Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately




A UNIFICATION-BASED NATURAL LANGUAGE

INTERFACE TO ADATABASE

YOLUME I

NEIL KILBY SIMPKINS

Submitted for the degree of Doctor of Philosophy

THE UNIVERSITY OF ASTON IN BIRMINGHAM

August 1988

This copy of the thesis has been supplied on condition that anyone who consults it is understood to
recognize that its copyright rests with its author and that no quotation from the thesis and no information

derived from it may be published without the author's prior, written consent.



The University of Aston in Birmingham

A UNIFICATION-BASED NATURAL LANGUAGE
INTERFACE TO ADATABASE

Neil Kilby Simpkins
Submitted for the degree of Doctor of Philosophy
1988

Summary

An implementation of a Lexical Functional Grammar (LFG) natural language
front-end to a database is presented, and its capabilities demonstrated by reference

~ to a set of queries used in the Chat-80 system. The potential of LFG for such
applications is explored.

Other grammars previously used for this purpose are briefly reviewed and
contrasted with LFG. The basic LFG formalism is fully described, both as to its
syntax and semantics, and the deficiencies of the latter for database access
application shown. Other current LFG implementations are reviewed and contrasted
with the LFG implementation developed here specifically for database access.

The implementation described here allows a natural language interface to a
specific Prolog database to be produced from a set of grammar rule and lexical
specifications in an LFG-like notation. In addition to this, the interface system uses
a simple database description to compile metadata about the database for later use in
planning the execution of queries.

Extensions to LFG’s semantic component are shown to be necessary to
produce a satisfactory functional analysis and semantic output for querying a
database. A diverse set of natural language constructs are analysed using LFG and
the derivation of Prolog queries from the F-structure output of LFG is illustrated.
The functional description produced from LFG is proposed as sufficient for
resolving many problems of quantification and attachment.

Key Words : Lexical Functional Grammar, unification, database access,
natural language processing, artificial intelligence

-2-



in memory of

William Saunders Wheeler Wallbank



Acknowledgements

I would like to express my thanks to the following people :
To my parents, for everything,

To my supervisor, Peter, for his patience, advice, humour and
service beyond the call of duty,

To Irene for her cheerful assistance in compiling and proof
reading this thesis,

To Dr. Brian Gay for his support, advice and guidance,

To Jackie, Chas, Kevin, Rob, Richard and Tony for their help
and friendship,

To Gino for maintaining and providing help with the machines I
have used,

and finally I acknowledge the financial support provided by the
SERC of Great Britain.

Thanks, Neil.



Contents

Volume I Page
Summary 2
Dedication 3
Acknowledgements 4
List of Tables 9
List of Figures 10
Chapter
1 Introduction 13

1.1 Overview 13
1.2 Grammar Formalisms 14
1.2.1 Formal Grammars 14

1.2.2 Semantic Grammars 15

1.2.3 Linguistic Grammars 16

1.2.4 Computational Grammars 17

1.3 Unification Grammars 18
2 Lexical Functional Grammar 21
2.1 Context Free Grammar and Equations 22
2.2 Lexical Entries and Equations 25
2.3 Functional Control Equations 26
2.4 Lexical Rules 28
2.5 F-structure Production 31
2.6 Constraints on Well-Formedness of Analyses 35
2.6.1 Condition on Grammaticality 35

2.6.2 Functional Well-Formedness 37

2.7 The Kleene-Star (*) and Disjunction 38
2.8 Sets 40
2.9 Long-Distance Dependencies 41




2.9.1 Definition of Proper Instantiation 48
2.9.2 By-Passing Bounding Nodes in C-structure 49
2.10 LFG Semantic Component 50
2.11 The Computational Complexity of LFG 51
3 A Semantics of F-structure 55
3.1 Halvorsen’s Semantic Theory of F-structure 55
3.2 Logical Semantics for Database Access 60
3.2.1 Slot Frames and Typing_ 60
3.2.2 Three Branched Quantifiers and Presupposition 63
3.2.3 Semantics in the Chat-80 system 65
3.3 A Semantics of F-structure for Database Access 72
3.3.1 Deriving Logical Expressions from F-structure 72
3.3.2 Quantification 82
4 LFG Analysis of English Queries and Constructs 96
4.1 Wh-Questions 96
4.2 Yes/No Questions 97
4.3 Instances of the Verb Be 98
4.4 Instances of the Verb Have 105
4.5 Relative Clauses 111
4.6 Reduced-Relative Clauses 116
4.7 Prepositional Variations 117
4.8 Adjuncts and Attachment 120
4.9 Coordinate Conjunctions 122
4.10 Possessives 127
5 Prolog Techniques and Quintus Prolog 128
5.1 Open-Ended Lists 128
5.2 Pseudo-Declarative Procedures 129
3.3 Templates 130
6 Implementations of LFG 132
6.1 DCG Type Implementation 132
6.2 Pseudo-DCG Type Implementation 137
6.3 Recent Implementations 144




7 Implementation of the Interface System 157

7.1 F-structure Representation and Unification 159

7.2 Input Grammar 167

7.3 Input Lexicon 173

7.4 The Parser 175

7.4.1 The Active Chart Parser 176

7.4.2 Word Incorporation 179

7.4.2.1 Long-Distance Dependencies 183

7.4.2.2 Top-Down Linking 185

7.4.2.3 Literals 186

7.4.2.4 Gaps 187

7.4.2.5 The Kleene Star 189

7.4.2.6 Conjunctions 191

7.5 Well-formedness Checking 192

7.5.1 .Wcll-fonncdncss Checking During Parsing__________ 192

7.5.2 Well-formedness Checking Post-Parsing 194

7.6 Semantic translation 194

7.7 Efficiency of Parsing : 197

8 Query Planning and Database Querying 200

8.1 Query Simplification 200

8.2 Query Planning ' 202

8.2.1 Ordering Sub-Goals 202

8.2.2 Isolating Independent Goal Sequences 209

8.3 Query Execution 212

9 Future Development and Conclusion 215

References 219
Appendix

A LFG Notation Summary 229

A.1 Grammar Notation 229

A.2 Lexicon Notation 231




Volume 11

Appendix

B Grammar and Lexicons for Query Corpus

B.1 Grammar

234

234

B.2 Domain Lexicon

239

B.3 General Lexicon

243

C F-structure Production Operators

247

C.1 Definition of Substitute

247

C.2 Definition of Locate

247

C.3 Definition of Merge

248

C.4 Definition of Include

249

D Query Corpus

250

E EBNF Description of LFG Notations

251

E.1 Grammar Notation

251

E.2 Lexicon Notation

252

F Sample Interactions

254

G Prolog Implementation Code

338




Table

1.2.4

List of Tables

Evaluation of different grammar formalisms

Page

18




Figure

1.3.a
1.3.b
1.3.¢c

2.1.a
2.1b
2:1.¢

2.2
2.4
2.5:8
2.5.b
29.a
2.9.b
2.9.c
2.9d
2.9.¢
2.9.f
29.g
2.9.h
2.9.4
2.11.a
2.11.b
3.1a
3.1.b

s )
3.3.1.b

List of Figures

Page

Examples of Unification (U) 19
Feature Structure with Re-entrancy 20
DAG Representation of Feature Structure 20
Overview of LFG phrasel analysis 21
Simple LFG 22
Simple LFG Equation Types 23
Cyclic Graph and Feature Structure

After Application of ‘(T({ pcase)) =’ 24
Simple LFG Lexical Entries 25
Example Annotated C-structure Tree 30
Section of C-structure and Resultant F-structure 31
Simple F-structure 34
Functional Description of a Simple’ Declarative 42
Functional Description of a Simple Interrogative 42
LFG Including Movement Mechanisms 43
Controller Domains in a LFG Rule 44
Lexical Entries Including Mechanisms for Movement 45
Bounding Node in C-structure 45
C-structure Tree with Movement 46
Crossing Degree Examples 47
F-structure Produced from Movement 48
Outline of 3-CNF Solution Using LFG (two conjunctions)_____52
F-structure Produced from 3-CNF Expression 53
Outline F-structure of Active Phrase Example(!) 57
Outline F-structure of Passive Phrase Example(2) 58
F-structure for Phrase with Quantifier Scope Ambiguity 74
DAG Transformations for Semantic Translation of

Phrase with Quantifier Scope Ambiguity 77

<10



33.1.c

4.1

4.3.a
4.3.b
43.c
4.3.d

4.4.a

4.4.b

44.c
444

4.4.¢

4.4.f
45.a
4.5.b
45.c
4.6
4.7.a
4.7.b
4.8
49.a
4.9.b
49.c
4.9.d
4.10
6.2

6.3.a
6.3.b
6.3.c

DAG Transformations for Semantic Translation of
Simple Interrogative

81

LFG Analysis of WH-Front in WH-Question

97

Example of Equative Be C-structure and F-structure
DAGs Illustrating a Translation of Equative Be

101
102

Example Attributive Be C-structure and F-structure

Example Interrogative with Attributive Be
C-structure and F-structure

103

105

C-structure for Have in

106

‘Entity has Attribute of Value’ Construct

Vcomp F-structure for Have in
‘Entity has Attribute of Value’ Construct

106

Example Translation of Have as Main Verb

108

C-structure and Vcomp F-structure for Have in
‘Entity has Value as Attribute’ Construct

109

C-structure and Vcomp F-structure for Have in
‘Entity has Attribute’ Construct

110

Auxiliary Have Used with Other Verb

110

Qutline of Relative Clause Structure

111

113-114

Example Translation of Relative Clause

C-structure of Relative with Whose

116

Reduced Relative C-structure

117

C-structure with Moved Preposition

118

C-structure with Pied-Piping

119

C-structure of Adjunct with Have

121

Outline of Conjunction C-structure

122

Outline C-structure of Interrogative with Conjunction

123
124

Section of F-structure from Conjunction
Outline of F-structure from Ellipsed Coordination
Possessive C-structure Outline

126
127

F-structure Passing through C-structure Produced from
Left-Recursive Rules and Eisele’s Equivalent Rules

Flow of Messages and Replies in Integrated Parser.

141
145
153

Graphical [llustration of Triple for State S;.;
Example of Wedekind’s Monostratal Unification

155

-11-



7.a

7.1

7.3

7.4.1.a
7.4.1.b
74.2.a
7.4.2.b
7.4.2.1
7.4.2.2
7.4.2.3
7.4.2.4
7.4.2.5
7.4.2.6

1.5.1

Interface System Outline

Qutline of Pointers used for Functional Control

158
164
173

General form of Lexical Entry
Initial Chart State (Base)

Outline of Chart Parsing Operation

Outline of Word Incorporation Parsing Operation

Matching Complete (Base) and Active Edges in WI Parser

Information Structures in Long Distance Dependencies,
Link Relation Production from Grammar Rules

Initial Base of Edges Including Literal Edges

176
178
180
182

184

186
187

Initial Base of Edges Including Gap Edges

Extension of Active Edge with Kleene-star Operator

Qutline of C-structure Produced
from Conj Prefixed Grammar Rule

C-structure Outline with Completion Operator

188
190

191
193

Processing of Queries after Semantic Translation

-12-

200



Chapter 1

Introduction

1.1 Overview

Lexical Functional Grammar (LFG) was developed by Kaplan and Bresnan [Kaplan
& Bresnan, 1982] as a formal theory of the mental representation of grammatical
constructs and constraints on constructs. The formalism has been applied to several
languages including English, Dutch, Russian and Icelandic. The objective of this thesis is
to develop the LFG formalism for the description of natural language database queries and
to produce a system that allows a database access system to be generated from LFG
descriptions of a language. LFG will thus serve as a meta-language for the actual
application (a natural language interface). The suitability of LFG for this purpose is at
present unknown. LFG is unusual in being a linguistic formalism with a notation formal
enough to be implemented, at least to some extent, as a computational grammar. LFG is

also a member of the family of unification grammars.

LFG attempts to uncover an underlying structure directly without any extra
mechanisms and thus provides a clarity not found in other grammars. LFG is primarily a
tool for syntactic analysis so that it will be necessary to develop a semantic interpretation
of the output that LFG produces. A linguistically based formalism may also offer more

natural descriptions and a greater descriptive power than computational models.

This work seeks to implement LFG as an efficient computational tool for the
description of natural language whilst retaining the formalism’s simplicity and clarity. To
demonstrate this, it has been decided to develop a domain independent (transportable)
system which could be used to produce a natural language front end for simple Prolog
databases. The most successful recent database access systems have used computational
grammars. For this reason, a comparison is drawn with these systems and more

specifically, the Chat-80 system [Pereira, 1982; Warren & Pereira, 1982].

- 13



As well as employing LFG for database querying, an LFG ‘environment’ is to be
created which operates at the level of the LFG formalism. This also will include other

tools to provide a more user friendly system such as simple spelling correction.

Basic to the problem of natural language processing, is the uncovering of the
underlying or “deep” structure of a phrase. This may be near or greatly removed from the
original or “surface” structure. A number of grammar formalisms have been developed as
tools for describing Natural Language (NL). Several database systems have already been
developed using these grammar formalisms.

1.2 Grammar Formalisms

Of particular interest in evaluating grammar formalisms [Shieber, 1985a] are the
areas of “linguistic felicity” (the ease with which the desired constructs can be described),
“linguistic expression” (the ability to describe the desired constructs at all), and
“computational effectiveness” (whether the formalism is computationally practical and the
demands made on computation by mechanisms within the formalism). In addition to these
criteria, a grammar is required to be application independent and thus “transportable”
between different application domains (databases) [Grishman, Hirschman & Friedman,
1983; Grosz, 1982; 1983; Hendrix & Lewis 1981]. Previous systems for database access
have used grammars which can be divided roughly into four groups, described below.

1.2.1 Formal Grammars

Formal grammars are of four types (types O, 1, 2 and 3) [Barr & Feigenbaum,
1981] and are well understood. A type O grammar is defined by three sets of non-
terminals, terminals, production rules and also the grammar’s distinguished symbol. The

terminal and non-terminal sets have no common elements. Production rules take the
form:

LHS — RHS

where the Left-Hand Side (LHS) and Right-Hand Side (RHS) are strings of elements
from the terminal and non-terminal sets. No restrictions are placed upon the form of
productions except that the LHS may not be an empty string. Type 1 (context sensitive)

-14 -



grammars are defined similarly to type O with an additional restriction that the RHS
contains at least as many elements as the LHS. Type 2 (context free) grammars further
restrict productions so that the LHS may only consist of a single element. Type 3 (formal)

grammars only allow rules of the form:

LHS — t RHS or LHS — t
where the LHS and RHS are only a single element and ¢ is a terminal.

A rule based grammar can thus be classified as type 0, 1, 2 or 3 according to its
formal properties [Chomsky, 1959]. The restrictions, which have been outlined above,
not only relate to the form a grammar can have but also to the notion of the power of a
grammar (or the complexity of recognition using a grammar). A type O grammar is least
restrictive but has the power of a Turing machine and thus will contribute little as a
computational model of language. Each successive restriction on the form of a grammar

(from type O to type 3) reduces the power of the grammar and increases the possible
efficiency of recognition.

Efficient parsing algorithms exist for both regular and context free grammars but
these are not suitable for natural language processing, as natural language is not context
free and grammars must handle contextual information such as verb and subject number
agreement. This has resulted in a concentration on type 2 grammars to ensure an initially
acceptable level of complexity, with additional mechanisms added to the grammar to
extend the grammar’s power into at least some context sensitive areas (although there is

still some disagreement as to wether NL recognition requires context sensitive power).

1.2.2 Semantic Grammars

Semantic grammars are application-biased grammars where the meta-language is
close to the application. The PLANES [Waltz et al, 1976; Waltz & Goodman, 1977] and
LIFER [Hendrix, Sacerdoti & Slocum, 1978] systems both employ grammars which fall
into this group. LIFER is an environment for producing semantic grammars for specific
applications and also includes a parser. The system has been used to create the INLAND
(Informal Natural Language Access to Navy Data) front-end of the LADDER (Language
Access to Distributed Data with Error Recovery) system which interfaces to a database

-15-



concerning shipping. INLAND uses ‘semantic templates’ which are matched during
parsing against an input query. For example a template to match a WH-fronted

interrogative might be :

‘what’ ‘is’ ‘the’ <Attribute> ‘of’ <Ship>.

where <Artribute> and <Ship> are variables (“semantic classes”) intended to be filled by
values or symbols from the input. This template might match, for example :

‘what is the tonnage of The Titanic.’

These templates are very specific, covering only a very small number of phrases in
comparison to a more general phrase structure rules such as :

Noun-Phrase , Verb-Phrase .

Semantic grammars suffer from one very important weakness. The grammar is not
readily transportable between domains. It is a meta-description of the language of a
particular application domain rather than a high-level NL description. Also semantic
grammars are not a general description of NL and do not attempt to capture any universals
of language. The addition of a new syntactic structure to the coverage of the grammar may
require adding many new semantic templates to the grammar, so that all relevant semantic
classes are used in a template matching the new syntactic structure.

1.2.3 Linguistic Grammars

Linguistic grammars include informal rules, such as Transformational Grammar
(TG) [Jacobsen, 1978; 1986; Radford, 1981; King, 1983] where meta-rules are used to
alter the shape of parse trees and the Augmented Transition Network (ATN) formalism
[Woods, 1970; Bates, 1978] which changes the contents of global registers. Implicit in
these formalisms is the recognition of multiple levels of syntactic representation. An initial
(surface) representation is transformed into a deeper representation by the cyclic

application of specialized rules.

The TGs have made a basic assumption that a sentence or phrase should be
represented as a phrase structure tree. This type of structure is most easily generated by
simple phrase structure rules. Phrase structure rules cannot however directly generate

-16-



certain types of structural relations that occur in natural language. That is, phrase structure
rules cannot generate certain phrase structure trees. TG overcomes this problem by first
generating a basic phrase structure and then using an additional set of rules to transform
this structure into one that does represent the required structure. This however has
implications for the complexity of recognition using TG. Unrestricted TG has been
described by Berwick [1981]: “ Thus in the worst case TGs generate languages whose
recognition is widely recognized to be computationally intractable. ”

If the basic assumption behind TG is withdrawn, then it may be found that
transformational rules are no longer required to generate a phrase representation. The
assumption that a phrase should be represented by a phrase structure has not been
incorporated in the design of LFG. LFG uses a single level of phrase (syntactic)
representation and no transformations are used to uncover a deeper phrase structure.
Instead, the underlying deep structure is represented by a functional structure not a phrase
structure. This functional structure is not created by the application of one or more
transformational rules after producing an initial structure but by a general mechanism

using a single analysis stage which is incorporated in the notational devices of the LFG
formalism itself.

1.2.4 Computational Grammars

Computational grammars are precisely defined and designed to be computationally
practical, such as logic grammars (CHAT-80). Several computational grammars have
been tested in natural language database querying systems and have proved to be practical
and efficient. Most notable amongst these have been the logic grammars : Definite Clause
Grammar (DCG) [Pereira & Warren, 1980] together with its subsequent development,
Extraposition Grammar (EG) [Pereira, 1981; 1982], used in the Chat-80 system, and
Modular Logic Grammar (MLG) [McCord, 1985b].

Whilst they have proved effective, computational grammars may become very
complex and difficult to understand in practical applications. Logic grammars are very
close to the Prolog programming language itself. It is obviously desirable to have a
higher-level formalism which is easily understood by linguists and which can be
implemented efficiently on computer systems. The relative merits of these four types of
formalism with respect to the stated evaluation criteria are given in Table 1.2.4.

-17-



Evaluation Criteria
Linguistic Expressiveness | Computational | Portability
felicity effectiveness

non-linguistic
G Semantic basis (very very poor very good very poor
r poor)
a
m ta
m Formal very poor unacpt(:%; bly very good very good
a
r
T Computational poor poor good good
y
2 Linguistic very good poor good good

Table 1.2.4 Evaluation of different grammar formalisms

Computational grammars have perhaps met with greatest success in providing the
basis of transportable interfaces. For this reason, the work described here is repeatedly

compared to the CHAT-80 system.

1.3 Unification Grammars

LEG is a member of the family of unification grammars which have emerged out of
work on TG and ATNs. As a member of the unification family, LFG relies on a method
of additive description called “unification” (not to be confused with Prolog unification).
The unification process, which either fails or combines information, is a basic mechanism
of all the unification grammars, Generalized Phrase Structure Grammar (GPSG) [Gazdar
et al, 1985], Functional Grammar (FG) [Kay, 1979], Functional Unification Grammar
(FUG) [Kay, 1984; 1985a], Simplc Unification Grammar (SUG) [Kay, 1985b],
Unification Categorial Grammar (UGC) [Zeevat, Klein & Calder, 1987], Categorial
Unification Grammar (CUG) [Uszkoreit, 1986] and PATR-II [Shieber et al, 1983;

Shieber, 1984].

Information is represented as a set of features and values which, taken as a whole,

is frequently termed a “feature structure”. Unification (V) is illustrated in Figure 1.3.a
where the notation of the simplest unification grammar PATR-II has been adopted for

clarity.

.18 -



(a)
(b)
(c)
(d)

(e)

f)

A feature and value are represented as a pair ‘<feature> : <value>’. Central to the
idea of unification is the notion of “uniqueness” (one value per feature). The first case of
unification (a) illustrates how unification adds information, a single atomic value
‘num :sg’ is added to an empty feature structure. Cases (b) and (c) illustrate the
requirement of uniqueness. In case (b), unification succeeds without adding information
as both component feature structures have a single feature with the same unique atomic
value. Unification of two feature structures with non-unique values (c) fails. Cases (d),
(e) and (f) also illustrate how information is added by unification. Cases (e) and (f)

[

Enum :

[nurn :

num
en
R

[ pred
gen

gen

subj

gen
pred

gen

num :

subj :

num :

subj :

sg |
sg |

:sg

. fem
: jane
: fem

S8

: fem
. | pred : john
" |gen : masc

num :

Sg

: fem
: jane
[num :

S8

: fem

U [num : sg’]
u [num : sg]
U [num : pl]
[num : sg]
U -

sg

pred : john
gen : masc

Figure 1.3.a Examples of Unification (U)

illustrate also the unification of recursive structures.

The unification of two feature structures D' and D" may be formally defined
[Shieber, 1985a, pl4] as the most general feature structure D such that D2 D' and

D2D", which is notated D = D' v D".

-19-

num
gen
pred

subj :

[num : sg]
[num : sg]
fails

num :
gen

;88
: fem
: jane

. | pred
" | gen

. Sg
. fem
: jane

pred
gen
num :

: john
: masc

sg ]
: fem

: john
: masc

3




.. | aoraa . | nUmMber : pl
obj : I},rce : E)erson : thuciljl
_ number : pl
agrec. (1] person : thir(i:l

subj : [1]

e

Figure 1.3.b Feature Structure with Re-entrancy

The feature structure in Figure 1.3.b illustrates the representation of shared values
(often called “re-entrancy” or “structure sharing”) by co-indexing the subsidiary feature
structures and showing the actual value of the subsidiary feature structure only at one
place. It should be noted that there is a critical difference between two features with the
same value and two features which share the same value.

pl third pl third

Figure 1.3.c DAG Representation of Feature Structure

Feature structures may be graphically represented as Directed Acyclic Graphs
(DAGs) where attributes form arcs, values form nodes and simple symbolic values form
leaves. The feature structure shown in Figure 1.3.b can for example, be graphically
represented as the DAG shown in Figure 1.3.c. Values which are themselves feature
structures, will themselves be DAGs.

-20-



Chapter 2
Lexical Functional Grammar

LFG incorporates two levels of description, Constituent structure “C-structure” and
Functional structure “F-structure”, the latter being the LFG equivalent of PATR-II’s
feature structure. C-structure defines the relationships between syntactic categories and
terminal strings and is recognized by a standard Context Free Grammar (CFG). The
F-structure is generated by equations attached to the CFG. An overview of LFG analysis
is shown in Figure 2 where arrows mean roughly ‘component of” (11,

Context Free Grammar — | Constituent Structure
syntactic categories ] — (C-structure)
unification equations |

» Functional Structure

Lexical entries —> (F-structure)
syntactic categories | :
features, semantic forms | Y -
Semantic
Translation

Figure 2 Overview of LFG phrase analysis

F-structures identify constituent (surface) functions and include feature
specifications and semantic forms. The CFG very weakly constrains phrase structure but
ungrammatical phrases are filtered out because their respective corresponding F-structure
is not well-formed. The F-structure is a nested (recursive) structure which has a number
of unordered ‘attribute value’ pairs. Attributes that have values which are themselves
F-structures are termed “functions”, of which there is presumed to be a small finite set.
Attributes with simple atomic values are called “features”. Although C-structure is
recognized, F-structure is the sole output produced by LFG and intended for further

(11 A compact description of the LFG notation is provided by
Appendix A in this volume.

-21-



semantic translation (Figure 2). The LFG formalism itself does not however encompass
any processes past the production of F-structure.

2.1 Context Free Grammar and Equations

The CFG forms a simple set of rewrite rules with a single category (non-terminal)
on the Left-Hand Side (LHS) and a number of categories (terminals and non-terminals)
on the Right-Hand Side (RHS) :

s — np Vp .
As well as grammatical categories, ‘literals’ may appear in the RHS :
pp — (to) np.

and may also have equations attached (1]:

to
vp' — [(T.t0)=+ } T‘;pl’
(T inf) =¢ +

The CFG recognizes terminal categories during parsing, combining these into non-
terminals and building the C-structure (often called a “derivation tree” in other
formalisms). The equations attached to these categories in the grammar specify how the
corresponding F-structure is to be constructed. The mechanisms of LFG are best
illustrated by example. A simple LFG grammar is given in Figure 2.1.a.

S e np vp
(Tsubj) =1 T=1
vp o v np np
T=1 (Tobj)=1 (Tobj2)=1
np o det n
T=1 T=1

Figure 2.1.a Simple LFG

(11 Parentheses are used in the normal CFG manner to denote optionality
(Appendix A).



This grammar can be used, for example, to analyse the declarative phrase :
(a) ‘the girl handed the baby a toy.’

The first rule recognizes a non-terminal s (LHS) which has two components, (also non-
terminals) these being a np followed by a vp.

Arrows in the equations refer: ‘L’ to the subordinate F-structure produced by the
nodes of C-structure below ; ‘T’ to the superior F-structure of the node above. The
equation ‘(T subj) =1’ can thus be read as ‘the subj function of the F-structure above
this node in the C-structure is to be unified with the F-structure produced from below this
node in the C-structure’. This type of equation will be termed a “functional assignment”
equation. Most categories are labelled with the “trivial” equation ‘T= 1’ which signifies
unification of the F-structure below the node with that above. This equation is also that
given to the functional ‘head’ category in a rule, corresponding to the head-feature
convention found in GPSG. Figure 2.1.b lists seven types of simple LFG equation and
gives an example of each of these. These equation types are used not only to specify
values but also to force agreement between, for example, subject and verb number and
person, and auxiliary and main verb tense and number.

- trivial (head) T=1

- defining (or assignment) (Tsubj) =14

- existential constraint (Ttense )

- negative existential constraint 71 (Ttense )

- value constraint (Tnumb ) = ¢ plur

- negative value constraint 1 (Tnumb ) = ¢ plur
- cyclic defining (T pease )) =1

Figure 2.1.b Simple LFG Equation Types

Constraint equations are quite distinct from defining equations. Frequently it is
necessary to impose a constraint relationship on an attribute’s value, without specifying
the attribute’s actual value. Intuitively, this means imposing a constraint so that if an
attribute does occur in an F-structure, it must or must not have a certain value. If
however, the attribute does not occur, the attribute is allowed to remain unspecified. Thus
a valuemegative-value type constraint equation constrains the value a feature can/cannot
take but does not imply an existential constraint on the attribute. The existential/negative-

-23-



existential constraints on the contrary, obviously cannot constrain the value an attribute
takes : they merely ensure the feature’s presence/absence. If defining equations were used
to constrain values, there would be no way of distinguishing such ‘constraints’ from
defined values in the F-structure produced. This notational difference thus segments
F-structure into two classes (definitions and constraints).

The last equation in Figure 2.1.b merits special comment. An equation such as
‘(ML Fp)) =1’ (here termed a “cyclic defining” equation) attached to a node N in
C-structure can be described as unifying a function F, in the F-structure above N in
C-structure with the F-structure from below N, where F, is the value of the function of
feature F, in the F-structure below N. Such equations complicate DAG representation so
that F-structure must be represented by a directed cyclic graph (Figure 2.1.c).

pcase [1]: [pcase:[1]to ]
to
Cyclic graph Feature Structure (PATR-II)

Figure 2.1.c Cyclic Graph and Feature Structure
After Application of (Tl pcase)) = 4’

Any section of a DAG or feature structure can be referenced by a “path name”. A
path name simply lists (in order) the DAG arcs which must be taken, from the top level of
the DAG to arrive at the referenced DAG section. The path naming the second value of
person in the DAG in Figure 1.3.c is ‘obj : agree : person’. LFG is unusually restrictive
for a unification grammar in alloﬁring path names in equations (both grammar and lexical)
to be a maximum of two elements long. So both examples (1) and (2) below are
allowable, but not example (3).

(1) (Tsubj) =1 (path of length 1 element)
(2) (T subj num) = sg (path of length 2 elements)
(3) (T vcomp subjnum) =sg (illegal path of length 3 elements)

This restriction is termed the “functional locality” principle [Shieber, 1985a, p36].



2.2 Lexical Entries and Equations

There is an equality between lexical entries and grammar rules. Both have
categorical and functional (feature and function specifications) components. Lexical
entries in LFG, as the name implies, carry much more information than grammar rules.
Each entry specifies the word being described, its category and a number of equations. As
well as these, certain words, chiefly verbs and adjectives, have “semantic forms”
specified. A minimal lexical entry for each word in the example phrase (a) is given in
Figure 2.2.

the i det
(T spec) = the
(T num) = sing

girl :  noun
(Tnum) = sg
(T pred) = “girl’

handed : verb
(T tense) = past
(T pred) = *hand((T subj)(T obj2)(T obj))’

baby :  noun
(T num) = sg
(T pred) = “baby’

a : det
(T num) = sg
(Tspec)=a

toy :  noun
(T num) = sg
(T pred) = ‘toy’

Figure 2.2 Simple LFG Lexical Entries

As lexical entries will always be terminals of C-structure, they can only refer to the
F-structure above (‘1”). Most of the equations in the entries above specify simple features
and their atomic values, eg: ‘(T spec) = the’ ; ‘(Tnum) = sg’. The verb entry also has
a semantic form (‘pred’ attribute). This will play play the role of a semantic representation
of a phrase described by the final F-structure. A semantic form has zero or more
functional arguments which are enclosed in angled brackets. In the case of verbs, the
number of arguments is equal to the verb’s transitivity. The semantic form is said to
“subcategorize” or “govern” the functions named as its arguments. There is assumed to be

a small set of governable functions “designators” (subj, obj, vcomp). The semantic form

-25-



also plays an important role in determining the well-formedness of F-structures. This role
is fully described in Section 2.5 but may be stated informally as ‘the requirement that all
those functions governed by the semantic form must be present in the F-structure’ and
that ‘no other governable functions are present in the F-structure’.

As well as the normal semantic form (pred), an alternative semantic feature is
specifiable for lexical constituents which are semantically empty. Amongst these are there,
it and various idioms. These are given lexical entries containing the semantically empty
‘form’ feature instead of a semantic form ‘pred’ :

there :N (T form) = there

tabs :N (T form) = tabs
(T form) = pl

A form feature makes no independent contribution to the meaning of a phrase. This

allows even semantically empty F-structures to be properly governed.

2.3 Functional Control Equations

As well as the simple equations described earlier, LFG allows several more
complex types of equation. Amongst these are “functional control” equations. These
lexical equations identify two functions at different levels in the F-structure :

(T vcomp subj) = (T subj)

The equation above may be briefly described as stating that the subj function of the vcomp
function has the same value as the subj function through structure sharing.

Functional control thus equates the values of two subsidiary F-structures. As
semantic translation operates on an F-structure, there must be an indication in some way
that each occurrence of the subsidiary F-structure is in fact derived from a single
occurrence. Note that two subsidiary F-structures may be identical and not be occurrences
of a single subsidiary F-structure (still distinct values). To overcome this problem,
Kaplan and Bresnan [1982, p225] propose viewing lexical semantic forms as ‘meta’
semantic forms. A single “meta-form” represents any number of distinct actual semantic

forms. An instance of a meta-form is then identified in an F-description by indexing. A

-26-



meta-form involved in functional control will then be instantiated to two actual semantic
forms with the same index. Two semantic forms are thus assumed to be distinct unless
they have the same predicate and argument structure and the same index. In principle, all
semantic forms should be indexed but, as differing predicate or argument specifications

implicitly identify different actual semantic forms, this is not necessary.

The various occurrences of a meta-form are said to imply that entire subsidiary
F-structures will appear repeatedly in an F-structure. The implication of Kaplan and
Bresnan is that not only the semantic forms but the entire informational content of the
F-structure in which they are enclosed is duplicated. This will have an important
consequence for the semantic interpretation of F-structure proposed here (Section 3.5).

The multiple occurrences of subsidiary F-structures are abbreviated by Kaplan and
Bresnan in their diagrams by displaying the full value only at one place (the ‘source’) and
linking this to other values by lines :

i [,

vcomp

R Y

Functional control may be induced recursively so that a single function’s value plays a
role at several levels of an F-structure :

subj l:..:l-----..._\

subj IO .
vcomp )

vcomp

oooooo

-27-



Functional control equations are used to account for the peculiarities of the so-called
“equi” and “raising” verbs. These two types of constructs are closely related but are

usually realized in TG by two (or more) separate rules.

The TG “equi-NP-deletion” rule is an obligatory rule which deletes a noun phrase
from a complement clause of a sentence when the meaning of the noun phrase is the same
as that of another noun phrase in the main clause of that same sentence. The phrase :

‘Peter wants to see the film’

is derived by equi-NP-deletion from the main and complement clauses :

‘Peter wants <X>" and  ‘Peter sees the film’

The noun phrase Peter (which is subject of the main clause) is thus deleted from the

complement, where it is also the subject in surface structure.

The transformational raising rules (raising to object and raising to subject) apply to
clauses with a complement, the subject of which appears to have been raised to function

as subject or object of a higher clause. For example, in the phrase :

‘Peter believes John to be honest.’

John functions as object of the main clause, even though it functions as subject of the

complement :

‘Peter believes <X>" ‘John is honest’

Functional control can thus be seen as a simple notational device for describing the equi

and raising phenomena.

2.4 Lexical Rules

- LFG incorporates the notion of lexical redundancy rules. The functional control

equations in lexical entries can be produced by one suchrule:

"



Let L be a lexical semantic form and F its grammatical function assignment.
If xcomp € Fp, add to the lexical entry of L:

(T xcomp subj) = (Tobj2) ifobj2 e FL
(T xcomp subj) = (T obj) if obj € F
(T xcomp subj) = (T subj)  if subj e F

Another example of a lexical rule is the active/passive rule. There is a systematic
relationship between lexical entries for the passive and those for the active :

kick {(T subj) (T obj)) (Brian kicked the student)
kick {(T by obj) (T subj)) (The student was kicked by Brian)

which can be expressed by the rule [1]:

(Tsubj) +F—> (T byobj)
(T ob)) F— (T subj)

(T participle) = passive

This rule defines the change from active to passive as changing the subj function to an obj
function preceded by case by, the obj function to a subj function and adding a participle
feature with value participle. These functional changes must, of course, be accompanied
with corresponding morphological changes in the verb form.

A similar rule can be specified for dativizing :

hand {(T subj) (T obj) (T to obj))  (a girl handed the baby a toy)
hand {(T subj) (T obj2) (T obj)) (a girl handed a toy to the baby)

in the form of a rule :

(T obj) — (T obj2)
(Ttoob)) ko (T obj)

The complete C-structure of ‘the girl handed the baby a toy’ is given in Figure 2.4.
Also shown are the lexical entries involved, their feature specifications and the equations
on each node of the C-structure, which originate from the grammar.

(11 The symbol ‘+—"’ represents a simple transformation.

-29 .-



Ko, = (paid ) e = (sads|) Aqeq, = (paxd})
3s = (wnu ) 3s = (wnu}) 8s = (wnu )
Aoy e Aqeq
T=l =1 1=
u 1op u
t=(zlqoy)
du

ay = (9ads |)
8s = (wnu|)

oy

1sed = (asux ])

((fqo] Xzfqo} )fqns | ) ) puey, = (pard})

ol

papuey

—
>
—

(paryduar)

Y

8, = (pard})

8s = (wnu}) 8s = (wnu})
13 e
1= =4
u 19p
1=(Iqus )
du

v =(22ds])

Figure 2.4 Example Annotated C-structure Tree

-30-



2.5 F-structure Production

A part of a C-structure with equations is shown in Figure 2.5.a, showing also how
the equations construct a portion of the corresponding F-structure. The diagram shows
how two lexical entries (F-structure sources) are incorporated into a C-structure. The first
entry (Lex 1) is the single daughter of a node with category np and the second (Lex 2) the
daughter of a node vp. The equations in a lexical entry can be viewed as equivalent to a
partially specified F-structure. If f is the F-structure originating from Lex 1, then this
will be unified with the subj function’s F-structure of the F-structure f3 according to the
equation below the np. If f2 is the F-structure originating from Lex 2, then this will be
unified with the vcomp function’s value in f3 in accordance with the equation below the
vp. The F-structure f3 is in turn unified with the F-structure of /4. An outline of the
global F-structure representation produced by this analysis (f4) is also shown.

I (13)
e (r2)

4] —» (#) veomp |Pred ‘saw((Tsubj)(Tob)’
C-structure | ) Ese past

Sy i

sub ] pred ‘jOhﬂ’
/ \ num  sg
] | Lo
np vp -
(Tsubj) =4 (Tveomp) ={ F-structure
Lex 1 Lex 2 C-structure base level

[71] [72] g

pred = ‘john’  pred = ‘saw {(Tsubj)(Tobj))’
num = sg tense = past

Figure 2.5.a Section of C-structure and Resultant F-structure

Kaplan and Bresnan [1982] describe in detail an algorithm for F-structure production.
This algorithm first identifies unknown F-structures at nodes in C-structure with labels
(f1,f2, ... fn) as in Figure 2.5.a. An F-structure can then be derived from a set of

equations relating its F-structure components :

-31-



HA=13
f3 (subj) = f1
f3 (vcomp) = f2

The set of equations which defines an F-structure is termed an “F-description”. An
F-structure is then taken to be a mathematical function which represents the grammatical
functions of a phrase. The arguments of this function are known, and therefore finding a
solution requires deriving the function itself (here the final solution will be the
F-structure, f4).

The equations above are derived from grammar equations which refer to
F-structures by the use of the notational devices, ‘1’ and ‘T’. These arrows thus serve to
name a particular F-structure (fn) and are termed “metavariables”. The actual value of a
metavariable can only be determined at parse time. Metavariables are of two types :

Immediate domination metavariables: { and T

Bounded domination metavariables: U and T

Immediate domination metavariables, as their name implies, are variables which will
be given an F-structure value from immediately above (‘T’) or immediately below (‘1’)
the C-structure node to which they are attached. Bounded domination metavariables also
are given F-structure values at parse time but as will be described later, the value may
originate from a node more distant than the immediate parent or child C-structure node. If
parsing is visualized bottom-up then, when a phrase is parsed, the F-structure values at
the C-structure base (originating from lexical entries) become known and the
corresponding immediate dominance metavariables can be instantiated :

f4 =13
Y = d ‘john’
f3 (subj) = I:ﬁ?m io ]
3 (vcomp) =| Pred ‘saw ((Tsubj)(Tobj))’

tense past

These values can then be propagated by substitution through the equations to eventually
generate the final F-structure #4, assuming a solution exists :

-32-



. pred ‘john’
subj |:num Sg ]

veomp | PTEA “saw ((Tsubj)(Tobj))’
P ltense past

f4

The algorithm for finding an F-structure solution described by Kaplan and Bresnan
[1982] uses successive approximation. Importantly, they appear only to consider
F-structure generation from a complete F-description, implying that C-structure is
generated in a previous and completely separate stage. At each step, the algorithm takes
the current set of assignments (symbols, semantic forms and partial F-structures) which
satisfy the equations considered so far and revises these according to the next equation
taken from the F-description. Equations may be considered in any order and a solution is

only produced when all equations have been considered.

Evaluating equations in any order often means that equations refer to F-structures,
functions or features which have yet to be fully specified. To overcome this problem,
Kaplan and Bresnan [1982] introduce the notion of “place-holder” variables in the
F-description’s solution. These variables represent entities in the F-structure about which
nothing is yet known and may, if the equation is not a constraint itself, also be considered
to imply existential constraints. For example, if the equation :

(f1 pred) = ‘see((T subj)(T obj))’

is included in an unspecified F-structure, then the resultant F-structure will include two
place-holder variables in addition to the semantic form (a place-holder variable is

represented by ¢ ’):
subj [ ]
pred ‘saw ((Tsubj)(Tobj))’
vcomp [ __ ]

To process an F-description, Kaplan and Bresnan [1982] describe three operators :
Include, Locate and Merge. The Locate operator finds the current value for any designator
(function or feature) in the assignments made so far. When the current values on both
sides of an equation have been found by Locate, the Merge operator unifies the two

-33-



values. In more formal terms, if brackets represent the application of an operator to its
arguments and D) and D; are the designators, an equation ‘Dy =D’ is processed by the
evaluation of [Kaplan & Bresnan, 1982, p191]:

Merge [ Locate[ Dy ], Locate[ D7 ] ]

As well as these two operators, Kaplan and Bresnan [1982] define another operator
Include which is used to implement the set inclusion operator. A membership statement
‘D; € Dy is processed by performing :

Include [ Locate[D1], Locate[D3] ]

The definitions of these operators are given in Appendix C. It should be noted that whilst
Kaplan and Bresnan’s definitions are quite precise, they do not state exactly how F-
structures should be represented at the coding level or how these should be manipulated.
That is to say, the ‘algorithms’ are more conceptual than actual.

The output from the LFG analysis (Figure 2.4) will be a single F-structure (Figure
2.5.b). This must be a unique well-formed solution of the grammar and lexical equations
involved. The F-structure is devoid of any structural information relating to surface order.

spec a

subj num s subsidiary

pred  ‘girl | ycmm
—spec the /

obj num sg
Lpred ‘baby’
— semantic form

spec a
obj2 num  sg /
pred  ‘toy’ 2
pred  ‘hand{(Tsubj) (Tobj2)(Tobj) Y simple symbol
tense  past -

Figure 2.5.b Simple F-structure

The F-structure shown (Figure 2.5.b) contains three governable functions (subj,
obj, obj2), a semantic form and a simple atomic value of ‘tense’. As mentioned earlier,

-34-



the semantic form plays a central role in determining the well-formedness of an
F-structure.

2.6 Constraints on Well-Formedness of Analyses

LFG requires that a number of constraints be satisfied in order for an analysis to be
accepted. These are “conditions on grammaticality”, “well-formedness conditions” and
conditions on “completeness” and “coherence”. LFG embodies most information in the
functional component but as this is constructed from the associated C-structure tree,
grammaticality is ensured not only by C-structure but also by F-structure well-
formedness. All of these constraints apply directly to F-structures; additional conditions

discussed later are imposed to constrain movement.

2.6.1 Condition on Grammaticality

Grammaticality conditions apply to input phrases. A string is grammatical only if it
has a valid C-structure with an associated F-structure that is both “consistent” and
“determinate”. The F-structure assigned to the string is the value in the F-description’s
unique “minimal” solution in the place-holder variable of the C-structure’s root node. A
minimal solution is that F-structure which contains only those ‘attribute value’ pairs
explicitly stated in the lexicon and grammar rules, which satisfies all constraints imposed
on the F-structure. For any minimal solution F-structure there is an infinite number of
other F-structures which are also valid solutions, except that they break the minimality
constraint. These F-structures contain all of the information in the minimal solution and
additional information which, whilst it does not contradict any constraints imposed on the

F-structure, is redundant :

_ [ <attributel> <valuel> |
minimal solution : <attribute2> <value2>

[ <attributel> <valuel> |
an additional solution : <attribute2> <value2>
<attribute3> <value3>

o .

The requirement of a minimal solution limits the set of possible F-structure solutions from
being an infinite set to a single member of that set (that with the least informational

content).

-35-



The requirement for a unique solution means that all place holders (variables in the
output structure) must be instantiated. This in turn means that all attributes in the
F-structure produced must be assigned a single unique value.

The actual content of F-structures is left open by the LFG theory. Although
constraints such as completeness and coherence, in conjunction with semantic forms,
specify the expected functional structure (and there is in most cases general agreement
about these structures) the more basic feature content of F-structures is undefined.
Features can thus be ‘created’ and used as the grammar writer wishes. As long as these
allow unification to succeed in the desired cases and also cause failure when appropriate
then the features and values used are considered a ‘valid’ statement about the language
being recognized, as far as the LFG theory is concerned.

There are several reasons which seem likely to explain why a feature system is not
specified. Firstly LFG is a language independent theory and the level at which features are
defined is certainly language dependent. Secondly there is no set agreement on what
features actually exist (‘are required’ or ‘should be used’ to describe language) and about
the names or values that these features can take. Lastly it is (at least) ‘very difficult’ to
compile a complete list of justifiable features and their values and as language changes or
the number of language cases is increased it seems likely that any initial list would have to
be continually revised. It would require knowing about some ‘correct’ and ‘complete’

model of a language to produce a universally accepted feature system.

When some feature is used in LFG both the feature and the values it may take are an
attempt to describe some characteristic of a language, however the feature is only a label it
has no explicit meaning itself. A feature called ‘number’ could represent any characteristic
of a language, it is only through convention that a meaning is given to this label.

The question thus arises : under what circumstances should a feature be introduced

in a particular LFG grammar ?’. Here the following motivations have been used :

- to mark some linguistic phonema for semantic interpretation.

- to enforce some (usually generally recognized) constraint (such as subject/verb

agreement).

-36-



In addition there is another motivation for using specific labels and including
features and values which may not actually be used to affect the outcome of recognition
(initially) : clarity. By calling for example number ‘number’ we conform to a linguistic
convention and produce a much more readable language description than calling this say
‘featureA’. Certainly it is desirable that the content of F-structures be justified by (at least)
reference to the characteristics of language which the grammar writer is attempting to

capture.

2.6.2 Functional Well-Formedness

Functional well-formedness conditions of the LFG theory also cause strings with
otherwise valid C-structures to be marked as ungrammatical. The functional component
thus acts as a filter on the output of the C-structure component.

The theory does not allow arbitrary predicates to be applied to the C-structure
output. Rather, it is expected that a substantive linguistic theory will make available a
universal set of grammatical functions and features and indicate how these may be
assigned to particular lexical items and C-structure configurations. The most important of
the well-formedness conditions, the “uniqueness” condition, ensures that the assignments
for a particular sentence are globally consistent so that its F-structure exists.

Further functional conditions must also be satisfied by an F-structure. An
F-structure must be both coherent and complete. An F-structure is locally complete if and
only if it contains all the governable grammatical functions that its predicate governs. An
F-structure is complete if and only if it and all of its subsidiary F-structures are locally
complete. An F-structure is locally coherent if and only if all the governable grammatical
functions that it contains are governed by a local predicate. An F-structure is coherent if
and only if it and all its subsidiary F-structures are locally coherent. Following from this
is the grammatical condition that a phrase is grammatical only if it is assigned a complete
and coherent F-structure.

The example F-structure (Figure 2.5.b) is both complete and coherent. The top level
semantic form of hand requires three functions to be present (subj, obj2, obj), which are
all present. These functions are also well-formed, their semantic forms require no
governable functions be present in their F-structures, which is also true.

s



2.7 The Kleene-Star (*) and Disjunction

The LFG notation departs slightly from a strict CFG by including the Kleene-star
operator and disjunction. Disjunction in rules is represented in grammar rules by use of

braces :

PP
(T ({ pcase)) =4
PP — pp
l e (T adjuncts)

The rule above signifies that a pp” may rewrite to a pp annotated with the equation
‘(T (4 pcase)) = 4’ or a pp annotated with ‘L e (T adjuncts)’ [1l. Note that the pp

categories need not be the same category.

The Kleene-star signifies that a grammatical category in an LFG rule may be
repeated any number of times, including zero times. The Kleene-star is signified by an

asterisk to the right of a category in arule:
vp —> Vv np pp*

This rule thus states that a vp consists of a v followed by a np followed by zero or more

pp. The rule thus represents an infinite number of actual CFG rule enumerations :

Vp — VvV np
Vp —_— A" np pp
vp — V. 1np Pp PP (and so on).

Kaplan and Bresnan indicate [1982, p277, nl1] that the Kleene-star used in LFG is not
intended to be interpreted as an abbreviation for an infinite repetition of some C-structure
category. Infinite, or even large, repetitions of constituents do not occur in normal natural
language and should thus not be recognized. It is suggested by Kaplan and Bresnan that

in this respect the notation remains incomplete.

(1] The use of 'e' in LFG is explained in Section 2.8.

-38-



The Kleene-Star is useful for describing a number of linguistic constructs such as

noun phrases containing adjectives, for example :

The big tall handsome man.
The big tall man.

The big man.

The man.

which can all be described by a single rule :
np —> det adj* n

if the is of category det, man of category n and all the words in italics of category adj.
Repetitions can also be employed in the description of adjunct sequences (free

complements) :

Peter painted the house {at the end of the road} {under the tree by the hill} .
Peter painted the house {at the end of the road} {under the tree} .

Peter painted the house {at the end of the road} .

Peter painted the house .

The braces in each of these sentences represent repetitions of a functional component of
each phrase (adjunct). The Kleene-star thus allows a very compact description in a

number of situations and may also be used with the disjunction notation :

PP *

(T ({ pcase)) =
L —
PP PP
! e (T adjuncts)

The rule above signifies that pp’ rewrites as any number of repetitions of the alternatives,
pp annotated with ‘(T ({ pcase)) = |’ or pp annotated with ‘! € (T adjuncts)’

Whilst C-structure repetition can easily be described in this manner; the problem of
dealing with these repetitions in F-structural terms cannot be solved using the simple
equations described so far. For this reason, Kaplan and Bresnan [1982] introduce the

notion of sets and the set inclusion operator into LFG.

-39-



2.8 Sets

Sets are used in LFG when a C-structure element plays some functional role and
occurs as a number of repetitions. A set value of a function is signified by enclosure in

braces :

[ F-structure 1 ]

[ F-structure 2 ]
Function <  «ceeens L

......

[ F-structure n ]

A function which has a set value is obviously an exception to the rule of uniqueness that

requires a single unique value.

LFG has a set inclusion operator ‘e’ which is used to assign an F-structure to
membership of a set. This device is usually employed in conjunction with the Kleene-Star
operator. The Kleene-Star operator can be used to recognize any number of repetitions of
a C-structure component and the set inclusion operator can be used to assign the
corresponding F-structures to membership of some function’s set value. A rule suitable

for recognition of the adjunct sequence examples given in Section 2.7 might be :

<

vp — np PP

T=1 (T subj) =4 { € (T adjuncts)

Il

This rule might be used to recognize the vp:

‘painted the house {at the end of the road} {under the tree} .’

where paimed has category v, ‘the house’ category np and, ‘at the end of the road’ and
‘“under the tree’ category pp. In outline, the F-structure produced will be :

-40-



pred ‘painted((T subj)(T obj))’
) det the
ob] pred ‘house’

. [ at the end of the road ]
adjuncts

[ under the tree ]

The internal description of the adjunct set members is not shown here. This is the
case also in the description given by Kaplan and Bresnan [1982, p216]. Adjuncts, and all
other functions which are sets, are not governable and thus not subject to the constraints
of completeness and coherence. More will be said about the functional aspect of adjuncts

when sample queries are analysed (Chapter 4).

LFG’s treatement of many constructs which are analysed as set members using the
Kleene-star, is a particular weakness of the formalism. In this respect the grammar can be
viewed as incomplete. Especially in for example agreement checking between
coordinations and restrictions on adjective sequences. Features can be passed upward
from within set members to enforce some agreement but the ommision of restrictions on
adjective sequences may require additional (semantic) mechanisms to prevent

unreasonable adjective sequences being accepted.

2.9 Long-Distance Dependencies

Bounded domination metavariables, as mentioned in Section 2.4, may receive
values originating from some distant section of C-structure. These metavariables can be
used to move features through the C-structure tree. One well known case of movement is
found in interrogatives, with which the mechanisms in LFG for dealing with these long-

distances dependencies can be illustrated.

The underlying deep structure in the case of ‘question phrases’ (interrogatives) is
more removed from the original surface structure than in declaratives by movement. To

illustrate how LEG uncovers an underlying structure in such cases, a simple example can

be used :

-41-



(b) ‘What has Fred sold 7

The underlying structure of an interrogative is the same as the surface structure of the
corresponding declarative phrase. In this case, the corresponding declarative is ‘Fred has
sold <X>' where <X> is whatever Fred has sold (the element under question). An outline
of the functional composition of this declarative is shown in Figure 2.9.a.

Declarative form :
Fred has sold the apples
_Pll'; oblj
subj pred vcc!mp

Figure 2.9.a Functional Description of a Simple Declarative

The semantic form to be filled in the complement is :
pred = ‘sold{(T subj) (T obj))’

That is, the verb sold in this context governs a subj function and an obj function. The
main subj function of the verb has is passed to the vcomp function to become its subj
function according to the functional control equation ‘(T vcomp subj) = (T subj)’. The
semantic form of sold must be the same in the interrogative version but the obj function

from the vcomp function has been moved to a clause initial position (Figure 2.9.b).

Interrogativeform  ( showing subject / verb inversion ) :
what has Fred sold e
pred obj
pred subj vcomp

Figure 2.9.b Functional Description of a Simple Interrogative

-42-



The problem of uncovering the underlying structure requires undoing the effects of
movement. In LFG, constituents can be moved over arbitrary distances in C-structure
using bounding dominance metavariables (in most instances it is desirable to restrict this
movement in ways described later). These are used in equations annotating the grammar
just as immediate dominance variables are used. The notation and functioning of
bounding metavariables can be illustrated by example. The rules listed in Figure 2.9.c can

be used to parse the example interrogative (b).

The grammar in Figure 2.9.c includes three bounded dominance metavariables, two
are included in equations below the np category in rule (/) and one in the single equation
below the e category in rule (5). The first two of these are downward pointing
metavariables termed “constituent controllers”; the third an upward pointing arrow is
termed a “constituent controllee”. These will take part in occurrences of “constituent
control”. Like immediate dominance variables, the actual values of bounded metavariables
are instantiated at parse time.

(1) s — np s1
(T focus ) =1 - T=l
(Tq):ﬂﬁ&m (T aux)
¢=U:L
(2) sl — v np vpl
T=1 (Tsubj) =4 (Tvcomp) =1
(3) np = n
T=1
(4) vpl e \4 np
T=1 (Tobj) =4
(5) np — e
T==TInp
(6) np =K det
T=1

Figure 2.9.c LFG Including Movement Mechanisms

-43.



The value given to a bounded metavariable is described by the value referenced in
its equation. The controller in the first equation :

np
(Tq ) =U[+wh]

may be viewed as equating the F-structure of the function q with the bounded
metavariable’s F-structure. The controller also has a superscript np and a subscript
[+wh]. A controller’s superscript category matches that of its “domain root”. The
controller here must be passed into a np rooted domain. The root node of a controller is
formally defined by Kaplan and Bresnan [1982, p244] :

“ Suppose 11; is a controller metavariable attached to a node N. Then a node

R is the root node of a control domain for § | if and only if :

- R is a daughter of N’s mother, and
- R is labelled with category r. ”

This means that a controller’s domain root must be a node, which is a category the same
as the controller’s superscript, occurring in the same rule as the equation containing the
controller (Figure 2.9.d).

Figure 2.9.d Controller Domains in a LFG Rule

The necessary lexical entries for the example interrogative phrase (b) are shown in Figure
2.9.e.

In order to be well-formed, for each controller in the equations attached to a parse
tree there must be a corresponding controllee in the controller’s domain. In addition to
this, the subscripts of the controller and controllee must match.

il s



what : det
(T det) = what
(T wh) = +

T= ﬂ.[+wh]
fred . noun

(T pred) =
(T num} = sg

has 1 verb
(T aux) = have
(T pred) = ‘have({(T vcomp)) (T subj)’
(T vcomp subj) = (T subj)
(T subj num) = sg
(T tense) = past

sold 1 verb
(T pred) = ‘sell{(T subj) (T obj))’
(T tense) = past

Figure 2.9.e Lexical Entries Including Mechanisms for Movement

The threading of controllers or controllees through C-structure is not allowed
through “bounding nodes”. Bounding nodes are denoted by a square box around a
grammatical category in LFG rules. They define ‘islands’ of the C-structure that
constituent control dependencies (movement) may not penetrate (Figure 2.9.f).

S U’ [+wh]

(controller cannot
enter S1 domain)
-

n U, 1| Domain root and
¢ hwhl bounding node

domain of sl

WO L weas  sweain word n

Figure 2.9.f Bounding Node in C-structure

This allows the generation of gaps to be controlled. The C-structure generated for the
example movement phrase is outlined in Figure 2.9.g and the threading of controllers (or

- 45 -



controllees) through this structure is illustrated to show controllee/controller

correspondences.
B g
=
g-_’g. o
—
A
-
] m
o 3
3 3
p_—
58 £
14 c
> 3
< S
L
-
* o
[ -]
-y
— 1l
¢ —~ -
= P 54
2 s 2 = 2
e (1:
~ _—
=
=]
[7-]
—
o
1l
=
> g_g
< 3
(=9
g
wv < m 8
T Tt b
=z = c =
—
o
= 8 2 88
s 3 S i
— e 1
c e =
g £5
&
- \._. =
" —
g 2
IIg._,_ 3
== | _8 e R
8/-\ 3‘_
= g |
< < -

Figure 29.g C-structure Tree with Movement

Movement is not only restricted by the presence of bounding nodes in C-structure
but also by the notions of “crossing degree” and “nearly nested correspondence”. An
additional (language dependent) constraint is imposed in LFG ; the “crossing limit”.

o



Crossing relates to the paths between pairs of matching controllers and controllees.
Kaplan and Bresnan define crossed correspondence (Figure 2.9.h):

“ The correspondence of two metavariables m; and m; is “crossed” by a
controller or controllee m; if and only if all three variables have compatible
categorial subscripts and m3 but not its corresponding controllee or

controller is ordered between m; and m;. ”

A metavariable correspondence has an associated number which is called its “crossing
degree”. This number is defined as the number of controllers and controllees by which a

metavariable correspondence is crossed.

(a) zero crossing degree in metavariable correspondences (English) :

Jm, U Tmy MTm,
constituent 1 constituent 2 gap 1 gap 2

—

(b) crossing degree of one in metavariable correspondences :

{my |} . fim; fTm,

constituent 1 constituent 2 gap 1 gap 2

[—

Figure 29.h Crossing Degree Examples

Matching of a controller with the ‘closest’ controllee in C-structure corresponds to a
crossing degree of zero (a) : matching with the second closest controllee corresponds to a
crossing degree of one (b). A crossing limit is then simply the maximum allowable value
of crossing degree for a particular LFG (language) and a correspondence is said to be
“strictly nested” if its crossing degree is zero. A correspondence is “nearly nested” if its

crossing degree is within the grammar’s permitted crossing limit.

o



The F-structure produced from the example movement phrase is shown in Figure
2.9.i. The function q is derived from a controller’s F-structure which in turn is derived by
matching a controllee in the lexical entry for whar. Both of the bounded metavariables in
this case have the same subscript [+wh] which is used for interrogative movement. The
focus function (which is derived from an immediate dominance variable on the
C-structure’s first np) has the same value as function q but in other cases (where the
interrogative determiner what is embedded in a more complex 7np) the values of the focus
and q functions will differ. The various values derived from instantiating bounded
domination variables (constituent control) are linked by lines in the same way as those
derived by functional control.

det what structure sharing
focus wh o ~  &———— by constituent
Y s control
o~ N
q X
pred ‘have {(Txcomp)(Tsubj)y’ \\
aux have \
tense ast
11 \ structure sharing
. p red ‘fred’ - by functional
subj num 4 :l N / T control
— /
subj = —— II
veomp  |pred ‘sell{(Tsubj)(Tobj))’ ¥
obj S i ey et s

Figure 2.9.i F-structure Produced from Movement

Further conditions must be imposed to account for controller/controllee

correspondences in long distance control instances. These state that a string is
grammatical only if its F-structure is properly instantiated.

2.9.1 Definition of Proper Instantiation

An F-description produced from a C-structure with attached schemata is properly

instantiated if and only if :

- no node is a domain root for more than one controller.

-48 -



- every controller metavariable has at least one control domain.

every controller metavariable corresponds to one and only one controllee in
each of its control domains.

every controllee metavariable corresponds to one and only one controller.

all metavariable correspondences are “nearly-nested”.

A metavariable correspondence is nearly-nested if its crossing degree does not
exceed the grammar’s crossing limit. The significant formal implication of this is that for
any string, the degree of departure from strict nesting is bounded by a constant that is
independent of the length of the string. Kaplan and Bresnan [1982, p262] suggest that for
English, the crossing limit is zero.

2.9.2 By-Passing Bounding Nodes in C-structure

In certain special circumstances, bounding nodes are found to prevent the
recognition of well-formed phrases. Kaplan and Bresnan [1982, p252] state that ;

“In contrast to the non-uniform bounding charactc;'istics of NPs, it can be
argued that in languages like English, Icelandic, and French, all S’s are
bounding nodes. ”

In certain cases however, a bounding S node would prevent the recognition of well-
formed S constructions. In these cases, LFG provides a special equation, which is called
here a “linking equation”, of the form:

ﬂ - Udom

where dom is the domain root of the controller to which the equation is attached. This
equation can be thought of as an abbreviation for an equation :

ﬂc - '”.dgm

The linking equation is attached to the bounding node in the grammar rules. If
constructing C-structure top-down, the equation may be thought of as matching a
controller (‘}’) from above the bounding node with its own controllee (‘1’) and then

-49 -



generating a new controller (*J’), with the same subscript ¢ as the matched controller,
which is passed into the domain (dom) below the bounding node (of category dom). An
example where such an equation is required is the phrase [Kaplan & Bresnan, 1982,
p252]:

‘The girl wondered who the nurse claimed that the baby saw.’

To uncover the underlying structure of this sentence requires the movement of who into
the domain of the s (“the baby saw’), where it fulfils the role of object for the verb see. In
order to achieve this, Kaplan and Bresnan propose the rule :

s' — (that) El
T=1

t=0%

1l

This allows a single controller to penetrate the domain of s, if the s constituent is preceded
by the word thatr. There are other circumstances when it is desirable for a controller to be
passed across a bounding node. One of these, to be described later, is found in coordinate
structures.

2.10 LFG Semantic Component

LFG has its own notion of a semantic component which is represented by the
semantic forms found in F-structures. Semantic forms however, only appear in the lexical
entries for nouns, verbs and adjectives in Kaplan and Bresnan’s account of LFG [1982]
and only verbs and adjectives appear to take functional arguments. A semantic form’s
value consists of an atomic term and then zero or more references (using immediate
dominance variables) to functions in the enclosing F-structure, all enclosed in angled
brackets. If no functions are subcategorized then the angled brackets are omitted. The
order of subcategorized functions enclosed in angled brackets denotes surface
grammatical relationships, not the underlying logical relationships (agent, theme,
instrument) commonly represented in deep transformational models. For example, the
verb hand allows :

‘hand{(Tsubj) (Tobj2) (Tobj))’ (a girl handed the baby a toy)
*hand{(Tsubj) (Tobj) (Tto obj))’ (a girl handed a toy to the baby)

-50-



This limited semantic representation is clearly insufficient for database querying but might
be extended to encompass other categories and matters of quantification.

2.11 The Computational Complexity of LFG

The transformations used in TG have been replaced in LFG by lexical rules
(passivisation, dativization etc) and a more general movement mechanism (bounded
domination metavariables). Berwick [1981] concludes that: “ The elimination of
transformational power naturally gives rise to the hope that a lexically based system
would be computationally simpler than a transformational one. ” This optimism has partly
been responsible for the current trend toward lexically based grammars and the design of
grammars such as LFG. However recent findings have shown that, in the worst case,
LFG may have a recognition time which is very likely to be computationally intractable.

Kaplan and Bresnan [1982, p271] show that LFG can describe some context-
sensitive languages. They observe that context-sensitive power is required in the analysis
of constructs such as can be found in Dutch, Mohawk and the English ‘respectively’
construct. LFG’s context sensitive power is shown to originate from the functional
composition and unification equations associated with the basic CFG. Kaplan and
Bresnan [1982, p271] state that (despite the linguistic pressures for context-sensitive
power) :

“ On the other hand, the problem of recognizing languages with context
sensitivities can be computationally much more complex than the
recognition problem for context-free languages. If our system turns out to
have full context-sensitive power, then there are no known solutions to the
recognition problem -that require less than exponential computational
resources in the worst case. ”

A more conclusive investigation into LFG’s formal properties has been conducted
by Berwick [1981]. The method relies on showing that a problem with a known
complexity can be transformed into the problem of which a complexity rating is required.
The problem with known complexity is that of determining the satisfiability of Boolean
formulas which are in Conjunctive Normal Form (CNF). A CNF expression is a simple
conjunction of disjunctions which, for the purposes of this proof, is restricted so that each
term is a disjunction of just three terms (called 3-CNF) :

8w



KovXavXNDAXKivXavX)AXsv X v Xy

This restriction entails no loss of generality is known to be a problem of NP-complete
complexity (see below). The 3-CNF above is solved (evaluates to true) if X; = True, X,
= True, X3 = False, X4 = False and X7 = False. The details of the extensive proof will
not be repeated here, but briefly each X; has a separate lexical eritry for true and false :

X; (T truth) = true (entry for X; if X is true)
(T vars X;) = true

Xi (T vars X;) = false (entry for X; if X is false)

Each X; variable (grammar terminal) in the 3-CNF problem can thus be assigned a value
of true or false, but inconsistent value assignments across conjunctions are filtered out as
unification does not allow a feature to have more than one value. The lexical entry for the
true value of a variable in the 3-CNF has a feature called truth and each disjunctive term
must have at least one variable with value true to satisfy a semantic form (which
subcategorizes this value) introduced as a dummy terminal in the C-structure (Figure
2.11.a).

S
dummy1 Term " dummy?2 Term ,
( TT1 Vars) = (T Vars) (TTl) ¢ (TT2 Vars) = (T Vars)  (TT2) =4
dummy dummy
(Tpred) = ‘dummy (Ttruth)y (Tpred) = ‘dummy( (Ttruth)y
X2 X3 X7 X1 Xz X4

Figure 2.11.a Outline of 3-CNF Solution Using LFG (two conjunctions)

The F-structures produced from each conjunction of the 3-CNF are assigned as functions
(Tx) in the top-level F-structure so that their semantic forms do not cause unification
failure. The individual variable assignments from each conjunction are however passed up
to the top-level of the F-structure by functional control equations attached to another set of
dummy terminals in C-structure (dummy1 and dummy?2 in Figure 2.11.a). This results in
all variable assignments being passed up to the top-level of the F-structure where they are

-52-



unified, thus ensuring consistency of variable values across the conjunctions (Figure
2.11.b).

X1 true
X2 false
X2 true
vars 1%, false
X4 false
X7 false
[ tuth  true N
X2 true
Tl vars | X3 false
X7 false

Bred ‘dummy ((Ttruth)y

truth true
X1 true
T2 vars X2 false
X4 false

pred  ‘dummy {(Ttruth))

S

Fig 2.11.b F-structure Produved from 3-CNF Expression

A problem such as 3-CNF is described as NP-complete in being a problem that can
be solved by a non-deterministic Turing machine in polynomial time (hence NP) and is
complete in that all other languages in the class NP can be reduced to a CNF formula.
Berwick’s proof thus shows that recognition using an LFG grammar is at least as hard as
a NP-complete problem but this is not to say that LFG recognition may not be even harder
than this. The fact that LFG recognition is in the class NP (NP-hard in complexity theory)
implies that in the worst case LFG will be unsuitable for computational purposes.
However there are a number of restrictions, described by Berwick, which can be applied
to remedy this situation.

Firstly it is noted that intractability arises because co-occurrence restrictions (in
F-structures) may be applied across arbitrary distances in C-structures. If some device
could be found so that ambiguity were resolved more locally then LFG’s complexity
would be reduced. Secondly locality principles might be applied to specific LFG language
grammars to ensure efficient recognition or lastly the number of lexical items can be
restricted as Berwick states : “ The reduction [proof of complexity] depends crucially

-53.-



upon having an infinite stock of lexical items and an infinite number of features with
which to label them. ”. The last of these is perhaps the most significant here (it is
considered not really desirable to restrict the grammar for computational purposes) as the
use of lexicons in the interface system here implies a limited number of lexical items. Also
implicit in this is the use of a limited number of features. However both of these
limitations are only due to practical considerations (the result of ‘writing down and using
a grammar and lexicon’) and do not imply that a ‘complete’ lexicon or set of features can
be produced.



Chapter 3

A Semantics of F-structure

LFG provides a primarily syntactic analysis of phrases, ensuring agreement and
general syntactic well-formedness. The F-structure output of an LFG analysis does
however identify surface semantic roles (subj, obj, xcomp). Having performed a syntactic
analysis and produced a well-formed F-structure, it is then necessary to translate this
F-structure into some semantic representation of the phrase. The application of database
access demands a practically orientated representation rather than a powerful or
cognitively orientated representation. A number of different semantic representations have
been developed in the past (modal logic, lambda calculus, intensional logic) but, of these,
variations of first-order logic have proved most practical for database querying. This type
of logic limits the phenomena which may be expressed to the same type of information
which is found in a simple relational (Prolog) database. Other phenomena, such as
temporal information [Hafner, 1985; De, Pan & Whinston, 1985] and events [McCord,
1987] which may be expressed in more powerful logics, are not usually represented in
simple relational databases and are still a matter for research in that field.

Here, a semantic theory suitable for database querying is to be developed which will
draw upon the experience of other database querying systems developed in the recent
past. All previous transportable systems of this type have used a syntactic analysis as the
basis for semantic translation. As a functional analy'rsis is to be translated, the explanation
of the theory will not be complicated by considering the shortcomings of previous
theories.

3.1 Halvorsen’s Semantic Theory of F-structure

Consideration of semantics in Bresnan and Kaplan [1982] does not extend past the
notion of semantic forms. Halvorsen [1983] has however proposed a semantic theory for
LFG. His aim is to begin the construction of a universal interpretation procedure for F-
structures. Halvorsen’s theory takes an F-structure and produces first, a ‘semantic
structure’ and then translates this into an intensional logic expression. The system
employs five levels of representation in all (C-structure, F-structure, semantic structure,
intensional logic and a model theoretic interpretation). The level of intensional logic is
included only for convenience of comparison with other work by linguistics in the

-55-



Montague (logic and grammar) tradition. Whilst intensional logic is a well-founded and
well-explored representation, based on lambda calculus, it is not well-suited for use in
database querying.

Halvorsen’s intermediate semantic representation is a ‘reduced’ version of an
F-structure where only meaning bearing elements are represented and representations are
converted into a form suitable for the production of intensional logic expressions.
Halvorsen describes a set of rules for translating F-structures into his semantic structures.
The detailed construction of Halvorsen’s semantic structures will not be described here as
the semantic theory described here does not include this level of representation. Instead
F-structures themselves will be given a more extensive semantic content than that of basic
LFG F-structures and can be seen to contain the basic elements of Halvorsen’s semantic
representation, although simple predicate logic is used instead of intensional logic as this
is more suited to the database querying application. It should be noted that as Halvorsen
states [1983, p572]:

“ It is perfectly feasible to construct a composite function, ®, whose
components are the function mapping C-structures to F-structures and the
function mapping from F-structure to semantic structure. ® would take us
directly from surface structure to meaning representation without
constructing an intermediate level of representation such as F-structure.
Eliminating a level of representation in this fashion is not hard. Similarly, it
is not hard to construct a theory with an arbitrarily small or large number of
levels of representation. The crucial issue is not number of levels involved,
but whether or not the levels proposed can be shown to elucidate the
description of distinct sets of phenomena. ”

In the work described here, it has been chosen not to eliminate F-structure as the
production of this facilitates well-formedness checking and it is a useful illustration of any
analysis for debugging (grammar and lexical entries). Also a direct mapping from surface
structure to semantic representation would require fully integrating syntax with semantics:
a practice about which there is no general agreement among linguists and which may not
be computationally advantageous in the face of ambiguity. In addition to this, to remove
the functional representation stage seems to depart from the spirit of a functional
formalism. It remains undecided [McCord, 1987] as to whether it is most computationally
efficient to interleave a full semantic interpretation with syntactic analysis or whether these

-56-



should be performed in series. If it were chosen to derive a semantic representation
directly from C-structure (equations and lexical semantic components), as Halvorsen
suggests might be done, it is still open as to how the well-formedness of a string can be
ensured, given that not all elements of an F-structure which are used in checking well-
formedness have a semantic relevance. So while much of F-structure content could be
directly transformed into a semantic representation, it would still be necessary to retain
some additional F-structure content to ensure well-formedness.

Several points discussed by Halvorsen are however relevant to the semantic
interpretation theory of F-structures being proposed here. Most importantly, the
relationship between a semantic form’s subcategorized functions (functional arguments)
and the semantic translation of a semantic form into logic is considered. In his discussion,
Halvorsen examines semantic forms in the well known active/passive transformation. As
an example of this, consider :

( 1) Brian kicked the student. (active)
(2) The student was kicked by Brian. (passive)

The F-structures for these two phrases (with pointers to subcategorized subsidiary
F-structures) are shown in Figure 3.1.a and Figure 3.1.b (overleaf).

. |pred ‘brian’
subj Emm sg :Id-—

tense past 1
pred ‘kick ([4],[41)’
_ det the
obj pred ‘student’
num  sg

Figure 3.1.a Outline F-structure of Active Phrase Example (1)

Notice that in these F-structures (Figures 3.1.a and 3.1.b), the central semantic form of
kick, although having different functional arguments, fills the functional roles of its
arguments with the same subsidiary F-structures in the same order. That is to say, that if a
semantic form ‘kick((T A) (T B))’ is taken to imply that the entity represented by

-57-



subsidiary F-structure A performed the act of kicking the entity represented by subsidiary
F-structure B, then in both active and passive cases, the correct thematic relation is

represented by the semantic form.

det the
subj pred ‘student’
num  sg
tense  past

pred  ‘be([3])

pred ‘kick(['[ 1L,[81)

: pred ‘bnan
by obj num }‘J

pcase by

—_— —
—_—

vcomp

Figure 3.1.b Outline F-structure of Passive Phrase Example (2)
In accordance with this notion, the semantic forms for active and passive :

‘kick {(T subj) (T obj))’
‘kick ((T by obj) (T subj))’

can be translated in the same way regardless of the variance in subcategorization.
Winograd [1983, p3438] also noted that “These forms are intended to be part of the
semantics - they follow conventions for predicate logic and could be used for inference”.
This is significant for LFG in that it acknowledges LFG’s surface grammatical
relationships (subj, obj, vcomp) as a sufficient basis for (limited) semantic interpretation
rather than requiring a deeper analysis of relationships, such as that found in TG.

Halvorsen also examines the semantic translation of F-structures produced from
phrases displaying “there-insertion”. As discussed in Section 2.2, there is given a
semantic form which makes no semantic contribution. As a general rule, Halvorsen
proposes that in cases of there-insertion :

-58 -



(13

. the key to interpreting all the examples above [there-insertion
constructions] lies in isolating the semantically relevant aspects of their
F-structures by simply eliminating syntactic expressions without

independent meaning. ”

Consider the following case of there-insertion :

‘There is a pig loose.’

: [ form theril
subj

num  sg
pred  ‘there_be((Tvcomp)) (Tsubj)’
[det a2
obj pred ‘pig’
num  sg
—_—

[ subj
pred  ‘loose {(Tsubj))’

S ——

vcomp

At the top level of the F-structure neither the subj function or semantic form are
semantically relevant. In addition to this, the obj function plays a functional role of subj
within the vcomp function. Thus, the full semantic content of the F-structure lies within
the vcomp function and only this need be translated. The principle of isolating
semantically relevant portions of F-structure can be applied in other cases, such as idioms
(‘keep tabs on’).

Halvorsen also briefly approaches the problem of quantification. It is proposed to
use a generalization that the relative scope of quantifiers is given by their linear precedence
(surface order) in active passive pairs. Linear precedence, it is suggested, can be
represented by indexing C-structure nodes and then using rules to ensure that scoping in
the semantic representation is ‘legal’. As an example of such a rule Halvorsen examines :

(1) ‘each student admires no politician.’
(2) ‘no politician is admired by each student.’

In the first case (1), each is given scope over no and in the second case (2) the quantifier
scopings are reversed. Halvorsen claims simply that this illustrates the general fact that if

each and no occur in a sentence, the first quantifier tends to scope over the second.

=80



Quantifiers are indexed in C-structure from left to right and a semantic rule is then
employed to ensure that the indexes of quantifiers given highest scope are less than those
given a lower scope. This rule cannot however be extended to active/passive pairs

involving every and a, in which case sentences are taken to be truly ambiguous :

‘every man loves a woman.’

‘a woman is loved by every man.’

Halvorsen’s approach to quantification obviously requires actually producing a
C-structure representation of a string so that indexes can be used. This however is not
really in the spirit of LFG, where F-structure is the sole input to semantics and functional
roles are analysed, rather than surface structure (order). In addition to this, as will be
shown later, the general rule relating to surface order proposed by Halvorsen, is not

applicable in all quantification cases.

3.2 Logical Semantics for Database Access

A number of techniques have emerged from work using logic grammars which have
become generally accepted as effective components of a semantic theory, at least for
database access. Two of these techniques are the use of slot frames with types and the
reshaping of syntactic derivation trees to reflect quantifier scoping. Both of these
techniques are employed in Chat-80. In addition to these techniques, Dahl [1979, 1981]
has argued for the use of a three-valued logic in representing quantifiers. Chat-80 has
however illustrated that this extension is not required to provide a useful system. Some of
these techniques can obviously be employed directly in the translation of F-structure (slots
and typing) but others (tree reshaping) are not applicable to the translation of F-structure
and equivalent but new techniques must be developed.

3.2.1 Siot Frames and Typing

McCord [1982] has described a method of attaching argument descriptions to the
lexical predicates of referring words (nouns, verbs and adjectives). An argument
description is called a “slot” which imposes constraints on the modifiers which a
particular word may have. A slot contains a complement name, called the slot identifier
(subject ‘subj’, object ‘obj’, indirect object ‘iobj’, prepositional object (with case ‘on’)



‘pobj(on)’), an argument of the words corresponding logical predicate and a domain
“type” :

<slot identifier> : <predicate variable> : <domain type>

The set of slots describing a predicate’s arguments is called a “frame”; the verb give might
have a lexical entry (with the frame as a list) :

verb(give, give action(S, O, Io),
[subj : S : human, obj : O : phys_obj, Io : human] ).

where ‘give_action(S, O, Io)’ is the logical predicate representing a particular sense of
the verb (as all finite verbs take a subject, the identifier for this slot can be omitted).
Nouns and adjectives are given similar frame descriptions. Nouns such as dependence are
given frames derived from the corresponding verb (‘2o depend on’), whilst other
relational nouns such as man are given single slots relating to the subject:

noun(dependency, depend_event(Of obj, On_obj) : E,
[subj : E : event, pobj(of) : Of_obj : human, pobj(on) : On_obj : _]).
noun(man, man(M), [subj : M : human] ).
adjective(green, green_coloured(T), [subj : T : object] ).
A slot identifier names the surface syntactic function which a predicate may take but
says nothing about the expected semantic content of modifiers. The use of types is a
simple and elegant way of describing this semantic content (meaningfulness) [Dahl, 1981;

Brand, 1986]. Types are also a useful way of associating the universe of predicate
calculus to the relations of a particular database domain and improving efficiency by :

- narrowing the search space, as only those values in a variable’s associated
domain (or type) need be considered.

- avoiding futile access to the database, as absurd queries can be rejected by the
analyser on the grounds of domain (type) incompatibility.

Types may also provide an efficient means for discarding readings that are syntactically
acceptable but semantically incorrect. Consider for example :

-61-



‘what is the salary of the employee who lives in London ?’

Syntacticall'y, there is no way to determine whether the antecedent of the relative clause
‘who lives in London’ is ‘the salary of the employee’ or ‘the employee’. With the aid of
type checking the first argument of the relation live is associated with the human domain
in which employees and not salaries are known to belong (that is a salary cannot live in
London but an employee can). Types can also be used to place modifiers other than
relatives. Dahl’s system does not do this but it does check that the modifiers it encounters
are of the expected type. Ambiguities concerning different meanings of a word can also
often be resolved through domain type checking.

The expected types of a predicate’s arguments are given in lexical entries.
Ambiguous words will thus have a lexical entry for each possible combination of meaning
and syntactic role they can accept. For example, the adjective blue may have the entries :

adjective ( sad( person-x ) ) = blue. (the mood ‘blue’)
adjective ( blue( object-x ) ) = blue. (the colour ‘blue’)

During parsing, the correct parse is automatitally chosen by matching appropriate terms
with types, for example :

‘which blue door is John painting.’
would generate a formula containing predicates of the form :
door(t-z), paint (person-john, t-z), p(t-z)

where the predicate p is either sad or blue. The lexical rules allow ¢ to take a value only if
that value is compatible with the types defined for all three predicates. Given that the
predicate door for example only takes ‘object’ type arguments, the predicate p must be
blue for the assignment of type  to be consistent.

Types are represented by expressions that reflect subcategorization and allow for
domain intersections to be found automatically. The Prolog interpreter itself matches type
expressions by unification, which are of the form :

nil & type & type; & typez ... & type,

.62 -



where E(typey) is a set of types such that:

E(typey) D ... © E(typez) D E(type:) o E(type)

In general then, the longer a type expression, the more specialized that type will be and

the type nil can be seen as the most specialized domain type. For example, the type :

T & employee & human

may be unified with any type contained in or equal to the employee type, for example T

may be unified with:

nil or nil & salesman  or nil & manager

The use of types while parsing represents a degree of interleaving of semantic and
syntactic analysis (a subject about which there is no general agreement) but the simplicity
of this semantic component (typing) and the advantages of its use certainly seem to

outweigh the arguments for delaying this analysis until a post-parsing stage.

3.2.2 Three Branched Quantifiers and Presupposition

The evaluation of a logical expression can obviously either fail or succeed but a
third logical truth value would be useful because in NL there are two ways in which a

statement may fail to be true :

(a) its negation holds (is provable).

(b) something presupposed by the statement fails to be satisfied (not provable).

In the latter case (b), the logical representation is regarded as having a value ‘pointless’
rather than (proved) false. As an example, consider the phrase :

“The mad hatter hates Alice.’

In this example, if no hatter is mad then this is obviously not true. However if considered
false then:

-63-



“The mad hatter does not hate Alice.’

would have to be considered true, if only two logical values are available. The non-
existence of a referent for the definite article noun phrase makes the whole sentence
pointless. This is because the singular definite article introduces a “presupposition” of

existence and uniqueness on a noun phrase’s referent.

Dahl’s treatment of quantification has been devised to account for the
presuppositions implied by NL quantifiers. If a sentence contains a determiner then a

quantification of the form:

those(x, p)

is introduced, where x is a typed variable and p is a logical formula. Its evaluation yields
the set of all x’s in x’s associated domain which satisfy p. According to the determiner’s
meaning, presuppositions about the cardinality of such a set are represented within the

logical representation :
‘Three blind mice.’
equal( card( those(x, and( mice(x), and(blind (x), run(x))))), 3).
Definite articles introduce the formula:

if(f1, £2).

the value of which is pointless whenever fI fails to be satisfied, and has the same value as
f2if f1 is true, f1 thus representing presuppositions (in italics below) :

“The mad hatter hates Alice.’

if( equal( card(l, ( those( x, and( hatter(x), mad(x) ) ) ) ) ),
hate( those( Alice ( x, and( hatter(x), mad(x))))) ).

An alternative approach to false presupposition detection is the pragmatic one, in
which false presuppositions are caught by noting their empty extensions in the database.
In this way a two valued logic can be preserved.



3.2.3 Semantics in the Chat-80 system

Semantic interpretation in Chat-80 produces a first-order predicate logic expression
which can be executed in Prolog to query a Prolog database. The use of more powerful
logics, such as modal or intensional logic, is ruled out [Pereira 1982, p118] as the
practical requirements of database access require that the logic representation has a readily
executable proof procedure available in Prolog. This is not readily possible in the case of
certain semantic phenomena which can be expressed in these more powerful logics. The
first-order logical expressions produced by Chat-80 contain :

- conjunction ‘p & q’, where the conjunction holds true simply if both p and ¢
hold true. '

- existential quantifiers ‘exists(x, p)’ which holds true if there is some instance
y of x, such that if all occurrences of x in p are substituted by y then p holds
true.

- non-provability ‘\+p’ which holds if p is not provable.

- set expressions ‘set(x, p, s)’ which holds if s is the finite non-empty set of
instances of x such that the corresponding instances of p are provable.

- all, which is actually reduced to an existential quantifier and non-provability by
equating '

all(x,p=>q) to \+exists(x, P & \+ q)

- numberof, (number of elements in a set) which is also reduced to an existential
quantifier and non-provability by equating:

numberof(x, p,n) to exists(s, setof(x, p, s) & card(s, n))
where card counts the number » of members of a finite set s.

The role of existential quantifiers is connected with the use of negation and setof/3
ﬁredicates. Outside the scope of these, existential quantifiers are eliminated through the

equalities :

p <= exists(X,q) <=> alX,p<=q) <=> p<=gq

-65-



Within the scope of serof/3 or\+/1, the formula ‘exists(X, p)’ is replaced by
‘Pl(V{,Vy....., Vo) where V;, V, ... , V, are all the free variables in p and pI is

defined by :
pl(Vy, Vho, Vy) <= p.

That is to say existential quantifiers inside of a setof/3 predicate are proved by proving
that some value exists for the variables of quantifiers, where all the values for those
variables are consistent.

Pereira [1982, p43] gives an account of how the definitions of both serof/3 and
non-provability (\+/I), which are defined in terms of provability and not truth, can be
mapped into first-order formulas. For the purposes of execution in Prolog, the existential
quantifiers are used to prefix the serof/3 predicate which must not contain any free
variables not subject to quantification. This is however not true of the findall/3 predicate
which has the same semantic definition as setof/3, except that free variables may occur
within the goal and the goal succeeds even if the solution set is empty. Warren’s
definition of setof/3 fails if an empty set is returned. In practice, this can lead to some
unreasonable responses (see query execution Section 8.3).

Determiners themselves are given the following logical translations, where roughly
a variable X corresponds to an explicit or implicit np, the range R of the variable to the
translation of the words in the np and the scope S to the translation of the rest of the
sentence where the np occurs : '

- a, some, the (singular) exists(X, R & S).

- no \+ exists(X, R & S).

- every,all ' \+exists(X, R & \+S).

- the (plural) exists(St, setof (X, R, St) & S).

- one, two, .... numeral(N) numberof(X, R & S, N).

- which, what answer(X) <=R & S.

- ‘how many’ answer(N) <= numberof(X, R & S, N).

Other words which have arguments, filled by quantifier variables, (verbs, nouns,
adjectives) are also marked for case and type. Each argument is represented by a tuple
called a slot after McCord’s slot filling grammars [McCord, 1980, 1982, 1985a, 1985b,
1987]:

-66-



slot(case, type, argument)

A case marker is a preposition or verb argument role (subject, object) and a type is the
most general class of domain entities which may fill the slot. A word is then given a
lexical entry for each of its meanings. The verb flow thus has an entry :

verb(flow, flows_through(R, C),
[slot(subject, river, R), slot(prep(through), country, C)] ).

with meaning ‘flows_through(R, C)’, where R corresponds to the first slot’s argument
which has a subject role and type river and C corresponds to the second slot’s argument
value which is case marked by the preposition through and has type country. Pereira
[1982] recognizes some redundancy in lexical types and generalizes the genitive case of
when used to mark the argument of a property such as area or population. A general slot
description is then produced for these words :

noun(Word, Type, Val, Pred, [slot(gen, Arg_type, Arg)]) :-
' property(Word, Type, Val, Arg_type, Arg, Pred).

defining a noun Word as naming a property Pred with value Val and type Type that takes
a genitive argument Arg of type Arg_type. A template is then defined for each noun with a
genitive slot. The template for area is : ’

property(area, measure, A, region, R, area(R, A)).

which defines the property area, produced by the predicate ‘area(R, A)’, as a value A of
type measure having a slot with value R of type region.

The property template for the noun area also illustrates that some predicate
arguments are not slots themselves (here the range R) but are bound to the quantifier
variable associated with the np of which the noun is the head. The np ‘the population of
France’ is thus translated into :

the( A(A) . area(france, A), .... )

where A is the np variable which like any other argument is given a type. The occurrence
of arguments which are not slots will have important consequences in terms of a semantic
translation of LFG F-structure described later. Types in Chat-80 are based on Dahl’s
work and dealt with in the manner described in Section 3.2.

-67-



Strangely, Chat-80 allows slots to be left unfilled. This simplifies the treatment of
passives. Slot filling rules allow the subject slot of a transitive verb to be filled by a
phrase case marked with the preposition by if the sentence is passive. If the by phrase
does not exist then the slot is left unfilled and the corresponding argument variable
existentially quantified. In this way, unfilled slots are assumed to be optional and their
corresponding argument places filled with existentially quantified variables. Pereira
(1982, p131] does however note that this approach is too simplistic as the sentence ‘the
door is closed’ will be given the same meaning as ‘the door was closed by something’
(tense variation ignored). The concept of slot filling corresponds to the notion of
subcategorization in LFG and allowing unfilled slots corresponds to breaking the
condition of completeness. It seems likely that slots are allowed to be unfilled in Chat-80
to reduce lexical ambiguity which can severely reduce the efficiency of parsing when
using Prolog’s TDB directly.

In addition to simple predicates, Chat-80 provides a treatment of adjectives and
higher-order operators suitable for grammars applied to querying a database. Adjectives
which simply refer to some set of entities which intersects with those referred to by the np
in which they appear are simply translated as extra predicates restricting the range of the
variable they share with the rest of the np (usually the np’s quantifier variable):

‘the green book’ the(B, green(B) & book(B))

Comparative and superlative adjectives are taken as implicit references to some property
of the head noun where the property values must belong to some ordered set for the
comparison or the finding of a superlative to be possible. For example, the adjective
larger is understood as referring to areas when applied in the context of countries, so that

the phrase:

b

‘every country larger than France ...

is roughly translated as:

all(C, country(C) &
exists((Al,A2), area(C, Al) &
area(france, A2) &
Al > A2) cees)

The actual interpretation of superlatives and comparatives depends on the entity type to
which they are applied, so the lexicon will contain a number of entries for each adjective.

-68 -



The semantic type of the objects to which adjectives are applied can be used to select
among these alternative entries.

Comparative adjectives (larger, smaller) can, as shown in the example above, be
treated as special cases of intersective adjectives. They simply add a number of extra
predicates to the logical expression. Superlatives on the other hand, apply to the entire np
in which they are found. The superlative /argest in the phrase ‘the largest country in
Africa’ selects a single country from the set of all African countries. When applied to
countries, largest is taken as referring to the area of the countries. Superlatives and other
non-intersective adjectives are called “aggregations” by Pereira [1982]. An aggregation is
represented in Chat-80 as a second-order predicate :

adjAMR, V). p, 0).

where p is the predicate(s) to which the adjective is to be applied, R the range, V the value
the adjective operates on and O the selected superlative object. The noun-phrase ‘the
largest country in Africa’ is translated roughly into:

largest(A(C, A) . country(C) & area(C, A) & in(C, africa), L) .

where the predicate largest will select objects from the range C for which the value V' is
not smaller than the value for any other object. The aggregations average and total are
treated in a similar way but calculate the average and total of the values over all objects
respectively. In addition to aggregations certain words are treated in a special manner.
These are words which Pereira describes as “words which look at their arguments”.

In Chat-80, the verb have is dealt with by special rules which fit occurrences of
have which match one of the sentence templates :

- <entity> has <attribute> of <value>
- <entity> has <value> as <attribute>
- <entity> has <attribute>

into a rough paraphrase :

<attribute> of <entity> is <value>

i =



The rules in Chat-80 must then relate a slot filler <ensizy> functioning as the subject of the
verb to the arguments <artribute> and <value> of the verb. The <attribute> must have an
unfilled genitive slot which can be filled by <entity> and the type of <artribute> must be
compatible with the type of <value>.

The syntactic analysis of phrases produced by Chat-80, as mentioned previously, is
used to produce a first-order logic expression. The syntactic analysis is not however
immediately translated into logic, first a “quant tree” is produced. This Pereira states
[1982, p140] is not truly a semantic representation between syntax and logical semantics :

“ Quant trees, however, can only be seen as translations of sentences in the
weak sense of being precursors of logic, which unlike Quant trees have a
semantics and may therefore be seen as translations in a full sense. ”

To produce a logical expression for a sentence involves combining the meaning of words
together. Doing this in turn requires finding :

(a) the arguments of predicates (the modifiers of the word).
(b) the relative scopes of quantifiers.

There are of course several different possible approaches to both of these. Pereira lists
three approaches to (a) above :

- the syntactic level describes all possible attachments, and a pragmatic level
filters out permissible attachments.

- the concept of modifier attachment is built into the syntactic level in a way
that makes it possible to use pragmatic notions in the analysis of the input.

- the syntactic level decides on attachments in a predefined way, from which a
pragmatic level can recover other alternative attachments.

In Chat-80 the third approach above is taken. The syntactic analysis produces an initial set
of modifier attachments for verb complements, prepositional phrases, relative clauses and
adjective phrases. The initial attachments are performed in a rightmost (deepest) normal
form. A set of slot filling rules can then reform attachments if the syntactic attachments

0



conflict with the case marking or type of a slot. This approach is taken to completely
decouple syntactic analysis from attachment so that attachment does not cause
backtracking during parsing, and to allow easier syntactic manipulation of constructs
involving the verb have. This separation is in contrast to the work of McCord where slot
filling is performed during parsing.

The quant tree is used as an intermediate representation upon which rules of
modifier attachment and quantifier scope can act. A set of tree rewrite rules produces a
quant tree from the parse tree by slot filling (attachment). This is then passed to another
set of rewrite rules which alter the tree to reflect quantifier scoping. Modifiers for
attachment fall into two classes : fillers, which fill a noun, verb or preposition argument
place, and restrictors (adjectives), which specify some property of the modified entity. In
a first-order logic representation, the objects which both modifiers and restrictions apply
to are represented by quantified variables. Scoping is concerned only with quantifiers.
The rules of attachment and quantifier scoping thus require a representation, different in
nature to the syntactic derivation tree, which places quantifiers in a suitable position for
scoping and identifies their variables for attachment. This is the function of the quant tree.
The attachment rules do much the same as the slot filling process which has been
described (case marking and typing is used). Quant trees will not be described in detail
here but are made up of three types of nodes, the most important of which is the
quantification node (Quant) which represents the translation of a noun-phrase. This type
of node has fields for:

- the determiner, which will translate into a d_uantifier binding the variable of
the node.

- the head, which is either the head noun’s predicate or a term representing a
higher order function.

- the predication, a sub-tree of restrictors modifying this node, any
determiners in which have lower scope than the determiner of this node.

- modifiers, a set of trees representing all other modifiers of this node.
- the bound variable introduced by this node.

- the range variable, the variable restricted by the head, predication and
modifiers, which represents the entities defined by this quant node. In
certain cases (plural determiners represented by sets), this variable will be
dirferent from the bound variable.

-71-



It should be noted that the post-modifiers (lower nodes) of a node in a quant tree are
divided into two classes “predication” and “modifiers” to reflect the different scoping
properties of these post-modifiers.

The rules for quantifier scoping (Pereira calls these determiner scope rules) assume
as a default the order of scoping given in a quant tree, which will roughly be their linear
(surface) order. The scoping rules apply only to exceptional cases. Determiners are
divided into two groups : “strong” and “weak”. The determiners each and any are stron g
determiners, all others are weak. Generally then, a node with a strong determiner will be
moved up the quant tree above nodes with weak determiners. Determiners in the
predication of a node, which contains post-modifiers such as relative clauses, are not
however allowed to be moved up from the node to which they are attached. The scoping
rules are applied bottom-up so that a strong determiner may be moved repeatedly up the

tree until it is blocked from further raising by another strong determiner.

The Chat-80 semantic analysis is very effective and efficient at producing first-order
logic expressions, but is not applicable to F-structure translation. The default quantifier
scoping is related to the derivation tree produced by parsing and thus relies heavily on
quantifier order in the phrase or sentence. This ordering is not represented in F-structure.
Most attachments are performed in LFG automatically by functional assignment although
LFG itself does not perform type checking so that many different attachments may be
produced. Some attachments such as set values of adjectives and adjuncts are not
performed by LFG but left open for subsequent post-parsing stages. '

3.3 A Semantics of F-structure for Database Access

3.3.1 Deriving ngical Expressions from F-structure

It has been shown that in some cases, LFG semantic forms parallel logical
predicates but instead of variables and values as arguments they have function names as
arguments. Semantic forms do not however have arguments related to quantifiers and
LFG itself says nothing about quantifiers and quantifier scoping. For the purpose of
database querying LFG must be extended to encompass these two notions.

Firstly, in some cases, the semantic forms of LFG must be adapted to the form of
first-order logic predicates. The logical arguments of verbs will general correspond, given

=



the translation of F-structure to be described below, to their functional arguments
(subcategorizations). In order to maintain a clear separation of LFG semantic forms and
logical predicates, a lexical entry is given an additional “sem” feature describing its
semantic predicate. The name of this predicate may not necessarily correspond to that in
the semantic form. The semantic form’s name can be regarded as a surface (or linguistic)
semantic name and the predicate name as a deeper (or application) semantic name, related
to the database domain. This also allows several different semantic forms to be explicitly
mapped onto the same database predicate. The lexical entry for the verbs border and

surround might thus be :

borders : \

(Tpred) = ‘borders{(T subj)(T obj))’
(Tsem) = borders(subj, obj)

surrounds ? v

(Tpred) = ‘surround{(T subj)(T obj))’
(Tsem) = borders(subj, obj)

In the case of nouns with complements and simple restrictive words, where
semantic forms omit arguments in first-order logic, these are variables bound by a
quantifier, the sem feature may differ in its number of arguments from the semantic form.
Arguments which are quantifier variables only appear in the sem feature not in the
semantic form, as these are not subcategorized functions, and are given the name

“quant” :

population n

(Tpred) = ‘population{(T of obj)’
(Tsem) = population(quant, of obj)

man : n
(Tpred) = ‘man’
(Tsem) = man(quant)

F-structure can also be extended to incorporate domain typing. In general each
function and quant argument is viewed as having a domain type in the final F-structure.

These types are assigned by the predicates of which they are arguments and assignments

<73-



must be consistent with a domain hierarchy of types. Types originate from lexical entries,
in which special ‘type’ features can be specified. The feature name used for types is

“domain”, The verb borders might thus have a lexical entry :

borders : v

(Tpred) = ‘border((T subj)(T obj))’
(Tsem) = border(subj, obj)

(T subj domain) = country

(T obj domain) = country

Lexical entries for words which have only a variable argument (not a subcategorized

function name) refer to this argument as the feature named quant :

country : n
(Tpred) = ‘country’
(Tsem) = country(quant)
(T quant domain) = country

The derivation of logical expressions from F-structures can now be introduced by
examining an example. The phrase ‘no man owns a trunk’ has a simple functional
analysis but is ambiguous in that it has more than one logical interpretation (paraphrase).
These interpretations come about by giving either the quantifier no or the quantifier a

highest scope. The F-structure produced from the phrase is shown in Figure 3.3.1.a.

[ det no
| pred  ‘man’ |

pred ‘owns{(Tsubj)(T obj))’

b [ det a
9] | pred ‘trunk’]

subj

Figure 33.1.a F-structure for Phrase with Quantifier Scope Ambiguity

In this particular case, the functional arguments of the sem feature are exactly the same as
those of the normal LFG semantic form, so the sem feature is not shown in Figure
3.3.1.a. This structure may be extended to include quantification (transformation can

actually be made directly from F-structure to first-order logic). Firstly, a variable can be

-74 -



associated with each of the two quantifiers and quantifiers represented as normal 3BQ’s
taking two formulas. A quantifier’s basic form ‘quantifier(Var, F & Fs)’ may be
described as translating the explicit or co-indexed subsidiary F-structure in which the
quantifier is found and other semantic features of the subsidiary F-structure (chiefly
semantic forms and function set values) as F, and other subsidiary F-structures which

make up the rest of the main F-structure as F.

Quantifier variables may be represented as the value of a feature “var” in a
quantifier’s lexical entry. Restrictive predicates which have no functional arguments are
given variables as arguments (man(V), trunk(V1)) which are expected to become bound
to some quantifier. A “functional variable” is also associated with each of the F-structure
functions (here subj and obj functions). These variables are then used to replace the main

semantic form’s (actually sem feature) arguments. This produces a new ‘F-structure’ :

‘det  no(X,F1&Fsl)
subjM) |pred man(Y)
var X

pred owns(M, T)

. det  a(P,F2 &Fs2)
obj(T) pred trunk(Q)
var

Now the var feature values are unified with those of restrictive predicates and the semantic
translations of subsidiary F-structures placed inside their respective quantifiers :

subj(M) “HO(X, man(X) & Fs IEI

var X

pred owns(M, T)
, (P, trunk(P) & Fs2)
obi(T)  [iF: unk(P) & Fid)

The variables of functions will now be unified with those of the var features inside
of their respective subsidiary F-structures (M is unified with X and T with P). Two

-175-



choices are then possible given that a well-formed formula is to be constructed. There is a
single quantifier inside of each function’s F-structure and only a single predicate at the top
level of the F-structure. The phrase is ambiguous in that we have a choice of either giving
the quantifier in the subj function highest scope or giving the quantifier in the obj function
highest scope. These two non-equivalent logical expressions correspond to the two

different paraphrases of the phrase :

(@  no(M, man(M), a(T, trunk(T), owns(M, T) ) )
(b)  a(T, trunk(T), no(M, man(M), owns(M, T) ) )

The extended F-structure thus represents both paraphrases, as did the original
F-structure implicitly, and now quantifiers and variables lacking in the original F-structure

are represented. It is obviously desirable that both paraphrases are represented.

Represented as a DAG, the transformations on the F-structure are illustrated in
Figure 3.3.1.b. The first DAG (1) shows the initial content of the extended F-structure
with 3BQs and var features added to functions.

In the second DAG (2), the var features have been substituted for variables in
restriction predicates which have quantifier variable arguments and additional variables
introduced for each function. The translations on each subsidiary F-structure have also

then been placed within their respective quantifiers.

In DAG (3), the var features are unified with the variables associated with the
functions in which they reside and the final DAG is produced for application of quantifier
scoping rules. This DAG can then be transformed to produce either paraphrase (a) or (b)
by either substituting the subj function’s translation and main semantic form’s value for
Fs; or substituting the obj function’s translation and main semantic form’s value for Fs.
The two final DAG’s produced by these alternative interpretations are illustrated as the
DAGs labelled (4a) and (4b).

<76 -



(1)

owns(argl, arg2)

quantifier pred| var quantifier var

no(X, F1 & Fs1) man(Y) X a(P, F2& Fs2) trunk(Q) P

(2)
M
arg2
owns(M, T)
(translation) var (translation)
no(Z, man(Z) & Fsp) Z a(R, trunk(R)& Fs3) R
(3)
no(M, man(M) & Fs;)  owns(M, T) a(T, trunk(T) & Fs3)
(4a) (subj given (4b)  (obj given
scope k scope
over obj) (translation) over subj) (translation)
no(M, man(M) & a(T, trunk(T) &
(T, trunk(T) & no(M, man(M) &
owns(M, T))) owns(M, T)))

Figure 33.1.b DAG Transformations for Semantic Translation of
Phrase with Quantifier Scope Ambiguity

o i



A more complicated example involving movement can now be illustrated. This will
illustrate the interaction of constituent control with translation and the translation of a
Wh-front. The phrase to be translated is :

‘which countries border the Atlantic ?’

from which the following F-structure will be produced :

[det wh
T v +:|

det wh

wh +
focus pred  ‘country’ | "N

| num  pl )
subj —
pred ‘border {(Tsubj)(Tobj))’

n pred  ‘Atlantic’

obj pn +

det the

Again the sem feature and semantic form have identical arguments and the semantic
form is used in the description given here. The translation of this F-structure begins with
the translation of the interrogative function q (see Section 4.1 for a discussion of the LFG
analysis of Wh-fronts). It has already been outlined how this function is embedded in the
function focus and in addition how the focus function, the Wh-front, will have been
moved under constituent control to take up some other functional role in F-structure.
Quantification is to be discussed later in this chapter but for now it must be noted that the

function q is always given highest scope as a quantifier.

Having translated function q, it is then necessary to prevent the repeated translation
of this quantifier when the function induced by constituent control is found. In order to do
this, additional indexing of lexical entries with controllees is introduced. Now given that
the q function is indexed, the focus function (which is also indexed to reflect constituent

control) will contain some quantifier which is co-indexed with function q :

-78 -



q [ det wh ]

det wh 1 ]
2

focus [pred ‘country’

. det Whl
subj pred ‘country’ |,

Indexes are actually only applied to entire subsidiary F-structures so that in the case
shown above the indexes of the functions g, focus and subj will all be the same. If
function q were embedded in the F-structure of the focus this would not be so; some
function within the focus would be co-indexed with function q.

During translation a global list of indexes for function and their associated variables
is passed around. An indexed function is then defined to be in one of two major states :

(1) bearing the first instance of an index, in which case none of the subsidiary
F-structure will have been translated previously.

(2) bearing an index already encountered, in which case the subsidiary
F-structure may have previously been :

(a) translated in its entirety.

(b) only the quantifier in the subsidiary F-structure

has previously been translated.

(c) the function has not been translated at all.

In the example case, function q is translated immediately and its index and var feature
value saved, noting that this is a quantifier that has been translated. The focus function is
not translated but its index recorded with the same variable as function q. At this stage
then, the focus is in translation state (2¢) and q is in state (2a). The subj function induced
by constituent control and co-indexed with the focus function might be translated next.
This will be given the same var feature value as the focus (and hence here also function q) -
and the quantifier in the subj will not be translated again as this function bears the same
index as a function on the index list which has had its quantifier translated (q). Even if the
quantifier of function q were embedded in the subj more deeply, inside of a function F,
then the subj would still receive the var feature value of the focus (and hence also function
q) and the function F would receive the var feature of function q (and hence also the
focus) and the quantifier shared with function q in F would not be translated again.

-79-



The translation of this F-structure is illustrated in more detail by the DAG series
show in Figure 3.3.1.c. The initial DAG (1) shows the initial extended F-structure with
the q function’s quantifier and its repetition indicated by enclosure in boxes. In this case,
as described above, the function q is part of the focus, not embedded in the focus. Thus
the same index will be present on functions q and focus in this case, and of course, the
focus and subj functions will also be co-indexed as they are involved in constituent

control.

In the second DAG (2), the var feature of the two occurrences of the Wh quantifier
have been unified; var features substituted into restrictive predicates; variables introduced
for each function (focus and subj functions sharing the same variable) and these variables
substituted into the main semantic forms (actually sem feature) argument’s positions.

The third DAG (3) illustrates the final pre-logic state, where the variables
representing functions (entities) have been unified with their corresponding subsidiary
F-structure var feature values (the focus function which is not semantically translated has
also been deleted).

The final DAG (4) is then formed by substituting first the translation of the subj
function and then the main semantic form into the top level quantifier from q. The value of
the obj function is unified with its functional variable (the entity this function represents),
as proper nouns, which are given a special feature ‘pn +’, are simple constants in the
first-order logic representation here.

The translation of function q is a special case of translating co-indexed subsidiary
F-structures, complicated by the non-identity of q with its functional realization as part of
some other function F. The function q is not reproduced as a separate function elsewhere
but its value is unified with other features. In other cases, described later, constituent
control moves subsidiary F-structures but these are more readily dealt with, through
indexing, as the content of moved components is not unified with other additional

information.

The translation of F-structure outlined above is obviously only applicable to very
simple cases. More complex cases are discussed in Chapter 4.

-80-



(1)

quantifier

wh(V, F1 & Fsy)

(b)

pl

(@)

quanﬁﬁy var &W

pred

wh(W,F1&Fs;) W country(X) + Atlantic U

2
Z country(Z) . + Atlantic U
(3)
wh(C, F1 & Fsy)
O
country(C)  border(C, A) Atlantic
4
(translation)
O

wh(C, country(C) & border(C, atlantic) )

Figure 3.3.1.c DAG Transformations for Semantic Translation of
Simple Interrogative

-81-



3.3.2 Quantification

As well as Chat-80, several other database systems have been developed which use
predicate logic expressions to query a Prolog database. Colmerauer [1982] examines a
number of interesting structures and their translation into logical formulas. These
examples may be used as a starting point for illustrating the quantifier scoping rules
proposed here. It should be noted that Colmerauer’s examination of quantification is from
a structural rather than functional perspective. The logical formulas consist of two major

components :

- certain words function as three branched quantifiers (3BQs) which unlike
classical quantifiers, for example ‘3’ and ‘V’, relate not one but two formulas
to a variable. The exception to this is ‘not’ which signifies negation over its

scope but does not introduce a variable.
- predicates which have arguments that are either variables or actual values.

Colmerauer introduces heuristic rules which are used to choose between
(disambiguate) alternative paraphrases. Of course, counter examples against such a set of
rules will always be available and in many cases it may be disputed which of the possible
paraphrases of an ambiguous phrase is the ‘correét’ interpretation. Nevertheless, it has
been shown that at least in applications such as database access, it is desirable to use such
rules and that in most practical situations, a reasonable interpretation can be produced
where a ‘reasonable interpretation’ is that which most human readers of the phrase would

agree upon .

Colmerauer first examines the phrase ‘no man has a trunk’. This phrase exhibits the
well known property of quantifier scope ambiguity. That is to say that the phrase has
more than one meaning depending on the order of quantifier scoping given to the
quantifiers no and a. The two different quantifier scopings (paraphrases) can most clearly

be illustrated in tree form:

-82-



“each man does not
/ I \ have any trunk”

VA

a
“there is a single trunk
/ I \ which does not
tru

0o belong to any man”

_//_.J

In the first case (a), the quantifier no is said to have been given a higher scope than
the quantifier @ and in the second case (), no is given a lower scope than the quantifier a.
Colmerauer states that the ‘correct’ paraphrase is the first given above (a). There cannot,
of course, be a truly correct paraphrase. Here ‘correct’ means that paraphrase which
carries the meaning understood by most readers. In the case above the heuristic used to

determine the correct paraphrase is :

“ The quantification introduced by the article of the subject of a verb
dominates the quantification(s) introduced by the complement(s) closely
related to that verb. ” .

It is interesting to note that the heuristic itself is stated in functional (subject, complement)
rather than in syntactic (noun phrase, verb phrase) terms. The F-structure for this phrase
is identical in structure to that shown in Figure 3.3.1.a with only a different predicate, has
not owns (treating have in the same way as Colmerauer). It can now clearly be seen that
this rule can be used in a similar manner on the F-structure which represents the
ambiguity ; the subj function’s quantifier is given scope over that of the obj function’s

(‘F; > F’ means that function Fy has scope over F2):

-83-



subj > obj

Colmerauer next examines the effect of active/passive change on quantification. The

active/passive pair :

(a) ‘few persons speak several languages’ (active)

(b)  ‘several languages are spoken by few persons’ (passive)

are given the quantification trees :

few several
™\ RN
P/pcrson severa! _ L/language few
| L lanTuagc spe Il, P person spoken_ by
|
P L P L P

This Colmerauer states clearly shows that :

“ change from active to passive inverses the hierarchy of quantification. ”

The corresponding F-structures for these phrases are :

S — =
e det few
subj {num pl
pred ‘person’

pred  ‘speak{(Tsubj)(Tobj))’

_ det several
obj num pl
pred ‘language’

-84 -



(b)
subj

pred

vcomp

det several
num pl
pred ‘language’
‘be {(Tvcomp)) (Tsubj)’
“subj
pred ‘spoken_by {(Tsubj)(Tobj))
— -
. det few
b obj num pl
y pred ‘person’
pcase by

The first F-structure (a) conforms to the first of Colmerauer’s heuristic rules (the subj
function’s quantification dominates those of complements) but the second F-structure
does not conform to the active/passive heuristic. This is one case in which functional
structure departs from a syntactic analysis. The main clause’s subj function is passed to
the verb-complement under functional control from the lexical entry of be.

The problem of interpreting F-structures involving there insertion was discussed
earlier, where interpretation of only the (vcomp function) takes place. This position is also
adopted here so that only vcomp is interpreted in the case of an auxiliary verb invoking

functional control :

(@)

vcomp

det several
subj num pl
pred ‘language’
pred ‘speak {(Tsubj)(Tobj))’
_det few
obj num  pl
pred  ‘people’

The active/passive rule does not however apply to the vcomp function. The quantifier
hierarchy within ‘vcomp’ is defined by the first of Colmerauer’s heuristic rules. The

-85-



change from active to passive may indeed reverse the order of quantification but the
reversal is reflected directly in F-structure as in (a) above.

Colmerauer next examines quantification in phrases with noun complements. The
three phrases :

(a) ‘Garigou knows the smell of each bush.’

(b) ‘The desires of no man are confessable.’
(c) ‘Pangloss recommends Candide to the captain of each ship.’

are given quantification trees :

(a) each
RN
B  bush the
I
B S smell of knows
AN
S B Garigou
(b) no
RN
M man the
M D desire of confessable
/\ ]
D M D
(c)
AT AN
S  ship
S C tain_of recommend

°7'\ / \\

S Panglos Candide C

-86-



for which the corresponding F-structures will be :

(@)

(b)

(c)

subj
pred

obj

—I.Jred

subj

vcomp

subj
pred
obj

_pred ‘Garigmzl
‘know ((Tsubj)(Tobj)y’

S8
the
‘smell_of{(Tof-obj))’

: det
obj I:P“’- q

pcase of

num

det
pred

each
of

‘be {(Tvcomp)) (Tsubj)’

[det the
num pl
pred ‘desire {( Tof-obj))’

‘bushZI

[pred ‘Pangloss’ ]

. det no
of |V E:‘red ‘man’
pcase of
N =
subj

pred ‘confessable((Tsubj)y

‘recommend{ (Tsubj)(Tob;j)(Tto-obj))’

[pred ‘Candide’]

-87-

B [ det the
pred  ‘captain{(Tof-obj))
: . det each
Obj of Ob_l [p red ‘ Ship]
pcase of
pcase E)




Colmerauer gives the following rule for noun complements :

“ In a construction involving a noun and a complement of this noun, the
quantification introduced by the article of the complement dominates the
quantification introduced by the noun. ”

Functionally, noun complements will form functions such as of-obj, by-obj, to-obj. The
rule above is thus reflected by giving the sub-function (of-obj, by-obj, to-obj) domination
in the quantifier hierarchy, over the function in which a noun occurs. So that in the case
of some function F, with a noun’s semantic form, subcategorizing some other function

with a name of the form (pcase)-obj, the following scoping rule is applied :
(pcase)-obj > F
Next, Colmerauer looks at verbs having two or more complements, such as :
‘Jacques gives a gift to each child.’
each
C/ci!ild\a '
—

(1 G gift gi
|/
acques

G I

to

ive_|
G C
for which Colmerauer introduces the heuristic :

“ Whenever a verb, an adjective or a noun has two complements, the
uantification is made in the inverse order of the natural order of their
q

appearance. ”

-88-



The F-structure for this phrase is :

subi [pred “Jacques’
J num sg

pred  ‘give_to{(Tsubj)(Tobj)(Tpcomp)y
[det  a

obj pred ‘gift’
| num  sg
—_pcase to

pcomp |det each
| pred  “child’

Functionally, the rule proposed by Colmerauer can be mirrored by giving functions such
as xcomp, whatever the type of xcomp (pcomp, vcomp, acomp), dominance over the obj

function :

xcomp > obj

Quantification involving negation is then, considered in several sample phrases, for

example :

‘many tourists do not know Marseille.’

for which the quantification tree is given as :

/I\

tourists not
know\
X Marseille

The negative not is not a true quantifier as it does not introduce a variable. Instead it is

represented as an operator which takes a single argument. Colmerauer proposes the

following :



“ The negation introduced by do not is translated by the operator not placed
immediately below the quantification(s) introduced by the subject.
Nevertheless if the article of the subject is each, each of the, every or all the

the operator not applies to the whole statement. ”

This rule differs from those given previously as it does not only relate to sentence
structure but also to the actual quantifiers used. The F-structure for the sample phrase is :

) det many
subj pred ‘tourist’ | d——
num pl

pred ‘do{(Tvcomp) ) (Tsubj)’

subj
neg +

veomp | pred  ‘know {(Tsubj) (Tobj)y
obj [pred ‘Marseille’]

The presence of the negative operator not is signalled in the F-structure here by the simple
feature ‘neg +’. This feature is thus an example of a simple semantic feature. The rule
proposed by Colmerauer can be represented in an LFG type notation :

If (T neg) = +
Then If (T subj det) =.each or
(T subj det) = every or
(T subj det) = ‘all the’ or
Then neg > (all other functions)
Else subj>neg > (other remaining functions) .
Next, Colmerauer considers restrictive relative clauses. The relative clause :

‘Garigou appreciates the food that is contained in the can of Ron-ron.’

where that constitutes a marker of relativisation and another example where which acts as

a relative marker :

‘no cat which eats many fish is unhappy.’

These relatives are given the following quantification trees :

.90 -



/I\ /I\

appreciates unhappy
P \ / N\ / R |
food Q CT / \C
1|= /cax! of contained in & F fish eats
/). L 4N

Relative clauses may be viewed as similar to conjunctions which is perhaps the reason for
insertion of a conjunction by Colmerauer. To deal with relatives, Colmerauer proposes
the heuristic :

“ Every relative clause is treated as an ordinary statement; the relative pronoun
is replaced by the appropriate variable and the whole is linked to the
translation of the noun by the conjunction and. ”

An explanation of the LFG analysis of relatives will be postponed until Chapter 4, but
briefly, a relative is analysed as consisting of two functions “head” and “mod” where the
head function is moved under constituent control to play some functional role within mod.
In outline the example relatives will be analysed :

head I:'the food’:l

mod I:‘ is contained in the can of Ron-ron’:l

head [‘no cat’:l
mod [‘eats many ﬁsh’]

In the functional realm, Colmerauer’s rule is replaced by a new rule giving the head
function higher scope than that of the modifying function mod and creating a conjunction
of the representations of head and mod :

head > mod

-91-



In Chat-80 it was noted that a distinction is made between post-modifiers which are
‘predicate’ and those which are ‘modifiers’ and that these have different scoping
properties. Relative clauses are one type of post-modifier belonging to the predication,
from which quantifiers cannot be moved. The quant tree for the phrase :

‘the cat that many persons like is striped.’

is thus given the quantifier tree (b), and not (a) below.

i g
| I, & ey
ANT LN

VAN VAN

In a similar manner, it can be stated that quantifiers cannot be moved out from the mod

P

function.

Using Colmerauer’s, examples basic quantifier scoping has been illustrated based
on the type of functional analysis that F-structure provides. As in the Chat-80 system the
inherent properties of quantifiers will in exceptional cases cause the functional scoping
rules to assign an incorrect scoping. Just as quant trees are reshaped in Chat-80, in these
cases the F-structure can be reshaped to account for the strong determiners (each and
any). The restructuring of F-structures is performed in much the same way as that of
quant trees in Chat-80. Pereira examines quantification in the cases of the noun-phrases :

(a) ‘the, population of each; country.’
(b)  ‘the; population of any; country.’
(c) ‘the; population of every; country.’

where the the quantifier with subscript / is given a wider scope than that with subscript 2.
In Chat-80’s initial quant tree the quantifier rhe will, in all cases, have wider scope. The
two examples (a) and (b) constitute exceptions to the default rules used in Chat-80. Rules

-92-



for exceptions, which may all be paraphrased by “if determiner A appears above
determiner B in the Quant tree, give B, contrary to the default, wider scope than A”, will
be applied to cases (a) and (b) to give the determiners each and any wider scope than the
in each case. When the quant nodes for these determiners are moved up the quant tree
their post-modifiers, represented in the quant node, will be moved with them.

F-structures are reshaped in the same manner, by reordering a functional precedence
list. This list names the functions in an F-structure and the order of named functions
defines their relative scopes. For any list of functions, there is a default ordering of
functions which may be modified by rules which can be paraphrased ‘if function A
appears in the list after function B and function A contains a strong quantifier and function
B only weak quantifier(s) then place function A before function B in the list’. The
F-structure for all three noun-phrases (forming a corresponding function Fpp in
F-structure) is in outline :

det the T
pred ‘population{(Tof obj)y’
F, p obj det each
of . |pred ‘country’
pcase of

For this F-structure, the function list will contain the function name of-obj and (implicitly)
the function name Fpp. The default ordering of this list being ‘[Fqp, of-0bj]’. The
function name ‘Fpp’ is taken as referring to the quantifier at the top-level within Fyp. This
order is then reversed in cases (a) and (b) as the function ‘of-obj’ contains a strong
quantifier and Fyp, a weak quantifier. Just as in Chat-80, strong quantifiers are repeatedly
moved up the quant tree, then in this case the function Fyp, which now has a strong
quantifier in the first function of its functional list, may be placed before other functions in
a functional list of the F-structure surrounding Fyp.

The quantification rules being proposed here are restricted to operate only on the
content of F-structure (thus at the semantic stage, C-structure is redundant) and currently
relate only to functional roles and the properties of quantifiers themselves. The rules
proposed here are by no means ‘complete’ or even correct when applied to any case. They
do however encompass all the scoping problems examined by Colmerauer and those

-93-



posed by the query corpus (Appendix D). It is thought that the principles upon which
scoping is based here are generally applicable to most cases and the rules themselves
could be developed, through greater specialization, to give a wider coverage.

The theory of quantification proposed here is similar in nature to that suggested by
TIoup [1975]. Ioup criticizes the traditional view of determining quantifier scope by
syntactic structure and suggests, with supporting data from the several languages, that
three factors can be seen to universally determine quantifier scoping. These factors are (in
decreasing order of importance) :

- the “inherent properties” of individual quantifiers.
- the “grammatical function” of a quantifier within a clause.
- the location of a quantifier in a “salient serial position”.

Ioup suggests the following hierarchy as reflecting the relative tendency of quantifiers to
take highest scope based on their inherent properties :

each
every
all decreasing inherent
most tendency toward
many highest scope.
several

some (+np pl)
a few v

and another hierarchy, relating the grammatical function of the np that a quantifier occurs
in, to the tendency of that quantifier to take highest scope :

topic

deep and surface subject decreasing
deep subject or surface subject tendency toward
indirect object highest scope.
preposition object

direct object \




It is explained [Ioup, 1975, p57] that the subject and topic functions are at the top of this
hierarchy because they occur in salient positions in clauses (clause initial and final
‘positions respectively). Ioup explains :

“ Sentences are uttered as ordered series of elements, and, thus are subject to
what is known as the serial position effect. It has long been known in
psychology that in an ordered set of items those at the beginning and at the
end capture the most attention and are retained the longest. This is due to
what is called the primacy and recency effect. Languages use these positions
to convey the most important information in the sentence. This is why the
element with higher scope will most likely be found at either end of the
sentence. English normally utilizes the S-initial position to convey important
information. Thus, the noun phrase with highest scope can usually be found
at the front of the sentence. This is why to date, linguists, who have built
their theories around data in English alone have posited left-right order as
the determining factor in assigning scope. One need only look at a variety of
languages to see that the leftmost position is just a vehicle to convey the
important grammatical information. ”

It can be seen that F-structure may contain all of the three informational components
Toup has proposed as important criteria in determining quantifier scope. In the translation
shown in Figure 3.3.1.c, the function q is taken as one example of a function
representing constituents which have a salient position (clause initial) in Wh-
interrogatives. In contrast to linear-order based theories then, it seems that the type of
functionally based quantifier scoping theory, proposed here, may have some
psychological basis. Certainly, Ioup’s data suggests that a functionally based theory may
apply universally to a number of languages, as LFG itself has been shown to do.

-95.



Chapter 4
LFG Analysis of English Queries and Constructs

The database to be used here is taken from the Chat-80 system which uses a Prolog
database of geographical information. The Chat-80 system also provided a set of twenty-
three test queries which are to be used as a corpus. These queries appear to have been
selected as representative of many different linguistic phenomena, although as might be
expected, only interrogatives are represented, no declaratives being present in the set. The
queries to be analysed are given in Appendix D and the grammar and lexicons (domain
and domain-free) used to parse these are listed in Appendix B.

The queries can be grouped together according to the different linguistic phenomena
(relevant to LFG) that they display. It is under the headings of these phenomena that the
LFG analysis of constructions is discussed below. In addition to the constructions found
in the query corpus, several other constructions discussed by Pereira [1982] are outlined
using LFG. An LFG analysis of simple noun phrases and comparatives has been
described by Frey [1985].

4.1 Wh-Questions

In Wh-question type interrogatives, the initial np contains an interrogative
determiner (which, what, who, where, how many). This np as discussed in Section 2.9

has been moved from some position in the phrase where it has some functional role.

LFG analyses a Wh-fronted question as a function q and a function focus, where q
corresponds to the interrogative determiner (usually found in clause initial position) and
focus to the entire np front. An outline of this analysis is shown in Figure 4.1.

This analysis raises the interrogative semantic form to a functional role in the outer
F-structure independent of its degree of C-structure embedding in the front. It has been
shown that q is used in the semantic interpretation of an F-structure. The focus function is
intended to be co-indexed [Kaplan & Bresnan, 1982, p279, n23] with its other functional
role, found through movement, for use by rules which interpret anaphors. Anaphora is
outside the scope of this thesis but the implementation of LFG should support these rules.

-06-



(Tfocus) =|
op
np (Tq) = “v [+wh] c

at ‘
1=
T= ﬂnp

Figure 4.1 LFG Analysis of WH-Front in WH-Question

det
I= ﬂ{+wh]

4.2 Yes/No Questions

Interrogative Yes/No (polar) questions are signalled by an auxiliary verb in clause
initial position and also display subject/verb inversion :

‘Does Afghanistan border China 7’
‘Is China in Asia 7’

‘Has China a population exceeding the population of Afghanistan ?’

This type of question will be indicated in F-structure by introducing an atomic feature for
mood :
S

I

(Tmood)=y n
({aux)

The mood feature is used here to explicitly mark polar interrogatives for semantic
interpretation. The presence of the aux feature at the top-level of an F-structure could be
used as an alternative to this but the mood feature is more explicit and has been suggested
as such a marker (actually for imperatives) by Kaplan and Bresnan [1982, p219]. This

-97-



feature, like the function g, will have a semantic significance. This feature will always be
at the top-level of an F-structure and will be translated as a ‘quantifier’ which will have
the form: ‘y_n( <predicates>)’, where <predicates> is the first-order logic translation
of the rest of the interrogative.

4.3 Instances of the Verb Be

Constructions involving be are difficult constructs to deal with in LFG. The verb be
is an intensive verb taking a subject and single complement. Falk [1984] provides an
analysis of the English auxiliary system in LFG. A single entry for be is proposed [Falk,
1984, p499] where be is categorized as a helping verb Av (a category which encompasses
main verb, passive and progressive be) :

be : HV (T pred ) = ‘be{(T xcomp)) (T subj)’
not (T vcomp inf )
not (T vcomp tense)

The negative existential equations prevent be taking tensed or infinitival complements.
Also, a functional control equation, which Falk does not give here, would be expected to
pass the subject of be to the complement. Falk also gives a lexical entry for is [Falk,
1984, p489] in combination with there (there-insertion) :

is:V (T pred ) = ‘there_be((T xcomp)) (T subj) (T obj)’
(T subj form) = ¢ there
(T obj) = (T xcomp subj)
(T tense) ...

Where the corresponding entry for there is given simply as :
there : N (T form ) = there

The form feature is described by Falk as a dummy element which replaces the normal
semantic form in “meaningless forms”. To prevent there being allowed with other

constituents having the usual semantic form (pred), a negative existential equation “
(T pred)’ can be added to Falk’s entry for there. The nature of there-insertion can be
illustrated by the example phrase (taken from [Jacobsen, 1978]) :

‘there is a man sitting in the chair.’

which is derived from the sentence :
‘a man is sitting in the chair.’

-08 -



From this, it can be seen that in declarative cases there replaces the subject ‘a man’ which
is moved into the verb complement where it assumes the subject function. Subject and

verb agreement is therefore transformed into subject and ‘vcomp-subject’ agreement.

Falk’s proposal of a single lexical entry for be is most attractive, for it eliminates the
lexical ambiguity which multiple entries would cause. He claims [Falk, 1984, p499] that:

“ English has one verb be ; it encompasses ‘main verb’, passive, and
rogressive be. No syntactic or semantic reason exists to distinguish
prog y 4
them.”

This view appears to be in direct conflict with the traditional transformational view of
copula be, where be is ascribed to have at least three different semantic interpretations
[Jacobsen, 1986, p152]. These are illustrated by the phrases :

‘There is Peter in the room.’ (existential be coupled with there)
‘Peter is very tired.’ (attributive be)
‘Peter is the first year tutor.’ (equative be)

In the first case above of existential be, the verb is used in conjunction with there
and has a meaning which might be paraphrased ‘there exists an X’ where X is the entity
mentioned in the verb complement (here Peter). Attributive be assigns some quality
(attribute) to the subject, so that in the second case above, Peter the subject is given the
attribute zired. In the third case of be, equative or identificational be, the subject and
complement are one and the same entity. The complement and subject might be
interchanged without any change in meaning. So a speaker can say just Peter or ‘the first
year tutor’ without any change in reference, as both of these identify the same individual.

It is clear from the examples above that there is some semantic motivation for
differentiating between the three uses of be. This view may not however conflict with that
of Falk. The difference may be seen to be only in the interpretation of the term ‘semantic’.
Falk’s analysis is in terms of LFG’s semantic component (which is based only on
semantic forms and their subcategorizations) whilst the TG view is based on a much
deeper notion of the semantic component. Thus whilst the three cases of be may be
analysed in LFG’s semantic terms as all simply having a semantic form which takes a
subj and vcomp function, at a deeper semantic level it becomes necessary to differentiate
the occurrences of be. This difference obviously cannot be in the functional arguments of
be but must be in how be is interpreted itself to relate its functional arguments to one



another. This has led to the adoption of a view that in essence satisfies both Falk’s and the
TG view of be.

The verb be, as Falk describes it, takes a subj function and a vcomp function, and
will be given a lexical entry for each of the semantic interpretations proposed by TG :

(a) (existential) be:V pred = ‘exists{(T xcomp)) (T subj)’
(T subj form)
71 (T pred)
(b) (attributive) be:V pred = ‘attributive{(T xcomp)) (T subj)’

(c) (equative) be:V pred = ‘equate{(T xcomp)) (T subj)’

The exact interpretation and form of these entries will be postponed until some examples
are described, but in outline these are translated in the following manner:

(a) the subj function is omitted as the form feature is a semantically irrelevant
version of a semantic form and only translation of the vcomp function is
performed.

(b) the vcomp function is taken as describing some attribute of the subj function
and the two functions are semantically related in this way (note that under
functional control subj will appear inside of the vcomp function itself).

(c) the vcomp and subj functions are taken as referring to the same entity and the
functions are semantically related in this way.

In a copula phrase or sentence, the auxiliary verb be functions as the main and only verb.
The analysis of such constructions is notably omitted from Kaplan and Bresnan [1982]
but is approached by Falk (English) where he notes [Falk, 1984, p500] that :

“ ‘Main verb’ be is a little more complicated [than be occurring in conjunction
with a main verb]. In sentences with other auxiliaries, the analysis proceeds
straightforwardly. However, in a sentence with tensed ‘main verb’ be, we
are left with a verbless vp. ”

This indicates that the function vcomp (verb complement) may be produced by a verbless
portion of C-structure. Falk further suggests that the vp be given the trivial equation and
that the sub-constituents of the vp can then be interpreted as arguments of modal tensed

-100 -



be. It should also be noted that a verbless vp is used by Bresnan et al in Dutch analyses
[Bresnan et al, 1982]. The problem here is however, further complicated by changes due
to interrogative formation and the need to produce a functional structure suitable for
semantic translation. Consider the following cases of (declarative) main verb be :

(a) ‘Peter is the senior tutor.’ (equative be)
(b) “The largest country is in Africa.’ (attributive be)
(c) “Where is the largest country 7’ (attributive be)

In (a), Peter clearly functions as the subject (subj function) subcategorized by is and
the verb is an equative occurrence of be (Peter is the same entity as ‘the senior tutor’). The
problem now remains to determine the functional role of the constituent ‘the senior tutor’.
If verbless vp constructions are allowed, then this constituent can form a verb-phrase (vp)
and be assigned a functional role of vcomp, subcategorized by is (Figure 4.3.a.).

: red ‘Peter’
Vp " (Tvcomp) =| S _.me 5§ ]
pred ‘be ((Tvcomp)) (Tsubj)’
r (Tsubj) =4 -det the
o LI I\ veomp adjd {[pre,d ‘senior’ ] }
| | l .LE (tad) | B  pre tutor i)
Peter is the senior tutor

Figure 4.3.a Example of Equative Be C-structure and F-structure

The translation of an F-structure containing equative be involves an equating of
functional variables and their types at the top-level of the F-structure. The sem feature of
equative be is :

sem = be(subj = vcomp)

which signifies that subj and vcomp are related (as the same entity) by having the same
var feature value and slot type. In this example, Peter and ‘the senior tutor’ might have the
same domain type human. In certain instances however, types may not be identical but
only compatible, so for example, Perer might have type human and the vcomp function a
specialization of this sutor. The DAG series in Figure 4.3.b illustrates the translation of
the F-structure produced from this example of equative be.

-101 -



(1)

argl arg2 adj

\
equate(argl, arg2)
pred pn det var sem var

Peter - the(Z, F & Fs) tutor(quant) Y  senior(quant) X
@)
adj
equate(argl, arg2)
pred pn var sem var
Peter - the(Y, tutor(Y) & Fs) Y  senior(X) X
(3)
odi
O l _»0O
Peter i senior(Y)
Y
(4)
Peter equate(argl, arg2)  the(Y, tutor(Y) & senior(Y) & Fs)
()

the(V, tutor(V) & senior(V) &V = peter)

Figure 4.3.b DAGs Illustrating a Translation of Equative Be

-102 -



In case (b) (attributive be), the subj function is in clause initial position (‘the largest
country’), in which case the prepositional phrase ‘in Africa’ will form a verbless vp
(Figure 4.3.c).

8

--"""'---
VP,
"‘-...__I
vp
I(Tvcomp) =]
PR
e [ [
det  adj n v P pn
R I R N
The largest country is in  Africa

det the

subj adj  {(pred ‘largest’]}| w
pred  ‘country’

pred ‘be{(Tvcomp)) (Tsubj)’
subj 3

vcomp |pred  ‘in((Tsubj)(Tobj)y
obj [pred ‘Africa’]

Figure 43.c Example Attributive Be C-structure and F-structure

Attributive be is translated in much the same way as equative be except that the subj and
vcomp functions are known to be related as an entity and attribute of that entity. This
relationship is however directly reflected in F-structure itself, so that type checking and
functional variables are dealt with automatically. This is due to functional control. In cases
of attributive be, the translation thus simply passes to the vcomp function. The sem

feature of attributive be itself signals the need to only translate vcomp :

sem = passto(vcomp)

The last case (c) (interrogative attributive) causes the greatest problems for this
analysis. The declarative phrase underlying this phrase would be ‘the largest country is in

<X>’, where <X> is the questioned element. In this case, ‘the largest country’ functions

-103 -



as subj and the moved Wh-front functions as vcomp. Under functional control the vcomp
function receives the subj function of the main verb and must thus subcategorize this. The
semantic form in vcomp for the Wh-determiner where must therefore subcategorize subj.
This does not seem so unreasonable if it is noted that where is semantically equivalent to

‘in what place’ and can thus be represented by a logical expression :
what(P, in_place(P, subj) )

Which is exactly how where is to be semantically translated here. This type of
interrogative determiner will be called “attributive determiners”, as they seem to be
confined to asking about entity attributes (also ‘how large’, when). The use of attributive
determiners will thus be coupled with the use of attributive be.

The use of attributive determiners such as ‘how large’ requires that the subj function
be passed to the focus function, to be subcategorized by large. In the case of the
attributive determiners where and when, the subj function must be passed to g, as well as
focus and vcomp, to satisfy the completeness condition of LFG (Figure 4.3.d). This is
because the attributive aspect of place is included in the WH-word which forms q,
whereas in the case of ‘how large’, the attributive aspect of size is separate from the WH-
word how. The subj function can be passed to focus (and q) by equations attached to
grammar rules. An example of an attributive determine (where) is show in Figure 4.3.d.

The additional complexity in the analysis of phrases with be is due here to the
extension of semantics for producing first-order logic expressions. It may be the case that
in LFG, in its pure form, determiners such as where would only be represented by a
simple feature ‘det where’ (although this would mean be could not pass its subj function
to the vcomp). Here however, it is necessary to use a deeper representation of such
determiners, suitable for translation into first-order logic, which involves allowing these
determiners to have arguments. This might more easily have been accomplished by
introducing an additional translation of LFG F-structure into a representation with
additional arguments. However, given that the most unlikely part of the analysis shown
here is the subcategorization by where and that be, it is generally agreed, does induce
functional control, this peculiarity seems due to the analysis proposed by LFG and not
due to the extensions made here.

-104 -



S
\ (Tfocus subj) = (Tsubj)

s1 (Tq subj) = (Tsubj)

(M) =y P
np (Tfocus)fﬂ ] np (Tsubj) =! vp'
| i"llii, / \ I(Tvcornp) =]
det v det adj n np
[0 T Jeea] T
Where is the largest country e
T = Mwn)
B "wh  + n
q pred ‘in_place((Tsubj))’| <g—.
| subj

\_/

focus

T‘let the )
subj adj { [pred ‘largest’]}
|pred  ‘country’ /
pred ‘be{(Tvcomp)) (Tsubj)’ /

vcomp

Figure 4.3.d Example Interrogative with Attributive Be
C-structure and F-structure

4.4 Instances of the Verb Have

The auxiliary have, like be, causes some problems in analysis. An analysis of be,
when used as main verb, has already been proposed and the main verb have like be can be
seen to relate its functional arguments. The analysis of have in LFG, of course, cannot
directly use a paraphrase, as used in Chat-80. Instead a functional analysis must be
provided. Consider the following examples (which fit the Chat-80 templates in Section
3.2.3) of each occurrence of have :

(a) ‘England has a population of 60 million.’
(b) ‘England has Scotland as a neighbour.’
(c) ‘England has two borders.’

The verb have like be will take a vcomp function and allow a subj function to occur as
well (not subcategorized). In Chat-80 special filling rules act after parsing to fit phrases

- 105 -



with main verb have to a paraphrase template. The first case of have above (a) matches the
Chat-80 template :

<entity> has <attribute> of <value>

The C-structure for this phrase (a) is shown in Figure 4.4.a.

\ (T vcomp) =

vpl (T aux)
3
np (Tsubj) = pp (T(lpcase)) =|
N
pn n p/ np (Tobj) = |
Englland has a population of 60 million

(T vcomp subj) = (T subj)

Figure 4.4.a C-structure for Have in ‘Entity has Attribute of Value’ Construct

The vcomp function from the corresponding F-structure, which is to be semantically
interpreted, is shown in Figure 4.4.b. The constituent England functions as subj to be
passed under functional control to the verbless vp ‘a population of 60 million’. This vp
serves as vcomp and has an internal head noun population with determiner @ and a
complement ‘60 million’ which serves as a case marked ‘of obj’ function.

(det a
pred ‘has _population((T subj)(Tof obj)y’

_—

. pn
subj pred ‘England

: measure million
of obj Emmber :I:l

pcase of

vcomp

Figure 4.4.b Vcomp F-structure for Have in
‘Entity has Attribute of Value’ Construct

- 106 -



The semantic form used here for population differs from that normally used for such
nouns. Here population takes both a subj and obj function and thus subcategorizes as if it
were a verb. This will only be the case where the main verb is have so that this use of the
word must be constrained. To do this, constraint equations :

(T main_verb) ; have

(T main_verb)

can be added to this lexical entry for population and the value of ‘main_verb’ satisfied by
a value originating from the lexical entry for have.

The translation of the vcomp function’s F-structure will use the form of sem
features (not shown) which are placed in this F-structure from lexical entries. The sem
feature given to population is :

sem = population(subj, quant)

where during semantic translation, the subj argument will be substituted by the functional
variable representing the subj function and the quant argument by a quantifier variable
(var feature).

The F-structure of the phrase is produced in the normal manner and then, as in the
case of be used as main verb, translation uses only the vcomp function. The method of
translation can be illustrated using Pereira’s [1982] paraphrase template to which this
phrase would be fitted :

<attribute> of <entity> is <value>.

The use of be in this template is the equative case, in which case the quantifier variable of
<attribute> (var feature) is equated with that of <value>. In the F-structure this means
equating the function ‘of obj’ with the var feature of the vcomp.

The translation process is illustrated in DAG form in Figure 4.4.c [1]. The variables
which are equated can be seen in DAG (2). The measure and number features are further
examples of simple features which have a semantic interpretation. The variables to be
equated are those which do not occur in both sem feature and semantic form, so that,
signalled by the ‘main verb = have’ value, these can be examined and the correct

(1] The cyclic DAG for “of obj' has been drawn as a normal DAG for clarity.
This is valid as the value of the feature pcase in ‘of obj' is a simple symbolic
value, used only to label the obj function for case marking.

-107 -



variables equated. The translation information is thus all contained locally in the vcomp
function.

(1)
O
a(X, F & Fs)
<+ O 2@
population(argl, arg2) P
pred pn measure number

England + million 60

(2) vcomp
seém
O
a(X, F & Fs)
argl arg2
OF 5 (@)
England population(arg1, arg2) P f 60 - million
' (equate)

(3)

@) P=

a(X, F & Fs)
O
population(england, P) 60 - million
(4) vcomp
@
translation

5

a(P, population(england, P) & P = 60 - million)

Figure 4.4.c Example Translation of Have as Main Verb

- 108 -



The second case of main verb have (b) can be dealt with in exactly the same way as
the first if the preposition as in conjunction with have is used to produce the same

functional analysis (Figure 4.4.d).

// / pl“"‘m‘l’) h

np(Tof obj) =
[(Tsubn i | (Tpcase) as
p det/ \n
(J, aux) ¢ has | |
England has Scot.land as a neighbour
det a

. |pn 4+
subj | pred ‘England]

VeOmp | pred ‘has_neighbour{(Tsubj)(Tof obj)y

. |pn 4+
of obj E)red ‘Scotlanca]

Figure 44.d C-structure and Vecomp F-structure for Have in
‘Entity has Value as Attribute’ Construct

The third case of main verb have (c) can also be dealt with in a similar manner to the
previous cases, but no equating of variables takes place as the semantic form

subcategorizes only a subj function (Figure 4.4.¢).

-109 -



(I‘ vecomp) = |,

np (Tsubj) = /
num

En gland has a border

[det  a

. [pn 4+
veomp | Subj |pred ‘England’
pred ‘has border{(Tsubj)y

Figure 4.4.e C-structure and Vcomp F-structure for Have in
‘Entity has Attribute’ Construct

When used as an auxiliary, with other main verbs, the analysis proceeds as normal
except that the verb has a genitive case marking influence on some function in F-structure.
A typical interrogative instance of this is illustrated in Figure 4.4.f.

Gﬂmuﬂ .L L “‘Hhh‘“““~h‘hn~u~hun~nm
(fq)= Uy [+th 1 (T vcomp) = |
/\ { ofobj)-ﬂnp
. dct

nP(T subj) L /ﬂpqabj)-l
v num meas
I(J,aux) ¢ has
Wh‘Ch COU“‘-TY has a populatlon exceeding 10 million

T =ﬂ‘np

Figure 44.f Auxiliary Have Used with Other Verb

-110 -



This analysis corresponds roughly to the analysis of have used in Chat-80 (Section
3.2.3). The LFG analysis passes the subject function in Fig 4.4.f to the vcomp function
under functional control. The underlying declarative form of this interrogative is ‘the
population of country <X> exceeds 10 million’. Where <X> is the questioned element
represented as usual by the function q in F-structure. Comparing this with the Chat-80
paraphrase template the entities referred to by ‘which countries’ are related to the attribute
population by allowing population to subcategorize over the entity represented as a
genitive object. The <atrribute> in this case is related to the <value> by the second verb
exceeding, in contrast to the examples with have as main verb where the value and

attribute are related by equating variables.

4.5 Relative Clauses

Relative clauses may be roughly divided into restrictive and non-restrictive. Here,
only those which can clearly be seen as restrictive are described. In a restrictive relative
clause, as the term implies, the relative clause modifying a noun phrase head restricts the
set of entities that the head refers to [Burton-Roberts, 1986]. For example, the relative :

‘a baby that the senator kissed.’

refers first to some baby and then restricts this to specifically the baby kissed by the
senator. A relative clause forms a np and has the general form shown in Figure 4.5.a.

np\
‘ np modxfier
(head)
that
wh:ch
Figure 4.5.a Outline of Relative Clause Structure

The head np plays some functional role within the modifier. A relative phrase such as :

‘the poem which won the award amused the committee.’

-111-



where the head ‘the poem’ also functions as subj within the modifier. The LFG analysis
of relatives must move the head back into the modifier. Several methods are available in
LFG for accomplishing this (functional control, constituent control or anaphoric control).
Here an analysis, using constituent control, described by Pinker [1982, p663] is used.
This analysis is based on the rule:

np _ np s'
L= (t mod) =
(Thead) = |

and a rule which rewrites a np to a gap e with a controllee (with subscript np). The
example relative above is thus given a C-structure tree :

np(Tsubj) =l
(Tmod} !
vp
(Thead) \ np (Tobj) = \np (Tobj) =1
/N / N\ 2 N
det n na \4 det n
| e T 1T F
the poem whlch Te won the award amused the committee
=ﬂnp

The corresponding F-structure being :

P (det  the =
head pred ‘poemzl
' -;el + E
subj subj
mod |pred  ‘won{(Tsubj)(Tobj))’
obi det the
J pred ‘award’
A L
pred  ‘amused((Tsubj)(Tobj))’
- [det the
obj pred ‘cormnitee‘-,ZI

-112 -




This F-structure is translated as illustrated by the series of DAGs shown in Figure 4.5.b.
Translation is quite straightforward, the only complication is the translation of head and
mod functions within the subj function. By convention the head is given quantifier scope
over mod and is translated in its entirety. Once this is done, the index of head (which is
co-indexed with the mod’s subj function) is recorded with its functional variable as
completely translated. When the mod function is translated the subj function will not be
translated but is given the functional variable recorded with its index.

(1)
amuse(argl, arg?2)
mod
head
C
committee(quant) the(Z, F & Fs)
argl ar§2
won(argl, arg2)
var det
\4
P poem(quant) the(X,F; & Fs;) A award(quant) the(X, F, & Fsy)
(2)

amuse(argl, arg2)
mod trans
head M

H subj

C the(C,committee(C) & Fs)

arg2

argl
won(argl, arg2)

var trans trans

P the(P, poem(P) & Fs;) A the(A, award(A) & Fsy)

Figure 4.5.b Example Translation of Relative Clause (continued overleaf)

-113 -



3)

amuse(S, C)  the(C, committee(C) & Fs)

the(P, poem(P) & Fs;) won(P, A) the(A, award(A) & Fsp)

(4)
amuse(S, C)  the(C, committee(C) & Fs)
O
the(P, poem(P) & the(A, award(A) & won(P, A) & Fsy))
(3)
O
the(P, poem(P) & amuse(P, C)  the(C, committee(C) & Fs)
the(A, award(A) &
‘won(P, A) & Fsjy))
(6)
translation
the(P, poem(P) &

the(A, award(A) & won(P, A) &
the(C, committee(C) & amuse(P, C))))

Figure 4.5.b Example Translation of Relative Clause (Continued)

-114 -



This analysis varies from that proposed by Kaplan and Bresnan [1982, p280, n30] where
functional or anaphoric control is used :

“ The preposed item in relative clauses is also Topic. Although the relative
Topic might be functionally controlled when the clause is embedded next to
the np that it modifies, it must be linked anaphorically when the relative is
extraposed. ”

The problem with this analysis is that anaphoric linking requires determination of the
proper antecedent of a relative pronoun. This is itself still a matter for research but it
should be noted that the method of identifying the moved constituent with its surface
realization is independent of the method of translation described here. The analysis used
here has proved sufficient for many cases and the relatives in the query corpus.

The genitive relative marker whose causes a particular problem in LFG. Consider
the np :

‘the country whose population exceeds 10 million.’

The underlying structure of which is :

‘the country & population of the country exceeds 10 million.’

So in the case of relative whose not only is the head function moved into the modifier but
it is also given a genitive case. This is reflected in C-structure by giving the moved head a
possessive functional role inside mod (Figure 4.5.c).

- 115 -



a (Tﬂ'lOd) l

np (poss) = ﬂnp vp

\
case en
fThead) i f& subj))cgi o (Tobi) = 4
/ (Tcase) / \
det n rel
thle cou!ltry whlose poplllat:ion exc!zcds 1|0 mil!ion
(Tcase) = gen
(Trel) = +

Figure 4.5.c C-structure of Relative with Whose

The poss function is subcategorized by population
pred = ‘population{(T poss))’

This function is equivalent to the case marked obj function ‘of obj’ more usually

subcategorized by population. Lexical ambiguity could be reduced by substituting the
equation ‘(T of obj) = ﬂnp’ for the equation ‘(T poss) = mp’ in Figure 4.5.c.

4.6 Reduced-Relative Clauses

Certain noun post-modifiers are analysed as “reduced relatives” in Chat-80. A
reduced relative here simply means a relative without a relative marker (that, which,

whose) where a reduced relative clause can take one of three forms :

- an optional negation and an adjective phrase as a sentence with main verb be.
- aparticiple phrase as a sentence.

- asentence with an initial subject noun-phrase.

A example of a participle type reduced relative is ‘the countries bordering France’ which

in an unreduced form would be ‘the countries that border France'.

- 116 -



np
s (Tmod) ={

Jp (Lparticiple)
(Tsubj) =M 4p
\

head) =
nP(Teas) h np(Tobj) =L
/ N\t i
det n v pn

|| —

the country bordering France
(T participle) = +

Figure 4.6 Reduced Relative C-structure

The reduced relatives can be analysed in the same way as unreduced relatives, as head and
mod functions (Figure 4.6).

4.7 Prépositiona] Variations

In certain constructs prepositions can be left behind when movement takes place :

(a) ‘“The house which Peter lives in is old.’
(b) ‘The house in which Peter lives is old.’

The underlying structure of both the relative clauses is ‘Peter lives in the house’. The
noun phrase ‘the house’ can be viewed as moved (actually deleted as explained in Section
4.5) from the relative modifier. In case (a) above, the preposition in has been left behind

by the np (stranded) but in case (b), the preposition has been moved with the np.

The first case presents no problems for analysis as the relative head function is
simply moved back under constituent control to a position after the preposition and can
combine with this to form a prepositional phrase in C-structure and an ‘in obj’ function in
F-structure. The second case (&) however requires special attention. This type of
prepostional phrase construct is analysed here as a case marked noun-phrase, as this
alows movement to be described in the same manner as the more common occurrences of

the noun-phrase movement. The C-structure for this phrase is outlined in Figure 4.7.a.

-AF¥>



S

/\

np (Tsubj) =1 vp
\ vp! y
np (T headg =) np (subj)=4 VP (Tvcomp) =1
/ l= J.lnp
/n 1’\ T
del:t ri T rell pn \i nr (Tobj)=! v adj
the house in which Peter lives e is old
T -ﬂnp

Figured.7.a C.structure with Moved Preposition

The verb lives in this case would normally have a semantic form subcategorizing subj and
‘in obj’ functions. In this case however, ‘the house in’ cannot form an ‘in obj’ function
as this is not subcategorized. Also, there is no motivation for moving the preposition in
and np ‘the house’ separately so that they could form such a function when filling the gap
e. The simplest solution is to introduce a new lexical entry for the verb lives :

pred = ‘lives((T subj)(T obj))’
(T obj pcase)
(T obj pcase) ¢ in

The additional lexical ambiguity this causes could also be removed if all case marked
subcategorizations are replaced by simple obj functions and separate constraints on case.

In some cases of Wh-fronting, a preposition may also may be moved with the front.
The declarative phrase :

‘you gave the books to Peter.’

can have two interrogative forms :

(a) ‘who did you give the book to 7’
(b) ‘to whom did you give the book 7’

-118 -



This case of fronting with a preposition, which is a particular instance of “pied-piping”
(b) and a peculiarity of English which allows a preposition to be optionally moved with a
np. The fronted preposition is analysed in the same way as the stranded preposition

above. The verb give is thus given a semantic form :

pred = ‘give((T subj)(T obj)(T obj2))’
(T obj2 pcase)
(T obj2 pcase)  to

Pereira [1982, p167] examines a more complex case of pied-piping. The phrase, ‘the
concepts in terms of which the theory was formulated’ is analysed as a np ‘the concepts’,
a preposition in, a Wh-complement ‘terms of which’ and a sentence ‘the theory was
formulated’ into which the preposition and complement are moved. In LFG, the np can be
first moved into the prepositional phrase which is then moved into the sentence as the
head function of the relative (Figure 4.7.b). The np moved within the head function is
here given a non-subcategorizable functional name ‘pied’. This function, co-indexed with
its other functional role within head is giyen scope over the rest of the head and is
translated in its entirety. Its corresponding realization inside of the head is then not

translated but is given the same functional variable as the pied function.

(? head) =]

/ vp
(Tpied) = np (T'subj) = VP (tvcomp) =L

u"” / \

_./

‘det n rel det n v v n
|crobj) =1 | l (Tobj) =L

thc concepts m tcrms of which the theory was formulated e
=ﬂnp T.nnp

Figure 4.7.b C-structure with Pied-Piping

-119 -



4.8 Adjuncts and Attachment

A standard syntactic analysis of phrases that include adjunct sets poses the problem
of modifier (free complement) attachment [Pereira, 1982, p104]. In the Chat-80 system
the syntactic derivation trees of modifiers are attached to the derivation tree of the main
clause. In many cases there are several different points at which a modifier may be
attached to the main tree. This is the problem termed “modifier attachment ambiguity”. In
Chat-80 Right-Most Normal Form (RMNF) was employed to determine the point at
which to attach post-modifier derivation trees and to overcome the problem of ambiguity.
The RMNF technique always attaches the modifier to the rightmost legal node at which a
modifier may be attached. The derivation tree is thus made as tall as possible. The RMNF
constraint employed in Chat-80 is a global condition involving the comparison of all
possible analyses. However, it is not possible to produce a set of DCGs which directly
represent a global constraint. Instead RMNF is implemented as a set of local conditions
described by extra arguments and tests.

The noun phrase ‘Peter painted the house at the end of the road under the tree’
contains two adjuncts which are represented in F-structure as a set (see Section 2.8). The
F-structure of a single set member ‘under the tree’ might be :

pr—

pred ‘undcx((Tsubj)(Tobj))’_

obi det the
J pred ‘tree’

This subsidiary F-structure is coherent but not complete. The governable function subj is
missing from the adjunct member’s F-structure. The problem of attachment in a functional
context is thus one of “functional attachment”. That is, determining which function in the
enclosing F-structure also serves as the function that is missing in the adjunct F-structure.
Ambiguity is present when a number of functions are candidates for filling this role.

As an F-structure is defined as well-formed with incomplete set member
F-structures, the attachment constraints can be defined globally and applied after
F-structure derivation. The RMNF method of attachment can be adopted by selecting the
function derived last from the surface order of a phrase. This means, for example, that obj
is preferred over subj for fulfilling a functional role in an adjunct function. Attachment is

-120 -



realized in F-structure translation in the same manner as co-indexing; functions being
given the same functional variable.

Some uses of the preposition with are dealt with in Chat-80 in the same way as the
verb have. In addition this preposition may, as other prepositions, be used in an adjunct
construction. Consider the interrogative :

“Which countries with a population exceeding 10 million border the Atlantic

If the preposition is treated in the same way as have then, as in Figure 4.4.¢, the Wh-front
will be passed to the subsidiary F-structure containing population where it will form a
case marked obj function ‘of obj’. The adjunct is itself analysed as a reduced relative
clause and is, in this case, both complete and coherent in contrast to the adjuncts
described previously which are only coherent, but not complete.

S

\
sl
(Tsubj) = §
(Trel adJ)=.L
Vp(TSllbj) =ﬂnp
(Tfocus)
(T‘D ”’[+wh] rcl_s (tmod) =1
|
J-Of()bj) : bi) =1
np (T obj) = (tobj) =4
\i b / \ 4\
det n v num meas Vv det pn

P A

Wthh countnes thh a pOpuIatlon exceeding 10 million border the Atlantic
T = =Map

Figure 4.8 C-structure of Adjunct with Have

This particular construct is analysed here as a particular case of a “closed adjunct”
and in addition, the preposition with is analysed as a particular instance of have (Figure
4.8). The adjunct forms a function ‘rel_adj’ (relative adjunct) which is not, like other
adjuncts, realized as a set value but as an ordinary non-subcategorizable function which is
semantically translated in the same way as a subcategorized function. Currently, this

-121-



function is by default given quantification scope over other subcategorized functions,
although this may not be appropriate in other cases.

4.9 Coordinate Conjunctions

Coordinate phrases are difficult structures to handle and are a current issue in
syntactic analysis. Here, only a small subset of possible coordinations, those represented
in the query corpus, will be of concern. Coordinations may be generally described as
phrases involving one or more connectives. Connectives include conjunctions (and, or
and but), relative pronouns (who, whom, which, where, when, how and that), some
examples of which have already been described, and binders (because, so, since, until,
before and while). Only coordinations involving conjunctions will be discussed;
specifically the coordinate and.

The coordinate and conjoins two phrase structures (coordinations), itself separating
the two structures. Any category may be coordinated but the coordinations must be of the
same category and basic structure if the coordinate phrase as a whole is to be well-formed
(Figure 4.9.a).

/ p\
np

ANPANERYVAN

Peter  returned the books and  shredded the report

Figure 4.9.a Outline of Conjunction C-structure

) It has been shown [Karttunen, 1984] that, if negative constraints are allowable (as
they are in LFG), agreement in coordinate structures can be handled by simple unification
of features from each coordination. This requires breaking, for example, the person
feature into a number of component features. Unification of these new feature sets (values

and negative constraints) then reflects the result of ‘person coordination’ :

-122-



18t person coordinated with 27 person —— 15t person
1%t person coordinated with 31 person —— 1St person
2nd person coordinated with 31 person —— 2nd person.

An analysis of coordination in LFG is described in Falk [1983]. Individual
conjunctions are treated as bounding nodes in C-structure as shown above. However in
the case of interrogatives, the bounding nodes may block the correct functional analysis.

\
vp' (Tvcomp) =]
VP
\ l
- J,e (Tconj) L€ (Tconj)

sl v np(’rsubj) L Z|LVP
i

v np v np
|(Tob1)-i | |(Tobj)=l
what dxd Peter return [ and shred e
T=Tap T=Tap

Figure 4.9.b Outline C-structure of Interrogative with Conjunction

In these cases Falk uses the linking equation to by-pass the bounding nodes (Figure
4.9.b). As can be seen in Figure 4.9.b, the controller originating from the Wh-front is
matched, via the linking equations, with a controllee in both conjunctions. This is thus a
case in which there is not a strict one-to-one correspondence between controllers and
controllees. The controller passing into a conjunction must thus be duplicated and passed
into subsequent conjunctions. Individual conjunct F-structures are placed in a set
function, here called conj. The individual members of the conj set pose a particular
problem for analysis.

The F-structure of the vcomp function is shown in Figure 4.9.c below. Each
member of the conj set F-structure, it can be seen, is related to the F-structure in which it
is contained in such a way as to make that F-structure well-formed. That is to say that
unifying any conjunct set member with the remainder (less conj set) of the immediate

surrounding F-structure will produce a well-formed F-structure.

-123 -



subj E)red ‘Peterj
pn +

(pred ‘return{(Tsubj)(Tobj))’ |

. [det  what |
vcomp 0bj wh  +
conj — =
pred ‘shred((Tsubj)(Tobj))’
. [det  what |
obj wh +

Figure 4.9.c Section of F-structure from Conjunction

This additional unification is however not necessary in cases where the set function forms
the sole content of a subsidiary F-structure or function. This is the case when whole

sentence structures are conjoined.

In other cases (ellipsed conjunctions), the content of the surrounding F-structure
should be deleted, suitably indexed, and unified with each set member. The analysis of
conjunctions proposed here thus places additional constraints on the production of sets in
the case of conjunctions. Conjunctions are currently translated in the same manner as
other F-structures and the resultant predicates simply conjoined. As an example of how an
ellipsed conjunction can be dealt with in LFG (and quantifier scoping in such cases), the
phrase ‘each man drove a car through and completely demolished a glass window’, taken
from Dahl and McCord [1983] can be examined. This phrase is used by them to produce

a structure with the basic form:

A X conj YB

where X and Y are the coordinated structures. Dahl and McCord use a ‘demon’ process to
parse such structures. On encountering the conjunction, a process is set off which backs-
up in the parsing history in order to parse Y parallel to (as a repeated structure) X. The

system does not produce the deeper unreduced form of the coordinate structure :

A X B conj AY B

-124-



for:

“ Not expanding to the unreduced form is important for keeping the modifier
relationships straight, in particular, getting the right quantifier scoping .... .
This logical form [for the example phrase, which is given below] would be
difficult to recover from the unreduced structure, because the quantified
noun phrases are repeated in the unreduced structure, and the logical form
that corresponds most naturally to the above [here given below] logical

”

form.

The logical form, produced by Dahl and McCord from the example coordination is :

each (M, man (M),
exists(C, car(C),
exists (W, glass(W) & window (W) &
drove_through(M, C, W) &
completely( demolished(M, W) ) ))).

A possible LFG F-structure analysis of the example coordination is shown in outline in
Figure 4.9.d. For simplicity, the adverb complerely has been incorporated in the sense of
the verb demolished. Adverbs are not dealt with in the Chat-80 semantic representation or
in the account of LFG given by Kaplan and Bresnan [1982], but could be dealt with
logically in the same way as Dahl and McCord have in the above logical form and in LFG

by use of an additional semantic feature.

The F-structure in Figure 4.9.d illustrates the effect of ellipsed coordination. The
F-structure as shown is not complete at the top-level (as there is no semantic form to
subcategorize subj and obj) in this particular case. The individual members of the conj set
are also not complete, they both are missing an obj and subj function.

Various approaches seem possible to the problem posed by the F-structure in Figure
4.9.d. If completeness is not checked until after parsing, then the conj set value could be
treated specially during well-formedness checking, and the contents of the F-structure
surrounding the conj function ‘fitted’ into the individual members of the set (as indicated
by arrows in Figure 4.9.d). If multiple occurrences of the functions fitted into the conj
members are co-indexed, then a ‘correct’ quantifier scoping is obtained, whichever conj
member is given scope over the other. Alternatively, only the functional variables of the

-125-



outer functions could be passed into set members and then these functions translated with
scope over all set members.

: det each
s0] E}md ‘rnan:]
[ subj
pred ‘drove {( Tsubj)(Tobj)( Tthru obj)Yy
. det a |
obj pred G
conj s —abj q-:\
pcase  thru
(subj
pred ‘completely _demolish{ (T subj)(Tobj)y
obj
det a
obj adj [pred  glass]
pred window

Figure 4.9.d Outline of F-structure from Ellipsed Coordination

In either case, it would seem necessary to treat F-structures containing coordinate
sets in a special manner. This would obviously also be true of single ellipses themselves
(‘Which country has the largest population ?’ followed by a ellipsed query ‘the largest
area ?") where the ellipse’s F-structure will not be complete, but is a component of the
first query’s F-structure. Thus, the ellipsed query’s F-structure must be used to substitute
some part of the first query’s F-structure. In many cases, this would be possible, aided
by semantic typing, but there would be the problem of ambiguity in exactly which
function (of the candidate functions in the first query) the ellipse fulfils. The greatest
problem in dealing with ellipses is to determine the grammar rule(s) with which to parse
the ellipse. As a general rule, it seems that the rule(s) will be amongst those used during
parsing of the first query and that the function fulfilled by the ellipse’s F-structure will
tend to be derived from C-structure on the RHS of the tree. It remains to be determined to
what extent the inclusion of ellipses in the linguistic coverage of a system would degrade
the efficiency of parsing.

-126 -



4.10 Possessives

The head of a noun phrase may contain possessive constructs. In Chat-80
possessives with ’s postfixes are analysed as genitive case markers. In LFG the
possessive head constituents are used to form a function ‘poss’ which is subcategorized
by the noun following the head function (Figure 4.10).

vp

\
/nwobj) =l

det n
NP (T poss) =1
det/ \n
np (Tsubj) = | nw{
/\
det n v det n
A
the girl passed the man s cat s collar

Figure 4.10 Possessive C-structure Qutline
The F-structure produced by this analysis can be translated in the usual manner. By

convention the function poss is given a default scope over the function in which it is
contained.

-127 -



Chapter 5
Prolog Techniques and Quintus Prolog

During the implementation of LFG, to be described in Chapter 7, several different
approaches and Prolog techniques, used in implementations by others and used to
produce a new implementation, were tried. Different approaches to parsing suggest
different approaches to implementation. The purpose of some of these techniques may not
be immediately apparent so that some explanation is required. Although various differing
Prologs have been employed in various implementations the techniques described here are
illustrated using Quintus Prolog [Quintus, 1987). This Prolog is a development of
Edinburgh Prolog [Pereira, Pereira & Warren, 1978; Clocksin & Mellish, 1984; Bratko,
1986] and represents a ‘state of the art’ programming environment for artificial
intelligence, including, incremental interpretation or compilation, a sophisticated editor
and debugging aids.

5.1 Open-Ended Lists

An open-ended list can be described as a ordinary Prolog list which has an
uninstantiated tail (cdr in Lisp) :

[a, B, ©7 cvcsoe |Cdr]

The variable tail of this list may be instantiated with another Prolog list to produce an
ordinary Prolog list:
Cdr = [d, e] — (a, b, ¢, d, e]

In this way, the list can be extended by any number of elements but once the tail has been
unified with a list, no further extension is possible. If however, the tail of the list is
unified with another open-ended list, then the resulting list will itself be open-ended and
can be extended again:

An open-ended list may thus contains any number of elements, perhaps zero, and in
addition, may have any number of new elements added any number of times. This data

-128 -



structure is obviously very suitable in certain circumstances for representing feature
structures. If two feature structures, Fs; and F's;, are represented as open-ended lists and
unified (linguistically), the resulting feature structure can be produced by either adding
features of Fs; not present in Fs; to the tail of Fsj, or by adding features of Fs, not
present in Fs; to the tail of Fis;. If the list of new elements added to a feature structure is
itself an open-ended list then the result of unification will be an open-ended list which
may have further information added to it by subsequent unifications.

5.2 Pseudo-Declarative Procedures

Prolog procedures which operate on lists, or any structure of indeterminate size,
such as the standard member/2 procedure are normally declared as purely recursive
procedures :

member (Element, [Element|_]) :- !.
member (Element, [_, |Rest]) :-
member (Element, Rest).

The execution time and space taken by this procedure is thus dependent upon the list’s
length. This procedure has an infinite definition in a purely declarative form :

member (Element, [Element|_]) :- !.

member (Element, [_, Element |_ 1y z=i4,
member (Element, [_, _, ‘Element|_]) :- !.
member (Element, [, _, _, Element|_]) :- !.

...............

This declarative definition would execute more efficiently (in time and space) as
Prolog’s top-down search is more efficient than recursion (in Quintus Prolog). The
membership test in the declarative form above is reduced to a simple top-down search for
a matching predicate. In practice however, it is not always possible to provide declarative
definitions of all procedures. If the length of lists involved in the membership test above
cannot be guaranteed to have a reasonably small maximum value, then a declarative
solution becomes impracticable. This problem can be overcome by making a compromise
between declarative and recursive solutions. As an example, consider the following

definition of append/3 :

-129 -



append([], List, List) :— !.

append([A], List, [A|List]) :- !.

append([A, B], List, [A, B|List]) :- !.

append((A, B, C], List, (A, B, C|List]) := !.

append([(A, B, C|Rest], List, [A, B, C|Listl]) :- !,
append (Rest, List, Listl).

This definition functions declaratively if the first list passed to append/3 has three or less
elements but will perform some recursion when given a list of greater length. The number
of recursive calls will however be less than that performed by the traditional definition of
append/3 as each recursion will consume three elements of the first list, not one as in the
traditional definition. This type of definition is here called a “pseudo-declarative”
definition.

5.3 Templates

Templates allow a procedure definition to be used in several different ways and uses
the higher-order extensions to Prolog described by Warren [1982]. Consider the
following procedure sort/2 which performs a bubblesort on a simple Prolog list :

sort (List, Sorted) :-
swap (List, Listl};
sort (Listl, Sorted).
sort (Sorted, Sorted).

swap([Elem, Eleml|Rest], [Eleml, Elem|Rest]) :-
greater_than(Elem, Eleml).
swap([Elem|Rest], [Elem|Restl]) :-
swap (Rest, Restl).

where the predicate greater_than/2 is an ordering relation which compares two elements of
the list according to some predefined ordering. For example, if the list is a list of integers,
the greater than/2 will simply be defined :

greater_than(A, B) :- A > B.

Given this definition of greater_than/2, the bubblesort procedure can only be used on lists
of integers. If a list of say, characters were passed to the procedure, this would produce
an error as comparison of characters using the operator ‘>’ is illegal. Furthermore, only
lists of integers can be sorted but not, for example, lists of elements which are themselves
lists of integers.

-130 -



The sort/2 procedure can be made applicable to a much wider class of data
structures by using templates. A template can be used in this example to specify both the
structure of list elements and how they are to be compared. The definition of the
greater_than/2 procedure is altered to become :

greater_than(Template, Elem, Eleml) :-
\+ gt (Elem, Eleml, Template).

gt (Elem, Eleml, temp(Elem, Eleml, Op)) :-
\+ call(Op) .

The elements for comparison are passed to greater than/3 as before but in addition a
template is passed to the procedure which is used to make the comparison. This template
is passed to the sor#/3 procedure which then passes it to greater _than/3. The template for a
simple sort of a list of integers would be :

temp (A, B, A > B)

The actual values of elements are instantiated in the template by the procedure g#/3 which
then executes the comparison operator in the template. Double negation is used as failure
of the g#/3 predicate uninstantiates the variables in the template so that it can be used
again. A more complex example might be the sorting of the list :

{ (a, 1], [b, 11, [b, 2], [a, 2] ]

If this list is to be sorted into an order so that sublists with lowest numbers appear first
and in the case of two sublists having the same number then that with the letter closest to a
is put first, then the template passed to the sort/3 procedure would be :

temp([Let, Num], [Letl, Numl],
( Num > Numl

Num == Numl, Let @> Letl)

where ‘A == B’ ensures that the terms A and B are strictly identical and ‘A @> B’ ensures
that term A precedes term B in the standard order for terms (a before b etc). User defined
comparison procedures can also be used in the template. The sort/3 procedure can thus be
used to sort lists of any data structure for which a template can be described.

-131-



Chapter 6
Implementations of LFG

6.1 DCG Type Implementation

At the time of starting this research only one implementation of LFG had been
described in the literature [Frey & Reyle, 1983; Reyle & Frey, 1983]. This
implementation is based upon the observation [Pereira & Warren, 1983, p139] that LFG
can be realized as an extension of the Definite Clause Grammar (DCG) formalism. The
DCG formalism is itself a simple and clear notation for an actual set of Prolog rules,
which are produced from the grammar rules by adding string handling arguments. The
DCG rule:

sentence -—=> noun_phrase , verb .

will be expanded into the Prolog rule :
sentence (S, S1) :- noun_phrase(s, §2), verb(s2, sl1).

A DCG rule may also be given extra arguments to ensure, for example, simple
number and tense agreement or to build a syntactic tree representation of the phrase
analysed. The DCG rule format has formed the basis of the LFG implementation
described in Frey and Reyle [1983]. An LFG rule such as :

S — np vp
(Tsubj) =1 T=
(T tense)

is transformed into a Prolog rule [Frey & Reyle, 1983, p54]:

S (*cl0 *cll *outps) <——
NP (*cl0 *cll *featnp *outpnp),
VP (*cl2 *cll (SUBJ (*outpnp *featnp)) TEN *outps)

-132-



where variables are denoted by prefixing with asterisks and constants are in uppercase.
This rule can only really be understood in the context of a complete set of rules and lexical
entries which with this rule analyses a phrase.

Prolog variable unification is used directly to implement (linguistic) unification
although there is not a one-to-one correspondence between variables and features. Rather,
arguments are used to build up F-structures as Prolog structures from basic elements in
the lexicon. A np rule, for example, may expand np in the previous rule to a determiner
and a noun:

NP (*cl0 *cll *outpnp) <—
DET (*cl0 *cll *outpdet) ,
N (*outpdet *outpnp)

Here, outp variables are instantiated with the output portion of F-structures (semantic
forms) for their respective phrases so that outpdet is instantiated by matching with the
respective lexical entry for the determiner. This is then passed to the noun part of the rule
which matches with the outpder variable perhaps also checking, by unification, number
agreement and then incorporates this structure in its own output structure outpnp. The n
category is termed the head category which is always that category assigned the trivial
equation. The output from the head category is always also the rule’s output structure.
The feat variables carry simple feature values and c variables, a list of controllers.
Variables which have names that are simple numbers carry a list of subcategorized
functions originating from verb lexical entries. Evéry subcategorizable function appearing
in a phrase must be able to shorten this list and the list must be empty at the end of
parsing. This ensures both completeness and coherence. As Prolog unification is used
directly, the functions found must match the first element of this list of functions. This
introduces an additional (non-LFG) constraint, in that functions must be found in the
same order in which they appear in lexical entry checklists.

The lexical entry for a verb such as expects, for use with the s rule above, takes the
form:

V ( (VCOMP (SUBJ (*outpobj *featobij) ) )
( (SUBJ (*outpsubj (SG 3) ) )
(OBJ (*outpob]j *featobj) ) (XCOMP *outpxcomp) )
TEN
( (TENSE PRES) (PRED 'EXPECT (*outpsubj *outpxcomp)' ) ) )

-133 -



The first line of the verb’s entry describes part of the vcomp function’s structure (the
subj). This is instantiated with values from the verb’s obj function and thus corresponds
to a functional control equation. This section of vcomp is later passed to a subsequent
verb entry and incorporated in the vcomp function.

The second and third lines of the entry above constitute the checklist of
subcategorized functions. Each function in this list has also an output variable and a
feature variable which in the case of the subj function is instantiated with the values sg
and 3 to ensure subject/verb agreement. The fourth line of the verb’s entry simply names
the verb feature zense as a constant which matches with the existential constraint value in
the main s rule. The last line of the verb’s entry is matched with the verb’s output variable
in the grammar rule. The output from the verb is the verb’s semantic form, with
arguments given the value of their respective function’s output and the tense feature and
value.

Long distance control is handled by variables which pass a list of controllers
through grammar rules. The LFG rule:

s — np E

(T = Ui T=1

(T focus) =4
= U;p

is translated into a Prolog rule (the tail of a list ‘|’ is represented by ‘.’ in Frey and Reyle’s
rules) :

S' (*cl0 *cll *outpsc) G
NP (((NP [+wh] . *cl0) *cll *featnp *outpnp),
rest (*cll *cl0)
S ((*outpnp *featnp (S NP))) nil *outpsc)

where each ¢ variable is a list of controllers, c/0 being the input list of controllers to this
rule and c11 the output list of controllers. Each controller in this list is represented by a
sublist containing the controller’s output variable, feature variable, superscript and
subscript. The controller belonging to the np domain however does not carry features and

output, presumably because the function q is non-subcategorizable or not used in

-134 -



semantics. The controller belonging to the np domain is added to the front of the
controller list passed into the np domain where a matching controllee must be found,
although this does not seemed to be ensured by any checking. The list of controllers is
returned as ¢/ which would then be passed to the rest of the rule body (resz). A new.list
of controllers is produced for input to the s domain as this is a bounded node. This list
contains only the controller belonging to the s domain and must be empty (nil) when

returned.

The linking equation, which allows a controller to penetrate a domain the root of
which is labelled as a bounding node, appears to have been misinterpreted by Frey and
Reyle. They state that [Frey & Reyle, 1983, p55]:

“ Here [in the case of linking equations] we use a test procedure which puts
only the controllers indexed by s [the superscript on the controller in the
linking equation] onto the controller list going to the s goal [the bounding
category]. ”

It appears that the procedure used to deal with linking equations may thus pass a number
of controllers into the bounding node’s domain (all those with an s superscript). This is
not however the interpretation seemingly intended by Kaplan and Bresnan [1982, p253],
where it is stated that:

“ Thus, this schema [a linking equation] will link metavariables of any type,
passing on to the lower controller the compatibility requirement of the upper

»

one.

Indeed if a single linking equation is intended to be applied to a number of controllers,
then the generation of a number of new controllers into the bounding nodes domain
would break the constraint that no node can serve as domain root for more than one
controller.

Using Prolog’s unification directly to perform linguistic unification in DCG rules
requires establishing a fixed set of features for each grammatical category so that feature

lists match correctly :

-135-



[num sg, gen fem, pers third]
d l d (‘term’ unification)
[num sg, ; pers third]

Unspecified values can be represented by anonymous variables which will match with
any value. The efficiency of unification is thus not greatly affected by the number of
features used in lexical entries although memory usage may be quite large. This method of
realizing unification has been used to produce quite efficient implementations of
unification type grammars [Sharman, 1987].

This DCG based type of implementation allows execution of grammar rules using
Prolog’s Top-Down Backtracking (TDB) and can use Prolog’s unification directly to
effect linguistic unification. Despite this, the implementation suffers from a number of
weaknesses. The rules are very complex and difficult to understand, and therefore to
alter, and require a deep understanding of Prolog itself. This is not desirable in a
realization of a high-level notation. Also the implementation is incomplete in that sets and
constraints are not dealt with. Set values could be handled by using open-ended lists to
which set values are added but implementing the Kleene-star operator poses some
problems. Top-down control does not allow left-recursive rules (np — np, mod), a
natural description of many linguistic constructs, to be used. Only value type constraints
could be dealt with directly when using Prolog unification but the important difference
between a value constraint and a value definition would be lost. Prolog’s TDB control
may also frequently backtrack over previous work in the face of non-determinism in the
grammar or ambiguity in the lexicon. It is possible to restructure a DCG so that
backtracking is eliminated but this requires an understanding of TDB, inventing unnatural
grammatical categories and often produces unclear grammatical descriptions. In the case
of LFG, this restructuring would be complicated by the equations attached to rules. Non-
determinism due to lexical ambiguity cannot be removed and as LFG incorporates a great
deal of information in the lexicon, a relatively high degree of lexical ambiguity can be
expected.

This DCG based implementation of LFG is used as the syntactic component of a
system for discourse processing [Frey, Reyle & Rohrer, 1983] which uses Hans Kamp’s
Discourse Representation Theory (DRT) [1981], [Reyle, 1985]. This semantic theory is
primarily concerned with anaphora which will not be discussed here.

- 136 -



6.2 Pseudo-DCG Type Implementation

In addition to the DCG based implementation, Eisele and Dérre [Eisele, 1984;
Eisele & Dérre, 1986] also at the University of Stuttgart have produced an implementation
based on (linguistic) unification using open-ended lists. Instead of using Prolog
unification, linguistic unification is performed by a separate unification procedure

mergel2 :

merge (F_structure, F_structure) :- !l.

‘merge ([Attribute = Value|Rest], F_structurel) :-
del (Attribute = Valuel, F_structurel, F_structure2),
merge (Value, Valuel),
merge (Rest, F_structure?2)

del(Pair, [Pair|Rest], Rest) := !.
del (Pair, [Pairl|Rest], [Pairl|Restl]) :-
del (Pair, Rest, Restl)

The merge/2 predicate is passed two F-structures as open-ended lists and
instantiates the tails of these so that the F-structure lists become identical, should they not
contain contradicting values for attributes. This is done by inserting into both F-structures
the attributes missing with respect to the other. The first merge/2 rule simply unifies two
F-structures, attribute values or open-ended list tails. The second rule takes an attribute
and value from the first list, deletes this attribute’s value from the second list (del/3),
returning the remainder of this list, and then merges the attribute’s values and the rest of
the lists. If however the attribute is not defined in the second list the procedure del/3 will
add this attribute to the list and the subsequent merge on the attribute’s value will actually
instantiate the attribute’s value. The recursive call to merge/2 on attribute values is also
used.to unify function values, themselves open-ended lists. A lexical entry of the verb
hand for example, may be represented by an open-ended list and merged with a subject
function representing ‘a girl’ :

merge ([subj = [spec = def, num = sg, pred = girl|Rest_subjl]
[Restl],
(pred = hand(subj, obj2, obj), tense = pres,
subj = [num = sg|Rest_subj2]
|Rest2])

-137 -




which results in the following instantiations :

Rest_subj2 = [spec = def, pred = girl|Rest_subjl]
Restl = [pred = hand(subj, obj2, obj),
tense = present|Rest_subjl]

The merge/2 predicate is also used to process equations in grammar rules. The LFG rule:

8 1 np vp

(Tsubj) =1 T=1

is translated into a DCG type rule :

s(s) =--> np(NP), { merge([subj = NP|_], S) I},
vp (S)

where the additional call to merge/2 is enclosed in braces so that when expanded into 2
Prolog rule, string handling arguments are not added to this predicate.

Constraints are handled by the special Prolog II functions diff and freeze. The
freeze function allows ‘frozen’ conditions (goals) to be attached to variables which are
executed when the variable becomes instantiated. An existential constraint, for example, is
dealt with by attaching a frozen condition ( nil) to the value of the feature concerned,
which is given a variable as its value. After parsing, all unbound variables are instantiated
to nil, at which time the condition will be executed causing a failure as the F-structure is
ill-formed. The function diff fails if its arguments can be unified but it does not attempt to
do this if its arguments contain parts represented by different variables. This function can
thus be used to support negative value and negative existential type constraints.
Coherence is handled by passing the F-structure, less subcategorized functions, to a
predicate ngf which checks that the remainder of the F-structure does not contain any
further governable functions. The lexical entry for the verb promised :

promised : v  (Ttense) = past
(T pred) = ‘promise{(T subj)(T obj)(T vcomp))’
(T vcomp to) =¢ +
(T vcomp subj) = (T subj)

-138 -




thus takes the form:

v (V) - [promised],
{ merge (V,
[tense = past,
pred = promise(subj, cbj, vcomp),
subj = [pred = Pred_subj|Rest_subjl,
obj = [pred = Pred objl_1,
vcomp = [to = Plus,
pred = Pred vcomp,
subj = [pred = Pred_subj|Rest_subj]|_]
IRest]),
_freeze(Plus, Plus = +),
freeze (Pred_subj, Pred_subj \= nil),
freeze (Pred_obj, Pred obj \= nil),
freeze (Pred _vcomp, Pred_vcomp \= nil),

ngf (Rest) }

Long distance dependencies are dealt with in a similar manner to that in the DCG
type implementation, by passing input and output lists of controllers to C-structure nodes.
Prolog unification is not however directly employed for matching controllers with
controllees. Instead, additional goals (in braces) are added to take controllers off the
controller list. The grammar rules :

(I) np — e

T=1,

2) s — np s1
(T focus ) =1 T=1
(Tq)=!l[’1‘:,.,h] (Taux)
_n sl
=4

are translated into two corresponding DCG rules :
(1) np(Ctrls, Ctrlsl, Fs_np) -->

(1,
{ subst(np/Fs_np, np, Ctrsl, Ctrlsl) }.

-139 -



(2) sl(ctrls, Ctrlsl, Fs_sl) =-=>
np([wh/QlICtrls], [wh|Ctrlsl], Fs_np),
s([np/Fs_np], [npl, Fs_sl)

The identification of controller domain roots is performed during translation into Prolog.
A controller is added to the list of controllers at its domain root in the C-structure. This
category is not necessarily the category below which a controller appears in an equation.
As can be seen in the sample rules above, a domain root adds a controller to the list of
controllers. The controller list elements consist of the controller subscript and a variable
representing the F-structure. A controllee removes a controller from the list and replaces it
with a receipt marker. The predicate subst/4 does this and is allowed to match the first
n+1 elements of the list, where n is the language dependent crossing limit. The domain
root will then ensure that its controller has been matched by removing the receipt marker

from the controller list.

Eisele also shows how left-recursion in grammar rules may be eliminated by a

transformation which, given the rules :

A — A, B. A — C.

will produce a new set of rules :
A — Al A2 A2 — B, A2.

Al — C. A2 — [1]

This new set of rules is weakly equivalent to the original rules in that it recognizes the
same strings (terminal sequences). The C-structures produced by both sets of rules, and
the passing of F-structures through these (indicated by arrows), are illustrated by Eisele
[1984] using a terminal string ‘CB B B B’ (Figure 6.2). The C-structure tree produced
by the new rules (b) will be right-branching rather than left-branching (a).

- 140 -




(a) A

Figure 6.2 F-structure Passing through C-structure Produced from
Left-Recursive Rules and Eisele’s Equivalent Rules

The relationship between categories in the two sets of rules and building of F-structures
using the new rules, is described by Eisele :

“ In the old grammar one could say that each A node takes the F-structure(s)
of its subordinate A and B or C node(s) and uses them to build its own
F-structure.

In the new grammar, the A1 node behaves just as the A node dominating the
C node in the old grammar, but the A2 nodes can be considered as taking
the F-structures of the left-sister A1 node or the dominating A2 node and
that of the subordinate B node to build its own F-structure.

If the F-structures are evaluated in this way and passed downward, then the
F-structure belonging to the A node will be assigned to the A2 node which
expands to the empty string.

We have to provide an extra argument for passing the F-structure of A
through all the A2 goals [back up to the A node, as illustrated above]. ”

This transformation however, requires introducing new grammatical categories (A1, A2)
~ for which there is no linguistic motivation and two additional rules. This may result in

-141 -




parsing actions which are difficult to understand. In addition to this the transformation
does not take into account LFG equations and bounding nodes.

Eisele’s system has been tested using about thirty grammar rules and two hundred
lexical entries but he reports that its performance is very poor. This is mainly caused by
backtracking in the top-down parser which is caused by the nature of an LFG grammar.
In LFG grammars, there are many optional constituents which can be repeated an
arbitrary number of times and in addition to this, a single grammatical category may have
alternative equation sets.

More recently, this implementation has been used as the basis of a machine
translation system [Netter & Wedekind, 1986] where a set of transfer rules convert from
the C-structure and F-structure representing a phrase in one language (German) to those
representing the phrase in another language (French). This implementation has also been
used [Netter, 1986] as the basis of a system for dealing with German word order. Other
translation systems based on LFG have also used transfer rules to convert F-structures
between languages [Kudo & Nomura, 1986], [Horsfall, 1986]. The implementation
developed at UMIST, used by Horsfall, appears to be very similar to Eisele's. LFG rules
are translated into DCGs with embedded extra goals added to perform operations
according to equations.

To overcome the inefficiencies of top-down control problem, Eisele proposes using
C-Prolog and adopting the bottom-up parsing method described in Matsumoto and
Tanaka [1983]. However, as C-Prolog does not have the diff and freeze functions, much
of Eisele’s implementation would have to be reworked. Also, the merge/2 procedure
which unifies two F-structures is very computationally expensive, particularly the del/3
predicate which recurses along open-ended lists looking for a feature and its value. This is
the cost of using the more compact F-structure representation where a category may be
given any number of features in any order.

Yasukawa [1984] has developed a similar LFG system to that of Eisele and Dorre
which is also based on the DCG formalism and embeds extra Prolog goals in DCG rules.
F-structures are generated during parsing by executing the equations attached to nodes in
C-structure. After parsing a complete string, the F-structure is checked to see if values are
consistent with constraints and to see if it is complete. Yasukawa employs the following
data types to represent F-structure components :

-142 -




- simple symbols as atoms or integers.
- semantic forms as ‘sem(X)’ where X is a predicate.

- F-structure as ‘Id : Obt’ where Id is an identifier variable (Id-variable) and Obt
an ordered binary tree. A unique identifier variable is used to identify the
F-structure of each syntactic node and F-structures themselves are represented |
as ordered binary trees where each tree leaf holds an attribute and value pair.

- sets as {valuej, valuey, ...., valueq}.

A binary tree is represented by a Prolog term which takes the form :
obt (v(Attribute, Value), Less, Greater).

where the term ‘v(Attribute, Value)' is the value held at this node in the tree, Attribute is
used as this node’s label and Greater and Less are ordered binary trees which hold
attributes with label values greater than that at this node and less than that at this node
respectively. If a tree leaf is not defined, it is represented by a single Prolog variable so
that the tree may be extended in the same way as an open-ended list. Ordered binary trees
are claimed to cut the processing time of operations on F-structures over the use of
ordinary lists by thirty per cent. The predicates which implement LFG primitives are (dn
is a designator, 5 a set) :

dl = d2 equate (d1, d2, 0ld, New).

de s include(d, s, 0ld, New).

dl =.d2 constrain(dl, d2, 0ld_c, New_c).

d exist (d, 0ld_c, New_c).

“1(dl =, d2) neg_constrain(dl, d2, 0ld_c, New_c).
1dl not_exist (d, 0ld_c, New_c).

The variables Old and New are global value assignments (F-structures) and Old_c and
New _c are constraint lists. In addition to these predicates, additional predicates are used
to check the constraint list during parsing to kill off incorrect parses as soon as possible.
The predicate calls are actually inserted into DCG rules by expanding a more readable and
concise notation. The LFG rule :

s — np
(Tsubj) ={ T=1

- 143 -




is written as :

S(S(Np, Vp}; Id_s: { ]) -
np(Np, Id _np, [eq([subj, Id_s], Id_npl)),
vp(Vp, Id_vp, [eq(Id_s, Id_vp)l)

which is expanded into a DCG rule:

s(s(Np, Vp), Id_s, 0ld, New, Old_c, New_c) —-—>
np (Np, Id_np, 0ld, 0ldl, 0ld_c, 0ld_cl),
{ equate([subj, Id_s], Id np, 0ldl, 01d2) I},
vp(vp, Id vp, 01d2, 01d3, 0ld_cl, New_c),
{ equate(Id_s, Id_vp, 01d3, New) } .

Yasukawa compares his pseudo-DCG implementation with the DCG implementation of
Reyle and Frey noting that although the DCG approach may be more efficient, using extra
goals allows much more of LFG to be supported, especially constraints, and that rules are
much simpler and easier to modify.

6.3 Recent Implementations

An Integrated Parsing (IP) system using a grammar based on LFG has been
developed by Uehara er al [1984b; 1985]. This system is based upon “actor theory”
[Hewitt, 1977], where grammar rules and lexical entries are represented by actors. A
grammatical actor has the form:

[<actor_name> <script>]

where <actor_name> is the LHS of a grammar rule and <script> a set of RHSs of rules
which expand the LHS. A script contains a number of “patterns” which represent the
RHSs of rules which have a common LHS. A lexical actor has the form:

[<actor_name> [<non_terminal> <schemata>]]

where <actor_name> is a terminal word, <non_terminal> the word’s grammatical

category and <schemata> a set of lexical equations.

Although actor theory assumes that communication between actors is performed in
parallel, the parser is limited to constructing C-structure in a traditional top-down manner
with automatic backtracking by the Prolog interpreter. When an actor has some applicable

- 144 -



patterns, it activates the first of these, while all other patterns remain inactive, and
evaluates the equations attached to the first element (category) of the pattern, modifies its
internal state to reflect this and sends a message to the grammatical actor with the category
of the pattern’s first element (TD expansion). The actor receiving this message will then
evaluate its first pattern according to the message sent and returns the result of the
transmitted message to the sender. The sender then evaluates the equations attached to the
second element of its first pattern and repeats the process. The flow of messages during
parsing is illustrated in a simple example by Uehara et al [1985, p84] which is reproduced
in Figure 6.3.a. The order of messages and replies (during parsing) has been added to
this to clarify the TD control.

- ® reply sentence
.10
7 N0
> N
vp
o| A
: 9
[ ]
Vv
a man sleeps

Figure 63.a Flow of Messages and Replies in Integrated Parser

If parsing fails, either because an actor cannot construct a proper F-structure of the
sentence or has no more patterns (possible expansions to try), then control reverts to the
most recently activated actor which transmits a message to abandon the computations
made and then selects the next of its patterns to use as an alternative expansion. A

message consists of four parts :

(1) F-structure, an identifier for the ‘parent’ F-structure.

(2) trail list, which is used as a push-down list used to store the names of
actors which should be reactivated on backtracking.

(3) hold list, which holds controllers passed down the C-structure in
messages.

(4) constraining equation list, which holds constraint type equations

which have yet to be satisfied.

- 145 -




The representation of F-structures themselves is not described in detail but each
F-structure and subsidiary F-structure is identified by a unique segment identifier
(integer). When a message is transmitted the actor sends its F-structure identifier (/). This
is then used to replace the ‘1’ metavariables in the receiver’s equations. An actor will then
add its own name to the trail list (2) in any messages it produces and may add or remove
controllers and controllees to the hold list (3) according to the equations it evaluates. An
actor also creates a unique identifier for the F-structure below ({) which is used to replace
all references to this in the equations evaluated. Constraining equations (4) are checked by
searching for values in the F-structures below and above the current level and if these
refer to values which have not yet been determined, they are recorded in a message and
their evaluation postponed (the method of their eventual evaluation is not described).

The basic action of the IP parser then is to view the C-structure as a ‘program
outline’ where each node is realized by an actor (procedure) which interprets messages
from other actors. The semantics of LFG equations is reinterpreted according to actor
theory, so that the required messages are defined by equations. A ‘}’ metavariable is read
as ‘receive’ and a ‘T’ metavariable as ‘send’. Uehara et al then reinterpret references to
F-structures in equations according to which side of an equation they appear on:

“ For example, if the designator ‘T subject’ appears at the left-hand side of a
schema, it would be read as :

‘send the receiver an F-structure with the attribute subject’

If it appears at the right-hand side, it would be read as :

‘send the receiver a request to get an F-structure with the attribute subject’. ”

This interpretation certainly differs from that intended by Kaplan and Bresnan [1982]
where no significance is ascribed to the side of an equation on which a F-structure
reference or metavariable occurs. It seems likely that these interpretations are not actually
those intended as they do not even agree with the (more reasonable) interpretation of a
complete grammar rule which is also given. A grammar rule such as:

$ —_ np vp
(Tsubj) =4 T=1
in the actor orientated reading is read as [Uehara et al, 1985, p 82]:

- 146 -




« receive an F-structure of an np and send it to an s with the attribute subject,
then receive an F-structure of a vp and send it to the s.”

Message sending seems therefore to be based on the sending of complete F-structures, as
indicated by the form of messages themselves (given above).

The IP system has been extended into text (discourse) processing. This extension is
based on the use of “prediction” and “presupposition”. A semantic form is extended to
‘subcategorize’ not only surface functions within a sentence but also a presupposition
(event) in the previous sentence(s) and a prediction about the next sentence (event). For
example, consider the following sentences and their semantic forms with filled

arguments :

(1)  ‘John went to a pet shop.’

presupposed_event = come(john, (T place), pet_shop)
event = go(john, pet_shop)
predicted_event = stay_in(john, pet_shop)

(2) “There he bought a dog.’

presupposed_event = stay_in(he, pet_shop)

event = buy(he, dog) _

predicted_event = pay(he, (T obj), money),
get(he, dog)

Processing of the first sentence (1) produces a presupposed event that John came to the
pet-shop from some other place, specifies an event of John going into the pet shop and
predicts that the next event will be John staying in the pet shop. The second sentence (2)
presupposes that ‘he’ stays in the pet shop, records the event of him buying a dog and
predicts that he will then pay some some and then have a dog. The prediction produced
from sentence (1) correctly matches with the presupposition of (2) and this relationship
can then be used identify ke in (2) as John in (1) and also there in (2) as the pet shop in
(1). This type of referent identification is sometimes not possible using purely syntactic
agreements but can be processed using the extra semantic knowledge proposed here.

Lexical actors also have additional conditions added to aid in selecting between

ambiguous alternatives. The lexical actor for eats is :

-147 -




eat [“Verb  ((Tobject kind) == food <€========-=-~] {- condition ,
predicted_event = is_hungry((Tsubject))
event = eat((T subject), (Tobject))
predicted_event = is_satisfied((Tsubject)))

((Tobject kind) == metal €= =========1 1= condition 5
(T({pcase)) == into
event = corrode((Tsubject), (Tobject)))

The event feature can be seen to be equivalent to a semantic form and the conditions are
used to select the appropriate semantic form in any context when ambiguity arises. This
additional feature however has exactly the same effect as the typing of slots used by
McCord and described earlier.

The IP parser is only described in outline by Uehara er al but appears to be a novel
approach to constructing F-structure in parallel to C-structure. However, message passing
has had to be severely constrained to support practical parsing and fit the generation of
C-structure. C-structure is generated in a TD manner so that this forms the basic control
structure which is extended to pattern invocation in actors. In addition, F-structure seems
to be held as a global data structure, with pointers to F-structure portions passed between
actors, rather than being distributed across the actors with equations initiating message
passing (as seems to have been intended in part of the description). The extension for text
processing relies heavily on very specialized semantic forms which make very precise
statements about presuppositions and predictions. This knowledge is however very
cleanly added into the lexical entries of LFG and processed on top of the F-structure
layer. The number of possible alternatives in presuppositions and predictions may
however be very large and thus difficult to describe.

A more recent implementation of LFG, described by Block and Hunze [1986], has
moved away from the use of DCGs in favour of the Earley algorithm [Earley, 1970].
F-structure is constructed incrementally in parallel to C-structure. The parser operates on a
list of ordered states to the end of which new states are added. A state is a tuple :

( <tree> <left> <right> <dot> <pred_list>)

- 148 -




where <tree> is the current parse tree of the path, </eft> a pointer to the place in the input
string the constituent begins with, <righz> a pointer to the place in the input string that
immediately follows the constituent, <dot> marks the current position in the RHS of the
context-free grammar rule and <pred_list> is a set of pointers to all proceeding states
which might become the parent of this state’s tree. The basic parsing actions of the Earley
algorithm are retained :

- “predict” : expands non-terminals to produce a new state for each alternative
expansion of the non-terminal.

- “scan”: adjusts states which have the next string terminal as the next part of
their RHS moving the dot on one place in the RHS of the rule.

- “complete” : completes a state by adjusting the dot marker in states, via the
pointer list, which have the LHS category of the completed rule as the next
category in their RHS.

These being integrated into the state representation :

“ For the construction of the C-structure these actions are augmented in the
following way : predict creates an empty tree node labeled with the
predicted category, scan attaches the next input word as the rightmost
daughter to the state’s <tree>, and complete attaches the state’s <zree> as the
right most daughter to all the tree nodes in the states of the current state’s
<pred_list>. For the construction of the F-structure the following
augmentations are performed : the <dot> part of a state not only marks the
position in the cf-rule’s right hand side, but also contains the functional
equations associated with that position. When predicting a constituent an
empty F-structure is attached to it and incremented by scanning a word or
completing the phrase. ”

To evaluate the functional equations attached to a category in a grammar rule, the parser
instantiates the up and down-arrows in the equations with copies of the mother’s and
daughter’s F-structure. The equations are then evaluated and a copy of the new
F-structure associated with the up-arrow becomes the F-structure of the new state. As an

- 149 -



example, Block and Hunze illustrate the parsing of ‘this man loved Mary’, noting the
(corrected) trace :

State of analysis F-structure

predicting s [1s
predicting np [Inp
scanning this [det = dpron, num = sg] Np
scanning man [det = dpron, num = sg, pred = man] yp
completing np [subj = [det = dpron, num = sg, pred = man]] g
predicting vp [1ve
scanning loved [tense = past, pred = love(T subj)(T obj)] vp
predicting np [Ine
scanning Mary [pred = Mary, num = sg] np
completing np [obj = [pred = Mary, num = sg]] np
completing vp [tense = past, pred = love(T subj)(T obj),

obj = [pred = Mary, num = sg]] vp
completing s [subj = [det = dpron, num = sg, pred = man],

tense = past, pred = love(T subj)(T obj)
obj = [pred = Mary, num = sg]] s

As F-structure is built incrementally in parallel with C-structure, this allows F-structure to
act as a filter killing off incorrect parses during the actual parsing process. There are
however alternatives in which of the parsing actions are used to carry out unification and
detect incorrect parses. Consider parsing the sentence ‘these man loved Mary’'. When
scanning man, the parser tries to unify the F-structure originating from the lexical entry of
man with that of the np parsed so far. At this point, the inconsistency in number (these -
num = pl, man - num = sg) causes unification and thereby this parse to fail. However
when parsing, for example, ‘these men loves Mary’ the inconsistency in number between
the verb and initial np could be detected immediately when scanning the verb. This would
require that the F-structure built so far for a state is passed to all states created by the
predictor. However this is a very computationally expensive practice, not recommended
by Block and Hunze, as the Earley algorithm requires that no new state is generated if that
exact state has been generated previously. This being a requirement to prevent the parser
looping. This means that whenever a new state is added to the set of current states, the
entire set of states must be searched to ensure that state has not already been predicted at
that point in the string. Comparing F-structures is a very costly operation. The benefits of
incrementally building F-structures on the completer stage are however still great,
reducing greatly the explosion in number of C-structure parses.

- 150 -



The coherence condition can obviously be used to kill off incorrect parses when
building F-structures in parallel to C-structures. Block and Hunze also add additional
constraints into LFG in order to support some completeness checking during parsing. As
described by Kaplan and Bresnan [1982], completeness cannot be checked until all of an
F-description has been taken into account. This means that completeness cannot be

checked until parsing is complete. In particular, equations of the type :
(TF2) = ({F1)

where function F1 is subcategorizable, can introduce a function into an F-structure,
sometime after its constituents have been parsed, making the F-structure complete. This
problem is overcome by extending the notion of bounding categories and assuming that
they define strict islands in C-structure. Not only are controllers and controllees prevented
from passing such nodes, but also no equation of the type shown above may be
associated with such a node. Then the complete stage of the parsing action may perform
completeness checking whenever a state is marked as a bounding node.

Block and Haugeneder [1986] have also described a new treatment of movement
which combines ideas taken from LFG and Government Binding (GB) [Sells, 1985]
theories. This system is basically the same as that described above, in that it uses the
Earley algorithm, but the movement mechanism is changed to a cyclic based mechanism
found in GB. As GB theory is outside the coverage of this thesis, this variation of LFG
will not be described here. '

Wedekind [1986] has developed a version of LFG which also derives F-structure in
parallel with C-structure, although this appears not to have been actually implemented at
this time. This theory is based on the idea of a “monostratal” version of LFG where only
an F-structure, augmented with derived symbols and their linear order, is produced. This
is proposed as a more efficient approach :

“ as the F-description solution algorithm is directly simulated during the
derivation of these structures instead of being postponed. ”

This is an alternative approach to those described previously. Kaplan and Bresnan [1982]

describe LFG as producing an F-description which after parsing is then solved to produce

-151-



an F-structure. The implementations described previously (here) have, in general, derived
F-structure in parallel to C-structure to improve the efficiency of parsing, as F-structure
functions as a filter on incorrect C-structures. These implementations use the properties of
unification (which may fail) and coherence to kill off incorrect parses as soon as possible
in the parsing process. Block and Hunze’s implementation also introduces additional

constraints into LFG so that in certain circumstances completeness can also be checked.

Wedekind however proposes actually combining C-structure and F-structure rather
than just developing them in parallel. Obviously, this will produce the same final result
but the representation may be more compact and handled more efficiently. Wedekind
develops his monostratal representation in a number of steps which are outlined here. A

phrase analysis is represented by a triple :

<c, d, f>

where ¢ is a C-structure, d a (partial) F-structure and f a mapping from C-structure nodes
to (sub) DAGs of the F-structure. Each node in C-structure is given a unique label and the
mapping function provides path names to the F-structure of each node in C-structure. A
rule application expands each part of the trii:le. Wedekind illustrates this with an example
using the rule (7) :

|
I

Vp — np vp
(Tobj)=1 (Tvecomp)=1{

which is represented as a rule :
<pi(1), <{<@, p2(1)>}, dy, fr>>

where p;(r) is the left-hand side of the rule, {<@, py(r)>} the introduced C-structure (for
the LFG rule above this would be {<@, {<I, np>, <2, vp>}>}), d, the introduced
F-structure and f* the mapping from C-structure to F-structure. The initial parse state
ﬁ'iple (sp) is thus <{<1, s>}, dp, 0> where f0 is an empty mapping and dy a minimal
DAG (a placeholder). This rule is then applied to the triple S;.; = <c, d, f> which is
illustrated graphically in Figure 6.1."

-152-



n

[(Tobj) =L ]

to produce a new triple §; = <¢’, d’, f> in the following manner. The rule 7 is applied
to the terminal node vp/22 in C-structure to produce two new terminal nodes, np!22! and
vp1222 where the new nodes are labelled with the parent node’s label suffixed with the
nodes number in the rule 7. The F-structure is revised by first expanding all ‘1’

metavariables in the rule with the F-structure associated with C-structure node vp!22, thus
f122 = f p and then the F-structure of the rule, containing a vcomp and obj function, is

unified with the F-structure of node 122 (that is d’s vcomp is unified with dy) and by

/ \’\ o"
- ” .c‘

1231. V1232 .
[(T=l] [(Tveomp) =41 .=
v{zl-""\\v-mzz --"'.f
[T=!1] [(Tvcomp) =]

Figure 6.3.b Graphical Ilustration of Triple for State S;.;

substitution this new F-structure becomes the value of 2, :

The new mapping f* must include mappings for the new C-structure nodes which are
f)roduced by extending the path names of their parent nodes, other mappings remain
unaltered. The new path names (mappings) are produced simply by appending each of the
path names of the new node’s F-structures within the rule’s F-structure to the path name

of the parent node. Thus the mapping function values of the new nodes are derived :

-153-



fi = drobj fiza = dvcomp —— 99
ft‘
2

d' vcomp obj

drvecomp  fi3; = dvcomp —  f3; = d' vcomp vcomp

The outline of analysis above still however retains a separation of C-structure and
F-structure, these are only connected by a mapping, not by combination. The monostratal
representation is then developed by Wedekind by first changing the triple representation
so that C-structure is replaced by strings. This is possible, as at any point in the analysis
of a phrase, only the values of f at terminals in C-structure are used when deriving the
next analysis triple. A triple is now represented as :

<w, d, g>

where w is a string, d an F-structure as before and g maps strings to terminals in d.
Strings are only represented as terminals with their linear order as Wedekind states :
“The C-structure information which goes beyond the linear order of the labelled terminal
nodes is not required ”. As in triples, g replaces f in rule representations. This results in
the following graphical representations of w, d and g for, the initial state, the rule 7 and
the state s;.;:

{<1, s>}
r d; obj vcomp
g
vp ——Pp
gt {<l,np>, <2,np>, <3, vp>, <4, v>, <5, v>, <6, v'>}

{<1,np>, <2, vps}

This allows F-structures to be developed in parallel to strings, the production of state s;
will not be described for this representation as it is very similar to that for the final
monostratal representation to be described immediately below.

The monostratal representation is derived by combining the terminal strings and
their linear order with d and thus eliminating the need for g. This is done by simply
attaching the string and linear order argument of each element in g as an additional edge of

-154 -



the subsidiary DAG referenced by the corresponding path name argument in g. Thus for
example, the state s;.; is represented as an augmented DAG :

The application of rule 7 on <3, vp> on state s;.; (with DAG d) is illustrated graphically
in Figure 6.3.c.

. d, :
subj obj vcomp
1 3 4
np np v vcomp vp np vp
7
A4
v U

r

subj

np

Figure 6.3.c Example of Wedekind’s Monostratal Unification

-155-



Briefly, the edge to which the rule is applied is deleted (<3, vp>) and all edges with
indexes greater than the index of this edge are incremented by the number of new nodes
introduced by the rule (the length of the rule’s right-hand side). A new edge is then
created and substituted for the deleted edge. The new edge is created by the unification of
d, with the sub-DAG of d to which the deleted edge was attached (this is illustrated in
Figure 6.3.c). Unification will not fail due to the additional edges as all indexes are
unique and thus the values of the indexes are not unified themselves.

Wedekind only describes in detail his derivation of the monostratal representation.
Other parts of LFG are not described although he states that long distance dependencies
are dealt with at the F-structure level. The actual implementation of the theory is not
described, so that there can be no discussion of the unification method or other aspects. It
does seem that the basic theory relies on a top-down parsing method being employed, as
terminals of the DAG representation are expanded. This theory has been implemented and
used as the basis of a system for generating phrases from F-structures [Momma, 1987].
Generation is a useful method of testing grammars and lexicon for overgeneration during
their development.

The general trends in the implementation of LFG appear currently to be : away
from DCG TD control toward BU or flexible control stratigies supported by Chart based
data structures, and away from the original method of producing an F-structure from an
F-description after parsing [Kaplan and Bresnan, 1982] toward an incremental (or even
combined) building of F-structure in parallel with C-structure so that constraints in
F-structure can be used to guide parsing.

- 156 -



Chapter 7
Implementation of the Interface System

Several different implementation techniques were employed in an attempt to produce
a complete and yet efficient implementation of the LFG formalism. The implementation
should primarily :

- support fully the LFG formalism and notation as described in Kaplan and
Bresnan [1982].

- illustrate that the system could produce reasonable/practical response times in
executing natural language queries to a database.

Perhaps the most important characteristic of the desired implementation is that it should
provide an environment as close to the LFG formalism (notationally) as possible. This is
a highly desirable approach given that LFG is a high-level linguistic descriptive formalism
intended for the use of linguistics, not computer programmers. The linguistic felicity and
efficiency of the LFG implementation are détermined to the greatest extent by the parsing
algorithm employed. Tests with various parsing strategies were made.

An initial implementation was based on the DCG type method, which was soon
replaced by a pseudo-DCG type implementation in order to facilitate automatic
compilation of rules from an LFG-like notation into Prolog rules. The DCG type
approach proved efficient at parsing small grammars with small degrees of rule and lexical
ambiguity, but was abandoned as it proved extremely difficult to compile an LFG-like
notation into DCG type rules. This transformation is easily possible for simple LFGs but
is much more difficult when complex equation sets are used. In particular the building of
F-structures by direct Prolog variable unification is very difficult to arrange. An F-
structure may be passed around (through rules) as a single variable (input and output
variables) but suppose an equation is used which imposes a constraint on the subj
function’s number feature. Then the rule must match the input F-structure’s subj function
and match this function so as to expose the number feature for checking. The basic
problem is that each rule and lexical entry must ‘know’ about the structure built by others
during parsing.and cannot thus operate in a modular fashion.

-157 -



The pseudo-DCG implementation was then augmented, according to the method
described in Matsumoto and Tanaka [1983] and Matsumoto, Kiyono and Tanaka [1985].
Parsing is then performed in a bottom-up manner and partial parses, whether failed or
correct, are saved in the database so that they do not have to be redone on backtracking.
The parsing in this implementation proved extremely difficult to follow so that grammar
debugging was also extremely difficult. In addition to this, it proved quite difficult to
support other LFG mechanisms such as sets and the Kleene-star.

The final implementation is based on a specialization of the active chart parser
[Winograd, 1983; Varile, 1983] here called Word Incorporation (W) [Phillips, 1986].
An outline of the system components is given in Figure 7.a.

lexical entry lexical entry grammar rule grammar rule
descriptions | descriptions descriptions | descriptionsy
\ v / \ /
~ X
Prolog (read & assert) \
Database
F= co
.4 Lpa
spelling 1 {
corrector
A lexicon grammar
correction preprocessor preprocessor
assertion
user > Query lookup + +
input reader prolog prolog
| lexicon grammar
words_ | lexicon llookup invoke mlcs‘
lookup .
oitial extend & add | word incorporation
! new cdges bottom-up parser
edges
information
parse edge structures
store equation evaluation
complete edges and unification
spanning input
f-structure i
well-formedness output semantic
) ——— .
checking translation
prolog 3BQ
representation
query simplification,
fesponse planning & exccution
to user (Chapter 8)

Figure 7.a Interface System Outline

-158 -



Once the system has been loaded into the Prolog database a top-level menu is presented to
the user. To produce an interface for a particular domain database it is necessary to first
introduce a grammar, a set of lexical entries and a specification of predicates in the domain
database (see Chapter 8). The top-level menu offers options for all of these and provides
the necessary prompts for input file names as well as offering the option to return to the
top-level menu at each stage. Other options in the top-level menu allow one of the twenty-
three queries in the test corpus (Appendix D) to be selected for parsing, a query to be
typed into the system, tracing to be turned on or off (traces from the test corpus are given
in Appendix F) and the user to quit the interface system returning to the top-level of the
Prolog interpreter. The parser will be described in detail in Section 7.3 but first the
representation of F-structures and the form of input grammar and lexicon specifications is
described.

7.1 F-structure Representation and Unification

The heart of any system based on a unification grammar will be the actual
implementation of unification in the chosen programming language. The system described
here is completely implemented in Quintus Prolog [Quintus, 1987].

During parsing F-structures are unified (combined) as described earlier. There are
obviously a number of different ways to realize unification but in a “parallel’ parser such
as the active chart, where edges are combined and a new and totally separate edge is
produced, it is appropriate for the unification algorithm to produce a new F-structure F3
from two component F-structures F; and F», without changing the values of either F; or
F3. Then either F; and F, may be combined with other F-structures later. The use of
open-ended lists for example, is thus quite inappropriate as it is undesirable to change the
value of either of the components of F3 (F; and F3).

F-structures are represented as normal ordered Prolog lists with elements which
represent the basic ‘<artribute> <value>’ pairs. The list is ordered on <attribute> names
using Prolog’s standard order. The various different types of feature specifications
(values and constraints) are represented themselves as Prolog terms (with Prolog
operators shown in bold type) :

- simple features with values (‘num sg’) are represented as :

<feature> = atom <value> eg num = atom sg

-159 -



where <value> is the simple atomic value of <feature>.

- existential constraints on feature values as :

<feature> = exists eg num = exists
- negative existential constraints on feature values :
<feature> = none eg num = none
- value constraints on feature values :
<feature> = val_c <value> eg num = val ¢ sg

- negative value constraints on feature values :
<feature> = neg_c¢ <values> eg person = neg_c [first, second]

where <values> is a list of <value> which <feature> may not take (person may
not be first or second).

Certain combinations of constraints are also allowable which will be produced by multiple
constraint equations applied to a single feature in grammar or lexicon, or by constraint
unification during parsing. These are also represented as Prolog terms produced by
combining the component constraint terms. The allowable constraint combinations are :

- an existential constraint and value constraint :

<feature> = exists
— <feature> = exists val_c <value>

<feature> = val_c <value>
- an existential constraint and negative value constraint:

<feature> = exists
— <feature> = exists neg_c <values>

<feature> = neg_c <values>

Other unifications of constraints with constraints, and constraints with values are
allowable but do not produce more complex Prolog terms. The following examples
illustrate how constraints are handled by unification :

- <feature> =exists U  <feature> =exists — <feature> = exists

- <feature>=none U <feature>=none — <feature> =none

-160 -



- <feature> =none U  <feature> =exists — fails

- <feature> = val_c <value>
U —  <feature> = val_c <value>

<feature> = neg_c <values>

unification is conditional on <value> not being a member of the list <values>.

- <feature> = neg_c <values;>
U >  <feature> = neg_c <values3>

<feature> = neg_c <valuesy>

unification adds any values not in <values;> to <values;> to produce the new
list <values3> which is the list of values <feamure> may not take (for simplicity
<values|> is actually appended to <values,> to produce <values;>).

In this way, a feature can only have a single entry in an F-structure list which may
represent one or more actual LFG feature specifications. This allows the F-structure list to
be simply ordered on attribute names. Functions are given values which are themselves

F-structure lists. A function is represented by the Prolog term :

<function> = fs <f-structure list>

where fs (F-structure) is a Prolog operator prefixing a subsidiary F-structure.

As well as the F-structure list described above, additional information is attached to
an F-structure to support indexing, functional control, bounding metavariables, the
additional semantic components described in Chapter 3, and completeness and coherence
checking. An F-structure list is thus just part of a much larger “information structure”
designed to support uniﬁcaﬁon and carry the additional information required for later

semantic interpretation. An information structure takes the form:
<index> ind <slot description> A

<quantifier> A <sem_pred> A <variable> A

<f_structure> A <controllees> glob <pointers>

where Prolog operators are again shown bold type. The components of this information
structure are to be outlined now. The <index> component is an integer used to co-index

- 161 -



information structures involved in constituent control. If an information structure is not

involved in constituent control this will have a value ‘[ ]’.

The <slot_description> component is a Prolog term :

<slot_type> stype <slots>

where <slots> is an ordered list of either subcategorizable functions introduced into the
F-structure by grammar equations and lexical entries or those functions subcategorized by

the semantic form in the F-structure.

As an F-structure is built up, subcategorizable functions may be introduced into the
F-structure by grammar equations ‘(T subj) =1’ or their existence implied by lexical
equations ‘(T subjnum) = pl’, these functions are listed in <slozs>. Until the semantic
form (if a semantic form is to be introduced at all) is found, the conditions of
completeness and coherence cannot be applied. Before a semantic form is unified with an
F-structure, subcategorizable functions introduced or implied are added to the list <slots>
and the value of <slor_rype> will be parr (partial slots). When a semantic form is added to
the F-structure all the functions listed in <slozs> must be subcategorized by the semantic
form (listed in the <slots> of the semantic form’s information structure). The semantic
form’s list of functions is then used in the unification result. The value of <slor_type> in
the case of information structures containing semantic forms is full, indicating that no
additional functions can be added to those in the <slots> list. In addition to function
names, the <slots> list also carries the function’s domain types. The <slots> list thus

takes the form:

[l <>, dfas 1 25, ey &gy itys)

where f; is a subcategorized function name and ¢, the domain type of the function. In the
case of proper nouns (England, John), no functions are subcategorized and the <slots>

list is abbreviated to a term :

<predicate> : <type> (england : country, john:human)

-162 -



The <quantifier> component is a skeleton (three-branched quantifier type) semantic
representation of the quantifier within the F-structure which has the value ‘[ ]’ if no
quantifier is present. The <sem_pred> component is the semantic predicate used in
semantic translation. This may contain functional variables and a quantifier variable as

arguments.

The <variable> component is a variable which may become bound to a quantifier in
the information structure. If the information structure serves as some function value, then
this variable will be the variable associated with that function (see Chapter 3). This
variable is also given a domain type. If this information structure is the value of a function
F, then the type must be compatible with the corresponding type of F found in the <slots>
list of the enclosing F-structure. The <f_structure> is the ordered F-structure described

previously.

The <controllees> component is a list of controllees which have yet to be matched
with corresponding controllers. Each controllee takes the form :

controllee(<subscript>, <info_structure>)

where <subscript> is the controllee’s subscript and <info_structure> the controllee’s

information structure, which has no controllers or controllees itself,

The <ptrs> component is a list of pointer values. This list is connected with the use
of functional control. Two or more functions involved in functional control share the
same information structure value. This value is stored in the pointer value list, where a
pointer is simply an integer value (V) assigned at parse time. Entries on the pointer list
have the form:

N = fs <info_structure>

and the corresponding functions which have this value are represented in the ordered
<f_structure> list by entries ‘F = fs ptr N’. The use of pointers is illustrated in Figure
7.1,

- 163 -



[1 =fs <info_structure>, ......] < Pointers

_subj = fs ptr 1 ~| % F-structure

|msubj =fs ptr 1 <— Functional control
B (Tvcomp subj) = (Tsubj)

i

subj = fs ptr 1

veomp = | ycomp =

......

......

Figure 7.1 Outline of Pointers used for Functional Control

Pointers are only present at the top-level of the information structure, as they are global
values which may occur at any and possibly several levels of the F-structure itself. This
representation thus overcomes the problem of shared F-structure values by factoring out
the shared value and representing this as a single value referenced from multiple
occurrences by pointers. The controller and controllee lists are also global in that they are
present only at the top-level of an information structure. The value of a function within an
information structure’s F-structure compor;ent thus only has an index, slot description,
quantifier, variable, semantic predicate and subsidiary F-structure.

Unification is now defined to act on information structures rather than on just the
simple F-structure lists. The unification of two information structures proceeds in the
following manner. At the top-level of the structures, the global components (pointers,
controllers and controllees) are separated from the rest of the information structures being
combined and passed to the-unification procedure through which, as global values, they
are to be passed. Unification thus acts on the remainder of the information structures with
occasional reference to the global components, as will be explained later. Functions
themselves, within the F-structure component, are also represented as information
structures without the global controller, controllee and pointer components. Discussion of
the components involved in long distance dependencies (indexes, controllees and
controllers) will be delayed until after the discussion of grammar handling. The basic
unification of information structures (slot description, quantifier, semantic predicate,
variable and F-structure components) can however be discussed now.

-164 -



The slot description plays a central role in the incremental construction of
F-structure during parsing. It lists the subcategorizable functions either included in the
F-structure or included by implication. The unification of two slot descriptions succeeds
only under the following circumstances :

- both slot descriptions are prefixed as type part (the corresponding F-structure
components contain no semantic forms) in which case the functions missing
from one slot list are added to the other slot list to produce the unification
result. In addition to this, functions appearing in both slot lists must have
compatible domain types, for example :

part stype [subj : human, obj : book]
U

part stype [subj : man, vcomp : human]
part stype [subj : man, obj : book, vcomp : human])

- one slot is defined as type full (the corresponding F-structure component
contains a semantic form) and the other as type parz. In this case, all of the
functions in the parr slots list must be present in the full slots and in addition,
the domain types of the duplicate slots must be compatible, for example :

- full stype [subj : human, obj : book]
U

part stype [subj : man]
l ;
part stype [subj : man, obj : book]

- full stype [subj : human, obj : book]
U

part stype [subj : man, vcomp : human]

d
fails

- both slot lists are of type full, in which case both slot lists must contain the
same functions which all have compatible domain types :

full stype [subj : human, obj : book]
U

full stype [subj : man, obj : object]
J;

full stype [subj : human, obj : book]

- 165 -



Quantifiers are more simply dealt with as by the uniqueness condition only one
F-structure involved in unification can have a quantifier (determiner), the other quantifier
will have a value of ‘[ ]’. Unification thus produces a quantifier if either component
information structure holds a quantifier, and results in a value ‘[ ]’ if neither information
structure contains a quantifier. The uniqueness condition similarly applies to the semantic
predicate component so that these are dealt with in the same way as quantifiers. The
variable component consists of a Prolog variable and domain type. Unification succeeds if
the domain types are compatible and also unifies the variables (Prolog unification) so that
the variables become a single variable. This unification changes in some way the
component information structures. As a single information structure may be unified
during parsing, as will be explained shortly, with several other information structures, all
of the resulting information structures will have the same variables. This similarity is not
however maintained as after unification, information structures are stored separately in the
Prolog database and the identity of these variables is not maintained across information
structures.

The F-structure ordered lists are unified by a recursive procedure which examines
the first attribute entry on each list and produces a new attribute entry on the output list.
This procedure receives the global pointers from both information structures as a single
list which is used to hold values of functions involved in functional control. In outline,
the procedure (new_f5/5 in Appendix G) takes the form:

new_fs([], Fs, Ptr, Fs, Ptr) :- !,

new_fs(Fs, [], Ptr, Fs, Ptr) :=- 1,

new_fs([Att = Val|R], [Att = Vall|Rl], Ptr, [Att = Val2|R2], Ptrl) := !
{ unify values : Val, Vall & Ptrs to produce Val2 & Ptrs2 (see below) },
new_fs(R, Rl, Ptrs2, R2, Ptrsl).

new_fs([(Att = vVal|R], [Attl = Vall|Rl], Ptr, (Att2 = Val2|R2], Ptrl) :-
Att @< Attl ->

r

(Att2, Val2) = (Att, Val),

new_fs(R, [Attl = Vall|Rl], Ptr, R2, Ptrl)
|

(Att2, Val2) = (Attl, Vvall),

new_fs([Att = Val|R], R1l, Ptr, R2, Ptrl).

The first two rules simply add the elements of a F-structure to an empty F-structure. The
third rule unifies the values of a single attribute appearing in both F-structures to produce
an output value. There are many different actual cases of this rule, each case performs a
unification of one of the possible combinations of values and constraints a single attribute

- 166 -



can have. The last rule simply maintains the ordering of F-structure lists when the next
attribute in the component lists is different.

As well as simple atomic values and constraints, an attribute may be a function in
which case the value will itself be an information structure or the attribute may be a
function involved in functional control in which case it will have a pointer value (integer).
If the value is itself an information structure then a recursive call to the information
structure unifying procedure is made. If the value is a pointer then the corresponding
value of the pointer is found in the pointer list and used as if the value were a function
value in the F-structure. The new pointer value is then simply put back into the pointer
list. If two pointer values are unified then they are both given the same pointer number in
the output F-structure and the two corresponding pointer values are unified and put back
into the pointer list under the new pointer number.

72 Input Grammar

The LFG grammar used by the system is expressed directly in an LFG type notation
where syntactic alterations have only been made to facilitate the symbols available on most
keyboards and the legal syntax of Prolog. By defining suitable operators in Prolog, the
programming language syntax itself can be extended to encompass that of this LFG
notation. A rule is thus made a Prolog term and the syntax checking procedures of the
Prolog environment itself can be applied to the rules simply by treating a grammar as a
normal Prolog program (consult/compile). A simple rule such as :

s — np vp
(Tsubj) =1 T=1

18 written in the Prolog notation as :

8 —-——— np eqns (up subj) = down ,

vp eqgns up = down .

where the necessary Prolog operators for this particular rule are shown in bold type. A
rule has the format ‘LHS ---> RHS’. The LHS is a simple Prolog symbol (grammatical
category) and the RHS a series of categories, annotated with equations, to which the RHS
rewrites. Each RHS category is followed by the operator egns which introduces the
equations attached to the category in the LFG rule. There may be one or more equations

- 167 -



attached to a category in a rule and zero or more attached to a literal (that, ’s). Equations
are written as a sequence with the operator & placed between individual equations (see
rule example below). Immediate dominance variables, ‘T” and ‘1’ are written as up and
down respectively as the LFG arrows are not generally available on computer keyboards.
A more complex rule involving controllers such as :

s — np EI
Tg= 11—11-::.1|.rl'|] T=
(T focus) =

L=1,

J

is expressed in this notation as :

8l ===> np egns (up ) = controller super np sub [+wh] &
(up focus) = down &
down = controller super s sub np ,
bnd s egns up = down .

Again, the symbols which are declared as operators are indicated in bold type. Controllers
are written as a sequence ‘controller super <superscript> sub <subscript>' and
controllees, which do not have a superscript; as ‘controllee sub <subscript>’. A bounding
node is denoted by prefixing the grammatical category with the operator bnd. The notation
of the simple equation type examples, listed in Figure 2.1.b is :

T=1 u;; = down

(Tsubj)=1 (up subj) = down

(T tense) (up tense)

(T tense) not (up tense)

(T numb) = ¢ plur (up numb) ¢ plur

7 (T numb) = plur not (up numb) c plur
(T pcase)) = 4 (up (down pcase)) = down

The grammar notation also includes versions of the Kleene-star operator (*) and the

set inclusion operator (set_val_of), for example :

=

np —> det adj *
T=1 Le (T adj) T={

- 168 -



np e det eqns up = down ,
adj * eqgns down set_wval of (up adj) ,
n eqns up = down .

As noted by Kaplan and Bresnan, natural language does not typically contain unlimited
repetitions of constituents. For this reason, an additional version of the Kleene-star
operator is made available in the notation. This takes the form ‘<cat> * N’ where N is the
maximum number of repetitions of grammatical category <cat> which may occur, for
example, the rule :

np —— det eqns up = down ,
adj * 2 egns down set_val of (up adj) ,
n eqns up = down .

can be used in parsing either:

‘the largest blue ball’ or ‘the largest ball’

but not:

‘the largest bouncy blue ball’

if the is of category det and ball of category n. The optionality allowable in LFG rules,
signified by the use of parentheses (Appendix A), can be described in the notation here by
using “*1’ (one or zero occurrences).

The notation also includes a special operator which is used to specify the linking
equation (T = |}). There seems to be no motivation for using a linking equation other than
in conjunction with a bounding node. For this reason, the operator used here to specify a
linking equation also implies a bounding node. The operator Ink is used to specify that a
grammatical category in a grammar rule is a bounding node with a linking equation
attached :

' — (that) [s]
T=1
f=u8
sl - that ,
lnk s egqns up = down .

-169 -



Disjunction is the only part of the Kaplan and Bresnan [1982] description not
allowable in the grammar notation. Disjunction could be implemented in principle, but is
perhaps undesirable as disjunctions are very difficult to parse efficiently and have a non-
declarative nature. This restriction does not reduce the descriptive power of the notation
but does lead to a less compact linguistic description. The only usage of disjunction which
is difficult to describe is that coupled with use of the Kleene-star operator. As mentioned
in Chapter 2 however, large repetitions of constructions (and disjunctions) do not
naturally occur in natural language so that in practice, the omission of disjunction does not
lead to large numbers of grammar rules. Rather, this restriction constrains the grammar
writer to just those repetitions which will occur, where these must be stated as separate

rules representing alternative expansions (disjunctions).

A grammar is first added to the Prolog database (Figure 7.a) by a simple procedure
which opens the file named by the grammar writer and reads each rule in the file asserting
it into the database. This is the same action accomplished by the Prolog primitive
consult/1 procedure but this produces untidy output reports about files consulted and their
code size. Each rule forms a Prolog term (which must be terminated by a full stop) and
can thus be unified with a single Prolog variable by a single call to the primitive read/2
(stream, term) procedure. The Prolog interpreter will report the position of syntactic
errors in rules when they are read from the input file according to the operator definitions
which define the grammar notation’s syntax. A complete grammar may be defined across
any number of input files (Figure 7.a). All grammar files must be loaded before the rules
can be pre-processed as rules with common first RHS category or literal are stored

together to support the parser’s operation. This will be fully described in Section 7.4.

Grammar pre-processing transforms the rules into a form more easily handled in
Prolog and also performs a certain amount of correctness checking on each of the rules.
Each grammar rule is retracted from the Prolog database and subjected to the following
transformations and checks :

- simple equations referring to features (mainly constraints on features) are
converted into information structures so that equation evaluation is realized
simply by unifying the information structure with that referred to by the
equation’s meta-variable (77, ‘L),

-170 -



- equations referring to functions are checked to see if the named function is a
designator (subcategorizable function),. If this is so, the function name is pre-
fixed with the operator d':

(up subj) = down — (up d subj) = down

- the domain roots of controllers are located and the controllers are moved to
these. This may require splitting an equation into two parts :

(@ s — np sl
e
(b) S —_— np sl
L =Fs, Fs, = {5,

The equation in rule (a) is thus split into two separate equations illustrated in
rule (b). The original equation in rule (a) equates the F-structure produced
from below the np to that of a controller with domain root s/. The equations in
rule (b) achieve the same result, the F-structure from below the np is equated
with a variable Fs,, which is also equated to that of the controller. The reason
for doing this is connected with the operation of the parser and will be
explained in Section 7.4. At the same time as controllers are moved to their
domain roots, the existence of domain roots can be ensured and it is also
possible to check that a grammatical category does not serve as domain root for

more than one controller and that there is only one possible domain root for a
controller.

- equation paths are checked to ensure that they are not longer than two elements
and do not vary from the legal syntax of the equation notation.

After these transformations have been made, the grammar rules are asserted into the
parser’s Prolog code module. All rules which have a common first RHS grammatical
category or literal are stored together. This is done to support the parsing algorithm’s
operation which is described in Section 7.4.2. The parser thus receives grammar rules in
the form:

(a) <cat> rules_which_cat(<starts>, <completes>).

(b) <word> rules_which_word(<starts>, <completes>).

-171 -



In case (a), <car> is a grammatical category which is the first RHS category of each rule
in the list of rules <szarzs> and the only category in the RHS of each rule in the list of
rules <completes>. In case (b), the literal (a word or other literal in grammar rules such as
's) <word> is the first RHS component of each rule in the list of rules <starts> and the
only component in each rule in the list of rules <completes>.

Each grammar rule in the lists of rules represents a single grammar rule which has
been subjected to the basic transformations described above. For example, a rule (with a
number of equations to demonstrate their treatment) :

s —-— np eqgns (up subj) = down &
(up num) ¢ pl &
down = controller super vp sub np ,
bnd vp egns up = down &
(down tense)

is transformed into a list of the form :

[s, ( np if (up 4 subj) = down &
up [] ind part stype [1°[]”_“[num = val_c pl] &
down fs_is Fs , .
bound vp if up = down &

down [] ind part stype []~[]"_"[tense = exists] &
controller(np, Fs) ) 1]

This rule would be added as an element to the list of rules indexed by category np, the
first category of the RHS.

In addition to the transformations described, the grammar pre-processor adds
literals which it finds in grammar rules to a temporary storage area in the lexicon pre-
processor. These words will then be added to the system’s final dictionary as if they were
defined in an input lexicon. For this reason, grammar files should be pre-processed
before lexicon files. Literals in grammar rules are currently not allowed to have equations
attached and, although only minor modifications would be necessary to allow this, it
would then be necessary to include an additional operator in the notation to differentiate
literals from grammatical categories. Equations which would be attached to literals can
however simply be placed on sister C-structure nodes as these can only refer to the
F-structure above (‘T’), not that below (‘1”), the literal itself.

-172-



7.3 Input Lexicon

Lexical specifications, like grammar rules, are specified in a notation supported by
Prolog operators. Each word can have only one lexical entry but this may specify
alternative feature sets for a single word. A lexical entry has the general form shown in

Figure 7.3.

<word> ~

and

and
and

<caty> egns <featuresz;>
or <features,o>
O e
or <featuresan>
<catpy> eqns <featuresy>
or <featuresyy>
or <featurespynN>
<caty> eqns <featuresni>
or <featuresno>
Qr e
or <featuresnn> .

Figure 7.3 General Form of Lexical Entry

where <word> is an atomic Prolog value (the word enclosed in single quotes if it contains

a space), <caty> is a grammatical category and <featuresy> is a sequence of equations
associated with a specific definition of <word> with grammatical category <caty>. A
Prolog operator or is defined to separate alternative equation sequences which define a
word with a single grammatical category, and the operator and is defined to separate
alternative definitions of a word with different grammatical categories. For example,

population might have a lexical specification with two different semantic forms :

population ~
n eqns

or

(up
(up
(up
(up
(up
(up
(up
(up
(up
(up

pred) = population >> [(up of-obj)] &
sem) = population(of-obj, quant) &
num) = sg &

of-obj-domain) = place &
quant-domain) = number

pred) = population >> [(up poss)] &
sem) = population(poss, quant) &

num) = sg &

poss-domain) = place &

quant-domain) = number .

Both these entries of population have grammatical category » and also illustrate the lexical

notation of equation sequences. Equation sequences take the same basic form as grammar

-173 -



equation sequences, where equations are separated by the operator &. The notation of
assignment equations, semantic forms and the sem feature, used in semantic translation,
is also illustrated. Path names are specified using the operator ‘-’, for example ‘(T subj-
num) = pl’.

The principle of locality (ie path name length greater than two) appears to be broken
in the lexical entry for population by the use of the path name ‘of-obj-domain’. In fact it is
not possible to adhere to the locality principle when specifying values or constraints on
any such case marked functions (‘of-obj’, ‘to-obj’). The requirement to do this does not
seem to arise on a syntactic basis, so that here departure from the locality principle is only
allowed when specifying domain features (types) on case marked obj functions.

The use of the operator and, which is used when a word has two or more entries
with differing grammatical categories, can be illustrated with another example (which can
be a determiner det or a relative pronoun rel) :

which ~
det eagns (up det) = wh &
(up wh) = +
up = controllee sub ([+wh]
and i
rel egns (up rel) = + .

Lexical entries are treated in much the same way as grammar rules. Any number of files
containing lexical specifications can be loaded into the Prolog database. These are read
from a file named by the lexicon writer, subjected to a number of transformations, and
then asserted into the dictionary accessing Prolog module. Each individual definition of a
word is transformed into an information structure so that, during parsing, lexical
equations do not have to be evaluated but can simply be unified as described earlier. The
lexical entries shown above are represented in the Prolog dictionary :

dict (not_in_grammar, population,

(112, 111, 112, 117, 108, 97, 116, 10S, 111, 110],

{ [n, [] ind full stype
[of-obj = Var:place]”~([]”
population(Var, Varl)”(Varl:number)”
[num = atom sg, pred = atom population(of-obj)]~[]],

[n, [] ind full stype

[poss = Var:placel”~[]*
population(Var, Varl)"(Varl:number)”
[num = atom sg, pred = atom population(poss)]~[]] ]

-174 -



dict (not_in_grammar, which,:
[119, 104, 105, 99, 104],
[ {(det, [] ind part stype []”wh(Var, _)*[]1*(Var:_)*
[det = atom wh] " [controllee([+wh], [det = atom wh]],
[rel, [] ind part stype []1"[]1"([]1"_"[rel = atom +]*[]] ]

The format of each of these dictionary entry is :
dict(<gram_flag>, <word>, <chars>, <entry list>).

where <gram_flag> has the value not_in_grammar if the word defined by this entry does
not occur in the grammar and the value grammar if the word occurs in a grammar rule;
<word> is the word or literal defined by this dictionary entry; <chars> is a list of ASCII
numbers which correspond to the characters of the word and <entry lisz> is a list of the
entries for the dictionary word.

The literals found in grammar rules are also incorporated into the dictionary. As
lexicon entries are processed, this set of literals is checked to see if the word also occurs
in the grammar rules. If this is so, an additional entry with category word is added to
those for the word in the dictionary entry. After processing all lexical entries the
remaining literals are given dictionary entries with a single word type definition.

7.4 The Parser

The characteristics of Top-Down (TD) and Bottom-Up (BU) parsing were outlined
in Chapter 6, where a number of different LFG implementations using these parsing
strategies were described. The most recent of these which has been implemented [Block
& Hunze, 1986] is based on the Earley algorithm. This algorithm does not constrain the
type of grammar rules which can be used (left-recursive rules can, for example, be used),
as TD control does, and can support a variety of parsing strategies. However, the
overheads of carrying and processing information to support this flexibility is very high.
The Earley algorithm also does not seem suitable for LFG as TD expansion is only
weakly constrained in LFG by the CFG. The prediction part of the algorithm thus seems
‘to be a distinct weakness with a view to LFG. The BU combining component on the other
hand, seems to naturally fit the requirements for parsing LFG as a great deal of
information (values and constraints) is held in the lexicon which should be used early on
in parsing to kill-off incorrect parses.

-175 -



An algorithm has therefore been adopted (based on Phillips [1986]) which has low
computational overheads and has a basic BU action, here called “Word Incorporation”
(WI). This algorithm is a specialized version of the the Earley algorithm (also using a
Chart like data structure, which can be used as the basis of a variety of parsing algorithms
including Earley). The Earley algorithm itself can be modified to support a variety of
parsing strategies, but W1 represents a greater commitment to a BU methodical action than
a BU variation of the Earley algorithm.

7.4.1 The Active Chart Parser

The Chart is a graph data structure which can support a range of parsing algorithms
(for example, TD or BU and breadth or depth first). The Chart acts as book-keeping
storage for all the information produced during parsing. Graph nodes are called “vertices”
which can be linked by arcs called “edges”. Each edge represents a grammar rule (or
dictionary entry) and contains a minimum of : starting and ending vertices numbers, a
category (rule LHS category) and a remainder (initially the rule RHS, or nil for a
dictionary item). Dictionary items (grammar terminals) may be viewed as rules with an
empty RHS, and a LHS equal to the item’s dictionary category. Edges may carry any
required additional information to produce the required output. In an implementation of

LFG, edges may also carry the (partial) F-structure of the phrase parsed so far.

noun

4 :
O/MK S S
1 john 2 saw 3 the 4 tall 5 man 6

Figure 7.4.1.a Initial Chart State (Base)

Before parsing actually starts, an initialisation step (Figure 7.4.1.a) creates the
initial edges and vertices. Each input word is assigned a starting and ending vertex
number and forms a complete edge (having no remainder) in the initial “base” of the
Chart. A single word in the input may generate a number of initial complete edges, one
for each dictionary entry of the word. An active edge representing each grammar rule with
LHS which is the distinguished grammar category is proposed at (that is having starting
and ending vertices equal to) the first vertex (the vertex with category s in Figure

-176 -



7.4.1.a). These active (incomplete) edges are placed on the list of “pending” edges to be
later entered onto the Chart, that is the edges are “proposed”.

The Chart algorithm selects a pending edge and enters this onto the Chart. This
process has two distinct phases, combining the edge with other edges on the Chart and
using the edge to invoke more grammar rules. Each of these activities may create new
active or complete edges which are added to the pending edges.

A complete edge which is entered onto the Chart may extend (match) an active edge
on the Chart (BU following successful TD expansion), if the active edge’s end is equal to
the complete edge’s start, and the complete edge’s category is the first part (or all of) the
active edge’s remainder. An active edge which is entered may be extended (BU) by a
complete edge on the Chart if these edges match in the same way. If the complete edge
matches the last part of the active edge’s remainder then a new complete edge is created; if
some further remainder is left then a new active edge is created. The new edge created
(active or complete) spans the vertices of both its component edges and is put on the
pending list of edges.

An edge, with category C, invokes (TD) new rules (used to produce corresponding
edges) at its starting vertex if there is a grammar rule that has the same category C as its
LHS. Before any edge is added to the pending list, the Chart must be searched to ensure
that the edge has not been proposed before (thus preventing an infinite recursion of TD
expansions). This requires searching all edges on the Chart (active and complete) and all
of the pending edges, for an edge with the same category and starting vertex (and the
same informational content, if other information is carried by edges). The complete
algorithm iterates until some complete edge with the required category and/or starting and
ending vertices is produced.

The Chart contains common goals (substrings) of different parses so that these need
only be produced once. These can either be asserted into the Prolog database or can be
carried through the algorithm’s cycles as Prolog arguments in the algorithm’s Prolog
rules. The algorithm is obviously cyclic, not a Prolog-like (TD) search, for no
backtracking will occur at all. The algorithm can be varied by changing the selection
criteria of an edge from the pending list to be entered onto the Chart. For example, if

edges with highest vertices (ending) are selected, the different parses will tend to be

-177 -



developed in series. By selecting those with lowest ending vertices the different parses
can be developed in parallel. Selecting completed edges promotes BU combination whilst
selecting those only with a remainder tends to result in TD expansion. Whatever the

selection criteria, an attempt is made to use each edge both for BU combination and TD

expansion.

level of distinguished
category 's'.

some 'old' edges
may still be

complete parsing pending

‘history' (BU & TD)

stored on the Chart
TD parsing front

progression

BU parsing front
progression

veriex

=
base parsed so far.
(parsing left-to-right in a depth-first fashion)

Figure 7.4.1.b Outline of Chart Parsing Operation

The main weakness of the Chart algorithm is its low efficiency, mainly caused by a
high overhead when proposing new edges (checking an edge has not previously been
proposed). It is a simple matter to index edges by their starting or ending vertex so that
the outgoing or incoming set of edges to a vertex (“edgeset”) can be quickly accessed, but
the Chart algorithm requires access to Chart edges by start and end, and pending edges by
their start. This edge check cannot be efficiently supported in Prolog. The check must be
performed on all the edges produced (TD or BU). As the Chart carries a complete parsing
history (Figure 7.4.1.b) the number of edges to be checked may be very large. The Chart
is thus also very expensive in space. This is really the cost of the flexibility in selecting
the next pending edge to combine with the Chart. Pending edges, which have yet to be
entered, may span any vertices, including those behind the current parsing front (Figure
7.4.1.b), thus creating gaps in the “parsing history” stored on the Chart. When an edge
from behind the parsing front is entered onto the Chart, the new edges created may have

-178 -



been created before. To avoid the possibility of looping, the entire parsing history must be
checked to prevent re-proposing an edge.

Another weakness of the Chart algorithm is the use of every edge to both combine
BU and expand TD. This generates a large number of edges, many of which (especially
those generated TD) may never be used and increases the edge checking problem when

proposing new edges.

7.4.2 Word Incorporation

The W1 algorithm can be thought of as a specialization of the Chart. At a cost of
some flexibility, the Chart data structure itself and the processing algorithm can be greatly
simplified.

The Chart algorithm is restricted to be solely BU depth-first (left to right or right to
left). This means that parsing proceeds along the input (base of completed edges) in an
orderly fashion and there are no pending edges entered behind the parsing front. The
Chart holds only active edges and the pending list consists solely of completed edges. To
achieve depth-first parsing, the completed (pending incorporation) edge list is handled on
a First-In-First-Out (FIFO) basis.

The parser first builds a (parse tree) base of completed edges where each edge
represents a word in the input string. This is much the same data structure as that
produced by the Chart algorithm. The dictionary is accessed by a look-up procedure
which, if no matching entry can be found, performs simple character alterations (deletion,
addition and permutation) fo the word and attempts to match the new words produced
with dictionary entries [Berghel & Traudt, 1986]. If one or more matches is then found,
these words are all used in construction of the chart base, otherwise a look-up failure is
reported to the user and the parse fails.

In addition, an initial active edge is proposed at the first vertex with a category

which is the distinguished grammar symbol (s). Each complete (base) edge is then

combined (BU) with all matching active edges. These being the active edges with a final

-179 -



vertex number equal to the complete edge’s first vertex number and a first remaining RHS
category which is that of the complete edge. A complete edge is also used to invoke new
rules which have a matching RHS. These being all rules with a first RHS category or
literal equal to that of the completed edge.

New active edges are placed on the Chart and new complete edges on the pending
list. Newly completed edges are also tested to see if the final “target” edge has been
created. Completed edges, once entered onto the Chart, can be dispensed with. Thus,
only information on the current active “parsing front” is maintained (Figure 7.4.2.a). This
does not mean that parsing goals need be pursued more than once, as each completed goal
is used (BU) to its full potential when added to the Chart, and is then expended. As the
algorithm proceeds along the base in an orderly fashion, processing never takes place at
any vertex more than once, so that clearly no check to see if an edge has been proposed
before is required. The resultant decrease in the number of edges held in the Chart and the

reduction in processing produce a highly efficient parsing algorithm.

Only current
parsing front
stored

all past (compilete)
edges dispensed
with

BU parsing front
progression

vertex verlex - veriex
1 2 ranw n

Figure 7.4.2.a Outline of Word Incorporation Parsing Operation

It is characteristic of the WI algorithm that alternative parses are developed in
parallel. The efficiency of invoking new rules can be improved by indexing rules by their
first RHS category or literal, so that all the required rules can be found when new rules
are invoked. Having described the basic operation of the parsing algorithm, some of the

other aspects of the parser will now be described.

- 180 -



Edges used by the W1 algorithm are only of two types :

- complete (base) edges :

base_edge ([Sv, Ev, Cat, Infol)

where Sv is the starting vertex, Ev the ending vertex, Cat the edge’s category
(word category or rule LHS) and Info an information structure built when
parsing constituents which are spanned by the edge.

- active edges:

active_edge (Ev, Next_cat, [Sv, Ev, Cat, Rem, Info])'

where Ev and Sv are the starting and ending vertices, Cat the corresponding
rule’s LHS category, Info an information structure representing information
parsed so far, Rem the remainder of the rule to be parsed, with embedded
equation sequences, and Next_cat is the next rule category (first grammatical
category in Rem).

Each cycle of the parser involves removing the next base (complete) edge from the list of
these and then using this edge to extend active edges and invoking new rules to produce
new edges. Active edges have their ending vertex Ev and next remainder grammatical
category isolated in their storage format, so that when a complete edge is to be combined
with active edges, those active edges which the complete edge may extend can be found
simply and efficiently. The set of active edges Actives which a complete edge with
category Car and starting vertex Sv can extend can thus simply be found by use of the
bagofi3 Prolog predicate :

bagof (Active, active_edge(Sv, Cat, Active), Actives).

Each edge of the list Acrives will then match the base edge with respect to category and
vertex but may only be extended by the base edge if the equations attached to the next

category in the remaining part of the active edge’s rule can be successfully evaluated.

-181-



Active Edge Complete Edge

[3, vp, [1, 3, s, (vp if up=down), [3, 6, vp, [] ind full stype
{ ind part stype [subj=V:man]"0"]"_* [subj=V1:animate, obj=V:animal]*[}"see(S,0)*_*
[subj = fs (] ind full stype [J* [obj = fs ] ind full stype []*
the(V1, )*man(V1)(V1:human)? a(V, )"dog(V1)(V1:animal)"
[det = atom the, num = atom sg, [det = atom a, num = atom sg,
pred = atom man]]*] glob (] pred = atom dog]]*(] glob (J]

1 the 2 man 3 saw 4 a 5 dog 6

Figure 7.4.2.b Matching Complete (Base) and Active Edges in WI Parser

Figure 7.4.2.b illustrates a WI parsing state when parsing ‘the man saw a dog’. The
parser is about to incorporate a complete edge with category vp with active edges on the
chart. This edge spans the string ‘saw a dog’ where the portion ‘a dog’ has previously
been incorporated into the edge as the obj function. This complete edge will be used to
extend all active edges which have a next remainder category vp and end at vertex number
three. A single such active edge is shown in Figure 7.4.2.b which spans ‘the man’ which
has been incorporated in the information structure of this edge as the subj function.

The parser will extend the active edge by the complete edge if the equation sequence
attached to the vp category in the active rule (up = down) can successfully be evaluated.
In the evaluation of equations, the complete edge’s information structure is that referred to
by downward pointing meta-variables ({) and the information structure of the active edge
is that referred to by upward pointing metavariables (T). The trivial equation following vp
in the active edge is thus evaluated by simply unifying the information structure of the
active edge with that of the complete edge. This will produce a new information structure
which will be placed in a new complete edge (as the active edge now has no remainder)
which spans the entire phrase. Complete edges which span the entire input string are
passed to a well-formedness checking procedure which checks that the edge’s information
structure (F-structure) is complete. If a complete F-structure is contained in an edge
spanning the input string, then this will be a complete parse (a target edge), the
information structure of which can then be passed on for semantic translation.

If a complete parse is not found, then the extension of active edges by a complete
edge may create a number of new active and complete edges. These new edges are then
asserted into the Prolog database. After existing active edges have been extended, the

-182-



complete edge is then used to invoke new rules and thus create new active and complete
edges. The category of the complete edge is used to retrieve all those rules whose RHS
starts with this category (or literal). Each such rule is then given an empty information
structure, and the equations attached to the first RHS category of each rule are evaluated
using this empty information structure and the complete edge’s information structure.
Then, if invoking new rules does not produce a target edge, the next base edge (LIFO) is
retracted from the Prolog database and used to extend active edges and invoke new rules.
This cycle is repeated until a target edge, spanning the input string with a complete
information structure, is produced. Coherence is ensured during the incremental
construction of information structures themselves.

7.4.2.1 Long-Distance Dependencies

Long distance dependencies are the most troublesome element of LFG to implement
correctly. This is partly due to the fact that the exact semantics of the notation is not made
entirely clear in Kaplan and Bresnan [1982]. The F-structure values of two functions
produced by matching a controller with a controllee are always the same in the examples
given by Kaplan and Bresnan. This intuitively seems the correct result, given that the
notation is intended to reflect the movement of a complete F-structure component. This
interpretation of controller/controllee matching would be best supported, in the
implementation described here, by the use of pointers in the same way as pointers are
used to support functional control. However, this is not the only possible interpretation of
controller/controllee matching. It is to illustrate an alternative implementation of long-
distance dependencies that the simpler pointer method has not been used.

The use of pointers to store shared function values in an F-structure means that
values are shared throughout (after evaluating the corresponding functional control
equation) the parse and the functions will always have the exact same value. In the case of
matching controllers with controllees however, the sharing of values may be defined to
take place only when the controller is matched with the controllee. Thereafter, the values
of the functions which receive this shared value can be treated as separate values. Whilst
there does not appear to be any great advantage in this interpretation, it does seem to fit
more naturally with the basic concept of passing controllers/controllees through
C-structure for matching. When a controllee is matched with a controller, the values of the
F-structures carried by these are unified but once the match has taken place, function

-183 -



values which receive the unification result become separate values. Whilst this
interpretation does seem to conflict to some extent with the co-indexing of subsidiary

F-structures involved in constituent control, in practice this does not cause any problems.

As parsing is BU, the C-structure’s base is constructed first and then extended
upward. The parsing of controllers/controllees through this structure is constrained to
conform with the development of C-structure by the parser. Thus controllees which are
encountered at the base (or at some low point) of C-structure progress upward until a
matching controller is encountered. Also during grammar pre-processing, controllers are
moved to their domain root categories. Then whenever a controller is found in a sequence
of grammar equations, the corresponding controllee must have been found previously.

(c) I ind full stype [subj=V:human, obj=V1:object]”
[17see(V,V1)*obj = fs [] ind full stype [1%a(V1,_ )*book(V1)"(V1:.object)”
[det = atom a, num = atom sg, pred = atom book,
subj = fs moved 1 ind full stype [}*a(M,_)*man(M)*
[det = atom man, num = atom sg, pred = atom man]
temp 1 ind part stype {J*||*||*_“[num = val_c sg||*[]] glob []

(e2) (] ind full stype []*a(M,_)*man(M)*

[det = atom man, num = atom sg, pred = atom man] glob [] op

(b) 1ind full stype [subj=V:human, obj=V1:6bject]*
[1*see(V,V1)Mobj = fs [] ind full stype []*a(V1,_)"book(V1)*(V1:object)”
[det = atom a, num = atom sg, pred = atom book,
subj = fs moved Final temp 1 ind part stype [J*[J*[]*_*[num = val_c sg]]*
{controllee(np, moved Final temp 1 ind part stype [[*[]*[]*_"[num = val_c sg]] glob []

(el) (Tup subj) = Map
(a) I ind full stype [subj=V:human, obj=V1:object]"
[*see(V,V1)Nobj = fs [] ind full stype [J*a(V1, ) book(V1)A(V1:object)”

[det = atom a, num = atom sg, pred = atom book,
subj = fs ] ind part stype [J*{]*(]*_*[num = val_c sg]}*(] glob []

Figure 7.4.2.1 Information Structures in Long Distance Dependencies

During the period between the evaluation of an equation containing a controllee and the
evaluation of an equation containing the corresponding controller, the F-structure value of
the controllee is represented by a Prolog term :

moved Final temp <info_struct>

-184-



where Prolog operators are shown in bold type, Final is a Prolog variable and
<info_struct> is the current information structure value. In Figure 7.4.2.1 an equation
(el) is evaluated against an information structure (a), which is that referred to by the ‘7’
metavariable, to produce a new information structure (b). This information structure is
then used in evaluating a set of equations containing a controller (e2), where the controller
also carries an information structure. In matching the controller with the controllee, the
controller’s information structure is unified with the <info_struct> value of the controllee
on the controllee list and the resultant information structure is used to instantiate the Final
variable of the controllee. This will also instantiate the corresponding Final variable (the
same Prolog variable) in the F-structure list. In this way, the instantiation of a function’s
value, derived from matching a controller with a controllee, can be suspended until the
controller is located and constraints on the controllee’s value can be held until they can be
evaluated.

7.4.2.2 Top-Down Linking

The WI algorithm as described by [Phillips, 1986] exhaustively develops each edge
bottom-up. Complete edges, which can never be used to extend active edges, are still
developed upwards until they cannot be used to extend any edge. The unnecessary
upward development of complete edges cam be reduced by extending the parser to include
a top-down expectation element [Matsumoto & Tanaka, 1983]. This takes the form of a
“linking relation” which can be computed off-line before parsing. Matsumoto and Tanaka
[1983, p150] state that :

“Let the ‘link’ relation hold between the two categories A and B when there
is a grammar rule whose form is ‘B — A ..... ’. Assume that the ‘link’ is

reflexive and transitive relation. ”

The link relation here is produced automatically by the grammar pre-processor when rules
are pre-processed. The task of finding elements of the link relation is separated into two
parts : finding “immediate” links and then using these to find “extended” links. An
immediate link exists from a category <cat,> to a category <catp> if there exists a rule

<caty> -—> LA e

-185-



The extension of these links adds additional links to create the set of extended links. An
additional link exists from <caz,> to another category <cat.> if there is an immediate link
from <cat,> to <car,> and an immediate link from <cazp> to <cat.>.

Link finding in Rules

—» vpl —— vp, ...
§ = VP, e Link Relation Produced
Iextendedlinks links(np, [np, vp, vpl, sl).
vp ? NP, e

immediate link

np

Figure 7.4.2.2 Link Relation Production from Grammar Rules

The link relation can thus be thought of roughly as defining ‘the set of grammatical
categories of which a single grammatical category may form the first or only component’.
An example of immediate and extended linkage is shown in Figure 7.4.2.2.

The link relation is used by the WI parser when invoking new rules. A rule is only
invoked when its LHS category might be used to extend some current active edge. For
this to be true, there must be at least one active edge with ending vertex equal to the
starting vertex of the new edge, with a first remainder category which is linked to the
category of the new edge. In this case, if the new edge can be completed, it might then be
used to extend the active edge(s) to which its category is linked. If no active edge can be
found which is linked to the new edge’s category then the corresponding rule is not
invoked.

7.4.2.3 Literals

It is a simple matter to extend the WI algorithm to parse literals which appear in
grammar rules. The grammar must first also be indexed by literals in just the same way as
categories. Only ‘single item’ literals are allowed so that a literal will always be a single
item (edge) in the base of edges. Of course, several contiguous literals may be used in a
grammar rule. Essentially, edges are matched, as has been described, by vertex and

- 186 -



grammatical cafegory. Now also, edges are allowed to match by vertex and the literal
represented (by a base edge).

Literals in rules could be matched to any complete (base) edge including those
representing more than one literal but this would require that every complete and active
edge be maintained with information about the string it spans. Instead, literals in rules are
confined to match one initial base edge so that the parser need only introduce an initial set
of literal type of base edges for matching with these (Figure 7.4.2.3). This reduces the
overhead of dealing with literals to entering an extra (literal) complete edge at each
successive vertex, and invoking grammar rules which have a RHS starting with a base
literal. Parsing can proceed as before as there is no difference between matching a base
‘word type’ edge with a rule’s (RHS) word and matching a base edge with a rule’s
(RHS) category.

catcgory based edges

DOUH

noun noun

/\/\/\

1 John 2 saw 3 the 4 tall 5 man

jOhl‘l saw ‘the’ ‘tall’ ‘man’
literal based edges

Figure 7.4.23 Initial Base of Edges Including Literal Edges

Not all words in the base need generate word type edges, only those words which
are mentioned in the grammar, which are marked as grammar words in the Prolog
lexicon. '

7.4.2.4 Gaps

The method adopted here for dealing with gaps requires that a gap (e) be viewed as
a dictionary or lexical item rather than a terminal in the grammar. A single entry for gaps
can be imagined which has category e and a nil lexical realization. In LFG, a gap

-187 -



corresponds to some other constituent to which the gap is related by the matching of
bounding metavariables.

Gaps are dealt with simply by hypothesizing a gap at each vertex in the base of
edges. Gaps are generated by the parser during the initialisation phase where each gap
edge has category e, no remainder (ie forms a complete edge) and the same starting and
ending vertex (Figure 7.4.2.4). The category e is used in the CFG to denote a gap which
can match an e edge in the C-structure’s base.

catcgory based edges

noun noun

r\r\r\

1 john 2 saw 3 the 4 tall 5 man

—
e e e e e e
\\ / ‘ literal based
gap edges edges

Figure 7.4.2.4 Initial Base of Edges Including Gap Edges

The use of gaps in the C-structure base can in fact be eliminated, which would
improve the efficiency of parsing. This is noted by Falk [1983, p251]:

“ Inducing C-control [Constituent control] without traces is actually not very
problematic in a framework such as LFG. In LFG, C-control (or syntactic
binding) occurs not as a result of the existence of an empty category but
rather by virtue of the existence of a pair of long-distance domination
metavariables. ”

As this implies, gaps in LFG are used merely as a traditional ‘category’ to which a
controllee can be attached. However, constituent control is realized by the controllee, not
by the gap. Controllees can be attached to other nodes in C-structure at levels above
C-structure terminals (gaps) to match controllers in exactly the same manner as if attached

- 188 -



to terminal e categories. The use of e categories (gaps or traces) has not been excluded
from the implementation described here, as this would depart from the description of LFG
given by Kaplan and Bresnan. Other equations can however be used to eliminate gaps,
(such as ‘(T subj) = ﬂnp’) and if these were to be used to replace all uses of e, then their

inclusion in the parsing base and upward propagation could be eliminated. This would
improve the parser’s efficiency.

7.4.2.5 The Kleene Star

The Kleene-star, as described by Kaplan and Bresnan [1982] and in Chapter 2, is
used to signify that any number of repetitions of some constituent in C-structure may
occur. A restriction to this notion was also described in Section 7.2 where the Kleene-star
was postfixed with an integer signifying the maximum number of repetitions which may
occur (“limited Kleene-star”). The Kleene-star is retained in the pre-processed grammar
rules so that it can be detected by the parser and dealt with at parse time.

Use of the Kleene-star does however complicate several other aspects of the parsing
method described previously. In particular, the Kleene-star must be taken into account
when producing the TD link relation and indexing rules by their first RHS grammatical
category. As an example, consider a rule of the form :

<lhs> —> <cat,> * <catp> * <cate> .

which may in fact be invoked (BU) by a complete edge of category <cat,>, <catp> or
<cat,>. When the parser invokes new rules and looks for active edges with which to
combine a complete edge, it collects all those with the appropriate first or next RHS
category (as well as checking the ending vertex number of active edges). In the case of a
rule with one or more Kleene-stars there may clearly be a number of possible next or first
RHS categories, as the rule above illustrates.

Kleene-star operators are currently only allowable on up to two consecutive
categories in any grammar rule, although apart from this limitation, they may appear
anywhere in a grammar rule. This limitation is imposed because rules are processed by
declarative procedures which perform the necessary ‘look-ahead’ in grammar rules, to see
if a Kleene-star repetition may have finished, in which case, the remainder of a rule (if
any) is then processed. This limitation could easily be relaxed by use of additional rules

- 189 -



which match larger rule portions, or could be removed by using recursion, but in practice,
it seems unlikely that grammar rules with long sequences of categories all marked with
Kleene-stars would be required. The restriction means that in a grammar rule only the first
two categories of the RHS may have Kleene-stars and thus, there can only be at most
three categories which may at parse time be the actual initial category consumed by a rule.
The rule pre-processor will thus add a rule (such as that shown above) to three different
sets of rules indexed by different first RHS categories. Such a rule can then be invoked
by any one of <cat,> or <caty> or <cat.>. Active edges, which are indexed by next RHS
category, will now be indexed by a list of up to three categories which can be the next
grammatical category used to extend the active edge.

The link relation takes Kleene-star operators into account in much the same way as
active edges are indexed. In the case of the example rule, a link is made to the </hs> from
each of the possible first RHS categories <cat,>, <caty> and <cat.>. These links are then
all extended as before.

Active edge
[1, [np, npl, np2], [1, 3, (np * if up=down,
npl* if up=down, np2 if up=down), <info_struct>] ]

lcxtendcd by

Complete edge
[3, 5, np, <info_structl>]

New active edges / \ produces

[1, [np, npl, np2], [1, [np, npl, np2],
[1, 5, (np * if up=down, (1, 5, (npl * if up=down,
npl* if up=down, np2* if up=down,
np2 if up=down), <info_struct2>] ]

<info_struct2>] ]

Figure 7.42.5 Extension of Active Edge with Kleene-star Operator

During parsing, rules are invoked if the link relation holds between a complete base
edge’s category and any one of a rule’s possible first RHS categories. When an active
edge with Kleene-stars is extended by a complete base edge, a number of new active
edges and possibly a complete edge can be created. As an example of such a case, Figure

-190 -



7.4.2.5 shows in outline, the extension of an active edge, where the next RHS category
has a Kleene-star attached, to produce two new active edges.

7.4.2.6 Conjunctions

As described in Section 4.9, in the restricted set of conjunctions considered here, a
single controller is passed into each branch of a conjunction to be matched with two or
more controllees. There are several different approaches to parsing conjunctions but here
conjunctions are dealt with explicitly in the grammar (¢f demons [Dahl & McCord,
1983]). Not only are the C-structure constituents and corresponding equations of a
conjunction stated explicitly, but conjunctions are also prefixed in the grammar with a
Prolog operator ‘conj’ (a similar qualifier is used by Sedogbo and Bull [1985]):

rel s ---> conj rel_ s egns down set_val _of (up conjs) ,
and ,
rel_s eqns down set_val_of (up conjs)

The conj operator is retained in the preprocessed grammar rules and acted upon by the
parser at parse time (as shown attached to C-structure in Figure 7.4.2.6).

-
-

[controllee(np, <Info>)] T sf)nu'oller(np, <info2>)
[controllee(np, <Infol>)] ".‘ \
Prolog <cat> [controllee(np, <Info>)]
unification '
conj <Cal>down set_val_of <Cat> gown set_val_of

(up conjs) (up conjs)

[controllee(np, <Info>)] [controllee(np, <Infol>)]

and

Figure 74.2.6 Outline of C-structure Produced from
Conj Prefixed Grammar Rule

‘When a conj operator is found (Figure 7.4.2.6) by the parser prefixing a conjunction of
some category, the controllee lists from each conjunction repetition are expected to be the
same. These are unified (currently using Prolog unification) and a single controllee list,
from one of the conjunctions, is passed upward for matching with the corresponding

-191-



controller(s). When a controller is matched against a controllee in this list both of the
corresponding controllees in the conjunctions will be instantiated with the controller’s
value.

7.5 Well-formedness Checking

7.5.1 Well-formedness Checking During Parsing

During parsing, the coherence condition is maintained by the definition of
unification on information structures themselves. Under normal conditions, it is not
possible to perform any checking of the completeness condition until a complete parse has
been produced and the F-structure is known to have its full informational content. If
completeness can be checked to some extent during parsing, it might greatly improve the
efficiency of parsing as a great number of incorrect parses may be eliminated. This is why
Block and Hunze [1986], as described in Section 6.3, have extended the notion of
bounding categories to prevent functions being passed through these. This means that,
parsing bottom-up, when a bounding category is encountered, the F-structure from below
the bounding node must be complete. This is only the case if the linking equation is not
used, as this may pass a controller down to the F-structure to make the F-structure
complete. An alternative approach has been taken here to allow some completeness
checking during parsing. The method used by Block and Hunze could be used in addition
to this to further improve parsing.

During parsing, functions, which are the main concern of completeness, are
specified as F-structure members by equations such as ‘(T subj) = 1’. This equation
specifies that the F-structure from below the C-structure node to which the equation is
attached is to be unified with the subj function’s F-structure of the F-structure above the
node. In many cases, the subj function produced after evaluation of this equation will
itself be both complete and coherent. Of course this depends on the parsing action (BU or
TD). If the parser operates in a predictable fashion, as the WI parser does, then it is
possible to know how C-structure is produced and in certain instances, it can be stated
when a subsidiary F-structure (function) will be complete.

An optional prefix operator ‘complete’ is defined in the LFG notation which can be
used to specify that the function produced by a functional assignment equation is expected
to be complete at the time of the equation’s evaluation (actually after evaluation of the
equation sequence in which the equation appears). Here, ‘complete’ means not only

-192 -



functionally complete, as defined in LFG, but ‘in place’, that is not subject to constituent
control (an F-structure value yet to be found by controller/controllee matching).

np (Tfocu:;’ l np complete (Tsubj) =4 vp
v det

1
(Tq) VRS (Tvcomp) =|
det np
I | L& (Tadj) l |
which is the largest country e
Tznhwm T=ﬂnp

Figure 7.5.1 C-structure Outline with Completion Operator

As an example, consider the subject function in a query ‘which is the largest country’.
The annotated C-structure of this query is shown in Figure 7.5.1. In this case (of equative
be), it is known when the WI parser evaluates the equation ‘(T subj) =1’ the subj
function will be ‘in place’ and complete. The corresponding grammar rule which specifies
this equation in the LFG notation will thus be :

sl —-——> v up = down ,
np complete (up subj) = down ,
vpl (up vcomp) = down .

The evaluation of an equation, pre-fixed with a completion operator, not only checks that
the specified function has a well-formed F-structure but also gives the <slot_type> part of
the function’s information structure a value of cc. This indicates that the function’s
F-structure is complete and has been checked for well-formedness. Information structures

with a <slot_type> value of cc are not re-checked after parsing for well-formedness.

It should be noted that the use of this operator is optional. This is because its use
requires an understanding of the parser’s action. The vcomp function, for example, could
not here be specified as ‘complete’, as at the time that the ‘(T vcomp) ={’ equation is
evaluated, the vcomp function will not be ‘in place’ as the controller which actually carries
the F-structure value which will fulfil this role, will not have been found.

-193 -



Although use of the ‘complete’ operator requires an understanding of the parsing
action, it can be used to improve parsing efficiency. The use of this operator could be
extended so that it could be used in isolation, rather than when a functional assignment
equation is used. For example, as shown in Figure 7.5.1, the vcomp function will be in
place and complete when the s rule is extended by the complete s/ edge. This might allow
a greater usage of the operator and a corresponding improvement in parsing efficiency.

7.5.2 Well-formedness Checking Post-Parsing

When a complete parse is produced (a complete edge spans the entire input string),
the F-structure must be checked for well-formedness. The coherence condition is
maintained by the definition of unification during parsing, so that only completeness must
be ensured after parsing. For completeness to be ensured, it only remains to check that the
functions listed in the slot component of the information structure have values in
F-structure component and that no existential constraints are left outstanding. Function
values as described previously may be implied by constraints, the value assigned to a
function in such circumstances may however have no actual content besides a constraint,
which may have been satisfied. Functions must therefore not only be present in the
F-structure component but must also have some content (features). An ‘empty’
F-structure is thus not accepted as well-formed.

7.6 Semantic translation

Semantic translation acts on the well-formed information structure of a complete
parse and is divided into three stages :

- isolation of semantically relevant features in the F-structure component and re-
structuring. '

- resolution of quantifier scoping.
- translation of the remaining information structure into a Prolog query.

The first of these stages basically simplifies the information structure for semantic
translation. Only part of the information in the F-structure is required for semantic
translation. These, of course, include functipn values, which are recursively simplified
themselves, and certain simple features which are semantically relevant in database
querying (not the database domain). It is expected that a small number of such features

-194 -



will exist. Most semantic features are placed in a Prolog list where the position of each
element in the list signifies the feature’s name. This list takes the form :

[<pro>, <num>, <int>, <adj>, <aggs>]

where the significance of each element will be explained below. If no value exists for an
element of this list, the nil value ‘[]’ is used. Other features are promoted to the slot list of
functions if they are involved in quantification. Currently the set of semantically relevant
features includes :

- proportional (proportional = atom +) features, which signifies a higher order
predicate which operates on proportions, such as ‘percentage of . This type of
noun has to be treated specially in semantic translation, where a more complex
series of predicates is actually used to realize the taking of proportions. This is
much like the treatment of aggregate adjectives. The sem feature value
(predicate) of a subsidiary F-structure containing a proportional feature value is
held in the <pro> element of the output list.

- number features (num = atom sg, num = atom pl), the value of which is
given to the <num> element in the output list. This feature is primarily used to
determine whether a quantifier refers to a set of values (plural), in which case
the setof/3 Prolog predicate is used in the Prolog query.

- cardinality features (card = atom N), which is added to the output list of
semantic features (new F-structure component). The card feature, which
originates from lexical numbers (1, 2, etc), may however be modified by a
comparative (‘more than 3’) or by a unit of measure (‘3 million’). The card
feature and modifier is used to produce the <int> element in the output feature
list . For example :

[card = atom three, q = atom more] — >3
[card = atom three, meas = atom million] —> 3 -- million

- ordinary adjectives, held as set values in an F-structure, are placed in a list
which becomes the value of the <adjs> element.

- aggregate adjectives, also held as set values, are placed in a list which becomes
the value of the <aggs> element.

-195-



The negation feature (neg = atom +), if present, is added to the information structure’s
list of functions in the slot description as an atom ‘neg’. This is done so that the scope of
negation can be determined in relation to the functions in the slot list.

In addition to constructing the list of semantic features, adjunct functions (being a
set value) are attached to some function by equating functional variables, as described in
Section 4.8, and the list of functions in the slot description is extended to include set value
names, such as adjuncts and conjs, and additional function names such as the pied and
rel_adj functions, which are also described in Sections 4.7 and 4.8. If however, a relative
structure consisting of non-subcategorizable head and mod functions is encountered,
these function names are used as a substitute slot list.

The semantic features of the F-structure are thus isolated in a standardized list and
the slot list is extended to list the functional components (and negation) which are subject
to quantification as well as semantic translation.

The second stage in semantic translation, quantifier scoping, first examines the
quantifiers of each function in the slot list and classifies each of these as either strong or
weak quantifiers. A special function name.f is also added to the list of functions, which
signifies the quantifier of the function itself, inside of which the other functions named in
the slots list are held.

A list is constructed in the same order as the functions in the slot list, where each
element of this list is either the symbol strong or the symbol weak, according to the nature
of the function’s quantifier. This list, together with the slot list of function names, is then
used to determine quantifier scoping. For example, the lists might be :

quantifier properties [weak, weak, weak]
function list [f, subj=V:T, obj=V1:T1]

‘in which case the default scoping order for the F-structure’s quantifier and those of the
subj and obj functions will be applied (subj > obj >f) to produce a function list:

[subj = V:T, obj = V1:T1, f]

- 196 -



If however, the obj quantifier was a strong quantifier, then this would be given highest
scope and the corresponding output list would be :

[obj = V1:T1, subj = V:T, {]

Quantification resolution is the last stage before translation of the information
structure proper takes place. Translation has been described in some detail in Section 3.3
and the details of this need not be repeated here. The interpretation of the information
structure follows roughly the DAG transformations described in that section. The function
with highest scope (first on the slot list) is currently translated first and then other
functions in the list are translated and placed within the scope of quantifiers encountered
previously. The semantic features and quantifier of an F-structure are translated when the
function name f is encountered in the slot list.

7.7 Efficiency of Parsing

Although parsing efficiency has not been of major concern here, this aspect
deserves some comment. Parsing appears quite efficient (Appendix F) but is still much
slower than that of the Chat-80 system. For example, queries with four to ten words take
from about one to six seconds to parse. Chat-80 parses such queries in under one tenth of
a second. There are a number of reasons which contribute to the slow parsing rate of the
system described here, in comparison to Chat-80. The most important of these is simply
that exhaustively elaborating all possible parses in parallel always involves a great deal of
computational work. However, the system’s performance is quite close (of the same
order of magnitude) to acceptable, if one second is viewed as an adequate response time
to a typical query. This is believed to be quite significant, given that a high-level grammar
description has been used and the example grammar used to parse queries constructed
with a linguistic rather than computational bias. A number of methods of improving the

parser’s performance are also possible and are outlined below.

The parser currently suffers from a lack of memory (signalled by pauses for
‘garbage collection), when running on a Sun 3/60 with four mega-bytes of memory. Two
methods of reducing memory usage are immediately apparent. Either the number of
edges, held and produced, can be reduced or the amount of memory used by edges can be

reduced.

-197 -



The number of edges held might be reduced if active edges behind the parsing front,
which will not be used, are removed. In most cases, this is not possible as any active
edge may be extended by a complete edge. However, those active edges which are
waiting to be extended by a terminal category, which is behind the parsing front (has been
used to extend active edges), cannot be extended and could thus be removed.

The number of active edges produced might be reduced by use of a look-ahead
facility as used in the PAMPS system [Uehara et al, 1984a], which also uses a BU parser
similar to WI. The amount of memory used by edges might be reduced by using a
structure-sharing technique described in Pereira [1985]. This technique does not create
(copy) entire DAGs (F-structures) during unification but represents a DAG by a pointer to
its basic structure (skeleton) and another pointer to a table of updates to the DAG. When
two DAGs are unified, one can be chosen as the basic structure (actually a pointer to this
is created) and the other used to produce the table of updates which if applied to the basic
structure would produce the new structure. The updates themselves are co-indexed with
the basic structure’s portion to which they apply and consist of values not specified in the
basic structure. These values are in turn defined (largely) by pointers to parts of the DAG
used to construct the update table.

A much simpler improvement to the parsing algorithm itself, which became
apparent in the latter stages of development, also remains to be implemented. This relates
to the use of the top-down link relation. Currently, this is only category based but there is
no reason why it could not be extended to F-structure. This has also been suggested by
Block and Hunze [1986, p491] as described in Section 6.3, but was rejected by them as
too computationally costly when used with the Earley algorithm. This is because the
Earley algorithm, when generating new edges, must check that these exact edges have not
been generated previously. This requires comparing the F-structures held as part of
edges, which is a very expensive operation. The WI algorithm does not however carry
out such a check so that F-structure comparisons would not be necessary.

There is however another ‘cost’ caused by extending TD prediction in this way.
Several similar active edges but with different F-structure content may be linked TD with
a new edge. In this case, a new edge must be created for each different F-structure of the
edges with which the new edge is linked. This means that invoking a new rule will
produce a number of initial new edges, which will require more memory than a single
edge, and all of which must be processed. It may thus be more efficient to use only
perhaps subcategorization lists in TD prediction, as these will vary much less than entire

- 198 -



F-structures but will still impose coherency on predicted edges. A similar feature-based
extension to the Earley algorithm’s TD prediction step in a PATR II implementation
[Shieber, 1985b] has been shown to greatly reduce the number of edges generated.

The current parser implementation adds edges produced during parsing to the
Prolog database. This however was not the case in an initial implementation. The Prolog
assert/] predicate is very computationally expensive, as adding code to the Prolog
database requires calculating values for the hashing function which is used to index rules
in the Prolog database. In addition to this, predicates, the definition of which may be
changed in the Prolog database (“dynamic” predicates), are only executed in an interpreted
manner, even when the code is itself compiled. This means that changing or matching
edges in the WI Chart is done very slowly.

In an earlier implementation, Chart active edges were held in an array-like data
structure. This structure was passed as a single Prolog argument through the parsing rules
and thus not asserted or matched in the database. Complete (base) edges were also
handled by a single Prolog list passed as a Prolog argument through the Parser’s rules.
This allows FIFO control to be simply achieved by adding or removing an element from
the head of this list. The array for active edges was generated when constructing the initial
base, where an array index corresponds to the last vertex number of an active edge. Each
element of the array holds a list of active edges, each with the same last