A STUDY OF ADAPTIVE
LOAD BALANCING ALGORITHMS
FOR DISTRIBUTED SYSTEMS

VOL I

IAN DERRICK JOHNSON

Submitted for the degree of Doctor of Philosophy

THE UNIVERSITY OF ASTON IN BIRMINGHAM

|
! January 1988

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the
author's written consent.

The University of Aston in Birmingham

A STUDY OF ADAPTIVE
LOAD BALANCING ALGORITHMS
FOR DISTRIBUTED SYSTEMS

Ian Derrick Johnson
Submitted for the degree of Doctor of Philosophy
1988

Summary

With the advent of distributed computer systems with a largely transparent user
interface, new questions have arisen regarding the management of such an
environment by an operating system. One fertile area of research is that of load
balancing, which attempts to improve system performance by redistributing the
workload submitted to the system by the users.

Early work in this field concentrated on static placement of computational objects to
improve performance, given prior knowledge of process behaviour. More recently
this has evolved into studying dynamic load balancing with process migration, thus
allowing the system to adapt to varying loads.

In this thesis, we describe a simulated system which facilitates experimentation with
various load balancing algorithms. The system runs under UNIX and provides
functions for user processes to communicate through software ports; processes reside
on simulated homogeneous processors, connected by a user-specified topology, and a
mechanism is included to allow migration of a process from one processor to another.

We present the results of a study of adaptive load balancing algorithms, conducted
using the aforementioned simulated system, under varying conditions; these results
show the relative merits of different approaches to the load balancing problem, and we
analyse the trade-offs between them. Following from this study, we present further
novel modifications to suggested algorithms, and show their effects on system
performance.

KEY WORDS : Load Balancing
'Distributed Operating Systems

ACKNOWLEDGEMENTS

[would like to express my gratitude to the following people :

To my supervisor, Dr. A.J. Harget, for his untiring patience and advice.

To Georgie and Jenny, who unravelled my handwriting in order to type the text of this

thesis.

To Ian Hardy and Alan Hughes for their guidance on production of the diagrams

included in the thesis.

To Neil Toye for his company in the lab.

To Nadia Bendjeddou for her friendship and much-needed moral support during this

undertaking.

Finally, I acknowledge the financial support of the SERC of Great Britain

LIST OF CONTENTS

VOLUME 1.
Chapter 1: Introduction

Chapter 2 : Distributed Systems

2.1 Network Operating Systems
2.2 Distributed Operating Systems
2.2.1 Communications Primitives
2.2.2 Naming Conventions
2.2.3 File Systems
2.2.4 Fault Tolerance
2.2.5 Resource Allocation
2.2.6 Example Distributed Operating Systems
2.2.6.1 LOCUS
2.2.6.2 DEMOS/MP
2.2.6.3 The V System

Chapter 3: Processor Allocation Strategies

3.1 Distributed Scheduling
3.1.1 The Medusa Approach
3.1.2 The Wave Scheduling Approach
3.2 Static Load Balancing
3.2.1 The Graph Theoretic Approach
3.2.2 The 0-1 Integer Programming Approach
3.2.3 The Heuristic Approach

page
16

20

21
23
24
24
25
25
26
27
27
29
30

32

32
32
36
38
39
43
45

3.3 Adaptive Load Balancing

3.3.1 Processor Load Measurement

3.3.2 State Information Exchange Policy
3.3.2.1 The Limited Approach
3.3.2.2 The Pairing Approach
3.3.2.3 Load Vector Approach
3.3.2.4 Broadcast Approach
3.3.2.5 Global System Load Approach

3.3.3 Transfer Policy

3.3.4 Co-operation and Location Policy
3.3.4.1 Sender-initiated Approaches

3.3.4.2 Receiver initiated Approaches

Chapter 4 : Simulated System Design and Implementation

4.1 Rationale and Intended Goals
4.2 Development Environment
4.3 Simulated Physical Network
4.3.1 The Start-up Process and Simulated Processors
4.3.2 Simulated Time Maintenance
4.3.2.1 Time Definition
4.3.2.2 Processor Synchronisation
4.3.3 Communications Medium
4.3.3.1 Network Topology
4.3.3.2 Network Routing

4.3.4 Interprocessor Communications

48
50
54
55
55
55
58
59
62
66
66
72

76

76
77
79
79
82
83
85
87
87
89
91

4.4 Distributed Operating System Kernel

4.4.1 General Structure

4.4.2 User Process Support
4.42.1 Process Naming
4.4.2.2 Kernel Call Interface
4.42.3 The Process Table

4.4.3 Interprocess Communications Mechanism
4.43.1 Message-Passing Primitives
4.43.2 Software Ports
4.43.3 User Message Format
4.43.4 The Port Table

4.4.4 Kernel Call Mechanism
4.4.4.1 The User Process View
4.44.2 Kemel Call and Return

4.4.5 Kernel Call Implementation
4.45.1 Process-related Kernel Calls
4.45.2 Port-related Kernel Calls
4.45.3 Message-related Kernel Calls

4.4.6 Per-processor Scheduling

4.4.7 Process Migration Mechanism

Chapter 5: Simulation Results

5.1 Main Goals and Methods of Experiments
5.2 Experimental Environment
5.2.1 Network Topology
5.2.2 Synthetic Workload Generation
5.2.3 Load Balancing Algorithm Implementation

95

95

96

97

98

99

102
103
104
107
107
111
111
112
115
116
118
123
127
127

131

131
352
132
135
137

5.2.4 Performance Metrics and Monitoring
5.3 Independent User Processes
5.3.1 Independent User Process Model
5.3.2 Load Balancing Algorithms Implemented
5.3.2.1 Processor Load Measurement
5.3.2.2 Random Algorithm
5.3.2.3 Threshold Algorithm
5.3.2.4 Global Average Algorithm
5.3.3 Discussion of Results
5.3.4 General Observations
5.4 Co-operating Process Groups using Message-Passing
5.4.1 Process Group Model
5.4.2 Process Group Synthetic Workload Generation
5.4.3 Load Balancing Algorithms Implemented
5.4.4 Performance of Load Balancing Algorithms
5.4.5 Costs of Algorithm Execution
5.5 Modified Load Balancing Algorithms
5.5.1 Receiver-Initiated Global Average Algorithm
5.5.1.1 Implementation
5.5.1.2 Performance
5.5.2 Limited Broadcast Global Average Algorithm
5.5.2.1 Implementation
5.5.2.2 Performance
5.5.3 Sender/Receiver Global Average Algorithm
5.5.3.1 Implementation
5.5.3.2 Performance

5.6 Summary

138
140
140
141
141
142
142
144
148
153

Chapter 6 : Conclusions

References

VOLUME 2.

Appendix A : Detailed Simulation Results
(using the Independent Process Model)

Appendix B : Detailed Simulation Results
(using the Cooperating Process Group Model)

Appendix C : Program for the Simulated System

190

196

19

42

VOLUME 1

Fig. 3.1

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

3.2

4.1

4.2

4.3

St

4.5

.4.6

4.7

4.8

4.9

S

5.2

- %

Graph Theoretic Module Assignment and Minimum Cutset
for Two Processors

Gradient Surface for the Gradient Model Algorithm
in a 9-Processor Network

System Configuration and Start-up

Interprocessor Synchronisation Mechanism

Example Network Topology and Physical Link Table

Example Route Table and Physical Link Table for Processor O

Interprocessor Communications Mechanism

Process Table Structure

Example Interprocess Connection using Ports and Links

Port Table Structure

Kernel Call/Return Mechanism

Square Mesh Topology used in our Experiments
and Example Route Table for Processor 3

Performance Comparison
using the Independent Process Model

Performance Comparison
using the Cooperating Process Group Model

10

®
.
Q

61

81

86

88

90

94

100

106

109

114

134

149

163

Fig.

Fig.

Fig.

5.4

D

5.6

Performance Comparison
Global Average vs the Receiver-initiated Variant
using the Cooperating Process Group Model

Performance Comparison
Global Average vs the Limited Broadcast Variant
using the Cooperating Process Group Model

Performance Comparison
Global Average vs the Sender/Receiver Variant
using the Cooperating Process Group Model

VOLUME 2

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

A.l.l1

A.12

W

A.2.1

A22

A23

A3.l

Mean Load - No Load Balancing vs Threshold
using the Independent Process Model
(Load Value =0.2)

Load Variance - No Load Balancing vs Threshold
using the Independent Process Model
(Load Value = 0.2)

Load Difference - No Load Balancing vs Threshold
using the Independent Process Model
(Load Value = 0.2)

Mean Load - No Load Balancing vs Threshold
using the Independent Process Model
(Load Value = 0.5)

Load Variance - No Load Balancing vs Threshold
using the Independent Process Model
(Load Value =0.5)

Load Difference - No Load Balancing vs Threshold
using the Independent Process Model
(Load Value = 0.5)

Mean Load - No Load Balancing vs Random
using the Independent Process Model
(Load Value =0.8)

11

174

179

186

10

Fig. A.3.2

Fig. A.3.3

Fig. A.3.4

Fig. A.3.5

Fig. A.3.6

Fig. A.3.7

Fig. A.3.8

Fig. A.3.9

Fig. B.1.1

Fig. B.1.2

Fig. B.1.3

Mean Load - Random vs Global Average
using the Independent Process Model
(Load Value = 0.8)

Mean Load - Global Average vs Threshold
using the Independent Process Model
(Load Value = 0.8)

Load Variance - No Load Balancing vs Random
using the Independent Process Model
(Load Value = 0.8)

Load Variance - Random vs Global Average
using the Independent Process Model
(Load Value = 0.8)

Load Variance - Global Average vs Threshold
using the Independent Process Model
(Load Value = 0.8)

Load Difference - No Load Balancing vs Random
using the Independent Process Model
(Load Value = 0.8)

Load Difference - Random vs Global Average
using the Independent Process Model
(Load Value = 0.8)

Load Difference - Global Average vs Threshold
using the Independent Process Model
(Load Value = 0.8)

Mean Load - No Load Balancing vs Threshold
using the Cooperating Process Group Model
(Load Value = 0.2)

Load Variance - No Load Balancing vs Threshold
using the Cooperating Process Group Model
(Load Value = 0.2)

Load Difference - No Load Balancing vs Threshold

using the Cooperating Process Group Model
(Load Value = 0.2)

12

11

12

13

14

15

16

17

18

20

21

22

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

B.1.4

B.1.5

B.2.1

B22

B:2.3

B.2.4

B2.5

B3.1

B.3.2

B.3.3

Load Variance - Threshold vs Global Average
using the Cooperating Process Group Model
(Load Value =0.2)

Load Difference - Threshold vs Global Average
using the Cooperating Process Group Model
(Load Value =0.2)

Mean Load - No Load Balancing vs Threshold
using the Cooperating Process Group Model
(Load Value = 0.5)

Load Variance - No Load Balancing vs Threshold
using the Cooperating Process Group Model
(Load Value = 0.5)

Load Difference - No Load Balancing vs Threshold
using the Cooperating Process Group Model
(Load Value = 0.5)

Load Variance - Threshold vs Global Average
using the Cooperating Process Group Model
(Load Value = 0.5)

Load Difference - Threshold vs Global Average
using the Cooperating Process Group Model
(Load Value =0.5)

Mean Load - No Load Balancing vs Random
using the Cooperating Process Group Model
(Load Value = 0.7)

Mean Load - Random vs Threshold
using the Cooperating Process Group Model
(Load Value = 0.7)

Mean Load - Threshold vs Preemptive Threshold
using the Cooperating Process Group Model
(Load Value =0.7)

13

23

24

25

26

27

28

29

30

31

32

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

B.3.4

B.3.5

B.3.6

B.3.7

B.3.8

B.3.9

B.3.10

B:3:11

B.3.12

Mean Load - Threshold vs Global Average
using the Cooperating Process Group Model
(Load Value = 0.7)

Load Variance - No Load Balancing vs Random
using the Cooperating Process Group Model
(Load Value = 0.7)

Load Variance - Random vs Threshold
using the Cooperating Process Group Model
(Load Value = 0.7)

Load Variance - Threshold vs Preemptive Threshold
using the Cooperating Process Group Model
(Load Value = 0.7)

Load Variance - Threshold vs Global Average
using the Cooperating Process Group Model
(Load Value = 0.7)

Load Difference - No Load Balancing vs Random
using the Cooperating Process Group Model
(Load Value = 0.7)

Load Difference - Random vs Threshold
using the Cooperating Process Group Model
(Load Value = 0.7)

Load Difference - Threshold vs Preemptive Threshold

using the Cooperating Process Group Model
(Load Value = 0.7)

Load Difference - Threshold vs Global Average
using the Cooperating Process Group Model
(Load Value = 0.7)

14

33

34

25

36

L

38

39

40

41

LIST OF TABLES

VOLUME 1

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 5.8

Table 5.9

Table 5.10

Overall System Behaviour
using the Independent Process Model
(Load Value =0.2)

Overall System Behaviour
using the Independent Process Model
(Load Value = 0.5)

Overall System Behaviour
using the Independent Process Model
(Load Value = 0.8)

Overall System Behaviour
using the Cooperating Process Group Model
(Load Value = 0.2)

Overall System Behaviour
using the Cooperating Process Group Model
(Load Value = 0.5)

Overall System Behaviour
using the Cooperating Process Group Model
(Load Value = 0.7)

Comparison of Average Interprocessor Messages
Transmitted per Processor per Second
using the Cooperating Process Group Model

Overall System Behaviour

using the Cooperating Process Group Model

Comparing Global Average and the Receiver-initiated Variant
(Load Value = 0.2, 0.5 and 0.7)

Overall System Behaviour

using the Cooperating Process Group Model

Comparing Global Average and the Limited Broadcast Variant
(Load Value = 0.2, 0.5 and 0.7)

Overall System Behaviour

using the Cooperating Process Group Model

Comparing Global Average and the Sender/Receiver Variant
(Load Value = 0.2, 0.5 and 0.7)

15

152

133

165

166

167

169

175

180

187

HAPTER 1
INTRODUCTION

With the traditional Von Neumann architecture reaching the physical limits of its
capabilities, the trend in computer systems has been towards distributing processing
power over a number of processors executing in parallel and connected via a
communications medium. This can be viewed as a natural extension to the
multiprogramming mechanism used to share a single CPU between a number of user
processes, which, through careful management by an operating system appear to have
exclusive access to the CPU, but are in fact being given periods of processor time,
interleaved with their peers; thus when more than one processor is available much of

this pseudo-parallel execution becomes truly parallel.

However, the advances in distributed processor technology need to be followed by
similar developments in the design and implementation of operating systems capable of
managing this new environment. The art of operating system design for uniprocessor
architectures has made significant steps forward since the "monolithic monitor"
concept, but new problems arise for distributed systems. We are interested in such
systems where processors are autonomous, each having their own local memory and
resources, and therefore the questions of mutually exclusive access to data structures
referring to the state of the overall system, synchronisation of operation and general

consistency have added complexity over the uniprocessor case.

One of the most important questions which must be resolved to gain the maximum
benefits of a distributed system, is that of allocating user processes to physical
processors, since these are now a multiple rather than a shared resource. Initial work

in this field concentrated on placing individual modules which constitute a user

16

program on different processors in a static manner, taking into consideration the data
flow between modules, and attempting to minimise interprocessor communications
costs; thus the thread of control of a program would move from one processor to
another. This static allocation method, however, does not take account of the load
imposed on processors in the system, and does not adapt to changes in the nature of
user process arrival rates. Given this observation, researchers have striven to develop
systems where the assignment of processes to processors is performed in a manner
which balances the overall system load in order to avoid certain processors being

overloaded whilst others remain idle.

Load balancing is an intuitively worthwhile goal, but necessitates some means of
maintaining a global view of system activity, and a negotiation mechanism for
redistributing processes to nodes on a network where they will most benefit in terms
of execution time. A simple approach would be to have a central allocation processor
which was periodically sent load information from all other processors, and make
process placement decisions based on its last-known state of the system. This
approach, however, presents a single point of failure and could create a bottleneck.
An alternative method is to distribute the responsibility for load measurement amongst
all processors and to allow them to cooperate in making process-to-processor
allocation. Again this approach is intuitively worthwhile, but adds complexity to the

system in dealing with possibly out-of-date state information.

Studies have been made of the various methods which present themselves for solving
the aforementioned problems, but they have generally been restricted to an
environment where processes are considered as independent entities, with little or no
interaction. The aims of the study which we are conducting are threefold : first we

develop a simulated network of loosely-coupled processors, with an operating system

17

kernel, capable of supporting the creation, execution and destruction of groups of user
processes, communicating through a message-passing mechanism; secondly we
investigate a number of load balancing algorithms, on the simulated network, whose
workload is typified by small, independent processes, in order to gain insight into the
detailed operation of such algorithms and the effect this has on overall system
performance; finally we investigate load balancing algorithms working in an
environment of cooperating process groups, and study the relative merits of each
algorithm, together with further improvements which can be made by analysis of the
trade-offs involved between creating a stable, balanced system and the costs incurred

in bringing this about. The structure of the thesis is outlined below.

In Chapter 2, we present a brief overview of issues which are inherent in the design of
"supervisory software" for distributed systems, to describe the environment for which

our study is targetted.

Chapter 3 examines the approaches taken by other researchers to the problem of
processor allocation; the first two parts of this chapter deal with the initial work in this
area, based mainly on static allocation policies; the third part reviews approaches taken
to adaptively allocate processes to processors, dependent on the current load on the
system, and presents methods which have been used to achieve processor cooperation

in this task.

Chapter 4 gives details of the design and implementation of both the simulated
loosely-coupled system which we have developed, together with the operating system
kernel which runs on each processor.

Chapter 5 describes the manner in which the simulated system was used in order to

18

investigate a number of different methods for achieving adaptive load balancing under

varying workloads.

Finally, in Chapter 6, we offer our conclusions, made on the basis of the study which
we have performed, as to the relative merits of the load balancing algorithms

investigated.
Appendices A and B give detailed results in graphical form of our study of load
balancing algorithms, in environments of independent user processes and cooperating

process groups, respectively.

The program listing for our simulated system is included in Appendix C, together with

a number of technical implementation notes.

19

HAPTER 2
DISTRIBUTED SYSTEMS

The potential benefits of distributing the processing requirements of a computer system
over a number of individual computation units has long been recognised
[Kleinrock85]. Such systems can be categorised in a variety of ways [Enslow77], but
we have chosen to group them as being either tightly-coupled or loosely-coupled

systems.

In a tightly-coupled system, processors share access to a common set of memory
modules, with an arbitration mechanism ensuring that the contents of this shared
memory remains consistent and, normally, there will be a central clock used for
synchronisation purposes. This environment gives very fast interprocess
communications facilities for use in fine-grained parallelism, but suffers from
contention problems for the shared memory modules when the number of connected

processors increases.

A loosely-coupled system, on the other hand, consists of a number of totally
autonomous processors, each with its own clock and local memory which is
inaccessible to its peers, connected via an external interprocessor communications
medium. A processor will also have its own physical resources, such as disk drives,
which are under its control, and thus access to these resources by other processors
must be negotiated through the use of interprocessor messages. Since the cost of
communications between user processes residing on separate processors in this
environment is non-negligible, loosely-coupled systems offer only reasonably
coarse-grained parallelism in the development of user applications. It is towards this

type of system that the work presented in this thesis is directed, where in addition all

20

processors are identical and will thus allow code written and compiled for one
processor to run on any other node in the network. Hence we are interested in

loosely-coupled systems of homogeneous processors.

In order to control a loosely-coupled architecture, operating systems need to be
designed to handle the additional complexities of truly parallel execution, and to extract
its maximum benefits. In the following sections we present a broad overview of
operating system considerations, categorised as Network Operating Systems (which
have generally been designed as a networking extension to existing system software)
and Distributed Operating Systems (which have been designed from their original

conception for a distributed environment).

2.1 NETWORK OPERATING SYSTEMS

Network Operating Systems (NOS) can be viewed as a first step from the traditional
uni-processor design, towards an Operating System whose whole conceptual basis is
centred around a fully distributed environment. The early motivation to build such
systems was essentially the ability to login to a remote machine and perform file
transfers across the network. The first significant example of a NOS was the
ARPANET [McQuillan77] which was developed in the 1970s; nodes on this network
are very widely dispersed and its main use is for exchange of technical and research
data, and the ability to access specialised hardware belonging to other institutions,
whose use is not frequent enough to warrant purchasing such equipment. With the
rise to prominence of the UNIX operating system [Ritchie74] there have been many
networked versions, with varying degrees of sophistication, developed by research

groups and commercial concerns [Blair82; Brownbridge82; Karshmer83; Luderer81;

&1

Rowe82].

NOSs are generally constructed by placing an extra layer of software either "on top of"
or "within" an existing conventional operating system, to provide facilities for
accessing remote resources; the distributed nature of the system is not hidden from the
user, and so such operations as file access and program execution are performed with
very little transparency (the actual location of objects is explicitly stated in the naming

mechanisms used).

To enable processes to access data remotely, a file system suitable for a network of
loosely-coupled nodes is required. In a typical NOS one can identify two main types
of file system. The least sophisticated of these provides no access to remote files by
system calls, but instead uses simple file transfer software to move the data concerned
from the processor on whose secondary storage it is held onto the processor which
requires access to it. Examples of this are the "uucp” program [Nowitz79] to copy
files from one UNIX system to another, and the "Kermit" package, designed to carry
out file transfer across a variety of manufacturer's computer systems. A more
sophisticated solution is to establish some form of "super root" for the file system
which spans the whole network and can be thought of as being placed "above" each
processor's own rooted file system assuming a hierarchical structure; for example a
pathname given as "/../mc1/ian/project/kernel.c" will refer to a file called "kernel.c"
residing in a directory "ian/project” on the "mc1" processor (with "mcl" placed directly
"below" the super root). Two useful examples of such file systems are those of the
Newcastle Connection [Brownbridge82] and Sun NFS [SUNS86], which are both
enhancements of standard UNIX systems and hence we class them as NOSs, since

they were not designed from scratch for a distributed environment.

22

A further noteworthy aspect of a NOS is the question of program execution. A very
elementary solution is to require users to explicitly login to a remote machine, and then
to execute programs in an entirely local fashion (thus needing very little additional
operating system support). Alternatively a facility may be provided enabling the user
to execute programs remotely whilst remaining logged in to just one machine; in this
case the environment of the program (e.g. current working directory, user privileges
etc.) are transferred to the processor on which the program is to execute, and when

execution terminates, the environment of the user returns to his local machine.

Another approach is to have a system call, say, create process (), to which a
parameter is passed, giving the identity of the processor on which the process should

execute; this remote process could then make a system call similar to the UNIX

exec () to execute a program.

2.2 DISTRIBUTED OPERATING SYSTEMS

We shall now consider the design of operating systems intended, right from the
conceptual stage, to be run on a distributed machine architecture. Such systems are
typified by their highly transparent user interface, hiding the underlying structure of
the network, providing what appears to be a single, large, powerful machine. A
number of important considerations can be identified which are raised by the
distributed nature of a collection of autonomous loosely-coupled computers:

- communications primitives

- naming conventions

file systems

fault tolerance

resource allocation

23

2.2.1 Communications Primitives

Since each processor has its own local memory which is inaccessible to its peers,
interprocess communication must be achieved via a message-passing mechanism,
provided by system calls in the operating system kernel. Considerable effort has been
made by researchers [Liskov82] to determine the relative merits of making messaging
primitives (i.e. SEND and RECEIVE) function in a blocking or a non-blocking
manner. The advantage of non-blocking primitives is that they allow flexibility in
program writing, since computation can be performed in parallel while waiting for I/O
operations to complete; however this does have drawbacks in that it introduces
non-determinism into process execution, because ordering of events may vary for
different scheduling situations. Blocking primitives have often been used to
implement a client-server model of computation, where a "client process" sends
messages requesting a specific operation to be carried out by a "server process''; when
the server has processed the request, it sends results back to the client. As can be seen
this is similar to the procedure call-return mechanism in a sequential program and has

been used to implement Remote Procedure Call (RPC) facilities [Saltzer84].

2.2.2 Naming Conventions

In centralised systems, information concerning the state of objects is held in readily
available central tables, but in a fully distributed system, this is often not possible and
is anyway not desirable since this would create a single point of failure in the network.
One solution to this problem, is to elect a processor as a name server which is then
used to map locally-known names onto unique network identifiers [Needham82];
additional robustness can be achieved by passing this responsibility onto another

processor if the main server goes down. Alternatively a broadcast mechanism could

24

be used, where the name of the object to be accessed is sent to every other processor,
and a reply is sent back from the processor holding that object; however this does tend

to create added interprocessor communications overheads.

2.2.3 File Systems

In contrast to most NOS file systems, in a true Distributed Operating System, the
location of a file is not usually included as part of its pathname (analogous to the fact
that in a centralised system, a file's physical location on a disk is not mentioned in that
file's name). The operating system implicitly handles the local or remote nature of a
file, and it is not necessary for the user to explicitly mount remote files into local
directories. As a consequence of this access transparency, files can be freely migrated
around the network without changing their accessibility to user processes; this
migration has advantages in that it allows easy network reconfiguration, but may result
in files being moved far away from the processes wishing to use them, and so this

must be managed very carefully.

In order to increase resilience in the face of processor crashes, many systems use
replicas of files which can be used when the original becomes corrupted or
inaccessible; this introduces the problem of keeping copies up-to-date, i.e. consistent
[Svobodova84]; depending on the application's environment this consistency can be
either weak (files are eventually up-to-date) or strong (files are guaranteed to always be

up-to-date).

2.2.4 Fault Tolerance

Due to the separate nature of components in distributed systems, they offer great

25

potential for building fault-tolerance into the operating system: one processor going
down shall not have the catastrophic effect it does in a centralised system; "back-up"
processes and processors which are activated when crashes occur can significantly
increase the "up time" of the network. Multiple versions of files can also be
maintained, and considerable research has been conducted into methods of providing
atomic actions on these files [Lampson81], and solving the problem of serialising

access to ensure that the user processes' view of a file remains consistent.

2.2.5 Resource Allocation

A feature of operating system design which has extra difficulty and importance in a
distributed system is that of allocating resources to processes; since processes on one
processor can now request and be given resources residing remotely, there must be
some form of co-operation strategy employed to ensure that this environment is
correctly maintained. Indeed since no central resource tables exist, problems of
synchronisation, deadlock and efficient resource management become even more
complex and error-prone, as the controlling system may have to deal with out-of-date

information regarding the state of the system.

One vital resource whose allocation must be carefully considered is the CPU of each
node on the network. Since we now have the potential of running user processes truly
in parallel, rather than the pseudo-parallelism of time-shared uni-processor systems,
the full benefits of this can only be realised by sensible process-to-processor
assignment. We can identify two main approaches to solving this task, and we term
these network scheduling policies, and load balancing policies. In a network
scheduling policy, some co-operation is needed to ensure that the correct processes are

being scheduled on each processor at any one time; hence the problem is viewed as in

26

a traditional uni-processor system, but with the added complication that the "process
table" is now distributed across the network, thus making the finding of available slots
a much more difficult exercise. Load balancing policies, on the other hand, assume
that each processor takes care of its own process scheduling, independently of other
processors, and that the most important consideration is where to place processes on
the network and, once placed, whether they should be migrated to an alternative
processor as the nature of the system load changes. This area has received much
interest and remains a fertile field for research; it will be discussed in considerably

more depth in the next chapter, since it forms the basis for this thesis.

2.2.6 Example Distributed Operating Systems

In the following sections we present a brief description of three Distributed Operating
Systems, which we believe to have features, desirable in the environment for which
we are studying load balancing algorithms. In particular such features as distributed
file systems (LOCUS), process migration mechanisms (DEMOS/MP) and the creation
of cooperating process groups (V-System). This is far from an exhaustive list of such

systems currently available, but highlights certain essential considerations.

2.2.6.1 LOCUS

The LOCUS Distributed Operating System [Walker83; Popek85] was developed at
UCLA to run on an Ethernet network [Metcalfe76] of 17 Vax-11/750's , in a manner
which makes it upward compatible with UNIX. Of particular note in LOCUS, are the
mechanisms provided for maintaining a network-wide file system and for creating and

executing processes remotely.

27

The LOCUS file system is a single-rooted tree, consisting of a collection of filegroups,
where a filegroup corresponds to a standard UNIX file system. The tree is
constructed by a series of mount operations with a considerable amount of replication
of directory entries to increase tolerance of the system to individual site failure and
network partitioning. The user interface to this tree structure is entirely transparent
down to the system call level, in that the physical location of a resource which is being
referred to, cannot be discerned from its pathname. All file operations are divided into
three logical parts defining the Using Site (the site from where the file is being
accessed), the Storage Site (where the file is physically held) and the Current
Synchronization Site (the site responsible for controlling mutually exclusive and
consistent access to the file). This division is transparent to the user process which
uses the standard UNIX file operations in the usual manner, leaving the operating
system to resolve all location and consistency issues. Resistance to system faults is
increased by allowing file replication. In order to maintain file consistency a shadow
page mechanism is used to keep both the original and changed versions of a file until
an atomic file commit operation is performed; facilities are also included for resolving
conflicts due to inconsistent versions of replicated files after the network has been

partitioned and subsequently recovered [Parker83].

Processes can be creafed with equal ease either locally or remotely, with process
location being entirely under the control of the user (thus the operating system does not
perform any kind of load balancing). The usual method for remote process execution
is via a local fork () system call (as in UNIX) followed by a remote exec ();a
token mechanism is used to support system data structures shared between parent and
child processes (such as open file descriptors which are passed to the child upon its

creation). UNIX provides a number of software signals to announce either child or

28

parent process failure, and in LOCUS these have been augmented by signals referring

to failure of the node on which a parent or child process is executing.

2.2.6.2 DEMOS/MP

The DEMOS/MP operating system [Powell83], developed at the University of
California in Berkeley, is a modification of the DEMOS [Baskett77] system allowing it
to run in a loosely-coupled distributed environment; the addition of an efficient process
migration mechanism is of particular interest and relevance to our work. The
designers of the system intended that such a mechanism would be useful for load
balancing considerations, moving processes close to the resources which they use, and
providing fault tolerance; they also point out that operating systems which efficiently

allow process migration are a rare commodity.

All interactions between processes in DEMOS/MP are message-based, including those
between a processor's kernel and its user processes and between kernels resident on
separate processors. The kernel of a processor is responsible for controlling access to
its own local resources, but kernels cooperate via message-passing to provide a user
process with a network-wide transparent interface. Whilst the kernel provides all
primitive functions of the system such as process execution and the message-passing
mechanism, all higher-level operating system tasks are carried out by a number of

system Server processes.

The fundamental underlying feature of DEMOS/MP which implements the
message-passing primitive operations is that of the "link". A link is an address which
specifies the destination process to which a message should be sent, and this address

consists of a network-wide unique process identifier, together with the identity of the

29

processor which was the last known location of that process. Whilst the former of
these two parts of a link never changes, the latter will be modified when a process
migrates from one processor to another. The migration of a process will thus involve
updating all network-wide links to that process (since its last known location will now
be different); in addition to this, any messages for the migrant process must be
guaranteed delivery, even if they were sent to the process's previous location. In
order to deal with the problem of message re-routing, DEMOS/MP places a
forwarding address on the processor from which a process has just migrated; any
messages which had already arrived for the migrant process are transmitted along with
its code and data segments when it moves, and any subsequent messages will be sent
on using the forwarding address. Since the designers of DEMOS/MP wished to avoid
searching the entire system in order to update all links which are out-of-date due to
process migration, whenever a message is forwarded, a further special message is sent
indicating the new value for the link for which the message was originally intended.

In this manner, links to a migrant process are all gradually brought up-to-date.

Since all requests for service from the kernel are made via the link mechanism, this
makes process migration considerably easier, and thus preempting a process and
moving it to another location can be performed at very little extra cost (since the only
information which needs to be sent to a process's new location, in addition to its code
and data, are its swappable and non-swappable state which amount to 600 bytes and

250 bytes respectively).

2.2.6.3 The V-System

The V-System [Berglund86; Cheriton84] was developed at Stanford University as a

distributed operating system for a number of SUN workstations connected via

30

Ethernet. Its basic philosophy is to create an environment where inexpensive
processes can run with an efficient interprocess communications mechanism. The
V-Kernel carries out operations which can be categorized as process and memory
management, interprocess communication and device management; all other system
resources are controlled by server processes which implement a client/server model of
interaction, by using synchronous send and receive primitives to pass messages
between a requesting user process (the client) and the appropriate server process (the

server).

Closely cooperating lightweight processes are created as a "team", executing in a team
address space under the control of team server processes; the team address space is
used for fine-grain data sharing, and all processes in a single team must execute on the
same workstation. Processes communicate by using synchronous send and receive
primitives to exchange messages directly, or to pass permissions to read from or write
to their address space. A number of logically related processes can be collected
together o form a process group with a unique group identifier, and the members of
such a group may execute on different processors; within a group, the system supports
either one-to-one communication or one-to-many communication (i.e. one process

broadcasting a message to its entire group [Cheriton84]).

The process group mechanism is used to enable a user to request remote execution of
one or several of his processes. All of the team servers are considered to be one large
group, and so a request for remote execution is simply broadcast using the
one-to-many communications facility, and team servers on available processors reply
by announcing their willingness to accept work; when a suitable destination processor
has been found, the team server on that processor is sent a message requesting it to

begin execution of the required task.

31

HAPTER
ROCESSOR _ALLOCATION STRA 1E

Since it has been shown [Zhou86b] that the CPU is the resource which is most
contended for in a computer system, an efficient mechanism must be found for
performing processor allocation in a distributed system. Below we present previously

studied approaches to this problem, in three main categories :

- distributed scheduling
- static load balancing

- adaptive load balancing

3.1 DISTRIBUTED SCHEDULING

The question of how to schedule processes in a distributed manner is normally posed
for tightly-coupled multiprocessor architectures [Gonzalez77; Tuomenoksa82; Kain79;
Hwang85] where there exists some easily maintainable source of global time control.
In loosely-coupled systems it is usual for each processor to independently apply a local
scheduling policy to the processes which have been assigned to it in a globally-agreed
fashion. The following two approaches illustrate important points in the choice of a

processor allocation strategy.

3.1.1 The Medusa Approach

Work conducted by Ousterhout [82] for the Medusa Operating System [Ousterhout80]

running on the Cm* multi-microprocessor [Swan77] is of particular interest, since it

2

tackles problems of obtaining maximum parallelism and minimising process waiting
due to interprocess communications costs, which are non-negligible in loosely-coupled
systems. Ousterhout states that, in a uni-processor system, assuming a client-server
model of process interaction, a process which requests a service from one of its peers
must relinquish the CPU so that the servicing process may be allowed to run, thus
incurring the overhead of two context switches for this operation. If, however, we
have a multiple processor system and the two processes are executing on different
processors, these context switches may not be necessary, since they may run truly in
parallel. In order to gain the full benefits of this fact, processes which interact in this
manner, form a process working set and should be scheduled at the same time, similar
to the way in which page working sets should be co-resident in virtual memory
management systems [Denning80]. Identifying process working sets dynamically is
too difficult and time-consuming so in Medusa the programmer must specify this
statically by grouping them into a task force. A task force is said to be coscheduled if
all its runnable processes are executing simultaneously on different processors,

otherwise it is said to be fragmented.

Ousterhout strives to maximise the degree of coscheduling using three different
allocation and scheduling strategies; his model assumes a system consisting of P

processors each having Q slots available in their process table, providing a

system-wide process space of size P x Q; the assumption is also made that no task

force has greater than P processes.
In Ousterhout's first algorithm, known as the matrix method, the available process

space is organized conceptually as a Q-row, P-column 2-dimensional matrix, where

column p represents the process slots on processor p, and row q contains one process

33

slot per processor. When a task force arrives at the system, a scan is made of the rows
of the matrix, starting at 0, until one is found with enough free slots to accommodate
all the processes making up the task force. The scheduling policy also follows the
matrix arrangement: in a particular time slice t (0 <t < Q), row t is given the highest
priority for scheduling on each processor; since task forces are assigned to single
rows, this method ensures that all processes in the task force are coscheduled. This
procedure continues until all rows have been dealt with, so that after one such sweep,
every task force has been coscheduled once, then another sweep begins at row 0 and
so on. When a row has been chosen for scheduling, a processor p may find that the
corresponding slot [q,p] is either empty or that the allocated process is blocked waiting
for some external event (such as input from an interactive terminal); in this case p
scans its column of the matrix until a runnable process is found and executes it instead;
these processes are known as alternates, and they will generally only constitute a
fragment of another task force to the one being coscheduled. Selection of alternates is

also performed by the other two algorithms described below.

Since the matrix method assigns task forces only to a single row of the 2-dimensional
process space, it results in the creation of a number of unused slots, to which
processes will not be allocated, since they cannot accommodate a whole task force; this
phenomenon is akin to internal fragmentation in paged memory management schemes.
In an attempt to alleviate the rigidity of the above allocation strategy, the second
algorithm proposed by Ousterhout, named the continuous algorithm, considers
process space as being a contiguous sequence of slots, where P consecutive slots
belong to different processors. When a task force is to be assigned to the available
machines, a window of width P slots is placed at the left-hand end of the sequence and
moved along it (stopping when an empty slot is at the left most end of the window,

with a full slot directly to its left) until the number of empty slots (not necessarily

34

contiguous) is sufficient to allocate the entire task force. The P-slot window is also
used for scheduling purposes. For each time slice, the window is moved to the
leftmost process of a task force, which has yet to be coscheduled. Moving the
window in this manner, rather than singly on to the next task force regardless of its
previous scheduling activity was found to give the most equal treatment to both small
and large task force sizes. If slots within the scheduling window are empty or contain
unrunnable processes then alternate selection is used as in the matrix method. The
continuous algorithm packs task forces more tightly than the matrix algorithm and
hence reduces internal fragmentation; however as unallocated holes, dispersed over a
wide distance, are used for newly arriving task forces, this results in external
fragmentation, and Ousterhout shows by simulation that this phenomenon seriously

degrades performance.

In order to remove external fragmentation, the undivided algorithm, the third proposed
by Ousterhout, uses the same method for processor allocation, except with the proviso
that a task force's processes must occupy contiguous slots in the available space.
Although this algorithm does not pack processes quite so densely as the continuous

method, it does reduce external fragmentation.

In the simulation experiments conducted over a wide variety of system parameters, it
was found that the undivided algorithm performed consistently the best of the three,
with the continuous algorithm performing worst, probably due to its external
fragmentation problems; the‘ matrix method's performance was not substantially worse
than that of the undivided approach, and, due to its ease of implementation, it was

chosen for the Medusa operating system.

i o

3.1.2 The Wave Scheduling Approach

Van Tilborg and Wittie [Van Tilborg81] have developed a method of assigning
processes to processors for the MICROS operating system [Wittie80] running on the
reconfigurable, multi-microprocessor system MICRONET at the State University of
New York [Wittie78]. For simplicity, they assume that nodes in the network are
monoprogrammed, and that all processes to be executed are of unit-size. Process
arrival is in the form of task forces, which consist of sets of related processes,
co-operating to perform a specific task. Given the above assumptions, the problem of
processor allocation becomes one of locating sufficient idle nodes in the network to
accommodate an arriving task force; the approach used, utilises the hierarchical control
structure of MICROS (which is a logical hierarchy and hence does not assume any
particular physical interconnection topology) to carry out this allocation. Task forces
may arrive at any "manager” node in the network, whose job it will be to find enough

idle "worker" nodes on which to execute them.

When a task force requiring S worker nodes arrives at some node n (S being statically
specified by the programmer), this node becomes its Task Force Manager (TFM) and
strives to reserve for it, the resources it needs. Node n will have a reasonably
up-to-date view of available workers in the subtree which it manages, since status
information regarding the number of idle nodes is regularly passed up the "hierarchy
of command". The TFM computes a value R = S, which is the number of workers it
needs to reserve in order to be fairly sure that it will receive sufficient workers to
execute the task force. Choice of R must be very carefully calculated, since if R is too
big then a large number of unrequired nodes will be reserved, only to be relinquished
later; if R is too small then the necessary number of nodes S may not be reserved,

resulting in an unsuccessful scheduling attempt. The request for R nodes is then

36

divided into a number of subrequests, and these are passed down the hierarchy to the
TFMs subordinate managers; this wave of requests permeates down until it reaches the
lowest-level managers which have accurate, fully up-to-date information regarding
worker availability. These managers then reserve the required number of workers and
report this fact to their superior manager. In order to avoid deadlock, TFMs wait for a
time-out period, and then assume that their request could not be satisfied. If at the end
of the time-out period, the number of worker nodes reserved is greater than S, then the
TFM sends a message back down the hierarchy, telling all managers to begin
execution of the task force, and to release any unnecessarily reserved workers;
otherwise it sends a message releasing any reserved workers and puts the task force
back in the queue to try again later. If the number of unsuccessful scheduling attempts
exceeds some threshold, then the task force is passed one level up the hierarchy to

increase its chances of finding sufficient resources.

Using this method, the average cost (T, s) of successfully reserving a task force of size

S, can be expressed as:

Ts =Ch * (ng * F + ny)

where

Cy = costof reserving a single node at level h of the hierarchy

F = mean number of failed scheduling attempts

ﬁf = mean number of nodes reserved on a failed scheduling attempt

= mean number of excess nodes reserved on a successful
scheduling attempt.

These mean values obviously depend on the probability of finding any particular node

37

idle at a particular time t; since each high-level manager regularly receives summary
information regarding node utilisation, it is possible to estimate the above probability

with reasonable accuracy and then to calculate an optimal value of R by the equation :

where a is some simple function of node utilisation. Van Tilborg and Wittie found
that even constant values for a (calculated from previous experience) were
sufficiently good for node utilisation up to about 70%. The performance of the
algorithm was shown to perform satisfactorily relative to a Markov queueing model of

a central scheduler having total knowledge of system-wide node availability.

3.2 STATIC LOAD BALANCING

The approaches to allocating processes to processors presented above, do not
explicitly take into consideration the execution costs of such processes, neither do they
make allowance for the overheads incurred by communicating with their peers or
accessing files across machine boundaries. Typically in a computer network,
interprocessor communications costs are significant relative to intraprocessor costs and
will have a substantial effect on system performance. In order to reduce these
overheads, an allocation strategy must be designed to calculate an assignment of

processes to processors which minimizes execution and communications costs.
Early solutions to this problem assume a program to consist of a number of modules,

which may be run separately on any processor in the network, and which exchange

data by some communications mechanism. The cost of executing a particular module

38

on a particular processor is assumed to be known a priori, as is the volume of data
which will flow between modules. The problem then becomes one of assigning
modules to processors in an optimal manner within the given cost constraints. Since
such approaches do not consider the current state of the system when making their
placement decisions, they are referred to as static load balancing algorithms and can be
grouped into three major categories: graph theoretic, 0-1 integer programming and
heuristic. ~Although these approaches have many aspects in common, this

categorisation illustrates the different conceptual views taken of the problem.

3.2.1 The Graph Theoretic Approach

In the graph theoretic approach [Stone77; Stone78; Rao79; Bokhari81] to static load
balancing, a program's modules are represented by nodes in a directed graph, with
edges in the graph used to show intermodule linkages and weights on these edges
giving the cost of sending the appropriate volume of data from one module to another,
if they reside on separate processors (intraprocessor communications costs are

normally assumed to be zero).

Stone [77] recognised the similarity between this model of program structure and work
carried out for commodity flow networks. Such networks consist of a number of
source nodes which are capable of producing an infinite quantity of some commodity,
which is directed to a number of sink nodes, capable of absorbing this infinite
quantity; edges from source to sink, via intermediate nodes, represent a commodity
flow through the network and weights on these edges give the maximum capacity of
an edge. The sum of the net flows out of the source nodes, and hence into the sink
nodes, is termed the value of the commodity flow. A feasible flow through the

network has the following properties:

39

1) the sum of flows into a node is equal to the sum of flows out of

that node
ii) flows into sinks and out of sources are non-negative
1ii) flows do not exceed capacities

If a flow is found which is maximum among all feasible flows, then it is known as the
maximum flow. A cutset determines the set of edges which, when removed from the
network, totally disconnect source and sink nodes, and the weight of a cutset is

defined as the sum of the capacities of edges in the cutset.

Fig. 3.1 shows an example of such a network, where circles labelled with letters
represent modules of a program, and edges between these modules are labelled with
numeric weights to show the amount of data passing from one module to another;
processors are represented by the two nodes S1 and S2. In this example

two-processor system, edges are added from each "module" node to each "processor”

node, such that the weight of an edge from a "module" node to (say) S gives the

execution cost of that module on processor Py and vice versa (if a module cannot be

executed on a processor then the weight on the appropriate edge is set to infinity).
Execution costs of a module will vary from processor to processor dependent on
facilities available, for example specialised floating point hardware. The minimum

cutset for the network in fig. 3.1 is shown as a broad line. Stone shows that a cutset
in this graph represents a particular module assignment (S and S, in separate

partititons), and that the weight of a cutset is therefore equal to the cost of the
corresponding module assignment. Hence an optimal assignment can be found by
calculating the minimum weight cutset in the graph, using an algorithm developed by

Ford and Fulkerson [62]. If one of these two processors has limited memory, then the

40

~ SI0SS2001J OM], 10§ 12SIND) WNUIUIJA PUB JUAWUSISSY JnpoA onIody [, ydeiny 1-¢ "Sig

41

problem becomes much more complex, but it has been shown that techniques exist for
complete solution of certain problems under memory constraints and a reduction in

complexity for others [Rao79].

This network partitioning method can find an optimal assignment reasonably
efficiently for two processors, and can theoretically be extended to an n-processor
network, where n cutsets need to be found; this can be done by exhaustive
enumeration, but its computational complexity makes it thoroughly undesirable. Stone
suggests that the n-processor problem could be considered as a number of
two-processor assignments, but significant difficulties exist in this solution, since
nodes may be placed outside a minimum cost partition by successive two-processor

solutions.

Although the max-flow, min-cut algorithm presented above is not easily extendable to
n-processor systems for general programs, it has been shown [Bokhari81] that an
efficient implementation is possible if the program has a tree-structured call graph
(known as an invocation tree) for its modules. Again assuming that all execution and
communications costs are known, an assignment graph can be constructed from the
invocation tree, where each node represents assignment of a module to a processor
shown by a pair of numbers (ie (i,j) means that module i is resident on processor j); an
edge between nodes (i,p) and (j,q) has a weight equal to the cost of assigning module j
to processor q, given that module i has been assigned to processor p. An algorithm
which then finds the least costly path through the assignment graph, constructs an

assignment tree which gives the optimal module-to-processor allocation; such an
algorithm has been shown by Bokhari [81] to execute in time 0(mn?) where m

modules are assigned to n processors.

42

Chou and Abraham [82] also use a graph model of module assignment, with nodes in
the graph representing modules, but edges are used to indicate precedence relations.
They introduce probabilistic branch points where the flow of the program may follow
any one of two or more branches under a probability constraint; at fork points,
execution will continue along each of the possible branches. A semi-Markov process
with rewards is used to model dynamic execution of the program and this is
augmented by "policies” which indicate module-to-processor assignments. By
iteratively examining the possible state transitions under each policy it is possible to
find an optimal assignment for n-processor systems. Concurrent module execution is
also built into the model. The disadvantage of this method is that it relies heavily on
the accuracy of available data regarding program behaviour and the authors recognise
that load balancing which adapts its placement decisions dynamically with the current

system state is desirable, but would be too costly using their policy iteration algorithm.

3.2.2 The 0-1 Integer Programming Approach

Due to the limitations of the graph-theoretic approach, other researchers [Chou82]
have adopted an integer programming method for processor allocation. Again in this
model, it is necessary to identify the execution and interprocess communications of

modules, hence the following quantities are used:

Cij : coupling factor = the number of data units transferred from
module i to module j
dy : interprocessor distance = the cost of transferring one data unit

from processor k to processor 1.

Qjx : executioncost = the cost of processing module i on processor k.

43

If i and j are resident on processors k and 1 respectively, then their total
communications cost can be expressed as Cij * dyy. In addition to these quantities the

assignment variable is defined as:

{ 1, moduleiis assigned to processor k
Xig = {

{ 0, otherwise

Using the above notation, the total cost of processing a number of user modules is

given as:

ZZ (qik Ko P zlz (Cij * dyq)Xik le)

S

The major advantage of a programming solution to static load balancing is that
constraints can be easily incorporated into the model, which is difficult, if not
impossible, using graph theoretic techniques. For example, to ensure that processor k
has sufficient memory available to process modules assigned to it the following

constraint can be applied:

ZMi Xik S Sk

where M; = memory requirements of module i

S = memory capacity of processor k

Constraints such as real-time requirements and processor speeds can also be expressed

in a similar manner. Module allocation can then be performed by minimising the
above cost equation subject to the constraints imposed, by non-linear programming
techniques, or further constraints can be added to linearise the problem. It has been
shown [Chu80], however, that on a CDC 6000 series mainframe, a problem involving
15 processors and 25 modules will take a few minutes to solve, and should hence be

performed off-line in realistic environments.

An alternative approach is to use a branch and branch method [Mag82] to construct and
search in a depth-wise manner, a tree of possible assignments; hence for allocating m
modules, a tree of m levels is constructed where a branch at each level represents
assignment of that module to a particular processor. As this tree is being expanded,
the constraints imposed on a solution are applied via branching nodes, thus eliminating
the necessity to further expand certain branches, since they do not satisfy the
constraints. A path from the root of such a tree to a lowest level node represents a
complete assignment for all modules, and the optimal assignment is the lowest cost
path. It is known that an optimal solution to searching a tree is an NP-complete
problem, but Ma et al [82] show that the elimination of certain branches using

constraints reduces the complexity considerably.

The major disadvantage of integer programming techniques using constraints, is that
they are heavily parameterised and require substantial effort on the part of a system
designer in specifying which constraints should apply in order to achieve a realisable

load balancing solution.

3.2.3 The Heuristic Approach

Since finding optimal solutions to the module assignment problem is so

45

computationally expensive, a number of heuristic approaches have been proposed to
find a suboptimal solution [Gylys76; Efe82; Lo84]. The essence of these algorithms
is to identify clusters of modules which pass a large volume of data between them and

to place them on the same processor.

One such algorithm [Gylys76] finds the module pair with most intermodule
communication and examines whether the constaints imposed on their execution
allows them to be coresident on one processor. This continues until all possible
pairings are found, but has the problem that it does not guarantee that the resultant

number of clusters found will not be greater than the number of available processors.

A variation on this approach again due to Gylys [76] is to define a "distance function"
between modules, which is a measure of communications between two modules i and
J, relative to communications between i and all other modules and j and all other
modules. Using this function a "centroid" of a possible candidate cluster can be
found, and an iterative algorithm is then used to join modules having the lowest valued
distance function from the centroid into the centroid's cluster. The centroid is then
appropriately adjusted to take account of this addition. The iterations are stopped

when an upper limit is reached or when no module clusters change.

This concept has been extended by Efe [82]. In his algorithm, clusters are formed as
above, whilst recognising that certain "attached" modules must be executed on a single
processor or a subset of the available processors, and hence these modules can form
the "centre" of a cluster. When clustering is completed, a queue length constraint can
be imposed on each processor, and modules are then moved from processors whose
load lies above the expected average plus some tolerance threshold onto a similarly

underloaded processor, whilst still maintaining the restrictions of interprocessor

46

communications cost. Efe shows that an optimal assignment with respect to execution
cost and communications cost may not necessarily result in the most efficient

assignment when queue lengths are considered.

This additional constraint is also investigated by Lo [84], who identifies an extra cost
to be considered, resulting from the contention for shared resources, such as CPU
cycles in a multiprogramming environment, which she terms the interference cost

defined as :

P o

where
Iq (L, N e total interference cost of executing modules i and j
On processor q
P
I q (i,3) = processor interference cost of i and j on processor q
&
T g Liia) = communications interference cost due to contention

for the communications mechanrism by i and j

running on q

Lo also states that an increase in parallelism (i.e. running i and j on separate
processors) reduces interference costs and hence assignments should have a weighting
which consists of execution, communications and interference costs. This is achieved

by limiting the number of clusters which can be assigned to a single processor.

47

It has recently been suggested [Chu87] in a study of static load balancing algorithms
for real-time systems, that since queueing delays at a processor are non-linear with
increasing load, then the major limiting factor on system performance is a single
bottleneck processor which becomes overloaded; hence improvement can only be
achieved by minimising the chances of a bottleneck being created. A heuristic method
of ensuring this, is to create module clusters in a manner similar to Lo [84], and then

to solve the equation:

min { max [EXEC (r;x) + IPC (r;x) | }
X 1<r<s

where EXEC (r ; x) is the total execution costs of modules assigned to processor r,

and IPC (r ; x), the total communications costs of this assignment.

Simulation runs conducted using this method performed significantly better than
previous results obtained from simply minimising execution and communications

costs.

3.3 ADAPTIVE LOAD BALANCING

The limitation of static load balancing is that this method assigns processes to
processors in a once-and-for-all manner and solutions require a priori knowledge of
program behaviour; most approaches ignore the effects of interference in a system
comprising multiprogrammed nodes. Livny and Melman [82] have shown that in a
distributed system the probability that at least one process is waiting for service at one

node, whilst at least one processor is idle can be calculated as:

48

Fui = ZN‘ (N) Q;H, ;= (1-P¥) (1-P¥ - (1-B,) ")

where

Q= POi is the probability that i processors are idle

H; is the probability that i processors are not idle
and one process waits for service

Py is the probability that a processor is idle

N is the number of processors

They propose that if P; can be reduced by transfering processes from one processor

to another, then the expected turnaround time for processes in the system will also be

reduced, it is also to be noted that for systems with greater than 10 nodes, and with
loads ranging from moderately light to moderately heavy, P is high, unless process

transfer is performed.

This important result, and the conclusions which can be drawn from it, suggest that if
the current state of the system can be observed, then by maintaining a balanced load,
performance improvement can be achieved. We choose to refer to algorithms which
dynamically react to system state in this manner, as adaptive load balancing
algorithms. Many researchers have suggested that such algorithms are the most

effective way of managing processor allocation [Tantawi85; Carey85; Leland86].

Although the adaptive approach is intuitively worthwhile, a number of new questions

are raised. A load balancing algorithm must ensure that it has a reasonably up-to-date

49

view of the system state; this could be achieved by using a centrally-located allocation
processor [Zhou86a], but this gives a single point of failure, and so a fully-distributed
solution is favoured ; however care must be taken that co-operation between different
processors does not overload the communications mechanism used, as load
information is exchanged. In addition, since an adaptive load balancing algorithm
transfers processes from lightly-loaded to heavily-loaded processors, it must guard
against instability [Kratzer80], caused by many processors all sending processes to the
same lightly-loaded node, making it heavily-loaded. In this case processes will spend
most of their time migrating around the network, fruitlessly looking for a suitable
execution location; this phenomenon has been termed processor thrashing, and is

analogous to thrashing in virtual memory management schemes.

We identify the following components of an adaptive load balancing algorithm, and
review some approaches taken to providing efficient implementations of these
components, and the relevant issues involved:

- processor load measurement

- information exchange

- transfer policy

- co-operation and location policy

3.3.1 Processor Load Measurement

In order to begin making sensible placement decisions for processes in a
multi-computer environment, it is necessary to have available from the operating
system a measure of the current load on each processor; due to the loosely-coupled
nature of the systems we are considering in this study, this measure will be calculated

independently by each processor, and then communicated through the network to its

50

peers. Since the value representing a processor's load will be frequently calculated
during normal operation, it must be efficiently evaluated and be a reasonable indicator
of what service a process will receive running on that processor. Also the value
should adapt swiftly to changes in load state, but not so much that out-of-date
information will be held at other locations in the network [Alonso86]. If possible, the
method of load measurement used in a policy should be generalizable so that it can be

used in a variety of operating system environments.

One simple solution to this question is to use a specialised load estimation program
[Ni85], which constantly runs, determining the time intervals between periods where it
successfully acquires use of the CPU; if the interval is great, then processor load is
high, and conversely, if it is small, then this indicates low processor load. Although
this approach is very easily implementable, it suffers from the problem that it relies
heavily on the local process scheduling discipline used, and may therefore not provide
a sufficiently accurate estimate of load; additionally it introduces a further process onto
each processor, which goes against the principle of trying to improve system

performance.

A measure used by the Maitre d' [Bershad85] load balancing program is the UNIX
five-minute average which gives the length of the run queue exponentially smoothed
over a five-minute period. This value gives a gross indication of processor activity but
does not respond quickly to load changes; a quantity which does so, is the number of
processes ready to run on the CPU at a given instant (instantaneous processor load),
but this will fluctuate very rapidly, because many processes may be waiting for I/O
operations to complete, thus giving the false impression of a lightly-loaded processor;
this problem can further be exacerbated when process migration is introduced to

offload processes from a heavily-loaded processor, since these will not yet be included

51

in the recipient processor's ready queue. The problem is thus one of maintaining
stability. We adopt the definition of a stable system due to Kratzer and Hammerstrom
[80], as being one where the costs of adaptive load balancing do not outweigh its
benefits over a system using no load balancing. Such a situation would be caused by
a large number of fruitless migrations, resulting from use of out-of-date or inaccurate
state information. In order to use a measure with a reduced fluctuation, it has been
suggested [Krueger84] that the instantaneous load value should be averaged over a
period at least as long as the time necessary to migrate an average process. Extra
stability is then introduced by using a virtual load value, being the sum of the actual
load on a particular processor augmented by the number of processes currently in

transit to that processor.

The local load measurement used by Barak and Shiloh [85a] is a further enhancement

of the instantaneous load value. A time period t is divided into a number, L, of atomic

time units or quanta of length q; if W; is taken to be the number of ready processes on

a processor in the time interval (Qj-1-93)> i=1,2,..., 1, and if @ of the KW quanta
were unavailable due to operating system overhead, then the load over time t (denoted

by V,) can be given as :

i)
2.7,
i=1

TR0

V., =

Bryant and Finkel [81] have proposed that if the remaining service time of processes
can be estimated (i.e. the time which they still require to complete execution), this

value can be used to calculate the expected response time for a process arriving at a

52

processor, and that this is an indication of processor load. They investigated the use

of probability distributions in the evaluation of remaining service time, of a process at

time t (denoted by Rg (t)) but found that a simple and quickly calculated value is to

assume that Rg(t) = t (in other words a process is expected to require the same service

time as it has already received). If J(P) is used to denote the set of jobs resident on

processor P, and we take a job K & J(P) then the expected response time of K on
processor P (denoted by RSPE(K,J(P))) is calculated using the following algorithm:
R:=Rg (t);

for all j in J(P) do

begin
if RE(tj) <Rg(ty)
thenR ;=R + RE(tj)
else R :=R + Rg(t)
end;

RSPE(K,J(P)) :=R;

Hence this method of calculation can be used to provide an estimate of a processor's
load by evaluating RSPE(K',J(P)), where K' is a job whose remaining service time is

equal to the average overall service time of processes in the network.
The queue of ready processes is not the only queue which gives an indication of the

activity on a processor. Ferrari [85] has studied the possibility of using a linear

combination of all main resource queues as a measure of load, where coefficients in

53

this equation are given by the total time a process spends in a particular queue.
Employing a queueing model of each processor, and using mean-value analysis, he
seeks to define the response time of a given UNIX command as a single-valued
function of the current load, in terms of resource queue lengths. In other words, given
the expected resource usage of a command "C" on an otherwise empty processor it is
possible to calculate how "C" will perform when a known mix of commands is
concurrently executing with it. Unfortunately, Ferrari's "load index" (the name he
gives to this measure of processor load) assumes a steady-state system, and the
queueing theoretic analysis used only holds for certain queueing disciplines for
resources. This may well not apply in a practical system [Zhou86b], since process
arrival and departure are dynamic in nature. In addition, since the calculation of the
load exerted by a command is dependent on its known resource usage, changes in
command code will necessitate changing the coefficient values in the load index
equation. In fact Cabrera [86] has suggested that load balancing algorithms based on

command names will be detrimental to user process performance.

3.3.2 State Information Exchange Policy

In order for an adaptive load balancing policy to make placement decisions for
processes arriving for service at a particular node, there must be a mechanism by
which information regarding processor load (whose measurement was discussed in the
previous section) is passed throughout the network. Since the network architecture is
loosely-coupled, this information will vary in its degree of accuracy of the true system
state since it will be out-of-date, but accuracy must be sufficient to avoid instability (as
defined previously); however, frequent load exchange will result in added overhead
and will, in the extreme, lead to performance degrading to a level worse than that

achievable without load balancing.

54

3.3.2.1 The Limited Approach

It has been suggested [Eager86] that load information exchange can be very limited
whilst still achieving the goal of maintaining a global view of overall system load. In
their study of the merits of very simple load balancing policies, Eager et al [86]
propose that load information from other processors in the network should only be
requested when an individual processor believes itself to be overloaded based purely
on local data; in their threshold and shortest algorithms a number of random
processors are probed, in an attempt to find a processor to which processes can be
offloaded. They showed via simulation that performance improvements are possible

even with this limited exchange policy.

3.3.2.2 The Pairing Approach

A "pairing" approach has been put forward by Bryant and Finkel [81]. In their
algorithm, each processor cyclically sends load information to each of its neighbours
in an attempt to "pair" with a processor whose load differs greatly from its own; the
load information sent consists of a list of all local jobs, together with jobs which are
currently migrating to the sender of the load message. Under this scheme, the number
of such message exchanges and pairings is reduced by introducing a relaxation period
when the loads of all neighbours have been queried, in order to avoid excess overhead

in this policy.

3.3.2.3 Load Vector Approach

Some researchers have chosen to maintain a load vector in each processor, which

55

gives the most-recently received load value for a limited subset of the other processors
in the network [Hac86]. Load balancing decisions can then be made on the basis of
the relative difference between a processor's own load, and the loads of those held in

the load vector.

In the adaptive load balancing algorithm [Barak85a] developed for the MOS distributed
operating system [Barak85b] at the Hebrew University of Jerusalem, such an
information exchange policy has been studied in detail. A load vector L is used, of
size v, where the first component contains a processor's own local load value, and the
other v - 1 components contain load values for a subset of the other processors.
Updating the load vector is performed periodically; every unit of time t (which is a

parameter of the algorithm) each processor executes the following operations:

1 Update own local load value
2 Choose a random processor i
3 Send the first half of the load vector to processor i.

When a processor receives a portion of another processor's load vector, it merges this

with its own load vector using the mappings:
Lii} == L[2i} ,»1:<1 < v /2 -1
Lgrli] = L[2i+1],0<i<v/2-1

where Lp, is the received portion.

It can be seen from this description that the subset of processors whose load values

will be known, changes as the above merging is carried out and a load vector may

56

contain duplicate entries for a particular processor; it is essential to choose an
appropriate value for v, large enough to ensure that sufficient information is available
to each processor, but small enough to avoid unnecessary overheads. In order to

investigate choice of both v (the load vector size) and t (the update interval), it was
shown that using the strategy described above, at least logyv load vectors need to be

received in order to guarantee that a processor's vector is totally updated in time
interval T; in a system with a large number of processors the probability that processor
X will be selected at the next update period by k processors is approximately equal to
1/(ek!). Using these results, Barak and Shiloh tabulated a number of possible values
of v, together with the probabilities that a processor's load vector will be updated in a
particular time interval. This allows the designer to tune the load exchange mechanism

to the characteristics of the system.

An alternative load vector approach is taken in the distributed drafting algorithm
[Ni85]. The load of each processor is considered to be in one of three states: light,
normal or heavy; a processor holds its most recent view of the load state of its
neighbours in a load vector, which is updated when a state transition occurs; possible
transitions are light-to-normal, normal-to-light, normal-to-high or high-to-normal
(L-N, N-L, N-H, H-N). It would be possible for a processor to broadcast its new
state every time a transition occurred, but this would greatly increase network traffic
and the algorithm is intended to be network topology-independent, hence it should not
rely on an efficient broadcast mechanism being available. A strategy has been
developed to minimise the traffic caused by state transitions, whilst still maintaining a
reasonably up-to-date account of the state of all neighbouring processors. In order to
avoid many messages being sent when a processor frequently changes between H-load

and N-load or between L-load and N-load, an "L-load" message is only broadcast to

o

its neighbours as the N-L transition is made, if the previous processor state was
H-load. If a similar approach were taken to N-H transitions, Ni et al [85] show that
this could have a detrimental effect on the performance of their algorithm; they choose
to broadcast N-H transitions and only notify neighbours of an H-N transition when
process migration between two processors is being negotiated, thus further reducing
message traffic. They also note it would be easy to relax these restrictions if the

underlying communications network allowed efficient broadcasting.

3.3.2.4 Broadcast Approach

Certain adaptive load balancing policies adopt broadcasting for their load exchange
component. In the Maitre d' system [Bershad85], daemon processes (i.e. processes
whose sole purpose is to listen for and react to events in the system) play a prominent
role. One such process executes on each processor and periodically examines the
UNIX five-minute load average and decides whether this will permit user processes to
be imported from other processors; a processor will then broadcast this availability,
and the appropriate daemon process maintains a list of processors currently willing to
accept work. Since load balancing is fairly "coarse-grained" and only applies to
certain long-running processes which have been modified to run under Maitre d', this
method is adequate and does not exert a lot of extra load on the communications

subsystem.

Livny and Melman [82] have made a detailed study of algorithms using a broadcast
approach. In the simplest of these algorithms, when the load state of a processor
changes (in other words on the birth or death of a process), its load value is broadcast
throughout the network, thus each processor has an accurate view of all other

processors' loads delayed only by the speed of the communications network. They

58

found that this accuracy of information improves performance for small numbers of
processors, but as the size of the network increases, then the additional
communications overhead results in performance degradation. To overcome this
overhead, a modified version of the information policy was introduced which purely
broadcasts a message when the processor becomes idle, thus announcing willingness
to accept migrating processes. It should be noted that this form of policy is only

applicable to networks with a broadcast communications medium.

3.3.2.5 Global System Load Approach

The information exchange policies presented thus far, have dealt with the exchange of
the load values of particular processors. It has been suggested [Krueger84] that rather
than exchanging specific local load values, processors should strive to calculate the
load on the whole system and to adjust their own load relative to this global value.
This approach has the desirable feature of being more able to detect overall heavy and
light loads on the system, in which case attempting to move processes from one

processor to another may be of little benefit.

The "above average" algorithm [Krueger84] developed at the University of Wisconsin
uses a policy which exchanges each processor's view of the global average system
load. Whenever a processor's local load is significantly different from this average,
and it is unable to find another processor whose load is in the complementary state it
modifies its value for the global average, and broadcasts this fact to all other
processors; for example if a processor is overloaded and is unable to find an
underloaded processor, then the global average value should be increased. The
amount by which processor loads are permitted to differ from the average before load

balancing is attempted, needs to be set at a level which is not so small that processors

59

spend most of their time migrating processes in order to maintain their load close to the

average, and not so large that many possible fruitful migrations are neglected.

The Gradient Model algorithm [Lin87] views global load in terms of a collection of

distances of each processor from a lightly-loaded processor. If the distance between
two processors i and j is denoted by dij then in an N-processor network, the diameter

of the network is defined as:

D(N) = max {di,j ,iandj € N}

A processor i has a gate value g; which is set to zero if the processor is lightly-loaded

or Wax otherwise where Wy .. = D(N) + 1. The proximity (W;) of a processor is

calculated as its minimum distance from a lightly-loaded processor hence:

W; = min {di,k over k, where g =0}

if 3 klgk=0

We=W

i max if for all k, gk = WmaX'

Since a processor's distance from itself is zero, the proximity of a lightly-loaded

processor is zero. Global load can then be represented by a gradient surface which is
the set of all proximities GS = [Wl, Wy, W3, ... W] Such a measure of global

load is useful, since it not only gives a network-wide indication of light-loading, but

also gives a route to a lightly-loaded processor with minimum cost, from anywhere in

the network.

60

JIOMIAN] 10SSAV01]-(B UT WIPLIOF[Y [SPOJA JUIIPBID) JY) 10J d0vJInG Judipein) ¢'¢ *J,g

)) e

3
)
¥,
o

61

Since proximities cannot be calculated with absolute certainty due to communications
delay in the network, it is necessary to define an approximation to a proximity, which
is termed the propagated pressure. This approximation is based on the fact that the
information received from a processor's direct neighbour is likely to be more accurate

than information obtained from further away in the network. Hence the propagated

pressure of processor i (P;) is calculated as:

P; = min {g;, 1 + min {Pj over all j, where di,j = 137

So the propagated pressure of a lightly-loaded processor will be zero (as expected),
and that of a moderate or heavily-loaded processor will be one greater than the smallest
propagated pressure of its direct neighbours. The collection of all propagated
pressures is termed the propagated surface and approximates the gradient surface.
This method quickly reacts to the absence of lightly-loaded processors in the network,
and thus prevents fruitless migrations when the entire network is under moderate or
heavy load. An example gradient surface for a 9-processor network, is shown in

fig.3.2, where a lightly-loaded processor (P3) is shaded, and the values associated

with each processor give its proximity (W;).

3.3.3 Transfer Policy

The transfer policy component of an adaptive load balancing algorithm deals primarily
with the questions of deciding under what conditions is migration of a process from
one processor to another to be considered, and if it is, then which processes are

eligible for migration.

62

A very simple, but effective, method for determining when process movement may
occur is to use a static threshold value [Eager86], which, when exceeded indicates that
a processor's load is too heavy and work may need to be offloaded to another node in
the network. This threshold should be chosen by experimentation to find a load value
where performance degrades sharply without load balancing; if the threshold is too
high then processors will remain heavily loaded for too long, but if it is too low many
pointless migration attempts will occur. Lin and Keller [87] use two thresholds in
order to categorise a processor’s load as light, moderate or heavy, and consider

migration only when the heavy threshold is exceeded.

The above transfer policy strives to identify overloading to trigger process migration,
but some researchers [Ni82] have taken the opposite view that an underloaded
processor should seek to accept processes from its peers in order to balance the load
over the network. One extreme version of this policy is to only consider migration to a
processor when it becomes idle. In the distributed drafting algorithm [Ni85] possible
process migration is triggered when a processor makes the state transition from normal
to light-load, whereupon it indicates its willingness to offload processes from
processors whose current state is shown as heavy in its most-recently received entry in

the load vector.

Some transfer policies approach this question by using the difference of a processor's
load from that of its peers as the major criterion for process migration. In Stankovic's
algorithms [Stankovic84] this difference is calculated explicitly and if it exceeds some
bias then migration is a viable proposition. The above average algorithm [Krueger84]
also bases its transfer policy on difference in load, but achieves this implicitly by
maintaining a global average load value, and considering migration when local load

differs from the average by a tunable acceptance threshold. Another method used

63

which implicitly considers load difference is to periodically examine the response time
which local processes would receive if migrated to another processor, based on the
current estimate of the remote processor's load; if the response time would be
significantly better, taking into account the overhead of migration, then movement of

that process is desirable [Barak85a].

Once it has been established that a process, or a number of processes, need to be
executed remotely, part of the transfer policy is to decide which processes should be
moved. A simple and easily implementable method is to only consider newly-arriving
processes for migration; this is only really applicable where a threshold is being used
in the transfer policy, so that an arriving process causing the threshold to be exceeded
is the one chosen for migration. Migrated processes can be treated exactly the same as
newly-created ones, but Eager et al [86] have shown that this introduces instability into
the system, and under heavy loads, processes may be constantly passed around, trying
to find a suitable destination processor; this problem can be alleviated by limiting the
number of times that a process is permitted to migrate (Ni et al [85] chose to limit

migration to once only).

If the main criterion used in the transfer policy is migrating a process to a processor
where its response time will be improved, then the process to be sent is taken as the
one which will benefit most from remote execution, assuming that a method is
available for estimating a process's remaining service time. In order to be of
maximum use, the transfer policy should only migrate processes which have been
executing for some minimum amount of CPU time on a particular processor
[Barak85a]; this will help maintain stability and prevent a process from migrating too

often.

64

Krueger and Finkel [84] have established a number of essential considerations when

choosing a process to migrate:

1 Migration of a blocked process may not prove useful, since this may not
effect local processor load.

2 Extra overhead will be incurred by migrating the currently scheduled
process.

3 The process with the best current response ratio can better afford the cost
of migration.

4 Smaller processes put less load on the communications network.

5 The process with the highest remaining service time will benefit most in
the long-term from migration.

6 Processes which communicate frequently with the intended destination
processor will reduce communications load if they migrate.

7 Migrating the most locally demanding process will be of greatest benefit

to local load reduction.

All of these factors are of varying importance on the effectiveness of a transfer policy,
and a load balancing algorithm should incorporate those features which best fit the
system environment. Using a preemptive transfer policy (in other words one which
migrates executing processes) has considerable advantages in that it adapts more
quickly to changes in processor load; however some load balancing algorithms [Ni82;
Bershad85] do not use preemption, either because the operating systems for which
they have been designed do not support such a facility, or because the costs of such
migration are believed to be too high. These costs are significantly reduced if the
distributed operating system has been developed with process migration in mind

[Powell83].

65

3.3.4 Co-operation and Location Policy

Once mechanisms for measuring local processor load, exchanging load values and
deciding when process migration should occur have been established, a load balancing
algorithm must define a method by which processors co-operate to find a suitable
location for a migrating process. Many categorisations of co-operation and location
policies are possible, but we choose to group them into sender-initiated (where an
overloaded processor attempts to find an underloaded processor) and receiver-initiated
(where the reverse applies) since we feel that this captures the most fundamental

differences in approaching the load balancing problem [Eager85].

3.3.4.1 Sender-initiated Approaches

Initiating load-balancing from an overloaded processor is by far the most studied
method of co-operation policy. Eager et al [86] examined the question of what level of
complexity was appropriate for a load balancing algorithm, by evaluating the
performance of three very simple policies which make their migration decisions based
purely on local load information. Their goal was not to identify a suitable algorithm in
absolute terms, but to analyse the relative merits of varying degrees of complexity; the
transfer policy used in all three algorithms is a simple static threshold policy. The
simplest of their algorithms chooses a destination processor at random for a process
migrating from a heavily-loaded processor, and the number of times that a process is
permitted to migrate is limited to once only. Since this policy has no regard for
whether the destination processor itself is equally loaded or more heavily-loaded than
the source processor, an enhancement was proposed for a second algorithm known as
threshold. Under this policy a random destination processor is chosen as before, and

this processor is then sent a probe message to determine whether migration of a

66

process would cause that processor's load to exceed the static threshold; if so, then
another processor is chosen and probed, until either an appropriate destination is
found, or the number of probe messages sent is greater than a statically set limit; if this
limit is exceeded then the process is executed locally. The probe limit was introduced
in order to prevent unbounded probing when the global system load is high. In the
third algorithm investigated known as shortest, an attempt was made not only to
determine whether a potential destination processor would have a load above the
threshold, but also to establish the "best" destination; this was achieved by polling a
fixed number of processors, requesting their current queue lengths and selecting the

processor with the shortest queue.

In order to evaluate the performance of these algorithms under simulation a queueing
model was used, and to establish boundary conditions a k-processor network was
modelled as k independent M/M/1 queues and an M/M/k queue, to represent the no
load balancing and optimal load balancing cases respectively. Results indicated that all
three algorithms provided substantial improvement over no load balancing, and further
that threshold and shortest provided extra improvement beyond a system load of above
0.5 (where system load of 1.0 is used to denote saturation); also the difference in
performance between threshold and shortest was found to be negligible, with shortest
performing slightly better. This led the authors to conclude that simple policies are
adequate for adaptive load balancing, and that gains to be obtained from additional

complexity are questionable.

The Maitre d' load balancing system [Bershad85] uses daemon processes running on
each processor to implement its co-operation and location policy. It works on a
client/server basis where a local daemon known as maitrd runs on the client processor

and negotiates remote process execution with a gargon daemon running on the server

67

processor; in a typical configuration all nodes in the network can be both clients and
servers depending on their relative loads. Communication between maitrd, gargon and
application processes modified to run under Maitre d' is achieved using the socket
mechanism of UNIX 4.2 BSD. When the user requests execution of an application,
the local maitrd process receives a message at a known socket address; if the UNIX
five-minute load average for the local processor is lower than a static threshold, then
the application will run locally; if the load average exceeds the threshold, a message is
sent to a remote gargon process, which has announced its processor's availability for
importing work, again using sockets. The policy used to choose a remote processor is
simply the one to which a remote request was least recently sent. When the garcon
process accepts the request, it forks another copy of itself to act as a controller for the
remote application process and a socket connection is set up back to the originating
processor. In this manner both original maitrd and gargon processes can continue
listening on their control sockets for further requests. Although this method showed
significant performance improvements on the University of California VAX machines,
it suffers from a need for application processes to be explicitly modified to use load
balancing, and will only work for processes which use their standard I/O channels in a
"well-behaved" manner; there is also considerable difficulty in dealing with faulty

processes which are part of a pipeline.

Stankovic [84] has proposed three algorithms which are based on the relative
difference between processor loads. The information exchange policy used in all
three, is to periodically broadcast local load values. In the first of these algorithms, the
least-loaded processor is chosen as a potential destination for migrating processes if
the difference between that processor's load and the local load exceeds a tunable bias

value.

68

A similar method is used in Stankovic's second algorithm, but in this scheme a
processor compares its load with each other processor in turn; for all differences
greater than a value bias1, one process will be migrated there; if the difference exceeds
bias2 then two processes are moved. In order to prevent instability, a static limit is
imposed on the total number of processes that can migrate in a single pass through the

load vector.

The third algorithm developed uses exactly the same policy as the first, except that

when migration occurs to a particular processor this fact is recorded and no subsequent

migrations will be performed to that processor for a time window of ot even if it is
found to be underloaded. Results were obtained through simulation, and considerable
analysis was carried out on the effect of changing the tunable biasses and time window
length. The major conclusion of this analysis was that parameter choice is a difficult
and crucial question for the algorithms studied, and the second algorithm gave greater
performance improvement than the others, only if appropriately tuned. This leads to
the suggestion that an algorithm should, as much as possible, adapt to its environment

by using variable parameters which do not need to be statically assigned.

The distributed scheduling algorithm designed at the University of Wisconsin
[Bryant81], also used the load difference between processors to achieve load
balancing. When a processor finds that it has more than two processes currently
resident it enters what is termed the "pairing state", where it attempts to locate one of
its neighbours to which it can offload processes; in the pairing state, queries are sent
cyclically to all neighbours, and a neighbour will respond by accepting pairing if it is
sufficiently underloaded (ie it has less than two processes executing on it). Once a pair

has been established both processors reject any further queries from their neighbours,

69

and process migration is performed using expected service time improvement as
explained in the previous section on transfer policies. The pair is then broken by
common consent. An enhancement to this approach was investigated, whereby
queries made during pairing would not be rejected if the querier's load differed
significantly from that of the queried processor, but would be postponed until after the
pairing state was left, in order to avoid missing possible fruitful migrations. A
simulation of 25 processors connected in a square mesh topology showed that this
method results in an evenly loaded network, and that even when a lightly-loaded
processor is surrounded by heavily-loaded neighbours it does not get "swamped" by

migrating processes.

A later algorithm [Krueger84] from the same group of researchers at the University of
Wisconsin uses a globally-agreed average load value (as previously described) to
negotiate process migration between processors. When a processor becomes
overloaded, it broadcasts this fact and waits for an underloaded processor to respond
with a message accepting migration of a process to it. The underloaded processor
increases its local load value by the number of migrant processes which it believes it is
going to receive in order to prevent subsequent overloading, but reduces its load when
a timeout period expires indicating that another processor was chosen for migration. If
the overloaded processor is unable to find a suitable location for offloading work, then
it assumes that the global average value is too low and broadcasts an increased value.
The advantage of this approach is that it adapts better to load fluctuations than the
co-operation and location policies which migrate processes based on a static threshold
for under- and overloading. It has the desirable feature of diminishing load balancing
effort when the system is in a generally stable state, and increasing this effort when
anomalies in load distribution occur. Simulation of a 40-processor network showed

that this method drastically improved both mean processor load and average process

70

response ratio.

The Gradient Model load balancing algorithm [Lin87] uses the concept of a pressure
surface approximation of the current network load distribution to make its process
migration decisions. When a processor has calculated its own local load an action is
taken depending on whether this is light, moderate or heavy. If local load is light then
the processor's propagated pressure is set to zero and propagated pressures from
neighbours are ignored; if load is moderate, the propagated pressure is set to one
greater than the smallest propagated pressure of all direct neighbours, but no migration
is attempted. Migration occurs only at heavy load: if the propagated pressure of all
neighbours indicates that no lightly-loaded processors exist, then the network is
saturated and migration will serve no purpose; if however this is not the case, then a
process is migrated to the neighbour whose propagated pressure is minimal. It should
be noted that using this method, processes are not necessarily migrated directly to a
lightly-loaded processor, but by definition are guaranteed to migrate towards them
following the route implied by each processor's propagated pressure. The algorithm
hence strives to achieve global load balancing by a series of local migration decisions;
if the intended destination of a migrant process becomes overloaded whilst it is in

transit, the algorithm will react to this and divert the process elsewhere. The use of the
bounding value W .. (as described in the previous section on transfer policies)

prevents unnecessary migrations and also serves as an indicator that a processor has

failed.
In the MOS distributed load balancing algorithm [Barak85b], a quite complex

combination of elements are taken into consideration when choosing a destination

processor for local processes, which are caused to contemplate migration in a

71

round-robin manner by a special system process. Firstly an estimation is made of the
response time that a process can expect if it executes on each of the processors whose
load is currently held in the periodically-exchanged load vector. This estimate includes
communications costs with other processors, where the process's resources may
reside and also a weighting to take into account the overheads of transferring the
process based on its size. The processor chosen is the one which apparently offers the
best expected response time. Tests using this algorithm were conducted using a
network of four PDP-11 computers connected by a 10Mbit/second communications
ring; a number of I/O-bound and CPU-bound processes were used and observed
speed-up in processing was tabulated for various initial process placements; these
results showed significant improvement over the no load-balancing case, but it is not
clear what effect a larger network, with a greater variety of process behaviour would

have.

3.3.4.2 Receiver-initiated Approaches

Receiver-initated location policies work with underloaded or idle processors requesting
processes from more heavily-loaded parts of the network. They have been less
well-studied than sender-initated policies, but Eager et al [85] showed that they can
perform well, especially at high overall system load. Similarly to their work on
sender-initiated policies they investigated the level of complexity necessary to achieve
efficient load balancing; as in their other study they based their policies on a simple
threshold transfer policy. In an algorithm which they term "receiver”, when the load
on a processor falls below the static threshold (T), it polls random procesors to find
one where transfer of a process from that processor would not cause its load to be
below T; again unsuccessful probes are constrained by a static probe limit. In an

attempt to remove the overhead of migrating an executing process, a modification to

72

the above approach, known as the reservation policy was investigated. When a
processor's load falls below the threshold T it polls its peers exactly as in the
"receiver” policy, but instead of accepting a process currently running on a particular
processor, a reservation is made to migrate the next newly-arriving process, provided
that no other reservations are already pending; a static probe limit is used as above.
Simulation results using a queueing model indicated that despite the reservation
policies avoidance of costly preemptive migration it did not perform as well as the
receiver policy; it was also noted that the receiver policy performed better than an

equivalent sender-initiated algorithm at loads greater than 0.7.

The distributed drafting algorithm [Ni85] is also an example of a location policy where
lightly-loaded processors seek work from their heavily-loaded neighbours. Since the
algorithm is intended to be network topology-independent, the processors which are
candidates for migration are defined with regard to communications costs. When a
processor enters the light-load state, a "draft request" message is sent to all
heavily-loaded candidate processors which then respond with a "draft age" message;
the draft age is calculated by considering the characteristics ("ages") of all processes
which are suitable for migration and will have a value of zero if the processor's load is
no longer heavy. When the original drafting processor has received all such draft
ages, it selects the processor which sent the highest draft age value and sends it a
"draft standard" message based on the draft ages received. Finally, the receiver of the
draft standard will then migrate any of its processes to the drafting processor whose
ages exceed the standard; if there are no such processes it replies with a "too late"
message. The major drawback of this approach is that it contains a large collection of
parameters which must be carefully tuned to suit the network topology (e.g. draft
ages, draft standard, time-out periods). A five-processor simulation showed that this

method can perform well, with correct parameter choice.

73

In a study of load balancing algorithms in broadcast networks, Livny and Melman [82]

proposed two receiver-initiated policies. Under the first of these a node broadcasts a

status message when it becomes idle and receivers of this message carry out the

following actions:

Assuming n; denotes the number of processes executing on a processor i :

1

if n; > 1 continue to step 2, else terminate algorithm.

Wait D/n; time units, where D is a parameter depending on the speed of the

communications subsystem; by making this value dependent on processor
load, more heavily-loaded processors will respond more quickly.
Broadcast a reservation message if no other processor has already done so
(if this is the case terminate algorithm).

Wait for reply.

If reply is positive and n; > 1, migrate a process to the idle processor.

It was thought that this broadcast method may overload the communications medium,

so a second algorithm was proposed which replaced broadcasting by polling when

idle. In this algorithm the following steps are taken when a processor's queue length

reaches zero:

Select a random set of R processors (aj, . . ., ag) and set a counter j = 1.
Send a message to processor 3 and wait for a reply.

The reply from 3 will either be a migrating process or an indication that it

has no Processes.

74

4 If the processor is still idle and j < R, increment j and go to step 2 else stop

polling.
A large number of queueing model simulations with varying numbers of processors

were performed, and it was found that both algorithms resulted in similar

improvements in process turnaround time and similar overall communications costs.

75

HAPTER 4
SIMULATED SYSTEM DESIGN AND IMPLEMENTATION

4.1 RATIONALE AND INTENDED GOALS

From the previous chapter, which reviewed a number of different methods for tackling
the question of load balancing, it can be seen that the approaches taken for each
component of a load balancing algorithm are legion, and that an analysis of how these
components interact and the trade-offs to be considered, are complex. It is necessary
to investigate the underlying nature of the problem and to examine how the design of a
policy to achieve performance improvement through redistribution of the load across a

number of processors is influenced by system characteristics and overheads.

Many studies of load balancing have made simplifying assumptions in order to use
queueing theoretic models in their analysis [Zhou86a]; the overheads of executing a
load balancing algorithm are often ignored [Cabrera86], and the costs of interprocessor
communication are not included in the model, or if they are then they are only
considered in the context of messages used for load balancing [Krueger84], thus
excluding messages generated by user processes executing on a processor which does
not hold the resources accessed by those processes. When algorithms are used in real
distributed systems, their performance is often only studied for very small numbers of

processors, with a limited workload environment [Barak85a].

Due to the apparent limitations of queueing models [Ni85], simulation has suggested
itself as a viable method for analysing the complex nature of a loosely-coupled
distributed system [Reed83], and we have adopted it for our work in that area. Our

goal is thus first to provide a flexible simulation vehicle for studying the behaviour of

76

such a system, and then to use this vehicle to investigate the adaptive load balancing
problem. The simulated system is structured in a manner which allows the
specification of a number of parameters defining the physical characteristics of the
network, and provides support for the execution of a variety of user processes in this

environment. Our simulation is thus divided into three major components:

- the simulated processors connected via a communications mechanism, with
a specifiable speed and topology

- adistributed operating system kernel, providing fundamental facilities to user
processes running on the network

- a means of developing and analysing the performance of load balancing

algorithms under varying system loads.

By using a completely simulated system of this kind, we are not constrained by
available hardware aspects, or the limitations of attempting to add load balancing

features to an operating system which was not originally designed with this in mind.

4.2 DEVELOPMENT ENVIRONMENT

The simulated system was developed and implemented on an NCR Tower XP running
UNIX System V, with 2Mbytes of user-addressable RAM and two 35Mbyte hard
disks. Due to the large number of processes created during system execution the
UNIX kernel was relinked with an increased process table and open file descriptor
table size, and the optional shared memory system calls were included. All software
for the simulation was written using the C programming language and totals some

10,000 lines of source code. C was chosen as an implementation language since it

77

provides a well-defined interface with UNIX, and has features appropriate for the
development of operating system software. A listing of the program is given in

Appendix C.

The system is structured in a way which will optimise its flexibility and allow us to
study a variety of approaches to adaptive load balancing, by creating an abstract
machine environment at the lowest level and writing the higher-level software (such as
provision of kernel calls for interprocess message-passing) in terms of a number of
primitive routines which simulate physical processor operation. Various
characteristics of processor speed, communications speed, network size, local
processor scheduling and performance monitoring are parameters of the system held

in a collection of "#include" files.

Each of the three major components of the system listed in Section 4.1 was designed,
tested and debugged incrementally to ensure its correct operation, before being
combined for our experiments on load balancing algorithms. Thus we began by
creating the simulated processors connected via a network topology and tested them by
sending a number of interprocessor messages through the network, gathering
considerable trace data to ensure that they reached their correct destination via the
correct route. This trace data also involved checking that the passage of real time

functioned as required.

Having established the underlying network in this manner, the operating system kernel
was developed, and each function provided for user processes in the system was
incrementally added and tested, by writing a number of typical user process groups
with a large variety of interactions. To ensure that all system data structures were

correctly maintained, these were regularly dumped to trace files and examined before

78

and after a particular operating system function was performed.

Finally we tested the modules of our kernel which support the implementation of load
balancing algorithms, including a mechanism for performing process migration.
Again a number of user processes were written and executed on our system, and we
migrated these processes across the simulated network, monitoring their progress, to
verify that they behaved as expected. Whilst recognising that in a highly concurrent,
complex system such as ours, it is not possible to test every eventuality, we are sure

that the above method ensures the validity of our results.

4.3 SIMULATED PHYSICAL NETWORK

The "simulated network" module of the system deals with the creation of simulated
processors, the maintenance of a global time source, and elementary interprocessor
communications following a specified topology, and hence includes most of the code
which would need to be modified to port the software onto a "real" network (in fact the

code to simulate the passage of real time would no longer be necessary at all).

4.3.1 The Start-up Process and Simulated Processors

It was decided that processors in the simulated network should each be represented by
a separate UNIX process, with every processor running the same program (hence they
are homogeneous), providing the underlying architecture on which to run the kernel of
an operating system designed for a distributed environment. This method was chosen
since it neatly encapsulates the concept of autonomous processors with no shared

memory, where data exchange can only occur by a message-passing mechanism using

79

a communications medium. These processes are created from the main start-up
routine, which is called when the system is first activated. This routine takes
information regarding the number of processors in the network, the number of user
processes which will be created during this simulation run, and the rate at which these
arrive, from a main configuration file (these values can also be input interactively from
a terminal if required); thus these parameters can easily be changed to create different
environments. Once these values have been established the start-up routine creates a
file of user process arrival times for each processor and a number of named pipes
which simulate interprocessor communications. Both of these aspects are described in

more detail in later sections.

Having set up this environment the number of processors specified in the

configuration file are created using the fork () system call; in order to distinguish
between processors each one is given a unique "machine identifier" (an integer value)
which will be used during interprocessor communications and as an extension to all
filenames relating to a particular simulated processor. This value is stored in the global
variable this_mc. The UNIX process identifiers (pids) of all forked processes are
held in the main start-up routine to allow limited debugging of the system if a future
modification causes a processor "crash" (e.g. addition of extra operating system
facilities); the pids are also passed as an array indexed on machine identifier to every
processor, since they will be used in the kernel call and process migration mechanisms

of the distributed operating system.
The first task of each processor is to open its own trace file which is written to

periodically to give performance information (trace files have the name "trace"

followed by the machine identifier number), and will also contain appropriate error

80

INIDIS

()osned <

z.w.c:oQ\! ho_i 8yyuop peay
@ N 10883001

-~ emem.m--

()osned

~.wccou\i ﬁ o[SyuoD) peay
@ [10553001

()asned
c.mc__onv\! o[1.1 FyuoD peayy
@ () 10553001

SI0SS300.Id

S[1,] uoneIngyuo)) pajE[WIg

%

dn-ye)g pue uoneIndyuo) walskg 1 Sy

[BUIULI],

JINIDIS

A\

\w./fhmzﬁm

{INIDIS

JINIDIS

[()12)seWw
()asned

()sow 9jearn

- o - - -

e - - - - - - -

$S001]
dnue)g uiepy

urew-3juod

J

81

messages if a system fault occurs. The simulated network topology is then created, by
reading relevant data from per-processor configuration files (named "config" with an
extension formed by the machine identifier) and opening the necessary named pipes

(as described later).

When the network has thus been configured all processors wait to be booted by

making a pause () system call; booting is achieved by sending a SIGINT software
signal to all processors, either from the keyboard (usually the RUBOUT key) or from
a provided shell script startsys which scans the UNIX process table and uses
kill () to create the desired effect. This ensures that all processors begin executing
at the same time (a fact which is important for the maintenance of simulated real time,
as described below). An interrupt handler in all created UNIX processes which
catches the SIGINT signal, either begins running the distributed operating system
kernel (if the process is a simulated processor) or a master routine (if it is the start-up
process); the purpose of the master routine is to maintain global simulated time
consistency. An outline of the operations performed at system start-up is shown in

fig. 4.1.

4.3.2 Simulated Time Maintenance

A fundamental aspect of network activity which must be accurately simulated is the
passage of real time, used for establishing the interval between user process arrivals,
overheads incurred by interprocessor communications, process execution time (both
user time and OS time), overheads of carrying out load balancing and process
migration, and for providing performance evaluation information. This is achieved in

our simulation by maintaining a local view of time held independently by each

82

processor and, since these are running as asynchronous processes on a
multiprogrammed system and will update their value for time at varying rates, the
start-up process is used to ensure that a sense of consistent global time is correctly

maintained.

4.3.2.1 Time Definition

Each processor has a variable sys_real time (of type double) which it uses to
record the passage of simulated real time; the unit of time used is microseconds, so
incrementing this variable by one represents the elapsing of one microsecond of real
time. A parameter of the system (the manifest constant AVE_INST) is introduced to
specify the length of time in microseconds required to execute one machine instruction,
and this is then used as the basic unit by which to update time as necessary. Each
operation of a simulated processor which would take some period of real time can then
be defined in terms of a number of average instructions (for example sending a

message onto the communications medium, or processing a user's kernel call).

The basic routine in the simulated system which maintains local time (ie the
processor's own view of the quantity of real time which has passed since it was
booted) is t ime_update (). Itis called at every point in system operation where
simulated time needs to be advanced, and is passed the number of microseconds which
have elapsed, together with an indication as to whether the elapsed time is due to user
process or operating system activity, and, if the former is the case, a pointer to the user
process in the simulated kernel's process table. This routine is responsible for
maintaining several timing aspects of the system, the most fundamental of these being

to increment sys-real-time by the amount of time that has elapsed; it is also

83

necessary to update various per-process items of timing information. If the elapsed
time is due to user process activity, then time_update () appropriately increments a
count for that process (using the process table pointer) regarding both the amount of
time for which it has been executing since it was created, and also the time that
execution has been continuing on this processor. This quantity may be different to
total execution time if a preemptive load balancing policy is being used, and will be
useful for deciding which process to migrate to ensure that processes spend at least a
minimum period of time on a particular processor before becoming eligible to be
moved. The above values relate to the currently executing process, but time
information is also recorded for all processes which are resident on a processor when
real time is incremented. This information concerns the total time that a process has
existed in the system (regardless of which processor it has previously been running

on) and the total time that it has been resident at its current location; hence

time_update () scans all process table entries adding the elapsed time to these two

entities, whether elapsed time is user time or operating system time.

For certain load balancing strategies, time needs to not only be considered in terms of a
single instant, but must be divided into a number of quanta, so that local processor
load during a particular quantum can be noted in order to provide a load value averaged
over a number of such quanta [Barak85b]. To this end, an array of time quanta,
where each element holds details for a single quantum is manipulated by
time update (); the length of a time quantum in microseconds and the number of
past quanta which are retained, are tunable parameters of the system; hence when
sys_real_ time is incremented, the appropriate quantum entries are updated,
wrapping around to the beginning of the array when it is full, to guarantee that only the

most recent NQUANTA entries are kept (where NQUANTA is the manifest constant

84

specifying how many quanta should be retained). When an entire quantum has
elapsed, the number of non-blocked user processes currently resident on the processor
is recorded for load balancing policy purposes. In addition, a note is made of the
amount of OS time used in a quantum, to provide details of quanta when the processor

was unavailable to user processes due to OS overheads.

4.3.2.2 Processor Synchronisation

If the simulated processors were permitted to update their view of real time in an
unrestrained manner, since they will receive variable periods of service from the
UNIX scheduler, there would be no consistent value for simulated real time over the
whole network; consistency is hence achieved in our system by using the start-up
process to synchronise processor operation. Under this scheme every processor is left
to independently update its local time value for a limited period of time; this period is
specified by a parameter (SYNC_INTERVAL), which should be kept small to ensure
that processors' time values do not differ by more than a few microseconds. The
start-up process and all processors are attached to a shared memory segment which
contains a time at which processors must synchronise with each other, and an array of
flags indicating which processors have reached the synchronisation time. As soon as a
processor's sys_real time exceeds the next synchronisation time, it sets its flag
in the shared memory segment and waits (using pause ()) until it is informed by the
start-up process to continue. The start-up process constantly scans the shared memory
segment array of flags until all are set (in other words all processors have reached the
synchronisation time), and then establishes the next synchronisation time
(incrementing it by SYNC_INTERVAL) and sends each waiting processor a software

signal to instruct it to continue operation. In this manner all processors' simulated real

85

A,

()osned
3eJ 108
(quuyouds payoeal) Ji

D
(
D

v

N 10853201

AA - - --

()asned
3ey 198
(ownyouds payoear) Ji

<
¢

[H10SS3001{

()osned
3eyy 198
(ouuyouds payoear) Ji

<

() 10SSa00.1(]

WISIUBYIA uonesiuoIyoug 1ossasordiojuy g4 81

JINOODDIS

LNOOIDIS

JINODDIS

Judwgoyg
A1owajN paeys

C—al

\

()onunuod o) moje

198
[1® [hun s3e[j ueds

i

J

$52001(
dnje)g uiey

86

time values are always within less than SYNC _INTERVAL microseconds of each

other.

A diagrammatic outline of the operation of this synchronisation mechanism is shown

in fig. 4.2.

4.3.3 Communications Medium

As previously stated, since we are studying loosely-coupled distributed systems, all
communications between processors must be achieved without the use of shared
memory, and hence using a message-passing mechanism on an external
communications medium. It was decided that using named pipes to simulate
interprocessor links is an appropriate way of creating a network environment with
these characteristics; thus when a processor reads from a named pipe it is simulating
receiving a message on a communications link, and writing to a pipe simulates
message transmission; since pipes in UNIX are uni-directional, a duplex connection
between two processors is represented by two pipes, with the processors being
readers or writers of the pipes as appropriate. The necessary pipes for
communications simulation are all created by the start-up process, before the
processors are forked; pipe names are formed by taking the string "own_p" and
appending the machine identifier of the processor which will read the pipe (e.g. the
pipe read by processor O is "own_p0"); as soon as processors are booted they open

their "own" pipes for reading, to accept incoming messages.

4.3.3.1 Network Topology

The network topology is specified separately for each processor in terms of its direct

87

Processor 1

Processor 2

Processor 3

Physical Link Table for Processor 0

Neighbouring
Link no processor id Pipe fd

0 1 File descriptor for
— [writing to processor 1's
pipe
1 <

File descriptor for
writing to processor 2's
pipe

MAXLINK

Fig. 4.3 Example Network Topology and Physical Link Table

88

neighbours and routes to all other processors; this information is either entered
interactively from the terminal or stored in per-processor configuration files, each of
which has the name "config" with the machine identifier as an extension (e.g.
"config.0" for processor 0); see appendix C for a description of the configuration file

format.

When a processor is first booted, it establishes connections to its immediate
neighbours; the number of such links is the first value read from the configuration file,
followed by the machine identifier of the neighbouring processor on each successive
link. In order to be able to send messages to a neighbour, its communications pipe is
opened for writing. Details concerning links are held in a table (named
phys_link[] in the program listing), indexed on link number, where each entry
contains the machine identifier of the neighbour on the corresponding link, together
with the UNIX file descriptor returned when the neighbour's pipe was opened for
writing; the maximum number of possible links a processor can have is a parameter of
the system (MAXLINK). This procedure ensures that processors can only send
messages directly to their immediate neighbours. Fig. 4.3 shows an example
interconnection topology, with the corresponding physical link table for one of the

processors given.

4.3.3.2 Network Routing

In order for processors to communicate with their peers, a mechanism to route
messages through the network has been introduced to the simulated system. Since our
interest is not primarily in adaptive network routing algorithms, we have adopted a

simple fixed routing approach. Each processor maintains a routing table (named

89

Route Table

Processorid Distance Via link

O O O
e e

1 e
1 SEEEH | SeR

W N =
DN | = |

- - -
- - - -

- - e d -

MAXROUTES

s et o o Y i \
: e et e e b g b e B g b e
\ \
\ \
\ \

Link Table
Kl ol Neighbouring
» , Linkno processorid Pipe fd
S, File descriptor for
) 0 1 _’v\{riting to processor 1's
R e i | 5, pipe

File descriptor for

writing to processor 2's
pipe

- - - - o oa
- - - -

MAXLINK

Fig. 4.4 Example Route Table and Physical Link Table for Processor 0

90

route_table[] in the program listing), indexed on machine identifier, where each
entry gives an index into the physical link table, thus specifying the link on which a
message should be sent for all other processors in the network; the entry also contains
an integer value giving the distance in "hops" of each processor from the sender; this
information is held in the configuration files as link/distance pairs, ordered by machine
identifier. Using this method a route to a particular processor is not fully-specified at
the sending processor; the sender only knows the identity of the immediate neighbour
to which it must route a message, and does not know the identity of any further
intermediate processors which will be used in the message's full path to its destination.
This approach was adopted since it will allow routes to be easily changed without
considerable updating of tables, if an adaptive routing algorithm were later added to the
system. Anillustration of how the route table and physical link table interact is shown
in fig. 4.4, giving the appropriate table entries for Processor 0 assuming the topology

of fig. 4.3 .

4.3.4 Interprocessor Communications

Once the basic network structure has been established as described above a means is
needed by which to send and receive messages over the simulated communications
medium. The lowest level I/O in the system is provided by two general utility
functions pwrite () and pread(); pwrite () writes a specified number of bytes
from a given address onto a pipe whose UNIX file descriptor is given as a parameter;
similarly pread () reads a specified number of bytes, from a given pipe into memory
at a given address. Both of these functions consider messages as uninterpreted byte
streams (interpretation being provided by higher level functions), and perform

low-level error checking (eg whether the relevant pipe is open, or whether read/write

91

errors occur on that pipe). All functions which require I/O operations on the pipes

representing interprocessor connections, use these two functions to perform them.

Messages which are exchanged between processors are defined as having a header and
a body. The message header (em_hdr) contains an indication of the message type (an
integer constant specifying whether the message is for a particular operating system
function, or is a user interprocess message), the identity of the sending processor, the
intended destination processor, and (for certain messages only) the name of the user
process on whose behalf the message is being sent. The message body is of variable
size and contains fields specific to its particular type (see appendix C for further

details).

When a message needs to be transmitted through the network, both the header and the
body are passed to the high-level I/O function TX () ; this function uses the identity of
the intended destination processor held in the message header as an index into the
routing table, in order to find the correct interprocessor link, on which the message
should be sent. The appropriate pipe file descriptor taken from the physical link table
is passed to pwrite (), together with the message itself (which is transmitted as an
uninterpreted byte stream) and the message size. In order to simulate the overheads
involved in message transmission, a parameter of the system (TX BYTE TIME) is
used to indicate the amount of time needed to send one byte of information onto a
communications link; this therefore represents the speed of the communications
medium, and is passed to t ime_update () multiplied by the size of the message to
be sent. In addition, a fixed software overhead for using a communications protocol
(PROTOCOL_TIME) is included, measured in terms of the number of machine

instructions needed to send or receive a single message; this value is also a parameter

92

of the system. Since certain messages need to be sent to all other processors on the

network, a broadcast () function has been provided; however this does not mean
that an underlying multicast mechanism is available [Frank85], and is in fact purely a
series of transmissions to each processor; because this research is not concerned with
network communications algorithms, no attempt has been made to include a more
"intelligent" broadcasting method, but the system is written in a way which would

make its addition easy.

Receipt of a message at a processor is controlled by the I/O function RX (). This

function is responsible for receiving the message header and then, depending on the
type of message which is being received, for calling pread () to read the message
body into a suitably large area of memory. Similarly to TX (), each time a message is
received the fixed software protocol time, and the parameter indicating the time
required to receive one byte (RX_BYTE_TIME) are taken into account by calling
time_update () as appropriate. Since messages may pass through several
intermediate processors before reaching their destination, the function
check_forward() is called every time a message arrives at a processor; this
function examines the destination processor identifier in the message header, and

retransmits the whole message if it has not arrived at its destination.

The interactions of TX (), RX (), pwrite () and pread () are illustrated in fig. 4.5.

93

WSIUBIIPA SuonedIUNWWoy) 10ssavsordiduy ¢ S,y

44—\ | 4 g aoidusag
adig 01 A sy L4

adig :
10Ssa00IdIa)u|

() praxd

\ _.

adessapy

Apogl _ Ay ;

10883001 SUIAIIN 108$3001] Suipuag

94

4.4 DISTRIBUTED OPERATING SYSTEM KERNEL

4.4.1 General Structure

The simulated environment described above provides a mechanism for creating a
number of processors connected via a communications medium in a chosen network
topology. In order to control this environment we need an operating system which
will use the interprocessor communications and time management facilities of each
processor, and allow the execution of user processes. To this end we have developed
an operating system kernel, with many of the features which we considered desirable
from the systems reviewed in Chapter 2, which runs independently on each processor,
thus making control of the network totally distributed; global information regarding the
network state can thus only be maintained by co-operation between all of the
autonomous kernels using the underlying message-passing facilities. The kernel in
each processor is identical and begins running as soon as the simulated network is
booted using software signals as previously described; when messages are exchanged,
the identity of the sending and receiving kernels is established using their relevant

machine identifier numbers.

The principal motivation behind the design of the kernel, and in fact that of the whole
simulated system, is to provide an environment in which to experiment with load
balancing strategies, and hence the features which we have included are not intended to
be a full set of kernel services, but are tailored to our needs; however, considerable
effort has been made to allow realistic user processes to be written and run on the
system, thus distinguishing our approach from a purely mathematical model

simulation.

<

The main functions of our kernel are thus:

a) creation, execution and destruction of user processes

b) a message-passing mechanism for interprocess communication
¢) ameans for kernels to exchange global state information

d) local process scheduling

€) transparent process migration

f) performance monitoring

The requests for service which the kernel receives can be grouped into two categories:
a) dealing with a user process kernel call

b) dealing with a message from a remote kernel

Each request is identified by an integer constant which is used as an index into two
arrays of pointers to functions (kcvec [] for kernel calls, and emvec [] for external
messages); in this manner, further kernel services can easily be added by writing a
function to deal with that service and then entering its address in the relevant array.
The current system deals with 11 different types of kernel call, and different external
messages; a more detailed description of the kernel's operation is given in later

sections.

4.4.2 User Process Support

User processes, which represent the workload submitted to the simulated system, also

run as separate UNIX processes under the control of our distributed operating system

kernel. Since the typical user process environment which we envisage for our system,

96

would consist of sets of processes co-operating to achieve a common goal, we
introduced the concept of process groups. Execution of a process group begins with
the synthetic workload generation part of the system creating a parent process, thus
simulating a user requesting program execution from an interactive terminal, typically
through a process similar to the UNIX "shell"; the parent process then creates a
number of child processes to act as servers providing a service to perform the desired

task, thus forming a "process group" [Cheriton85].

4.4.2.1 Process Naming

A process naming convention was chosen which, whilst providing network-wide
unique process names, would not directly associate a name with the processor on
which a process is executing; this allows processes to migrate freely around the

network and to still be readily identified.

As machine identifier numbers are guaranteed to be unique, and given that a process
group must at least begin executing on a single machine, we adopted a process naming
scheme which consisted of the machine identifier of the originating processor, together
with a "process group number" (where a new group number is allocated each time the
synthetic workload generation function is called) in order to uniquely identify a
process group, and then a unique character string to name a process within that group.
This combination of process group and name within group, guarantees network-wide

uniqueness of process names. Hence we use the following C data types to specify a

process name (PROCN):

97

typedef struct {
int gmc ; /*original mc on which group was created*/
int gnum ; /*group identifying no.*/
} PGRP;

typedef struct { PGRP pgroup ; /*process group identifier*/
char pname [MAXPNAME] ; /*process identifying string within
group*/
} PROCN ;

4.4.2.2 Kernel Call Interface

User processes execute in our system by making requests for service via "kernel
calls". Similarly to the method used to simulate interprocessor communication, we
employ named pipes to implement the kernel call mechanism; when a user process
makes a kernel call, it writes its request on its processor's pipe and, when the kernel
has processed the call, the user process receives the result on a further return pipe. In
order to make this interface transparent to user processes, a number of library routines
are provided which need to be linked with the user process code before execution.
These library routines present a function call interface for making kernel calls, and deal
with sending and receiving on the correct pipes and returning the result; hence the user
process view of our kernel call mechanism is similar to that of UNIX system calls.
For a more detailed description of the exact operation of this mechanism, see section

4.4.4 on "Kernel Call Mechanism".

We believe that using UNIX processes to simulate user processes on each processor,
with a controlled interface to our kernel creates a realistic environment in which to

carry out our experiments, and that the use of pipes for the kernel call/return

98

mechanism accurately mirrors a separate kernel and user address space.

4.4.2.3 The Process Table

Since the processors in our system are totally autonomous and loosely-coupled, and
since we wish to restrict the overheads caused by excessive exchange of information
between machines, we have adopted the approach that each processor maintains
information concerning only those processes which are resident on it. This implies
that any global information regarding for example the current number of processes on
a particular processor, or any process-specific information, can only be maintained
through the information exchange policy of the load balancing algorithm which is
being used. All local process information is held in the kernel's process table (named
process_table[] in the program listing), and the maximum number of possible
entries in this table is a parameter of the system (MAXPROCS), where each entry
refers to a single user process. The process table is a fundamental data structure for
our implementation and a diagram showing its most important fields is given in fig.

4.6.

The process' name (field proc_name) is essential since it identifies the process in a
network-wide unique manner. As processes may migrate from one processor to
another under the control of a load balancing algorithm, a record is kept of the machine
identifier number of the processor where a process was first created (field orig mc),
for implementation-specific purposes, since user processes are created by a UNIX
fork () system call, and failure to execute a wait () call by the original creating
processor would result in many "zombie" UNIX processes being left in the system.

The process' size is given in bytes, to be used to calculate the overheads caused by

99

/% Juaied
§,5s9001d jo awreu 4/

juaied

d|qer Hod —

0} suiod ¢—

syiod
paumo

/% {PAMPAYIS 2q ssadoid ued 4/

Jqe[npayos

/% {P3420]q $52001d ST 4/

Payo01q

uIy JSIXd

/% UONRULIOJUL

own Aduapisar

Surwn ssao0ud 1od 4/

uir) Y 23X

/% SAKQq ut $s2001d JO 97IS 4/

/% $83001d jo pid XIN() %/

/% AQweu $s3001d 4/

w1 20X

sou)

az1s

pidn

uieu

KU O[T [, 559904

2INONNG J[qR], $S001] 9'p Sy

SOOUdXVIN
[-SOOYIXVIN

L 559900

100

process migration.

In order for our kernel to schedule its processes correctly two flags are included for
each process entry, one to indicate if the process can be scheduled (it may have been
chosen for migration and be waiting to find a destination processor, in which case it
should not be locally scheduled) and another to indicate if the process is blocked
waiting for an external event (for instance it may be waiting to receive confirmation of
a kernel call which resulted in a request being sent to a remote processor for service).
The UNIX identifier of the user process is also included for scheduling and kernel

call/return purposes as described later.

Timing information is held for each process (appropriately updated as simulated real
time elapses), which is used for performance evaluation, and may be used for the more

sophisticated load balancing algorithms. This information concerns the total real time

that has elapsed since the process was created (exist_time), the total time that the

process has spent executing, i.e. the number of CPU cycles it has used
(exec_time). Also included are totals of the amount of time that a process has been
resident on its current processor, because it may have migrated (residency time),

and the time it has spent executing on that processor (exec_here time). These are

the per-process values which are maintained by the simulated processor function

time_update().

Since our system is intended to support an interprocess communications mechanism, a
process table entry also has an array of pointers into the software port table, whose
structure is discussed later, holding a record of the ports which a process currently

owns, and through which it will communicate with its peers. The number of such

101

ports which are owned is also held in each process table entry (in the field

ownp_length).

4.4.3 Interprocess Communications Mechanism

In order to allow user processes to co-operate in the parallel solution of a common
goal, a means must be provided for them to efficiently exchange data. In a shared
memory multiprocessor environment this could be achieved through the use of shared
variables, but the loosely-coupled nature of our network makes this approach
infeasible; in fact, we note that shared variables introduce problems of mutual
exclusion and synchronisation when concurrently accessed, and thus result in
unnecessary complexity [Manning80]. We have thus adopted a message-passing

mechanism for performing interprocess communication.

Message-passing has a number of desirable attributes. As each user process executes
in its own disjoint address space, it can only operate on its own local data; with
messages being the only way of performing data transfer, the interface between
processes, and the side-effects which they may have, can be clearly defined and
controlled by the programmer. Messages can either be used purely as a means for
distributing data, or to enable one process to request service from another. The latter
of these two possibilities can be used by processes to implement a remote procedure
call mechanism, where the requesting process sends a message containing an
indication of the service required, together with any input parameters, and the serving
process returns its results via a further message back to the requester. It is thus
possible to "disguise” the message-based interaction in terms of procedure calls, if this

is more familiar to the programmer. Access to critical variables is guaranteed to be

102

mutually exclusive, since they are passed in messages between processes, and hence
can only be operated on by one process at a time; process synchronisation can also be
achieved using message exchange. In such a system the verification of a set of
concurrent processes can be achieved by verifying each process independently,
considering its external effects purely in terms of its message sending and receiving

activity.

4.4.3.1 Message-Passing Primitives

The kernel of an operating system which supports message-passing between user
processes must provide primitives for sending and receiving interprocess messages
[Liskov79]; these primitives can operate in either a blocking or a non-blocking
fashion, and, since it has been suggested that both modes are appropriate to different
application environments [Manning80], our kernel allows user processes to perform
blocking or non-blocking send and receive operations (which we henceforth denote as
b_send, nb_send, b_rcv,and nb_rcv respectively). A b send operation is
used if the calling process requires an acknowledgement of message receipt (since the
sender will block until the message has arrived at its destination or an error is
reported), but an nb_send allows the calling process to continue regardless of what

happens to the sent message. A b _rcv operation blocks the calling process until the

expected message arrives, whereas an nb_rcv is just an announcement of willingness
to accept a message (which may not necessarily arrive); the willing process continues
its execution and is signalled upon message receipt. Thus user applications can be

constructed using any combination of the available modes to work in a
fully-synchronous (b_send/b_rcv), half-synchronous (b_send/nb_rcv,

nb_send/b_rcv) or fully-asynchronous (nb_send/nb_rcv) manner, to suit their

103

needs.

User processes send messages in a totally location-independent manner; it is the
kernel's responsibility to deal with whether the intended destination for a message is
local or remote; if the former is the case then message sending is performed by
appropriate manipulation of internal pointers by the kernel, and in the latter case the

message is transmitted onto the network and routed to its correct destination.

4.4.3.2 Software Ports

When a message is sent, a means must be provided for specifying that message's
destination. A flexible mechanism for establishing endpoints for communication
which has been proposed is that of the "port" [Silberschatz81]; we have used this
approach in our kernel. In avoiding using process names in a message's intended
destination (as is used by Hoare [78] in CSP), the mechanism is more transparent, in
that a sending process is not concerned with the identity of the process which will
receive the message and will service it; messages are sent and received using the port
concept. Each port has a single owner, which is the only process permitted to receive
messages on it, but messages may be sent to multiple ports belonging to other
processes. A typical use of a software port in this environment would be to associate a
separate port for each service which a process provides to a potential client; a message
arriving on a particular port is thus a request for its corresponding service. In order to
ensure that messages sent to a port are of the kind which the receiving process expects,
each port is assigned a "type" when it is created by its owner process; the type of a
port restricts messages which arrive at that port to those of the appropriate type, and is
a user-defined integer constant. This restriction only applies to messages sent to a

port; a message of any type can be sent from a particular port, regardless of that port's

104

type.

Having defined ports as endpoints for communication, the kernel must provide a
means by which user processes can connect their ports, thus allowing message
passing to be performed. We have chosen to use the concept of a uni-directional link
to implement this connection mechanism. If a process, P1, wishes to send messages
from one of its ports, portl, to another port, port2, which may be owned by any other
process (or indeed owned by the sending process), it must create a link from port1 to
port2. This link will permit messages to flow from port1 to port2, but not vice versa;
if a bi-directional connection is required then the owner process of port2 must create a
link from it to portl. This link mechanism allows user applications to be developed
with well-defined interfaces and data flow connections to suit their requirements. An
example process group with ports connected in various combinations is shown in fig.

4.7.

User process sending and receiving of messages can thus be expressed in terms of
operations on ports and links. A "receive" kernelcall (b_rcv ornb_rcv) applied to
a port owned by the calling process, results in any pending messages which have
arrived at that port being delivered to the caller (ie copied into its address space); a
"send" kernel call (b_send or nb_send) is made through a port via a link, and
results in the user-supplied message being sent to the destination port which has been
connected on that link. Hence in the example in fig. 4.7, if Process B performs a

receive operation on its port B1, then it will be delivered a message which may have
come from either Process C's port C2 via its link L1, or from Process A's port Al, via

its link L1. Also in this figure, if Process C performs a send operation through its port

C1's link L1, the message will be sent to Process A's port Al.

105

SyuI] pue sjog ursn uondauuo)) ssadoidiojuy oidwexy L 3]

13|

| 13N

O LAO0d

¢ 52001 D $52001]

suonedunuwod

[BUOIORIIP-TUN
- SUOTIBIIUNWILIO)

[BUONIDA1IP-1q

¢ 2ANI']
1 ANI'1

1V LAOd

V $52001(]

106

4.4.3.3 User Message Format

Messages passed between user processes in our system consist of two parts: a header
and a body. The message header contains all information necessary to guarantee
correct delivery and possibly acknowledgement; this information is given in five fields:
the first two of these fields specify the names of both the destination and source port of
the message (the source being included in case the receiving process needs to know
where the message came from, or if the message was sent in blocking mode and
therefore receipt needs to be acknowledged). The three remaining fields give an
indication of the length of the message in bytes (which is used to calculate the time
necessary to transmit and receive the message), a flag which records whether the
message was sent in blocking or non-blocking mode, and finally a user-defined integer
giving the type of the message, which will be used to check that it is valid to be

received on a particular port.

The message body is an uninterpreted stream of bytes; for the purposes of our study
we have used a small fixed-size array of characters for this part of a message, but the

system can easily be modified to handle large dynamically allocated message bodies.

4.4.3.4 The Port Table

Associated with each software port across the network is a corresponding entry in the
"port table" (named port_table [] in the program listing), a copy of which is
maintained by the kernel of each processor. The pointers in a process table entry
which refer to the ports owned by a user process (see previous section on the process

table), are thus set up to point at entries in this port table. The maximum number of

107

ports which can be extant at any one time is a parameter of the system (MAXPORT).

Since ports will migrate from one processor to another, if their owner processes
migrate, the kernel must know the port's name, the identity of its owner process and
the identity of the processor on which the port is currently resident, for all created
ports (both local and remote). This will enable the kernel to correctly route messages
sent between ports, and to keep this routing transparent to user processes. In order to
make ports uniquely identifiable on a network-wide basis, each port is given a name
(specified by the user process when it creates the port) and whenever this port is
referred to by the kernel it is taken together with the group identifier of its owner
process (which is guaranteed to be unique). By enforcing the rule that no two ports
used by a process group can have the same user process-specified name, port names

are thus unique across the whole network.

Further information (as described below) needs to be held for all ports which are local
to a particular kernel, to allow them to be successfully linked to other ports (both local
and remote) and to deal with message-sending and -receiving operations. By
maintaining full information on local ports and only essential details regarding remote
ports, we have attempted to reduce the overheads caused by increased interprocessor
communications which are necessary to keep each kernel's view of the port table
consistent. A diagrammatic representation of the structure of the port table is shown in

fig.4.8.

In order to record the interconnections between ports, each port table entry holds two

arrays which specify all links which the corresponding port has to or from other ports

(these are fields links_to and links from respectively); the arrays contain

108

/% uoneunojur 11od piouad 4/

apyoxd

/% 2A12021 ZUIY0[q-UOU UO PI[[BI UOHOUN] 4/

JUNJAI

[+ PAKonsap 110d uaym pajed uonouny 4/

1on159p

/% 2dA) o3essowr paniurad 4/

2dA) Fsw

[+ KI9AT2p 28essour 9A1201 Furyoojq
-Uuou 10J uoned0] $$9201d 1asn 4/

20[Jsur qu

per b 3sw

L/ _Mmz_Al_: [osw |4—1—

pray b 3sw

ananb a3essaw Jujwoodur

o) syui|

<—f—

/% S110d 12410 0} SYUI| 4/ FORER ccee

wolj syul|

/% S11od 19y)o wo1y SuI| 4/

<+—{—
<

/% Queu $s3201d 10umo s,110d 4/

ssacoxd 1oumo

/% Sapisar 11od a19ym pr a0ssasourd 4/

Aouapisal

/% 2weu Jod 4/

ueu

amPNNS qe], HoJ 8y Sy

SLIOIXVYIN

109

pointers to other port table entries (whose corresponding ports may be both local or
remote), and their sizes are parameters of the kernel (MAXLTO and MAXLFROM

respectively).

Since messages may arrive at a port before the owning process has performed a
corresponding receive operation (either blocking or non-blocking), a queue of such
messages is maintained in a linked list for each port, with pointers to both the head and
the tail of the queue. In our implementation, when a process requests receipt of a
message it is given the message at the head of the queue, and further arriving messages
are appended to the tail of the queue; hence message receipt is on a FIFO basis, but
this could easily be modified if, for example, a priority scheme was deemed more
desirable. Also held for each port is an integer value giving the type of message which
can be received on that port (msg_type); this value is specified by the owning

process and is used to check that the type of messages arriving at the port is correct.

Port entries also contain a number of pointers into the owning user process address
space. When a message arrives at a port, and the port's owner has requested a
non-blocking receive operation on that port, the location in the owner's address space
where the message should be deposited is held in the pointer field nb_msg_loc; in
addition, the owner process may have specified that a particular function should be
called upon receipt of a message (in non-blocking mode), and the address of this
function is held in the field rcvfunc. Finally, when the port is destroyed at the
request of its owner, a pointer in the corresponding port table entry (the field
destruct), gives the address of the user process function to be called upon port

destruction.

110

In order for the kernel to maintain the current state of a port, various counts are held in
a port's profile. This gives values for the number of ports to which a port is
linked, the number of links connected from other ports, and the current length of the
incoming-message queue; also held in the profile are two flags, indicating whether
non-blocking or blocking receive operations are pending for this port, in fields

nb_pendingand b_pending respectively.

4.4.4 Kernel Call Mechanism

4.4.4.1 The User Process View

As previously mentioned, user processes interact with the kernel of the processor on
which they are resident through UNIX named pipes; each processor has two pipes for
this purpose, one for receiving kernel call requests, and one for returning
corresponding results. Since many user processes will be sharing these pipes, the

kernel enforces mutually exclusive access to them using a "lock” file.

User processes view requests for service from the kernel as normal C function calls
(as in the UNIX system call mechanism); the value returned from such "kernel calls"
will vary depending on the service being requested, but we have adopted the general
convention that a return value of -1 (cast to the appropriate type if the expected value is
not an integer) denotes failure of the kernel call. Similarly to UNIX, we use a global
integer variable (called err in our system) to indicate to the user process the reason
why a particular kernel call failed; also as in UNIX, this variable holds the reason for
failure of the last failed kernel call, and is not reset when subsequent successful calls

are made.

111

In order to implement this "function call" interface, two pre-compiled files of routines
("kealls.o" and "interface.o") must be combined with a user process when it is linked.
The first of these files deals with packaging the parameters for each kernel call into a
form convenient for transmission to the kernel via a named pipe, and with correctly
returning results to the user process (setting err appropriately if an error has
occurred). The second file implements the low-level details of interaction with the
kernel through names pipes (both sending requests for service and receiving results)

and with various software signals which are used for sychronisation.

When a user process is created its first action must be to call a provided function

(set_up ()) which sets a number of global user process variables, which are used
for implementing the kernel call mechanism, the most important of these being the
UNIX file descriptors of the call/return pipes and the UNIX process identifier of the

processor on which the user process is running; these values are passed to the user

process through the main () function argument list argv[].

4.44.2 Kernel Call and Return

Given the above environment, a user process makes a kernel call in the following

manner:

return-value = Kcall (parameters)

where Kcall is any of the available kernel calls, namely:

cproc () - create a user process

exit-proc () - end process execution

112

cport () - create a software port

dport () - destroy a previously created port

Iport () - create a uni-directional link between two ports
uport () - remove a previously created port-to-port link
b_rmsg () - receive a message (blocking)

nb_rmsg () - receive a message (non-blocking)

b_smsg () - send a message (blocking)

nb_smsg () - send a message (non-blocking)

When the user process executes a statement of the above type, this results in a call to
the appropriate kernel call interface routine (linked in "kcalls.o"). It is this routine's
responsibility to place the parameter list for the kernel call into a "parameter block"
which is a suitable C struct data structure. This parameter block (p_blk),
together with an integer representing the required kernel call (kc_type) are then
written to the kernel through its named pipe; the user process then pauses waiting for
the kernel to service its request. This sequence of events can be thought of as placing
an integer function code in a machine register (representing the operating system

service required), and pushing parameters onto the stack.

The kernel uses kc_type to index its vector of available services (kc_vec[]). The
appropriate service routine reads its p_b1lk from the pipe (which is akin to popping it
from the stack), and then carries out its required action, provided this does not violate
any constraints (in which case the kernel call has failed). In order to satisfy a

particular request, the kernel may need to co-operate with kernels on other processors

113

WISIURYOIA] WINAY/[[BD [PUIdY 6'p "]

AUNNOT WOy wnjal -

—]| NSAJ uInjal -

Oasned - (v N VADNOIS

Baaaa oo | i -
ssa001d Jasn [eudis - : adid wimnjay ANUNUO) 0 [euIay [Rudis

adid
; adid
woIj prar 0) w21y 123 [[eo -

adid wimar 03 s)nsar Aum -|. woy NSl pral —

Y

()uimaioy o
/ f 1 AR AR R &
AINMDIS i v ()asned

<4 01 “ou 3sanbas Oneo yw o1 y1q d ssed -
e swesed ajum

1sanbar ay) 201AIS -

adid woy simawered pear -

([-ou 159nba1]aA0y

adid 7D O1peo jw g d
up j[eoy Joj siapwesed 2ovd -

([ou 1sanbai]30Ady 2 - (s1opwered)(eoy

adid
woyy “ou 1sanbai jjeayy peas -

()euway

sounnNOY Areaqiy ey

JOSSAV00I] pajenuwig

ssweaed)[oy = anjea” un)
D,

I30J] IR\ 125

$$900.] 19S()

114

(for example linking two software ports together which reside at different locations in
the network) but this remains totally transparent to the calling user process. Results of
the kernel call are written back on a separate pipe and a software signal is sent to the
user process to notify it of this fact; the kernel pauses until the user process

acknowledges receipt of such results.

When the user process receives the software signal announcing completion of the
kernel call, an interface routine reads the result from the return pipe and, after
signalling the kernel to acknowledge receipt, the kcall routine returns the result to the
calling user process. These actions can be thought of as popping results from the

stack.

Finally when the kernel is sure that the results have successfully been received, it
updates the passage of real time by an amount appropriate to the execution of the
particular kernel call which was invoked; this will include any overheads incurred by
sending messages to a remote kernel if this proved necessary. The full kernel call

mechanism is summarised diagrammatically in fig. 4.9.

4.4.5 Kernel Call Implementation

In this section we will discuss in more detail, the actions of the kernel on receiving a
request for service from a user process, and present pseudocode descriptions of the
routines in the kernel which provide the services listed above, and also those which
deal with interprocessor messages used to perform remote operations. The reader is

referred to appendix C, for further details in the full program listing.

115

Each kernel call routine can be summarised as carrying out the following four steps:

i) read kernel call parameters from the appropriate named pipe
i1) perform the necessary operations on behalf of the calling process
iii) return results to the calling process

iv) update the passage of real time appropriately for this kernel call

We have chosen to group kernel calls into three categories, namely:

- process-related
- port-related

- message-related

4.4.5.1 Process-related Kernel Calls

The kernel calls which deal with user process creation and destruction are cproc ()

and exit_proc (). Cproc () is used to create a new user process and expects as

parameters character strings giving the process' name and the name of the executable
UNIX file in which the program to be run resides; on successful process creation,
cproc () returns the network-wide unique name for that process. Exit proc()
is called by a user process when it wishes to terminate execution. The pseudo code

description of these kernel calls is:

CPROC () /* routine for creating a new user process */

if (process is of a new "group" created by the "shell")
Assign it a new group number;

Increment process counts;

Enter information into a new process table entry, ie
- name

116

- originating processor
- parent process name

FORK a new process:

Child /* ie user process */ Parent /* ie Kernel */

Set up argument list for process Enter UNIX pid of new process
which will be used for making in process table;

Kemel calls;

Return SUCCESS to caller;

Exec new program
Make newly created process schedulable;

/* if load balancing is to be performed on
process creation then code is inserted
here.

*/

EXIT_PROC () /* routine to deal with user process exit */

if (calling process still has open ports)
return FAIL to calling process;
else
{
return SUCCESS to calling process;
if (calling process was first created on this processor)
wait for process to die;
else /* process originated elsewhere, ie it migrated */
send notification of process exit to originating processor;
Re-initialise process table entry;
Decrement process counts;

¥
}
EXIT_MSG () /* routine to deal with notification of existing process
which originated on this processor */

Wait for process to die;

/* This is necessary for implementation reasons, since under UNIX a child
process will remain in a "zombie" state upon death, unless it is waited for
by its immediate parent */

}

117

4.4.5.2 Port-related kernel calls

Kernel calls which concern manipulation of a user process's software ports are

cport (), dport(), lport () anduport (). Cport () is called to create a
port (which will be owned by the calling process), and expects as parameters the
port's name, an indication of the type of message which can be received on that port,
the address of a user process routine to be executed when the port is later destroyed,
and the address of the user process routine to be invoked when a message arrives at
the port following a non-blocking receive operation. If successful, cport () returns
the port identifier, which should be used in subsequent kernel calls which relate to that
port (e.g. receiving messages on it), which is similar to use of a UNIX open file
descriptor. When a port is created, the creating kernel broadcasts its name and message

type to all other processors.

Dport () deals with a user process request to destroy one of its previously created

ports, and expects the relevant port identifer as a parameter, returning a flag indicating

the success or failure of the port destruction request. If dport () is successful, then

the identity of the destroyed port is broadcast to all other processors, allowing them to

remove the port from their local port tables. Cport () and Dport (), together with
the kernel routines to deal with the broadcast messages which they generate are shown

in pseudocode below:

CPORT () /* routine for creating a port */
{

if (process owns too many created ports)
return FAIL to calling process;

Set pointer to new port table entry in calling process's
owned ports list;

Enter port information in new port table entry, ie
- name

118

- OWNEr process name

message type for this port

pointer to user process's port destruction function

pointer to user process's function called for non-blocking
receive/message arrival;

Broadcast port's name and message type to all other processors;

Increase migration size of calling process;

Return Port Identifier to calling process;

CPORT_MSG () /* routine to deal with receipt of a message from a remote processor

announcing port creation */

if (too many ports exist in the network)
SYSTEM ERROR;
else

Enter information for remote port in new port table entry, ie
- name
- OWnEr process name
- message type
- processor on which port is resident

DPORT () /* routine for destroying a port */

{

}

if ("port to be destroyed" does not exist)
return FAIL to calling process;

else :

if (messages pending in "port to be destroyed")
return FAIL to calling process;

else

{ , .
Remove port from calling process's owned ports list;
Decrement calling process's migration size;
Decrement number of ports in table;
Re-initialise port table entry;
Return address of destruction function to calling process;
Broadcast notification of port destruction to all other processors;

DPORT MSG () /*routine to deal with receipt of a message from a remote processor

announcing port destruction */

Find specified port in local port table;

119

Re-initialise port table entry;
Decrement number of ports in local port table;

The two kernel calls which deal with linking and unlinking ports are 1port () and
uport () respectively. Lport () expects as parameters the port identifier of the port
owned by the calling process from which the link is to be created (which we term the

“link from" port), and the name of the port to which the "link from" port is to be linked

(which we term the "link to" port); if the link operation is successful 1port () returns
a unique identifier for the newly-created link, to the calling process. If the two ports to
be linked are resident on different processors, the kernel deals with the necessary
exchange of interprocessor messages to achieve the link, transparently to the calling

process.

Uport () is called to remove a previously created link, and can only be invoked by
the owning process of the "link from" port; it expects the port identifier of the "link
from" port, and the identifier of the link to be removed as parameters. Again, any
interprocessor message exchange due to the linked ports being on separate processors
is handled by kernel routines. The pseudo code to deal with port linking and unlinking

is thus:

LPORT () /*routine for creating a link between two ports */

{
if ("link from" port does not exist)

return FAIL to calling process;

else

if ("link to" port does not exist)
return FAIL to calling process;

else

if ("link from" port has too many links to other ports)
return FAIL to calling process;

else

if ("link to" port is local)

120

if ("link to" port has too many links from other ports)
return FAIL to calling process;

else

{
Update link information for "link to" port;
Increment "link to" port's owner's migration size;
Update link information for "link from" port;
Increment calling process's migration size;
Return SUCCESS to calling process;

}

else /* ie "link to" port is remote */

Mark calling process as blocked;
Send a message requesting a port link to the processor on which
"link to" port is resident;
}
}

LP_REQ () /* routine to deal with receipt of a message from a remote processor
requesting a port link */

Find the "link to" port in the port table;
Find the "link from" port in the port table;

if ("link to" port has too many links from other ports)
Send a FAIL message back to the processor which sent this request;
else

Update link information for "link to" port;
Increment "link to" port's owner's migration size;
Send a SUCCESS message back to the processor which sent this request;

}

LP_ACK () /* routine to deal with receipt of a SUCCESS message from a
remote processor to which a port link request had been sent */

Find "link to" port in the port table;

Find "link from" port in the port table;

Update link information for "link from" port;
Increment original calling process's migration size;
Mark calling process as unblocked;

Return link identifier to caller;

121

LP.NACK () /* routine to deal with receipt of a FAIL message from a remote
processor to which a port link request had been sent */

Mark original calling process as unblocked;
Return FAIL to calling process;

¥
UPORT () /* routine for unlinking two previously linked ports */

{

if ("link from" port does not exist)
return FAIL to calling process;

else

if ("link to" port does not exist)
return FAIL to calling process;

else

{ .
Update "link from" port's link information;
Decrement calling process's migration size;
if ("link to" port is local)

Update "link to" port's link information;
Decrement "link to" port's owner's migration size;
Return SUCCESS to calling process;

else /* ie "link to" port is remote */

Mark calling process as blocked;
Send message requesting a port unlink to processor on which "link
to" port is resident;

¥
}
}

UP_REQ () /* routine to deal with receipt of a message from a remote processor
requesting a port unlink */

if ("link to" port no longer exists)
Send a FAIL message back to the processor which sent this request;
else

Find "link from" port in the port table;

Update "link to" port's link information;

Decrement "link to" port's owner's migration size;

Send a SUCCESS message back to the processor which sent this request;

}

122

UP_ACK ()/* routine to deal with receipt of a SUCCESS message from a
remote processor to which a port unlink request had been sent */

Mark original calling process as unblocked;
Return SUCCESS to calling process;

}

UP_NACK () /* routine to deal with receipt of a FAIL message from a remote
processor to which a port unlink request had been sent */

Mark original calling process as unblocked;
Return FAIL to calling process;

4.4.5.3 Message-related Kernel Calls

Message-related kernel calls deal with sending and receiving of messages by user

processes through their software ports.

When a user process wishes to receive a message on one of its owned ports, either in a

non-blocking or blocking mode, it uses the kernel calls nb_rmsg () and b_rmsg ()

respectively. Nb_rmsg () takes as parameters the identifier of the port on which the
message is to be received, and a pointer into the calling process's address space,
where the message is to be delivered; it returns a flag indicating success or failure of
this operation to the calling process. B_rmsg () expects just the appropriate port

identifier as a parameter, and returns a pointer to the subsequently delivered message
in the caller's address space. For both of these routines, if the received message was
sent in blocking mode, then the sending process is notified by the kernel of message

receipt. The routines are described in pseudo code below:

123

NB_ RMSG () /*routine for performing a non-blocking receive operation */

{

if ("receive" port does not exist)
return FAIL to calling process;

else

if (a receive is already pending on this port)
return FAIL to calling process;

else

return SUCCESS to calling process;
if ("receive" port has a message in its queue)

if (message in queue was sent in blocking mode)

if (sending process is local)
Inform sending process of message receipt;

else /* ie sender is remote */
Send "notification of receipt" message to processor on
which sending process is resident;

}

Return message and address of function to deal with non-blocking receive, to

calling process;
Remove message from head of port's queue;

else /* no messages have arrived on "receive" port */
mark port as pending a non-blocking receive;

}
B_RMSG () /* routine for performing a blocking receive operation */

{

if ("receive" port does not exist)
return FAIL to calling process;

else
if ("receive" port has a message in its queue)

Return message to calling process;
if (message in queue was sent in blocking mode)

if (sending process is local)
Inform sending process of message receipt;

else /* ie sender is remote */
Send "notification of receipt” message to processor on
which sending process is resident;

}

Remove message from head of port's queue;
else /* no messages have arrived on "receive" port */

Mark calling process as blocked;
Mark port as pending a blocking receive;

}

124

Sending a message between two linked ports in either blocking or non-blocking mode

is achieved by a call to b_smsg () or nb_smsg () respectively. Both of these

routines expect as parameters the identifier of the sending port, the identifer of the link

from that port on which the message is to be sent, the length and type of the message,

and finally the message text itself. Nb_smsg () returns an indication of success or

failure immediately to the calling process (since in non-blocking mode the user process

does not wait for acknowledgement of message receipt); b_smsqg () returns

immediately if the send operation cannot be performed, but blocks the calling process
until the message is received, if the send operation is valid. A further routine is
provided in the kernel, which deals with the delivery of a message which was

transmitted through the network, as the two ports involved in the message exchange
were resident on different processors (i.e. the routine usr_msg ()). We present the

pseudo code for the nb_smsg () and usr_msg () routines below; (b_smsg () has

been omitted here for conciseness since it is essentially identical to nb_smsg ()

without the immediate return to the calling user process):

NB_SMSG () /* routine for performing a non-blocking send operation */

{

if ("source" port does not exist)
Return FAIL to calling process;

else

if ("destination" port does not exist)
Return FAIL to calling process;

else

if (message type is incorrect for "destination" port)
Return FAIL to calling process;

else

{
Return SUCCESS to calling process;

if ("Destination" port is local)

if (a non-blocking receive is pending on "destination™ port)

{

125

Cancel non-blocking receive pending;
Return message and address of function to deal with
non-blocking receive to owner of "destination” port;

J

else
if (a blocking receive is pending on "destination” port)

Cancel blocking receive pending;
Return message to owner of "destination" port;

else /* ie message is not awaited */

{
}

else /* ie "destination” port is remote */
Send the message to processor on which "destination” port is
resident;

Append message to tail of "destination" port's queue;

USR _MSG () /*routine for dealing with arrival of a user message from
another processor */

{
if (a non-blocking receive is pending on "destination” port)
{
if (message was sent in blocking mode)
Inform sending process;
Cancel non-blocking receive pending;
Return message and address of function to deal with non-blocking receive
to owner of "destination" port;
}
else
if (a blocking receive is pending on "destination" port)
if (message was sent in blocking mode)
Inform sending process;
Cancel blocking receive pending;
Return message to owner of "destination" port;
else /* ie message is not awaited */
Append message to tail of "destination” port's queue;
}

126

4.4.6 Per-processor Scheduling

Since the processors on our simulated network are intended to be fully autonomous,
scheduling of user processes resident on a particular processor is totally under the
control of the local kernel - this means that we will be considering load balancing from
a network-wide perspective, with no account of the effects of local scheduling. This
approach has been taken since co-operation at the process scheduling level will create

added overhead, and needs very strict synchronisation between processors.

The kernel enforces a scheduling policy using UNIX software signals; thus user
processes pause when waiting to be scheduled, and are woken up by a signal from the
scheduling routine in the kernel. Any appropriate policy can be chosen for selecting
the next process to be scheduled, but for the purposes of our study we have chosen a

simple round-robin mechanism.

4.4.7 Process Migration Mechanism

In order to experiment with different load balancing algorithms, the kernel must
provide a means by which a process can be moved from the processor on which it is
currently resident to a different processor chosen by an appropriate location policy.
Since load balancing algorithms may require migration to be either preemptive (ie a
process can be moved after it has begun execution) or non-preemptive (ie a process
can only be moved as soon as it is created), our mechanism can be used in both of
these modes. By far the most complex of these two alternatives is preemptive
migration, since it is necessary for the kernel to re-route a migrating process's logical
communications paths (which have been established through creating and linking

ports) in a manner which is transparent to that process, and all of its peers (it would be

127

unreasonable, and highly undesirable, for user processes to be written such that they
explicitly allow for possible migration to a different processor from the one on which
they were originally created). The only restrictions which we have imposed on this
mechanism is that a process cannot be migrated if it is currently scheduled, or is
blocked waiting for completion of a kernel call (which may be due to the necessity to
wait for an acknowledgement from another processor); we believe that it would be
inadvisable to attempt process migration under these two circumstances. Since our
kernel call/return mechanism works using named pipes and software signals, then
from the user process point of view, migration merely involves changing the pipes
which it uses, from those of the processor on which it is resident, to those of the
processor to which it is being migrated; the kernels of both processors are left to deal
with updating relevant tables and ensuring that the residency of all processes and their

associated ports remains consistent.

When the load balancing algorithm being used on a particular processor wishes to
invoke process migration, it calls a kernel utility function migrate (), and passes to
it as parameters a pointer to the process table entry of the user process to be migrated,
and the identity of the processor to which migration should be performed.
Migrate () sends a software signal to the user process to inform it that it is being
migrated, and passes it details of its new pipes to be used for making kernel calls and
for receiving results of these calls (i.e. those of the processor to which it is migrating)
and the UNIX process identifier of its new processor (which it needs for signalling
purposes). A signal handling routine provided in the user process library file
"interface.o", which has been linked into the user process deals with receiving this
new information, and hence this remains transparent to user-written code. The kernel

of the processor from which the process is migrating then constructs a message

128

(mig_info), into which it places all information regarding the migrating process
together with all details concerning its owned ports (ie their names, links, and any
messages which have arrived but have yet to be delivered to the process). This
message is then transmitted to the processor on which the migrating process is to
reside, the corresponding process table entry is re-initialised and all of the process's
owned ports are marked as being resident at their new location; finally the new location
of such ports is broadcast to all processors to allow them to correctly route subsequent
user messages. At this point the migrating process is considered to have left its

original processor, and to be in transit to its new processor.

The receiving kernel of a "migrating process" message (mig info), installs the
relevant information in its local process table, and updates its port table to include that
process's owned ports with any user messages which were in the ports' queues; in
order to maintain consistency of the interconnection of user process ports, their link
information (i.e. pointers into the port table are also appropriately updated). The
migrating process is now treated exactly as a normal local process, and becomes
available for scheduling; thus all future kernel calls made by the process will now be

serviced by its new processor's kernel.

This entire mechanism is summarised in the pseudo code shown below:

MIGRATE (process, processor) /* routine to migrate a process to another
processor */

{

Put process table entry into a message (mig_info)

for (each of process's owned ports)
Put port name in mig_info; '
Mark corresponding port table entry's residency as new processor i.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>