smsg() returns

immediately if the send operation cannot be performed, but blocks the calling process

until the message is received, if the send operation is valid. A further routine is

provided in the kernel, which deals with the delivery of a message which was

transmitted through the network,as the two ports involved in the message exchange

were residenton different processors(i.e. the routine usr_msg()). We present the

pseudo code for the nb_smsg() and usr_msg() routines below; (b_smsg() has

been omitted here for concisenesssince it is essentially identical to nb_smsg()

without the immediate return to the calling user process):

NB_SMSG() /* routine for performing a non-blocking send operation */

{
if ("source” port does notexist)

Return FAIL to calling process;
else
if ("destination" port does not exist)

Return FAIL to calling process;
else
if (message typeis incorrect for "destination" port)

Return FAIL to calling process;
else

{
Return SUCCESSto calling process;
if ("Destination"port is local)

if (a non-blocking receive is pending on "destination"port)

{
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Cancel non-blocking receive pending;
Return message and address of function to deal with
non-blocking receive to ownerof"destination" port;

}
else

if (a blocking receive is pending on "destination"port)

Cancel blocking receive pending;
Return message to ownerof"destination" port;

else /* ie message is not awaited */
{

}

else /* ie "destination" port is remote */
Send the messageto processor on which "destination"port is
resident;

Append messageto tail of "destination"port's queue;

USR_MSG() __/* routine for dealing with arrival of a user message from
another processor */

if (a non-blocking receive is pending on "destination"port)
{

if (message wassent in blocking mode)
Inform sending process;

Cancel non-blocking receive pending;
Return message and address of function to deal with non-blocking receive
to ownerof "destination"port;

}
else
if (a blocking receive is pending on "destination" port)

if (message wassent in blocking mode)
Inform sending process;

Cancel blocking receive pending;
Return message to ownerof "destination"port;

else /* ie message is not awaited */

Append messageto tail of "destination" port's queue;

126



4.4.6 Per-processor Scheduling

Since the processors on our simulated networkare intendedto be fully autonomous,

scheduling of user processes resident on a particular processoris totally under the

control of the local kernel - this meansthat wewill be considering load balancing from

a network-wide perspective, with no accountofthe effects of local scheduling. This

approach has been taken since co-operation at the process schedulinglevel will create

added overhead,and needsvery strict synchronisation between processors.

The kernel enforces a scheduling policy using UNIX software signals; thus user

processes pause when waiting to be scheduled, and are wokenupbya signal from the

scheduling routine in the kernel. Any appropriate policy can be chosenforselecting

the next process to be scheduled, but for the purposes of our study we have chosen a

simple round-robin mechanism.

4.4.7 Process Migration Mechanism

In order to experiment with different load balancing algorithms, the kernel must

provide a meansby which a process can be moved from the processor on whichit is

currently resident to a different processor chosen by an appropriate location policy.

Since load balancing algorithms may require migration to be either preemptive(ie a

process can be movedafter it has begun execution) or non-preemptive (ie a process

can only be moved as soonasit is created), our mechanism can be usedin both of

these modes. By far the most complex of these two alternatives is preemptive

migration, since it is necessary for the kernel to re-route a migrating process's logical

communications paths (which have been established through creating and linking

ports) in a manner whichis transparentto that process, andall of its peers (it would be
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unreasonable, and highly undesirable, for user processes to be written such that they

explicitly allow for possible migration to a different processor from the one on which

they wereoriginally created). The only restrictions which we have imposedonthis

mechanism is that a process cannot be migrated if it is currently scheduled, oris

blocked waiting for completion of a kernel call (which may bedueto the necessity to

wait for an acknowledgement from another processor); we believe that it would be

inadvisable to attempt process migration under these two circumstances. Since our

kernel call/return mechanism works using namedpipes and software signals, then

from the user process point of view, migration merely involves changing the pipes

which it uses, from those of the processor on whichit is resident, to those of the

processor to whichit is being migrated; the kernels of both processors areleft to deal

with updating relevant tables and ensuring that the residency ofall processes and their

associated ports remains consistent.

Whenthe load balancing algorithm being used on a particular processor wishes to

invoke process migration,it calls a kernel utility function migrate () , and passes to

it as parameters a pointer to the processtable entry of the user processto be migrated,

and the identity of the processor to which migration should be performed.

Migrate () sends a software signal to the user processto inform it that it is being

migrated, and passesit details of its new pipes to be used for making kernel calls and

for receiving results of these calls (i.e. those of the processor to whichit is migrating)

and the UNIX processidentifier of its new processor (whichit needs for signalling

purposes). A signal handling routine provided in the user process library file

"interface.o", which has been linked into the user process deals with receiving this

new information, and hence this remains transparentto user-written code. The kernel

of the processor from which the process is migrating then constructs a message
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(mig_info), into which it placesall information regarding the migrating process

together with all details concerning its ownedports (ie their names, links, and any

messages which havearrived but have yet to be delivered to the process). This

message is then transmitted to the processor on which the migrating process is to

reside, the corresponding process table entry is re-initialised and all of the process's

ownedports are markedas being residentat their new location;finally the new location

of such ports is broadcastto all processorsto allow them to correctly route subsequent

user messages. At this point the migrating process is considered to haveleft its

original processor, andto be in transit to its new processor.

The receiving kernel of a "migrating process" message (mig_info), installs the

relevant information in its local processtable, and updates its port table to include that

process's owned ports with any user messages which were in the ports' queues; in

order to maintain consistency of the interconnection of user processports,their link

information (i.e. pointers into the port table are also appropriately updated). The

migrating process is now treated exactly as a normal local process, and becomes

available for scheduling;thus all future kernel calls made by the process will now be

serviced by its new processor's kernel.

This entire mechanism is summarised in the pseudo code shownbelow:
MIGRATE (process, processor) /* routine to migrate a process to another

processor*/

{

Put process table entry into a message (mig_info)

for (each of process's owned ports)

Put port name in mig_info;
Markcorrespondingport table entry's residency as new processori.d.
Putport's link information in mig_info
Put port's message queue in mig_info

129



Send migrating process a SIGMIGsignal, together with details ofits
new processor;

Send mig_info message to process's new processor;

Decrementlocal process counts;

Re-initialise process table entry;

Broadcast new location of process's ownedports;
}

PINFO_MSG() /* routine to deal with the arrival of a migrant process */

{ os
Getprocesstable information from mig_info message;

for (each of process's ownedports)

Getport's details from mig_info and enter into port table;
Resolve internal pointers for port links;
Getport's message queue from mig_info andinstall it;

Incrementlocal process counts;

Send process a SIGCONTsignal to allowit to continue onthis processor;
}
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HAPTER 5

SIMULATION RESULTS

5.1 MAIN GOALS AND METHODS OF EXPERIMENTS

Previous studies of load balancing algorithms have mainly concentrated on their

performancerelative to a system using no load balancing, rather than comparing

different algorithmsand establishing the qualities which make onealgorithm superior

to another; in addition, these studies often do not incorporate all of the overheads

caused by executing such algorithms, both in terms of information exchange and

process migration.

Our main goal in this study is to provide an analysis of the relative merits of a number

of adaptive load balancing algorithms underdiffering workloads, and with both a

simple and more complex model of user processes which are executing on a

loosely-coupled distributed system. Other studies have considered processes as

independent quantities, and have not analysed the effect of load balancing algorithms

when processes are submitted to the system in groups, cooperating to achieve a

common goal, and hence requiring a means of exchanging information. We have

chosen to provide message-passing primitives in our distributed operating system

kernel to allow such information exchange.

To this end we have structured the study in three main phases. The first phase was

designed to validate our model, by reproducing results obtained by Eageret al [86],

and also to examine more of the underlying behaviourof load balancing algorithms,

dealing with very simple user processes. The second phase introduces a more
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complex type of user process to the system, with groupsof suchprocessesarriving at

any nodein the network and cooperating through message-passing. Finally,the third

phase takes the load balancing algorithm with the best performance and analyses

variations on its operation to investigate how it can betailored to a particular

environment (for example, measures which should be taken if the communications

medium used cannot cope with the heavy load imposedon it by some algorithms).

Since our simulation is largely parameterised and hence allows easy experimentation

with different environments, the numberof possible combinations of parameters used

needsto be limited, to enable us to make meaningful comparisons; for this reason,

certain parameters (especially regarding the network topology and communications

medium speeds) were held fixed across all experiments, whilst others (such as system

load) were varied and their influence on the load balancing algorithms under

investigation was noted.

5.2 EXPERIMENTAL ENVIRONMENT

Below wedescribe the choice of values for the major parameters of our simulated

network, and the generation and execution of user processes to give a synthetic

workloadto the system.

5.2.1 Network Topology

We have chosen to use a point-to-point network in our study, since shared

communications media tend to limit the number of processors which can be

interconnectedefficiently. The particular point-to-point topology which we have used
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is a square mesh, which weconsiderto be easily extended and to offer a reasonable

level of connectivity [Wittie81]; each node in the network has at most four linksto its

immediate neighbours. Since the numberof processes which can coexist on the NCR

Towerat any one time has an absolute upperlimit, and there is also an upper bound on

the number offile desciptors which can be opened simultaneously (even when

operating with "super user" privileges), we had to restrict the numberof simulated

processors in the network to nine - hence we use a 3 x 3 square mesh topology. We

consider, however, that this is of sufficient size for our purposes of experimenting

with load balancing algorithmsin a point-to-point environment.

Our simulation allows the use of any routing algorithm for transmitting messages

through the network;since the goals of our experiments are concentrated around load

balancing algorithms, we used a fixed routing algorithm, which uses routes

established manually before the system is booted. Thus whenthe systemisstarted,

each processoris passed an indication of which ofits physical links it should use to

transmit messages destined for other processors on the network. In fig. 5.1, we show

the 3 x 3 mesh topology used, together with details of fixed routing; processors are

shownascircles, with arcs representing physical interconnections. Each processoris

given an identifying integer in the range 0-8, and routes are shownas arrowsalong a

physical link between processors. For example as shownin fig. 5.1, a message sent

from processor 0 to processor 8 follows a route via processors 1, 2, and 5 before

arriving at its destination. The manner in which routing is represented for each

processoris illustrated by showing the appropriate data structure for processor 3 in the

aforementionedfigure.

Processor and communications medium speedsare also tunable parameters of our

simulation. For our study we chose the processor speed to be 1 MIPS, which we
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consider a reasonable value for existing machines. The overhead dueto use of the

communications medium can be divided into two parts - a fixed overhead dueto the

time necessary for executing the system software dealing with communications

protocols, and a further overhead depending onthe time taken to transmit variable

length messages (which can be expressed as message-length x time necessary to

send/receive one byte). We set the fixed software overhead per message

receipt/transmission at 1000 machine instructions, and the physical speed ofthe

communications medium to be 1Mbyte/sec; again these were based on values which

weconsidered reasonable.

5.2.2 Synthetic Workload Generation

As previously mentioned, a synthetic workload arriving for service at our simulated

network is generated by providing each simulated processorwitha file containing the

arrival times of user processes. Each occasionthat a processor's value for the passage

of real time is updated, the appropriate per-processorfile is inspected to establish

whether a new user processis dueto arrive;if this is the case a call is made to the

kernel routine cproc () , passing the nameofthefile holding the process's executable

image, together with a unique process group identifier; this can be thought of as a

UNIX-like shell process whichis servicing user-submitted commandsfrom a terminal

connectedto a particular processor.

In order to place varying loads on the network weused the well known formula for

system load (p) [Lavenberg83], with processes arriving at any one of m available

processors :
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oO =A EIS} / my,

where A = 1/E[T],

using the following notation :

p=systemload (0<p<1 fora stable system)

E[S] = expected service time for a process

Y = service rate for each processor

X = process arrival rate

E[T] = mean interarrival time

Given the above equations, we can vary system load by shortening or lengthening the

mean interarrival time for user processes; the main configuration file for the network

("config.main") specifies to our simulation the system load value required for one

simulation run, together with the total numberof processes which will pass through

the system.

Weconsiderthe arrival of user processes to our system as a Poissonarrival process,

with interarrival times being random, exponentially distributed and with mean 1/A. A

Poisson arrival process with arrival rate 2. can be decomposed into m independent

streams [Kobayashi78], each being a Poisson process, with rate ry Ake 12, ae

whererj, is the probability that stream k will be chosen for an arriving process; we use

these properties to generate processinterarrival times for each processor, whichare

then stored in their per-processorjob arrival files. Before the simulated network is

136



booted, the initial start-up processestablishesarrival times of processesto the network

from an exponential distribution. This is achieved by generating a uniformly

distributed random number U, (using the UNIX 48-bit linear congruential random

number generator erand48 () ) and using the inverse transformation jel loge U to

form an exponentially distributed random number with mean 1/X. Since processes

can arrive at any processorin the network (with equal probability), the time of each

arriving process is placed in a randomly chosen processor's job arrival file (jobs0,-

jobs1, ... jobs8), by using a further uniformly distributed random number. The above

procedure ensures that each processor will receive processes with meanarrivalrate

A/9, and exponentially distributed interarrival times.

In order to guarantee that our results would not be dependent on the seed chosen for

the random numbergenerator we conducted ourinitial experiments with a number of

different seeds, to assure ourselves that, given sufficient passage of simulated time,

the same results would be achieved. This indeed was found to be the case. Wethen

selected one of these seedsfor usein all subsequent experiments, with the maincriteria

being that this seed gave as near to a truly exponential distribution as possible over

approximately 3-4,000 secondsof simulated time.

5.2.3 Load Balancing Algorithm Implementation

Whenimplementing a load balancing algorithm, the decision must be made whetherto

have a separate privileged process running outside the operating system kernel dealing

with all load balancing considerations, and using kernel calls to migrate processes and

exchangeload information, or to embed load balancing codeinto the routines of the
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kernelitself. For purely practical considerations we chosethe latter approach,sinceit

provides easy access to all kernel data structures, and hence eases implementation.

Thus for each load balancing algorithm which weinvestigated, codefor the algorithm

wasinserted, either in the main kernel () routine or in the process creation routine

Ccproc() as was appropriate to the particular algorithm (i.e. depending on whether

the algorithm is invoked only on processcreation or periodically). In orderto facilitate

changing from one algorithm to another, we added a numberofutility routines to the

kernel for measuring processor load, migrating processes, and for exchanging

processor load information across the network; in this manner, modification of the

kernel when changing the load balancing algorithm required only theinsertion ofcalls

to the appropriate utility routines.

5.2.4 Performance Metrics and Monitoring

To establish the differences in performance between load balancing algorithms and to

analyse the reasons for these differences, we need to identify useful performance

metrics and provide a meansfor recording these during simulation runs. It has been

shown [Baumgartner85] that the average time needed for processes to execute to

completion is a good measure-ofthe efficiency of processor allocation, hence we have

taken this as the principal metric for our performance evaluation of load balancing

algorithms. Graphs showingthe relative performance of load balancing algorithmsare

included in the main text of this chapter.

In order to study performance differences in more detail we also took measuresof the

mean load imposed on a single processor (since reducing this value should result in

performance improvement) andalso the variance of individual processors’ load from
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this mean (since this gives an indication of how well an algorithm redistributes load

across the network); as we are dealing with a small sample (load values for 9

processors), variance was calculated as D(x-X)2/(n-1). In addition to these metrics, we

chose to measurethe absolute difference in load between the most heavily-loaded and

the least heavily-loaded processors- this provides a good indication of whether an

algorithm results in one overloaded processor whilst another processor remains

underloaded [Livny82]; it may be suggested that this difference is of more fundamental

importance than the measure of processor load variance - a reasonable algorithm

should significantly reduce the difference. For our later experiments, which include

user processes exchanging messages, we added a measure of messagetraffic in the

network,and also the rate of process migration from oneprocessorto another.

In all of the simulation runs which were conducted, the system was allowed to

continue until the average per-process execution time convergedsufficiently to provide

a meaningful value for comparison to be made between algorithms(i.e. the average

process execution time for each processor differed by less than 2%, which for most

load balancing algorithms was after approximately 2-4,000 seconds of simulated

time). Over this period, details of the above metrics were written to a numberoftrace

files, with each processor having its ownfile (trace0, tracel, ... trace8). This means

that not only were we able to look at overall network behaviour and performance, but

also that of each individual processor; these values were sampled every 10 seconds of

simulated time in our experiments.

Wepresentthe results of our experiments in the following sections, both in graphical

and tabular form where appropriate; tables summarising system behaviour are

presented in the main text. For reasonsofclarity, graphs showing overall network
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behaviourare given for the first 1,000 seconds of simulated time, howeverthese are

suitably representative of the differences between performanceof the load balancing

algorithms which we implemented, overthe entire period of the simulation run. These

graphs are presented in Appendices A and B,and references to them in thetext give

the appropriate figure number beginning with the letters A and B respectively. It

should be notedthatsince each processorhas a "shell" process constantly resident on

it (and not eligible for migration), then the minimum numberofprocesses on a

processorat any time is one; hence when the mean loadperprocessor is shown in our

graphs as having a value of one, then this represents the state where nouser processes

are currently extant in the system.

5.3. INDEPENDENT USER PROCESSES

Ourinitial experiments were conducted in an environment where user processes

execute with no message-passing, thus we term these independentprocesses.

5.3.1 Independent User Process Model

Following the choice of parameters in the work on simple load balancing algorithms

by Eageret al [86], we set the expected service time required by a user process (E[S])

at one second, to experiment with different algorithms in a simple environment. All

processes were considered to be CPU-intensive and did not use any I/O kernelcalls

(i.e. message-passing calls). In order to simulate this activity we added a further

kernel call do_processing() to our system, allowing a process to execute for a

specified number of microseconds, wherethis value is passed as a parameter. Each
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call to do_processing() updates the execution time of the calling process, and

also the passage ofreal time together with the existence and residency times forall

processes residing on the servicing processor. Weset the time slice for our

round-robin scheduling algorithm at 50 msecs (chosen through experimentation), and

SO a one-second process was simulated by making 20 calls to do_processing()

with 50,000 microseconds as a parameter. Thetimeslice of 50 msecs was maintained

in all further simulation runs.

To simulate the overheadoftransferring the executable image of a migrant process

from one processor to another, since we are dealing with a modelof small, simple

processes,the size of a typical user process was chosen to be 10K bytes.

5.3.2. Load Balancing Algorithms Implemented

For the purposes of the analysis of load balancing algorithms in a simple process

environment, we implemented two simple non-preemptive algorithms which we term

Random and Threshold (similar to those used by Eager et al [86]) and one more

complex, preemptive algorithm which we term Global Average (based on the Above

Average algorithm of Krueger and Finkel [84], but with slight modifications). Below

wedescribe the algorithms and the results which were obtained.

5.3.2.1 Processor Load Measurement

For the two simple algorithms (Random and Threshold), we defined the load on a

particular processor to be the numberof processesresident on the processorat the time

of measurement. Since the algorithms are non-preemptive, load measurement was only
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performed onthe arrival of a new process. For the preemptive algorithm, Global

Average, a more complex measureofprocessor load was used; this was defined as the

number of non-blocked processes (the "actual" load) plus the numberof processes

knownto be currently in transit to a processor (the "virtual" load), averaged over a

periodof time divided into discrete quanta (we chosea period of ten 20 millisecond

quanta, since Krueger and Finkel [84] state that this should be at least as long asthe

time taken for a process to migrate).

5.3.2.2, Random Algorithm

The Random loadbalancing algorithm uses no information exchangeatall between

processors; when the load on particular processor is found to exceed somethreshold,

a newly arriving process is sent to a randomly chosen alternative processor, regardless

of that processor's own load value. Weset the threshold to 2, which we found to be

the most effective under all workloads, and we seeded each processor's uniform

random numbergenerator with that processor's identifying integer, to ensure that the

same sequence of random numbers was not generated in all processors (this would

have led to processes being transferred to the same processor).

5.3.2.3. Threshold Algorithm

The Threshold algorithm uses very small amounts of information exchange to

negotiate the movement of processes from heavily-loaded processors to their more

lightly-loaded peers. When a processor's load exceedsa fixed threshold, it chooses

another processor at random and sends it a probe message requesting whether

migration of the process which caused the overloading on the sender, would result in

the probed processor's load being above the threshold. If the reply to the probe
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indicates that the probed processor's load is below the threshold, then the

newly-arrived process is migrated there, otherwise another random processoris

selected, and this procedure continues until either a suitable destination is found or a

static probe limit is exceeded (in which case the process must be executed locally).

Wechosethefixed threshold to be a load value of 2, as in the Random algorithm, and

the probe limit to be 3 (as in Eageret al [86]). In order for a processor to handle

probing on behalf of multiple processes at one time, our implementation of the

Threshold algorithm uses the probe limit on a per-process level - in other words when

a process arrives which causes a particular processor's load to exceed the threshold,

probing on behalf of that process begins independently of any probing which was

already being carried out on behalf of processes which arrived earlier.

The following pseudo-code shown below summarisesthe operation ofthis algorithm.

On processarrival each processor executesthe following:

if (processor_load > THRESHOLD)

{
send probe to randomly chosen processor

Onreceipt of a probe a processortakes the following action :

if (processor_load+1 > THRESHOLD)

{
send a refusal for a migrating process

}
else

{
send an acceptance for a migrating process

}
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Finally when a processorreceives a reply to a previous probe, the following steps are

executed :

if (processor_load > THRESHOLD)

{
if (reply = = acceptance)

{
migrate the process which caused the probing

}
else

{
if (number_of_probes < PROBE-LIMIT)

{

send probe to another processor

}
else

{
execute processlocally

}

}

}
else

{
execute processlocally

}

5.3.2.4 Global Average Algorithm

In the Global Average algorithm, as previously stated, the measure used for processor

load is the sum ofa processor's actual load together with its virtual load (the number

of processesin transit), all averaged over a time period. Each processor maintains a

value for the average load across the whole network andstrives to keep its own load to

144



within a pre-defined acceptable range aroundthis average value; whenever a processor

believes that this average is not accurate it broadcasts a new value, which is then used

by all other processorsas the current global average. A processor considers thatit is

overloadedif its load is above the average by more than the acceptable range, and

underloaded if its load falls below the average by morethan this range.

The global average is maintained using a numberof "timeouts". If an overloaded

processor cannot find an underloaded partner to which it can migrate one ofits

processes within a specified timeout period, then the global average value is too low

and must be increased. A similar mechanism is used for underloaded processors,in

order to decrease the global average whenit is found to be too high. Timeouts are also

used in conjunction with a processor's virtual load; since many processors may

attempt to accept processes from an overloaded processor, each acceptance increases

the virtual load of the accepting processor to avoid that processor receiving a large

numberof migrant processes. Whena processor announcesits willingness to receive

extra work,it sets a timeout which,if it expires without the expected processarriving,

will indicate that the particular process was migrated to another processor, and will

hence neverarrive at the accepting processor. This ensures that a migrant processis

not waited for indefinitely, to no avail.

In order to implementthis algorithm we added a timeout mechanism to our kernel,

Where timeouts “ares-of three’ types: too low, toothion. and

awaitingprocess. Wedecided that for optimisation reasons a processor could

only have one too_lowortoo_high timeout pending at any one time. However

for awaitingprocess timeouts we need a different mechanism;since itis

desirable for an underloaded processorto be able to announceits availability to more
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than one overloaded processor (provided that this does not result in that processor

being inundated with migrating processes), we allowed await ingprocess

timeouts to be queued. When an awaitingprocess timeout needsto beset,it is

added to the tail of the queue,andif a timeout expires, or the awaited processarrives,

one timeout is removed from the head of the queue.

The operation of the algorithm is thus driven by any of the following events : a

processor becomes underloaded or overloaded, a timeout expires, a migrating process

arrives, or the global average value needs to be updated. Below wepresentthe

possible events shown initalics, together with the actions which must be performed

whenthese events occur :

a process detects thatit is overloaded :

if (too_high timeout not pending)

- broadcast a too_high message

- set a too_high timeout

a processordetects thatit is underloaded :

if (too_low timeoutnot pending)

- set a too_low timeout

a processor receives too_high message :

if (processor is underloaded)

- send accept_process message

- queue an awaitingprocess timeout

- incrementprocessor's virtual load

- cancel any pending too_low timeouts
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a processor's too_low timeout expires :

if (processorstill underloaded)

- broadcast a new lowerglobal average value

a processor's too_high timeout expires :

if (processoris still overloaded)

- broadcast a new higher global average value

a processor receives a new global average value :

- update locally hold value for global average

- cancel any too_low or too_high timeouts which are pending

a processors awaitingprocess timeout expires :

- decrementprocessor's virtual load

a processor receives a migrating process :

- dequeue one awaitingprocess timeout

- decrementprocessor's virtual load

- install the migrating process as a local process

A numberof parameters need to be established for this algorithm to work efficiently;

one of these is the timeout period, which mustbe set at a value which represents an

amountof time sufficient for a message to pass from an overloaded processorto an

underloaded processor and vice versa; in other words when an acceptance message

does not arrive at an overloaded processor within the timeoutperiod, since the

processor broadcastits plight, then it can be assumed with reasonable certainty that

such a message will never arrive and this implies that no suitable destination for a

migrating process can be found withoutraising the global average load value. In our

system wesetthis timeout period to 200 milliseconds. We used an acceptance range

of 1.0 around the global average value (since Krueger and Finkel [84] suggest the

range should beat least the size of the load imposed by a single process), and chose
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the amount by which to increment or decrement this value, when this proves

necessary, by 0.5 (where one non-blocked process imposesa load of 1.0 onits

processor).

5.3.3 Discussion of Results

In fig. 5.2, we present the average time taken for a process to complete its execution

under varying system loads using the algorithms discussed in the precedingsections.

In addition to this graph, we also present more in-depth analysis of process behaviour

in the form of the mean numberofprocesses per processor, the variance aroundthis

mean, and the absolute difference between the load of the most-heavily loaded

processor and that of the least heavily loaded processor. For reasons of conciseness

we shall henceforth refer to these values as mean load, load variance, and load
 

difference respectively. The values were sampled at low load (0.2), moderate load

(0.5), and high load (0.8), and are plotted against time on our graphs. The motivation

behind considering load variance and difference was taken from the Unbalance Factor

due to Livny and Melman [82]. In their work, the Unbalance Factor (UBF)is defined

as:

UBF = max {(n;- nj)/nj, for alli,jj < N}

where n; denotes the numberof tasks on processor i, and N denotesthe total number

of processors in the network. Henceforth we shall refer to a system exhibiting low

load variance or load difference as one showing a good balancefactor.
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It can be seen from fig. 5.2, that at a system load of 0.2, there is no difference in the

average executiontimeof processes running onthe system whether load balancing is

used or not (which is what we wouldintuitively expect, since at such a low load value,

processor overloading is a fairly rare phenomenon). It is interesting, however to

observe that evenat this low system load, the behaviour of the system in terms of

meanload, load variance andload difference, is improved when anyofthe three load

balancing algorithms being investigated is used. Since there is no discernible

difference in system behaviour between these algorithms, we choose to plot the no

load balancing case against the threshold algorithm. Fig. A.1.1 shows that the mean

load is marginally higher whenusing no load balancing,as against using the threshold

load balancing algorithm; Fig. A.1.2, shows the improvementin the system's balance

factor by using a load balancing algorithm, since the load variance across the network

remains constant and low, thus removing the occasional "peaks" of variance

experienced with a system using no load balancing; moreover,fig. A.1.3, shows that

the threshold algorithm results in the load difference only rarely exceeding a value of

one (the load exerted by one process), which indicatesthat, even at light system load,

use of a load balancing algorithm shows a marked improvementoverthe no load

balancing case. We deducethat the reason why these improvements in the system's

balance factor do nottranslate into improvementsin average process executiontime at

a light system load (0.2), is that the overheads incurred by executing the load

balancing algorithm itself and by transferring a process from one processorto another

are sufficient to cancel out the benefits of more evenly distributed load. The behaviour

of the system at low load is summarised in Table 5.1.
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Statistics
Mean Load Load Variance Load Difference

Algorithm

No Load Balancing 1.309 0.441 1.16

Random 1.204 0.219 1.01

Threshold 1.204 0.214 1.01

Global Average 1.204 0.227 1.09      
Table 5.1 Overall System Behaviour using the Independent Process Model

(Load Value = 0.2)

Returning to fig. 5.2, we note that for a system load value of 0.5 and above, the

average process execution time when noload balancing is employed, continuestorise

sharply, whilst all three load balancing algorithms show less drastic degradation in

their performance. Similarly to our analysis of system behaviourat a load of 0.2, we

sampled mean load, load variance and load difference at a system load of 0.5 for the

no load balancing case and using the random,threshold and global average algorithm.

Again there is no discernible difference in the behaviour of the three algorithms

investigated and so threshold was chosento be displayed against no load balancing.

Here we note a marked improvementin mean load, as shownin fig. A.2.1; naturally,

reducing the overall load imposed on the system at any one timeis a significant factor

in the observed difference in average process execution time between using no load

balancing andusing the threshold algorithm; the improved balancefactor of the system

is even more marked, as exemplified by the load variance, as shownin fig. A.2.2 and

by the fact that the threshold algorithm maintainedthe load difference of the system at a

level rarely exceeding the equivalent of two user processes (fig. A.2.3). The above

behaviour is summarised in Table 5.2.
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Statistics
Mean Load Load Variance LoadDifference

Algorithm

No Load Balancing 2.091 2.107 3.16

Random 1.769 0.693 1.97

Threshold 1.742 0.609 1.93

Global Average 13750 0.694 1.95      
Table 5.2 Overall System Behaviour using the Independent Process Model

(Load Value = 0.5)

As we would expect, it is for load values above 0.7 that the benefits of load balancing

can truly be observed.It is also at this point that a distinction can be drawn between

the three algorithms which were implementedforthis first set of experiments. We

chose to sample mean load, load variance and load difference at a system load of0.8,

which, from fig. 5.2 can be seen to be wherea significant performance difference

emerges between the three algorithms. Fig. A.3.1 shows that even the very simple

random algorithm considerably reduces overall mean load on the network, whilst as

illustrated in fig. A.3.2, the global average algorithm gives even further improvement;

the performanceof global average and threshold, with respect to mean load is almost

identical as shownin fig. A.3.3. Similar behaviour can be observed regarding the

balance factor of the system at high load; fig. A.3.4 illustrates the high anderratic load

variance when no load balancing mechanism is used, and also indicates the

improvementobtained by the random algorithm. By inspection of figs. A.3.5 and

A.3.6, it can be seen that global average and threshold both give further improvement

to the balance factor than the random algorithm, with global average being the better of

the two. A similar performance ranking, with respect to the load difference of the

system is exhibited in figs. A.3.7, A.3.8, and A.3.9. The behaviour of the system at
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high load is summarised in Table 5.3.

 

 

 

 

 

Statistics
Mean Load Load Variance Load Difference

Algorithm

No Load Balancing 4.983 21.059 10.31

Random 3.138 4.188 4:32

Threshold 2o07 1.449 3.26

Global Average 2.893 1.208 2.98      
Table 5.3 Overall System Behaviour using the Independent Process Model

(Load Value = 0.8)

5.3.4 General Observations

From these results we can see that for system loads above a moderate load of 0.5 a

system which uses no load balancing mechanism suffers severe performance

degradation, andthe benefits of load balancing are evident. This has been shownto be

due to periods of very heavy overloading of certain processors whilst others remain

underloaded(in the no load balancing case) illustrated by the load difference graphs

which wehavepresented; also the general distribution of load is unbalanced, as seen

from the load variance graphs. This difference in performanceis not experienced at

low load, partly because the load balancing algorithmsare not often invokedatlight

system loading, and partly because the added overheads of executing a load balancing

algorithm is not justifiable enough for the balanced load distribution which they bring.

It is to be noted that, although the random algorithm does not attempt to make

"sensible" choices for candidate processors to which to offload processes from an

overloaded processors, the problems of high load variance is reduced using this
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algorithm as opposed to the no load balancing case. However, as we would expect, at

high system load,this algorithm still causes momentsof high load variance and load

difference. We believe that the reason why random performswell at moderate load

(but notat high load)is that the probability of finding a randomly-chosen processor

which is not itself overloaded is quite high, when moving processes from an

overloaded processor.

The algorithm which performedbest overall system load values wasthreshold. It can

be observed that the poor balance factor which wasstill evident in the system when

using random load balancing, is considerably reduced when using threshold,sinceit

guards against migrating processes to an already overloaded processorbyits probing

mechanism. Since threshold maintains the simplicity of the random algorithm, and

henceincurs very little extra overload from its limited information exchange, we can

deduce that in this simple environment, threshold is quite adequate for bringing

significant performance improvement.

Aninteresting point should be noted regarding the performance of global average in

these experiments. Although the algorithm uses more co-operation between

processors in the network, and hence uses a more accurate picture of overall load, the

performance of global average is only superior to that of random for high system

loads, and does not equal the improvement shownby threshold. Despite the fact that

the network load is marginally more evenly distributed at high loads using global

average rather than threshold, this improved balance factor is counteracted by the

overheadsof the message exchange necessary to maintain the globally agreed average

load value in such a volatile environment. It should be pointed out that, since

processes do not remain in the system long, this more complex algorithm is not able to

showits true potential. We expectthe results to be different for our experiments to be

154



presented later in this chapter, where processes arrive in groups, co-operating via

message-passing to achieve a commontask.

Thus our results from a simple environment, where short-lived processes execute

independently of their peers, support the view of Eager et al [86], that added

complexity in a load balancing algorithm does not give corresponding performance

improvement(in fact complexity is seen to degrade performance in this environment).

5.4 CO-OPERATING PROCESS GROUPS USING MESSAGE-PASSING

The secondstage of our experiments with load balancing algorithms was designedto

examine their relative performance in a system where processes form logical groups

which exchange interprocess messages. In the following sections we present the

changes madeto our experimental environmentin orderto carry out this study and the

results which were obtained. The characteristics of the network (communications

speed, network topology, processor speed, numberof simulated processors) all

remained unchangedforthis series of simulation runs. We measured the network

mean load, load variance and load difference at sampled intervals of 10 seconds of

simulated time as in the previoussections of this chapter, but also recorded the number

of process migrations and the numberof messages transmitted across the network,to

add further analysis to ourresults.

5.4.1 Process Group Model

Ourdistributed operating system kernel was designed to provide facilities for the

creation and execution of logical groups of processes where each group has an
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identifier which is guaranteed to be unique across the network. For the purposes of

our experiments on load balancing algorithms we chose an environment where the

workload consists of groupsof either two, three or four processes.

A group is formed by creating a group parent process which then uses the kernelcall

cproc() to create the appropriate numberofchild processes in the group. Such a

process groupis thus a representation of a user application which has been structured

as one controlling parent process, which requests service from its children in order to

divide its task into a number of concurrent transactions. Each such transaction

consists of a message being sent from the parent process to one ofits children

requesting a service provided bythat child; when a child receives a requestit services

that request andreturnsa result to the parent via a reply message. This modelis not

purely a Remote Procedure Call interface, since the children also perform processing

of their own whenthey are not dealing with parental requests for service. Hencethis

can be viewed as a numberof processes which rendezvousat particular points when

they need to exchangedata.

The interprocess communication necessary to implement the above process group

model was performed using the software port mechanism of our kernel. The parent

process of each group creates its own port, to whichit gives the name "parent_port”,

and uses this to send all messagesto its children andalso for receiving their replies.

Each child process in a group also creates its own port, giving it the name

"child_port", together with an integer specifying to which child in the groupthis port

belongs (for example in a three-process group, consisting of a parent and two

children, childl uses child_portl and child2 uses child_port2). Two-way

communication between parent and child processesis thus established by the parent
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linkingits port to each ofits childrens’ ports and vice versa.

Since in a real application written in the style of this process group model, the message

traffic between the parent process andits children will not necessarily be symmetrical

(i.e. the parent will communicate more frequently with one child than with others), we

need a "weighting" scheme to determine the number of request/reply transactions

whichthe parent undertakes with each child process. In order to impose an expected

service time on the process group the parent process was written to perform a constant

numberof transactionswithits children (this constant, MAX_TRANS,beingsetat 10

for our experiments). So as to achieve asymmetrical interprocess communication,the

“weighting” scheme was implemented in the following manner: in a two-process

group all parental transactions are with its single child; in a three-process group

MAX_TRANS/3 transactions are directed to one child process and

(2xMAX_TRANS)/3 to the other; in a four-process groupthe division of transactions

between child processes is MAX_TRANS/6, (2xMAX_TRANS)/6, and

(3xMAX_TRANS)/6. All transactions betweena parentandits children were initiated

by first generating a uniform random numberandthentransforming this appropriately

to give the above "weighting" for each child. When the parent finishes its

MAX_TRANStransactions it sends a termination messageto eachofits children,

which then exit cleanly. The entire operation of every process in a group was written

using the message-passing facilities provided by our kernel.

To limit the effect of many random parameters in the system wefixed the size of

message sent between parent and child processes at 1K bytes; these messagesare sent

in non-blocking mode and received in blocking mode byall parent and child

processes. We present below a pseudo-code description of the parent and child

process in a group :

1o7



Parent Process

Create (""parent-port")

Create (appropriate numberofchildren)

Link ("parent-port" to childrens’ports)

for (i = 0; i<MAX_TRANS;i++)

{
do_processing (250 milliseconds) /*CPU-intensive processing*/

send_msg (to randomly-chosen child) /*non-blocking*/

do_processing (250 milliseconds)

receive_msg(reply from child) /*blocking*/

}
for (j=0; j < num_children; j++)

send_msg(termination messageto child j)

Unlink ("‘parent_port" from childrens’ports)

Destroy ("parent_port")

Exit

Child Process

Create ("child_port'’)

Link ("child_port" to "parent_port")

forever

{
do_processing (250 milliseconds) /* CPU-intensive processing */

receive_msg (request from parent) /* blocking */

do_processing (250 milliseconds) /* processing parent request */

send_msg(reply to parent)

if (message is "termination message")

{
Unlink (child_port" from "parent_port")

Destroy (‘‘child_port")

Exit

}
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5.4.2 Process Group Synthetic Workload Generation

In our study of independent processes, the interarrival times of processes were

generated from an exponentialdistribution to form a Poisson arrival process. Since

the workload on the system arrives in groups under our process group model

described above, we chose to allow groupsto arrive with exponentially distributed

interarrival times, lengthened by a constant multiplier to accountfor the extra load

imposed on the system; thus for our study on load balancing algorithms in a process

group environment, the arrival of a groupis a Poisson arrival process with rate A, but

the creation of processes within a group is at the instant of that group's arrival; it has

been shown [Lavenberg83] that under this workload, expected responsetimeis poorer

than whenthearrival of individual processes is Poisson.

As previously stated, we concentrated on studying two, three and four-process

groups, and so our synthetic workload generation phase performedat system startup,

was augmentedto generatearrival times, together with a random integer(either 2, 3 or

4) drawn from a uniform distribution to indicate the size of the arriving group; hence

over a sufficiently long period of simulated time, the expected numberof groups of

each size will be equal. The constant multiplier for interarrival times wasset at the

average time necessary for a process group to execute to completion, assuming that no

interference is experienced due to other processes in the system; through

experimentation this value was found to be 9 seconds.

Thusthe synthetic workload generation phase can be summarised as follows:

- generate random size process group(2, 3 or 4)
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- generate exponential time sincelast grouparrival

- multiply interarrival time by expected process group execution time

These steps are repeated until arrival times have been generated for the numberof

process groups required by a particular simulation run.

5.4.3. Load Balancing Algorithms Implemented

In order to continue our study of load balancing algorithms by examining their

behaviour in a cooperating process group environment, we implemented the same

algorithms presented in previoussections, (i.e. random, threshold and global average)

together with a modification of the threshold algorithm, which was designed to see

whether performanceof this algorithm would alter if it were operated in a preemptive

manner(we term this algorithm "preemptive threshold"). Wepresenthere, details of

any necessary changes madetothe original algorithms (mainly in terms of parameter

choice) in order to allow them to function as efficiently as possible in this new

workload environment, andalso a description of the "preemptive threshold" algorithm.

During initial trial runs of the two simple, non-preemptive algorithms (random and

threshold), we found that the original threshold value of 2, defining the load value

above whicha processor considered itself overloaded, thus needing to transfer newly

processes to another processor was inadequate to deal with processors arriving in

groups. In fact at moderate and heavy system load, using a threshold value of 2, these

algorithms gavelittle improvement in system performanceoverthe no load balancing

case, and in certain pathologically high peaks of general system load, they actually

resulted in a performance degradation dueto instability (as defined in Chapter 3). We

attribute this fact to the threshold value being set too low, thus causing many attempted
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migrations from an overloaded processor with no consideration asto the distribution

of migrating processes; recall that the random algorithm movesa process to a

randomly-chosen alternative processor, andthat thresholdwill try to negotiate many

fruitless migrations throughits probing mechanism,if all processors are loaded near to

or above the threshold value. By experimentation, we concluded that in the process

group environmenta threshold value of 4 was appropriate (i.e. that a processor

considersitself to be overloaded if there are more than 4 processes currently executing

on it). Thus the random and threshold algorithms were modified to use this new

threshold value for our subsequent simulation runs; otherwise they remained

unchanged, from their description in sections 5.3.2.2 and 5.3.2.3.

It should be noted that this indicates a fundamental flaw of these two simpler

algorithms: it is indeed true that in the simple environmentof independent, short-lived

processes, we saw evidence that a simpler algorithm was sufficient to give

performance improvements; however, in moving to a morerealistic environment

which more accurately mirrors the way in whichuser applications are written to benefit

from the parallelism provided by a distributed computer system, the algorithm

parameters need modification, and thus they do not adapt easily to changing

conditions.

In contrast to this, we found (again duringinitial trial runs) that the global average

algorithm required no modification to operate under the process group workload, and

as will be seen in the following sections provided substantial performance

improvements; so henceforth when wereferto this algorithm, it is as described in

section 5.3.2.4 (including the choice of values for its parameters).

The preemptive threshold algorithm functions in a similar mannerto the threshold
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algorithm,transferring processes to another processor, when a particular processor's

load exceeds a fixed threshold value; however checking for overloading is not

performed upon the arrival of a new process, but is invoked periodically, thus

allowing a process whichis already executing on a processorto be interrupted and

migrated to a suitable alternative location. We used the same threshold valueof 4, and

set the period between invocationsof the algorithm to be 2 seconds (which was chosen

through experimentation). Any period shorter than this was foundto result in too

many fruitless migration attempts, particularly at heavy system load, and a longer

period did not provide sufficient chance for a processorto detect its overloadedstate,

or to offload multiple processes within a reasonable time span if it became very

heavily-loaded. Processes were only considered for migration if they were not

blocked and also not currently executing (in other words, processes in the ready

queue).

5.4.4 Performance of Load Balancing Algorithms

Westudied the performance of the algorithms described above (random,threshold,

preemptive threshold and global average) under varying system loads and, similarly to

the results presented in section 5.3.3, we took a measure of the average time which

was necessary for a process to execute to completion. Wealso included simulation

runs using no load balancing to provide a "worst case" analysis.

Each simulation run was allowed to continue until the aforementioned average

converged to within a range allowing comparison betweenthe performanceofdifferent

algorithms(i.e. the average for each processor in the networkdid not differ by more

than approximately 2% from that ofits peers). These results are presented in fig. 5.3.
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The maximum system load which we were able to simulate was0.7, due to the bursty

nature of process arrival, which creates severe overloading in pathological cases (not

only of our simulated system, but also the NCR Tower on whichthe simulations were

conducted).

From fig. 5.3, we can see that when noload balancingis used, the performanceof the

system degrades markedly for system loads greater than 0.5. The more simple

algorithms (random,threshold and preemptive threshold) all improve significantly on

the no load balancingcase, but(in contrast to the results we obtained using a system

whose workload comprised short-lived, independent processes) the global average

algorithm provides constantly superior results over all values of system load.

In order to examine in more detail the reasons for these performance differences we

again sampled mean processor load (the average number of processes on one

processor in the network at any one time), processor load variance (the variance

between the numberofprocesses on each processor) and the load difference (the load

on the most heavily-loaded processor minus that of the least heavily-loaded). In

addition we sampled the number of migrations which occurred, when using a

particular load balancing algorithm and the numberof interprocessor messagessent

during the simulation run; these give greater insight into the behaviour of each

algorithm andits associated costs. All of these values were taken at 10 second

intervals over a period of 1,000 secondsof simulated time, and for low, moderate and

heavy system loads (0.2, 0.5 and 0.7 respectively). We present these results in a

graphical form in Appendix B (figs. B.1.1-B.1.5, B.2.1-B.2.5 and B.3.1-B.3.12),

and an overall summary in the text of this section (Tables 5.4-5.7).
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Mean Load Load ee
Algorithm Load Variance Difference napencna

No LoadBalancing 1.625 1.910 3.16 0.0

Random 1.582 1.443 2.67 0.026

Preemptive Threshold 1.577 1.437 2.74 0.031

Threshold 1.576 1.437 2.67 0.026

Global Average 1.437 0.449 1.48 0.261       
Table 5.4 Overall System Behaviour using the Cooperating Process Group Model

(Load Value = 0.2)

It should be observed from Table 5.4 that even at low system load (0.2), there is a

benefit in balance factor to be gained from using any ofthe load balancing algorithms,

shown by the improvementin load variance and load difference; howeverit is only the

global average algorithm whichresults in a significant reduction in mean load. A more

detailed view of these aspects of system performance can beseenin figs. B.1.2 and

B.1.3. Since at such a low system load there is no discernible difference in behaviour

between threshold, preemptive threshold and random,wechoseto plot only threshold

against the no load balancing case as being representative of all three simple

algorithms. Figs. B.1.4 and B.1.5 illustrate that global average gives further

improvedbalance factor over the simple algorithms, even at low system load.

Table 5.5 shows a summary of system performance at moderate load (0.5). This

illustrates that the trends observed at low load are similar as load increases; at a load

value of 0.5, we can see that without any form of load balancing, the system is

increasingly poorly balanced, and that now the mean load on the system as a whole,is
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significantly reduced by using any oneof the algorithms which were implemented.

 

 

 

 

 

 

Statistics
Mean Load Load vines

Algorithm Load Variance Difference per cannes

No Load Balancing 3.405 9.862 7.93 0.0

Random 2.880 2.683 4.25 0.360

Preemptive Threshold 2.766 2.463 4.00 0.366

Threshold 2.728 2.507 3.92 0.284

Global Average 2.433 0.880 255 1.269       
Table 5.5 Overall System Behaviour using the Cooperating Process Group Model

(Load Value = 0.5)

Again global average showsa far more significant improvementboth in terms of

balance factor and reduction in mean load. A more detailed picture of these

phenomenacanbeseenin figs. B.2.1-B.2.5.

At heavy system load (0.7), the difference in behaviour between the chosen load

balancing algorithms is even more apparent, as summarised in Table 5.6. In order to

better illustrate these differences we plotted the performanceofpairs of algorithmsto

allow direct comparison between them;the pairs weselected are : no load balancing vs

random, random vsthreshold, threshold vs preemptive threshold and threshold vs

global average (figs. B.3.1-B.3.12). At this load value, we note that the more

complex global average algorithm again offers a good balance factor and hence

predictability of process response time; wealso note that the addition of preemption to

the threshold algorithm results in a slight loss of stability, shown by the degraded

balance factor together with an increased numberof process migrations.
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gx Mean Load Load Narn
: 1 : | MigrationsAlgorithm Load Variance Difference per Second

No Load Balancing 5.874 27.885 14.15 0.0

Random 4.705 4.228 5.70 0.875

Preemptive Threshold 4.039 3.630 a2) 0.646

Threshold 3.942 327) 4.84 0.463

Global Average 3.412 1315 3.19 2.492       
Table 5.6 Overall System Behaviour using the Cooperating Process Group Model

(Load Value = 0.7)

A numberof important points emerge from theseresults, indicating reasons for the

differences between the average process execution time observedfor each algorithm.

Global average outperformsall of the simpler algorithms, even at very low load; we

can attribute this improvementat low load, to the fact that for the threshold and random

algorithms, the threshold value hadto beset at 4 to avoid fruitless migration attempts

at high system load, but this value removesthe possibility of finding better load

distribution when system loadis low.

To illustrate this point, consider a totally idle network; if a process group of size 4

arrives at one processor, then random andthreshold will not attempt to move any of

the 4 constituent processes since the fixed threshold load value has not been exceeded;

even if no other processes arrive elsewhere in the network, under these two

algorithms, none of the 4 processes will be moved to another processor. Using the

global average algorithm on the same example, the idleness of the network will be

detected, and an arriving group of 4 processes will rapidly be redistributed amongst

the available processors. We believe that this is a significant factor in explaining the

superior performance of global average for low system loads. We can also see from
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Table 5.6 why global average performsbetter than threshold at high system load (0.7);

note that the mean load on the network forthe three simple algorithms remains around

a load value of 4 processes, and that this is the value of the fixed threshold which we

used. Thus most probes to investigate the possibility of process migration willfail,

since the probedprocessors’ loads are also above the threshold value; in contrast

global average continuesto redistribute load, even as general system loadincreases,

and also provides a more reliable mechanism forfinding relatively lightly-loaded

processorin an otherwise heavily-loaded system.

If we examine the average numberof migrations performed per second throughoutthe

network undereach ofthe four load balancing algorithms (as shown in Tables 5.4, 5.5

and 5.6), we can see that although random causes more migrations than threshold,its

overall performanceboth in termsof balance factor and average process execution time

is worse. Wecan conclude from this that these extra migrations are madefruitlessly

(which is what we would expect, since processes are not assigned an alternative

processor in an "intelligent" manner, but purely at random). Movingto the global

average algorithm wesee that the average number of migrations per second(atall

system loads) is considerably higher than for the other algorithms, and that the balance

factor shown bythe load variance and load difference values is better. We can thus

conclude from this that the additional migrations are made at appropriate times when

overall system load begins to become unbalanced (in fact closer inspection of the

simulated system during its operation, revealed that this was indeed the case, with

dramatic changes in workloadresulting in highly increased migration activity).

A further noteworthy pointis that the preemptive threshold algorithm actually degrades

performancerelative to its non-preemptive version; we canseethatit results in a less

stable system at heavy load. We can conclude from this that purely introducing
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preemptioninto an algorithm is not suffient in order to improve its performance;this

mustbe linked with the ability to adapt to varying circumstances (as exemplified bythe

global average algorithm).

 

 

 

 

 

 

Load Value
Load 0.2 Load 0.5 Load 0.7

Algorithm

No Load Balancing 1512 3.173 5.192

Random 1.617 4.980 8.057

Preemptive Threshold 1.703 5.865 9.333

Threshold 1.628 4.779 7.181

Global Average 4.531 17.044 23.608      
Table 5.7 Comparison of Average Interprocessor Messages Transmitted

per Processor per Second using the Cooperating Process Group Model

5.4.5 Costs of Algorithm Execution

In order to establish the extra costs incurred by the load balancing algorithmsstudied,

werecorded the numberofinterprocessor messages generated by each processor on

the network during each secondof the 1,000 second simulation period. These values

are shown in Table 5.7. We can see that the three simple algorithms do notdiffer

greatly in the additional messagetraffic which they produce; global average, however,

requires on average approximately 3 times as many interprocessor communications. It

is of note that despite the added overheads incurred by this messagetraffic, the

algorithm still outperforms its simpler counterparts at all load levels (as shown in

previous sections). These are not only messages usedbythe algorithm itself but also

interprocess messages sent between cooperating user processes which have been
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migrated to different processors, since in our implementation we are unable to measure

separately kernel and user-generated messages. Despite this drawback, the figures

showndoserve as broad indicators of the total communications cost imposed on the

system. These costs are of importance when considering useofa particular algorithm

in a particular network with a given communications medium speed. The costs should

be viewed in conjunction with the performanceresults presented in previoussections,

and we only claim that they are valid for our given experimental environment.

Experimentation with other network speeds and topologies are a source of further

research.

5.5 MODIFIED LOAD BALANCING ALGORITHMS

Having gained considerable experience of the operation of load balancing algorithms

undervarying conditions, and based on the analysis of the detailed behaviourof the

simulated network when load balancing is applied, the final phase of this study was

designed to investigate modifications which could be made to the algorithms which we

implementedin order to further enhance performance improvement. Sincethe global

average algorithm was shownto create a system with a good balancefactor, we elected

to take its basic philosphy of maintaining a network-wideview ofprocessor load, and

to modify the way in which pairs of processors are chosen to consider entering into

process migration negotiations. Due to apparent drawbacks of the fixed threshold

parameters of the simpler algorithms, we decided that they did not warrant any further

investigation (in fact, the only reasonable modification to these algorithms would be to

make the threshold variable, which is effectively the essence of the global average

algorithm). For all of the simulation runs usedto carry out this study, we retained the

cooperating process group model of synthetic workload generation.
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5.5.1 Receiver-Initiated Global Average Algorithm

In our implementation of Global Average, process migration wasinitiated by a

processor whenit detects the fact that it is overloadedrelative to the globally-agreed

overall system load value. This means that in reply to its broadcast message

attempting to find an underloadedpartner, the overloaded processor may haveto deal

with a numberofsuchreplies, thus imposing even further load uponit in processing

these replies. It has been suggested that at overall high system load, it is more

reasonable to expecta lightly loaded processor to seek an overloaded partner from

which to accept a numberof processes; Eageretal [85] investigated this approach for

very simple load balancing algorithms.

5.5.1.1 Implementation

Our first modification to the Global Average algorithm was thus to examine whether

this phenomenon would apply to a more complex environment than has been

previously studied, and we term this modification the Receiver-Initiated Global

Average algorithm. Using this approach, when a processor detects that it is

underloaded,it sets a too_low timeout and broadcastsits availability for accepting

processes from an overloaded processor. An overloaded processor, on receiving such

a "too_low" message, sends back a "too_high" message indicating that it wishes to

offload a process to the sender of the "too_low" message;if the original senderisstill

underloaded then process migration will take place. Wefelt that this slightly lengthy

procedure of acknowledgements was more desirable than simply immediately

migrating a process from an overloaded processoron receipt of a "too_low" message,
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since the latter could lead to the originally underloaded processor being swampedwith

incoming migrantprocesses.

Asbefore, the algorithm functions on events concerning under- or overloading and the

receipt of interprocessor messages, and wepresentbelowa list of these events, shown

in italics, together with their associatedactions:

a processor detects it is overloaded:

set too_high timeout

a processordetects it is underloaded:

broadcast availability

set too_low timeout

a processor receives a too_low message:

if (overloaded)

{
send too_high messageto sender of too_low message

}
cancel too_high timeoutif pending

a processorreceives a too_high message :

if (underloaded)

{
send accept message to sender of too_high message

add awaitingprocess timeout to queue

incrementvirtual load

cancel any too_low timeout pending

nee



a processor's too_low timeoutexpires:

broadcast new loweraverage

a processor's too-high timeout expires :

broadcast new higher average

a processor receives a new average value :

update local copy of average

cancel any too_low or too_high timeouts pending

a processor's awaitingprocess timeout expires :

decrementvirtual load

a processor receives a migrantprocess :

remove one awaitingprocess timeout from the queue

decrementvirtual load

install process

5.5.1.2 Performance

In fig. 5.4, we present the average process execution time for the network under a

range of system loads, comparing the original global average algorithm with our

receiver-initiated variant. From this we can indeedsee that this modification leads to

performance improvement at heavier system load, but wealso note that the results
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Statistics Average |. Average

lea vale Dien: Migrations ee d
Algorithm per second Messages Perprocessor/sec

Global Average 1.437 0.449 1.48 0.261 4.531

Receiver-initiated 1.449 0.529 161 0:235 5.558

Svstem Load 0.5

Statistics Average |, Average

laa anne ae Migrations eeoat
Algorithm per second Messaces perg processor/sec

Global Average 2.433 0.880 255) 1.269 17.044

Receiver-initiated 2.415 0.909 2.54 1.072 19.941

Svstem Load 9.7

Statistics erag AverageMean

|

Load

|

Load |,A°€™8° linterprocessor
: Load Variance Difference |~ sarcaeond Messages per

Algorithm P processor/sect

Global Average 3.612 1S) S319) 2.492 28.608

Receiver-initiated 3.563 1.368 3.19 22 2D752.   
Table 5.8 Overall System Behaviour using the Cooperating ProcessGroup Model

Comparing Global Average and the Receiver-initiated Variant
(Load Value = 0.2, 0.5 and 0.7)



from the receiver-initiated global average algorithm are poorer for low loads. The

differences in behaviourof these two algorithms are compared in Table 5.8, showing

mean load, load variance, load difference and process migration rate together with the

intensity of interprocessor messagetraffic. From these values we can seethat the

receiver-initiated version of global average gives an improved balancefactorat high

load, and a reduction in the mean load value; howeverat low loadthe system's balance

factor degrades using this modification. It should also be noted from Table 5.8, that

the receiver-initiated global average algorithm reduces the messagetraffic in the system

at high load (0.7); this can beattributedto the fact that a high overall system load will

result in less broadcast messages,since this modification of Global Averagerelies on

underloaded processors to broadcasttheir availability. Conversely the performance

degradation at low levelis due to the presence of manylightly-loaded processorsin the

system broadcasting "too-low" messages.

5.5.2. Limited Broadcast Global Average Algorithm

Since the value for global average load is maintainedin our system by broadcastingits

updated level when a processor detects that it is no longer accurate, and also

overloaded processors broadcast a messageto indicate their plight, the number of

messages necessary to allow the algorithm to function correctly is high. We observed

from closer inspection of the migration behaviour of processes from an overloaded

processorthat, although a "too_high" message is broadcast to all other processors,

there is a very high probability that if a number of underloaded processors exist in the

network, then the nearest one to the overloaded senderof the broadcast message will

reply first, thus accepting a migrant process; this means that other underloaded

processors will wait in vain to receive the migrant process until the awaiting-process

timeout period has elapsed.
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5.5.2.1 Implementation

In order to reduce the numberof such broadcast messages, andto limit the distance

which a migrant process will be moved, weintroduceda further variantto the global

average algorithm, whereby an overloaded processor sends a "too_high" message only

to its immediate neighbours; these neighbours will only forward the message, in turn

to their neighbours if they are themselves either overloaded or atleast their load is

above the global average load value. To prevent this forwarding from continuing

indefinitely we added an "ageing" feature to "too_high" messages which only

permitted them to be re-transmitted once; in other words an overloaded processor

sends the messageto its immediate neighbours and these can then forward the message

to their neighbours if necessary, but the message will nottravel any further through the

network. For larger networks, the number of possible re-transmissions could be

increased since it is merely a parameter of the algorithm. We term this variant, the

Limited Broadcast Global Average algorithm.

Implementation of this modification consisted of changing the actions carried out upon

detecting overloading and receiving a "too_high" message;all other actions remained

unchanged. Below wepresent a description of the modified actions associated with

these two events :

a processordetects it is overloaded:

set forward_it field of "too_high" message to maximum numberof "hops"

send "too_high" message to immediate neighbours

set "too_high" timeout

a processor receives a""too_high" message:

decrement forward_itfield of "too_high" message

if ( !underloaded)
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if ( forward_it field !=0 )

forward "too_high" message to immediate neighbours

;
else

t

send accept messageto original sender of "too_high" message

add awaitingprocess timeout to queue

incrementvirtual load

}

5.5.2.2 Performance

The graph in fig. 5.5 showing average process execution time for the original global

average algorithm, and for our Limited Broadcast variant reveals that indeed the overall

performanceof the system is improved underthis scheme. If we look in moredetailat

the behaviour of the network as shown in Table 5.9, we can see that underall these

sampled load values, the Limited Broadcast variant does considerably reduce the

amount of messagetraffic in the system, without significantly degrading the general

balance factor (as shown bythe load variance and load difference values). In fact we

note that at moderate load (0.5), the system's balancefactoris slightly improved using

this variant; weattribute this to there being little need at this load to seek migration

further than the immediate proximity of an overloaded processor, and that doing so

merely results in less fruitful migrations being made. It should also be noted thatat

high load (0.7), the performance of the two algorithms (shown in fig. 5.5) begins to

converge; we believe this is due to the fact that at high overall system load, an

overloaded processor will need to communicate with more distant processors in order

to find an underloaded partner, hence the slight degradation in balance factor of the

Limited Broadcastvariant, although this is amply compensated for by the reduction in
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Se Ment Lond ood Se
Load Variance Difference Migrations |e ewes o q

Algorithm per second tee erg processor/sec

Global Average 1.437 0.449 1.48 0.261 4.531

Limited Broadcast 1.443 0.469 hice 0.308 4.151

System Load 0.5

Statistics Average Average

Load Vadance Difference Migrations |interprocessorAfeoritiiin per second| Messages per
$s processor/sec}

Global Average 2.433 0.880 2a 1.269 17.044

Limited Broadcast 2.354 0.826 2.45 L237, 14.120

Svstem Load 0.7

Statistics AverageMean

|

Load

|

Load |,F%T@8° |interprocesson
, ; Load Variance Difference persecond Messages per
Algorithm processor/seci

Global Average S612 1.315 3.19 2.492 28.608

Limited Broadcast 3.485 1.376 3-20 2:63 1 22,   
Table 5.9 Overall System Behaviour using the Cooperating Process Group Model

Comparing Global Average and the Limited Broadcast Variant
(Load Value = 0.2, 0.5 and 0.7)
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messagetraffic and the reduced mean loadvalue.

We suggest that the difference in performance would be more marked if the

communications medium were slower than the one we haveusedin our simulation,

and that therefore the limited Broadcast Global Average algorithm would besuitable

for such environments.

5.5.3 Sender/Receiver Global Average Algorithm

Examining the average process execution time graph ofthe global average algorithm

and its receiver-initiated variant (fig. 5.4), we notice that the two curves cross at a

system load value of 0.5, thus we can draw the general conclusion that for loads less

than this value, the sender- initiated(i.e. the original) version of global averageis the

one which weshould use and that for loads greater than 0.5 the receiver- initiated

version is preferable. It should also be noted that an overall system load which is

heavy (e.g. 0.7) does not meanthat the workloadarrival is at a constant rate; there are

moments of peaks of heavy load and troughs of low load, which combineto give an

average system load of 0.7. A similar observation applies for a low system load value

of say 0.2.

5.5.3.1 Implementation

Observing the above facts about the behaviourof the load on our simulated network,

wedesigned a further variant of the global average algorithm (termed sender/ receiver

global average) which exploits the benefits of sender- and receiver-initiated global

average, by switching to the version appropriate for the current overall system load;

whenoverall system load is high, then the algorithm operates in a receiver- initiated
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fashion, and changes to a sender- initiated algorithm when system loadfalls. Since the

actual value of system load being usedin a particular simulation run is a parameterof

our simulation and hence notaccessible to a load balancing algorithm,it was necessary

to define heavy or low load in termsofthe current global average value maintained in

each processor at any oneinstant of time; by experimentation we determined that a

global average value of 3.5 was a goodindicator of the point whichseparates heavy

from light load. This value was used in our algorithm to decide whether it should

operate in receiver- initiated or sender- initiated mode. Howeverthis valuealoneis

not sufficient to gain improvementin performance, since we wish to avoidthestate

where the algorithm frequently oscillates between its two modes, when the global

average fluctuates between values just above 3.5 and just below it; in fact, it is

apparentthat such behaviour would be unacceptably unstable. In order to avoid this

potential instability we defined a tolerance range around the load breakpointto ensure a

more gradual transition from one modeof operation to the other; so for exampleif the

current load on the system is detected to be low (and hencethe sender- initiated mode

is being used), the changeoverto receiver- initiated mode will only be made when the

global average value exceeds the load breakpointplusthe tolerance range;similarly,

whenload is considered to be high (and hence the receiver- initiated modeis in use),

the changeover to sender- initiated mode will only be made whenthe global average

value falls below the load breakpoint minus the tolerance range. Again by

experimentation, we elected to use a tolerance range of size 0.5, around the load

breakpoint, which gave a sufficiently certain indication that either the low load or high

load state had been detected and that the system would remaininthatstate sufficiently

long to benefit from the particular qualities of either a sender- initiated or receiver-

initiated mode of operation.
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The algorithm is driven by events, and uses a variable policy to indicate whether

senderor receiver- initiated modeis in force as described below :

a processordetectsit is overloaded:

if (policy == RECEIVER_INITIATED)

:
set too_high timeout

}
else /* policy == SENDER_INITIATED*/

{
broadcast "toohigh" message

set too_high timeout

}

a processordetects it is underloaded:

if (policy == SENDER_INITIATED)

{
set too_low timeout

}
else /* policy == RECEIVERINITIATED */

{
broadcast "too_low" message

set too_low timeout

}

a processor receives a too_low message:

if (overloaded)

{
send "too_high" message to sender of "too_low" message

}
cancel any pending too_high timeout

a processorreceives a too_high message :

if (underloaded)
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send accept message to sender of "too_high" message

add awaitingprocess timeout to queue

incrementvirtual load

}
cancel any pending too_low timeout

a processor's too_low timeoutexpires:

broadcast new lower average value

if ( policy == RECEIVER_INITIATED

&& new average value < LOADBREAKPOINT - TOLERANCE )

policy = SENDER_INITIATED

a processor's too_high timeoutexpires:

broadcast new higher average value

if ( policy == SENDER_INITIATED

&& new average value <LOAD_BREAKPOINT + TOLERANCE)

policy = RECEIVER_INITIATED

a processor receives a new average value $

update local copy of average

cancel any pending too_lowortoo_high timeouts

if (new average value > LOADBREAKPOINT + TOLERANCE

&& policy == SENDER_INITIATED)

policy = RECEIVER_INITIATED

else if (new average value < LOADBREAKPOINT - TOLERANCE

&& policy == RECEIVER_INITIATED)

policy = SENDER_INITIATED

a processor's awaitingprocess timeout expires:

decrementvirtual load

a process receives a migrantprocess:

remove one awaitingprocess timeout from the queue

decrementvirtual load

install process
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5.5.3.2 Performance

In fig. 5.6, which shows a comparison of the average process execution timefor the

network undera range of system loads, between the original global average algorithm

and our sender / receiver variant, we can see that the variant offers improvementover

all but the lightest of system loads. By examining the more detailed behaviourof these

two algorithms at low (0.2), moderate (0.5) and high (0.7) loads as presented in

Table 5.10, we observe that the sender / receiver variant results in a more balanced

system, with a reduced mean load value, andalso reduces the message- traffic passing

through the communications medium.

We would expect performance of this variant to be similar to the original global

average algorithm at low load, since the algorithm would be operating almost

constantly in sender-initiated mode, since the global average value will very rarely

reach the load breakpoint whereit will switch into receiver-initiated mode. We note

also that at high system load (0.7), the performanceofsender / receiver global average

is similar to that of the receiver-initiated variant, since at such a load level the mode of

operation will almost constantly be receiver-initiated and only rarely will overall

system load fall below the load breakpoint. It is interesting to note that at a load value

of around 0.5, the average process execution time of the original global average

algorithm and our sender/ receiver variant are close to being the same value; we

attribute this to the fact that a load value of 0.5 represents the point at which the

globally - maintained average load valueis close to our chosen load breakpoint, and

hence switching between sender and receiver-initiated modes will be reasonably

frequent and perhapsnotreally beneficial.
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Statistics Average Average
Mean Load Load te ee rocesso
Load Variance

|

Difference Migrations 7— 9 ;
Algorithm per second Messages perg processor/sec}

Global Average 1.437 0.449 1.48 0.261 4.531

SenderReceiver 1.433 0.455 152 0.274 5.012

System Load 0.5

Statistics Average |, Average

Load Varaance Difference Migrations [interprocessorAldorithen per second| Messages perAS processor/sec}

Global Average 2.433 0.3380 £5 1.269 17.044

Sender/Receiver 2.399 0.793 2.46 1.238 16.605

Svstem Load 0.7

Statistics A Average
Mean Load Load Mbatee’ interprocesson

; Load Variance Difference persecond messages per
Algorithm \_ processor/sec

Global Average 3,612 13 1) 3.19 2.492 28.608

Sender/Receiver 3.558 i494 3.05 22297 27.861      
 
 

Table 5.10 Overall System Behaviour using the Cooperating Process Group Model
Comparing Global Average and the Sender/Receiver Variant
(Load Value = 0.2, 0.5 and 0.7)
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5.6 SUMMARY

It is illustrative to examine ourresults in the light of the following fourcriteria based

on the work of Alonso [86]. These criteria are suggested as being a measure ofthe

efficacy of a load balancing algorithm. They are:

- balance factor

- cost

- autonomyof processors

- transparencyto user processes.

Wenote thatall of the load balancing algorithms which we havestudied allow user

processes to run unchanged, and hencetheyare all transparent. Webelieve that the

improved balance factor brought by the global average algorithm is significant in

explainingits superiority over the more simple algorithms which were implemented. It

was further observed that the greater the balance in the system, the greater the

predictability of user process response time, which is a desirable attribute for most

environments. By including the results obtained when using a "preemptive threshold"

algorithm, we demonstrated that the use of preemption does notby itself necessarily

guarantee extra stability, and indeed we observed that instability and processor

thrashing may occur as a result. This was shownby the fact that the "preemptive

threshold" algorithm caused more migrations than the simple threshold policy, but

consequently degraded overall system performance.

From the tables of results shownin this chapter, we see that the cost of executing the

more complex global average algorithm is high in terms of process migration and

message transmission, and conclude that it is suitable for a system where
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interprocessor communications do notform a substantial bottleneck (recall that in our

simulation runs the speed of the communications medium wasset at 1Mbyte/second).

Weconclude also, that the autonomyofa load balancing algorithm is of vital

importance. The only algorithm which we studied where each processor does not

control process migration in an autonomous manneris the random algorithm, since a

processor cannot refuse to accept a process which has been sentto it by oneofits

overloaded peers, regardless of its own load state. As we can see from ourresults,

this can lead to periods of overloading and also givesrise to large differences between

the loads of the most heavily-loaded andthe least heavily-loaded processors.

Ourresults indicate that it is viable to not only use an algorithm which adaptsits

fundamental parametersto suit a particular load environment, but that changesto the

way in whichthealgorithm itself operates are possible and that this added adaptability

can be achieved at low cost and further improve overall system performance.
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HAPTER

CONCLUSIONS

Having noted the apparent drawbacksofstatic load balancing policies, we chose, in

this thesis, to study algorithms which adaptto the changingnature of the overall load

on a loosely-coupled distributed system,thus exploiting the observations of Livny and

Melman[82], that there is a high probability of there being idle processors in the

network, whilst others hold a numberof processes queueing forservice.

In order to carry out this study we have presented details of a simulated distributed

system, where we have chosen a 3x3 square mesh topology for its interprocessor

connections. To give greater flexibility and to provide a neat andrealistic

environment, each processorin the system is simulated by a separate UNIX process.

Wehave also described an operating system kernel for this environment, which

supports the creation of typical user processes (in groups if desired), with interprocess

communication being performed through the use of message-passing between

software ports. The system periodically dumps performance information to a number

of trace files, to allow us to compare the behaviour of different load balancing

algorithms operating under varying system loads. The system implemented, allowed a

much greater range of parameter choice, and point-to-point topology, than those

chosen here.

Our experiments were conducted in both a simple environment where small user

processes execute independently, and also in a more complex environment where

groups of two,three and four processes exchange messagesin orderto divide a given

task into a numberof concurrentactivities. The algorithms which were chosen for

investigation show a range of different approaches to the load balancing issue : the
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most simple of these (the random algorithm) uses a very simple processor load

measure (the number of processes resident on a processor) and performed no

information exchange when making process migration decisions; the threshold

algorithm uses the same simple processor load measure, but includes a limited

information exchange policy (via its probing mechanism) to establish a suitable

location for a migrant process; the global average algorithm wasincludedto investigate

the possible benefits of a more complex load measure (the number of non-blocked

processes on a processor averaged over a time period), and utilised a more complex

information exchange policy to maintain a global view of the average load on the

system.

Usingthe independentuser process modelforourinitial study, we saw that, especially

at high system loads,all load balancing algorithms gave substantial improvements in

average process execution time (which weused as an overall measure of performance)

and that we could observe reductions in system meanload, load variance and load

difference. We notedalso that the improved balancefactoratlittle extra cost, seen

when using the threshold algorithm, caused it to perform better than a random

placement policy. In addition, we were able to establish that in such a simple

environment, the more complex global average algorithm was unable to produce any

further improvementoverthe threshold policy. Weattributed this to the extra costs

which this algorithm incurred when attempting to maintain process queues of equal

length on each processor.

Resulting from this initial series of simulation runs, we can concludethat for a simple

process environment, ourresults support the findings of Eageret al [86], that there is

little to be gained by using a complex algorithm for load balancing purposes. In their

paper Kurose and Chipalkatti [87] have extended the aforementioned work on the
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complexity ofload balancing algorithmsusing a real-time environment, withreal-time

constraints employed as the indicator for when to migrate processes from one

processor to another. The goal of our secondseries of experiments wasto investigate

the load balancingissues in a distributed system where user applications are structured

as process groups, with members of each group engaging in information exchange

through message-passing. Webelieve that this is a more realistic environment than

that commonlystudied by other workers, in that one process in the group could be

thoughtofas a file manager, receiving requests for blocks of a file whichis resident

on its processor, and sending the contents of these blocks as reply messages; the

question of I/O overheads had been ignored by Eageret al [86], and other studies have

only includedthe overheads caused by the exchange of messages,explicitly involved

in executing particular load balancing algorithm. Forourstudy of algorithmsin this

environment, we again used average process execution timeas an overall performance

metric, with system meanload, load difference and load variance as further indicators,

but in addition we measured the rate at which processes were migrated across the

network, and the numberofinterprocessor messages which weretransmitted, in order

to gain moreinsightinto the extra costs of the chosen algorithms.

From the results which we presented in Chapter 5, we can make a number of

important observations. The peformance improvements when using any ofthe

selected load balancing algorithmsare notable across a wide range of system loads,

even when load is relatively light. We can attribute this to the group arrival of

processes to the system, which can lead to heavy overloading; in fact we notedthat the

system remained overloaded for lengthy periods of time when noload balancing was

used, until the backlog of competing processes could be cleared. When movingto the

process group environment, we discovered that the fixed threshold used by both the

random andthreshold algorithms needed modification to cope with the nature of the
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workload. This leads us to the conclusion that a load balancing algorithm should be

flexible enoughfor it to moveto a different environmentandstill maintain its essential

features.

The modifications to the global average algorithm which we presented in ChapterS,

and which were novel, were based on experience of examining the behaviourof the

system in the preceding series of simulation runs. Thereceiver-initiated variant was

inspired by a studyof receiver-initiated versus sender-initiated versions of very simple

load balancing algorithms, due to Eageret al [85], and we found that we obtained

similar results in our study;the receiver-initiated variant brought improvementat high

system load, but degraded performanceat low system load. We can thus concludethat

these are valid for more complex algorithmsas well as for simple algorithms.

Since the cost of executing a global average algorithm is high in terms of

interprocessor communications, the purpose of our limited broadcast variant was to

reduce the number of messages generated by the algorithm. Ourresults in Chapter 5

showthat this was indeed achieved and wealso note that this reduction in messages,

did not result in a significant loss of stability, and that the essential "inertia" of the

global average approach wasstill maintained. We conclude that the approach can thus

be easily tailored to further increase performance. It is not clear, however, what the

effect of increasing the size of the network would be onthis variant, since the global

average value may be found to vary in different parts of the network, due to the

reduced information exchange. Wesuggestthat a solution to this problem would be to

define clusters of processors, each having its own load average, with one processorin

the cluster responsible for intercluster communications in order to maintain a

network-wide average.

193



The sender/receiver variant of the original global average algorithm was designed to

capitalise on the advantagesof sender-initiated and receiver-initiated approaches at low

and high loads respectively. Webelieve that our results show thatit is possible for a

load balancing algorithm to have a single overall structure, but to modify its operation

dependentonthe currentloadstate - in fact, in essence this variant switches between

two load balancing algorithms, so that Zhou's statement [Zhou86a] that such an

operation is too costly is nottotally justified.

The results which we have presented were obtained from a simulated system, since

this freed us from the constraints of using an existing operating system without

facilities for supporting load measurement, message-passing and process migration.

Due to the wider availability, now, of software supporting distributed program

execution, weintend, as an extension to ourstudy, to investigate the problem of load

balancing on real physical systems (such as our network of Apollo DN3000's and a

collection of INMOS Transputers). This work will draw on ourresults, but will be

conducted subject to the particular nature of such systems; for example preemptive

process migration on a Transputeris a difficult, if not inadvisable task.

During our study, we noted that the global average algorithm possessed a natural

inertia, which prevented the processes constituting a group being spread widely across

the network; this feature reduces the overheads caused by message-passing between

such processes. Of further interest would be the development and analysis of

algorithms which explicitly take account of the message-passing behaviour of

processes when making migration decisions. This would involve an "on the fly"

evaluation of costs similar to that found in the graph theoretic approachto static load

balancing. The mechanisms to measure interprocess messagetraffic have already been

included in our kernel and could be used in load balancing algorithmsto achievethis
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explicit consideration of message-passing costs.

In summary, we conclude that in a complex user process environment, the added

complexity of an algorithm whichbrings morestability and an improved balance factor

to the system is evidently worthwhile, and thata furthercriterion for load balancing

algorithms (exemplified by our sender/receivervariant of a global average algorithm)

which can be addedto the list presented previously in this chapter, is one of

adaptability.
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