Aston University

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

THE IMPLEMENTATION OF A FUNCTIONAL
QUERY LANGUAGE FRONT-END TO A
RELATIONAL DATABASE SYSTEM

VOLI

HANIFA UNISA SHAH

Doctor of Philosophy

THE UNIVERSITY OF ASTON IN BIRMINGHAM
June 1989

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with its author and that no
quotation from the thesis and no information derived from it may be published

without the author's written consent.

The University of Aston in Birmingham

THE IMPLEMENTATION OF A FUNCTIONAL
QUERY LANGUAGE FRONT-END TO A
RELATIONAL DATABASE SYSTEM

Hanifa Unisa Shah
Doctor of Philosophy
1989

Summary

Database systems have a user interface one of the components of which will
normally be a query language which is based on a particular data model.
Typically data models provide primitives to define, manipulate and query
databases. Often these primitives are designed to form self-contained query
languages. This thesis describes a prototype implementation of a system which
allows users to specify queries against the database in a query language whose
primitives are not those provided by the actual model on which the database
system is based, but those provided by a different data model. The
implementation chosen is the Functional Query Language Front End (FQLFE).
This uses the Daplex functional data model and query language. Using FQLFE,
users can specify the underlying database (based on the relational model) in
terms of Daplex. Queries against this specified view can then be made in
Daplex. FQLFE transforms these queries into the query language (Quel) of the
underlying target database system (Ingres). The automation of part of the Daplex
function definition phase is also described and its implementation discussed.

KEY WORDS: Functional Query Languages
Database Management Systems

QW]

To
my mother Zohra,
my husband Babar,
and the memory of my father Hanif.

ACKNOWLEDGEMENTS

This research and thesis have been completed with encouragement and

assistance from various sources.

At Aston University - I am indebted to my supervisor David Avison for his
constant encouragement and advice, often through difficult circumstances. His
help and guidance have been invaluable. I would also like to thank, Dr Charles
Hunt, Dr lan Johnson, Dr Mike Parkes and Dr Nadia Bendjeddou for their

helpful comments regarding this research and thesis.

At Briush Telecom - I am grateful to my manager Bilvir Chander for her support
and encouragement and for allowing me the necessary flexibility in my work
schedule to enable me to complete this research and thesis. My thanks to Robert
Martin and Adrian Bell for suggesting the idea of loaning the necessary
equipment from BT to complete this research and to Steve Bullock, Tony
Goswell, and Mike Wild for providing this equipment. I am extremely grateful
to Steve Woods for his assistance in setting up the hardware and software
environment and getting it all to work successfully. My thanks also to my

mentor at British Telecom, Bill McCarney for his encouragement.

At home - none of this would have been possible without the support of my
mother, mother-in-law, brothers, sisters and their families. I would like to thank
them for looking after my children on countless occasions so that I could
continue with this research. Finally my thanks to my husband Babar, for his
tireless support and constant encouragement. I am grateful to him, my daughter

Amara and my son Haseeb, for putting up with the demands of this research and

thesis on all of our lives.

LIST OF CONTENTS

VOL I
CHAPTER 1: INTRODUCTION. ...t 11
CHAPTER 2: QUERY LANGUAGES ..o, 18

]
Z
=
o
S
:
o
Z
o

2.2 QUERY LANGUAGE FEATURES....coiiiiiiieeiiire e 20
22,1 DataModelsouiiiiiiiiiii i 20
2.2.1.1 Relational Model............ooooii. 22
2.2.1.2 Network and Hierarchical 24
2.2.1.3 Other Data Models........ccoooiiiiiin. 24

2.2.2 SIMPHCILY ¢t e 27
2.2.3 Completeness it 28
2.2.4 Nonproceduralitycoooiiiiiiiiiiiiiii 29
2.2.5 Support for Higher Level Languages.................... 30
2.2.6 Ease of EXIensioncoviiiiiiiiiiii 30
2.2.7 FOIImMAl. . iuiiii i 30
2.2.8 Availability..cooooiii 31
2.3 EXAMPLE QUERY LANGUAGE INTERFACES.................. 31
2.3.1 DL/1 (Data Language/l)....ooooviiiiiiiiniiiiiinnnn. 31
2.3.2 Codasyl (DML) ...oviiiiiiiii 34
2.3.3 Relational AIgebracoouviiiiiiiiiiii 37
2.3.4 Relational Calculusouviniiniiiiiiii 40
2.3.5 QUEL . iieiie e 42
2.3.6 SOl 44
2.3.7 Query-by-Example (QBE) ..o, 47
238 GOING . ottt 49
230 CUPID ..ttt 52
2310 Foral LP. .ot 54

2.3.12 DapleX..cuiiniii i 61

2.4 CONCLUSIONS ...ttt 65
CHAPTER 3: THE IMPLEMENTATION ENVIRONMENT........... 68
3.1 INTRODUCTION ...ttt 68
3.2 INGRES . i 68
3.2.1 Background......oooiiii e 68

3.2.2 Invoking Ingres ..o 69

3.2.3 SHUCIUTE L ittt 69

324 Quel 70
3.2.4.1 DataDefinition.........cccoiiiiiiiiiii ... 70

3.2.4.2 Retrieval Operations............ e 70

3.2.4.3 AZEregationuiii it 73

3.2.4.4 Aggregate FunctionS ... 74

3.2.4.5 Quantificationcoiieeiiiiiiiiiiiiia 74

3.2.4.6 Updates...coviiiniiiiiii i 76

B3.2.4.7 VIEBWS .ttt 77

3.3 DA PLE X ittt 79
3.3.1 Background.....cooiiiiiiiiiiii 79

3.3.2 ERHHES .trintinteeeteetee ettt 79

3.3.3 FUNCHONS teivitiitiiiiiiiiii e . 80

3.3.4 DataDefiniton ...oooueeiiiiiiiiiiiiiii e 81

335 Derived FUNCHONS .. vttt 84

3.3.6 Type Hierarchy. ..., 84

337 Inverse FUNCHONS.....oiiuiiiiiiiiiiiiii e 86

338 OTdOT ottt 86

3.3.9 Data Manipulation.........cooviiiiiiii 86

33.10 Reference Variables........ooooiiiiiiiiiii s 88
3.3.11 St EXPreSSIONS .. outuiniuiteneteniietetetiiiiei e 88

3.3.12 Quantified EXPressions.............cccoviviiniveennenennnnn. 88
3.3.13 Singleton EXpression..........oco.oueieiieiiniiiieieanannnn. 89
3.3.14 A gOregation. . oiuiie e 89
3.3.15 Derived Data......cooooiiiiiiii 90
3.3.16 Constraint Specification...............cooiiiiiiiiiiiiinnnnn. 92
3.3.17 Database UPdateoooviiiiiiiiiiiiiiiiiieeieeeaneeenes 93
3.4 CONCLUSIONS ..ot e 94
CHAPTER 4: THE FRONT-END SYSTEMooiiiiiiiiiii, 96
4.1 INTRODUCTION . ..o 96
4.2 SYSTEMINVOCATION.....ooiiiiiiiiiiiiiiii 98
4.3 MONITOR .ot 99
4.4 DATA DEFINITION AND MANIPULATION.....cccccceeeeinnnn 103
4.5 LEXICAL ANALYSIS ..o 105
4.6 SYNTAX ANALYSIS. . i 106
4.7 SEMANTIC ANALYSIS..cooi 110
4.7.1 Data Definition - Relational ... 111
4.7.2 Data Definiton - Functional ... 112
4.7.3 Data Manipulation...........coooiiiiiiiiiiii 113
4.8 TARGET LANGUAGE GENERATION.....cccooiiiiiiiiiiannn. 113
4.8.1 Phase One Transformationsccooveviuiiiniiaiinn.n. 114
4.8.2 Phase Two Transformations...............oooeiiiii, 117
4.8.3 Phase Three Transformationsoocoieiiiiiiii., 119
4.9 DATABASEACCESS . ..ot 121
410 DATA DEFINITION - INFORMATION STORAGE............... 123
411 SECURITY AND INTEGRITY ..eviiiiiiie 127
4.12 ERROR HANDLING....oittitiiiii e 128
4.13 LIMITATIONS Lottt 129
4 14 AUTOMATIC FUNCTION GENERATION ..., 131
415 CONCLUSIONS ..t 132

CHAPTER 5: FQLFE SYSTEM USAGE ..ottt 134
5.1 TESTDATABASEooouiii e 134
5.2 DATABASE QUERYING........oiiuiiiiiieiie e 137

5221 QUETY Leiiiiiiiiiii i 137
5. 2 QUETY 2 138
5. 23 QUBTY B 139
524 QUETY 4ot 141
5.2 QUBTY St 141
5.2.6 QUETY Bt 142
5.2 T QUETY Tt 142
5.2.8 QUETY Bttt e e 143
5.2.9 QUEry O 144
52,10 Query 10 .o e 145
5211 Query 1l oo 146
5212 Query 12 .o 147
5.2.13 QUery 13 148
52,14 Query 14 . 149
5.2.15 Query 15 i 149
5.2.16 QUEry 16 . cuiniiiiii i 150
5217 QUEry 17 oo 151
5.2.18 Query 18 . e 152
5.2.19 Query 19 . i 153
5220 QuUery 20 .. oieiii 154
5221 QUETY 21 coniiiii i 154
5.2.22 QUEIY 22 oot 156
5.2.23 QUEIY 23 oottt 157
5.2.24 QUEIY 24 .o 157 |
5.2.25 QUEIY 25 oottt 158
5.2.26 QUEIY 26 ceuieiniiiii i 159

5.2.27 QUETY 27 oo 160

5.2.28 QUeTy 28 .. 160

5229 QUEry 29 .. 161

5.2.30 Query 30 162

5.3 CONCLUSIONS ..ot 163
CHAPTER 6: CONCLUSIONS ... 164
REFERENCES (e et 169

VOL II

APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:

Daplex Syntax 3
Lex Specification.......................o i, 5
Yacc Specification...............ooiiiiiii 18
Programs for the FQLFE System.................... 37
Results of Example Queries............................ 287

Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:

Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:

Figure 4.13:

Figure 5.1:
Figure 5.2:
Figure 5.3:

LIST OF FIGURES

Front-end System and DBMS Interaction............c........... 14
FQLFE and DBMS Interfacec.cooovuiiiiiniianann... 15
FOL SChema. ..o e, 56
Ingres Process Structureoocooiiiiiii i 70
Daplex Data Model - The University Database 78
Data Descriptionot i 80
Subtypes, Supertypes Declarations...........cocevveiiiinianenn. 85
Type Hierarchy. ..o 85
System OVerview ... 97
Catalogue Information Data Structurecoooveviiiciiia 99
File Structure for Catalogue Information.............ccccoeeeiee. 99
Input Handlingooioiiiiii 100
Basic FQLFE functioncoceviiiiiiiiiiiiiiiiiiceeien i 103
Query Transformation...........ooooiiiiiiii i 104
Lexical AnalysSiS.....ooouiiiiiiiiiii 105
Syntax Analysis.....o.ovuiiiiii 106
Example Parse Tree......ccoooooiiiiiiiiii, 109
Node Structures of deflist, condlist, predlist and forlist 118
Node Structures of linklist, rangelist and varlist................. 119
System Interaction with Ingres.... ..., 122

Node Structures of base, nonbase and derived

FUNCHON LISTS .ttt eie e e e et et e eaas 124
The Relational Description of the Database 134
Daplex Description of the Relatonal Database 135
Daplex Description of the Functional View....................... 136

10

CHAPTER 1

INTRODUCTION

A database exists because it has been perceived to be necessary to record some
information. This information is stored as data which will be used at a later stage
when required, for, 'the purpose for all data-base structuring is retrieval: retrieval
for output, retrieval for decision-making, retrieval for update' (Bachman, 1973,
p39). A darabase system or database management system (DBMS) is a software
system that provides the facilities to store and maintain the database and through

which access to the stored data is gained.

One of the ways in which the information is used is through a query language
interface. Chamberlin (1976, p49) refers to this as a 'stand-alone language in which
an end-user interacts directly with the database management system'. This user
interface is now considered an essential component of the database environment. It
exists regardless of the underlying technology of the DBMS, though its exact form
will vary from system to system. A significant problem of query language interfaces
is that effective use depends to a large extent on the user understanding the data
model on which it is based. The data model (Brodie, 1984) is a description of the

data and its relationships.

There are other forms of user interface. A data sublanguage is a set of database
operators intended to be embedded in a host programming language. A typical data
sublanguage will be at a lower level of abstraction than a query language and
therefore useful to a narrower range of users. Nevertheless, the same basic
operators can serve both as a data sublanguage and as a query language. In many
modern DBMS, the stand-alone query language is essentially the same as its data
sublanguage embedded in a host language. For example in DB2 (Date, 1986), the

language SQL 1s available in very similar forms both as an interactive interface and

11

embedded in host programming languages, such as Cobol and PL/1. Another
example is the Informix system (Informix, 1986), in which the language (again
SQL) is available as an interactive query language and also embedded in the C

programming language (ESQL).

In Date (1986) a darta sublanguage is described as being a combination of at least
two subordinate languages, a data definition language (DDL) and a data
manipulaton language (DML). A query language is described as a language in
which high-level commands or statements may be issued to the DBMS, and the
language SQL is specified as a typical example of a query language. However SQL
is also described by Date as consisting of a DDL and a DML and therefore, can also
be described as a data sublanguage. Michaels er al. (1976) also uses the terms data
sublanguage and query language indistinguishably. This defines a data sublanguage

as a language which offers capabilities for interrogating and updating databases.

Shneiderman (1980) uses the terms query language and DML synonymously to
mean a data manipulation language for operating on data in the database. Others, for
example Stonebraker and Rowe (1977, p128), state that all DML have an associated
DDL to describe the data on which actions are performed and that: 'the DDL acts as

a specification mechanism for the data in a database and cannot be avoided'.

In Paredaens (1987, p7), a DML is defined as: 'either a stand-alone programming
language or is composed with several primitives which should be incorporated into a
general purpose programming language The various terms DDL, DML and

query language are described in Brodie, (1984, p20).

'"Most existing database management systems provide a Data Definition
Lancuage (DDL) for defining schemas and subschemas, a Data Manipulation
Lancuage (DML) for writing database programs, and a query language (QL)

for writing queries. The partitioning of these functions into three languages

Is not necessary. Many database languages combine both query .and

manipulation. All three functions can be provided in one language.’

It is therefore apparent that the distinction between what is a query language and
what is data sublanguage or DDL or DML is not well defined and the various terms
query language, data sublanguage, DDL and DML are used to mean the language
component available for accessing the data in the database. This is appropriate to a
certain extent since they all have in common the fact that they are concerned with
database objects and database operations. In this thesis, a query language is defined

as consisting of both a DDL and DML.

In general, DBMS do not provide more than one query language interface to the
database, though they may provide a forms-based or graphical interface as well as a
host language interface. Current DBMS, for example Informix, Ingres and DB2,
provide more than one means of accessing information in the database, but few
DBMS have more than one of each of the different types of interface, while none
provide an alternative query language based on a different data model than that
underlying the DBMS. If users of a particular DBMS wish to use a query language,
they are limited to using this single query language provided with that DBMS.
Unfortunately there is not a standard query language for each data model. Different

DBMS based on the same data model often use a different query language.

It would be less restrictive if DBMS had available more than one query language
interface which used different data models, particularly if the additional query
language could be ported to a number of DBMS. Such a capability could be
provided by means of a front-end to deal with queries expressed in the alternative
query language (see figure 1.1). A front-end is a software system that is built on top
of an existing system. It maps user queries into the system target language using the
relevant information about the user's view. The target language would be the query

language of the underlying DBMS. This would allow users to view their data in

13

different ways and also allow them to use different DBMS with a reduced learning

cycle.

Uuser access USCT access

source target DBMS

..
i B
&

alternative
query lang. |

Figure 1.1: Front-end System and DBMS Interaction

This thesis presents and discusses an implementation of a query language front-end
based on a data model and query language that is different to the data model and
query language of the underlying DBMS. The provision of another query language
interface to the same database means that the user's view is independent of the actual

structure of the underlying database.

In this way more than one view of the database is supported. This is of significance
since expanded use of DBMS technology has generated a considerable growth of the
user community and of the variety of databases. A framework for multiple-view
support is discussed in Klug & Tsichritzis (1977) and Tsichritzis & Klug (1978),
Fundamental to this framework is the idea that data models are conceptual tools and
that users should not be forced to visualise their data in one way only. However,
there is considerable investment by manufacturers and users in current systems, and

it is more realistic for future systems to support the traditional approaches as well as

new approaches.

Different data models are supported by DBMS due to reasons of implementation
history and because of the suitability of different data models to specific

applications. There are therefore a number of query languages available. By

14

allowing the same DBMS to support more than one query language interface, this

valuable diversity is not lost (Manola & Pirotte, 1983).

A number of recommendations for a unified approach to query languages have been
made by the British Computer Society (BCS, 1981). This approach should 'make
access to computer held data easier and more consistent'. This report specifies the
need for a view of data that is understandable to users and suitable to a variety of
applications. More particularly, it argues that there should be a set of facilities for
users to be able to express queries in a variety of models and styles of dialogue. One
form of dialogue for a query language is not advocated, but different query language

interfaces should be supported within the same system.

The research presented in this thesis goes some way to fulfilling the requirements of
a uniform approach to query languages since it provides an additional query
language interface to an existing DBMS. The front-end system presented in this
thesis is highly portable due to the well-defined interface between it and the DBMS
(see figure 1.2). It can be adapted to a different DBMS relatively easily. This is
aided by its implementation language and environment being common to a number

of computer systems.

user Daplex user Quel
queries queries
source target DBMS
“-él, ‘-7/‘
M Ingres
functional data relational data
model model

Figure 1.2: FQLFE and DBMS Interface

15

The software system designed during this research is FQLFE (Functional Query

Language Front-End). It is built on the relational database management system
Ingres, which has as its query language Quel (described in section 2.3.5). FQLFE
accepts user queries expressed in the functional query language Daplex (described in
section 2.3.12), and addresses databases based on the functional data model. The
system transforms the users' Daplex-expressed queries and maps these into Quel
queries. These are then executed by the underlying DBMS. The reasons for the
choice of query languages and the data models used as a basis for this research are

detailed in section 2.4.

The objectives of this research were to show that a system could be implemented
that allows the database to be queried in a language different to the one that is
available in the DBMS and that this query language could be based on a data model
that 1s different to the data model of the actual DBMS. The FQLFE system presents
an interface to the user that consists of a functional query language to query
databases based on the functional data model. The database is based on the relational

data model and is queried by a relational query language.

Chapter 2 of this thesis examines a number of query languages which typify
particular approaches and which may be suitable for this implementation. Chapter 3
examines the chosen implementation environment in more detail. The functional data
model and query language Daplex are discussed. The relational DBMS Ingres and
its query language Quel are also described. Chapter 4 presents details of the FQLFE
system which is a front-end based on the query language Daplex to the relational
DBMS Ingres. Chapter 5 presents an application to illustrate the use of the FQLFE
system. It provides examples of queries that can be made in the Daplex language
against the Ingres database and it gives the equivalent Quel transformations of these.
Chapter 6 gives a summary of the research, the conclusions reached and the

directions for further research. Volume II consists of the Appendices. Appendix A

16

gives the syntax of the Daplex query language. Appendices B and C give the lex and

yacc specifications used. Appendix D consists of the program listings for FQLFE.
Appendix E contains the results produced by the tests discussed in chapter 5 of the

thesis.

17

CHAPTER 2

QUERY LANGUAGES

2.1 INTRODUCTION

An outline architecture for a database system proposed in Tsichritzis & Klu g (1978)

is divided into three levels as follows:

* the concepiual level - this is the level concerned with the expression of the

total operadonal data required, that s, the concepts represented by the data;

* the internal level - this is the level concerned with how the data is actually

stored, that is the physical representaton of the data;

e the external level - this is the level concerned with the way the data is

viewed by individual users.

It is this external level that is of most significance for this research, since this is the
individual user level. At this level each user will have available a language. The

different users are:

o the database administrator - who will have available the languages

available to the other users and possibly a system level language

e the applications programmers - who will have available either conventional
programming languages, such as Cobol, or a proprietary programming

language specific to the system, for example, dBaselll

e the end-users - who will have available either a query language or a special

purpose language, such as, a forms or menu based language, or possibly

both.

18

All such languages will include a data sublanguage, that is a subset of the total

language that is concerned specifically with database objects and operations. The
form that this data sublanguage appears in will vary both from DBMS to DBMS and
also within a particular DBMS. For example in the Informix DBMS the data

sublanguages exist in the following forms:

* in the query language SQL,

« embedded in the host programming language C,
* as a forms front-¢nd, and

* as a report writer front-end.

Other ways in which data access is available within DBMS are:

» natural languages,
» graphical interfaces, and
e menu-driven interfaces.

Particular DBMS will have some combination of data access interfaces. This does
not mean that all of these are always provided. As shown in chapter 1, in some
cases the DDL and the DML form the query language and sometimes the DML alone
is referred to as the query language. Often this query language is embedded in a
programming language and the forms, menu, and graphical interfaces also translate
internally into some form of the query language. Natural language interfaces are

outside the scope of this thesis.

In the next section a number of criteria for comparing query languages are discussed

and in section 2.4 query languages are discussed on the basis of this set of criteria.

19

2.2 QUERY LANGUAGE FEATURES

Two query languages were selected in this research. The first is the target language,
that is the language which is normally used for the DBMS. The second is the front-
end language, that is the alternative which a user may choose for the DBMS. The
features chosen for comparing query languages are relevant to both choices, though
their relative importance and interpretation will differ. The criteria are: the data model
upon which the query language is based, its simplicity, completeness, level of
procedurality, the support it provides for higher level languages, its ease of

extension and availability.

2.2.1 Data Models

Data models provide the conceptual tool for thinking about data-intensive
applications and they provide a formal basis for the tools and techniques used in
developing and using information systems. The data structures upon which the
database system 1s based influences the query language used for accessing the
database. The available data structures and the allowable operations on them are

features of the underlying data model.

A paper by Manola & Pirotte (1983, p68) defines the relationship between query

languages and data models as follows:

'A query language is based on a data model when the query language
addresses the data structures of the data model and the semantics of its

expressions can be expressed with operations of the data model'.

Brodie (1984, p20), describes the relationship between data models and the

languages supported by them as follows:

20

Tools associated with data models are languages for defining, manipulating,

querying and supporting the evolution of databases.’

From the users’ point of view, the relationships being modelled by a DBMS must be
understood regardless of the query language or data model. It should be noted that

understanding the schema should not be difficult if it accurately models reality.
Ullman (1982) defines data models as consisting of two elements:

* A mathematical notation for expressing data and relationships.

» Operations on the data that serve to express queries and other

manipulations of the data.

The first of these basic components is a set of rules to describe the structure and
meaning of data in a database and the second consists of the atomic operations that
may be performed on the data in that database. The rules express the static properties
of a data model and correspond to what is usually called a data definition language.
They define the structures that are allowable within the data model as a set of
schemas. Different occurrences of the database can correspond to the schema. A
database state corresponds to a particular database occurrence. The set of operations
of a data model, called a data language, defines the allowable actions that can be
performed on a database occurrence. That is, each operation maps one database state

to another database state.

Data models enable us to capture, partially at least, the meaning of the data as related
to the complete meaning of the world. The data represented in the data model may
have meanings which are unknown or irrelevant in terms of modelling, it is
sufficient that the meaning captured by the data model should be adequate for the
purpose required. The data model acts as a basis for high-level query languages for

data retrieval and data manipulation.

Operations of a data model (referred to as a data language in Tsichritzis &

Lochovsky, 1983), transform a database from one state to another. When operations
are performed on a database, they tend to be focussed on one small area of the
database, and this implies a selection process. Operations usually consist of an
action and a selection. The action specifies what is to be done, and the selection
specifies the part of the database to which the action is to be applied. Actions are

drawn from: retrieve, insert, modify and delete operations.

The fundamental aim in data modelling is to organise data so that it represents the
real world situation as closely as possible, yet can still be represented by computers.

The problem is that these are conflicting requirements.

By combining different possible components for structures and operations, many
different data models are possible. However, not all of these would be useful or
practical. It is true to say that very few data models have received wide acceptance
and use. There are many proposed data models, however not all of these specify
consistent operations for manipulating the data structures provided by the data

model.

The earliest data models to be described for databases are the hierarchical, network,
and relational data models. These three are considered to be the 'basic’ data models
and are discussed in most texts on databases, for example, Tsichritzis & Lochovsky
(1978), Ullman (1982), Date (1977 and 1986), and Pratt & Adamski (1987). These

three data models are often used as the yardstick to compare other data models and

their capabilities.

2.2.1.1 Relational Model

The relational data model is based on the concept of mathematical relations and was

first described by Codd (1970). Examples of systems based on this model are

9]
o

Ingres (Held er al., 1975, Stonebraker er al., 1976, and Date, 1987), Informix

(Informix, 1986) and Oracle (Oracle, 1986). In this mode! a relation is a collection
of instances (described in rows, known as tuples) of a record type in which the
ordering of the instances and the ordering of the fields within the record type are not
significant. The relationships between relations are not specified explicitly. Relations
describe entities and relationships between entities. The entire information content of
the database is represented as explicit data values in column positions within rows of
tables. Inter-relationships which are not represented as tuples can be established at
access time using the relational language interrace. In this way the user is not
restricted to the predefined relationships represented in the schema - this is one of
the major differences between this model and the hierarchical and network models.
Further discussion of the relational model can be found in the texts by Date (1986),

Tsichritzis & Lochovsky (1983), Ullman (1982) and Reiter (1984).

In this model there is a uniformity of data representation, this in turn leads to a
corresponding uniformity in the set of operations (Date, 1977 and 1986). Most of
the work in query languages has been based on the relatonal model, some of which
1s described by Chamberlin (1976), Codd (1971 and 1972), Stonebraker er al.
(1976), Astrahan & Chamberlin (1975), Mohan (1978) and Zloof (1977).

Data manipulation languages for the relational model are usually derivatives of
relational calculus or relational algebra (Codd 1970). Languages for this model tend
to be relatively non-procedural (section 2.2.4). This means that operations in these
languages are specified in terms of names and values only and users do not need to

know about the physical representation of the data or the paths to be followed to

arrive at the data.

23

2.2.1.2 Network and Hierarchical

The Codasyl Data Base Task Group report (Codasyl, 1971) is the most
comprehensive specification of a network data model. The terms are often used
synonymously, though the Codasyl model can only be considered to be one
implementation of a network model. Examples of systems based on these proposals

are: IDS and IDMS. The hierarchical model is a subset of the network model.

The network and hierarchical models use the concept of a record as a collection of
named fields to represent each individual object in the application environment. In
the network model the set mechanism establishes a one-to-many association between
any owner record and its member records. A group of these sets can form a network
of relationships. In the hierarchical model (Date, 1986, Tsichritzis & Lochovsky,
1978, Pratt & Adamski, 1987) there is a tree-like set of one-to-many relationships,
in which each record occurs at a single specified level of the hierarchy. In these two
models users are restricted to pre-defined relationships. This means that databases
based on these models are not very dynamic, that is, they are not readily changeable

in terms of structure and specification of relationships.

The data manipulation languages for systems based on these languages tend to be
navigational, that is, the user must access the database by explicit traversal through
the hierarchy or network. This contrasts with the relational model where access to
the data is by specifying the properties of the data of interest rather than the route

that is to be followed to obtain it.

2.2.1.3 Other data models

Since the basic data models have been in existence, many other data models have

been specified. They are, at least to a certain extent, extensions of the basic data

models.

The role model defined by Bachman & Dayal (1977) has been developed as an

extension of the network data model. It includes the notion of a role. An object may
play many different roles in an application and may have different properties for
each role. For example, a person can play the role of employee, manager, and so
on. The role model reduces the redundancy of considering each role as a separate
object. Note however that its language interface is still a navigational one and
therefore the operations available on its basic data structures are still at a relatively

low level.

In the structural model (Weiderhold & El-Masri, 1979), relations in the relational
model are restricted to specific types. Relations specifying a set of independent
objects are entity relations, those specifying one-to-one correspondence between
names are lexicons, and those representing many-to-many relationships are
associations. These restrictions guide database design choices and encourage
precision in using the relational data model. In this model no distinction is forced
between objects and relationships, the resulting schemas are therefore relational. As
this model is based on the relational model, languages for this model are relatively

nonprocedural.

Another data model is the entity-relationship model (Chen, 1976), which combines
features of the network and relational models. It makes a clear distinction between
objects and relationships. Applications are represented as networks in which entities
are nodes and relationships are edges. The entity-relationship model provides a
means for representing relationships, rather than a small set of relationship concepts.
It has become a popular model for high-level database design due to its economy of
concepts, and also because it is generally accepted that entities and relationships are
natural modelling concepts. There are no current DBMS for which the entity-

relationship model is the underlying data model, databases designed using this are

mapped into DBMS based on the other data models.

[\
N

A group of data models called functional data models have also been proposed.

These are usually classified as irreducible, since the objective is to represent
information as atomic facts rather than as complex groups of facts. These atomic
facts cannot be decomposed further (Brodie, 1984). Atomic facts simplify the
update operation since each fact can be updated independently. Further, they
increase modelling precision, since these atomic facts can be combined in any
appropriate way to form any reasonable higher level conce<pt. In this way no fixed

structure 1s imposed on all facts.

The functional data models combine aspects of the relational data model with
funcdonal programming. That is the database is regarded as a collection of functions
over data types, such as employee and department, and basic types, such as
character and integer. The relationships between objects are represented by
functions. One of the functional data models is the functional dependency model
(Housel er al .1979). In these proposals a database is described as consisting of sets
of values with functions between them. There are two types of sets. Simple sets
correspond to integers, strings, etc. (that 1s, basic data types). Tuple sets correspond
to many-to-many relationships among sets. Operations are provided for retrieval,

update, insertion and deletion of occurrences in functions and sets.

Another of the functional data models is built into the query language FQL
(Buneman & Frankel 1979 and Buneman er al. 1982). In this model the database is
viewed as a collection of functions over various data types. Five operators are
provided which combine functions to form new functions, and operators also enable
arithmetic and boolean operations in query formulation. Its notation is derived from

that specified by Backus for functional programming (Backus, 1978).

The most widely discussed and researched of the functional data models is that
defined by Shipman (1981). It incorporates a high-level, integrated language for

data definition and manipulation called Daplex. In this model the basic concepts are

entities and functions. The database is modelled as a set of functions mapping

entities to entities. Functions may have zero or more arguments. Entity types are
defined by functions with no arguments. Entity attributes and relationships among
entities are defined by functions with arguments. The query language interface
Daplex has statements for iteration through sets and statements for updating, and it
also has a special operation for incorporating user-defined functions in the schema.

The Daplex query language is described in detail in chapter 3.

A number of conclusions can be drawn about data models in relation to query
languages. Firstly, query languages are largely influenced by the data model upon
which they are based. The data structures upon which it operates are defined by this
underlying data model. The data models for which there are well defined consistent
operations are the 'basic’ data models, that is, relational, hierarchical and network.
Of the other data models the functional data model as defined by Shipman (1981)
also has a well defined and consistent set of operations. The relational data model
and its query languages are well established in modern DBMS, since the concepts
on which they are based are relatively easy to understand. Shipman's functional data
model is also conceptually natural, since it is based on the concepts of entities and

functions.

2.2.2 Simplicity

This is usually an important factor for expressing queries. This feature is discussed
in Shneiderman (1980), which recommends that in the query language there should
be a small number of concepts required to get started and simple operations in the
language should be expressed in a simple way. It also suggests that the language
syntax should be relatively simple, even for complex operations. Further, there
should be consistency in the language and various operators should have consistent

semantics in all contexts. The concept of simplicity also means that the language

27

should have flexibility and should model reality in a way that is meaningful to the

user. Ideally, the structure and syntax of such a language should be uniform.

2.2.3 Completeness

This term was first defined by Codd (1972). It has usually been considered a
fundamental requirement for relational languages. Codd defined a language called
relational calculus based on the first order calculus. A language is said to be
relationally complete if it has at least the same expressive power as relational
calculus. Thus, for any expression, there is a relational calculus expression
equivalent to it. It is the measure of the selective power of a query language.
However it should be noted that there are some features that a good query language
should possess that are not covered by the definition of relational completeness, for
instance, aggregate functions and arithmetic capability. This additional power will
mean that for a very large class of queries, the user will never need to use loops or
branching to extract the data required. Thus some popular relational languages are
‘more than complete’, that is their retrieval power is superior to that of the relational
calculus. However relational completeness provides a useful means of comparing

query languages.

The concept of relational completeness has rarely been extended to languages based
on any data models other than the relational data model, Though it has been applied
to the network model (Tsichritzis & Lochovsky, 1978) and to the entity-relationship
model (Atzeni & Chen, 1983). It has been achieved by redefining the definition for
relational completeness, since it can only naturally be applied to relational algebra or
calculus based languages. Relational completeness can only really be used as a
comparison mechanism for languages that are based on relational concepts. Some

researchers, for example Reisner (1981), Cuff (1982) and Shneiderman (1980), feel

that this is a rather primitive measuring rod for assessing the capabilities of a query

language and do not consider it to be essential, because:

* many queries that can be written with a relationally complete language are

extremely difficult to compose or comprehend, and

° many common, useful, simple to understand and potentially easy to

express queries are outside the bounds of relational completeness.

2.2.4 Nonprocedurality

Procedural languages require the user to specify the process or path to be followed
in order to obtain the result. Nonprocedural languages (also called specification
languages) are those which specify the result required. These are usually viewed as
being 'high-level', and queries expressed in them are normally shorter in length than
those expressed in procedural languages. There has been much debate about the
relative merits of these two approaches, especially in terms of writing queries and

understanding queries written by someone else (Stonebraker & Rowe, 1977).

Set level languages are often referred to as non-procedural. These specify what is
required not how to retrieve it. Relational systems are often referred to as 'automatic
navigation' systems, since the process of 'nayigating' (that is, specifying the path to
be followed to answer a query) around the database is done automatically. The
concepts of procedurality and nonprocedurality are often assumed to be absolutes.
This is not the case, they are relative to one another and can be considered to be at
different levels of abstraction. Nonprocedural languages are at a higher level of

abstraction than relatively procedural languages, and are considered to be more

powerful and easier to use.

2.2.5 Support for higher level languages

For particular users or applications, some of the languages may be suitable in their
basic form. Other users may require their own special purpose languages,
involving, for instance, terminology specific to their own application area. The
specified languages are examined to see if they provide a common core of features
that will be required by other higher level languages. The system would then map

these higher level languages into the specified target language.

2.2.6 Ease of extension

Although a language may be relationally complete, it may still be inadequate for
some queries. The user may need to retrieve values that are not necessarily stored in
the database, but may be computed in some way from the information in the
database. For this reason the basic retrieval power of the language is enhanced by

being able to be easily extended to include useful standard functions.

2.2.7 Format

Another feature that varies from query language to query language 1s the format.
Some query languages are keyword oriented, for example, Quel (see section 2.3.5
and SQL (see section 2.3.6). Keyword-oriented languages are those which query
the database using a syntax consisting of command types expressed as keywords
and names and values of database objects. These base their structure on traditional
programming languages. Other query languages are based on a two-dimensional
notation, for example, Cupid (see section 2.3.9) and QBE (see section 2.3.7). In
these languages positioning is critical and very few keywords are used. The
implementations of these languages may require a graphics support system. The
advantage of keyword-based languages is that keywords may help in the processes

of learning and composing queries in the query language. The two-dimensional

30

languages have an advantage that confusion might be reduced by using positional

notation or special shapes to specify queries.

2.2.8 Availability

Many query languages have been proposed, but for various reasons they have never
been implemented. This may be due to the fact that the data models upon which they
are based have never been implemented or because no significant advantage has
been foreseen by researchers or commercial organisations to implement them. In
selecting a suitable target language, availability is an important factor that must be
considered. If the front-end is to be widely used, its targer language and DBMS

should be widely available, otherwise its usefulness will be very limited.

2.3 EXAMPLE QUERY LANGUAGE INTERFACES

In this section, a number of query language interfaces to DBMS are described and
discussed in terms of the features which have been specified in the previous section.
Sample queries are given, based on the same database wherever possible. The
structure of the database, expressed in terms of relations, is given below. This is

similar to an example used in several texts, for example, Lacroix & Pirotte (1978)
and Date (1986):

suppliers (snumber, sname, status, city)

parts (pnumber, pname, color, weight, city)

shipments (snumber, pnumber, gty).

2.3.1 DL/1 (Data Language/l)

This is the data sublanguage that is available for accessing the IBM hierarchical
DBMS, IMS (Information Management System). This is included in the discussion

because prior to the wide acceptance of relational databases it was the most widely

31

used DBMS. The DL/1 language is invoked by subroutine calls from the host

language of the system. This could be PL/1, Cobol, or Assembler.

The hierarchical model supports a tree structure, in which the tree is inverted. This
ree consists of nodes connected by branches. The root node is at the top and its
descendants are below it. A parent node appears immediately above its children.
Each node contains one or more fields or attributes. The main feature of this model
is that each node is accessed through its parent. That is, access to the dara is along a

hierarchical path from top to bottom.

The DL/1 terminology refers to a node as a segment. This is equivalent to the
relational term table and the Codasyl term record. One tree structure occurrence of
the root segment and all its descendants is called a physical database record (PDBR),
while the collection of all physical database records for a particular tree structure is
called a physical database. In DL/1, a number of physical databases can exist. Each
one will be defined separately in a single database definition. In this definition
(called a DBD) all segments, all fields within each segment, and all hierarchical
relationships between segments are defined. The definition part of DL/1 involves
defining the DBD. There are a number of other definitions required and these are

described in detail in Date (1977) , Pratt & Adamski (1987) and Taylor & Frank

(1976).

In DL/1 an application language (for example, Cobol) interacts with the databases by
using DL/1 DML requests. A request consists of a caLL statement followed by a
parameter list. A summary of DL/1 function codes using a simplified syntax is

given.

* GET UNIQUE (GU) - Directretrieval of a segment occurrence that satisfies

the given argument.

¢ GET NEXT (GN) - Sequential retrieval of the next segment occurrence.

32

° GET NEXT WITHIN PARENT (GNP) - Sequential retrieval of the next

segment occurrence under current parent.

* GET HOLD UNIQUE (GHU) - Same as GNP but allows subsequent pLET

° GET HOLD NEXT (GHN) - Same as GN but allows subsequent pLeT and

Pe)

EPL.

° GET HCLD NEXT WITHIN PARENT (GHNP) - Same as GNP but allows

subsequent DLET and REPL
* DELETE (DLET) - Delete an existing segment occurrence.
* RELACE (REPL) - Replace an existing segment occurrence
° INSERT (ISRT) - Add a new segment occurrence.

The structure of a query if expressed in DL/1 would be as follows.

* Q1. Get supplier numbers for suppliers who supply part P2.

This query involves the following stages:

Get next parts where pnumber = P2
REPEAT: Get next suppliers for this parts

suppliers found? No - exit.

Yes - print snumber

REPEAT.

For application systems that have fixed, predefined relationships, DL/1 is a logical
means of expressing such systems. However many data relationships are not
hierarchical. A problem with DL/I is the difficulty of representing many-to-many
relationships. Further, there is very little data independence and powerful

hierarchical databases are difficult to understand and to use, and they require a

L2
(8]

significant amount of expertise. Additionally, in DL/1, information requirements that

do not follow the natural hierarchical path may be time consuming to address.

2.3.2 Codasyl (DML)

Codasyl databases are constructed of records, pointers to records and files of
records which contain pointers to other records. The DML has the power to follow
pointers and retrieve records. This type of interface is known as a record-at-a-time
interface. These were the earliest 'query languages' and were based on 'navigating'
around the database. The fundamental concept underlying this DML is the idea of
currency. This currency is the value of certain system created and maintained
pointers. The database is traversed record-at-a-time until the sort of record that the
user wishes to retrieve is pointed to by the currency indicators. This record is
brought into the work area and the host language carries out the relevant processing
on it. To be able to use such a language one must know the details of the database
and its structure and physical implementation. The DML is dependent on a host
language for all iterative scanning and searching, and also for evaluating all of the

records.

A record type is the basic structure while a record occurrence is a specific example
of this structure. Relationships are maintained in Codasyl systems by means of a
construction called a set. A set type is a one-to-many association between record
types. The record type that represents the 'one' part of the association is called the
owner record type, and the record type that represents the 'many' part of the
association is called the member record type. An occurrence of the set type is a
single occurrence of the owner record type, together with the many occurrences of

the member record type that are related to it.

The overall logical structure of the database is represented by the schema. It is set up

on the computer using a language called the schema data definition language

34

(schema DDL). An individual user's view of the database is represented by the
subschema. This is specified on the computer using the subschema DDL. Programs
access the database subschemas. Therefore the various forms of the subschema
DDL are tailored to different languages. Programs accessing the database do so
through the normal commands present in the language in which the program is
written and through additional database accessing commands. These commands

form the DML. The currency indicators are:

current of run unir - the run unit is the program. There is only one current
of run unit, this will be the last occurrence of any type of record that was

retrieved or saved.

current of record rype - there is one of these for each record type in the
subschema. The current of a record type will be the last occurrence of that

record type that was retrieved or saved.

current of set type - there is one of these for each set type in the
subschema. The current of a given set type will be the set occurrence most

recently accessed.

e current of realm - there is one of these for each realm (or area) in the
subschema. The current of a given realm (a subset of the database) will be
the last record of any type that was found or stored in that realm. This

conceptual pointer 1s rarely used.

The DML commands available are as follows, though the exact syntax may vary

depending on the host language.
» FIND - locates a record subject to some conditions.
 GET - retrieves the contents of the record identified as current of run unit.

° STORE - Creates a new record occurrence.

* MODIFY - updates the current of run unit record.

ERASE - disconnects the current of run unit from occurrences of any set in
which it is a member and deletes the current of run unit, provided that the

current of run unit does not own any member occurrences in any set.

°* ERASE ALL - disconnects the current of run unit from occurrences of any
set in which it is a member and deletes the current of run unit and any

members of set occurrences owned by it.

~

* CONNECT - connects the current of run unit into a set occurrence.
* DISCONNECT - disconnects the current of run unit from a set occurrence.

The network approach is similar to the hierarchical approach, where the data is
represented by records and links. A network, however, is a more general structure
than a hierarchy, since a given record occurrence may have any number of
immediate superiors, and not just one, as is the case with a hierarchy. Record types
are used to represent the suppliers and parts and also the association between
suppliers and parts. The record representing the association is called a connector,
and an occurrence of this contains data describing the association. A query using the

Codasyl DML would involve the stages shown:

» Q1. Get supplier numbers for suppliers who supply part P2.

get next parts where pnumber = P2
REPEAT: get next connector for this parts
connector found? No - exit

yes - get owner suppliers for this

connector
print snumber

REPEAT

36

» Q2. Find the part numbers for parts supplied by supplier S2.

get next suppliers where snumber = $2
REPEAT: get next connector for this suppliers
connector found? No -exit

yes - get owner suppliers for this

connector
print pnumber

REPEAT

When compared to the relational model based query languages, the Codasyl DML
loses out in terms of simplicity. This is due to the inherent problems of the data
model upon which it is based. The necessity to continually navigate the database in
an appropriate way for any database access adds a level of complexity not present in
the relational model. In addition, the greater fragmentation of information is
characteristic of the network model. It is a highly procedural language in that the

path that must be followed to satisfy the query has to be specified explicitly.

2.3.3 Relational Algebra

This is a set of high-level operations on relations. This set of operations was first
defined by Codd (1972), and was shown to be relationally complete. The relational

algebra consists of two groups of operations. These are:
e the set operations - union, intersection, difference and a form of
Cartesian product, and

« special relational operations - selection, projection, join and

division.

These operators are all used in the retrieval of data, while only union and

difference are used in update operations. Each operation of the relational algebra

37

takes either one or two relations as its operands, and produces a new relation as its

result. Itis one of the strengths of the relational approach that languages such as
relatonal algebra, which are relatively simple and yet very powerful, can be readily

defined for it.

SELECT IS an operator for constructing a subset of tuples within a relation for which
a specified predicate is satisfied. The predicate is expressed as a boolean
combination of terms. Each of these terms is a simple comparison that evaluates to
true or false by inspecting that tuple in isolation. ProJECT is an operator for
constructing a subset obtained by selecting specified attributes and disregarding
others. It also removes duplicate tuples. The Jorn operator is a join based on
equality values in the common domain. In addition to equality, joins may be defined
in terms of the other comparison operators, such as not equal to, greater than, less
than greater than or equal to and less than or equal to. In all these cases it is essential
that the attributes being joined are based on the same domain. prvIisIon takes two
relations, one binary and one unary, and builds a relation consisting of all values of

one attribute of the binary relation that match in the other attribute all values in the

unary relatgon.

Having introduced the basic operations available in relational algebra, some example

queries are shown:
Q1. Get supplier numbers for suppliers who supply part P2.

This query can either be expressed as two separate statements for clarity or it can be

expressed in a nested relational algebra expression.

SELECT shipments WHERE pnumber = 'P2' GIVING temp

PROJECT temp OVER snumber GIVING result

or

38

PROJECT (SELECT shipments WHERE pnumber = 'S2°')

CVER snumber GIVING result

« Q2. Get supplier numbers for suppliers who supply at least one red part.

Again this query could be divided into several statements or expressed as follows.

PROJECT (JOIN (SELECT parts WHERE color = 'RED')
AND shipments OVER pnumber)
OVER snumber

GIVING r=sult
+ Q3. Get supplier names for suppliers who supply all parts.

PROJECT (JOIN (DIVIDE (PROJECT shipments OVER snumber,

pnumber)
AND shipments OVER pnumber)
OVER snumber) QOVER sname

GIVING result

« Q4. Add part P7 (name "WASHER', color 'GREY", weight 2, city '"ATHENS") to

relation parts.

parts UNION {('P7', 'WASHER', 'GREY', 2, 'ATHENS')}

GIVING parts

Q5. Delete supplier S1.

suppliers MINUS {('Sl', 'SMITH', 20, 'LONDON')} GIVING

suppliers
Relational algebra is relatively powerful and simple, although it is relatively
procedural rather than nonprocedural, since the order in which queries are evaluated
has to be specified. It is a relationally complete language, but is not readily
extendible to include other operations such as aggregation. Because it is

nonprocedural and not readily extendible, it is unsuitable as a common target

39

language for higher level language translation. Although it is keyword-based, and
relatvely simple, its syntax is not very user-friendly. Furthermore, its availability is

limited.

2.3.4 Relational Calculus

The relational data language Alpha (Codd, 1971) has as its theoretical foundation the
relational calculus. The result of any query on a relational database may be
considered as a relation. The relational calculus is a notation for expressing the
definition of some new relation in terms of some given collection of relations. In this
language, the relations that already exist as part of the database are used to define the

relanon that is to be the result of the query, for example,

{ (shipments.pnumber, suppliers.city)

suppliers.snumber = shipments.snumber}

is an expression of the query 'find the supplier city and part number of each
shipped part'. The braces { } specity that the expression is a relation definition. The
colon stands for 'such that', and the term preceding the colon represents a typical
tuple of the set, while the term after the colon is the predicate or condition that
defines the property of the target relation. The result of the complete expression is
the set of all (pnumber, city) pairs such that the pnumber value is from a
shipment tuple and the city value comes from a suppliers tuple and the snumber

values in these tuples are equal.

Other notation used in the following examples are the symbols A, V, —, (), ¥, to

represent and, or, not, forced order of evaluation and the universal quantifier

respectively. The symbol 3 represents existential quantification and is read as, "there
exists". The same example queries used for illustrating the relational algebra are now

given in this relational calculus based language.

40

¢ Q1. Get supplier numbers for suppliers who supply part P2.
GET W (shipments.snumber) : shipments.pnumber = 'P2°'
* Q2. Get supplier numbers for suppliers who supply at least one red part.

RANGE parts px
GETW (shipments. snumber) : 3px (px.pnumber =

shipment.pnumber A px.color='RED')
» Q3. Get supplier names for suppliers who supply all parts.

RANGE parts px
RANGE suppliers s
RANGE shipments spx

GET W(s.sname) : Vpxdspx (

Spx.snumber=s.snumberAspx.pnumber=px.pnumber)

* Q4. Add part P7 (name 'WASHER', color 'GREY", weight 2, city 'ATHENS') to

relation parts.

W.pnumber = 'P7’
W.pname = 'WASHER'
W.color = 'GREY'

W.weight = 2
W.city = 'ATHENS'

PUT W (parts)
» Q5. Delete supplier S1.
DELETE (suppliers) : suppliers.snumber = 'S1?

Relational calculus differs from relational algebra in that whereas the relational
algebra provides a collection of explicit operators - join, union, projection and

so on - that can actually be used to build a required relation from the given relations

41

in the database, the calculus simply provides a notation for specifying a definition of

that required reladon in terms of those given relations.

The main feature of relational calculus is that it is nonprocedural, unlike relational
algebra. It specifies the resultant relation, not the way in which it is to be obtained.
However, it should be noted that the algebra and calculus are precisely equivalent to
one another. This means that every relational algebra expression has an equivalent
relational calculus expression and vice versa. Although the notation is unfamiliar at
first, the data language Alpha is relatively simple: simple operations can be
expressed simply, and the complexity of statements in this language is in direct
proportion to the complexity of the operation that the user is attempting to perform.
As discussed in the previous section, this feature is particularly important when

assessing query languages.

This language has all the advantages of relationally complete languages. The
language lends itself to extension, its power can be extended indefinitely and simply
by providing library functions. Although the language may not be suitable in this
form for many users, it possesses a common core of features which are going to be
required in one way or another in all query languages. It would therefore be
reasonable to use it as the target language for high level language translators.
Although Alpha itself is not available commercially, other languages which have
relational calculus as a basis have been developed (for example, Quel), which are at
a higher level of abstraction than the Alpha language considered here, and could be

suitable as a target language.

2.3.5 Quel

This 1s the query language for the Ingres DBMS. A brief description of Quel is
given here as it is described in more detail in chapter 3. Quel is available both as an

interactive query language and also as a database programming language embedded

42

within a variety of host languages. Quel consists of both DDL and DML functions.
The data definiton part of the language consists of facilities to create databases,
relations within databases and also facilities to remove relations, create indexes and
also to define views. The basic DML statements available are, retrieve, replace,

delete and append. Some example queries in the Quel language are now given.

* Q1. Get supplier numbers for suppliers who supply part P2.

RANGE OF sp IS shipments
RETRIZVE (sp.snumber)

WHERE sp.pnumber = "P2"
* Q2. Get supplier numbers for suppliers who supply at least one red part.

RANGE OF sp IS shipments
RANGE OF p IS parts
RETRIEVE UNIQUE (sp.snumber)
WHERE sp.pnumber = p.pnumber

AND p.color = "RED"

* Q3. Get supplier names for suppliers who supply all parts.

RANGE OF s IS suppliers
RANCGE OF p IS parts
RANGE OF sp IS shipments
RETRIEVE (s.sname) WHERE ANY (p.pnumber BY s.snumber
WHERE ANY (sp.snumber BY p.pnumber WHERE
S.snumber = sp.snumber

AND sp.pnumber = p.pnumber) = 0) = 0

43

* Q4. Add part P7 (name 'WASHER', color 'GREY", weight 2, city '"ATHENS") to

reladon parts.

RANGE OF p IS parts
APPEND TO p (pnumber = "P7", city = "ATHENS",

weight = 24)
* Q5. Delete supplier S1.

RANGE OF s IS supplier

DELETE s WHERE snumber = "S1"

The fact that there are only four basic data manipulation operators in Quel means that
it is a relatively easy to use. This is due to the fact that it is based on the relational
data model which has a simple data structure. It is considered by Date (1987) to be
technically superior to the language SQL which has been accepted by the American
National Standards Institute (ANSI) as an official standard language for relational
systems, because Quel is more closely based on the relational data model.

Furthermore, it is easier to use and learn.

2.3.6 SQL

This was defined at the IBM Research Laboratory in California, where a prototype
implementation was built for it. Since then, it has developed into an important and
widespread language. SQL interfaces are being provided for a variety of systems, in
addition to IBM products. Further, the American National Standards Database
Committee has formally adopted a standard relational database language that is

closely based on SQL.

The query language SQL includes both a data definition part and a data manipulation
part. In the IBM relational DBMS, DB2, SQL is the query language and it is

implemented at two different interfaces:

44

* an interactive interface
* an applicatdon programming interface.

This availability of the query language at more than one interface is becoming a
significant feature in most relatdonal systems. For example, in the Informix DBMS
(Informix, 1986), the query language SQL is available as an interactive query
language and also as an embedded query language ESQL. ESQL, consists of SQL
statements embedded in the C programming language. In the DB2 implementation,

SQL statements can be embedded in PL/I, Cobol, Fortran, and Assembler.

SQL is a set-level language, rather than a record-at-a-time language, and in this way
is typical of a relational query language. There are four DML statements available in
SQL. These are SELECT, UPDATE, DELETE and 1NSERT. Note that SELECT is the
most fundamental of the four operations, since the others must be preceded by it
either explicitly or implicitly. The set of example queries is now shown expressed in

SQL.

» Q1. Get supplier numbers for suppliers who supply part P2.

SELECT snumber
FROM shipments

WHERE pnumber = 'P2'!
* Q2. Get supplier numbers for suppliers who supply at least one red part.

SELECT snumber

FROM shipments

WHERE pnumber IN
(SELECT pnumber

FROM parts WHERE color = 'RED')

* Q3. Get supplier names for suppliers who supply all parts.

SELECT sname

FRCM suppliers

WHERE
(SELECT pnumber
FROM shipments

WHERE snumber = supplier.snumber)

(SELECT pnumber

FROM parts)

+ Q4. Add part P7 (name 'WASHER', color 'GREY', weight 2, city 'ATHENS") to

relation parts.

INSERT
INTO parts (pnumber, pname, color, weight, city)

VALUES ('P7', 'WASHER', 'GREY', 2, 'ATHENS')
* Q5. Delete supplier S1.

DELETE
FROM suppliers

WHERE snumber = 'S1°"

There are only four DML statements in SQL. This is one of the reasons for the
comparative ease of use of the language, and the fact that there are only four such
operations is a consequence of the simplicity of the relational data structure. All data
in a relational database is represented in exactly the same way, that is, as values in
column positions within rows of tables. Since there is only one way to represent
anything, only one operator is needed for each of the four basic functions,

RETRIEVE, CHANGE, INSERT and DELETE. In addition, it is relationally complete.

46

The SQL format is keyword based. It has a sound mathematical basis and provides
built-in functions. It is therefore a suitable target language. However, it is
considered to be inferior to Quel since it omits certain relatonal features and lacks
‘orthogonality’, that is, it lacks consistency and there is an arbitrariness in syntax
and query construction. Further, though it has been adopted as a standard, none of
the existing implementations of SQL are either identical to each other or to the

standard.

2.3.7 Query-by-Example (QBE)

This is another relational language, described in Zloof (1977), and it is intended as a
graphical interface to databases. Each operation in QBE is specified using one or
more tables. Each of these tables is built up on the screen with the user specifying
some parts, and the system others. Since QBE specifies its operations in a tabular
form, its syntax is described as being two-dimensional. The languages considered
so far have linear syntax. QBE has been the target of usability testing and the results

have been favourable (Shneiderman, 1980).

In QBE queries are expressed using examples. These are used to formulate queries
by entering an example of a possible answer in the appropriate place in an empty
table. QBE automatically eliminates redundant duplicates from query results. Some

example queries in QBE are now given.

* Q1. Get supplier numbers for suppliers who supply part P2.

supplier snumber spame status city

shipments snumper pnumber gty

sx P2

47

In this query sx is used as a link between the relations suppliers and shipments.
This is equivalent to a Jo1n in the relational algebra, and an existential quantifier in

reladonal calculus.

* Q2. Get supplier numbers for suppliers who supply at least one red part.

shipments spumber poumber qty
P.sx pPx

px RED

* Q3. Ger supplier names for suppliers who supply all parts.

suppliers snumber sname statu city
SX P.sn

shipments Snumber pnumber qty

sx all.px
parts pnumber pname color weight city
all.px

The expression all.px in the table parts refers to the set of all part numbers
present in this table, while the same expression in the shipments relation refers to
the set of all part numbers supplied by the supplier sx. Since the two expressions

are idendcal, sx must be the supplier who supplies all parts.

+ Q4. Add part P7 (name '"'WASHER', color 'GREY", weight 2, city '"ATHENS") to

relation parts.

INSERT P7 WASHER GREY 2 ATHENS

48

» Q5. Delete supplier S1.

suppliers snumber sname status city

QBE has an essential feature which distinguishes it from other languages discussed
in that it uses examples in the specification of queries. It also is different from many
query languages in that it uses a simple two-dimensional syntax. This means that the
user has the tables as a pre-established frame of reference. When originally
specified, 1t was said not to lose its simplicity when used to express complex
queries. However, later research does not agree with this view (see Cuff, 1982).
QBE allows the user freedom to build up queries in any order that is suitable to the
user. The rows and the order in which the user completes them in specifying the
query is arbitrary, i.e. QBE is a highly nonprocedural language. It is based on
relational calculus and is relationally complete. It is a relatively simple language to
use, but has a number of problems due to its graphical representation. In the case of
relations in the database with many attributes, the tables would not fit horizontally
on the screen. Thus it is difficult to specify a query. Further, queries requiring the
production of aggregate functions over a set of values which must be used for a
further computation, cannot be stated satisfactorily. Since it is a graphical query
language, it is ideally used as a visually oriented front-end to the database,
conversely, for the same reason, it is not suitable as a target language. Although

QBE has been implemented, it is not widely available.

2.3.8 GOING

This is another of the graphical query languages for database systems (Udagawa &
Ohsuga, 1982). It enables users to express queries in terms of nodes, arcs,
comparison predicates and functions. Simple figures are used to express queries

(ellipses represent domains, arcs for logical orders of entities and connection of

49

conditions), along with expressions composed of comparison predicates and
funcrions. It uses very simple English-like statements as a means of avoiding the
difficult processing that would be involved for natural language, and avoids the use
of quantfiers and bound variables in expressing queries. This eliminates the need
for the user 10 have detailed knowledge of predicate logic. The user is provided with

the means of controlling the size and layout of the graph.

In GOING queries, a domain or literal expression preceded by "' specifies that its
value 1s to be printed. Queries containing predicates are expressed in terms of

domain specifications, boolean expressions and directed arcs.

¢ Q1. Get supplier numbers for suppliers who supply part P2

shipments:pnumber IS 'P2'

“suppliers:snumber
“shipments:snumber

+ Q2. Get supplier numbers for suppliers who supply at least one red part

parts:pnumber parts:color IS 'RED'

“"shipments:snumber parts:pnumber

shipments:pnumber

50

* Q3. Get supplier names who supply all parts

shipments:pnumber

arts:pnumber

suppliers: snumber
shipments: snumber

Q4. and Q5. are not describable, since the designers of GOING have not specified a
syntax for updates. In the paper, discussion is limited to queries, however the

underlying assumption is that updates are easily added to the language.

A feature of this language is that queries are stated in a nonprocedural way. The
meaning of a query depends on the properties of its components and not the order in
which it is made. Though it is designed to minimise the number of concepts that the
user has to learn in order to use the whole language, it is a relatively complex
language to use and is unlikely to be used by the class of users at which it is aimed
that is, non-programmers. However, it is relationally complete. Its queries are
translated into an intermediate language based on relational algebra. Because it is
graphical, it is unsuitable as a target language. Another factor that could be
detrimental to such use is the length of time taken to arrive at target queries.
Compared to other graphical query languages, such as QBE and CUPID, its basic
concepts, ellipses, arcs, nodes, and so on, are less familiar. Furthermore, no

implementations of GOING are available.

2.3.9 CUPID

CUPID (Casual User Pictorial Interface Design) is also a graphical database
interface (McDonald & Stonebraker, 1975) and was specifically developed for a
particular class of user, being designed as an experimental system for casual and
possibly infrequent use by non-programmers. This is implemented as a front-end to
Quel, which is the query language for the relational DBMS Ingres which runs under

Unix.

The user can construct queries by light-pen manipulation of a number of standard
symbols. The graphical representation is of the query rather than of the database (as
in Foral LP). It wranslates the diagram that the user creates into a formal linear
language Quel, which is then passed to the underlying relational DBMS. The screen

is divided into three areas which are:

* Instructions on how to proceed,
» a menu of the commands, and
* a working area.

Queries are built up by combining table selection operations and query drawing
operations. Because of the complexity in expressing CUPID queries, only one
example query is given. However, the other queries are represented in a similar

manner.

52

* Q3. Get supplier names for suppliers who supply all parts.

SUPPLIER | SNUMBER | SNAME STATUS CITY

= @

SHIPMENT | SNUMBER | PNUMBER Qry
SET
PART PNUMBER | PNAME | COLOUR | WEIGHT [CITY

The main problem with queries expressed in this language is the effort needed to
specify the queries. A relatively simple query can take about fifty light-pen hits to
specify. It is meant for users with no programming knowledge, yet complex queries
still use logical predicates and involve navigational knowledge. An obvious
advantage is that queries that have been expressed can be seen pictorially. But the
more technical user may find it cumbersome and impractical for specifying queries.
However, it is relatonally complete and has a sound basis in that its queries translate
to the relational calculus based query language Quel. It is not a suitable target
language. This is because it is a highly visual language and any choices made during
its design would be to enhance and support this aspect. These are not the choices
that would make it suitable as an internal intermediate language. This query language

is known to have been implemented by researchers, but it is not widely available and

is further limited by its need of specialised equipment (light pen and bit-mapped

screen).

2.3.10 Foral LP

Foral LP (Foral with a Light Pen) was designed as an experimental system
combining menu selection with a displayed network representing a database. The

users main communication device is a light pen, which enables the user to specify:

» database attributes,
» linkage paths between them, and
» procedural and logical operations on them.

Constants are also specified using the light-pen, and for this purpose the alphabet
and digits are permanently displayed across the top of the screen. A constant can be
specified by selecting repetitively from this set, the idea being that the user is not
expected to have any typing ability or access to a keyboard. The major part of the
display area shows a network representation of the database. There is also a list of
mnemonics for logical comparatives and connectives, built-in functions, arithmetic
functions and instructions for the Foral LP interpreter. Finally, an area is reserved at
the bottom of the screen, in which will appear a linear language representation of the

developing query. As for Cupid, only one example of a Foral LP query is given.

54

» Q2 Get supplier numbers for suppliers who supply at least one red part

ABCZDE FGHIJ K LMNO P QRST UV WXYZ2Z
equal and
SNAME STATUS CITY QTY PNAME CCOLOUR WEIGHT grrohn or
gtrequ not
lssthn ext
petwn all

SUPPLIZR_NUMBER SHIPMENT PART NUMBEﬁ {)
OUTPUT sum

CITY WHERE cnt

NAMSEC avg

PROCSS max

endwh min

name set

footnt ssa

called blt

erase bls

QUTRUT Lac
SUPPLIER NUMBER ins

COLOUR OF PART_NUMBER = 'RED'

As with QBE and CUPID, this language has the advantages of visual representation
of the query and the database, and is targeted at a particular class of user. This is an
Imaginative approach to query languages and it has a distinct advantage in that it
frees the user to a certain extent from having to know how the database is split into
relations; the network representation on the screen showing logical connections
between entities. This means that the physical implementation may be changed
without affecting the user, and it enables the user to visualise the data in the database
in terms of the real-world entities and relationships, rather than in the rather limiting

terms of their computer representations.

Despite these advantages, it is still better suited to a trained, regular user, since
practice and skill are required for anything other than very simple queries. Again,
there is a problem of graphical representation in that a simple logical structure shows
up clearly, but a more complicated one looks confusing and is limited by screen
size. This aggravates the problem of the level of accuracy required for making hits

with the light-pen. The interface itself is meant as a high-level front-end to a DBMS,

n
()

and therefore does not lend itself to supporting a front-end. Again, specialised

equipment requirements limit its availability.

2.3.11 FQL

FQL embodies many of the ideas concerning functional programming systems
described by Backus (Backus, 1978). The only control structure available to the
user is the ability to combine functions. FQL ditfers from other query languages in

several important respects. These are:

» there is no notion of data currency (note however that this is also true of the

relational query languages).

« complex queries may be developed incrementally from simpler queries: a

query in FQL is no more than another function over the database.

» full computational power is provided: (many query languages lack the

ability to do basic arithmetic).

Figure 2.1: An Example FQL Schema

Figure 2.2 shows a schema for a very simple database. The database is regarded as
a collection of functions over various data-types. The example schema consists of
two entities, these are of type emplovee and of type department. The function
dept for example, represents a mapping between these entity types. That is, given
an emplcvee, the function dept returns the department 1n which he works. The
remaining functions map into basic types. For example the function ename returns a
STRING which is the name of a particular employee entity. This schema can also be

expressed as:

dept : employee -> department
ename : employee -> STRING

sal : employee -> NUM
married : emplovyee -> BOOL
dname : department -> STRING

The data types STRING, BooOL and NUM are standard, that is, they exist
independently of any database, while the types employee and department and the
five functions described are specific to this database. Information about employees
and departments may only be obtained through those database functions which

map these entities into ‘printable’ types, such as STRING.

On the basis that the database defines a set of functions, the language provides
mechanisms for combining functions to create new and more powerful functions.
The basic mechanism is composition. This defines a new function in terms of other
already existing functions. For example, a function could be defined which given an

employee entity returns the department in which he works:
deptname : employee =-> STRING = dept.dname

This FQL function definition defines deptname to be a function from employee to

STRING, and it is defined to be the composition of the functions dept and dname.

57

Composition is denoted by the use of the fullstop. The functions are evaluated left to

right. This means that the function deprt is applied to an employee entity, producing
a department entity. This department entity has applied to it the function dname to

produce a value of type sTrRING.

The functions considered so far do not return collections of objects. Inverse
functions provide the means to do this. The inverse of dept, which would be
wrliten as !dept, is a function which maps a department into a sequence of all
those employees who belong to a given department. The FQL terminology for such
a sequence is a stream. New functions can be created which map streams into other
streams. The functional forms provided to do this are extension and restriction.
Extension allows a function such as sal which maps an employee to 4 NUM to be
extended into a function *sal which, given a stream of employees, returns a stream
of nums by applying the function sal to each employee within the stream.
Restriction allows streams to be filtered by predicates over individual elements. For
example, the function |married maps a stream of employees into a substream of
employees satisfying the condition that they be married. Extension will preserve the
length of a given stream, while restriction will generally return fewer elements.
Consider the the creation of a function which returns a stream of salaries of all

married employees within a given department. This would be achieved as follows:
married sals: department ->

*num = !dept.|married.*sal

The remaining functional form is construction. This is used to create functions that

return tuples of objects, for example, an employee's name and salary. This would

be expressed as:

name_and_sals: employee -> [STRING, NUM] = [ename,

sal]

58

The notation (ename, sal] specifies a mapping from emplovee to a pair

comprising of STRING and NUM.

In FQL, a query is a special kind of function whose range is some printable object.
For example, to find the department names and salaries of all married employees,
access 1s needed to the stream of all employees within the database. To enable this,
the functional view of the database needs to be extended to include a set of

‘constant' functions. In the database example these would be:

!employee : -> *employee

'department : —> *department

As can be seen by the above specification, a constant function is denoted by the
absence of a data type to the left of the arrow symbol. The query would then be
expressed as :
Q: ->*[char, num] = !employee.|[married.*[dept.dname,
sall

The class of queries that can be formulated using only the functions given by the
database is limited. The language therefore contains standard functions, which
include arithmetic, relational and boolean operators. Some example queries using the
FQL language are given. The suppliers-and-parts database that we have used so far

to illustrate the various query languages can be expressed using FQL notation as

follows:
snumber :suppliers -> CHAR
sname :suppliers -> CHAR
status :suppliers -> INT
city :suppliers -> CHAR
pnumber :parts -> CHAR
pname :parts -> CHAR

59

color :parts -> CHAR

weilght :parts -> INT
city :parts =-> CHAR
sshipments :pnumber -> snumber

pshipments :snumber -> pnumber

aty : [snumber, pnumber] -> INT
!'suppliers : =-> *suppliers
'parts : -> *parts

* Q1. Get supplier numbers for suppliers who supply part P2.
!suppliers. | ([pnumber, "P2'] . EQ) . *snumber
« Q2. Get supplier numbers for suppliers who supply at least one red part.

'parts . | ([color, "RED"] . EQ) . pnumber

sshipments . *snumber

Q3. Get supplier names for suppliers who supply all parts.

For this query another definition for the database is required. That is:

samesupp : [snumber, pnumber] -> ([snumber,

snumber] . EQ)
The query can then be expressed:

(['parts . pnumber, !samesupp . pnumber] . EQ) |

!sshipments . *sname

The queries Q4 and Q5 are not shown, since the definition of FQL does not contain

the syntax for updating the database.

FQL is a precise and powerful formalism for the expression of database querties,

though it is not an ideal end-user language. Because of its power and precision it is

60

probably best suited to being used as an intermediate language or target language

into which other query languages are translated. Further, it is limiting as a general
database applications design language because it does not have the ability to update
functions. It also lacks any mechanism for specifying and querying meta-data. It has
no clearly defined means for specifying constraints, though it does have the means
to specify derived data. If relational completeness is applied to it loosely, it can be
considered to be 'relationally complete', in that it is selectively powerful. Its
availability is also limited. It is at a lower level of abstraction than, for example,

Daplex.

2.3.12 Daplex

This is the query language defined by Shipman (1981) for his functional data model.
The term 1s used by Shipman to describe both the query language and the data model
described in the paper. The language will be described briefly here and will be

discussed in more detail in Chapter 3.

The language Daplex has a simpler notation than FQL, the other functional model
based query language discussed. A variation of Daplex has been implemented in an
experimental system (Kulkarni, 1983). A subset of Daplex has been embedded in
Ada. This system is called Adaplex and is described in Smith er al. (1981b).
Another project (Smith er al., 1981a) is underway using Adaplex as the common

language to access heterogeneous distibuted databases.

Essentially Daplex supports query formulation based on the set and function
operators. In the Daplex functional data model, data is modelled in terms of entities.
Database entities bear a one-to-one correspondence to real world entities.
Relationships between data are expressed as functions. There are three classes of

functions on entities as defined by Shipman (1981). These are as follows:

61

« scalar-valued - unlike entities, these are directly printable, and éorrespond

to the usual basic types used in programming languages.

* single-valued - these functions return a single entity.

e multi-valued - these functions return a set of instances of a particular

entity.

Daplex incorporates both data definition facilities and also data manipulation

facilities. A Daplex representation of the sample suppliers-and-parts database would

be as follows.

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

DECLARE

Having described the relational schema, it is necessary to define the functional view:

suppliers() ->> ENTITY
snumber (suppliers) -> STRING
sname (suppliers) -> STRING
status (suppliers) -> INTEGER

city(suppliers) -> STRING

parts() ->> ENTITY
pnumber (parts) -> INTEGER
pname (parts) -> STRING
color (parts) -> STRING
weight (parts) -> INTEGER

city (parts)—-> STRING

shipments() ->> ENTITY
snumber (shipments) -> STRING
pnumber (shipments) -> STRING

gty (shipments) -> INTEGER

62

DEFI

I}

NE supplier(parts) -> suppliers SUCH THAT

FOR SOME shipments
snumber (suppliers) = snumber (shipments) AND

pnumber (shipments) = pnumber (parts)

DEFINE part (suppliers) -> parts SUCH THAT
FOR SOME shipments
pnumber (parts) = pnumber (shipments) AND
snumber (shipments)
= snumber (suppliers)
» Q1. Get supplier numbers for suppliers who supply part P2.
FOR EACH suppliers SUCH THAT
pnumber (parts) = 'P2'

PRINT snumber (suppliers)
» Q2. Get supplier numbers for suppliers who supply at least one red part.

FOR EACH suppliers SUCH THAT
color (part (suppliers)) = "RED"

PRINT snumber (suppliers)
« Q3. Get supplier names for suppliers who supply all parts.

FOR EACH suppliers SUCH THAT
part (suppliers) = supplier (parts)
PRINT sname (suppliers)
- Q4. Add part P7 (name 'WASHER', color 'GREY", weight 2, city 'ATHENS")

to relation parts.

63

FOR A NEW parts

BEGIN
LET pname (parts) = "p7"
LET color(parts) = "RED"
LET weight (parts) = 2
LET city(parts) = "ATHENS"

END
* Q5. Delete supplier S1.

FCR THE suppliers SUCH THAT
sname (suppliers) = "S1"
BEGIN
EXCLUDE snumber (suppliers)
EXCLUDE sname (suppliers)
EXCLUDE status (suppliers)
EXCLUDE city (suppliers)
END
The language Daplex provides facilities for data definition as well as data update. Its
data model provides for a complete set of operations. In addition, it has facilities for
specifying constraints and also derived data. Daplex can be used to express data
models other than the functional data model (Gray 1984, Stocker et al. 1984). Its
format is keyword based and relatively easy to learn and use. Although it is not a
relational query language, its selective power is high. Due to its well-defined data

model it could be used successfully as a target language, but this is limited by its

lack of availability.

64

2.4 CONCLUSIONS

The relational model is suitable as a target model since it has a sound basis. It is a
data model on which most DBMS are based and is relatively easy to use. It is a very
useful conceptual tool, which is a proven basis for high level set-oriented query
languages for querying and updating the database. DBMS based on the relational
model are characterised by the fact that they enhance the ease of use and data
independence aspects of databases. This leads to a reduction in the cost of database
intensive application programming. Relational model-based DBMS also provide a
good environment for back-end support and provide interfaces that are very robust

(Tsur & Zaniolo, 1984 and Zaniolo, 1983).

However, a limitation of the relational mode! is that schemas in it fail to model
completely and expressively the natural relationships and mutual constraints between
entities. As a result, other data models have been proposed where reality 1s modelled
in terms of entities and relationships among entities. Some of these have been

discussed in this chapter.

If the approach were taken to completely abandon relational DBMS and build new
systems based on the the new model, little support would be found, since it would
be very expensive in terms of time, cost and manpower. There is considerable
investment in terms of all three in current database technology and it would be

unreasonable to expect this approach to be taken.

It would be more useful to provide other data models as front-ends to existing
relational databases and add the capabilities of the new approach while still retaining
the old ones. This approach has the advantage that compatibility is ensured, existing

skills and knowledge are preserved and a choice is provided to users.

The relational DBMS Ingres has been chosen for the basic DBMS, since it is

amongst the most widely used relational DBMS, and its query language, Quel,

65

makes an appropriate target language. Quel is relationally complete and is based on
relational calculus. It is relatively nonprocedural and provides a core of features that
will be required in some form or another in all such languages. Relational languages

are formally specifiable and are therefore a good basis for an interface.

»The funcuonal data model and query language Daplex provide a high-level interface
to other data models and query languages as evidenced by Katz & Goodman (1983).
A high level interface based on Daplex means that the definition and manipulation of
complex objects is made simpler, since Daplex has only two basic constructs:
entities and functions. Entities represent real world objects and functions map
entities to entities. In addition, Daplex provides the use of function composition for

the traversal of complex objects.

Functional data models in general provide a 'simple’ (note that this is not necessarily
the same as 'user friendly') data manipulation language (Kulkarni, 1983) and are
considered to provide a natural mode of expressing queries. As with the relational
model, the functional data model has a sound mathematical basis (the mathematical

theory of functions).

Daplex is a precise and powerful mechanism for expressing database queries. Since
Daplex has capabilities which incorporate those of the other data models widely used
today, it is viable as a front-end to databases based on these other data models
(Shipman, 1981). Compared to other extended data models, Daplex has retained

some of the advantages of the relational model, in that it is relatively easy to use and

implement.

By providing these two query language interfaces to the same database means that
users can regard the database as a collection of relations or conversely as a collection

of functions. Queries in Daplex can be mapped into equivalent Quel expressions

66

which in turn map into relational calculus. This method of mapping Daplex into Quel

queries is convenient and provides a basis for portability.

67

CHAPTER 3

THE IMPLEMENTATION ENVIRONMENT

3.1 INTRODUCTION

This chapter consists of a discussion of the implementation environment for the
front-end system, and the reasons for selecting this environment. The query
language Daplex which is based on the functional data model defined by Shipman
(1981) is the query language available in the front-end. This is interfaced to the
relational DBMS Ingres, which has as its query language Quel. The operating
system upon which the system is implemented is the Unix system (Kernighan &
Pike, 1984). The implementation is on an BT M6000 series supermicro running

Unix System V.2.

3.2 INGRES

3.2.1 Background

Ingres (Interactive Graphics and Retrieval System) is a relational database system
which is implemented on the Unix operating system. It is described in, for example,
Stonebraker er al. (1976 and 1982) and Stonebraker (1984). It was developed at the
University of California at Berkeley. The Ingres prototype became widely available
in university environments in the early years of its development (late 1970s and
early 1980s). This version is now usually called "University Ingres’, to distinguish
it from the commercial version that has since become available. University Ingres is
still the basis of active research and development at Berkeley. However in the early
1980s, a company called Relational Technology Inc. (RTI) was formed to develop

and market a commercial version of Ingres. Both versions of Ingres run under

Unix. The two versions of Ingres are simular in most respects.

68

Ingres is primarily programmed in C, which is the high level language in which
Unix itself is written. Its designers were motivated to use the relational model of

data due to the following reasons:-
» the high degree of data independence that such a model affords,

» the possibility of providing high level, procedure free facilities for data

definition and access.

The primary user language in Ingres is Quel which has been briefly introduced in
Chapter 2, section 3.4 and is described in more detail in this chapter. Ingres also has
the language Quel available embedded in other high-level programming languages
(as Equel). This is to provide the flexibility of a general purpose programming
language in addition to the interactive facilities provided by Quel. All Quel

statements are valid Equel statements, therefore Equel will not be discussed in detail.

3.2.2 Invoking Ingres

Ingres can be invoked in two ways: either by directly executing Ingres and

supplying a database name, that is:

ingres <dbname>

or by executing an applications program which has Equel statements embedded in it.

3.2.3 Structure

When the Ingres DBMS is executing, the process structure shown in figure 3.1 is

created.

Process 1 is an interactive terminal monitor which allows a user to specify,
print, edit, and execute collections of Ingres commands. It does this by maintaining

a workspace for the user, which the user interacts with until he is satsfied with the

69

interaction. The contents of the workspace are passed down the pipe A as a string of
ASCII characters when execution is required. Processes 2, 3 and 4 consist of

Various query processing routines.

A B C
— > Sy S I—
USER
TERM-
INAL < ‘ P 4 :
F E D
process 1 process 2 process 3 process 4
Figure 3.1: Ingres Process Structure
3.2.4 Quel
Quel will now be considered in more detail.
3.2.4.1 Data Definition
Quel has the following data definition statements:
* CREATE - to create a table
e INDEX - to create an index
e DEFINE VIEW - to create a view
* DESTROY - to delete a table, index or view
* MODIFY - to change the storage structure of a base table
or index.

3.2.4.2 Retrieval Operations

These are:-

¢ RETRIEVE

70

®
a3
1
v}

—~4
h
0
]

®
o}
(3]
b
3
=
&3]

°
oA
)
g
1
Z
O

Quel interactions include at least one RaNGe statement. The form of this is:
RANGE CF variable-list IS relation-name

This statement specifies the relation over which each variable ranges. The
variable-list in a RANGE statement declares variables which will be used as
arguments for tples. These are known as tuple variables. Operations will also
include one or more statements of the form:
COMMAND [result-name] (target-list) [WHERE
qualification]

where coMManD is one of the four operations specified above. For RETRIEVE and
APPEND operations, result-name 1S the name of the relation which qualifying tuples
will be retrieved into or appended to. For REPLACE, result-name identifies the
name of the tuple variable which is to be amended if it meets the qualification. For
DELETE, result-name identifies the tuple variable that is to be deleted if it satisfies

the qualification. The target-1ist has the following form:
result-domain = QUEL function.......

The examples in this discussion of Quel will be based on the suppliers-parts

database described in chapter 2. A qualified retrieval in this language, for example:

71

» Get details of suppliers in Paris with a status of more than 20, would be‘expressed

as follows:

RANGE OF s IS suppliers

el
{7
+3
ol
4
)
<
tr

S.snumber, s.status

=
t
5
&)
wn

.city = "PARIS"

AND s.status > 20

In this query s is the tuple variable which ranges over the suppliers relation. The
results of the query are displayed on the screen, however the results can be saved in
a table if required. The above query amended to store the result in a table called

newtable would then be expressed as:

RANGE CF s IS suppliers
RETRIEVE INTO newtable s.snumber, s.status
WHERE s.city = "PARIS"

AND s.status > 20

Queries can be made which involve more than one table (that is a join of tables). A

simple example of this is:

» Find all the details for all suppliers and parts that are located in the same city. This

would be expressed as:

RANGE OF s IS suppliers
RANGE OF p IS parts
RETRIEVE s.all p.all
WHERE s.city = p.city
The above query shows the join of two different tables, however queries can be

expressed that involve a table joining with itself. An example query would be:

72

* Retnieve all pairs of supplier numbers such that the two suppliers concerned are

located in the same city.

RANGE OF sl IS suppliers
RANGE OF s2 IS suppliers

R

3

TRIEVE sl.snumber, s2.snumber
WHERE sl.city = s2.city
AND sl.snumber # s2.snumber

In this query the two range variables s1 and s2 have been specified to range over the

same table, suppliers.

3.2.4.3 Aggregation

The language Quel provides a number of aggregate operators such as COuNT, suM,
MAaX, MIN, and so on. These operate on the collection of values in a particular

column of a particular table. The general syntax for an aggregate reference is:
AGGREGATE (expression [WHERE predicate])

An aggregate operator returns a single scalar value and can therefore appear in the
target list or in the wHERE clause wherever a constant is allowed. The following three

queries make use of aggregates.

» Get supplier numbers for suppliers with a status value less than the current

maximum status value in the suppliers table.

RANGE OF s IS suppliers
RETRIEVE s.snumber

.status)

)]

WHERE s.status < MAX (

The range variable appearing inside the argument to an aggregate is local to that

agoresate and is therefore distinct from any range variables which appear outside the

73

aggregate. This is true even if the range variables have the same name, as is the case

with the above example. The query could also have been expressed as:

RANGE OF

RANGE O

tr}

RETRIEVE

WHERE sl.

sl IS suppliers

s2 IS suppliers

sl.snumber

status < MAX (s2.status)

3.2.4.4 Aggregate Functions

An aggregate function is an aggregate operator which has an argument that includes
a BY clause. It is distinguishable from an aggregate since its value is a set rather than

a single scalar. An example which uses an aggregate function is the query:

 Get the part number and the total shipment quantity for each part supplied.

RANGE OF

RETRIEVE

BY

Queries can be expressed that have an aggregate function in the wHERE clause, for

example:

sp IS shipments
sp.pnumber, X = SUM (sp.qty

sSp.pnumber)

« Get part numbers for all parts supplied by more than one supplier:

RANGE OF sp IS shipments

RETRIEVE sp.pnumber

WHERE

COUNT (sp.snumber BY sp.pnumber) > 1

3.2.4.5 Quantification

A query which uses existential quantification, such as:

74

» Get supplier names such that there exists a shipment record with the same supplier

number and with part number 2, would be expressed:

RANGE OF s IS suppliers
RANGE OF sp IS shipments
RETRIEVE s.sname

WHERE s.snumber = sp.snumber

AND sp.pnumber = "p2"

This quantification can be expressed more explicitly using the aggregate function

ANY as follows:

RANGE OF s IS suppliers

RANGE OF sp IS shipments

RETRIEVE 3.sname

WHERE ANY (sp.snumber BY s.snumber
WHERE s.snumber = sp.snumber

AND sp.snumber = "p2") =1

The any aggregate function returns the value zero if its argument set is empty,

otherwise it returns the value one. As can be seen from the above query the use of

the any aggregate makes the expressed query more complex. However the any

aggregate is most useful in the form that checks to see if the returned value is zero,

that is the negated form of the existential quantifier. As an example consider the

query:

75

« Get the names of suppliers who do not supply part P2.

RANGE OF s IS suppliers
RANGE OF sp IS shipments
RETRIEVE s.sname
WHERE ANY (sp.snumber BY s.snumber
WHERE s.snumber = sp.snumber

AND sp.pnumber = "P2") = 0

3.2.4.6 Updates

The Quel language provides three update operations which are REPLACE, DELETE,
and appeEND. The syntax for these follows the general syntax given above. These

will be illustrated by means of examples.

« REPLACE - for example, change the colour of part P1 to red and decrease its

weight by a factor of two:

RANGE OF p IS parts
REPLACE p (color = "RED", weight = p.weight - 2)

WHERE p.pnumber = "P1"
« Double the status rating of all suppliers in London:

RANGE OF s IS suppliers
REPLACE s (status = 2 * s.status)
WHERE s.city = "LONDON™

« APPEND - for example, add a part P8 to the table PART. The city 1s Athens, weight

is 24 and the other attributes are not yet known:

76

APPEND TO D (pnumber=u138..’ CityznATHENS",

weight=24)
* DELETE - for example, delete all suppliers in Athens:

RANGE OF s IS suppliers

DELETE s WHERE s.city = "ATHENS™

3.2.4.7 Views

Quel provides for view definition, the general syntax is as follows:
DEFINE VIEW viewname (target-list) [WHERE predicate]

An example view definition for the database would be to provide a relation which

consisted of all those suppliers based in Paris. This would be expressed in Quel as:

RANGE OF s IS suppliers

DEFINE VIEW PARIS_ SUPPS

(snumber = s.snumber,
sname = S.snamne,
status = s.status,

city = s.city)

WHERE s.city = "PARIS"

After such a definition has been made it is possible to make queries against this as if

it was a base relation, for example:

77

* Retrieve all suppliers from this view with a status rating less than 25 would be

expressed:

RANGE OF ps IS paris_ supps
RETRIEVE ps.ALL

WHERE ps.status < 25

The query will be modified internally to be a query over the original base relation

that was used in the view definition.

name

student

name

{ course } dept ><

instructor

titl
© dept

department)
4

head

v

' name
STRING)«

instructor)

4
N\
rank /

salary

INTEGER

Figure 3.2: Daplex Data Model - The University Database

78

3.3 DAPLEX

3.3.1 Background

In this section the Daplex data model (introduced in section 2.2.1), and the Daplex
query language (introduced in section 2.3.12) are discussed in more detail. In
Daplex, data is modelled in terms of entities, where entities bear a one-to-one
correspondence to the real world entities. Relationships between entities are
expressed as functions. An entity is some form of token identifying a unique object
in the database and usually represents a unique object in the real world. Figure 3.2 is
an illustration of a Daplex data model, taken from Shipman (1981). Figure 3.3
shows the corresponding data description in Daplex for the database modelled in

figure 3.2.

3.3.2 Entities

In the Daplex data model a student in the real world is represented by a unique
student entity in the database. Entities with some common characteristics are
classified as entity types. These entity types are in turn part of a type hierarchy, so
that they are all subtypes of the type entity. Functions map a given entity into a set of
target entities. Consider the function student shown in figure 3.3. This function
evaluates to a set of entities of type entity. Since this function has no arguments
there is only one possible result set. In this model this denotes the fact that members

of this set have a distinct type. In this statement, the name student is ‘overloaded’,

since it does all of the following:

- it names the entity type,
« it names the set of person entities,

« it names the function that produces that set.

79

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

student () ->> ENTITY

name (student) -> STRING
dept {(student)

-> department

course (student) ->> course

course() ->> ENTITY
title (course) -> STRING
dept (course) =->department

INSTRUCTOR(COURSE) -> INSTRUCTOR

instructor() ->> ENTITY

-> STRING

name (instructor)

rank (instructor) -> STRING

-> department

dept (instructor)

salary(instructor) -> INTEGER

department () ->> ENTITY

-> STRING

name (department)

head (department) -> instructor

Figure 3.3: Data Description

3.3.3 Functions

As introduced previously, there are three classes of functions. These are as follows:

&0

scalar-valued functions, which are directly printable unlike entities. They
correspond to the usual basic types used in programming languages. For
example, the function name, when given a student entity as an argument,

returns a string which represents that student entity's name.

single-valued functions, which return a single entity. For instance, the
function head when given a department entity as an argument returns a

unique entity representing the head of a university deparument.

multi-valued functions, which return a set of instances of a particular
entity. These are distinguished on the diagram by the use of the double-
headed arrows. For example, consider the function course when given a
studenct entity as an argument. This returns a set of courses (zero or

more) which are being taken by that particular student.

The model also allows multi-argument functons and these provide a convenient
means to establish relationships involving more than two entities without

introducing artificial entities.

3.3.4 Data Definition

Shipman's functional data model has Daplex as its integrated data definition and data
manipulation language. Shipman (1981) does not specify any general purpose
computation facilities for Daplex, it is envisaged that Daplex would be embedded in

a high level language and that this would provide the necessary facilities.

New functions can easily be added to the schema at any time. The DECLARE
statement is used to add a base function or a base entity type. This statement
establishes functions in the system. Functions are used to specify both entity types

and also to express the properties of an entity. For instance, in the set of statements

in figure 3.3 the statement:

81

DECLARE name (student) -> STRING

expresses the following information. It states that name is a function which returns
entities of type STRING when given an argument entity of type student. This
function happens to return a scalar entity, however functions can return non-scalar

entties as well. An example of this is the following statement from figure 3.3:

D)
I

PECLARE dept (student) -> department

This declares the function dept which returns an entity of type department when
applied to a student entity. The distinction between this and the previous
declaration is that in the second case a department entity is returned, not a

department number or other attribute that is printable (as in the first case).

The above two declarations were for single-valued functions since they always
return a single entity. These are indicated by the use of a single headed arrow. Multi-

valued functdons are declared as follows:
DECLARE course(student) ->> course

The use of the double-headed arrow (both in the above statement and in figure 3.2)
indicates the function being declared is multi-valued, that is the CoursE function
returns a set of entities of type course when given a student entity as an argument.
In Daplex all function applications evaluate to sets of entities in the mathematical

sense. This means that sets are considered unordered and do not contain duplicates.

As can be seen from figure 3.3, functions can be declared that do not take any

arguments. Consider, for example, the statement:
DECLARE course() ->> ENTITY

This states that the function course evaluates to a set of entities. The convention in
Daplex is that zero-argument functions define basic entity types. The example

declaration statement is therefore doing the following:

* 1t is declaring a function called course
* it is defining the entity type course

Daplex also provides for the creation of multiple-argument functions. The data

description in figure 3.3 could have included the following declaration:
DECLARE grade (student, course) -> INTEGER

This would declare the function grade to return the grade which was obtained by
the student in a particular course. Other data models often force the creation of
new entity types to express such a situation. An example of this is the entity-
relationship model. In this situation it would be necessary to regard the enrollment
of a student on a course as a conceptual object, and then to assign a grade property
to that object. This could also be done in Daplex, but is avoidable. There is however
a problem with the above declaration, in that it specifies the function grace as well
defined for every student-course pair, whereas it only exists for those courses in
which the student is enrolled. A declaration can be made which overcomes this

problem, that1s
DECLARE grade (student, course(student)) ->> INTEGER

This declares the function grade to exist for only those courses for which the
student is enrolled. In the Daplex data model function name overloading is allowed.
This means that more than one function may have the same name. An example of
this name overloading are the functions course (), course(student), and
course (staff). These all have the same name but in this model they are
distinguished by their internal names. The internal name is obtained by enclosing the
external function and the argument types over which it was originally specified, in
square brackets. The above three functions therefore have the following

distinguishable internal names: ([course()], [course(student)], and

[course (staff)].

3.3.5 Derived Functions

The functions that have been discussed so far are introduced by a DECLARE statement
and are called base functions. In the functional model base functions are represented
by physically storing a table of arguments and results. Such functions are evaluated
by executing an algorithm to search the list of arguments to determine the

corresponding result value.

Functions introduced by the DEFINE statement are called derived functions. These
are represented by an algorithm to compute their results. This means that the data for
these functions does not exist explicitly in the database and is evaluated by executing

the corrzsponding algorithm when required.

3.3.6 Type Hierarchy

The data description of figure 3.3 can be supplemented by the declarations given in
figure 3.4. The declarations for student and instructor entities can be replaced
by more general specifications. Thus, student and employee entities can be
defined as person entities, while instructor entities are defined as employee
entities. This implies a type hierarchy. For instance the entity type student is a
subtype of the entity type person. These subtype-supertype relationships can be
extended to any level and a particular entity type can have any number of subtypes.

There are two important consequences of this hierarchical relationship structure,

which are:

. an instance of an entity type is also an instance of its supertypes

« a subtype inherits all the functions defined over all its supertypes.

84

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

person{() ->> ENTITY

nanme (person) -> STRING

student() ->> person
dept (student) -> department

course (student) =->> course

employee() =->> person

salary (employee) -> INTEGER

manager (employee) ->> employee

instructor({) ->> employee

rank (instructor) =->STRING

dept (instructor)->> department

Figure 3.4: Subtypes, Supertypes Declarations

ENTITY

person

student employee

instructor

Figure 3.5: Type Hierarchy

85

3.3.7 Inverse Functions

The Daplex data model allows for mapping functions in two directions. For
mstance, the function instructor may be applied to a course entity to determine
the instructor who teaches that particular course. However the model also
allows for defining how to obtain the course taught by a particular instructor

enuty. This would be done by defining the following derived function:

DEFINE course(instructor) ->>

INVERSE OF instructor(course)

This declaration means that a function now exists which maps course entities to

instructor entities.

3.3.8 Order

Multi-valued functions evaluate to sets of entities; that is the sets are considered to be
unordered and do not contain duplicates. However the concept of order may be
natural for particular users, therefore Daplex provides the means for explicitly
associating an order with entity types or multi-valued functions. This is done by

using the order construct, for example:

DECLARE student() -> person IN ORDER BY ASCENDING

name (student)

Further By clauses can be used to indicate secondary ordering, tertiary ordering and

SO on.

3.3.9 Data Manipulation

The basic elements of the Daplex syntax are statements and expressions. Statements

direct the system to perform some action. FOR loops in Daplex are an example of

36

these as well as the data definition statements already introduced. EXpressions
appear within statements and they evaluate to a set of entities. As an example of a
query against the database described by figure 3.3 consider the query that will print

the names of all persons in the database. This would be expressed as follows:

FOR EACH person

PRINT name (person)
The For statement iterates over a set of entities of type perscn and executes the
PRINT statement for each member of the set. The complete syntax for the Daplex
language is given in Appendix A. However it is worth noting that there are two
basic forms of the FCor statement, these are:

FCR EACH set imperative

FOR singleton imperative
The term set refers to a set expression and singleton refers to a singleton
expression. A set expression evaluates to a set of entities while a singleton
expression evaluates to a single entity. The term imperative can be a FOR

statement, an UPDATE statement, or a PRINT statement. All Daplex expressions have

a value, a role and an order associated with them:
« expression value is the set of entities returned by evaluating the
expression,

- expression role is the entity type under which the entities are to be

interpreted,

« expression order is the ordering associated with set expressions.

87

3.3.10 Reference Variables

Every set expression has associated with it a reference variable. Operators which
iterate over the set successively bind this variable to the entities in the set. For
example In the query

FOR EACH person

PRINT name (person)
the name person implicitly declares a reference variable PERson which actually
appears in the body of the For statement. In Daplex the reference variable could
have been specified explicitly using the 1~ operator. Then the above query would be
expressed as follows:

FOR EACH p IN person

PRINT name (p)

3.3.11 Set Expressions

A set expression is formed in one of three ways; either by a name corresponding to
an entity type identifier or by a function application resulting in a set-valued result,

or by the general set former construction. The form of this latter construction is:

sete SUCH THAT predicate

where sete is any set expression and the predicate evaluates to a boolean result.

This set expression evaluates to those members of sete for which the expression is

true.

3.3.12 Quantified Expressions

In Daplex, predicates following SUCH THAT can be quantified. This takes the form:

88

FOR quant set predicate

predicate evaluates to a boolean result. The term quant must be one of the

following:

XL

* AT LEAST
° AT MOST
e EXACTLY.

Of these, AT LEAST, AT MOST, and ExacTry must be followed by a singleton

expression which evaluates to a boolean value.

3.3.13 Singleton Expression
These can be formed by one of the following:

« a constant literal
« a variable bound to a particular entity
« a function application producing a single-valued result

« the T2E operator followed by a set expression

3.3.14 Aggregation

The Daplex proposals allow for aggregate functions such as AVERAGE, COUNT,

maxTMuM, MINIMUM, and TOTAL. To find out how many instructors there are in the

department £E, the query would be expressed:

89

PRINT COUNT (instructor

SUCH THAT name (dept (instructor)) = "EE")

The counr function has, as its argument, a set of instructor entities, and COUNT
returns the cardinality of that set. There is a problem for aggregation in Daplex. This
1s due the fact that it is set based. Since set theory does not allow for duplicates, this
might cause a problem when, for instance, the aggregate function AVERAGE is
used. Consider the query to find the average salary of instructors in the EE
department. If the set of salaries was £10,000, £20,000 and £10,000, then the
query:

PRINT AVERAGE (salary(instructor)

SUCH THAT name (dept (instructor)) = "EE"),

would incorrectly evaluate to £15000. However Daplex does provide the means to
overcome this problem, using the operator over. The query would then be

expressed:

PRINT AVERAGE (salary (instructor) OVER instructor

SUCH THAT name (dept (instructor)) = "EE")

In this way the OVER expression evaluates not to a set but to a multiset (sometimes

called a bag). A multiset therefore is a set which may contain duplicate values.

3.3.15 Derived Data

In the Daplex data model derived data refers to derived function definitions. These
are functions which are introduced using the DEFINE statement. The concept of
derived data means that new properties of objects are being defined based on the

values of other properties. Consider the following derived function definition:

90

DEFINE instructor(student) ->>

instructor (course (student))

The function instructor when applied to a student entity returns the instructors
of the courses that the student is taking. The fact that this is a derived function and
not a base function (specified using a DECLARE statement) is completely hidden from
the user and the function can be used in the same way as if it was a primitive
function. Derived functions can also be specified over system-supplied entity types,

such as STRING, INTEGER and BooLeaN. The declaration:
DEFINE student (STRING) -> INVERSE OF name (student)

will map a given string into a set of students. The derived data mechanism is very
powerful. It allows for the creation of user views. In addition to the operators

already introduced, the following operators are available:

« TRANSITIVE OF - an example definition would be
DEFINE superior (employee) ->>
TRANSITIVE OF manager (employee)

The specified function returns the set containing the manager of the employee. the

manager's manager and so on.

e INTERSECTION OF, UNION OF, DIFFERENCE OF - these are used to form
set intersections, unions and differences. As an example of using one of

these, consider the query:
DEFINE student-teacher() ->>

INTERSECTION OF student, instructor

This will create a new entity type student-teacher using primitive entity types.

91

* COMPOUND OF - this creates derived entities corresponding to the elements
of the Cartesian product of its operands. The following example illustrates

usage of this operand:
DEFINE enrolment{() ->>

COMPOUND OF student, course (student)

This declaration defines the set of enrolment entities, the enrolment entity type.
In addition 1t implicitly defines the two functions student and course to operate

over entities of type enrolment.

3.3.16 Constraint Specification

There are two aspects to constraints specification. Firstly a means is provided to
prevent updates taking place against the database which would violate certain system
imposed conditions. For example, consider the constraint that the head of a
department must come from within that department. This would be specified as

follows:

DEFINE nativehead (department) =>

dept (head (department) = department

For those departments that satisfy this constraint, this function will evaluate to true,
while for those that do not it will evaluate to false. The Daplex syntax provides for

the use of the keyword CONSTRAINT, as follows:

DEFINE CONSTRAINT nativehead(department) ->
dept (head(department) = department
This causes the system to abort any update transactions which evaluate to false. In

addition constraints may be specified over the database as a whole. For instance,

there might be a constraint that the number of managers in the database must not be

exceeded by the number of non-managers. Such a constraint could be specified as

follows:

]
1t
h]
+4
Z
ol

manager() ->> manager (employee())

O
ol
23]
H
Z
]

nonmanagex () =>>
DIFFERENCE OF employee, manager
DEFINE CONSTRAINT toomanychiefs() ->

COUNT (manager{)) < COUNT (nonmanagexr())

The second aspect of constraint specification is concerned with the TRIGGER facility.
The facility allows for the execution of a specified imperative when the function over
which it is defined changes from false to true. Consider the situation where the
department head needs to be informed when more than 40 students are enrolled in a

class. This could be done as follows:

DEFINE student (class) -> INVERSE OF class(student)
DEFINE TRIGGER overbooked(class) ->
COUNT (student (class)) > 40

SENDMESSAGE (head (dept (class)),

"OVERBOOKED:", title(class))

3.3.17 Database Update

In Daplex, update statements specify the value returned by a function when that
function is applied to particular entities. The syntax involved will be illustrated by a
number of examples. For example, to add a new student named Helen, whose
department is cs and courses taken are Operating Systems and Compiler

Construction to the database:

FOR A NEW STUDENT

BEGIN

LET name (student) = "HELEN"

LET dept (student)

It

THE department
SUCH THAT
name (department) = "CS"

LET course({student) =

(THE course SUCH THAT name (course) =
"OPERATING SYSTEMS",
THE course SUCH THAT name (course) =
"COMPILER CONSTRUCTION™)

END

3.4 CONCLUSIONS

Suppliers of DBMS have increasingly used Unix as a means of reaching large
numbers of users. Many products have been developed to run under Unix, while
older ones have been adapted to do this. Unix is naturally suited to database
applications for several reasons. Firstly it is a multi-user operating system and can
therefore handle typical database environments in which information is a common
source. Secondly, from DBMS suppliers' point of view, Unix provides a
considerable degree of software portability between hardware from different
manufacturers. Thirdly, because DBMS for Unix systems are written in the high-
level C programming Language, they can easily be transferred from one Unix
system to another. From a commercial point-of-view, the growing popularity of
Unix means that such portability gives suppliers a potentially large user base. Since
Unix systems have only recently achieved commercial success, systems software

products for them reflect the latest technical advances. In terms of DBMS this has

94

meant an emphasis on relational databases. The above mentioned advantages have
lead to the selection of the Unix operating system as a suitable environment for the

implementation of the research system.

Ingres was selected as the target DBMS due to the fact that it is a relational DBMS
and 1s widely available in Unix and other environments. The significance of this is
that the portability of a system if it is based on Ingres, is increased. Further, its use
provides the advantages of relational databases. Furthermore, Quel is its query
language. Quel was selected as a suitable target query language because it is based
on relational calculus and is therefore relationally complete and its operations are

based on relations.

The Daplex functional model proposed by Shipman has semantic expressiveness as
its major advantage. This is due to its inherent ability to organise data into type
hierarchies with automatic inheritance of attributes and relationships from a
supertype to all of its subtypes. For example, entities are organised into entity types
which in turn are organised into subtype-supertype hierarchies. Properties of entities
are represented by functions. Extensions of entities can belong to different entity
types, which bears a correspondence to the different roles that objects can play in the
real world. Another advantage of this model is the fact that no distinction is made
between the properties of entities and relationships between entities. They are both
modelled as functions. Further the model provides a complete set of operations and
provides the facilities to specify constraints and derived data. The advantages

outlined above lead to the selection of this model as a suitable basis for this

implementation.

For these reasons the practical work for this research was an implementation of a
Daplex front-end to the Quel target language on the Ingres DBMS running under

Unix. This front-end system (FQLFE) is described in chapter 4.

95

CHAPTER 4

THE FRONT-END SYSTEM

4.1 INTRODUCTION

The data modelling capabilities of Daplex incorporate those of the hierarchical,
relational and network models. This increases its suitability as a front-end for
existing database systems. However, since the relational model, used as the 'target
model’, is a subset of the functional model, any Daplex description of a relational

database will be subject to the following limitations:
+ no multi-valued functions are allowed
- functions cannot return user-defined entities
« multiple-argument functions are not allowed

« there are no subtypes.

Having specified the Daplex description with the existence of a suitable front-end,
Daplex requests can be written against the relational database. By only specifying
the relational database in terms of Daplex, the full benefits of the Daplex approach
will not be available because of the limitations (specified above) of the underlying
data model. A functional view would be more useful and this can be done (by
defining derived functions) using FQLFE. With these additional definitions, queries
may be written in Daplex against the relational database, as if it were a Daplex
database. This specification of the functional view consists of adding semantic

information which was not expressible in the relational data model.

96

The Functional Query Language (FQLFE) system is an attempt to provide such a

front-end. Its overall structure is shown in figure 4.1. This chapter discusses the

main features of the FQLFE implementation.

USER
QUERIES

Functional Query
Language
Front-end
(FQLFE)

a

Functional

Functgonal definition of
view relational

database

\ 4
Relagonal
database

management
system
(Ingres)

Database

Figure 4.1: System Overview

97

4.2 SYSTEM INVOCATION

To execute the FQLEFE system, the user types in the following command:
fglfe <dbname>

where <dbname> is the name of an existing database. When the system is invoked,
it verifies the existence of the relational database <dbname>. The catalogue
component of the system is invoked if a valid database name is specified. This
checks the user's home directory for the existence of a local FQLFE directory called
.FQLFE, which, if it exists, will contain any information regarding the user's
functional view of the relational Ingres database. If such information exists, it is
loaded into main memory. The local FQLFE directory will be accessed and updated
as necessary during the user's database session. If the necessary information does
not exist, that is, the user does not have a functional view for accessing the
database, then this program calls the necessary routines to set up the basic
information. Initially, the relational database system is accessed and information
regarding the database is retrieved. This information consists of the names of the
relations in the database, their attributes, and the types of the attributes. In the
beginning of the session this information is resident in main memory, but will be
written to a disk file at the end of the session. Figure 4.2 shows the data structure
used to hold information about the relational database in main memory. The disk file
<dbname> . rel is used to hold information about the relational database, while the

diskfile <dbname>. func is used to hold information about the functional view.

If a file containing the relational information about the database does not exist, then
it is assumed that the database also does not have any functional view information
stored. In this case the relevant information will be generated during the database
session. At the end of the session this information will be written to a disk file,
called <abname>.rel, for future reference. Figure 4.3 shows the structure of the

file <dbname>. rel. The total number of relations in the database is specified by the

98

value i, while the number of attributes in relation 1 is specified by ji . Details of the

structure of the file <dbname>.func are given later in this chapter.

array
B
relation attribute attribute
name name YP€ | name type
relation attribute attribute
> name name YP€ | name type
=
< - - -
relation attribute attribute
name name YPe | name type
relation attribute attribute
name name YPe | name type
v

Figure 4.2: Catalogue Information Data Structure

i

relnamel

jl

attributel attribute2 attribute3..... attributejl
relname?2

j2

attributel attribute2 attribute3..... attributej2

.......................

relnameil
ji
attributel attribute2 attribute3..... attributeji

Figure 4.3: File Structure for Catalogue Information

4.3 MONITOR

The interaction with the user is based on the workspace concept. The idea is that
user commands to query the database are written into a workspace where they can
be manipulated in various ways. Monitor commands are used to manipulate the

workspace and its contents. The workspace is implemented as a disk file called

99

waJSAS
LIXH

HE

35019

o[y %
Joedsyiom
orowm LINO

SUNVINIWOO
AHHLO

apowl
puadde

ut 91y
uadoal

“H%o

[fed

apou +
puadde Ay

uroqy ooedsyiom
uadoaz ENo R

!

ANHddV Ldd

LITd

opou
puadde ur a1y
JoedsyIom
uadoar

_.Huuom

0] 21IM

f

oY
S1UAUOD
peal

|

Juipear
10] 91y
sordsyiom
uadoar

Fu_NE

o1y
oedsyiom

0} LM

!

SJU2IUOD
peal

»

1Y
payyoads
uado

HANTONI

Nl

p HOLINOW

sunum 103
dordsyjiom
uadoas

l

Junum
10 971)
sordsyyrom
uodoar

LASHY

ooudsyiom

Jordsyiom

g
M

pa1red
Iasred

i

2500

Figure 4.4: Input Handling

O

OLFE workspace. The monitor handles all user input and divides it into two

[

types. The first type is its own commands, these have the syntax:

100

\<command>

where <command> is one of the following keywords:

include

print

edit

append

quit

The second type is any commands that are not of the above form. These are written

to the file FQLFE_workspace, on the assumption that they are query language

statements. Each of the monitor commands has a particular function and causes a

number of different actions to take place (see figure 4.4). These are summarised

below.

\go. When this command is entered, the file FQLFE workspace i
closed. The monitor program generates a child process which executes
the language recognition component of the system. For the child process,
the input is redirected so that file FQLFE_workspace is read. This file
represents the user's workspace and contains the user's query language
statements. Therefore the affect of this command is to attempt to execute

the user's database queries/updates.

\reset. This command is used to reset the contents of the user's
workspace. Thus it erases any previous statements entered by the user
which are currently in the workspace. This is implemented by closing the
file FQLFE workspace, which represents the user's workspace and

101

reopening it for writing. The file is reset to size zero bytes and its previous

contents are lost.

\include. The complete syntax of this command is :
\include <filename>

This command is used to load prewritten statements from another existing
file into the system workspace. The contents of the file specified by file
<filename> are loaded into the file FOLFE workspace. Any previous
contents of the workspace are overwritten. This command allows
frequently used sets of commands to be written to a file so that they can be
loaded up when required, rather than repeatedly typing in the commands

directly.

\print. This command is used to print out the current contents of the
workspace on the screen. This is achieved by closing the file
FQLFE_workspace, opening it for reading, and writing its contents to the

screen. 1t is then closed, and reopened for appending.

« \edit. This command is used to edit the contents of the workspace. If a
command is typed in incorrectly, the user can make alterations to it rather
than type in the statements again. The editor that is made available to the
user is the Unix screen editor vi. Changes, if required, can be made to the
commands in the workspace using the editor vi in the normal way. At the
end of the editing session the changes can either be abandoned or written
into the workspace. This edit command is implemented by the monitor
process generating a child process which executes the vi command, and

the file specified is FQLFE_workspace.

e \append. This command is used to add statements to the commands

currently in the workspace. Normally after a statement is executed, and

102

another statement is typed in, the workspace is reset. The effect of this

command is to override this feature, if the user requires it. It is

implemented by closing the file FQLFE workspace and reopening it in

append mode.
* \quit. This command is used to exit from the FQLFE system.

After execution of any of the monitor commands, control is always returned to the

monitozr. This puts up its prompt on the screen and awaits further user input.

DAPLEX STATEMENTS

FQLFE

QUEL STATEMENTS

Figure 4.5: Basic FQLFE function

4.4 DATA DEFINITION AND MANIPULATION.

The basic function of FQLFE is to transform Daplex data definition and
manipulation statements into Quel data definition and manipulation statements (see
Figure 4.5). This 1s not possible in one single step. In FQLFE, this function is split

into several steps, which are shown in figure 4.6. Each of these steps has certain

103

expected inputs from which it generates its output. This output forms the input to the

next step untl the target language statements are arrived at.

USER QUERIES

>| -

=] [¢’]
B2
3|8

LEXICAL TOKENS

> | w»n

2 1S
< | B

é. >

PARSE TREE

SISA[euy
ONUBWIAG

VERIFIED PARSE
TREE

om] pue auo aseyd
uoneIAUIZ
o5en3uey 195k,

vy
TRANSFORMED
PARSE TREE

da1y3 aseyd

uonelouad
o3enduey 198,

A 4
TARGET LANGUAGE
STATEMENTS

Figure 4.6: Query transformation

104

4.5 LEXICAL ANALYSIS

The lexical analyser was generated with the aid of the Unix tool Lex (Lesk &
Schmidt, 1978), which is a lexical analyser generator. The monitor passes the file
FQLFE workspace, which contains all the user input that did not consist of monitor
commands. This happens when the command \go is entered by the user. The input
passes through the lexical analyser and is broken down into various tokens

according to the rules specified in the lex program (see figure 4.7).

WORKSPACE
CONTENTS

LEXICAL
ANALYSER

LEXICAL
TOKENS

Figure 4.7: Lexical analysis

The Lex specification for the FQLFE system is given in Appendix B. The input 1s
divided into various defined tokens. Any input that does not correspond to an
expected pattern generates a special token. This is passed to the next phase of the
system in the same way as the other tokens, and does not cause an error message to
be generated during the phase. By detecting and reporting the error during syntax
analysis, the user can be given more information about the nature of the error. The

output from the lexical analysis phase forms the input to the syntax analysis phase.

105

4.6 SYNTAX ANALYSIS

This component was developed with the aid of the Unix tool Yacc (Johnson, 1978),
which 1s a tool for developing compilers. The input to this part of the system
consists of the tokens generated by the lexical analysis. The tokens are processed
according to a set of rules which form the Yacc specification (see figure 4.8). This

specification is a grammar which defines the language Daplex. The Yacc

specification used in this implementation is given in Appendix C.

LEXICAL
TOKENS

ANALYSIS

PARSE
TREE

SYNTAX S

YACC
SPECIFICATION

Figure 4.8: Syntax Analysis

During language recognition a tree of the input is built up. If an error is detected, a

relevant message is put up on the screen to inform the user. The mechanism used for

106

building a syntax tree of the input is based upon having a structure for each rule of

the Yacc specification. For example, consider the following rule:

declarative : simple decl

| complex decl

This rule would have the following structure described for 1t:

STRUCT declarative_type

int type;

UNION

STRUCT branch declarative 1

SIMPLE DECL_TYPE simple_decl 1;
}BRANCH declarative_1;

STRUCT branch_declarative_2

COMPLEX DECL_TYPE complex_decl_1;
}BRANCH declarative_ 2;
}JRULE;

}:

The Yacc specification for syntax analysis is extended to include the following:

107

declarative : simple decl

S=(DECLARATIVE TYPE)

node2 (1,81);

complex decl

$$=(DECLARATIVE TYPE)

node?2 (2,$1);

Therefore, when a declarative is found, the routine node2 is called. If a
simple decl is found, a value of 1 is passed to the routine. This specifies the type
of declarative found. In this way, if a complex_decl is found, the value for type

1s set to 2.

There is a number of node routines. There is a different routine according to the
number of parameters being passed. For the purpose of the system written as part of

the research, the following node routines exist:
node2, node3, node4, node5, nodeb, nodeT’.

The routine, noden, is passed the relevant number of parameters (n). In every case,
the first parameter is the type value. This type value will vary according to the
particular alternative found within a rule. The remaining parameters represent the

symbols making up the rule. They are pointers to structures.

108

o
&

PROGRAM
1 po
STATEMENTS
1 pr
STATEMENT
1 ptr
DECLARATIVE
1 ptr ptr ptr pu pu pu SIMPLE_DECL
1 ptr 1 pr 1 ptr
OPR OPRJ OPR /
1 ptr (->>
DECLARE
FUNCID 1 pu 1 ptr
1 | pr
IDENTIFIER)
ENTITY
student

Figure 4.9: An Example Parse Tree

The routine noden calls the standard C library routine malloc to allocate memory in

order to store the parameters. The amount of memory allocated will depend on the

number of parameters. For example, for the routine noded, it will allocate a block of

memory large enough to hold four pointers to integers. Therefore, for n parameters,

109

1t will allocate memory to hold n pointers to integers. The routines all return a

pointer to a character type. This pointer points to the allocated node. In the action:

$$=(DECLARATIVE TYPE) node2 (1, S$1)

the C cast operator, (DECLARATIVE TYPE) forces the pointer to point to a structure
of type pEcraraTIve TvpE. In this way, pointers are returned bottom upwards,
and a syntax tree is formed of the language statements. Figure 4.9 shows the syntax

tree that would be generated for a simple statement such as:
DECLARE student() =>> ENTITY

The node allocated will vary according to the number of symbols in the righthand
side of the rule that need to be stored. Pointers to these nodes are passed back
upwards as the tree is climbed. On completion of the syntax analysis, a tree exists in

main memory which represents the input.

4.7 SEMANTIC ANALYSIS

During semantic analysis, the parse tree that was generated during syntax analysis 1s
processed. This is achieved by passing to this step the pointer to the root node of the
tree. The semantic analyser traverses the tree, checking that the statements input by
the user are semantically correct. The syntax analysis phase only ensures that the
input was syntactically correct. It is possible that syntactically correct input is

semantically incorrect. During this phase there are two types of semantic checks

carried out. These are:

« To ensure that the Daplex language 1s correct.

. To ensure that the input statements are correct in terms of the underlying

relational database.

110

4.7.1 Data Definition - Relational

During data definition, a base entity can be defined, for example using the
following:

DECLARE student () =->> ENTITY

The identifier student, names:

- the entity type,
« the set of person entities and
« the function which produces the set.

The idendfier specified must be checked to ensure that it corresponds to the name of
a relation in the relational database. The table of catalogue information is accessed
for this purpose. If a corresponding relation does not exist a relevant error message
is displayed to the screen and no entry is made into the table of base functions. If it

is a valid entity, the relevant entry is made in the base function table. In a declaration

such as:

DECLARE name (student) -> STRING

The identifier name names:

« the function which is an attribute of the argument student.

In addition, student must be a base function, that is, it is an entity in the functional
view of the database. This will also ensure that there is a corresponding relation in
the relational database. This relation also needs to be checked, to ensure that name 18
an attribute of the relation student. In addition, the type STRING being declared

means that the attribute in the relational database should be of type character. In a

declaration such as:

111

DECLARE teaches (course) -> instructor

The identifier teaches names:

- the function which represents the relationship between the identifier

instructor and the argument course.

In this case, the checks will need to be made as specified in the previous declaration,
except that the return-type instructor needs to be checked, to ensure thatitis a
valid entity type for the functional database. This can be confirmed by accessing the
base function table. For valid declarations such as the above, entries are made in the

non-base function table.

4.7.2 Data Definition - Functional

A simple example would be a statement such as:

DEFINE dept (student) =-> department SUCH THAT

deptno (department) = deptno (student)

The verification that needs to be done in this case is as follows. The entity type
department must be a previously defined base function. Its existence should be
verified by accessing the base function table. This is also true of student. In terms
of the database, department must be a relation of the relational database, it must

also have an attribute deptno. In a statement such as :

DECLARE course (instructor) ->>

INVERSE OF instructor (course)

the instructor function must exist as a base funcdon. This means that it must also
exist as a relation in the relational database. In both of these cases, the named

argument must be an entity, that is, it must have an entry in the base function table.

112

This also means that a corresponding relation exists in the relational database. The

identifier naming the return-type should either be a data type or an entity.

4.7.3 Data Manipulation

During data manipulation, verification checks are made on the base function table
and the non-bhase function table. No checks need to be made against the database,
since queries can only be made against the specified functional view of the relational

database. For example, consider the query:

FOR EACH student SUCH THAT
FOR SCME course (student)
name (dept (course)) = "EE"

PRINT name (student)

For this query, the function tables must be checked to ensure the existence of the
functions course, name and dept . The function course must accept arguments of
type student. The function name must accept arguments of type dept, while the
function dept must accept arguments of type course. In addition, the return-types
of all the functions must be verified. The course function should return a name

type, while the name function should return a STRING type.

4.8 TARGET LANGUAGE GENERATION

When a verified tree of the input has been built up, one of two alternative actions
take place. If the user's input statements are data definition statements, then the
relevant function table is updated with this information. Alternatively, if the input
statements are data manipulation statements, then the parse tree must be traversed

and syntactically ransformed to produce the relevant Quel language statements.

113

The target language generator is passed the pointer to the root node of the ‘parse tree,

which it will raverse. This module consists of routines which will traverse a parse
tree generated for any user input which the Yacc specification and actions has
produced. As the mee is traversed, the following syntactic transformations take

place:

» The parse tree is scanned, and any derived function calls are replaced by
the syntax tree representation of the return expression. This phase

generates another tree.

« This new tree is scanned and all the For soMe statements (that is,

imperative statements) are collected together.

« Each of the expressions for the FOR SOME statements are linked with the

AND Operator.

 Every FOR EACH statement and FOR SOME statement is replaced by Quel

range statements.

- The transformed expressions are used to produce Quel statements.

4.8.1 Phase One Transformations

The pointer to the root node of the syntax tree of the query statements is passed to
the phase one transformation routines. This phase involves traversing the syntax tree
in the same way as the tree was traversed during semantic analysis. During phase
one, the derived function table is accessed to check whether the particular function
names specified are derived functions. If they are, a check is made as to whether the
function call is part of the FOR statement specification or whether it occurs in the

body of the ror. The place where the function call occurs determines how it is

treated. For example, in the query

114

FOR EACH employvee SUCH THAT

name (dept (employee)) = "toy"

PRINT name (emplovyee)
the function dept, is a derived function, whose definition is:

DEFINE dept (employee) -> department SUCH THAT

deptno (sales) = deptno(department)

In theory, different functions can have the same identifier. For example, there can
exist a function name which, when applied to an employvee entity returns the name
of an employee and when applied to a department entity returns the name of the
department. Both of these functions have the same name but actually refer to two
different functions. Therefore, when accessing the derived function table to check
the name specified in a function call, it is not sufficient simply to compare the called
function name with the table function name. The arguments to the functions also
need to be compared as this will distinguish whether or not it is the same function.

This is not a simple problem to address, since derived functions can have the

following syntax:
funcid(mtuple) ->............

An effective way to solve this problem is to call the routine output_mtuple from
the output module, for the stored function and pass to it the relevant pointer. This
will then write the syntax tree for mtuple to a temporary file. This file is then
accessed and the contents read into a string. The routine output_mtuple is then
called for the function call and the above procedure repeated. The two strings are
then compared to see if they refer to the same function. Only then can it be

confirmed that the called function corresponds to the one in the derived function

table.

115

In the above case, when dept has been recognised as a derived function, the return-
type department, is substituted for the function call - the nested function call
name (dept (emplovee)) becomes name (department). This is carried out by the
pointer to the function call in the syntax tree, being altered to point to this return-
type. The right-hand side of the function definition contains information necessary
to transform this query into Quel, It must also be included in the syntax tree at this
stage. The important factor to consider when making any changes to the syntax tree
is that regardless of any changes being made to incorporate the transformations, 1t
must still retain a formar thar allows traversal for phases two and three in the same
way as phase one. Thus, these routines should traverse the abstract tree so that, for
any actual tree, traversal using the same routines is possible. A simple, but effective
way of incorporating this definition into the transformations is to use the list
deflisc. This list consists of nodes where each of the nodes has the structure
shown in figure 4.10. The field defptr is set to point to the return-type for this
function definition. This list will be used again at a later stage. Nodes of this routine
are created by using the C library routine malloc. The next field of the current node
is set to null. The previous node in the list is set to point to this newly allocated
node. The head of the list consists of a node which points to the first item in the list.
It does not have a value in its defptr field. In addition, an entry will be made into
another list, 1inklist, which has the structure shown in figure 4.11 The address
of the function call node is stored in the allocated node of the linklist. The link field
has the address of the conditions which form part of this function's definition stored

init. Therefore the effect is to replace the derived function call by its return-type.

116

A derived function call which occurs in the For specification as in the query:

23]

CR EACH item SUCH THAT
FOR SOME sold({item)
floor{department) = 2

PRINT name (item)

results in different actions being carried out. Instead of replacing the function call by
the derived function return-type and adding the definition to deflist, the derived
function call is replaced by all of the right hand side of its definition. The pointer to
this value is obtained from the derived function table. Since the extra semantic
information needed to transform the Quel query has all been incorporated into the

query, no node is added for this to deflist.

4.8.2 Phase Two Transformations

In this phase the routines transform_imperative and transform_forloop
include the following actions. In transform_imperative, the lists rangelist,
forlist, predlist and condlist each have a pointer initialised to point to the
head of the list. The head nodes are the only nodes currently present in each of the

lists. For this reason, the next pointer in the node at the head of each of the lists is

set to null.

The forlist is used to point to all For statements. These either begin with FOR EACH
or For some. The condlist is used to point to all statements that are gpimperative
statements, that is, they begin with prINT. When an item has to be added to these
lists, a node of the relevant type is created using malloc. The previous node in the
list has its pointer next set to point to the address of this new node. The relevant
pointer, (predptr, forptr Of condpt r) is set to point to the syntax tree of the

statement to be added to the list. The pointer next of the new node is set to null.

117

FOR statements can also occur within other types of statements, for example, within
pred clauses (see Appendix A). Therefore the routine transform pred also
contains the code to add an item to the forlist. It is in this routine that items are
added to another list, pred1list (see Figure 4.10). This has exactly the same
structure as forlist, condlist and deflist, and items are added to it in the
same way. Essentially, phase two consists of traversing the syntax tree in main

memory and putting pointers to different types of clauses into nodes in the relevant

lists. The various lists generated will be used during phase three.

(a)

(b)

(c)

(d)

Figure 4.10: Node structures of deflist, condlist, predlist and forlist.

predlist node

ptr to pred pir to next
type structure predlist node
condlist node
ptr to cond ptr to next
type structure condlist node
deflist node
ptr to define-| ptr to next
type type struct deflist node
forlist node
ptr to for- pr to next
type loop struct forlist node

118

4.8.3 Phase Three Transformations

To finally arrive at the Quel transformation of the Daplex query, the tree of the
query, held in memory, is traversed. In this instance, however, the traversal does
not necessarily start at the root node. Traversal starts at the first item in the forlist.
Depending on the type of item in a particular node of forlist, either the routine
transform forloop Or the routine transform pred is called. As each node of the
list is processed the relevant routine is called.When the list is exhausted, that is,
when the pointer next is null, the next list is processed. All nodes in forlist
represent FOR statements, which will be transformed into corresponding Quel range
statements. The range variables must be allocated by the FQLFE system in a
systematic way. This is done by adding the name of the relevant set into the list

rangelist. This list has the structure shown in figure 4.11.

rangelist node

range range pIT to next
(@) target variable node
varlist node
range var pIr to next
(d) letter count varlist node
linklist node
ptr to link ptr to funcall| ptr to next
© type conditions to be linked | linklist node

Figure 4.11: Node structures of linklist, rangelist and varlist

Range variable allocation 1s carried out as follows. When an identifier specifying the

set over which the variable is to range is encountered, this corresponds to a typeid.

119

The rangelist is accessed to see if that identifier already exists in the list, and if it
does not it is added to the list. The list of range variables is checked to see if the first
letter of this identifier is already in existence as a range variable. If it is, then the
count of the number of variables using this letter is incremented. The item in the
rangelist therefore has associated with it a range variable consisting of the first
letter, for example, s, or the first letter and the value of the count for that letter, for
example, s2. In this way, range variables allocated are always unique even if they
reference a set which begins with the same letter as another set or if they range over

the same set.

The next list to be processed is deflist. This was generated as a result of
incorporating any derived function calls into the query. If this has any items in it,
they are processed by calling the routine transform definetypes, and the pointer
in the defper field is passed to it. Again, the transformation of each item in this list

results in a Quel range statement. Range variables are allocated as detailed above.

When deflist is exhausted, condlist is processed. All items in condlist are
Daplex imperative clauses. To transform these, the routine
transform imperative is called with the pointer condptr passed to it as a
parameter. Each item held in this list corresponds to a Quel ret rieve statement. As

this list is transformed, the target-list to be retrieved by the Quel query is built up.

Finally, predlist is processed. All of its items are of one type, and, for each item

¢ ransform pred is called with the relevant pointer passed to it. Items in predlist,

correspond to the Quel qualification statements.

As a result of the ordered processing of these list structures, the transformed Quel

query is produced in the format:

range statements...

During list processing in phase three, routines which produce ouput write this to the
file FOLFE_query. The child process which accesses the database, is generated by
means of the Unix fork utility. The database access program sets up the
environment, so that Ingres reads its input from this target language file rather than

from the terminal.

4.9 DATABASE ACCESS

The routine dbexec is called when access to the Ingres database is required. A child
process is generated. In this process the input is redirected so that instead of reading
from the terminal, input is read from the relevant file. During catalogue creation, this
routine is called with the file catalog_request as input and the file result as
output. After query transformation, when the target Quel statements have been
generated, the same routine is called but this time with the file FOLFE_query as
input. This contains the FQLFE-generated Quel query. This file was produced by
ransforming the user's Daplex query which was contained in FQLFE_workspace.
The forked process is overlaid by the Ingres process and the name of the database
that the user is currently querying 1is passed to it as a parameter. As well as input
being redirected to read from a file, a very simple but effective mechanism is used to
prevent the Ingres process writing its output to the screen. Its output is also
redirected to a file (see Figure 4.12). After execution of the database commands, this

file is accessed and the relevant information selected.

$)NSaI

aseqgelep

A1anb™g4104

/N

SHADNI

HOVASHIOM .ﬂ/ sunnor rasred
k\.\\\
\\\
&
0dxd4dd
SLSANOTY aunnol
ANOOTV.LVO ongojvied

o

aoedsy10M™ 110

Figure 4.12: System Interaction With Ingres

122

4.10 DATA DEFINITION - INFORMATION STORAGE

Details of how Daplex queries are transformed into Quel queries have been given.
This is not the only action that can result. If the user has provided data definition
statements, these will not be transformed into Quel statements. Instead various
system tables are updated. Information about base, nonbase, and derived functions
is held in three main tables. These tables are set up internally as linked lists, rather
than as arrays. The advantage of this is that storage space is not allocated
unnecessarily. When a function needs to be added to any of the tables, the relevant
node for the table is allocated. This is then inserted into the list by setting the pointer
in the previous node to this new node and setting the nextfunc field of this new
node to null (to indicate the end of the list). The structure of these lists is given in

figure 4.13.
In addition to the above tables, the following information is also stored:

« basetot - the total number of base functions for this database
« nbtot - the total number of nonbase functions for this database

« dertot - the total number of derived functions for this database.

base function list node

@) function pur to next
a name function

nonbase function list node

argument result

(b) function e type

name

ptr to next
function

derived function list node

ptr to mtuple| ptr to define-| ptr 1o next

functdon % .
(©) type struct types struct | function

name

Figure 4.13: Node structures of base, nonbase and derived function lists

At the end of the FQLFE session, the information in these linked list tables and
counters is written to the file <dbname>. func. First the totals of the base, nonbase,
and derived functions are output, in that order. These are then followed by the base,

nonbase, and derived functions, again in the same order.

When a database session is invoked, the file <dbname>. func 1s opened, if it exists,
and the information is loaded into main memory. The various totals are read in, and
using these, the three tables are created. For the derived functions, each function's
syntax trees will need to be recreated from the stored information, using the standard

C library routine malloc. This is because the syntax trees are pointer based, rather

than array based.

During language recognition the following information is stored. For example when

a statement of the form:

DECLARE student () =->> ENTITY

is recognised, any necessary checking of semantics and correctness in terms of the
relational database is carried out. Then the name of the declared function is entered
into the base function table. This is achieved by using the C library routine malloc to
allocate memory to hold this information. The address of any new base function
added is put into the next func field of the previous entry. The next func field of

the current entry is set to null. When a declaration such as:
DECLARE name (student) ->STRING

is made, then the function is added to the nonbase function table. Again, when any
necessary checking has been done, memory of the relevant size is allocated to
contain the name of the function, its argument, and its return-type. The pointers are
set as for the above example. When a derived function is specified by a statement

such as:

DEFINE dept (student) -> department SUCH THAT

deptno (department) = deptno {student)

memory of the relevant size is allocated, and the function name is stored. Memory is
then allocated for the arguments of the function. Arguments to defined functions can
be complex in their structure and can be highly variable. The mechanism for storing
the information about derived functions is simplified in this implementation by
storing the complete sub-tree of the argument (this corresponds t0 mtuple according
to the Yacc specification of a derived function). Similarly, the return-type of a
derived function can also be an arbitrarily complex expression. Again, an effective
means to overcome this problem was to store a pointer to the syntax tree of the
return-type which, according to the Yacc specification for a derived function, always
corresponds to definetypes. In this way, detailed information about derived
functions is stored efficiently and consistently. The entry in the derived function

table will therefore be a node of a simple structure, where the argument and return-

125

types are pointers to the relevant syntax trees. This information will be used when
calls to the derived function are made. Calls to this function result in substitutions in

this parse tree which is then executed.

If an error is found at any time during language recognition, then no entry is made
for that function in any of the tables. At the end of a session, the information
contained in the three tables and their counters is written to a file in a predefined
format. This is then read back into main memory, when another session of this

database takes place.

The output module consists of routines, which once again are based on the syntax
tree of Daplex statements. This will traverse the syntax tree and will write output to

the relevant file:

whenever it comes across a statement where it checks the value in the type

field of a structure. It will write out the value of the type field.

whenever it comes across an operator, it will write out the operator

« whenever it comes across an identifier, it will write out the identifier name

. whenever it comes across a string, integer, or constant, it will write out the

relevant value.

At the end of a database session, the various tables are resident in main memory and
will be lost unless they are saved to file. The base and nonbase function tables are
relatively simple to save. They are list structures for which each node of the list is
identical. The list is processed and, for each function, its name, argument and

return-type are written out to the file as character strings.

The procedure for the derived functions is more complex. As previously stated,
derived functions can have arguments and return-types which are arbitrarily long. A

simple but effective means of overcoming this problem was found. This was to use

126

the output module. For instance, to write out the mtuple syntax tree for a particular
function, the routine output_mtuple is called with the pointer to the mtuple type
structure passed to it as a parameter. Again, to write out the syntax tree for the
return-type of the function, the routine output_definetypes is called, with the

pointer to the definetypes_type structure passed to it as a parameter.

In a similar way, when the existing functional definition (if any) is read in at the start
of a database session, the reading in and creation of the base and nonbase function
tables is relatively simple. However, for derived functions, the mtuple and
definetypes syntax rees will have to be created from the information contained in
the file. The reader routines input mtuple and input_definetypes are called to
do this, and instead of having a pointer passed to these routines, they return
pointers, which are then stored in the derived function table as values for the
argname and return_type fields. The input routines operate by reading the value
into the expected type field, and then, depending on the value of this type field, it

expects subsequent values to be of a particular type.

4.11 SECURITY AND INTEGRITY

Ultimately, all responsibility for security is with the underlying DBMS Ingres. This
will only allow database access as specified by the underlying relational schema. A
possible problem exists in terms of the integrity of the data as it actually is, and as
seen through the functional view. A view may be specified for an existing relational
database which is validated by FQLFE and is accepted as correct, because it is
consistent with the underlying relational schema at the time it is specified, but which
is later invalid. This might occur if, at some later point the relational schema is
altered or an attribute of a relation, or a complete relation is deleted. When a user of
that functional view next attempts to us€ this database through the functional

specification of the database, this functional view may now be incorrect in terms of

127

the underlying relational database if it includes references to any part of the relational
schema which no longer exists or has been altered. In such a case, the user
statements would be validated by FQLFE against the now inconsistent functional
specification and if correct would produce target Quel statements which when
executed against the relational database would produce error messages. This is
obviously unacceptable. In order to overcome this problem, at system invocation,
FQLFE accesses the relational information and the functional information and
checks for any inconsistencies. If any are found, these are reported to the user who
must then ensure that the view is modified in order to be consistent with the actual

information in the database.

4.12 ERROR HANDLING

An error, such as an incorrect database name being specified, is detected and
reported to the user immediately. It is not possible to recover from such an error,

and therefore the system terminates.

The monitor expects its commands to be of a fixed form, that is a \' followed by a
command. Any command that begins with \ is assumed to be a monitor command.
The command is checked against the list of possible commands. If it is a valid
command, the relevant action takes place. Alternatively, if the command is not a
valid FQLFE monitor command an €rror message is output on the screen and
FQLFE awaits further input from the user. Invalid monitor commands do not cause
system termination. Any user input which is not preceeded by \'is assumed to be a
Daplex statement by the monitor, hence there is no error recovery mechanism
necessary for this phase. Instead the user's input is written to the workspace file,

regardless of whether it is valid Daplex input. The contents of the workspace file are

verified at a later stage.

i
‘
i
i

During lexical analysis, any input that does not conform to the specified lexical
patterns results in a special token. This token is passed to the syntax analyser in the
same way as other tokens. Again, this means that there is no need for an error

recovery strategy here.

During syntax analysis, any unexpected input generates an error message, After
locating the error, an attempt is made to continue the syntax analysis of subsequent

statements.

Errors discovered during semantic analysis are again reported when found, and the
remainder of the statement is ignored. Semantic analysis is continued with

subsequent statements.

Unix system errors, such as read or write errors, or inability to allocate main
memory or spawn child processes, are all detected and reported by FQLFE but there

is no attempt to recover from these as it would not be meaningful (nor feasible).

4.13 LIMITATIONS

This implementation of FQLFE does not include the facility to update database
:nformation. This is not due to any technical problems, but due to time restrictions.
Data retrieval has been given priority, since this is the most fundamental part of data
manipulation. Even in terms of updates, the most important factor is to be able to
select the data for updating. By implementing database querying within FQLFE, its
data selection abilities have been clearly demonstrated. To incorporate updates,
additions need to be made to the Lex and Yacc specifications and the relevant
rransformation routines need to be added to generate the update statements in the
target Quel language. This should not pose any problems as the FQLFE system

provides a structured framework to be able to do this without difficulty.

Specifying Constraints and Triggers is another area which has not been implemented
in FQLFE due to ime restrictions, however discussion of how this could be done is
necessary. Constraint specifications can involve an instruction to abort any update
ransaction which causes failure of a given pre-defined condition. As an example of
this, consider the constraint that a department's head must belong to the same

department.

DEFINE CONSTRAINT nativemgr (department) ->

dept (manager (department)) = department

Though this type of constraint is specifiable in Daplex, there is no obvious
equivalent Quel statement that it can be transformed into. Therefore this type of
Daplex statement has not been made available in FQLFE. This could be provided by
maintaining information in FQLFE system tables which would need to be accessed
to verify that a particular update did not violate the constraint. However, Quel allows
the specification of simple integrity constraints such as: 'ensure that all employees

have positive salaries'. This would be expressed in Quel as:

range of e is employee

define integrity on e is e.salary > 0

In Daplex this can be expressed in two ways:

. As a TRIGGER statement which causes the name of the employee to be

printed when this constraint is violated.
DEFINE TRIGGER illegalsal (employee) —>
salary (employee) <= 0
PRINT name (employee)

. As a CONSTRAINT statement which abandons any update which would

cause the condition to be violated.

DEFINE CONSTRAINT possal (employee) - >

salary (employee) > 0

Though there appear to be limitations of the underlying DBMS in terms of the
facilities for the specification of constraints, these could be overcome in the manner

suggested above. Further investigation is required to consider this fully.

4.14 AUTOMATIC FUNCTION GENERATION

Use of FQLFE involves a definition phase, whereby the relations in the underlying
relational database are specified in terms of the Daplex data model using the Daplex
query language. During this research, a system was developed which could do this
automatically. The system autogen uses the catalogue information about the
relational database to do this. Relations in the database are assumed to correspond to
base functions, while attributes of those relations correspond to nonbase functions.
Derived functions could by this definition, correspond to views. To execute the

system, the following command must be specified:
autogen <dbname>

where <dbname> specifies an existing Ingres database for which the user wishes to
generate the definition of the relational view. When the system is invoked, it verifies
that <dbname> has been specified. It then generates a child process in which it
executes the Ingres DBMS. It then selects the relevant information and enters it into

a table of the structure specified in figure 4.2. It then processes this table. For each

relation in the database, it produces a statement:
DECLARE <relname> ()=->ENTITY

where <relname> specifies the relevant relation. For each attribute, it produces a

statement:

i
IS
!
£

DECLARE <attrname> (<relname>)-> <rettype>

where <attrname> specifies the relevant attribute of the particular relation,

<relname>, and <rettype> specifies the return-type of the function.

As these Daplex statements are produced, they are written to a file. The FQLFE
system is then invoked with this file as input and processes these definitions
verifying them as relevant. At the end, it saves the function definitions to the file
<dbname>. func, which will be loaded up for that users next database session on

FQLFE, involving that database.

This concept of automatic generation could be enhanced by attempting to produce
the Daplex functions specifying the functional view automatically, in the same way.
However this would need further investigation, and will almost certainly involve

interaction with the user, since it requires knowledge about the data relationships.

4.15 CONCLUSIONS

This chapter has presented a prototype implementation of a functional query
language front-end to a relational database system. This is useful as an alternative
view through which the database can be accessed. In addition, it provides an
example of how a functional query language could be used as a front-end to an
existing database system. This Daplex front-end could be adapted to provide an
interface to a network of dissimilar database management systems. This would
involve using existing Daplex descriptions for each of the local databases in the
network. These in turn would be accessible via view mechanisms as a common
unified view of the entire network database. Daplex provides the global language by

which the database could be accessed.

The FQLFE system provides a facility for additional semantic information to be

added to the database. The user does not have to be aware of the explicit linking

across relations that would otherwise be necessary. These links are represented in
the functional schema of the relational database. The front-end uses this information
when queries are made to the database and generates the relevant target language

code.

A system such as this could be adapted to front-end a different DBMS than the one
used in this research. It could also be adapted to generate a different target language

than the one used.

133

CHAPTER 5

FQLFE SYSTEM USAGE

5.1 TEST DATABASE

The database application used to test the FQLFE system is based on a database
whose schema is specified in figure 5.1 below. The database is based on an example
described by Lacroix & Pirotte (1978). This example was used as a basis for the
testing of FQLFE since it (or variations on it) are often used as an example
application. Lacroix & Pirotte (1978) also present a list of queries that they have
maintained during their study and design of query languages over a number of

vears. The testing of FQLFE involved using a selection of queries from this paper.

To use this database as a Daplex database requires that this relational description 1s
expressed in terms of Daplex functions. The information about the relations in the
database was used to develop the Daplex description for the database. The relevant

declarations are specified in figure 5.2.

employee (empno, name, salary, managerno, deptno)
sales (deptno, itemno, vol)

supply (compno, deptno, itemno, vol)

supplier (compno, name, address)
department(deptno, name, floor)

item(itemno, name, type)

Figure 5.1: The Relational Description

134

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE
DECLARE
DECLARE

DECLARE

DECLARE
DECLARE
DECLARE

DECLARE

DECLARE
DECLARE
DECLARE

DECLARE

Figure 5.2: Daplex Description of Relational Schema

employee() ->> ENTITY

empno (employee) => INTEGER
salary(emplovee) ->INTEGER
managerno (employee) ->INTEGER
deptno(employee) => INTEGER
name (employee) -> STRING
sales() ->> ENTITY

deptno(sales) -> INTEGER
itemno(sales) -> INTEGER

vol(sales) —-> INTEGER

supply() ->> ENTITY
compno (supply) -> INTEGER
deptno (supply) -> INTEGER
itemno (supply) -> INTEGER

vol (supply) —-> INTEGER

supplier() =->> ENTITY
compno (supplier) -> INTEGER
address (supplier) =-> STRING

name (supplier) =->STRING

department () ->> ENTITY
deptno (department) -> INTEGER
floor (department) -> INTEGER

name (department) -> INTEGER

item() ->> ENTITY
itemno(item) -> INTEGER
type(item) -> INTEGER

name (item) => STRING

135

SRR e

->> department SUCH THAT

dept (employee)

v
t
"K]
=
Z
7

= deptno(department)

deptno (emplovee)

loor(sales) ~>> department SUCH THAT

-
&2
D]
—
Z
&)
th

= deptno(department)

deptno(sales) =

DEFINE sold(item) ->> sales SUCH THAT

FOR SCME department

= itemno(item) AND

itemno(sales) =
deptno(department) = deptno(sales)

DEFINE deptsells (employee) ->> sales SUCH THAT

deptno(sales) = deptno(employee)

DEFINE suppitem(supplv)->> item SUCH THAT
AND

itemno (supply) = itemno (item)

= compno (supplier)

compno (supply)

->> supply SUCH THAT

DEFINE supplied(item)

= itemno (supply)

itemno (item)

DEFINE supplies(item) ->> supplier SUCH THAT
FOR SOME supply

= jtemno (item) AND

itemno (supply)
= compno (supply)

compno (supplier)
DEFINE comp (supply) =->> supplier SUCH THAT
= compno (supply)

compno (supplier)

DEFINE itemsold(department)->> item SUCH THAT

FOR SOME sales

itemno (sales) = itemno(item)

deptno (department) = deptno (

Figure 5.3: Daplex Description for Functional View

136

AND

sales

In order to use Daplex query statements against this database, a number of
definitions are necessary to specify the functional view of the relational database (the
reasons for this are given in section 4.1). The Daplex statements developed to
specify this functional view are given in figure 5.3. Lacroix & Pirotte (1978) also
specifies example queries in a number of relational query languages, including Quel.
This was incorporated into the testing, by using the Quel expressed queries to verify

the correct transformartion of the Daplex expressed queries.

5.2 DATABASE QUERYING

This section gives examples of queries made against the database. These are
specified in the following format. First the query is given in ordinary English, then
the Daplex representation of the query is given. Then the query is given in its
ransformed Quel state. Any relevant features of either the Daplex or the Quel query

are indicated.

5.2.1 Query 1.
Find the names of employees in the toy department.

Daplex

FOR EACH employee SUCH THAT
name (dept (employee)) = "TOY"

PRINT name (employee)

Quel
range of e 1s employee
range of d is department
retrieve (e.name)
where

137

e.deptno = d.deptno and

d.name = "TOY"

This query is an example of using a Daplex derived function - dept. The FQLFE
system transforms this by substituting the relevant base functions into the query
syntax tree. In additon the query shows the use of nested function calls, with

functions calling derived functions mixed with those calling base functions.

5.2.2 Query 2

Find the items sold by departments on the second floor.

Daplex

FOR EACH item SUCH THAT
FOR SOME sold(item)
floor (department) = 2

INT name (item), name (department)

»

Quel

range of 1 is item

range of s is sales

range of d 1is department
retrieve (i.name, d.name) where

s.itemno = i.itermno and

d.deptno s.deptno and

d.flooxr = 2

This query is an example of universal quantification. It is a multi-table join involving

three tables in the underlying database, these are item, sales, and department.

In the Daplex version of the query, this is hidden from the user. The FQLEFE system

138

uses the previously defined derived function to transform it into the equivalent Quel

query.

5.2.3 Query 3
Find the salary of Anderson's manager.

Daplex

TCR EACH e IN employee SUCH THAT
FOR SOME el in employee SUCH THAT
name (el) = "ANDERSON" AND
managerno (el) = employeeno (e)

PRINT salary(e)

Quel

range of e is employee

range of el is employee

retrieve (e.salary) where
el.name = "ANDERSON" and

el.managerno = e.employeeno

An alternative way of expressing this query in Daplex 1s:
FOR EACH employee SUCH THAT
name (employee) = "ANDERSON"
PRINT salary (manager (employee))
In this query the symbol employee is used in two distinct senses. In the first line, it
refers to the set of employee entities, while in the other lines, it is a looping

variable. It is bound successively to the members of the iteration set employee

implicitly. The Quel query can only be expressed by multiple range variables

139

ranging over the same relation. Daplex provides the means to explicitly specify
multiple variables ranging over the same set. The first Daplex formulation of the

query in this secnon makes use of this feature.

5.2.4 Query 4
Find the names of the employees who earn more than their managers.

Daplex

FCR EACH e IN employee SUCH THAT
FOR SCME el in employee
salary{e) > salary(el) AND
managerno (e) = empno (el)

PRINT name {e)

Quel

range of e 1is employee

range of el is employee

retrieve (e.name) where
e.managerno = el.empno and

e.salary > el.salary

In Quel, this query can only be expressed with two range variables ranging over the

same set.The above representation of the query makes use of explicit looping

variables, e, and el.

140

un

5.2.5 Query
Find the names of the employees whose salary equals that of their manager.

Daplex

FCR EACH e in employee SUCH THAT
FOR SOME el in employee
managerno (e) = empno{(el) AND
salary(e) = salary(el)

PRINT name (e)

Quel

range of e is employee

range of el is employee

retrieve- (e.name) where
e.managerno = el.empno and

e.salary = el.salary

This query makes use of the relational operator equals.

5.2.6 Query 6

Find the names of the employees who are in the same department as their manager

(as an employee).

Daplex
FOR EACH e in employee SUCH THAT
FOR SOME el in employee
managerno (el) = empno(e) AND
deptno (e) = deptno(el)

PRINT name (e)

141

range of e is employee
range of el is employee
retrieve {e.name) where

e.deptno = el.deptno AND

e.empno = el.managerno

Again the query involves explicit looping variables, to range over the same set. In

the transformed query the two range variables range over the same relation.

.

5.2.7 Query 7

List the departments having an average salary greater than £25000.

Daplex

FOR EACH employee SUCH THAT
FOR SOME dept (employee)
AVERAGE (salary (employee)
OVER deptno (employee))
> 25000

PRINT name (department)

Quel

range of e is employee

range of d is department

R

retrieve (d.name) where
d.deptno = e.deptno AND

avg(e.salary by e.deptno) > 25000

R

This function expressed in Daplex has a number of features. It involves the use of a
derived function dept. It provides an example of using an aggregate function,
AVERAGE. In addition, the oveR operator is used to ensure that every resulting value
1s included in the average, regardless of whether there are any duplicates present.
The query expressed in Quel involves a join across two tables, employee and

department . In additon, it involves use of the Quel aggregate function avg.

5.2.8 Query 8
List the name and salary of the managers who manage more than 10 employees.

Daplex

FOR EACH e in employee SUCH THAT
FCR SOME el in employee
managerno (el) = manager (e) AND
count (manager (el) OVER el) > 10

PRINT name (), salary(e)

Quel

range of e is employee

range of el is employee

retrieve (e.name, e.salary) where
e.empno = el.managerno AND

count (el.empno by el.managerno) > 10

The interesting features of this query are that it involves nested functions both in the
body of the For statement and also in the PRINT statement. It also provides an
example of a Daplex query using the aggregate function COUNT. The argument to the
aggregate function involves the OVER Operator. In addition, the query involves use

of both logical and relational operators. The equivalent Quel query involves use of

143

e

R

two range variables ranging over the same table. Similarly, it involves the Quel

aggregate function count, with an argument which involves use of the By clause.

5.2.9 Query 9

List the names of the employees in the shoe department who have a salary greater

than £25000 together with the names of their managers.

Daplex

FOR EACH e IN employee SUCH THAT
FOR SOME el in employee
managerno (e) = empno(el) AND
name (department) = "SHOE" AND
deptno (e) = deptno (department) AND
salary(e) > 25000

PRINT name (e), name(el)

Quel

range of e is employee

range of el is employee

range of d is department
retrieve (e.name, el.name) where
e.managerno = el.empno AND
e.deptno = d.deptno AND

d.name = "SHOE™ AND

e.salary > 25000

This query also involves two range variables ranging over the same set. However, it

also involves a range variable ranging over a different set. 1t specifies the two range

144

T

variables ranging over the set employee explicitly. The Quel query involves three
range variables with two of those range variables ranging over the same table. In
addition the query involves a join across two tables, department and employee. It
also shows the use of multiple logical anp operators, in addition to the relational

greater than OpCrator.

5.2.10 Query 10

List the names of the employees who make more than any employees in the shoe

department.
Daplex
FCR EACH employee SUCH THAT
salary (employee) >
MAXIMUM (salary (employee) SUCH THAT
name (dept (employee)) = "SHOE")
PRINT name (employee)
Quel

range of e is employee

range of d is department

retrieve {(e.name) where
e.salary > max(e.salary where
e.deptno = d.deptno

AND d.name = "SHOE'")

This query involves two range variables ranging over different sets. Also the right
hand side of the logical operator greater than is an aggregate function call,
maxtmum. In addition, it is an example of an aggregate function call which involves a

sucu TeAT clause in the argument to the function call. The target Quel query is an

145

%

example of using the aggregate function max, with the argument to the function
involving a where clause, and also a logical and operator in the argument to the

function call.

5.2.11 Query 11

Among all departments with total salary greater than £40000, find the departmerts

which sell paperbacks.

Daplex

FCR EACH department SUCH THAT
FCR SOME employvee
TOTAL (salary (employee)
COVER deptno(sales) SUCH THAT
deptsells (employee))
> 100000
AND name (itemsold(department))

= "PAPERBACK"

PRINT name (department)

range of s is sales

range of e is employee

range of d is department

range of i is item

retrieve (d.name) where
sum(e.salary by s.deptno where

s.deptno = e.deptno)

146

S

> 100000 and

i.name = "PAPERBACK" and

]

i.itemno s.itemno and

s.deptno d.deptno

The Daplex version of this query uses nested FOR SoME statements. It involves calls
to two derived functions, sold and dept, in the same query. It also provides an
example of a query involving the aggregate function torTar. The Quel
transformation of this query is an example of a multi-table join, involving the
relations sales, employee, and department. It is also an example of a Quel query
involving use of the sum aggregate function, with the function call involving a by

operator.

5.2.12 Query 12
Find the companies that supply pens.

Daplex

FOR EACH item SUCH THAT
FOR SOME supplies(item)
name (item) = "PEN"

PRINT name (supplier)

Quel

range of s is supply

range of sl is supplier

range of i is item

retrieve (sl.name) where
i.name = "PEN" and
i.itemno = s.itemnoc and

147

s.compno = sl.compno

This query also uses a derived function for which FQLFE substitutes the
corresponding syntax tree during transformation to arrive at the target Quel query
shown above. The Quel query has two range variables which range over sets whose
first letter is the same. FQLFE automatically deals with this, and correctly allocates

different range variables to range over these tables.

5.2.13 Query 13

Find the companies that supply an item other than pens.

Daplex

FOR EACH item SUCH THAT
FOR SOME supplies(item)
name (item) NE "PEN"

PRINT name (supplier)

Quel

range of s is supply
range of sl is supplier
range of i is item

retrieve (sl.name) where

i.name '= "PEN" and
i.itemno = s.itemno and
| s.compno = sl.compno
|

Query 5.2.13 expressed in both Daplex and Quel is an example of a query involving

use of the relational operator not equals. The Quel query involves a multi-table

join.

148

5.2.14 Query 14

List the items supplied by exactly one supplier.

Daplex

FOR EACH item SUCH THAT
FOR SOME supplied(item)
COUNT (compno (supply)
OVER itemno (supply)) =1

PRINT name (item)

range of s is supply

range of 1 is item

retrieve (i.name) where
i.itemno = s.itemno and

count (s.compno by s.itemno) = 1

This query expressed in Daplex is an example involving an aggregate function,
counT with the argument to the aggregate function involving both an OVER operator
and a sucH THaT clause. The target Quel query involves the aggregate function,

count and its argument involves both a by clause and a where clause.

5.2.15 Query 15

List the companies that are the only supplier of some item.

Daplex

FOR EACH supply SUCH THAT

FOR SOME comp (supply)

149

COUNT (compno (supply)

BY itemno (supply)) = 1

PRINT name (supplier)

range of s is supply
range of sl is supplier

eve (sl.name) where

H
®
t
[a
b=

sl.compno = s.compno and

count (s.compno by s.itemno) = 1

This is an example of a query involving an aggregate function call in the body of a
ror soME statement. In addition it provides an example of a query where the value
returned by the aggregate is of importance, that is, only those entities which evaluate
to a count of one are selected. The Quel statement which results involves an
aggregate function call in the where clause. Again the value returned by the

aggregate function call count 1s compared to one.

5.2.16 Query 16

List the companies that are the suppliers of at least 3 items.

Daplex

FOR EACH supply SUCH THAT
FOR SOME comp (supply)
| COUNT (itemno (supply)
OVER compno (supply)
SUCH THAT
(COUNT (compno (supply)

OVER itemno (supply))

150

PRINT name (supplier)

Quel

range of s is supply

range of sl is supplier

range of 1 is item

retrieve (sl.name) where
sl.compno = s.compno and
count (s.itemno by s.compno where
count (s.compno by s.itemno) = 1)

>=3

Query 16 has a number of features, which include the use of derived functions and a
call of an aggregate function whose argument consists of a call to another aggregate
function (that is nested aggregate function calls). In addition, the outer aggregate call
consists of both an over clause, and a sucH THAT clause. The target Quel query
also involves nesting of the aggregate function count. Again, the example involves

4 where clause in the aggregate function call argument.

5.2.17 Query 17

For each item give its type, the departments which sell the item and the floor of these
departments.

Daplex

FOR EACH item SUCH THAT

sold (item)

pRINT name (item), type(item), name (department),

151

floor (department)

range of 1 is item

range of s 1is sales

range of d is department

retrieve (i.name, i.type, d.name, d.floor) where

i.itemno = s.itemno and

i

s.deptno d.deptno

Query 17 is an example involving both derived functions and a command to print
values from more than one set. The Quel query involves existential quantification
and is a multi-table join, with the items in the target list being selected from two of

those tables.

5.2.18 Query 18

Find the average salary of the employees in the shoe department.

Daplex

FOR EACH employee
PRINT AVERAGE (salary (employee)

SUCH THAT name (dept (employee)) = "SHOE")

Quel

range of e 1is employee
f range of d is department
{ retrieve (a = avg(e.salary where
d.name = "SHOE™ and

d.deptno = e.deptno))

152

The interesting aspect of query 18 is that the Daplex expression of the query
involves an aggregate function call in the target list specified by the PRINT

command. Similarly, the Quel query involves an aggregate function call in the target

list specified by the retrieve clause.

5.2.19 Query 19
Give, for each department, the average salary of the employees.

Daplex

FOR EACH employee SUCH THAT
FOR SOME dept (employee)
PRINT name (department),
AVERAGE (salary (employee)
OVER deptno (employee) SUCH THAT

dept (employee))

Quel

range of e is employee

range of d 1s department

retrieve (d.name, a = avg(e.salary
by e.deptno)) whefe

e.deptno = d.deptno

Query 19 exhibits features similar to those of query 18.

5.2.20 Query 20
Give, for each department, its floor and the average salary.

Daplex

FOR EACH employee SUCH THAT
dept (employee)

PRINT name (department), floor{department),
AVERAGE (salary (employee)

OVER deptno (employee))

range of e is employee
range of d is department
retrieve {(d.name, d.floor,
a = avg(e.salary by e.deptno))

where e.deptno = d.deptno

This is another example of a query which involves an aggregate function call in the

target list which, in the Daplex version, involves an over clause and, in the Quel

version, involves a by and where clause.

5.2.21 Query 21

List companies that supply a total volume of items of types A and B which is

altogether greater than 1000.

Daplex

FOR EACH supply SUCH THAT

FOR SOME item SUCH THAT

154

FOR SOME comp (supply)
TOTAL (vol (supply)
OVER compno (supply)
SUCH THAT supplied(item)

AND type(item) = "A™)

TOTAL (vol (supply)

OVER compno (supply)

SUCH THAT supplied(item)
AND type (item) = "B")

> 1000

PRINT name (supplier)

range of s is supply

range of i is item

range of sl is supplier

retrieve (sl.name) where
sl.compno = s.compno and
sum(s.vol by s.compno
where s.itemno = i.itemno

and 1.type = "A")

sum{s.vol by s.compno
where s.itemno = i.itemno
and i.type = "B")

> 1000

This 1s an example of a relatively complex query both in Daplex and Quel. It

involves use of the mathematical operator '+ and also complex aggregate function

calls.

5.2.22 Query 22

List the employees in the shoe department and the difference of their salaries with

the average salary of the department.

Daplex

FOR EACH employee SUCH THAT
TOR SOME dept (employee)
name (department) = "SHOE"
PRINT name (employee,
salary (employee) -
AVERAGE (salary (employee)
OVER deptno (employee) SUCH THAT

name (dept (employee)) = "SHOE"™)

Quel

range of e is employee
range of d is department
retrieve (e.name,
a = e.salary - avg(e.salary by e.deptno where
e.deptno = d.deptno and
d.name = "SHOE")) where

e.deptno = d.deptno

and d.name = "SHOE"

156

This is an example of using the mathematical operator '-' in the target list
} specificaton in both the Daplex query and the Quel query.
5.2.23 Query 23

List the employees in the shoe department and the difference of their salaries with

the average salary computed for all departments.

Daplex

FOR EACH employee SUCH THAT
FOR SOME dept (employee) SUCH THAT
name (department) = "SHOE"
PRINT name (employee),

salary (employee) - AVERAGE (salary (employee))

Quel

range of e is employee
range of d is department
retrieve (e.name, a = e.salary - avg(e.salary)) where

d.name = "SHOE" and d.deptno = e.deptno

This is an example of a query which, as well as involving the mathematical

subtraction operator, involves a where clause in the target list, which is not in the

aggregate function call.

5.2.24 Query 24

List each employee and the difference of his salary and the average salary of the

department where he works.

157

|

Daplex

FOR EACH emplovee
PRINT name (employee),

salary (employee) - AVERAGE (salary (employvee)

OVER deptno (employee))
Quel

range of e is employee

retrieve (e.name,
a = e.salary - avg(e.salary by e.deptno))

This is another example of a query involving the mathematical subtraction operator,

as well as an aggregate function call.

5.2.25 Query 25

What is, for each supplier, the average number of items per department that the

supplier supplies?

Daplex

FOR EACH supply SUCH THAT
comp (supply)
PRINT name (supplier),
AVERAGE (COUNT (itemno (supply)
OVER deptno(supply),compno(supply))

OVER compno (supply))

range of s is supply

range of sl is supplier

158

. =,
retrieve (sl.name, a = avg(count (sllitemno S A
A R
by s.deptno, s.compno)
by s.compno)) where

sl.compno = s.compno

This involves two different aggregate function calls with one as the argument to the

other.

5.2.26 Query 26

For each department find the average salary of the employees who earn more than

the average salary of the department.

Daplex
FOR EACH employee SUCH THAT

dept (employee)

PRINT name (department), AVERAGE (salary (employee)

OVER deptno (employee) SUCH THAT
salary (employee) >

AVERAGE (salary (employee)

OVER deptno (employee)))

Quel
range of e is employee

range of d is department

retrieve (d.name, a = avg(e.salary

py e.deptno where

e.salary > avgl(e.salary by e.deptno)))

and d.deptno = e.deptno

This is a relatively complex query, which in the Daplex version has a target list
involving nested aggregate function calls, where one of the aggregate function calls

1s an operand for the logical operator greater than.

5.2.27 Query 27

Give the overall average of the average salary per department.

Daplex

FOR EACH employee
PRINT AVERAGE (AVERAGE (salary(employee)

OVER deptno (emplovee)))

Quel

range of e is employee

retrieve (a = avg(avg(e.salary by e.deptno)))

This is another example of a nested aggregate function call.

5.2.28 Query 28

List, for each employee, his salary, the average salary of the department where he

works and the difference of his salary and the average salary of the department

where he works.

Daplex

FOR EACH employee
PRINT name (employee),
AVERAGE (salary (employee)

OVER deptno (employee)),

160

salary (employee) -

AVERAGE (salary (employee)

OVER deptno (employee))

range of e is employee
retrieve (e.name,
a = avg{e.salary by e.deptno)

b = e.salary - avg(e.salary by e.deptno))

Another example involving complex use of aggregate functions.

un

.2.29 Query 29

Find the companies that do not supply pens.

Daplex

FOR EACH supply SUCH THAT
FOR SOME supplier
COUNT (compno {supply)
OVER compno (supplier)
SUCH THAT name (suppitem

(supply)) = "PEN")

PRINT name (supplier)

Quel

range of i is item

range of s is supply

range of sl is supplier

161

retrieve (sl.name) where

count (s.compno by sl.compno where

sl.compno = s.compno and
s.itemno = i.itemno and
i.name = "PEN") = 0

! This is an example of the use of the Quel aggregate function count and using it to

specify negaton in the format: count (.) = 0.

5.2.30 Query 30

Find the items sold by no department on the second floor.

Daplex

FOR EACH item SUCH THAT
FOR SOME sold(item)
COUNT (deptno (sales)
OVER itemno (sales) SUCH THAT

floor (floor(department) = 2) =

PRINT name (item)

Quel

range of d is department
range of s is sales
range of i is item

retrieve (i.name) where

d.deptno s.deptno and

]

i.itemno s.itemno and

count (s.deptno by s.itemno where

162

s .deptno = d.deptno and

This is an example of a query for which the set whose entities are being counted by
the aggregate function count, should be empty.

=

5.3 CONCLUSIGNS

In this chapter the use of the FQLFE system has been demonstrated by means of an
example implementation. In order to use the FQLFE system, the schema of the
relational database as it exists on the Ingres DBMS system has to be specified in
terms of Daplex. The definitions necessary to specify this as a functional database
under the FQLFE system have been given. Further, Daplex definitions are necessary
to establish a particular user's view of the database. The use of this user's view of
the database has been demonstrated by examining the sort of queries that can be
made against the underlying relational database using the functional query language.
The implementation of the test database and queries against it have verified the
possibility that a database can be queried in terms of a query language other than the
ones which are specifically for the particular data model upon which it is based. In
terms of querying a database, such a system certainly enhances the database
environment. However in terms of updating, it would cause problems, as there is
now an increased possibility of inconsistencies between a user's view of the
database and the underlying database. This possibility can of course be minimised if

particular users consistently use the same interface for accessing the database

irrespective, of which of the interfaces they use.

163

CHAPTER 6
CONCLUSIONS

Query languages for particular data models represent the primitive operations
available under that data model. The language interface is an important part of the
DBMS environment. Interfaces to databases consist of a variety of approaches.
These include graphical interfaces and form-based interfaces as well as query
language interfaces. Some modern DBMS provide more than one query language
interface but only where the query languages are closely related and based on the

same data model.

This research attempts to take this one step further, to provide an additional query
language interface in the DBMS environment, whose underlying data model is
different to that of the DBMS to which it is interfaced. There is a number of issues
which determine the characteristics of the selected query language. The most
important of these is the data model upon which it is based. Query languages based
on particular data models address the data structures of the data model and the
semantics of the expressions in the language can be expressed with operations of the
data model. In general, effective use of the database depends to a large extent upon
the user understanding of the database view. By providing a system such as FQLFE
the user has a choice as to the database model. By presenting an interface based on a
functional data model to a relational DBMS, the user's view can now be based
around functions rather than relations. This also has the advantage in that because
large amounts of time and money have been invested by organisations in their
DBMS and to change completely from their existing DBMS to a DBMS based on a
different data model is unlikely to be practical. In addition, from a user's point of

view, it is better that a choice is available than to have a particular situation imposed.

164

|
{
I

The suitability of particular query languages to be the target or front-end language
were examined. It was noticed that the features of the query language are determined
by the data model upon which the query language is based. The data structures
available and the operations allowed on them are features of the underlying data
model. In selecting the interface and target languages a number of characteristics are

important .

The data model of the target DBMS should be one that is widely available. Since
relatonal database technology is widespread, this is the obvious choice for the target
DBMS. In addition, relational DBMS have a formal theoretical basis and behave in
well-defined ways. The number of concepts upon which it is based are relatively
small. The Ingres DBMS is widely available and it runs in many different
environments (mainly Unix). This is advantageous, since Unix systems are
widespread and their use is continually increasing. In addition, the fact that the
FQLFE system is written in C means that it is highly portable. By using a front-end
based on a data model such as the functional data model, more semantic information
about the database can be expressed and some of the restrictive practices or
problems of the underlying data model can be avoided. At the same time, the

existing DBMS can continue to be used in the same way as before, if required.

A number of query languages were examined for other features. Amongst these was
simplicity. The relational languages are generally simpler than those based on other
models, at least in terms of the minimum number of concepts required to get started
and the view that simple operations should be expressed simply. In the same way it
is important that the target language is relatively simple, otherwise transformation to

the target language would become an insurmountable hurdle.

The format of the the target language is also important. For instance, graphical
interfaces are not suitable as target languages, because the whole basis of their

development is their display feature and many other compromises will have been

165

made to enhance this. They were considered as languages for the front-end system,
but were rejected since they were either relational model based (and this had already
been selected as a suitable target data model) or they required special equipment, for
example, light pens and bit mapped screens. It was felt that the need to use such
specialised equipment conflicts with the concept of a simple alternative, readily
available. Specialised equipment would mean reduced availability. The language
selected, Daplex, is based on keywords. Quel proved suitable as a target language

due to its format. It also uses keywords and is well structured.

The FQLFE implementation is self-contained and interacts with the DBMS atonly a
few points, these points of interaction are well-defined: the underlying DBMS is
accessed to provide information about the underlying database structure and to
execute the transformed queries. These well-defined points of interaction mean that
FQLFE will not interfere with or adversely affect the underlying DBMS. Further, it
means that the FQLEE system is highly portable, and can be altered relatively easily

for another machine environment.

The FQLFE system development 1s structured in such a way that it consists of four
main components: the user interface, the language recogniser, the language
rransformer and the database access module. By developing the system in this way
its adaptability has been enhanced. The FQLFE system could be adapted to generate
a different query language than the one selected. This would require changes to be
made to a specific localised part of the FQLFE system. Thus, it presents a

framework for other front-ends, possibly on other hardware.

Ingres provides a number of system level commands, that is, commands that operate
at the level of the machine’s operating system (Unix), rather than at the Ingres
DBMS level. Examples of such commands are createdb and destroydb. It would
be possible to provide such commands in the FQLFE system. This possibility was

rejected for a number of reasons. Firstly, any of these commands would have to be

166

provided as utilities to be run at the operating system level. They would have to
involve calling the existing system level commands to maintain the consistency that
was attempted with the FQLFE system in trying to ensure a 'clean’ interface
between the FQLFE system and the underlying DBMS. In effect, the commands
would have exactly the same function as the provided system level commands and
there is not any obvious or useful way in which they could be enhanced that would
justify the extra level of command that would need to be introduced to implement
them. For these reasons, in a situation where a system such as FQLFE was
available, it would be likely that the database administrator would be the only user
likely to require these commands. In addition, they would be used on fewer
occasions than the database query language. Therefore there are no obvious

advantages in providing these again within FQLFE.

The FQLFE system is implemented as a front-end to the Ingres DBMS, and as a
result suffers from the problem that all its retrieval times are a sum of the time it
takes FQLFE to transform the command into target language statements and the fime
taken by the Ingres DBMS to execute those commands. The FQLFE system can 1f
necessary be refined to minimise the time for it to produce its output, but this is the
only factor in the calculation that can be affected. There will always be the issue of
the amount of time taken by the underlying DBMS to produce a response to the
query. However, this is completely outside the control of the FQLFE system. One
factor that could be improved results from the current implementation invoking the
Ingres DBMS system every time a query is made to it. This is relatively time
consuming. Timings could be improved by invoking the process running the Ingres
DBMS once only at the beginning of the session and connecting it to the parent
process by the means of a Unix pipe. The process running the Ingres DBMS would

thus read its input from this pipe rather than from the file as at present.

167

This research has shown that systems such as FQLFE are feasible, but they do

involve large amounts of software and there are other limitations. The features that
are provided in FQLFE are a subset of both the front-end language and the target
language. This is due to the fact that there are some features of the front-end
language for which there may not be any equivalent that is attainable by simple
transformations. This need not always be impossible to overcome, for example,
more than one action in the target language could result, or an action involving
execution of other software could result. Despite this there may be some aspects of
the front-end language which are not transformable into the target language. This is
expected, to a certain degree, since the languages are based on different models and
this diversity is the very reason for selecting them. The full extent of these
limitations needs further investigation. FQLFE could play an important role in such
an investigation since it provides a suitable framework for further exploration of the

true extent of any limitations.

168

REFERENCES

169

Astrahan, M.M, and Chamberlin, D.D (1975) Implementation of -a

Strucrured English Query Language, vt
October, 1975. guage, Communications of the ACM, 18(10),

Atzgni, P gnd Chen, P.P (1983) Completeness of Query Languages for the
Entirv-Relationship Model, in Chen (1983).

Bachman, C.W (1973) The Programmer as Navigator, Comunications of the

ACM, 16(11).

Bachmqn, C.W, and Dayal, M (1977) The Role Concept in Data Models,
Proc. 3rd Int. Conf. On Very Large Databases, October 1977, Japan.

Backus, J (1978) Can Programming be Liberated from the Von Neuman Style? A
Functional Stvle and Its Algebra of Programs, Communications of the ACM, 21(8).

BCS (British Computer Society Query Language Group) (1981) Query
Lancuaces: A Unified Approach, Heydon and Sons.

Brodie, M.L (1984) On The Development of Data Models, in Brodie et al.
(1984).

Brodie, M.L, Mylopoulos, J and Schmidt, J.W (eds) (1984) Conceptual
Modelling. Springer-Verlag, Berlin.

Buneman, P and Frankel, R.E (1979) FOL- A Functional Query Language,
Proceedings of the ACM-SIGMOD Conference.

Buneman, P, Frankel, R.E and Nikhil, R (1982) An Implementation
Technique for Database Query Languages, ACM Transactions on Database
Systems, 7(2), pp. 164-186.

Chamberlin, D.D (1976) Relational Data-Base Management Systems, Computing
Survevs, 8(1).

Chen, P (ed) (1983) Information Modelling and Analysis, North-Holland.

Chen, P.P (1976) The Entiry-Relationship Model - Towards a Unified View of
Data, ACM Transactions on Database Systems. 1(1).

Codasyl (1971) Codasvl Data Base Task Group Report, ACM, New York.

Codd, E.F (1970) A Relational Model of Data for Large Shared Data Banks,
Communications of the ACM. 13(6), pp. 377-387.

Codd, E.F (1971) A Data Base Sublanguage Founded on the R{:la;ional Calculus,
Proceédinos of the ACM SIGFIDET Workshop on Data Description, Access and

Control, November 1971.

' Sublanguages, Data
Codd, E.F (1972) Relational Completeness of Data Base ' :
B;ci)se Svstem(§, Courant Computer Science Symposia Series, 6, Prentice-Hall.

Cuff, R. N (1982) Database Queries Using Menus and Natural Language
Frag;nents, PhD Thesis, Dept of Elec Eng Science, University of Essex.

Date, C. J (1987)_A Guide to INGRES, Addison-Wesley.

170

Date, C.J (1977) An_Introduction to D ‘
Edition, Addison-Wesizy atabase Svstems. Volume I, Second

Date, C.J (1986) An Introduction to Databa S
Edition, Addison- Wesley. se_Svstems., Volume I, Fourth

Deen, S.M and Hammersley, P (1981), Databases (BNCOD-1), Pentech
Press, Plymouth.

Gray, P.M.D (1984) Logic. Algebra and Databases, Ellis Horwood.

Held, G.D, Stonebraker, M.R, and Wong, E (1975), Ingres - A Relational
Data Base System, Proc. AFIPS 1975 NCC, 44, pp.407-416.

Housel, B. C, Waddle, V and Yao, S.B (1979) The Functional Dependency
Model For Logical Database Design, Proc. of the Sth Int. Conf. On Very Large
Databases, Rio De Janeiro, Brazil.

Informix (1986) Informix-SQL Relational Database Management System,
Relational Database Systems Inc. Part no. 200-41-1015-8REVB.

Johnson, S.C (1978) Yacc: Yet Another Compiler Compiler, in Kernighan, B.W.
and Mcllroy, M.D., Unix Programmers Manual, Bell Laboratories.

Katz, R.H and Goodman, N (1983), View Processing in MULTIBASE, a
Heterogeneous Database System, in Chen (1983), pp. 257-277.

Kernighan, B. W and Pike, R (1984) The Unix Programming Environment,
USA, Prentice-Hall.

Klug, A and Tsichritzis, D (1977) Multiple View Support within the
Ansi/Sparc Framework, Yery Large Databases International Conference 1977, pp.
477-488.

Kulkarni, K.G (1983) Evaluation of Functional Data Models for Database Design
and Use, Ph.D. Thesis, University of Edinburgh.

Lacroix, M and Pirotte, A (1978) Example Queries in Relational Languages,
Technical Note Number 107, M.B.L.E. Research Laboratores.

Lesk, M.E and Schmidt, E (1978) Lex - A Lexical Analyser Generator, in
Kernighan, B.W and Mcllroy, M.D, Unix Programmers Manual, Bell Laboratories.

Manola, F and Pirotte, A (1983) An Approach to Multi-Model Database
Systems, in Deen and Hammersley (1981).

McDonald, N and Stonebraker, M (1975) Cupid - The Friendly Query
Language, Proc. ‘A CM-Pacific-75, san Francisco, Calif.. April 1975, pp. 127-131.

Michaels, A.S, Mittman, B and Carlson, C.R (1976) A Comparison of the
Relational and Codasyl Approaches to Data-Base Management, Computing

Surveys, 8(1).

Mohan, C (1978) An Overview of Recent Database Research, Data _Base
Newsletter of the SIGBDP of the ACM, 10(2).

171

T

Oracle (1986 U 1 :
Belmont(, Cali)fo?;?ac,le SOL Users Guide, Oracle Corporation, Part No 3201-v1.0,

Paredaens, J (1987) Databases, Academic Press.

Pratt, P.J and Adamski, J.J (1987) Databa .
Design, Boyd & Fraser, Boston. se Svstems: Management_and

Reisner, P (1981) Human Factors Studies of Database Query L pes:
Survey and Assessmenr, Computing Surveys, lji;(l). Query Languages: 4

Reiter, R (1984) Towards a Logical Reconstruction of Relational Database
Theory, in Brodie et al. 1934.

Shipman, D.W (1981) The Functional Data Model and the Data Language
DAPLEX, ACM Transactions on Database Svstems, 6(1), pp. 140-173.

Shneiderman, B (1980) Software Psychology, Winthrop.

Sr_nith, J.M, Bernstein, P.A, Dayal, U, Goodman, N, Landers, T,
Lin, K.W.T and Wong, E (1981a) Multibase - integrating heterogeneous
distributed database systems, Proc. National Computer Conference, pp. 487-499.

Smith, J.M, Fox, S and Landers, T.A (1981b) Reference Manual for
Adaplex, Computer Corporation of America, Cambridge, Mass.

Stocker, P.M, Gray, P.M.D and Atkinson, MLP (eds) (1984), Databases:
Role and Structure, Cambridge University Press.

Stonebraker, M (1980) Retrospection on a Database System, ACM Transactions
on Database Systems, 5(2), pp- 225-240.

Stonebraker, M (1984) Adding SemanticKnowledge To a Relational Database
System, in Brodie ez al . (1984).

Stonebraker, M and Rowe, L.A (1977) Observations on Data Manipulation
Languages and Their Embedding in General Purpose Programming Languages,
Verv Laree Databases Int. Conf. 1977, pp. 128-143.

Stonebraker, M, Johnson, R and Rosenberg, S (1982) A Rules System for
A Relational Database Management System, in Schauermann (1982).

Stonebraker, M, Wong, E, Kreps, P and Held, G (1976) The Design and
Implementation of Ingres, ACM Transactions on Database Systems, 1(3), pp. 189-

222.

Taylor, R.W and Frank, R.L (1976) Codasy! Data-base Management
Systems, Computing Surveys, 8(1).

A (1978) The ANSI/X3/SPARC DBMS
base Management Systems,

Tsichritzis, D.C and Klug,
Framework Report of The Study Group on Data

Information Systems, 3, Pp- 173-191.

Tsichritzis, D.C and Lochovsky, F.H (1978) Hierarchical Data-Base

Management. A Survey, ¢ ‘omputing SUrveys, 8(1). _
Tsichritzis, D. C and Lochovsky, F.H (1983) Data Models, Prentice-Hall.

Tsur, S and Zaniolo, C (1984) An Implementation of GEM - supporting a

Semantic Data Model on a Relational Back-End, SIGMOD RECORD, 14(2)
pp286-295. ’ ’

Udagawa, Y and Ohsuga, S (1982) Novel Technique to Interact with

Relanonal Databases by Using a Graphics Display, Journal of Information
Processing, 5(4).

Ullman, J. D (1982)_Principles of Database Systems, Pitman.

Wiederhold, G and El-Masri, R (1979) Structural Model for Database Design,
Proceedines of Int. Conf. on the E-R Approach to Systems Analysis and Design,
North-Holland.

Zaniolo, C (1983) The Database Language GEM, SIGMOD RECORD, 13(4),
pp.207-218.

Zloof, M.M (1977) Query-by-Example: a database language, IBM_systems
Journal, 16(4).

173

