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THESIS SUMMARY

Orbit determination from artificial satellite observations is a key process in obtaining
information about the Earth and its environment. A study of the perturbations
experienced by these satellites enables knowledge to be gained of the upper atmosphere,
the gravity field, ocean tides, solid—Earth tides and solar radiation.

The gravity field is expressed as a double infinite series of associated Legendre functions
(tesseral harmonics). In contemporary global gravity field models the overall geoid is
well determined. An independent check on these gravity field harmonics of a particular
order may be made by analysis of satellites that pass through resonance of that order.
For such satellites the perturbations of the orbital elements close to resonance are
analysed to derive lumped harmonic coefficients. The orbital parameters of 1984-106A
have been determined at 43 epochs, during which time the satellite was close to 14
order resonance. Analysis of the inclination and eccentricity yielded 6 lumped harmonic
coefficients or order 14 whilst analysis of the mean motion yielded additional pairs of
lumped harmonics of orders 14, 28 and 42, with the 14th order harmonics superseding
those obtained from analysis of the inclination.

This thesis concentrates in detail on the theoretical changes of a near—circular satellite
orbit perturbed by the Earth's gravity field under the influence of minimal air—drag
whilst in resonance with the Earth. The satellite 1984—106A experienced the interesting
property of being temporarily trapped with respect to a secondary resonance parameter
due to the low air—drag in 1087. This prompted the theoretical investigation of such a
phenomenon. Expressions obtained for the resonance parameter lead to the
determination of 8 lumped harmonic coefficients, coincidental to those already obtained.
All the derived lumped harmonic values are used to test the accuracy of contemporary
gravity field models and the underlying theory in this thess.

KEYWORDS AND PHRASES . Resonance

. Lumped Harmonics
. Near—Circular Orbits
«  Gravity Field

. Tesseral Harmonics



DEDICATION

I dedicate this thesis to my parents for their endless support and encouragement
throughout the years.



ACKNOWLEDGEMENTS

I would like to express my gratitude to the Science and Engineering Research Council,
to the Ministry of Defence and to the University of Aston for financial support.

I would also like to thank Dr. Philip Moore for his patience and support given as a
supervisor and a friend and Lynn Burton for making an excellent job of typing this
thesis.



CHAPTER 1

CHAPTER II
2.1
2.2
2.3
2.4

CHAPTER III

3.1
3.2

3.3
3.4
3.5
3.6
3.7

CHAPTER IV

4.1

4.2

4.3

4.4

4.5

4.6

LIST OF CONTENTS

THESIS SUMMARY
DEDICATION
ACKNOWLEDGEMENTS
CONTENTS

LIST OF TABLES

LIST OF FIGURES

INTRODUCTION

ORBITAL PERTURBATIONS

GRAVITY

ATMOSPHERIC DRAG

SOLAR RADIATION PRESSURE (SRP)

LUNI-SOLAR AND OTHER THIRD BODY
ATTRACTIONS

DETERMINATION OF ORBITS AND ANALYSIS OF
ORBITAL RESONANCES FOR THE USSR SATELLITE
1984-106A

ORBITAL ANALYSIS

14th ORDER RESONANCE FOR COSMOS 1603 (1984
106A)

SECONDARY RESONANCE

ANALYSIS OF THE ORBITAL INCLINATION

ANALYSIS OF THE ECCENTRICITY

ANALYSIS OF THE MEAN MOTION

COMPARISON WITH OTHER SATELLITES OF SIMILAR
INCLINATION AND THE GEM MODELS

THE RESONANCE ANGLE

EXPLICIT TIME DEPENDENCE OF THE RESONANCE
ANGLE

LIBRATION

CIRCULATION

THE EFFECT OF AIR-DRAG ON THE RESONANCE
ANGLE

DETERMINATION OF LUMPED HARMONIC VALUES
FROM THE RESONANCE ANGLE

2nd ORDER RESONANCE EFFECTS

5

Page

oo ~ i H W

12
12
30
35

36

38
38

46
49
53
55
56

63

66

66

71

72

75

77
79



CHAPTER V
5.1
5.2
5.3

CHAPTER VI
6.1
6.2
6.3
6.4
6.5

CHAPTER VII

7.1

7.2
7.3

CHAPTER VIII

PERTURBATIONS ON NEAR-CIRCULAR ORBITS
THE ZONAL HARMONICS

RESONANCE

ATMOSPHERIC DRAG

ZONALS AND RESONANCE PERTURBATION ON A
NEAR-CIRCULAR ORBIT

EQUATIONS OF MOTION

SHALLOW @&+ o RESONANCE

DEEP ® —-w RESONANCE

DETERMINATION OF LUMPED HARMONICS FROM
e cos ® AND e sin ®

FROZEN ORBITS

AIR-DRAG PERTURBATIONS ON A NEAR-CIRCULAR
ORBIT IN RESONANCE WITH THE EARTH'S GRAVITY
COMBINING ZONAL HARMONIC PERTURBATIONS
WITH AIR-DRAG

EARLY STAGES IN THE LIFE OF A SATELLITE
INCORPORATING RESONANCE

CONCLUSIONS

REFERENCES

89
94
99

102
102
108
109

114

120

123

123

125

126

129

133



3.1

3.2

3.3

3.4

3.5

3.6

4.1

6.1

6.2

8.1

8.2

List of Tables

Sources of the observations used in each run.

The 43 sets of orbital elements with their standard deviations and the value
of epsilon.

The order of magnitude of terms in the equations for the theoretical
changes in the inclination, mean motion and eccentricity at resonance,
expressed as a percentage of the dominant terms.

Monthly average EUV index, temperatures and estimated air—density at
perigee height of 840km during 1987.

A summary of the lumped harmonic values obtained from analysis of the
changes in the inclination and mean motion for 1984-106A along with
some earlier results (King—Hele et al., 1979) and the computed values
given by GEM-T1 (Marsh et al., 1988), GEM-T2 (Marsh et al., 1989)
and PGS-3337 (Marsh et al., 1990).

A summary of the lumped harmonic values obtained from the analysis of
the change in eccentricity for 1984—106A along with some earlier results
(King-Hele et al., 1979) and the computed values given by GEM-TI
(Marsh et al., 1988), GEM-T2 (Marsh et al., 1989) and PGS-3337
(Marsh et al., 1990).

The results of a least—squares—fit procedure determining parameters from
the resonance angle, @.

The result of a least—squares—fit procedure determining lumped harmonic
coefficients from e cos @ and e sin .

A summary of the lumped harmonic values obtained from the analysis of
the eccentricity and analysis of e cos @ and e sin @ along with
computed values by PGS-3337 (Marsh et al., 1990).

A summary of lumped harmonic values obtained from analysis of the
changes in the inclination, mean motion and the resonance parameter @
for 1984—106A along with the computed values given by GEM-T1
(Marsh et al., 1988), GEM-T2 (Marsh et al., 1989) and PGS-3337
(Marsh et al., 1990). ,

A summary of lumped harmonic values obtained from analysis of the
eccentricity and the parameters & and 1 for 1984-106A along with the
computed values given by GEM-T1 (Marsh et al., 1988), GEM-T2
(Marsh et al., 1989) and PGS-3337 (Marsh et al., 1990).

Page

39

41

46

59

65

78

116

116

131

132



2.1
2.2
2.3
2.4
3.1
3.2
3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

5.1
6.1

6.2

6.3

6.4

6.5
6.6

List of Figures

The orbital ellipse.

Orbital orientation.

Variation of density with temperature at perigee height of 840km.

Third body attraction.

Variation of ® and ®.

Variation of ® —® and ® - .

Variation of perigee height, h,=a(1-¢)-a,.

Values of the inclination cleared of other perturbations with error bars and
theoretical fit.

Values of the eccentricity cleared of other perturbations with theoretical fit.
Values of the observed mean motion with theoretical fit.

Variation of density at perigee height 840km during 1987 and linear fit.
The residuals of a least—squares—fit procedure applied to equation (4.28)
for ® (incorporating a cubic time coefficient in the drag model).

The residuals of a least—squares—fit procedure applied to equation (4.42)
for @, suppressing the determination of 28—order harmonics.

The residuals of a least—squares—fit procedure applied to equation (4.42)
for @.

(a) and (b) representing orbital motion in the (é , n) plane.

Observed values of the eccentricity cleared of luni—solar perturbations,
with theoretical fit.

Observed values of the argument of perigee cleared of luni-solar
perturbations with theoretical fit.

The residuals between the calculated and the observed values of the
eccentricity.

The residuals between the calculated and the observed values of the
argument of perigee. ‘

The residuals between the calculated and the observed values of € cos .
The residuals between the calculated and the observed values of e sin .

Page

15
16
31
37
50
50
51

54
56
57
60
79
86

87
94

117

117

118

118

119
119



CHAPTER 1

INTRODUCTION

Throughout the years science has given rise to many ingenious methods of exploration
and investigation. Since the launching of the first satellite in 1957, orbit determination
from satellite observations has been an essential process in obtaining information about
the upper atmosphere, the gravity field, ocean tides, solid-Earth tides and solar radiation.
The perturbations experienced by these satellites saw the advent of a whole new

scientific approach to the investigation of the Earth and its environment.

Over the past decade substantial improvements have been made in modelling the Earth's
external gravity field. The global models GEM-T1 (Marsh et al, 1988), GEM-T2
(Marsh et al, 1989) and the more recent PGS-3337 (Marsh et al, 1990) were derived by
analysing thousands of optical, laser and doppler measurements of several satellites.
The gravity field is expressed as a double infinite series of associated Legendre functions
(tesseral harmonics). In the global models the overall geoid is well determined, but
individual tesseral harmonics of high degree and order may be poorly determined. An
independent check on these gravity field harmonics of a particular order may be made by
analysis of satellites that pass through resonance of that order. For such satellites the
perturbations of the orbital elements close to resonance are analysed to derive lumped
harmonic coefficients. Such lumped values are applicable to a particular inclination.
However, by studying satellites over the full range of orbital inclinations, individual
‘coefficients can be derived by the weighted least-squares analysis of the lumped

harmonic values and their analytical formulation (King—Hele et al, 1979 and 1986).

The availability of observations for the USSR satellite Cosmos 1603 (1984-106A)
enables lumped harmonic values to be derived from both the inclination and eccentricity
in a procedure which is now familiar (King-Hele, 1985). The results obtained from the
eccentricity yield an improvement on values obtained previously. The values obtained

from the inclination are comparable to previously derived values, but are superseded by
9



more accurate results from analysis of the change in the mean motion. This is the first
time that reliable values are obtained in this manner, and their nominal accuracy proves

to be much better than in any previous evaluation.

During the period of observation Cosmos 1603 experienced low drag, a direct
consequence of its perigee height of 840km and the low solar activity in 1987. The
combination of low drag and the near commensurability of the satellite with respect to
the secondary resonance parameter ¢ — @, where @ is the primary resonance variable
and @ the argument of perigee, yields the physically interesting property of the satellite
being temporarily 'trapped’ in resonance. For this USSR satellite the resonance effects
are sufficiently large such that they dominate the low drag effects, with the result that
@ — o exhibits libration about its mean value. In conséquence, the eccentricity increases

quasi—secularly whilst the perigee height decreases.

The secondary resonance phenomenon observed for Cosmos 1603 sparked off a detailed
discussion of near-circular orbits perturbed by resonance in the presence of low air-drag.
In particular, the consequence of minimal drag effects prompted an extended
examination of the resonance angle, with the aim of obtaining expressions for @ given
explicitly in terms of time. Studies have previously been carried out in this area by
Gedeon (1969) and Sochilina (1982). Initially the theory is developed for the resonance
parameter incorporating the dominant resonance term only. Dragis introduced through a
small correction term which models air-density variation. Finally the smaller resonance
terms are introduced. The resulting expressions facilitate the evaluation of lumped
harmonic coefficients using both the primary resonance parameter @ and the secondary
resonance parameter @ - @. The derived values are in good agreement with those
obtained here from the eccentricity and the mean motion. The determination of lumped
harmonic values is achieved using the secondary resonance parameter in conjunction
with the variables £=e cos @ and 7 = e sin @, as used for near-circular orbits. The
resonance problem for two degrees of freedom has been examined previously by Moore

(1983 and 1984). Although this approach is more demanding than the method employed

10



for the eccentricity alone, accurate values are obtained. This technique utilizes the

modelling of the resonance angle in the presence of low air-drag.

The equations of motion described by & and 1 are investigated in detail. Analytical
solutions are obtained for shallow @ resonance and for both deep and shallow @ —
resonance. The occurrence of deep secondary resonance as experienced by Cosmos
1603 gives an excellent opportunity to investigate the validity of the theory developed.
In particular the equations of motion, represented analytically as an infinite series of
Bessel functions, prove to be sufficiently accurate to yield lumped harmonic values
comparable to those obtained from numerical techniques alone. The occurrence of
frozen orbits is briefly examined, with the view to reducing the rates of change of e and

® for a near-circular orbit experiencing dominant resonance perturbations.

Finally, air-drag is introduced analytically to the equations of motion for & and M, which
are then developed to yield a unified solution combining gravity and drag. The main
observation of the effect of even minimal drag in contrast to the drag-free result is that

the eccentricity tends to zero.

This thesis examines in detail the theoretical changes of a satellite orbit perturbed by the
Earth's non-uniform gravity field under the influence of minimal air-drag and other small
forces, e.g. luni-solar perturbations. In particular, the phenomenon of ‘resonance’ is
explored. The theory and numerical results presented in this thesis add to our
knowledge of the Earth's gravity field and especially to our understanding of the

resultant satellite motion.

11



CHAPTER 11

ORBITAL PERTURBATIONS

§2.1 GRAVITY

A satellite in orbit about the Eanh can be treated, to a first approximation, as a particle
under an inverse square law of attraction, since the departure of the Earth from a perfect
sphere is small. The resulting motion is described by an ellipse which lies in a plane that
intersects the centre of mass of the Earth (which will henceforth be referred to as the
Earth's centre). The acceleration of the satellite towards the Earth's centre can thus be

written

)
i

(2.1

where L =GM, G is the universal gravitational constant, M is the mass of the Earth
and 1 is the radial distance of the satellite from the Earth's centre. This acceleration is
the magnitude of a vector a directed along the line between the satellite and the centre of
the Earth. The vector a of magnitude a, i.e. (2.1), will be obtained by expressing the

acceleration as a gradient of a scalar, called a potential. Thus,

a=VV (2.2)
where V =

(2.3)

In (2.3) V is shown as a positive quantity, which is consistent with the sign convention

of astronomy and geodesy. In physics V is conventionally taken to be negative.

To describe orbital motion it is desirable to develop a coordinate system that reflects the
structure of the dynamical system. We will see initially that motion follows the path of

an ellipse and later that this ellipse is slowly changing in shape and orientation. Due to

12



symmetry of the geometry, it is therefore preferable to develop elliptical motion in polar
coordinates and to convert the solution of the equations of motion from cartesian
coordinates to spherical polar coordinates. The aim ultimately is to make a final

transformation to the orbital elements coordinate system.

Elliptical Motion
The equation of motion for a particle in a vacuum, moving under Newton's inverse

square law of gravitational attraction, is described in polar coordinates (r, © b
q £gr P y

(King-Hele, 1987)

e
o= -5, (2.4)

where dots denote differentiation with respect to time. If there are no perturbations and

the only force acting is the radial attraction then the transverse acceleration is zero, i.e.

1d :
"r‘a (r2 9) =0
or 129 = constant = h, say. (2.5)

Using equation (2.5), the general solution to (2.4) is

%— = Eui[l +ecos(8 - B)], (2.6)

where e and B are constants. It is convenient to choose the 6-axis so that B =0

and then (2.6) becomes

(1 + € cos 8) 2.7)

where

13



This is the polar equation of a conic with eccentricity e, semi-latus rectum p and one
focus at the centre of the Earth. If e < 1, the orbit is an ellipse and if e > 1, the orbit is a
hyperbola. The angle © is called the true anomaly. From here onwards only the ellipse

is considered.

The semi—major axis of this ellipse can be written as (King—Hele, 1987)

_1 __p
a—z(ra+rp) —(1_62)

where r, = a(l +e) and I, = a(l — e) are the apogee and perigee distances

respectively, as shown in Fig. 2.1.

Thus, (2.7) becomes
a(l — ez)

r=(1+ecos6)

which is the standard equation for an elliptic orbit.

In place of the true anomaly it is useful to use E, the eccentric anomaly, which is

related to the true anomaly by

r cos 0 a(cos E —e) = q

2.
a(1 - 62)1/2 sinE = q, 8

r sin O

where q; and g, are the components of q, the position vector in the plane of the

ellipse. Figure 2.1 illustrates some of the parameters described.

14
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Fig. 2.1. The orbital ellipse.

From (2.8) it follows that

I = A /qf + q5 = a(l —ecos E). (2.9)

On differentiating (2.9) and then utilising (2.8), we have

) qp € ‘
dr = aesinEdE = ——— - dE (2.10)
(1 - ez) 12

and similarly with equation (2.7)

r2 ¢ sin 0 qor €

=—df = ———— db. 2.11
a(l - ez) a(l - e2) ( )

Equating (2.10) and (2.11) and using equation (2.5), we obtain

a2(1—e cos E) dE = (ua)'? dt . 2.12)

15



Hence the velocity components §; and ¢, may be written, utilizing equations (2.8)

and (2.12), as

day gB _ (&"2 sin B
U =g d& T " \a (1 —ecos E) 2.13)
Y SRl
92 = g da T a (1 —ecosE)

Six orbital elements are required to specify the motion of a satellite in its ellipse,

replacing the six cartesian elements {x, Y, Z, X, Y, z} . These orbital elements may
be denoted by the set of parameters {a, e, i, Q, w, 06 } where i,  and @ are
defined in Fig. 2.2 — i is the inclination of the orbital plane to the equator, €2 the right
ascension of the ascending node and « the argument of perigee. The ascending node is
the point, N, where the satellite crosses the equator going north. The Equinox, v, is

the fixed point in the sky which serves as a reference for measuring star positions and

Q is measured positively eastwards from that point.

AX3

PROJECTED ORBIT

C = CENTRE OF EARTH

Y = EQUINOX
N = ASCENDING NODE

Sl = PROJECTED SATELLITE
~ POSITON

pl = PROJECTED PERIGEE
~ POSITION

Fig. 2.2. Orbital orientation.
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Sometimes the mean motion, n, is specified instead of a, since, applying Kepler's law,

n2a3 = and the true anomaly may be replaced by either the eccentric anomaly, E, or the

mean anomaly, M, written
M= MO + nt
where M, is the value of M at the epoch t=0.

It is easier to understand the physical interpretation of some of the parameters described, by
examination of Figures 2.1 and 2.2 —a and e define the shape of the orbit; i and Q give
the orientation of the orbital plane in space and @ defines the position of perigee in the
ellipse, whilst 8, E or M give the angular positon of the satellite relative to perigee. We
choose to use M in preference to 6 or E. The set of six elements {a, e, 1, Q, w, M}
are known as Keplerian elements and at any instant describe the position of a satellite in an

Earth—centred, inertially fixed coordinate system.

The relationship between the orbital coordinate system, q=q(q1, q2, q3) and the

rectangular coordinate system, X = x(xl, Xq, x3), is given by three independent

rotations (see Fig. 2.2). Transforming from the x—system to the q—system comprises

of :-

i) a countgr—clockwise rotation about the x3—axis from the Equinox to the
ascending node, N, denoted R3(Q),
ii) a counter—clockwise rotation about the x;—axis from the equatorial plane to the
orbital plane, denoted R;(i), and
1il) a counter—clockwise rotation about the x;—axis from the node, N, to the

argument of perigee, P, denoted R3(co).

Hence,

=~
I

gx R3(0‘)) Rl(i) R3(Q)

R,, = Ri(-Q) Ry(-) R3(-o)

17



where R, is the wansformation matrix converting from x-coordinates to

g—coordinates and R, is the the transformation matrix converting from g—coordinates

to x—coordinates. Clearly R, is the inverse of Ry, i.e. Ry = R;; :

Using the standard form of rotation matrix Ri(G) to rotate the coordinate system

through O degrees, counter—clockwise, about the x;-axis, Ryq is written as

s Qos w—sn Qoosisnw —cos Qsinw—sn Qoosiocs @ sinQsini
qu= smn Qoos W +oos Qosisnw —snQsn o+ s Qoosiocos w —oos sini
sin 1 sm ® s 1008 @ oos 1

Thus the relationship between the Keplerian elements { a, e, 1, Q, o, M} and the

six cartesian elements {x, y, Z, X, ¥, 'z} is given by

I

qu{Q,i, co} q {a, e, M}

i = Ry{Q.1,0)d{ae M) 2.14)

where q and ¢ can be written, from equations (2.8) and (2.13) after utililizing

n2a3 =, as
a(cos E -¢) —sin E
) na 1
q = a(l - 32)1/2 sin E|> q= (1 —ecos E) (l - e2) 2 cos E (2.15)
0 0

where E is a function of the mean anomaly M, obtained by integrating (2.12) (Kaula,
1966), namely
E —esinE = M.

The developments this far apply solely to motion in a purely central field, but interest in
orbital perturbations is mainly due to the fact that the Earth's gravitational field is non—
central, thatis (2.2) holds but V has a non central form. This is a direct consequence

of the Earth having a non-uniform shape and density distribution. Consider the effect

18



of several particles of masses M; at distance r; . The combined acceleration in (2.2)
can be expressed as the gradient of a potential which is the sum of potentials V;, given
by equation (2.3). If these particles are conglomerated to form a continuous body of
variable density p, this summation can be replaced by an integration over the volume of

the body. Thus, in the cartesian coordinate system, this may be summarized by,

V=G Jﬂ P2 E)’: 3 Zz)) dx dy dz. (2.16)

However, we wish to express V in terms of the Keplerian elements and then develop

the equations of motion in this coordinate system.

At a particular instant in time the Keplerian ellipse is known as the instantaneous or

osculating orbit. The six elements {a, e, 1, Q, w, M} are called osculating
elements. If V differs from a central field very slightly (as in the case for the Earth)
then the parameters of the ellipse will change slowly, allowing the use of osculating

elements as a convenient coordinate system.

The three 2nd order equations of motion in cartesian coordinates can be expressed as six
15t order equations by treating the velocity components as variables, independent of the

position components. Thus,

d

axi = X

d, _ (=123
dt ™M ox;

where x; and x; denote inertially fixed rectangular components of position and

velocity, respectively. Representing the rates of change of the six Keplerian elements by

dsy /dt, where s, denotes any of {a, e, 1, Q, 0, M} and using the chain rule, then

19



ox; dsg

e SR 2.17)
sy dt
and i=1273)
a).( dSk aV
— === — 2.18
ask dt axi ( )

where the summation convention is assumed whenever there is a repeated subscript; the

subscripts k running from 1 to 6.

Multiplying (2.17) by — axi/as 9, multiplying (2.18) by 0x;/0s o and adding yields,

ds JF
[s0- 5] 5 = %5 (2.19)

where
axi a )il a).(l a X i

[SQ’ S| = T

- (2.20)
ds; dsy Osy; Osy

which is known as Lagrange's bracket and

which is known as the force function. This is the negative of the total energy as used in

physics. V is the negative of the potential energy and T is the kinetic energy, written

DI

.. 1,.2 .2 V)
T =5%% = i—(ql + qz) =B @.21)

from (2.15). Itis usual to express the force function, using (2.21), as

F=E4+R-T=4 +R (2.22)

20



The function R, comprising of all terms in V except the central term, is known as the

disturbing function.

Inspection of (2.20) reveals that [sy, sp] =~ [sy, sx] and hence [sk> sk] vanishes.

Thus there are fifteen different Lagrange brackets to be evaluated. These are determined
by differentiating equation (2.14). A useful property of Lagrange brackets that

facilitates their evaluation is their time invariance, that is
5
- SQ_, Sk = O,
o 52 5]

hence q and q that appear in (2.14) can be evaluated at any convenient point, such as

perigee, where E =0.

The complete set of non—zero results is, (Kaula, 1966)

[ 1]
[©. ]
[2. ]
[0, a]
[0, <]

[2, M]

i, @]
2, ]
e, @]
a, o]
e, o]

-[M, o]

—na2(1 - 62)1/2 sin i,
(1 - ez)”2 cos i na/2,
—naZe cos i/(l - 62)1/2,
(1 - e2)"? na/2,
-—naze/(l - 62)1/2,
-na/2.

(2.23)

i

]

The substitution of expressions (2.22) and (2.23) into (2.19) and the solution of the six

simultaneous eduations for the dsk/dt yield Lagrange's planetary equations (Kaula,

1966),
da _ 2 R
dt = na oM i
de _ 1-e2 R (1-¢?)"oR
dt = na% 9M nae 9o
di cos i oR 1 oR

de na2(1 - e2)1/2 sini 9o na2(1 - e2)1/2 sini 0Q

21



4 _ ] R

dt " na2(1 - e2)"2sini o

do _ cos i @_R“_F(l—e)l/za_li
de na2(1 - 62)1/2 sin i dw na%e  ge
dMm 1 —e20dR 2 oR

da T " T Thaze Sg_ﬁzég‘

(2.24)

The Earth’s spherical harmonic potential

A particular component a, , of the acceleration vector a, derived from a point mass

potential of equation (2.3), may be written as

QU

\%

Hw|><

ax

and for the second derivative,

e2AY 1  3x2
—=u(— + )

ox?2 B

Adding together all three components of the second derivative yields Laplace's equation,

ViV =

2 2 2 2 2 2
8V+3V+8V=u_i+3(x +y +z)=0.
ox2  dy2  0z2 S r

The same result would be achieved for any element of mass pdx dy dz in the potential
V of equation (2.16). It follows, therefore, that the gravitational potential (central and
non—central parts) satisfies Laplace's equation. To obtain an expression for V in terms
of the osculating elements it is necessary to solve Laplace's equation in spherical polar
coordinates and then transform the solution to Keplerian coordinates. Laplace's

equation in spherical coordinates becomes

0 oV 1 0 oV 1 0%
2v2y = = [r2 %) 4 2 A = -0 (225
' or (r arj cos 0 a¢(°°S ® 8¢) ’ cos2¢ dA2 225
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where 1 is the radial distance, ¢ the latitude and A the longitude (measured eastward).

These coordinates are related to the cartesian coordinates by

r cos ¢ cos A

rcos ¢ sin A .
z = r sin ¢

To express the variations of the potential V in spherical polars, it would be convenient

if V had the form
V = R @(¢) A(})

where R, ® and A are each explicit functions of only r, ¢ and A respectively. The

solution to (2.25) can be obtained in this form and may be written (Kaula, 1966) as

oo

v=ts _Z i (%‘)Qpﬁ(sm 0) +i zi (%)ﬂpf(sm 0)[Cppn 008 Tk + Spyy sin A]
=2 g=2 m=1

2

(2.26)

where, a. is the Earth's equatorial radius, P Q(sin ¢) is the Legendre polynomial of
degree £ and argument sin ¢, Pﬂm(sin ¢) is the associated Legendre function of
order m and degree £, J; are the zonal harmonic coefficients and Cy;, and Sy, are
the tesseral harmonic coefficients. To make terms and coefficients more readily
comparable in numerical work, it is generally more convenient to use normalized

functions and coefficients, namely

Cim = Cpm/Npm Sim = Spm/Ngm
and

-F-,Qmp(i) = NJZm F,Qmp(i)
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where the normalizing factor is given by

2 (2 -m) (22 + 1)(2-384,)
Nim = (2 + m)!

and the Kronecker delta Jy,, isequalto 1 for m=0 and O for m#0.

Conversion of the spherical harmonic potential is achieved after extensive manipulation
of algebra and trigonometric terms (Kaula, 1966). The potential is expressed in terms of

the six Keplerian elements, by

2-m even
e L . ~(—:Ilm
A" z z 2 ( Xda) Fomp(1) Gypq(®) B COS Wompq
2=0 m=0 p=20 = _Sﬂm
2-m odd
2-m even
S
T e S0 W) mpq (2.27)
Cﬂm
f-m odd
where Vompg = (2 —2p)0 + (£ - 2p + M + m(Q - 8) . (2.28)

Here, 0 denotes the Greenwich Sidereal Time and FQmp(i) is Kaula's inclination

function given by

o (20 — 20! ot
Famp() _2 (2 — )12 — m — 2t)! 228-2 o k

t

XSZO( ™) cost iZ (2 - m - 2 + s)(prg 5 )

where k is the integer part of (Q—m)/2, t is summed from O to the lesser of p or k

and c is summed over all values making the binomial coefficients non—zero.
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Gypq(e) is a function of eccentricity given by (Tisserand, 1889, p256), where

Gype®) = (-1 (1 + [32)‘1[3@ Zpﬁqu Qppqe B
k=20

given
- © .
1 +N1—e2’
h
P ok —Z (2p' - 211)(—1)r ((Q —2p’ + Q')er
pgk — h — r!
r=20 f 2B
h=k+q, ¢ >0; h=k q <0;
and
h ’ ’ T
Q =2 2p Y1 ((2=2p"+ q)e
2pgk (h._r)r! 2[}
r=20
h=k q>0; h=k-q, q <0;

4

The disturbin tential

Writing
[~ _ "] 2-meven _ 2-m even
(p?mpq = (_:Qm SIN g mog — iﬂm COS W mng
L—ng_ 2-m odd Comd g oad
~ "] 2-meven T 2-meven
(pi’mpq = Sﬂm COS Wympq + iﬂm SHRVS,
L=Somt g odd Comt §_m odd

the non—central part of the geopotential (2.27) is given by

2 2
SIPIPIPNC LT
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(2.29)

pP=p q =q for PSQ/2; pp=2-p, q =-q for p>Q/2.

(2.30)

(2.31)



Denoting

F pmpi) = "—p—aFQ”f D ang G opq(®) = aG*—Lg ©
1 €

and considering a general term, Ry, of the disturbing potential and upon utilizing

equations (2.28) and (2.30) the derivatives in Lagrange's planetary equations (2.24),

may be written

niz%pg _ (2 : 1) n (ae) Fpmp) Gppq(®) @impq

LBme (2 F) 0§ ® Ol

;}Q&)R%Pﬂ = n (%)ﬂ F jmp() Gpq(®) <p§mpq

nzz@g—gm = -n (%)ﬂ Fymp() Gppq(e) [2-2p] (p‘;lmpq

niza%‘;“ =-n (%)R Fpmp(D) G pq() [m] ¢

niﬁ‘%ﬁﬂﬂ =~ 0 (%) Fung® Ga(@ [£-20%] 0] gy -

(2.32)

Linear Perturbations

The term of the gravitational field which dominates the disturbing function R, is that

with (Q , m) = (2, O), since C,q (or - 12) is at least 100 times greater than any

other Cy,, . Thus, we write

C o\ .
Ry = H a20 (%) Z Fo(i) Gopg(€) cos[(2 - 2p)@ + (2 - 2p + QM]

pP-q
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summing over p and q only. Assuming that the coefficients in R,, are of about the

same magnitude, the terms that do not contain M will be dominant, since M completes

a full cycle in the relatively brief period of one orbital revolution.

The summation limits in (2.27) and (2.29) indicates that the only term of R, from

which M is absent is when (p, q) = (1, 0), this being

Ry = HE0 @Y E o 2.33
2010 = 7 |2 ) Faou® Gao(e). (2.33)

Evaluating Fy, and Gy, and replacing C,, by —J, , Lagrange's planetary equations

yield

[1-5/4 sin2i]

(
1 cos i
(

1 —e2)? 2

M = n+ 2, (%)2(——1~——[1—3/4sin21] .
1 —

These are the first order linear perturbations experienced by the osculating elements, due

to the dominant J, zonal harmonic.

Tesseral contribution and resonance
Resonance occurs if the disturbing potential is constant or slowly changing. R, as

given by equation (2.31), involves time through the two quantities ((0+M) and (Q—G)

Hence, there will be resonance whenever
a((i) + M) + B(Q - 9) =0 (2.34)
where o and P are two mutually prime integers. The physical interpretation of

equation (2.34) is that B : o resonance occurs if a satellite performs [ nodal
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revolutions for a rotations of the Earth, relative to the precessing orbital plane. The

resonance variable, @, can thus be taken as
Dop = afw + M) + B(Q - 6) (2.35)

and equation (2.28) becomes

Vimpg = Y(Da[i - q

where 2, m,p and q are subject to the inequalities 2 < <eo, 1<m<{ and

0 < p < £; and the equations linking 2, m,p and q with o, 3 and y are
Q -2p+q=0ay, m=py and 7yv=1,2... (2.36)

We introduce another parameter, k, given by k = oy — g, which is used throughout
resonance theory. Purely for notational convenience in subsequent chapters pertaining

to resonance, we define

- 2-m even . 2-m even
A A CQ . S 9
q)ﬂm = q’JZm,%(JZ—OL’Y),O = " sin Y®up — | _ " cos YPqp
Cy

_"‘Sﬂm- 2 -m odd 2-m odd

- 2-m even - 2-m even
B B C ] S 9 .
q)Jlm = (pﬂm,li(ﬂ—a‘y),o = " cos Y(DO‘B + - " Sin Y(DOLB :
Cy

-—Sﬂm— 2-m odd 2-m odd

(2.37)

For a satellite experiencing P : a resonance, the rate of change of inclination i,

produced by a relevant pair of coefficients, C om and §,Qm , may be written (King--Hele

et al, 1979),
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:i_h;= Egl_s_inﬁﬁ (%e)ﬂﬁhp@ Ggof® G(cosi—m)JR[jﬂ—“ﬂ((_ZQm - E Q;n) e&p [j(Y ®-q (D)ﬂ

(2.38)

where B denotes the "real part of", j =+-1 and ?Qmp(i) is Allan's normalized

inclination function (Allan, 1973), written as

I m)! 2
S am k(22 = 2p p

xc32-m-2p-2k gm-0+2p+2k

where ¢ = cos i/2, s = sin i/2, and the summation is over all permissible values of k,

ie. fromk = max(O, QQm—2p) to k= min(!l—m, 2Q~2p).

: . . . . ..o di.
This expression along with the real and imaginary notation in qr s preferred here

because historically it is this notation that has been consistently used in all previous
work pertaining to analysis of orbital resonances. To avoid confusion, this notation will
be used in chapter 3 only and nowhere else. Allan's inclination function differs from

Kaula's by a factor of (—j) for odd 2-m.

By similar analysis, the rate of change of eccentricity, e, caused by the (Q , m)

harmonic near B : o resonance can be written (Gooding et al, 1989) as

0 K 1 —e2)'2 _k
% (1 e2)1,2 Gf) Fpms(® Ggpq(e){( +q)( _ e?) }

* J&[jﬂ—mﬂ(?:ﬂm - j"s'ﬂm) exp [i(y®@ - q m)ﬂ (2.39)

whilst the rate of change of the mean motion n is given by
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&lE

- _3n2ay (%)Q Fpg® Ggpe(@ & [1271(Cy  — 53m) exp [ @ - 0)]] .

(2.40)
§2.2 ATMOSPHERIC DRAG

The chief perturbations of the atmosphere on a satellite orbit are secular changes
experienced by the semi—major axis and the eccentricity, with smaller effects on the
inclination caused by atmospheric rotation. On examining the changes in the semi—

major axis and eccentricity it can be shown (King-Hele, 1987) that

32
% - _a2 pb (1 +ecos E)1 (2.41)
(1 —ecosE) 2
and
2
& _apd G—ff%ssg) (1 - e?) cosE (2.42)

where p is atmospheric density, E is the eccentric anomaly and & is a scaling

coefficient incorporating the drag coefficient Cp, the surface to mass ratio S/M and

the effect of atmospheric rotation, F, given by

(2.43)

The air density at a particular height fluctuates in accordance with solar activity and
geomagnetic activity and follows a day-to-night variation which is particularly
significant for heights above 250km. In addition, the density varies with latitude and
season. The upper atmosphere is heated predominantly by extreme ultraviolet radiation
or EUV. This radiation has a short—periodic and a long—periodic variation. The short—
periodic variation of 27 days is commensurate with the rotation period of the sun, whilst

the long—period variation, of approximately 11 years, is a result of sunspot activity. A

common measure of EUV is the 10.7cm solar flux, denoted F;,4 , (which has units of
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10-22 Wm-2 Hz-1). This index is taken daily and yields the night—time minimum

temperature of the upper atmosphere through the empirical model of Jacchia

(CIRA, 1972), namely
T, = 379 + 3.24F57 + 1.3(1“«107 - ?10_7) K (2.44)

where _1510_7 is the mean value of Fp- over four solar rotations (108 days) centred on

the day in question.

The average daily temperature, T(,y), can be obtained approximately from T, by
multiplying the latter by the factor 1.15, (CIRA, 1972). Although this may only be an
estimate, this direct relationship between T. and T, is found to be good for the

whole range of heights.

Atmospheric density varies with temperature and it is therefore important to be aware of
the extent of both short-term and long-term fluctuations in the average daily
temperature. Air—density can be evaluated, for fixed heights, from the average daily
temperature by means of tables, such as CIRA (COSPAR International Reference
Atmosphere). An example of this variation with temperature, for a height of 840km, is

given in Fig. 2.3.

3
= 25"
- 1
~ 20+
w) o
- 15_
[ ]
= 10
2 5
= |
S 0 +r—r—Tr—r Ty T
a

500 600 700 800 900 1000 1100 1200 1300
Average Daily Temperature, T(av) (Kelvin)

Figure 2.3 Variation of density with temperature at perigee height of 840km.
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In developing a density model appropriate for orbital theory, we cannot account for all
the irregularities in solar activity. The aim of any model, therefore, is to provide a
smooth curve for the theoretical density changes, giving rise to mean elements and their
rates of change, upon which will be superimposed small, irregular oscillations. These

fluctuations will not affect the equations which are independent of time.

From knowledge of the atmosphere, the density can be assumed to exhibit an

exponential decrease with height y (King-Hele, 1987),

p o exp [-V/H]

where H is a scalar (called the density scale height ). The value of H can be obtained
from tables such as those given by CIRA (1972). Thus the atmosphere may initially be
taken to be spherically symmetric with an exponential variation of density with height.
This may be improved by considering the atmosphere to be oblate, allowing density
scale height to vary with altitude and incorporating day—to—night variation for heights

over 250km. For our purposes, however, a simple model will suffice.

By this formalism air density may be written (Cook and King-Hele, 1965)

I —T
P = Po eXP[— q ] (2.45)

where pg is the density at distance 1y from the Earth's centre. 1 is usually taken to

be the initial perigee distance, ag(1 — o).

Upon utilizing the relationship

r = a(l —ecos E)

equation (2.45) becomes
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0—a apg € ae )

p = poexp(a i - 7 * H O E (2.46)

The changes in a and e during one revolution, Aa and Ae, say, are obtained by

integrating (2.41) and (2.42) from E=0 to E =2n. Substitution of (2.46) into these

equations yields
2n
(1 +ecos E)3/2
Aa = —a? pyd exp [B(ao-—a)—z] — exp [z cos E] dE
(1 —ecos E) 12
0
and

2n

n
Ae = —apyd exp [B(ao—a)—z](l —e2) (%E) exp [z cos E] cos E dE

0

where Pp=1/H and z=2%H is treated as a constant.

Expanding the integrands as a power series in €, we have to O(e)

2
Aa = —a?pyd exp [B(ao—a)—z] Jexp [z cos E] {1+ 2ecosE} dE (2.47)
0
and
2
Ae = —apyd exp [B(ao—a)—z] Jexp [zcos E] {1 + € cos E} cos E dE. (2.48)

0

Using the integral representation of the Bessel function of the first kind and imaginary

argument of order n, I (z), given by

2n

L@ = %Jexp [z cos 8] cos n6 do
T
0

the terms in (2.47) and (2.48) may be integrated individually, yielding
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Aa = —2ma? pyd exp [B(ao—a)~z] {To(z) + 2¢ ()} (2.49)

and

Ae

~2mapyd exp [B(ao—a)~z] {Il(z) + 5[Io() + Iz(z)]} ‘ (2.50)

Using the recurrence relationship (King—Hele, 1987)
L@ + L@ = 2I(2)

where I’ (z) denotes % , and the infinite expansion of I (z), namely

oo

n+2m
2/2
(@) = 2 nS!(n)+ R

m =

equations (2.49) and (2.50) reduce to

Aa

—2aZpydn (1 +2ze) exp [B(ao—a)—z] ,

and

Ae = —apydn (z+e)exp [B(aO—a)—z] ,

for small z and e. Simplifying further by taking 'a’ to be constant and putting

a=a,, we have
Aa = -2aZpydn (1 +2ze)exp[-z], (2.51)

and
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Ae = —apydn (z+e)exp[-z]. (2.52)

Ammospheric rotation

As previously mentioned, the effect of atmospheric rotation on a satellite orbit is small,
but still important. The force of the rotating atmosphere acts normal to the plane of
orbit, consequently perturbing the inclination. The rate of change of the inclination can
be written (King—Hele, 1987) as

: _ 2
R %0 inicos2(o + 6) (2.53)

2\/u Fa(l - ez)

where v is the velocity of the satellite relative to the Earth's centre and w is the angular

velocity of the atmosphere with respect to the Earth.

Rewriting (2.53) in terms of E and integrating from 0 to 2w, the change in the

inclination over one revolution for small z and e is given by

1 2
Ai = -(L) /2 Ta 2“’8 Po exp [-z] sini + O(e) . (2.54)
uF

§2.3 SOLAR RADIATION PRESSURE (SRP)

The acceleration due to direct SRP, Xgrp , is modelled by (Aksnes, 1976)

(AU)? A

5& P = —VCRS/mP S
KR |L— xsunl

(2.55)

where Vv is the eclipse factor (which equals zero if the satellite is in the Earth's shadow,
one if it is in total sunlight with a smoothing function to account for the transition
between the two); Cg is the solar reflectivity coefficient to account for the reflectivity
characteristics of the spacecraft (usually between 1.0 and 2.0); S/m 1s the surface—to—

mass ratio; P the force per unit area exerted at the Earth by the sun when its geocentric
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distance is one astronomical unit (AU) in km; x is the position of the satellite while

XguN 1S the position of the sun and Xg is a unit vector from the satellite to the sun (all in

the geocentric reference frame, J2000).

When converted to Keplerian elements, equation (2.55) yields the perturbation on the

semi—major axis, (Asknes, 1976)

E,
da = 2a3F IS cos E + T(l - e2)1/2 sin EI (2.56)
E

1

for a satellite that moves from eccentricity anomaly E; to E, (add 2m to E, if

E, < El), where S and T are direction cosines (components of a unit vector) of the

force along the satellite radius r and perpendicular to r in the orbital plane,

respectively; F is constant where UF, (u = n2a3), is the force per unit mass of the

satellite.

Equation (2.56) does not contain terms in E alone, but only in sin E and cos E. If the

satellite remains in sunlight there would be no perturbations in a.

The effects of SRP on the semi-major axis (hence the mean motion) are purely the
consequence of the transition from sunlight to shadow and shadow to sunlight. These
perturbations are comparatively small since there is no secular change due to SRP which

compounds over time.
§2.4 LUNI-SOLAR AND OTHER THIRD BODY ATTRACTION
Third body attraction can be calculated for the Sun, Moon, Venus, Mars, Jupiter and

Saturn. Referring to Figure 2.4 the accelerating force, Xrp, at the point x is given by

(Brouwer and Clemence, 1961)
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J

where r=1xI, 1, = Igjl and A; = IL—LjI- M; represents the mass of the j® body

with the summation being taken over all those bodies just mentioned.

Satellite, X

0
Earth's Tj x;, Planet j of
centre mass M;

Figure 2.4. Third body attraction.
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CHAPTER III

DETERMINATION OF ORBITS AND ANALYSIS OF ORBITAL
RESONANCES FOR THE USSR SATELLITE 1984-106A

This chapter details the orbital analysis of the U.S.S.R. satellite, Cosmos 1603 (1984—
106A), which prompted the theoretical discussion and developments that follow in
subsequent chapters. COSMOS 1603 was launched on 28 September 1984 into an orbit
of 51°inclination. The satellite was manoeuvred from a 51° to a 66° orbit and then to a
70° orbit, probably on the day of launch. In the 70° orbit, the perigee was near 851km
and apogee near 857km, giving an orbital eccentricity near 0.002. The lifetime is
estimated to be 300 years (RAE Table of Earth Satellites, King—Hele et al., 1981). The

shape, size and weight are unknown.
§3.1 ORBITAL ANALYSIS

The orbit of Cosmos 1603 has been determined at 43 epochs between 4 January and 7
December 1987, utilizing 3033 observations. Approximately 85% of these were
supplied by the U.S. Naval Research Laboratory, the remainder comprised of 257
visual observations (supplied by a volunteer network of observers, then coordinated by
the Earth Satellite Research Unit at Aston University) and 183 Hewitt camera
observations, of which 120 were from the Australian camera at Siding Springs (S) and
63 from the Royal Greenwich Observatory (R). The lack of observations from other
sources necessitated the evaluation of orbital elements at five epochs solely from the
U.S. Naval radar observations, despite the inherent risk of bias from the narrow
latitudinal spread. A breakdown of the number and type of observations used on each

of the 43 runs is given in Table 3.1.

The most accurate group of observations are those from the Hewitt cameras. These
observations which were available on 23 transits (6(R), 14(S) and 3 from both), have an

accuracy of 2 arc secs. in position and 1ms in time. The second most accurate group
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consists of the U.S. Naval observations. Some 2593 were available with an accuracy of
about 2 arc mins. in right ascension and declination and 1km range. The remaining 257

visual observations usually had accuracies between 1 and 4 arc mins. in angular

measurements.
Run Hewitt Camera U.S. Visual Total
R) &) Radar
1 12 53 65
2 10 58 68
3 8 4 39 8 59
4 8 8 36 39 91
5 76 2 78
6 4 63 6 73
7 4 46 50
8 58 58
9 63 2 65
10 8 65 5 78
11 4 4 74 2 84
12 71 19 - 90
13 4 84 6 94
14 4 74 78
15 69 11 80
16 8 48 21 77
17 2 81 3 86
18 90 2 92
19 4 65 69
20 14 66 80
21 62 62
22 76 76
23 8 64 72
24 69 69
25 60 60
26 8 70 78
27 4 51 6 61
28 4 51 2 57
29 8 50 26 84
30 9 63 22 94
31 8 42 19 69
32 46 22 68
33 12 57 1 58
34 12 56 70
35 50 62
36 65 2 67
37 52 5 57
38 49 3 52
39 56 3 59
40 47 9 56
41 53 3 56
42 66 1 67
43 59 5 64
63 120 2593 257 3033
Table 3.1 Sources of the observations used in each run.
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The 43 sets of orbital elements determined by the RAE orbit refinement program, PROP
6 (Gooding and Taylor, 1968 and Gooding, 1974), are listed in Table 3.2 with their
standard deviations. Also in Table 3.2 is the value of € given by the final run, where
€2 is the sum of the squares of the weighted residuals divided by the number of degrees

of freedom.

The mean anomaly, M, is represented in the PROP 6 model by the polynomial
5
M = Z Mi ti
i=0

where the actual number of coefficients to be used is a parameter of the program. The
time, t, is measured from the epoch, which corresponds to Ohrs on the day indicated.

(M, is the mean motion.) In detail, 41 of the orbits required three coefficients in the

expansion of M whilst 2 required four coefficients.

The average value of the S.D. (Standard Deviation) of the inclination, i, is 0.0007°.
The S.D.'s of the eccentricity, e, vary between 2 x 10-6 and 16 x 10-% giving
accuracy of perigee height of 116m at worst. The right ascension of the ascending
node, Q, has an average S.D. of 0.00006°. For the argument of perigee, ®, and the
mean anomaly at epoch, M, , the S.D.'s are comparable, being of the order 0.1°

mostly, but increasing occasionally to as much as 0.9°. The mean motion, My, is

everywhere accurate to 2 x 10°% .
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Bias may occur in orbits derived principally from U.S. Naval radar observations with
just a few observations from other sources. An example of this is given by orbit 8.
Here the fit is considered good, with epsilon as small as 0.33 whilst the S.D. of
inclination is 0.75 x 10-3°. This orbit was derived solely from U.S. Naval
observations. In comparison, Orbit 4 which contained 16 Hewitt camera observations
together with 39 visual observations, yielded a more realistic value of epsilon of 1.00,
whilst the S.D. for inclination was only 0.24 x 10-3°. This clearly indicates both the
value of Hewitt camera observations in determining accurate elements and the extent that
small epsilons may be deceptive fér orbits determined mainly from U.S. Naval

observations.

§3.2 14t ORDER RESONANCE FOR COSMOS 1603 (1984—-106A)

The function Gy, (e) in equations (2.38), (2.39) and (2.40) are of order kl% (% 2 tc)lql

(Plummer, 1918) and thus for e = 0.002 it is sufficient to consideronly q=0,* 1 for
all three equations. It is possible to estimate the order of magnitude of the theoretical
rates of change by substituting mean values for the elements, maximum values for the
inclination function and approximate values for the lumped harmonics. For the various

values of ¥ and g, Table 3.3 illustrates the order of magnitude of terms in the equations

for the theoretical changes in the inclination, mean motion and eccentricity.

INCLINATION AND MEAN MOTION ECCENTRICITY
q\Y 1 2 3 1 2 3
0 100% 2%  0.2% 0.01% — —
+1 1% 0.1% (1) 9% 47 0.1%
L 70 . (4] — (_1) 100% (4 B (4

(-) indicates a value of less than 10-2%

Table 3.3 The order of magnitude of terms in the equations for the theoretical
changes in the inclination, mean motion and eccentricity at resonance,

expressed as a percentage of the dominant terms.
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The m-suffix of a relevant (Egm, §Qm) pair is determined by the choice of y. The

values of £ to be taken must be such that £ >m and 2-k is even. Successive

coefficients which arise, for a given y and q, may be grouped into a lumped

harmonic, written as
k k=
qu Cim SE* qu Sim

where £ increases in steps of 2 from its minimum permissible value £, , and Qz

are functions of inclination that can be taken as constant for a particular satellite, with
K
Qg =1 when £ =2,.

Developing the resonance equation (2.38) from chapter 2, the theoretical changes in
inclination of 14t order resonance as experienced by the satellite 1984-106A can be

approximated by (Walker, 1979).

% - sirx11 i (%)14 [%E (14 - cos i) Fys,147 {6(1)3,1 cos @ + Sy sin (D}
136 (14) Fiq 147 {Cif sin (@ - ) - S cos (@ - m)}
lle — (14 -2 cos 1)F14 146{6 2 5in (0 +0) - 314 cos (@ + m)}
+ (%)14 (28 ~2 cos i) Fag 25 13 {ng sin 2@ - S)y cos 2(1)” (3.1)

In this equation Gp,q(e) has been replaced by its expansion in powers of e (Gooding

et al, 1989).

Similarly, from (2.39) and (2.40) the theoretical changes in the eccentricity and mean

motion may be written
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and

14 — — —
% = n(%) {% (%) Fi514.7 {C?;,l cos ® + S?gl sin (D}
15— =1,0 . <1,0 @

+%5 Fiy 146 {CL" sin (@ + @) — Sy, cos (@ + (o)}

(8

InP’

) 16 Fag 28 14 {028 cos (20 - w) + S}l sin (20 —-m)}

/-—\
lo‘”

) 12F g 55,13 {czg cos (2@ +®) + S;g” sin (20 + m)H (3.2)

dn 1412, — =0,1 =0,1
156—
52 F 4147 {C1y sin (@ - ) - 517 cos (@ - )
I;CFM 14.6 {(_3 2 sin ((D + 03) - §I}"2 cos (CD + m)}
de 14 — 0,2
+2 (E‘) F28,28 13 C2,8 sin 20 — S 8 cos 2O
QN5 = 1,1 SLL
+2(;) 16€ Fp9 28 14 {cz'g cos (20 - ) + Sy sin (20 ~ m)}
1 J— - _
+2 (%‘-) 12e Fy9 28 13 {C§§'3 cos (2@ + ®) + Syg” sin (2 + a))}

e\ =0,3
+3( 12F 43 4220 1 C03 cos 3d + S07 sin 30 (3.3)

Since the mean motion is determined to within 2 x 10-3% throughout, it is deemed

possible to include the smaller resonance terms corresponding to Y =3 and the two

terms corresponding to y=2, q=% L.

Since for 1984-106A O = o, we will see later that there are terms in equations (3.1) to

(3.3) which have almost identical frequencies. These are terms with identical k-values,

(k = ay - q), ie. (v, @) =(1,-1) and (2, 0) in equations (3.1) and (3.3);
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(v, q) = (1, 0) and (2, 1) in equations (3.2) and (3.3); and (¥, q) = (2, -1) and
(3, O) in equation (3.3) for feasible vy, ie. Y=1,2,3 ... . Consequently, the
weighted least squares method will yield high correlations between the derived
coefficients corresponding to identical values of k. It is therefore necessary to solve
only for the dominant terms and the resulting parameters will represent the contribution
of all terms with the corresponding value of k. In equation (3.2), using the results of
Table 3.3, the (y, q) = (1, O) term is clearly negligible compared to the (2, —1)

terms and therefore the parameters obtained corresponding to (’y, q) = (2, ——1) will

not be corrupted by any unmodelled resonance terms.

The observed values of the inclination were cleared of the J, , sectorial harmonic by
PROP 6. The program PROD (Cook, 1973), based on numerical integration with a step
length of 1 day, was used to remove the effects of the zonal harmonics and luni-solar
perturbations for both inclination and eccentricity. The corrected elements then exhibited
variation due to air—drag, resonance and secondary perturbations (e.g. solar radiation
pressure, tides) with the intention to apply the RAE program THROE (Gooding, 1971)

to determine the lumped harmonic values.
§3.3 SECONDARY RESONANCE

The satellite 1984 — 106A exhibits the unusual feature of being in almost exact ® —
resonance for an extended time period. Since both ® and @ are approximately equal
at around —1.5°/day, the ®—w terms in the expansions for the rates of change in the
orbital elements correspond to a quasi-secular variation in each of the elements. In the
case of inclination and mean motion this quasi—secular resonance term is of order ‘e’
smaller than the dominant sinusoidal term, whereas for eccentricity the quasi—secular

resonance term is dominant.
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600 -1.40
500 - - .1.45
400 i
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Modified Julian Day

Figure 3.1  Variationof @ and @ .

Figure 3.1 illustrates the changes in both @ and ® over the period of analysis. @

decreases very nearly linearly with only a small sinusoidal variation superimposed due

to the oscillation of @ . From Figure 3.1 it is possible to estimate the overall increase in
® to be around 0.04°/day over the 338 days, which corresponds to the same overall
increase observed in the mean—-motion. This increase in both ® and the observed
value for the mean motion is anticipated to be the result of the combined effect of both

air—drag and the quasi—secular resonance perturbation yielded by ®-m=0.

® -
(deg/day)

d -
(deg)

201 b

40 T ) T T T T Y .2
46750 46850 46950 47050 47150
Modified Julian Day

Figure 3.2  Variaton of ® - and D-w.

Figure 3.2 illustrates the change in the secondary resonance parameter @ —® and
® — @ as calculated using the elements of Table 3.2. Of particular interest is the
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libration of ® — @ between £35°. This is related to the near constancy of the mean
motion in Table 3.2, a result of low drag effects due to the perigee height being near
840km and the low solar activity in 1987. Consequently in considering the effect of
both drag and the quasi—secular resonance perturbation in the eccentricity and mean
motion, air—drag can be strongly opposed by the resonance to such an extent that the
resonance is dominant. For the period of the study the satellite is effectively trapped in
resonance with respect to ® — . Hypothetically, the satellite would remain trapped in
this fashion until drag effects increase either with atmospheric density variation or with
the decrease of perigee height. “As seen in Figure 3.3 the perigee height,
hp=a(l-e)-a,, experiences an oscillatory motion due to the zonal harmonics (Cook,
1966) with a quasi—secular decrease due to the effect of near exact commensurability of
® - ® on e. Inreality however, this phenomenon will be short-lived, as atmospheric
density increased due to the rise in solar activity over the subsequent period. The mean
monthly solar activity of 10.7cm wavelength, f“m.—,, increased from 1_310_7 = 85 in 1987
to over 200 in 1989-1991, following the near 11-year solar cycle. Consequently,
atmospheric density increases 15—fold and the satellite 1984—106A was forced through

resonance in 1989.

E 850

=

£ 8454

T 840

'S

E !

® 835 -

L

o0

"

& 830 r T . T r . .

46750 46850 46950 47050 47150

Modified Julian day

Figure 3.3 Variation in perigee height, hy=a(l —e)—a, .

The very low drag-effect experienced by 1984-106A poses a couple of problems not

normally encountered. For inclination, the program THROE models the effects of
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atmospheric rotation, based on the values of the rate of change of mean motion, 2M,,

with the assumption that the effect of air-drag is dominant. From equation (2.54) in

chapter 2, the change in inclination over one revolution (for small z and e), is given by
a\lzmalw S

Alggr = — (H_F) 5 Poy Cp expl—z] sin 1 + O(e)

Therefore over the 338 day period of analysis, estimating pg as 4 x 10-15
Kg/m3 (CIRA, 1972), F as 0.96, S/m as 0.01 m2kg, Cp as 2.2 and H as

272 km, w to be 6.3 rads/day and taking p =4 x 108 Nkm?2/kg, the total change in

inclination due to atmospheric rotation is,

APRITAL ~ 3 % 106 degrees

Thus the effect of air—drag is small and the values of i are dominated by the sinusoidal

variation due to resonance, as seen in Figure 3.4. The dominant term seen here

corresponds to (y, q) = (1, 0). Thus, it was necessary to run THROE (for

inclination) having suppressed the facility within the program to model atmospheric

rotation.

Secondly, the program THROE calculates the effect of air—drag on the change in

eccentricity using M, with the same assumption as before, that these values change

primarily as a consequence of air-drag and not resonance. Since this assumption is

erroneous, it is necessary to suppress this correction to the eccentricity values. This was

achieved by setting the M, values to zero. To justify this procedure, it 1s necessary to

quantify the quasi-secular decrease in eccentricity due to air drag. The effects of air

drag were outlined in section 2.2 and the change in eccentricity, over one revolution,

may be written
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S
A€prag = —apOFa Cp 7 (z + e) exp [Z]

Thus, over 338 days of the analysis, estimating as before the values for p; , F, S/m ,

Cp and H, we obtain for the total change in e,

TOTAL ~
AeDRAG = — 5 X 10—7 .

This estimated change in eccentricity is clearly negligible relative to the change observed
in Figure 3.5 of approximately 7 x 10~4. Thus it is reasonable to assume that the
effects of air—drag on eccentricity are not likely to contaminate the derived lumped

harmonic values corresponding to the quasi—secular rate of change.
§3.4 ANALYSIS OF THE ORBITAL INCLINATION

The Hewitt camera orbits with S.D.'s (for inclination) below 5 x 10-4° were
downgraded to an S.D. near 5 x 10~4° as the original values were unrealistic, because

several forces were not modelled in PROP, e.g. tides, solar radiation pressure. Values

of the lumped harmonic coefficients derived for all four sets of parameters (Y, q),
i.e. equation (3.1), were only well-determined for (y, q) = ( 1, O).
Similarly, when restricting the analysis to the first two sets of parameters, i.e.
(y, q) = (1 , O) and (2, O), the second pair of lumped harmonic values were still
undetermined. Thus it was considered necessary to reduce the number of parameters to
be determined to those corresponding to (y, q) = (1, 0) and the initial value only.
Further, four data points fitted badly, namely three Hewitt camera orbits and one orbit
derived solely from U.S. Naval observations. It was anticipated that some disagreement
would exist between the Hewitt camera orbits and the U.S. Naval orbits, resulting from
the inherent bias of the latter. Therefore, these four orbits were downgraded, with the
S.D.'s attached to their inclination values increased by a factor of two. These orbits

were numbered 2, 26, 30 and 36.
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As explained previously, the effect of atmospheric rotation on the rate of change of the
inclination is small, but was not in any way accounted for. However, since this change
is secular whilst the resonance term is sinusoidal, it is unlikely that the derived lumped
harmonic values will be contaminated by these neglected effects. The program THROE
was run, including the modelling of atmospheric rotation as a comparison, and no

change in the final Jumped harmonic values was observed.

Numerical values of the lumped harmonic coefficients for (y, q) = (1 , 0) , as given by

the analysis of the change in inclination, were

1008% =-20.8+13 ; 10°Cyy =5.1%1.2

with € =1.62.

Interpretation of the (y, q) = (2, 0) coefficients does not arise as these coefficients

were undetermined.

Values of the inclination cleared of the effects of the zonal harmonics and luni-solar

gravitational attraction are plotted in Figure 3.4 together with the theoretical fit of the

resonance perturbations.

71.020
3 71015 A
g 71.010 1
5 : 1
= 71.005 - T
2 . i
L]

71.000 T T T T T

46750 46850 46950 47050 47150
Modified Julian Day

Figure 3.4 Values of the inclination cleared of other perturbations with error bars

and theoretical fit.
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§3.5 ANALYSIS OF THE ECCENTRICITY

Examination of Table 3.3 reveals that the contribution of the first term in equation (3.2)

is negligible compared to the (y, q) = (2, 1) term. It was decided, therefore, to
neglect the (1 , 0) term completely. Initial trials to determine all four remaining sets of

parameters for (y, q) yielded high correlations between several of the values. As a

consequence, it was necessary to reduce the number of parameters determined by
eliminating the (y, q) terms corresponding to (2, 1) and (2, —1). This produced a
good fit with € = 1.34. A further two runs were investigated. In each case only one of
the the two pairs of coefficients corresponding to 7y = 2 was reintroduced. The trial
incorporating the (y, q) = (2, 1) term yielded undetermined values and no
improvement on the degree of fit, whilst the run incorporating the (y, q) = (2, —1)

term gave reasonable values and an improved fit with € = 1.26. Given the compatibility

of the results with and without the (2, —1) term and the large S.D.'s for the (2, ——1)
term, the values from the trial with only two pairs of lumped harmonic coefficients were

preferred.
The preferred lumped harmonic values derived were,
10981 =618£1.6 ; 10°C;y =-20.6%9.9

109 S;i2 = 8.0£63 109 Cjy% = -59.2 + 8.1

Values of the eccentricity cleared of the effects of the zonal harmonics and luni-solar

gravitational attraction together with the theoretical variation at 14t order resonance, as

given by the above coefficients, are plotted in Figure 3.5.
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Figure 3.5 Values of the eccentricity cleared of other perturbations with theoretical fit.

For comparison, the values derived by including the (y, q) = (2, -1) term were,

1095H? =607 £16 ; 109C;) =-27.7+9.38
1095712 =55 +63 ; 109C,?=-50.7+8.4

09 S—l 3 - _92 2+ 36 7 ; 109 E_I.‘l":; = —25.0 + 37.2

§3.6 ANALYSIS OF THE MEAN MOTION

This is the first orbital analysis in which the mean motion has been analysed for
resonance parameters. In previous studies it has been impossible to separate air—drag
effects from resonance perturbations with any degree of reliability. However, the
coincidence of 14t order resonance of 1984 — 106A and the low solar activity during
1987, combined to yield a signature in the mean motion, as seen in Figure 3.6, clearly

dominated by resonance effects.
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Figure 3.6 Values of the observed mean motion with theoretical fit.

The effect of air—drag can be estimated in a similar analysis to that outlined for the
eccentricity. By using the change in the semi-major axis in section 2.2, the

corresponding change in n over one revolution is given by

=3 S
An = == g Aa = 3napgF— Cp & exp[—z]

Over the 338 days of the analysis, estimating as before the values for p, F, S/m, Cp

and H, the total change in n due to air—drag is

Anpasr = 0.13°/day .

This value seemed at first quite large compared to the observed overall change of
approximately 0.04°/day in the observed values of the mean motion as seen in
Figure 3.6. It is important to realise, however, that this estimate was derived from
several approximations, particularly the value for S/m. Very little is known about the

satellite so a typical value was assumed, but this may be in error by a factor of two or

more.

Comparison of equations (3.2) and (3.3) yields a relationship between the quasi—secular

resonance terms ('Y, q) = (1 , 1) of both eccentricity and mean motion which may be

written as,
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TOTAL TOTAL
An(l,l) = - 3neAe(1,1)

From Figure 3.5, it is clear that the total overall change in eccentricity due to the

(Y,q) = (1, 1) resonance is approximately 7 x 10-4. Thus, the total change in mean

motion due to the quasi—secular resonance term over 338 days is

TOTAL

An(l,l) = -0.02 deg/day

It is possible therefore that an over—estimation has been made in one of the parameters,
e.g. area to mass ratio and that the true value for the change in n due to air—drag is
around 0.06°/day. Thus combining this perturbation with that of the quasi—secular

resonance, an overall change in mean motion of 0.04°/day is observed.

Solar activity gradually increased during 1987, to a maximum in November. This can

be seen in the monthly average EUV index, F10.7 , listed in Table 3.4 (CIRA).

A first approximation of Jacchia's model, as given by equation (2.44), yields
T, = 379 + 324F;;; K (3.4)

As discussed in chapter 2, the average daily temperature, T,y is calculated from (3.4)
by multiplying T, by 1.15. Upon utilizing Fig. 2.3 it is possible to obtain approximate
values for the air—density at the height of 840km. These values are given in Table 3.4.
The variation of atmospheric density, throughout 1987, is shown graphically in
Figure 3.7. The straight line through the data set represents the best linear fit (with
regression coefficient of 0.76). Although the linear fit does not accurately model the

density changes, it nevertheless indicates an increase in air—drag during the period of

analysis.
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MONTH Fio7 Tay p(x10-15)

10-22 W/m2/Hz| (Kelvin) (kg/m3)
JAN 72.5 706.0 2.096
FEB 71.5 702.2 2.078
MAR 74.0 711.6 2.126
APR 84.9 752.2 2.418
MAY 87.8 763.0 2.518
JUN 77.6 725.0 2.207
JUL 84.2 749.6 2.395
AUG 90.0 771.2 2.600
SEP 86.1 756.7 2.458
OCT 98.1 801.4 2.948
NOV 101.2 812.9 3.101
DEC 94.4 787.6 2.779

Table 3.4 Monthly average EUV index, temperatures and the estimated air-density

at perigee height of 840km during 1987.

Since the rate of change of the mean motion, 1, is directly proportional to air—drag it
was anticipated that n would vary non linearly with time. Hence, both air—drag and the

quasi—secular resonance, corresponding to (y, q) = (1, 1) in equation (3.3) were

: . o . 11
modelled by solving for a linear and a quadratic coefficientin n, 1e. nd(ir _()hag =ng + at

+ btz,' where n is the initial value of n at MJD 46799; t being measured from this

epoch.

Due to the near identical frequencies of the (y, q) = (1, O) and (2, 1) terms, only
the parameters corresponding to the dominant term were sought. The (2, 1) term

contributes as little as 0.1% of that of the (1 , 0) terms, hence the parameters of only

the latter were solved for and the results are considered to be wholly representative of
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the lumped harmonic coefficients corresponding to (Y, q) = (1, O) . The
(v, @) =(2,0) and (1, ~1) terms and the (v, q) = (3, 0) and (2, -1) terms
also have near identical frequencies of approximately 20 .and 3P, respectively.
However, in both instances, the contribution of the dominant term is only twice that of
the smaller term, as seen in Table 3.3. The phase difference between terms of similar
frequency is not constant, but varies between #35°. Consequently, all pairs of

parameters were solved for, with the initial aim of seeking independent solutions for all

the lumped harmonic coefficients.
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Figure 3.7 Variation of density at perigee height 840km during 1987 and linear fit.

Solar radiation pressure (SRP) was a further uncertainty and although this was initially
modelled using the theory of Aksnes (1976), it contributed nothing to the degree of fit,
with the SRP multiplicative parameter undetermined. In addition, there were high
correlations between this parameter and the linear and quadratic terms. Consequently
the coefficient for SRP was suppressed and its effects absorbed within the linear and

quadratic terms, together with air-drag and other unmodelled resonances.

Thus, up to 5 pairs of lumped harmonic values, the initial value and the linear and
quadratic coefficients were sought by a weighted least squares fit of the 43 PROP 6

values of the mean motion and their S.D.'s. It was pertinent, however, to increase the
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PROP 6 §.D.'s by a factor of three as they were considered to be over optimistic given

the uncertainties within the analysis.

When the 13 parameters were derived the linear coefficient was undetermined, as too
were half of the lumped harmonic coefficients corresponding to y = 2 and 3. Further,
there were high correlations between the linear and quadratic terms, and between all the
lumped harmonic coefficients associated with terms having nearly identical frequencies.
Several trials were then made, suppressing one of the pairs of correlated lumped
harmonic coefficients, and the linear and quadratic coefficients in turn. Suppressing the
quadratic term yielded determined values only for the lumped harmonic coefficients
with (*{, q) = (1 , O) and (2, O), with the degree of fit parameter € = 3.48. On
suppressing the linear term, however, the quadratic term and all pairs of lumped
harmonic coefficients corresponding to q = 0 were well-determined, with the degree of
fit improved to € = 0.99. Throughout these trials there remained consistency for the

derived lumped harmonic values corresponding to (y, q) = (1 , 0) .

The lumped harmonic values determined from this analysis of the change in mean

motion with their formal SD's quoted at the 3 sigma level are given for reference,

1098% =-20.7+0.1 ; 109Cy=-2.2 % 0.1
109502= 122+1.8 ; 10°CH= 9.3 £ 1.6
10950 = 30577 ; 10°0C5= 117 £ 8.0

The quadratic coefficient derived was (3.96 £ 0.04) x 10-7 °/day3 with initial value

given as (5083.1281 £ 0.0003) °/day.

As discussed previously it was considered that the above coefficients corresponding to

vy=2 and 3 are contaminated by the unmodelled resonances, whilst the trials showed

that it was not possible to separate the coefficients of terms with similar frequencies.
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Consequently, the contribution of the less dominant terms, namely those for which

(v. a) = (1, -1) and (2, ~1), were evaluated and subtracted from the observed

values of the mean motion. Estimates for the lumped harmonic coefficients for
(’Y, q) = (1, —1) were taken from those derived from the rate of change of the
eccentricity in section 3.5. Values for coefficients corresponding to (Y, q) = (2, ~—1)
were evaluated from the GEM-T1 gravity field (Marsh, et al, 1988), namely

Q1.3 e . . .
10% 835" =5.2 and 10° C;tlg’3 = 19.2. By this technique the lumped harmonic values

for (’Y, q) = (2, O) and (3, O) were cleared of the secondary contributions. On
removing these effects, the degree of fit improved slightly to € = 0.98 with small

changes to the derived values.

The preferred lumped harmonic values determined from analysis of the change in mean

motion are,

10980 =-207201 ; 109C) =-2.0 £ 0.1

109502= 12.1+1.8 ; 109Cy= 13.6 = 1.6

10989 = 302+7.6 ; 109Cp= 152 8.0

The quadratic coefficient is (3.99 + 0.04) x 107 °/day3 with initial value given as

(5083.1282 + 0.0003) °/day.

The first pair of values are in good agreement with those previously derived from the
changes in inclination. However, due to the greater accuracy in the data for the mean
motion the values derived here are favoured. The smaller terms corresponding to
vy =2 and 3 may be contaminated by absorbing effects due to uncertainties in air-drag,
the quasi—secular secondary resonance and SRP as well as errors in the (y, q) = (1 , _1)
and (2, -1) Jumped harmonics. Further tests revealed sensitivity of the

solution to the (y, q)=(1,—1) harmonics but little wvariation
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with (v, q) =(2, —1). In view of the accuracy of the (1, —1) lumped harmonics,
as derived from the eccentricity, it is deemed unlikely that the (y, q) = (23 0) and

(3 ; 0) harmonics are contaminated by secondary resonance harmonics.

§3.7 COMPARISONS WITH OTHER SATELLITES OF SIMILAR INCLINATION
AND THE GEM MODELS

The lumped harmonic values obtained from analysis of the change in inclination and
mean motion for 1984 — 106A are in reasonable agreement with those derived
previously. A summary of these and some earlier results (King—Hele et al, 1979) for
1965-16G, a satellite of nearly identical orbital inclination are listed in Table 3.5, along
with the computed values given by GEM-T1 (Marsh et al, 1988), GEM-T2 (Marsh et
al, 1989) and PGS-3337 (Marsh et al, 1990).

For eccentricity, the derived lumped harmonic values are a considerable improvement on
those obtained previously for the terms y=1, q == 1. This is primarily a consequence
of the satellite being in almost exact ® —® resonance whilst experiencing very little
air-drag. Table 3.6 summarizes the values fory=1, q==*1 derived here and the
comparable values from a previous study (King—Hele et al, 1986) along with the

computed values of both GEM and the PGS 3337 gravity models.

Values of lumped harmonics derived in this and analogous studies are useful as an
independent check on global gravity fields such as the GEM models. Overall, the
agreement for the 14% order harmonics is excellent, whereas, the 28 and 4274 order
terms differ from the global gravity field solution. However, this is not unexpected as
the GEM—T1 and GEM-T2 high order coefficients may be in error by up to 100%, and
disagree with each other, whilst the values derived in this study for order 28 and 42 may

be contaminated by aforementioned effects. (The values for order 42 are probably

numerically too large.)
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CHAPTER IV

THE RESONANCE ANGLE

This chapter exploits the phenomenon of very low air—drag (as experienced by the
satellite 1984-106A) and looks at the development of the resonance parameter within
this constraint. Expressions are obtained for the resonance angle that lead to the
determination of lumped harmonic coefficients — this being the first time coefficients
have been evaluated from the resonance angle. Usually, drag—effects dominate other

perturbations, such as resonance, making it impossible to arrive at any reliable

solutions.

§4.1 EXPLICIT TIME DEPENDENCE OF THE RESONANCE ANGLE

From the definition of the resonance angle, (2.35), we may write
Bop = a(M+ @) + Q.

Now from Lagrange's planetary equations, (2.24), substitution for M, & and Q

yields
df (1-¢?)[10R 1 9R
e = aa[n ) © na? ge -2 na2_ oa ¥
(1-e)™ (1 0R] _ _ coti {_1_83}
+ e na? e (1 _ e2)1/2 naZ i
d cosec i 1 aﬁ} ' (4.1)
' Bdt[(l - e2)' P2 {naz | '

By neglecting terms of O(e) inside the square brackets then equation (4.1) may be

written



. _ dn d
Dap = OLd_t_a' {naz }+(0( coti-— P cosec 1) {J——a—R—H

na? o
_ dn d 1 oR 1 o9R
= a3 - ——|208{— _
dt d‘baﬁ{ a {naz aa} + (a coti- P cosec 1) { na? 3 H d)aﬁ

(4.2)

where from equation (2.32), following the notation developed in chapter 2,

1 oR (Jl+1)
na 3a (éj (a) Fpabg-ap® Opm

1
1 dR z LY e\t = . B
na? 3 (ggj (;) Fpm2-op® ), 5

the summation being over the appropriate ranges for £ and ¥, subject to the usual

resonance conditions, (2.36).

Now

d 1 oR 2 +1 1/2 e 2 — A
a0, B[“ ik D )U (&) Famr® i 4
o
and

d [10R glﬂ_eﬂﬁ,l i 6" 44
ap

Equations (4.3) and (4.4) are o(J gm)- therefore, provided ®gg is of 0(J32),

(which is true even for shallow resonance) then the second term in (4.2) is O(Jy,72)

and is thus small compared with n , which is o(J Qm). Hence the second time

derivative of the resonance angle may be approximated by

of e o
Y ASTUR Wdiviay

e
)
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byp = a g . (4.5)

Both resonance and drag contribute to the along—track perturbations, i—? . However,

the theory will be developed initially as if drag is negligible. Later, drag will be
examined in more detail and incorporated analytically as a small correction. This is not
unreasonable as it has already been shown in chapter 3 that drag had very little effect on
the change in mean motion for the satellite 1984-106A. Nevertheless, drag must

eventually be incorporated for any theoretical or numerical evaluations to be

substantiated.

The rate of change of the mean motion is given by
) oR
QE=_3_n@=_3£ _1__ (4.6)
t 2a dt a3 na? gM
By utilizing (2.32) and (4.5), then equation (4.6) yields

9 A
Ngmpq = 3(5 (%) Famp® Gapg(® [ = 20 + a] 0y

and hence applying the resonance conditions (2.36), equation (4.5) becomes to O(e)
§ 20 (2 (25 Fomkp-ap® 0 (4.7)
Dyp = 3acy 3 ('E) gy 2oL ¢,Qm’ .

where summation is over all permissible 2 and vy values.

Examining the dominant term in (4.7), ie. y=1 and summing over all

permissible 2—values (using the usual notation for lumped harmonic coefficients as

given in chapter 3),
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b o = 3202 () : cp* spe
op = 3na (%) Fipio® sin @ o — P cos Dgp
~Sa* ‘C‘O,a
B B
o odd a odd

which upon dropping the subscripts o and B on @ for brevity, may be written as

O = —%sin (@ -1) (4.8)

where

A\l | = . —
A = 6o (3) b \/(Cg'“)z - (8]
_ _ . _ oL even
arctan (—Sg'a F, —Cg’a F)
A = A
awctan (G5 F, S F)
o odd
a even
0
and L=+ l: }
1 o odd
Equation (4.8) readily integrates to
()2 = T + Acos(® - 1), (4.9)

where C is a constant depending on the initial conditions. For C » A, 1i.e. for shallow

resonance, equation (4.9) yields a first approximation

o = @, + ot, ’ (4.10)

where @, is the initial value of ® at t=0 and © is aconstant, related to C via the

equation

c=x\C;
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the sign depending on whether the resonance angle is approaching () or receding (+)
from exact commensurability. (A more accurate definition of G is given by equation

(4.21) later in this chapter.) The resonance parameter thus appears to vary linearly with

time.

Equation (4.10) is only an approximation. We may use this form whenever C» A and
we need only the dominant secular variation in @. If the magnitude of A is

comparable to that of C or in circumstances where @ is required more accurately, it is

necessary to develop the resonance angle retaining the oscillatory part. This can be

achieved by using elliptic integral theory.

Elliptic Integrals of the first kin

An elliptic integral of the first kind, denoted u or F(cb, K), is usually written

(Abramowitz and Stegun, p589).

6

u = F(9, x) =J d

(1 - %2 sin2 6) 2
0

where  is the modulus (K2 < 1) and ¢ is the amplitude corresponding to the
argument u. A complete elliptic integral of the first kind, denoted X, is an elliptic

integral whose upper limit is 7/2, i.c.

2

}((Kz) = F(Tt/z, K) =J a0

(1 — k2 sin? (1))1/2
0

Conversion of the resonance parameter

Making the substitution ¢ ="

and denoting @ at t=0 by ®g, equation (4.9)

becomes
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(®)% = (20)? - Acos (®4-1) + A cos (@-1) = vi (1 - 2 sin20)

4.11)
where

V% = ((.1)0)2 + A [1 - cos((IDO—?L)] (4.12)

and &2 = 22 witm v X ch iti
2 0 s K chosen to be positive.
0

For the case 2 > 1, the resonance angle librates, i.e. @ is continually changing
direction and oscillates between two extreme values, at which @& vanishes. For

k2 < 1, the solution is within the circulation region of ®, where @ is unrestricted.
§4.2 LIBRATION

Libration of the resonance parameter, ®, is examined here for completeness, but is not
applicable to Cosmos 1603 during the period of orbital analysis. We denote the
amplitude of libration of ¢ by the positive constant, c. As previously stated, $=0
when ¢ = a, hence from equation (4.11)

sinZot = 1/K2.

We now make a change of variable, given by

) sin ¢
1n = s
e sin a
which reduces equation (4.11) to
N2 - A %2 sin2 @) 4.13
(q))=2(l—l( sinZ @ (4.13)

where ¥ = sin & = 1/k. Equation (4.13) may be integrated to give
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¢
+ d(p Kvy Kvg
= — - dt = |——|t. 4.14
J' (1 — K2 sin? q))l/2 2 ( 2 )t (419

@9

The sign is chosen such that time is positive and increasing with respect to integration
over the parameter ¢. Because ¢ librates between = a, @ librates between A + 2o

and ¢ also librates, but due to the choice of variable change, the limits for ¢ are

+ /2. It is thus possible to express the left integral in (4.14) in terms of complete

elliptic integrals (since %2 < 1).

An initial value and direction, @, and @, will dictate the initial choice of sign within
the integrand. ¢ will then continue to vary until its magnitude is equal to 7/2, at

which point the sign in the integrand changes in order to maintain positively increasing

time, whilst @ (hence CD) changes direction. There are effectively four quadrants to
the phases of ¢, namely, 0 to T/2, T2 to 0, 0 to —®/2 and -®/2 to 0. The
period, T, of libration is given by the total time for ¢ to complete each quadrant and
return to its initial value. Therefore, T is the sum total of four complete elliptic

integrals with respect to the modulus X = 1/x and may be written

T = 2 X (12)
KVo

§4.3 CIRCULATION

Cosmos 1603 experienced circulation of its resonance parameter @, during the one year

of orbital analysis. Thus the subsequent development of the resonance angle is directly

applicable to Cosmos 1603 and some important results obtained here are later used in

further development of orbital theories.

Returning to equation (4.11), further integration is permissible. On using the definition

of an elliptic integral, we may write
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u= A=

Yo
75 s (4.15)

where the choice of sign is dictated by @, and does not alter thereafter. The constant

A is a function of the initial conditions, namely

Dy - A
A=F( > ,K). (4.16)

Without loss of generality, we may choose ®;=A and equation (4.12) reveals

vg = (Cbo)z and equation (4.16) yields A = 0. Thus, we eradicate the problem of

o
choice of the sign by writing u = ~§9 t.

From the theory of elliptic integrals (Abramowitz and Stegun, p591) the argument, ¢,

can be written in terms of the amplitude of u, denoted am u, where

T 2qn sin%
¢=amu=2—}<-+ (4.17)
n=1

n(1l + g2n)

and for |x2] <1

X’ 2 2\2 2\3
q= CXp|: 7;5} = % + (%) + 84 G(—é) + 0(x?8) (4.18)

where X' = K(I—Kz).

For our purpose it is sufficient to examine the theory to O(K4) since for even relatively
large values of %2, (0.3 say), terms containing k6 contribute less than 3% of the

dominant term.

Expanding terms in equations (4.17) and (4.18), the parameter ¢ may be written
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Tu K2 K4] Tu K4 21u
_ mu Ks X% . (mu K* . (2mu 6
0=y +[8 + ¢ Sln(]()+ 558 SIH(K)+ 0(x5)
where u is given by equation (4.15).
The resonance angle can now be expressed explicitly in terms of time, thus to O(K4)

K2 x4 . k4 .
O®=A+20=A+p+ot+ [74—-+ —8—] sin(ptot) + T5g sin 2(p+ot)

(4.19)
where
A
= — 4.20
P=7% (4.20)
and
o= t—0, @4.21)
T T2K '

the choice of sign depending on the sign of (bo .

. K2
Again, putting @ = A (hence p = 0) and denoting 7 by z, equation (4.19) becomes

z2

® =A+ ot + z(1+2z)sinct + 3

sin 20t + O(z3) (4.22)

TC(DO
wherenow ¢ = — .

2K

Comparing equation (4.22) with equation (4.10), it is apparent that, to O(K4) , the
oscillations superimposed on the linear variation of @ are sinusoidal with frequencies

o and 20.
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§4.4 THE EFFECT OF AIR-DRAG ON THE RESONANCE ANGLE

It was shown in section 4.1 that the acceleration of the resonance angle is proportional to
the rate of change of the mean motion, which is directly related to the air—density, p.

Summarizing the relationship between ®, n and p, we write

Dppac @ Nprag & Ph

where p;, is the atmospheric density at a fixed height, h, say. As shown in chapter 2,

air-density varies with time, predominantly as a consequence of changing solar activity.
In Fig. 3.7, a simple model for p(t) was proposed in the form, p(t) =a + bt, where a

and b are constants. We may thus consider the equation,

Dppac = QO
where Q”(t) is a polynomial in time whose coefficients are constant for a fixed height.
It will be seen later that Q”(t) need only be a function of time that can be integrated

twice.

Combining drag and resonance

. A . ”
D = ~-5 sm((b—?u) + Q"(t)
which has a first integral
t
(©)? = C + Acos (@A) + 2Jd>(s) Q”(s) ds (4.23)

0

where C is a constant and without loss of generality, t, is taken as zero.
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Restricting ourselves to the circulation region of @, we consider the situation of
resonance perturbations dominating the effect of air-drag on the rate of change of the
mean—motion, as experienced by Cosmos 1603 during 1987. Given these criteria, the
integration term in (4.23) is much smaller than the pure periodic term which in turn is

dominated by the constant, C. Thus, utilizing equation (4.10) and writing
d(t) = o,

equation (4.23) simplifies to

1 yoo
d = [6 + Acos(d)—k) + 20Q'(t)] ? - [é + Acos(<I)~7\.,)]1/2 [1 + Q (t)}
c |

(4.24)
t
where Q’(t) = JQ”(S) ds.
0

Again using the substitution ¢ =—5—, equation (4.24) can be written

u= A [t + %Q(t)] (4.25)

where v, is the positive constant as defined by equation (4.12) and Q(t) is given by

t

t S
Q) =JQ'(S) ds =J JQ”(u) du ds.
0 0

0
The difference between equations (4.15) and (4.25) is the term containing Q(t), which

acts as a small correction to the drag—free result. If Q”(t) is any twice—integrable

function of time, Q(t) can be evaluated analytically. Specifically if Q”(t) is a
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polynomial in time of degree n, say, then Q(t) isa polynomial in time of degree n +2

with the zero and first order terms absent.

The equation for @ may thus be written

Z

D) = A + p + Q) + z(1 +22) sin (p+(§(t)) +-§2 sin 2(p+6(t)) + 0(83)

(4.26)
where p is given by (4.20) and Q(t) = ot + Q(1).
Again, choosing d, = A, (4.26) simplifies to

O = O, + Q) + z(1+22)sinQt) + —7‘83 sin 2Q(t). (4.27)

§4.5 DETERMINATION OF LUMPED HARMONIC VALUES FROM THE
RESONANCE ANGLE

Equation (4.27) is analytically the easiest form in which to express the changes in @.

However, in determination of parameters by numerical means, it is impossible to

quantify A and hence specify @, accurately in advance. It is therefore necessary to

develop the general expression (4.26) and write

@ = @y + Q0 + a1+22 [sn(p1G0) - s p] + 2 [sn 2(p+0) - s 20].

(4.28)

Equation (4.28) was incorporated into a least-squares—fit procedure with the aim of
evaluating the four parameters {CDO , 0, K2, p} and the two drag parameters

{D2 , D3 }, where Q(t) = D,t2 + D3t3 , from the orbital data of Cosmos 1603 for the

duration of 1987. The first four parameters can be easily converted to yield A and
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. 0 = . : . .
hence the two lumped harmonics 51411 and C(l’j , using the relationships given

previously. Although not directly solved for, these parameters are listed along with the
main parameters in Table 4.1, with corresponding S.D.'s. (Once again, it was deemed

pertinent to quote all formal S.D.'s at the 3 sigma level.)

Initially all six parameters were sought by least-squares—fit, yielding high correlation
between ¢ and D, and between D, and D5 . The drag coefficients had large S.D.'s
and were not well determined. Subsequently, each drag coefficient was suppressed in
turn, which gave a better fit with no high correlations. A run with drag totally

suppressed was also made and the comparison of these results is seen in Table 4. 1.

Run £ K2 c D, D, §?}1 6(1)411
1 1.3 0.221 -1.5108 4.78 0.0031 -22.44 -2.99
5 84 6.15 120 69 95
2 1.2 0.220 -1.5042 - 0.0123 -22.26 -2.35
5 12 9 57 31
3 1.1 0.221 -1.5129 6.35 - —22.52 -3.20
4 15 46 51 29
4 7.5 0.254 -1.4910 - - -25.71 -2.93
20 21 2.72 1.93
Table 4.1 The results of a least—squares—fit procedure determining parameters from

the resonance angle, .

There appears to be a slight advantage with inclusion of the cubic drag term, provided
the quadratic term is suppressed. This parameter corresponds to a linear variation in

atmospheric density as expected. Although crude, this model illustrates that drag effects

are significant but small. The preferred solution is thus taken with D, suppressed and
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D, included. The residuals of the preferred run are shown in Figure 4.1. It should be

noted that the residuals for each run exhibit a common signature, namely an oscillation

of frequency 2d, which is clearly seen in Figure 4.1. This observation lends weight to

further investigations with the resonance angle, incorporating the 28th—order

harmonics.
0.2
o 0.1 -
Z
= 0.0
-
k-] o
F
z '0'1 -1
-0.2 Y T T T Y T v
46750 46850 46950 47050 47150

Modified Julian Day

Figure 4.1 The residuals of a least—squares—fit procedure applied to equation (4.28)

for @ (incorporating a cubic time coefficient in the drag model).

§4.6 2nd ORDER RESONANCE EFFECTS

Including (Y = ‘2) terms in the equation for ®, we have

. 14| ra\ — _ —
b = -—3n2 (‘iag) [(;e) F15,14'7 {S?b} sin @ + C(I),41 COsS (D} —

14 — — —
-2 Gf) F)g8.28.13 {Cg’gz sin 20 — Sgéz cos 2<DH

which integrates to give

(0)2 = € + A;sin® + Bycos® + A,sin2® + Bycos 20 = X(®),  (4.29)
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thus defining X((D), where

=0,1
a\15 — ] Cy

= —6n? (E) Fi5,14,7(D) _;41

B, —Si4

and

Ag 0.2

2. \28 — . J 528

= —6nZ (;) Fg,28,13(1) s

B, Cos

~

C is a positive constant depending on the initial conditions. On integrating equation

(4.29) it is found that

Vx(@)

®
D
t == J L (4.30)
CDO

where @, represents @ at t=0, and the sign is chosen such that time is positive and

increasing.
Using the change of variable
x = tan P2 (4.31)

equation (4.30) may be reduced to the quartic form

X

dx

t==%2
\/a0x4 + a;x3 + ayx2 + aszx + ay
X
0

(4.32)

where

ap = C-B+B,; a, = 2A,4A,; a, = 2C—6B,; a; = 2A;+4A,; a, = C+B+B,.
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For shallow resonance a;, a, and a, are positive and of greater magnitude than a;
and a; . These criteria give rise to four complex roots of the polynomial
agx? +a;x3 + a,x2 + azx + a4, which permits the quartic to be expressed as a product
of the two quadratics

Qi(x) = x2 + 2bjx + ¢

Qy(x) = x2 + 2byx + ¢, (4.33)

where ¢, and c, are positive (i.e. the product of the roots with their complex

conjugates) and without loss of generality we choose ¢; >c, . Hence, equation (4.32)

becomes

X

2 dx
t == . (4.34)
ag'/2 J VQi(x) Qa(x)
X0

We now introduce a new variable, s, defined by

2 = Q1 (x)
Q)

which may be alternatively written as
Qp - Q2 =0 =(1-52)x2 +2(b; ~ by s2)x + (¢ — ¢y 52). (4.35)

Changing the variable of integration to s, the integral I in (4.34) becomes

s

+ xﬂ_ S 1=+ 2ds
J VQ; Q2 J \/Q'l —Q’, 52
Xo

S0

where the prime denotes differentiation with respect to the parameter x.
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From equation (4.33)

Q) - Qas? =2(1 - s2)x + 2(b, - by s2),

(4.36)

which is non-zero (for b, # b, and c; # c2). Thus squaring equation (4.36) and

utilizing (4.35), we obtain

(Q1 - Q" 52)2 = 4(b; — by s2)* — 4(1 - s2)(b; — by 52) > 0.

(4.37)

The right-hand side of (4.37) is the discriminant of (4.35), denoted 4S2, say. Because

452 > ( equation (4.35) has real roots.

We write

’ ; 2
Sz=(Ql 2Q2 )=As4+Bsz+C

where A=b2—c, <0, B=c;+c,—2b; by>0, and C=b;—c, <0.

The roots of (4.38) are given by

, _-BVB2-4AC
= 2A

which we denote by a2 and B2. Choosing o? > 32, we may write
2 = IAl(a? - s2)(s2 - B2),
since A <Q.

The integral I is now
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s

JS T +J \/IAl(oc2 - 32)(3 52)

So

(4.39)

Equations (4.39) can be evaluated by means of elliptic integral theory (Abramowitz and

Stegun, p596).

The substitution required is

B nd(uh(z)

o2 ~ B2

7]
Il

where

1 1
d(ulx?) = -
n (U|K ) dn(llle) (1 _ K2 sin2¢)1/2

and the formal result only is quoted here, that is

S

[ooe =6 )

B

Then equation (4.32) yields

2 S
1/2 WI/Z J \[ (o 52) - [32) T aolﬂew ,z[nd—l (B

Kz) — ndt G;Q

where € =% 1, the sign chosen such that time is positive and increasing.
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Drag

It was shown in section 4.4, that drag can be incorporated by modelling air—density

through the function Q”(t) which yields the additional term QM . Equation (4.30)
o

thus becomes
)
L4 _ QW
VX(®) °
d)O

and similarly in equations (4.32) and (4.40), whence

= Bnd[no +xt + —X~Q(t) KZ)
K2
B
o apl2 1AI12
2e ‘

where ng = nd"l(

x:

Expanding nd(ulicz) in terms of powers of q, as defined by (4.18), we have

(Abramowitz and Stegun, pS75)

2) — _1\n nmu
ad(ul?) 2K(1 S +4Z< I (Kj

n=1

which eventually leads to

LS P© + 3“; (1 — 8 cos PO) + 2 cos 213(0)} + O(x%)

(4.41)

where P(t) is given by

P(t) = —}E— |:n0 + ot + lQ(t)jl = Py + Pjt + Pyt + Pat3
o
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Utilizing equations (4.31), (4.35) and (4.41) it is possible to express the resonance

angle as a function of time. Writing s2 = s2(t), we have

~[b) = by s2()] £ N [by — by s2(O]* - [1 = s2()][e; = c; s2(D]

@ = 2tan-!
tan [1-s2(t]

(4.42)

This expression does not lend itself to a least—squares—fit procedure as readily as (4.41).
It was intended that equation (4.41), for s2, would be used to determine the eight
parameters {bl, b,, €1, €2, Py, Py, Py, P3 } Even after several trials,
suppressing in turn one or more of the coefficients, it was deemed highly unlikely that
convergence would be achieved. This is because the solution always tended towards the
trivial result of b; =b, and ¢, =c,, at which point the theory has no meaning and the
application of the least—squares procedure breaks down. It seemed that the desired
solution to the problem represented a local minimum upon a manifold that sloped
towards a global minimum (i.c. b; =b, and ¢; = c2) and that the required local
minimum was stable only for values very close to the solution. Despite several attempts
to improve the accuracy of the initial values, the method always moved away from the
desired solution and thus failed. Consequently it was decided to approach the problem

directly, using equation (4.42), which removes the occurrence of a trivial solution.

Trials putting b, =0 and c¢; = 1 (equivalent to seeking a solution for the lumped

harmonic coefficients corresponding to y = 1 only) were made, suppressing in turn the

drag coefficients P, and P; . Again there was little difference between the two

solutions and the run which incorporated the cubic term was favoured. The preferred

values obtained in this manner were

1098% = ~21.9 £ 07 ; 109Cy, = —2.3 + 0.8
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with € = 1.4. These values are in good agreement with those obtained in section 4.5.

The residuals are plotted in Figure 4.2 and clearly show the 2 signature.

Residual (deg)

Figure 4.2

0.2
0.1 1
0.0 1

-0.1

-0.2 T T T T T T Y
46750 46850 46950 47050 47150
Modified Julian Day

The residuals of a least-squares—fit procedure applied to equation (4.42)

for @, suppressing the determination of 28th—order harmonics.

The rate of change of the resonance parameter is proportional to the rate of change of the

mean motion. In chapter 3, Table 3.3 shows the relative contribution of the resonance

terms for the rate of change for the mean motion. It is apparent that the contribution

corresponding to the @ + @ term is almost 50% that of the 2® term. Due to the near

!

identical frequencies of these two terms, it was necessary to remove the effects of the

® + o contribution before solving for the 2@ parameters. The results for the mean

motion indicated that the lumped harmonic values change little due to the ® + @ term.

Consequently, the 2@ values sought using equation (4.42) are considered to be

reasonable and only minimally corrupted by the effects of the @ + o terms.

Runs incorporating the 28t—order lumped harmonic coefficients were made and the trial

including the cubic drag coefficient was favoured.

The derived values were
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1098% = 224+02 ; 109C% = _2.6+0.2
14 14

12.4 £ 4.0

ii

109 S92 = 133+ 42 ; 109 CyF

with the corresponding degree of fit given by € = 0.6. The residuals are plotted in
Figure 4.3 and show a signature with a period of approximately 55 days. This

periodicity is not readily explained by unmodelled resonances as it corresponds to a

frequency of 4@ and such terms would be negligible in their contribution.

0.10

Cl 0.05 -
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T 000
=
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S 0054
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46750 46850 46950 47050 47150

Modified Julian Day

Figure 4.3 The residuals of a least-squares—fit procedure applied to equation (4.42)

for ®.

The 27 day Solar cycle was investigated briefly by examination of the daily Fyg-
index. The values were very static for the first three months and thus could not in any
way account for the necessary changes in atmospheric density to yield the oscillation

seen in Figure 4.3.

A possible explanation that requires further investigation is that the effect is a result of
day—to—night variation in air—density. This creates the diurnal bulge which moves
around the Earth, lagging behind the position of the sun in the sky by around 2 hours.
The right ascension of the Sun advances daily by approximately 1 degree, whilst for

Cosmos 1603 the right ascension of the ascending node recedes by around 2 deg/day.
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Combining these two effects, the orbital plane precesses relative to the diurnal bulge at a
rate of 3 deg/day. Since the orbit is near—circular the coincidence of the orbital plane

with the bulge gives rise to increased air—drag effects with a period of around 60 days.
It is probably appropriate to remove the ® + @ resonance contribution before a solution

is sought and to model the drag effects of the diurnal bulge, through the parameter

é - Q . However, this is not detailed here and is left for future work.
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CHAPTER V
PERTURBATIONS OF NEAR-CIRCULAR ORBITS

Cosmos 1603 had a near—circular orbit during the period of analysis. It is for this

reason that we examine orbital theory pertaining to small eccentricity. The usual six

osculating elements {a, e, 1, Q, o, M} are not suitable for defining an orbit of
small eccentricity since the time derivatives of @ and M contain singularities at € = 0.

We introduce the transformation (Cook, 1966)

£ = ecos®

N =esinw- (5.1)
with time derivatives

E = écosm — emsin ®
(5.2)
esin ® + emCcos M.

-
l

Evaluating the perturbation in ® + M, (instead of ® and M separately) we

remove these singularities (Allan, 1967). In this chapter the long periodic development

of a near—circular orbit is examined. The variation of ® + M is not required for our

purpose and will not be discussed.
§5.1 THE ZONAL HARMONICS

From Lagrange's planetary equations the rates of changes of ¢ and ® due to a

disturbing function R are given by equation (2.24)

1
5 = (1-¢)” [(1 _e2)'n2 oR a_R_]

nale oM  Jdmw
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(5.3)

C.D=(1~<32)]/2 l:gli_ e coti B_Ii}
nae [ge (1 -e?) ail

Combining (5.2) and (5.3) thus gives

gé[&{o B (19 gg} s m—{(l _.ez)lﬂg_ii?;)i—ln?;} i m}

ﬁ=é[g{(l—é)%—(l—§)lng} Smw’{(l“ez)lﬂ%_(f%)il}i%{} oosco]

(5.4)

On neglecting the central part and the longitude dependent contribution of the Earth's

gravitational potential V in (2.26) the axi—symmelrié component may be written as

o0

R =— (%) D1, (%)n P, (sin ¢) . (5.5)

n=2

We examine separately the effects of the even zonals and the odd zonals on the

disturbing function, R, retaining dominant long-periodic terms only.

Even harmonics

Given that J, is O(10-3) whilst all higher zonal harmonics are 0(10-9), it is

sufficient to retain only J, from the even harmonics. Thus, from (2.33), the

contribution in (5.5) from the even zonals may be written explicitly as
AT =312 :
e

From (5.4), the effect of the even zonals is summarised by
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. 2
Even = — 3050 (3‘;3) (1 - 5/4 sin2i)n

Mevex = 3151 (Z) (1 -5/4 sin2i) & (5.6)
on neglecting terms of O(ez).

Qdd harmonics

The Legendre polynomials in (5.5) may be expanded using the addition theorem for

zonal harmonics (Jeffreys and Jeffreys, 1956)

P (sm q>) P (cosDP (oos 2) +22 T s)'P (oosDPS<oos 7tB)ooss(u — 7%)

s=1

where P8 are associated Legendre functions of degree n and order s; and u is the
argument of latitude ® + 0 (6 being the true anomaly). Thus, for a general term

R, in the disturbing potential

e ) 1200 + 13 5 0 -5

s=1

(5.7)

Upon expansion of the true anomaly in terms of the eccentricity function, Gypq(e)

(given in chapter 2), denoting 2 by n, neglecting short periodic terms and for n odd,

equation (5.7) becomes

Rns_QJn(a%)(?) EE - S)),Ps(oosap 0)G . @wss(o-2) |

s=1

)

Since Gpq(e) is O(e'd'), only the first term in the summation is retained, yielding to

O(ez)
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n+1 ~ 1 . .
R, = -], (—Ej (—-) {ﬁ(?n_iT)) P 1(cos i) Pnl(O) e sin ® (n odd)
whence, from equations (5.4), the contribution to § and 1 by the odd harmonics may

be written

. 112
Eonp = Z T, G%) G) {n(?n X 1)) P_1(cos i) pnl(o)} + 0(e?)

Nopp2 3

Tn‘lom) = 0(62) . : (5.8)

The associated Legendre functions appearing in equation (5.8) may be written as

(n-1)/2

. sinj 2n — 20)! (=1)! _—
Pyl(cos i) === z (n e 2t)? (51 —)t)!  (cos M

t=20

E on t
Combining equations (5.6) and (5.8), the rates of change 7; and 1 due to the even and

odd harmonics is summarised by

E_, =—kn +C (5.9)
= k§
where
LY)72 2y )
k = 3], (a—3j G—) (1 7 sin 1)
and

172
- (ﬁ) ZJ ( ) T +11))P 1(0) P, (cos i).

Nopp2 3

The solution to equation (5.9) is given by (Cook, 1966)

C ‘ |
_(Mo+ Sk & [Sm kt} 0
w() = ( ‘. n0~C/k) cos kel * 1 x| (5.10)
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where y(t) = (§(v), n(t))T; or alternatively

£ = Acos(kt +a)
n = Asin(kt + o) + C/k

where A and o are constants of integration depending on the initial conditions, &g

and My at t=0, and may be written as

_Crx
A? = (T]()— C/k)2 + éoz s a = tan'"l(mé—/—]‘
0

The conventional elements may thus be recovered from

e = (£2+ nz)liz
and

® = tan-l(n/ﬁ) .

It is apparent that e? varies sinusoidally with time. The motion may be represented

diagrammatically in the (é, n) plane by a circle, radius A centred on (O, C/ k). The

argument of perigee is then represented by the angular distance of the radius vector from

the positive &-axis. (see Figure 5.1).

If A>|Cxl the radial arm rotates with period 27/kl and the eccentricity oscillates

between A —C/k and A + C/k. Since the motion around the circle is at a uniform rate,

® may vary rapidly if A exceeds 1Cxl by only a small amount. Although ® isill-

defined as e — 0, there is a corresponding variation in M and ® + M remains finite.

When A » |Ckl, e varies approximately sinusoidally with .

If A <|C/l, the radial arm oscillates about le| = /2 , with amplitude sin-1(|Ak/Cl)
and period 27t/lkl , while the eccentricity oscillates between IC/k| —A and |C/k| + A.
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For an orbit with initial conditions (E,.O, 110) = (0, C/k), the eccentricity and the

argument of perigee do not change. This frozen orbit has particular significance for

certain altimeter satellites.
* n

A
0,CRF=

U

@ A>Ck
AN
A
0,Cw
c
(‘0 .
»g
b A<Ck

Figure 5.1 (a) and (b) representing orbital motion in the (E, n ) plane.

§5.2 RESONANCE

We seek the rates of change of the variables & and m, solely due to the resonance.
This is achieved by substituting the disturbing function R, in normalized form, into
(5.3), which in turn is substituted into (5.2). Since R may be differentiated term by
term, it is possible to interchange the order of summation and differentiation. When
resonance occurs, only a certain number of terms need to be retained in the analysis,

subject to the resonance conditions (2.34). Therefore, we consider a general term
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Rympq » Of the disturbing potential R, and whenever the subscripts 2, m, p and q

appear, summation over the appropriate ranges is assumed. When it becomes desirable
to introduce a particular constraint into an equation, the corresponding subscript/s will

be dropped and the constraint will be incorporated within the equation.

Utilizing equations (2.30) and (2.32), a general term in (5.3) may be written as

Smq = ( )(Q 2p+q) (1 ) (Q 2p)] ( ) Fﬂmp(l) G pq(®) (Pﬂmpq

1
) (1—62) 12 coti =, . 2.\ B
Ogmpq = |~ Fmp() Gppq(®) === Fymp(i) Gpq “(Ee) Pompq -

(1—62)1/2

(5.11)

Since Gypqle) is O(eldl) it is sufficient to restrict q to take the values q =0, £ 1

only. Using Kaula's (1966) expression for Gjp(e), namely

Gppof®) = (1+62)" E P 0 2}11 _Zrﬁ)( rll)r (;B)r (2-2p) ¢ *
: {;0(1:%&) ) e

where B = c — = O(%/2) and Allan's expression for Gyppq(e) q # 0,
1+ (1-€2) 72
given by
( q
2p-2
(5 2, B (g o) an
Gap® = Y
2-2p+ - 2
E( pq) p)+o(e_q+z),q<0
q -7
z=20
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then for 0-2p+q = ay, ie. p=——td =

Gy ln apo® = 1 + ¢ [% (2+1)-a2 72} + 0(e?)

Gy Y apn21(® = 5 [2-1£207] + O(e?) (5.12)

and consequently

G lo-opol® = 2e [%—(JZH)_az Yzjl + 0(e3) ;
Gy ip-apiny1(®) = 5 [2-1220rv] + O(e?) (5.13)

Applying the resonance constraint 2-oy+q =0, restricting q =0,* 1 and utilizing
(5.12) and (5.13), equation (5.11) becomes

1/2 A
Y3 a3 ; Qm 2(2-‘17) (pllm.‘(ﬂ—a'y) 0

jl/

112
v a\L — 1 A
+ (;5) (E) Fﬂm,lz(ﬂ—ay—l)'j[/o-_l—zav] (lem,li(ﬂ 1)1 + terms O(ez)

S N

w|F

a\L = : 1 A
i ( ) Fﬂm,i(ﬂ—awl)f[ﬂ—l'*'zay] (lem,lz(ﬂ—ayﬂ),l

(¢

iy =o{2) (3] Fortn 25000-00] - i P s

2 ra\L = 1 1 9 B
(;) Fﬂm’i(ﬁ‘aﬁl) —2-[ _1'*'20‘7] (pﬂm,é()l—a'yﬂ),l

Im ¥ L-ay-1) 3 [Q 1—20‘7] (Pﬂmz(ﬂ_a,y_l) _; + terms 0(62)

+
N
RlF
~—

e

[\%]
h
o |

=
gsl

(5.14)

Upon utilizing the relationship between Yy,o, and @,g and assuming the resonance

constraints, basic trigonometric identities give
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sin Vom X 2-oy),0 = sin Y®qg
COS Wpm i(D-oy),0 = €08 TPap
SIN Wpm X0 _ayr1) 21 = Sin YPop cOs ® + cos YDy Sin

COS Wy m YR —cryt1) 1 = COS YPugcos ® t  sin YPyp sin @ .

Hence the substitution of (5.14) into equation (5.11) yields

1
° o] ()72 2\ = A
Som = ecom[z}(a—aj (%) Fumio-cp O
1
1 = LY’? A
) (2-1+2ary) Fomx0-ope1) (;5) (;) Dom

a3

1 = Y72 et
+§(,Q——1-2(X“{) FQm,IE(,Q.—OL’Y—l) a3 (_z{) q)ﬂm
ae

: = Q = ul/z -
e[t T221a08] - ot Pt (5] (5

(5.15)

and

12
: : ay|(H e\t = A
- cso el (2 Pt

1 - \ V8 1/2 ae 2 B
) (,Q—1+2a“{) FQm,;(Jl—wﬁl) 23 (;) ¢Qm

1 = i 172 a.\. B
*t3 (2—1—2(1”{) Fﬁm,lz(ﬂ—ay—l) 23 (Z) ®on

1
. = ,Q, .= 08 2 de 2 B
vesino[Fania o 2 5010027 - coti Frat ] (5] (5)
(5.16)

where q>‘;m and ¢Em are given by (2.37).
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It is only to O(e) that the expressions in (5.15) and (5.16), for which q =% 1, have
similar coefficients. Without these conditions the following analysis would not be

possible.

Thus, summing over all permissible £ and m (hence y), subject to the constraints

given by equation (2.34), the rates of change may be written

£ = v(@)t - w(o)n + G(®)

1= W(O)E + V(@) + H(D) (5.17)

where, in the interests of brevity, the subscripts o and  on @ have been suppressed

and
Vo) - 2 () () Finkt a8
W(®) = Z (Bt 1 2(01)0242] — ct EMM}(g)IQ 3 4,
2 m
1 = 1 - W2 3\ A
G(®) = 2 [z (2-1-2007) Fmbppcmpy =5 (2-14201) Fmimn}(;) (af) O
4m

H(®) = Z B (2-1-207) Famdp oy +% (2-1+20) Eﬂrnﬂawl)}(%jla (aff)ﬂ O

2 m
(5.18)
In matrix form (5.17) becomes
o (V(®) - W(D) [G((D)]
Yy = (W((D) v(cp) ) y() + H((D) (5.19)
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where again Wy(t) = (§ M )T :

The expressions within the summations of (5.18) may be written in terms of lumped

harmonic coefficients.
§5.3 ATMOSPHERIC DRAG

We now examine the effect of air—drag on a near—circular orbit. Utilizing the
expressions for air—density derived in section 2.2, the resulting changes in the semi—
major axis and eccentricity, over one revolution, may be written (Cook and King-Hele,

1966)

Aa = —2a§ po O (l + 2Bage2) exp[B(aO —a- Xo)]

Ae = —aypgdme (Bag + 1) exp[B(aO —-a- xo)] (5.20)

where 8 is a constant and depends upon the properties of a particular satellite (detailed

in chapter 2), B=1/H and xg = age (a being the initial value of a).

The orbital period, T, is the change in time over one revolution

at =T = 2n(20%) 2

and dividing Aa and Ae by At, yields the rates of change of a and e, to O(e), as

a = — (ag) "2 po & exp[ B(ao — a - xo)] (5.21)
and e = _-Zlﬁ (nag)'2pyde exp[B(ao -a- xo)] . (5.22)

Since ey « 1, Xy may be neglected and as a first approximation (5.21) integrates to

H

e rrowl ERLL BCRDIY
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which may be rewritten as

exp[B(20 - 2) ] = Til‘é—t (5.23)

where

_ (nag)'2 pod

o (5.24)

G

Substitution of (5.23) and (5.24) into (5.22) gives rise to the differential equation

¢ = -5 (1-Gt)le exp[-Bxo] (5.25)

which may be integrated, yielding

Ine = %—exp[—BxO] In(1-Gt) + Ine, (5.26)
and since Pxg « 1, (5.26) gives as a first approximation
e = ey (1-G)l2. (5.27) -

Alternatively A and Amn may be written as

A = Aecos® — e Aw sin @

. 5.28
An = Aesin® + e Aw cos @ ( )

For a spherically symmetric atmosphere Aw =0 (King-Hele, 1989), hence (5.20) and

(5.28) lead to

I

Ag
An

— g po O (Bag + 1) exp[B(aO -a- Xo)] g
—agpo O (Bag + 1) exp[B(aO —a- Xo)] n. (5.29)
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Again, dividing through by At =T and utilizing (5.23) and (5.24), equation (5.29)

becomes

£ = —% (1-Gty1 exp[-Bxo] &
M = -5 (1 -Gt exp[-Bxo] (5.30)

and putting exp [—on] = 1, (5.30) reduces to the matrix expression

o —%(1—Gt)~1 0 .
VOB 0 —S-cyt YO (5.31)

which, after comparison with (5.25)—(5.27), yields

y® = (1-6Y'72 yp .
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CHAPTER VI

ZONALS AND RESONANCE PERTURBATIONS ON A NEAR-
CIRCULAR ORBIT

§6.1 EQUATIONS OF MOTION

The perturbation of & and 1 due to the zonals has been discussed previously in

chapter 5 and may be summarized as

E-_—.—kn+C
n= k&

k = 3(%)1/2 I, (%)2 (1 _ %sin%)
) (a3j1/2 2 . ( ) n(n‘+ 73 Pal(0) Pyl (cos i)

ngge2 3

where

The perturbation due to the tesserals at P : o resonance is developed from the

longitude—dependent part of the geopotential, which after substitution into Lagrange's

planetary equations (2.24) for ¢ and @ and utilizing equation (5.2) yields to O(e)

equation (5.17), namely

uve
I

V(Dgp)E = W(ep)n + G(Dgp)
W(@up)e + V(Dgg)n + H(Dop) |

-
It

Combining the effects of the zonals and the resonant tesserals on the perturbation of &

and T gives rise to differential equations which can be represented in matrix form by

(6.1)

V(o) -w(@)k j v + (G((D) + Cj

Vo = (W((D)+k V(@) H(®)
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where y = (&, n)T and for brevity the subscripts a and 3 on @® have been

suppressed.

Equation (6.1) is a non-homogeneous linear differential equation which may be

expressed in the form

XM = A X1 + B | (6.2)

where X = (xl, xz)T ; Ay =Ay® (,j=1,2) and P() = (pl(t), pz(t))T ; and t
lies in an interval J, which in this instance is (—eo, o). If A(t) and P(t) are

continuous on J, the solution to (6.2) may be written (Wilson, 1971)

t
X() = M(® M‘l(to) Xo +JM(I) M-1(s) P(s) ds Vittge J (63)
to

where M(t) is called a fundamental matrix, whose columns satisfy the homogeneous

linear differential equation
X(H = A® X0 (6.4)

and is non-singular. M(t) is not unique, but is defined to within a scalar multiplication
or a constant matrix multiplication. Thus, a M(t) and M(t)C are also fundamental
matrices of the homogeneous linear differential equation (6.4), where 'a' is an arbitrary
constant and C is a non—singular constant matrix. (Equation (6.3) is often recognised

as the formula for the variation of parameters.)

If the matrix A(t) is written in the form

a;(t) —ay(1) ), 6.5)

Al = (az(t) al(t)
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then by inspection, the general solution for M(t) is given by

M@ = ( cos 6(t) sin 6(t)

sin 6(t) —cos 6(t) )CXP () (6.6)

where 6(t) and ¢(t) are indefinite integrals of the form

t t

e(t) = Jaz(t) dt ; o) = Jal(t) dt (6.7)

where the constants of integration may be neglected.

In equation (6.1), V(®) and W(®) are O(Jy,,), where Jﬂm=\[ C;_+S; and

oscillatory (except at exact commensurability), whereas k is O(JZ) (except at critical

inclinations). Thus, by an order of magnitude study, V and W can be neglected since

Tom= O(J%) and equation (6.1) simplifies to

() = (ﬁ - g)wo + (G h C). (6.8)

A fundamental matrix for the non-homogeneous linear differential equation (6.8) may,

by equations (6.5) through to (6.7), be written in the form

sin kt —cos kt

K )
M_(t)z(cos t smkt)

with the property M-1(t) = M(b).

The Complementary Solution

The complementary solution of (6.8) is given by equation (6.3) with P(s) = 0; thus
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I

cos kt sin kt \ cos kty sin ktg
o =S5 )

sin kt —cos kt A sin kty —cos ktg

(cos k(t-tg) —sin k(tto) )(&0) 0 (6.9)

sin k(t-t) cos k(tto) J{n,

On putting t; =0, equation (6.9) becomes

(Mo & \sin kt
Y () = ( Eo Mo j(cos kt)° (6.10)

In order to evaluate the particular solution, it is necessary to use an expression for the

resonance angle that is explicitly given in terms of time.

Development of the Particular Soluti
For general [ : o resonance, G((D) and H((I)) from equations (2.37) and (5.18)

may be written

A_ — B_oyodd A — B_.oyodd
G(®) = [ N B"Y] sin y® - [ N st] cos Y
sY ST oy even Y Yoy even
Y
(6.11)
+ B oy odd A + B._ayodd
H((I)) = [ _QCY _ ch cos YO + [ ASy + BSY} sin YP
Y ST oy even Y Yoy even
Y

where the coefficients Ay, Ay, Byy, By are functions of inclination and the lumped

harmonics and may be taken as constant for a particular satellite. In detail

. _
oy 1 oy ™"
Y72 2\ 1 Fy g ¢
_ (a_3) (-a—e) 5 (L-1-20y) FLga ke oyety §
. S-l,ay+1
o By

and
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o 1 ~1l,0y-1
BoY/2 2\t 1 F CBY

) (E??j (E) 2 (L-14200) Fuga fapny |0

B sY ° Bi(ay_

where

anodd

ay even

For a satellite experiencing 14:1 resonance, as for instance Cosmos 1603, equations

(6.11) become

G(®) = (Ac-B.)sin® - (A;-B)cos @
H(®) = (A;+Bc)cos @ + (A, + By)sin @

Il

on taking the dominant Y =1 terms only and dropping the <y subscript. The

coefficients are given by

a r
Ao L _ (H)2 e\ 1 <01}4'2
=3 ;) 5 Fra1a6 ) _

A \ S7h2
s J V14
B. ) (_
1,0
Tl (m)e s JCi
=13 |z 7 Fuaaa7 Y_ -
a 1,0
BS) \314

To obtain the particular solution it is necessary to integrate M-1(t) P(t) between t; and

t, where M-1(t) is the same fundamental matrix as defined in section 6.1. Without

loss of generality we take ty=0 and denote

t

=J ( cos ks sin ks /{G(d)(s)) + C

sin ks —cos ks H(D(s)) ] ds.  (6.12)

R(@®) = J M-1(s) P(s) ds
0 0

Expanding terms we may write
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L

X0 =J‘ [C cos ks + G(s) cos ks + H(s) sin ks] .

C sin ks + G(s) sin ks — H(s) cos ks
0

Now

G(s) cos ks + H(s) sinks=(A-B,) sin ® cos ks — (AS—BS) cos @ cos ks
+ (Act+B;) cos @ sin ks + (As+B) sin @ sin ks

= A, sin ((D+ks) — B, sin ((D~ks)

— A cos ((D+ks) + B cos ((D—ks)

and
G(s) sin ks —H(s) cos ks= (AB;) sin @ sin ks — (AyBy) cos @ sin ks
— (ActB;) cos @ cos ks - (As*By) sin @ cos ks

=—A_cos ((D+ks) — B, cos ((D—ks)
— A sin (@+ks) — B sin (®ks).

Thus we may write

(@) = A® + B + C()

where
t
A = "[ A, sin {(D(s) +ks} — A, cos {(I)(s) +ks}}
=) L= Agcos {@(s) +ks} - Agsin {@(s) + ks}
0
t
_ ([~ Besin {@(s) —ks} + B cos {(D(s)—ks}:l
BO = [_ B, cos {®(s) —ks} — B, sin {@(s) ~ks} ] & &1
0
and
L
B cos ks _ C[ sinkt
Lo = CJ [sin ks} ds = k[l — cos kt] ) (6.14)
0
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For shallow @ resonance, the resonance angle changes quasi—secularly, as discussed

in chapter 4. In this instance ® may be assumed to have the form (4.10), i.e.

D) = Dy + ot (6.15)

where ¢ is a constant and @, the value of ® at t=0.

When 6 =tk we observe the unusual phenomenon of deep resonance of a secondary
resonance parameter, @ + . The integration in the evaluation of A(t) or B(t), but not
both, is invalidated as a consequence of small divisors. As previously discussed in
chapter 4, the neglected small oscillations superimposed on the linear variation of @
become significant and may dominate. Equation (6.15) is therefore an inadequate
expression for the resonance angle and the linear perturbation techniques fail for the
evaluation of one of the expressions in equation (6.13). However, the other expression

remains valid. The same integration approach is employed whenever 6 =+ kor 6 = — k.

§6.2 SHALLOW @&+ ®w RESONANCE

Proceeding with the integration of equation (6.13), given ol # kI, it is found that

go=-L A B A A s (@ (o)t) - A, sin D)) ]
=7 okl A sin @ — A cos @ — A sin{ DpH(ok)t} + A cos {Dy+(o+k)t]
BO =“1‘[_B° cos @ — B sin & + B cos{@ye(ok)i} + B sn {@(ok)1) }
okl Bosin @ — B, s @ — B sin{@e(0)) + B s { (o) [

(6.16)

To evaluate M(t) X(t), we require

o) o) )| cos ot — cos kt

=) —gH) i i
MO A® = (a o )[ sin Gt + sin kt:l
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~BE) o) [sin Ot — sin kt}
M(t) B(t) = 6.17
M(t) BV ( B [3(—) cos ot — cos kt ( )
g M C) = Cy = Sf SiP K } (6.18)
ana M@® CH) = CO) = ¢ [1 — cos kt '
where
A
al) = Ao cos ®y; + —— sin @,
o+k o+k
A
a(_) = —Ac sin q)o g —— CcOS (DO
o+k o+k
B B
) = — cos Dy, + — sin®
B ok 0 ok 0
B B
BO) = —= sin®y, — —— cos D, . (6.19)
o-k ok

Thus, from equations (6.17) and (6.18), our particular solution to equation (6.1) may be

written
S® O \[sin kt SO O [ sin ot
Yot =| A A + | A A (6.20)
C) _S(+) JLcos kt CcH S+ cos Gt
where S® = ¢ + PO and C® = a® + B 6.21)

Combining the particular solution (6.20) and the complementary solution (6.10) the

equations of motion in the (& n ) plane are given by

o - p+ Ck+ 59 g+ O [Sirlh]+ o o [sinoti|+ 0 1622
§0+€}—) Tb_C/k-/s\(+) s kt| | (W So )L cos ot Ck |

§6.3 DEEP ®—w RESONANCE

During the one year of orbital analysis Cosmos 1603 exhibited deep resonance of the

secondary resonance parameter @ — . For this reason we examine the theory
pertaining to o= k.

109



The expression for the main resonance parameter, ®, as given by equation (6.15), does
not give a true and accurate description of this variable and its explicit time—dependence.

In chapter 4 equation (4.22) revealed that this parameter could be written

2
® =L+ ot+z(l+22)sinot + gsin2ct + 0(z%) (6.23)

where again without loss of generality @, (the initial value of (D) is taken to be A

at t=0 and o and z are constants (z « 1 due to criteria discussed in chapter 4).

Let us write
O — kt = Oy + F(t) (6.24)

where @, remains arbitrary and F(t) is explicit in terms of time and represents the true

and accurate variation of @ —kt from the initial value ®@,, i.e. F(0)=0.

Returning to the second term in equation (6.13), substitution of equation (6.24) yields

B()= [—Bc sindy, cosF(s) — B, cos®y sinF(s) + B, cos®, cosF(s) — By sindy, sinF(s) }ds
- _j B, cos®y cosF(s) + B, sindyy snF(s) — B, sindyy cosF(s) — B, cos®y sinF(s)
0

t

B Be sin F(s)
= A A ds
BE) —BH) cos F(s)
0
A . A °
where  B® = B cos @y + Bsin ®y; PO = B sin @y — B, cos @y . (6.25)

Now M(t) B(t) is given by
cos kt sin kt _ﬁ(+) _ﬁ(_) R
M() B(t) = ) A A
sin kt —cos kt BO) B+ R
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A A
B® PO

B ( BO peo

R, cos kt + R sin kt
J R sin kt — R, cos kt (6.26)

t

t
where R, Jsin F(s)ds and R, =Jcos F(s) ds.
0 0

From equations (6.23) and (6.24), on setting @, = A, F(t) can be approximated by

2
F(t) = @t + z(1 +2z)sinot + Z‘S—sin 20t (6.27)

where ® =0 —k.

2
The % sin 2ot term contributes less than 1% to the variation of F(t), whilst the

272 sin ot term contributes around 10%. Hence, the smaller term may be neglected and

equation (6.27) becomes
F(t) = ot + Z sin ot

where Z = z(1 +2z).

Expanding the sine and cosine of F(t) gives

sin((T)t + Z sin ct) = sin Ot cos(Z sin O't) + cos Ot sin(Z sin Gt) 6.28)
cos((T)t + Z sin Gt) = cos Ot cos(Z sin O't) — sin @t sin(Z sin Gt) '

and upon utilizing the expressions (Abramowitz and Stegun, p361)

sin(Z sin b) = 2 Z Jpy41(Z) sin(2v+1)b

v=2~0
and
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cos(Zsinb) = Jy(Z) + 2 Z Jou(Z) cos 2vb

v=1

where J(Z) are Bessel functions (Abramowitz and Stegun, p360) which for |ZI < 2

1@ = (2r) E TRy +k)f , | (6.29)

can be written

we obtain

sin FQ) = Jo@) st + 2, Tp(@) st sVt + 2 D, Ty (@) cosdit sin(2v+)cx

v=1l v=20
aos F() = Jy@) oostt + 22 In(@) cosGt cos2vot -22 Tpy@) sindx sin(2v+1)ct .
v=1 v=20

(6.30)

It may be of interest to observe that equations (6.28) and (6.30) are valid for ® = ¢ * k.
Although it is assumed that @ = C -k, the following equations are also valid for
® = ¢ + k, with the appropriate change of sign for 'k'. Expanding equation (6.30) leads

to

sin F@) = J,@ sin(ok)t + i J2V(z>{sm[o(2v+i)4<]t — sin[o(2v-1)+ k]t}

v=1

+ ZO D @{ sin[o(2v+2) k]t + sin[o(2v)+k]t}

Z 1,(Z) sin[o(v+1)—k]t - Z (-1)¥ 1,(2) sin[ o(v-1)+k]t

v=20

and
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cos F) = Jy@) oos(ok)t + i @ cos[o(2v+1) k]t + cos[o(2v-1)+k]}

v=1

+ 2 Tpun@{ cos[o(2v+2) k]t — cos[o(2v)+k]t}

= Z J,(Z) cos[o(v+1)-k]t + Z (~1)V 1,(Z) cos[ o(v-1)+k]t .
v=1

v =20

(6.31)

The summations in equation (6.31) are convergent, enabling term by term integration.

Thus, we have

t

oo

J(Z)311 - 1)tk
RO = | sin F(s) ds = @) {1 - cos[ o(v+1)xk]t} B
: Z [o(v+1)tk]

v=2~0
0

oo

. Z 11,2 { 1 - cos[ o(v-1)7x]1 }
[c(v—l)ik]

v =1

t

oo

2 : 1,(Z) sin[o(v+1)+
R® =| cos F(s) ds = »(2) sm[o(v+ ) k]t +
¢ [o(v+1)2k]

v=20
0

oo

) (-DVI(Z) sin [c(v—l)ik]t (6.32)
[0(v~1)4‘-k]

v =1

where (%) denotes the choice of sign for k. For Cosmos 1603 the negative sign is

applicable.
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It is now possible to accumulate components of the particular solution from equations

(6.14), (6.17), (6.26) and (6.32), yielding

o —a® \[ sin ot C/k + o o) sin kt
lMp(t) = +

o a=) Jicos ot o+ C/k - a cos k

RO cos kt + R sin kt

A

A A

B _BO { }
oA : O ©) + :

B B R; 7 sin kt — R’ cos kt Cix

Hence the final solution to the equations of motion in the (é Ul ) plane, where ¢ =k,

is

w(o) = Mo+ C/k+a= & +a® J[Si" kt} N ( o) —ou) j[sin ot}

Eg + 0(*) Mo - C/k — o™ | cos kt o) o) J[cos ot
A A Rg") cos kt + Rg_) sin kt
B —BO)

0
- + ; (6.33)
ﬁ(—) ﬁ(+) ] Rg_) sin kt — Ré_) cos kt [C/\J

§6.4 DETERMINATION OF LUMPED HARMONICS FROM e cos ® AND e sin ®

In chapter 3, lumped harmonic coefficients were obtained from analysis of the orbital
eccentricity of Cosmos 1603. The program PROD removed the effects of the zonal
harmonic and luni-solar perturbations. Resonance was modelled in the program
THROE, which determined the lumped harmonic coefficients. In this section we
estimate the same coefficients via the orbital parameters & and 1 which are related to

the eccentricity through equation (5.1), namely

£ =ecos

N = esin®.
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This approach is considered reasonable given the low eccentricity of Cosmos 1603
during the period of analysis (e < 0.003). However, it is a much more demanding
problem as we attempt to fit two independent variables, hence increasing the number of
points to be fitted by a factor of two. Furthermore, after luni—solar perturbations are
removed, the intention is to model simultaneously the zonal harmonic perturbations, the

resonance perturbations and their interactions.

Equation (6.33) was incorporated in a weighted least-squares—fit of the parameters &
and 1, utilizing the Bessel function expansions of equations (6.29) and (6.32). (The
weights were calculated from the PROP 6 S.D.'s for e and ). The aim was to
determine a maximum of four lumped harmonic coefficients and two initial values, &0
and 1. Drag was not modelled, but was absorbed within the quasi—secular secondary

resonance corresponding to the lumped harmonics §11;10 and (_Iif . PROD was run to

evaluate luni—solar perturbations to € and ® before & and 1 were evaluated. The
adjustment to e on a few epochs was as large as 2 x 10-® but generally less than
1 x 10-%, whilst the adjustment to ® approached 0.12 degrees on a small number of

epochs, but for the majority was less than 0.02 degrees.

The three parameters {?», o, z} were obtained from the least-squares—fit of the
resonance angle, in section 4.5, the results of which are given in Table 4.1. Runs 1 to
3, in section 4.5, included either a quadratic coefficient in time (Q), a cubic coefficient

(C) or both (B), whilst run 4 had neither (-). Four runs to determine lumped harmonics

from & and m were made, corresponding to the four sets of {K, c, z} available
from Table 4.1. The values obtained, along with their S.D.'s and the degree of fit, €,

are given in Table 6.1. Runs 1 to 3 in this section are favoured since drag is in

someway accounted for in the parameters {K, o, z } , even though it is not modelled

directly. It must be realised, therefore, that the lumped harmonic coefficients,
corresponding to the quasi—secular resonance, may be corrupted by inadequate

modelling of air—drag effects. Indeed all parameters absorb other unmodelled effects,
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such as resonance effects of other frequencies and SRP, etc. However, as outlined in
chapter 3, these unmodelled perturbations are small (including drag) and the results are

therefore considered to be highly accurate.

Run £ 1095  109C};) 1095;,7  109Cph2
1(B) 0.76 60.6 -27.6 6.8 -64.4
1.5 1.3 7.6 7.5
2(C) 0.76 59.5 -30.3 3.5 —64.7
1.4 1.3 7.5 7.4
3(Q 0.76 61.0 -26.8 7.8 -64.3
1.5 1.3 7.6 7.5
4(-) 0.75 59.0 -31.8 0.7 -65.1
1.4 1.3 7.5 7.2
Table 6.1 The results of a least-squares—fit procedure determining lumped

harmonic coefficients from e cos @ and e sin ©.

Despite the slightly improved fit, run 4 is considered less favourable than the other three
for the reasons already stated concerning drag. To remain consistent with section 4.5
and in view of the consistency between runs 1 to 3, the preferred values are taken from
run 2. A comparison of the preferred values against previously evaluated values is

given in Table 6.2.

.
\;’
S

Aston University

Content has been removed for copyright reasons

Table 6.2 A summary of the lumped harmonic values obtained from analysis of the
eccentricity and analysis of e cos ® and e sin ® along with the
computed values by PGS-3337 (Marsh et al., 1990).

116




The eccentricity and argument of perigee, recovered from the fitted values of & and m,
are plotted in Figures 6.1 and 6.2, along with the observed values (adjusted for luni—

solar perturbations).
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0.0025 - .

0.0020

0.0015 -

0.0010 A
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0.0005 . r . r v ' .
46750 46850 46950 47050 47150
Modified Julian Day

Figure 6.1 Observed values of the eccentricity cleared of luni—solar perturbations,

with theoretical fit.
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Figure 6.2 Observed values of the argument of perigee cleared of luni—solar perturbations,

with theoretical fit.

As would be expected the agreement is good. A better view of the accuracy of this
method can be obtained by examination of the residuals. The residuals for the

eccentricity and argument of perigee are plotted against time in Figures 6.3 and 6.4.
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Figure 6.3 The residuals between the calculated and the observed values of the

eccentricity.
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Figure 6.4  The residuals between the calculated and the observed values of the

argument of perigee.

On the other hand residuals in & and m are given by Figures 6.5 and 6.6.
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Figure 6.5 The residuals between the calculated and the observed values of e cos .
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Figure 6.6 The residuals between the calculated and the observed values of e sin .

The residuals for & and 7, in Figures 6.5 and 6.6, diminish in magnitude from their
initial values over the first quarter of 1987. They are minimal over the central epochs and
increase for the final quarter of 1987. This suggests that unmodelled long—period
effects are present and cannot be compensated for by the least-squares—fit procedure.
However, the residuals are small relative to the determined values and in all four Figures
the even distribution of the residuals indicates a good fit with smaller perturbation effects

creating only a background noise.
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§6.5 FROZEN ORBITS

A frozen orbir is one where e and ® are invariant under the influence of zonal
harmonic perturbations. In this section we examine the criteria that yield minimal rates
of change in the parameters & and m, as used to represent near—circular motion. By
exploiting frozen orbits, otherwise dominant perturbations are removed and it becomes
possible to obtain a better perspective of the remaining perturbations. Further, we
explore the possibility of removing or reducing these remaining perturbations, mainly

resonances, to yield a more frozen orbit.

D resonance

It was briefly mentioned in section 5.1 that the solution to the equations of motion for &
and M, under the influence of the zonals, yielded a frozen orbit given the initial

condition

(g
[no = Yo =|c, |- (6.34)

When the effects of shallow resonance are incorporated, equation (6.22) gives the

remaining small periodic perturbations in § and m, namely
A A s A A
S® CO [Sm kt} SG) _CO [sin Gt} [ 0 }
Yo (6(—) _’§(+>j coskt] (| &» S®)Lcosot | | Cx (6:35)

where S&) and C® are functions of lumped harmonic coefficients, given by
equations (6.21) and (6.19). Motion in the (&, n) plane is described in equation
(6.35) by the superposition of a circle (kt terms) and an ellipse (ot terms). If plkl = giol,
where p and q are two mutually prime integers, W(t) returns near to the initial point

2
o, witha period T = —24

Ikl lol

Upon modifying the initial condition (6.34) to
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A
—CH) :l
_ , 6.36
Yo [C/k A (6.36)

the first term in (6.22) vanishes yielding elliptical motion in the (E_,, n) plane, centred

2 . .
on (O, C/k) and with period T = E;E . When linear perturbation techniques are

applicable the initial condition (6.36) represents the best approximation to a frozen orbit

for a satellite perturbed by the zonal harmonics and B : o resonance.

Exact commensurability of @ resonance

In the case of exact commensurability, V(CD), W((D), G(CD) and H(CD) in equation

(6.1) are invariant and no longer oscillatory. The solution then becomes

(Mo + (G+Ox &, + H/k [sin kt:| iIr —H ,
o = ( Eo+H/k  mg- (G+C)/1<) coskt| T k[G + C] * terms O<Jﬂm) ’

and thus for the initdal condition

_ 1T -H
l‘“"k[(}+c]

the eccentricity and argument of perigee are frozen.

Deep &—@ resonance

Let W () denote the variationin y due to the secondary resonance parameter,
@ — ®. Examination of the solution to the equations of motion for deep ¢ —

resonance, (6.33), reveals

A A
#® RO R.) cos kt + R_.) sin kt
pe B )[ ’ ‘ (6.37)

¥ @) = _( ﬁ(—) ﬁ(+) R ) sin kt — R ) cos kt

A
where R, R, and B® are given by equations (6.32) and (6.25). Truncating the
series expansion for R, R.) (which is permissible for small z), i.e. taking the

first term only, we may write

121




RO = % [1 — cos cﬁt] ; RO = % sin @t. (6.38)
®

S

Recovering the eccentricity, using the relationship €2 = £2 + n?, equations (6.37) and

(6.38) yield

e2 =~ _-52— [(ﬁ(+))2 + (ﬁ(—))z] cos t .

Thus taking the derivative with respect to ttme, we have

=L [ + (o)) s
cw

illustrating the quasi—secular increase in the eccentricity that results from deep @ —

resonance. It follows, therefore, that an orbit in deep @ *+ @ resonance cannot be

frozen.
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CHAPTER VII

AIR-DRAG PERTURBATIONS ON A NEAR-CIRCULAR ORBIT IN
RESONANCE WITH THE EARTH'S GRAVITY

So far we have considered the effects of the zonal and tesseral harmonics on a near—
circular orbit, under the assumption that air-drag is minimal. Although drag was
considered in the development of the equations of motion for the resonance angle, we
have yet to extend the general theory for a resonant orbit. With respectto & and 1, as
used to describe the changes of a near—circular orbit, we initially examined the effects of
air—drag neglecting all other perturbations. The theory is now developed combining the
effects of zonal harmonics and air—drag with the ultimate intention of incorporating

resonance, thus yielding a unified solution for all three perturbations.
§7.1 COMBINING ZONAL HARMONIC PERTURBATIONS WITH AIR-DRAG

Combining the effects of the zonal harmonics and drag on the changes in § and 1, as

given by (5.9) and (5.31), the equations of motion may be written in matrix form as

G
. - S (1-Gp)! X C
¥ =( 2 - S (1-gyy- JW * [ 0 } ’ (-1

Using results from section 6.1, a fundamental matrix M(t), for equation (7.1) may be

written as

M) = (1-Gt)'”2 @(kt) (7.2)
where

0 = (S k)
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Hence, taking as before the initial value of time to be zero, the complementary solution

to equation (7.1) is given by, c.f. (6.3)

_ 1 Mo io sin kt
v (1) = (1-Gt) n( e )[COS kt], (1.3)

and from (6.3) the particular solution may be written as

t
Y1) = (1-6)'2 O(ko) CJ |

0

k
cos s} ds (7.4)

sin ks | (1-Gs)!72 °

Upon making the substitution x = lé- (1-Gs), equation (7.4) may be expanded in terms

of Fresnel integrals (Abramowitz and Stegun, p300), given by

X X

C,(x) = —— Cofﬂx dx 3 Sy(x) = —— S—“}/z" dx.
2nJs X 2t X

Thus defining
@kt = C(%6) - ¢, (/G - kt)
gkt = Sy(k6) - sy(k/G - ki),
equation (7.4) yields
1
— _2_75 2 k 12 Q(kt)
TG _c(kG) k) 8(XG) (1-6v) [S (kt)] (1.5)

Hence, combining (7.3) and (7.5), the final solution to (7.1) may be written as

-y & \[sin ke 8, 6, [gz(h)oosm+$aq)sin1q]
= (1-GH2 1-GpiR
Wy = (1-Go ( gono)[coskr]” & (ec es) Q) sin kt — Yk cos kt

(7.6)
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1 1
21 2 21\ 2
where 6, = C(E) cos K/G and 0 = C(EG) sin X/G .

Equation (7.6) does not lend itself to a simple interpolation of the resultant motion of the

(&, T]) parameters. A simplification of the preceding analysis is developed in the next

section.
8§7.2 EARLY STAGES IN THE LIFE OF THE SATELLITE

Since G is small (1/G = life ime of satellite), for a satellite in the early stages of life, Gt
remains small. Simplifications are therefore made within the fundamental matrix, which

to O(Gt), can be approximated by
M@ = (1-62) ). | (7.7)
The particular solution thus becomes

cos ks

W (1) =C Oke) (1-612) J (1+GS/2) ds

_C N 1  Gpk sin kt 0
= Cx (1-5tp) (—G/2k 1 )[1 e kt] + Qg | (8)

whence

(0 me+Ck &e— (S2x)(CK) sin kt
Y (ao Tlongen) " mp-cn 0] -

[ of éljzj (1-G2) . ~ (7.9)

In comparison with (5.10), the drag—free result reveals the additional effects of a small

linear perturbation, an even smaller quadratic perturbation in 1 and further periodic

variations. The principal difference is, however, the gradual decay of the orbit as
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e — 0. This is a consequence of the (1—th2) term that appears as a factor throughout

in (7.9).
§7.3 INCORPORATING RESONANCE

As in the previous studies for & and 1 under resonant conditions, we neglect V ((D)

and W(dD) in the equations of motion with the tesseral harmonic contribution to the

perturbation retained in the vector quantity P(t), (see section 6.1)

C + G((D(t))] e

P) = I: H((D(t))

The fundamental matrix therefore remains as in equation (7.2) and only the particular

solution changes, with the integration in (7.8), now written as

t

~ cos ks sin ks \JC + G(s) ds
X(®) =0f( sin ks —cos ks )l: H(s) J(l_Gs)l/Z ’ (7.10)

which differs from equation (6.12) for X(t) by the term (1-Gs)™'/2 in the integrand.

Clearly a similar process to that of section 7.1 is possible, whereby expansion of all
terms in (7.10) yields a solution in terms of Fresnel integrals. Alternatively, since G is
small in the early stages, we may proceed as in section 7.2 by simplifying the

fundamental matrix as given by equation (7.7). Writing
X' = A'() + B(t) + C(, (7.11)

where the prime denotes the derivative with respect to time, then ﬁ(t) may be written

as
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t
R = j X's) [1+652]ds = x0 + O2 [Aw + B + Eo] . @.12)

0

where A(t), B(t) and C(t) are defined by equations (7.10) and (7.12) and differ from
equations (6.13) and (6.14) through the extra term 's' in the integrand. All three
integrals in (7.12) may be evaluated by parts. Each is premultiplied by M(t) to
contribute small additional terms to the solution (7.9). The development is not
straightforward but lengthy and is not detailed here, although the result is summarized.

The extra term, denoted E(t), is given by

E(® = 62 (1-512) {(1+t) X{Si“ ‘“] rz 28] i [ﬂ} . (113)

cOS Ot cos kt

where Y and Z are constant 2 x 2 matrices. Y involves expressions a® and B®),
as defined by (6.19), and Z involves the parameters C, k and ©, given explicitly by
(7.14). The first term involving Y is not only O(G) but is also oscillatory. For a
first approximation this term may be neglected. The second term, involving Z, is

oscillatory but the coefficients of this matrix are of greater magnitude than those in Y .

The contribution for this term may therefore be retained. In full, Z may be written

2k/( 5212 —Cpe2
Z={ /(G k) A ) (7.14)

—C/kz 20 /(0-2_1(2)

The "C/kz contribution is identical to that seen in (7.9) and is clearly a consequence of
zonal-drag interaction, whereas the other two terms in Z are due to the combined
interaction of all three perturbations. The most important contribution in (7.13) is the
final term and again is seen in (7.9), thus arising from zonal-drag interactions. This

term is of greatest magnitude and dominates for large values of t. Neglecting the first

term in (7.13), but retaining the other two, the final solution to the combined
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perturbations of zonals, tesserals and air—drag on a near—circular orbit in resonance may

be written, for £ and 7, as

® = (1-5t2) o+ Cce S0k (02k2)  EgrCO-GC12 [sin kt}
Ll §0+€3(“)_GC/21<2 Ne-C _’S‘(+)_Gcs/(02_kz) cos kt

A A
SG) —CH) | sin ot Gk
i ( /2)( 6(+) §(+) j{cos ot} * /k( /2) 1+ Gt
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CHAPTER VIII
CONCLUSIONS

The orbital elements of 1984—-106A have been determined at 43 epochs between January
and December 1987 using over 2900 observations. Analysis of the eccentricity and
mean motion yielded 3 pairs of lumped harmonic coefficients of order 14, given in
Tables 8.1 and 8.2. Further pairs of lumped harmonic values of order 28 and 42 were
obtained from the analysis of the mean motion and are presented in Table 8.2.
Comparison against the NASA Goddard Space Flight Centre global gravity field
models, GEM-T1, GEM-T2 and PGS-3337 yielded good agreement at order 14. The
two values of 14th order harmonics derived here from analysis of the mean motion are
nominally much more accurate than either the GEM values, or previous values obtained
from resonance. In view of possible errors of up to 100% in the higher order
coefficients of the gravity models, there is reasonable agreement of the 28th—order
lumped harmonics. The values for 42nd order lumped harmonic coefficients are
probably numerically too large as a result of contamination from unmodelled

perturbations.

The satellite was temporarily 'trapped’ in secondary resonance as a direct consequence
of low air-drag and thé near commensurability of the satellite with respect to the
secondary resonance parameter ®—. For the USSR satellite the resonance effects were
sufficiently large to dominate the low drag effects, with the result that ®—w exhibited
libration about its mean value, yielding a quasi—secular increase in the eccentricity whilst

the perigee height decreased.

An extended examination of the resonance angle was prompted by the secondary
resonance phenomenon observed for Cosmos 1603, in conjunction with minimal drag
effects. The theory was developed for the resonance parameter incorporating initially the
dominant resonance terms and later the smaller resonance terms were introduced. Drag

was introduced through a small correction term which modelled air-density variation.
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The resulting expressions were used in a least-squares procedure to evaluate lumped
harmonic coefficients. The derived values were in good agreement with those obtained
from the eccentricity and the mean motion and are given in Table 8.1 for comparison.
Lumped harmonic values were obtained using the secondary resonance parameter via the
parameters & =¢e cos @ and 1 = e sin ®, as used for near-circular orbits. This more
demanding approach yielded good values and gave credence to the analytical techniques

employed. The values obtained from this method are given in Table 8.2.

The equations of motion described by & and 11 were examined at great length. Analytical
solutions were obtained for shallow @ resonance and for both deep and shallow ® — ®
resonance. The occurrence of deep secondary resonance as experienced by Cosmos
1603 provided an excellent opportunity to verify the developed theory against observed

results. The equations of motion proved to be highly accurate.

Frozen orbits were examined, showing that modification of the initial conditions could in

some instances reduce the rates of change of e and ® for a near-circular orbit that

experienced significant resonance perturbations. However, for the situation of deep

® — o resonance, the resulting quasi-secular increase in the eccentricity removes any

possibility of the orbit being frozen.
Finally, air-drag was introduced analytically to the equations of motion for § and 1,

which were developed to yield a unified solution combining gravity and air-drag. It was

revealed that the effect of even minimal air-drag is to reduce the eccentricity to zero.
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