Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

Neural Networks for Perceptual Grouping

Sarbjit Singh Sarkaria

Doctor of Philosophy

The University of Aston in Birmingham

September 1990

© This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from
the thesis and no information derived from it may be published without the authors prior,

written consent.

The University of Aston in Birmingham
Neural Networks for Perceptual Grouping

Sarbjit Singh Sarkaria
Doctor of Philosophy
September 1990

Summary

A number of researchers have investigated the application of neural networks to visual
recognition, with much of the emphasis placed on exploiting the network’s ability to
generalise. However, despite the benefits of such an approach it is not at all obvious how
networks can be developed which are capable of recognising objects subject to changes in
rotation, translation and viewpoint. In this study, we suggest that a possible solution to
this problem can be found by studying aspects of visual psychology and in particular,
perceptual organisation. For example, it appears that grouping together lines based upon
perceptually significant features can facilitate viewpoint independent recognition.

The work presented here identifies simple grouping measures based on parallelism and
connectivity and shows how it is possible to train multi-layer perceptrons (MLPs) to
detect and determine the perceptual significance of any group presented. In this way, it is
shown how MLPs which are trained via backpropagation to perform individual grouping
tasks, can be brought together into a novel, large scale network capable of determining
the perceptual significance of the whole input pattern. Finally the applicability of such
significance values for recognition is investigated and results indicate that both the MLP
and the Kohonen Feature Map can be trained to recognise simple shapes described in
terms of perceptual significances.

This study has also provided an opportunity to investigate aspects of the backpropagation
algorithm, particularly the ability to generalise. In this study we report the results of
various generalisation tests. In applying the backpropagation algorithm to certain
problems, we found that there was a deficiency in performance with the standard learning
algorithm. An improvement in performance could however, be obtained when suitable
modifications were made to the algorithm. The modifications and consequent results are
reported here.

Keywords : Neural Networks, Perceptual Organisation, Backpropagation, Multi-layer
Perceptron, Recognition.

To
my parents.

Acknowledgements

I wish to express my thanks to the following people :

Dr. Alan Harget for his support and guidance.

Dr. Ela Claridge for seeing me through the early stages of my research and for much
needed encouragement.

To my friends and colleagues in the department.

And finally to SERC for providing the necessary funding.

List of Contents

TIRTIRDABIE .o en b R A A N S S 8 G S s 1
SUMIMATY ..o e e ee e e 2
ENSEIOAION oo oo e s S S R N R A T T s bh m s Kems e m s b tins e e 3
ACKIOWICABEMBILE. ... ciomsomimmmssnnssnssinnsrmssasisis s st aEto i i st s 4
LSt OF COMIENTS. ... ettt ittt e et e e e e e e e aanes 5

LAStOf FIgitescoovmnnsinminmssimnss sasmima s ca s e s aivneds 10

LISt Of T ables. it 12

L. Introduction . .o e 13

Ze INCUTAL INOUWOTRS v v rusntinm suisna o vina s s v S s SR S S S e R 16

2.1 Introduction and Brief HiStOryooeiiiiiii e 16

2.2, Fhe-Mplti-Layer PETCEPITON oo vonaimsssss i sy siesnsin s onsip sty 19

2.2.1 The Error Backpropagation Algorithm.........cccooviiiiviiiieieniniennn, 21

. ;1 Formal Analvsis . ciisiniissinmienssirmmtrisis s 21

2.2.1.2 Applying the Backpropagation Rule.......c..cccuvveiciiiiin. 26

2.2.1.3 The Activation FUnctionc.c.ovviiiiiiiiiiiiiniineaannn. 27

273 The HOEEld Nt v it e i R s e s oo S b s e SR s 28

2:3.1. Content ‘Addressable MeEmory .oz 28

2.3.2 Solving Optimisation Problems...........ccoooiviiiiiiiiiiiiinnn, 29

2.4 Competitive Leamning . c...ocnsiinamminaii sy 31

2.5 The Carpenter and Grogsberg Net . cvavassiinsivesmmsssamasssiasisorisensvs 32

2.6 The Boltzmann Machingoooieiiiiiiiiiiiiiieiea e 33

2.7 The Kohonen Self-Organising Feature Map............coovviiiiiiiiiiiiiiiiinna. 35

2.7 Feature Maps in the Brail..... . cocomammsescesnssvasmanensennnon sussssns 35

2.7.1.1 Evidence for Feature Maps.....cccciciasesicisssassssassvessssans 36

2.7.1.2 How are Feature Maps Formed?.......ovivmiiimensarens 36

2.7.2 Lateral COMMECVILY . oo ronvsssramssnansesmmmmssanssmnssorsmnssssasssrns 37

2.7.2.1 Lateral Interactions and the “Mexican-Hat” Function 37

2.7.3 Practical Implementation of a Kohonen Feature Map 38

2.7.3.1 The Simplified Self-Organising Algorithm..................... 39

2.7.4 Examples of Topology Preserving Maps........cccovueeiiiiiiinninnnnns 40

2.8 Two Examples of Successful Neural Net Applications.c....oeeen. 4]

2.8:1 NETtalk v.covivmennmiis s i iniamna s sshss s pbebnsn s omntmenamns 41

2.8.2 The Neocognitron R T RN N R S A S R A 43

2.9 SUMMATY ittt ee e e et e e et e et een e eaeen 44
3. Computational and Perceptual Approaches to Computer Vision.......... 46
3.1 Introduction to Computer Vision..........ccoeooeveiiivcvnerenins N—— 46
3.1 1 Tevels Of PIOCESSIAG o viciiiiniiiimin isisemmmnnransnsms s nmneasnssasmms 46

3,2 .Somie 3D VISIon SySIBmsi. ..o mmucsniniizstinm i oot s aviiav sy bossousy srsis 48
3.2 1 ACRONYM ..ottt 48
3.2.2 A Three Dimensional Part Orientation System (3DPO)................. 49
32 STBRPO v cmscims cinessmsassssas s i es e v ks oaa s S asnes 50
3.2.4 Use of Perception in Vision SyStemscoovveiiireiieeneeneennn. 51

3.3 Biologically and Perceptually Motivated Approaches.cccoevveinnnnn. 52
3.3.1 INtrOQUCTION .. vxsnsmsasmmnassnsasammmansiusemsanmses svasanuoopuaseinssusamss 52
3.3.2 The Influence of Biological Findings on Computer Vision.............53

3.3.3 Linsker's Perceptual: Networks.. s s sismmusmmianis imasiasssmmss 54

3.3.4 Endstopped Neurons and Curvatureoooeviiiinininennnnnn. 57

3.3.5 The Hierarchical Structing Code..c..vvivasmmiaimmainvsisiiss 57

3.3/6 Perceptual Grouping civssmsmaussssnsssavas s sasssmnassnsasss 59
3.3.6.1 What are Perceptual Groups?ccooiviiiiiiininnnnnnn. 59

3:3.6.2 Pertéptual Groups and SCERPO w.cviinsinnimessiinn 61

3.3.6.2.1 Grouping According to Proximity................... 63

3.3.6.2.2 Grouping According to Parallelism.................. 64

3.3.6.2.3 Grouping According to Collinearity................. 64

3.3.7 Walter’s Computer Vision Model and Perceptual Organisation........ 65
3.3.7.1 Perceived Brightness... cuscasnmsasnsivisivesivmsie 66

3.3.7.2 A Computer Model Based on Psychophysics.................. 67

3.3.7.3 Relation to Perceptual Organisationccoeennnnn. 68

3.4 Neural Networks for Vision....ciccsssiaissssdssssvsisransmssvssssasstiossssiva 69
34,1 INFOBUCHION 5o oacusinismmnesiiamsssivs s e s Chrs s s R s RS TN R s TRS 69
3.4.2 Face ReCOGNItON ...vcverivemssssesssaressasssssasissnsasssosasassssasnvess 70

3.4.3 Methods Using Backpropagation............cc.oceeiiiiiiiiiiiinn 71
3.4.3.1 Character ReCOBMIION. ... viresssresmassrmnnsssssmsamsmpmnosassss 71

3.4.3.2 An Autonomous Guided Vehicle.ccooeeiiiiiinin. 72

3.4.3.3 Learning to Perceive Left and Right..................l. 73

3.4.3:4 The *T-C’ Problem ... cccucuusinsusssnsnasunsoesiensvannsssvsnss 75

3.4.4 Structured Neural Networkscooooiiiiiiiiiiiiiiinn, 76

R 1 b1 L g e e e T e T 78

4. Connectionist Approach to Processing Perceptual Groups................. 79

Gl DDA UCRRION s siiieiin Gsieienrnrsasmanmnnamsnsns e smsesasays ey srasrmesiass 79
4.2 Outling of Proposed ProJEct .. .vessmsivsusssssnsnios 5655555046 sane rmmmmsemmsnnns 80
4.3 Coding the Input Patternooouvvvniiniiiiiiiii e 82
4.3.1 Description of Coding Scheme..........cooouvveeeiiiveeeeeeiiannan, 83
4.3 L Featte DEWRHON vocsonvivemmvasissmasssi s nm s sass 85
4.3.2.1 The Detection of Parallel Lines...........cocoovuvivureenennen. 85
4.3.2.2 The Detection of Collinear Lines.............ccccoueeeuerenne.... 86
4.3.2.3 Thie Detéction of ComneCHvItY....omnnuamminunin 86
4.3.3 Some Examples of Patterns Represented Using this Scheme.......... 89
4.4 What Does the Network Need to Output and How?............ccovvvvnvnvnnnnn... 90
4.4.1 Perceptual Significance of Parallel Lines.oooeennen. 91
4.4.2 Perceptual Significance of End-end Connectivity..........ccceeennn.... 93
4.4.5 Sequential Processing and SCERPO . suisasssimissiiiizammaiss 93
4.4.4 Example of How a Network can Simulate a Real Function 94
4.4.4.1 The Training Set.....c.coviiiriiiiiiiiiiiieiiiieeieeaeennes 95
4.4.4.2'The NEtwWork ..ccvsanimsasesnmmmmessesmrieiama s 96
4.4.4.3 The Training Procedure..........oovvviviiiiiiiiiiiiineenennenes 97
4.5 Joining Subnets to Perform Complex Taskscoooveiiiiiiiiiiiiiiiinnann, 98
5. Development and Training Results of the Perceptual Network........... 100
3.1 Detailed Plah of the Perceptia]l NEWOIK. ..ovii vt 100
3.1.1 The Line-processing STUCIIIEc.vussmassssanisimonsessia v s 102
5.1.1.1 The Line-pair SIUCHING ..onasnmns sminmidisimase e 104
Si1.1:2'The "Filter” SIUCIITEE o mmniimmevissiasssombssrsss 105
5.1.2 The Corner Processing SIUCIUTE.ouiueniniiniiienenieneneenennes 106
5.1.2.1 Local Corner Deectors..uuisvminnumistiim 106
5.1:2. 2 Receptive FIellS cvvvnuirananmimnnmsisimassesssasowss 108
5.1.3 Practical Implementation of the Perceptual Net.coeeeeee. 110
5.1.4 Validation of the Backpropagation Simulatorc..coeiennnen. 111
5.1.4.1 The XOR Problem....cauuimisisusnsssevessanspensss 111
5.1.4.2 The Parity Problem..........ccccviuiuniniiiiniiiiiiiiiieeen, 112
5.2 Details of the Main Perceptual Net COmponentscceuvviveivenninnnn. 113
5.2.1 Estimating the Accuracy of a Trained Networkceets 113
5.2.2 The “Distance-Discriminator”covvviievieiinenerieieaiaeeenanes 114
5221 The Training Sel.....namsnnmiasiananssine 115
5: 2. 22 THE NEIWOIK covivsinssvvsssnvssssasvussasainsvis s susmnenpss e 116
5.2.2.3 Results of Training........cccoeniniiiieiiiieiiiieiiiinieenanns 116

9:2.3 Fhe CLine-Pate EVAUAIOE i ssseissnns st s i s S es s e s e o 117

5.2.3.1 Simulating a Continuous Function 117

5.2.3.2 Using Inhibition to Handle Special Cases...................... 118

9.2.3.3 Results of TraInINg: ..cooivsvivasisiocsi i imsiniss 119

5.2.4 The “Min-Filter”ccoovuiiiiiiiii e 122
5.2.4.1 Using a Modified Backpropagation Algorithm................. 123

5.2.4.2 Alternative Ways of Learning the Same Task.................. 124

5.2.5 The “Max-Filter”coooeiiiiiiiiiiiiiiiiieiieee e, 126
3.2.6 The “Comer-DeteCtOr” . .isiisiisissmmsnsmsss sssnassssassssenemssssanssasos 126

5.3 AnalysisioF Somie Traiiang ReSUlE. ..o masomssssissiain s iesi s 129
5.3.1 Generalisation Problems of the Distance-Discriminator................. 129
5.3.1.1 Limited CONNectivityoooiuivniies i 130

5.3.1.2 A Possible Explanation for Generalisation Problems 131

5.3.2 Generalisation Problems of the Corner Detector......................... 132

5.3.3 Generalisation of Min /Max Filtersccoviviiiiiiiniiinnnnn.. 134
5.3.3.1 Generalisation and the Weights of a Trained Network........ 135

5.4.4 Accelerated Learning with the Modified Backpropagation.............. 137

6. Testing and Evaluation..........................oi, 139
6.1 SORWEre EVEINAUON . ovivcns vivsnsmm svvm piiesss s o st s s S S e S s 139
6.1.1. Testing Response 10 AL PrMIVES. . vumsasrmssa s ismasvassin 140
6.1.2 Ability to Handle Translation Invariance............ccccccoviiiinnniens 140

6.1 3 Generalisaton 6F Line LEnghS icovmvnmsnamsisnaminesi 141

6.1.4 Testing with Simple Shapes...........ccoooiiiiiiiiiiiins 142

6.2 System Evaluahion ..o iisaminniamaba e 143
6.2.1 Validity of Significance Valles,;ccvsmesvisssismissossasmnsonosnis 143
6.2.1.1 The Distance-Discriminator.........cceeeeeeereviunuieeeeneeennnn. 143

6.2:1.2 The Corner-Detector. .. o snimaammmasisvpatisiisiis 144

6.2 2 EAMITAtIoNS. .cocumasimnn s mmamsssssiomsais e s e 144
6.2.2.1 Orientation Planescovevviiiiiiniiniiiiieiinieeiinnnennns 144

6.2.2.2 Receptive Fieldsoiviiianiisvssamissiisissiisisssssansssives 145

6:2.2.3 Collinear Lineq. ... cccuismcuvsmsusssisavsssnonsus s snvrsononvssns 146

6.2.3 Perceptual Net AppliCations.ccvuveiuiniiiinininiiieneniienaeieinnans 146

T SHEHE RECOBNIEION . .oiuusvsxuaviiinmimersaissvissus-raeiss espsasa s S As N s oasss 150
7.1 Using Backpropagation for Recognition..............ccoooiiiiiiiiiiiiniinennns 150
7:1:1 Format of Desived Outputs .. cosisvismisissmsisivsnnisaiysmaaseress 151
7.1.2 Performance of & Trained Nt couusinensissisvommasisssnasssss 152

7.2 Using the Kohonen Feature Map for Recognition................................ 158

7.2.1 Validation of the Kohonen Simulator 159

7.2.2 Properties of a Trained Feature Mapccoveevunevnnnn.... 162

7.2.3 Performance of a Trained Feature Map 165

7.3 Comparison of a Kohonen Map with a Backpropagation Net................... 167

7.3.1 Training Advantages over Backpropagation.............................. 172

B GO B OIS ccovus i v e s e 0A b rmmmm e e A e B A e B 174
8.1 The Perceptual Net and Backpropagation.vsvvssosssssssasiiisiiias: 174

8.2 The Perceptual Net and the Kohonen Feature Map...............cooeeeeeeoii.... 177

8.3 Comparison of the Backpropagation and Kohonen Algorithms................ 178

814 TIPS WK . o sisvmnnasvesassms mos So a0t i s s S e e s s 179
o T T R 182
T e o 189
APPENTIX. B...viivmiimm anmsrmsm i e gt s b S e ST B e 192
APPEndixX € oo 194
APDPRNAR: B s svmminmssiimme e e e s e S S e G s 196
BB PRRUER Tl rmnuei = mansis ek v e R A 4 N L R A L A A e 198
APPendix Foo i 199
APPERAIR G oo R R e e e R R S A s A s e 207
APPERAEX H i vvssmmmmmniomissvociseinsa vouissasssms s shisssssoasssisssisianes samsa s 213
APPENAixX Lo e e ea s 215
APDENAIX Jivciiiinniininaivi s i s S s v R e TR e 216
APPendix K .o e 217
ADPDENERE L i sttt i es s e raNea saat ss R s s s 218
ADPDEBIALE IV vicininmmirsmvinsss it s sss s o e s S S SR S e A A A T R 222

List of Figures

Figure 2.1 A three layer PerCePIION........ccccccevtiovreeseevreereeerresseessessseesseesns 26
Figure 2.2 The sigmoid activation function............cccoovooveeieeooeeoeieeeeeeeeen 27
Figure 2.3 The travelling salesman problem.........ccccoooeviuiievvemieeieeeeeeeeeeiaennn, 30
Figure 2.4 A self-organising feature map...............coooiiiiniiniiniieeeeieeeeein, 35
Figure 2.5 An "Actvity Bubble® . ciuueiusremminiemncisiassion snisinssissim samsieiasa 37
Figure 2.6 The “Mexican-Hat” functioncoooouiniiiiiniie e 38
Figure 2.7 Schematic diagram of NETtalK......c....coooeoiviieivoeeeeeeeeeeeeeeeennn. 42
Figure 3.1 Response of a vertically trained neuron to bars of varying angle. 54
Figure 3.2 Feed forward architecture of Linsker’s perceptual network. 55
Figure 3.3 An illustration of perceptual grouping............cccococeiiiviniiririennenne 60
Figure 3.4 Spontaneous groUPINgo.oviriioiitiniiit it ea e eanns 62
Piprire 3.5 EnhanCement Maliik .o ciii msimis it sismimsmtnbmanmn s ns s noses snsmsnsasess 67
Figure 3.6 T and C shapes at all possible ONEHAtONS. . osuisisiinniemasinserivasmvins 75
Figure 4.1 A simple line coding scheme.cooviiiiii i, 83
Figire 4.2 Problems with low reSoluton cORNE «.voovmamassnmmnsasmssi 85
Figured. 3 Honw Cortiars Cam D CUOMSOIEAL - o .uwmsmisnsmsnsssmstamssisies e masis swsmis o 87
Figure 4.4 Representation Of COMETSuuvueneieiiiiiiiiiiiiiiiiii e v, 88
Figure 4.5 Some examples of coled patiering. cus s snnsmmissrvrsss v i 89
Figure 4.6 Problems with encoding distance...............cocoeviiiiiiiiiiiiiiiiiena. 90
Figure 4.7 A multi-layer perceptron for determining significances......................... 96
Figure 4.8 Variation of epochs against hidden units.........ccocoiniiiiiinnnnnne 97
Figure 4.9 Splitting up a task.....ccccoeimiiiiiiiiiiiiiiiiiiiieie e 9
Figure 5.1 Perceptual Network - Outer structure detailscoooeiiiiiiiinin, 101
Figure 5.2 Inside the parallel line processing StTUCIUTE.........ccovieieierienensininenen, 102
Figure: 5.3 Ingide the line-pRitSItUBIIEe, «. coomrmsammmmaransneonos vansmesmasansagsnseaboss saise 104
Figure 5.4 Composition of the ‘filter’ SITUCIUrES.........cccociiiiiiriiiiiiciniiiiiininns 105
Figure 5.5 Inside a local corner detector..........coiiiiiniiiiiiiiieeiiiiiiiiiiiii 107
Figure 5.6 Receptive fields.........ccvvreicniaresnensnnsnancenessensnnnssnssnasssesssiasassianies 108
Figure 5.7 An exploded view of the corner processing SrUCIUIeccoevunrenninnnns 109
Figure 5.8 Examples of how 1/s values are calculated.ccoeviiniiininnninnnn, 115
Figure 5.9 Linear ordering of input planesccoevvreiiniieniiiinieiiinnninnn. 116
Figure 5.10 Inhibition of the line-pair STUCIUIe...........covviiiiiiirnrririiieeeeeniiins 118
Figure 5.11 The cOUnt dEtECIOr......ccciiiiiiimininiintiniinniesuiennseessessssssesseeness 119
Figure 5.12 The hard-limiting activation functionccceeiiiiniinnnininnn. 123
Figure 5.13 EXamples Of SOMC COTNETS cucs.iiivimsisvsssinmi v mis s s voans s 127

Figure 3.14 Receptive fields for R diamond......esmsssmssmsrenenssmsssessmersmssa 128

Figure 5.15 Similarity of input VECIOTS...........ocoivuviieiieeeieeeeeeeeeeee e 131
Figure 6.1 Example Of SpUrious OULPULS...........uvuiiuiieeeninneeneseeneeee e e eenesenennns 140
Bigure: 6.2 Performance: with. actusl Shapes...csimnsmsissssomsmsminsis. 142
Figure 6.3 Invalid pattern - three lines of the same orientation...............ccceeueeun.n... 145
Figure 6.4 Invalid pattern - a triangle with three lines in a single receptive field.......... 146
Figure 6.5 Connections for a vertically collinear line detector............ccevuvrennne.. 146

Figure 6.6 Total significances calculated by the Perceptual Net............cccouueee... 147
Figure 6.7 Ordering of perceptual groups according to total significance.................. 148

Figure 6.8 Illustration of cause of lack of rotation invariancecoeevuennnns 149
Figure 7.1 Examples of output formatsc.oueeiiiuiiiinin i eieeiceeeeeenenn 152
Figare 7.2 Outputs from 4 KONORENNBE ..ovizsssssmimisssivass i diss desashmasss dasyss 162
Figure 7.3 Irregular shaped activity bubblescoooeiiiiiiiiiiiiiiiiiiee 163
Figure 7.4 A feature map of different shapes........coooiiiieiiiiiiiiiiiiiiiiiiis 164

Figure 7.5 Example of generalisation ability of the shapes feature map.................... 166
Figure 7.6 Feature map generated for training set used previously for back-

PIODAZANION . v.vos sk riassesann s sa s o R b S IS TS B s A s M e v e s e e v 168
Figure 7.7 Generalisation with test patterns from Tables 7.1 and 7.2...................... 170
Figure 7.8 Significance values for a square and a zigzag.............ccooeviininininnnnn, 172

11

List of Tables

Table 5.1a Performance of a 6 hidden unit line-pair evaluator trained to
0.000001

... 120
Table 5.1b Performance of a 4 hidden unit line-pair evaluator trained to

QOOO00D . i cvsmsvsmmmnsnmins sssasussss R o A S5 A A AY S Sastmamammns 121
Table 5.1c Performance when trained on a larger set................ooovvivneeueeeneennnnn.. 122
Table 5.2 Performance of the min-filter with untrained exemplars 126
Table 5.3 Generalisation of the COmMer-detectoroeuuieeiiireeeeiieeeeeinennnn. 132
Table 5.4a Performance of identically trained nets on members of the training set....... 133
Table 5.4b Performance of identically trained nets on patterns outside the training

T T e 133
Table 5.5 Generalisation of max-filter........ccoooiiiiiiiiiiiiiiieeeee e 134
Table 5.6 Generalisation of identically trained max-filters.................ccoeeviininnennn. 135
Table 5.7 Weights reached after training, for five repeated training runs. 136
Table 5.8 Evidence for faster learning..........ccoooccooviiiiiiiiiiiiiiiiiiiiieeneene e, 138

Table 7.1 Generalisation results when only line lengths are modified...................... 155
Table 7.2 Generalisation results when shapes are modified............cocovviviiiiininnn.. 157

12

Chapter 1

Introduction

The idea that one day, machines will be developed that possess intelligence comparable to
humans has always been a luring prospect for computer scientists. Not surprisingly, a lot
of effort has been directed towards the study of artificial intelligence. Most frequently this
has been realised through the use of rule based or expert systems, which apparently have
been quite successful in emulating human reasoning. However, when it comes to tackling
seemingly simple sensory tasks such as object recognition, relatively little or no success
has been achieved. Yet this is something that humans are incredibly adept at and personal
experience shows that visual or speech recognition is performed almost instantaneously

and with little or no conscious effort.

With traditional Al solutions reaching saturation, attention is now focussing towards
artificial neural networks in the hope that by capturing some of the basic properties of
biological systems such as the brain, answers can be found to real recognition tasks. The
development of learning algorithms capable of training multiple layers of artificial
neurons, has encouraged this trend, as well as allaying past criticisms that had stifled

early research in the area.

The attraction of using neural networks for solving visual tasks is clear. Fast recognition,
tolerance to noise, the ability to learn and generalise are all features that a network could
possess. Work in the area has been quite fervent with neural networks used in
applications as wide ranging as character recognition to autonomous vehicle guidance.
The success of such applications is encouraging; however few examples exist where use
has been made of ideas from visual psychology. The most popular of these ideas are the
grouping phenomena studied by early Gestalt psychologists which suggest that important
image components are integrated together and perceived as a single coherent feature.

Often referred to as perceptual organisation, the processes responsible for these

13

phenomena are thought to provide an important intermediate stage which facilitates high
level recognition. Thus the implementation of such processes could prove very useful for

higher level recognition.

As yet the level of activity in this area has been relatively low, with only a few notable
examples published. Instead, most neural network approaches involved with vision have
opted to solve the problem directly, paying little attention to the benefits that could be
gained by exploiting perception. By incorporating ideas relating to perceptual
organisation, neural networks could be developed which possess some of the qualities of
human vision systems. Furthermore, the low level nature of the processes involved with
perceptual organisation would make them highly suitable for implementation in terms of
neural networks. Thus the use of neural networks to solve perceptual problems seems a

very promising prospect and provides a interesting and worthwhile area for research.

The three main aims of the work presented in this thesis are as follows :

(1) To identify suitable visual tasks based on perceptual organisation.

(2) To carry out an implementation of a neural network, or networks, to perform
these tasks.

3) To study the problems and practicalities encountered when devising and training

neural networks.

Note however that this thesis does not attempt to make any claim regarding the biological

accuracy or plausibility of the neural network mentioned in point (2) above.
The thesis is organised as follows :

Chapter 2 presents a general review of the current literature found in the area of neural
networks, with chapter 3 following up with an account of work in the field of traditional
computer vision and more modem, perceptually based approaches to vision. To complete
the review, chapter 3 ends with a description of several examples of neural networks as

applied to vision problems.

14

Chapter 4 puts forward a research proposal based on the task of grouping together
perceptually significant lines. The task in itself is simple and involves quantitatively
evaluating the prominence or significance of various features found in groups of straight
lines, such as parallelism and connectivity. The network to achieve this, called the
Perceptual Network, consists of many networks, each individually trained using

backpropagation to perform a specific subtask.

Implementation details of the Perceptual Network are given in chapter 5, which as well as
describing how the individual networks of the Perceptual Network were trained,
highlights some of the problems and more important aspects associated with training

using backpropagation.

Chapter 6 is concerned with aspects relating to testing and evaluation of the Perceptual

Network and describes the steps that were taken to test the completed network.

Chapter 7 illustrates how the outputs from the Perceptual Network could be used for
recognition of simple shapes and compares the Kohonen algorithm with backpropagation

for achieving this.

A summary of the work completed and a discussion of the major conclusions is given in

chapter 8.

15

Chapter 2

Neural Networks

2.1 Introduction and Brief History

The rapid increase in the level of activity in neural network research suggests that the idea
is new and is something that has only recently been discovered. However, artificial
neural networks have been in existence since the early 1940s. McCulloch and Pitts
(1943) first presented a computational model of a real neuron in which it was suggested
that a neuron simply computes a weighted sum of its inputs (dendrites) and fires only if
the sum is greater than a preset threshold value. It was thought that learning took place in
the brain, via changes in the actual physical connections between neurons. Hebb (1949)
however, suggested that learning might take place in biological neural nets not by
physical changes, but by chemical changes in the synaptic gap between one neuron and
another. Research in the field was stimulated when Rosenblatt (1962) introduced his idea
of the perceptron. Rosenblatt was a psychologist who was interested in finding out how a
biological system senses, stores and uses information from the real world. It was these

incentives that lead him to the development of the now famous perceptron.

The perceptron consisted of an array of photoreceptor cells providing a ‘retinal’ input to a
network of association units. The connection between photoreceptors and these “A-units’
was randomly assigned, such that each unit received input from a limited number of cells
selected randomly from the input array. The output of the A-units was then connected to
several output units, each designated the task of responding to a particular input pattern.
The machine was not solely electronic, since the output units actually consisted of

potentiometers and motors, all linked together so that the output of one could affect all of

the others.

Rosenblatt demonstrated that the perceptron was capable of learning, since it could be

trained to recognise a small set of different patterns and could also perform limited

16

recognition of unknown patterns. The perceptron embodied all the features of neural
networks seen today; weighted inputs, thresholding, and the ability to learn by

modification of weights.

At the time, Rosenblatt’s work caused a great deal of excitement and some of the claims
made in favour of perceptrons were quite impressive. Perceptrons, did however suffer
from severe limitations; for example, even then it had been realised that scaling up tasks
in size and complexity from simple toy domains was extremely difficult. Secondly,
although it was thought that multiple layers of perceptrons could in principle solve
anything, methods for training such complex systems were not known. A thorough
analysis of the abilities and limitations of perceptrons was undertaken by Minsky and
Papert (1969) who in their famous book proved that perceptrons suffered from some
fundamental limitations. In particular, they showed that the perceptron could not
determine the parity of an input pattern and that to achieve it would require a massive
increase in the size of the network. Such restrictions were indeed severe, especially as the
problem was so simple and could instead be very easily solved using conventional
computation. The results of Minsky and Paperts’ work had an almost devastating effect
on perceptron research at the time. Particularly as the now traditional approaches to Al,
were just emerging at the time and were obviously seen as the preferred target for further

funding.

Although small groups of workers have continued to study neural nets since these early
attempts, it is only recently that research has been taken up in earnest. This has been due
to the development of new training algorithms and network topologies as well as the
general belief that neural net models are somehow better suited to cope with visual and
speech recognition tasks than the knowledge based techniques used in current Al
approaches. This is the view expressed by Fahlman and Hinton (1987) who believe that
massively parallel networks of simple computing elements, may provide a way of
capturing some of the essential properties of intelligence that have not been yet been

implemented using existing Al technology. Fahlman and Hinton (1987) put forward a

17

convincing argument in favour of connectionist approaches, particularly as a way of
tackling, what for humans, are seemingly simple recognition tasks. A persuasive example
is that for humans, recognition of an elephant is apparently effortless, yet to describe this
process in words is far from easy. Indeed, recognition abilities in many domains, such as
speech, vision as well as for example taste and smell, are executed subconsciously and
with great ease. This would suggest that humans do not use symbolic descriptions but
instead rely upon some other form of internal representation that cannot consciously be

accessed.

Connectionism is still very controversial in the Al community, but much of the current
work is motivated by the parallels that can be drawn between connectionist models and
biological neural networks. For instance, it is known that neural nets can be made to
develop their own internal distributed representations. As a consequence of this fine
grained coding, the network once trained, will possesses a degree of tolerance to
degradation, since no single unit is responsible for encoding any one entity. Thus the
elimination of any one unit will not result in a great loss in the overall performance. This
is a very important property of neural networks, since in the average adult, many
thousands of neurons die every day and yet no noticeable degradation in recall or memory

is observed.

One of the other attractive properties of neural networks is their ability to generalise. This
was first seen in the perceptron (Rosenblatt, 1962) which had a limited ability to
recognise patterns which were similar, but not identical to those presented during the
learning phase. Fahlman and Hinton (1987) describe a five layer net which was taught
various relationships within family trees. After training, the network had generalised well

enough to correctly identify relationships between family members, not presented during

the training phase.

Sejnowski and Rosenberg (1986) developed a system called NETtalk which could be

taught how to pronounce English text. The training set comprised a series of words

18

cycling through an input vector and the output of the network was in terms of the
phonemes necessary to generate the corresponding pronunciation. After training,
NETtalk could adequately handle words that were not part of the training set. Obviously,

the net had learned the rules implicit in this data set, enabling it to generalise to other

unknown words.

These few examples give a flavour of the properties and the potential that neural networks
may hold. Many recent introductory articles have appeared in the literature. Lippmann
(1987) presents a taxonomy of neural net topologies and learning algorithms, giving
good introductory descriptions of the major neural net techniques that have been tried.
Notably, Lippmann distinguishes between nets that can be trained with or without

supervision, and between nets which use binary values or continuous values.

The following sections give a fuller description of the major neural net paradigms now in
existence starting with one of the most powerful and commonly used, the multi-layer

perceptron.

2.2 The Multi-Layer Perceptron

The perceptron due to Rosenblatt was a simple single layer network of units and because
of its limited complexity, was incapable of solving what were regarded as
computationally easy problems, such as parity. It was also known at the time that, by
increasing the complexity of the perceptron, particularly by using multiple layers, it
would be possible to handle more difficult tasks. However the lack of algorithms for
training multiple layers of perceptrons prevented these ideas from being tested and

inevitably lead to their decline.

Only recently have suitable training algorithms become available. Notably Rumelhart et

al. (1986) present a definitive description of the error backpropagation algorithm which is

19

capable of adapting not just weights belonging to a single layer of units, but any number

of layers.

The error backpropagation algorithm is a supervised learning algorithm which learns to
associate given input patterns with their corresponding output patterns. It is easily capable
of learning the parity problem and as Rumelhart et al. (1986) show, it can be also used to
solve many other problems, such as encoding, addition and negation. They also show
how multiple layers of neurons could be arranged to handle more complex tasks and
discuss how to train a net to recognise a ‘T’ or a ‘C’ independently of position or

orientation.

The properties of the multi-layer perceptron are quite intriguing. For example, once
trained on a set of patterns, the representation that the net will develop is in a distributed
fashion, such that any single unit will not be responsible for encoding any single feature
or entity that may exist in the input. As a consequence of this, the trained net is tolerant to
degradation. Thus if a single neuron fails, then the effect will not result in a significant
decrease in performance. During training, the net is attempting to detect and group
together, features that are common in the input patterns. This ability to cluster together
common features, results in a net that can generalise, that is, the net can generate the
correct output, even if an input pattern is presented that was not a member of the training
set. Both these properties are attractive features of neural networks, and are also observed

in biological neural networks.

The main drawback with the use of the backpropagation algorithm is that because it is an
iterative gradient descent method, it can become cumbersomely slow. Even on relatively
simple problems, backpropagation can require the presentation of whole training sets
many hundreds or thousands of times. This imposes a restriction on the size of networks
that can be investigated. Although networks of a few thousand trainable weights might be
capable of handling simple tasks, the kinds of networks necessary for real world

recognition tasks, will be much too large to practically train using current computing

20

techniques. Fahlman (1988) confronts this issue and suggests that the only real solution
is to combine advances in hardware technology, that is, use more powerful computers,

with faster, more advanced learning algorithms.

Fahlman (1988) presents the results of an empirical study on finding ways of accelerating
the speed of the standard backpropagation algorithm and devises an improved version
which he calls ‘Quickprop’. Essentially, Fahlman recommends making several
modifications to the standard algorithm, which he says when tested on standard problems
such as the parity and encoder provide a significant increase in performance as well as

offering the possibility of scaling up the problem size.

The theory of the backpropagation algorithm will now be given since it is central to this

project.

2.2.1 The Error Backpropagation Algorithm

The error backpropagation algorithm is an iterative gradient descent procedure, which
attempts to minimise the mean square error between the actual output of a multi-layer feed

forward net, and the desired output.

The algorithm is capable of finding an optimised set of weights to accomplish an arbitrary
mapping between a set of input patterns and their associated output patterns. This
optimisation process can be likened to finding a minimum energy well in an undulating

energy landscape.

2.2.1.1 Formal Analysis

Given a desired output pattern tpj, which appears across j output nodes, and the actual

output pattern opj that the network is generating, then the error associated with that

pattern is given by ,

21

1 2
Ep:fz:(tpj “Op)
; (1)

The global error for all patterns in the training set is thus E =ZEp
P

Now for a multi-layer feed forward network, the output of any unit j, for any single

pattern is given by

Op; = {; (nety;) 2)

where fjis an activation function which maps the weighted sum netpj, of a given neuron
onto a range of output values, usually between 0 and 1 and where netp; is calculated from
the sum of the products of the inputs and the weights to unit j.
nctpj =iji Opi
: (3)
It can be shown that the standard delta-rule implements gradient descent! (Rumelhart et

al. 1986), which expressed mathematically leads to an equality of the form

oE

p
prji B —
ow ;
where Apwii is the change to be made to the weights from node i to node j, after the
presentation of a pattern p. This relationship simply sets the required condition for
gradient descent. Now the right hand side may be re-expressed as follows

3E,
oW ::

n

_ BEP anetpj

anetpj aWJI (4)

1 Backpropagation is actually an approximation to gradient descent, since this rule requires that weights
be updated after the presentation of a whole training set, not after each exemplar, as in backpropagation.

22

JE : .
where = ?_ represents the change in the error as a function of the change in the weighted

]

. - dnet,,;
sum of the inputs to the unit, and % represents the effect of changing a weight on the

ji
inputs to the unit. From equation (3) we get
dnet,,;

0
i_ _
S =— E Wk Opk = Op;
Wi awji X

and if we define

_ oE,

anetp 3

Pi

(Opj is effectively the error signal that should be used to update the weights for unit j)

then equation (4) becomes

and so Apwij can be expressed in terms of opi , the output of a unit which is input i to
unit j, 3pj the error for that unit, and a learning factor 7, and thus we have derived a way

of implementing gradient descent.

A wii=nd0,

However, we are still left with finding 8pj. This may also be re-expressed in terms of the
rate of change in the error with respect to the output of node j, and the rate of change in

the output of node j, with respect to the change in the inputs to node j.

aEp _ BEP aOpj

s 3 36..:3
netp; Opj onetp; (5)

opj is already known from equation (2), thus

23

do..
—P2b = f; (net,;)
onet :

Pj

where f : (netp j) is the derivative of the activation function evaluated at the output of the

jth node having a weighted sum netpj. From (1),

s 78

o pi™ Opj)
Pj

Substituting back into equation (5),
Bpj= (t'pj - Opj) f_] (netm-)

However, this is true only for an output unit, not a hidden layer unit, since tpj is a known

target value. The target value for hidden layer units is not explicitly known. Thus re-

i oBa : ;
expressing —= in terms of hidden layer units, netpk
Pl

aEp aﬂctpk

k anetpk aopj (6)
and since

nctpk = ZW ki Opi
i

substituting into equation (6),

aEp L zwki Opi= Z

k onet,, 0O i k dnetyy

JE,

ij= - gapkwkj

where netpk represents the output of the kzk unit in the hidden layer when presented with
the pattern p. wk;j represents the weights from the kth hidden unit to the jth output unit
and wki represents the weights from the ith previous layer unit (input layer if there is only

one hidden layer) to the kzh hidden layer unit.

24

apj= f.] (netpj) ;Spk ij

Summarising then, the three equations which define the backpropagation algorithm are,

A, wii=nd,0,; (7)

This says that the change in the weights from unit i to a unit j for the pattern p is
proportional to the product of the output of unit i and the error to be propagated back

from unit j, 3pj, where 8p; for an output unit is given by

8p;= (tpj- 0p;) fj (nety;) (8)

and &pj for a hidden unit is given by

BPJ - f_] (nctpj) gapk w kj
©)
Note that fj (netpj) is the derivative of an activation function, (or thresholding function as

it sometimes called) which maps the weighted sum to a range of output values.

Obviously, a function must be chosen for which a derivative can be found.

The constant of proportionality in equation (7), 1 is called the learning rate. The larger
this value is, the larger the weight changes will be. Thus it is desirable to choose a large
value for 7, since it will make learning faster. However with very large magnitudes of 1,
the weights can be changed by considerable amounts which can lead to oscillations in the
learning curve. This can be reduced, if a momentum term is included in equation (7). For
each weight change, a small proportion of the previous weight change is used and this

acts to filter out ‘high frequency’ weight changes. i.e.

ﬁwji(H-I) =1 Bpjopi+a AWJI(I) (10)

o is a value between 0 and 1 and determines what proportion of the weight change at the

last cycle t, is to be used in the next cycle t+1.

25

2.2.1.2 Applying the Backpropagation Rule

output layer

hidden layer

input layer

Figure 2.1 A three layer perceptron.

The backpropagation learning procedure is applied in two stages. For each pattern there
are two passes through the network. One forward, from inputs to outputs, and the next
backwards. It is the backward stage in which the errors are determined and subsequently
propagated back down through the net. (Hence the name of the algorithm.) In the
forward stage, the pattern is presented and stored in the input layer. A weighted sum is
calculated for each hidden layer unit and then the same is done at the next layer, which in
this case is the output layer (see figure 2.1). For the backward stage, the computed output
values are compared with the desired values for the current input pattern, and an error
signal is calculated from equation (8). This error is used to update the weights from the
hidden layer to the output layer. Equation (9) enables an error signal to be generated for
the hidden layer units, which can be applied to update the weights from the input layer to
the hidden layer units. The algorithm works for any number of layers, but usually it is

common to use an output layer, a single hidden layer and an input layer which holds the

input pattern.

26

Each forward / backward phase takes place after the presentation of each pattern in the

training set, and the presentation of all of the set is usually referred to in the literature as

an epoch.

2.2.1.3 The Activation Function

The activation function that seems to have been adopted as a standard for back-
propagation, is the following exponential:

1

| -
l+e ™ (11)

PJ

where

l'letpj= (ijiopi+ BJ)
i

1.e. the weighted sum of the inputs into unit j.
1

l+e

-X

0.5

Figure 2.2 The sigmoid activation function

Notice the introduction of the term 6j. This is a bias term and can be learnt just like any
other weight. During learning, it acts to alter the location of the middle of the graph. It is
particularly useful when netpj, the weighted sum, has a very high or very low value
which puts it on the asymptotes of the sigmoid. If the need to move away from these

asymptotes arises, then many weights will have to change to achieve this. By changing

27

the bias term however, the same result can be achieved by altering, effectively what is

just a single weight (see figure 2.2).

The derivative of this function is used by equations (8) and (9). The derivative of this

function at an output value of op; is from equation (11),

[ao .
- Pl _
fj (nctpj) S—_—= Opj (1 - Opj)
anctpj

this can be substituted back into the equations for Spj.
8P1=(tpi_opj)opj(l " 0pj) (12)

8= 0pj{1 - 0p;) zspkwkj
k (13)

2.3 The Hopfield Net

Training of a net can commence in one of two methods; one, where the network is
presented with the required input / output vectors to learn. This is known as supervised
learning; and two, where the network is presented with only input patterns and then
allowed to organise itself into its own optimum state. The Hopfield net can be configured

to undergo either supervised or unsupervised learning.

Many versions of the Hopfield net have been developed, but essentially the net can be
used in two different ways; either as an content addressable memory (sometimes called an
associative memory) (Hopfield 1982) or to solve optimisation problems, such as the

classic travelling salesman problem.

2.3.1 Content Addressable Memory

A Hopfield net configured as a content addressable memory consists of a number of

units, each taking binary inputs and outputting one binary value. The output of each unit

28

is fed back into every other unit by a modifiable weight. By careful initialisation of the
weights, it is possible for the Hopfield net to have any pattern or patterns stored in its
memory. The net can then be used to try to recall unknown patterns from its memory.
For example, if the net has been stored with the pattern for a particular letter, then a
pattern, say a noisy character can be presented to the net and after a few iterations of a
convergence algorithm, the output of the net will ‘settle down’ into one of the patterns

that it has been taught.

Problems with the content addressable memory are that there is a severe limitation on the
number of patterns that can be initially stored in a Hopfield net. If too many patterns are
used, then the net can easily converge to some spurious output pattern that does not even
belong to its set of trained patterns. Also, problems can arise if two or more of the

exemplars share many bits in common.

2.3.2 Solving Optimisation Problems

Hopfield and Tank (1986) describe how a net may be used to solve the travelling
salesman problem. Briefly, the problem requires a salesman to make a closed tour of a
given number of cities in the shortest possible distance, visiting each city only once. Ann
by n array of neurons can be used to code the solution to the problem, such that columns
indicate the order in which that city is to be visited, and the position in the column refers
to a particular city. For example, figure 2.3 represents the following visiting order; city b

1st, city ¢ 2nd, etc.

29

visiting order

1 2 3 4

. 0 OB O

., B OO O
city

c OB OO

d O 0O O B

Figure 2.3 The travelling salesman problem

At any one time, only one neuron may be active in a given row or column. This implies
the need for some suitable arrangement of inhibitory connections within rows and within

columns to ensure that one and only one neuron fires.

Unlike the content addressable memory, the outputs of the neurons are analog, giving
real values between O and 1. Thus in the travelling salesman problem, the output of a
neuron reflects a current hypothesis, that a city is visited in a particular order, and the
magnitude of the output represents the strength of that hypothesis. During convergence
several conflicting solutions or propositions will be considered simultaneously and this is
what gives the net the ability to find optimal solutions with only a few iterations.
Hopfield and Tank (1986) point out that, if binary values are adopted instead of

continuously variable values, the solutions found are little more than random.

The implications of the net to solve such optimisation problems has some bearing on
neurobiological processes. For example, a 900 unit net can solve a thirty city problem,
for which there are about 1030 possible paths, in as little as only one convergence. As
Hopfield and Tank (1986) suggest, this non-linear arrangement of neurons has a natural
ability to solve optimisation problems and suggest that this ability may be involved in
various biological recognition tasks, such as finding “what three dimensional shape ‘best’
fits a given pattern in a two dimensional image?” Examples are given of biologically
relevant vision problems such as edge detection and stereopsis, which can be formulated

in terms of optimisation problems.

30

2.4 Competitive Learning

Competitive learning is an unsupervised learning paradigm in which training is achieved
without any external guidance and the Hopfield net described earlier in section 2.3.2 is an
example of this. Although many variations to this type of learning exist, the general rule
is that the greater the response of a unit to a particular pattern, the more strongly will it ry
to shut down other units in the net. The effect of this is that the units are forced to
compete amongst themselves, so that the unit with the strongest response, will be the best
placed to win. Usually, adaptation of weights only takes place for the winning unit. As a
result of this, units emerge which learn to respond to particular features found in the

input.

Rumelhart and Zipser (1985) present a comprehensive description of the various types of
competitive learning methods that exist. Also included, is a short historical survey of
competitive learning in past systems. In particular, the perceptrons debate is discussed,
but this time more attention is paid to a less well known area of work undertaken by
Rosenblatt. "Spontaneous learning” as Rosenblatt called it was a variation on the original
perceptron, but this time no external supervision was required. The algorithm that
Rosenblatt used was based on updating weights, depending on the response 10 a
particular input pattern. Using this approach, the perceptron had acquired the function of
segregating a stream of input patterns into two classes. The patterns from one class had to

be similar to each other and different from those in the other class.

The more recent systems that have adopted competitive learning, or their variants, have
been due to Grossberg, Kohonen and Fukushima (see sections 2.5, 2.7 and 2.8.2).
Rumelhart and Zipser (1985) try to categorise the various types of competitive learning
and list four types: the auto associator, pattern associator, classifier and regularity
detector. The architecture of these learning systems, is however more or less the same

and consists of a hierarchical arrangement of layered units, with connections going from

31

one layer to the next. Connections within a layer are usually such that there are small

clumps or groups of units which are mutually competitive.

Rumelhart and Zipser (1985) report on the findings from some experiments using this
learning paradigm. One interesting problem studied is that of learning to develop feature
detectors which respond to either a horizontal line or a vertical line in the input space. It
turns out that horizontal lines or vertical lines have few pixels in common and because of
this, the weights that develop, have lost all information relevant to horizontal or vertical
line. The only common pixels available in the input are due to the fact that each horizontal
line intersects with every vertical line. It is this similarity that the net learns to respond to.
With this in mind, it is shown how competitive learning can be made to discriminate
between horizontal and vertical lines. The earlier work used a simple single layer of units,

but this proved to be inadequate.

2.5 The Carpenter and Grossberg Net

Carpenter and Grossberg (1988, 1987) propose a self-organising network based on their
Adaptive Resonance Theory (ART). The net is designed to cluster and classify its input
without the use of any external supervision. The scheme allows for the presentation of
various patterns, such as characters and tries to establish whether that pattern already
belongs to a known class or not. If so, the pattern is clustered together with that class. If
however, the pattern is deemed to belong to a completely new class, then a new cluster is
established and the pattern stored as the first member of the class. Theoretically this
enables the net to learn new facts very quickly, while at the same time refining its
representation of other clusters. For example, if a character, say ‘A’ is presented to a
completely initialised net, then that will immediately form the first cluster. However, an
‘A’ could be presented again, but this time one that is slightly distorted. The net will
consider its existing clusters and try to find a best match. If the match satisfies a

threshold, then the new input is included in with the existing cluster. The idea is that

32

various examples of the same character would be used to improve the existing

representation of an ‘A’.

Carpenter and Grossberg (1988) compare the ART learning scheme with alternative
schemes, and cite several advantages of their approach over others, for example the
ability to learn internal top-down expectations, the effective use of all memory capacity
and the ability to learn more patterns, without danger of ‘washing out’ memories of
existing ones. In particular, because of the ability to detect a mismatch, the ART
architecture is claimed to learn quickly and in real time. Many other learning algorithms
need to progress in small steps and are thus more computationally demanding, such as

backpropagation.

These claims are quite impressive, but although the ART scheme works quite well for
perfect inputs, it runs into problems when subjected to noise. With noisy inputs, it is
likely that instead of patterns acting to refine an existing cluster, even a small distortion
can lead to a new unit being used to set up a new cluster. A series of noisy inputs can

thus cause all available inputs to be rapidly used up.

2.6 The Boltzmann Machine

A potential hazard with any gradient descent method such as backpropagation learning, is
the problem of local minima. When converging to a possible solution, the algorithm may
not always reach the globally optimum set of weights. In a continually changing
landscape of weights, it is not inconceivable that a local minima may be encountered
before the global minima is reached. If this could be detected, learning can be restarted
from a different set of initial weights, in the hope that starting from a different point on

the landscape may avoid this minima. This is not however an ideal solution.

An alternative to backpropagation is the Boltzmann Machine formulation (Ackley et al.,

1985). Like backpropagation, Boltzmann learning can be applied to multiple layers of

33

units. The links between units in the Boltzmann machine are bidirectional and symmetric
(i.e. the same value in both directions). The output of the units can only take on binary
values of 0 or 1 and is calculated as a probabilistic function of the state of its

neighbouring units and the weights to them.

The Boltzmann learning algorithm can develop the same diffuse representations that back-
propagation can, but is specifically designed to avoid local minima. The learning
algorithm is based on the Boltzmann distribution and uses noise to escape from local

minima.

The probability that the output unit is in either the 1 or 0 state depends on a probabilistic
function. A parameter of this probability is a term that is analogous to a temperature.
Thus the training sets are presented initially with a ‘high temperature’ and the total error
(or energy as it is referred to) is allowed to approach ‘thermal equilibrium’ before the
temperature is lowered. The temperature is then lowered slightly and learning restarted.
Ackley et al. (1985) show how this ‘simulated annealing’ can lead to the global minimum

energy being reached in all but a few cases.

The Boltzmann machine is one of a few new learning paradigms capable of choosing
internal representations that provide the necessary mapping between input and output
patterns. The advantage that Boltzmann learning has over backpropagation is that it is
better suited to cope with local minima. This advantage may not however be very
significant. Rumelhart et al. (1986) recognise the potential danger of local minima, but
report that in their empirical studies, which involved several differing tasks, problems

with local minima were never encountered.

Due to the process of simulated annealing, in which the same learning cycle is repeated
for gradually decreasing temperatures, Boltzmann learning is even slower than back-

propagation. As a result, backpropagation is nearly always the preferred alternative in any

practical application.

34

2.7 The Kohonen Self-Organising Feature Map

Kohonen (1982) developed a self-organising network capable of finding regularities and
structure in input data and representing these regularities as orderly arrangements of
feature detectors, just like those found in the brain. The self-organising feature map is a
competitive network, which can be taught without any guidance from a trainer, that is, it
is unsupervised. Figure 2.4 shows a model of a Kohonen net. It consists of an array of
output units and some input units. As well as the connections between output units and
input units, there also exist a large profusion of connections between output units,

providing lateral interactions, causing each unit to compete with every other.

Output units

Inputs

Figure 2.4 A self-organising feature map.

2.7.1 Feature Maps in the Brain

Coding of features in the brain is known to proceed in an orderly fashion, such that
neurons anatomically close to each other, respond to features of the input which are
physically similar. This ‘ordering’ results in neuronal maps which are able to describe
topological relations of input signals using either a one-dimensional or two-dimensional

array of neurons.

35

2.7.1.1 Evidence for Feature Maps

It has been known for a long time that various areas of the brain are organised according
to differing sensory tasks. For example, a one-to-one topographic mapping exists
between the retina and the area of the brain known as the primary visual cortex.
However, not all sensory maps are due to simple one-to-one mappings. In the auditory
cortex, there exists a tonotopic map in which the spatial response of cells, corresponds to
an almost logarithmic variation in acoustic frequencies. Kohonen (1988) sees the

formation of topology preserving nets such as these, as central to the operation of the

brain.

2.7.1.2 How are Feature Maps Formed?

Although many of the basic brain structures are present at birth, the ability to learn from
experience indicates the existence of some mechanisms for enabling adaptation. Kohonen
(1988) presents a self-organisation algorithm which can be applied to a single layer of
neurons and demonstrates how a linear array of neurons, laterally connected, can be
made to develop a response to certain characteristic features in the input. Furthermore a
two-dimensional array of neurons is set up, with lateral connections. The results from
this simple model show how the response of neurons is found to cluster together in
‘bubbles of activity’, such that the greatest response is from the neuron in the centre of

the ‘bubble’, with the response of neighbouring neurons decreasing with distance.

36

Figure 2.5 An ‘Activity Bubble’

It would seem that, the neurons have organised themselves to respond to similar features
of the input. It must be noted that lateral feedback, whether inhibitatory or excitatory,

plays an important role in self-organisation.

2.7.2 Lateral Connectivity

The cerebral cortex is a densely packed array of neurons. Connections between neurons
exist between layers, so that the output from one level of neurons can be passed on to
other levels. But connections also exist between neurons in the same layer. These
connections are termed lateral connections and cause neurons within the same layer to
interact or compete with each other. An important question that rises, is to what extent do

these intra-layer connections influence the response of individual neurons?

It is suggested in Kohonen (1988) that these lateral interactions are a function of the
distance between neurons, so that any one neuron will only influence a limited number of
neurons within its vicinity. In particular this interaction follows what is commonly

known as a “Mexican-Hat” function.

2.7.2.1 Lateral Interactions and the “Mexican-Hat” Function

Kohonen (1987) presents a good description of biological functions in the brain and
points out that it is known that tightly packed cortical neurons have many connections

between closely neighbouring neurons, but also have long range connections to other

37

neurons or groups of neurons. One possible arrangement of lateral connections is that

given by a derivative of gaussian function, or “Mexican-Hat” as it is commonly known.

""“_/ \/““ > distance

Figure 2.6 The “Mexican-Hat” function

Thus nearby neurons have excitatory interconnections, but connections to more distant
neurons are inhibitory. Notice that very long range interactions according to the derivative
of gaussian, are only slightly excitatory and so often ignored. The effect of this on the
topology will be that small clumps of neurons will emerge that respond strongly to certain
patterns whereas more distant neurons, because of inhibitory connections, will be forced
to adopt responses to different patterns or features. If during training, the input pattern is
varied smoothly, then it turns out that the maximum response in the feature map also

moves smoothly around the net.

2.7.3 Practical Implementation of a Kohonen Feature Map

To implement a Kohonen feature map directly would be problematic. It should be recalled
that because each neuron in the map is connected to every other, as well as to the input
units, the total number of weights would increase in the order of N2, where N is the
number of neurons. Furthermore, complications regarding the order in which laterally
connected weights must be updated must also be considered. Kohonen (1988) suggests
that it is possible to achieve self-organisation using a simpler technique. According to

Kohonen, “without simplifications, the computations become intolerably heavy.”

38

Instead, Kohonen (1988) describes a simplified approach which removes the need for
directly implementing lateral connections. The approach relies upon defining a

neighbourhood of neurons of a certain size, around each neuron to be updated.

2.7.3.1 The Simplified Self-Organising Algorithm

Consider a two-dimensional grid containing i neurons, each with n input weights. Then

the Kohonen self-organising algorithm can be described in two steps:

(1) Locate the best-matching unit in the array of neurons

(2) Increase matching at this unit and its neighbours.

This would be done for each pattern in the training set and the training set would be

presented many times.

If an input pattern is defined by the vector

iim[E kgt)

and a weight vector associated with neuron i is defined by
m;= [111#2’----1-1,,]
Then the maximum response can be regarded as being the neuron with the best match

between these two vectors. Thus step (1) becomes a matter of locating a unit, (let this be

unit ¢), having the minimum Euclidean distance between the vectors x and m; i.e.

min
lx-ml=" hx-m;ll
1

This allows the neuron having the closest match for a given input vector to be located

within the grid. Thus the actual output of a neuron is not required, which is why the

39

algorithm does not involve a weighted sum calculation. Step (2) then states that the

weights of neuron m, and its neighbours be updated as follows :

m; (t+1) = m; ()+odt) [x(t) - m; (t
(D) =m; a()[® m,()] for all neurons in the neighbourhood

1.e. for all i € N(t)

m gl =miQ for neurons outside the neighbourhood

Where N.(t) is a function which determines the size of the neighbourhood and a(t) is
effectively a gain term. Both are functions of the discrete time t such that in general they
decrease with time, so that the neighbourhood starts large, and eventually shrinks so that
no neighbours are updated; the gain term likewise decreases in magnitude according to
some function. Kohonen (1988) fails to suggest any actual functions which could be
used. Instead, the approach adopted is to experiment and rely upon experience to find
suitable functions. However some mention is made of modulating the gain term with a
Gaussian function, so that a(t) is excitatory for close neighbours, and inhibitory for

distant neighbours.

2.7.4 Examples of Topology Preserving Maps

One of Kohonen'’s simple tests shows how a square grid of neurons when presented with
x,y locations taken randomly from a square, of dimensions 0,0 to 9,9 , organise
themselves so that one corner of the map responds to location 0,0 and the opposite corner
responds to say 9,9 with the response of intermediate neurons varying smoothly to
accommodate all other locations in between. In fact the mapping between locations in the
square and the location of neurons responding to a particular location, follow an exactly

one-to-one relationship.

An application of this approach has been demonstrated in Kohonen (1988a), in which

Kohonen reports on the results of several years work towards a ‘phonetic typewriter’.

The aim is to develop a speech recognition system, which can be trained to recognise
human speech and output phonemes that comprise each utterance. After training, the net
is found to develop a regular ordered structure of neurons, each having a response to a

single phoneme, such that neighbouring neurons respond to similar sounding phonemes.

Although the system performs quite well, for example it can generate output in ‘near real
time’, Kohonen (1988a) admits that the system falls short of expectations and that
problems regarding recognition accuracy and arbitrary speakers exist. However, the
results successfully show how the highly adaptive powers of self-organisation can be

effectively used.

2.8 Two Examples of Successful Neural Net Applications.

2.8.1 NETtalk

NETtalk (Sejnowski and Rosenberg, 1986) is a three layer perceptron designed to read
given text out aloud. Input to the net is in the form of English words and the outputs
generated are the phonemes necessary to correctly pronounce the given words. The
output of the net can then be passed directly to a speech synthesiser. Training of the net
requires the presentation of text, along with the associated phonemes and back-
propagation is used to adjust the weights in order that the correct mapping can be

developed.

4]

desired output
/k/

output units o000

P E

hidden units O O O 0 O 0O O

R EETR RN

input 000 OO0 OO0 OO0 OO0 OO0 000

units
a C a t

Figure 2.7 Schematic diagram of NETtalk

The net has 203 input units, 80 hidden units and 26 output units. The training set is
comprised of a corpus of about 1000 different words. During training, the characters
making up the words cycle through a seven letter ascii window and each time, the
phoneme associated with the character at the centre of the window is coded as a target
value on the output. Note that the surrounding characters are used for context

information.

A tape-recording of NETtalk undergoing training has been made and the results are
strangely similar to the stages of learning that a child might undergo. For example,
initially the net does not know that there should be silence when a space is encountered,
but it quickly learns this. As training progresses, the initial babbling becomes quite clear
spoken English. The final trained net can not only pronounce the words that it was

trained on, but can generalise well to unknown words.

NETtalk is a highly successful application of the multi-layer perceptron and is an example
of what can be achieved. It should be noted that although obvious parallels can be drawn
with the speech learning process in humans, it should be emphasised that the network,
and for that matter backpropagation, is not meant as a biologically plausible explanation

of learning in natural systems.

42

2.8.2 The Neocognitron

Fukushima (1988) proposes a neural net model for recognising handwritten characters
and uses the model to gain some insights into how complex mechanisms within the brain
may be organised. The model consists of several hierarchically organised layers of
neurons in which simpler features are initially extracted from the input, and then
integrated into more complex ones higher up. As well as having forward connections, the
neocognitron also relies on backward paths. This is not possible for the backpropagation
algorithm and the multi-layer perceptron. The forward paths control the bottom-up flow
of information whereas the backward paths provide top-down recall of recognised

characters.

The neocognitron employs a self-organising training algorithm to learn characters. This is
based on a type of competitive learning paradigm in which only the weights for the most

responsive neuron within a group are modified, all others being inhibited.

The model is quite complex and has been developed over several years. Originally it
started off as a much simpler pattern recognition device; the cognitron (Fukushima,
1975). This early model, like most at the time, was incapable of recognising translated or
distorted patterns. In fact, the same character presented at different positions on the input,

would be recognised as different patterns.

Currently, the neocognitron is far more complex and impressive than its predecessor, as
Fukushima reports (1988). The neocognitron can recognise position shifted, rotated and
noisy characters. It can also cope with changes in scale and because of its backward, or
top down connections, it can recognise individual patterns presented simultaneously for
the same image. Thus the model can segment the image, and has acquired the function of

selective attention.

It must be recognised that any abilities possessed by the model are due to the physical

architecture of the net and not wholly due to learning. Many details concerning the

43

connectivity of the net have been ‘hand built’. For example physiological findings
suggest that neurons in intermediate layers would be expected to have a wider receptive
field than the neurons early down the pathway. Hence the connections from one layer to
the next have been arranged to make sure that this can take place. Self-organisation just

completes the net by determining what features are to be detected in each receptive field.

The ‘hand built’ connections are designed to cope with only small distortions, thus if a
pattern is subjected to large translations or rotations, then a feature that a particular
receptive field is expecting, may actually appear within the receptive field of another
neuron and hence recognition will fail. As Fukushima (1988) comments, the net is unable
to recognise two ones when presented with ‘11’ if the digits are too close together, since
then, features from both digits fall into the receptive field of the same cell and

discrimination becomes impossible.

2.9 Summary

There exists a general belief that massively parallel networks of simple computing
elements are somehow suited to recognition tasks. The rationale underlying such beliefs
is the knowledge that biological systems are known to exist, such as the human brain,

which consist of large numbers of highly interconnected neurons capable of visual or

speech recognition.

This belief, coupled with the recent resurgence in neural network research, has seen a
general trend away from traditional or Al type approaches. Instead, neural networks now
provide more biologically plausible means of achieving the same task, and it is this

attraction that has fuelled the motivation behind much current work.

Early neural systems such as the cognitron (Fukushima, 1975) and work by Kohonen
has shown how various neural architectures can be configured to achieve particular

recognition tasks. Since then, other neural paradigms have also emerged. Competitive

learning, self-organisation, multi-layer perceptrons etc. The most significant of these new
paradigms has been the backpropagation learning algorithm and this is borne out by the

frequency with which backpropagation or its variations, appears in the literature.

One of the major attractions of the algorithm, is its ability to find a mapping between a set
of arbitrary input patterns and associated output patterns. This flexibility means that back-
propagation can be applied to a variety of problems and the previous sections give an idea

of its diversity.

If the restriction of using only feed forward architecture can be met, then back-
propagation will in most cases be able to provide a solution for mapping any continuous
function from inputs to outputs. Backpropagation has been widely applied, but despite
this a number of performance issues still need to be addressed. For example, what
happens when the learning rate is altered, can changing the momentum factor be used to
increase the learning speed and what effect does modifying the network topology have on
the ability of the net to converge to a solution? If the answers to these and many other
questions can be found, will they hold true for all problems, or are they problem
dependent? Currently a lot of work is under way to investigate the behaviour and
properties of the backpropagation algorithm, but as yet researchers have only been able to
come up with simple rules of thumb (Ahmad, 1988). No hard and fast rules have been
discovered. The approach to the use of the backpropagation algorithm is very much an

empirical approach with the experience gained guiding subseqent work.

45

Chapter 3

Computational and Perceptual Approaches to Computer Vision

3.1 Introduction to Computer Vision.

Computer vision has been the subject of much research over the past thirty years or so.
Consequently a large volume of literature has been published in this area. Fortunately,
some good and fairly comprehensive introductory papers and texts have been written.
Besl and Jain (1985) present a comprehensive survey of various aspects of three
dimensional object recognition, including components of a recognition system and the
characteristics of an ideal system. An ideal system, they say, must be able to handle
sensory data from arbitrary viewing directions, cope with arbitrarily complex real-world
objects and analyse scenes quickly and correctly. Chin and Dyer (1986) present a
comparative study of various model based object recognition algorithms. including in this
a description of object modelling, feature extraction and matching as these are the major
components of any part recognition system. The authors compare and contrast the
different approaches that have been taken to these components in several studies. Brady
(1982) presents a very comprehensive study of the computational approaches to computer
vision. In addition to the problems of feature extraction, object modelling etc, Brady
(1982) also looks at the somewhat more low level tasks of segmentation and edge

detection and describes some significant approaches.

3.1.1 Levels of Processing

It is generally regarded that the task of visual recognition can be broken down into three

distinct levels of processing; low, intermediate and high level.

Computational approaches to low level vision are concerned with the processing of the
initial pixel image. The aim is usually to recover relevant intensity change or edges. The

subject of edge detection has been extensively studied and many different approaches

46

have been developed. Of the more famous edge detection algorithms are the Canny
(1986) edge detector, Marr and Hildreths’ (1980) theory of edge detection based on

biological findings and the Huekel (1973) approach to edge detection, using local

operators to recognise lines and edges.

It is often argued that to interpret a two dimensional image of a three dimensional scene, it
is necessary to recover information relevant to three dimensions. Such feature extraction
is an example of intermediate level processing and many computational approaches to
solving these kinds of problems have been proposed. A general motive in 3D visual
systems is to try to extract depth information from the image. Typically, features are not
simple 2D lines or circles, but actually represent surfaces or line orientations in 3D
(Barrow and Tenenbaum, 1981). An intermediate representation of the image is generated
which is not a simple 2D representation, but also contains some 3D data. This is
something that Marr refers to as a 2.5D sketch, and it is his belief that similar
representations are also used by biological vision systems. Many techniques exist for
retrieving shape from intensity images, for example shape from stereo images, shape
from optical flow, or shape from shading (Brady, 1982). Each is applicable to images
taken under suitable conditions. However, depth can also be obtained directly by
obtaining range data, instead of using intensity images (eg. Grimson and Lozano-Perez,

1984).

High level vision is the final stage of processing and involves object modelling and
matching. In order to recognise an object, an internal representation of it must first be
generated. The representation can be of many types. Typically, object models can either
be knowledge based or geometric descriptions similar to those used for computer aided
design. Constructive solid geometry, wire frame representations and octree methods are
three such CAD modelling techniques which are described in Bes! and Jain (1985).
Because of their rigidity, geometric models are incapable of efficiently describing general
classes of objects. Knowledge based approaches attempt to capture more than just the

shape of the object. For example, a semantic net can be used to describe, implicitly the

47

shape and structure of an object, enabling that description to be valid for a whole range of
objects. Connell and Brady (1987) use such an approach and suggest how it could be
used to describe general classes of objects. Purely symbolic descriptors however are not
efficient in most cases, so often more than one modelling technique is used. ACRONYM
(Brooks, 1983) uses generalised cones (primitive geometric solids) in which cone
descriptors appear in a frame describing the object at a given hierarchy. This allows

explicit geometric descriptions of the object but at varying hierarchies.

3.2 Some 3D Vision Systems

Computer vision comprises three levels of processing. Much of the work presented in
this thesis concerns itself with the intermediate or feature extraction stage. The following
three vision systems serve to illustrate the differing approaches that have been taken to

feature extraction and how such features can be used for higher level recognition.

3.2.1 ACRONYM

Objects in ACRONYM (Brooks, 1983, 1981) are modelled by primitives known as
generalised cones. The feature extraction stage tries to find ribbons and ellipses in the
image. A ribbon is a section across the length of a cone and an ellipse is a cross or end
section of a cone. Higher level 3D reasoning and matching in ACRONYM, is based
entirely on matching 2D ribbons and ellipses, that is, although the models in ACRONYM
are three dimensional, matching involves comparing the ribbons and ellipses retrieved
from the image, with those rendered from the 3D object models. The heart of the
matching system, is a constraint manipulation system which propagates constraints
throughout the prediction and interpretation stages. The predictor system itself contains

some 280 production rules which it uses to generate possible hypotheses.

48

One vital feature lacking from ACRONYM is a verification stage. At no point are the final
hypotheses checked for correctness. This lack of feedback would have a profound effect
on the robustness of the system and perhaps this is why ACRONYM has only been
tested on aerial images of aircraft on the ground, but never on aircraft images taken at

ground level.

3.2.2 A Three Dimensional Part Orientation System (3DPO)

3DPO (Bolles and Hourad, 1987) is an industrial vision system capable of bin picking
tasks. The system uses a feature classification network which is associated with each
object. The purpose of the network, which is computed off-line, is to act as a decision
tree and to guide the feature extraction process. Typically, features would be distinctive
patterns or marks on the object, such as holes or slots. If the features comprising the
classification network are chosen carefully, it is possible to hypothesise and verify the
detection of an object using no more than three or four features from the image. In 3DPO,
the recognition strategy is to initially locate a key feature, known as a focus feature and
then to add one feature to the tree at a time, until it becomes possible to confidently
identify and locate the object. Selection of the focus feature depends upon a number of
factors namely its uniqueness, cost of detection, expected contribution to recognition etc.
Although these parameters seem intuitively correct, they are not consistent with visual
psychology and do not attempt to reflect any obvious characteristics of human perception.
For example, problems are encountered if one of the features in the feature extraction
network, is occluded. Ideally, the features sought should have geometric properties

which are invariant to viewpoint. The next vision system to be described, attempts to

solve this problem.

49

3.2.3 SCERPO

SCERPO, which is an acronym for Spatial Correspondence, Evidential Reasoning and
Perceptual Organisation, is a complete 3D vision system devised by Lowe (1985,1987).
The system comprises several major components and as its name implies, directly
exploits ideas from perceptual psychology. SCERPO is capable of performing bin-
picking tasks and like 3DPO can handle multiple objects and occlusion. Lowe (1987)
proposes a novel and conceptually very interesting alternative to feature selection, based
on perceptual organisation. He argues that because the orientation of objects is not
known, then it is not always effective to look for features peculiar to a given object, when
such features will obviously be very viewpoint dependent. Instead, the chosen features
should remain stable over varying viewpoints and not arise due to coincidental alignment.
Lowe recognises that the geometric properties of parallel, collinear and end-proximate
lines obey this viewpoint independence constraint and suggests that this is exactly how

perceptual organisation would seem to work in humans.

Objects in SCERPO are represented by wire frame models consisting of straight lines
only. As well as the model, there is a list of associated features ranked in order of
decreasing perceptual significance. Each feature detected must adhere to the viewpoint
invariance condition, that is, the lines comprising the feature must be parallel, collinear,
or their end points must be in close proximity. This gives rise to a set of primitive
perceptual groups consisting of two lines each. However a pattern of only two lines will
not provide sufficient constraints to achieve recognition and so further constraints can be
imposed by combining groups together to generate more complex groups, for example,
two sets of parallel lines could form a trapezoid. However there is still no way of
knowing whether one group is more significant than another. Lowe solves this by
deriving mathematical grouping operations which can assign a numerical value to the
significance of a given perceptual group. Since these grouping operations effectively
consider two lines at a time, the complexity of considering all combinations would be

somewhat impractical. Lowe realises that as the significance is inversely proportional to

50

the proximity between the lines, regardless of any other characteristic, then it is possible
to limit the search to small regions around each element. The matching process proceeds
by attempting to match perceptual groups from the model against those found in the
image. Each such prediction is followed by verification, something not present in

ACRONYM.

SCERPO is a successful and robust system and this can be attributed in part to its use of
perceptual groups. Many of the ideas and approaches adopted in the thesis stem from

techniques employed by SCERPO.

3.2.4 Use of Perception in Vision Systems

Perceptual organisation has also been successfully used in other systems, notably by
Burns and Kitchens (1987). They show how a prediction hierarchy (i.e. a decision tree)
can be automatically pre-compiled in terms of perceptual groups. The careful selection of
groups is seen as a way of recognising different objects. This idea is similar to the feature
extraction network used in 3DPO, but the features comprising the network or tree are
now perceptual groups possessing a certain degree of viewpoint invariance, rather than
object based features. Burns and Kitchens support this with an example of a decision tree

capable of identifying five different geometric solids.

It is interesting to note that some of the production rules in ACRONYM are also based on
perceptual organisation, as are the segmentation rules used by Levine and Nazif (1985).
This approach to segmentation, groups together disjoint segments, which are felt to have
been a single feature in the real scene. For example, collinear lines whose endpoints are
in close proximity are labelled as one. This is very similar to the instances of collinearity
found in Lowe’s SCERPO. Perceptual organisation has also been considered by the team
working on the VISIONS image-understanding system, and their hope is to develop
knowledge-directed perceptual organisation mechanisms for complex three dimensional

shape representations (Hanson and Riseman, 1988).

51

An apt use of perceptual grouping is in the field of rock crystal analysis, where the
shapes to be studied naturally possess a high degree of symmetry and regular form.
Thomson and Claridge (1989) show how the properties of continuity, symmetry, closure
and so on can be applied to a computer vision system designed to study the order of

crystal growth in an image of a rock slice.

3.3 Biologically and Perceptually Motivated Approaches.

3.3.1 Introduction

Traditionally, approaches to computer vision have been from a computational and
mathematical point of view. However, an increasing number of approaches motivated by
the study of visual psychology or by biological findings, support the belief that the use or
emulation of perceptual functions can provide many advantages over previous

computational methods. SCERPO certainly shows this to be the case.

A similar view was held by Marr (1980), who tried to provide computational theories that
would be compatible with neurophysiological findings rather than finding ways of
mimicking brain functions. He put forward the theory that several levels of processing
are required to accomplish the task of visual recognition and suggested two intermediate
representations that could help achieve this. The primal sketch as he called it, is simply an
edge image which is used to determine the 2.5D sketch. This level of coding is used to
describe the properties of visual surfaces, such as their distances, slants, overlap, etc.
and is so called because it contains only partial information relating to the three
dimensionality of the image. From the 2.5D sketch, which contains limited depth
information, it is then possible to describe the shape of any objects present in some
primitive form. Marr and Nishihara (1978) discuss some of the issues involved in
devising 3D shape representations and proposed an object-centred, hierarchical scheme
using generalised cylinders as the primitives. An implementation of a similar scheme can

be seen in the ACRONYM program (Brooks, 1981).

52

Marr suggested that such representations may also be used by the human visual system,
but rather than trying to understand how the neural circuitry might implement such
transformations, he devised computational methods for generating these representations.
A good example of this is Marr’s approach to edge detection (Marr and Hildreth, 1980),
which is used to determine the primal sketch. Although the theory is quite mathematically
involved, it turns out that neurons found in the early stages of biological vision systems

have just the receptive field properties that the theory demands.

3.3.2 The Influence of Biological Findings on Computer Vision

Pioneering work by Hubel and Wiesel (1962), would appeared to have had a lot of
influence on computer vision. Their work on the study of neurons in the cat’s visual
cortex revealed that a form of line coding was taking place such that lines of a particular
orientation impinging on the retina, excite specific cortical neurons. Furthermore, it was
discovered that the architecture of these neurons is arranged in orderly band-shaped
regions, called orientation columns, where the orientation preference of neighbouring
neurons, differs by only a small amount. The response of a neuron to a given line
orientation was not discrete, but graded. So the output of a neuron would reach a
maximum firing rate, for lines of the preferred orientation and would be a minimum for
lines perpendicular to the preferred orientation. Figure 3.1 shows the response of a

cortical neuron which has a preferred orientation in the vertical direction.

53

Firing rate.

4

Figure 3.1 Response of a vertically trained neuron to bars of varying angle.

Frisby (1979) reports on work involving kittens which are restricted to seeing only
vertical lines for the first few days of their lives. The results suggest that orientation
selective neurons in the visual cortex, adapted themselves to their appropriate directions,
rather than being fixed rigidly before birth. The point is that there must exist some
mechanisms within the brain to allow such adaptations to take place. Chemically, these
adaptations manifest themselves as changes in the chemical behaviour of synaptic gaps,
linking one neuron to another. It would be interesting to know the factors affecting the
choice of synaptic gap and the change of chemical behaviour. Hebb (1949), proposed a
simple answer to this. Hebb’s idea was that if cell 1 is one of the cells providing input to
cell 2, and if cell 1’s activity tends to be ‘high’ whenever cell 2’s activity is ‘high’, then
the future contribution that the firing of cell 1 makes to the firing of cell 2 should be

increased. This rule is often referred to as Hebb’s learning rule.

3.3.3 Linsker’s Perceptual Network

The results of all this work were brought together in a simulation set up by Linsker
(1988). The question that Linsker asks is, how can a perceptual system develop to
recognise specific features of its environment, without actually being told which features

it should analyse? The simulation consists of a layered adaptive network, with forward

54

connections only. The input represents the visual world, but because Linsker is interested
particularly in the ability of feature detecting cells to emerge even before birth, this 2D
input consists of a random activity of input cells (resembling snow, or noise on a
television screen). The cells in the network have a simple linear response; i.e. the output
is the linear combination of several inputs, each being weighted by a modifiable

connection strength.

Layer A
Layer D

$

Figure 3.2 Feed forward architecture of Linsker’s perceptual network.

The emphasis is on the ability to develop various feature analysing cells and not on
modelling a biologically accurate network. Thus many complicating factors have been
omitted. For example, feedback connections are known to exist, but have not been

included in the model.

Each layer takes input from a small receprive field of cells from the previous layer, where
layer A is the input layer. The adaptation rule that Linsker employs is a version of the
Hebb learning rule described earlier. Although this rule is very simple, it leads to some
surprising results. In fact, after the simulation has terminated, and each layer allowed to
mature (that is to become stable), an examination of the various layers shows that the

cells of each layer have developed particular feature analysing properties. Briefly, layer C

cells are found to respond preferentially to bright circular spots centred against a dark
background on the cell’s receptive field. Other cells develop an opposite response, that s,
they respond to a dark disc against a bright background. Cells having these type of

properties are known to exist in the mammalian visual system (Hubel and Weisel, 1962).

In layer D, slightly more complex feature analysing cells emerge, which are orientation
selective. These cells respond to edges or bars at a particular orientation. Furthermore,
cells having the same orientation preferences appear grouped together in small patches or
regions in the layer. Linsker comments that the random organisation of the patches is
probably due to the lack of lateral connections, which would be present in a natural visual
system. As Hubel and Weisel (1962) point out, the organisation of such orientation cells
in the cat’s visual cortex is very orderly and actually forms columns of equal orientation

cells.

The conclusion that can be drawn from this work, is that even using a simple feed
forward arrangement of cells and obeying Hebb type adaptation rules, it is possible to
simulate quite complex behaviour which is consistent with biological findings. Linsker’s
explanation of the emergence of feature analysing cells is in terms of the optimisation
properties of the Hebb rule. Put simply, each layer is maximising the amount of

information preserved from one layer to the next.

This work is one of relatively few which has explicitly attempted to simulate real
perceptual networks and although quite successful, still leaves further work to be done.
As Linsker says, studies of this nature should not only complement experimental

neuroscience, but may also provide the understanding necessary to develop useful

artificial perceptual systems.

56

3.3.4 Endstopped Neurons and Curvature

Orientation columns provide a means of encoding lines and edges within the visual
cortex. An interesting question that might be asked is, how does the cortex handle
curvature? An answer to this may come from the presence of what are known as
endstopped neurons. These hypercomplex cells, first observed by Hubel and Weisel

(1962) are thought to respond to lines of a specific length.

Dobbins et al. (1987) propose a mathematical model which provides a plausible
explanation of how such cells might be involved in encoding curvature. Zucker (1988)
takes this approach a step further and discusses how such biological evidence can provide
valuable insights into the development of early visual tasks. Zucker illustrates this by
showing how the analysis of biological orientation selection processes and the idea of

endstopped neurons, can be used to develop an approach to curve detection algorithms.

3.3.5 The Hierarchical Structure Code

Orientation columns within the visual cortex are arranged such that a small section of the
cortex (about 1 x 1 millimetre) contains all the neural “circuitry” to encode all possible
line orientations that could arise in a small region of the visual input. One might therefore
wonder, how such a seemingly unlimited number of differently running contours could
be processed by a finite number of cortical neurons? An investigation of this problem was
carried out by Hartmann (1987,1985). The results showed that it is possible to encode
any line contour or shape using a finite number of differently shaped edge or line
detectors. Details of a model, known as a Hierarchical Structure Code (HSC), based on

these results, can be found in Hartmann (1987).

The behaviour of the model is very similar to the behaviour of biological visual systems.

However, Hartmann (1987,1985) suggests that this does not necessarily imply that the

57

structure of a biological visual system is similar to the HSC, even though some features

of the HSC are biologically plausible. A brief account of the HSC follows.

Encoding of arbitrary lines or shapes is achieved through the use of a number of
differently shaped edge and line detectors. The template of each detector is defined in
terms of on or off centre-surround cells (Hubel and Wiesel, 1962), and various
arrangements of these serve to detect either bright lines, dark lines or regions of edges.
Hartmann (1987) describes how such a system can also cope with noise, by encoding the
image at varying resolutions. This is achieved by applying detectors of different sizes,
and simply eliminating any line segment that is too ‘short to fit’, i.e. effectively acting as
a low pass spatial frequency filter. For example, at the highest resolution each detector
takes input from 7 pixels, arranged in a hexagonal fashion. Neighbouring detectors
overlap and serve to cover the entire image space. At the next coarser resolution, a
detector takes input from 7 smaller detectors, effectively considering them to be pixels.
i.e. it does not matter what shape the smaller ones are encoding, only that they are ‘on’ or
‘off’. Each detector regardless of size will only encode the inputs if they are recognised
as a continuous contour running through, and this is something that Hartmann (1987)

refers to as a linking hierarchy.

The output of Hartmann’s system is in terms of trees, in which each node codes the
position, shape and size of a detector. Hartmann (1987) also suggests that symbolic
shape descriptors can be extracted by traversing the code tree. Examples are given of the
kind of descriptors generated, but it is not made clear how these are obtained. An
interesting notion that Hartmann (1987) suggests, is that the procedures used to
implement the model can be just as effectively implemented as a neural network. The
translation of computer operations into neuronal operations is discussed and it is found
that the code tree representation is topologically equivalent to the network. Hartmann
(1987) attempts to relate components of his hypothetical neural network, to components

of biological visual systems.

58

3.3.6 Perceptual Grouping

Another aspect of modern computer vision has been the study not only of the physical
processes but also of the mental processes that take place in cortical systems. Currently,
much is known about the physical structure of the brain. However, relatively little is
known about the mental processes that take place within it. Consequently many theories
and ideas have been put forward, offering explanations of how the visual system may
work. Some of the most popular theories amongst psychologists are the so called
grouping phenomena, which suggest that important image features are detected in
groups. This idea of perceptual grouping has played an increasing role in computer vision

systems, notably in the SCERPO vision system.

3.3.6.1 What are Perceptual Groups?

Early visual psychology was dominated by the so called Gestalt laws which are best
known for the claim that “the whole is greater than the sum of the parts”. Experimental
work in visual psychology supports this claim, but what makes perception exhibit these
properties is not at all clear. One of the effects now associated with such claims, is the

phenomena of perceptual grouping or perceptual organisation.

Palmer (1983) tried to identify the phenomena of perceptual organisation and in doing so
identified shape constancy as one of its characteristics. People can perceive the same
basic shape at differing orientations, scales, positions and even reflections. This is shape
constancy and like most other properties of human vision, it is not easy to see how it is
accomplished. One of the theories put forward is invariant-features. This hypothesis
suggests that to obtain shape constancy, i.e. to be able to recognize the same shape at
varying orientations, positions etc., it is necessary to perform recognition using features

of the object which are themselves invariant to such transformations. For two

59

dimensional patterns, angle size, number of angles, relative line lengths, connectivity,
continuity etc. will remain invariant. Recognition in three dimensions becomes slightly
more complicated since now an additional set of transformations involving the two-
dimensional projection of the image must be taken into consideration. Now, only features
such as connectedness, number of angles, continuity and not relative line lengths or angle
sizes remain invariant. It turns out that these properties are just those that cause the

phenomena known as perceptual organisation.

The main effect associated with perceptual organisation is the strong tendency of the
visual system to perceive certain collections of features, as single groups. This is the
phenomenon known as perceptual grouping and by way of illustration, Figure 3.3 from
Roth (1986) shows how a series of unconnected dashes are actually perceived as two

smooth intersecting curves.

S~ —
“"t--- -~

~ Vd

Figure 3.3 An illustration of perceptual grouping

“Perceptual groups” then, is a term used to refer to those image features that collectively
are perceived not as disparate fragments, but as a single feature. An explanation in terms
of the Gestaltist doctrine would say that the effect observed in figure 3.3, occurs because
the image features obey the Gestalt laws of good continuity, proximity and similarity.
This is particularly interesting, because continuity, similarity and proximity are analogous
to the features associated with the invariant-feature theory described by Palmer (1983).
Thus it appears that grouping of features according to the Gestalt laws, may be relevant to

shape constancy and invariant object recognition. Lowe (1987) takes up these ideas and

shows how a three-dimensional object recognition system can make use of perceptual

organisation (see section 3.2.3).

3.3.6.2 Perceptual Groups and SCERPO

The motivation for Lowe’s (1987) approach is the feeling that depth reconstruction is not
essential for recognition in three dimensions. Lowe argues that human vision is perfectly
adept at recognizing scenes in which there exist very little potential for bottom up depth
reconstruction, such as in simple line drawings. This suggests, he says, that although
humans do possess capabilities for sensing depth (eg. stereo vision), the need for them is
not paramount. Instead it is argued that the preferred approach should rely upon some
form of perceptual grouping. The following diagram presents further evidence of the
powerful grouping capabilities of human vision. Figure 3.4 (from Lowe, 1987) consists
of a random distribution of lines, amongst which are three distinct groups. These groups
happen to be instances of parallelism, collinearity and end-point proximity, which are
analogous to the Gestalt laws of similarity, continuity and proximity, respectively.
Consequently, the components of these features are spontaneously grouped by the human

visual system, making them appear to stand out above the rest.

61

---...I ——\/\/

b N

/l N\
NIV="

,/\'"/\\

[
\/- _é \/

Figure 3.4 Spontaneous grouping

Also the geometric properties of these features are invariant to three-dimensional
transformations, making them suitable for object recognition in three-dimensions.
Consider for example, a pair of parallel lines in three dimensions. If the viewpoint is
varied, then from most angles these lines will still be seen as parallel. The same is true for
collinear lines, and lines connected at their end, that is, they will still be seen as such
from most viewpoints. This is in fact an example of the invariant-feature theory described
by Palmer (1983). Only from certain constrained angles will this not hold, for example

looking along the plane of two parallel lines.

Thus in SCERPO, Lowe (1987) bases object matching procedures on comparisons
between object features which are either parallel, collinear or end-point proximate. The
hope is that this will endow SCERPO with some capability to perform recognition of

objects in three dimensions.

SCERPO starts by searching the image for pairs of lines which contain any of these
geometric properties. The problem with this is that, even with a simple image, the
number of possible line pairs can become combinatorially high. Fortunately, all grouping
phenomena are observed only between lines which are relatively close to each other. This

provides a way of limiting the search, since only those lines which are in close proximity

are candidates for grouping.

62

If comparisons were made between just pairs of lines in the object recognition stage, then
there would be insufficient constraints to reach a confident decision. For example, a line
pair feature may match with a similar feature on more than one different object. So some
method is required to reduce the search space. SCERPO attempts to combine together
perceptual groups into more complex groups, for example, two sets of parallel lines may
be combined together to form a trapezoid; this would obviously generate more constraints

than just a pair of lines.

What is particularly interesting about Lowe’s (1987) work is that not only is use made of
perceptual organisation, but Lowe also tries to quantify how significant a particular group
may be. This is achieved by basing grouping operations on the geometry of each type of
group. The actual derivations are not important, but suffice to say that they are based on

calculating the likelihood of each instance occurring accidently.

Each of the following equations relate to two lines at a time.

3.3.6.2.1 Grouping According to Proximity.

V N_ZDnrz
= 12

D is a unitless constant to account for scale independence and N represents the expected
number of end points within a radius 7 from the end of any given line. This makes it
approximately equal to the probability of the relation happening accidently and so

significance due to proximity is inversely proportional to N.

63

3.3.6.2.2 Grouping According to Parallelism

[} is the length of the shorter line, /5, the length of the longer.

E represents the expected number of lines within the given separation and angular

difference and is inversely proportional to the significance.

3.3.6.2.3 Grouping According to Collinearity

4DBs(g+l
— E- s(g+ly)

m‘f
[; is the length of the shorter line.

Here, E represents the possibility of collinearity arising accidently and so the significance

of collinearity is inversely proportional to E.

These geometrical formulae enable SCERPO to locate perceptual groups and to estimate
the relative significance of each one found. This is important, because to attain the most
successful results, matching needs to be performed between the most significant groups
detected. These groups will be the least likely to have occurred by accidental alignment

and so be more likely to have arisen from the most prominent structures on the object.

3.3.7 Walter’s Computer Vision Model and Perceptual Organisation

Much of the work described in earlier sections has tried to make use of biological
findings. Experimental neuroscience has been relatively successful when it comes to
finding out how the individual components, cortical neurons, operate. It has even been
possible to ascertain the overall structure and to some degree, the level of connectivity
between neurons. However, even with all this knowledge of the working mechanisms of
the system, little has been discovered of the actual processes that are being computed.
Hubel and Weisel (1962,1959) have shown that by determining the response of neurons
to certain visual patterns, some insight is afforded into how the visual cortex encodes
lines at a very low level. The influence that this has had on computer vision has been
quite dramatic. Marr and Hildreth (1980), Linsker (1988), Zucker (1988) as well as

many others, have all made use of these results in some way or another.

Neurophysiology has been unable to provide answers to higher level processes and
because of this, researchers in computer vision still look to the study of visual
psychology and psychophysics for possible answers. SCERPO, described earlier in
section 3.2.3, took this approach. SCERPO is not alone in this approach and similar
ideas of perceptual grouping or perceptual organisation can also be observed in a system
devised by Walters (1986). Although not immediately apparent, Walter’s “credit
assignment’” of line components in an image, amounts to a form of grouping based on the
role that each line plays in the image. Another interesting feature of the work, is the
method of implementation of the model. Rather than adopting traditional programming

techniques, Walters has opted to make use of connectionism.

65

3.3.7.1 Perceived Brightness

Psychophysical experiments (Walters, 1986, 1987) indicate that when observers are
presented with simple line patterns, the perceived brightness of some line groups is seen
to be brighter than others. Walters (1987) describes these experiments and what is meant
by “perceived brightness”. The experiments consisted of patterns of lines presented as
low contrast luminance patterns displayed in a dark room. In each experiment, pairs of
patterns were displayed, one having a fixed contrast to act as a control and the other
having a variable luminance. Each subject is presented with such patterns and is asked to
indicate which pattern appears to have the greater luminance. The position of the control
pattern alternates and so the subject will never know which is the control pattern. The
differences in perceived brightness observed from one subject to the next is found to be
small, but quite reliable. Walters (1987) states that all observers tested to date, reported

exactly the same difference.

The question that then arises is, what is it about a particular pattern which makes its
brightness appear brighter or darker than another pattern? Supposedly perceived
brightness is related to the shape or the structure of the pattern, but can the particular
features causing such effects actually be discovered? Walters (1986) finds two local
properties which appear to enhance perceived brightness: line length and local
connectedness. Experiments on line length were conducted using a long, fixed length
control line and a variable length test line. It was found that as the length of the test line
approached the length of the control line, the difference in perceived brightness
decreases. This result was interpreted as an increase in perceived brightness for
increasing line lengths. Walters and Weissteins (1982) performed a series of experiments
which looked at the effect of junction type on the perceived brightness. The results
suggested that a strong correlation existed between perceived brightness and the way in
which the lines were connected. The results indicate that perceived brightness increases
as we move from end-end connected lines, to end-middle connected lines, to middle-

middle connected lines. Unconnected lines, subsequently are seen to exhibit the lowest

66

perceived brightness. Figure 3.5 summarises these findings. The labels A, B and C
indicate the level of enhancement that each junction has on the perceived brightness. A is

greater that B which is greater that C.

Number of collinear arms
0 2 4

1
& > < C
Number of

non-collinear

s N N

/B

Figure 3.5 Enhancement matrix

3.3.7.2 A Computer Model Based on Psychophysics

Walters’s research effort is mainly directed towards the creation of a computer model that
will emulate the perceptual functions described above. Although such psychophysical
results could be simulated by a computer program, adoption of a connectionist approach

was felt to be conceptually more interesting and more relevant to the nature of this task.

Walters describes how the use of ‘little calculators’ could be used to execute local
processes at the pixel level. This involved building a network of connectionist units, each

set up to recognise local occurrences of different junctions, as seen in figure 3.5.

Many different types of unit were used, each designed for a particular purpose. One unit

that is described in relative detail is the ‘U unit’. This operates on each pixel and stores

67 ASTON UNIVERSITY |
LIBRARY amu i
| INFORMATION SERVICES |

the perceived brightness of that pixel. The inputs to the U unit are local in nature and

include inputs from the line and end connection enhancement networks.

The end result is a network which appears complex, but is doing no more than
implementing simple local production rules at each pixel. The input to the network is a
line image, and the output is a labelled line image such that pixels belonging to individual
lines are labelled with the perceived brightness for that line. The results of the network
are found to be in good agreement with the results obtained from actual psychophysical

test described in the previous section.

3.3.7.3 Relation to Perceptual Organisation

Walters suggests that the enhancement of perceived brightness of lines depending on their
local properties, does not necessarily indicate that perceived brightness plays an important
role in human vision. Besides, the differences in perceived brightness are small making it
unlikely that the visual system is directly using this property. If different types of
connectivity result in different levels of perceived brightness, this indicates the possibility

that human vision also treats each type of connectivity differently.

It may be that perceived brightness is a measure of how important a particular feature is to
visual processing. In this respect it would be analogous to the calculation of significance
values for simple perceptual groups (section 3.3.6.2). If enhancement of perceived
brightness is compared with the calculation of significance values in SCERPO, then it
becomes apparent that some similarities do exist. In both SCERPO and Walters’s model,
an increase in line length gives rise to an increase in significance or perceived brightness.
Similarities also exist between how connectivity is handled. In SCERPO, connected lines
are given a higher perceived brightness than unconnected lines and likewise the perceived

brightness of connected lines is also higher than that of unconnected lines.

68

The implications of this are that if perceived brightness is an indication of how si gnificant
various image features are, then it is likely that Walters model is also performing some
form of grouping based on these significances. This is where Walters model becomes
useful. By simulating the appropriate local operations, the perceived brightness of line
patterns can be enhanced. However, whereas human observers were only able to make a
judgement on the global perceived brightness of the shape, the computer model is also
able to inform about the perceived brightness of any line comprising the object. By doing
this, it is found that bounding contours are enhanced more than inner lines. Implying as
Walters (1986) says, that the human visual system can also be expected to treat outer

contours preferentially over inner contours.

3.4 Neural Networks for Vision

3.4.1 Introduction

The previous section provides an overview of neural nets and describes the properties
and methodologies relating to the use of neural networks. The application of neural
networks has received increased attention, particula.rly.in the field of vision. The
Neocognitron, described earlier (see section 2.8.2) is a real application of neural nets in
the visual domain. Qian and Sejnowski (1988) discuss how a net could be used to learn
to solve the stereo disparity problem for random-dot stereograms. Hummel et al. (1988)
present a connectionist approach to volume recognition, based on recognition by parts or
geons (volumetric primitives, not dissimilar to generalised cones, see section 3.2.1). The
work addresses the important issue of achieving viewpoint independent recognition.
Transform invariant recognition is again addressed in Zemel et al. (1988). A model
known as TRAFFIC is presented, which attempts to perform translation and rotation
invariant recognition of objects. The model is a hybrid which is built up using ideas from

earlier work, such as the generalised Hough transform (Ballard, 1981). Storage and use

69

of object models is considered by Pawlicki (1988), who proposes a neural network

object recognition architecture called NORA.

All these are examples of neural networks applied to visual tasks. The following sections
attemnpt to describe in more detail some of the fundamental work and ideas that have been
discovered in the area of neural networks and vision. Of particular relevance are those

applications based on backpropagation learning.

3.4.2 Face Recognition

The content addressable memory has already been described in section 2.3.1. Here we
look at one realisation of content addressable memories namely the distributed associatve
memory. Kohonen (1987) supports the view that biological memories operate according
to these principles and that the distributed representations involved have previously been
encountered only in optical holography. Using adaptable neural networks, Kohonen
(1987, 1988) describes how a model of associative memory can be built up using a laver
of ‘meshed’ neurons. With connection strengths being modified by an approximation of

the Hebb law.

As a demonstration, Kohonen (1988) carried out some work aimed to show how
associative memories could be used for recognition of faces. The network used, was a
‘mesh’ of interconnecting neurons in which each neuron represented a pixel in the image.
The activation of each neuron served to indicate the size or darkness of each pixel. The
net was trained with 500 individual images of human faces, using Hebb’s law to modify
the weights. Thus the information stored was in terms of these ‘memory traces’ or
weights and the retrieval of the original memory could only be achieved associatively,
that is by supplying some initial activation or key which could be used to spread

activation to other neurons in the net.

70

The illustrations accompanying the descriptions (Kohonen, 1987,1988) are quite
impressive. With just a small portion of the image as a key, such as a horizontal band
around the eyes, the net is able to recollect the entire face. Although such abilities appear
quite powerful, it must be realised that the net is simply recalling patterns and possesses

no abilities to handle translations, rotations etc.

3.4.3 Methods Using Backpropagation

3.4.3.1 Character Recognition

A handwritten character recognition system due to Fukushima (see section 2.8.2) has
already been described. The system was complex because it involved many stages or
layers of neural nets that were specifically designed to perform particular tasks. eg. the
receptive field of neurons at different layers ensured a certain level of tolerance to

deformations.

A much simpler network based on multi-layer perceptrons and the backpropagation
algorithm is described by Burr (1988). He uses it as a ‘test bed’ to study the properties of
backpropagation. But the application itself is worthy of further attention. Characters are
input as a 19 x 19 image. Burr (1988) devises a coding scheme based on a seven segment
bar display to code the character. A 13 segment display is used, thus the input to the net
consists of only 13 numbers ranging from 0 to 1. Tests were conducted on both
handwritten text and handwritten digits. Of 208 handwritten letters (taken from a single
writer), 104 were used to train the net and the remaining 104 used to test it. Results
showed that recognition rate of untrained characters peaked at a value of 94% when 20
hidden units were used. Similarly in a separate experiment, 100 handwritten digits were
collected, of which 50 made up the training set and the other 50, the test set. This time the
input was coded like a seven segment display and so there were only seven inputs. The

accuracy achieved with untrained digits was 97.5% with 6 hidden units.

71

The approach shows that the use of a suitable mechanism of encoding the input, can be

help to greatly simplify the problem, and learning of the problem.

3.4.3.2 An Autonomous Guided Vehicle.

The flexibility of the multi-layer perceptron and backpropagation is demonstrated by an
application presented in Pomerleau (1989). ALVINN is a project at CMU to develop an
autonomous guided vehicle using neural networks. The work shows the diversity of the
applications to which a standard three layer net can been put, but more seriously is quite a
realistic application, since once trained, the nets can operate in real time. The performance
of the system is comparable to the best traditional vision systems developed so far,
although the speeds reached by the vehicle are only 1/2 a meter a second; which is not
much more than a mile an hour! However, of interest is the way in which a three layer
net has actually been used to guide provide a mapping between road images, and a

guidance mechanism.

The network takes two ‘retinal’ inputs, one from a video camera and another from a laser
range finder. The video camera maps its input onto an 30x32 input in which the activation
of each input unit is in proportion to the brightness of the image at that point. The laser
finder maps onto an 8x32 grid of input units. These inputs are fed into a hidden layer
comprised of 29 units. To tell the vehicle which direction to turn, 45 output units are used
to code the turn curvature. The net is fully connected. The coding of this curvature is
particularly interesting. Of the 45 units, the middle one indicates drive straight ahead, and
the ones to the left and right of this, indicate by how much the vehicle should turn left or
right. The desired values of the output units are not binary, but are configured as a
‘hump’ of activation spread over 9 units, with the preferred output unit at the middle of
the ‘hump’. Thus, the direction to turn will be the output unit with the greatest curvature.
No indication is given why this kind of coding is chosen rather than more precise binary

values. However it is suspected that this coding makes the net somewhat easier to train.

72

Simulated road images are used to train the net, and backpropagation applied after the
presentation of each the 1200 images. After only 40 cycles through all 1200 exemplars,
training reaches a point where only asymptotic improvements seem likely. The
performance of the net appears to be good, with the correct direction, accurate to within

two output units, being chosen 90% of the time.

Although it is too early to say at this stage whether neural networks will in the long term
be successful in producing ‘usable’ road following systems, the flexibility of neural
networks to adapt themselves to seemingly difficult tasks has been clearly demonstrated.
Earlier road followers developed at CMU, based on traditional computer vision
approaches, took many months to ‘fine tune’ and test before they were ready. The most
time consuming and difficult section of this work, as Pomerleau (1989) states, was the
development of the road image simulator. After that, it took only half an hour or so of
backpropagation to produce a road following system as good as any of the earlier ones
developed at CMU. This ability of the error backpropagation algorithm to quickly and
effectively assimilate large amounts of information is one the hallmarks of back-

propagation and what makes it use so attractive for many differing applications.

3.4.3.3 Learning to Perceive Left and Right

The nature of most problems has been towards actually recognising some pattern, or
some features. Scalettar and Zee (1988) discuss how neural networks could perform
simple perceptual tasks. They present an investigation aimed at teaching a net how to tell

whether a given object, is left or right of another object.

They adopt the standard input layer, hidden layer, output layer, fully interconnected feed
forward architecture common to backpropagation and devise a scheme allowing them to
code two objects which they call a house and a tree. The net has a row of inputs taking on

values of -1 or +1. A house is defined to be a string of four +1s surrounded by -1s and a

73

tree is a single +1, again in between -1s. The output of the net is meant to be 1 if the

house is to the left of the tree and 0 otherwise.

The total number of possible exemplars is high, and only a limited number are ever
presented for training with the expectation that the net will generalise for those patterns
not presented. However, Scalettar and Zee report that such generalisation did not take
place and instead suggest that perhaps the net is not actually learning a perceptual task,
but simply learning the patterns by rote. They realise that because of the fully connected
architecture, the net is not making use of any geometrical information available.
However, geometry can be made more meaningful for the net, if the network connectivity

is altered to specifically exploit spatial information.

If it is realised that what is needed are some kind of feature detectors, to say detect a tree
or a house, then it is possible to try to discover how these detectors may operate. Once
this is established, an attempt can be made to force units in the hidden layer to take on

these functions.

In terms of a fully interconnected net, this means restricting connections to induce the
desired behaviour. In fact, if each hidden unit is limited to three inputs each, a simple
arrangement of weights is all that is needed to make a hidden unit act as a tree detector or
to act as a house detector. With the appropriate modifications to the connectivity and
geometry (lateral connections are included) of the net, it is found that the type of
detectors necessary to achieve the task emerge when trained using backpropagation.
Because the net has captured the common quantity required to achieve the task, it is also

capable of better generalisation.

The method of problem solving adopted by Scalettar and Zee is in itself quite important.
Ideally, it would be preferred if backpropagation learning could learn the task with no
interference. However, as they point out, this may not always happen even if a possible

set of weights does exist to perform the desired mapping. Instead, if it can be determined

74

how the net will need to operate in order to learn the task, then the net architecture should

be modified ‘manually’ in order that the required behaviour is more readily induced.

3.4.3.4 The ‘T-C’ Problem

The idea of limiting connectivity is seen again in the ‘T-C’ problem (Rumelhart et al.,
1986). Here, the task is to learn to recognise a letter T or C, in a visual input.
independent of translation or orientation. Using the backpropagation paradigm, it might
be thought that by simply presenting a multi-layer network with instances from the input
domain, the appropriate function could be implemented. However, when the task is as
complex as this, such an attitude is a little naive and instead it is more fruitful to adopt the

kind of approach taken by Scalettar and Zee (1988).

The problem is simplified somewhat, by using very simple looking letters. Each T and C

is comprised of five squares or pixels.

11

I 11

—
L

| — =

Figure 3.6 T and C shapes at all possible orientations.

Again the network architecture is not fully interconnected, but constrained so as to
facilitate learning of the given patterns. The hidden layer is organised as a two
dimensional grid in which each hidden unit takes its input from a 3x3 ‘receptive field’ on
the input space. From figure 3.6 it can be seen that a 3x3 receptive field is large enough
to completely cover each letter. A single unit is used to output a 1 if the input was a T and

a zero if it was a C.

75

It should be realised that to achieve translation invariance, the hidden layer units have to
perform the same operation in all places over the input space. This means that the wei ghts
for each hidden unit once trained should be identical. As a consequence of this, it is only
necessary to train a single hidden neuron to learn to recognise a T or a C independent of
its orientation within the receptive field of the neuron. Then the weights learned can be
copied to the links for all other units in the hidden layer. Rumelhart et al. (1986) report on
results of this work and show that by repeated presentation of the eight possible patterns
(see figure 3.6), a suitable set of weights will emerge capable of differentiating between
the two characters. Interestingly, different training runs develop different weights and it
is found that there are four sets of possible weights that may emerge, each representin g

four possible templates that a unit could use to discriminate between Ts and Cs.

In both these examples, learning to perceive left and right and the T-C problem, the idea
of strategically restricting connections leads to successful and efficient neural net

solutions.

3.4.4 Structured Neural Networks

The idea of configuring a net for special tasks can be taken a step further. In the visual
domain, we have seen how it might be possible to devise nets to achieve rotational and
translation invariance for simple objects. The real world exists in three dimensions, not
two and so natural vision systems have to cope with viewpoint independence as well. For
normal humans, recognition in three dimensions is achieved subconsciously and without
effort. Also, human vision is powerful enough to handle all the consequences that 3D
vision brings, such as occlusion. Can it be said then that such vision systems are also
based on structured nets specifically configured to handle visual processing in three

dimensions?

76

This debate is taken up in Feldman (1985) and Feldman and Ballard (1983). Of interest is
their approach to representing complex concepts. Rather than rely on the ability of nets to
learn their own distributed representations, Feldman (1985) is very much in favour of
coarse coding as a way of storing and using higher level symbolic data and shows how
networks could be structured to store information relevant to whole objects. Essentially,
individual features or entities are assigned to single neurons, that is each value is
designated a single unit. As an example, Feldman (1985) shows how a representation of

a golf ball and a ping-pong can be set up using such a ‘unit / value’ idea.

Feldman et al. (1988) use these ideas to propose a structured net that is capable of
recognising complex objects in a orientation and translation invariant way. In the ‘T-C’
problem, the answer was to provide T and C detectors for all possible locations on the
input space; such an approach is not possible for the recognition of complex objects. The
“T-C’ approach would require the same computational mechanism at every available
location in the input and in this case, the computational mechanism can be expected to be
very complex. A possible way of solving this problem, as Feldman says, is to structure

the net and where necessary, to process it sequentially.

The solution (Feldman et al., 1988) consists of several populations of units, where each
population is assigned a separate task. For example, a 4x4 grid is used to code the
location of an object, a set of units indicate the colour and another set indicate the shape.
Translation invariance is due to the presence of a set of units that indicate spatial relations
between objects, eg. above, left of, right of etc. The information in the net is accessed
sequentially. As each unit in the location grid becomes active, it means that a particular
location is under attention and all the connections now relate to properties of the object or
sub-object at that location. A layer of hidden units, connected to all the above mentioned

populations, is used to enable the net to learn to classify objects.

The project admittedly is very ambitious and is fraught with difficulties. However it

serves to highlight that the use of structured neural networks is a useful approach.

77

Feldman et al. (1988) argues that to take advantage of the possibilities offered by
massively parallel neural networks, current neural net techniques must be merged with

conventional computing.

3.5 Summary

Recently, the amount of research involving non-computational approaches to computer
vision has been increasing. It appears as if biology and visual psychology might inspire
promising alternatives to the more traditional methods used in the past. Furthermore, the
development of powerful learning algorithms has in particular re-kindled interest in neural
networks which are now playing a major role in providing non-computational solutions

to vision problems.

78

Chapter 4

Connectionist Approach to Processing Perceptual Groups

4.1 Introduction

Many of the traditional approaches to computer vision have typically relied upon model
based recognition. That is, the process of recognition is based upon the ability to match
object features obtained from the image, with those held in memory. When recognition is
to take place in three dimensions, systems based on these approaches can run into severe
problems. ACRONYM (see section 3.2.1) for example, is a complex system employing
sophisticated prediction and constraint manipulation techniques. Yet it has failed to
demonstrate its capability to perform recognition in three dimensions, even with a
restricted domain of objects (aircrafts). Where systems have succeeded is when

recognition is limited to just one or two known objects such as in 3DPO or SCERPO.

Human vision seems to solve the vision problem almost effortlessly, yet advanced
techniques in computer vision have been unable to even approach this level of
performance. It is not surprising then, that neural networks which are claimed to possess
properties similar to those of biological networks are creating so much interest. Many feel
that neural networks may eventually be more successful in tackling recognition and

perception problems than previous approaches.

Recently, a lot of work involving neural networks has tried to tackle those problems
which have been so difficult in the past. For example, neural networks have been used
for applications such as handwritten character recognition (the Neocognitron, section
2.8.2), for face recognition (section 2.9.2) and even for autonomously guided vehicles
(section 2.9.3.2). These are all high level vision problems, which in biological systems
would probably involve several levels of processing. However, neural network systems
such as these seem to have ignored the need for any form of preliminary low level

processing. A few researchers have addressed this issue, Linsker (see section 3.3.3) for

79

example, concentrates solely on a network that can learn to develop simple feature
detecting cells. Another network is Walters computer model reviewed in section 3.3.7.
This time, the aim was to use the results of psychophysical experiments to find ways of
locating perceptually bright lines. Again, the task undertaken is a low level task; no high

level recognition takes place.

The relative infrequency of neural network approaches to low or intermediate level vision
would appear to suggest that much of the effort is concentrated on solving difficult
problems, perhaps too quickly. The opinion held by this thesis is that much could be
learned from the application of neural networks to low or intermediate levels of
processing as well. Not only would this be a way of studying the applicability of neural
net techniques to the chosen problem but would also provide a vehicle for exploring the

practicalities of neural networks themselves.

4.2 Outline of Proposed Project

The aim of this project is to process primitive perceptual groups using connectionist
techniques. The processing will seek to evaluate the determination of relative significance
values for these perceptual groups and this is deemed a worthwhile task since the
findings of Lowe and Walters seem to indicate that such significance values can be

useful, especially in the lower levels of visual processing.

The differences between Lowe and Walters approaches are quite prominent. The way
each has been implemented is particularly worthy of note. SCERPO is implemented in the
‘traditional’ way, that is, as a set of sequentially run programs. Walters’s computer
model on the other hand, is built using a connectionist approach. Walters admits that the
same local operations could be implemented as a conventional algorithm, but feels that it
is conceptually more interesting to incorporate such local operations into a connectionist
architecture. This is the view pursued in this project and the intention is to design a

connectionist network that when given an input describing a simple perceptual group,

80

will generate an output (or outputs) which correspond to the perceptual significance of
that group. Again, the same could be accomplished through conventional programming
techniques. However it is felt that the use of neural network techniques is far better suited

to problems of this nature.

Rather than build and attempt to use one large network, the approach taken in this study
will be to try to partition the task into smaller, manageable sub-tasks, so that each sub-
task can be tackled individually, and a ‘sub-network’ developed to carry out that task.
Once all sub-nets have been built and trained, they can be wired together into a final

‘network of networks’ which carries out the set task.

Before a significance value for a whole pattern can be evaluated, separate significances
must be determined for the various features that comprise that pattern. SCERPO treats
each pair of lines as a feature and evaluates their significances as shown in section
3.3.6.2. Thus the task of finding a significance value is broken down to actually finding
significances for pairs of lines. Note that Walter’s computer model is also built in a
similar way. Various types of connectionist unit are employed to perform specific
operations. These units are then ‘wired’ together into small sub-networks which have
been designed to perform various tasks. Essentially, the model comprises two basic
network types; the length enhancement network and the end-connection enhancement
network. Many instances of each sub-network exist in order that the same computation

can be performed throughout the entire image.

The basic building block for Walters model is the connectionist unit (such as the ‘U’ unit
mentioned in section 3.3.7.3). These units perform simple arithmetic operations on their
inputs. However, the functions necessary to evaluate perceptual significance values are a
little more involved. For example, notice that the geometric equations in section 3.3.6.2
appear quite complex and could not be handled by simple arithmetic units. If the
proposed network needs to evaluate functions of this kind, then the basic building block

will have to be a little more complicated than a simple U-unit, in order to cope. A suitable

81

candidate for a basic building block would be the multi-layer perceptron (see section 2.2).
Networks of this kind can be trained to solve many types of problem using the back-
propagation algorithm. In particular they can be made to learn continuous functions
(Hoskins, 1989). Although this algorithm is renowned for being computationally
intensive and therefore slow, its ability to handle a large variety of problems makes it an

attractive method to use.

4.3 Coding the Input Pattern

The input to both SCERPO and the Walters computer model is some form of image. In
the case of SCERPO, the initial input is a grey scale image, resulting in the need to
perform a significant amount of low level image processing (eg. edge detection, line
detection) before the relevant features become accessible. With the Walters model a line
image is used for the input. The model requires that a large proportion of the network is
dedicated to providing feedback to each and every pixel. This level of processing is not
relevant to this project and would be best avoided. This can only be done if a suitable
method of image coding can be found, that can adequately describe the required features

at an intermediate level.

The coding of inputs (or outputs for that matter) can in itself become quite an important
issue. In section 2.9.3.1, Burr’s approach to handwritten character recognition uses a
special form of encoding based on the seven segment display. If the input had not been
encoded in this fashion, then the unprocessed 19 x 19 image would have to be used. This
would make learning the task far more difficult since now, relevant features (character

strokes) would no longer be explicitly represented.

82

4.3.1 Description of Coding Scheme

This section describes a simple and effective coding scheme which is used in conjunction
with this work. The coding must be able to describe simple line patterns such that each

line is coded as a single entity, i.e. a single entity should encode line length, orientation

and location.
Contents of orientation
planes.
Orientation
1.0
0.5
Input pattern Four orientation
(perceptual group) planes.
1.0

Figure 4.1 A simple line coding scheme.

Figure 4.1 above shows a schematic diagram of a possible coding scheme. The main

features of the scheme are listed below:

1. There are 4 planes (4 x 4 in size), one for each of the four orientations catered for.
2. A line will be encoded as a number representing its relative length on the appropriate
orientation plane.

83

3. The location at which the line is coded, represents the location through which the
major portion of the line is passing

Only one location can be used to represent a line and the criterion for choosing this
location is based on finding the grid location through which the major portion of the line
passes. An implication of this is that if the line is equal to or greater than the length of two
grid locations, then the line would be split into two, which is undesirable. To prevent this
a further restriction can be imposed limiting the line length to two locations or less. In

later practical work, this maximum length is normalised to a value of 1.0.

Although this coding scheme is fairly simple, it does offer an attractive method for
describing line patterns. Its main asset is that individual lines are represented by a single
entity, rather than a series of pixels as they would be in an uncoded image. However, it
has several drawbacks, of which the main one is the loss in resolution. Consider say a
256 x 256 line image, which has to be mapped onto the 4x4 scheme described above. If
the image contains two lines which are far apart, both lines will be coded. However, if
the two lines are parallel and very close together, that is, less than a quarter image width
apart, then it is likely that both lines will fall in the same location on the plane and so will
be coded as a single line. Fukushima’s Neocognitron also suffers from a similar
problem. When two digits are close together, they fall within the input area of a single

receptive field and are thus not detected (see section 2.8.2).

84

u

Figure 4.2 Problems with low resolution coding

As mentioned before, the task of calculating a perceptual significance for a particular
pattern can be broken down into sub-tasks where each sub-task will be a procedure for
evaluating the perceptual significance of just two lines. However, these pairs of lines can
appear in any of several configurations, eg. end-end connected, parallel, collinear etc.
This means that firstly the configuration present must be found and then the appropriate
function used to establish the significance of that pair. In particular, the following cases
are considered : the detection of parallel lines, the detection of collinear lines, and the

detection of connectivity.

4.3.2 Feature Detection

4.3.2.1 The Detection of Parallel Lines.

Each orientation plane contains only lines of the same orientation. The consequence of
this is that the detection of parallel lines will be based on counting the number of lines
present in each orientation plane. So an instance of parallelism can only occur if at least

two lines are present in a single plane.

The geometric equations used by Lowe to detect parallel lines (see section 3.3.6.2.2)

allow for lines of differing orientations to be considered. Because of the coarse coding

85

scheme used here, the definition of parallel lines is somewhat less flexible and considers
only lines of equal orientation. Also the definition used does not discriminate between

parallel lines that do or do not overlap along their length.

4.3.2.2 The Detection of Collinear Lines.

Similarly, collinear lines can only exist if an orientation plane is found with at least two or
more lines. However this time, a further constraint exists. The condition for two lines to
be collinear is that their orientations must be equal and their endpoints must be close

together.

The main aim of the coding scheme is to represent each line as a single entity. An
ambiguity emerges when we try to cater for collinear lines. In the SCERPO scheme,
collinear lines need not be exactly collinear, that is, their orientations might vary slightly.
In this coding scheme, collinear lines (and parallel lines) are expected to have exactly the
same orientations. This means that two collinear lines effectively become a single broken
line and should, in accordance with the afore-mentioned aim, be stored as a single item,
not two items. Therefore it may be more sensible to assume that collinear lines have
already been dealt with at the pixel level, thus eliminating the need to carry out further
processing. Hence the network to be designed will only need to detect parallel lines and

corners, not collinear lines.

4.3.2.3 The Detection of Connectivity

Cormers are not explicitly coded, instead the location and orientation of lines can be used

to determine if a corner exists at a particular point.

Connectivity can be formed in many ways. The simplest is when two lines meet at or
near their end points to make up an end-end connection. However connections may be

end-end, end-middle or middle-middle.

86

By way of example figure 4.3 helps to illustrate how an end-end connected corner would

be detected. (The shading in each location indicates the orientation of the line coded.)

Orientation

Input Pattern — / \
i
\—\ i :%

#

Flatten out first two orientatons

¢

Il

(@) (b)

=, | . 1

Figure 4.3 How corners can be detected.

87

Figure 4.3 shows how an input pattern (representing a simple perceptual group) would
be described. Since only vertical and horizontal lines are present, the last two orientation
planes are empty. ‘Flattening’ the planes together results in a plane with three lines. This
contains two corners, shown as (a) and (b). Thus to detect an ‘L’ shaped corner, the code
found in (a) must be recognized, and to detect an upside down ‘L’, the code shown in (b)

must be detected. This is summarised below:

1l

type corner

L]

_| type corner M

Figure 4.4 Representation of corners

By considering all the combinations of end-end connections that can be generated by
pairs of lines at differing orientations, it is possible to find suitable representations for all
corners, positioned at any allowable orientation. (See Appendix F for a full list of

allowable corners)

The section thus far has dealt with end-end connections only. Matters are complicated
when end-middle and middle-middle connections are also considered, since problems
such as ambiguity arise, for example a cross could be described by two lines or four
lines. To cater for end-middle and middle-middle junctions, the proposed coding scheme
would have to be significantly elaborated. This could unduly complicate matters and for
this reason no special provisions will be made to handle such junctions. All connections

will be expected to be of the end-end type.

88

4.3.3 Some Examples of Patterns Represented Using this Scheme.

Input patterns Coded representations
Vi — (MM &
—_—
B —— Y
>
%

Figure 4.5 Some examples of coded patterns.

Each of the coded representations consists of four orientation planes. Here, all four
frames have been superimposed onto one. The direction of the shading indicates to which

of the orientation planes each code belongs.

89

4.4 What Does the Network Need to Output and How?

Lowe’s (1987) rigorous treatment of the geometry of line pairs results in the set of
equations shown in section 3.3.6.2. The equations are functions of many parameters.
such as the distance between endpoints, distance between midpoints, angle between lines
and length of lines. Their thoroughness enables imperfect ‘features’ to be detected. For
example, by accounting for the angle between two given lines, SCERPO is able to deal
with lines that are not quite parallel. Similarly, collinear lines need not be perfectly
collinear. The proposed coding scheme does not have the capacity to handle so many
different values. The low resolution of the representation does not permit accurate

graduation of such parameters. Figure 4.6 below illustrates one aspect of this problem.

Input patterns Coded representation

(a)

:
'
W

(b)

Il
=
L]

Figure 4.6 Problems with encoding distance

Patterns (a) and (b) are similar except that (b) is wider than (a). i.e. the distance between
the vertical lines is different. Since each line is coded by the location on the orientation
plane through which the majority of the line passes, then it turns out that the vertical

lines are coded in the same place in each case. The distance between these two grid

locations then serves only to give an approximation to the actual distance between these

lines.

Line lengths are coded accurately. The presence of a line is indicated by a real number
between 0 and 1 at the appropriate location on the plane and this number represents the

length of the line.

4.4.1 Perceptual Significance of Parallel Lines.

Lowe’s (1987) equation for perceptual significance of parallel lines is the reciprocal of

_ 4D6sl,

2
nly

E

2
].1 by
i.e. significance is proportional to g I g

Both lines are assumed to be always parallel, and so pi/theta is a constant. This leaves :

2
1
significance of parallel lines < S—;z (1)

91

The effect of this relationship is shown by the following examples:

(@) (b) ()

decreasing order of significance

B

(a), (b) and (c) are examples of parallel lines. The distance, s, between the lines is equal
in all cases. Using the relationship just arrived at, it is found that (a) has a significance

higher than (b), which has a significance higher than that of (c).

One of the parameters involved is ‘s’, the distance between the parallel lines. This
parameter as used in the coding scheme lacks precision, not only because of the drop in
pictorial resolution but also because it does not actually measure the distance as specified
in SCERPO. Instead, ‘s’ is taken to be the cartesian distance between the points on the

orientation plane encoding the two lines.

92

4.4.2 Perceptual Significance of End-end Connectivity.

Consider the following corners:

(@) (b) (C)

|]

decreasing order of significance

P

Corner (a) has a higher significance than (b) which in turn is more significant than (c). If
1 is the length of the shorter line and I the length of the longer line, then the following, a

simplified version of equation (1), could reflect the above behaviour :

12

A 1
significance of corners o< L
2

4.4.3 Sequential Processing and SCERPO

For any given line pattern, SCERPO will try to locate the most important line pairs. It
achieves this by realizing that the most significant line pair is the one where the lines are
the closest to each other. Thus given three randomly positioned spaced parallel lines,
SCERPO is able to work out which pair forms the most useful primitive by finding the

pair having the least distance between them.

Although not immediately obvious, this is a sequential task. Firstly one pair of lines is
selected and measured, then another and finally a third combination is tested. Described
in terms of a biological visual system, this would be analogous to a focus of attention

mechanism. Whether the human visual system processes images in sequence Or in

93

parallel is not clearly understood and is the subject of some debate. However, some
general theories do exist. It is believed that higher levels of image understanding and
recognition must perform some degree of serial processing. For example, Ullman (1984)
refers to such processing in terms of ‘visual routines’. The existence of fovealization,
suggests that the scene is being broken down and processed in parts and not all at once.
Such focus of attention mechanisms which cause the eye to rapidly scan the image for
points of image, may be evidence for serial processing. Early processing on the other
hand, such as edge detection and line detection is understood to be entirely parallel.
Somewhere in between these low and high levels, parallel processing may slowly give

way to serial processing.

The detection of perceptual primitives by a network using only feed forward connections
can only take place in parallel. This has implications on the determination of distance
between parallel lines. In the example above, three parallel lines were detected. To select
the most significant pair will however, require a serial search of all possible combinations
of pairs that can be generated (three in this case). Given that the number of lines coded is
unknown, then the number of comparisons necessary will also be unknown. Thus the
task of teaching a multi-layer perceptron this problem would be very difficult. The
simplest case would be if it was known that at most two lines per orientation plane were
present. With these assumptions there would be no need for performing serial searches.
Although this limit of two lines per plane seems restrictive, with four orientation planes it
allows a maximum of eight lines to be used which is sufficient to code a rich variety of

patterns and shapes.

4.4.4 Example of How a Network can Simulate a Real Function

It has been shown that backpropagation can be used to learn continuous valued functions.

Several examples of how this can be achieved are given in Hoskins (1989). This section

94

describes how a multi-layer perceptron can be used to learn functions useful for

calculating perceptual significance.

Equation (2) above is mathematically quite simple and can actually be simulated using a
multi-layer perceptron. To illustrate the training process, we can outline the steps

necessary to teach a multi-layer perceptron a problem such as this.

4.4.4.1 The Training Set
The function intended for simulation is ;

l2

o 1
significance of corners o< I
2

The training set will need to consist of a list of vectors which comply with the above
equality. Each vector will have two input values (representing 1; and I7) and a third
output value (representing the calculated significance). The range of values should be

over the intended range of line lengths that are to be used (i.e. between 0 and 1). The

table below shows a training set that would be used to learn the function

12

- 1
significance of corners = TN
2

95

significance 12 I

(required output) (inputs)
0.125 0.25 0.25
0.0625 0.5 0.25
0.04167 0.75 0.25
0.03125 1 0.25
0.25 0.5 0.5
0.16667 0.75 0.5
0.125 1 0.5
0.375 0.75 0.75
0.28125 1 0.75
0.5 1 1

If the network is performing some kind of interpolation it would be wise to arrange the
data points in a regular distribution. Only a few points have been used in the above
training set.

4.4.4.2 The Network

The function to be simulated has two parameters and generates just one output. The
network will therefore need two input nodes and one output node and is shown in figure

4.7. The number of hidden units is initially unknown but can be found empirically.

= significance

Figure 4.7 A multi-layer perceptron for determining significances

The optimum number of hidden units is regarded to be the smallest number that can learn
the given training set. It is generally understood that the smaller the number of hidden
units, the better the generalisation is likely to be. However, with too few, convergence to
a global minima becomes difficult if not impossible. Consequently knowing the optimum

number of hidden units can help to achieve efficient learning.

Preliminary work carried out to investigate how the optimum number of hidden units

could be determined involved looking at the variation of number of epochs against

96

number of hidden units. Several identical learning trials were completed (see Appendix A
for basic procedure) to obtain the graph in figure 4.8. In each case, the number of epochs

to reach a global error of 0.02 with the given number of hidden neurons was recorded.

14000 -
12000 -
10000 -

8000 -

6000

Number of epochs

4000 ~

2000 A

0 T

3 4 5 6 7 8 9 10 11 12 13 14
Number of hidden units

Figure 4.8 Variation of epochs against hidden units.

The above graph is typical of the behaviour expected. There exists a minimum number of
units (in this case six) for which the solution can be reached relatively quickly. Increasing
the hidden units improves learning speed slightly, but then with too many, the the cost of
updating each extra neuron becomes significant and the speed advantage becomes less

prominent.

Although this procedure will determine the optimum number of hidden units, it is rather
lengthy and time consuming and as such is not always appropriate. If efficiency of the
networks is not of paramount importance, then usually it is sufficient to select a
reasonable number of hidden neurons to start with and then vary the amount as required

during the development stages.

4.4.4.3 The Training Procedure.

Once the training set and the network dimensions have been decided upon, the error

backpropagation algorithm can be used to present the training set to the network. The

74

stopping criterion for the iterative algorithm is based on a global measure of error. For
each exemplar in the training set, there will be a difference between the actual output and
the required output. This error will contribute to the global error term. When the global
error reaches some specified minimum, the algorithm will stop. The network will have
learnt the function to a certain accuracy, within the range of input value used. If it turns
out that this accuracy is not sufficient, it may be improved by either decreasing the
stopping criterion and so extending the learning stage, or by increasing the size of the

training set.

4.5 Joining Subnets to Perform Complex Tasks

Section 4.4.4 describes the steps involved in teaching a network to solve a particular
problem. In this case the problem is fairly simple and straightforward. For a more
complex task it may not be possible to train a single network. A more practical approach

is to try to split up the task into sub-tasks and then to deal with them separately.

An example of this is as follows: consider a 4x4 orientation plane encoding two parallel
lines. To evaluate the perceptual significance of these lines, a multi-layer perceptron
trained to evaluate function (1) (see section 4.4.1) is required. However, because there
are 16 inputs coming from a 4x4 code plane, the multi-layer perceptron (mlp) will have to
be trained to perform this operation not for 2 inputs, but for 16. This is not an easy task
because a large number of inputs can generate impractically large training sets. Training
with such large sets will be computationally demanding with the possibility that

convergence may not be obtained.

One solution may be to divide the task into sub-tasks, whereby the lines are first detected
and then their significance evaluated. Two divisions may be sufficient to accomplish this.
One network with 16 inputs and 2 outputs could be used to detect the two lines and then a

second net trained to evaluate their significance. These two nets can then be ‘wired’

98

together and made to act as one (see figure 4.9 below). In this way it is possible to design

large networks designed to solve possibly complex tasks.

The novel idea of splitting up tasks into more manageable chunks of networks was first
used by the author as described in Singh and Claridge (1989) and can also be seen in
similar forms in later studies as well, for example Green and Noakes (1989) also use

modules of separately trained multi-layer perceptrons to construct a larger, more complex

structure.
L, I
t
Lo outpu
MLP trained to
MLP trained to evaluate significance
input locate lines from line lengths

Figure 4.9 Splitting up a task.

Chapter 5

Development and Training Results of the Perceptual Network

The previous chapter proposed a connectionist network for processing perceptual groups.
The operations to be computed were also discussed. This chapter describes in detail the
development of a large scale network, called a ‘Perceptual Network’, to perform all of the

intended operations.

Design and development of the network has followed a mostly top-down approach where
tasks have been identified and subdivided into smaller, simpler subtasks. Thus,
beginning with the overall aim of obtaining a single significance value, lower levels were
devised to generate the parameters necessary to calculate this single value. The structure

of this chapter also roughly follows this top-down approach.

5.1 Detailed Plan of the Perceptual Network

Figure 5.1 shows details of the outer most structure of the Network. The overall
significance value is the sum of the significances due to all parallel lines and all corners.
Each of these values is determined by a separate structure. Here, the term ‘structure’ will
be used to refer to a network of three layer, perceptron type networks, that is a ‘network

of networks.’

100

Total
significance

Significance Significance
due to parallel due to
lines. corners.

Corner
Parallel detection
line-processing structure.
structure.
| — / \
Input planes

(one for each orientation)

Figure 5.1 Perceptual Network - Outer structure details

101

5.1.1 The Line-processing Structure

Both structures take their input from all four orientation planes in a feed forward manner.

The details of the parallel line processing structure are shown in figure 5.2.

Total significance
due to parallel
lines.

Input planes(one for each
orientation)

ﬁ' This network L (distance-discriminator)
calculates =

2

I
This structure B (line-pair structure)
calculates p

Figure 5.2 Inside the parallel line processing structure

102

It can be seen that the significance due to parallel lines is calculated as the sum of the four

individual significances of each orientation. Each orientation plane is handled by a

network (referred to as the distance-discriminator) and a structure (known as the line-pair
1 i

structure). The network calculates s and the structure calculates ?2 The distance

discriminator is a single three layer perceptron, but the line-pair structure is again a

composite of other multi-layer perceptrons. The product of these two gives the

significance value as defined in section 4.4.1. A single structure could have been used to

I

evaluate 25l but it was decided that a composite structure would be preferable for the
2

following reasons. Firstly the task would become a lot simpler to train in two stages and

secondly the line-pair structure is also used in the corner detector structure.

103

5.1.1.1 The Line-pair Structure

1

This network calculates .
(the line-pair evaluator)

This structure finds
the longest line 15

This structure finds
the shortest line 1,

< ; E E g Input plane.

Figure 5.3 Inside the line-pair structure

The input to the line-pair structure is a 4 x 4 orientation plane. On any plane there are at
least fourteen zero values and at most two non-zero values representing any lines present.

2
1
To facilitate the learning of the # function, it was found necessary to devise a method of
2

‘filtering’ up each of the two values present. It was also necessary to know which was
the greater and which the smaller of the values. This is the purpose of the two ‘filter’

structures seen in figure 5.3.

104

5.1.1.2 The ‘Filter’ Structures
Output is the longest / shortest
line detected in the input plane.

Each network is
identical and trained
to act as a filter

16 inputs, from all
locations on the input
plane.

e

Figure 5.4 Composition of the ‘filter’ structures

Input
plane.

Sixteen inputs from an orientation plane are used, but just a single output is passed on.
Figure 5.4 shows how a group of identically trained multi-layer perceptrons can be made
to filter up a single value from a group of sixteen. The overall operation of the structure
will be determined by what each component is trained to do. The components known as
max / min-filters are trained to output the greater or lesser of their two real valued inputs.

A pyramid of like trained networks will allow the appropriate value to ‘rise’ to the top.

105

5.1.2 The Corner Processing Structure.

The second structure that appears in figure 5.1 is the corner detection structure. The
purpose of this is to detect and determine significance values for corners at all possible
locations of the input. This is achieved by the use of many corner detecting structures
(local corner detectors) situated at each individual location. A secondary task is to
implement a basic ability to categorise each type of corner, since this could prove useful
for higher level recognition tasks. The coding scheme used, allows a distinction to be
made between acute, obtuse and right angled comners, and it is possible to design local

comner detectors to recognise each type of corner mentioned.

5.1.2.1 Local Corner Detectors

A local corner detector must detect, categorise and calculate a significance value for any
corner detected within its local area of input. This is achieved using a line-pair structure to
calculate the significance value and a network to perform the detection and categorisation.
The network is a three layer perceptron trained to recognise patterns that give rise to
various comners and unlike other networks, has three outputs rather than one. Each of the

outputs corresponds to each of the possible types of corners that could be detected.

l2

- . . 1
Combining the outputs of the corner-detector network and the line-pair structure, LT
2

values for each type of corner can be determined (see figure 5.5).

106

2
1
ped for acute corners

21
f i:f | 1%
—— for obtuse comers ?1"
21, 2
2
—L for right angles
212
X
X \
5 B (2
5 |8 1S
Jé: 15 g N
2 |2 |8
= 3 |=
2 B 2
=} -]
This structure calculates ;
(the line-pair structure) 2
Network to detect and

classify comers
(the corner-detector)

| - SR
e w o e
B I e

Input is a 2 x 2 receptive field from each orientation plane

Figure 5.5 Inside a local corner detector

The input to a local corner detector comes from a 2 x 2 array positioned at identical
locations on each of the four orientation planes. This input is called here a receptive field

and represents those areas of the input where it is possible for corners to be detected.

107

5.1.2.2 Receptive Fields

A comer can be detected in any 2 x 2 patch, or receptive field (RF) and because corners
consist of lines of different orientations, each RF will run through all four planes. The
criterion for selecting the location of an RF is that it must be able to describe a corner. As
all corners consist of two lines, each RF must cover at least two inputs on the plane.

Figure 5.6 shows all 21 possible locations of each RF.

21 receptive fields, 2 x 2 in size
are required to totally cover this
input plane.

1 i i makes 9 completely
and internal receptive
fields

[4 o
and 12 edge receptive
fields making a total of 21
L~ L
Figure 5.6 Receptive fields.

Thus 21 local corner-detectors are needed to process the output from each of the receptive

fields and figure 5.7 shows the resulting structure.

108

total significance
due to all comers

total total total
significance of significance of signficance of
acute corners obtuse corners right angles

j -

sig. of acute corner
sig. of obtuse corner
sig. of right angle

jre—
S—

sig. of acute comer
sig. of obtuse corner
sig. of nght angle

structures to calculate
for comers

(local comer detectors)

second receplive

first receptive
P field etc....

field

sr e e

e
AW

s e 2 Pl i o oo 3

Figure 5.7 An exploded view of the corner processing structure

The significance due to all corners is calculated as the sum of the corner significances
from all 21 receptive fields. A local corner-detector is assigned the task of evaluating the
significance from a particular RF. Note that because an RF spans across all four

orientation planes, sixteen locations are involved.

109

5.1.3 Practical Implementation of the Perceptual Net.

The initial impressions conveyed by the above plans, may lead one to believing that
implementation of such a vast network would prove to be an overwhelming task.
However this is not the case and in fact, implementation turns out to be quite

straightforward.

The underlying approach to programming and indeed to the whole design of the net, has
been to facilitate a high degree of modularity. That is, the intention has always been to
consider each network or network of networks (structures) as a ‘black-box’.
Construction will then involve ‘wiring’ the various black-boxes together and regarding
the resultant network as another black-box. Only at the basic level will connections

between actual neurons have to be dealt with.

Actually using or calculating the output of the Perceptual Net will be done in the same
way as for a simple three-layer network. In terms of the backpropagation algorithm this
will be a ‘forward’ pass through the net. In programming terms, this amounts to a

recursive traversal through the network.

Much of the effort in producing the Perceptual Net will amount to time spent actually
training the various subnets. Subsequently, implementation of an error backpropagation
simulator forms the basis for much of the work carried out in this thesis. Because
backpropagation is an iterative descent algorithm, it can be expected to be slow and
computationally demanding. So it would be appropriate to employ the most efficient

hardware and software available for implementation.

The programming language chosen is ‘C’ because it generates fast and efficient code as
well as being widely available and the availability of SUN Sparcstations meant that the

latest RISC technology could be exploited for its speed and efficiency.

With many of the learning phases likely to take more than a few minutes to complete (a

few hours in some cases), the ability to run processes in the background is a necessary

110

requirement. Again SUN Sparcstations running under the UNIX operating system
provide the required facilities as UNIX easily facilitates the entry or removal of

background jobs.

5.1.4 Validation of the Backpropagation Simulator

Validation plays an important role in the implementation of any computer simulation and
it is crucial that the backpropagation simulator is thoroughly tested before it is used to
obtain results. The availability of standards or benchmarks can provide a reliable means
of testing a system and comparing its performance. Because the backpropagation
algorithm is relatively new, it might be expected that few benchmarks exist for it.
However, some problems such as the XOR and Parity, have received considerable

attention and so can be used for validation of the simulator.

5.1.4.1 The XOR Problem

Ever since Minsky and Papert (1969) pointed out that single layer perceptrons could not
learn to solve simple XOR problems, a lot of effort has been directed towards this
particular problem. For example, Rumelhart et al. (1986) state the results of an experi-
ment in which a 2 input, 2 hidden unit layer, 1 output network was trained using standard
backpropagation to a global error of 0.01. This was done using 2 learning rate of 0.25
and a momentum term of about 0.9 and with randomly chosen small initial weights.

Rumelhart et al. report that the number of epochs to reach an error of 0.01 was found to

be on average about 245.

This experiment can be repeated and used to test our own version of the simulator. Many
repeated trials were undertaken so that an average value could be calculated and it was
found that for 12 learning trials, each taking less than a thousand epochs, the average was

288.5 and this value is comparable with the result stated.

111

5.1.4.2 The Parity Problem

The parity problem is often seen as an extension of the XOR, which can be regarded as a
two bit parity problem. In this case, no published results were found that were detailed
enough to make them suitable for comparisons. Instead, validation was achieved by
comparing the simulator in this project with that developed independently by a colleague.
The parity problem was set up on both simulators, with exactly the same parameters and
exactly the same initial starting weights. Comparing the outputs from both simulators
showed that the error value after a given number of epochs was found to be exactly the
same (correct to six decimal places). This is a strong indication that both simulators are
functioning correctly, especially since both were independently produced and written in

different programming languages.

During these tests, two observations were made regarding the precision used in the
program and the role of initial weights. In the simulator, all real variables were declared
as single precision. However, it was found that by changing to double precision, the
number of epochs to reach the same global error decreased. For example, using single
precision, a 12 hidden unit net could be trained on the six bit parity problem to an error of
0.32 in 214 epochs whereas, with double precision an identical system would require
190 epochs to reach the same set of weights. In general it was found that using double
precision in place of single precision, appeared to reduce the number of epochs required

during training. This is something rarely mentioned in the literature.

Regarding initial weights and the parity problem, it was found that learning was very
dependent upon a favourable set of initial weights. Some learning trials would converge
very rapidly, often within 200 or 300 epochs, whereas others would not seem to
converge at all. This was also found in the XOR problem where it was noticed that if a
particular learning trial was to converge in a reasonable number of epochs, it would do so
in less than a thousand. Thus in the XOR validation test, only those trials that converged

in less than a thousand epochs, are considered.

112

5.2 Details of the Main Perceptual Net Components

The following sections describe the functions and training methods of the five main
‘building blocks’ of the Perceptual Network. Each component consists of a three layer
perceptron trained to process data at various levels of the Perceptual Network. One
concern that influenced training was the potential for error propagation. In such a large
‘network of networks’, it is possible that even small errors in the initial stages could lead
to unreasonably large errors in later stages. During training and development, much
attention was given to the accuracy of the outputs of each trained network. This was
considered to be of great importance and so a general method of estimating the output

accuracy of the net was developed. The method and its derivation is described below.

5.2.1 Estimating the Accuracy of a Trained Network

When training a network using backpropagation, the accuracy of the final trained network
will depend on two factors; the global error reached and the number of exemplars in the
training set. From these parameters it possible to estimate the accuracy of the output,

relative to the given training set. The derivation of the relevant formula is as follows :

If x represents the actual output of the net, and T the target or desired output, then the

total (global) error over all patterns in the training set is given by :

n
Total error, € = %Z[Ti - xi]Z over n patterns.
i=1

consider Ax; =T; - x; to be the error in x;, therefore

1N, 2
Total error, € = i-ZAxi

i=1

Now let Ax , be the total absolute error in the actual values,

n
i.e. Axm[zz.IAxil therefore
i=1

113

the average error in actual values is P Ax =

The total squared error, call it Ay, is : Y 01 ZAxiz

== ==
so the average squared error Ay , becomes : Ay = _%E
- . 1
Expressing € in terms of Ay, ‘g = fAy - 1)

—_— —2

By assuming Ay =~ Ax

and substituting for 3; in (1), € becomes : €=znAx

giving :
Ax=q/ =
n

Note that Ax is effectively the root mean square error and is equal to the standard

n
deviation if ZAX=0

i=1

5.2.2 The “Distance-Discriminator”

1
In the evaluation of the significance of parallel lines, the term 5 needs to be evaluated.

The network that performs this appears in the parallel-line processing structure of figure

5.2 and is called the distance-discriminator network.

The symbol ‘s’ refers to the distance between lines. As the lines are coded on a 4 x 4
orientation plane, then ‘s’ is actually the cartesian distance between points on the grid.

For example, two points horizontally adjacent to each other will be just 1 unit apart. Thus

1
s=1, and therefore r =1. The furthest distance they can be is when the points are at

114

) 5 . 1
diagonally opposite corners, then s=4 32,32 giving 5 =0.2357. See figure 5.8 below

for more examples.

position of lines

distance, s = 4.246

distance, s = 2.828

!
= 0.3535

distance, s = 2.2360

Figure 5.8 Examples of how 1/s values are calculated.

5.2.2.1 The Training Set

The input to the net is a single orientation plane consisting of 16 input values. The output
1 o . . ya s
is g where s is the distance between two points, if they exist, on the grid. A valid input

vector will consist of 14 zero values and 2 non-zero values to code the length and
approximate position of two lines. Altogether there are 120 combinations of two points

amongst 16 possible locations. A complete training set will consist of all 120 vectors

1
along with their corresponding ¢ output values.

115

The 4 x 4 orientation plane is a two-dimensional input, whereas the input layer of the
network is just a linear input. The input plane has therefore to be translated into a linear

input. This is achieved by simply numbering the locations from left to right and top to

bottom.
Input plane
0f1)213
0 1 2 3 4 s 6 7 5
41516 |7 » 8 9 10 11 12 13 14 15
9 [10 11 OO0OO0O0O0O00O0O0O0D0OD0O0D0D00OO
124 13§ 14] 15

Figure 5.9 Linear ordering of input planes

To simplify the training set, all input values are thresholded so that all non-zero values are
treated as one, and zero values as zero. The inputs are then effectively binary valued

vectors. The full training set for this problem can be found listed in Appendix B.

5.2.2.2 The Network

A three layer network is used. The input layer contains 16 input units and the output
layer, one unit. The number of middle or hidden layer units is initially not known and is

found experimentally. Each layer is fully interconnected to the next.

5.2.2.3 Results of Training

Many trials were undertaken using different parameters and it was found that 10 hidden
units could adequately learn the task. With a learning rate of N=0.25 and a momentum
term of a=0.7, a final global error of €=0.00005 could be reached in an average of 55000
epochs (calculated over five trials). The global error &, does not however show how

accurate the output of the network will be. This can be determined using the equation

derived earlier in section 5.2.1 :

116

ax=q) %
n

Using this relation, it is possible to get an indication of the final accuracy of the output of
the network. For example,with 120 exemplars in the training set (n=120) and a final error

. 2x0
of €=0.00005, the average error in the output, x, is —x%)g@ﬂ}.ooog indicating

that on average, the output values have been learned correct to about three decimal places.

5.2.3 The “Line-Pair Evaluator”

1

The purpose of the line-pair evaluator is to approximate the function; 72

5.2.3.1 Simulating a Continuous Function

The network that is taught to achieve this has two inputs and one output (and one hidden
layer). According to Hoskins (1989), neural networks are quite capable of simulating

elementary continuous functions such as y=x2, y=e* and y= sin x.

Although the function to be simulated is relatively simple, a few constraints need to be
imposed to preserve continuity. In particular, it is necessary to make a distinction
between the two physical inputs of the network. One must be designated for 1; and the

other for Iy, so that the largest and smallest values always appear on the same inputs.

Catering for special cases can also destroy continuity. For example, to handle the
situations when 1;=0 or 1,=0 or both, additional exemplars representing these cases
would have to be incorporated into the training set, possibly resulting in longer, more
difficult learning. Instead of doing this, a separate network can be used to recognise these

situations and when appropriate, act to suppress or inhibit the output of line-pair

structure.

117

5.2.3.2 Using Inhibition to Handle Special Cases

The synaptic inputs to a biological neuron are said to be either excitatory or inhibitatory,
that is they either excite or suppress the output of a neuron. Similar terms have been
adopted for describing various types of connectivity in artificial neural networks. When a
weight is negative, it is said to be inhibitory and when it is positive it is said to be
excitatory. In feed forward networks, if one neuron is to be used to inhibit the output of
another, then its output must be connected to a large negatively weighted input on the
other neuron. This is how inhibition of the line-pair evaluator is achieved. A simple two
layer network outputs a binary value 1 when it detects less than two lines and a binary 0
otherwise. The output of this, as described before, is connected to a large negative weight
on the output neuron of the line-pair structure and if sufficiently negative, can result in

complete inhibition of this network.

This network is the
count-detector and
acts to inhibit the
line-pair structure.

2
This is the line-pair 13
structure which calculates 71,

w———a

Figure 5.10 Inhibition of the line-pair structure

The count detector is a very simple network and does not require training. It has 16

thresholded inputs and an output neuron using a step activation function with a bias value

118

set to +1.5. All weights are set to -1. Figure 5.11 shows the step function that is set up

by this network.

output of
neuron
A

bias

> weighted sum
4 3 -2 -1 0 1 2

Figure 5.11 The count detector

The only other quantity that needs to be determined is the value of the negative weight on
the inhibitory link. The activation function used in the neurons of the line-pair evaluator is
the standard sigmoid. Thus the inhibitory weight must be large enough to cause the

function to output a near zero value. A weight in the order of -25 was found sufficient to

1
s . 25
completely dominate the |, -* function by causing an exponential of about € to be

calculated.

5.2.3.3 Results of Training

It is important that the line-pair evaluator reasonably approximates the required function.
It is also important that once trained, it can generalise well enough to handle all untrained
exemplars. It turns out that this problem can be learned quite readily with small networks,
using fairly small training sets. The results from three different tests are shown below,
each time the trained network is tested on an appropriate set of trained and untrained

exemplars. Note that this problem learns quite slowly, in fact some of the results

119

obtained, took over 1 million epochs to converge. Thus to keep learning time low, it is

important to keep the size of the training set to a minimum.
» Trial 1

Using a small training set having just 10 exemplars and a six unit hidden layer, a final
error of 0.000001 was reached. The following table typifies performance of this

network.

Inputs actual output desired output

for untrained exemplars

0.2 0Ll 0.040036 0.025
0.5 0.3 0.090163 0.09
0.8 0.1 0.010277 0.00625
0.97 0.43 0.095292 0.09531
0.47 0.4 0.170887 0.17021
0.7 Q.7 0.349657 0:.35
0.3 0.1 0.028311 0.01667
0.85 0.23 ¢.031175 0.03112
0.5 0.45 0.203169 0.2025
average error = 0.00363

and for trained exemplars

0.75 0.5 0.165912 0.16667
1 1 0.499997 0.5

055 0.25 0.063423 0.0625

075 0:25 0.041357 0.04167
1 0.25 0.031078 0.03125

average error = 0.00043

Table 5.1a Performance of a 6 hidden unit line-pair evaluator trained to 0.000001

Using the relation derived in the previous section, 0.000001 represents an average error
in the output of 0.00045. This compares very favourably with the value of 0.00043 for
the average absolute error calculated between actual and desired outputs of trained
exemplars in table 5.1a, indicating that the net has learned the training set relatively well.
However, generalisation is not so good, particularly near the extremes of the test set, eg.,
0, 0 and is probably due to the lack of exemplars in this region. (See Appendix E for the

contents of this training set.)

120

* Trial 2

The above experiment was repeated for a network of 4 hidden units and the convergence
criterion set at a a global error of 0.000002. The intention is that a network with less

hidden units might be expected to give better generalisation.

1nputs actual output desired output

for untrained exemplars

0.2 0.1 0.031754 0.025
0.5 0.3 0.088076 0.09
0.8 0 0.010627 0.00625
0.97 0.43 0.095003 0.09531
0.47 0.4 0.168849 017521
0.7 0.7 0.349848 0.35
0.3 0.1 0.024056 0.01667
0.85 0.:23 0.031657 0.03112
0:::5 0.45 0.202033 0.2025
average error = 0.002585

and for trained exemplars

075 0.5 0..68108 0.16667

1 1 0.500108 0.5

0.5 0.25 0.061689 0.0625

0.75 0.25 0.041842 0.04167

1 0.25 0.031035 0.03125
average error = 0.00055

Table 5.1b Performance of a 4 hidden unit line-pair evaluator trained to 0.000002

The final error is 0.000002, which relates to an error in the output of 0.00063 and is
comparable to the actual accuracy obtained with trained patterns. The average error for
untrained patterns is slightly smaller than in trial 1, although the improvement is not

significant.
+ Trial 3

The current training set is quite small. By including more exemplars in the set, significant
improvements can be made. The following table shows the results of an eight unit hidden
layer network trained using a larger training set, (this time an additional 8 exemplars have
been included; see Appendix E for the full set). Convergence was allowed to reach a final
error of 0.000021 (representing an error in the output of about 0.0015).

121

inputs actual output desired output

for untrained exemplars

0.1 0.05 0.014178 0.012500
0.23 0.12 0.032583 0.031304
0.76 0.32 0.066896 0.067368
0.87 0.56 0.180780 0.180230
0.455 0.28 0.085555 0.086154
0.82 0.76 0.354260 0.352195
0.95 0.46 0.111183 0.111368
0.88 0.87 0.430107 0.430057
0.32 0.21 0.070347 0.068906
0.76 0.67 0.297956 0.295329
0.9 0.28 0.044054 0.043556
0.66 0.55 0.231070 0.229167
0.77 0.22 £.030789 0.031429
0.56 0.11 2.009480 0.010804

average error = 0.001094

for trained exemplars

0 0 0.005451 0.000000
0.12 0.1 0.039260 0.041666
0.09 0.06 0.019508 0.020000
Q.25 0,25 0.125289 0.125000
0.3 0.2 0.068388 0.066666
045 0.25 2.061620 0.062500
075 0.25 0.041100 0.041666
0.6 0.4 0.132751 0.133333
1 0.25 0.032221 0.031250
0.5 0.5 0.249484 0.250000
0.7 0.4 0.113777 0.114286
0.86 0.32 0.059739 0.059535
0.75 @.5 0.167466 0.166666
1 05 0.124269 0.125000
0.75 0.75 0.374959 0.375000
1 0.2 0.020175 0.020000
1 0.75 0.281264 0.281250
1 1 0.499820 0.500000

average error = 0.000918

Table 5.1c Performance when trained on a larger set

This time an improvement in generalisation is observed. The results indicate that the

output of the network should be accurate to about three decimal places.

5.2.4 The “Min-Filter”

The aim of the Min-filter is to output the lowest non-zero value of two inputs. Fifteen of

these two input filters can be arranged as in figure 5.4 and because each min-filter will

122

pass on only the lowest non-zero value, the output at the top of the ‘pyramid’ will be the
actual lowest non-zero value on the 4 x 4 orientation plane. This will represent |y, the
shorter length of the two lines. The max-filter on the other hand, is used to find the

largest value on the plane which represents the longest line, 1.

5.2.4.1 Using a Modified Backpropagation Algorithm

Initial attempts using the standard backpropagation method showed that the output of a
trained network can never be zero, even when this is the required value. The reason for
this can be seen when the activation function (see figure 2.2, page 27) is examined. The
asymptotes of the sigmoid prevent the output of the neurons from ever reaching 0.0 or
1.0. This means that the value delivered by the min-filter will be subjected to some small

positive rounding error.

One solution would be to ensure that the network always outputs exactly a zero, instead
of a near-zero error value. A modified activation function, see figure 5.12, known as a

hard-limiting sigmoid would however accomplish this.

A

pd :

-2 2
Figure 5.12 The hard-limiting activation function

1.0

The slope of the hard-limiter is equal to the gradient of the sigmoid at the point where it

crosses the y-axis.

123

The error that is propagated back in the backpropagation algorithm is a function of the
derivative of the activation function®. This derivative is zero at the flat regions of the
hard-limiter and as a consequence, error values calculated at these points are also zero.
When this happens, weight updates for that particular neuron become zero, and
convergence ceases. This may explain the practical results which indicate that it is not
possible to reach a state in which the output of the min-filter actually becomes 0.0 or 1.0,
when all neurons use the hard-limiter. Fahlman (1989) puts forward a very simple
solution to this. The derivative of the activation function, the ‘sigmoid-prime’ as Fahlman
refers to it, approaches zero at the asymptotes of the sigmoid activation function and
actually reaches zero when a hard-limiter is used. To prevent it from reaching zero,
Fahlman’s solution is to simply add a small value, such as 0.1 to the sigmoid-prime
function. Using this modification, the min-filter can actually be trained to output exactly

the required values of 0.0 or 1.0.

5.2.4.2 Alternative Ways of Learning the Same Task

In all the problems discussed so far, the choice of training sets has always been quite
straightforward. This does not however mean that other alternative ways of expressing
the problem do not exist. In training a network to find the lowest non-zero, the most

obvious format for a training set is for example, the following :

inputs desired output
02 04 0.2

0.6 0.3 0.3

0.8 0.0 0.8

[} [o

0 Backpropagation requires a continuous derivative. The derivative of the hard-limiter is not continuous,

but since the hard-limiter is an approximation to the sigmoid, the derivative of the sigmoid can be used

instead.

124

However with this type of set and using the modifications discussed in the previous
section, training was found to be tortuous with the global error oscillating rather than
monotonically decreasing for networks containing a range of hidden units from 10 to 30.
This seems to suggest that the problem is a difficult one to learn and that the network is

perhaps encountering local minima during learning.

Training of the max-filter (see section 5.2.5) was far easier than the min-filter because the
problem is simpler. The max-filter requires the larger of two values to be filtered through,
whereas the min-filter requires not simply the lowest, but the lowest non-zero. It appears

as if the extra, ‘non-zero’ constraint makes learning significantly more difficult.

Several alternative input formats were investigated but it was found that one of the most
successful ways of re-expressing this problem is to multiply the input values by -1. The
effect of this is to change the problem from being a ‘find the lowest non-zero’ to one of

‘finding the biggest non-zero’. The training set now looks like :

inputs desired output
-0.2 -0.4 0.2

-0.6 -0.3 0.3

-0.8 -0.0 0.8

etc ...

This may or may not simplify the problem, however re-expression will result in a
different weight landscape during learning and it is hoped that this may provide an

alternative, possibly quicker route for convergence.

In this case it turns out that using about 18 hidden units, an error of 0.000001 can be
reliably reached in approximately 350,000 epochs or less and table 5.2 shows that the

network generalises well and provides a good degree of accuracy.

125

inputs actual output desired output
0.85 0.24 0.240968 0.24
0.23 0.12 0.120159 0.12
0.56 0.34 0.340054 0.34
0.414 0.666 0.414041 0.414
0.345 0.123 0.123094 0.123
0 0.543 0.542981 0.543
0 0.01 0.009960 0.01
0.678 0.680 0.678050 0.680
0.24 0.98 0.240062 0.24
0.456 0.567 0.456036 0.456
0.213 0.2 0.200199 0.2
0.2 0.124 0.124177 0.124
0.836 0.478 0.478027 0.478
0 0.1 0.099963 0.1

Table 5.2 Performance of the min-filter with untrained exemplars

5.2.5 The “Max-Filter”

The max-filter is very similar to the min-filter, but is a far simpler task in terms of ease of
learning. This time, the network has to output the larger of its two inputs. The problem
can be solved using standard backpropagation, but convergence is faster if the modified

algorithm and hard-limiter are used.

The training set for this problem is quite straightforward and can be found in Appendix
C. It contains just 59 exemplars, with values in the range 0 to 1. Low global errors can
be reached quite readily, for example, with 6 hidden units an error of 0.000001 can be
reached in between 7000 and 25000 presentations of the training set. The problem can
also be solved using 4 hidden units, but convergence then becomes more difficult. The

trained network also generalises well, see section 5.3.3.

5.2.6 The “Corner-Detector”

The objective of this task is to train a network to detect and categorise corners. Figure 5.5

shows that this particular network is different from the others used so far, since it uses

126

three outputs, not one. Each is a binary output that is used to indicate the presence or

absence of acute, obtuse or right angled corners found in a given receptive field.

In section 4.3.2.3, it has already been suggested how a comner may be detected. On this
basis, it is possible to define a set of patterns which would describe various kinds of

corner. Figure 5.13 shows how some comers would appear in a receptive field.

orientation

right angle

right angle

obtuse corner

acute cormer

Figure 5.13 Examples of some corners

The training set will therefore consist of a list of patterns representing every instance of a
corner in a receptive field, along with its appropriate output. The set will also include
exemplars representing line occurrences which do not constitute corners. Appendix F

lists all the corners that are accepted and the resulting training set.

As well as the usual corners, three further additions were made to the basic set of

corners.

1) An alternative way of encoding acute corners was adopted. The reason for this was to

permit a larger variety of shapes to be coded.

127

2) Since the detection of corners is expected to occur for two lines only, the training set
has been designed accordingly. But problems occur with simple diamond shapes.
Squares are conveniently coded in four separate receptive fields, one for each comer
and each with two lines. Diamonds are coded slightly differently and because of this
five receptive fields are generated. Four for each of the corners and a fifth containing
all four lines (see figure 5.14). To handle this shape, extra exemplars must be
included in the training set to explicitly indicate that a receptive field with more than

two lines, is not a comner.

Figure 5.14 Receptive fields for a diamond

Thus the pattern for the middle receptive field in figure 5.14 must be included in the

training set and be trained a non-comner.

3) Some receptive fields will contain no lines and others only one line. It is necessary to

include these instances in the training set too.

Results found that by using a network with 7 or 8 hidden layer units and the modified
learning algorithm, a final global error of 0.000001 can be attained quite readily with the
given training set, often taking less than a thousand epochs. However, it must be
remembered that this global error is calculated over three outputs, not one as usual. Thus
the level of accuracy is actually a third of this value and turns out to be very satisfactory,
since in this problem, the outputs are binary values and with the hard-limiting activation

function, these can be readily arrived at.

128

5.3 Analysis of Some Training Results

The building blocks of the Perceptual Network are the individual three layer networks
that have been trained to perform each set task. Because of the role they play in the
network, much attention has been directed towards producing accurate and reliable
networks. Efforts have even been made to establish the reproducibility of the results. In
particular it has been verified that the expected minima can be reached in repeated training
runs of the subnets. During this development stage, a great deal has been learned about
the characteristics, properties and the problems associated with the learning process itself.
The following sections aim to describe some of the problems and properties that have

been encountered during the development stage.

5.3.1 Generalisation Problems of the Distance-Discriminator

One attractive feature of neural networks is their ability to generalise. That is, once trained
on a set of exemplars, the network should be able to correctly categorise other, untrained
exemplars. The underlying theory is that the network should be able to find and then use

the essential qualities that describe the members of the training set.

This is not however the case with the distance-discriminator. All experiments indicated
that if the existing training set of 120 exemplars was reduced, then training would not
compensate for any missing patterns. For example, in one test, a single pattern was
removed from the full set. After training, this pattern was then presented to the net to see
if the correct value could be obtained. Three trials were ran and in each a different
randomly selected pattern was removed. In all trials, a 10 hidden unit network was

trained to a final error of 0.00005, taking between 45000 and 70000 epochs.

129

trial desired output input pattern removed actual output
1 0.447214 0000000100000010 0.992962
2 0.707107 0100001000000000 0.985740
3 0.316228 0010000000000001 0.032894

The outputs generated are not even close to the required value. Such results strongly
suggest that in this case, generalisation is not possible. This has implications for the size
of the code planes, since without the ability to generalise, training must use all possible
combinations that could be encountered. With a 4 x 4 plane, the number of possible
combinations of the location of two lines is 120. With larger code planes, this number
increases dramatically. A 5 x 5 plane for example generates a total of 300 combinations
and a 6 x 6 would generate 630. Without generalisation, it becomes necessary to train

using the full set and this will greatly increase training times.

5.3.1.1 Limited Connectivity

Preliminary experiments were undertaken to investigate whether or not the distance-
discriminator had learned to exploit the two-dimensional (2D) nature of the input. This
was achieved by examining how a trained version of the net generalised to symmetrical

input patterns.

The results confirmed what was suspected, that the net showed significant differences in
the outputs generated for patterns which are identical, but rotated. This implies that the
network is treating the input vector as linear, not as 2D. If instead the network can be
made to learn to use the two-dimensionality of the problem, then the prospects for correct
generalisation are greatly improved. In an attempt to do this, trials were undertaken in
which the connectivity of the hidden layers was limited in a way that was thought would
facilitate learning in 2D. This involved not a fully connected hidden layer, but 8 hidden

layer neurons of 4 inputs each, such that half of them took inputs from each of the 4 rows

130

and the remaining half took inputs from the 4 columns. However it appears as if

restricting the connectivity makes learning difficult, as all attempts were unsuccessful and

a global minima could not be reached.

5.3.1.2 A Possible Explanation for Generalisation Problems

The parity problem is another for which generalisation is difficult. The reason for this is

that changing just one bit, alters the output.

eg. for even 3 bit parity

input parity bit (output)
000 0

001 1

010 1

011 0

100 1

e1Ci..

It is well known that the parity problem is difficult to learn, especially for large input bit
patterns. The difficulty arises because each patterns gives rise to its own disjoint point

and training is unable to cluster these points in any efficient way.

Having established that the distance problem is linear and not two dimensional, it can be
compared to the parity problem. Patterns exist which differ only in one bit, yet generate

widely different outputs, see figure 5.15.

(a) (b)

and

Figure 5.15 Similarity of input vectors

131

Pattern (a) leads to the output / input vector :
0.33333 1001000000000000

and (b) leads to the output / input vector :

1.00000 1000100000000000

Although the input patterns differ by only one bit position, the actual distances
represented by the patterns, are significantly different. This is similar to the parity
problem in which similar patterns also give rise to contrasting outputs. If this is so, then

the distance problem can also be expected to experience generalisation problem:s.

5.3.2 Generalisation Problems of the Corner Detector

Unlike the distance-discriminator, the corner-detector does show some potential for
generalisation but somewhat unpredictably. The results in table 5.3 have been obtained
from an 8 hidden unit, single output network trained to an error of 0.000001 on a training
set of 142 exemplars (see Appendix F) and show that the net generalised correctly 4 out
of 7 times. In each case, to test the ability to generalise, a randomly selected exemplar
was removed from the set, the network trained on the remaining set and then tested with

the missing exemplar to see if it could be correctly classified.

desired actual
trial | output input pattern removed output
1 1.000000 0000100000001000 0.246393
2 0.000000 1000000000010000 1.000000
3 1.000000 0000000000011000 1.000000
4 1.000000 0000000000100010 1.000000
5 0.000000 0000100000010000 1.000000
6 1.000000 0000000001000000 1.000000
;) 1.000000 0000000000010110 1.000000

Table 5.3 Generalisation of the corner-detector

Further investigations show that the network can also generalise when more than one
pattern is removed. For example, in one test, 10 patterns were removed and when tested

after training, the net correctly classified 7 of these. Another test showed that a trained net

132

could correctly classify 13 out of 20 missing patterns. Although these results are
encouraging, they are unpredictable. Thus it is not possible to determine for which
patterns generalisation works and for which it does not. The following tests highlight this
problem. When training is repeated, with all parameters kept identical (other than random
initial weights), the final performance may be expected to be identical. However, this is
not the case. For example, two identical training runs were undertaken for an 8 hidden
unit network and then each was tested, first on members within the training set, and then

members outside the training set.

Tnal 1 Trial 2
input patterns output output
0000000000100001 0.000000 0.000000
0000000000000011 1.000000 1.000000
0000000100001000 0.000000 0.000000
0000000000110000 1.000000 1.000000
0000000100000000 1.000000 1.000000
0000000010010100 1.000000 1.000000

Table 5.4a Performance of identically trained nets on members of the training set

For members of the training set, performance is seen to be identical. This may suggest
that the network has reached the same solution for both trials. That is, in both cases, the

same global minima and the same set of weights have been reached.

Tnal 1 Trial 2
input patterns output output
0111000000000000 1.000000 0.611521
0000110001100000 1.000000 0.296605
0010101010000000 1.000000 0.000000
0000000111111111 1.000000 1.000000
1111111311111 0.000137 0.000000
1111000011110000 0.581642 0.000000
0000100010001000 1.000000 1.000000
1110001010000001 0.830373 0.000000

Table 5.4b Performance of identically trained nets on patterns outside the training set

However, when the same two networks are presented with patterns outside the training

set, performance is far from identical, as table 5.4b shows. This would suggest that in

133

each case, training leads to a different set of weights. It just so happens that the minima
reached in both cases can adequately describe the same training set, but responds

differently to patterns outside this training set.

The following section re-addresses this problem but in terms of generalisation of the

max-filter.

5.3.3 Generalisation of Min / Max Filters

The table 5.5 shows how well the max-filter can handle new, untrained exemplars. The
filter in this case was trained to a final global error of 0.000001 on a 6 hidden unit

network trained on a set of 59 exemplars.

actual desired
inputs output output
0.85 0.24 0.849971 0.85
0.23 012 0.230058 0.23
0.56 0.34 0.560051 0.56
0.414 0.666 0.665891 0.666
0.345 0.123 0.345068 0.345
0 0.543 0.542944 0.543
0 0.01 0.000000 0.01
0.678 0.680 0.679896 0.680
0.24 0.98 0.979913 0.98
0.456 0.567 0.566953 0.567
0.213 0.2 0.213101 0.213
0.2 0.124 0.200058 0.2
0.836 0.478 0.835968 0.836

Table 5.5 Generalisation of max-filter.

Compared to the distance-discriminator and the corner-detector, the max-filter network
has very good generalisation properties, as table 5.5 shows. Furthermore, this ability to

generalise remains constant and can be reliably reproduced in repeated training sessions.

134

5.3.3.1 Generalisation and the Weights of a Trained Network

Five separate trials were set up, using a network with 4 hidden units and the same 59
member training set and all training parameters were kept identical, except the random
initial starting weights. Table 5.6 shows the response of the network to untrained
exemplars, after each of the five trials. Unlike the corner-detector, table 5.6 shows that
untrained exemplars when tested, all generate the same value (to within the accuracy

reached). This would seem to indicate that the weights and the global minima that are

being reached are also the same.

) Tral 1 Trial 2 Trial 3 Tnal 4 Trial 5

inputs output output output output output

0.85 0.24 | 0.850030 0.849986 0.850034 $.350057 0.849983
0.23 0.12 | 0.230149 0.230109 0.230156 0.230192 0.229999
0.56 0.34 |0.559952 0.560046 0.559962 0.560171 0.559989
0.414 0.666| 0.666025 0.666110 0.666030 0.666157 0.666059
0.345 0.123]0.345054 0.345086 0.345058 0.345161 0.344997
0 0.543]10.543039 0.542884 0.543042 0.542602 0.542844

Table 5.6 Generalisation of identically trained max-filters.

Examining the weights of a network is often not very fruitful, especially if the purpose is
to establish how the network is working. The sheer volume of connectivity as well as the
likelihood of distributed representations makes such attempts unviable. For small
networks such as this, however, it is not too difficult to inspect and compare the weights
of different trials, particularly if the aim is to look for evidence suggesting that the
weights reached are the same. Table 5.7 below shows the weights from the same five

trials as above.

An analysis of table 5.7 shows a close correlation, particularly in the hidden layer,
between weights of corresponding neurons in different trials. There are some differences
between the signs of weights in the output unit, but these correspond to differences in the
sign of the bias of the appropriately connected hidden unit. In terms of weight space,

these results suggest that the same solution is reached every time.

135

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
nggut neuron
bias -0.010379 -1.155083 -0.723123 0.386089 -1.916570
weight 1 2.086542 2.900048 1.376331 3.846242 2.465938
weight 2 -4.716921 -4.589755 4.632215 -4.525097 4.274971
weight 3 3.380001 3311513 -2.851769 -3.015640 -3.143729
weight 4 3.243570 3.387650 2.825906 3.521638 3.193904
Hidden layer neurons
neuron 1
bias 1.725603 1.681682 1.530013 1.613849 1.426296
weight 1 4.165188 5.430847 5.220040 6.371010 6.053165
weight 2 2.640293 3.105887 4.545412 4.323667 5.639293
neuron Z
bias 2.000550 2.000344 -2.000582 2.001078 -2.001673
weight 1 -3.390236 -3.484351 -3.451015 -3.530763 -3.738562
weight 2 3.389151 3.483621 3.452044 3.528694 3.741653
neuron 3
bias -5.078247 -5.069464 5.682373 4.933338 5.305197
weight 1 -0.000209 -0.000086 0.000119 0.000537 0.000884
weight 2 4.731595 4.829363 -5.607465 -5.303084 -5.086904
neuron 4
bias -1.208340 -1.001311 -1.717215 -0.511490 -1.253359
weight 1 4.928723 4.719830 5.657011 4.535630 5.003923
weight 2 0.001746 0.001320 0.002342 0.005241 0.001299

Table 5.7 Weights reached after training, for five repeated training runs.

Why should this task reach the same point in weight space each time and the corner-
detector not? One explanation for this is related to the dimensionality of the input. In the
corner problem, 16 binary inputs are used leading to a universe of 216 possible input
patterns. However, the training set contains only 142 of these, and so is just a subset of
the universal set. Under these circumstances it is more than likely that there are several
minima in weight space which satisfy the requirements of this subset. Had the training set
contained all 216 possible input patterns, then only a unique point could satisfy this set.
For the max-filter, the universe of inputs is the range of real values between 0.0 and 1.0.
Under this hypothesis, it would appear that since the same solution in weight space is
reached every time, the training set must define the entire domain of inputs, that is, the
universal set. This is an important result as it has implications for the ability to generalise.
If for example, the training set for a given problem is known to be representative of the
entire domain of inputs, then it can be expected to generalise for all values within that

universe. This is the case for the max-filter. If however the training set describes only a

136

subset of the universal set of possible inputs, eg. corner-detector and the distance-

discriminator, then that training set cannot be expected to generalise well for all patterns.

5.4.4 Accelerated Learning with the Modified Backpropagation

Preliminary work with the backpropagation simulator investigated the possibility of
speeding up learning and one of the techniques tested was based on Scalettar and Zee
(1988) method known as ‘drilling’. This made the assumption that in every training set
there exist exemplars that are more difficult to train than others, and to accelerate learning,

greater effort should be placed in training those exemplars.

Ideally such techniques should be automatic and problem independent. In practice this is
rarely the case and the same is true for this method which required a lot of ad-hoc choices

for the various parameters used. This method was therefore abandoned.

The modified backpropagation algorithm (see section 5.2.4.1) on the other hand was
found to have one further advantage not yet mentioned, in that it results in significantly
faster learning. To investigate this, the max-filter was trained using standard
backpropagation and the modified algorithm. Ten trials were completed in each case so
that an average could be calculated for the number of epochs to reach a given global error.
All parameters such as learning rate, momentum term, number of hidden units etc. were
kept identical. Using standard backpropagation, the average number of epochs to reach
an error of 0.01 was 16899, whereas with the modified algorithm, the average was 3242.
The result supports the view that accelerated learning takes place and furthermore,
appears to be problem independent. When the modified and standard algorithms were
tested and compared with other problems, noticeable differences were recorded. Table

5.8 exemplifies the level of improvements obtained with other types of problems.

137

corner distance- line-pair

evaluator discriminator | evaluator parity 6
no. of hidden units 10 10 8 12
average epochs with
hard-limiter 209 876 1151 486
average epochs with
sigmoid >10000 1147 3127 1612

The above results show a consistent reduction in the learning phase, when compared with
trials done with standard backpropagation. The reason for this speed up is the use of the
modified ‘sigmoid-prime’ function. Near the flat portions of the activation function, the
magnitude of the sigmoid-prime diminishes resulting in the propagation of relatively
small errors. Thus learning becomes very slow. If the value of the sigmoid-prime is
artificially ‘propped up’ by adding a small constant value (0.1 was used), then this will
ensure that a certain level of error propagation will still take place, even near or on the

flattest regions of the activation function, where convergence would be expected to be

slow. The result will be an increase in the learning speed.

138

Table 5.8 Evidence for faster learning

Chapter 6

Testing and Evaluation

When evaluating a system, it is often useful to make comparisons with similar systems if
they exist; since a quantitative assessment can then be made. If similar systems do not
exist then clearly a comparative evaluation is not possible and the system must be judged

against the original specification.

6.1 Software Evaluation

Chapter 5 has already dealt with the training and testing of the various sub-nets used by
the Perceptual Network. It now remains to test the network as a whole, and also to see

how it responds to simple shapes.

The overall significance value calculated by the Perceptual Network is the sum of seven
different components; four parallel-line significances and three corner significances. To
test the net, different input patterns were presented and the resulting outputs considered

against expected values and required precision.

The input patterns used for testing were carefully chosen so as to test as much of the
network as possible. Four sets of test data were devised to accomplish this, each one
testing a different aspect of the net :

1. All primitives

2. The same primitive at all locations

3. The same shape with varying line lengths
4. Simple shapes

The results of these tests are shown in the following sections :

139

6.1.1 Testing Response to All Primitives

The purpose of this test set is to establish that the Perceptual Net can actually recognise all
the possible primitive corners and parallel lines. The set is fairly large and contains 48
patterns, each one representing a corner or a parallel line pair. The length of the lines in
each primitive is kept fixed to the maximum value of 1.0. See Appendix G for the full test

set and the results.

Comparing the actual values with the desired outputs, it can be seen that nearly all of the
outputs are found to be correct to three decimal places. This indicates that the Perceptual
Net is functioning correctly and that at least in isolation, all of the taught features can be
satisfactorily detected. The absence of features is also detected well, although there are a
few instances when instead of 0.000000, a very small spurious value such as 0.000040

or 0.000051 is output, see for example figure 6.1 which shows an occurrence of this.

|

-~ -i# s

| —_— /7 N 4. -~ L

actual 0.000000 0.000000 0.000000 0.000000 0499829 0.000051 0.000040
desired 0.000000 0.000000 0.000000 0.000000 0500000 0.000000 0.000000

Figure 6.1 Example of spurious outputs

These errors are small and insignificant and seem to occur only for corners, indicating

that they have arisen in the corner-detector network.

6.1.2 Ability to Handle Translation Invariance

The Perceptual Net is designed to process features independently of their location in the
input. Some features are naturally translation invariant such as the detection of parallel

lines. However, the detection of corners relies upon the use of many identical ‘local

140

corner detectors’ (see figures 5.5 & 5.6) operating at every receptive field. To test these
detectors and the ability to handle translation invariance as a whole requires that the same

pattern be tested at all locations.

The input set for this test consists of patterns of right an gles at all possible locations; this
accounts for the nine internal receptive fields. An orthogonal right angle cannot be coded
on the edges and so to test some of the edge receptive fields, a rotated right angle at a few
locations is also included. Again, all lines involved are 1.0 long. The test set and the

results for 16 patterns is shown in Appendix H.

Again the results are very good, with all values comfortably accurate to three decimal
places. The net seems to handle translation invariance very well. This is the case for
simple corners, and it would be expected that other more complex patterns would also be
handled in the same way since all component features of a pattern are handled separately

as simple corners.

6.1.3 Generalisation of Line Lengths

The components of the Perceptual Network that deal with line lengths are designed to
generalise for all permitted line lengths (i.e. between 0.0 and 1.0). The networks in
question are the line-pair evaluator, the min-filters and the max-filters. The intention of
this test set is to determine how these networks when incorporated into the Perceptual Net
handle variations in line length. The test set consisted of eight versions of a square, such
that each occurred in the same location but had lines of different lengths. See Appendix I

for the test data and the results.

The first four test patterns contained combinations of line lengths which appeared in the
training sets of all the above mentioned networks. For these line lengths, the actual values
are accurate to three decimal places. However, it appears as if the accuracy of the outputs

for untrained exemplars is appreciably less, with some outputs accurate to only two

141

decimal places. This accuracy is slightly worse than when each of the networks
mentioned was tested individually on untrained inputs and a likely cause of this is the
possible escalation of errors as a value passes through the various filter networks (figure
5.4). In absolute terms the error is within 10% and does not significantly affect

performance.

6.1.4 Testing with Simple Shapes

The aim of this test is to establish how well the Perceptual Net handles combinations of
features, as they would appear in simple shapes. The test set consisted of eight randomly
selected shapes and patterns with various line lengths. See Appendix J for the test set and

the results obtained.

The presence or absence of corners and parallel lines appears to be correctly detected in all
cases, however the error in the significance values are sometimes higher than might be
expected. For example, in one case (see figure 6.2), a value of 1.564517 for the
significance of right angled corners is generated, instead of the expected value of 1.425;

this is an error of about 0.15 (10%).

0.95| .

| _ 7 N 4 = L

actual 0.260705 0.167717 0.000000 0.000000 0.000000 0.000000 1.564517
desired 0.237500 0.167900 0.000000 0.000000 0.000000 0.000000 1.425000

Figure 6.2 Performance with actual shapes

As well as the likelihood of errors propagating within the network, as in the filter
structures, errors can also be generated due to compounding. For example, in the case
that the input pattern contains 3 right angles, each of which gives a small error of the

same sign, then the final error being the sum of the individual errors would be

142

unexpectedly large. This happens to be the severest case observed and apart from a few
results showing errors of about 0.05, most other values are correct to about 2 decimal
places.

6.2 System Evaluation

An assessment was made of the scope of performance of the Perceptual Net. To aid in
this assessment, it is necessary to devise criteria suitable for the examination. Three areas

have been chosen for evaluation; the validity of significance values, the limitations of the

Perceptual Net and its applications.

6.2.1 Validity of Significance Values.

Section 6.1 has already shown that the significance values generated by the Perceptual
Net net can be quite accurate. However in a few cases, some parameters used to evaluate
the significance values have already lost some of their accuracy, because of a lack of

precision in coding. There are two instances in which this happens.

6.2.1.1 The Distance-Discriminator

The distance between parallel lines is defined as the distance perpendicularly from the
longest line, to the midpoint of the shortest line (see section 3.3.6.2). Since end-point
information is not stored, this midpoint information is also lost when the lines are
represented using the coding scheme. Furthermore, with each orientation grid being 4 x 4
in size, the position of a line can only ever be accurate to a quarter of the width of the
original image. Whereas the accuracy to which the distance-discriminator has been trained
is far higher than that actually needed. This does not necessarily indicate that this network
is working inefficiently, as the time taken to evaluate an output is the same irrespective of
the accuracy to which the net is trained. The inefficiency arises in the training stage, since

it would have been easier and faster to train the same network to a coarser accuracy.

143

6.2.1.2 The Corner-Detector

The Perceptual Net responds to three different types of corners, acute, obtuse and right
angles. When a corner is detected, the appropriate local corner detector outputs a
significance value for that type of corner. The significance is based only on line lengths,
not on the angles between the lines. Intuitively, this does not seem to be correct, since the
significance of a corner is related to the angle between the corresponding lines. For
example, as the angle increases, the significance of a corner decreases, until eventually
the lines become collinear and the significance is then zero. This suggests that the
significance of a right angled comer should be greater than the significance of obtuse and
acute corners having the same line length. This is not taken into account by the Perceptual

Net.

6.2.2 Limitations

The major limitations of the Perceptual Net and the coding scheme are discussed below :

6.2.2.1 Orientation Planes

At most, only two lines per orientation plane can be coded simultaneously. This is
because the distance-discriminator can only find the distance between two coded lines at
any one time. With less than two lines, distance is not significant and any values
generated by the net are ignored. When three or more lines are coded, the question of
finding the distance becomes problematic since more than one distance value could be
generated. For example, with three lines, three possible combinations of line pairs may be
defined, leading to three different distance values. Figure 6.3 shows the output of the net
when three vertical lines 0.8 long are input. The net correctly indicates that vertically

parallel lines are present, but the output significance is actually meaningless. The solution

144

adopted by Lowe is to locate line pairs only, and then to group together these pairs with

others at a later stage.

i
actual 0376503 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
desired 22727777 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Figure 6.3 Invalid pattern - three lines of the same orientation

6.2.2.2 Receptive Fields

Similarly for the detection of corners, each receptive field is limited to at most two lines
(except for the special cases referred to in figure 5.14). The reason for this is that the
corner-detector is taught to respond to simple corners consisting of line pairs. Even this
leads to a training set of 144 exemplars, comprised mainly of permutations of 2 binary
‘ones’ amongst 14 binary ‘zeros’ (120 combinations + 24 special cases). This restriction
means that shapes such as a triangle shown in figure 6.4, cannot be correctly handled. To
cater for three lines per receptive field, more exemplars covering all the possibilities of 3
‘ones’ amongst 13 ‘zeros’ would also have to be included. This would increase the
training set by another 1120 exemplars, with a consequent increase in the computational

resources required.

145

0.5 ;
/|]
|l — 7 N 4 v L

actual 0.000000 0.000000 0.000000 0.000000 0249319 0.000030 0.000020
desired 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000 0.250000

Figure 6.4 Invalid pattern - a triangle with three lines in a single receptive field

6.2.2.3 Collinear Lines

Any pair of lines detected on an orientation plane is automatically assumed to be parallel,
although it is possible that the lines are actually collinear. To distinguish between parallel
and collinear lines requires retrieval of extra information. Lowe (1987) presumes that
parallel lines overlap and that collinear lines are separated along the direction of their
length. However, it would be impossible to use this criteria for the detection of collinear

lines in the system developed here, since once coded all end-point information is lost.

The detection of collinear lines could be achieved through the use of detectors, specially
arranged to recognise collinear configurations. Figure 6.5 shows how this may be done

for vertical lines. Appropriately ‘wired’ detectors would be needed to handle occurrences

of collinear lines at all other orientations as well.

s

Figure 6.5 Connections for a vertically collinear line detector

6.2.3 Perceptual Net Applications.

As mentioned in chapter 3, SCERPO (Lowe, 1987) identifies perceptual groups and
attempts to rank them in order of perceptual significance. A similar task can be performed

by the Perceptual Net. Figure 6.6 shows a series of 16 different perceptual groups

146

together with their total significance values. All line lengths are shown to scale, and the
grid location through which the major portion of the line passes is used to code that line.
The line lengths in each pattern are indicated alongside the patterns and if only one value

is shown, then all the lines in the pattern have this length.

0.5
10 10 e 1.0 -
0.498960 0.871818 2.498824 0.999327
05
_ 1.0
; 0.75
1.0
0.81657 0.98177 1353134 0.499922
1.0 1./ 0.5
—T10
2.706224 1249757 0353435 0.809233
075 . ¥ B | |
/ / 10 0.75 =
1.874155 0.249953 1.87419 2.498479

Figure 6.6 Total significances calculated by the Perceptual Net
for some perceptual groups

147

Figure 6.7 shows the same patterns but placed in their correct order of significance.

Most significant

<>/__/ D/_—/</|_||_/
O ICTL LI 2 1

Least significant

Figure 6.7 Ordering of perceptual groups according to total significance.

Main observations

« Significance values are not rotationally invariant (see below).

+ Equally sized parallelograms and squares are effectively equal in significance because
identical significances are generated for all types of corners.

+ It is possible for very similar shapes to generate different significance values, for
example the distance between the vertically parallel lines is similar in both cases, but
because they are coded discretely, a large difference is recorded.

An inspection of figure 6.7 shows that the ordering of the perceptual groups is similar to
what might have been expected and appears to be intuitively correct. For example, the
closed shapes, such as the squares and parallelograms are found to have the highest
significance values and in terms of Lowe’s geometrical equations, the least likely to have
occurred by some accidental alignment. Whereas the simplest shapes, such as the corner

or parallel lines have the least perceptual significance.

Thus the Perceptual Net seems to provide a means of grading the importance of a
perceptual group. One good way to test the validity of these results would be to devise a

test which could obtain similar results from human observers.

The output of the Perceptual Net has already been shown to be invariant to translation.
However, the total significance values are not quite invariant to rotation. Consider the

square of line length 1.0 and the diamond of line length 1.0. Ideally these should have the

148

same perceptual significance since they are the same shape at differing orientations.
Practically however, the significance values are found to be slightly different. The reason
for this is coarse coding which arises because the distance between diagonally coded lines
and identical vertical or horizontal coded lines is different. This is illustrated in figure 6.8
which shows an identical pair of lines at different orientations and it can be seem that the

distances a and b are geometrically different.

b
a=1.414 b=2.0

Figure 6.8 Illustration of cause of lack of rotation invariance

149

Chapter 7

Shape Recognition

Section 6.2.3 described a possible use for the Perceptual Network. Ultimately, such a
network could be used not only to order perceptual groups, but could also provide some
recognition of actual objects. This would naturally require a much more complex system
necessitating the integration of higher level knowledge with lower level processes. At a
more basic level though, it would be useful if the net could recognise not only whole
objects, but portions or segments of objects. This is exemplified by the method proposed
by Burns and Kitchens (1987) in which a pre-compiled decision tree is used to guide the
matching process (see section 3.2.4). The basic steps involve recognising simple
perceptual groups and pre-compilation is used to find a suitable group or groups that

could uniquely identify each object.

This chapter aims to show how the outputs from the Perceptual Network could be used to
recognise perceptual groups and other simple line patterns which could be useful in the
recognition of whole objects. Two approaches to recognition will be presented, one based
on backpropagation and another based on the Kohonen feature map. Until now,
backpropagation has always provided the best obtainable solution, however, for our

study the Kohonen algorithm was found to have several useful advantages.

7.1 Using Backpropagation for Recognition

Even with simple coding methods, it is possible to generate many thousands of different
shapes. So one of the desired features of a network for recognising shapes, is that it
should be able to generalise, otherwise the training set must include every conceivable
shape. The training set used here contains examples of squares, parallelograms,

pentagonal shapes and hexagons along with the variations that can be generated by

150

selectively removing one or more sides from each of these basic shapes. Each shape is
present in three sizes, with line lengths that are long, medium and short and all the lines in
each shape having the same length. The last requirement is introduced to retain simplicity.
Each shape is described using the seven significance values that are generated by the

Perceptual Network.

7.1.1 Format of Desired Outputs

Devising a format for the target outputs is not a trivial problem since it is not clear how
each shape in the training set should be classified. The basic shapes could be used to
define four categories referring to squares, parallelograms, pentagons and hexagons so
that there would be four binary outputs to indicate which type of input pattern had been
presented. However, simple binary coding of a restricted size is limited and is not flexible

enough to permit much variation of the basic shape.

Instead, a format is adopted which uses real values in place of binary outputs. The hope
is that this will facilitate generalisation by using an output representation which can
indicate the shape and size of the input pattern. Figure 7.1 serves to illustrate this. For the
largest square, the desired outputs indicate the presence of a square and the magnitude of
the value has been set arbitrarily to 1.0 to indicate that the shape is in fact the ‘best’
square. The second square is half the size and its desired value is set to 0.5. Continuing
this scheme further, the smallest square (coarse coding restrictions force the sides of the
square to be separated), is set to 0.1 and a large square with a side missing is set to
indicate 0.75 of a square. These output values are chosen arbitrarily but are adequate for

indicating the basic shape of a particular input pattern.

151

Oz 0 O

outputs 1.0 0.0 0.0 0.0

outputs 0.5 0.0 0.0 0.0

outputs 0.1 0.0 0.0 0.0

| O~ O O

outputs 0.75 0.0 0.0 0.0

Figure 7.1 Examples of output formats

Figure 7.1 is just a sample from the actual training set used. Appendix L lists the entire
contents of the training set which contains a full complement of squares, parallelograms,
pentagons and hexagons at all allowable angles and at three different ‘sizes’. Also
included are descriptions of the shapes obtained when lines are selectively removed from
each of the basic shapes. An attempt has been made to avoid including patterns which

give rise to the same set of seven parameters.

7.1.2 Performance of a Trained Net

A network with 7 inputs, 4 outputs and 14 hidden units was trained on the set in

Appendix L to a final error of 0.1 usually in less than 40000 epochs and often in less than

152

10000 epochs. This represents an error in each output of about 0.015 which is deemed to
be sufficiently accurate. In order to test the ability of the net to generalise, two test sets
have been devised. The first consists of 21 shapes taken from the training set but with
modified line lengths and the second set contains 16 completely different patterns. Each
shape in the test set, like in the training set is represented using the seven significance
parameters obtainable from the Perceptual Network. The following tables represent the
outputs generated when the trained net is presented with the test shapes. The four outputs
represent how close the net places the pattern to each of the four basic shapes. Note that
the shapes are not drawn to scale. The comments under each set of outputs are the

suggested interpretations of these outputs.

Closeness to a :

square parallelogram pentagon hexagon
0.65
1 0.9834 0.0000 0.5017 0.0015
strong indication of a square
0.8
0.4
2 I | 0.0972 0.0000 0.0001 0.0021
very little suggestion of a square
0.75
| 03
3 —_— 0.2437 0.0000 0.0000 0.0035
either a small square or a medium square with a side
missing
L |035
4 04 0.0943 0.0000 0.0001 0.0023

very little suggestion of a square

0.4
N\ ‘75
5 0.0003 0.0267 0.0000 0.0056

very little suggestion of a small parallelogram

08/ 102
6 0.0000 0.6071 0.0099 0.0471
strong presence of a medium to large parallelogram
0.6
0.4
7 f-—- 0.0020 0.0160 0.0000 0.0116

ambiguous

153

10

11

12

13

14

15

16

1.0

0.95

———

0.0000 0.5874

0.0000

0.0000

medium parallelogram or a 3 sided large parallelogram

0.9626 0.0000
large square
0.0155 0.0000
ambiguous
0.0000 0.0000

strongly pentagonal

0.0111 0.0000
slight indication of a hexagon

0.0000 0.0000
strongly pentagonal
0.0727 0.0000

slight suggestion of a square

0.0002 0.0000
medium hexagonal with a side missing

0.0000 0.0000

large pentagon

.0005

.0059

.9022

.0000

.9640

.0027

0.0002

0.9509

0.0011

0.0051

0.0102

0.0679

0.0130

00054

0.3430

0.0013

154

17

/ 0.9

fk /o4

0.'001.5 0.0000 0.0767 0.0063
slight indication of a pentagonal shape
0.95
03 |
18 0.0091 0.0046 0.0001 0.0048
ambiguous
02
N
19 0.0076 0.0231 0.0000 0.0051
slight indication of a parallelogram
05
/ /
1.0
20 0.0173 0.0121 0.0000 0.0122
ambiguous
05
21 0 0.02217 0.0073 0.0000 0.0062
slight indication of a square
Table 7.1 Generalisation results when only line lengths are modified
Closeness to a :
square parallelogram pentagon hexagon
09
22 0.0001 0.0000 0.7732 0.0005
strong indication of a pentagonal
0.9
23 0.58623 0.0000 0.0002 0.0011
medium square or large square with a side missing
1.0
24 0.0000 0.0000 0.9059 0.0056
strong indication of a pentagonal
1.0
25 —_— 0.0000 0.0000 0.0009 0.0025
ambiguous

155

26

27

28

29

30

31

32

33

OBSO

0.1

%3}/————J

s

g
o

0.95

—
(=]

0.7149 10.0000 0.0006
large square with a side missing

0.0000 0.2126 0.0000
small parallelogram
0.7278 0.0000 0.0002

large square with a side missing

0.9971 0.0000 0.0007
large square
0.4946 0.0000 0.0005

medium square

0.4271 0.0000 0.0005
medium square

0.1178 0.0000 0.0003
small square or square with a side missing

0.1396 0.0000 0.0001
small square or square with a side missing

.0029

.0001

.0008

.0007

.0024

.0019

.0076

.0467

156

09
34 0.5460 0.0002 0.0000 0.0196
medium square or large with a side missing
0.9
35 0.0000 0.0000 0.0766 0.0048
ambiguous
l 0.95
36 [0.9948 0.0000 0.0042 0.0025
large square
1.0
37 W 0.9915 0.0000 0.0011 0.0010
large square

Table 7.2 Generalisation results when shapes are modified

Difficulties are encountered when attempting to interpret the results. Only in a few cases
are the outputs found to be clear and unambiguous. For example, patterns 1, 8 and 13 all
give rise to a large activation value on just one of the outputs and so it is obvious which
of the categories has been selected. Elsewhere, other outputs have much lower values
making discrimination quite ambiguous. For example, in pattern 5, all of the outputs are
less than the expected minimum value of 0.1 (which is the smallest desired value that
appears in the training set) and thus it is not possible to confidently determine which of

the classes is meant to have been selected.

Of the two sets of test data, generalisation seems to be more successful with the first set
in which several patterns are correctly classified and some even appear to have activation
levels that bear some relationship to the ‘closeness’ of match. The second test set is less
successful and this time only three patterns are categorised correctly with eight grossly
misclassified, eg. pattern 24 which is classified as strongly pentagonal whereas it is
actually a modified square. On the whole it appears that the network is able to generalise

better to changes in line length, than to changes in shape.

157

The practical usefulness of the network is further hindered by the inability to generalise
consistently. This unpredictable nature means that similar patterns can frequently be
classified quite differently. For example, consider patterns 13 and 15. Both are
hexagonal, yet the outputs in each case are significantly different: 13 is classified as

strongly pentagonal, and 15 as hexagonal.

Although backpropagation is capable of learning a set of patterns described in terms of
significance values, generalisation capabilities seem to be limited here. This is probably
due to the relatively small size of the training set. Generalisation would be expected to
improve with increased size of training set. The choice of output formats is also expected
to have some significant bearing on the results. Here, the output formats were not aimed
at classifying just the shape, but also at being able to estimate how ‘close’ the match was.
In order to do this, the desired outputs were not simply binary, but real values arbitrarily
selected to form a simple grading mechanism. Other variations are clearly possible
however, the use of such output formats is felt to be somewhat artificial and unnatural
since it involves decisions made external to the system. Instead, a far more natural
approach would involve an unsupervised learning algorithm which could automatically

devise a suitable way of describing the outputs.

7.2 Using the Kohonen Feature Map for Recognition

The need for inventing suitable output formats for the recognition and interpretation of
simple shapes can be quite a hindrance when setting up a recognition network. A self-
organising learning algorithm would solve this as the need for target values would be
removed. This is the attraction of using the Kohonen algorithm which can map a set of
vectors onto a two-dimensional array of neurons without the need for external targets.
This makes the algorithm a lot easier to use than backpropagation because now the onus

of organising the outputs shifts from the network designer to the algorithm itself.

158

The Kohonen algorithm is capable of developing feature maps corresponding to the
distribution of shapes in the input set and is capable of organising such maps in a
topologically coherent manner. Thus given a set of patterns, the Kohonen algorithm
would be expected to organise the output layer into a map on which similar shapes are
detected by clusters of neurons close to each other. The generalisation properties of
topologically consistent maps are quite attractive, since the expectations are that those
patterns which are not members of the training set, should nevertheless be detected by

those neurons responding to similar patterns if they existed in the training set.

To determine how close two shapes are to each other, the Kohonen algorithm calculates
the euclidean distance between the vectors describing each shape. Each vector consists of

seven significance values representing the constituent features of the shape.

Training a Kohonen network, like backpropagation involves a number of presentations of
the whole training set of vectors. Unlike backpropagation, it is not known what each
output is categorising, therefore before use the output layer must be analysed to ascertain
which neurons respond to which shapes. This can be achieved by presentation of each of
the training patterns one by one and noting which neurons respond. Generally, a ‘bubble’
of activation will be observed for each pattern and the neuron at the centre of this bubble
is the neuron that shows the best match. In this way a map can be built up which shows

where in the output layer, each shape is best recognised.

7.2.1 Validation of the Kohonen Simulator

Feedback in supervised learning algorithms such as backpropagation provides a natural
mechanism for evaluating how well a given training set has been learned. With
unsupervised learning algorithms such as the Kohonen algorithm, such feedback is not
available and so the degree of learning cannot be measured so effectively. Difficulties

arise in validating the Kohonen algorithm (1988) since Kohonen fails to describe in detail

159

some of the functions used, opting instead to refer to them as “slowly decreasing
functions of time”. This makes it impossible to replicate the algorithm. Secondly without
any quantitative methods for evaluating performance, qualitative methods must be used.
Instead, Kohonen describes how the algorithm learns some simple distributions of input
data and the kind of network activity that can result. Such examples can be useful for

making comparisons and for judging the performance of other implementations.

Lippmann (1987) presents an example in which a 2 input, 100 output node Kohonen net
is presented with inputs representing random points uniformly distributed over a square
shaped area. The resulting feature map is found to arrange itself to reflect the distribution
of the input points. An orderly grid emerges in which each output neuron responds to
points at a particular co-ordinate and the neighbouring neurons actually respond to
neighbouring points in the input. This problem provided a suitable validation test for our

system.

The experiment consisted of setting up the same 2 input / 100 output network and using a
training set of 500 points taken randomly from a uniform distribution of points in a
square (see Appendix K for the contents of this training set). After the training set had
been presented to the net for 500 times, the results shown in the figure below were

obtained :

160

Parameters used

Tmax (no. of iterations) : 500
Initial gain : 0.01
Excitation factor : 0.8 (this determines shape of neighbourhood function)
(see section 2.7.3)
input0:0 input0:9
input1:0 input1:9
75 73 78 84 95 106 111 124 143 36| | 72 47 35 24 15 3 & 2 0 -
50 53 57 63 72 82 93 107 126 .38 73 52 39 28 20 13 9 [| =
35 42 46 52 60 67 83 98B 114 121 g1 55 43 33 25 20 3% 12 8 =
25 31 36 42 51 61 74 89 103 110 78 61 S0 40 31 26 20 18 e .-
16 22 27 32 42 52 65 B0 93 38 90 70 56 49 39 34 30 27 25 =zl
9 15 21 25 35 44 57 868 82 37 104 BO 65 &0 353 48 4 4T 43 33
3 B 15 21 32 40 53 63 C B4 123 94 79 69 63 358 53 33 5 2
2 6 12 18 28 36 50 60 717 81 127 105 B9 83 73 70 64 63 62 <2
0 2 9 14, 29 31 43 53 7§ S 145 127 105 95 86 86 83 78 T3 72
o] p S 9: 200 31 43 5 T2 9 153 140 124 112 96 90 86 83 79 "2
(a) (b)
input 0: 0 input0:9
input1:9 input 1:0
0 5 10 17 26 36 49 357 717 73 147 115 103 91 85 19 67 1T 73 "=
4 8 13 1 28 4¢ 5 67 73 =2 12C 97 82 &% 84 35 41 4 3C i@
9 12 18 25 35 S0 65 75 87 3¢ 106 8% 7. €2 5C 37 33 33 38 &:
18 19 23 < 5 59 68 84 33 B3 85 73 63 5. 3% 28 26 23 24 2
26 27 32 3% 3 B3 77 92 303.13ZC BG 64 52 42 3% 23 1T 15 =25 Is
37 37 45 53 69 78 90 100 1.9% 119 75 58 41 32 19 14 10 8 5 =
49 51 55 63 78 86 101 2:2 132 z3¢| |77 51 38 28 7 12 7 4 2 3
63 63 66 76 87 96 109 121 138 142 66 48 35 25 g 10 5 z 3 Z
71 76 77 82 93 105 120 129 148 1: 74 53 37 28 171 11 5 F 0 z
BO 1. 84 86 97 11D Y23 ZFLiI5L. IiE 74 60 2 35 ES = 5 3 b 3
© (d)
input0:5 input 0 : 8
input1:5 input 1 : 8
13 18 14 11 11 12 12 16 24 29 56 34 23 15 8 4 1 o] 0 ~
23 12 7 3 3 4 6 11 :8 22 55 36 25 116 10 5 2 i 3 o
20 9 4 3 0 1 5 . G Y 60 37 27 19 13 Q 6 5 4 2
14 8 4 d: 4] 1 4. 10 15 5 s¢ 42 32 24 .7 14 10 10 1¢ [
17 8 4 1 2 & 2 5 10 13 15 66 49 37 31 24 20 18 17 le =&
22 11 5 S 5 6 9 13 2¢ 2¢ 77 S7 44 40 35 32 29 27 31 2%
30 16 10 8 9 10 14 117 25 25 93 69 55 48 43 40 38 38 40 =7
31 21 15 14 14 15 18 22 29 30 g7 78 64 =9 3 50 46 47 47 &8
41 32 22 19 18 21 25 27 34 36 |113 97 79 70 63 64 62 59 57 37
45 38 31 26 22 24 26 28 36 39 120 108 95 B85 72 68 65 63 62 62
e) 49)

161

input 0: 0 input0: 5

input1:5 input 1 -0

13 15 20 27 37 47 57 61 B3 894 95 76 72 68 70 71 67 74 85 92
4 8 13 20 27 39 52 65 B8O 86 69 58 51 46 47 47 48 53 64 74
1 5 10 17 26 38 53 65 79 81 54 46 40 37 34 30 35 42 50 58
1 4 8 15 28 40 50 66 79 79 38 34 31 27 23 23 27 32 39 47
1 5 10 16 27 38 52 66 79 79 32 25 21 18 16 16 1% 24 30 34
5 7 15 20 34 43 56 66 82 85 [Ré 19 12 9 6 g 11 15 19 22
9 12 17 24 37 48 60 70 88 90| [24 12 8 o 3 4 7 10 17 19

16 17 22 3C 41 50 62 74 91 95 Q7 9 5 2 1 2 5 8 15 17

19 23 27 32 43 52 66 75 96 100 {21 11 & 2 0 0 2 S 13 16

24 25 29 32 43 55 67 14 96 103 {1 14 7 3 0 0 2 4 12 15

(2 (h)

Figure 7.2 Outputs from a Kohonen net

Each grid in figure 7.2 represents the output of the 100 neuron Kohonen layer when
presented with the given input and the number at each location in the grid represents how
closely that neuron matches the given input pattern. The smaller the number, the closer
the match. In figure 7.2a for example, neurons near the bottom left hand corner of the
network are found to closely approximate the input pattern 0,0. An input of 9.9, figure
7.2b, however is matched by neurons near the top right of the network and figure 7.2e
shows that neurons near the centre of the network are the closest to the input pattern 5,5.
In fact all of the outputs shown in figures 7.2a to 7.2g indicate that the net has tried to
arrange itself so that the location of a neuron actually reflects the input pattern it matches.
For example, the neuron at location 0,0 (bottom left hand corner of the grid) best matches
the input 0,0. The neuron at 9,9 (top right hand comer of the grid) best matches the input
9.,9. Similarly the neuron at 0,9 matches the input 0,9 and neuron 9,0 matches the input

9,0. Thus outputs from the Kohonen net reflect the mutual distribution of inputs.

7.2.2 Properties of a Trained Feature Map

To investigate the possibilities of using a Kohonen feature map for shape recognition, a
network with 7 real valued inputs, and a 12 by 12 output layer was set up. The training
set consisted of 79 different shapes similar to those in figures 6.1 and 6.2 and used the

seven significance values obtained from the Perceptual Network. Each shape occurs three

162

times, once with all long line lengths, typically 0.9 or 1.0, secondly with all medium line
lengths between 0.4 and 0.6 and then finally with very short line lengths such as between
0.2 and 0.05. (See Appendix L).

To establish how the map developed after training, the members of the training set can be
presented to the net individually and the ensuing activity bubble examined to locate the
best matching neuron. Unlike the circular activity bubbles observed in section 7.2.1,
some bubbles are found to be rather irregular in shape (eg. see figure 7.3) and because of
this, the location of the best matching neuron was found using a simple iterative software

procedure and not by simple inspection.

€6 5 4 3 2 1 4
6 5 4 3 2 1
8 7 5 4 3 2 1 ™ 0
s 9 5 §5 3 2 2 - 0
iZ ik 1 q 3 2 Z Z 2
% o244 5 3 a3 g 2z 3 3
i3 13 1 7 5 4 : 3 4 5 ¢
23 23 13 10 1 6 4 & 5 6 3 \
5 28 14 11 8 1 & = 71 171 8B 18 best matched
40 3& 17 11 10 10 L3 & 9 10 = neuron
177 85 22 18 14 14 g 7 13 18 18
296 192 24 20 17 5 2 2 B 16 21 2

Figure 7.3 Irregular shaped activity bubbles

One possible explanation for these ‘odd’ shaped activity bubbles may be attributed to the
fact that the algorithm is attempting to map a seven dimensional input onto a two
dimensional array. In section 7.2.1 in contrast, two dimensional inputs were mapped
onto a two dimensional array. This one-to-one correspondence between input and output
dimensions leads to regular circular shaped activity bubbles. With greater numbers of
inputs the extra dimensions cannot be incorporated ideally into a flat, 2-D array and hence

irregularities and folds would be expected to arise as learning attempts to accommodate

these vectors.

Figure 7.4 shows the feature map that develops. The shapes are drawn on the map using

three different print styles, so that similar shapes with different sizes can be

discriminated.

163

10

11

Key

long lined shapes e
medium lined shapes ——
short lined shapes PR

Figure 7.4 A feature map of different shapes

At a first glance, all small shapes appear clustered near the top left comner and the larger,
more complex shapes such as hexagons are detected in the opposite corner, with medium
sized shapes found in between. However a relationship also exists between the perceptual
significance of a patterns and its position in the matrix. Thus all low significance shapes
are detected near the top left hand comner and high significance shapes are detected in the

bottom right hand corner.

Further examination suggests that some anomalies exist. In particular, ‘0’ and ‘&’
(medium squares and large ‘C’ shapes) are detected by neighbouring neurons implying
that both shapes are topologically very similar. Visually this may not be the case,

however in terms of the seven significance parameters used to describe these shapes, the

164

euclidean distance between them may be relatively small. The Kohonen algorithm relies
on using the euclidean distance to evaluate how close each neuron is to a particular input
pattern and this also explains another anomaly that is observed; equal sized ‘=" and ‘C’
(squares and parallelograms with sides missing), are detected relatively far apart. Again
this is not what would be expected, since visually these shapes are very similar. However
because of the way in which the comners are represented, the euclidean distance between

the corresponding vectors is quite large.

7.2.3 Performance of a Trained Feature Map

Figure 7.5 shows how the trained feature map behaves when presented with shapes not
belonging to the training set. The map is shown again, but with four additional numbers

marking the location where each of the test shapes is detected.

165

2
3 Test shapes
03
- M | |
: :
0.68
6) k[—
7 .02
@) 0.3<r/
8
0.7
9 iy, i
)
10
1
Key

long lined shapes o
medium lined shapes ——
short lined shapes S

Figure 7.5 Example of generalisation ability of the shapes feature map
Considering each of the test patterns in turn :

(1) This shape is essentially a large square with a missing side. The additional line is
relatively short and is meant to test the nets ability to handle distortions. The shape is
detected by the same neuron that detects large open squares indicating that it is very close
to this kind of shape. As expected, the small extra line (0.3 long) has little influence on

final classification.

(2) This shape is similar to (1) but this time the additional line is comparably large. The
extra line length is found to be influential and results in detection being distant from

simple ‘=" type shapes but close to the correct "d" type of shape.

166

(3) This shape is a large hexagon with one very short (effectively missing) side and is
detected by a neuron which could either be associated with complete medium sized

hexagons or with incomplete large hexagons.

(4) This final shape is basically a large hexagon with one slightly short side and is ideally

detected between large hexagons and incomplete large hexagons.

All of the four test shapes are detected close to neurons which are known to respond to
similar types of patterns. This proves to be a successful method of recognition as not only
1s it possible to ascertain which shape has been been presented, but the actual location of

the best matched neuron provides a qualitative measure of the rype of shape encountered.

One major drawback however, is that some neurons show the same response to differing
patterns. As mentioned before ‘0’ and ‘I=” are detected by the same neuron, as are N ¢

and Q). Thus if any unknown shape is detected by these neurons, then ambiguity will

prevail.

7.3 Comparison of a Kohonen Map with a Backpropagation Net

Recognition based on backpropagation has already been examined. As a way of
comparison, the same training set used for backpropagation will be used to train a
Kohonen map (with the desired values removed). This will be useful as it will permit a

shape-for-shape comparison of the ability to generalise.

To help avoid too much clustering, as seen in figures 7.4 and 7.5, especially near the top

right hand comers, the size of the Kohonen map will be increased to an array of 20 x 20

neurons.

Figure 7.6 shows the feature map that developed after 500 presentations of the training

set in Appendix L.

167

N ”
LD 0 Se 09l vg °

Key

large shapes
medium shapes ——
small shapes p—

Figure 7.6 Feature map generated for training set used previously for backpropagation

It is interesting to note that several learning trials using the same training set and training
patterns (except random initial starting weights), appear to develop into completely
differently organised feature maps. For example, this map looks quite different from the

map represented by the 12 x 12 array shown in figure 7.4 even though many of the

168

shapes are common to both training sets. Closer inspection shows however that the
relative locations of the various shapes remains approximately the same. A likely
explanation for this is that the organisation of the constituent shapes is influenced by
perceptual significance. Both maps, figure 7.4 and 7.6 would seem to support the view
that neighbouring neurons respond to shapes of similar perceptual significance. There are
two consequences of this : firstly shapes which actually look similar to each other eg.
{ s and C/ are detected by neurons that are close to each other. This is the main
attraction of the Kohonen map and is the reason why it is expected to do well in
generalisation. Secondly, however because of differences in size, the separation between
significances and hence locations on the map, may be small even for completely different
shapes. This is a disadvantage because if a neuron does not show a unique response, then
its use for recognition will be ambiguous. For example, in figure 7.6, (and O) are
detected by the same neuron. Thus if an unknown shape is presented to the net and this
neuron shows the best match, then it will not be possible to discriminate between the two

possible shapes. Fortunately, this occurs in only few cases.

169

___ =% n 0
__ i f s
,’335? 20 N I .//19:;\ 3 ; N
IR EENEN I RPN
....................... el D i, - «
& :_L""j: # t = = 2 =
o PN } 0=
gt 4 C 6 <
F'} (—~
O O 25
< O = i OCI‘!)
12 g @Y f/ i *'r:u': 0
¢ L <O <
o “ o (iSom €
: O 10 & 2328
VvJ 0 oo »O 1 ou’

Key

large shapes ™
medium shapes ——
small shapes e

Figure 7.7 Generalisation with test patterns from Tables 7.1 and 7.2

Figure 7.7 shows how the feature map handles generalisation. The numbers marked on
the map refer to the test shapes listed in tables 7.1 and 7.2 and the location of the number
can be used to find out what pattern has been input. Although it is not always possible to
say accurately what shape has been detected, it is certainly possible to suggest or
hypothesize what kind of shape may have been presented. For example, shape 8 appears

amidst a group of large ‘#?’ and ‘&>’ type shapes. This would seem to indicate that

170

shape 8 is either a medium sized parallelogram, or a large open parallelogram. Looking
back at table 7.1, this analysis is found to be quite accurate as the shape is actually a large
parallelogram with one very short, effectively missing side. Another example is shape 19.
The region where this shape is detected contains mostly small, low significance shapes
and its exact location would suggest something like a small corner or a pair of short

parallel lines. Table 7.1 shows that shape 19 is actually a low significance corner.

Some generalisations can be misleading at times. For example, shapes 10, 11 and 13 are
detected in between an area of square shapes on the right and an area of large open
hexagons and large open pentagonal shapes on the left. Recognition is not as easy as in
the previous two cases because the locations make interpretation ambiguous, for example

in this case the shape could be hexagonal, pentagonal or a square.

Table 7.1 is made up of shapes which test for generalisations in line length only. Test
shapes from table 7.2 are completely new patterns and are aimed at investigating the
ability of the net to handle generalisations not only of line lengths but also of the actual
shape. For example, shape 27 is detected between a ‘<>’ and a *=" and can be expected
to be very close to one of these shapes. In fact it is a large open parallelogram with a
small additional corner. Another good example is shape 33. This is detected by a neuron
which detects long parallel lines and so must be very close to this kind of pattern. In fact
it is a pair of long parallel lines, again with an additional small corner. In both cases, the
net has performed well to minor distortions. Major distortions are somewhat more
influential and can also make interpretation difficult. For example, shape 34 is the same as
33 but with a large, not small additional corner and is detected next to the neuron
associated with ‘L0 and a ‘I™’. However this output is not enough to deduce its real
shape. The same is true of other test shapes detected in this region, eg. 29, 36 and 37

which would presumably be deduced to be some close variations on large squares, but

are actually ‘zigzag’ shapes.

Just as with backpropagation, generalisation is better for test shapes that show changes in

171

line length only and both methods are relatively poor at handling major distortions to
shape. Interestingly, patterns such as 29,36 and 37 are recognised as being close to large
squares by both algorithms, suggesting that this is more likely to be an artefact of the
training set or the representation used rather than the learning algorithms applied. The
reason for this turns out to be an inability of the representation to show a strong

distinction between squares and ‘zigzags’ because it cannot clearly represent closure.

— 7 N\ 4. ~ L

0.9
0225000 0.225000 0.000000 0.000000 0.000000 0.000000 1.800000
0.95
‘ 0.167900 0.167900 0.000000 0.000000 0.000000 0.000000 1.425000

Figure 7.8 Significance values for a square and a zigzag

Figure 7.8 shows these two shapes along with their corresponding significance values
and it can be seen that the same parameters are active for both shapes, but at slightly
different levels. In fact the significance values for the zigzag may equally well represent a

medium to large square.

7.3.1 Training Advantages over Backpropagation

Both the backpropagation and Kohonen methods can be used for recognition of trained
shapes and it seems that the Kohonen algorithm is not significantly better at generalisation

than backpropagation. In fact both methods are poor at handling completely new shapes.

Yet it is felt that the Kohonen algorithm is far better suited to this kind of recognition task

than backpropagation. The most important advantage can be attributed to the fact that

172

learning can take place without the need for any external teacher and that the outputs are
organised automatically. A important consequence of this, is that the location of detection

provides a qualitative measure of the type of shape present.

Speed of learning is always an issue when backpropagation is used and can often restrict
the size of training set used or the complexity of the problem being tackled. The Kohonen
algorithm has no hidden layers and requires only one forward pass through the net during
learning making it significantly faster at learning than backpropagation. This can be quite

advantageous when large training sets are involved.

Post-training analysis of the Kohonen net is possible, which is in contrast to the
backpropagation method. Although the weights for an individual neuron can be retrieved,
it is usually not possible to discover what function each part of the net is performing. An
in depth study of the multi-layer perceptron revealed that although it was possible to
establish whether a patterns excited or inhibited a particular neuron, it was not possible to
say how much influence that neuron would have on the final output of the net. Since the
same pattern also affects the other neurons to varying degrees. This is a characteristic

feature of distributed representations.

The function of each neuron in the Kohonen net is to match a particular input pattern.
Since the weights actually represent actual descriptions of various input patterns, simple
inspection is all that is necessary to establish what type of pattern the neuron will respond

best to.

173

Chapter 8

Conclusions

The work presented here has shown how it is possible to construct a network that will
perform simple perceptual grouping functions on straight lines. The network developed,
referred to as the Perceptual Network takes as an input a representation of a simple shape
and outputs a value relating to its perceptual significance. The perceptual grouping

functions that are implemented by the net involve locatin g instances of parallel lines and

end connected lines (corners).

Essentially there have been two facets to the approach used: (i) devising a coding scheme
suitable for use as inputs to a neural network and (ii) using a novel “divide and conquer”

strategy to split up the grouping operations into simpler, smaller tasks.

A coarse coding scheme was devised in which each line was represented by a single line
length value. The position of these values on an orientation plane approximately indicates

the lines’ actual location and their orientation determines which plane they appear in.

8.1 The Perceptual Net and Backpropagation

Backpropagation was found to be very flexible and was used to train all of the sub-
networks used in the Perceptual Network. Furthermore, it was found relatively easy to
‘customise’ the algorithm to suit specific needs, for example, by replacing the sigmoid
activation function with a hard limiter and artificially ‘propping’ up error values to ensure
they never reach zero, backpropagation was made to generate output values of exactly 1.0

or 0.0; something not possible with the asymptotic sigmoid function.

The operations implemented by the networks fall roughly into two categonies: filters and
significance evaluators. The perceptual significance is always calculated for pairs of lines
and the task of the filters is to pass up the appropriate pair of values from the input code

planes. Once isolated, networks trained on a simple relationship based on line lengths,

174

generate the appropriate perceptual significance values.

Once the individual networks had been completed, bringing them together was
straightforward. This involved generating and ‘wiring’ together instances of each
required network into what was effectively a large tree structure known as the Perceptual
Network. No backward training pass was necessary and the forward traversal to calculate
the outputs was achieved using a simple recursive procedure. The Perceptual Network
can be arranged to output a single perceptual significance value for the whole shape, or
significance values for each feature detected in the shape. Altogether, seven different
features were used, parallel lines in four orientations and three different types of end
connected lines (acute, obtuse and right angled comers). When summed together these

parameters represent the total significance of the shape.

The completed Perceptual Network was rigorously tested for correctness and the ability to
generalise. In these tests the network performed very well, with many outputs near to
expected values. Tests for generalisation showed the network to hold up better to changes
in line length rather than changes in actual shape (eg. changes in the number of corners or
parallel lines). The final test involved subjecting the network to simple shapes; shapes that
could be rega.rded as useful perceptual groups. Again in most cases the network behaved
satisfactorily, with outputs on average correct to 2 decimal places of the expected values.
The worst case observed showed an error just in excess of 1 decimal place. The
Perceptual Net was found to cope with translation invariance very well and theoretically
should also be able to handle rotational invariance since perceptual significances are
invariant to both translation and rotation. However, identical significance values are not
output for identical shapes at different orientations. The reason for this is due to the

coding scheme in which the distance between the diagonal grid locations is greater than

adjacent locations.

The Perceptual Net can be arranged to output seven significance values. Since these

parameters describe the shape or pattern in terms of the perceptually most significant

175

features in the pattern, it should be possible to perform recognition of the shapes in terms
of these parameters. This is possible using backpropagation, but unlike in all other uses
of the algorithm, devising a useful set of outputs is not a trivial problem. The onus is on
the network designer to create an efficient output coding scheme, especially when there

are many different shapes in the training set.

By exploiting the ability of neural networks to generalise, it was often possible to
confidently use small training sets whilst at the same time learn a large range of patterns.
However this was not always the case. For example with the corner-detector, it was
found necessary to use the full training set, that is, all the exemplars that the network was
ever required to handle. This was one reason why the coding scheme was limited to code
planes 4 x 4 in size. With larger sizes the full training sets generated would have been

much larger and a lot slower to train, which would have been somewhat of a hindrance.

The reason for this was found to be related to the dimensionality (the number of inputs)
and whether the training set employed was representative of the universal set of all
possible inputs or a subset of this universe. In the case of say the max-filter, the training
set included exemplars which covered the whole range of possible inputs at regular
intervals. Thus it represented the entire domain and would be expected to generalise well.
The comer-detector used a 16 dimensional, binary valued input. The universal set defined
for this domain contains 216 (65536) different patterns. The training set was however
limited to exemplars with at most 2 binary ones and 14 binary zeros, and in total

contained only 142 exemplars. This effectively formed a subset within the universal set.

An examination of the weights after training provided more evidence supporting this
view. Whereas the max-filter was found to reach effectively the same set of weights for
each identical learning trial and gave identical performance in each case for all patterns,
the comner-detector reached a different set of weights leading to identical performance for
trained exemplars, but different for untrained patterns. A satisfactory explanation of this

can be offered in terms of weight space. If as is the case with the corner-detector,

176

different points in space (minima) can adequately learn the same training set, then
performance for the corner-detector will be as observed, only identical for trained
exemplars. To achieve true generalisation the training set should not be ambiguous; there
should be only one global minima in weights space that can satisfactorily represent the
solution. If this is so, all trials will reach the same single solution, resulting in the same

performance in each case.

Accuracy of trained networks became a major issue when building a large scale tiered
network, as the opportunity for errors compounding presented a significant problem.
Thus the ability to estimate the expected accuracy of a network was considered an
important facility. To meet this need a simple relationship was derived which could be
used to determine the error in the output of a trained exemplar, given the number of
exemplars in the training set and the final global error to which the network is to be
trained. Thus, if the size of the training set is known, then the global error (which was

used as a stopping criteria in the simulation) can be estimated for any required accuracy.

A criticism often made against backpropagation is its slow learning speed. Such criticisms
are not without foundation since training times can often lead into many hours or even
days, even when using fast, modern workstations. The motivation for attempting to
speed up algorithms is quite strong and many researchers have taken up the challenge of
trying to accelerate learning. Although originally not the purpose for adopting this
modification, Fahlman’s suggestion of adding a small value such as 0.1 to the ‘sigmoid-
prime’ function was found to significantly improve learning time while at the same time

being very simple to implement.

8.2 The Perceptual Net and the Kohonen Feature Map.

As an example of the practical use of the Perceptual Network, this thesis demonstrates
how the outputs may be used to train ‘higher level’ nets to perform shape recognition,

based on the parameters delivered. The motivation for favouring a self-organising

177

learning algorithm has already been touched upon in the previous section and that is that
when the outputs of an MLP have to be used to represent many differing categories, it is
not always a trivial step to devise a simple and efficient coding format. This is the case

when training an MLP for shape recognition using the outputs of the Perceptual Network.

A self-organising algorithm can learn without the aid of external targets and thus shifts the
need of developing an output coding format from the net programmer, to the net itself.
The Kohonen algorithm in particular is seen as the most appropriate method as it is
capable of generating spatially-coherent feature maps whose topology is believed to be
not unlike that found in biological neural systems. The results in this thesis show how
shapes represented using seven parameters can be mapped onto a two dimensional feature
map of neurons via the Kohonen algorithm. The resulting topology of the map is such
that shapes that are similar are detected by neurons that are in close proximity to one
another. It is this property that allows the net to be used for the identification and

categorisation of different shapes.

8.3 Comparison of the Backpropagation and Kohonen Algorithms

In tests, comparison between a trained MLP and a trained feature map, did not show any
significant difference in performance. Both were capable of handling generalisation when
only lengths of lines in the shapes were altered, and both performed equally well when
asked to generalise to new shapes. Although in the latter case problems were
encountered, especially with respect to ambiguities arising due to the absence of any
explicit coding of closure in the inputs. However because no effort was required to devise
suitable output coding formats, the ease of training experienced with the Kohonen

algorithm, made it the preferred alternative over backpropagation in this case.

The Kohonen algorithm also has several other, particularly speed, advantages over
backpropagation. Backpropagation relies on gradient descent to slowly converge to a

possible solution and is thus slow and computationally intensive, especially when hidden

178

layers are involved. The practical implementation of the Kohonen algorithm is based on
measuring the closeness of match between the input feature and the preferred response of
individual neurons. Furthermore, no hidden layers or error propagation is involved. This
means that in general, training with the Kohonen algorithm is substantially faster than

with backpropagation.

The mechanisms by which a Kohonen feature map and an MLP perform generalisation
are quite different. It should be understood that the Kohonen algorithm actually has no
intrinsic ability to perform generalisation. It cannot discover the underlying trend in a
given set of data. Instead, it is its ability to arrange input vectors in a topologically
consistent manner that makes the resulting feature maps useful. Particularly in problems
dealing with arrangement of patterns or vectors in some logical and consistent manner.
Backpropagation, on the other hand, relies on the ability of hidden units to learn to
adequately represent the important features in the input data, thus enabling the network to

perform categorisation and generalisation in many different situations.

8.4 Future Work

The Perceptual Network as it stands, serves to illustrate how perceptual organisation can
be implemented in terms of neural networks and the range of problems presented in this
work are considered to represent as yet one of the most comprehensive studies in the area
of neural networks and perceptual organisation. However from a practical viewpoint, the
network cannot be applied to real line images, only to appropriately coded representations

and needs to be ‘scaled-up’ if it is to be used to cope with real world problems.

There are several aspects, mostly associated with the coding mechanism, that could be
‘scaled-up’. In particular, the resolution could be improved so that the position of lines
and orientation of lines could be recovered more accurately. For example, instead of
using a 4 x 4 code plane, larger sizes, eg. 8 x 8, 20 x 20 or even 100 x 100 could be set-

up. This would increase the spatial resolution; to increase the number of allowable

179

orientations, the number of orientation planes could be increased to any desired amount.
However, the increased number of inputs would become difficult and unmanageable for
any significant increase. Some of the sub-tasks trained on inputs 4 x 4 in size would take
substantially longer to train, even for an increase to 5 x 5 or 6 x 6. To overcome this, and
make efficient use of the greater number of inputs, a hierarchical approach could be
adopted based on over-lapping receptive fields and multi-level representations. An
example of such an approach is the Hierarchical Structure Code suggested by Hartmann
(1987) (described in section 3.3.5), which it is claimed can efficiently represent images at

varying resolutions.

Processing a complex hierarchically coded image presents a problem in itself, and it is not
at all clear what the most effective method for handling data at different resolutions is.
However, it is felt that such a structure is especially suited for use with neural networks: a

view supported by Hartmann.

Another area for improvement is related to the restriction which permits only two lines to
be coded per orientation plane and only two lines per receptive field. Whereas the
resolution of the planes could be increased by increasing their size and the resolution of
the allowable orientations by increasing the number of orientation planes. To modify the
scheme to process more than one pair of lines at a time is a little more subtle. It appears
that some form of sequential processing should be introduced to allow inspection if
several groups are detected in a single plane, a view supported by Feldman (1988). In
terms of the human visual system, sequential processing appears as a focus of attention
mechanism. This would be an attractive method to adopt, but as yet such a mechanism is

not fully understood and how a sequential mechanism could be embodied into a neural

architecture is not clear.

Recent work has attempted to address this issue and increasingly the feeling is that serial
processing is necessary at some point in the recognition process. Ullman (1984) for

example, suggests that high level processes may be implemented as a sequence of ‘visual

180

routines’. A good account of the mechanisms that may be involved is presented in Ahmad
and Omohundro (1990) who also describe how neural networks could be devised to
achieve selective attention. It appears that by using focus of attention mechanisms, it also
becomes possible to process images in their pre-processed pixel state, without the need

for employing restrictive coding methods.

In general, implementation of sequential processes is seen as the most promising way of
endowing neural networks with high level recognition capabilities and one popular theory
proposed, suggests that a means of achieving this lies in the integration of neural nets
with traditional Al approaches such as rule based systems. Whatever solution maybe
found, the ability to detect or perceive strong visual cues such as perceptual groups will

provide an essential foundation for higher level recognition.

181

References

Ackley D.H., Hinton G.E. and Sejnowski T.J., 1985, “A Learning Algorithm for
Boltzmann Machines.”, Cognitive Science, vol. 9(1), pp. 147-169

Ahmad S., 1988, “A Study of Scaling and Generalization in Neural Networks.”,
Technical Report No. UIUCDCS-R-88-1454, Department of Computer Science,
University of Illinois at Urbana-Champaign.

Ahmad S. and Omohundro S., 1990, “A Network for Extracting the Locations of Point

Clusters Using Selective Attention.”, International Computer Science Institute, Berkeley,
Technical Report #90-011.

Ballard D.H., 1981, “Generalizing the Hough Transform to Detect Arbitrary Shapes.”,
Pattern Recognition, vol. 13(2), pp. 111-122

Barrow H. G. and Tenenbaum J. M., 1981, “Interpreting Line Drawings as 3-D
Surfaces.”, Artificial Intelligence, vol. 17, pp. 75-116

Besl P. J. and Jain R. C., 1985, “Three Dimensional Object Recognition.”, ACM
Computing Surveys., vol. 17(1), pages 76-145

Bolles R.C. and Hourad P., 1987, “3DPO: A Three Dimensional Part Orientation
System.”, in Three Dimensional Machine Vision. (ed. Takeo Kanade), Kluwer Academic
Publisher, pp. 399-450

Brady M. 1982, “Computational Approaches to Image Understanding.” vol. 14(1),
ACM., pp. 3-71

Brooks R. A., 1981, “Symbolic Reasoning among 3-D Models and 2-D Images.”,
Artificial Intelligence., vol. 17, pp. 285-348

Brooks R. A., 1983, “Model-Based 3-D Interpretations of 2-D Images.”, JEEE
Transactions on Pattern Analysis and Machine Intelligence., PAMI-5(2), pp. 140-150

Burns J.B. and Kitchens L.J., 1987, “Recognition in 2D Images of 3D Objects from
Large Model Bases using Prediction Hierarchies.”, Proceedings of the Tenth IJCAI.,

vol. 2, Milan, Italy, pp. 763-766

182

Burr D.J., 1988, “Experiments on Neural Net Recognition of Spoken and Written
Texts.” , IEEE Transactions on Acoustics, Speech and Signal Processing., vol. 36(7),
pp. 1162-1168

Canny J., 1986, “A Computational Approach to Edge Detection.”, IEEE Transactions on
Pattern Analysis and Machine Intelligence., PAMI-8(6), pp. 679-698

Carpenter G.A. and Grossberg S., 1987, “A Massively Parallel Architecture for a Self-
Organising Neural Pattern Recognition Machine.”, Computer Vision, Graphics and
Image Processing., vol. 37(Jan), pp. 54-115

Carpenter G.A. and Grossberg S.,1988, “The ART of Adaptive Pattern Recognition by a
Self Organising Neural Network.”, Computer, vol. 21(3), pp. 77-88

Chin R. T. and Dyer C. R., 1986, “Model Based Recognition in Robot Vision.”, ACM
Computing Surveys., vol. 18(1), pp. 67-110

Connell J.H and Brady M., 1987, “Generating and Generalizing Models of Visual
Objects.”, Artificial Intelligence., vol. 31, pp. 159-183

Dobbins A., Zucker S. and Cynader M.S., 1987, “Endstopped Neurons in the Visual
Cortex as a Substrate for Calculating Curvature.”, Nature, vol. 329, pp. 438-441

Fahlman S. E. and Hinton G. E., 1987, “Connectionist Architectures for Artificial
Intelligence.”, Computer.,vol. 20(1), pp. 100-109

Fahlman S., 1988, “Faster Learning Variations on Back-Propagation : An Empirical
Study.”, Proceedings of the 1988 Connectionist Models Summer School, Carnegie
Mellon University, pp. 38-51

Feldman J.A., 1985, “Connectionist Models and Parallelism in High Level Vision.”,
Computer Vision, Graphics and Image Processing., vol. 31(2), pp. 178-200

Feldman J.A., Fanty M.and Goddard N.H., 1988, “Computing with Structured Neural
Networks.”, Computer, vol. 21(3), pp. 91-103

Feldman J.A. and Ballard D.H., 1983, “Computing with Connections.”, in Human and
Machine Vision. (eds. Beck, Hope & Rosenfeld), Academic Press, pp. 107-155

183

Frisby J.P., 1979, “Seeing: Illusion, Brain and Mind.”, Oxford University Press

Fukushima K., 1988, “A Neural Network for Visual Pattern Recognition.” Computer,
vol. 21(3), pp. 65-75

Fukushima K., 1975, “Cognitron: A Self-Organising Multilayered Neural Network.”
Biological Cybernetics, vol. 20(3/4), pp. 121-136

Green A.D.P. and Noakes P.D., 1989, “Linked Assembly of Neural Networks to Solve
the Interconnection Problem.”, Proceedings of the First IEE International Conference on
Artificial Neural Networks. pp. 216-220

Grimson W. E. L. and Lozano-Perez T., 1984, “Model Based Recognition and
Localization from Sparse Range or Tactile Data.”, The International Journal of Robotics
Research, vol.3(3), pp. 382-414

Hanson A. and Riseman E., 1988, “The VISIONS Image Understanding System.”, in
Advances in Computer Vision. (ed. C. Brown), pp. 1-114

Hartmann G., 1985, “Hierarchical Contour Coding by the Visual Cortex.”, in Models of
the Visual Cortex. (eds. D. Rose & V.G. Dobson), John Wiley and Son Ltd., pp. 137-
145

Hartmann G., 1987, “Recognition of Hierarchically Encoded Images by Technical and
Biological Systems.”, Biological Cybernetics., vol. 57(1/2), pp. 73-84

Hebb D.O., 1949, “The Organization of Behaviour.”, John Wiley.

Hopfield J.J. and Tank D.W., 1986, “Computing with Neural Circuits : A Model.”,
Science, vol. Aug, pp. 625-633

Hopfield J.J., 1982, “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities.”, Proceedings of the National Academy of Sciences, vol. 79,

pp. 2554-2558

Hoskins J.C., 1989, “Speeding up Artificial Neural Networks in the ‘Real’ World.”
MCC Technical Report Number STP-049-89

184

Hubel D.H. and Wiesel T.N., 1962, “Receptive Fields, Binocular Interactions and
Functional Architecture in the Cat's Visual Cortex.”, Journal of Physiology, vol. 160,
pp. 106-154

Hubel D.H. and Wiesel T.N., 1959, “Receptive Fields of Single Neurons in the Cat’s
Striate Cortex.”, Journal of Physiology, vol. 149, pp. 574-591

Huekel M. H., 1973, “A Local Visual Operator which Recognises Edges and Lines.”,
Journal of the ACM, vol. 20(4), pp. 634-647

Hummel J., Biederman I., Gerhardstein P. & Hilton H., 1989, “From Image Edges to
Geons : A Connectionist Approach.”, Proceedings of the 1988 Connectionist Models
Summer School, Carnegie Mellon University, pp. 462-471

Kohonen T., 1988, “Self-Organizing Feature Maps.” in Self-Organisation and
Associative Memory, 2nd edition. Springer-Verlag, pp. 119-157.

Kohonen T., 1988a, “The 'Neural' Phonetic Typewriter.”, Computer, vol. 21(3). pp.
11-22

Kohonen T., 1987, “Adaptive, Associative and Self Organising functions on Neural
Computing.”, Applied Optics, vol. 26(23), pp. 4910-4918

Kohonen T., 1982, “Self-Organised Formation of Topologically Correct Feature Maps.”,
Biological Cybernetrics, vol 43, pp. 59-69

Levine M.D. and Nazif A.M., 1985, “Rule-Based Image Segmentation: A Dynamic
Control Strategy Approach.”, Computer Vision, Graphics and Image Processing., vol.
32, pp. 104-126

Linsker R., 1988, “Self Organisation in a Perceptual Network.” , Computer, vol. 21(3),
pp.- 105-117

Lippmann R.P., 1987, “An Introduction to Computing with Neural Nets.”, [EEE
Acoustics, Speech & Signal Processing Magazine, vol. 4(2), pp. 4-22

Lowe D. G., 1985, “Perceptual Organisation and Visual Recognition.”, Kluwer

Academic Publishers.

185

Lowe D. G., 1987, “Three Dimensional Object Recognition from Single Two
Dimensional Images.”, Artificial Intelligence., vol. 31, pp. 355-395

Marr D.C., 1980, “Visual Information Processing: The Structure and Creation of Visual
Representations.”, Phil. Trans. R. Soc. Lond, vol. 290 (series B), pp. 199-218

Marr D.C. and Hildreth E., 1980, “Theory of Edge Detection.”, Proceedings Royal
Society London, vol. 207(Series B), pp. 187-217

Marr D.C. and Nishihara H.K., 1978, “Representation and Recognition of the Spatial
Organisation of Three-Dimensional Shapes.”, Proceedings of the Royal Society of
London, vol. 200(Series B), pp. 269-294

McCulloch W.S. and Pitts W., 1943, “A Logical Calculus of the Ideas Imminent in
Nervous Activity.”, Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133

Minsky M. and Papert S., 1969, “Perceptrons: An Introduction to Computational
Geometry.”, The MIT Press.

Palmer S., 1983, “The Psychology of Perceptual Organisation: A Transforational
Approach .” in Human and Machine Vision (eds. Beck, Hope and Rosenfeld). Academic
Press, pp. 269-339

Pawlicki T., 1988, “NORA : Neural-network Object Recognition Architecture.”,
Proceedings of the 1988 Connectionist Models Summer School, Carnegie Mellon
University, pp. 444-451

Pomerleau D.A., 1989, “ALVINN: An Autonomous Land Vehicle in a Neural
Network.”, Tech Report: CMU-CS-89-107 (Computer Science Dept. Camnegie Mellon.)

Qian N. and Sejnowski T., 1988, “Learning to Solve Random dot Stereograms of Dense
and Transparent Surfaces with Recurrent Backpropagation.”, Proceedings of the 1988

Connectionist Models Summer School, Carnegie Mellon University, pp. 434-443

Rosenblatt F., 1962, “Principles of Neurodynamics.”, Spartan Books

186

Roth I, 1986, “Part II. An Introduction to Object Perception.” in Perception and
Representation. A Cognitive Approach. (eds. Roth 1. & Frisby J.P.) The Open
University Press. pp. 79-131

Rumelhart D.E. and Zipser D., 1985, “Feature Discovery by Competitive Learning.”,
Cognitive Science, vol. 9, pp. 75-112

Rumelhart D.E., Hinton G.E., and Williams R.J., 1986, “Learning Internal
Representations by Error Propagation.”, in Parallel Distributed Processing. Exploration
in the Microstructure of Cognition. (eds. Rumelhart D.E. & McClelland J.L.), vol. 1,
The MIT Press, pp. 319-362

Scalettar R. and Zee A., 1988, “Perception of Left and Right by a Feed Forward Net.”,
Biological Cybernetics., vol. 58(3), pp. 193-201

Sejnowski T. and Rosenberg C.R., 1986, “NETtalk: A Parallel Network that Learns to
Read Aloud.”, Technical Report JHU/EECS-86/01, John Hopkins University

Singh S. and Claridge E., 1989, “A Connectionist Approach to Three Dimensional
Perception.”, Proceedings of the Sixth Scandinavian Conference on Image Analysis,
vol. 1, Oulu, Finland, pp. 341-348.

Thomson R.C, and Claridge E., 1989, “A ‘Computer Vision’ Approach to the Analysis
of Crystal Profiles in Rock Sections.”, Proceedings of the Sixth Scandinavian
Conference on Image Analysis, vol. 2, Oulu, Finland, pp. 1208-1215.

Ullman S., 1984, “Visual Routines: Where Bottom-up and Top-down Processing
Meets.”, Cognition, 18, pp. 97-159

Walter D.K.W., 1987, “Selection of Image Primitives for General-Purpose Visual
Processing.”, Computer Vision, Graphics and Image Processing, vol.37 pp. 261-298

Walters D.K.W., 1986, “A Computer Model Based on Psychophysical Experiments.”, in
Pattern Recognition by Humans and Machines. (ed. Schwab and Nusbaum.), vol. 2,

Academic Press, pp. 87-120

Walters, D.K.W. and Weisstein, N., 1982, “Perceived Brightness is a Function of Line
Length and Perceived Connectivity.”, Bulletin of the Psychonomic Society, Sept

187

Zemel R., Mozer M. and Hinton G., 1988, “TRAFFIC: A MOdel of Object Recognition
Based on Transformations of Feature Instances.” Proceedings of the 1988 Connectionist
Models Summer School, Carnegie Mellon University, pp. 452-461

Zucker S.W., 1988, “A Biologically Motivated Approach to Early Visual Computations:
Orientation selection, texture and optical flow.”, Proceedings of the 4th International
Conference of the BPRA., Cambridge, UK, pp. 417-428

188

Appendix A
Appendix A
A Step by Step Guide to Using the Backpropagation Algorithm

Step 1.

Devise a network for the problem. The number of input and output units will depend on
the problem itself. But the number of hidden layers, and the number of units in a hidden

layer is a variable quantity. Some experimentation may be necessary to determine the

optimum number of hidden units.

Set all weights and biases to small random values, say between 0 and 1. This is necessary
since if training commences with all weights initialised to equal values and if the solution
requires that the weights be unequal, then because the error propagated back at each stage
is in proportion to the weights, it is apparent that the error propagated back will also be
the same for each unit. Consequently the net will not be able find a local minima, as the

weights will be the same all the time.

Step 2

Present an exemplar to the net. This will consist of an input pattern, and the desired
output pattern associated with this input. The patterns may be binary 1's or 0's or real

values.

Output layer

Hidden layer (s)

Input layer

Figure A.1

189

Appendix A
Step 3

Determine the actual outputs of the net by performing a weighted sum at the hidden layer,
and then at the next layer, and so on until the output layer is reached. Use the sigmoid

activation function, equation (A.1) to threshold the output of each unit.

S I
l+e " (A.1)

Step 4

Determine the error signal, and update the weights for each unit. This is a recursive
procedure starting at the output layer, and working back down the net until the first
hidden layer is reached. The weights should be updated according to equation (A.2) or

equation (A.3) if a momentum is to be used.

A, Wii=md 0, (A2)

or
For the output layer, the error for each unit j, Opj, 1s calculated using,

5Pj= (tpj- Opj) Opj (1 = Opj) (A.4)

and for a hidden layer unit, the error for each unit must be calculated in a recursive

fashion, by propagating the errors down from the layer above

Spj= 0p;(1-0p;) ;apkw"j (A.5)

where the k subscripts denote a unit in the layer above.

Stepd

If there are further exemplars in the training set, then repeat the procedure by going to
190

Appendix A
step 2, and presenting the next input / output pattern set.

Step 6

After each epoch (presentation of a whole training set), evaluate the global error using

equations (A.6). Continue learning until the global error reaches the desired tolerance.

1 2
Ep:fZ(tpj “Opj)
j (A.6)

191

Appendix B

Appendix B

Training set used for the distance-discriminator

desired
output

input pattern

-I_10100100010000100000.I_00000nU1000000010000000010000000001
10101001000100001000001000000100000001000000001000000000
01100.I_....U_...U-!_00nUl0000100000100000010000000100000000100000000
00011100010001000010000010000001000000010000000010000000
00000011110000100001000001000000100000001000000001000000
0000000000111.I_10000010000nU.l_00000010000000100000000100000
000000000000000111111000000.I_0000001000000010000000010000
0000000000000000000001111.I_l.r._0000000100000001000000001000
00000000000000000000000000001.I_ll.l_11100000000100000000100
00000000000000000000000000000000000011111111100000000010
AU00000000000ﬂv0000nU00000000000000000000000000011111111110
0001
G00000000000000000000000000000OnUAU00000000000000000000000
00
00
00

C OO MO OO T T O T O T N OO0 TN OMO OO Y MO O N T T O TMENORTOMTOTI~O OO O
20O MOOO0OCHNOCOOHOHOOOOONHOOMOOOHNMMOOHNHOHNOOOHOMNHOHHOOOO® O I
SN0 0 dNNHOINONHOHOONNHOMOCONMMOANNNONNHOANONNONNMHO 46 O m
0o oMo oo W O O - OO0 YN N OMO OO MO N Y~ O~ M~NO N ~OMMNO~,~ ~O MO O -
CSOOMOO0O0 I OO0 IO TOO00O0O0HITOOMOO O TN OOYTHITOTNOOOITONTOITIOO OO O M~
CMOoMNO e N Y M O T O T O INOMY N OMN O N TN NO LY MINTMEORTOMTNTIRD N DS N
OO0 000000 HOOCHOOrHO0O0O0OHOOHOOOOHODOOOOOOOHOOHOOOOOOHOO Ho

192

Appendix B

CO0OO0O00O0000O0OHOO0OO0OO0O0O00000O0O 1000000000000 MOO000000000000HOODO0OO0OO0OO0OO0OO0OO0O0OO0OO0O
HO 0O 00000000 OO0 00000000 HOOOO0OO0OO0O0O0O00CO0O0OHOOO0OO0OO0OO0OOO0O0O0OO00OHODO0OO0O0O0O0O0O00O0O0O0O
O 0000000000 HHODD00000000O0HO0000000000O0OHOO0O00000D00000O0OrHO0O00D00O0O0O0O0OOO
OO 10000000000 HO0OO0OO0OO0O0DO00O00C0O0 000000000000 HOO0OO0OO0O00000000O0HOOO0OO0O0OO0OODOO0O
OO0 0O HOOOOO0OO0OO0OO0OO0OO0OHOOOOOO0OO0OO0OO0O0DOHOOOO0OOO0ODODO0O0OOHOO0OO0OO0O0OO0O0O0O0O0O0O0OO0OHOOOOOO0O0O0OOO
C 000 MO0 00000 100000000000 HOOO0OO0OO0OO0OO00000O0OHOOO0OOOOOO0OODOO0OO0OO0OOHOOOOOOOOO
C OO0 00O HOODODOOO0OO0OO0O 00O 100000000000 1000000000000 HOO0O00O0D0000000CO0OHOOOOOO OO
OO0 00O O0OHOOOO0OO0OO0OO0O 00O HOOO0OO0OO0O00O0O0O0OHNO0000000000O0OHO0O0O0O0O0O0O00O0O00OHOOOOOOO
OO0 000000000000 0000000000000 0HOO0O0O00000000O0OHOOO0OO0OO0OO0OO0O0OO0OO0O0O0OOHMOODOOO OO
0O 0000000 HO0O0O0O0O0O0000O0 100000000000 HOOODOODOO0OODOOODDO0OO0O0OOHOOODDOODOOOO0OOOOOOHMOOOOO
OO0 0000000 HOOO0OO0OOCO0000O0OHOO0OO0O0O000000DHOOO0OOOO0OO0O00O0OO0OO0OHOODOODOOOO0OO0O0OO0OO0OO0OO0OOMOOOO
Ad A A1 1 HOO0OO0OO0OO0OO0O0000O0O 00000000000 HO0O0000000000O0OHNO0O0O00O00C0O0O0COOOHOOO
coocooococoocoococoodAdAdrMHdAdrdAdddd 1000000000000 HOO0OO0O0DO0O00000O0OHOO0O0O0O0OO0O00O0COO0OOOHOO
cocoocoo0cococoo0co0co0co0ooco0o0o0oooccodAAdddAdrdAdAd A 1000000000000 HOOOOOOOOOOODOOOHO
OoOoO0OO0CDOO0OCOO0OO0OO0O0OO0COCOODOCODODOODODOODODODOODODODCOCOCOdddAddddddrddHHOO0O0OO0OO0O0O0OOO0OOOCOOH
O 00O 0000000000000 000000000000000000000000000CCOOHmdedrmMmMeMeadeadeaddadcdedd -

N T ORI ~POMOOMOONOTMOONFTOOIMOOFOTMEONTOODMOIMITOTIFNOROONODMOMTODITIROMOO
NHONHOOMOOMNNOOHINMNOOHNNMNMANNHOHNOOOHONNMANNHOHHOOOOOOMANMNINHONHOOMS O
NANOANNHOMOOMNMEONNMMOANNNMNMANMNONNHOANOMANMNINNONNHOACOORMANMMINNONNHOMO O
M~ OWrR N OMOOMYUERNOENMEON N CYWMUOUER~RORMEOR O YWMNWMEEORNROROONMEYMNMEME~OWRM~OMOO
NYodToOoOoOMOoOOMAMNMOTNEROO T ANMANTOSINOOOTORHMANTOTTOOCOOMMEHMNMENIOATOOMO O
MM IPIRFOMNOMMANNITONNONTMOMOMNMNTN TN ONTONNMOMO PN TICORNONNMMNMTINMT~OMN O
: kbRt Rl A S b S LIS I o S B s il e TS S T el i T R S RN T eI o b Sl s i e Sl sl S s B e
CO0O0DO0O0OO0OHOOHOOOOOOOOHOOOOOOOOOO0OO0OOHOOHOOOOOO0OO0OO0OOHOOMOOOOOOOOOOOMOO H

193

Appendix C

Appendix C

Training set used for max-filter

4.51?213948638?3?23&.1920835576241893057 .l_ 2 3 .4. 5 6 _..-.. a 9
000000000000000000000010000000000001000000000000000000000

0

5

P54?112938436?8?33214298053?5624189305?1 N o T e ~ ® o o
n . . .
1000000000000000000000001000000000001000000000000000000001

o
[T
4 B,

-
3t55?72299886688??3344990055??624189305?112233445566??83990
Q3

d0000000000000000000000011000000000001000000000000000000001

194

oo

195

Appendix C

Appendix D

Appendix D

Training set used for min-filter

desired
output

101918-}..!_16151413120229282?262524233039383?3635344049484?4
0-I_00D0000000000000100000000000000001000000000000010000000

inputs

019131176151413121209282—.}.262524232039383?3635343049484-.!4.6
100000000000000000010000000000300010000000000000100000000

.I_-l_111111111.I_.I_.I_.l_.l_11222222222222222233333333333333444444444
0000nU0000000000000_U00000000000000000000000000000000000000

196

Appendix D

-..... 8 9 0

6455059535?566069686?70?9?8808990123456?8900 1 2 3 4. 5 6
00001000000000100000001000001...00010000000001000000000000000000001

4540595357565069686?60?91.8?089809123456?39001 N M T o ® -~ ® & O

0001000000000100000_...UnU.I_000001000100000000001000000000000000000010

.4.‘.4555555555566666666?n....._......._....._”....?888899123456?89001122334455667?889900
001000000000000000000011

197

Appendix E
Appendix E

Training set initially used for the line-pair evaluator

desired

output inputs
0.125 0.25 0.25
0.0625 0.5 0.25
0.04167 0.75 0.25
0.03125 1 025
0.25 0.5 0.5
0.16667 075 0.5
0.125 1 0.5
0.375 0.75 0.75
0.28125 i 0.75
0.5 1 1

Training set finally used to train the line-pair evaluator

desired

outputs inputs
0.0 0 0
0.04167 0.12 0.1
002 0.09 0.06
0125 0.25 0.25
0.06667 0.3 0.2
0.0625 0.5 0.25
0.04167 0.75 0.25
0.13333 0.6 0.4
0.03125 10 25
025 0.5 0.5
0.11429 0.7 0.4
0.05953 0.86 0.32
0.16667 0.75 0.5
0.125 1 0.5
0.375 0.75 0.75
0.02 1 0.2
0.28125 1 0.75
0.5 1 B 1

198

Appendix F
Appendix F

List of allowable corners

> L 1 1 I

y
N\
v 7T
< N

) L

— /

4 \

,\ (

b x ’

199

Alternative way of coding acute corners

| — , N

200

Appendix F

Appendix F

Coding diamonds

Training set used to test for reproducibility of untrained exemplars

desired
output

input patterns

HTOoO"O0OO0CrHOoOO0OC OO OCODOHOOOODOHOOO
o100 0H0O00CHO0O00O0HOOOCOCOHOO
OO0 O0ONOo0CO0OHCOCOHOCO0COOHO
oo 1000 HOCO0OO0CHODODOOHODOOOOH
oo HOO00O0OAHO0OO0OCOHOOOOO
coococoocooo o oA HOoO0COCDOO0OHHODO OO
oo o000 0COoOO0ODC0C OO COCCOHH 11 HO0OCOO
OO0 O0 0000000000000 OHHMHMAH
COO0O 0000000000000 0CDOD0D0ODO0O0O0 O
(===l lelslsNe NNl NeloNeoNeolol-Ne el el
OO0 0000000000000 OO0OCO
CO0CO0OO0CO0O0CO0DDO0O0CO0DO0CO0O0D0O0O00O0O0O0OOCO
COCO0CO0DO0CO0CO0O0CO00O0OO000CODO0OO0CO0O0OO0O0O0OO0O
CO0CO0OQ0CO0O00O0O00O000DO00DO0DO0O0O0DO0OO0DOOO
COO0OO0C OO0 0 0000000 0ODO0O0ODO0ODO0O0ODOOO
OO0 C0COO00CDO0O0O0O0O0ODOO0ODDOO0OO0O0OODDOO O

ArA A A A A A A A A OO A O A OO A A O

201

Appendix F

000 HOODOO0OODODCOCOHOODOODOOODODOHODODODODODOOODOrOO
0000 HOOODOOOHODOOOOOOOHOOODOODODOOOHO
coococoocooMOOCOCOO0COO0OO0OHOOO0OOCO0OO0OO0OO0OHOO0OODOOOCOOCOA
000000100000001000000001000000000
HO0OO0OO0ODDO0OO0OMHMOO0OO0OO0OO0O0DODOHOODOOOOOOHOOODOOOOO
oMOoOO0OO0OOCOOMOOOOOOOHOOOOCOOOCOFHODODOOOCOOC
ocoHdoOO0OO0OO0COOCOHOO0OO0OO0OCOOHOOODDODOOO0ODOHODOOCOOCO
1...11000000010000000100000000100000
000_...._11111110000000010000000010000
000000000001111111110000000001000
000000000000000000001111111111000
0000000000000000000000000000001.I_.I_
000nU00000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
0000000oo000000000000000000000000

.I_11111011.._101100110011011101111001

OO0 0000 HOODOODOOCOODOOOHOODODODOO0OOOCOOCO
cooco0o0o0C00O0OHODOO0OO0OOCOO0O0CO0CO0OO0OHO OO0 0CCOOCO
CcCOoO0O0CO0O0C0000OHO0OO0000000000HNOO0OO0O00000O
OO0 O0OO0OO0DDO0OOODHOODOODOODODODOOODOHOODOOODOOO
OHO0O000000O0O0DO0OHOOCOO0OO0DO0OO0O0DO0O0OODHNOO0ODO0OO0DO0OOO
OO0 000000000 HOOODODODODOODOOOCO OO0 OCOO
COO0OHOODOO0OOOOOOOODOH1HO0OOCOOODDOO0OOOOHOOOOO
CO0O0OHOODODODODOOODODOODOOHOODODOO0OO0OO0ODODODODOCOHNOOOO
COoO0O0O0OHOOODODODOOOOOOOOOHO0OO0OO0O0OD0OO0OCOO0OO0COHOOO
OO0 00CO000O00OO0OHOO00C0OO0CO000C0O0OO0O 00O
o000 00O0OHOO0O00000000OHOO0O0O0OO0ODODODO0O0ODOAHO
A AA"A A1 00000000000 rMO0O0O00DCO0O0000O0
cooocoocooooood MMM eaddrdrd 1000000000000
CO0O0D00O0DC0D00000DCCOODOODOOO M rdrrdddrdreed A
[el=Rel-ReN-NelleN=eleNoNeN-NelleNellelelelealeleleleleje]lee]ellellejll-]
CO0O00O0DO0OO0OO0O00COO0O0O0DO0O0O0DO0O0DDO0OO0OODDODODOO0ODOOO

oo 4411 ddd-1Oo-dAdA o144 4104410111040

202

Appendix F

OHMO0DO0O00O0O00DO0O0O00OHNO0O0DO0OO00DO0ODODO0ODO0OODDOOO0OO0O
OO H OO0 100000000000 O0O0O
00O HOODODOOOODODODOOOCODOHOOODOODODODODODOCOOO
0000 HOODOODODODOOODOODOOHOODODODODOOOOO
0O000O0OHOO0OO0OO0O000C0O0C000HOO0OOOOCOOOOO
0O0C000O0OHNOOODODO0OO0OO0OO0O0OO0O0D0C0OO0OHNOOCODOODOCOOO
0000000 HOODODODOODOO0OO0OO0O0OO0O0O0O0O0OHODODODOODOOCO
00000000 HOODOODODOOODODOODODDOOOHNOCOOOOCOO
000000000 HOO0OODODODODOCOO0OO0OCCOO0CODDOHODOOOOO
OO0 0000000 HOODODO0OOO0OO0OO0O0COO0OODDO0OO1000O0O
00000000000 HOOOODOOODODOOOHOOOO
0C0O0O00000C0O0O0OODHOODODODODODODOOODOOODOHOO0OO
OO0 0DO0O0O00O0OO00ODHOODODODODODOODDOOOOOO OO
HO0OO0O00DO0OO000DO0O0OO0ODO0OHOO0DO0ODO0OO0OO0ODOODOOOO O
01.I_111111111111000000000000001
0000000000000001111111111111.[_1

11.._0101010101111010101010111111

coooocoococoococo0oo0o0cococooH
[eNoNeoNaNoNloNoNeNeNeNoNo ool
CO00O00O0DDO0O0O00O0OO0OHOO
ocoococoooooco0cocoo0oCcoHd00O0
[=NelleNeNeNeleeleeleellyleilele e
cooooocooo0oQoOoOoOoH0OO0COO
oo ocooocoo0oO0OHOOOOOOo
cooocoococoocOo0o 10000000
ocoooocoocooco 1000000 OO
OO0 O0OH0O0COCOO0O0O0O0O0
o000 00 COO0OO0O0O00OO0
CO00O0OHOOODOODO0ODOO0OO0OO0OOoO
CO0OO0OHOODOODOOODDOO0 OO0
CO0OO0OHOOOODODOODODOCOOO0OO0O
OO0 OO0 O0O0OO0DOO0OO0CO0O0OO0O
oMo C0CO0OO0C OO0 O0O0COCOOOoO

A A A A A A A A A A A A A A A

oo o oo
O -
A A O
oo o oo
[= I
oo oo o
(==l = i e -]
O A
(==l ell el
(== = = i -]
oo oo o
oo o oo
(=== = i -]
oo o0 oo
oo O oo
(===l ls]

o

Training set used for corner-detector

desired
outputs

- o~
oo
O-dH O
oo o -
coococo
noocoo
Hoooo
Ydoooo
Toocoo
coc oo
Joococo

Foocooco
-

c o oo
ococoo
oo oo

oo oo

= ===
ocoocoo
oo oo

203

Appendix F

0010001._0000100000100000010000000100nUnUD000100000000010000000000100
10010001000010000010000001000000010000000010000000001000000000010
0100100010000100000100000010000000100nU000001000000000100000000001
110001000100001000001nUo00001.._0000000100000000100000000010000000000
00111100001000010000010000001nUnU0000010000000010000000001000000000
00000011.._.l_.I_1000001000001000000100000001000000001000000000100000000
000000000001111.I_10000001000000100000001..__00000000100000000010000000
0000000000000000011111110000000lnU00000010000000010000000001000000
0000000000000000000000001111|_l.L_.I_1000000001000000001000000000100000
000000000000000000000000000000001l111_1_111000000000100000000010000
000111111111100000000001000
00011111111111000
000000000000000000000000000000000.Hu0000000000000000000000000000111
000
000
000000000000000000000....UAU0000nUO00000000O.U00000000000000000000000000

00000010010.I_00-I_000000000000000_00000UU0000000000000000000000000000
00000000000000000000000000010000000000100000001000010000000000000
000000000000000000000000000000010_U1100010010000000001001100000000

204

Appendix F

00000000O1000000000000100nU_..Uo00000000100000000000000
00000000001000000000000100...UO00000000010000000000000
000000000001000000000000100000000000001000000000000
100000000000100000000000010000000000000100000000000
0.I._0000000000010000000000001000000000000010000000000
0010000000000010nUnUO00000000100000000000001000000000
000100000000000.I_00000000000010000000000000100000000
000010000000000010000000000001000000000000010000000
000001000000000001000000000000100000000000001000000
000000100000000000100000000000010000000000000100000
000000010000000000010000000000001000000000000010000
000000001000000000001000000000000100000000000001000
11111._11.I_1000000000000100000000000010000000000000100
000000000.l..l_1111.I_11111100000000000001000000000000010
000000000000000000000011111111111111000000000000001

000000000000000000000000000000000000111111111111111

000000001000000000010000000000010000000000001000000
1._00000000000000100000000000100000000100000000000000
000010000001000000000001010001000000001010100000000

0O000O0O0OO0OO0O000C0CO0O
= NelleNeNelleeleialeleeile]
OO0 00000000000
[=N=Nelel=eelalefefeels]
[=R=lellel=l=slelsles gl
oOoococococococo0oo0co0O0AO
oOooococooco0oO0O0O0O OO
[=N=llaoleloleleN=N iR
o000 o0o0O0O0O+H00O0CO
ooooocooHd00COO0OO
o000 OoO 00 0C0COCO
oo OoO 10000000
oo oOoO OO0 O00 0000
OO0 00000000 O0O
OO0 0CO0O0CO0O00O0OO0O
OO0 0000000 0CO

OO0 O0OO0OO0O0000O0O0O0O
COO0O 0000000000
OO0 C0COO0OO0ODO0O0OO0O0OOoO

205

Appendix F

oo 000 0O
oo 1o O~
OHOO - dHOC
—HooooOoOoOoOo
OO0 HO A
cooooo0oCococoCOo
oo oCcooOoOo
0000 MHHOA
=Nl
o000 00O0OO0O
oococoo0cOoCc oo
oo oOo0O0O0O0O0OO0
OO0 0000000
coo0oo0o0O0O0O0CO0O
00000000
o000 O0O00O0

CO0OO0OO0O0OO0OO0O
(e NelNoNeNoNoleNie)
[eNelNeelaleollele

206

Appendix G
Appendix G

test data 1-8
I - / \ <4 v L

11
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499953
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000

actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499948
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000

’_
-
NN

actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499922
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
1
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499819
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.499763 0.000000
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000
) w 1
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0499752 0.000000
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000
B /M|
actual 0.000000 0.000000 0.000000 0.000000 0.000102 0.499303 0.000000
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000
I
‘ e
1 =
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.499669 0.000000
desired 0000000 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000

207

Appendix G

test data 9-16
I — 4 N L N L

11

actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.499880 0.000040

desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000
11

actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.499730 0.000040

desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000

_
i m
g

actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.499827 0.000000
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000
(1 I

:ﬁ:‘ 1
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0499912 0.000000
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0500000 0.000000
vV 1 T
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000055 0.499837
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
< H [

1 ﬁ

actual 0.000000 0.000000 0.000000 0.000000 0.000022 0.000000 0.499796
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
> 11
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499829
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0500000
/\
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499796
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000

208

Appendix G
test data 17-24
| — 7 N 2 < L

actual 0.000000 0.000000 0.000000 0.000000 0499829 0.000051 0.000040

desired 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000 0.000000
/] H 1]

actual 0.000000 0.000000 0.000000 0.000000 0499913 0.000000 0.000000

desired 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000 0.000000

1 [(TE]
actual 0.000000 0.000000 0.000000 0.000000 0.499865 0.000000 0.000000
desired 0.000000 0.000000 0.000000 0.000000 0500000 0.000000 0.000000
N —#
[
actual 0.000000 0.000000 0.000000 0.000000 0499831 0.000000 0.000000
desired 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000 0.000000

||

J
%
.

actual 0.000000 0.000000 0.000000 0.000000 0.499863 0.000000 0.000000
desired 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000 0.000000
1]]
“ Sis -
= 11
actual 0.000000 0.000000 0.000000 0.000000 0.499863 0.000149 0.000040
desired 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000 0.000000

i

actual 0.000000 0.000000 0.000000 0.000000 0.499913 0.000000 0.000000

desired 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000 0.000000
N NN

actual 0.000000 0.000000 0.000000 0.000000 0.499885 0.000000 0.000000

desired 0.000000 0.000000 0.000000 0.000000 0.500000 0.000000 0.000000

209

test data 25-32

actual
desired

actual
desired

actual
desired

actual
desired

actual
desired

actual
desired

actual
desired

/

0.000000
0.000000

0.000000
0.000000

i

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

SHs

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

11

11

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

|

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

]

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

i

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

11

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

210

L. . L

0.499829
0.500000

0.499830
0.500000

0.499882
0.500000

0.499807
0.500000

0.499863
0.500000

0.499794
0.500000

0.499790
0.500000

0.499896
0.500000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000040
0.000000

0.000000
0.000000

0.000000
0.000000

0.000040
0.000000

0.000000
0.000000

0.000040
0.000000

0.000000
0.000000

0.000000
0.000000

Appendix G

test data 33-40

actual
desired

actual
desired

actual
desired

actual
desired

actual
desired

desired

ge /
Eé/

0.249963
0.250000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.249963
0.250000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.353466
0.353600

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.035348
0.035360

cii:

0.166621
0.166700

0.000000
0.000000

ﬁ:

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.166621
0.166700

0.000000
0.000000

0.000000
0.000000

T

0.000000
0.000000

0.000000
0.000000

0.176688
0.176800

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.176725
0.176800

211

Appendix G

Z. . L

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000081
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000081
0.000000

0.000000
0.000000

0.000000
0.000000

test data 41-48

actual
desired

actual
desired

actual
desired

actual
desired

actual
desired

\ 7/

actual
desired

actual
desired

actual
desired

0.223556
0.223600

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

111

0.498960
0.500000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.353421
0.353600

0.000000
0.000000

0.000000
0.000000

0.000000

i

0.117798
0.117900

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

212

pan

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

—

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

Appendix G

L

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000040
0.000000

0.000000
0.000000

0.000040
0.000000

0.000040
0.000000

Appendix H
Appendix H

test data 49-56
I — /7 N\ 24 v v

=

actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499953
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
L] AR
| 1
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499953
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
|
| 11
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499953
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
1 I | B
I % 11
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499953
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
G
| | I n]
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499953
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000

I_ﬁ:ﬁ

actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499953
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
||
I e # -
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499953
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000

r s

actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499953
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000

213

Appendix H
test data 57-64

I — 7 N\ £ = L
|-_ H

actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499953
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
/\ Bl (B T
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0499796
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
/\ (BT
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499796
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
/\
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499796
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
N 1 |
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499796
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
/\ -4

i |
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499796
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
/\

| iil
actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499796
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000
2]

11

actual 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.499796
desired 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0500000

214

Appendix I
test data 65-72

1.0 =
actual 0249937 0.249932 0.000000 0.000000
desired 0250000 0.250000 0.000000 0.000000
0.5
actual 0.124657 0.124654 0.000000 0.000000
desired 0.125000 0.125000 0.000000 0.000000
0.25
= u
I B
actual 0.062541 0.062540 0.000000 0.000000
desired 0.062500 0.062500 0.000000 0.000000
05
0.25 | | =
11 |
actual 0.062541 0.124654 0.000000 0.000000
desired 0.062500 0.125000 0.000000 0.000000
04
o | M
— 1
actual 0.199528 d .
desired 0200000 0.100000 0.000000 0.000000
0.9
0.11 I
actual 0022113 0217654 0.000000 0.000000
desired 0.025000 0.225000 0.000000 0.000000
0.75
L H
0.15 —
(N
actual 0.006824
desired 0.007500
03
02| |o.9 Em
0.65 |
actual 0.010959 0.034081 0.000000 0.000000
desired 0.011100 0.034600 0.000000 0.000000

215

Appendix I

Z. . L

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000

0.000000
0.000000

0.000000
0.000000

1.999561
2.000000

0.997823
1.000000

0.500320
0.500000

0.246221
0.250000

0.398626
0.400000

0.017982
0.022200

0.474545
0.480000

0.384329
0.382200

Appendix J
Appendix J
test data 73-80

| — /7 N\ 4. - L
0.7
/
o.s| 1.0 =
Ve 1
0.7 |
H NN
actual 0.062127 0.000000 0.000000 0.000000 0488533 0359239 0.000000
desired 0.062500 0.000000 0.000000 0.000000 0490000 0.357100 0.000000
actual 0.100062 0.000000 0.134258 1.200689 0.600422
desired 0.100000 0.000000 0.134200 1.200000 0.600000
0.95
</ T
actual 0.000000 0.000000 0368697 0.000000 0.000000 0.000058 0.995816
desired 0.000000 0.000000 0335900 0.000000 0.000000 0.000000 0.950000
1
1.0[. H
[o EN
actual 0.000000 0.000000 0353466 0.000000 0.000102 0.999216 0.499922
desired 0.000000 0.000000 0353600 0.000000 0.000000 1.000000 0.500000
~
0.4| I
~N 1
actual 0.099172 0.000000 0.000000 0.099170 0396704 0.396673 0.000000
desired 0.100000 0.000000 0.000000 0.100000 0.400000 0.400000 0.000000
0.5 .
osl |03 (B T |
0.8 11 =
actual 0.078299 0.000000 0.000000 0.000000 0399018 0.156543 0.405930
desired 0.078100 0.000000 0.000000 0.000000 0.400000 0.156300 0.406300
_ 1
o.9s| | |
actual 0260705 0.167717 0.000000 0.000000 0.000000 0.000000 1.564517
desired 0237500 0.167900 0.000000 0.000000 0.000000 0.000000 1.425000
0.8
mER
actual 0.000000 0.178461 0.199528 0.000000 0.797967 0.399143 0.000032
desired 0.000000 0.178900 0.200000 0.000000 0.800000 0.400000 0.000000

216

Appendix K

Appendix K

The following is a table of 500 random coordinates used to train a Kohonen network.

22n......rb6?6???122049832668860881?152511136881
L T . T T S O S S S S S N .~ % W omom om oW L T . L

923942435?691022465?127591062020?39504446

22486412944625635589?94694911395406?15266

L T R T T T L T 8 - m w m oW L T .

8653383966?902302310792013311933905448905

001269_}.94529.I_—.....6985325595139426?022?238131

e T . L L T T T T T e L . T, T T S N N Y

9__......91...26__.......966398225_....:726402584965331309488016

304614_}.5—.{111?1802649958246?446?0?92540285

. . . . T T T T R T T T R . T T L . T T T Y R

666404..,..111.._2181069435057928889532648?7?1349

0_......43?9—.}.59662?99?465994869992430529?052?126
S I U O U N SRR S A L S O N S S R S O T S . L T S T N S

696?24196416140298354?3121?118?87531995906

1?91098214168?4_1.-51555622?013167554536142?3
L O T T T T T L I T T T S WU S SN

51?9086840305855?—.....-8?64?8315269756128490526

0?43?5027120248498823134134215295670097951
L T N T . L T T T S L S S S Y

321828?4846842?225434124?0822343458??15339

MedoocCwWUINUNHIONNOGOFONFOTNFOFNOCOODFFAANOMNTYMITFODOWODOWN
e . T T T L SR S S S S TR SN, S S S N

U ANMNECEIITNAHONO ANV MOMOMNHOHOACONUNIFFNOUOOOAME

4368635665092?9814106?684166960?6060?1??6?
[O . T . T L L L T . . T LS S R T T S L

312818004221?256219295916?5091?086452136&.0

?60__...:43—.}.60?2?3?16_......?9?2262513528264988906681
N om R oM B R R R R R R R OR R R OB OB R OR R R R R R R R R R R RN L R L R T T

08382148459453415089611?03?9?4858?06627209

498—:}.8846639338136—...r331525228216938405826768
D O P S S N L I . T . . . L L L

_.....86__.......—......2611_6.4.1.4_93151161880250166644930950094?

02?92568?a.u.45928?42182482?4222212840264585?
L T R . . L L R L . T T L . T S S T N S S T S S T T

344064?9309?086120196270496693865329?16381

217

Appendix L

Training set used to train

Desired
outputs
.1000
5000
1 000
.05 00

.25 00
.75 0 0

o oo

.05
.25
.75

00O
00O
o000

(=]
L =
ocoo
(== =]

(=]
[o¥]
w
(=]

(=
o
w
o

o o
3%]
w
o

o oo

o o
=
(=Moo
o000

o oo
o
w
o
o

o oo (=N =] o oo o oo oo o
oV]] 28]
w w w
(=] o oo o
o o O o oo

o oo

Inputs

0.025 0
0.1 0
0.225 0
0.0125 0
0.125 0
0.25 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0.025 0
0.1 0
0:.25 0
0.0375 0
0.125 0
0.225 0
0 0
0 0
0 0
0.0125 0
0.125 0
0.25 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Appendix L

a multi-layer perceptron to recognise shapes.

.025

.225

.0375
5125
.2375

.025
i -
.2375

.025
.15

025
.125
2375

.025
.125
+29

[~ = B = oQ O (= = I = (=] (== e o o o oo o oo o oo o oo 000 o oo o oo

coo

.025
.125
.2375

.025
.125
.25

.025

2D

.025
5 b
25

218

o o

oo oo o o oo (=] o o o o oo o O o o o oo o oo o oo o oo

oo

.025
15
23175

.0125
o g
2D

.0125
.125
s2D

.0025
.125
R

=R =i e o o o o

o

oo

o

oo

o oo

o oo

o o

o o
.

oo

(= = N =]

oo

oo

.075
25
«45

o O o

o o

o o

=1 =] (=]

o oo

oo

o o

o oo
. .

(===

o o

= oo

o oo
"

o o
.

.075
12D
.45

.05

o oo oo o o o o oo o o o o oo oo o o o o

o

o o

o oo

o oo o oo o oo o o o (=] =Nl oo (=] o o (== o]

o oo

w =
o

oo o O o Q0 o o o oo o o o o oo o oo o oo

o

o oo

=N =N o oo (= = =] (= =N oo o == N OO ocC oo o oo (==} oo o o oo oo

o o

o

o oo

o OO
o OO o oo
oo

oo
oo

.05
.25
+715

.05
.25
=15

.05
.25
.75

.05
25
<75

.05
R
=15

.05
.25
D

.05
.25
D

.05
525
.75
.05
Y e
.05
2l

(=] oo

(=N =]
.

o oo o oo oo o o o oo oo o O o o oo o oo o oo o oo

oo

(=N ~N -]

.0375

A

.0167

.158

.0167
.0833
.15

.0167
.0833
s

.0083
.0833
A8

o oo (=== o o (=) oo

o oo

0.0167
0.1
0.1667

0
0
0

0.0083
0.0667
0.15

0.0083
0.0667
0.15

0.0167
0.0833

o oo (==l -] (=N o) === o o o o o O o o oo o o o oo o oo o o o o o oo

00O

L0177
1591
.3182

.0354
2221
.3359

.0224
.1342
.2124

.0112
.1118
.2236

.0224
.1118
.2014

.0224
.1342
.2236

.0224
.1342
.2236

.0224
.1118
.2124

.0112
.089
.2012

219

o oo o oo (== IR -] o oo o oo o oo oo o oo oo oo o oo o oo (=18 - Nl] o

oo

.0177
.1591
.3182

.0071
.1768
.3536

.0224
.1342
.2124

.0112
.1118
A b

.0224
.1118
.2014

.0224
.1342
.2236

.0224
.1342
.2236

.0224
.1118
.2124

.0112
.089
.2012

o o

o OO o oo oo o oo (== =] o oo o oo (=] o oo oo (==l o) o oo (==

oo

= oo

-

o oo o

o oo

o o

H oo

o o

(el ~ =

= o

o oo

ol
: 15
.35
.15

.75
39

.075

S35

.075

.35

Appendix L

o

o o
=

= oo
<

o o o
. e e
(=]
wn

o o
. e e
o
w

(=N =]

.05
.25
.45

o oo

.05
+25
.45

o oo

.05
.25
.45

H oo o oo o oo o oo
W w unwo
w

o

o oo
o Un

000 .75
0 00 .05
000 .25
000 .75
000 .05
000 .25
000 .75
000 .1
000 .5
0001
000 .05
000 .25
000 .75
0 00 .05
000 .25
0 0 0 .75
000 .05
000 .25
000 .75
00 .050
00 .25 0
00 .75 0
000 .1
000 .5
0001
000 .05
000 .25
0 00 .75
0 00 .05
000 .25
000 .75
000 .05
0 00 .25
0 00 .75
00 .10
00 .50
001 0
00 .10
00 .50
001 0
00 .050
00 .25 0
00 750
00 .050
00 .250
00 .75 0
0000
.01 000

o oo (== I =] oo o o o o oo o o (== o oo o oo (== N o] o oo [= N = N] o oo

(=N ==}

.0224
.1118
.2124

.0112
.1006
.2236

.0112
.1006
.2012

.0224
.1118
.2236

0.1667 0
0 0
0 0
0 0
0 0.0224
0 0.1118
0 0.2236
0.0224 0.0354
0.1118 0.1768
0.2124 0.3356
0 0.0177
0 0.1591
0 0.3536
0.0224 0.0354
0.1342 0.2121
0.2236 0.3536
0 0.0177
0 0.1767
0 0.3536
0 0
0 0
0 0
0.0112 0
0.1006 0
0.2012 0
0.0224 0
0.1342 0
0.2012 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0.0354
0 0.1768
0 0.3536
0 0
0 0
0 0
0 0.0354
0 0.1768
0 0.3182
0 0
0 0

220

o o o o oo o oo o oo o oo o o o (= =] (== =] o oo [=N= =] o o oo

(=N ==

.0112
.1006
.2124

.0177
.1591
.3182

.0354
.2121
.3182

.0354
.1768
.3536

.0177
.1591
.3182

.0354
.1768
.3182

.0354
.1768
.3568

o oo

o oo

o o oo oo

(=N = =]

o o o oo o o

oo

[= =]

o

(=]
o

oo

=N =]

o

o o o
. e

.05
.45
.95

05
<25
.45

@ o -

2 LS
=35
o kD
it

.05
.45

o=

.05
.24
.45

.05
.25
.45

0

o O o o oo

o oo

(==

o o oo oo oo o oo oo o0 O

= o o

e .
O U=

(= =N =)
ww

o o

oo o

Appendix L

.5

.025
.225
.475

.05
+25

.025
225

.025
25

.05
.25
.45

.05
.45
.05
.45
.05

«25

.025
225
.45

.15
T
30

i
)

o R

wo =

.05

1000 0
5000 0
0 .01 00 0
0 .100 0
0 .500 0
0 .01 00 0
0 .100 0
0! 5: @ 0 0
.01 000 0
.1 000 0
«5:0: 0.0 0
0L 000 0
1000 0
5000 0
.01 000 0
.1 000 0
.5000 0
.01 000 0
.1 000 0
.5000 0

.025
125
el

L] (=] (=]

oo

o

oo

oo

.005
=125
25

o o

o 0o

oo

[]

.0177
.1591
3359

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0.0354 0
0.2121 0
0.3182 0

05
.25
.475

oo o
.

oo

.025

.475

Appendix L
0.25
0.5

o oo

The training set used to train a Kohonen net to recognise is identical to this, but contains

no desired values.

221

Appendix M
Appendix M

Listing of the Backpropagation simulator code

/*********x!k*itt*ttﬂ***t*****t*t***!*****tt*/

/* BP Network Simulator 20th Nov 1989 s
/* x/
/* Features include */
[+ *uses a hard limiter */
f* suses Fahlman’s mod. */
7x *rallows specification of a test =/
fx set different to training set */
fi* *glcbal error output at regular */
[* intervals *if
/* *aborting execution via ctrl-c x/
% causes weights to be saved */
rx straining can be commenced from */
[a given set of weights o f

/********:tx*l-x:t**x*******l****t*tﬂ*********/

#include <stdic.h>
#include <math.:z>

/* following "includes" needed to obtain system time */
/* which i1is needed to obtain random numbers *f

#include <sys/time.h>
#include <sys/tvpes.h>
#include <sys/timeb.h>

/* following irzlude needed for auto saving of weights on ctrl-c */
#include <signal.h>

/* max no. dendrites on any neuron */
#define max_lirxs 30
int hidden:;

#define eof -995

/* no. of input and output units */
#define num_input_units 2

#define num_output_units 1

/* declaration of structure of a neuron */
struct neuron { float output,error,bias;
int num_ins, num_outs;
/* synaptics weights */
float weights[max_links];
float last_change[max_ links]:
float last_bias;
/* dendrites */
struct neuron *dendrites[max_links]:
/* axons */
struct neuron *axons(max links];
i

/* declaration of the linked list into which the training */
/* set and test sets are loaded. =*/
struct vector set (float value;
struct vector_set *ptr next;
}i:

222

Appendix M
struct vector_set *train_head=NULL,
*test_head =NULL;

float eta, alpha;
char filename[30], filename2[30];

/* declare floating point functions */
float get_vectors():
float test_testset();

/* declare function called on ctrl-c signal */
save_and _exit();

/* declare input and output units */

struct neuron *ptr_output[num output units],
*ptr_inputs[num input units];

/* declare target vector units */

struct neuron *ptr_desired[num output units];

/* declare 'corner' of square sigmoid */

float corner;

FILE *fp, *fopen(); /*file usage */

/********************************/

main ()
{ int i, j,num loops=0,num patterns,plot point=1,step size=1, reply;
float outbit,stop value,orig alpha,last tot_error,tot_error=999;

/* initialise random num generator */
unsigned int seed;
unsigned long t,time2;

time2=time (&t); /* get elapsed system time in seconds */
seed=(unsigned int)time2; /* set new seed */
srand (seed) ;

/* call save_and exit if prog is terminated */
signal (SIGINT, save_and_exit);

/* input value for 'corner' of square sigmoid */
printf ("Enter sigmoid approximation parameter. ");
scanf ("%f",&corner);

/* input number of hidden units */
printf ("Enter number of units in hidden layer. "):
scanf ("%d",&hidden);

create network();

printf ("Restore weights (1/0)2\n");
scanf ("%d",&reply);

if (reply==1) restore_all weights();

/* train network */
printf ("Enter filename containing training set. ");
scanf ("%s",filename);
printf ("Enter filename of test set. ");
scanf ("%$s",filename2);
printf ("Enter stopping criteria. ");
scanf ("%f",&stop_value);
printf ("Enter eta. " Yie
scanf ("%f",&eta);

223

Appendix M
printf ("Enter alpha. ");
scanf ("%f",&orig_alpha);
alpha=orig alpha;
printf ("\nTraining in progress...\n");

load_train_set ():
load_test_set ():

while (tot_error>stop_value) ({
last_tot_error=tot_error;
tot_error=get_vectors();

num_loops++;

/* print out errors */

if (num_loops==plot_point) {
printf ("After %d loops, error=%f,

eta=%f\n",num loops,tot_error,eta);

plot_point=num loops+step size;
if ((float) (plot_point/10)==step_size) step_size *= 10;

}/* endif */

}/* end while */
/* end train network */

/* use net */
/* first clear inputs */
for (i=0; i<num_input_units; i++) ptr_inputs[i]->output=0;

test testset ():

printf ("\nnumber of units in hidden layer = %d",hidden)
printf ("\neta = %f\nalpha = %f",eta,alpha);

printf ("\nstopping tolerance was = %f",stop_value);
printf ("\nno. of training loops = %d",num_loops):
printf ("\nfinal error is = %f\n",test_testset()):

/* save weights and exit */
save_and exit ();
}/* end main */

/*********************k***********/

/*************t******************/

/* Routines to save and restore */
/* weights. x/
/* x/

/********************************/

save_node (ptr_node)
struct neuron *ptr node;
{ int i;
/* first save bias */

fprintf (fp, "$£\n",ptr_node->bias) ;

for (i=0; i<ptr_node->num ins; i++)
fprintf (fp, "$£f\n",ptr_node->weights[i]);

/* output a blank line to sep weights of */
/* next node */
fprintf (fp, "\n") ;

}/* end */

/********ttt*t*t**k*i*********t**/

save layer (ptr_node)

224

Appendix M
struct neuron *ptr_node;
{ int 4i;

/* ptr_node must point to any node above layer to be saved */

for (i=0; i<ptr_node->num ins; i++)
save_node (ptr_node->dendrites[i]);
}/* end */

/***************t***t************f

save_all weights()
{ int i;
struct neuron *ptr node;

fp=fopen ("weights4", "w");

/* save output units */
for (i=0; i<num_output_units; i++)
save_node (ptr_output[i]);

/* pick a node from the output layer */
ptr_node=ptr_output[0];

/* while not input layer */
while (ptr_node->dendrites[0]->num ins !=0) ({
save_layer (ptr_node) ;
ptr_node=ptr node->dendrites(0]; /* move down a layer */
}/* end while */
fclose (fp);
}/* end */

/*****t*i***k******t********t****,

restore_node (ptr_node)
struct neuron *ptr_node;
{ int i;

/* first restore bias */
fscanf (fp, "%f\n", & (ptr_node) ->bias) ;

for (i=0; i<ptr_node->num_ins; i++)
fscanf (fp, "$f\n", & (ptr_node) ->weights[i]);
}/* end */

/*************i******************/

restore_layer (ptr_node)
struct neuron *ptr_ node;
{ int i;
/* ptr_node must point to any node above layer to be saved x/
for (i=0; i<ptr_node->num ins; i++)
restore_node (ptr node->dendrites[i]):
}/* end */

/****t*****************t****t**ti'j

restore_all_ weights()
{ int i;
struct neuron *ptr node;

fp=fopen("weights4","r"};

225

Appendix M

for (i=0; i<num output_units; i++)
restore_node (ptr_output([i]);

/* pick any output units */
ptr_node=ptr output([0];

/* while not input layer */
while (ptr_node->dendrites([0]->num ins !=0) {
restore_layer (ptr_node) ; -
ptr_node=ptr_node->dendrites([0]; /* move down a layer */
}/* end while */
fclose (fp) ;
}/* end */

/*************tt**********t***t***/

float sigmoid(x)
float x:
{
return (1/(l+exp(-x)));
}/* end */

/********k************************/

float square_sigmoid(x)

double x;

{ float a; /* -a & +a are the corners of the */
a=corner; /* square threshold function. L
if (x>= a) return(l); /* threshold at 1 */
else if (x<=-a) return(0):; /* threshold at 0 */

else return(0.5* (1+x/a)); /* linear func in between */
}/* end */

/k*****************************t**/

calculate_outputs (ptr_node)
/* recursively goes down network */

struct neuron *ptr_node;
{ double sum=0;
int i;

for (i=0; i<ptr_node->num_ins; i++) |
if (ptr_node—>dendrites[i]—)num_ins 1= Q)
calculate_outputs(ptr_pode—>dendrites[i}):
sum += ptr node->dendrites[i]->output * ptr_node->weights[i];
}/* end for */

ptr_node->output = square_sigmoid (sum + ptr_node->bias);

} /* end calculate outputs. */

/******************************t**/

float find weight (ptr_node, axon)
struct neuron *ptr node, *axon;
/* finds the weight associated with a given axon */
{ int i;
for (i=0; i<axon->num_ins; i++)
if (ptr_node==axon->dendrites[i]) return (axon->weights[i])
/* nb: assumes that a match WILL be found. */

/*********t****i********tt**tt***/

226

Appendix M

update node (ptr_node)
/* back prop learning for weights associated with one node */
struct neuron *ptr node;
{ float delta,desired,x,y,weight_change,bias_change, sum=0;
int i,k;
float sigmoid prime; /* Fahlmans' modification */

/* special case. an output unit */
if (ptr_node->num outs==0)
{ y=ptr_node->output;
desired=ptr_node->axons[0]->output;

sigmoid prime = y*(l-y); /* Fahlman's mod x
sigmoid prime += 0.1; /* add 0.1 x/
delta=sigmoid prime* (desired-y) ; /* Fahlman's mod */

}/* end if */

/* hidden layer units */
else { x=ptr node->output;
for (k=0; k<ptr_node->num outs; k++)
sum += ptr node->axons[k]->error
* find weight (ptr_node,ptr node->axons([k]):;

sigmoid prime = x*(1-x); /* Fahlman's mod x4
sigmoid prime += 0.1; /* add 0.1 */
delta=sigmoid_prime*sum; /* Fahlman's mod Xt

}/* end if */
ptr_node->error=delta;

/* now have worked out delta. need to adjust weights now */
for (i=0; i<ptr node->num_ins; i++) {
weight_change = eta * delta * ptr node->dendrites[i]->output +
alpha * ptr_ node->last_change[i]:
/* update weights */
ptr_node->weights([i] += weight_change;
/* update last weight change */
ptr_node->last_change[i] = weight_change;

}/* end for */

/* update bias for each node */

bias_change = eta * delta * 1 + alpha * ptr_node->last_bias;
ptr_node->bias += bias_change;

ptr_node->last_bias = bias_change;

}/* end */

/‘k************************‘k*******/

update layer (ptr_node)

/* ptr node points to node above layer of nodes to be updated %]
struct neuron *ptr_node;
{ int 1i;

/* now update weights on layer below. */
for (i=0; i<ptr node->num _ins; i++) {
/* check if node below isn't an input node */
if (ptr_node->dendrites([i]->num_ins !=0)
/* now do each node below */
update_node (ptr_node->dendrites[i]);
}/* end for */
}/* end /

JRAKEAKKAKKAKKKEKKKKKKKKKK KKK KKK /

227

Appendix M
update_weights ()
/* should do back_prop on all nodes in correct order as well! */

{ struct neuron *ptr_node;
int i;

/* do output nodes first */
for (i=0; i<num output_units; i++)
update_node (ptr_output[i]);

/* pick any output node */
ptr_node=ptr_output[0];

/* now update layers below if not input layers */
while (ptr_node->dendrites([0]->num_ins !=0) {
update_layer (ptr_node) ;
/* need any node above the next layer now */
ptr_node=ptr_node->dendrites[0];
}/* end while */
}/* end */

/******k*************************/

initialise node (ptr_node)
struct neuron *ptr node;
{ int i;

ptr_node->output=0;
ptr_node->error=0;
ptr_node->num_ins=0;
ptr_node->num outs=0;

/* randomise weights */
for (i=0; i<max links; i++) {
ptr node->weights[i]=(float) rand() / 10000000000;
ptr_node->bias =(float) rand() / 10000000000;
ptr_node->last_change[i]=0;
}/* end for */
}/* end */

/*********************************z

struct neuron *gen_new_node ()
{ struct neuron *ptr_node;

ptr_node=(struct neuron *)malloc(sizeof (struct neuron));
initialise_node (ptr_node);
return (ptr_node);

}

/*********************************/

create_network()
{ int 1,3/
struct neuron *ptr hidden;

/* Hand build network */

/* output and desired vector nodes */
for (i=0; i<num output_units; i++) {
ptr_desired[i]=gen_new_node () ;
ptr_output [i]=gen_new_node () ;
ptr_output [i]->num_outs=0;
ptr_output [i]->num_ins=hidden;
/* connect output to desired */

228

Appendix M
ptr_output[i]->axons[0)=ptr_desired([i];
}/* end for */

/* input nodes */

for (i=0; i<num_input_units; i++) {
ptr_inputs[i]=gen_new_node();
ptr_inputs[i)->num_outs=hidden;
ptr_inputs([i]l=->num_ins=0;

}/* end for */

/* hidden layer */

for (i=0; i<hidden; i++) {
ptr_hidden=gen_new_node();
ptr_hidden->num_ins=num_input_units;
ptr_hidden->num_outs=num output_units;

/* connect dendrites to input units */
for (j=0; j<num_input_units; j++)
ptr_hidden->dendrites([j]l=ptr_inputs(]j];

/* connect to output units */

for (j=0; j<num output_units; j++) |
ptr_hidden->axons[jl=ptr_output [j]:
ptr_output [j]->dendrites[i]=ptr_hidden;

}/* end for */

}/* end for */

}/* end */

/*********t**'&***************ﬁi***/

load_train_set ()
{ struct vector_ set *ptr;
float value;

fp=fopen (filename, "r") ;
ptr=train_head;

/* get all data values from file */
fscanf (fp,"%f", &value);
while (value != eof) {
if (train_head==NULL) ({
/* make first node */
ptr=(struct vector_set *) (malloc(sizeof (struct
vector_set)));
ptr->value=value;
ptr->ptr_next=NULL;
train_head=ptr;
}
else {
/* make next node and move on pointer */
ptr=ptr->ptr next=(struct vector_set *) (malloc (sizeof (struct
vector_set)));
ptr->ptr_next=NULL;
ptr->value=value;
}/* end if */
fscanf (fp, "%f", &value) ;
}/* end while */
}/* end */

/********tt*t*t****t****t****t****/

load_test_set ()
229

Appendix M
{ struct vector_set *ptr;
float wvalue;

fp=fopen (filename2, "r") ;
ptr=test_head;

/* get all data values from file */
fscanf (fp, "%£f", &value) ;
while (value !'= eof) {

if (test_head==NULL) {

/* make first node */

ptr=(struct vector_set *) (malloc(sizeof (struct
vector_set)));

ptr->value=value;
ptr->ptr_ next=NULL;
test_head=ptr;
}
else {
/* make next node and move on pointer */
ptr=ptr->ptr next=(struct vector_set *) (malloc(sizeof (struct
vector_set)));
ptr->ptr_next=NULL;
ptr->value=value;
}/* end if */
fscanf (fp, "%f", &value) ;
}/* end while */
}/* end */

/**************t***t**************/

ptr_scanf (ptr, data) /* pointer analogue of fscanf */
struct vector_set **ptr;
float *data;
{

#ifdef DEBUG

printf("In ptr_scanf()\n"):

#endif

if (*ptr != NULL) ({

*data=(*ptr)->value; /* get value */

*ptr=(*ptr)->ptr_next; /* advance pointer */
}

#ifdef DEBUG
printf ("Out off ptr_scanf()\n");:
#endif

}/* end */

/*********************************/

float test_testset () /* this routine is nearly identical to
get_vectors */
{ int i, Jj,count=0;
float total=0,diff;
struct vector_set *fptr;

fptr=test_head;

/* get desired values */
for (j=0; j<num_output_units; j++)
ptr_scanf (&fptr, & (ptr_desired[j])->output) ;

/* stop loop if first desired value is eof */
while (fptr != NULL) {

230

Appendix M
for (i=0; i<num input_units; i++)
ptr_scanf (&fptr, & (ptr_inputs(i])->output) ;

/* execute one cycle */

for (i=0; i<num output_units; i++) |
calculate_outputs(ptr_output([i]);
diff=ptr desired[i]->output - ptr_output [i]->output;
total += diff*diff;

}/* end for */

/* get desired values again */
/* but also check for eof */
j=0;
while (j<num output_units) {
ptr_scanf (&fptr, & (ptr_desired[j])->output);
/* if first desired value = eof */
if ((j==0) && (fptr == NULL))
j=num_output_units; /* force loop to stop */
else j++;
}/* end while */

}/* end while */

total /= 2.0;

return (total);
}/* end */

/**********X**It***t***t**********/

float get_vectors ()
{ int 1i,3;
float diff,total;
struct vector_set *fptr;

fptr=train_head;

/* get desired values */
for (j=0; j<num output_units; j++)
ptr_scanf (&fptr, & (ptr_desired([j])->output):

while (fptr != NULL) {
for (i=0; i<num_input_units; i++)
ptr_scanf (&fptr, & (ptr_inputs([i])->output);

/* execute one cycle */

/* get next set of outputs */

for (i=0; i<num output_units; i++) {
calculate outputs(ptr_output([i]);
diff=ptr_desired[i]->output - ptr_output[i]->output;
total += diff*diff;

}/* end for */

update weights ();

/* get desired values again */

/* but also check for eof */

j=0;

while (j<num output_units) {
ptr_scanf (&fptr, & (ptr_desired[j])->output);
if ((j==0) && (fptr == NULL))

j=num_output_units; /* force loop to stop */

else j++; =

}/* end while */

}/* end while */

231

Appendix M
return(test_testset());
}/* end */

/*************tt*************t****/

use_network ()
{ int i, reply=1; 9

while (reply) |
printf ("Try net again? (1/0) ");
scanf ("¥d", &reply) ;

/* interactively enter inputs. */

if (reply) {

for (i=0; i<num input_units; i++) {
printf ("Enter input %d ",i);
scanf ("%£", & (ptr_inputs([i])->output);

}/* end for */

for (i=0; i<num output_units; i++) |
calculate_outputs(ptr_output[i]);
printf ("\nOutput from the network is %f\n",ptr output[i]->

output) ;
}/* end for */

}/* end if */
}/* end while */
}/* end */

/*************t**********k********/

save_and_exit ()
{
save_all weights();
exit (0):
}

/************tt********t*’k******i*/

232

Appendix M
Listing of the Kohonen simulator code

/****t********i*t****************************/

/* Kohonen Simulator 17th Jan 1990 * /
r* */

/********t******************************!****/

/* Kohonen (1988) section 5.4.1 says that */

/* the demonstrations presented, have a *
/* gain term that is "also a function of x/
/* bubble radius, a Gaussian function with */
/* a width that was decreasing in time. *

/* This version is similar to kohonen.c, but*/
/* this time the magnitude of the gain term */
/* decreases with time. *f

#include <stdio.h>
#include <math.h>

/* following "includes" needed to obtain system time */
/* which is needed to obtain random numbers */

#include <sys/time.h>
#include <sys/types.h>
#include <sys/timeb.h>

/* following include needed for auto saving of weights on ctrl-c */
#include <signal.h>

#define eof -99
#define num_input_units 7
#define net_size 12

/* declaration of structure of a neuron */
struct neuron { float output;
float weights[num_ input units];
}:

/*declaration of the linked list into which the training */
/* set is loaded */
struct vector_set { float value;
struct vector_set *ptr_ next;
}i

struct vector_set *train head=NULL:

/* declare function called on ctrl-c signal */
save_and_exit ();

/* declare functions used by kohonen algorithm */
float gain_term ();
float neighbourhood ()

/* declare input and output units */
struct neuron *ptr_outputs[net_size] [net_size],
*ptr_inputs(num_input_units];

FILE *fp, *fopen(); /*file usage */
char filename[30];

int tmax; /* t is effectively the */
/* no. of epochs. */
233

Appendix M
float b; /* b the gaussian height, i.e. the gain */
float excitation_factor;
/* width of gaussian equal to the width */
/* of the neighbourhood. excitation factor*/
/* is proportion of width in which */
/* excitation takes place */

/t*****************!l*****************************/

/* The MAIN routine */

main ()
{ int i,x,y,t,norm, restore;
struct vector_set *fptr;

/* seed random number generator */
unsigned int seed;
unsigned long tl,time2;

time2=time (&t1l) ;
seed=(unsigned int)time2;
srand (seed):

/* call save_and_exit if prog is terminated */
signal (SIGINT, save_and exit);

printf ("Kohonen_3.exe\n\n");

printf ("Enter filename)
scanf ("%s", filename);

printf ("Enter Tmax i T
scanf ("%d", &tmax);

printf ("Enter initial gain 3)
scanf ("%f", &b):

printf ("Enter excitation factor\n");
printf ("ranging between 0-1 ™)
scanf ("%f",&excitation_factor);

printf ("Normalize inputs (0/1) : ");
scanf ("%d", &norm):;

)

printf ("Restore weights (0/1)
scanf ("%d", &restore):;

create_network (); /* this needs to normalize the weights */
/* as each neuron is created. */

load_train_set ():
if (restore) restore_layer ():;
if (norm) normalize training set ();

for (t=0; t<tmax; t++) {

fptr=train_head;
while (fptr != NULL) {
for (i=0; i<num_input_units; i++)
ptr_scanf (&fptr, &(ptr_inputs[i])->output);
find winning_ neuron (&x,&y);
update_weights (x,y,t);
}/* end while */

234

}/* end for */
save_and_exit ();
}/* end */

/***i****************************/

/* Routines to save and restore */

/* weights. */
/* *f
/* start 03rd Jan 1989 * /
/* updated 04th Jan 1990 x/
/* for K-net simulator */

/********************************/

save_node (ptr_node)
struct neuron *ptr_ node;
{ int 1i;

for (i=0; i<num_input_units; i++)
fprintf (fp, "$f\n",ptr_node->weights([i]);
/* output a blank line to sep weights of */
/* next node */
fprintf (fp, "\n");
}/* end */

/************t**k******x*********/

/* saves weights of all nodes from left to right */
/* top to bottom %/

save_layer ()
{. dng 4,9

fp=fopen ("k_weights", "w");
for (j=0; j<net_size; j++)
for (i=0; i<net_size; i++)
save_node (ptr_outputs(i][3j]);
fclose (fp):
}/* end */

/************************t*******;

restore_node (ptr_node)
struct neuron *ptr_node;
{ int 1i;

for (i=0; i<num_input_units; i++)
fscanf (fp, "$£\n", & (ptr_node) ->weights[i]);

}/* end */

j***t***k*****t***t**************[

restore_layer ()
{ int i,3;

fp-fopen(“k_yeights“,“r");

for (j=0; j<net_size; j++)
for (i=0; i<net_size; i++)

235

Appendix M

Appendix M
restore_node (ptr_outputs([i]([j]);

fclose (fp):
}/* end */

/*********************************/

float sigmoid(x)
float x;

{
return (1/(l+exp(-x))):
}/* end */

/'k********************************/

calculate outputs ()
{ double sum=0;
int 3%

/* replaces the output of each neuron, with the */
/* thresholded weighted sum at each node. X
for (j=0; j<net_size; j++)

for (i=0; i<net_size; i++) |

for (k=0; k<num_input_units; k++)
sum += ptr outputs(i] [j]l->weights([k] * ptr_inputs(k]-
>output;
ptr_outputs(i] [j]->output = sigmoid (sum);
sum=0;

}/* end fors */

}/* end calculate_outputs. */

/**********t*********************x
initialise_node (ptr_node)

struct neuron *ptr node;
{ int i;

ptr_node->output=0;
/* randomise weights */

for (i=0; i<num_input_units; i++)
ptr_node->weights[i]=(float) rand() / 10000000000;

}/* end */
/*********************************/

struct neuron *gen_new_node ()
{ struct neuron *ptr_ node;

ptr_node=(struct neuron *)malloc (sizeof (struct neuron)):
initialise node (ptr_node);
return (ptr_node);

}

/****t******t*************w*t*****/

create_network ()
{ int i,3.k;

/* first build input layer */
236

Appendix M

for (i=0; i<num_input_units; i++)
ptr_inputs[il=gen_new_node ();

/* now build square output layer */
for (j=0; j<net_size; j++)
for (i=0; i<net_size; i++) {
ptr_outputs[i] [jl=gen_new_node ():

normalize_weights (ptr_outputs[i][j]);
}/* end fors */
}/* end */

/*k****l‘**************************/

load_train_set ()
{ struct vector_set *ptr;
float value;

fp=fopen(filename, "r");
ptr=train_head;

/* get all data values from file */
fscanf (fp, "%£f", &value) ;
while (value != eof) {
if (train_head==NULL) (
/* make first node */
ptr=(struct vector set *) (malloc(sizeof (struct
vector_set))):
ptr->value=value;
ptr->ptr_ next=NULL;
train_head=ptr;
}
else {
/* make next node and move on pointer */
ptr=ptr->ptr_next=(struct vector_set *) (malloc(sizeof (struct
vector_set))):
ptr->ptr_next=NULL;
ptr->value=value;
}/* end if */
fscanf (fp,"%f", &value) ;
}/* end while */

}/* end */
dkhkhkdkhkhkhkhhkhkhkhkrrhbhkhdhdkhbhrhrhbhkhdhdhhhbhkihk
/

ptr_scanf (ptr, data) /* pointer analogue of fscanf XY
struct vector_set **ptr;
float *data;

{ if (*ptr !'= NULL) {
*data= (*ptr)->value; /* get value */
*ptr=(*ptr)->ptr_next; /* advance pointer */
}/* end if */

}/* end */

/******ﬁ**i******************i****/

save_and_exit ()
{

237

save_layer ();
exit (0);
}

/*******t****t*t****************t****/

/* Normalization functions */
/* Euclidean distances are calculated */

normalize weights (ptr node)
struct neuron *ptr node;
{ int 1i;
float root;
double sum=0;

/* calculate denominator */
for (i=0; i<num_input units; i++)
sum += ptr node->weights[i] * ptr_node->weights([i];

root = (float) sgrt (sum);

/* now divide each weight by the root */

for (i=0; i<num_input_units; i++)
ptr_node->weights[i] /= root:

}/* end */

/**/

normalize training set ()
{1t 435
float root, input;
double sum;
struct vector_set *fptr, *ptr_ temp[num_input_units];

fptr=train_head;

while (fptr != NULL) {

/* Calculate Denominator * /
/* an array of pointers keeps track of where */
/* the values to be changed are. *f
sum=0;

for (i=0; i<num_input_units; i++) {
ptr_temp[i]=fptr;
ptr_scanf (&fptr, &input);
sum += input*input;

}/* end for */

root = (float) sgrt (sum);

/* Now Divide each input by this Root x/
/* the 'values' to be changed are accessed)
/* by array of pointers. */

for (i=0; i<num_input_units; i++)
if (root>0.0) ptr temp[i]->value /= root;

}/* end while */
}/* end */

/*****tt********t********tt**************{

normalize_inputs ()
{ int 1i;

238

Appendix M

Appendix M
float root:
double sum=0;

/* calculate denominator */
for (i=0; i<num_input units; i++)
sum += ptr_inputs[i]->output * ptr_inputs([i]->output;

root = (float) sqgrt(sum);

/* now divide each input by the root */
for (i=0; i<num input_units; i++)
if (root>0.0) ptr_inputs([i]->output /= root;

}/* end */

/*****************************k**********/

/* routine to find the winning neuron */
/* in the net. */

find winning neuron (X,y)
int *x, *y;

{ float difference, distance, min_distance=9999999;
int 1,9,.%;

for (j=0; j<net_size; j++)
for (i=0; i<net_size; i++) {

/* calculate distance to i, jth neuron */
distance=0;
for (k=0; k<num_input_units; k++) |{
difference = ptr inputs[k]->output - ptr_ outputs[i] [j]-
>weights (k] ;
distance += difference * difference;
} /* end for */

/* update if this is the closest */

if (distance < min_distance) ({
min_distance = distance:;
x = i; / pass location back */
*y = 3

}/* end if */

’
’

}/* end fors */
}/* end */

/***K

/* routine to update the weights of the winning neuron */
/* as well as those in the current neighbourhood. */

update_weights (x,y,t)
int x,y.,t;

{ int i,j,k,left,right,top,bottom, neighbourhood radius,gap;

/* work out the max neighbourhood size at time t */
neighbourhood_radius = (int) neighbourhood (t):

/* work out the edges of the neighbourhood */
left = x - neighbourhood_radius;
right = x + neighbourhood radius;
top = y - neighbourhood_radius;

239

Appendix M

bottom = y + neighbourhood radius;

/* check for boundary conditions */

if (left < 0) left = 0;
if (right >= net_size) right = net_size;
if (top < 0) top = 0;

if (bottom >= net_size) bottom= net_size;
/* update weights */

for (j=top:; j<bottom; j++)
for (i=left; i<right; i++) {

/* distance between chosen neuron x,y and any other neuron

13 *f
/* is used to get correct gain value at that point. */
/* find gap between neuron i,j and neuron x,y */
gap = abs (x-1i); /* gap across columns */
/* neuron may be in the same column, so check gap across
rows */

if (abs(y-j) > gap) gap = abs (y-Jj):

/* now update each weight on this neuron. */
/* delta_weight=(input-weight) *gain * /
for (k=0; k<num_input_units; k++)
ptr_outputs([i] [(j]->weights[k] +=
(ptr_inputs[k]->output - ptr_outputs(i] [j]l-
>weights [k])
* gain_term (gap,t):
}/* end for i,3j */

}/* end */
/‘k***************’k*****************************t*/
/* this is the approximated gaussian * /

float gain_term (distance,t)
int distance,t;

{ int excite;
float inhibit, gauss_height;

gauss_height = b*(1 - (float)t/(float)tmax);
inhibit = neighbourhood (t);
excite = inhibit * excitation_factor;

/* up to distance=excite, gain is excitatory, then */

/* between excite and inhibit, it is inhibitory. */
if (distance <= excite)
return (gauss_height); /* excitatory */

else return (-gauss_height/3); /* inhibitory */
}/* end */

/*******k**************t************************/

float neighbourhood (time)
int time;

{ /* neighbourhood decreases linearly with time. */
/* and becomes zero, when t=tmax. */

/* need to 'float' times to avoid int division */

240

Appendix M

return ((1 - (float)time/(float)tmax) * net size / 2);

} /* end */

/**************************i***t****************/

use_network ()
{ int i,3j, reply=1,norm;
float value;

printf ("Normalize inputs (0/1) : ");
scanf ("%d",&norm);

while (reply) {

/* get pattern to be tested */

for (i=0; i<num input_units; i++) {
printf ("Enter input %d : ",i);
scanf ("%f",&value);
ptr_inputs([i]->output = value;

}/* end */

if (norm) normalize inputs ();

/* calculate and print activation of each neuron */

/* in the output layer. */
calculate outputs ();

for (3=0; j<net_size; j++) {
for (i=0; i<net_size; i++)

printf ("%f ",ptr_outputs(i] (jl->output);
printf ("\n"):; /* get ready to print next row.

}/* end for */

printf ("\nTry net again (1/0)? ")
scanf ("%d", &reply):;
}/* end while */

}/* end */

241

xS/

Appendix M

Listing of the Perceptual Network Simulator

/**********‘k*****************************t***/

/* Perceptual Network Simulator */
/* 05th Feb 1990 */

/**/

#include <stdio.h>
#include <math.h>

FILE *fp, *fopen(); /* file usage
/* files of weights to be used

/* when using different weight files...remember to change network
/* parametres (inputs, hidden_units etc) at the point of the

/* function call.

#define distance_weights "weights_10hid 0.00005"

#define find bigger weights "weights_6hid_0.000001_a2"

#define find lower weights "weights low2b_18hid 0.000000_a2"
#define corner_ detect_weights "weights_7hid corners5_al_0.000001"
#define 11 _12 weights "weights_8hid_11 12 bigger_ 0-
1_0.000035"

#define max_links 21 /* max no. dendrites on any neuron

#define inhibitory weight -25.0 /* weight for inhibitory links

typedef enum {weighted sum, weighted product} neuron_type;
typedef enum {calculated, not_calculated} neuron_processed;
typedef enum {no_effect, add_1, negate, threshold}
pre_processing_class;

L4

2y
i)
Xy

*/
)

typedef enum {no_activation, smooth sigmoid, step, linear_1l, linear_2}

sigmoid class;

typedef struct neuron
{ float output, bias;

int num_inputs; /* variable ins, but only 1 out

neuron_processed status; /* flag whether a node has been

float weights [max_links];/* calculated or not.

struct neuron *dendrites([max links];

neuron_type neuron_class; /* i.e. weighted sum, or
product */

sigmoid_class sigmoid; /* used to decided
which activation */

pre_processing_class pre_processing; /* func, to use and
what to do to */

} neuron; /* the inputs before

processing */
typedef struct network
{ int num_inputs, num outputs;
neuron *ptr outputs[max_links], *ptr_inputs [max_links];
} network;
typedef char filename [40];

/* function declarations */
network *create_parallel net (), *create_corner_net ();

/***x****t* MAIN **kkkkkkkkkkrxrrkkkkxkkkkkkkkx /

242

L
2
f

Appendix M
main ()
{ network *ptr_corner net, *ptr parallel net;
filename input_file; B
int 1;

printf ("Creating network....\n");
ptr_parallel net = create_parallel net ();
ptr_corner_net create_corner_net (ptr_parallel net);

Printf (M
- ====\n");

printf (" I - / \\ acute
obtuse right\n");

Printf (M——— e
———————————————————— \n");

printf ("Enter filename or exit.... ");
scanf ("%s", input_file);

while (strcmp(input file, "exit"))
{
load_inputs_from file (ptr_parallel net, input_file);

use_network (ptr _parallel net);

use_network (ptr_corner_ net);
printf ("\n");

printf ("Enter filename or exit.... ");
scanf ("%s", input file);

}/* end while */
}/* end */
/*********** END MAIN *****t****t************/

restore_node (ptr_node)
neuron *ptr_node;
{ int i;

/* first restore bias */
fscanf (fp, "%£\n", & (ptr_node)->bias):

for (i=0; i<ptr_node->num_inputs; i++)
fscanf (fp, "$£\n", & (ptr_node)->weights[i]);

}/* end */
/*************************t******************/
restore network weights (ptr_network, weights_file)

network *ptr_network;
filename weights_file;

{ neuron *ptr node;
int i;

/* have this as a parameter? */
fp=fopen (weights_file,"r");

/* get output unit weights */
for (i=0; i<ptr_network->num outputs; i++)
restore_node (ptr_network->ptr_outputs([i]);

243

/* get hidden unit weights */

Appendix M

for (i=0; i<ptr_network->ptr outputs([0]->num_inputs; i++)
restore_node (ptr_network->ptr_outputs[0]->dendrites[i]):

fclose (fp):
}/* end */

f*****************************t**************/

network *gen network unit (inputs, outputs)
int inputs, outputs;

{ network *ptr node;

#ifdef DEBUG
printf ("In gen_network unit\n");
#endif

ptr_node=(network *)malloc (sizeof (network));

/* initialise network */
ptr_node->num_inputs =inputs;
ptr_node->num outputs=outputs;

#ifdef DEBUG
printf ("Out of gen_network_unit\n");
#endif

return (ptr_node);
}/* end */

/**;

neuron *gen_neuron_unit (inputs, sig _class, pre_proc_class,
neuron_proc_class)

int inputs;
sigmoid_class sig_class;
pre_processing class pre_proc_class;
neuron_type neuron_proc_class;

{ neuron *ptr node;
int i;
#ifdef DEBUG
printf ("In gen_neuron unit\n");
#endif

ptr_node=(neuron *)malloc (sizeof (neuron)):

/*initialise neuron */

ptr_node->num inputs =inputs;
ptr_node->sigmoid =sig_class;
ptr_node->pre_processing =pre_proc_class;
ptr_node->status =not_calculated;
ptr_node->output =0.0;
ptr_node->neuron_class =neuron_proc_class;

/* default value for weights is 1 */
for (i=0; i<max links; i++)
ptr_node->weights([i]=1;

/* default value for bias is 0 */
ptr_node->bias=0;

244

Appendix M

#ifdef DEBUG
printf ("Out of gen_neuron_unit\n");
#endif

return (ptr_node) ;
}/* end */

/t**********t**t**l’**************************/

/* the following network generates a 16 input, 1 output */
/* 0 hidden layer net, with fixed weights -1, and bias */
/* +1.5. Its output will be used to inhibit 1/s and */
/* 11 12 net outputs when no. of inputs is 0 or 1 */

/* nb. to use the output of this neuron as an excitatory*/
/* link, change the weights to +1, and the bais to =-1.5 */

network *create_count_detector ()
{ int i;
float weight= -1, bias= 1.5;
network *ptr_ network;

ptr_network=gen_ network_unit (16,1);

/* inputs */
for (i=0; i<16; i++)
ptr_network-
>ptr_inputs[i]=gen_neuron_unit(l,no_activation,threshold,weighted_sum)

/* output and bias */

ptr_network-
>ptr_putputs[0]=gen_neuronﬁunit(16,step,no_effect,weighted_sum):

ptr_network->ptr outputs[0]->bias=bias;

/* wire up inputs to output */
/* and set weights */
for (i=0; i<16; i++)
{
ptr_network->ptr_ outputs([0]->dendrites[i]=ptr_network-
>ptr_inputs[i];
ptr_network->ptr outputs[0]->weights[i] = weight;
}/* end for */

return (ptr_network);
}/* end */

/********************i***t***t*************i*******t****t***t/

/* To add up the sig. of acute, obtuse and right angled */
/* corners, a 21 input 1 output net, having no hidden units */
/* is needed. The weights are all +1, there is no bias, and */

/* no activation function. */
/**/

network *create_adder ()
{ network *ptr network;
int i, num_inputs=21;

ptr_network=gen_network unit (num inputs,1l);
/* inputs */
for (i=0; i<num_inputs; i++)
ptr_network-
>ptr_inputs([i)=gen_neuron_unit (1,no_activation,no_effect,weighted sum)

245

Appendix M

/* output */

ptr_network-
>ptr_outputs[0]=geu_neuron_unit(num_inputs,no_activation,no effect,wei
ghted_sum) ; -

/* wire up dendrites of output neuron to inputs */
for (i=0; i<num L_inputs; i++)
ptr_network->ptr _outputs[0]->dendrites[i] =ptr_network-
>ptr_inputs([i];

return (ptr_network) ;
}/* create_adder */

/*******t**********t******t*****************1/

network *create _network from neurons
(inputs, hldden, outputs, weights file, sig class, pre_proc_class)

int inputs, hidden, outputs;
sigmoid class sig_class;
pre_processing _class pre_proc_class;
filename weights file;

{ network *ptr network;
neuron *ptr_ hidden;
int i,73;

#ifdef DEBUG
printf ("In create_network_from neurons\n");
#endif

ptr_network=gen_network unit (inputs, outputs);

/* wire up output units */
for (i=0; i<outputs; i++)
ptr_network->ptr_outputs[i]=gen_neuron_unit (hidden,
sig_class, no_effect, weighted_sum);

/* wire up input units */
/* inputs have only 1 dendrite, */
/* and require no thresholding. */
for (i=0; i<inputs; i++)
ptr_network->ptr_inputs(i]=gen_neuron_unit
(1,no_activation,pre_proc_class,weighted sum);

/* wire up hidden units */
for (i=0; i<hidden; i++) {
ptr_hidden=gen_neuron_unit (inputs,sig_class,
no_effect,weighted sum);

/* connect dendrites to input units */
for (j=0; j<inputs; j++) .
ptr_hidden->dendrites(j]=ptr_network->ptr_inputs(j];

/* connect to output units */
for (j=0; j<outputs; Jj++) .
ptr_network->ptr outputs([j]->dendrites(i]=ptr_hidden;

}/* end for */
246

Appendix M
restore network_weights (ptr_network,weights file);

#¥ifdef DEBUG
printf ("Out of create_network_from neurons\n");
#endif

return (ptr_network);
}/* end */

/**********************t*****t***************/

create_part_filter net
) (ptr_output_neuron, ptr_input_neurons, inputs, hidden, outputs,
weights_file, sig_class, pre_proc_class)

neuron *ptr_ output neuron,
*ptr_input neurons[4];

int inputs, hidden, outputs;
sigmoid class sig_class;
pre_processing_class pre_proc_class;
filename weights file;

(network *ptr_root, *ptr_left, *ptr right;

#ifdef DEBUG
printf ("In create_part_filter net\n");
#endif

/* generate 3 network units */

ptr_root =create_network_from neurons (inputs, hidden, outputs,
weights_file, sig_class, pre proc_class):

ptr_left =create network from neurons (inputs, hidden, outputs,
weights_file, sig_class, pre_proc_class);

ptr_right=create_network_ from neurons (inputs, hidden, outputs,
weights_file, sig_class, pre_proc_class);

/* top neuron must be connected to some other neuron above */
/* generally output layers have only 1 neuron, hence [0] */
ptr_output neuron->dendrites(0]=ptr_root->ptr_outputs[0]:

/* likewise for left descendent */
ptr_root->ptr_inputs([0]->dendrites([0]=ptr_left->ptr_outputs(0];

/* and right descendent */
ptr_root->ptr_inputs(1]—>dendrites[0]=ptr_right—>ptr_outputs[OI;

/* store pointers to the 4 available input neurons */
ptr_input_neurons([0]=ptr_left->ptr inputs[0];
ptr_input_neurons[l]=ptr_ left->ptr_inputs(1];
ptr_input_neurons[2]=ptr_right->ptr_inputs([0];
ptr_input_neurons[3]=ptr_right->ptr_inputs([1];

#ifdef DEBUG
printf ("Out of create_part_ filter net\n");
#endif

}/* end */

/************************t*******************/

network *create_filter net
(inputs, hidden, outputs, weights_file, sig_class, pre_proc_class)

247

. ‘ Appendix M
int inputs, hidden, outputs;

sigmoid_class sig_class;

pre_processing class pre_proc_class;

filename weights_file;

{ network *ptr network;
neuron *ptr_;eurons{4],
*ptr_input neurons(4],
*durmmy ;
int num_input units=16,
num_output_units=1,
i;37
#ifdef DEBUG
printf ("In create_filter net\n");
#endif

dummy=gen_neuron_unit (1,0,0,weighted sum) ;
ptr_network=gen network_unit (num_input_units,
num_output units);

/* create top two levels */
create part filter net

(dummy, ptr neurons, inputs, hidden, cutputs,weights file,sig class,pre_pr
oc_class);
ptr_network->ptr outputs[0]=dummy->dendrites(0]:

/* create bottom two levels */
for (i=0; i<4; i++) {
create_part_filter_ net

(ptr_neurons[i],ptr_input_neurons, inputs, hidden, outputs,weights_file,s
ig_class,pre_proc_class);
for (3=0; j<4; j++)
ptr_network->ptr_inputs(i*4+j]=ptr_input_neurons[j];
}/* end for */

/* number of dendrites on the input neurons must be zero */
for (i=0; i<num_input_units; i++)
ptr_network—)ptrﬂinputs[i]—>num_inputs=0;

#ifdef DEBUG
printf ("Out of create_filter net\n");

#endif

return (ptr_network);
}/* end */

/**t***’/

network *create 11 12 net ()
{ network *ptr_network, *ptr_bigger_ than,
*ptr_less_than, *ptr_1l1 12;
int i;
#ifdef DEBUG

printf ("In create_ll 12 net\n");
#endif

ptr_network=gen network_unit (16,1);

ptr_less_than =create_filter net
{2,18,1,find_lower_weights,linear_Z,negate);
ptr_bigger_than =create_filter net

248

. . . . Appendix M
(2,6,1,find bigger_weights,linear_2,no_effect);
ptr_11 12 =create_network_from neurons
(2,8,1,11_12 weights,smooth_sigmoid,no_effect) ;

/* overall inputs will come from ptr bigger than */
/* wire up input units from ptr_less_than - X/
/* to point to input units in ptr bigger than */

for (i=0; i<ptr_bigger_than->num_inputs; i++) |
ptr_less_than->ptr_inputs(i]->dendrites[0]=ptr bigger than-
>ptr_inputs(i]; a B
ptr_less_than->ptr_inputs(i]->num_inputs=1;
}/* end for */ -

/* wire up the 11 12 net */

/* 11_12 inputs X
/* remember, lst input= =/
/* biggest value */

ptr_11 12->ptr inputs([0])->dendrites[0]=ptr_bigger than-
>ptr_outputs(0]; B -

ptr_11 12->ptr inputs[l]->dendrites([0]=ptr_less_than-
>ptr_outputs(0]; B -

/* insert this whole network into ptr network */

/* inputs */
for (i=0; i<ptr_network->num_inputs; i++)
ptr_network—>ptr_inputs[i]=ptr_bigger_than->ptr_inputs[i];

/* output */
ptr_network->ptr_outputs[0]=ptr_l1l 12->ptr outputs(0];

#ifdef DEBUG
printf ("Out of create_ll_ 12 net\n");
#endif
return (ptr_network) ;
}/* end */

f************************t*****ti************/

network *create_single_orientation_net (num_inputs, num outputs)
int num_inputs, num_outputs;

{ network *ptr_ network, *ptr_ll 12, *ptr_distance, *ptr_counter;

int i;

ptr_network =gen_network unit (num_inputs, num_outputs);
ptr_counter =create_count_detector ();

ptr_11_12 =create_1l1_12 net ()

ptr_distance =create_network_from neurons
(16,10,1,distance_weights, smooth_sigmoid,threshold)

/* create inhibitory link into ptr_11_12 */
ptr_ll_l2->ptr_putputs[0]->num_inputs++;

L= ptr_ll_12—>ptr_outputs[0]—>num_inputs—l;
pt:_llﬂl2->ptr_putputs[0]~>weights[i]= -20.0;
ptr_ll_12->ptr_putputs[0}—>dendrites[i]=ptr_counter—

>ptr_outputs (0]

/* create inhibitory link into ptr_distance */

249

Appendix M
ptr_distance->ptr_outputs[0]->num inputs++;
i= ptr_distance->ptr_outputs(0]->num_inputs-1;
ptr_distance->ptr_outputs([0]->weights[i]= inhibitory weight;
ptr_distance—>ptr_outputs[0]->dendrites[i]=ptr counter-
>ptr_outputs([0]; =

/* inputs to ptr_distance come from ptr 11 12 inputs =/
for (i=0; i<ptr_ll1_12->num inputs; i++)
ptr_distance-)ptr_inputs[i]->dendrites[0]=pt: 11 12-
>ptr_inputs([i]; -7

/* inputs to ptr_counter also come from ptr 11 12 inputs */
for (i=0; i<ptr_11_l2->num inputs; i++) -7
ptr_counter->ptr_ inputs[i]->dendrites(0]=ptr 11 12-
>ptr_inputs[i]; -

/* insert these three nets into ptr network *f

/* inputs */ B

for (i=0; i<ptr_network->num _inputs; i++)
ptr_network->ptr_ inputs(i]=ptr_l1_12->ptr_inputs[i];

/* outputs */
ptr_network->ptr outputs[0]=ptr_distance->ptr outputs[0];
ptr_network->ptr outputs[l]=ptr_1l1_12->ptr outpucts(0];

return (ptr network);
}/* end */

/*************t**********************t*t*****/

network *create_parallel net ()
{ network *ptr_network, *ptr_1l orient;
int i,j, num orients=4, input_size=16, inputs_per_mltplr=2;
neuron *ptr multipliers(4]; /* used to multiply together 1/s
and 11 12 */

ptr_network=gen_ network unit (input_size*num orients,
num_orients);

for (i=0; i<num orients; i++) {
ptr_1 orient=create_single_orientation net (input_size,
inputs_per mltplr);

/* generate multipliers. note: weights and bais set to */

/* 1.0 and 0.0 resp. by default. */

ptr multipliers[i]=gen_neuron_unit
(inputs_per_mltplr,no_activation,no_effect,weighted product);

/* wire up inputs */
for (j=0; j<ptr_1l_orient->num_inputs; j++)
ptr_network->ptr_inputs[ptr_l_orient->num_ inputs*i +
jl=ptr_1 orient->ptr inputs(jl:

/* wire up multipliers. */
for (j=0; j<2; j++) ptr_multipliers(i)-
>dendrites([jl=ptr_1 orient->ptr outputs[j];

/* wire up output */
ptr_network->ptr_outputs(i]=ptr_multipliers[i];

}/* end for */
return (ptr_network);

250

Appendix M
}/* end */

/***********t*************t*******t**********,

network *create_single rf net ()
{ network *ptr network, *ptr_single rf net, *ptr_corner_ detector;

neuron *ptr_ acute, *ptr_obtuse, *ptr right;
int i, num_inputs=16, num_outputs=3; -
ptr network=gen_network unit (num_inputs, num outputs);

ptr_single rf net=create_ll 12 net ();
ptr*cornerudetectorﬂcreate_network_from neurons

(16,7,3,corner_detect_weights,linear_l,threshold):

/* create three 'AND' gates, one each for |
/* acute, obtuse and right angled corners. x/
/* each has 2 inputs, no thresholding, performs */
/* weighted_product and doesn't pre process inputs. xf
/* by default, weights are=1, and bias=0. x/

ptr_acute =gen_neuron_unit
(2,no_activation,no_effect,weighted_product):

ptr_obtuse=gen_neuron_unit
(2,no_activation,no_effect,weighted product) ;

ptr_right =gen_neuron_unit
(2,no_activation,no_effect,weighted product);

/* wire up the inputs on these, one goes to corner_detector */
/* and the other to the single_rf net. */

ptr_acute ->dendrites[0]=ptr_corner_detector->ptr outputs([0];
ptr_obtuse->dendrites[0]=ptr_ corner_detector->ptr outputs[1];
ptr_right ->dendrites[0]=ptr_corner_ detector->ptr outputs[2];
ptr_acute ->dendrites([l]=ptr_single rf net ->ptr outputs[0];
ptr_obtuse->dendrites([l]=ptr_ single rf net ->ptr_outputs(0];
ptr_right ->dendrites[l]=ptr_single rf net ->ptr outputs(0];

/* inputs to corner detector come from inputs to single rf */
for (i=0; i<ptr_single_rf net->num inputs; i++)

ptr_corner_detector->ptr_inputs[i]-
>dendrites [0]=ptr_single_rf net->ptr_ inputs[i];

/* because single rf net is constructed from filter_net *f
/* input units in ptr_single_rf net have num_inputs=0 *f
/* this will cause problems when connecting to */
/* the parallel net. this value must be set to 1. */

for (i=0; i<ptr_single rf net->num_inputs; i++)
ptr_single_;f_net~>ptr_inputs{i]—>num_input3=1:

/* insert this net into ptr_ network ¥/

/* inputs */

for (i=0; i<ptr_network->num_inputs; i++)
ptr_petwork—)pt:_inputs[i]=ptr_sing1e_rf_net—>ptr_inputs[i];

/* outputs */ .

ptr_network->ptr_ outputs[0]=ptr_acute;
ptr_network->ptr outputs[l])=ptr_obtuse;
ptr_network->ptr_outputs(2]=ptr_right;

return (ptr_network);

251

Appendix M
}/* end */

/*******t****t****t*******t**************t**t/

int in_range (i, j)
int i,3:
{ if ((i>-1) && (i<4) && (3>-1) &s& (j<4))

return (1);
else return (0);

}/* end */

/*********t**t**‘k**********************t*****/

wire up_rf (ptr_parallel, ptr_single rf, x,y)
network *ptr parallel, *ptr_single_rf;
int X,¥: /* location of top_left on 4*4 grid */

{ int i, top_left, top_right, bottom left, bottom right;
/* need to convert ptr_single_rf inputs to parallel net

locations */
/* eg. given top_left of rf, find which input this is actually

X/
/* referring to.
%/
top_left =x+4*y;
top_right =x+l+4*y;
bottom left =x+4* (y+1) ;
bottom right =x+1+4*(y+1);
/* wire up inputs only if in range *y
for (i=0; i<4; i++) /* four orientation planes */
{
if (in_range (x,y)) /* x,y is top_left */

ptr_single_rf->ptr_ inputs[i*4+0]->dendrites[0]}=ptr_parallel-
>ptr_inputs([i*l6+top_left];

else

ptr_single_rf->ptr_inputs([i*4+0]->num_inputs=0;

if (in_range (x+1,y)) /* x+1,y is top_right */

ptr_single_rf->ptr_ inputs[i*4+1]->dendrites[0]=ptr_parallel-
>ptr_inputs[i*1l6+top right];

else

ptr_single rf->ptr_inputs[i*4+1]->num_ inputs=0;

if (in range (x,y+1)) /* x,y+1 is bottom left */

ptr_sizgle_rf—>ptr_inputs[i*4+21->dendrites[0]=ptr_parallel-
>ptr_inputs[i*l6+bottom left]:

else

ptr_single_rf->ptr inputs(i*4+2]->num_inputs=0;

if (in_range (x+1,y+1)) /* x+1,y+l=bottom right */

ptr_siEQle_rf->ptr_inputs[i*4+3]—>dendrites[0}=ptr_parallel-
>ptr_inputs[i*16+bottom_right];

else :

ptr_single_rf->ptr_inputs[i*4+3]->num_inputs=0:

)/* end for */

}/* end */
252

Appendix M

/*********t***********I*****it**t*t**t*******;

int rf required (x,y)
int x,y;

{ /* rf not required at corner of a square going from */

/* (-1,-1) to (3,3) =
if (((x == -1) && (y == -1)) ||

((x == -1) && (y == 3)) ||

((x == 3) && (y == -1)) ||

((x == 3) && (y == 3))

) return (0);
else return (1);

}/* end */
/*‘k***‘k***************‘k**********************,
/* Corner net has three outputs. */
/* 1) tot. sig. of acute corners *y
/* 2) tot. sig. of obtuse corners x/
/* 3) tot. sig. of right angled corners ot

/**************t******#************i*********/

network *create_corner_net (ptr_parallel)
network *ptr_parallel;

{ int i,3,k=0,1;
int num_outputs=3;
network *ptr network, *ptr single rf, *ptr_ adder[3]:

/* no inputs; they all come from ptr_parallel net o
/* 3 outputs: see above comment in box. *f

ptr_network=gen_network_unit (0,num_outputs);

/* create adders and wire up their outputs to ptr network */
for (i=0; i<num_outputs; i++) {
ptr_adder([il=create_adder();
ptr_network->ptr_outputs[i]=ptr_adder(i]->ptr_outputs([0];
}/* end for */

/* loop for 25 times */
for (j= -1; j<4; j++)
for (i= -1; i<4; i++) |
if (rf_required(i,3j)) | /* miss out 4 */
ptr_single_rf=create_single rf net ();
wire up rf (ptr_parallel, ptr_single_rf, i,j):

/* now wire up outputs from this rf (3 outputs) */

/* to the corresponding inputs on each adder. x/

for (1=0; l<num outputs; 1l++)

ptr adder([l]->ptr_inputs(k]->dendrites[0]=ptr_single rf-

>ptr_outputs([1l];

/* k is a 'valid rf' count */

k++;

}/* end if */
}/* end for */

return (ptr_network):
}/* end create_corner_net */

253

Appendix M

/***********t***************k****************/

float square sigmoid(x,a)
double x; /* -a & +a are the corners of the
float a; /* square threshold function.

{ if (x>= a) return(l):; /* threshold at 1
else if (x<=-a) return(0); /* threshold at 0

else return(0.5*%(1+x/a)); /* linear func in between
}/* end */

/**********************************t*********/

float sigmoid (x)
double x;

{ return 1/ (l+exp(-x));
}

/**/

calculate outputs (ptr_node) /* recursively goes down network
neuron *ptr node;

{ double total:
int i;
float input;

#ifdef DEBUG2
printf ("In calculate_ outputs\n");
#endif

/* correctly set initial value of total */
if (ptr_node->neuron_class == weighted sum) total =0.0; else
total =1.0;

for (i=0; i<ptr_node->num inputs; i++)
{
if ((ptr_node->dendrites(i]->num_inputs != 0)
&& (ptr_node->dendrites[i]->status == not_calculated))
calculate outputs(ptr_node->dendrites([i]);

input= ptr_ node->dendrites(i]->output;

switch (ptr_node->dendrites(i]->pre_processing)

{
case no_effect % break;
case add 1 :input += 1.0; break;
case negate :input *= -1.0; break;
case threshold :input = input>0.0 ? 1:0; break;

}

if (ptr_node->neuron_class == weighted sum)
total += input * ptr node->weights(i];
else total *= input * ptr node->weights[i];

}/* end for */

/* activation function */
switch (ptr_node->sigmoid)
{

case no_activation : ptr_node->output = total; break;
case smooth_sigmoid : ptr_node->output = sigmoid (total +
ptr node->bias); break;

case step : ptr_node->output = square_sigmoid (total

254

*/

x/
i
*/

*/

A |

Appendix M
+ ptr_node->bias, 0.0); break;
case linear_ 1 : ptr_node->output = square sigmoid (total
+ ptr_node->bias, 1.0); break: -
case linear 2 ¢ ptr_node->output = square_sigmoid (total

+ ptr_node->bias, 270); break;
}

ptr_node->status=calculated;
#ifdef DEBUG2

printf ("Out calculate outputs\n"):
#endif

} /* end calculate_ outputs. */

/*********t**t*t******t**t************t******/

reset_network status (ptr_node)
neuron *ptr_ node;

{ int i;

#ifdef DEBUG2
printf ("In reset_network_status\n");
#endif

for (i=0; i<ptr_node->num_inputs; i++)
{
if ((ptr_node->dendrites(i]->num_inputs != 0)
&& (ptr_node->dendrites([i]->status == calculated))
reset_network status (ptr_node->dendrites[i]):

}/* end for */
ptr_node->status=not_calculated;
#ifdef DEBUG2
printf ("Out of reset_network_ status\n");
#endif
}/* end */

/****’*******t********************************/

load_inputs_from file (ptr_network, input_file)
network *ptr_ network;
filename input_file;

{ int i;
float value;

fp=fopen (input_file,"r");
for (i=0; i<ptr network->num_inputs; i++)

{
fscanf (fp,"%f",&value);

ptr_network->ptr_inputs([i]->output=value;
ptr_petwork-)ptr_inputs{i]—>status=calculated;
}/* end for */
fclose (fp);

}/* end */

255

'
e = e S P |

/**************t*******t**t****t***t*********/

use_network (ptr_network)
network *ptr_ network;

{ int 1i;
float wvalue;
neuron *ptr neuron;

/* calculate outputs x/f
for (i=0; i<ptr_network->num outputs; i++)
{
ptr_neuron=ptr_ network->ptr outputs[i];
calculate_outputs(ptr_neuron);
printf ("%11£f",ptr_network->ptr_outputs[i]->output);
}/* end for */

/* reset network status */
for (i=0; i<ptr network->num outputs; i++)
{
ptr_neuron=ptr network->ptr_outputs[i];
reset_network_ status (ptr_neuron);
}/* end for */
}/* end */

/k************t********k*****************t***/

256

Appendix M

