Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

RULES FOR MAPPING A CONCEPTUAL MODEL
ONTO VARIOUS
DATA BASE MANAGEMENT SYSTEMS.

Volume 1

A thesis submitted for the degree of Doctor of Philosophy

by

Jayasri Chaudhuri

University of Aston in Birmingham
February 1988

This copy of the thesis has been supplied on condition that anyone

who consults it 1is understood to recognise that its copyright

rests with its author and that no quotation from the thesis and no

information derived from it may be published without the author’s
prior, written consent.

RULES FOR MAPPING A CONCEPTUAL MODEL
ONTO VARTOUS
DATA BASE MANAGEMENT SYSTEMS.

A thesis submitted for the degree of Doctor of Philosophy
: oy
Jayasri Chaudhuri
University of Aston in Birmingham

February 1988

ABSTRACT

The design and implementation of data bases involve, firstly,
the formulation of a conceptual data model by systematic analysis
of the structure and information requirements of the organisation
for which the system 1is being designed; secondly, the logical
mapping of this conceptual model onto the data structure of the
target data base management system (DBMS); and thirdly, the
physical mapping of this structured model into storage structures
of the target DBMS. The accuracy of both the logical and physical
mapping determine the performance of the resulting system.

This thesis describes research which develops software tools to
facilitate the implementation of data bases. A conceptual model
describing the information structure of a hospital is derived using
the Entity-Relationship (E-R) approach and this model forms the
basis for mapping onto the logical model. Rules are derived for
automatically mapping the conceptual model onto relational and
CODASYL types of data structures. Further algorithms are developed
for partly automating the implementation of these models onto
INGRES, MIMER and VAX-11 DBMS.

KEYWORDS
Conceptual Modelling
Data Bases

Logical Mapping

Physical Mapping

ACKNOWLEDGEMENTS

The author would 1like to express her gratitude to the following
people:

Mr. D.E. Avison, BA, MSc, FBCS, her supervisor, for his guidance,
help, and patience throughout the duration of this research
project.

Staff of George Eliot Hospital, Nuneaton, for their cooperation
during the data analysis phase.

Chapter

Chapter

Chapter

Chapter

NN NRNRNNNNRNNNDNNDN P L

wouuwuuudsbsRrPRrWLWNDRE

wwwwwwwww
AL

~oupbwwwNn -

WwrNN N

w N

[u

—

NN

TABLE OF CONTENTS

INTRODUCTION vt vvvveneroonnossosensosnssnossnsusons
TNtrodUCtioN «vvveuierreceeaeanossesnnnanassscsonns

DBMS archit
Data base d
Conceptual
Mapping....
Design aids
Objectives
How far the
OQutline of

DATA ANALYS
Introductio
Conceptual

Chen’s Enti

ECLULE o vvvveeresennsnnnansssssssnsnnnns
ESIEN v veviiirie i
MOdELLing «vvevenveneroennrnoaneneeenns

......................................

of this researchccciiiiiiiinnas.
objectives have been met
the structure of the thesis

) T R R R
e
data model ...eiiiiiiernes e
ty-Relationship(E-R) model ...ceeienenn

Modified Entity-Relationship(E-R) modelc.0.n
Degree of a relationshipccveeecevereen. cee

Membership

CLASS «vvevreeeesesosssnonscssnsssnnassnns

The diagrammatic modelceeennennneneenennns

Data analys

= P R L

The application areacoscecceseeccesrecennes

Data analys
The Record
Merging dat

is for the hospitalcciieineeeeen.
OFffiCe veevveenneenorsnoesaosasosoasoses
A ALCAS +evveeenososossssossnnoanssssns

Storing the result of data analysis c.ceeerceennn

Conclusion

FUNCTIONAL

.......................................

ANALYSTS i vevuvcnoeanssosonsennscscsns

TRtrodUCEION «vveeernnonnnessosssananenanesasocnes

Functional

analysis ..oeveiiiiiiiiiiiiiiieee

Phases of functional analysisc.ccevueeennnn

Functional

analysis for the hospital

Storing the result of the functional analysis
Analysing usage PatTerNeeeernnnerreneers
Graphical representation of the data ..v.cvvevuennn

Conclusion

.......................................

LOGICAL DESIGN e vroacseeeroansnonanoneoccens
TNtrOQUCEION «oveeronrenmnsooenanosssoacesonnacens
Logical mapping ...ceesevveccenrrnnannecencnncs
Update Operationseeeeceeeeurueneceeneennne:

Effects of
Conclusion

the update operationsc.coe..

31
31
32
33
34
36
38
39
41
42
43
45
49
51
55

57
57
57
58
59
61
64
66
69

70
70
71
72
73
76

Table of Contents

Chapter 5 RELATIONAL MAPPING.ttt iieinianneennens 77
5.1 INtroduCtion ..uieeei ittt erinreneeonsansenennnsas 77
5.2 Characteristics of the relational model 77
5.3 NOrmaliSation..veee e eeeseeeseoeeanesonennnennnens 78
5.4 Relational designcoviiiiiiiiinennnnennnnnnns 80
5.4.1 Formal mapping rulesceeeiiveertneernnnonnann 83
5.4.2 The mapping Programeeeeeeeeeeconeesonnessens 84
5.4.3 Resultant relations remain normalised 88
5.5 CONCIUSION 4 ivtiitiee ittt eseneoneesnennesonsnnnns 89

Chapter 6 CODASYL MAPPING ... iiiiiienioentsnncenssnsannnnns 91
6.1 INtroduction ... ieeencenosencocnsnnenenennenons 91
6.2 The CODASYL StrUCELUFE .. itrernnroncaneonesonenns 91
6.2.1 Location modeiceevrretinreneenennenonsonennsns 94
6.2.2 Order and removal/storage classoceeuuvenennn 95
6.3 CODASYL mapping rulesceeiiiieeeenrteennnnns 96
6.3.1 Modification of relationshipsciviiivnnnnn 98
6.3.2 Choice of storage/removal classcevveenn.n 99
6.4 Formal mapping rulescciutiiiinennnerernnnns 102
6.5 The mapping Programeeeieeeeeeoeannsnasaassns 104
6.6 Conclusioncvvvivniennnennnn et 106

Chapter 7 PHYSICAL DESIGN ..ttt ententenceaonsconnannans 107
7.1 INtrodUCtiOon «.vveeneeeosesesnsnsasencnsossnsnnnos 107
7.2 Factors affecting file organisation 108
7.3 Organisation of data e vt 109
7.3.1 Priorities of data organisation 111
7.3.2 Constraints on data organisation 111
7.4 Labelling the functional data model 113
7.5 Physical design rulesceeeuiieneniniieinnnenns 119
7.6 (0] o Tl R UE=3 1) o Y 121

Chapter 8 RELATIONAL IMPLEMENTATIONcciteieennneaces 122
8.1 IntroduCtion .. iiueeereeensoneeoneennoansononanss 122
8.2 INGRES +tivieiennonennooesasosnonsnannannnnannnsns 124
8.2.1 BaSiC SEIUCTULE 4t errnnreennnnenonnasssonosasaas 124
8.2.2 Storage StrUCLULES .. rreeeorossnsoennnnnnonsnns 125
8.2.3 INGRES implementationeeuueinieneenennnanns 127
8.2.3.1 Implementation of the logical model 127
8.2.3.2 Implementation of the storage structure 128
8.2.3.3 Algorithm for the storage structure 131
8.3 MIMER vttt ittt terensoseeeseesasnesonnsseannnanenas 137
8.3.1 MIMER storage uUnitscceuuuuiuinnnnnneneeeeenns 137
8.3.1.1 B-tree StIUCTULE +.veveerroneonanoosnoonnananssnns 138
8.3.1.2 B ¥ fr@E tvvereennennnsoesonessosnessacnnsonssnnns 139
8.3.2 Physical storage structure of MIMER 139
8.3.3 Implementation on MIMERc.cccviiiinnnnn 140
8.3.3.1 Implementation of the logical model 140
8.3.3.2 Implementation of storage structures 141
8.3.3.3 Algorithm for the storage structure 143
8.4 (0703 s Yol BT T 1) + P 145

ii

Table of Contents

Chapter 9 CODASYL IMPLEMENTATION\t innineniennenrnnnnnns 146
9.1 Introductionc.iiitiiiiiii ittt nennnns 146

9.2 Schema definitioniiiiiiiiiiiiii i, 147

9.3 Storage schema ...ttt nieiennenronneeennns 148

9.3.1 Storage recordsieeieiiieeiiiiitetitetienaeas 148

9.3.2 StOrage SeL i ieriinniinionennetnesonsonnsosnanas 149

9.4 VAX-11 DBMS implementationc.cciiuiuiinnnnn. 150

9.4.1 Schema mapping ... iviiiiii ittt inneeeennersnens 150

9.4.2 Implementation of the storage schema 152

9.5 CoONCIUSION it iin ittt tetineosnonnetosnonsnanns 155

Chapter 10 CONCLUSION it iititinienenoesnssessssssasennssnnnns 157
10.1 Introductioniiiiiiiiiiiiiiiiinenercnnnnnnn 157

10.2 Selection of the programming language 157

10.3 Contributionciiiiiiniiiiniiniienensnnnrnonns 158

10.3.1 Logical mappingieiiiiiiiiieiinneinnneeennnans 159

10.3.2 Physical designcoiiiiiiiiiiiiiiiiinneeennnnns 160

10.3.3 Implementationcciiviiiiiiinreninneennnnenns 161

10.4 Future workeiuiiiiiiiiiiniiiiinnnennnnonsnnnns 162

Appendix A Data Models for the Hospitalccviiivivnnnnnn. 165
Pathology Laboratorycuiiieireernennnaonanss 165

Pharmacy Departmentveeeeuieeenoeorcnnsseens 168

X-ray Departmentc.oeeeeuienneececcrnsonsonnns 169

The Wards ..ttt iiitneneneannnens 171

Nursing Departmentceveeeeneeanncesssaas 173

Appendix B Merged Data Model for the Hospital 175
REFERENCE it iiit e tittitneneenesenssnteeaanassscansonnsness 176

iii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

e O NN NNNNOOOAN UV WWWWWwWWwWNNNN
P U WRNE RO EWRN N RN R U W W

LIST OF FIGURES

N-ary Relationshipcccvviiiinnn,
Binary Relationshipscovvnn.
An E-R Diagramcevviiirinennennnnns
E-R Diagram for the Record Office
Functional Entity Model (1)
Functional entity Model (2)
Functional Analysis table
Entity-Attribute Usage Table
Relationship Usage Table
Graphical Representation of Data
Conceptual Model
Entity Relationship Model
Relational Modelccviiiiinn
Cyclic Structuringvciveunieennnns
An Example CODASYL Logical Model
First Constraintccviiveveeeneans
Second Constraintcciiiviiiinienn.
Third Constraintcciiiiiinnrenenns
Unlabelled Data Model
Labelled Data Modeliivvevivnnnnn
Record Accessing Techniques
Labelled Modelciiiiiiiiinnnenns
Entity Model for Pathology Department
Entity Model for Pharmacy Department
Entity Model for X-ray Department
Entity Model for the Wards
Entity Model for the Nursing Department.
Merged Data Model for the Hospital

iv

35
35
40
50
60
61
64
67
68
68
74
87
87
94
103
112
112
113
114
115
120
129
167
168
170
172
174
175

CHAPTER 1

INTRODUCTION

1.1 Introduction

An information system provides storage of data (data base) and
a flow of information to satisfy the requirements of users. Within
an organisation the requirements of different groups of users are
varied, although these different groups of users may share common
data. Problems have been caused by unnecessary duplication of
data, a lack of consistency of data and a lack of flexibility in
updating application programs. Data Base Management Systems (DBMS)
address these problems by managing the data base. We need to
establish a more rigorous definition for information systems, data

bases and DBMS before discussing the features of DBMS.

Information systems: Davis and Olson (1985, pp 6) describe an

information system as:

"...an integrated, user machine system for providing information
to support operations, management, analysis and decision-making
functions in an organisation. The system utilises computer
hardware and software; manual procedures; models for analysis,
planning, control, and decision making; and a data base."

Chapter 1 Introduction

Information should be provided to the recipient at the right
time, and in a form that is understandable, accurate, and relevant
to the users’ needs. Users should agree to the objectives and
features of the information system before implementation. In order
to achieve these objectives it is necessary to perform a systematic
analysis of the structure and information requirements of the
organisation for which the system is being designed. Such an
analysis yields, amongst other things, the conceptual model which
provides the framework on which a computer based information system
may be developed. Conceptual modelling is discussed in some detail

in section 1.3.1.

Data bases and DBMS: Date (1986) and Kroenke (1983) both perceive a
data base as a collection of operational data used by the
application systems of some particular organisation. A data base
provides the organisation with centralised control of its data. A
DBMS is a software tool for manipulating a data base. Martin
(1985, pp 4) distinguishes between a DBMS and a conventional system

of computer files as follows:

"The most important difference between a data-base management
system and a file management system is that data-base management
translates between the application program’s view of data and
the actual structure of the data. It preserves the program’s
view of data when the actual view changes in either a logical or
a physical manner."

Martin is making the important distinction here between logical

(the perceived structure of the data) and physical (the way in

Chapter 1 Introduction

which the data 1is actually stored) data structures which provide

data independence.

It 1is argued by Avison (1985), Date (1986), and many others that
the use of DBMS is justified because they aim to be flexible and
cost effective. Once the data is captured it can be used by a
number of applications. Even if the requirements change, there is
usually only a need to modify the application programs. It is not
usually necessary to change the system completely because the data
is still 1likely to be relevant to the new circumstance. Fry and
Deppe (1976) and Fry and Sibley (1976), also, point out that one of
the reasons for using DBMS is that they greatly reduce maintenance

effort due to the data independence provided.

This research concerns automation of some aspects of the data
base design process. Therefore, the architecture of a DBMS and

data base design are discussed in detail.

1.2 DBMS architecture

Whilst it is generally accepted that a multiple-level
architecture 1is needed for a DBMS to achieve a high degree of data
independence, there are still differences of opinion as to the

number of levels of abstraction necessary.

Kerschberg et al (1976) recognise the need for a multiple-level

DBMS architecture but do not propose any definite architecture.

Chapter 1 Introduction

Senko et al (1973) describe a DBMS architecture in terms of four

levels of abstraction.

However, this approach and those of many others, for example
CODASYL (1971), have not been widely adopted but they are not too
dissimilar to the most widely accepted architecture proposed by the
ANSI/X3/SPARC (1977,1978) committee. The latter consists of three
levels of abstraction: external, logical and internal.

A logical schema This is a set of rules describing which

data may enter and reside in the data base

described as the 1logical model 1in this
thesis.

An internal schema This is a set of rules describing how the
data 1is physically represented on storage
media described as the physical model in
this thesis.

An external schema This is a set of rules describing how
data is viewed by an application program
described as the external model in this
thesis.

The three-level architecture has been adopted in this research
because it has been the most widely accepted, and most commercially
available DBMS are based on this approach. This design prevents
changes made to one part of the data base affecting any other part
of that data base. If an external model changes, then only the
mapping between the external model and the logical model needs to
be changed. Similarly, changes in an internal model only require
changes in the mapping between the internal and logical models.
The conceptual model serves as the reference point for the
mappings, hence the stress paid on the conceptual modelling in this

research.

Chapter 1 Introduction

The success of a three-level architecture depends on how well
the user requirements have been analysed to form the conceptual
model and the accuracy of the mapping to the logical, physical and

external models of the DBMS.

1.3 Data base design

This is the process of determining the content and the
arrangement of data in the data base that is required to fulfil the
functional requirements of the users and to provide an acceptable
level of performance. A good data base design process should
produce a data base which meets the objectives of the users.
Further, this process should be usable by designers with different
degrees of experience in data base design. Novak and Fry (1976)
argue that in order to be able to achieve these objectives the
design process should be broken down into phases consisting of
simpler tasks. The result produced in each phase should be used in
the following phase until a suitable structure for implementation

is achieved.

Kahn (1976) describes two types of data available to a data base
designer. The first type of data is the Information Structure
Perspective (ISP). This is the natural structure of the data and is
not bound to any application. The second type 1is the Usage
Perspective (UP) which describes the data by the way in which it is

used by various applications. Data base design based on ISP gives

Chapter 1 Introduction

a flexible design which supports various unstructured applications,
but it does not, necessarily, provide an efficient data base. Data
base design based on UP data produces a tailor-made data base which
supports the . anticipated applications efficiently because the
design is based on the most used access paths. ISP provides
flexibility but UP provides efficiency for a limited number of

applications.

By wusing both perspectives, a better design (flexible and
efficient) will result. Kahn (1978) and Novak and Fry (1976)
suggest that ISP should be used for initial design and UP should be
used to refine the design. Atre (1980), Chen (1977), DeMarco
(1978), Finkelstein (1980) and King (1977) give support to the view
that both perspectives should be adopted. They do not specifically
discuss ISP and UP, but they all argue that in the first stage of
data base design the data resources of the enterprise should be
modelled independently of how the data 1is accessed or wused.

Furthermore, this must be achieved independently of the DBMS used.

However, whilst these authors agree on the principle that the
data resources should be modelled, they adopt different approaches
to the modelling process. For example, DeMarco takes a functional

approach whereas Chen follows a data approach.

The data base design process used in this project is based on
the two-level view (ISP and UP) described above and consists of the

following three phases:

Chapter 1 Introduction

Conceptual modelling the first phase, which is the process of
identifying the data resources of the
enterprise and organising them to form a
structured data model, known as the
conceptual model.

Logical mapping the second phase, which is the process of
transforming the conceptual model on to
the data structure of the logical model
of the DBMS on which the data base is
going to be implemented.

Physical mapping the third phase, which is the process of
mapping the data on to the storage and
access structure of the target DBMS,
depending on the usage pattern of the
data.

This research focuses on ways of automating the 1logical and

physical mapping process.

1.3.1 Conceptual modelling

The ANSI-SPARC (1977) report defines the conceptual model as ’a
description of an "enterprise", that is, such a part of an
organisation which 1is of interest to the community of persons
wanting to communicate with the data base’. The conceptual model
includes a description of the object types (entities) important to
the organisation, the relationships existing between them, their
properties (or attributes), the specification of the constraints
and the semantic information that defines the valid states of the
data. This is used as a framework around which the organisation’s

information system is developed.

Many proposals for a conceptual model have been put forward.

Chapter 1 Introduction

The ANSI-SPARC report argues that a conceptual model is necessary
but does not specify the shape of that model. Some of the
important issues that should be satisfied are evolvability (changes
in the real world should only involve a few modifications to the
conceptual model), transformability (the mapping between the
conceptual model and physical model or external model should be as
simple as possible) and stability (changes in the external or

internal model should not affect the conceptual model).

Information algebra (see CODASYL Development Committee 1962),
one of the earlier models proposed, contains two important
concepts: the concept of an entity as an object that has reality
and the concept of joining records on equal values of record
identifiers (keys). When attempting to model reality, it is
essential to distinguish between different objects in the real
world and understand how they are related to one another. This
model wused a complex hierarchical structure which was unstable to
changes in reality. It also failed to make a clear distinction
between the conceptual 1level and the data processing level.
Langefors (1974) tried to solve the problems arising in putting

linguistic references to objects in the real world by introducing

the concept of elementary messages which were binary
"entity-property’ relationships. Each message described only one
property of an object. There was no attempt made to distinguish

between properties of objects and relationships between objects.

The information structure in Mealy (1976) consists of binary

Chapter 1 Introduction

'data-maps’ between entities and properties and binary
’structured-maps’ between entities and entities. The concept of
‘data-maps’ 1is equivalent to Langefors elementary messages. But
Mealy’s model distinguishes between properties and relationships
and thus the concept of ’structured-maps’ has been introduced to

show the relationship between two entities.

Network, hierarchical and relational structures have also been
used for conceptual modelling. Tsichritzis and Lochovsky (1982)

describe a network data model as a set of records and a set of

links. Each link type consists of a parent record type and a child
record type. Each occurrence of a link has a single occurrence of
the parent record and a set of child records. A hierarchical data

model consists of a tree structure. A tree consists of a root
record type and an ordered set of dependent subtree types. The tree

consists of a hierarchical arrangement of record types.

From the definitions of these structures, it is obvious that
networks and hierarchies both have access path dependence built
into their structure due to the restricted hierarchical arrangement
of the data structure. The data description methods are often so

complex that they cannot be used to describe a conceptual model.

The relational model, described by Codd (1970), has only one
basic construct, the relation. A relation is a two dimensional
table. A row corresponds to an object and is called a tuple. The

columns correspond to the properties of the objects and are called

Chapter 1 Introduction

attributes. The degree of a relation is equal to the number of
columns in the relation. A binary relation consists of two

columns, whereas a n-ary relation consists of 'n’ columns. This
tabular representation of data relationships is not dependent on
any specific physical implementation and, therefore proves to be a

good choice as a descriptive medium for the conceptual model.

Schmid (1977) points out that there are some semantic
difficulties with the pure n-ary relational model. The relational
model does not give any indication about the way in which the
relations are associated with each other. His model is represented
by objects (entities or entity names), object types (entity sets),
irreducible relations (relations which cannot be broken down any
further) called associations, and characteristics (descriptions of
objects). The division of associations and characteristics is the

same as the separation of relationships and properties.

Thus, for example, ’'employee’ is an object type, ’'employee-car’
is an association, whereas, ’employee-weight’ is a characteristic.
Schmid argues that the distinction helps in formulating consistency
rules. For example the characteristic ‘employee-weight’ has no
significance without the object type ‘employee’ whereas, because
there 1is an association defined over ’employee’ and ’car’, a ’car’
can exist independently without being associated with any other
object type. A number of data models have been developed using
this concept, for example, those proposed by Benci et al (1976) and

Moulin et al (1977).

10

Chapter 1 Introduction

Hall et al (1976) argue that the best conceptual model would be
formed by combining the characteristics of the relational model
with the entity model. Their model consists of entity sets, value
sets which are sets of values from which certain objects and their
properties can draw their actual values, and irreducible relations.
For example, ’‘employee’ 1is an entity set and the set of integers
from 18 to 65 is a value set from which the property ’‘employee-age’
can take its value. Hall et al do not advocate the invention of a
set of unique names for each entity set, but they do realise that
any set of attributes will not give unique identification. Thus
their model includes entity surrogates within a relational
framework. Surrogates are collections of unique objects which act
as the representatives of the objects in the outside world. To
refer to an object in the model, we have to refer to its surrogate
using one or more properties to uniquely identify the surrogate
required. The major innovation of this model is its recognition
that n-aries should be reduced to the size of basic facts. Hall et
al put forward a mathematical process which will reduce n-ary
relations to basic facts. They believe that irreducible n-aries
have advantages over pure binaries because information about an
object type can be represented by a single n-ary relation, whereas
it will take more than one binary relation to represent all the

properties of an object type.

Bracchi et al (1976), on the other hand, argue that n-ary

relations contain a number of basic facts mixed up in an

11

Chapter 1 Introduction

indistinguishable manner and thus do not represent the semantics of
the real world. One crucial requirement of a conceptual model is
stability, that 1is, the characteristic of being unaffected by
changes in the internal or external model. To ensure stability,
they argue that the conceptual model should be made up of small
unstructured concepts. Their model 1is based on binary logical
associations. The structures of the binary association do not
follow from functional dependencies. Functional dependency defines
the functional mapping between two entities, that is, when the
value of the first entity is known, the value of the other entity
can be determined from that value. Not all relations in the real
world are binary in nature. Non-binary facts are represented by
internal sets of concepts which have no meaning but link together
two other concepts. This introduces many pseudo entities in the

model.

In the Entity-Relationship (E-R) model of Chen (1976), real
world information 1is represented by entities and relationships.
This 1is a unification of the views held by the relational, network
and entity set model. In his model, objects of interest are known

as entities which can be classified into entity sets having the

same properties. Entities are associated with each other by a
relationship. Attributes define the properties of entities as well
as relationships. This model does not allow the representation of

relationships between two relationships or between an entity and a
relationship. Howe (1983), Robinson (1985) and many others argue

that the semantics of data and functional dependencies are better

12

Chapter 1 Introduction

represented in this model. The graphical notation consisting of
boxes and arrows used in the E-R model was first developed by
Bachman (1969). Senko et al (1973) attempted to formalise this
notation and produced their entity set model. Approaches developed
by Bachman and Daya (1977) and Palmer (1978), which were proposed
after Chen, are modifications of this E-R approach. View
integration, that is 1integrating all wuser views to form a
consistent global view, 1is part of Chen’s conceptual design
process. Other methods proposed by Navathe and Schkolnick (1978),
Yao (1977) and Yao and De Jong (1978) also consider view
integration as a part of the conceptual design. Lum (1979), on the
other hand, advocates that view integration should be carried out

later.

Falkenberg (1976) argues that the distinction between
relationships and properties on the conceptual model level results
in a lack of evolvability. He points out that some events may
change the state of some facts in the real world. A property may
become a relationship or vice versa. For example, in a hospital
information system, if we had a situation where a particular
"sister’ 1is responsible for a particular ‘ward’, we could then say
that the attribute ’sister in charge’ of a ward "X" is sister "Y".
If the hospital rule changed to a situation where a ’'sister’ can be
responsible for many wards and a ‘ward’ can be the responsibility
of many ‘sisters’ then the attribute ’‘sister in charge’ does not
apply any more. Now, there 1is a relationship ‘in charge of’

between ’sister’ and the entity ‘ward’. The data manipulation

13

Chapter 1 Introduction

functions which deal with these facts will not work any more.
Falkenberg has introduced a simple model with two basic concepts,
namely object and role. There is no distinction between
relationships and properties, but the model allows semantically

irreducible n-ary associations.

A rather unusual approach, was put forward by Grotenhuis (1976).
His conceptual model <consists of a family of relations called
info-spaces, which are defined on component domains, and a family
of relations between info-spaces called info-structures. The
concepts of info-spaces and info-structures are similar to the

concepts of entities and relationships respectively.

Interpreted Predicate Logic (IPL) by Gray (1984) wuses two
concepts for modelling information, namely, entities and ideas.
The concepts of attributes and entity types are not recognised. A

relationship 1in other approaches is replaced by a proposition about

entities. An entity set 1is replaced by a proposition about two
entities. IPL defines the conceptual model in a formal language
based on predicate logic. This is a set of expressions which

represent the logical meaning of the data and the constraints that

are placed on this data.

Orman (1984) has based his Familial Model of Data on the
algebraic theory of sets. Each data model is a collection of sets
and families of sets, from which the name derives. Each set is a

named collection of objects playing a unique role specified by the

14

Chapter 1 Introduction

name, as for example, student or course. A family of sets is
created by indexing one set by another and partitioning one of the
sets. Thus each set of the family contains the students enrolled
in a particular course. The model can describe object membership
and relationships. Two types of abstract hierarchy are allowed -
generalisation, involving subset and superset relationships and

aggregation where several relationships are treated as one.

Most people treat the conceptual model as a finite, varying
collection of entities and associations. The importance of having
a conceptual model that evolves through time has been discussed.
Nothing has been said about how such a model itself should treat
the concept of ’‘time’. This can be included by introducing a time
domain in the model. Some models keep different time versions of
the same object system and deal with it as a change in
relationships or properties. Benci et al (1976) incorporate time
in the conceptual model by introducing data items or time domains
in relations where necessary. Bubenko (1977) deals with the
temporal dimension by introducing new classes of entities known as
information objects which serve as a means of storing knowledge
about the current states of associations. He feels it is not
practically feasible to hold all the time versions of an
association in the conceptual model. Information about an
association should be represented in the model by a finite number
of information objects. In systems where it is necessary to store
historical information, this approach 1is not enough. Bubenko

suggests that one way to overcome this problem is to represent, by

15

Chapter 1 Introduction

stored information objects, all statements about external events
which affect the model. Time will be a parameter for these

statements.

Sundgren (1978) points out the importance of the dynamic aspects
of the model for advanced control systems. The basic building
element of his model is the e-message which gives details about an
elementary situation in the system. The e-message has three
components <o,a,t>, where 'o’ 1is a reference to a set of objects
(entities), ’a’ is a reference to a relationship type or a property
value, and ’t’ 1is a reference to a time when this relationship or

property is valid.

After reviewing a number of conceptual models it is difficult to
conclude which is the best model. McGee (1976) points out that the
implementation criterion of the model is very important to the
user. The model should not be difficult to implement but on the
other hand should give a good performance. Not all the criteria
for a good conceptual model may be met at the same time. One
criterion can be met only at the expense of another. If a user
wants a simple implementation, he might have to forgo some other
objective to achieve it. It is up to the to the data base
administrator to decide what is important to his needs and choose

the evaluation criterion of the model.

As for approaches considering entities and relationships, we

have Entity-Relationship modelling, binary relationships,

16

Chapter 1 Introduction

interpreted predicate 1logic and the familial model approach. The
latter two are difficult to model but are more powerful and support
more semantic information. Interpreted prediéate logic can be
difficult to translate into a DBMS because it is difficult to map
this to a record structure, which is the structure supported by
most DBMS. The familial model is difficult to use as it relies on
complex mathematical theory. However it produces natural and
semantically rich models, supports diverse user views and includes

a direct route to a DBMS via its own data retrieval language.

The Entity-Relationship approach is popular because of its
direct mapping of attributes, entities and entity types on to

a DBMS’s fields, records and record types respectively, and is easy

to model. However, it does not model dynamic business aspects and
has an inflexible approach to entities, attributes and
relationships. In both entity and binary relationship approaches,

the types of rules supported are restricted.

1.3.2 Mapping

Once a conceptual model that supports all users’ views is
obtained, it 1is necessary to map this data representation on to a
data structure of the target DBMS. The mapping should be such that
there is no 1loss of information and the original processing
specifications are satisfied. This phase 1is dependent on the

1ogical structure of the target system and is termed the logical

17

Chapter 1 Introduction

mapping. Conceptual modelling and 1logical mapping are based on
Information Structure Perspective (ISP). When the target DBMS has
been selected it is necessary to analyse the physical properties of
the DBMS and the physical mapping is governed by the physical data
modelling features available in that system and the usage pattern

of the data. This is based on Usage Perspective (UP) data.

In general it can be said that we should be able to map the
conceptual model on to ény physical structure dictated by the
target system. This involves mapping the structured conceptual
model on to storage structures oé a particular DBMS and defining
access methods, depending on the options available in that DBMS.
The objective 1is to optimise the data access for the applications
so that the functions are accomplished in an acceptable period of
time. This process 1involves dealing with problems 1like file
structuring and access path selection. The performance of a system

is affected by the accuracy of the mapping.

Lusk and Overbeek (1981), Sakai (1980) and Tsao (1980) have
outlined a few steps involved in translating Entity-Relationship
diagrams into hierarchical and IMS logical DBMS. Current research
is oriented towards automating the data base design process or
designing tools which will aid data base design, particularly using

relational DBMS.

18

Chapter 1 Introduction
1.4 Design aids

The process of data base design can be very time consuming,
particularly for large and complex systems. A survey performed by
Crocker (1984) shows that analysts find the technical skills
required for file design, file organisation and file access the
most 1important to system development. Whether we accept the result
of this finding or not, it is evident that file design or data base
design 1is a crucial stage in systems development and the time spent

by analysts at this stage needs to be considerable.

Tools are being developed to aid data base design. Howden (1982)
in his survey, finds that tools usually offer graphical aids to
document conceptual models and some automated functions which
reduce the development time and enforced standards. Martin and
McClure (1985, pp 2) point out that some of the tools have made the
development process more productive. They argue that

"The computer enforces discipline and permits types of

cross-checking, calculation, and validity checks that human

beings often do not apply".

Brown (1982) finds that most of these tools are being used by

the designers.

Reviewing the arguments put forward by Howden (1982),
Brown (1982), Martin and McClure (1985), Parkin et al (1987) and
many others, it can be concluded that tools to convert the
analyst’s data model automatically into an information system on a
particular DBMS will have several effects, viz:

19

Chapter 1 Introduction
a) Reduce development time and cost for information systems.

b) Minimise the possibility of the analyst’s model being
misinterpreted because he will create the system rather than

the programmer.

c) Offer the analyst various software tools for structuring the

data model.

d) Ensure that a specific method is being followed and that
definite steps are being taken in a design process by

providing guidelines in what can be a very complex process.

e) Introduce and enforce standards if they are used

consistently.

f) Improve communications between analysts, designers,
users by providing a common, unambiguous means of

communication.

Argus, described by Stucki and Walker (1981), is a system that
supports the creation and modification of data flow diagrams and

produces structure charts for design.

Braegger et al (1985) have developed an interactive data base
design tool called Gambit. It is based upon an extended relational

Entity—Relationship model. The description of data structures and

20

Chapter 1 Introduction

maintenance of consistency are aided by using Modula/R (a data base
programming language). An interesting aspect of Gambit, in terms
of data analysis, is that it allows design testing of data bases
via a prototype facility. The prototype is a model of the intended
data base and provides the facility of checking that the designed

data base will fulfil the stated requirements.

Chen (1980) has developed a graphic based system that aids the
generation of E-R diagrams. The system provides operations for
creating and manipulating objects in the model. The system offers
two types of operations - one type to deal with the creation and
manipulation of objects in the model and the other for controlling
the display of the model. The purpose of the system is to reduce
time spent on drawing and redrawing models. The tool is intended

for designers familiar with E-R modelling.

GDOC by Ferrara and Batini (1984) is a tool for computer-aided
design of data base applications. It provides an interactive
specification of conceptual models and automatic generation of
physical data bases for dBase II environments. Graphics facilities
are available for drawing E-R models and the automatic generation

of physical data bases provides useful prototyping facilities.

Information Systems Designer (INSYDE) by King and McLeod (1985)

is an experimental software system which guides the designer

through the conceptual model design, but it is not very useful as a

21

Chapter 1 Introduction

general data base design tool as it is oriented towards office

systems applications.

Data Base Design described by NCC (1980) is a computerised tool
which may be used for view integration and DBMS mapping. It is an
IBM product aimed at its hierarchical DBMS (IMS). It can also be
used to analyse data requirements for completeness, redundancy and

consistency checking.

August, by Davis and Arora (1985), is an experimental expert
system which can be used to translate a conventional file system
into a conceptual E-R model which can then be translated into a
commercial data base. It is a set of modules written in Prologue

and at the time of writing worked only on Cobol files.

Williams et al (1986) have developed a system to assist a data
base administrator in the tasks associated with the restructuring
of simple data bases. First, the pattern of usage is monitored by
logging every query. This information is used to produce a set of
statistics. The statistics are then used to detect areas where

data base restructuring would improve performance.

Currently the trend of research is toward developing Integrated
Project Support Environments (IPSEs), which are intelligent,
knowledge based tools which will advise designers about the method
to be wused, help with design decisions and automatically perform

the tasks within the design phase. Majic, by Sutcliffe et al

22

Chapter 1 Introduction

(1987) and Intellipse, by Bader et al(1987) fall 1into this

category.

Whilst the wultimate objective of any work involving IPSEs is to
automate all the stages of systems design, current efforts are
limited to automating various stages of the cycle. Although these
tools are contributing towards the design of a system, the full
potential of the tools will only be realised when they are
integrated with other tools which automate the complete life cycle
of a system design project. The process of integration will be
successful if these tools adhere to similar standards. Esprit’s
Portable Common Tool Environment (PCTE) (1986) is aiming to set
these standards. Many TIPSE manufacturers are developing their

systems to adhere to PCTE’s interface.

Tools to support particular design methodologies are being
developed by various commercial organisations. IEF from James
Martin Associates, IEW from Arthur Young Inc, AUTOMATE PLUS from

LBMS, are examples of such tools.

1.5 Objectives of this research

Wasserman (1980) describes a data design methodology as a
collection of tools and techniques which can be applied normally to
successive data base development projects. Boehm (1976) and
Wasserman (1980) point out that many of the data base design

methodologies known are based on software design methodologies.

23

Chapter 1 Introduction

The overall aim of this research work was to develop
computerised tools to aid a data base design methodology. As there
was still no agreement on which was the best approach for data base
design, it was decided to choose an approach which was based on
accepted principles. The design approaches of Kahn (1976, 1978),
Tozer (1976), Chen and Yao (1977), Gerritsen (1975,1978) and
CACI (1980), and the view modelling and integration concept of
Navathe and Schkolnick (1978), Navathe and Gadgil (1980) and data
analysis methods of Davenport (1978), Palmer (1978) and

CACI (1980) have influenced this research.

The tools vere not intended for data base users, but
professionals who will be involved in designing and implementing a
data base. The users of the tools will include analysts, data base
designers, data base administrators, etc. In this report, the
terms analyst, designer and data base administrator have been used
to refer to these users. It was intended that the tools would be

able to do the following:

1. Reduce the time consumed in repetitive, laborious tasks such
as modifying models, updating documentation, etc., thus

saving development cost and time.

2. Cross check different parts of the design and check for

consistency, thus reducing the possibility of human errors.

24

Chapter 1 Introduction

3. Simplify the design process so that the tools can be used by

non-experienced designers for data base design.

To be able to fulfil the specified goal, four primary objectives
were set. The first was to study the various data modelling
techniques proposed and then to select one which best suited the
objectives which follow. A slight wvariation of Chen’s Entity
Relationship (E-R) approach was chosen because it captured the
structural constraints supported by the types of popular DBMS,

namely relational and CODASYL.

The second objective was to examine the factors that governed
the mapping of the conceptual model on to any 1logical model. This
phase is a formal process and thus it is possible to formulate
rules for mapping, if the logical structure of the target data base
system 1is known. It was hoped that it would be possible to define
formal rules that would be involved in mapping an E-R conceptual

model into the data structures of the well known DBMS.

The performance of the implemented system depends very much on
how well it 1is physically designed. The performance can be
modified by influencing the physical structure of the data base to
suit the users’ needs. Gane and Sarson (1979), Orr (1976),
Yourdon and Constantine (1979) advocate that minimisation of I/0

time is an important issue to be considered in this phase.

25

Chapter 1 Introduction

The third objective of this research was to be able to specify
an effective solution for organising the data base files depending
on usage. A similar concept has been applied by Hoffer (1975),
Hoffer and Severance (1975) and Clarke and Hoffer (1979) in their
record partitioning problem. The steps in the design process
specified so far are free from any particular implementation. The
next phase of the data base design is to implement physically the
resultant data structure obtained from the previous phases on to a

particular DBMS package.

The fourth objective was to study the logical and physical
characteristics of a relational type and a CODASYL type DBMS and
define algorithms to map the data model obtained on these target
DBMS. It was hoped that it would be possible to evaluate the

performance of the implemented data base system.

1.6 How far the objectives have been met

Various data modelling techniques have been examined and a
variation of Chen’s E-R approach (see section 2.4) was chosen to
represent our data model. This technique was used at the George
Eliot Hospital, Nuneaton, to determine the information structure of
part of a hospital. This data model was used to test the logical
and physical mapping carried out in the following phases.
Interactive programs were written which would communicate with the

data analyst and store the result of the data analysis in the form

26

(O PAGE

2/

Chapter .1 Introduction

base can be optimised. Much will depend on the nature of the
project or application. Application development time, execution
time, data storage, user level of expectation and data flexibility
have been identified by Inmon (1981) as some of the options on
wvhich a data base design can be optimised. He also points out that
optimisation of data base design on storage and users’ level of
expectation involves creating complex data structures which in turn
introduces complexity to the application programs. Over-
optimisation of developmentvtime usually results in problems during
implementation. In this work emphasis was put on producing a
flexible system which was efficiént in supporting the known
functions. The performance of the system can be influenced by
organising the data to suit the usage pattern. Organising the
data to allow fast access for the most critical processes so as to
improve the performance of the data base was the chosen option for
this research. The details noted about the functions were used to
make decisions on how to organise the files and what access methods
to use. Programs were written which took these factors into
consideration and assigned the best feasible support to the paths

which were most frequently used.

The physical and logical characteristics of relational DBMS,
such as INGRES and MIMER, and CODASYL types, such as VAX-11 DBMS,
were studied. Rules for mapping the conceptual models on to these
DBMS were formulated. The resultant relational data model obtained
from the previous phases were implemented on INGRES and MIMER.

Progfams were written which took the logical model and the physical

28

Chapter .1 Introduction

characteristics of the access paths to produce the data definition
file description for each of the relational DBMS. Algorithms have

been defined for mapping to a CODASYL DBMS.
1.7 Outline of the structure of the thesis

Chapter 2 describes the data analysis technique used in this
project. It also describes how this technique was applied in a
hospital environment to form the conceptual model for part of the
hospital and contains the description of the programs (ENTEST.P and

RELTEST.P) that record the results of the data analysis.

Chapter 3 describes a functional analysis technique and how this
approach was applied in the hospital environment so as to deduce
the usage pattern of the data. It also describes the programs
(FUNCTEST.P and ANALYSIS.P) that record the result of the
functional analysis and examines this result to produce the usage

pattern of the entities, attributes and relationships.

Chapter 4 covers logical design which considers the side effects
of updating an E-R model. This chapter discusses the factors that
govern the mapping from the E-R model to any target DBMS logical

model.

Chapters 5 and 6 discuss the issues for mapping an E-R model
on to a relational and a CODASYL type data model respectively. They

describe the algorithms for performing these operations.

29

Chapter 1 Introduction

Furthermore, they describe the programs (RELMAP.P and CODMAP.P)
that follow these algorithms and produce relational and CODASYL

models.

Chapter 7 discusses the factors that govern the physical storage
structure of data. Different storage options are analysed and an
automatic labelling algorithm is deduced which produces an
efficient storage structure for the data, depending on usage
pattern. The description of the program (LABEL.P) which performs

the labelling is also included.

Chapter 8 describes two relational DBMS, namely INGRES and
MIMER. The factors that govern the implementation of the
relational model on to these DBMS are considered and an algorithm
is put forward which facilitates these implementations. Programs

(ING.P and MIM.P) perform the implementation.

Chapter 9 describes a CODASYL type of DBMS, namely VAX-11 DBMS

and an algorithm is put forward which can be used as a software

tool to facilitate the use of CODASYL DBMS.

Chapter 10 is the concluding chapter which discusses the

contributions of this study and areas for future work.

30

CHAPTER 2

DATA ANALYSIS

2.1 Introduction

A computer based information system should provide users with
relevant information in a form that is comprehensive and accurate.
In order to achieve this, it is necessary to perform a systematic
analysis of the structure of the organisation and the information
requirements of the organisation for which the system is being

designed. Such an analysis yields the conceptual data model.

Kent (1978) argues that data models are ineffective in
representing information about the real world. He argues that data
models are rather inflexible and fail to portray the subtle
differences in the complete meaning of the real world. The author
of this report recognises that though one would like a model that
captures the complete meaning of the real world, such a model is
not feasible. The model has been used to capture appropriate
amount of meaning which is relevant and appropriate for the purpose
required. For this research, the data model is used to structure
data so that it can be manipulated by a computerised information

system.

31

o "ﬂlllIlIIIlIIl.llllll..lIIIIIIIIIIIlIIIIIIIIIIIIIIIII'IIIII.IIIII

Chapter 2 Data Analysis

2.2 Conceptual data model

A conceptual data model describes the data resource of the
organisation and also specifies how the data should be used. The
data model should be independent of the computer system which is
used to store and access the data. The model should not only
include the current view of the data but also how it might be used

in the future.

Various conceptual data modelling techniques exist and they were
discussed in the previous chapter. A variation of the E-R approach
of Chen (1976) was chosen to represent our data model. Chen’s
model is widely used in the commercial world. It is independent of
any particular implementation, but captures the structural
constraints which could be supported by the relational and CODASYL

types of DBMS.

The concept of a weak entity, that 1is, an entity which may

depend on other entities for it existence, and entities with ID
dependency, that 1is, entities which cannot be identified by their
own attributes, have not been used for this project. Instead, the

concept of membership class has been introduced. The explanation

for membership c¢lass 1is given in section 2.3.2. The concept of
membership class was necessary to reduce the number of relations
obtained in the relational model and to decide the
insertion/retention clauses for the CODASYL model. Moreover, it

dealt with the concept of weak entity and ID dependency.

32

Chapter 2 Data Analysis

2.3 Chen’s Entity-Relationship(E-R) model

The basic components of Chen’s E-R model are the entity and the

relationship. An entity can be a person, concept, event or any

object that can be distinctly identified. A relationship defines
the association between entities. Entities with common properties

are classified into entity sets. The role of an entity in a

relationship is the function performed by the entity. For example,
'FATHER-SON’ is a relatiénship between two 'PERSON’ entities,
'FATHER’ and ’'SON’ are roles of these entities in the relationship.
Information - about properties of eﬁtities and relationships are
expressed in terms of attributes and values. Values are classified
into different value sets, such as ’COLOUR’, '"INCHES’ etc. An
attribute is the name given to the mapping between an entity and a
value. For example, an attribute of entity set ’'PERSON’ may be
'COLOUR OF HAIR’ which maps to the value set 'COLOUR’. An
attribute or a group of attributes which provides a one-to-one
mapping from the entity set to the corresponding group of value
sets 1is known as the entity key. Entities which cannot be uniquely
identified by their own attributes but use their relationship with
other identifiable entities as a form of identification are known

as weak entities. For example, a 'TOWN’ may not be uniquely

identified unless the 'COUNTY’ 1is stated. Furthermcre, entities
which depend on other entities for existence are said to have

existence dependency on others. Most weak entities are associated

with existence dependency but existence dependencies are not

necessarily associated with weak entities.

33

Chapter 2 Data Analysis

2.4 Modified Entity-Relationship(E-R) model

In our Entity-Relationship model, real world information is

represented by entities and relationships. Objects of interest are

known as entities which can be classified into entity sets or types

having the same properties. Entity types are associated with each

other by relationship types. In this report entity types and
relationship types are often referred to as entities and
relationships respectively. Any number of entity types may
participate in a relationship type. Relationships between two

entity types are adequate for modelling most real situations.
Moreover, all relationship types between more than two entity types
can be broken down into a number of binary relationships, and the
original relationship type can be represented by an entity type.
For example, the relationship between ‘SUPPLIER’, ‘PART’ and
"CUSTOMER’ (Figure 2.1) can be represented by an entity type
" CONTRACT’ and three binary relationships between entities
'CONTRACT’ and 'SUPPLIER’, between entities ’'CONTRACT’ and ’PART’
and between entities /CONTRACT’ and 'CUSTOMER’ (Figure 2.2). In
this project, most of the relationship types have been represented
as binary relationships. However, the mapping rules designed are

able to handle relationship types which are not binary in nature.

34

Chapter 2

PART

SUPPLIER

Figure 2.1 N-ary Relationship

CUSTOMER

PART

Data Analysis

CUSTOMER

CONTRACT

SUPPLIER

Figure 2.2

Binary Relationships

Chapter 2 Data Analysis

A uniquely identified entity from an entity type is known as an
entity occurrence. For example, DR. COX is an entity occurrence of
entity type 'CONSULTANT’. An instance of a relationship type is
specified when the individual entity occurrences taking part in a
relationship type are known. M.SMITH is ’'TREATED BY’ DR. COX is an
instance of the relationship 'TREATED BY’. Attributes define the
properties of entities as well as relationships. ’Speciality’ is an
attribute of the entity type 'CONSULTANT’ describing his field of
expertise. The attribute or group of attributes that uniquely
jdentifies an entity occurrence 1is called the identifier of the
entity type. 'Emp-no’ is the identifier for the entity type

"CONSULTANT" . The identifier of a relationship is formed from the

jidentifiers of the entities participating in the relationship,
hence the identifier of the relationship ‘TREATED BY’ is

"emp-no,pat-no’.

2.4.1 Degree of a relationship

There are three types of degree of a binary relationship. They
are one-to-one (1l:1), one-to-many (l:n) and many-to-many (m:n). If
Rxy represents a relationship between the two entity types Ex and

Ey, then we can specify the degree of Rxy in the following ways.

One-to-one:- Rxy will be of degree 1:1 if an occurrence of Ex is
associated with one occurrence of Ey at the most, and an occurrence

of Ey is associated with one occurrence of Ex at the most.

36

Chapter 2 Data Analysis

One-to-many:- Rxy will be of degree 1:n if an occurrence of Ex 1is
associated with more than one occurrence of Ey and an occurrence of

Ey is associated with not more than one occurrence of Ex.

Many-to-many:- Rxy will be of degree m:n if an occurrence of Ex is

associated with more than one occurrence of Ey and vice versa.

The degree of a relationship type which shows association
between more than two entity types Em, En,....... Ez can either be
represented as 1l:1l:.......:1 or m:n:......:z. The first option
implies that one occurrence of Em is associated with one occurrence
of each of En,....... Ez. The second option implies that one
occurrence of each of the entity types are associated with more
than one entity occurrence of the other entity types. In practice,

it seems that most non-binary relationships have a degree of

The features of E-R models described so far are the same as
those described by Chen (1976). Date (1986) argues that Chen’s E-R
model is not a data model but "nothing more than a collection of
data structures (actually a collection of relations of various
kinds); in other words, the manipulative and integrity aspects are
virtually ignored". He states that the popularity of an E-R model
is due to the diagramming technique used to represent the data
structures. The concept of 'membership class’ was introduced in our

model to address the manipulative and integrity aspects.

37

Chapter 2 Data Analysis

2.4.2 Membership class

Howe (1983) describes two ways in which an entity can
participate in a relationship. From the analysis of the
organisation, we can sometimes specify that every occurrence of an
entity type must participate in a certain relationship type. An
entity occurrence of that type cannot exist if it does not take
part in that relationship. The membership class of that entity
type 1is classified as obligatory for that relationship type. On the
other hand, if it is not necessary for every entity occurrence of
an entity type to participate in that particular relationship type,
then the membership class of that entity type is classified as

non-obligatory for that relationship type. The obligatory

membership can explain the concept of ’weak entity’. An entity Ex
will be a weak entity if its existence depends on another entity,
say Ey. To represent this information in this model we can set up
a relationship Rxy between the entities Ex and Ey, and state that
the membership class of the entity Ex is obligatory in that
relationship. Entity type Ex will not be able to exist unless it
takes part in the relationship Rxy. An example is given in

section 2.3.

Entities which cannot be uniquely identified by their own
attributes but use their relationships with other entities as their
form of identification, are said to have ’'ID dependencies’. For
example, entity /CLINICAL TIME SCHEDULE’ needs the identifier of

'CLINICAL SESSION’ to be properly identified. The attribute ’'TIME’

38

Chapter 2 Data Analysis

on its own would not identify an occurrence of CLINICAL TIME
SCHEDULE’ . It is felt that there is no reason for introducing a
special type of entity for ID dependency. Instead, the identifiers
of those entities can be formed by extending the identifiers of the
entities that they are related to. In our hospital environment,
rCLINICAL TIME SCHEDULE’ 1is such an entity and its identifier is

CLINIC-NO, DATE, TIME. Its dependence on ’'CLINICAL SESSION’ is

represented by the fact that its identifier is formed from the

identifier of 'CLINICAL SESSION’, that is CLINIC-NO, DATE. The

membership class of the entity with the borrowed identifier always

has obligatory membership in this relationship.

A similar concept to membership class has been described by
Robinson (1985). He used the terms mandatory and optional. These
terms are similar to those used in CODASYL models. To avoid
confusion, it was decided to use Howe’s terminology. The use of
the membership class will be obvious when the rules for mapping the

E-R model on to relational and CODASYL structures are defined.

2.4.3 The diagrammatic model

In our hospital data base ’PATIENT’, ' CONSULTANT’, ’'CLINICAL
SESSION’ etc., are examples of entity types. 'PATIENT TREATED BY
CONSULTANT’ and "CONSULTANT IN CHARGE OF CLINICAL SESSION'
represent the relationships between the entity types ’PATIENT’ and
'CONSULTANT’ and ’CONSULTANT’ and ’'CLINICAL SESSION’ respectively.

If the organisation rules are such that a patient could be treated

39

Chapter 2 Data Analysis

by more than one consultant and a consultant can treat more than
one patient, then the degree of the relationship ’'TREATED BY’ 1is
m:n. For the other relationship example, if we found that a
consultant can be responsible for more than one clinical session,
but a clinical session can only be in the charge of one consultant,
then the degree of the relationship ‘IN CHARGE OF’ is 1l:n.
Moreover, if the organisation rules state that any patient should
be treated by one consultant at least, but it is not obligatory for
a consultant to treat a patient, then the membership of the
'PATIENT' entity type is obligatory and the ’CONSULTANT’ entity
type is non-obligatory in the relationship ’'TREATED BY’. All this
information can be represented as an Entity-Relationship (E-R)

diagram (Figure 2.3).

PATIENT

Obligatory
m
n TREATED BY Non obligatory

CONSULTANT

IN CHARGE OF

CLINICAL SESSION

Figure 2.3 An E-R Diagram

40

Chapter 2 Data Analysis
2.5 Data analysis

Data analysis consists of a series of techniqueé for identifying
and analysing the data elements of an organisation and arranging
them to form a structured data model (conceptual model). To derive
a conceptual model, which is represented as an E-R model, we would
need to identify the entity types, the relationships between these

entities and the attributes of the entities and the relationships.

The phases to be followed for data analysis in this project were

adopted from. CACI (1980) and Rock-Evans (1981) and are as follows:

Preliminary.

Define the area for analysis.

Entity modelling.
Identify the entities.
Identify the relationships between entities.

Consider entity identifiers.

Detailed analysis.
Identify attributes of each entity.
Check for hidden or redundant relationships.

Refine the entity model.

The data analysis process described above was applied in a

41

Chapter 2 Data Analysis

hospital environment to formulate the conceptual model for part of
a hospital. The hospital is wused as an application area to

ijllustrate the use of the tools constructed in this research.

2.5.1 The application area

A hospital information system is a communication and data
processing system which receives, stores and processes data
relevant to patient care (clinically related functions), patient
administration and hospital management. The objectives of a

hospital information system are to:

- improve quantity, quality, utility and speed of medical data
communication

- communicate individual patient data amongst the professionals
providing medical care and hospital service and
administrative departments

- perform scheduling and booking of various hospital resources

- store data for administrative and business functions

- support clinical and health services research

- provide planning for hospital and medical services.

Better information is the key component for achieving the
objectives identified above. Many application-oriented data files
are not sufficient for the information flow. Data bases that serve
many of the application areas in the organisation are more

appropriate. The problem of communicating information is not

42

Chapter 2 Data Analysis

unique to a hospital information system. The objectives of
information systems 1in other disciplines are very similar, the key
being the timely delivery of relevant information to the relevant

people.

2.5.2 Data analysis for the hospital

The data analysis approach discussed in the previous section was
carried out at the George Eliot Hospital, Nuneaton. This is a
hespital in a small industrial town. It supports everyday patient
care, but patients requiring sophisticated treatment and diagnosis
are sent to the nearest teaching hospital. The hospital is
partitioned into departments according to the job they fulfil. The

departments fall into two categories:

1) Patient care and patient administration, and

2) Organisational management.

Patient care includes departments such as outpatients, medical
and surgical wards and pathology laboratories. Personnel, housing
and the hospital store are included in the organisational

management category.

In the first stage of the analysis, the purposes of the
information system were established. It was decided to look into

the area of patient care and administration. Information

43

R e L

Chapter 2 Data Analysis

concerning organisational management could be incorporated into the

system at a later stage.

Having set the scene, it was necessary to decide on the areas to
be examined. These will be referred to as ’‘data areas’. It was
important that these areas were discrete, had definable boundaries,
vere independent of specific applications and were small enough to
be manageable. The different departments were the obvious choice

for the data areas and proved to be satisfactory.

Once the areas to be analysed were defined, the next step was to
determine the crucial entities and the relationships between them.
The entities and the relationships were identified by interviewing
the head of the department and also by studying the existing
documents which consisted of numerous hand-written forms.
Initially, the obvious entities and relationships were recognised,
but they did not produce a complete entity model. Data analysis is
an iterative process and it needed a few iterations before a
complete picture was obtained. Only when a satisfactory model was
obtained were the attributes considered. The model was checked for
redundant and hidden relationships and refined until a satisfactory

final version was achieved.

Care was taken that all known elements were defined as entities
or attributes. An object is classified as an entity if there is some
information about it, it is of significance itself, it has a means

of identification and there are connections between it and other

b4

YT T

Chapter 2 Data Analysis

entities. If there 1is any doubt about any object, it is safe to
classify it as an entity and, after further analysis, it will
become apparent whether or not the right choice was made. The
analysis for one data area (the Record Office) is described in
detail. For the other data areas, the entity models obtained are

described in Appendix A.

2.5.2.1 The Record Office

The Record Office was chosen as the first data area to be
analysed. The Record Office was chosen as the data area which was
analysed first because it was apparent that this department was
concerned with information which overlapped with the other areas
under analysis. The entities obtained for this area gave some
indications of the entities to look for in the other data areas.
This department is concerned with the basic patient record, i.e.
patient identification, together with clinical information such as
diagnosis, operations performed, nursing reports and medical
history. The department 1is also responsible for maintaining the
lists of patients awaiting admission to the hospital or the
outpatients’ clinics. The main objective is to enable consultants
to select patients from their waiting 1lists in a way that
efficiently wutilises the hospital resources and minimises delay.
The selection technique depends on the priorities assigned to
patients, depending on the seriousness and urgency of the patient’s

condition.

45

.Il..--' 4‘__________________TI--III-II-II-l.......‘.

Chapter 2 Data Analysis

The entity types obtained from this department are:

PATIENT

CONSULTANT

DISEASE

OUTPATIENT WAITING LIST
CLINICAL SESSION
CLINICAL TIME SCHEDULE
BOOKINGS FOR WARDS’ BED
SURGICAL SESSION
SURGICAL WAITING LIST

ADMISSION WAITING LIST.

46

‘!IlllII-""_————_“*' U

Chapter 2 Data Analysis

The relationships between these entities are,

CONSULTANT AND PATIENT min
CONSULTANT AND CLINICAL SESSION 1:n
CONSULTANT AND SURGICAL SESSION 1:n
PATIENT AND DISEASE m:n
PATIENT AND SURGICAL SESSION m:n
PATIENT AND CLINICAL SESSION m:n
PATIENT AND CLINICAL TIME SCHEDULE 1:n

CLINICAL SESSION AND CLINIC TIME SCHEDULE 1l:n

PATIENT AND OQUTPATIENT WAITING LIST m:n
PATIENT AND SURGICAL WAITING LIST m:n
PATIENT AND ADMISSION WAITING LIST m:n
PATIENT AND BOOKINGS FOR WARDS’ BED l:n

CONSULTANT AND OUTPATIENT WAITING LIST l:n

CONSULTANT AND SURGICAL WAITING LIST 1l:n
CONSULTANT AND ADMISSION WAITING LIST l:n
CONSULTANT AND CLINICAL SESSION 1:n
CONSULTANT AND SURGICAL SESSION 1:n

47

Chapter 2 Data Analysis

The attributes for the entities identified are as follows:

PATIENT(pat-no, pat-name, pat-address, pat-category,

sex, date-of-birth, marital-status, next-of-kin,

blood-group, X-ray-information, reference, allergy)

CONSULTANT(emp-no, name, address, speciality)

OUTPATIENT WAITING LIST(W/L-no, speciality, selection-criteria)

CLINICAL SESSION(clinic-no, date, start-time, finish-time,

est:-new-pat, est:-repeat-pat, new-pat-booked,

repeat-pat:-booked, speciality)

CLINICAL TIME SCHEDULE(clinic-no, date, time, free/booked,

nev/repeat)

BOOKINGS FOR WARDS BEDS(bed-no, ward-code, date)

SURGICAL SESSION(session-no, date, start-time, max:-major-cases,

max:-minor-cases, major-cases-booked, minor-

cases-booked)

SURGICAL WAITING LIST(S-W/L-no, speciality, selection-criteria)

ADMISSION WAITING LISTS(A-W/L-no, speciality, selection-criteria)

48

Chapter 2 Data Analysis

The membership class of the entities taking part in the
relationships were also considered and is described in the E-R

diagram (Figure 2.4) drawn from these entities and relationships.

The other data areas analysed were the Pathology laboratory,
Pharmacy department, X-ray department, Wards and the Nursing
department. The entity models for these data areas are described in

Appendix A.

2.5.2.2 Merging data areas

Once the data areas were analysed, it was necessary to integrate
them to form a global entity model (Appendix B) which satisfied all
data areas. During this phase the inconsistencies in the data
areas vwere removed. These inconsistencies may have risen either
from one name referring to different components (homonyms). Thus,
for example, ' STAFF' can mean consultants, nurses and
administrative people. Inconsistencies could also have risen where
different names refer to the same components (synonyms). The
Pharmacy was frequently referred to as the Pharmaceutical
department. Entity models were integrated by superimposing the
identical entity types on the different entity models. The entity
types 'PATIENT’ and ’CONSULTANT’ appeared in most of the data
areas, so it was possible to merge the data areas by superimposing
the data models on these entity types. The global entity model

does not show the complete list of entities, but only those

49

7——'7 e

Chapter 2 Data Analysis

entities which are used to superimpose the different entity models.

The bold outlines in Figure B.1 show the various data areas.

BOOKINGS FOR
WARDS’ BEDS
.
<
OUTPATIENT
I DISEASE D~ +d PATIENT Do G| WAITING LIST
[L] ®
| Yy Y IYY i
K ——d A —7 [\
g A A
.) °
SURGICAL CONSULTANT ADMISSION
WAITING LIST WAITING LIST

L

AN
*
SURGICAL D CLINICAL
| SESSION b D SESSION
.
VAN

CLINICAL TIME
SCHEDULE

Figure 2.4 E-R Diagram for the Record Office

50

V—f -

Chapter 2 Data Analysis

2.6 Storing the result of the data analysis

All the entities and attributes which were identified in the
analysis stage were stored in a file. An interactive program,
'ENTEST.P’, had been written which interacts with the data analyst
and collects details about the entity. The details include factors
like the name of the entity, the number of attributes each entity
possesses, the primary key and the description of each of the
attributes. As nev entities are fed in, the program checks if the
entity already exists by comparing the entity name with the entity
names in the list. If it does, the program informs the analyst
that it already exists and does not attach it to the list of stored
entities. Otherwise, the program adds all the new entities to the
list of existing entities. In the later stage of the project,
information about how these entities were associated, their usage
pattern, etc., were fed into the system so as to facilitate the
implementation of the model on to the target data base management

sof twvare.

The 1list of entities and their properties are stored in a file
named ‘entfile’. This file also contains the number of entities in

the list.

The 1list of entities, ’entchart’, is represented by an array of

records named ‘entity’. Each ‘entity’ record contains the

following four components:

51

'!llllI-"'_"—_**' A ——————

Chapter 2 Data Analysis

ename a string of characters representing the name of
the entity

keycount an 1integer representing the number of attributes

vhich form the key for the entity

noatts the total number of attributes for that entity

entatt an array of strings representing the names of the

attributes.

The program first reads the file ’'entfile’ into ’entchart’ and
determines the number of existing entities in the file. The
program then finds out from the designer the number of new entities
to be inserted. For each entity the program records the number of
attributes, the names of the attributes and notes the attributes

which act as the identifier for the entity.

When the information about all the new entities is recorded, the

program writes the new 1list back into the file named ’entfile’.

The number of entities is also updated.

52

Chapter 2 Data Analysis

Another program, 'RELTEST.P’, had been written for this phase of
data base design, which interacts with the dafa analyst and obtains
information about the relationships identified in the data
analysis phase. The program gathers details about the
relationships and stores them in a file. On every occasion, when a
new relationship 1is introduced, the program documents the name of
the relationship and makes sure that no other relationship with the
same name exists in the file. If it does, then the program
notifies this to the analyst. Alternatively, it enquires the name
of the participating entities. Before it stores the name of the
participating entities it makes sure that those entities already
exist 1in the list of entities. The program also stores information
about the degree of the relationship, the membership class of the
entities taking part in the relationship and any attribute of the
relationship if it exists. This information 1is obtained by

interacting with the designer.

The program, 'RELTEST.P', documents the identified
relationships, their degree and their membership class, and stores

them in a file named ’relfile’.

The 1list of stored relationships is represented by ‘relchart’.
It 1is represented as an array of records named relation. Each

'relation’ record consists of the following components:

Iname a string of characters representing the name of

the relationship

53

Chapter 2 Data Analysis

entitya an integer acting as a pointer to the first

entity taking part in the relationship

degenta a character representing the degree of the first

entity taking part in this particular relationship

entityb an integer acting as a pointer to the second

entity taking part in the relationship

degentb ~a character representing the degree of the second

entity taking part in the relationship

norelatt the number of attributes for the relationship

relatt an array of strings representing the names of the

attributes for the relationship.

The program first reads in the entities from the ’‘entfile’ file.
It then reads in the total number of existing relations
(noofrelations) and the relations from the ’‘relfile’ file. For
each relation it reads in its name, pointers relating to the
entities taking part in the relationship, the degree and membership
classes of the participating entities, and the names of the

attributes of the relationship.

Once the existing entities are read .in, it finds out from the

54

r—_f .

Chapter 2 Data Analysis

designer the number of new relationships to be added. For each new
relationship, the above mentioned information is recorded. The
program checks from the entity file that the entities specified do
exist. Otherwise, it reports to the designer that such entities do

not exist and gives the designer the chance to rectify his error.

The complete 1list of relationships with their related
information 1is then stored back in the ’'relfile’ file. ’Formrel’
is another file in which the information regarding the
relationships is stored in a tabular form. The purpose of this is

to make it easy for the designer to look up the relationship table.

Examples of the dialogues for typical runs of the programs

"ENTEST.P’ and 'RELTEST.P’ are provided in Appendix D.

2.7 Conclusion

This method for data analysis involves understanding the
fundamental nature of the organisation. It is not possible to
produce rule-of-thumb techniques on how to go about finding the
entities and relationships. Much depends on the analyst’s ability
to communicate effectively with the members of the organisation.
The Entity-Relationship diagrams are easy to understand and this is
a good way to communicate with the user. This is a top down
approach, that 1is, the analyst 1is not burdened with unnecessary
details to start with. Initially his task is to identify the main

entities and relationships. Only when a good understanding of the

55

r*—g——‘

Chapter 2 Data Analysis

organisation is achieved, need he add the details.

As this approach requires a good understanding of the
organisation, the involvement of senior management is crucial. This
is always a possible source of problems because senior management
may wish to keep their involvement to a minimum. This gives rise to
another problem: junior staff tend to explain the organisation in
terms of the functions they fulfil. It is important and difficult

to separate the entity analysis from the functional analysis.

56

CHAPTER 3

FUNCTIONAL ANALYSIS

3.1 Introduction

The first activity in the analysis phase was to analyse the data
resources of the organisation and formulate the conceptual model.
The objective of such an analysis was to capture the data necessary
to satisfy the processing requirements of the organisation.
Therefore, having established an entity model, it was necessary to
check the model against the processes and the information
requirements associated with these processes. Functional analysis
is a series of techniques for understanding and documenting the

functions in the application area.

3.2 Functional analysis

Functional analysis is concerned with the understanding and
documentation of the basic activities of the organisation. In the
context of the work presented in the thesis, functions are
concerned with the processing of entities. Relationships provide
the access paths between the entities. The entities and
relationships involved in each of the functions are represented by

functional entity models. The functional entity models describe

57

)

Chapt

the

funct

er 3

sequence

ion.

f—

Functional Analysis

in which entities are accessed to satisfy a given

These models are used to verify that necessary data is

captured and required access paths to this data exist.

functions are analysed further to derive the
the functions and volume of the data retrieved,

critical applications and understand how records are

Consolidation of such information provides details about

pattern of the data which is used in the physical design

Phases of functional analysis

Identified
: frequency of
; identify the
accessed.
the usage
phase.
| 3.2.1
!
From the

above discussion it can be stated that functional

analysis can be subdivided into the following phases:

i.

ii.

Functional decomposition

Access

- identify the functions,

- decompose them until the transaction level is reached.

path analysis

|

determine the entities and relationships involved in
each function,

consider selection criteria for entities,

estimate function frequencies,

summarise as a functional entity model.

58

—<—

Chapter 3 Functional Analysis

iii. Preparation for design
- analyse the usage of attributes by functions,
- summarise the total usage of each entity type and

relationship type.

3.2.2 Functional analysis for the hospital

Functional analysis was performed for all the data areas defined
and described 1in the 1last chapter. A selection of the functions
performed by the record office is described here. The record office
is responsible for making all the appointments for each doctor. It
is responsible for dealing with the enquiries about inpatients and
outpatients. It creates the surgical 1list for all the surgical
consultants. It 1is responsible for providing the patient records

wvhen required.

For example, the function of fixing an appointment for a new
patient from the outpatient waiting list for a consultant will be
examined. This function can be decomposed 1into the following

sub-functions:

Select consultant.

Select his waiting list.

Select a patient from this waiting list applying the selection
algorithm.

Select a clinical session for this consultant.

Check whether a vacancy for a new patient exists.

Book the patient for the time scheduled for a new patient.

Delete the patient from the waiting list.

Include the patient among patients with outpatients appointment.

59

r——f aTSTSTSS—S—

Chapter 3 Functional Analysis
CLINICAL
CONSULTANT 7 Tt SESSION
+ |
OUTPATIENT CLINICAL
WAITING TIME
LIST SCHEDULE
! l
| 1
I PATIENT

Figure 3.1 Functional Entity Model (1)

The functional entity model shows the entities and access paths
which are necessary to fulfil this particular function. This model
is then compared with the entity model (Figure 2.4), derived from
entity analysis, to check that these entities exist and also to
check that the required access paths exist as relationships between
these entities. The functional entity model (Figure 3.1) shows
that the conceptual model 1is capable of dealing with this

particular user requirement.

Another function of the department is dealing with the enquiry
of a patient who wants to know the time and date of his outpatient
appointment. This function can be decomposed into the following

sub-functions:

60

——

Chapter 3 Functional Analysis

Check whether the patient has any appointment at all.
Check the number of the clinic the patient is booked for.
Check the time of appointment.

Check the date and other details of the clinic. .

Check the name of the consultant from the clinic number.

The functional entity models (Figures 3.1 and 3.2) drawn from
the functional analysis show that the conceptual model for this

data area (Figure 2.4) consists of the entities and relationships

required to fulfil these functions.

PATIENT

|
I

CLINICAL CLINICAL
TIME R SESSION ———>———| CONSULTANT
SCHEDULE

Figure 3.2 Functional Entity Model (2)

3.3 Storing the result of the functional analysis

An interactive program, 'FUNCTEST.P’, communicates with the

designer and records the result of the functional analysis.

The 1list of functions, ’funcchart’, is represented by an array of

records named 'func’. The record, ’‘func’, has six components and
they are:
funcname is a string of characters denoting the

name of the function

61

y

Chapter 3

funcfreq

funcstatus

\
| noacc
|

entarr

accessed.

"accent’.

entname

eselectcrit

The record
terms of its

following

Functional Analysis

is an integer representing the
frequency of the functions in terms of

number of frequencies per day
is an integer which can take only two
values describing vhether the

function is primary or secondary

is an integer and denoting the number

of entities accessed

is an array of record accent

'accent’, describes the entities accessed in

the path through which the entity was

components describe the record type

an integer pointing to the appropriate

entity in the entity list

details of how the entity is selected

62

Chapter 3 Functional Analysis

There are three selection options. They are ’sbyr’, ’sbyp’ and
'sbya’ meaning select by relationship, select by primary key and
select by attribute respectively. When selected by attribute, the
selection clause needs to be defined. This can either be a range

clause or an equality clause.

The file, ’funcfile’, holds the list of functions identified by
the designer. The variable, ’nooffunc’, denotes the number of
existing functions. When this program is executed, the file
"hospfunc’ is read into an array named ’funcchart’. The program
then finds out from the designer the number of new functions the
designer intends to add on to the list. For each function, the
name of the function, the status, the frequency of the function,
the number of entities accessed, the path chosen to select this
entity and the volume of records to be accessed in each transaction
are recorded. The program checks if the named attribute or the
relationship exist. In the situation when a named attribute or
relationship does not exist, the program informs the designer and
gives the designer an opportunity to correct the error. Once the
details of all the new functions are recorded the program writes
back all the function details in the file named 'hospfunc’ and

'nooffunc’ is accordingly updated.

The information collected is represented 1in a tabular form
(Figure 3.3). The details about the functions of the hospital

information system stored by this program are in Appendix E.

63

Chapter 3

Functional Analysis

FUNCTION-NAME :

FREQUENCY: RESPONSE-TIME: STATUS:

ENTITIES ACCESSED SELECTION - CRITERIA RANGE/EQUALITY
PATIENT pat-name EQUALITY
CLINICAL TIME SCHEDULE APPOINTMENT
clinic-no EQUALITY

CLINICAL SESSION

3.4 Analysing usage pattern

A second
recorded by

consolidated

program, "ANALYSIS.P',
' FUNCTEST. P’ and produces

views of the wusage pattern

attributes and the relationships.

The table, 'eusagemat’, denotes each entity which
attributes are used most often to access that entity. The table,
'eusagemat’, consists of an array of records named ’'eusagedet’.
The record, ’'eusagedet’, in turn 1is an array of recopds named
"analdet’. The record, ’analdet’, has two components, ‘primdet’ and
"seconddet’. They denote how attributes are used in primary and
secondary functions respectively. Both ’primdet’ and ’seconddet’
have a record called 'accdet’ as component. It specifies the
frequencies of an attribute being used in an equality clause and as

64

tables

of the entities,

Figure 3.3 Functional Analysis Table (1)

analyses the information

vhich give

their

Chapter 3 Functional Analysis

a range access. An equality clause means that the value of the

attribute provided for searching is compared with the value of the
attribute of the required entity to give an exact match. For a

range access there is no need for an exact match but the value of

the attribute of the required entity should be in the range
provided by the search clause. Therefore, each attribute has four

types of usage frequency. They are:

1. Primary functions - equality clause
2. Primary functions - range clause

3. . Secondary functions - eéuality clause
4, Secondary functions - range clause.

The program, ’ANALYSIS.P’, also specifies the total frequency of
relationship usage with regard to the access of an entity from

another entity, and is represented by the table ‘rusagemat’.

The table, ‘rusagemat’, consists of an array of records named
'rusagedet’. The record, ’rusagedet’ has two components ’primfreq’
and ’'secfreq’. Both ‘primfreq’ and ’secfreq’ are represented as

integers, and denote the frequency of usage of the relationships in

primary and secondary functions respectively.

The entities, relationships and functions are read in from
respective 1lists created by the designer. For each function, it is
noted how a particular entity is being accessed. If it is being
accessed by way of its attributes or its primary key, then it is

noted whether it is being used in a range clause or equality

65

Chapter 3 Functional Analysis

clause. Depending on that, the frequency of the function is added
on to the appropriate cumulative usage frequedcy mentioned earlier.
If the entity 1is being accessed by means of a relationship, then
the frequency of the function is added to the primary accumulative
usage frequency or the secondary usage frequency, depending on the

status of the function.

The result of the analysis 1is represented in tabular form
(Figures 3.4 and 3.5). The output from this program for the

hospital information system can be found in Appendix E.

3.5 Graphical representation of the data

The entity model can be represented graphically (Figure 3.6)
wvhere every node of thebgraph represents an entity and the edges
represent either an attribute or a relationship. Edges between two
nodes represent a relationship or an access path to travel from one
entity to the other. Edges with only a single node on one side

represent attributes. These are used as access paths to entities.

An inward edge, i.e. an edge marked with an arrow pointing
towvards the entity, denotes that the entity towards which the arrow
points 1is being accessed through that relationship, when the value
of the entity occurrence on the other side is known. The edges,
therefore, show the navigational paths. The total traversal

frequency of each of these paths is calculated. Details about

66

»

-

Chapter 3

wvhether the

a single record or a subset of records are also noted.

Functional Analysis

attributes or relationships are being used to retrieve

Figure 3.6
shows this graphical representation of part of the data.
ENTITY NAME : PATIENT
ATTRIBUTE PRIMARY SECONDARY
RANGE EQUALITY RANGE EQUALITY
FREQUENCY FREQUENCY FREQUENCY FREQUENCY
(times/day) (times/day) (times/day) (times/day
date-of-birth 200 0 0 50
pat-no 0 250 150 0

Figure 3.4 EntityQAttribute Usage Table

67

l....---————————* R I ..

Chapter 3 Functional Analysis
ﬁ
4
-
RELATIONSHIP
NAME PRIMARY SECONDARY
A RANGE EQUALITY RANGE EQUALITY
9 FREQUENCY FREQUENCY FREQUENCY FREQUENCY
(times/day) (times/day) (times/day)| (times/day)
APPOINTMENT 500 0 100 0
X PAT-CONS 300 100 500 0
=
Figure 3.5 Relationship Usage Table
a PAT-NO EMP-NO SPECIALITY
N N~
TREATED BY /
&% & * >— ADDRESS
PAT-NAME |PATIENT CONSULTANT
%
PAT ADDRESS
- IN CHARGE OF
\%
CLINICAL-SESSION-NO
CLINICAL *—y—
=3 SESSION
v
SPECIALITY
Figure 3.6 Graphical Representation of Data
A

68

D oo R R R RRRRRRRRRRRRRRRRRRRRR

Chapter 3 Functional Analysis

3.6 Conclusion

In the physical design phase, information about usage pattern is
used to decide on the structure of the stored files. Of course,
consideration has to be given to the importance of the
applications. The objective of functional analysis is to give
enough information about the functions, so as to establish the way
data is to be stored in the data base in order to fulfil the
primary functions efficiently. Secondary applications are
satisfied by selecting additional record access paths if necessary.
In this phase the basic functions of the organisation are
identified, the degree to which the functions share data is
indicated, and this information forms the basis for the physical

design phase.

69

CHAPTER 4

LOGICAL DESIGN

4.1 Introduction

In the past, the methods used in the design of data models for
data base management systems (DBMS) implementation have largely
been based on trial-and-error. This approach to design leads
to solutions that do not necessarily meet the users’ requirements.
The success of a three-level DBMS architecture depends on how well
the structure of the organisation is analysed and how efficiently

this structure is implemented on the target DBMS.

There are two mapping processes in a data base design. First,
the conceptual model (or the integrated users’ views) is mapped on
to the data model of the target system. This is referred to as
the logical design. This wuses the conceptual model and
restructures it into the logical structure of the target system.

This logical model provides a non-redundant (no duplication of

entity or relationship) and usage independent (not dependent on how

the data is being used) base from which the internal and external
models are mapped. The accuracy of the conversion of the
conceptual model to the logical model of the target system is

crucial to the success of data base implementation. The next step

70

*‘ - R T ———————————.

Chapter 4 Logical Design

is the physical design. In this phase the storage level
representation of the data of the target system is dealt with, the
alternatives for the physical implementation are éonsidered and the
best possible storage structure is chosen (Chapter 7). In this
chapter, the issues concerning the logical design step will be

discussed.

In general, we should be able to map the conceptual model on to
any data model as dictéted by the target system. The mapping
should be such that there is no loss of information, the original
processing . specifications are satﬁsfied and it is independent of

any physical implementation.
4.2 Logical mapping

Logical mapping 1is, effectively, a process of converting the
syntax of the conceptual model to the syntax of the logical model
for the target DBMS. The data structure of a DBMS is reflected in
the structuring elements available for defining the logical model
of that DBMS. More often than not, there will be some aspects of
the conceptual model which cannot be represented by the structural
elements of the DBMS. In such cases, it will be necessary to
modify the structure of the conceptual model so that it is possible
for the logical model of the target DBMS to capture the information

content of the conceptual model.

During the process of conversion it is crucial to observe that

71

Chapter 4 Logical Design

greater data redundancy 1is not introduced and maintenance of the
logical structure does not become complex; Logical data base
design may involve some measure of compromise between introducing
complexity or losing information, depending on the richness of the

data structure of the target DBMS.

The logical model of a data base will reflect the structure of
the information content of the data base. It is essential to
maintain the integrity of the information. Therefore, for logical
model design we need to know the 1logical structure of the
information content of the conceptual model and the information
necessary to ensure the integrity of this information. To maintain
the integrity of the information in the data base it is important
to minimise the side effects of updating the logical structure of
the data base. In chapter 2, the structure of the conceptual model
was discussed. The following sections describe the types of update
operations that can be performed on the conceptual model and the

effects they have on the model.

4.2.1 Update operations

In terms of an E-R conceptual model there can be three types of

update operation:

1. Inserting or deleting an entity occurrence
2. Inserting or deleting a relationship instance
3. Modifying the values of the attributes of an existing entity or

relationship.

72

v—* R R R —————

Chapter 4 Logical Design

These update operations should not leave.the logical structure
in an inconsistent state, that is, the update operations should not
introduce any discrepancies in the structure of the data. For
example, there should not be any entity occurrence participating in
a relationship instance when the entity occurrence has been deleted
by an update operation. To maintain a consistent logical
structure, further wupdate operations are needed. They are the side
effects of an update operation. The side effects should be limited,

obvious and controllable.

4.2.2 Effects of the update operations

The update operations in an E-R conceptual model can induce

the following effects.

Deleting an entity occurrence ‘e’ causes:
a) the deletion of an instance of a relationship in which ‘e’
participates, and
b) the deletion of one or more entities in the domain of
a relationship, with ’e’ in the range where the membership of
the domain is obligatory.
In Figure 4.1, (a hypothetical example used for illustrative
purposes) if the information about a patient M SMITH is deleted
' from the data base, the relationship instance which implies that M
SMITH is being treated by DR WILLIAMS should also be deleted.
However, in the case of the deletion of a consultant entity

occurrence DR COX, it is not sufficient to delete only the

73

s

~—

Chapter 4 Logical Design

relationship instances in which DR COX participates; it is also
necessary to delete the information about the patients who are
being treated by DR COX. As the membership of the ’PATIENTS’
entity 1is obligatory in this relationship, it is essential that the
data base only holds information about those patients who are
currently in the care of a consultant. The circumstances would be
different 1if it were possible for a patient to be treated by more
than one consultant. In such a case, it would not always be
necessary to delete the information about the patients being
treated by the consultant because they «can still be in another

consultant’s care.

TREATED BY
PATIENT .>4— »> CONSULTANT
| IN
REFERRED AS CHARGE
OF
N
L] [
COAG-REFERRAL CLINICAL
SESSION

Figure 4.1 Conceptual Model

Deleting a relationship instance 'Ex » Ey’ causes:

a) the deletion of the entity occurrence 'Ey’ if the degree of
the relationship ’'Ex » Ey’ is 1:1 or 1l:n and the membership
of "Ey’ is obligatory, or

b) the deletion of the entity occurrence 'Ex’ if the degree of
the relationship is 1:1 and the membership of ‘Ex’ is
obligatory, or

74

Ta———

<

Chapter 4 Logical Design

c¢) the deletion of the entity occurrences ’Ex’ and "Ey’ if the
degree of the relationship is 1:1 and the membership of ’Ex’
and 'Ey’ are obligatory.
Following Figure 4.1, 1if an 1instance of the relationship
' CONSULTANT - CLINICAL SESSION’, of degree 1:n, is deleted, then
it will be necessary to delete the information about the entity
'CLINICAL SESSION’ taking part in this relationship instance.
Information about GYNAE-CLINIC-3 has significance in the hospital
data base only as long as DR COX is in charge of this clinic. As a
clinical session can only be in the charge of a single consultant,
any information regarding this session is of no importance unless a
consultant takes charge of it. In the same example,
'COAG-REFERRAL’ refers to a single patient. It has no significance
unless it relates to a patient. If the information that
coag-referral C.R.123 refers to the patient D SMITH is deleted then

any detail about C.R.123 is irrelevant for the hospital data base.

Inserting an entity ’'Ex’ needs:

a) any entity ‘Ey’ in the range of a relationship 'Ex > Ey’
with ’Ex’ in the domain, to exist already if the membership
of the domain is obligatory.

In the example 4.1, if we 1insert in the data base any
information about the coag-refferal C.R.123, the information about
the patient D SMITH should already exist. Similarly, before we can
introduce the entity GYNAE-CLINIC-3 in the data base, the

information about Dr COX, who is in charge of this

clinical-session, should be present in the data base.

75

B e D —

Chapter 4 Logical Design

Inserting a relationship instance 'Ex » Ey’ requires:
a) that the entity in the domain ‘Ex’ and the range 'Ey’ to
exist already.
If in the example 4.1 we wish to specify details about a
'PATIENT’, such as patient M RAY having diabetes, the information
about entity occurrence (M RAY) and entity ‘DISEASE’ (DIABETES)

should already exist in the data base.

4.3 Conclusion

Our approach to logical data base design is to formulate rules
for transferring the E-R model into relational, CODASYL or other
models, whilst preserving the atomicity of update operations and
controlling side effects. An atomic update operation is one where
a single update operation affects only a single logical object.
Hence, it 1is desirable that information about a single object is
kept in a single place in the logical model. To control the side
effects of an update operation, the induced update operations

should be similar to those described for the E-R model.

This phase is a logical process and rules can be formulated if
the data structures of the target DBMS are known. In the following
chapters, rules for mapping an E-R model to a relational data model

and a CODASYL data model are described.

76

CHAPTER 5

RELATIONAL MAPPING

5.1 Introduction

In this chapter, rules for mapping the E-R conceptual model on
to the 1logical model of a relational DBMS will be described.
Before the mapping rules are considered, the structure of the

relational model will be discussed.

5.2 Characteristics of the relational model

In the relational model data is organised in a tabular form.

Rows of these tables are known as tuples and columns are known as

attributes. A domain 1is the collection of values from which the
values of the attributes are drawn. A single attribute or a

combination of attributes which identify a tuple uniquely is known
as the primary key. When the primary key is made of a combination

of attributes it is known as a composite key. Sometimes there is

more than one attribute or a combination of attributes which has
the property of identifying a tuple uniquely. They are called
candidate keys. An attribute or a composite attribute of a

relation is called a foreign key if it is the primary key of

another relation.

77

v—f R R EEEE—————————————————————————.

Chapter 5 Relational Mapping

To use the relations as a time-varying representation of data,
we should be able to insert, delete and modify the tuples. The
update operations may sometimes yield uncontrollable side effects.
To keep these side effects to a minimum we should use the relations

in their normalised form.
5.3 Normalisation

Date (1986) discusses functional dependence which is the crucial

concept on.which the theory of normélisation is based. An attribute
'Y’ of relation 'R’ is functionally dependent on attribute ’X’ of
'R* if and only if each ’X’ value in 'R’ has associated with it
precisely one 'Y’ wvalue in 'R’. The concept of functional
dependence can be extended to cover the case where X’ or 'Y’ may
be a combination of attributes. 'Y’ is fully functionally
dependent on ’X’, where ’'X’ is a combination of attributes, if 'Y’

is functionally dependent on ’'X’ but not on any subset of ’X’.

Date (1986) defines four normal forms as follows:

A relation R is in FIRST NORMAL FORM (1INF) if and only if all
underlying domains contain atomic values only.

A relation R is in SECOND NORMAL FORM (2NF) if it is in 1INF and
every nonkey attribute is fully dependent on the primary key.

A relation R is in THIRD NORMAL FORM (3NF) if it is in 2NF and
every nonkey attribute is nontransitively dependent on the
primary key.

A relation R is in FOURTH NORMAL FORM (4NF) if and only if,
whenever there exists a multivalued dependency in R, say of
attribute B on attribute A, then all attributes of R are also
functionally dependent on A.’

78

Chapter 5 Relational Mapping

It can be stated that a relation is said to be in the first
normal form if, and only if, all the attributes contain
non-decomposable values. A relation is in second normal form if it
is in first normal form and there are no nonkey attributes which
are functionally dependent on only part of the key. A second
normal form relation is 1in third normal form, if all the nonkey
attributes are nontransitively dependent on the primary key and

not dependent on any other nonkey attributes.

Ullman (1982) also argues that normalised (3NF) relations solve
the problems of update anomalies. Boyce-Codd normal form is
stronger than third normal form in the elimination of update
anomalies. Ullman (1982) defines Boyce-Codd normal form:

"A relation scheme R with dependencies F is said to be in

Boyce-Codd normal form if, whenever X » T holds in R, and A is

not in X, then X is a superkey for R; that is, X is or contains

a key’

However, Ullman points out that Boyce-Codd normal form is too
constraining and it 1is not necessary to reduce relations to this

form for most practical applications of data bases. Third normal

form is adequate for most cases.

The concept of multivalued dependency needs to be mentioned

before the fourth normal form relations are illustrated. An
attribute ’B’ of 'R’ is said to have a multivalued dependence on an
attribute A’ of 'R’ if for a given ’A’ there is not a single ’B’
but a well defined set of ’B’. Functional dependence is just a

79

Chapter 5 Relational Mapping

special case of multivalued dependence. A relation is in fourth
normal form, if it 1is in third normal form and if there exists a
multivalued dependence (say, ’'B’ of 'R’ on ’'A’ of 'R’). All the

other attributes are fully functionally dependent on ’A’.

Whilst 3NF relations are adequate for most practical
applications, they suffer from certain inadequacies. 3NF relations
which have more than one candidate key, where the candidate keys
are composite and have at least one attribute in common, are not
free of wupdate anomalies. If our objective is to keep redundancy
and side effects of the update operations to the minimum, then it
is desirable to keep the relations in a relational model in this

fully normalised form (4NF).

5.4 Relational design

Our approach to relational 1logical model design is to convert
the E-R conceptual model to a relational model without losing any
semantic information. The other objective is to minimise the
uncontrollable side effects caused by any update operations. One
should be able to create or destroy all the properties of an entity
or relationship occurrence at the same time as the creation or
destruction of the entity or relationship occurrence. This may be
achievable through the creation or destruction of a single tuple in
the relational model. Moreover, a single relational update should
be sufficient to update the property value of an entity or a

relationship.

80

*—i R RRRRREERBEEEEBEBEEEN

Chapter 5 Relational Mapping

The identifier of an entity set is the préperty which uniquely
identifies an entity occurrence. The identifier of a relationship
is the combination of the identifiers of the entities taking part
in the relationship. To avoid uncontrollable side effects each
entity or relationship occurrence must be represented by a unique
identifier all through the relational model. Undesirable side
effects can also be eliminated if each relation in the relational
model contains information about only a single entity or
relationship. This ensures that the deletion of an entity or

relationship does not delete any other entities or relationships.

Thus, it can be stated that there should be a relation in the
relational model corresponding to each entity set. The identifier
forms the primary key of that relation. The attributes of a
relation are the propertieé of the entity. Each tuple corresponds
to each entity occurrence. Corresponding to each relationship in

the conceptual model, there should be a relation in the relational

model. The primary key of the relation is the identifier of the
relationship. Each tuple in the relation represents an instance of
the relationship. We can have a few exceptions to these mappings.

These, we hope, will improve the efficiency of the relational model

without the loss of any semantic information.

‘ If two entities 'Ex’ and ’'Ey’ take part in a 1:1 or 1:n relation
‘RXy’ where the membership of ‘Ey’ 1is obligatory, it 1is not

Neécessary to write a relation representing the relationship ’Rxy’.

81

By e

.

Chapter 5 Relational Mapping

Instead, the identifier of the non-obligatory member ’Ex’ can be
posted to the relation table for entity 'Ey’ as an attribute. For
the entity ‘Ey’ to exist it has to take part in this relationship.

Thus, it «can-be assumed that taking part in this relationship is a

property for this entity type. To delete an instance of the
relationship ’Rxy’, it would be necessary to delete only that
entity occurrence of ‘Ey’. This would automatically delete the

relationship and the entity occurrence as required.

In some cases, the identifier of an entity type forms a part of
the identifier of another closely associated entity type. In such
cases, 1t 1is not necessary to have a relation representing the
relationship between these two entity types, because the
information 1is already available from the primary key of the second
entity type. This 1is just a special case of the obligatory
membership of an entity discussed in the last paragraph. The
membership of the entity, with the borrowed identifier, will be
obligatory in the relationship between this entity and the entity

from which it borrowed the identifier.

In a 1:1 or 1:n relation 'Rxy’ between the entities ’'Ex’ and
‘Ey’ where the membership of 'Ey’ is obligatory the relationship
properties are considered the properties of the entity ’'Ey’. As
the membership of ’Ey’ is obligatory, for each instance of ’Rxy’
there will be a corresponding occurrence of 'Ey’ and vice versa.
Hence, the attributes of the relationship instance can be

considered to be the attributes of the entity occurrence of type

82

r—f R ————————S

Chapter 5 Relational Mapping

"Ey’. If the membership of ’'Ey’ is non-obligatory the relationship
might possess attributes. A relationship 'Rxy’ of degree m:n, can
also have some properties associated with it. It does not matter
vhether the membership of the entities 'Ex’ and 'Ey’ taking part in
it are obligatory or not. These attributes cannot be considered as
a part of the entity attributes because these properties only
describe the specific relationship. These properties do not
describe the entities when they are not taking part in that
specific relationship. | When mapping to a relation in the
relational model, m:n relationships with or without properties can

be treated alike.
5.4.1 Formal mapping rules

From the above discussions we can formulate the following

mapping rules.

1. Identify each entity set by a unique attribute throughout the
relational model.

2. For each entity set 'Ex’ form a relation 'R(Ex)’. The
primary key of the relation is the key attribute, that is,
the 1identifier of ‘Ex’. The attributes of the relation are
(i) the properties of the entity ’'Ex’, (ii) the identifier of
the entity 'Ey’, if and only if there is a 1:1 or 1l:n
relationship 'Ey - Ex’ where the membership of "Ex’ is

obligatory and the identifier of ’'Ey’ does not form a part
of the identifier of ’Ex’.

b 3. For each relationship 'Rxy’ between the two entities ’'Ex’ and
"Ey’ of degree 1:1 where the membership of both the entities

are non-obligatory define a relation '‘R(Rxy)’. The
attributes of ’'R(Rxy)’ are made up of the identifiers of 'Ex’
and 'Ey’ and the attributes of the relationships. The

identifiers of 'Ex’ and 'Ey’ are both candidate keys.

83

B o

N

Chapter 5 Relational Mapping

4. For each relationship 'Rxy’ between the two entities ’'Ex’ and
'Ey’ of degree 1l:n where the membership of both the entities
are non-obligatory define a relation 'R(Rxy)’. The
attributes of 'R(Rxy)’ are made up of the identifiers of
"EX’ and 'Ey’ and the attributes of the relationship. The
primary key of 'Rxy’ is the identifier of ’Ey’.

5. For each relationship '‘Rxy’, between the entities ’Ex’ and

'Ey’ of degree m:n, or between more than two entities
'Ex’, 'Ey’,...... 'En’, where the membership of the entities
may be obligatory or non-obligatory define a relation
"R(Rxy)’. The attributes of the relation are the identifiers

of the participating entities and the properties of the
relationship 'Rxy’. The primary key of the relation "R(Rxy)’
is the «combination of the identifiers of the entities taking
part.

5.4.2 The mapping program

Program, 'RELMAP.P’, examines the list of entities and
relationships and applies the mapping rules to obtain the resultant
relational logical model. The output from the program is a list of

normalised relations.

The record, 'norment’, represents an entity in the relational
model and ’normrel’ represents a relationship in a relational

model. The record, ’'norment’, has four components and they are:

nename name of the entity

noofprops total number of attributes

identent number of attributes in the identifier
norentatts array of a record named props.

84

?—* e ———

Chapter 5 Relational Mapping
The record, ‘props’, has two integer components. The first one
pointing to an entity in the entity list, the second one pointing

to an attribute of that entity.

The record, ’‘normrel’, has the following components:

nrname name of the relationship
identent number of attributes in the identifier
norrelidnt array of 'props’ identifying the

attributes in the identifier

norkeycnt number of attributes which is actually
equal to the keycount of a
participating entity but these

attributes are not a part of the key of

relation
norrelkey array of "props’ identifying the
attributes mentioned in the description

of norkeycent

nrattcent number of attributes of the

b relationship

85

e oo —————
Chapter 5 Relational Mapping
nrelatt pointers pointing to the attributes of
the relationship.
The variable, "norentchtr’, is an array of ’'norment’

representing the list of normalised entities and 'norrelchtr’ is an

array of "normrel’ representing the list of normalised
relationships. First the entities and relationships are read from
the list. Each relationship is examined. Rules defined in the

previous section are applied to these relationships.

If the relationship between ’‘entitya’ and ’‘entityb’ is of degree
1:1 or 1:n and the membership of ’entityb’ is obligatory then no
relation corresponding to this relationship is created. Instead,
the identifier of ‘’entitya’ is added on as an attribute of
"entityb’. Whereas, if the membership of ‘’entityb’ is
non-obligatory then a relation corresponding to this relationship
is created. If the relationship is of degree m:n, a relation
corresponding to the relationship 1is created independent of the

membership classes of the participating entities.

When these mapping rules are applied to the example (Figure

5.1), the resulting relations are shown in Figure 5.2.

86

“.--—————f— R R I EETEE—E—S—

Chapter 5 Relational Mapping
|
' PATIENT m TREATED BY n CONSULTANT
| *p +{
I
{
1

t
’ REFERRED AS
|

1|

®

COAG-CLINIC
COAG-REFERRAL 1 HAS n PATIENT
PROGRESS

L
[]

Figure 5.1 Entity Relationship Model

PATIENT (pat-no, pat-name, address,..........)

CONSULTANT (emp-no, name, address, speciality,....)

CONS-PAT (emp-n0O, PAt-NO,.eueeueenennenneennnnnn)

COAG-REFERRAL(coag-ref, drug-regime, therapy,

Figure 5.2 Relational Model

87

Chapter 5 Relational Mapping

5.4.3 Resultant relations remain normalised

The 1identifiers and the properties of the entities and the
relationships are defined over atomic or non-decomposable value
sets. The relations derived from them would also be defined on

atomic domains. Hence, the relations are in the first normal form.

The relations obtained from any entity set 'Ex’ by applying the
second mapping rule would contain the identifier 'IDEx’, ’'PEx’ the
properties of 'Ex’ and the identifier of the entity ’'Ey’, ’'IDEy’,
if there exists a 1:1 or 1l:n relationship ’'Ex » Ey’ and the
membership of 'Ex’ 1is obligatory. The functional dependencies in
the relations are in the form ’'IDEx’ » 'PEx’, 'IDEx’ - 'IDEy’ and
the nonkey attributes 1like 'PEx’ and 'IDEy’ are directly fully
dependent on the primary key 'IDEx’. There is no multivalued

dependence. Hence the relations are in the fourth normal form.

The form of dependencies in the relations derived by applying
the third mapping rule for a 1:1 relationship between 'Ex’ and
"Ey’, where the membership of both the entities are non-obligatory,
is in the form 'IDEx’ » 'IDEy’ and 'IDEx’ » ‘PRx’. 'IDEx’ and
"IDEy’ are nontransitively and fully dependent on each other.
'PRx’ is also fully dependent on 'IDEx’ and ’IDEy’. 'IDEx’ and
"IDEy’ are both candidate keys, hence the relations are in the

fourth normal form.

88

v——f—4—

Chapter 5 Relational Mapping

The relations derived by applying the fourth rule of mapping for
1:n relationships between entities 'Ex’ and 'Ey’, where the
membership of both the entities are non-obligatory, will have
functional dependence of the form ‘IDEy’ » ‘IDEx’ and ’'IDEy’ -

'PRx’. This will again be in fourth normal form.

The relations obtained by applying the fifth rule are defined
over the key attributes of the entities taking part and the
properties of the relationships. The form of the dependency is
*IDEx’, 'IDEy’,....,"IDEn’ - "PRX’ . There 1is no functional

dependency among the identifiers of the entities taking part and

'IDEx’, 'IDEy’,....,’IDEn’ form the primary key. The attributes
are functionally dependent on the primary key. The relations
cannot be decomposed into other third normal form relations

because the relationships these represent are non-decomposable.

Hence, they are in fourth normal form.

5.5 Conclusion

The mapping rules were designed so that the derived relations
had no possibilities for transitive, partial or multivalued
dependencies. Thus, they are all in the fourth normal form. The
rules were formulated to control the side effects, that is, to
control the update anomalies. This correspondence justifies the
view that fourth normal form relational models are desirable

because they keep the uncontrollable side effects of update

89

V——f' oo ———

Chapter 5 Relational Mapping

operations to a minimum. The crucial factor for a relational model
design is that one relation should contain information about only
" one logical object. Violation of this will produce violation of
the normal forms. A model so designed would suffer from

undesirable update anomalies.

90

CHAPTER 6

CODASYL MAPPING

6.1 Introduction

In this chapter rules for mapping the E-R conceptual model
into the logical model of a CODASYL type of DBMS will be described.
Before the mapping rules can be defined, it is necessary to

describe the structure of CODASYL DBMS.
6.2 The CODASYL structure

In CODASYL (1978) thev term schema can refer both to logical
model and conceptual model. It may be helpful to bear in mind that
schema is synonymous with the logical view appropriate to a
particular information system. A CODASYL logical model described
by Olle (1978) includes many aspects which are not relevant to the
logical view of the data, but in fact describes the physical
properties of the data. For our purpose we will choose only those
aspects of the logical model which are necessary for the logical

data base design.

91

‘I.--—————*' R R ——————————————

Chapter 6 CODASYL Mapping

The two basic elements of the CODASYL structure are records and

sets. A record type is the collection of related data about a

particular object type. A set type is an association between two
or more record types. In a hospital data base ’CONSULTANT’,
'NURSE’ and 'PATIENT’ are examples of records. The relationship
'TREATED BY’, which shows the association between record types
’CONSULTANT’ and 'PATIENT’, is an example of a set type. Each set
type is owned by an owner member record type and has one or many
member record types. In the above example of a set type,
"CONSULTANT’ is the owner and ’'PATIENT’ is the member record type.
' A uniquely identified record from a record type is known as a

record occurrence and a uniquely identified set from a set type is

termed a set occurrence.

A set type represents a relationship of degree 1:1 or 1:n
between the owner and member record types. A set type exists to
provide access from one record to another. The rules that apply

concerning the basic structure of records and sets are

92

) o

Chapter 6 CODASYL Mapping

field.

~———

1. A record type can be an owner in one set type and member in

another set type.

As for example (Figure 2.4), 'CLINICAL SESSION’ is the owner
in the set which shows association between "CLINICAL
SESSION’ and ’'CLINICAL TIME SCHEDULE’ but a member in the set
which shows the association between 'CONSULTANT’ and
"CLINICAL SESSION’.

- A record type can be member or owner in more than one set

type.

In the hospital information system (Figure 2.4), ’CONSULTANT’
is the owner of sets which show the association between
"CONSULTANT’ and ‘CLINICAL SESSION’ and ' CONSULTANT’* and
"SURGICAL SESSION’.

. There may be more than one set type defined over the same two

record types.

In the hospital information information system, there are two
set types 'IN CHARGE OF’ and 'ON CALL FOR’ defined over the
record types ’'CONSULTANT’ and ’'WARD’.

. There is no limit to the number of record or set types.

. Cyclic structuring is allowed.

Figure 6.1 shows the cyclic structuring between ’PATIENT’,
"REQUESTS FOR BLOOD’ and ’BLOOD RESERVE’.

every record it is necessary to define and describe each

93

-

Chapter 6 CODASYL Mapping

6.2.1

each

PATIENT

\'4

REQUESTS FOR
BLOOD

Y

RESERVED
BLOOD

Figure 6.1 Cyclic Structuring

Location mode

location mode specifies how the DBMS stores and accesses

record. The location modes available in a CODASYL DBMS are as

follows:

DIRECT: In the direct mode the user is allowed to pass the
data base key (key used to physically locate a record) to the
system. In this mode a record is stored quickly but there is
no specific way of retrieving it.

CALC: In this mode the DBMS uses the record key to determine
the data base key. It is not specified whether a randomising
or an indexing technique is used.

. VIA-SET: In this mode the record is stored physically close to

the other members of the set type named.

SYSTEM: In this mode, it is possible to access and store the
record efficiently without using the data base key.

94

)

Chapter 6 CODASYL Mapping

6.2.2 Order and removal/storage class

In the 1logical model description, apart from defining the owner
and member records of the set occurrences, the ORDER and the
REMOVAL/STORAGE CLASS of the member records of the set types have
to be described. The ORDER shows where a new member occurrence

’ should be inserted. The options that are available in the CODASYL

DBMS are the following:

' FIRST- the member is inserted immediately following the
owner.

LAST- the member is inserted immediately preceding the
owner.

NEXT- the member 1is inserted immediately following the

last member occurrence accessed.

PRIOR~ the member is inserted immediately preceding the
last accessed record in the set.

IMMATERIAL- the member is inserted at the convenience of the
DBMS.

SORTED- the member 1is inserted in a position so that some
declared ordering on the members is preserved.

The STORAGE class specifies whether a record, when it is first
created, is attached to a set or not. Two types of STORAGE class
are possible. When a record is added to the data base for the
first time, it is built up in a special area in core and then a
‘store’ is executed on that record. After the store has been
executed, the DBMS checks all the set types in which the record

95

) o

Chapter 6 CODASYL Mapping

type participates. If the STORAGE class is MANUAL then the new
record is not connected to any set occurrence. If the storage
class is AUTOMATIC, then it is connected to oneAset occurrence of
the set type. REMOVAL class describes what happens when a record
is deleted from the data base. FIXED refers to an option that can
be taken to describe what is allowed to happen to the member
record once it 1is inserted into an occurrence of the set. FIXED
} means that the member cannot be removed from a particular set
unless it is deleted from the data base. If the REMOVAL class is
defined as MANDATORY a record occurrence can be removed from one
set occurrence to another set oécurrence of the same type or
' deleted. If the REMOVAL class is declared as OPTIONAL then the
member record occurrence can be removed from the set occurrence

entirely and remain unconnected to the set type.
6.3 CODASYL mapping rules

Our objective 1in this section is to define rules to map the E-R
model on to a CODASYL logical model. The CODASYL (1971/78) 1logical
model definition includes many of the physical design aspects. For
our purpose we will choose only those aspects which are concerned
with the 1logical model design because physical design aspects are

covered by the particular implementation and should be separate

from the logical description. These are the specification of
’ record and set types, data items, keys and set removal/storage
classes.

96

Chapter 6 CODASYL Mapping

The guidelines which were followed for the relational mapping
apply also to the CODASYL mapping. The mappihg from the E-R model
to the CODASYL structure should be such that no information is lost
in the process. All information related to an entity or
relationship should be kept together, so that they can be created
or destroyed by one CODASYL instruction. Moreover, the definition
of the STORAGE/REMOVAL class of the members of a set type should be
used to express the membership of the entities taking part in a

relationship.

Inspecting the E-R model and the CODASYL logical model it can be
seen that, for every entity in the E-R model there should be a
corresponding record construct in the CODASYL model. Though the
set construct corresponds to the relationship concept in the E-R
model, some of the relationships need modification before such a
mapping can be performed. There are two reasons for such
modification. Firstly, the relationship in the E-R model can be of
degree 1:1, 1l:n or m:n. The set construct in the CODASYL model
supports only relations of degree 1:1 and 1l:n. Hence, the m:n
relationships in the E-R model need some changes before we can map
them on to a CODASYL set. Secondly, the relationships in the E-R
model may have some attributes associated with them. The set in
the CODASYL model is used as a navigational tool to access a record
from another record. It is not possible to associate any
attributes with it. Therefore, all the relationships in the E-R
model which have some attributes associated with them should be

modified before they can be mapped on to the CODASYL structure.

97

o

Chapter 6 CODASYL Mapping

6.3.1 Modification of relationships

To modify an m:n relationship between two entities to 1:n
structures, in order to conform to the CODASYL model, a new entity
is created. This entity has the identifier of the relationship as
its identifier. The original many-to-many relationship can now be

) replaced by two one-to-many relationships between the original
entities and the newly created entity. For example, there is an
m:n relationship between ‘PATIENT’ and ’'CLINICAL SESSION’. This
can be represented by two relationships "PATIENT AND
' PATIENT-PROGRESS'’ and 'CLINICAL SESSION AND PATIENT-PROGRESS’,

where ’PATIENT-PROGRESS’ is the third entity which has been created.

Similarly, for every relationship with attributes, a new entity
is created. The identifier of the relationship forms the primary
key of the entity and the properties of the relationship form the

attributes of the entity.

Before we can state the degree and the membership of the
relationship between the new entity and the original entities, it
is necessary to specify the cases where a relationship might
possess some attributes. Any relationship ’'X»Y’ of degree 1:1 or
I:n where the membership of 'Y’ is non-obligatory, may have some

| attributes associated with it. If the membership of 'Y’ is
obligatory in the relationship, the properties can be assigned to

the entity ry’. If ’X2Y’ is of degree m:n the relationship might

98

e

Chapter 6 CODASYL Mapping

have some attributes, whether the membership of ‘X’ or 'Y’ is
obligatory or not. Say 'Z’ is the new entity created instead of
the relationship ’X9Y’ there will be two new relationships, one
between ‘X’ and 'Z’ and the other between 'Y’ and ’Z’. The degree
of the relationships 'X-Z’ and 'Y»2’ will depend on the degree of
the original relationship ’X»Y’. If the degree of "X»Y’ was 1:1
then both ’'X»Z’ and ‘Y>Z’ will be of degree 1:1. However if the
degree of ’'X»Y’ was 1l:n, then ’X9Z’ will be of degree 1:n and ’Y-Z'
will be of degree 1:1. If the original relationship was of degree
m:n then both the newly created relationships would be of degree
1l:n. The membership of the entity ’Z’ in the relationships 'X-Z/
' and ‘Y»Z2’ will be obligatory in all the above cases. Once these
modifications are performed on the E-R conceptual model, the
resultant E-R model will only have relationships of degree 1:1 and
1l:n. The relationships will not have any properties associated
with them. This modified E-R model can now be easily mapped on to
the CODASYL structure. For every entity we can have a record, and

for every relationship we can define a set.
€.3.2 Choice of storage/removal class

The concept of the storage and removal class can also be used in
the logical mapping. If the membership of an entity is obligatory
in a relationship, then it must participate in that relationship
wvhen it is created. The same applies if we assign storage class
‘automatic’ to the member record of a set. If the membership is

non-obligatory then it 1is enough to assign storage class ’‘manual’

99

)

Chapter 6 CODASYL Mapping

to the member record of a set. Assignment of the removal class is
not as straightforward as the assignment of storage class. The
information available from the E-R model is not enough to decide
wvhether a removal class of fixed or mandatory is to be assigned.
Before we can make these decisions, the entity life-cycle has to be
analysed or more information needs to be added to the membership
definition of the E-R model. The entities which are created by our
modification process will not only have obligatory membership but
also they cannot enter into the same relationship with other
entities of the same type. Hence, we can assign these member
records the removal class of fixed. Any other entities with
obligatory membership in a relationship can be assigned a mandatory
removal class and the entities with non-obligatory membership can

be assigned an optional removal class.

The choice of the storage/removal class will control the side
effects of the design model. In a relationship ’'X»Y’, of degree
1:1 or 1:n, if the membership of 'Y’ is obligatory, and 'X’ is
deleted from the data base, then it is crucial that 'Y’ is erased
as well. Choosing the option mandatory/automatic for these types
of relationships will guarantee that when 'X’ is deleted 'Y’ will
automatically be deleted. These deletions can propagate more
deletions. The automatic option for the storage class also
guarantees that when the member record is created it will be
connected to the appropriate set. Hence, when a new entity is
created, the DBMS will automatically establish the connection

between this entity and other entities through the relationships in

100

g

Chapter 6 CODASYL Mapping

which the membership of this entity is obligatory. Assigning the
option optional/manual to a member record, ensures that the record
can exist independently in the data base, even if it is not a

' member of that set type. Entities with non-obligatory membership

can be assigned storage class ’‘manual’. Generally, it can be said
that we can assign a removal class ‘optional’ to an entity with
non-obligatory membership. There might be situations where an
entity may have a non-obligatory membership, but once it enters
into a relationship with another entity, it might not be possible
to destroy the relationship, or change it to a relationship with
another entity of the same type, without deleting the entity. 1In
’ such cases, it will not be possible to assign a removal class of
optional. This information is not available from an E-R model.
Once the functional analysis is done, it will be necessary to scan
the storage/removal class of the member records of the set and take
appropriate action. Problems of this nature are bound to arise in
CODASYL mapping due to the absence of a definite demarcation
between the logical and physical model. At this stage, we can
still define some rules to map the E-R data model on to the CODASYL

structure.

101

6.4

! in

about

Chapter 6 CODASYL Mapping

Formal mapping rules

The mapping rules are as follows:-

For every relationship ’X-9Y’ of degree m:n in the E-R
model, form a new entity ’'Z’ which has the identifier of
the relationship as its identifier and the attributes of
the relationships, if any, as its attributes. Instead of
"X2Y’, set up two relationships ’X-2Z’ and ’'Y-2Z’ of degree
1l:n. Assign membership class obligatory to ’Z’ in both
these relationships.

For every relationship 'X-»Y’ of degree 1:1 which has some
attributes, form an entity ’Z’ which has the relationship’s
identifier and attributes as its identifier and attributes
respectively. Instead of ’X9Y’ set up two relationships
'X2Z’ and 'Y2Z’ of degree 1:1. Assign membership class
obligatory to ’'Z’ in both the relationships.

For every relationship "X9Y’ of degree 1:n, which has some
attributes associated with it, form an entity ’Z’ which has
the identifier and the attributes of the relationship as

its identifier and attributes. Instead of 'X9Y’, set up
two relationships ’'X9Z’ and ’'Y>9Z’ of degree 1:n and 1:1
respectively. Assign membership class obligatory to ’'Z’ in

both these relationships.

For every entity set ’X’, new or old, define a record R(X),
the data items of which are formed from the identifier and
attributes of the entity.

For each relation R(X»Y), where ‘X’ and 'Y’ are genuine
entity types, define a set type S(R) with R(X) as the owner
and R(Y) as the member record type. Assign storage/removal
class of manual/optional if the membership of the member
entity is non-obligatory and assign membership class
automatic/mandatory if the membership of the member entity
is obligatory.

For each relation R(X9Y) where 'Y’ is a modified entity,
define a set type S(R), with R(X) as owner and R(Y) as the

member record. Assign storage/removal class
automatic/fixed to the member record type.

applying the rules stated, we ensure that all information

an entity is kept together. The update operations described

chapter 4 can be performed by the data manipulation language

102

e

Chapter 6 CODASYL Mapping

operations STORE, ERASE and MODIFY. All the information about the
relationships is kept either in a record which represents a
modified relationship, or as a set structure. Figure 6.1 is the
resultant CODASYL logical model obtained by applying these mapping

rules to the example in Figure 5.1.

Record name is PATIENT

pat-no Pic 9(8)
pat-name Pic A(30)
address Pic X(30)
Record name is CONSULTANT
emp-no Pic X(6)
name Pic A(30)
address Pic X(30)
speciality Pic A(8)
Record name is PAT-CONS
emp-no Pic X(6)
pat-no Pic 9(8)
Record name is COAG-REFERRAL
coag-ref Pic X(8)
drug-regime Pic X(15)
commence-therapy Pic x(30)

Record name is COAG-CLINIC-PATIENT-PROGRESS

coag-ref Pic X(8)
date Pic 9(6)
result Pic X(40)

Set name is REFERRED AS
Owner is PATIENT
Member is COAG-REFERRAL Mandatory Automatic

Set name is HAS
Owner is COAG-REFERRAL
Member is COAG-CLINIC-PATIENT PROGRESS Mandatory Automatic

Set name is PATIENT-PAT-CONS
Owner is PATIENT
Member is PAT-CONS Fixed Automatic
Set name is CONSULTANT-PAT-CONS
Owner is CONSULTANT
Member is PAT-CONS Fixed Automatic
Figure 6.2 An Example CODASYL Logical Model

103

)

Chapter 6 CODASYL Mapping

6.5 The mapping program

The program, 'CODMAP.P’, maps the E-R model on to the logical
data structure of a CODASYL type DBMS. The resultant records and

sets are stored in the files ’codent’ and ’'codrel’ respectively.

First the stored entities and relationships are read in from
the list of entities and relationships stored by the designer. As
all relationships cannot be directly mapped on to the CODASYL
structure, they are modified to CODASYL compatible form.
The list, ’'modrelchart’, holds all the modified relationships. It
is represented by an array of records named ’modreln’ which
represents the relationship in the modified form and have the
following components:

mrtype a character denoting whether the
relationship is original or modified

mrname the name of the relationship
mentitya pointer to the entitya
mdegenta degree of entitya

mmembshipa membership of entitya
mentityb pointer to the entityb
mdegentb degree of entityb

mmembshpb membership of entityb

As the structure of the entities does not change there is no need

to form a modified entity structure.

104

) o

Chapter 6 CODASYL Mapping

The program examines every relationship. If it is of degree
1:1 and l:n and does not have attributes, it is not modified and
the relationship is copied directly to the ’modreichart’. If the
relationship 1is of degree 1:n, has attributes and the membership
of entityb 1is non-obligatory, then a new entity and two new
relationships are created. The method adopted for this
modification has been described earlier in section 6.3.1. The
number of total entities is updated. The number of relationships
is 1increased and the two new relationships are added to the
'modrelchart’. If the relationship is of degree m:n then again a
newv entity is created and two ;elationships are formed. The
number of entities and relationships and the ’modrelchart’ are

updated.

The new entity set is now transferred to CODASYL record
structure. The name of the entity forms the name of the record.
The key of the record is formed from the primary key of the entity
and the nonkey fields are formed from the nonkey attributes of the

entity. The list of the records is written in the ’codent’ file.

The modified set of relationships is transferred to the CODASYL
set structure. The entitya becomes the owner record and the
entityb becomes the member record. The membership class of the
member record is derived from the membership class of the

relationship. The method adopted for this derivation has been

105

e

Chapter 6 CODASYL Mapping

described earlier in section 6.3.2. The file, ’codrel’, contains

the list of sets.
6.5 Conclusion

The characteristics of a CODASYL structure are complex, but it
is capable of representing the properties of our chosen data
model. The operations necessary to maintain the integrity of the
data model by controlling the side effects are automatically

performed in the CODASYL type DBMS.

The purpose of the mapping rules is to map the E-R conceptual
model on to the logical structure of a relational or CODASYL type
DBMS. It is independent of any particular implementation. Before
we can implement the data model on to a definite DBMS, the

physical characteristics of the data have to be considered.

106

CHAPTER 7

PHYSICAL DESIGN

7.1 Introduction

The objective of the mépping of the E-R conceptual model on to a
relational or CODASYL 1logical model is to capture all the
information and to free the iogical model from all wupdate
anomalies. The objective of the physical design is to develop an
efficient and implementable data base structure which will satisfy

the user requirements.

The performance of a DBMS is related to the speed with which the
DBMS responds to requests and this is directly dependent on how
efficiently the data is stored. The performance can be modified by
changing the physical structure of the data base to suit the users’
needs. Most DBMS offer the data base administrator (DBA) options
to structure the data physically so as to enhance the performance
and support a number of access methods. The DBA should be able to
specify how to store the data on the storage media, the sizes of
the memory buffer, etc. However, when these options are not
available the DBA has to make the best of what is provided by the

particular DBMS.

107

o

Chapter 7/ Physical Design

The physical design phase looks at how the appropriate logical
data model can be physically organised so thét it will have an
impact on the performance of the implemented data base. This phase
involves structuring the stored data and the result obtained is a
data base structure ready for implementation. There are other
options available, which can be used to improve the efficiency of
an implemented data base. This project focuses on the organisation

of the data base so as to get a good performance from the

implemented data base. In this chapter we will discuss the
features that affect file organisation, different ways of
organising data and algorithms for assigning a suitable data

i organisation.
7.2 Factors affecting file organisation

The most important criterion that decides how we organise a
file, 1is the way in which the file is referenced by the user. The
cost of processing a file also plays an important role. TFactors
that affect the cost are: the frequency of file reorganisation, the
storage space required, the programming costs, etc. Other factors

which should influence the choice of file organisation are:-

Processing facility: that is, whether the file is being processed

in batch or for on-line queries or both

108

Chapter 7/ Physical Design

Hit rate: that is, the percentage of records being

processed in one run.

Size of the file: that is, the number of records and the

length of each record.

Growth: that is, how often and how many records are

being added or deleted from the file.

The average time required for an amendment, an update or to

process a query also affect the design decisions.
7.3 Organisation of data

The performance of the data base depends on how accurately the
conceptual model is mapped on to the logical model of the target
DBMS, and also on how well we utilise the physical characteristics

of the DBMS.

The details noted in the functional analysis phase are used to
decide the file organisation methods and ways of accessing records
within the files. Factors such as how frequently an access path is
used, what volume of data 1is retrieved, what response time is
necessary and for what category of function (primary or secondary)
a particular access path is being used, affect the physical

organisation of the data.

109

Chapter 7 Physical Design

At this stage, we have to decide from our functional data model
which access paths should be supported. The characteristics of the
access paths decide how data is to be placed and related so as to
give fast access. Let X » Y be an edge, which may represent a
relationship edge or a property edge. There are three possible
methods of organising the elements of X and Y to improve access
time.

1. Indexed:- Given y in VY, f_l(y) can be found without
scanning all the elements of X.

The- relationship 'TREATED BY’ will be indexed if there
exists a fast access path between ‘CONSULTANT’ and the
occurrences of 'PATIENT’ treated by each ’CONSULTANT’. The
entity ‘PATIENT’ may be indexed on the attribute ’Pat-no’
if it is inverted on that field.

2. Clustered:- For every y in Y, all the elements f_l(y) in
X, will be close together, so that, accessing one element
of f "(y) will ensure a quick access to the rest of the

elements in f “(y).

Relationship "TREATED BY’ is clustered if all the

occurrences of " PATTENT’ treated by a particular
" CONSULTANT' are kept contiguously. The entity
" CONSULTANT' may be clustered on the attribute

'speciality’, if all the occurrences of ’CONSULTANT’ with
the same speciality are kept together.

3. Vell-placed:- It is a similar concept to clustered, the
only difference being that all the elements of f “(y) are
kept close to y.

Relationship 'TREATED BY’ will be well-placed if all the
occurrences of ’PATIENT’ ‘'TREATED BY’ the same ’'CONSULTANT’
are kept together near the associated consultant. The
entity ‘CONSULTANT’ will be well-placed on ’speciality’ if
it is «clustered on the attribute ’speciality’ with the
speciality value taken out of the records.

110

Chapter 7 Physical Design

7.3.1 Priorities of data organisation

Among the data organisation methods discussed, the well-placed
gives the fastest performance, followed by the clustered and then
the indexed structure. Ideally, it would be preferred that for all
the edges, the f_l(y)s are well-placed near the corresponding y.
This is not feasible, because there are a few constraints which
apply. Taking these into account, it 1is preferable to have a
well-placed structure where possible, if not then a clustered, and,
if this were not feasible, an indexed structure. From this a

priority to these structures can be assigned as following:
1) Vell-placed 2) Clustered 3) Indexed.
7.3.2 Constraints on data organisation

The objective at this stage is to study the functional data
model and investigate the paths those need to be supported. Then
it is necessary to assign maximum possible support for each of
these paths. Assignments of type of support will of course be
subject to the constraints, which will be discussed in the

following paragraphs.
i. First constraint (Figure 7.1)

Let X,Y and 2 be three nodes from our data model. If the elements

from Y are clustered and then placed near their associated element

111

i

Chapter 7 Physical Design

in X, it will not be possible to do the same with the elements of
7. The elements of Y will prevent the Z elements being placed in
‘close proximity to X. Hence, it will not be possible to assign

well-placed structure to more than one inedge of a node.

Figure 7.1 First Constraint

ii. Second constraint(Figure 7.2)

In the above example, if the elements of X which share the common
element of Y are clustered, it will not be possible to cluster the
elements of X which share the common element of Z. Thus it is not

possible to assign more than one outedge in a clustered structure.

X ' A
N\ *
x V4
ICI
v
Y*

Figure 7.2 Second Constraint

112

Chapter 7 Physical Design

iii. Third constraint(Figure 7.3)

The clustering of Y elements near the corresponding X elements
prevent clustering elements of X which share the same Z together.
Thus, it is not possible to assign, simultaneously, an inedge of a

node well-placed structure and the outedge a clustered structure.

X rcr Z

* > *
VWI

A

Y

Figure 7.3 Third Constraint

1.4 Labelling the functional data model

To be able to define the physical data base structure it is
necessary to allocate these data organisations to our data model.
We have to define algorithms for assigning labels to the edges in
the data model so as to achieve the best possible access
performance. The 1labelling should be such that the data model is

free of the constraints mentioned in the section 7.3.2.

113

Chapter 7/ Physical Design

The labelling method used in this project was as following:

i. Label each edge as indexed.

ii. Traverse the model again according to the frequency
order, and label the edges as clustered as long as the

model is free of the constraints mentioned in section
7.3.2.

iii. Traverse the model again in frequency order and label
the edges as well-placed, ensuring that the model is
free of the specified constraints.

50 |PAT-ADDRESS EMP-NO | SPECIALITY
n TREATED BY 50 / 7 50
(* (*)
PAT-NAME PATIENT 250 CONSULTANT | ADDRESS 50
100
A 4
PAT-NO
500

IN-CHARGE-OF
400

CLINICAL-SESSTION-NO
CLINICAL SESSION *—0«5—
150

50
SPECIALITY

Figure 7.4 Unlabelled Data Model

Applying the algorithm to the data model in Figure 7.4, the

labelled model Figure 7.5 is obtained.

114

Chapter 7 Physical Design
\PAT—ADDRESS EMP-NO SPECIALITY
' Tr10 TREATED BY g g
—— < 5
pAT-NAME PATIENT T’ CONSULTANT ADDRESS '1I’
W
PAT-NO

IN-CHARGE-QOF <~
IWI

: CLINICAL-SESSION-NO
CLINICAL SESSION #—>»
!II

!II

(N4
SPECIALITY

Figure 7.5 Labelled Data Model

The algorithm ensures that, wherever feasible, the edges have
been labelled with the highest priority label. It is not possible
to prove mathematically whether the optimal solution is achieved by
this method. This is a problem with most of the applications of
directed graphs. This algorithm does not directly take into
account for which category of function a particular access path is
being used and what sort of response time is necessary for this
function. This algorithm assigns best possible support to the

paths which are used most frequently.

Program, ’'LABEL.P’, follows the above algorithm and labels the
edges with the appropriate labels. It examines the result of the
functional analysis and the 1lists of entities and relationships,

and then assigns the necessary data organisation labels.

115

Chapter 7/ Physical Design

The program, ‘LABEL.P’, creates two files, ‘edgefile’ and
"labelfile’. The ’edgefile’ contains the list of all edges and
describes each edge in terms of the frequency of use, its type
(that is, whether it 1is an attribute, a primary key or a
relationship) and the 1label assigned to this edge, following the
labelling algorithm. The 'labelfile’ describes each entity in
terms of all the inedges coming into the entity node and outedges

going out from the entity node.

The program first reads in the entities from the ’entfile’, the
relations from the ‘'relfile’, the function details from the
'funcfile’ and the usage details from ’eusagedet’ and ’rusagedet’.
Once the relevant files have been read in, the components of

'labelmat’ and ’‘edgemat’ are determined.

The variable, ’labelmat’, describes each entity node in terms of
the number of outedges and inedges, the usage frequency of each of
the edges and the labels assigned to each of these edges.
It is represented by an array of the record ’graphdet’. The

record, ‘graphdet’, has the following components:

noofoutedge an integer denoting the number of outedges the

entity node has

noofinedge an integer denoting the number of inedges the

entity node has

116

Chapter 7

outedge

inedge

Physical Design

a description of each outedge, represented by an

array of the record ’'outdet’

a description of each inedge, represented by an

array of the record ’indet’

The record, ’outdet’, has the following components:

oedegetype

oedegepnt

oedgefreq

oedgelabel

The record,

iedgepnt

iedgefreq

iedgelabel

a character denoting whether the edge is a

primary key, an attribute or a relationship

a pointer to the appropriate attribute or

relationship

an integer denoting the usage frequency of the

edge

the data organisation label assigned to the edge

"indet’, has the following components:

a pointer to the relationship

the usage frequency of the inedge

the data organisation label assigned to the edge

117

Chapter 7 Physical Design

The wvalue of the components of ’labelmat’ are obtained from the
files that are read in initially. However, the labels can only be
assigned by applying the labelling algorithm described in section
7.4. The initial value assigned to the labels is ’'I’ for Indexed.

The value of the components of ‘edgemat’ are also filled in this

phase.
The matrix, "edgemat’, describes each edge in terms of its
label, wusage frequency and edge type. It is represented as an

array of the record ’‘edgedet’ which has seven components. The first
three describe the label of the edge, frequency of the edge and the
type of the edge respectively. The last four are pointers which

are used to identify the edge.

To be able to assign the data organisation labels, the records
of ’edgemat’ are sorted according to frequency and stored in
"sortlist’. Then each record in ’sortlist’ is examined and if
possible is assigned a label 'C’. The list is examined again in
frequency order and wherever possible a label 'W’ is assigned.
Once the labelling procedure 1is complete, ’'edgemat’ is stored in

the ‘edgefile’ and ’labelmat’ is stored in ’labelfile’.

118

Chapter 7/ Physical Design

7.5 Physical design rules

So far, it has not been specified how the clustering is
achieved. There are two possible solutions. We can either have an
indexed sequential structure or apply some hashing technique. The
choice depends on the amount of data retrieved in one particular
access. If a subset of a file is retrieved in one particular
access then an indexed sequential structure should be chosen. If
only a single record is retrieved, a hashing technique should be
applied. The information on the volume of data retrieved is
obtained as a result of functional analysis. In cases where a
particular access path or edge is used to retrieve a single record
or a subset of records, an indexed sequential structure can be
chosen. This will support both types of retrieval successfully.
Paths which are wused frequently, but cannot be supported by the
methods described so far, are supported by secondary indices. It
is also assumed that if a path is being traversed frequently it is
being used for primary or essential applications which use the data

base.

The results obtained by applying the algorithm are consistent
wvith many users’ experiences. Severance and Carlis (1977)
mentioned that one of the methods to improve the performance of a
data base system is to increase the volume of data transferred with
each data access. This could be achieved in more than one way.

One of the techniques could be to store contiguously, records which

119

Chapter 7

are processed sequentially. They have described how records could
be physically positioned according to the speed

required and the volume of data retrieved.

summarised in Figure 7.6.

RESPONSE
TIME

If

used.
sequential structure and access via indices. Thirdly, if a speedy

response

DATA BASE SCAN

INDEX
INVERTED
LIST

HASHING

fast

QUANTITY OF RECORDS RETRIEVED

Figure 7.6 Record Accessing Techniques

are three approaches to retrieving an individual record.

Rather slower than this would be the use of an indexed

is not deemed to be important, a data base scan will be

satisfactory.

file) and a fast response is needed, an ISAM structure may be
chosen. Where time 1is 1less «critical, a data base scan can be
performed.

we

120

Physical Design

response

views are

response is essential, a hashing technique should be

are accessing several records (ie, a subset of the entire

Chapter 7 Physical Design

7.6 Conclusion

There are many ways of organising data to improve performance.
Factors affecting data base design include, among other things, the
frequency of the reorganisation of a data base, the amount of free
space, and the allocation of indices to another fast device. Once
a particular DBMS has been chosen, some of the options available to
improve the performance become restricted. However, the DBA can
further improve performance by organising data in a satisfactory
vay. We have focused in this chapter on the organisation of the

data base files as a function of usage.

121

CHAPTER 8

RELATIONAL IMPLEMENTATION

8.1 Introduction

Many DBMS describe themselves as relational systems. Their
claim may only be valid in that that they present the data in the
form of a table. Kim (1979) has proposed a number of valuable
features for relational systenms, many of which are general
features of any true DBMS. The requisite features of relational

systems as defined by Kim (1979, pp 185-186) are:

’ 1. An interface for a high level, non-procedural data language
that provides the following capabilities for both programmers
and non-technical wusers: query, data manipulation, data
definition, data control facilities.

2. Efficient file structures in which to store the data base and
efficient access paths to the stored data base.

3. An efficient optimizer to help meet the response-time
requirements of terminal users.

4. User views and snapshots of the stored data base.
5. Integrity control-validation of semantic constraints on the
data base during data manipulation and rejection of offending

data manipulation statements.

6. Concurrency control-synchronization of simultaneous updates
to a shared data base by multiple users.

7. Selective access control-authorization of access privileges
of one user’s data base to other users.

8. Recovery from both soft and hard crashes.

122

Chapter 8 Relational Implementation

9. A report generator for a highly stylized display of results

of interactions against the data base and such
application-oriented computational facilities as statistical
analysis.’

Date (1986) classifies relational DBMS into the following four

categories depending on the facilities supported by them:
Tabular: A tabular DBMS presents the data to the users in a
tabular form but does not support any of the relational algebra

operations like SELECT, JOIN, PROJECT, etc.

Minimally relational: A minimally relational DBMS supports the

tabular structure and some of the relational algebra operations but

not the full set of relational operators.

Relationally complete: A relationally complete DBMS supports the

tabular structure and the full set of relational operators.

Fully relational: A fully relational DBMS supports the tabular

structure, complete set of relational operators and the two

integrity rules, namely entity and referential integrity.

By entity integrity it is meant that no attribute which

participates in the primary key may have a null value. Referential
integrity means that if a relation has a foreign key then its
value must match the primary key value of one of the rows in

another relation or must have a null value.

123

Chapter 8 Relational Implementation
Currently, there are no DBMS available that are fully
relational. According to this definition, DB2 from IBM, ORACLE

from ORACLE Corporation, MIMER from Savant, INGRES from Relational
Technology, etc, fall into the category of relationally complete
DBMS. The two DBMS wused in this research are INGRES and MIMER.
INGRES and MIMER were chosen because they support physical file
structures which are different from the others and will therefore
highlight the issues associated with different physical designs.
These are described in section 8.2.2 and 8.3.1. Moreover, INGRES
is portable across many operating systems and is widely used in

academic and commercial organisations.

8.2 INGRES

INGRES (Relational Technology Inc, 1983) runs on VAX
Data General and Hewlett Packard 9000 series machines, IBM
mainframes and IBM PCs, NCR Tower, etc. Before describing the
mapping and design rules on this particular implementation, a brief

description of the system will be given.

8.2.1 Basic structure

A data base implemented on INGRES contains a number of
relations. A relation possesses a number of attributes. A

relation in INGRES cannot have more than forty-nine attributes.

124

Chapter 8 Relational Implementation

When a relation is created the format of each attribute should be

specified. For example,

Create Patient
(Pat-num i8
Pat-name = ¢20
Pat-add = ¢40)

[t

will create a new relation Patient with three attributes: Pat-num,
Pat-name and Pat-add. Pat-num 1is an eight byte-integer, and
Pat-name and Pat-add are 20 and 40-bytes character. Once a
relation is created and data is inserted, it can be used in

response to any relevant query.

8.2.2 Storage structures

INGRES supports five storage structures. Four of them are
keyed, i.e, the location of the tuple is dependent on the value of
the primary key. They are termed ’‘Hashed’, ’'ISAM’, ’Compressed
Hash’ and ‘Compressed ISAM’. The nonkeyed structure is termed
"Heap’ and the tuples are stored independently of primary key

values. Definition of the storage structures are given below.

1. Heap

There are two main characteristics of a heap structure.

i. Duplicate tuples are not removed.

ii. The organisation of the tuples is not known.

125

Chapter 8 Relational Implementation

To retrieve a particular tuple, the system has to scan every
tuple wuntil it finds one tuple which satisfies the condition of the

search. This type of search is not efficient if it is being done

on a vast amount of data.

2. Hash

In this structure allv duplicate tuples are removed and the
relations are hashed on a specific domain. The system will provide
fast access to that tuple if the Qalue of the domain is provided,
because the location of the tuple on the disk will be known to the

system.

3. Indexed Sequential Access Method (ISAM)

The duplicate tuples are removed in this structure. The
relations are sorted on one or more domains. Any retrieval will be
enhanced if the value(s) of the domain(s), or the range(s) of the

value within which the domain(s) lies(lie), is provided.

Both ’hash’ and "ISAM’ structure can be operated on a
‘compression’ mode. This mode suppresses the blank and portions of
tuples which match the previous tuples. These structures take

longer to update, but economise on storage space.

126

Chapter 8 Relational Implementation

The designer creating the relations 1is able to specify what
storage structures are required. In the event of not specifying
the storage structure, the system assigns the default structure of

heap.

Both hash and ISAM assign specific tuples to a particular page
on disk. When inserting new tuples, if the system finds that the
primary page 1is filled, it stores the tuple in the overflow area.
The creator can specify how full to make a primary page initially
by indicating the fill factor. When hashing a relation, the user
can also specify the minimum or maximum number of primary pages to
allocate to the relation. The person creating the relations should

have prior knowledge of how the relations are going to grow.

A program called ’Sysmod’ is incorporated in the INGRES system
and this should be run initially when a data base is created. As
the data base grows, this program is run at regular intervals to

improve efficiency.

8.2.3 INGRES implementation

8.2.3.1 Implementation of the logical model

From the discussion in the previous section, it can be stated

that the relations obtained by applying the mapping rule can be

mapped straightaway on to the relations in INGRES. All the

127

Chapter 8 Relational Implementation

relations are in the fourth normal form and have no replication.
Therefore, there will not be any problem in performing this
mapping. Initially, all the relations will have a heap structure.
No major problems will be encountered in using this data base.
Nevertheless, this will not run as efficiently as desired. To
improve the performance it will be necessary to modify the storage
structure of the relations. Modification decisions rest on the

results obtained in the physical design phase.

8.2.3.2 Implementation of the storage structure

INGRES does not support physical access paths between
relations. Instead, the primary key of an entity is added on as an
attribute or foreign key of another entity. For example (Figure
5.2), there is no physical access path from the relation
"COAG-REFERRAL’ to the relation that represents the entity
"PATIENT’ . Instead, the primary key of the 'PATIENT’ entity is
added on as an attribute of the relation ’COAG-REFERRAL’. This
denotes which report belongs to which individual patient. Thus, in
the physical design model, the frequency of the identifier edge of
an entity must also include the frequencies of all the ‘n:1’ and
’1:17 relationship edges, with this entity in the range. These
frequencies are represented by the frequencies of all the inedges
of the entity. These adjustments should be performed before a

decision on the primary structure of the relations can be made.

The other relevant limitation of INGRES 1is that tuples from

128

Chapter 8 Relational Implementation

different relations cannot be placed near one another. Hence it is
not possible to cluster the entity occurrences which are associated
with another common entity occurrence, around the entity of the
latter entity occurrence. For this reason, it is not possible to
label any outedge of an entity ‘W’/. As pointed out in section
7.3.2, one outedge at most can be labelled 'W’ or ’'C’. In this
case the outedge will have to be labelled ’C’. As specified in
section 7.3.1, because ’'C’ has a higher priority than 'I’, this

edge will normally dictate the primary structure of the relation.

X \300 o
Y
I 500
C A 300 I
* *
M 450 B I 200 2
I | N
| 100 I
*C
I C
150 300
P Q

Figure 8.1 Labelled Model

In the example shown in Figure 8.1, the edge Y has the label
'C’. The relation will be clustered on this attribute. This might
not always be true. As specified earlier (section 8.2.3.2), the

129

Chapter 8 Relational Implementation

frequency of the identifier edge should also include the
frequencies of all the inedges coming into the entity. If the
summation of these frequencies and the frequency of the identifier
outedge is greater than the frequency of the outedge labelled ’'C’,
then the identifier or the primary key forms the basis of the
primary structure of the relations. The chosen edge represents
either an attribute or a relationship. If the chosen edge is an
attribute then the storage is structured on the basis of this
attribute. If the edge represents a relationship 'X»Y’ of degree
1:1 or n:l, and the membership of X is obligatory then the
identifier of Y forms the basis for the primary storage structure
of the relation R(X). If the edge represents a relationship ’X-»Y’
of degree n:1 where the membership of X is not obligatory, or a
relationship of degree m:n, then there will be another relation in
the logical model which represents this relationship. The primary
storage structure of R(X) will then be based on the identifier of
X. The traversal frequency of the edge representing the
relationship ’X-Y’ will now have to be added on to the frequency of
the identifier edge. The primary structure of the relation R(XY)
will be based on the identifier of 'X’ or ’Y’, depending on which
of the frequencies between ’X»Y’ or 'Y2X’ is greater. The other

identifier can be used for an optional index to the relation.

In the previous section, we mentioned only the field on which to
base the primary structure of the relation. Whether we choose an
ISAM structure, which supports a range access, or a hash structure

which supports only equality access, 1is determined from the

130

Chapter 8 Relational Implementation

information on how the access paths are used. Identifier edges are
often used in equijoin clauses, that is, the particular field is
matched with the appropriate field in a query. The hash structure
is suitable in this situation. A property edge is most often used
in range access, therefore an ISAM structure is appropriate. Of
course, there might be cases where the property edge is used
frequently for equality access. In these circumstances, a hash
structure 1is suitable. When in doubt, or the particular edge
supports both equality and range access, then the ISAM structure is
appropriate. Edges 1labelled ’'I’ are supported by secondary
indices. The designer should be able to decide from the frequencies

whether an edge labelled ’'I’ needs to be supported or not.

8.2.3.3 Algorithm for the storage structure

From the above discussion we can formulate the following

algorithm.

Let x = identifier outedge

other outedge labelled ’'W’ or ’'C’

~
1]

zl..... zn = inedges

fn = frequency of n

131

Chapter 8 Relational Implementation

IF the relation represents an entity

THEN

IF fx + fz > fy

THEN hash on identifier attribute
ELSE IF y is a property edge
THEN ISAM on property value
ELSE IF y is a relationship edge represented
by a foreign key
THEN hash on foreign key
ELSE hash on identifier edge;

FOR each outedge labelled 'I’ create secondary index;

ELSE

IF the relation represents a relationship

THEN
Hash it on the identifier of the entitya
Have secondary index on the identifier of the

entityb.

The above algorithm is a logical process. A program, ’ING.P’,
will take as input the relations obtained by applying the mapping
rule, the field types from the entity list, and the frequencies and

labels of the access paths, and produce relations with the

132

Chapter 8 Relational Implementation

necessary storage structure, ready for implementation on INGRES.

The program, ’'ING.P’, creates a list ’ingentchart’, which is

represented by an array of the record type ’‘ingent’. The record

type, ’‘ingent’, has three components, they are:-

struc a character representing the storage structure
edgeno an integer pointing to the appropriate edge
diredge a character representing the direction of the
edge.
By examining ’norentchart’ and ‘labelmat’, ’ingentchart’ is
created. There is an entry in ’ingentchart’ corresponding to every
normalised entity. If an outedge is labelled ’'W’ or ’'C’ and the

sum of the wusage frequencies of the inedges is greater than the
frequency of the outedge marked 'V’ or "C’, then the structure is
labelled ‘H’, ‘edgeno’ points to the primary key and the direction

of the edge (’diredge’) is ’o’ representing an outedge.

If the outedge 1is labelled 'W’ or ’'C’ and the sum of the usage
frequencies of the inedges is less than the frequency of the
outedge marked ‘W’ or 'C’ and the outedge represents an attribute
then the structure is labelled 'M", 'edgeno’ points to this
specific attribute and ’'diredge’ is ’o’. On the other hand, if the

outedge marked ‘W’ or ’C’ is the identifier then ’struc’ becomes

133

Chapter 8 Relational Implementation

"H’, ’'edgeno’ points to the primary key and ‘diredge’ is ’o’.

If an inedge is marked ‘W’ or 'C’, then ’struc’ becomes 'H’,
'diredge’ points to the foreign key of the entity and ‘diredge’ is
assigned the value ’i’ so that it represents an inedge (a

relationship edge).

Once all the entities have been examined, they are written on to
the ’'mapfile’ which 1is the Structure ready to be implemented on
INGRES. The normalised entities with their attributes are written
on the file. Moreover, '’ingentchart’ is examined and the file
Structure 1is recorded from there. If ’struc’ is 'H’ the relation
is hashed on the primary key or the foreign key depending on
‘edgeno’ and ’‘diredge’. If ’struc’ is M’ the relation is inverted

on the attribute pointed by "edgeno’ .

Each normalised relation representing the relationships are also
written on to the 'mapfile’. These relations are all hashed on the

primary key of ‘entitya’.

All the programs for this research are written in an interactive
form. In situations where the decisions are doubtful, the designer
is given the chance to make a decision. The designer can be aware
of this and in due course of time, can try out the other options
available. This will enable him to conclude which options give a

better performance.

134

Chapter 8 Relational Implementation

INGRES does not have provisions to deal with replicated data.
Replication, to a certain extent, improves efficiency but produces
problems during wupdating. Special programs have to be written to
deal with these side effects. In this project replication of data

has not been dealt with.

So far, the choice of storage structures has been discussed.
Hash is advantageous for locating tuples where the exact value is
known. ISAM is useful for both range and exact values. In an ISAM
Structure the directory has to be searched before we can locate the
required tuple. Therefore, it is not as efficient as hash for
locating tuples when the exact value is known. When a tuple is
inserted, the system first finds the page where the tuple should
belong. If the page is not filled then it stores the tuple in that
page. Otherwise, it stores it in an overflow page. Too many
tuples stored in an overflow area affect the performance of the
data base. Initially, when we are creating a relation and
appending the tuples, it is easier to keep the relations in a
heaped structure. Once this is completed, we can modify the
relations to the structure necessary. We «can specify the

"fillfactor’ in the case of ISAM and hash structured relations.

The INGRES Reference Manual (Relational Technology Inc. 1983)
describes how, if we have knowledge of the maximum number of
tuples in a relation and the existing number of tuples, we can

specify the "fillfactor’. Let 'y’ be the maximum number and ’x- be

135

Chapter 8 Relational Implementation

the existing number of tuples, then we can assign a ’‘fillfactor’ of
(x/y)*100. This is a very rough guide and it assumes that the

tuples are evenly distributed.

If we know the number of bytes in each page, the overhead of
bytes per page and per tuple, the tuple width and the maximum
number of tuples, we can specify the minimum number of pages

required for a hash structure.

Let the number of bytes in a page = x

Let the number of bytes for overhead per
each page = vy

Let the tuple width = w

Let the tuple overhead = z

Maximum number of tuples = n

Number of tuples in a page(t) = (x-y)/(w+2)

Minpage = n/t

This will guarantee that free space is reserved for the relation
to grow to its maximum size. When the ’fillfactor’ and "minpage’
are both specified, the system computes the number of pages that
will be required to store the existing tuples at the specified
"fillfactor’. If this number is 1less than ‘minpages’, then

‘minpages’ is used instead.

136

Chapter 8 Relational Implementation

8.3 MIMER

MIMER (Savant Enterprise, 1985) developed in Uppsala University
Data Centre is a relational DBMS which is efficient for handling
routine sequential processing and random information retrieval. It
has an integral data dictionary which controls data access, usage

and security.

8.3.1 MIMER storage units

A MIMER DBMS consists of a number of ’‘databanks’ (data bases).
Each databank consists of relatively addressed pages, whose size is
dependent on the particular installation. Each databank contains a
number of ’‘n-ary’ relations. A databank may contain the contents
of more than one table, but the contents of a table are always
stored in one databank. The first page of a databank is the bit
map . This indicates which pages are free and which pages are used.
The second page is the root page, which keeps a directory of all
the tables in the databank. If the databank is large, then more
than one root page or bit map may be necessary. Data is
transferred from secondary to primary storage on a page to page
basis. The relations are stored on the disk on a B*-tree

structure, sorted according to the values of the primary key.

137

Chapter 8 Relational Implementation

8.3.1.1 B-tree structure

Teorey and Fry (1982, pp 306) define a B-tree as

' ... a generalization of a binary tree in which two or more
branches may be taken from each node.’

B-tree structures are efficient for storing large indices and
for random access of records. A B-tree structure has the following

features: -

1. All the paths from the root to the leaf nodes are equal and

that is termed the 'height’ of the tree.

2. All the nodes (except root and leaves) of a B-tree of order

n have at least n+l child nodes and maximum 2n+1 nodes.

3. The root node has at least two child nodes and a maximum of

2n+1 child nodes.

4. Each node (except the root node) can have at least n keys

and not more than 2n keys.

B-trees are more flexible than binary trees because of the
variable number of keys allowed in each node. The height of a
B-tree tends to be smaller than a binary tree and thus it allows
faster retrieval time. B-tree offers good performance for random
access as well as sequential accessing, without having to

reorganise the file.

138

Chapter 8 Relational Implementation

8.3.1.2 B*—tree

This 1is a variation of a B-tree, and has all the keys and the
associated data in the leaf nodes and the records are accessed via
an index which is a B-tree index. The leaf nodes of a B*-tree are
formed of keys, associated data and a pointer to the next level
node. In the initial 1loading, all keys are stored in the leaf

nodes and the keys in the index are duplicates of these keys.

As far as performance is concerned there is not much difference
between the B-tree and B*-tree ogganisations. However, B*_trees
are more efficient for the sequential accessing of large volumes of
data. Detailed descriptions of these structures can be found in

Teorey and Fry (1982) and Comer (1979).
8.3.2 Physical storage structure of MIMER
The B*-tree file structure in MIMER consists of two sections:
a) The data sections - which contain the leaf nodes of the tree
and are the rows of the n-ary relations.
b) The index sections - which contain the non-leaf nodes of the tree

and are the navigational paths to the nodes

in the next level.

139

Chapter 8 Relational Implementation

This provides a fast binary search technique to access a
particular row of a table or a place where the row should be
inserted. As the table grows, the MIMER DBMS automatically
reorganises the tree structure and a periodic reorganisation is not
necessary. The tables of data are sorted and stored according to
the primary key value. It is quicker to locate a row of the table
if the primary key is known. Thus, the structure is suitable for
random access. This structure can also process records sequentially

unlike the hash structure.

It is also possible to have one or more secondary indices to a
table which invert the table on one or more columns. When a
secondary index 1is created the MIMER DBMS forms an internal table
with the specified column sorted and registers the corresponding
primary key with it. When a table has secondary indices it is

faster to retrieve data but slower to update.

The columns or the fields in the MIMER relation can be of three

types: characters, integers or floating point numbers. Each data

type can be of any specified length.

8.3.3 Implementation on MIMER

8.3.3.1 Implementation of the logical model

From the above discussion, we can see that the MIMER DBMS

contains a number of n-ary relations. The relations obtained by

140

Chapter 8 Relational Implementation

applying the mapping rules can be directly mapped on to the
relations in the MIMER DBMS. The process will be similar to the
INGRES mapping. The rows for the relations are held in a B*-tree

structure, based on the primary key of the relations.

A fast binary search technique will retrieve a row, if the
primary Kkey is known. Secondary indices can be added so that it is
also possible to retrieve a row when any field other than the

primary key is known.

8.3.3.2 Implementation of storage structures

MIMER, like INGRES, does not support the physical access paths
between relations. For the reasons discussed previously (section
8.2.3.2), the frequency of the identifier edge in the global
functional model should also include the frequencies of all the
inedges coming into the entity node. For similar reasons to those
applicable to INGRES, it is not possible to have edges labelled
., Therefore, at most, one outedge will be labelled ’C’ and this

will dictate the primary storage structure of the relation.

In the case of MIMER, the DBA has very little control on how to
organise the storage structure. The rows are stored automatically
as a B*-tree based on the primary key. The only other option
available to the DBA 1is to add secondary indices based on
attributes through which the search 1is to be conducted. When a

secondary index is created, an internal index table is set up. The

141

Chapter 8 Relational Implementation

8.3.3.3 Algorithm for the storage structure

From the discussion so far, we can formulate the following

algorithm.

Let x

identifier outedge of a node

other outedge labelled 'V’ or ’C’

<
1l

FOR every node DO
{ IF y is a property edge

THEN invert R(X) on this attribute }

ELSE
{ IF y is a relationship edge XY of
degree 1:1 or n:1
and membership of X is obligatory

THEN invert R(X) on the identifier of Y }

ELSE invert R(XY) on the identifier of Y

Program "MIM.P/, like “ING.P’, produces a data structure
suitable for MIMER implementation. The program, "MIM.P’, creates a
list ’mimentchart’. The 1list 1is represented by an array of the
record type ‘miment’. The record type, ‘miment’, has three

components, which are:-

143

Chapter 8 Relational Implementation

struc a character representing the storage structure
edgeno an integer pointing to the appropriate edge
diredge a character representing the direction of the
edge.
By examining ’‘norentchart’ and ’labelmat’, ‘mimentchart’ is
created. There 1is an entry in '‘mimentchart’ corresponding to
every normalised entity. Whenever a record is stored in the

MIMER DBMS, it is sorted according to the value of the primary key.
The only structure that the designer can enforce is to create

secondary indices on some attribute.

The program, 'MIM.P’, examines every entity node. If an outedge
which represents a nonkey attribute is labelled 'V’ or 'C’, then
"struc’ becomes ‘I’, ’‘edgeno’ points to the attribute and "diredge’

shows that it represents an outedge.

If an inedge is 1labelled 'W’ or ‘C’, then ’struc’ is labelled
"I'", 'edgeno’ points to the ’‘entitya’ of the relationship that is
represented by that edge and ‘diredge’ shows that it represents an

inedge.

If none of the above conditions holds, then the edge labelled
W' or 'C’ will represent the primary key and there is no need to

impose any additional structure on this relation.

144

Chapter 8 Relational Implementation

The program then copies all the relations representing the
normalised entities on to the 'mapfile’ ready for MIMER
implementation. Each entity, along with its attributes, is copied
to this file. Then ’'mimentchart’ is examined. If ’struc’ for this
entity is ‘I’ then that relation is inverted on the attribute

indicated by ‘edgeno’.

The relations representing the relationships are then copied
on to ’'mapfile’. They are all inverted on the primary keys of the

‘entitya’ of those relationships.

8.4 Conclusion

At the end of this phase, basic guidelines for implementing the
relational model on to a particular relational implementation like
INGRES and MIMER are obtained. From the storage algorithm it can
be seen that the DBA has significantly less control on the storage
structure of a data base implemented on MIMER than a data base
implemented on INGRES, due to the lack of storage options available

in MIMER DBMS.

The B*-tree structure of MIMER expands and shrinks,
automatically reorganising itself, as records are added to, or
deleted from, the data base. Therefore, it does not need regular
reorganisation. In contrast, the performance for INGRES will
deteriorate with the addition and deletion of tuples, and the DBA

will need to reorganise the data base from time to time.

145

CHAPTER 9

CODASYL. TMPLEMENTATION

9.1 Introduction

The VAX-11 DBMS (see Digital Equipment Corporation 1981a, 1981b)
is a CODASYL type DBMS based on the 1981 working document of the
ANSI Data Definition Language Committee (ANSI X3H2 1981). vax-11
DBMS follows the principles established for a generalised DBMS. It
provides a centralised location for the data definitions and the
physical characteristics of the data are separated from the

logical data definitions.

The VAX-11 DBMS uses data definition languages (DDLs) to define
data and data base constructs. It has three DDLs, namely, a
schema DDL, a subschema DDL and the storage schema DDL. Future
implementations of VAX-DBMS are going to include a further DDL
called the security schema DDL. A schema DDL is the overall

logical definition of a data base. A subschema DDL describes a

subset or user views of the data base. A storage schema DDL

describes the physical storage structure of the data base. A

security schema DDL describes the access constraints on particular

data. This research looked at automatic generation of a schema and

146

Chapter 9 CODASYL Implementation

storage schema definition. These definitions will be discussed in

more details.

The logical data definitions are centralised in the schema. As
discussed previously, in section 6.2, the logical structure of the
data is defined in terms of records and sets. In earlier
implementations of CODASYL, the schema contained definitions of the
physical and logical characteristics of the data. In this
particular implementation, the schema contains only the logical
characteristics, and the physical characteristics of the data are
defined 1in the storage schema. The schema contains the description
of the records, the definition of sets, the owner and member
records for each set, and the order and the insertion/retention
clause of the member records. The storage schema contains the
storage characteristics of the records and sets. It describes how

records should be placed in the data base.

9.2 Schema definition

The schema describes the logical characteristics of the data.
The schema definition includes the description of areas, records,
sets and ordering of member records within a set. These concepts
are similar to the ones put forward by the CODASYL committee. In
the following section a brief description of these concepts, as

described in this particular CODASYL implementation, is given.

Areas Schema areas are logical subdivisions of the
data Dbase. The areas are small manageable
units which isolate applications to

restricted areas.
147

Chapter 9 CODASYL Implementation

Records The schema record description includes the
name of the record, 1its component data
items, their types and the area within which
it lies. A record may occur in more than one

area.
Sets The schema set definition specifies the
relationship between records. It defines
the owners and members of sets. The

insertion and retention clause of member
records are defined. The options available
for the insertion and retention clause are
the same as the ones described in
section 6.2.2.

Ordering new members This defines where a new member record is
inserted. All member records are connected
to the owner record through pointers. When a
new member is stored, depending on the
ordering, it 1is inserted in the appropriate
position in this chain.

9.3 Storage schema

The storage schema contains information about how the logical
records defined in the schema are physically stored in the files.
If the storage schema is not specifically defined, the DBMS assigns
a default storage schema. The performance of the data base can be
improved if the storage options available are utilised to suit
the processing needs. The facilities available for storing records
and sets in the VAX-11 DBMS will be discussed in the following

section.

9.3.1 Storage records

There are two basic record placement options available in
VAX-11 DBMS. They are to cluster records around the owner a set or

to scatter records throughout the data base.

148

Chapter 9

CODASYL Implementation

Clustered via records Records may be clustered around the owner

Scattered records

record of a set of which it is a member.
That 1is, records which are associated with
the same owner record may be placed near the
owner record. The insertion class of this
member record in the set has to be defined
as automatic. Clustering is beneficial if
the number of the member records is not very
large. Clustering is wuseful when our
processing needs are such that we access the
records through the owner record.

In this option the records are scattered
uniformly throughout the storage areas
depending on the key of the records. The
owner record of a set whose members are
clustered around it, is best distributed
uniformly throughout the storage area.

9.3.2 Storage set

The storage sets describe how the DBMS stores the member records.

The three options

Chain sets

Calc sets

Index sets

available are chain, calc and index.

This mode is useful for small unsorted sets where
it 1is necessary to process all members serially.
It 1is not efficient for a quick direct search for
a member record via the owner record of a set.

This storage mode can only be defined for members
of a system-owned set. The system uses the key
or some data item of the member record to find
the location of the record.

This mode can be used for sets whose members have
been sorted. The records are sorted according to
a particular data item and the retrieval is
efficient if this data item is provided by the
user.

149

Chapter 9 CODASYL Implementation

9.4 VAX-11 DBMS implementation

Like any data base implementation, implementing a data base on
the VAX-11 DBMS involves mapping the logical model on to the VAX-11
DBMS schema and then defining a storage schema based on the results

of our functional analysis.

9.4.1 Schema mapping

The record and set structure obtained by applying the mapping
rules described in section 6.4, can be mapped on to the schema
definition of this implementation. For every record in the CODASYL
data model, there will be a corresponding record defined in this
schema definition. For every set defined in the CODASYL data
model, there will be a corresponding set defined in this schema.
The 1insertion and retention clauses are also available from the

logical model.

The concept of system-owned set structure was not discussed in
the logical model defined in section 6.2. This does not strictly
represent the semantics of the data. The concept of the
system-owned set exists to facilitate access capability. Record
types with large numbers of members, which act as entry points to
the data base, are defined as members of system-owned sets. This
provides quick direct access to the records through the key data
items. The information needed to take this decision 1is not

available from the E-R data model. Therefore, the record-set

150

Chapter 9 CODASYL Implementation

structure obtained by applying the mapping rules, does not specify
the sets owned by the system. The results obtained from our
functional analysis specify the number of recordé in a record type
and the access pattern of the record type. This information can be
used to define the system owned set when implementing the record
set structure on this particular implementation. For a system
owned set, the insertion class of the member records is always

declared as automatic.

For every record obtained by applying mapping rules, there will
be a corresponding record in tﬁe VAX-11 DBMS schema. The
descriptions of the field items are derived from the same model.
The area within which the record lies, will be the same as the data

area of the entity in the E-R model.

For every set in the general CODASYL model, there will be a set
defined in the VAX-11 DBMS. The owners and members of all the sets
and the insertion/retention classes of the sets are obtainable from
the general CODASYL model. To define the system-owned sets, it is
necessary to study the labelling of the global functional entity

model.

For every entity in the functional entity model, where the
traversal frequency of the identifier edge 1is greater than the
traversal frequency of any other property edge or relationship
edge for that entity, a system-owned set 1is defined with the

particular entity type as the member record of the set. The

151

Chapter 9

insertion

is a requirement of a system-owned set.
member record is defined as fixed.

type will

deleted from the data base.

The

schema description also

ordering of a set. The

pattern of each of the individual

retrieval conditions needs to be

analysis carried out for this

information to draw any conclusion

thus the DBMS was allowed to assign

area vwhich needs further study and

needs to be refined and extended to

that such decisions may be taken.

class of the member record is defined as automatic.

contains

project

CODASYL Implementation

This

The retention class of the

Once inserted, a record of this

always be a member of the system-owned set, unless it is

information about the

ordering of a set depends on the usage

members. The insertion and

analysed. The functional

does not give enough
on the ordering of a set and
a default value. This is an
the functional analysis phase

capture enough information so

9.4.2 Implementation of the storage schema

The options for three possible storage structures, which were
discussed in section 7.3, are available in the VAX-11 DBMS.
Records which are associated with another record can either be
clustered together or clustered around the record with which it is
associated. In situations when neither of these options is

applicable, a record may be inverted on a particular data item.

As stated above, our first

152

preference is to

place records

Chapter 9 CODASYL Implementation

around the associated record. Our second preference is to cluster
records which share a common attribute or are related to another

common record. The least preferred option is to invert a record

on an attribute.

In this implementation, the clustering effect can be achieved by
using the ’clustered via’ option. This option can only be applied
to records which are members of a specific set where the insertion
class of the member recérd is automatic. The member records will
be well-placed near the owner record if there is room in that
storage page, otherwise they wili be placed in a page as close as
possible to that of the owner record. This cannot be achieved for
records which are not members of sets for which the insertion

class is not automatic.

The option of scattering records by hashing them on a data item,
can be wused to cluster records which share a common attribute. If
this option is applied to data items with unique values, then the
records will be scattered in the storage area and can be accessed
directly if the value of the data item is p;ovided. On the other
hand, if the records are hashed on data items which are not unique,
then all the records which have the same hash keys will be stored

in the same page, thus achieving the effect of clustering.

Member records which do not have an automatic insertion class
cannot be clustered near the owner record. But this does not

produce any major problems. Entities which are accessed frequently

153

Chapter 9 CODASYL Implementation

from another entity, through a relationship, wusually have
obligatory membership in that relationship. If there are
situations where entities which have no obligatory membership of a
relationship are accessed through that particular relationship,
then the only option available is to sort the member records by
their keys and adopt an indexed set structure. This option is also
appropriate to any set structure for which the other options are

not applicable.

To be able to allocate the storage structure to each individual
record and set, we need to examine the list of sets and records and
the labelled functional entity model. For any record, if an edge
labelled 'W’ or 'C’ is the identifier edge of the record, then the
calc mode can be wused. If the edge is a property edge, then the
record can be scattered on that attribute or data item. If the
edge 1is a relationship edge, then the records are clustered round
the owner record via that set. For sets represented by an edge

other than 'W’ or 'C’, an index mode is assigned.

The above discussion can be summarised by the following

algorithm.

FOR every record represented by a node,

IF the edge labelled 'V’ or ’C’
is the identifier edge
THEN assign the calc mode;

ELSE IF it is a property edge
THEN scatter on that attribute

ELSE it is a relationship edge
cluster the records via that set.

154

Chapter 9 CODASYL Implementation

FOR every set represented by an edge
IF the edge is labelled W’ or ’C’
THEN the members will be clustered

via that set

ELSE the edge will be labelled ’I°
assign index mode of storage.

The DBMS assigns a default storage structure to all the records
and sets. The DBMS assigns the default values depending on the
schema definition. The storage schema obtained by applying the
above algorithm 1is based on the wusage pattern of the data. It
provides the data base designer with some guidance on how to tune

the storage schema, so as to give a better performance.

9.5 Conclusion

In comparison with the relational implementation, the CODASYL
implementation is far more complicated. It is difficult to
automate much of the process of CODASYL implementation. To be able
to define the CODASYL schema and the storage schema automatically,
additional information has to be incorporated in our data and
functional analysis phase. Extensive investigation is needed
before we can produce a complete CODASYL schema and storage schema.
The work presented in this research could produce a first-cut
definition of these, which would then need to be modified when a

better understanding of the usage pattern is gained.

155

Chapter 9 CODASYL Implementation

The implementation of the CODASYL mapping§ was not part of the
remit of this research. However, most activities are orientated
toward relational DBMS and these are likely to be most widely used
in the future as they are flexible and provide a simple interface
to users. However, the discussion in this chapter illustrates that
a CODASYL implementation can be automated in the same vay as the

relational mappings.

156

CHAPTER 10

CONCLUSION

10.1 Introduction

The main objective of the research was to develop software tools
for automatically converting the analyst’s data model into a
information. system on a particulér DBMS. The previous chapters
describe techniques, wvhich were used to fulfil the stated
objective. In this chapter the the reasons for selecting the
specific programming language for software development, the
contributions of the research work and areas for further

development are reviewed.

10.2 Selection of the programming language

All the programs are written in standard PASCAL. PASCAL was
chosen, particularly, because of its rich set of data types and its
portability. The decision was influenced by the fact that:-

-~ it allows systematic program development,

- it allows flexible data structures to be implemented

efficiently,

157

Chapte

The
possib
succes

run di

10.3

The

r 10 Conclusion

it allows extensive error checking facilities because it is a
strongly-typed language, that is, every defined data object
belongs to unique type, |

it is becoming popular as a programming language for

microcomputers.

programs were first developed on a PRIME machine. It was
le to transfer the programs on to a VAX machine and run them
sfully without many modifications, though the two machines
fferent versions of PASCAL.

Contribution

contribution of this research can be categorised into three

main areas:

ii.

iii.

Each o

The development of software tools for logical mapping.
This automatically converts the result of the data
analysis, 1i.e., the conceptual model, to the logical model
of relational and CODASYL types of DBMS;

The development of software tools for physical design.
This analyses the result of functional analysis and
suggests ways of structuring the data depending on the
usage pattern; and

The development of software tools which will automatically
(partly) implement the chosen data model on to a selection

of DBMS, on the basis of the results of an analysis of the
physical and logical characteristics of the DBMS.

f these contributions will be discussed in turn.

158

Chapter 10 Conclusion

10.3.1 Logical mapping

The software written for this area examines the semantic content
of an E-R data model and transforms it into a relational data
model. The relational model is such that there are no redundant

relations and all the relations are in fourth normal form.

This software can be used as a tool by a data base designer to
derive the relational or CODASYL logical model from the conceptual
model. It saves the designer from some of the tedious manual
processes of going through every entity and relationship in the
model and mapping it to the relations for the relational model and,
similarly, the set and record structures for the CODASYL model.
This is not dependent on any particular implementation, so its

relevance is not restricted to the DBMS used by the author.

The mapping of the E-R model on to the relational model is
straightforward. The resultant relational model contains
normalised relations which are free of any wupdate anomalies.
However, a relational model has no features which could describe
the obligatory/non-obligatory membership of entities in an E-R
model. Therefore, update operations which arise as side effects of
another wupdate operation will not be performed automatically. Once
this logical model 1is implemented on any target system, special
software has to be developed which will deal with these update

operations.

159

Chapter 10 Conclusion

The mapping of the E-R model on to the CODASYL model is not as
straightforwvard as the relational model. Problems arise because
the logical model definition of a CODASYL DBMS contains features
which describe how data should be physically organised. For the
logical mapping, only those features of the CODASYL recommendations
wvhich drive the 1logical mapping were chosen. The CODASYL model
supports all the features of the data portrayed by the E-R model,
including the membership class of entities. Though the
insertion/retention class of a member of a set describes the
membership class of an entity, it is not possible to assign the
insertion/retention class accurately from the E-R model. A
thorough functional analysis which analyses the entity 1life
history (that is the various states through which an entity
progresses from the time it is created wuntil the time it is

deleted) is necessary to be able to define these accurately.

10.3.2 Physical design

The software designed for this phase examines the known
functions for the area under investigation and analyses the usage
pattern of the data. It provides the data base designer with a
detailed knowledge of how an entity is being accessed and how
frequently it 1is being accessed. The use of this software is not
restricted to any particular implementation. It frees the data
base designer from the tedious task of deciding how each attribute

of every entity and each relationship. is being wused by the

160

Chapter 10 Conclusion

different functions. The software also suggests the access
mechanism to be assigned to each of the access paths. The
information can be used to select the actual implementation

structure supported by specific DBMS.

The results obtained from the physical design give a clear
understanding of the storage structure necessary. This information
can be wused in deciding the kind of support we like to have when
choosing our target DBMS. If the target system is already known,
then this would enable the designer to decide how the physical
characteristics of the target system can be exploited to give the

kind of support he would like to assign to each access path.

When implementing the model on INGRES, it is found that INGRES
supports clustering and indexing, but it is not possible to place
tuples from different relations near each other. In MIMER, only
secondary indexing can be added to enhance performance. As data is
stored in a B*-tree structure, it cannot support ’‘clustered’ or a
'well-placed’ structure. In VAX-11 DBMS there are features which
can be exploited, so that all three structures ’‘indexed’,

'clustered’ and ’'well-placed’, can be supported.

10.3.3 Implementation

The use of the software developed for implementation is
restricted to the DBMS selected by the author. The physical

characteristics supported by different DBMS vary. The interfaces

161

Chapter 10 Conclusion

for different DBMS are different. Therefore, it is not feasible to
develop general software that would enable a data base designer to
implement a data base on to any target DBMS. The programs written
for this phase are driven by the physical characteristics and the
interface supported by the target DBMS. However, the software
illustrates that the implementation of a data base on to target
DBMS chosen is a logical process which can be partly automated if
the logical and physical characteristics of the data to be

implemented are known.

10.4 Future work

The major goal of this research was to develop software tools to
data base design methodology. Tools and techniques were developed
wvhich make a positive contribution to the achievement of this goal.
In order to fully automate the process further work needs to be

done in the following areas.

One possibility 1is to develop similar tool for micro-computers.
A portable software package, named Database Implementation Made
Easy (DIME), based on a micro-computer, 1is currently being

developed, see Chaudhuri and Esendal (1986).

DIME 1is a software tool which supports data base design and
implementation. It is developed on IBM PCs. It documents the
results of data analysis and functional analysis and produces

logical model definitions for relational and CODASYL DBMS

162

Chapter 10 Conclusion

independent of any particular implementation. Furthermore, it
examines the results of functional analysis and advises designers
on ways of organising the data to enhance the performance of the
prospective data base. The package can be used as an aid to data
base design, independently of any particular DBMS implementations.
However, the authors have developed software to interface DIME with

INGRES running on a VAX-750 under a UNIX operating system.

Various microcomputer-based data base design tools are
commercially available. Generaily, they offer a good graphic
interface for the designer to communicate with the system and most
of them <c¢laim to produce first cut data base design models.
However, most of them are simply tools for documenting and checking
the consistency of the results of the analysis. Some of them
produce a relational or CODASYL structure but they are only a first
cut model. DIME does not provide any graphic interface, but as a
design tool it goes a lot further than these tools. Not only does
it document and check the consistency of the results of data
analysis, it produces optimised relational and CODASYL structures
and analyses the usage pattern of the data and advises the

designers on how to physically organise the data.

It is not possible to prove that the algorithm used to assign
support to the access paths does produce an optimal solution.
However, it can be stated that it is a good solution if reducing

access time is of prime importance.

163

Chapter 10 Conclusion

In the realm of functional analysis, several problems and
deficiencies still exist. The details gathered from this phase
vere insufficient <o take certain decisions in a later phase,
namely, accurately assigning the insertion/retention class of the
CODASYL sets. Entity life history analysis may have potential in
giving a better logical and physical design. A full study is

needed to explore this hypothesis.

The conceptual model used in this project is derived from an
analysis of the wuser requirements by a data analyst. Advances in
artificial intelligence and expert systems research and development
make it feasible to consider sophisticated tools to help in this
analysis, and may eventually be able to produce the conceptual

model without a data analyst.

164

APPENDIX A

Data Models for the Hospital

Pathology Laboratory.

The Pathology Laboratory is concerned with biochemistry,
haemotology and microbiology activities. The information flow
within this area is concerned with the investigation and reporting
of the causes and manifestation of diseases by using chemical,

microscopic, biological and bacteriological methods.

The Pathology Laboratory can be further partitioned into a few

smaller departments according to the type of job they do.

(1) Serology department: This department gets a medical request for

blood for a certain patient. The request is filed. It then registers
the patient’s data (blood group, etc.). A record is kept of all
patients with an antibody problenm. The blood report, and any
important information which should be stored, is also stored in the

patient’s record. This is held in the record office.

165

Appendix A Data models for the Hospital

(2) Protein department: This department keeps a day book, that is,
details about all patients who have been tested on that day. The
department keeps a record of any interesting or ﬁnusual cases. It
also keeps a reference of all the patients sent to another

specialised hospital.

(3) Anti coagulant clinic: This department is responsible for
patients attending anti coagulant clinics. They keep a record of
the result and the dosé of the drug used for the six most recent
visits. The patients are sent to this department by their own
doctor. Patient details are formea from it. The entity model for

this department is shown in Figure A.l.

166

-

Appendix A

REQUESTS FOR
BLOOD

PATIENT

ANTI-COAGULANT
REFERRAL

SPECIAL CASE

PROTEIN

PATIENTS PROGRESS

COAG-CLINIC

Data models for the Hospital

i

PATIENT
RECEIVING BLOOD

ANTI-BODY
PROBLEM
CASE

PROTEIN
INTERESTING
CASE

COAG-CLINIC

Figure A.1

COAG-CLINIC
PATIENT

AN

RECORD

PROTEIN PATIENT

»

Y

*

PROTEIN
DAY
RECORD

TN

SPECIMEN
TEST
REQUEST

SPECIMEN

Entity Model for Pathology Laboratory

167

Appendix A

Data models for the Hospital

Pharmacy Department

The Pharmacy Department

purchasing,

is responsible for processing the prescription, drug ordering, drug

records and

testing,

control,

is concerned with the activities of

storing and dispensing drugs. This department

drug administration and

relating to hospital prescribing.

The entity model for this department is as Figure A.2.

statistics

PATIENT DRUG P 4| STOCK RECORD
>-
Y \y

PN A j\
PRESCRIPTION PURCHASE SUPPLIER
DETAIL DETAIL

— <
PRESCRIPTION WARD ORDER

Figure A.2 Entity Model for Pharmacy Department

168

Appendix A Data models for the Hospital

X-ray Department.

The X-ray department’s main functions are the production and
interpretation of and reporting on, X-ray films of patients taken
at the request of a doctor in the hospital or outside. The
information processes that are involved are the work schedule in
the department and the request to the radiology sector. The entity

model formed is as Figure A.3.

169

Appendix A

X-RAY
REQUEST b 5

—

PATIENT

= X-ray sessions completed/

Patient with X-ray
done

= Future sessions/
Patient with X-ray
done

Data models for the Hospital

FUTURE
X-RAY
SESSION

COMPLETED X-RAY
SESSION

N

STAFF
DETAIL

N

INDIVIDUAL’S
WEEKLY
DUTY

Figure A.3 Entity Model for X-ray Department.

170

Appendix A Data models for the Hospital

The Wards

The wards are responsible for caring for the patients who come in
for a long or a short period. They are responsible for providing
bed-state information and keeping track of all the medications,
treatment and progress of each patient during his stay in the
hospital. The entity model for this data area is as shown in

Figure A.4.

171

Appendix A Data models for the Hospital
' | I
PATIENT (! WARD l CONSULTANT
] | . |
) q
N ,L
—
— ¢ hd
IN-PATIENT WARD-BED
9 9 ®
N Ajk N\
. ° L 4
PATIENTS’ PATIENTS PATIENTS'
DRUG MEDICATION REPORT
DISCHARGED
PATIENT

Figure A.4 Entity Model for the Vards.

172

Appendix A Data models for the Hospital

Nursing Department.

The other area analysed was that of the nursing staff. The primary
objective of this department is to manage nursing resources
effectively. This department is responsible for keeping records of
all current nursing staff and also those of nurses who have worked
at the hospital. This department is also responsible for
monitoring the nurses’ sickness record, their holidays and duty

rota. The entity model is as Figure A.5.

173

Appendix A Data models for the Hospital

NURSE WARD
Noe 4l
V S
Y
N ;\ /
v . .
NURSES ABSENCE DUTY INDIVIDUAL’S
RECORD WEEKLY WORKLOAD
/
L]
RECORD FOR NURSE
NURSES LEFT HOLIDAY RECORD

Figure A.5 Entity Model for the Nursing Department.

174

APPENDIX B

Figure B.1 Merged Data Model for the Hospital

ISHNN

Jusunieds(| buisinn

ddvm
80lJO pi0osy
Spiepm INVLINSNOD
NOILdIHOSIHY
J001d Juswiiedsq
HC4S1SIN03M IN3ILYd Aovwieyy
Aiojeioqe ABojoyrey
1S3N03Y AvY-X

Juswiiedsq Aey-x

]

175

REFERENCES

ANSI/X3/SPARC DBMS Framework (1977),
on data base management systems.
AFIPS Press, 1977.

Interim report: Study group

ANST/X3/SPARC/STUDY GROUP DATABASE MANAGEMENT SYSTEMS, (1978),
"The ANSI/X3/SPARC DBMS Framework".

Information Systems, 3, 3, 1978, pp 173-191.

ANSI X3H2 (1981), "Proposed American National Standard for a
definition Language for Network Structured Databases".
American Structured Standards Institute, 1981.

Atre, S., (1980), "Data Base, Structured Techniques for Design,
Performance and Management".

Wiley and Sons, New York: 1980.

Avison, D.E., (1985), "Information Systems Development: A Data Base
Approach".
Blackwell Scientific Publications, U.K., 1985.

Bachman, C.W., (1969), "Data Structure Diagrams".
Database, 1 2, 1969, pp 4-10

Bachman, C.W., Daya, M.,(1977), "The Role Concept in Data Models".
Proceedings of the 3rd Conference on Very Large Data Bases, ACM,

1977.

Bader J. Hannaford, D., Cochran, A., Edwards,J., (19?7),
"Inteilipse; A Knowledge Based Tool for an Integrated Project

ort Environment". .
gﬁggeedings of the Conference on Automating Systems Development,

Leicester, April, 1987.

Benci. E., Bodart, F., Bogeart, H., Cabanes, &., (1976) "Concepts
’ b

i f a Conceptual Schema". . '
gogcézgigzzlggfo the IFIP-TC-2 Working Conference on Modelling in
r

Data Base Management Systems, North-Holland, Freudenstadt, January
a
1976.

176

References

Boehm, B.W., (1976), "Software Engineering".
TRW Tech. Report TRW-SS-76-98, October, 1976.

Braccbi, G., Paolini, P., Pelagatti, G., (1976) "Binary Logical
Associations in Data Modelling".

Proceedings of the IFIP-TC_2 Working Conference on Modelling in

?g;z Base Management Systems, North-Holland, Freudenstadt, January

Braegger, R.P., Dudler, A.M., Rebsamen, J., Zehnder, C.A., (1985),
"Gambit: An Interactive Database Design Tool for Data Structures,
Integrity Constraints and Transactions".

IEEE Transaction Software Engineering (USA) 11, 7, July 1985,
pp 574-583.

Brown, P.J., (1982), "Tools for Amateurs".

Tools and Notions for Program Construction, Cambridge University
Press, 1982.

Bubenko, J.A. (Jr), (1977) "The Temporal Dimension in Information
Modelling".

Proceedings of the Conference on Architecture and Models in Data
Base Management Systems, North-Holland, Amsterdam, 1977.

CACI (1980) "Analysis of the Data Resource".
Internal CACI Training Course.

Chaudhuri, J., Esendal, H.T., (1986) "A Preprocessor Package to

Facilitate Data Base Design". ‘
Fourth IASTED International Symposium on Applied Informatics,
Innsbruck, 1986.

Chen, P.P.S., (1976), "The Entity Relationship Model- Towards a

Unified View of Data".
ACM Transactions on Database Systems, 1 ,1, March 1976, pp 9-36.

Chen, P.P.S., (1977), "The Entity-Relationship Approach to Logical

Data Base Design".
Q.E.D. Monograph Series, Wellesley, MA, 1977.

Chen, P.P.S., Yao, S.B., (1977), "Design and Performance Tools for

Database Systems".
Proceedings of the
Data Bases, ACM, 1977.

Third International Conference on Very Large

177

References

Chen, P:P.S., (1980), "E-R Approach to Systems Analysis and Design".
Proceedings of the International Conference on the

Entity-Relationship Approach to Systems Analysis and Design, North
Holland, Amsterdam, 1980.

Clarke, J.D., Hoffer, J.A
Design".
Q.E.D. Information Systems, Wellesley, MA, 1979.

.y (1979), "Physical Database Record

CODASYL Development Committee (1962), "An Information Algebra".
CACM, April 1962, pp 190-204.

CODASYL (1971), "Database Task Group of CODASYL Programming
Language Committee Report."
ACM, New York, USA, April 1971.

CODASYL (1978), "CODASYL Data Description Language Journal of
Development".

Material Data Management Branch, Dep. of Supply and Services,
Ottawa, 1978.

Codd, E.F., (1970) "A Relational Model of Data for Large Shared
Data Banks".
CACM, 13, 6, June 1970, pp 377-387.

Comer, D., (1978), "The Ubiquitous B-Tree."
ACM Computing Survey, 11, 2, June, 1979, pp 121-137.

Crocker, P.S., (1984), "Systems Analysts-Training and Experience".
National Computing Centre, Manchester, 1984.

Date, C.J., (1986), "An Introduction to Database Systems" Vol 1.
Fourth Edition. Addison Wesley, London, 1986.

Davenport, R.A., (1978) "Data Analysis for Database Design".
Australian Computing Journal, 10, 4, November, 1978, pp 122-137.

Davis, G.B., Olson, M.H. (1985), "Management Information Systems:
Conceptual Foundations, Structure, and Development."
Second Edition, McGraw-Hill Book Company, New York, 1985.

178

References

Davis, K.H., Arora, A.K., (1985), "August: An Experimental System

to Translate a Conventional File System into a Commercial Database
System".

Proceedings of COMPSAC 85, IEEE Computer Society Press, 1985.

DeMarco, T., (1978), "Structured Analysis and System Specification".
Yourdon, Inc., New York, 1978.

Digital Equipment Corporation (1981a), "VAX-11 DBMS V1 DDL
Reference Manual ".

Digital Equipment Corporation, Maynard, Massachusetts, 1981.

Digital Equipment Corporation (1981b), "VAX-11 DBMS V1 Summary
Description”.

Digital Equipment Corporation, Maynard, Massachusetts, 1981.

Falkenberg, E.,(1976), "Concepts for Modelling Information".
Proceedings of the IFIP-TC-2 Working Conference on Modelling in
Data Base Management Systems, G.M. Nijssen (ed), North-Holland,
Freudenstadt, January 1976.

Ferrara, F.M., Batini, C., "Practical Application of Idefl as a
Database Development Tool".
Database (USA), 15, 4, 1984, pp 15-20.

Finkelstein, C., (1980), "Data Analysis and Design of Information
Systems".
Infocom, Australia, 1980.

Fry, J.P., Deppe, M.E., (1976), "Distributed Data Bases: A Summary
of Research".
Computer Networks, 1, 2, 1976, pp 1-13.

Fry, J.P., Sibley, E.A., (1976), "Evolution of Database Management

Systems".
Computing Surveys, 8, 1, 1976, pp 7-42.

Gane, C., Sarson, T., (1979), "Structured System Analysis".
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

Gerritsen, R., (1975), "A Preliminary System for the Design of DBTG

Data Structures".
Communication of ACM, 18, 10, 1975, pp 557-567.

179

References

Gerritsen, R., (1978), "Steps Towards the Automation of Database
Design".
NYU Symposium on Database Design, May 1978, pp 91-99.

Gray, P., (1984), "Logic, Algebra and Databases".
Ellis Horwood Ltd., Chichester, 1984.

Grotenhuis, F., (1976), "A Conceptual Model for Information
Processing".

Proceedings of the IFIP-TC-2 Working Conference on Modelling in
Data Base Management Systems, G.M. Nijssen (ed), North-Holland,
Freudenstadt, January 1976.

Hall,P., Owlett,J., and Todd,S. (1976), "Relations and Entities".
Proceedings Ofthe IFIP-TC-2 Working Conference on Modelling in Data
Base Management Systems, G.M. Nijssen (ed), North-Holland,
Freudenstadt, January 1976.

Hein, K.P., (1985), "Information System Model and Architecture
Generator".
IBM System Journal, 24, 3, 1985, pp 213-235.

Hoffer, J.A., (1975), "A Clustering Approach to the Generation of
Subfiles for the Design of a Computer Database".
Ph.D. Thesis, Department of 0.R, Cornell University, 1975.

Hoffer, J.A., Severance, D.G., (1975), "The Use of Cluster Analysis
in Physical Data Base Design".

Proceedings of the First International Conference on Very Large
Databases, ACM, 1975.

Howden, V.E., (1982), "Contemporary Software Development
Environments".
Communications of the ACM, 25, 5, May 1982, pp 318-329.

Howe, D.R., (1983), "Data Analysis for Data Base Design".
Edward Arnold Ltd., London, 1983.

Inmon, W.H., (1981), "Effective Data Base Design".
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1981.

180

References

Kahn, B.K., (1976), "A Method for Describing the Information
Required by the Data Base Design Process".

Proceedings of the International ACM/SIGMOD conference on
Management of Data, 1976.

Kahn, B.K., (1978), "A Structured Logical Data-Base Design
Methodology".

NYU Symposium on Database Design, May 1978, pp 15-24.

Kent, W., (1978), "Data and Reality: Basic Assumptions in Data
Processing Reconsidered".
North-Holland, Amsterdam, 1978.

Kerschberg, L., et al., (1976), "A Taxonomy of Data Models".
Tr. Csrb-70, Computer Systems Research Group, University of
Toronto, 1976.

Kim, W., (1979), "Relational Database Systems."
ACM Computing Surveys, 11, 3, September 1979, pp 185-211.

King, P.J.H., (1977), "Information Analysis for Data Base Design".
On-line 1977, Data Base - London, On-line Conferences Ltd, 1977.

King, R., McLeod, D.,(1985), "A Database Design Methodology and
Tool for Information Systems".
ACM Transactions on Information Systems, 3, 1, 1985.

Kroenke, D., (1983), "Database Processing".
Second Edition, Palo Alto, CA: Science Research Associates, Inc.,
1983.

Langefors, B., (1974), "Information Systems".
Proceedings of International IFIP Congress, Amsterdam, 1974.

Lum, V.Y., (1979), "1978 New Orleans Data Base Design Workshop
Report".

Procedings of the Fifth International Conference on Very Large Data
Bases, ACM, October, 1979.

Lusk, E.L., Overbeek, R. A., (1981), "A Practical Design
Methodology for the Implementation of IMS Database using
Entity-Relationship Model".

ACM-Sigmod International Conference on Management of Data, Santa
Monica, 1981.

181

References

Martin, G., (1985), "System Design from Provably Correct
Constructs".

Prentice-Hall, Inc., Englewood Cliffs, N.J., 1985.

Martin, J., McClure, C., (1985), "Diagramming Techniques for
Analysts and Programmers".

Prentice-Hall, Inc., Englewood Cliffs, N.J., 1985.

McGee, W.G., (1976), "On User Criteria for Data Model Evaluation”.
ACM Transaction on Data Base System, 1, 4, December 1976,
pp 370-387.

Mealy, G.H., (1976), "Another Look at Data".
Proceedings of the AFIPS Fall Joint Computer Conference, 1976, 31.

Moulin, P., Randon, J., Teboul,M., Savoysky, S., Spaccapietra, S.,
Tardieu, H., (1977), "Conceptual Model as a Data Base Design Tool".
Proceedings of the Conference on Architecture and Models in Data
Base Management Systems, North-Holland, Amsterdam, 1977.

Navathe, S.S., Gadgil, S.G., (1980), "A Methodology for View
Integrationin Logical Database Design".

Database Systems Research and Development Center Tech. Report,
University of Florida, 1980.

Navathe, S.B., Schkolnick, M., (1978), "View Representation in
Logical Database Design".

Proceedings of ACM SIGMOD International Conference on Management of
Data, 1978.

NCC, (1980), "Evaluation and Implementation of Database Systems".
Database Design Tools, NCC, Manchester, 1980.

Novak, D., Fry, J., (1976), "The State of the Art of Logical
Database Design".
Proceedings of 5th Texas Conference on Computer Systems(IEEE), 1976.

0lle, T.W., (1978), "The Codasyl Approach to Data Base Management”.
Wiley Interscience Publication, New York, 1978.

Orman, L., (1984), "Pamilial Model of Data".
International Journal of Computing and Information Science. 13, 3,
June 1984, pp 149-175.

182

References

Orr, K.T., (1976), "Structured Systems Design"..
Langston and Associates, Topeka, Kansas, 1976.

Palmer, I., (1978), "Practicalities in Applying a Formal
Methodology to Data Analysis".
Proceedings of NYU Symposium on Database Design, 1978.

Parkin, A., Thornton, S.R., Holley, P.J., (1987),
"Can-fact-finding-be-automated?"
Conference On Automating Systems Development, Leicester

Polytechnic, April, 1987.

PCTE, (1986), "PCTE-A Basis for a Portable common Tool Environment;
Functional Specification".
Bull, GEC, ICL, Nixdorf, Olivetti, Siemenns, 1986.

Relational Technology Inc.(1983), "INGRES Reference Manual, Version
1.4.".
Berkeley, CA, 1983.

Robinson, H., (1985), "Database Analysis and Design™.
Chartwell Bratt, Bromley, 1985.

Rock-Evans, R., (1981), "Data Analysis".
A Computer Weekly Publication, IPC Business Press, 1981.

Sakai, H., (1980), "Entity Relationship Approach to the Conceptual
Schema Design".

ACM Sigmod, International Conference on Management of Data, May
1980.

Savant Enterprise (1985) "MIMER , Concpts and Facilities ".
Savant Enterprises, Carnforth, 1985.

Schmid, H.A., (1977), "An Analysis of Some Contents for Conceptual
Models".

Proceedings of the Conference on Architecture and Models in Data
Base Management Systems, North-Holland, 1977.

Senko, M. E., Altman, E.B. Astrahan, M.M., Fehder, P.L., (1973),
"Data Structures and Accessing in Data-Base Systems".
IBM Systems Journal, 12, 1, 1973, pp 30-93.

183

References

Severance, D.G., and Carlis, J.V., (1977) "A Practical Approach to
Selecting Record Access Paths".
ACM Computing Surveys, 9, 4, 1977, pp 259-272.

Stucki, L.G., Walker, H.D., (1981), "Concepts and Prototypes of
ARGUS".
Software Engineering Environments, North Holland, 1981, pp 61-79.

Sundgren, B., (1978), "Data Base Design in Theory and Practice -
Towards an Integrated Methodology".

Proceedings of the 4th Conference on Very Large Data Bases, ACM,
1978.

Sutcliffe, A.G., Layzell, P.G., Loucopoulus, P., Davis, C. G.,
(1987), "Majic - Automating JSP Program Design and Dvelopment".
Procedings of the Conference on Automating Systems Development,
Leicester Polytechnic, April, 1987.

Teorey, T.J., Fry, J.P., (1982), "Design of Database Structures".
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1982.

Tozer, E.F., (1976), "Data Systems Analysis and Design".
Proceedings of the Conference European Coop. Informatics, 1976.

Tsao, J.H., (1980), "Enterprise Schema: An Approach to IMS Logical
Data Base Design".

ACM-Sigmod International Conference on Management of Data, May
1980.

Tsichritzis, D.C., Lochovsky, F.H., (1982), "Data Models".
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1982.

Ullman, J.D., (1982), "Principles of Database Systems".
Computer Software Engineering Series, Computer Science Press, Inc,
Maryland, 1982.

Wasserman, A.I., (1980), "Information System Design Methodology".
Information Science Journal, 31, 1, 1980.

Williams, M.H., Pattison, I.M., Nerves, J.C., (1986),
"Reorganisation in a Simple Database System".
Software Practice and Experience, 16, 8, 1986.

184

References

Yao, S.B., (1977), "An Attribute Based Model for Database Access
Cost Analysis".

ACM Transaction on Database Systems, 2, 1, 1977, pp 45-67.

Yao, S.B., De Jong, D., (1978), "Evaluation of Database Access
Paths".

Proceedings of the ACM/SIGMOD International Conference on
Management of Data, 1978.

Yourdon, E., Constantine, L.L., (1979), "Structured Design".
Prentice Hall, Inc., Englewood Cliffs, NJ, 1979.

185

