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Summary 

Linear Programming (LP) is a powerful decision making tool, extensively used in 
various economic activities. Its success is mainly due to the efficiency of the simplex 
method. In recent years, however, new techniques have emerged. 

The present work is concerned with investigating one such technique, namely 
Karmarkar's algorithm and its variants, extending it to structured linear programming 
problems and efficiently implementing it, taking account of sparsity. 

A review of recent work on the algorithm and early polynomial time methods for 
LP such as the ellipsoid and the simplicial algorithms is presented. The performance of 
the simplex method is also discussed. 

One of the major developments in Karmarkar's algorithm is the discovery of dual 
variants. Duality allows the method to be simply extended to problems having an 
unknown optimum objective value and also to investigate postoptimality analysis. The 
study showed that postoptimality analysis is possible with Karmarkar's algorithm in the 
three cases considered (cost, right-hand side and rim). 

Based on Ye and Kojima's dual variant, a specialized form of the algorithm for 
structured LP is presented together with computational results on various problems. The 
results show that inherent parallelism of some linear programming problems can be 
efficiently exploited with Karmarkar type algorithms. The advantages of decomposition 
are also discussed in a wider context (eg. lack of favourable structure). 

Finally, an efficient implementation of a variant of the Karmarkar algorithm, which 
combines sparsity-preserving techniques for least squares, such as the nested dissection 
ordering algorithm and updating techniques is described. The performance of this 
implementation on realistic LP problems is reported. 

Key Words: Linear Programming, Least Squares, Karmarkar's Algorithm, Duality, 

Partitioning. 
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Chapter 1 

Introduction 

1.1 A Ilrief History 

Linear Programming (LP) developed from the Twentieth Century's need to solve 

problems of production management. Although known to Kantorovich ( 1939), it 

effectively started in 1947 with the design of the simplex method of G.13.Oantzig for 

solving optimum planning problems. A period of rapid developments and exciting 

discoveries in this new field followed and continue today. In the post-war era LP has 

provided a good framework for ihe analysis of class ical economic theories such as the 

Walras mathematical model of economy and Leontief Input-Output model. It has also 

been successfully used to bring together different fields of pure ma thematics such as 

convex sets theory, combinatorics and two-person game theory. 

Before LP, various problems of production management were solved by a trial-and-

error approach guided only by experience and intuition. Later, most of those problems 

were stated in terms of LP and systematically solved by the simplex method. 

It is when combined with the computer that LP is most effective. The widespread use 

of LP is main ly due to this combination. Indeed, a large proportion of computing power, 

is devoted to solving present day large scale LP problems. This is well expressed in 

I Lovasz, 1980 J: 

"If one would take statistics about which mathematical problem is using up most of the computer 

time in the world, then (not counting database handling problems like sorting and searching) the 

answer would be linear programming" 

From the beginning, the simplex method was effective on almost any type of LP 

problem. Over the years it has been further polished and new variants of it have been 
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developed by Gass, Lemke, Orchard-Hays and others (see Dantzig, 1963). Today, it is a 

practical and robust decision making tool, which stands on a firm theoretical basis. 

In recent years, however, with the progress of complexity theory, most algorithms 

have come under scrutiny and their efficiency questioned. The simplex was no exception, 

and was shown to run in exponential time for an artificially built class of LP proble ms 

[Klee & Minty, 1972]. This important result encouraged the debate over the efficiency of 

the simplex and a crucial question arose: Is LP in the P-class or NP-class? 

Before going any further, we ought to define some terminology borrowed from 

complexity theory; the definition may help to see how this theory contributes to 

understanding algorithms and evaluating their performance. 

1.1.1 Algorithm and Problem Complexity 

Usually, for a given problem, a range of a lgo1 ithms may be used to solve it. As a 

random choice may not be suitable, it is useful to have some crite ria for identifying a 

specific algorithm. These criteria are the amounts of CPU time and storage required to run 

a code of the algorithm on a computer [Lovasz, 1984). 

One of the main concerns of complexity theory is to find, for a g iven algorithm, a 

bound on its running time, i.e. its time complexity function, and a bound on the space 

requirement, i.e. its space complexity function. The time is usually the only factor 

considered. However, the theory can be extended to storage. In finding these bounds, the 

problem difficulty is also investigated. This allows us to separate problems into different 

complexity classes. Hence, algorithm complexity and problem complexity go hand in 

hand, although a distinction between them should be made. Algorithm complexity is the 

cost of a particular algorithm, while problem complexity is the minimal cost over all 

possible algorithms [Traub & Wozniakowski, 1982]. 

We have already mentioned two complexity classes: The P-class and the NP-class. The 

P-class, probably the most studied, contains problems for which a polynomial time 

algorithm has been found, on deterministic computers (like the ones we use in the real 

world). A polynomial time algorithm is one with a running time bound, (worst case 
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complexity), which is a polynomial function of the length of the problem data (eg. 2n, 

n3+n, etc ... ), or behaves asymptotically like one (eg. logn, nlogn, n61ogn, etc ... ) [Garcy 

& Johnson, 1979; Kronsjo, 1985]. 

The NP-class contains problems for which a polynomial time algorithm can be found 

only on a non-dete1ministic computer. Non-deterministic computers are pure mathematical 

inventions. On real life computers only exponential time algorithms can be found for 

them. These algorithms have time bounds which are exponential functions, or behave 

similarly, (eg. e0 +n, 2°, etc ... ). The hardest problems in the NP-class form the NP-

Complete class. Intuitively, problems in the NP-class are of the form, 'determine whether 

a solution exists.' Their complementary problems are of the form, 'establish that there are 

no solutions'. They constitute the CO-NP-class, I Kronsjo, 1985J. 

As early as 1953, von Neumann made the distinction between polynomial and 

exponential time algorithms. However, it was not until 1965 that the class of problems 

solvable by polynomial algorithms, was identified (see Cook, 1983). This was due to 

Edmonds (1965) who first thought that exponential time computability approximately 

indicates how difficult a problem is. Consequently, he introduced the notions of "easy" 

and "hard" problems and "good" and "bad" algorithms. 

In practical terms, this idea of classifying problems and algorithms is not totally 

justified. Indeed, many reliable and practical algorithms, such as the simplex method, arc 

known to run in exponential time for some cases, and many good algorithms in theory are 

inefficient in practice (appropriate examples wi ll be given in the next section). It is in thi s 

respect that the average run time, (average complexity), is relevant to understanding the 

behaviour of algorithms. However, average time bounds are more difficult to derive, as a 

priori probability distributions on the data must be postulated l Lovasz, 1984 J. 

Until recently, the LP problem was believed to be in the NP-complete group. It wa-; 

thought that the discovery of a polynomial time algorithm for LP would bring an answer 

to the outstanding question of whether P=NP. As will be seen in the following sections, 

such an algorithm has been discovered, which shows that LP is in the P-class. I Iowever, 

a c loser study of the problem's properties revealed that linear programming has the 

properties of the NP as well as the CO-NP groups. Because there is strong evidence that 
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NP7'C0-NP, LP can only be in one of them. Further studies supported the argument that 

LP is not a member of the NP-class, [Garey & Johnson, 1979; Kronsjo, 1985). 

1.1.2 Developments in Linear Programming 

The rules for pivot selection of the simplex algorithm are a decisive feature in its 

performance. Many new rules, were proposed [Bland, 1977), but soon problems for 

which those variants lacked efficiency were also constructed. Note that these problems 

have not been observed to occur in the real world, and were appropriately labelled 

pathological. However, there is a wide agreement that "well solved" problems are those 

for which polynomial time algorithms were found, [Garey & Johnson, 1979]. This is 

because exponential time algorithms are only intelligent variations on exhaustive search, 

which implies they are costly in terms of computing time. Jt was thus understood, at least 

from the theoretical point of view, that the LP problem was still not "well solved". The 

search for a polynomial time algorithm for LP continued, encouraged by the need to 

answer the theoretical question about the class of LP, and also by the thought, that an 

algorithm with a polynomial time worst case bound would increase the efficiency of 

managing operations beyond what the simplex provided so far. 

In 1979 such a polynomial time algorithm was discovered by the Russian 

mathematician Leonid Genrikovitch Khachyan. The algorithm was designed primarily to 

recognize compatible systems of linear inequalities in polynomial time in the length of the 

data. The underlying idea is reminiscent of the binary search. The latter can be brieny 

described [Papadimitriou & Steiglitz, 1982] as follows. Suppose that an integer x is to be 

determined in the intcval 11, ZI by performing the test "Is x > b?", for some chosen value 

b. The obvious way is to take b in the middle of the interval, thus splitting it into two 

parts. The outcome of the test will allow us to drop one part of the interval, and continue 

the search in the remaining part. It is stopped when the final interval contains exactly one 

integer, which is x, and this happens after n = 1log (Z)l tests. Similarly, the Khachyan 

algorithm strives to restrict the search for a solution to one part of the solution set and 

discard the other one. This is achieved by the use of ellipsoids whose volumes decrease at 
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every iteration. The process will be explained later. It should already be mentioned that to 

apply the algorithm to the linear programming problem, the latter should be converted into 

a set of strict linear inequalities. Indeed, the equivalence of LP and strict linear inequalities 

is a key feature in the theory of Khachyan's algorithm. Khachyan ( 1979) established that 

LP problems defined in the set of integer numbers can be solved in O(n6Logn) arithmetic 

operations. 

Much work followed the discovery of the ellipsoid algorithm, and the bulk of it was 

aimed at producing practical implementations and codes. However, despite persistent 

efforts, no implementation of the algorithm seems to be as efficient as the simplex codes. 

In fact the algorithm performed better on Nonlinear Programming Problems (NLP). It 

became clear that in terms of practical value, the worst case bound is not very significant. 

As a consequen_ce it was thought [Smale, 1983; A vis & Chvatal, 1978] that bounds on the 

average performance (average case bounds) of algorithms may be the key to 

understanding their behaviour. Consider, for instance, the number of pivot steps on 

average taken by the simplex or its variants on problems encountered in practice as well as 

randomly generated. This number must be more significant for practical purposes than 

that taken on a special class such as the Klee-Minty problems. Studies on the average 

performance of the simplex have been undertaken since the early S0's. A good account of 

the outcome from these studies may be found in [Shamir, 1987]. This issue will be 

further discussed tater. 

The search for other polynomial time algorithms for LP continued and in 1982 A. Ju 

Levin and Boris Yamnitsky showed that the role of ellipsoids in the Khachyan algorithm 

can be played by simplices. The algorithm was shown to be polynomial in the size of the 

input data, with a better bound than that of the eltipsoid algorithm. The simplicial 

algorithm was based on an early algorithm of Levin ( 1965). The 1982 version is 

characterized by an implementation of Levin's idea so that the algorithm runs in 

polynomial time. 

With these discoveries, much interest has been paid to the non-combinatorial aspects 

of LP, on which the ellipsoid and the simplicial algorithms are based. The interior-point 

or nonlinear programming approach to LP is also not new. Brown and Koopmans, 
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mentioned in [Chames et al., 1984), as early as 1951, considered the idea of moving 

through the polyhedron of the solution set rather than from vertex to vertex in search of 

the optimum, which is the way the simplex method proceeds. The Brown-Koopmans 

algorithm proceeds as follows: (a) Start with a point in the constraint set, (b) move in the 

direction of the objective functional vector until a constraint boundary is reached, (c) make 

a lateral move orthogonal to this direction staying inside the constraint set, (d) repeat the 

process until an approximate solution is reached. 

The difficulty to maintain feasibility and the slow convergence near the boundaries 

constitute the major drawbacks of the Brown-Koopmans algorithm. Variants which aimed 

to guarantee the feasibility of the sequence of points generated, were developed using 

logarithmic potential and penalty functions [Fiacco & McCormick, 1968]. However, the 

increase in the_ size of the problem and the necessity to solve a sequence of nonlinear 

programming problems arising fr~m the transformation of the original LP problem, made 

these variants uncompetitive with the standard simplex method. 

1.1.3 A New Generation of Polynomial Time Algorithms 

The basic idea of the Brown-Koopmans algorithm was considered again by Narendra 

z. Karma.rkar of AT&T Bell Labs and led to the development of yet another polynomial 

time algorithm for LP [Karmarkar, 1984a, 1984b]. The algorithm has worst case bound 

of O(n3.5Logn) and is of substantial improvement over the ellipsoid and simplicial 

algorithms. Karmarkar's innovation resides in the way feasibility is guaranteed after each 

iteration. The use of Projective Geometry and a logarithmic potential function to measure 

convergence and polynomial complexity is central to the algorithm. With this new 

technique, LP appears to be invariant under rescaling. In other words the change of the 

scale unit does not affect LP problems. Indeed, the algorithm is basically a rescaling 

process. TI1is is the main feature of the Karmarkar algorithm and the new breed of related 

algorithms. 

Karmarkar's algorithm works in a transformed space of the original LP problem. The 

process is an optimization over a sphere inscribed in a (unit) simplex. At each iteration a 
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step is taken from the centre of the sphere in the direction of the negative projected 

gradient of a special objective function with optimum value zero, on the null space of the 

constraints matrix. The resulting point is guaranteed to be feasible by appropriate choice 

of a steplength a.. At the end of each iteration a projective transformation (rescaling) is 

used to bring back the current point into the centre of the inscribed sphere, and the current 

simplex into itself. A minimum amount of reduction in the objective function and 

especially in the logarithmic potential function is guaranteed at each iteration. The process 

is then repeated. 

Karmarkar's claim that the method may be up to 50 times faster than the standard 

simplex method caused a stir in the Mathematical Programming Community. However, 

this claim was not supported by any published experimental results. The first 

experimental rt?sults obtained outside the AT&T Bell Labs were not as good as expected. 

The first difficulties with the algorithm came from the computation of the projected 

gradient. It constitutes the bulk of the work needed at each iteration and is more costly 

than one iteration of the simplex method. For many it is a serious contender to simplex 

method as a standard way for solving LP problems. However, many aspects of LP such 

as duality, sensitivity analysis, sparsity exploitation, remain to be investigated in the 

frame of Karmarkar's algorithm and its performance evaluated on a wide range of 

problems before it can be fully adopted. 

1.2 LP Problem: Statement, Notation and Terminology 

A /'intention du novice, we would like to state the general linear programming 

problem and equivalent forms before going into the details of the present work. The 

notation will be consistently followed in subsequent chapters. Other forms and symbols 

will be defined when introduced. 
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1.2.l The General Form 

The general problem of 1 in ear programming is the search for the optimum (maximum, 

minimum) of a linear function of variables subject to linear relations (equations or 

inequalities) called constraints. Some constraints are specific to some or all variables: The 

non-negativity constraints (Xj 0) and the non-positivity constraints (xj 0). Some or all 

variables can be arbitrary. It is, however, very common to impose a priori the condition 

of non-negativity on all variables in economic problems. 

According to the above definition, the algebraic formulation of the general LP problem 

[Simonnard, 1966] is: 

(OLP)= 

min (or max) z = Lf . 1 Cj Xj 

subject to Lf- 1 aij Xj bi , 

Lj - t aij Xj = bi , 
Xj 0, 

x; arbitrary, 

i = 1, ... , p, 
i = p + 1, ... , m, 
j = 1, ... , q, 
j = q + l, ... ,n, 

whereaij, bi, c;, x; andze R, fori= l, ... ,rn, 
and j = 1, ... , n . 

1.2.2 Equivalent Formulations 

The general LP problem can be put under more compact and easy to handle forms. 

These forms are equivalent 

The Canonical Forni : 
Min cTx 
s.t. Ax b 

X 0 

The Standard Form 
Min CTX 

s.t. Ax = b 
X ~0 

C E R0
' 

A E Rm,Xn, b E Rm, 
' 

XE R0
". 

CE R"· 
A E Rm,Xn,, b E Rm, 
XE R"•. 
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The Mixed Form : 
Min CTX 

s.t.A1x ~b1 
A2x = b2 

X ~0 

CE Rnd 

A1 E Rm,xn\ b1 E Rm1 

A2 E Rm1xn4, b2 E Rm1 

XE Rnd . 

To transform the general LP problem to any of the three equivalent forms, elementary 

operations and relations are used, such as: 

* min f(x) = -maxr-f(x)], 

* if Xis arbitrary then X = x+-x·, where x+ = maxro, x] and x· = max[O, -x], 

* {aTx = p, aeR0 , xeR0 , peR} = {aTx p and-aTx ~-P}, 

* a T x :2: p may be replaced by a T x+xs = p, Xs~O, Xs is called a slack variable. 

1.2.3 Terminology and Geometric Concepts 

A program or a feasible solution is a set of values of the variables which satisfies all 

the constraints of the problem. An optimal solution is a finite solution which optimizes 

the objective function. It is also called optimal program or optimal plan. A set 

K = {xeR0 I aTx = p, aeR0 , PeR} is called a hyperplane. The set { xeR0 I aTx = p, 
ae R0 , Pe R} defines a half-space. The intersection of a finite set of half-spaces in R0 

forms a polyhedral set, a polyhedron or a polytope. If His a hyperplane, K a polyhedron 

and HnK = E = 0, then H is called a supporting hyperplane to K. It should also be noted 

that Hn(lnt. K) = 0. The set E = HnK is called a face. If dim(K) = n and dim(E) = k, 

then: 

If k = n-1 then E is a facet, 

if k = 1 then E is an edge, 

if k = 0 then E is a vertex. 

A relevant constraint is one that corresponds to a supporting hyperplane, or equivalently 

there is a feasible point x in the solution set for which the constraint is tight, i.e. satisfied 
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as equality. A (min) LP problem is unbounded if in the feasible set the objective function 

c T x is not bounded from below. If the feasible set is empty, the problem is infeasible. 

J .3 The Simplex Method 

Without going into details, the simplex method can be described as follows. 

Usually two phases are needed; in phase I the feasibility or otherwise of the problem 

is established and a vertex of the domain of the LP problem is found, if there is any. 

Phase II generates a monotone path in the feasible set, in accordance with the objective 

function of the problem. The path stops at a vertex when no improvement in the objective 

function value is possible, or else at an unbounded edge in which case the problem is 

unbounded. 

The generation of the path ~orresponds to moving from an extreme point to an 

adjacent one at each iteration of the process. This is done by changing one of the vectors 

of the current basis with a non-basic vector which becomes basic after pivoting. Thus, 

a lgebraically, moving from a vertex to an adjacent one corresponds to changing the 

current basis with an adjacent one. In an m by n LP problem, where m < n, a vertex is 

determined by m linearly independent tight constraints. 

There are many variants of the simplex, and they can differ a great deal. The way the 

feasible starting point is found and the criteria for choosing the entering variables into the 

basis can be totally different from one variant to another. However, they all generate a 

monotone path which ends at an optimal solution to the LP problem, if it admits any. 

1.3.1 Performance of the Simplex Method 

Given the worst case time bound of the simplex and the shear volume of work spent 

on LP since the 40's, LP was suspected by many to be in the NP-class. As worst case 

bounds are the easiest to derive and fail to reflect practical experience, many researchers 

tried to study the average case behaviour of the simplex. One of the early statements on 

the matter is due to Dantzig (1963): 
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"For an m-equation problem with m different variables in the final basic set, the number of iterations 

may run anywhere from m as a minimum to 2m and rarely to 3m. The number is usually less than 

3m/2 when the re are less than 50 equations and 200 variables (to judge from empirical 

observations.) Some believe that for a randomly chosen problem with fixed m, the number of 

iterations grows in proportion to n." 

The quote reflects results on the performance of the simplex prior to 1963. 

Systematic studies of the performance of the simplex method on real life and 

randomly generated LP problems have been carried out by many and results can be found 

in LMcCall, 1982; Ho & Loute, 1980; Goldfarb & Reid, 1977; Benichou et al., 1977 J. 
Over more than 30 years the experience accumulated on the behaviour of simplex is vast. 

Ho wever in the scientific literature this experience is not fully documented as most 

practitioners in industry and other areas do not keep or publish the results of the ir 

experiences. The published results usually concern newly discovered variants of the 

simplex applied to standard test problems. This is probably due to the fact that since the 

50's the finiteness of the algorithm was accepted by all. 

In general, from the results of experiments with the simplex method it is concluded 

that simplex runs as a polynomial time algorithm. A rough bound on the number of steps 

one would expect to find a feasible solution to a linear program m,ing Phase I of the 

simplex is conjectured to be am, where m is the number of equations and a is 2 to 3. 

Fo r n large relative to m, the value of a grows slowly as in exp(a) < log2(2+n/m). 

These statements made by Dantzig in 1979 after the discovery of the ellipsoid algorithm, 

can be regarded as a summary on the average performance of the simplex, as was pointed 

out by Shamir (1987). For some problems, however, the number of vertices in the path 

of the simplex is unreasonably high, and not reflected in the above conclusions. These 

problems arise from Set Partitioning and periodical or time-staged tasks (Staircase 

Problems) [Ho & Loute, 1980; Fourer, 1982). 

At a meeting in London, Dantzig ( 1987) reported that a rule for which no exponential 

counter example is known, has been pointed out by Zadeh. The rule is: "Choose as 
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entering column one with Cj < 0 which has entered the basis the least number of times so 

far." It is also reported in [Papadimitriou & Steiglitz, 1982, p.192j. 

1.3.2 Experiments on Randomly Generated Problems 

Despite a wealth of experimental results, theorists are cautious about drawing 

conclusions when the test problems are few and unrealistic and the hardware may play an 

important role in the results. A different experimental approach was considered: 

Controlled or Monte Carlo experimenting. Experiments were on rnndomly generated 

problem data with respect to some predetermined distribution. The results are compared to 

analytical results obtained under the same probabilistic assumptions. This approach may 

not bring significant conclusions as methods of random generation of test problems may 

innuence the results. However, large classes of problems may be considered and 

"realistic" problems may be designed. 

The first such experiments due to Kuhn and Quandt, mentioned in LAvis & Chvatal, 

1978J, were conducted on nine different pivoting rules for the simplex method. The 

results were not very conclusive due to the special form of the problems (constraints 

matrix always square and problems of small size). Indeed all the pivoting rules had 

almost the same performance and even the random choice rule performed well. 

In LAvis & Chvatal, 1978] a simi lar approach has been taken. The performance of 

Bland's first rule [Bland, 1977J has been investigated and compared to other pivoting 

ru les. Bland's rule performed worse than Dantzig's largest possible improvement rule. 

Prom these experiments it appears that the simplex is linear in min(m, n), where m and n 

arc the dimensions of the problem. 

Experimentation with real world problems and randomly generated problems does not 

seem to bridge the gap between the practical efficiency of the simplex and its exponential 

worst case bound. Probabilistic analysis is a natural approach as classes of problems with 

different distributions of data may be considered and average behaviour evaluated. This 

approach was taken by many, (see Shamir, 1987). Important results may be found in 

l Orden, 1980; and Smale, 1983]. The results, however, present some disparity due to 
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wide range of assumptions and variants of the simplex. A unified theory of the 

probabilistic approach lo the behaviour of the simplex is needed as some models are more 

general than others. 

1.4 The Ellipsoid Algorithm 

In the spring of 1979 LP received much attention with the discovery of a polynomial 

time algorithm. Khac hyan ( 1979), a Russian mathematic ian, developed an algorithm 

which has a polynomial worst case bound in the length of the data of the LP problem. The 

algorithm was a continuation to the work of Shor, Iudin and Nemirowskiy in the early 

70's on the larger class of convex optimization problems. Shor ( 1977) showed that, for a 

convex programming problem, if an a priori bound could be given for the distance from 

an initial point to an optimal solution, then a sequence {Ek} of decreasing ellipsoids could 

be constructed, each containing an optimal solution. The decrease of the volume of each 

Ek depends only on the dimension n of the solution space. Khachyan adapted thic; 

approach to the solution of systems o f linear inequalities. I le used the length of the 

original data of the problem to derive an a priori bound for the distance of a solution from 

the origin. Ile perturbed the right-hand side (RHS) of the linear inequalities to obtain a 

lower bound on the volume of the feasible region. These two bounds combined with the 

rate at which the ellipsoids were shrinking was enough to obtain a polynomial bound for 

the number of iterations necessary to find a solution, if the system has any. 

1.4.1 Constructing Khachyan's Algorithm 

Solving LP problems is no more diffic ult than solving sets of linear inequalities 

LChvatal, 1983; Gacs & Lovasz, 1979, 1981; Khachyan, 1979J. The set of linear 

inequalities may be divided into two subsets: The weak linear inequalities and the strict 

linear inequalities. It is shown in [Papadimitdou & Steiglitz, 1982; Chvatal, 1983; Apsvall 

& Stone, 1980] that a set of linear strict inequalities can be constructed by perturbing the 

RHS of weak inequalities, and any solution to one system is also solution to the other. 
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Hence to solve LP in polynomial time it is enough to solve the equivalent system of linear 

strict inequalities in polynomial time. The ellipsoid algorithm was designed to meet these 

requirements. The method is basically similar to the binary search as was mentioned 

earlier. To make this process work when looking for the solution to a set of strict linear 

inequalities, lower and upper bounds on the set of solutions are needed. The bounds are 

set up as follows. 

The set of solutions to a system of strict linear inequalities is a polyhedron K which 

can be unbounded or empty. Here, bounded and nonempty polyhedra are considered. 

Khachyan derived an upper bound to the set of solutions by considering the smallest ball 

(ellipsoid) containing it. The radius of the ball is defined by the length of the data of the 

system of linear inequalities. It has been shown [Edmonds, I 967J, through the use of 

Cramer's rule, that the number of digits in any coordinate of a solution to a system of 

linear inequalities cannot exceed the total number of digits in the m(n+ I) integers aij and 

bi of the system. Consider the system 

n 
Iaifj<bi, i=l, . .. ,m. 
j ,-1 

(1. 1) 

The length of its data is L = mn + r Log IPll. where P is the product of all entries of A and 

m [ n ] m b different from zero, i.e. P = TI TI a ij TI b i· 
i= I j . J i=l 

From what was said earlier, it can be written that: Vxj e K, -2L Xj 2L. And 

geometrically, the polyhedron K can be enclosed in the ball Eo = { x: llxll 2L }. 

As a solution to a system of strict inequalities may not exist, it is crucial to know 

when the search has to be stopped. The lower bound in the interval of searc h is a 

minimum volume ellipsoid. An important lemma [Khachyan, 1979; Gacs & Lovasz, 

1979; Apsvall & Stone, 1980] states that: If ( 1. 1) has a solution, then the volume of its 

solution space inside the sphere llxll2 2L is at least 2 -(n+l)L. 
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At each step in the process of the binary search, one part of the solution space is 

discarded. To carry on the search, the remaining part of the previous ellipsoid which 

contains a solution, if there is one, is enclosed in a smaller ellipsoid. 

Suppose that the ellipsoid E = {x : (x - x<k)) TB (k)(x - x<k)) $ 1} is cut by the 

hyperplane supporting the half space defined by one of the constraints in (1. 1 ), say a? x 

< bi, for some i. If the centre x<k) of E violates this constraint, i.e. a? x<k) bi, then 

define the ellipsoid E' = {x: (x - x<k+l)?B(k+l)(x - x<k+l)) $ 1}, where 

It can be shown that E' contains the set of points defined by E and a? x < bi, for 

some i, and also has volume less than that of E, [Khachyan, 1979; Gacs & Lovasz, 1979; 

Apsvall & Stone, 1980]. A version of the ellipsoid algorithm based on this construction 

may be described as follows. 

Algorithm 2.1 

begin 

Initialization: k = 0, L = mn + f Log IPll. x(k) = 0, B(k) = n222LJ. 

while (3i I aTx(k) 1 , ie { 1, ...• m}) and (k $ 16n(n+ 1 )L) do 

endwhile 

if (k > 16n(n+ 1 )L) then set of strict inequalities incompatible end if 

end 
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1.4.2 Improvements to the Basic Algorithm 

The volumes of ellipsoids generated by the algorithm are central to its convergence. It 

is therefore natural to think that if the size of the enclosing ellipsoid after a cut can be 

reduced then convergence is consequently improved. Along this line the following 

suggestions were made. 

In the basic ellipsoid algorithm the cut which passes through the centre of Ek is used. 

T he half ellipsoid { x e Ek I a T x a T Xk } is retained in Ek+ 1- However, as Ek+ 1 is on I y 

required to contain the smallest portion of Ek, i.e. { x e Ek I a T x P } , then it is possible 

to obtain an e llipsoid of smaller volume using the deep cut a T x p. Shor and 

Gershovitch, cited by Bland et al. (1981), first thought of the deep cuts based of the idea 

that, if ex is the distance of Xk to the half-space { x e Rn I a T x ~}, then by computing ex 

for each inequality and choosing one corresponding to the largest ex guarantees the 

deepest cut. The distance ex appears in the step, dilation and expansion parameters which 

characterize the ellipsoid method with deep cuts. 

Deeper cuts than those obtained with a single constraint can be obtained by combining 

inequalities in ( 1. 1 ). They are termed "surrogate cuts" by Goldfarb and Todd ( 1980). It 

was noticed that points satisfying (1.1) are not discarded (cut off) by inequa1ities of the 

form u TAT x u Tb, when u 0. Hence, by considering a subset of linearly independent 

inequalities of ( 1. 1 ), it is possible to compute u corresponding to the deepest cut. 

However, it is too expensive to do so as a quadratic programming problem arises in the 

process. In [Goldfarb & Todd, 1980; Bland et al., 1981] it is recommended to use 

surrogate cuts obtained with two constraints at most. 

Shor and Gershovitch, again, first thought of using the parallelism of constraints that 

may arise in the problem to solve. Two parallel constraints occurring in the problem may 

be used simultaneously to construct the new ellipsoid. This ellipsoid will be flat in the 

direction of the perpendicular to the constraints, as it is only requi red to contain the slice 

encompassed between them. Suppose that a T x P and -a T x -11., then {x e Ek I 11. 
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aTx ~} c Ek+l· The step, dilation and expansion parameters corresponding to parallel 

cuts can be found in [Todd, 1982; Konig & Pallaschke, 1981]. 

1.4.3 Performance of the Ellipsoid Algorith m 

From the literature considered, the general consensus is that the ellipsoid method is 

computationally inferior to simplex. Because of the large number of ellipsoids to be 

evaluated, together with the required high precision, the method seems too expensive to 

apply to nontrivial problems. If calculations are carried out with low precision it can 

practically solve linear inequality systems in up to 15 variables [Schrijver, 1986J. 

T he few numerical results we encountered support this conclusion. An implementation 

of the algorithm by Halfin (1983) solved randomly generated linear programs with up to 

50 variables in more than 24,000 iterations. Konig & Pallaschke (1981) reported on 

solving LP problems in 25 variables and 100 constraints in about 1,500 iterations. A 

detailed account of experiments with an APL code of the Khachyan algorithm is also 

found in [Bisshopp, 198 1). The experiments were on systems of linear strict inequalities 

with integer entries ranging from 5 variables and 10 inequalities to 20 variables and 40 

inequalities. Some of the problems required up to 14, 119 iterations. 

J .5 Central Splitting an d Simplicial Algor ithms of Yamnitsky and Levin 

As for the ellipsoid method, the idea behind the Central Splitting Algorithm (CSA) 

LLevin 1965], is also reminiscent of the binary search. CSA was aimed at finding an 

approximate solu tion within EE R of the exact solution to the problem of minimizing a 

convex function f of n variables on a convex polytope K in the Euclidean space. It is 

assumed that f satisfies a Lipschitz condition, i.e. I f(x( 1)) - f(x<2)) I~ cp(x(l), x<2)), for 

x(l) and x(2) e K where p(x(l), x(2)) is the distance between points x<1) and x(2), and c 

the Lipschitz constant which can be a priori determined. The "principal operation" of the 

process consists of the following: (a) Find a point x* interior to K, (b) split K into two 
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parts through x*, by a point, a line or a hyperplane depending on the dimension of K, (c) 

discard one part according to the relation (Xmin - x*, grad[f(x* )]) < 0. 

In [Levin, 1965] the process is explicitly given for the case n=2. The polytope K 

being a polygon, the principal operation consists of finding x* and cutting through it with 

a straight line. If grad[f(x* )] = 0 then x* = Xmin• Otherwise the points which do not 

satisfy the inequality (Xmin - x*, grad[f(x* )]) < 0 are discarded. The choice of point x* 

is crucial to the convergence of the algorithm. The part of K, K1, K2 discarded at each 

iteration should be large enough to allow rapid contraction of the feasible region. In 

LLevin, 1965] it was recommended that the centre of gravity of K be chosen as x*. This is 

based on the fact that cutting a convex polygon of area o, with a line passing through its 

centre of gravity results in two convex polygons each one having an area not less than 

( 4/9)0. It can be said that at iteration k, area of Kk is at most (5/9)kcr, which suggests a 

geometric convergence of the pro:cess. It should be noticed that for "elongated" areas, the 

speed of convergence may not be geometric. However, approximating them with 

intervals, which is equivalent to reducing the dimension of the feas ible region, can 

overcome the problem. The number of operations can be shown to grow only 

geometrically (note: geometric refers to the speed of convergence of geometric series.) 

For n 3 a geometric bound can be drawn on the number of principal operations for 

similar reasons as earlier. However, the gometric bound does not apply to the total work 

involved in a single step of the algorithm. In addition to the principal operation 

supplementary work is needed to determine and store information about the retained half 

of the feasible region at each iteration (vertices, faces and centre of gravity). The 

subsidiary work may grow exponentially with the number of iterations. This results from 

the fact that a random polyhedron may have an exponential number of ve11ices l Chvatal, 

1983]. 

To alleviate the difficulties of the CSA, Levin suggested the following: If V is the 

volume of a polyhedron K of dimension n, then there is 'Yn e R and an n-dimensional -
simplex S containing K, with volume not exceeding 'Yn V. S is then used in subsequent 

splittings. At this point the similarity wi th the ellipsoid method is clear. The embedding 

operation may not be required at every step. A geometric decrease in the volume of 
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subsequent simplices is guaranteed for similar reasons as earlier. In [Yamnitsky, 1982J it 

has been shown that the modified CSA runs in polynomial time in the length of the input 

data. The novelty was a procedure for enclosing a half simplex 112Sk inside a simplex 

Sk+l whose volume is less than e-1/2(n+1)2 the volume of Sk. 

1.6 Research Needs and Objectives 

Much of the work done in LP for over thirty years has been concerned with 

improving existing simplex variants and developing new ones. It is only in recent years 

that polynomial time algorithms became a topic of wide interest. This interest stems f1 om 

LP being widely used on its own and as a building block in many optimization problems, 

and also from the general agreement that well solved problems are those for which 

polynomial time algorithms were found. Any improvement in solving LP will have a 

positive impact on related problems. 

The discovery of the ellipsoid LKhachyan, 19791, the simplicial !Levin & Yamnitsky, 

1982] and the projective algorithms ended the important debate over the complexity of 

LP, at least in the integer model of computation. However on the practical s ide, the gap 

remained. It is generally agreed, after investigation, that the ellipsoid and the simplicial 

algorithms, in practical terms, are inferior to simplex on most real life LP problems. 

Karmarkar's algorithm on the other hand is relatively new and has not been fully 

investigated. The algorithm is promising and may be a good alternative to the simplex 

method. However, much work remains to be done before definite conclusions can be 

drawn. The lack of experimental results in the original Karmarkar's paper and the 

conclusion of analysis of the algorithm by Chames et al. ( 1984), Strang ( 1985) and 

others that the method is inherently slow, stressed the need for further investigation of the 

algorithm and its performance. 

The overall objective of the present research has been to investigate sonu.: aspects of 

Karmarkar's algorithm such as the preponderance of least squares techniques in its 

efficient implementation, the optimum choice of the step size to take along the search 

direction, the retrieval of dual variables during the course of the algorithm and the 
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exploitation of favourable structure of LP problems. Sparsity exploitation is undoubtedly 

the important issue in any efficient implementation of the algorithm. Advanced least 

squares techniques were, therefore, called upon to cut down the work needed in an 

iteration of the algorithm. The nested dissection ordering algorithm was used in 

conjunction with Cholesky method for least squares and also Givens rotations. Large LP 

problems were solved with this approach in realistic times. 

Structured LP problems constitute an important class to which much work has been 

devoted in the frame of the simplex method leading to the design of elegant decomposition 

algorithms such as the Dantzig-Wolf algorithm, Rosen's partitioning algori thm and 

others. However, these algorithms never outclassed the standard simplex method. We 

thus considered the applicability of Karmarkar's algorithm in conjunc tion with some 

classical decomposition principles and also specialized it for structured LP problems. This 

led to a partitioning Karmarkar_ algorithm which performed better than the straight 

application of a variation on the dual Kannarkar algorithm of Ye and Kojima ( 1987). 

An attempt to study postoptimality analysis in the frame of Karmarkar's algorithm 

was also made, encouraged by the availability of dual variables. 

The polynomial time algorithms discussed in this chapter have a common feature 

which is a centring scheme, i.e. the algorithms strive to start a new iteration from the 

"centre" of the feasible region. A centre point, is defined as one which is sufficiently 

distant from the boundaries of the polytope fSonnevend, 1985; freund, 1988]. In thi s 

sense, under certain assumptions, Chebyshev points returned as solu tions to the 

Chebyshev minimax problem are "centres" of the simplex containing the feasible region 

defined by the linear inequalities. By converting the LP problem into a Chebyshev one, 

we attempted to build an algorithm that generates a sequence of points of minimum 

deviation converging to the optimum solution of the original LP problem. 
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Chapter 2 

The Projective Algorithm of Karmarkar: A Survey 

2.1 Introduction 

The algorithm of Karmarkar ( 1984a, 1984b) came as a result of the search for a 

methcxi which has polynomial complexity like the ellipsoid and the simplicial methods but 

is practical like the simplex. It is related to classical interior point methods, but presents 

original features such as the use of projective geometry and a logarithmic potential 

function to measure convergence. 

Going in the direction of the gradient is the first thing one thinks of when interior 

point methods are considered for linear programming. However, this will yield a 

substantial improvement in the objective function only if the current feasible point is at the 

centre of the polytope, i.e. sufficiently distant from all its boundaries. Consequently, for 

an iterative process to work with these ideas, it must alternate between centring the 

feasible point and taking a step in the gradient direction. 

Classical interior methods of the Brown-Koopmans type have difficulties near the 

boundaries, precisely because they lack the centring step. The difficulties, usually, result 

in the loss of feasibility and slow convergence. On the other hand, Kannarkar's algorithm 

successfully combines the two steps and thus avoids the difficulties of the classical 

methods, as will be seen in the convergence analysis of the algorithm. 

The centring process is performed by rescaling the feasible region at each iteration 

using a projective transformation. This results in approximating the optimization problem 

with a minimization over a sphere of known centre and radius. The minimization over a 

sphere is then solved by taking a step to its boundary along a projected gradient direction. 

The rescaling process combined with the step along the negative projected gradient is then 

repeated until optimality is achieved or the problem is recognized to be unbounded or 

infeasible. 
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2.2 The Projective Algorithm of Karmarkar 

Consider the linear programming problem in standard form 

Min cTx 

s.t. Ax = b 

X;;,?: 0, 

where R" is then-dimensional Euclidean space; x, c e R", be Rm and A e Rmxn. The 

original Karmarkar algorithm requires that the LP problem is expressed in a special fonn 

called the canonical form, which is 

PC: Min cTx 

s.t. Ax = 0 

eTx = 1 

where eT = (1, 1, ... , 1). 

In addition, it is required that the minimum objective value is 0, and the value of the 

objective at any feasible and nonoptimal point is strictly positive. The question of 

converting SLPx into PC will be treated in detail later. 

The centring scheme of Karmarkar is based on a projective transformation defined by 

- 1 
T (x) = D x = x' 

X T. - 1 , 
e D x 

and its inverse 
- 1 , Dx' 

Tx(X)= T. = X, 
e Ox' 

where D = diag(x(k)), x(k) being a point in the space of PC. 

Transforming PC using T x-1, results in a nonlinear (fractional) programming problem 

with the objective function cTOx'/eTDx'. However, eTDx' being positive in the 

transformed feasible region and given that c T x has minimum zero, c Tox'/e Tox' has also 

minimum zero. Thus, it can be approximated with c Tox'. It follows that the transformed 

problem to be considered is 
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P ,. 
X • Min cTDx' 

s.t. ADx' = 0 

eTx• = 1,x'~0, 

which is of the required form PC. 

This problem is an optimization over the intersection of the simplex 2, = {x' e R0 + I : 

x' 0, I, X 1
j = 1}, with the linear subspace TT= {x' e R 0 + 1: x' 0, Ax' = O}. The 

centre of the simplex xo•T = (1/(n+ l), 1/(n+l), ... ), being a feasible point, a reduction in 

the objective function is likely to be achieved along the opposite direction of the projected 

gradient p, starting from xo'. However, to insure feasibility after the move, Karmarkar 

considered the minimization over the largest inscribed sphere Sr in L, as an 

approximation to the minimization over the simplex L This insures feasibility of the 

resulting point. The problem is written 

Min cTDx' 

s.t. ADx' = 0 

II x'-(e/n)II cxr 

x' 0, 

where r = l / )) is the radius of Sr. 

From the geometric point of view, there are 3 spaces involved: the space of the 

original problem, the space of the homogeneous form of the problem and its image 

resulting from the projective transformation. Call the last two spaces respectively x-space 

and x'-space. A sketch of the optimization process is as follows (see Fig 2.1 ). 

Let x(k) be a point in x-space. Applying the projective transformation T x to x(k) results 

in the cent.re of Sr in x'-space. A new point in x'-space would be x'(k) at the boundary of 

Sr. This point is transformed back into the x-space by the inverse projective 

transformation Tx-1, resulting in a point x(k+t). It is easy to see that an improvement in 

the objective function of Px·s is achieved in the direction of the projected gradient. The 

reduction in the objective function of PC is harder to see, when we know that the set of 

linear functions is not invariant under projective transformations. In this respect, 

Karmarkar introduced the logarithmic potential function F(x) = nlog c T x - Lj log(xj), 
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which is invariant under projective transformations. To see that, we write the potential 

function associated to the objective function in the transformed problem 

F(x') = Lj log (cTDx'/x'j) (2.2.1) 

and in the x-space after applying inverse transformation to x' 

F(Tx·1(x')) = Lj log (cTDx'/x'j) - Lj log Xj, (2.2.2) 

Expressions (2.2.1) and (2.2.2) are similar except for a constant - Lj log Xj, 

Karmarkar proved that a positive constant reduction is achieved in the potential 

function associated with c Tox, when moving from the centre of Sr to its boundary. From 

(2.2. 1) and (2.2.2), thi s reduction corresponds to some reduction in the image of the 

potential function in x-space. It follows that 

F(x(k+l)) S F(x(k)) - o, (2.2.3) 

where 6 is a positive constant. 

Theorem 2.1 (Karmarkar ( 1984b ), Theorem 1 ): 

An algorithm to solve PC that generates a sequence of points {x(k)} satisfying (2.2.3) 

wi ll find a feasible point x such that cTx / cTx(0) 2-q in O(n(q+logn)) steps. 

Proof' 

From (2.2.3) we have F(x(k)) F(x(0)) - ko, i.e. 

nlog c T x(k) - Lj log x(k)j $ nlog c T x(0) - Lj log x(0)j - ko, 

or equivalently 

nlog c'f x(k) - nlog c T x(0) Lj log x(k)j - Lj log x(0)j - k6. 

As x(k)j $ 1, from eTx = 1, and x(0) = (1/n, 1/n, ... , 1/n) we can write 

nlog c T x(k) - nlog c T x(0) $ nlogn - k6, 

and 

log c T x(k) - log c T x(O) logn - ko/n. 

Thus fork> n/o(q + logn), cTx / cTxo S 2-q Q.E.D. 
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Algorithm 2.1 

Karmarkar algorithm generates a sequence of points x(l), x(2), ... , x(k), ... with the 

assumption that x(k) 0, k = 1, .... Assume also that an interior starting point x<O) is 

available, and an arbitrarily small value Eis chosen, then the algorithm can be described in 

the following steps. 

0-k=0 

1- Set D = diag(x(k)) and B = ( ~) 

2- Project vector De onto the null space of B to find p = HDc where the projection 

matrix H = 1- BT(BBTf1B 

3- Normalize p and scale it by the radius r = I / )) of Sr to find the direction 

t I p 
vec or p = r lfiill • 

4- Compute a new feasible point in x'-space by taking a step of length a along p', 

starting from the centre e/n of Sr 

x' = e/n - ap', a e (0, 1) 

5- Apply inverse transformation to x' to find a new point in x-space 

(k+l) Dx' 
X =--

eTDx' 

6- Check for optimality 

if cTx(k+t) / cTx(O) s £ then stop (optimum obtained) 

else k = k + 1, go to 1- endif 
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x-space x'-space 

Fig 2.1 An Iteration of the Algorithm 

Illustration: 
Consider the problem 

Min z = 2x1 - x2 

s.t. 3x1 + x2 = 4 

X} 0, X2 0, 

whose optimum objective value is z* = - 4. 

Min 2x1 - x2 - z*x3 

s. t. 3x 1 + x2 - 4x3 = 0: .0 

x 1 0, x2 0, x3 0. 

(4n, o, 3t7) 

Fig 2.2 Feasible Polytope .Q(')l: 

The problem being under canonical form, the algorithm may be applied if a feasible 

interior point is available to start with. For this purpose, point xo = e/3 = (1/3, 1/3, l /3)T 
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is interior feasible, as it belongs to the line segment between points (0, 4/5, 1/5) and (4/7, 

0, 3/7) in nru: which is the feasible region. It is also the centre of the simplex :E as 

depicted in Fig 2.2. 

The first iteration of the algorithm requires rescaling the feasible region, using the 

projective transformation T(x) == x ' == D·lx / eTD-lx, and its inverse T•l(x') == 

x = Dx'/e TDx', where D == diag (xo) == diag( 1/3, 1/3, 1/3). However, xo being already 

at the centre of the simplex, the transformation is equivalent to an identity, which leaves 

the region as in Fig 2.2. The objective function, however, has changed. The transformed 

problem is 

Min 2/3x'1 - l/3x'2 - (z*/3)x'3 

s. t. x't + l/3x'2 - 4/3x'3 = 0: Q 

x't + x'2 + x'3 == 1 : :E 

X2 / 

(O, I, O) (0, 415, 1/5) 

Fig 2.3 A Step Along the Projected Gradient 

In step 2 of Karmarkar's algorithm the steepest descent direc tion in the transformed 

feasible region is found. The direction -p' is found by projecting the gradient De onto the 

polytope n " I:, i.e. multiplying the projection matrix H with vector De, and considering 

the negative of this vector (see Fig 2.3). It is along the negative gradient that the objective 

function decreases most rapidly. 

In step 4 a move in the direction -p' is made. However, to guarantee feasibilty after 

the move, a sphere Sr of radius a[n(n-1 )f 112 centered at e/3 is inscribed inside the 

triangle r of above figures, and the minimization is over Q" :E " Sr which is a sphere 

but of lower dimension. All the points of this lower dimension sphere are feasible. In Fig 

2.3 it is the segment which is delimited by Sr inn" :E. Notice that r = [n(n-1 )r112 is the 
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radius of the largest sphere that can be inscribed in I.. A fraction a. of r is only taken to 

avoid infeasibility, with O < a.< 1. The move is then of length cu, with a= 0.9 and 

results in point (0.16, 0.57, 0.27). The point is not optimal as it does not reduce the 

objective function to zero. Note that if the move was long enough, we would have 

reached the optimum solution, which is the end point (0, 4/5, 1/5) of segment n n 1:. 

l lowever, this is so because the feasible region is a segment and the solution is one of its 

two vertices. In higher dimensions it would not be so easy to identify the solution. 

Having obtained a new point, we can proceed with the next iteration. The problem is 

first transformed into 

Min 0.32x'1 - .0.57x'2 + l.08x'3 

s.t. 0.48x'1 + 0.57x'2 - l .08x'3 = 0 : fl 

Fig 2.4 Rescaling of the Feasible Region 

Again, the search direction is computed by multiplying the projection matrix Hand the 

grad ient of the objective function in above problem. The optimization process over n n l: 

n Sr produces point (0.07, 0.59, 0.35) as depicted in Fig 2.5. When transformed back to 

the space of the canonical form, point (0.11, 3.56, 1.0) is obtained which is close to the 

optimal solution x* = (0.0, 4.0, 1.0). The corresponding objective function is z = 0.67, 

which is still much larger than zero. One more iteration is necessary to get a good 

approximation to the optimum solution. 
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(0.07, 0.59, 0.35) 

Fig 2.5 Result of Iteration 2 

2.2.1 Algorithm Complexity 

As was seen earlier the potential function is central to the convergence of the 

algorithm. At the end of iteration k a constant reduction must occ:ur in the potential 

function. However, a constant reduction in the objective function is produced after O(nq) 

steps, (Theorem 2.1 ), for some natural number q. 

It is known LEdmonds, 1965; C hvatal, 1983], that if the data of the linear 

programming problem are rational numbers then there exists Le N, the set of natural 

numbers, such that all nonzero coordinates of the vertices of the feasible region belong to 

[2-L, 2+L] and any numerical value of the problem can be described with L digits, i.e. a 

binary precision of L digits is sufficient. If we replace q with L then the algorithm 

requires O(nL) iterations to find a positive feasible point such that c T x < 2-L. 

Consider the number of arithmetic operations per iteration: The computation of p', x' 

and x(k+ 1) requires O(n) operations. Most of the work, however. is needed in the 

computation of p which requires O(n3) operations. This is because computing p is in 

general equivalent to solving a set of linear equations by Gaussian elimination. As each 

operation may take O(L) time, then an iteration of the algorithm has time bound of 

O(n3L). Thus, the whole algorithm takes, in the worst case, O(n4L2) time to solve a LPP 

on the set of rationals Q. 
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In [Karmarkar, 1984b] it was shown that the time bound of the algorithm may be 

reduced using a rank-one updating of the diagonal matrix D at each iteration. 

operations can be gained if one updates only those entries of D that have changed from 

iteration k to iteration k+ 1. The modified algorithm has time bound O(n3.5L2) compared 

to O(n6L2) for the ellipsoid algorithm. 

Limited experience with medium scale problems [Meggido, 1986] shows that the 

improvement in the time bound of the modified algorithm does not appear in practice. 

2.2.2 Transforming The Standard Form into Canonical Form 

The applicabili ty of Algorithm 2.1 is restricted by the assumptions that the LP 

problem is in canonical form and an interior feasible point to start with is available. As the 

conversio n of the OLP into standard form (SLPx) has already been dealt with in Chapter 

1, the present section is concerned with converting LP problems in standard fonn into the 

required form and finding an interio r feasible point. Three methods were suggested 

respectively by Karmarkar (1984a), Tomlin (1985) and Lustig(I985). 

Metlzod 1: 

In Karmarkar ( 1984a) it was shown that a projective transformation can be used to get 

the required canonical form as follows. 

Define the projective transformation T from R0 to R0 + 1 by 

and x'n+l = 1 - LjX'i. 

T transforms x e R11 into the centre of the unit simplex in R11+1• Its inverse is 
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defined on the unit simplex in R0 +1, I, = {x' e R": x' 0, Lj x'j = 1 }. Replacing Xi 

in SLPx results in problem 

Min cTDx' 

s.t. ADx' - x'n+t b = 0 

T I I 1 e X + X n+l = 
(x', x'n+l);;:: 0, 

where D = diag(xi), i = 1, ... , n. The denominator in the objective function is discarded 

as the fractional programming problem has also optimum value zero (see section 2.1 ). 

The centre of the the simplex I, is interior feasible. 

Method 2: 

The use of a projective transformation to convert SLPx into homogeneous form can be 

dropped if we assume that an upper bound B on the sum of all entries of x is available 

[Tomlin, 1985; Turner, 1987], i.e. LjXj $ B. In this case the conversion may proceed as 

fo llows. 

Introduce variable Xn+l = 1 such that Ax = Xn+ 1 b, and adjoin constraint Xn+ 1 = 1 to 

the problem. This leads to 

Min cTx 

s.t. Ax - Xn+t b = 0 

Xn+l = 1 

(x, Xn+t);;:: 0. 

As LjXj $ B, another slack variable can be added such that 

LjXj + Xn+2 = n, or 

LjXj + Xn+l + Xn+2 = l*B = Xn+tB, as Xn+ l = 1. 

Transferring the RHS into the left-hand side and factoring leads to 

LjXj + (1-B)Xn+l + Xn+2 = 0. 

Scale the variables such that their sum is n: x' = nx/B. As two variables have been 

added so far, two elements are appended to the vector c, i.e. c•T = (cT, 0, 0). Assume 
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that optimum objective value z* is known, i.e. cTx = c'Tx• = z*. Then it is easy to 

transform the problem into one with target value zero. We have 

c'Tx• - z* = 0, and LjX'j = n + 2 = n'. 

Ilence 

c•T x' - z* = c•T x' - (z* / n')LjX'j 

= (c'1 - (z* / n'))x'1+ (c'2 - (z* I n'))x'2+ ... + (c'n+2 - (z* I n'))x'n+2 

= c" 1x'1 + + ... + C"n•X'n•• 

The problem in canonical form is: 

Min c"Tx• 

subject to 

{ 
A -b O ) x, _ O 
1 11-B) 1 -

x' 0. 

Note that two variables and two constraints have been added and the optimization is over 

a simplex of sidelength 1, rather than 1/n for :l:. Although this approach allows en+2 T to 

be interior feasible the adjoined extra constraints and columns may destroy the o riginal 

sparsity of the problem. Also, assuming that an upper bound on the sum of the variables 

is known can be restrictive for some problems. 

Method 3: 

Lustig ( 1985) and others suggested a simpler and more advantageous method for 

transforming LP problems in standard form into Karmarkar's canonical form. It consists 

in introducing an extra variable Xn+l attached to the right hand side b. The LP problem is 

handled in the form 

Min c TX - z*xn+l 

s.t. Ax - bxn+l = 0 

X, Xn+l 0, 
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with z* assumed to be at hand as well as an interior feasible point x(0) e R". Applying 

the projective transformation of Kannarkar leads to 

Min cDx' - z*x'n+ 1 

s.t. ADx' - b x'n+ 1 = 0 

T I I 1 e X + X n+l = 
x', x'n+l c?: 0, 

where D = diag(x(0)), and (x', x'n+l) e R 0+1. The solution in the original space is given 

by inverse transformation. Thus x = x' / x'n+l• 

The assumption that an interior feasible point is available may be dropped. Instead, 

the following feasibility problem can be solved. 

Mint 

s.t. Ax + (b - Ae0 )t = b 

. X, t c?: 0, 

for which (eT0 , J)T is interior feasible and extremal t = 0. Algorithm 2.1 is thus directly 

applicable and will provide an interior feasible point to the original problem. 

2.2.3 Solving Problems with unknown z• 

So far it has been assumed that the optimum objective value of the problem in 

canonical form is 0, which imposes the condition that z* of the original problem is 

known. The assumption is restrictive, as for most problems it is hard to estimate the 

optimum objective value be fore hand. To remove the assumption Karmarkar suggested 

the combination of the primal and the dual of the LP problem and use of the strong duality 

result, which says that if the LP problem is feasible and has finite optimum solution, then 

the primal and the dual have same optimum objective value. This can be expressed as 

c T x* - IJ Tu* = 0, where u * is the dual optimum solution. 

The combination of the primal and dual under standard form leads to the following 

minimization problem 
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Mint 

Ax + y+ (b - Axo - Yo)t = b 

AT u - v+ ( C - AT uo + vo)t = C 

cTx - bTu + (-cTxo + bTuo)t = 0 

(x, u , y,v,t);;?:0, 

where tis an artificial variable, driven to zero in the Phase I Karmarkar problem. The 

problem is in standard form, thus any of the strategies discussed earlier can be used to 

convert it into canonical form. Note that e e R2(m+n)+ 1 is interior feasible and that the 

dual solutio ns are also found. However, a disadvantage of this approach is the 

considerable increase in the size of the problem 

A different approach also suggested by Karmarkar (] 984a) is the sliding objective 

function technique. The technique consists in having a lower and an upper bound for the 

optimum objective function value, i.e. C. z* u . Trial lower and upper bounds are then 

set up as C.' = C. + t/3(u - C.) and u ' = u + 2/3(u - C.). If the potential function is not 

improved by a constant value o then C.' is lower than the optimum value. If the optimum of 

the objective value drops below u', then u is set to u ' and new trial values are 

determined. Karmarkar showed that, when the algorithm is equipped w ith the sliding 

objective function technique, it retains its polynomial complexity. The method has been 

used by Lustig (1985) and Nickels et al. (1985) in their implementations of the Kannarkar 

algorithm. However, it has a disadvantage: it may be hard to set up appropriate values for 

Landu. 

These techniques for relaxing the requirement of known objective value arc not 

satisfactory because of the effect they may have on the problem (growth of the size of 

problem in the first method) or the assumptions they are based upon (lower and upper 

bound for z* in the second method). In the next section variants o f the Karmarkar 

algorithm which handle LP problems under milder assumptions will be reviewed. 
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2.3 Recent Developments in Karmarkar-Type Algorithms 

The practical use of the Karmarkar algorithm is made difficult by the assumptions 

mentioned earlier but also by the need for accurate computation of the search direction and 

the use of a constant steplength throughout the algorithm. Recently, strategies which relax 

these assumptions were developed. Linear transformations L Vanderbei et al., 1986; 

Kortanek & Shi, 1987], in other words different scalings were investigated. More 

c lassical interior point methods such as Newton methods l Vial & De Ghellinck, 1986 I 

and Barrier methods [Gill et al., 1986] which were originally intended for nonlinear 

optimization were also reinvestigated. Many researchers [Turner, 1986; Dennis et al., 

1986; Shanno & Marsten, 1988] considered using approximate rather than accurate 

directions to reduce work in step 2 of Algorithm 2.1, as it accounts for much of the work 

needed in an iteration, (0(n3L) arithmetic operations). In the following we discuss relaxed 

forms of the Karmarkar algorithm and alternatives which are substantially different from 

it. 

2.3.1 Alternative Search Directions 

We have already mentioned Karmarkar's suggestion of using an approximate 

direction pat iteration k+ I obtained by a rank-one updating of (BBT)• I in the expression 

of p. This reduces the overall complexity of the algorithm by operations. Shanno 

( 1988) takes a similar approach and uses a Fletcher-Powell rank-one update of a 

Cholcsky factorization of BBT. The Fletcher-Powell update LGill et al., 1981] is based on 

the observation that if BBT = LLT, La lower triangular matrix, and if only few clements 

of L change in each iteration then it is possible to compute a good approximation L'L 'T to 

it using rank-one updates rather than a fresh factorization. 

In LDennis et al., 1986; Turner, l 987j a similar idea is considered. Their approach is 

to approximate direction p by use of a nonsingular approximation D' to the diagonal 

matrix D. Thus, again rank-one updating of the factorization of BBT is possible. The 

adopted updating strategy is that used in the classical variable-metric algorithm, i.e. the 

13FGS updating method !Gill et al., 198lj. 
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Recall that the expression of the direction vector is p = [I - BT(BBT)-1B]Dc. The 

proposed approximation is p' = D·ID'[I - B'T(B'B'T)-1B']D'Tc, where 

Note that p = p' when D = D'. The vector -p' is a feasible direction for the linear 

programming problem PC as it can be shown to be in the null space of B, and a descent 

direction for the potential function (2.2.1 ), (Theorem 4.2 of Turner, 1987). 

The best performance of the variable-metric variant of the Karmarkar algorithm 

lTurner, 1987] was observed for the approximation obtained from 

( (k+l) (k) 0 ,(k) ) T 
D' - D' + X - X - V V 

k+l - k T 
V V 

for some veR0 • 

In the course of the algorithm a restarting strategy may be taken when the updates do 

not lead to much improvement in the reduction of the objective function value. The ctllTent 

point is then considered as the starting one and the matrix BBT is refactored. Turner 

showed that the algorithm retains polynomial complexity. 

The correspondence between null space projections and the concept of a reduced-

gradient vector was investigated recently by Shanno and Mars ten ( 1988) leading to a 

reduced-gradient variant of the Karmarkar algorithm. However, as will be seen, this 

method did not perform well in practice. 

The inexact projections used by Goldfarb and Mehrotra (1988a, 1988b) were inspired 

by the following observation. The projected steepest direction descent p used in the 

Karmarkar algorithm belongs to a cone of acceptable directions in the null space of B. 

Thus any of the directions in the cone can be selected and used in the optimization over a 

ball subproblem solved at each iteration of the algorithm. Exact computation of p is 

therefore relaxed. Goldfarb and Mehrotra perform this selection by solving approximately 

the least squares problem arising when computing p. Their algorithm retains the 

polynomial complexity of Algorithm 2.1. 
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2.3.2 Alternative Rescaling 

One of the most interesting variants of the Karmarkar algorithm is that proposed by 

Vanderbei et al. (1986). The original feature in this variant is the use of a different 

rescaling based on a linear transformation as compared to the projective transformation of 

all the variants discussed so far. The algorithm works in the positive orthant rather than 

the simplex and handles LP problems in the standard form SLPx. The algorithm, seems to 

be similar to that briefly described by Dikin ( 1967). 

The idea, as in the Karmarkar algorithm, is to guarantee a "good bite" by talcing a step 

in the direction of the projected gradient always from the centre of the feasible polytope. 

This is achieved by using a centring scheme based on changing units in the variables in 

every iteration. Given a feasible interior point x(0), the linear transfon11ation is 
-1 T x(x) = D x = x' , 

where D = diag(x1, x2, ... , x0 ). Thus, Tx.(x(0)) = x'(0) = e, 

T~1(x') = Dx' = x, 

and the transformed LP problem is 

Min cTDx' 

s.t. ADx' = b 

x' 0, 

for which x'(0) = e is a feasible point. The next iterate x'(l) is obtained by taking a step in 

the direction p of the projection of c' = De onto the null space of AD, i.e. 

x'(l) = e - exp/ maxj{Pj}, where ex e (0,1). 

The convergence of the algorithm was established under the following assumptions. 

1) The problem is bounded and feasible. 

2) The problem is primal nondegenerate. 

3) the problem is dual nondegenerate. 

Vanderbei et al. observed that, in practice, the algorithm works equally well on problems 

not satisfying these assumptions. 
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Algorithm 2.2 : The Linear Scaling Algorithm 

Initialization 

k=O 

x<k) = x(O) 

D = diag(xj<k)), j = 1, ... , n 

ae(0,1) 

p = HkDC, where Hk = I- (AD)T[(AD)(AD)Tf1cAD) 

begin 

while p -1; 0 do 

p' = p / maxj{Pj>O} 

x(k+l) = x(k) - aDp' 

k=k+l 

D = diag(x/k>), j = 1, ... , n 

p = HkDC 

endwhile 

end 

A similar approach is also taken by Cavalier & Schall (1987). They raised the problem 

of staying in the flat { Ax = b} when taking a projective step. This problem is related to 

finding a direction vector d such that Ad = 0. On computational grounds one has Ax = 

E. Thus, if the new iterate is x(k+t) = x(k) + a0d, where a, e e R, then A(x<k>+a0d) = 

b+a0E, hence the propagation of errors. There is also the problem of ill-conditioning of 

the matrix (AD)(AD)T to invert when computing p . Cavalier and Schall (1987) attempted 

to alleviate these difficulties by devising an algorithm for inequality constrained LP 

problems. Slack variables are then added to put the problem into standard form and only 

the slack variables are concerned with the rescaling. This is based on the idea that 

inequalities are easier to satisfy than equations. 

The linear rescaling algorithm is also evident in [Barnes, 1986J. Barnes considers the 

LP problem in standard form and its dual. Given a feasible pointy to the primal and a 

scalar co e JO, 1 [, the ellipsoid 
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(x •-y/ £...J J J ~(.I) 
. 1 2 
J= Yj 

is in the positive orthant. Solving the problem 

Min cTx 

s.t. Ax = b 

(x --y/ £...J J J S';(J) 
. 1 2 
J= Yj 

leads to the point x such that cTx < cTy. An iterative process is then constructed as 

follows: If x(0) > 0 and Ax(0) = b then after iteration k where x(k) is calculated, set 

D = diag(xlk)), j = 1, ... , n and find x(k+ 1) > 0 from the relation 

where Ak = (AD2AT)"1AD2c is a dual feasible solution. 

Kortanek and Shi (1987) suggested a hybrid method based on the above algorithm 

and a purification procedure to obtain the dual basic optimal solution. 

Affine variants of the Karmarkar algorithm developed by Vanderbei et al. ( 1986), 

Cavalier and Schall ( 1987) and Kortanek and Shi ( 1987) drop the assumption that the 

optimum objective value is at hand, although at the expense of polynomial complexity. It 

should be stressed that the loss of the polynomial complexity of affine variants is not 

solely due to the relaxation of this assumption, but rather because they are basically 

different from the projective algorithm. We recall that they use a s imple translation of the 

current iterate toe T rather than projective geometry and work in the positive orthant rather 

than the simplex. 

Gay (1987), Ye and Kojima (1987) and Todd and Burrell (1986) described variants 

of Karmarkar's algorithm which do not require a priori knowledge of optimum objective 

value z*. Improving lower bounds on z* were used in these algorithms, based on the 

generation of dual variables. The way dual variables are generated will be treated in a 

subsequent chapter. Anstreicher ( 1986b) and more recently Nemirowskiy (1988) 
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versions of the Karmarkar algorithm which also do not require the knowledge of z*. It is 

important to mention that these variants retain the polynomial complexity of the 

Karmarkar algorithm. 

While all algorithms described here solve linear problems, Anstreicher's version 

solves the fractional programming problem resulting from the transformation of PC using 

the inverse of T x given earlier. A similar approach has also been taken by Padberg 

( 1986). The idea is to make the Karmarkar algorithm a monotonic process regarding the 

value of z, i.e. at each iteration Zk+l > Zk, Recall that in the original projective algorithm 

improvement by a constant at each iteration is guaranteed for the potential function and not 

the objective function. 

2.3.3 A .Barrier Function Approach to LP 

An important aspect of the Karmarkar algorithm is that of maintaining feasibility after 

each step and insuring reduction in the objective function value monitored by the use of a 

logarithmic potential function. The idea is reminiscent of the barrier and penalty functions 

approach in nonlinear programming, due to Fri sh ( 1955) and championed by Fiacco & 

McCormick ( 1968). Gill et al. ( 1985) suggested using this approach to LP and developed 

a class of projected Newton algorithms, in which Karmarkar's algorithm is a particular 

case [Fletcher, 1986]. LP problems are handled by being transformed into a nonlinear 

programming problem of the form 

BAP: Min cl>(x) = c T x - µLj Log Xj 

s.t. Ax= b, 

X 0, 

µ > 0, µ is the barrier parameter. 

The algorithm proceeds from a feasible point x > 0 following the Newton direction 

d = (V2<I>(x))-1V<I>(x) projected onto Ker(A) to get a feasible pointy (i.e. Ay = b). 

More explicitly the Newton search direction d is obtained as the solution of a quadratic 

programming problem which is the minimization of a quadratic approximation of <l>(x) 

under feasibility constraints. This amounts to problem 
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BQP: Min V<l>(x)d + 112dTV2<1>(x)d 

s.t. Ad = 0, 

where V<I>(x) = c - µD·1e is the gradient of <l>(x), V2<I>(x) = µD-2 the Hessian and D = 

d iag(x1, x2, ... , x0 ), x being a feasible point to BAP. 

The solution of BQP gives d = x - 1/µ D2(c - AT), where A is the solution to the 

normal equations AD2A TA = AD2c, and the barrier parameter is chosen as µ = x To( c -

ATt..) [Fletcher, 1986]. Vector dis a descent direction as the Hessian is positive definite 

when x > 0. Thus a step of length ex along d results into point y = x + cxd such that <l>(y) 

< <I>(x). Hence an iterative process can be constructed. Gill et al. showed that the 

projected Newton barrier method, for some parameterµ generates a path parallel to that 

followed by the projective algorithm. For µ=0 the barrier method is similar to the linear 

rescaling algorithm of Vanderbei et al. (1986). 

2.3.4 Newton Methods for LP 

By incorporating the objective function of a LP problem as a constraint in a 

parametrized feasibility problem, LP can be handled as a linear system without combining 

the primal and dual problems. De Ghel linck and Vial ( 1986) proposed a polynomial 

Newton method for linear systems which can be used at most n times (n is the dimension 

of the problem space) to solve LP problems. Assume that after incorporating the objective 

function into the constraints set as zxo - Lj CjXj = 0, j = 1, ... , n the following problem is 

obtained 

PLP: Ax = 0, A e Rmx(n+I) 

x 2: 0, xo = 1 if bi is replaced by -aiO, i= 1, ... , m. 

De Ghellinck and Vial consider a related problem to PLP, i.e. 

PLP': Ax = 0, A e Rmx(n+l) 

Xj~0 xo:t-0,j=0, l, ... ,n. 

Solutions to PLP' are directions rather than points. 

A feasible point to PLP' can be found by driving to zero the following potential 

function: 
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Ax 
'lf(X) = --=r· 

e X 

The idea is to keep the numerator constant or small and increase the denominator. This 

is done by taking a steppe R0+t, from the current iterate x e R+n+I, i.e. x = x + p, 

such that x + p 0. Consequently, the potential function is written as 

'lf(X) = ~x+p) • 
e (x+p) 

To keep the numerator constant, De Ghellinck and Vial suggest imposing on the new 

iterate the condition Ap = 0. This insures that A(x + p) = Ax. The problem of reducing 

the potential function can be formulated as a linear programming problem whose objective 

is the denominator eT(x + p). Explicitly, the problem is 
n 

Max L(xj+P} 
j-0 

s.t. Ap = 0 

X + p 0, 

where p is the variable, i.e. the optimization is with respect to p, x being a parameter 

such that x > 0. However, the above problem is just as difficult to solve as the original 

one. Using the geometric mea(n and)t1/n~thmetic mean inequality, i.e. 

n 1 n 

I]xj ::;; n+l~xj, 
j=O J"'O 

the following nonlinear programming problem is considered instead. 
n 

Max I](xj+P} 
j-0 

s.t. Ap = 0, 

X + p 0. 

The advantage of this problem is that the objective is zero whenever Xj + Pj = 0 for some j 

and the nonnegativity constraint is implicitly taken dealt with by the maximization 

process. If any direction p gives a large value to the objective of the nonlinear problem 

then it also forces the quantity 'lf(X) to zero, which solves the problem, [De Ghellinck & 
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Vial, 1986]. Thus, to insure a monotonic increase in the objective function value, the 

strict inequalities x + p > 0 are considered in a problem equivalent to the one above, i.e. 

PLP": 

n 
Max F(p) = })og(xj+Pj) 

j=O 

s. t. Ap = 0. 

X + p > 0. 

F(p) is concave and a Newton method can be applied to solve PLP", which amounts to 

solving a quadratic programming problem to get the search direction p. Meggido (1986) 

argues that the nonnegativity constraints may be totally removed. 

The Newton algorithm of De Ghellinck and Vial works in the positive orthant of R0+1 

and consists of only one phase in which both the feasibility and optimality problems are 

solved. It is interesting to note that the algorithm generates points exterior to Ax = 0, i.e. 

infeasible; feasibility and optimality are attained simultaneously. It is, however, 

considered as an interior point method, related to Karmarkar's algorithm. 

Iri and Imai (1986) also suggested a Newton-like method for LP different from the 

Karmarkar algorithm in that projective geometry is not used and it has superlinear 

convergence while the Karmarkar algorithm is only of linear convergence [Charnes et al., 

1984]. The method uses a Newton search direction to minimize a special barrier function 

free of a barrier parameter, and related to the potential function of Karmarkar. The 

problem considered is {Min cTx, s.t. Ax~ 0} and the corresponding barrier function is 

T m+l 

F(x) = (c x) 
m 

TI(Aj _X-bj) 
i= 1 

The minimization of F(x) is over the domain of feasibility K={xe R0 I Ax - b 0}. lri 

and Imai prove the convexity of F(x) over K to justify the choice of the Newton method. 

It is assumed that the problem admits a solution, the target objective value is zero and an 

interior starting point is available. Iri and Imai analysed the effect of line search in the 

behaviour of the algorithm, as compared to taking standard steps along the chosen 
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dire~tion. It appears that when the line search is used their algorithm converges 

quadratically. However, it is not known whether it has a polynomial worst case bound. 

2.4 Computational Experience 

The lack of experimental results in [Karmarkar, 1984a, 1984b] generated a lot of 

interest in the computational side of the projective algorithm. Most of the modifications 

discussed in the previous sections were supported by computational experience, which 

although limited and not conclusive gives nevertheless good insight in the practicality of 

the projective algorithm and related variants. In this section some of the significant 

numerical results obtained with implementations of the projective algorithm will be 

reviewed. 

Tomlin (1985) solved a set of test problems among which are the 7 nontrivial LP 

problems listed in Table 2.1. 

Problem Rows Columns Slacks 

AFIRO 27 32 19 
ADLITILE 52 97 4 1 
SHARE2B 96 79 83 

ISRAEL 174 142 174 
BRANDY 220 249 54 

E226 223 282 190 
BANDM 305 472 0 

Table 2.1 Problems Statistics 

His implementation is characterized by the use of constant steplengths. He also 

investigated the use of Givens rotations in computing the projected gradient. His most 

efficient code, with a set to 0.99, performed slightly better than Ketron's WHIZARD 

assembly language simplex code only on AFfRO. On the remaining problems of Table 1, 

it was slower (2 to 10 times) than WHlZARD. 
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The test set solved by Lustig (1985) included the first five problems of Table I. 

Lustig's code of a version of the Karmarkar algorithm, using LSQR subroutine of Paige 

and Saunders (1982) to solve the least squares problem arising in the computation of the 

projected gradient, performed poorly on all the problems (10 to 115 times slower than the 

simplex code MINOS 5.0). 

Gill et al. (1986) implemented a projected Newton barrier method of section 2.3.3. 

Their code was tested on 14 nontrivial problems including those in Table 1. Three 

problems (Degen I , Degen 2 and Degen 3) are highly degenerate. They tested the code 

against WHIZARD and MINOS 5.0. For 3 of the problems listed above the barrier 

method was slower than MINOS 5.0, (2 to 5 times slower). On the other problems the 

barrier method and the simplex codes were comparable. The degenerate problems were 

solved with WHIZARD. The barrier method was approximately 2 times slower than 

WHIZARD. 

Turner (1987) solved 8 problems among which are the first five problems of Table 1. 

The tests were against a code of the original Karmarkar algorithm. Periodic restarts were 

used in the variable-metric algorithm of Turner to reduce the number of factorizations and 

rank-one updates to approximate D at each step. From the results of Turner it appears that 

the number of iterations to get a solution is inversely proportional to the number of 

factorizations. The code of the variable-metric performed slightly better than that of the 

original Karmarkar algorithm, except for AFIRO on which it was 1.5 to 2.5 times slower. 

Ye and Kojima (1987) presented limited experimental results with a variant of the 

Karmarkar algorithm which works on the standard LP problem, with no a priori 

knowledge of the optimum objective value. Dual variables were generated at each iteration 

and from their results the dual solution converges faster than the primal. 

Shanno and Marsten (1988) implemented two versions of a reduced gradient 

algorithm, with exact and inexact-projections, within the framework of the XMP simplex 

code. Three problems of small and medium size were solved with the two variants of the 

reduced gradient Karmarkar method and the XMP code of the simplex. The reduced 

gradient codes took more iterations than the simplex code to solve a ll the problems. 13ut 

the interesting result concerned the behaviour of the inexact-projection reduced gradient 
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code: it took less iterations than the version with exact projections on all the three 

problems. On the whole, however, Shanno and Marsten did not think that a direct 

implementation of the reduced gradient variant would be competitive with the simplex or 

even with the original Karmarkar's algorithm. In Shanno ( 1988) a version of the 

Karmarkar algorithm was implemented with the Fletcher-Powell rank-one update of a 

known factorization LLT of BBT. He solved randomly generated LP problems with cTx* 

= 0 and such that Ae = 0. The code for the original Karmarkar algorithm with a Cholesky 

factorization at each step required less iterations but the number of updates ( n x (number 

of iterations)) was higher than in the modified version. 

In Nemirowskiy (1988) experimental results were presented on 16 problems, 12 of 

which were randomly generated. He implemented the original Karmarkar algorithm and a 

variant which does not require a priori knowledge of optimum objective value and an 

admissible plan (i.e. an interior feasible point). This implies that the variant works in one 

phase. Variations on the stopping rule and the way (BBT)-1 was dealt with were also 

considered. The two algorithms performed in the same order of efficiency with a slight 

advantage for his variant. Nemirowskiy reported that a simplex code performed "badly" 

on four of the problems. 

Vanderbei, Meketon and Freedman (1986) implemented their affine variant of the 

Karmarkar algorithm and reported encouraging results on small dense problems. The 

affine variant was competitive with the revised simplex method. An implementation of the 

affine variant was also carried out by Cavalier and Schall (1987) and was found to be 2 to 

3 times faster than Fortran subroutine ZX4LP based on simplex. The test problems were 

randomly generated and are of medium size. In Monma and Morton (1987) extensive 

numerical results obtained with a Fortran 77 code of a dual affine variant of Kannarkar's 

method were presented. 31 test problems including those in Table 1 were solved. Their 

code was tested against MINOS 5.0. On 26 of the problems the dual affine variant 

outperformed MINOS 5.0 (1.28 to 10.80 times faster). Four of the five problems on 

which the dual affine variant did not perfonn so well are included in Table 1. On problem 

ISRAEL, MINOS 5.0 was 5.84 times faster. The problem ISRAEL has three very dense 
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columns and several dense rows. This, probably, explains why the Karmarkar variant 

performed badly. 

Ferris and Philpott (1988) studied the performance of the Karmarkar algorithm and its 

rescaling variant on small to medium size problems. A line search to obtain steplength a. 

and the sliding objective technique were investigated. Householder transformations and 

Givens rotations were used in solving the least squares problems to obtain the projected 

gradient search direction. The tests were dgainst the MPSX code of the simplex. On 

average the simplex code performed better than the codes of Karmarkar algorithm 

variants. The point made however was that the choice of the steplength and techniques for 

solving the least squares problem greatly influences the behaviour of any code of the 

a lgorithm. In Nickels et al. (1985) and Schonlein (1986) a similar approach was also 

taken. Their Fortran IV code of a version of the Karmarkar with no a priori knowledge of 

z* was tested against two MP-copes: The Marsten Code and the APEX IV simplex based 

package of Control Data, on eight small to medium size problems. The Kannarkar based 

program was faster than the Marsten Code on most problems (1.8 to 12 times faster) 

except for one problem for which it was over two times slower. Note that the Marsten 

Code is not a commercial package. APEX code, however, was 1.2 to 81 times faster than 

that of the Karmarkar alg01ithm. Schreck ( 1986) also implemented Karmarkar's algorithm 

with QR decomposition to find the search direction. He solved problems in canonical 

form obtained by primal-dual combination suggested in [Karmarkar, 1984a]. The tests 

were against APEX. The latter was uniformly better than Schreck's codes K 11 C and 

K 11D (which differ only in the stopping rule) except for one (l0xlO)-Maximum 

Matching Problem solved in the same time by APEX and K 11 D. On other problems 

APEX largely outperformed K 11 C and K 11 D (>> I 00 times faster). The bad 

performance of the Kannarkar algorithm in Schreck's implementation is due to the growth 

of problem size due to the primal-dual combination. 

Goldfarb and Mehrotra ( 1988b) presented limited results with a code of their relaxed 

version of the projective algorithm on the first three problems of Table 1. Emphasis was 

put on the role of subroutine COLS [Paige & Saunders, 1982] used when computing 

approximately the direction of search, and the effect of rescaling the data. Prom their 
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results it appears that scaling has no substantial effect on the results. But the success of 

their method is dependent on COLS, i.e on the solution of the least squares problem. 

Problems AFIRO and ADLITfLE were solved in acceptable iteration counts. On the other 

hand, the performance of their method on SHARE2B was disappointing. This lack of 

robustness was justified by the ill-conditioning of the least squares problem deriving from 

SHARE2B. 

Imolementation, of Karmail'vll Alr,.orithm bv: 
Simolex Tomlin Lustig Gill et al. Monmaetal. 

Problems lter CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s~ Iter CPU(s' 

AFIRO 6 0.5 17 0.40 14 0.8 19 0.4 22 0.23 
.A.DUTILE 98-126 1.0-1.1 24 1.87 29 12.3 26 1.0 22 0.95 
SHARE2B 91- 121 1.0-1.4 23 2.80 21 67.4 23 1.4 32 2.98 
ISRAEL 231-338 3.7-4.2 30 55.07 33 636.0 41 15.9 41 96.65 
BRANDY 292-377 4.1-5.9 33 17.23 35 215.0 28 6.4 34 16.32 
E226 471-572 7.5-7.9 37 31.66 59 644.0 37 8.5 42 18.73 
BANDM 392-534 6.4 -10. 47 33.13 55 771 .0 33 7.9 31 15.60 

Table 2.2 Comparative Results between 4 Implementations of Karmarkar 

Related Algorithms and MINOS 5.0 Simplex Code 

2.5 Conclusions 

From the numerical results briefly reviewed some interesting aspects of the Karmarkar 

and related algorithms can be highlighted. 

1) The number of iterations required by the Karmarkar algorithm and its variants is in 

general low, and grows slowly with the problem size. This conclusion docs not contradict 

Karmarkar's claim that the number of iterations required by his algorithm, in general, is 

O(Logn). This constitutes the most attractive feature of the algorithm. 

2) Some implementations of the algorithm outperfonned the simplex on realistic LP 

problems. But the difference in CPU time was never large enough to impose the 

tec hnique for adoption as the standard way for solving LP problems. Indeed many of the 

results reviewed earlier speak in favour of the simplex, although the comparisons were 
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not very meaningful as simplex based packages have been developed and refined for 

years, while Karmarkar based codes are still experimental products. 

3) The work in an iteration of the Karmarkar algorithm is substantial. All current 

variants of the algorithm are dependent on the solution, in every iteration, of a least 

squares problem that can be expensive. Speeding up the convergence of the algorithm, 

therefore, is limited by existing technology for least squares problems. 
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I 
I 

Chapter 3 

Computation of the Projected Gradient and the Steplength 

3.1 Introduction 

After describing Karmarkar's algorithm and related work, we are faced with two 

major problems for its efficient implementation, namely the computation of the search 

direction p and the optimum choice of the steplength a to take along it. The present 

chapter is therefore in two parts. In the first part we look at the least squares (LSQ) 

problem and find out what is ~n store that can be used in the implementation of 

Karmarkar's algorithm. The second part is devoted to investigating the choice of the 

step length. 

Very few implementations discussed in Chapter 2 do not consider solving a LSQ 

problem when computing the projection matrix in the main step of the algorithm. In 

[Tomlin, 1985], it has been argued that the efficiency of the projective algorithm is limited 

by the technology for solving LSQ problems. Efficient solution of the LSQ problem is 

also relevant to our algorithm based on generating a sequence of Chebyshev points, 

treated in Chapter 5, and to different implementations of the projective algorithm 

considered in Chapter 7. Based on these arguments we found it necessary, at least for 

completeness, to review some important results concerning the LSQ problem. Other 

related infonnation will be given as appendices and referred to when necessary. 

3.2 The Linear Least Squares Problem 

The method of least squares has many applications. In statistics it is used to identify 

and estimate parameters, in engineering it is used for curve fitting and data smoothing. In 
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numerical analysis it is used as an "extension" to the well known Gaussian Elimination to 

overdetennined (underdetermined) systems of linear equations. 

The use of LSQ can be traced back three thousand years, to Chinese mathematicians 

LLongley, 1984]. It is, however, credited to Gauss. Methods for LSQ problems predate 

computers, although the development of efficient algorithms with sparsity and numerical 

stability considerations are recent and strongly linked to the availability of digital 

computers. 

3.2.1 LSQ Problem and Normal Equations 

The LSQ problem is to minimize the norm of the residual vector r = b - Ax of a 

system of linear equations Ax = b. Although any norm may be used, it is generally the 

Euclidean norm which is considered. The LSQ problem is formulated as follows 

min llb -Ax ll2 
X 

(3.2.1) 

The LSQ problem and the normal equations are almost inseparable. They are naturally 

derived as follow. 

The residual vector r must be orthogonal to the column space of A ( or space of AT). 

This condition is expressed as r e ker (AT), i.e. AT r = 0 or A T(b - Ax) = 0, which leads 

to the normal equations AT Ax = A Tb. The cross-product AT A is a positive definite 

matrix. 

3.2.2 Data Characteristics and Algorithm Performance 

Many techniques are available to solve the LSQ problem. The diversity in the ways 

LSQ problems may be approached is due to the different characteristics these problems 

may have. Two important characteristics of the data of the problems are the ill-

conditioning of the matrix A and its sparsity, which make techniques for LSQ differ in 

their numerical properties and execution time. Any successful method takes account of 
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these two features. However, despite continuous research for powerful methods, large 

scale and ill-conditioned problems remain difficult and expensive to solve. 

Numerical stability of a technique applied to large ill-conditioned LSQ problems is 

achieved, when possible, mainly by scaling and preconditioning the data of the problems. 

Sparsity preservation and exploitation is achieved by appropriate matrix decomposition 

and ordering. 

3.2.3 Numerical Stability and Condition Number 

Every operation performed during computation, gives rise to some error. This error 

may decay or grow in subsequent calculations. In some cases, errors grow so large that 

the computed result is totally redundant. A procedure leading to such results is labelled 

numerically unstable. However, some problems are inherently unstable or ill-conditioned, 

which may cause bad performance of most procedures on such problems regardless of the 

precautions taken [Kronsjo, 1987]. 

Instability of a solution and ill-conditioning of the corresponding problem may be 

monitored by perturbing the data and measuring the effect this has on the solution. In the 

case of a system of linear equations Ax = b, where A is square and non-singular, the 

measure of instability is contained in the quantity IIAII.IIA-111 defined as the condition 

number, Cond(A). As 11111 = 1, for every subordinate norm, and I= AA-1 then 1 = 11111 

IIAII IIA-111 = Cond(A). Thus Cond(A) 1 for any matrix. 

The condition number indicates the maximum effect of perturbations in A and b on the 

exact solution of Ax= b. If Cond(A) is "large", the exact solution may be substantially 

changed by even small changes in the data. A is often said to be ill-conditioned. If 

Cond(A) is "small", A is said to be well-conditioned. 

3.2.4 Scaling and Preconditioning 

Scaling and preconditioning are means for improving the condition of a matrix. The 

basic purpose of scaling is to make the variables of the scaled problem have the same 
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magnitude and order unity in the solution region. The common way of scaling a matrix is 

by multiplying its rows or columns by a factor so that all entries are about size 1. Scaling 

is not always easy and satisfactory. Indeed, there is no automatic way of satisfactorily 

scaling any matrix. 

Preconditioning is another way of scaling. It is aimed at reducing the condition 

number of a matrix by multiplying it by suitable matrix. Preconditioners are also viewed 

as accelerators of convergence. Among the techniques for LSQ, the iterative ones are 

most dependent on preconditioning [Gill et al., 1981 ] . 

• 
3.2.5 Sparsity 

Sparsity is the characteristic of a matrix with "many" zero entries. Although, It is 

difficult to exactly define a sparse matrix, we call a matrix sparse when it is profitable to 

exploit its zeros [George & Liu, 1981]. 

Sparsity exploitation is aimed at reducing the CPU time and storage requirements of 

procedures for matrix computation. This is justified by the redundancy of the following 

operations. 

If a is nonzero then: 0 . a = 0, 0 + a = a, 0 / a = 0, 0 . 0 = 0. 

In other words, it is unnecessary to allocate any computing power to these operations as 

tl1e results are obvious. Also there is no need to store the zero elements. 

One of the main problems in solving sparse systems is that when the matrix is 

factored, it suffers fill-in, i.e., nonzeros are created as a consequence of the factorization. 

Thus, sparsity tends to be destroyed. In the case of the normal equations, for example, 

the Cholesky factor L has more nonzeros than the lower part of AT A. However, it has 

been observed that a judicious reordering of the matrix rows and columns can drastically 

reduce fill-in. Such a reordering is practically embodied in a permutation matrix, which is 

defined as follows. 
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A permutation matrix P is a square matrix whose columns are some permutation of 

those of the identity matrix. Matrix Pis orthogonal, i.e. pTp = I. (See Appendix C for 

details about ordering algorithms.) 

Sparse matrix technology was founded by Ralph Willoughby of I.B.M. in the 60's 

[Duff, 1981]. Since then it dominated the design of efficient software in numerical 

computations of large systems. In the following sections and subsequent chapters, the 

relevance of sparsity considerations for the solution of the LSQ problem and the 

implementation of the projective algorithm will be underlined. 

3.2.6 Solving the Least Squares Problem 

As mentioned earlier there are many techniques for solving LSQ problems. The choice 

of a technique may be determined by two main criteria: Numerical stability and Sparsity 

exploitation (i.e. cost). Unfortunately, no single technique completely fulfils these 

criteria, as problems differ a great deal in the condition of their data and their sizes. For 

small scale problems, even when they are ill-conditioned, most techniques can be 

successfully applied. However, when the problems are large, the choice of a suitable 

technique becomes crucial. 

Techniques for LSQ problems may be divided into two categories: 

-Direct and 

- Iterative. 

3.2.6.1 Direct Methods 

a) Cholesky Factorization Tech11ique 

The Cholesky method is a symmetric variant of the G aussian elimination tailored to 

symmetric positive definite (SPD) matrices. Suppose we have to solve the system Ax = 

b , where A is SPD matrix, using the Cholesky method. Then a triangular factorization of 

A is obtained such that A = LLT, where L is a lower triangular matrix (see Appendix B 

for computation details of L). The system at hand may be written as 
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LLTx = b. 

Put LTx = y, 

and solve Ly= b 

by a forward substitution. Then solve LT x = y by a back substitution to obtain x. 

The algorithmic form of the Cholesky method applied to Ax = b, with ordering 

brought into play is given below [Heath, 1984]. 

Algorithm 3.0 

1- Find a permutation matrix P. 

2- Factorize pT AT AP to find a sparse Cholesky factor L. 

3-SolveLTz=PTATb. 

4- Solve Ly= z. 

5- Restore original order: x = Py. 

b) Advantages/Disadvantages of Cholesky Method 

Speed and widespread availability of Cholesky method are among its major assets. 

- For dense problems with m >> n, the number of arithmetic operations needed is 

approximately half of that taken by direct methods 

- For sparse problems, there are excellent software packages available on the market 

such as YMSP, SPARSPAK, MA27. 

On the other hand many people find it unreliable for the following reasons. 

- Numerical difficulties may originate from problems such as: 

* Potential loss of information when explicitly computing the cross-product 

AT A and A Tb. This arises from the truncation of the numerical values resulting 

from the products due to limited precision on the computer. 

* The condition number of AT A is the square of that of A, hence an accurate 

solution to the LSQ problem at hand may be difficult to get if not 

impossible, especially when A is already poorly conditioned. 
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- A suitable accuracy requires high working precision which results in an increase in 

storage requirement for very large problems. 

- Explicitly computing the cross-product AT A destroys the sparsity of the original 

problem. 

c) Orthogonal Methods 

The basic idea is to avoid explicit formation of the cross-product AT A, by computing 

its Cholesky factor R directly from A. This can be done by orthogonal factorization. 

An orthogonal matrix Q of order m is one which satisfies the relation QTQ = I. Such a 

matrix is used to reduce A and b into the following forms: 

(3.2.2) 

where c is of order n, and d of order (m-n) and R is triangular (nxn)-matrix. 

Based on the property of Q, it can be written 

ATA= AT IA= ATQTQA =[RT o][~] = RTR. 

This shows that R is the Cholesky factor of AT A. 

Three main methods are available for computing the reductions (3.2.2): 

- Gram-Schmidt Orthogonalization, [Longley, 1984] 

- Householder Reflections, [Kronsjo, 1987] 

- Givens Rotations, [Golub & Van Loan, 1983 J 

d) Advantages/Disadvantages of Orthogonalization Methods 

Gram-Schmidt and Householder methods reduce A to triangular form by annihilating 

the subdiagonal elements in an entire column at each step. The methods are effective for 

dense matrices. For sparse matrices, they present some drawbacks: While a column is 

annihilated, nonzero elements are eventually created where there was a zero before in the 

remaining columns not yet zeroed by the orthogonalization process. These nonzero 
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elements will be zeroed later, but they must be stored for the mean time, which increases 

storage requirements [Heath, 1984]. 

The Givens method reduces A to triangular form by annihilating subdiagonal elements 

in a row, unlike the two other methods. It is, however, similar to them, although it 

presents the advantage of introducing zeros more selectively [Heath, 1984]. The order in 

which the rows are reduced does not affect the zeroing process with respect to the 

correctness of the result, but may be used to advantage to preserve sparsity in the factor 

R. It should be said that Givens algorithm takes approximately twice the time needed by 

Gram-Schmidt and Householder algorithms. But another version of the algorithm known 

as the "Fast Givens Rotations", has been discovered by Gentleman ( 1973). The 

performance of this second version is not superior to the original algorithm, in practice. 

However, many people favour th~ use of the Givens algorithm due to the flexibility of the 

zeroing process [Heath, 1984]. In general the three methods present the same 

disadvantage: Even if A and R are sparse, it is unlikely that the orthogonal matrix Q will 

be particularly sparse. In section 3.6 we will see how this problem can be alleviated by 

using a partitioning algorithm based on QR methods. 

3.2.6.2 Iterative Methods for Least Squares 

Iterative methods may be good alternatives to direct methods for some large sparse 

LSQ problems. One of their advantages, (and that of all iterative processes for any class 

of problems, like the projective algorithm itself), is the possibility to stop the iterative 

process when an approximate solution to the problem at hand is reached. This obviously 

is not possible with direct methods. Another advantage is also the difficulty of obtaining 

an accurate solution with direct methods, for some problems. In this respect, iterative 

methods are more suitable, as accuracy may be monitored. 

A simple iterative scheme, based on the normal equations, referred to in [Golub, 

1965], is as follows. 
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Let x(O) be an arbitrary vector, then solve (AT A + cxl)x(k+ I) = A Tb + cxx(k). The 

convergence of this process can be proved, when ex > 0 and the spectral radius of cx(A TA 

+ cxI)-1 is less than 1. Its implementation can be done using orthogonal transformations. 

a) Conjugate Gradient Methods 

Conjugate gradient methods are popular because of their robustness and stability for 

large problems. They are called upon to replace direct methods, when these are not viable 

because of the size or density of the problems matrices. Conjugate gradient methods refer 

to a wide class of optimization algorithms which generate search directions without 

storing a matrix [Gill et al., 1984]. There are two types of conjugate gradient methods: 

The linear an~ the nonlinear methods. For our purposes, linear conjugate gradient 

methods will be considered. 

Originally, conjugate gradient methods were designed to solve, iteratively, positive 

definite systems of linear equations. The iterative process uses the relation x(k+ 1) = x(k) + 

CXkPk,where CXk is a non-negative scalar called stcplength, and Pk a vector direction of 

search. The vector Pk is obtained as follows: 

If the positive definite system to be solved is Qx = -c, the direction of search can be 

computed as Pk+l = -(Qx(k+t) + c) + PkPk, with 

T 
n. _ gk+lQPk 
Pk - T • 

PkQPk 

where gk = Qx(k) + c. The steplength CXk is evaluated with the formula: 

b) LSQR Algorithm of Paige &Saunders 

LSQR algorithm was designed to solve nonsymmetrical systems of linear equations, 

LSQ problems and damped LSQ problems of the form: 
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(3.2.3) 

where A is a scalar. The algorithm was intended to solve large and sparse problems. It is 

based on the algorithm of Golub and Kahan, cited by Paige and Saunders (1982), to 

reduce matrix A to a lower bidiagonal form. However, this algorithm is itself a variation 

on the Lanczos process (or tridiagonalization ) for symmetric matrices. The solution to 

(3.2.3) satisfies the symmetric system 

(3.2.4) 

where r = b - Ax. Note that (3.2.4) is a symmetric system. Hence, application of the 

Lanczos process is possible and l~ads to the forms 

(3.2.5) 

(3.2.6) 

where Bk is (k+l)xk and lower bidiagonal and Yk is the solution of the damped least 

squares problem 

;'.
0 11(~~ }, - (!' )II, · 

Orthogonal transformations may then be used to reliably solve it. 

The algorithm LSQR is analytically equivalent to conjugate gradient methods. It 

generates a sequence of approximations {xk} such that the residual norm II rk II is 

monotonically reduced. Paige and Saunders (1982) claim that it is numerically more 

reliable than the standard conjugate gradient methods, in various circumstances. In our 

implementation of the projective algorithm, LSQR is also used. 
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3.2.7 An Updating Algorithm for Least Squares 

Updating methods are an important feature of LSQ problems. In the real world, 

problem data, most of the time, are incomplete. Often new observations are made after the 

problem has been already solved. It is, therefore, crucial to be able to incorporate the 

effects of these observations into the solution without having to solve it de novo. In our 

case, however, the usefulness of such techniques is mainly concerned with efficient 

exploitation of the sparsity of the problem. When the problem matrix is sparse except for 

few rows, it is attractive to discard the nonsparse rows, which will certainly cause severe 

fi ll in the Cholesky factor, solve the resulting incomplete problem, then update its solution 

taking account of the removed rows. In the following we shall present an updating 

algorithm, due to Heath ( 1981 ), which we use in our implementations of variants of the 

projective method. The algorithm of Heath (see Appendix D), however, involves storing 

an orthogonal matrix which can be very large. In the following we shall present an . 
analogous algorithm which does not require explicitly the orthogonal matrix. It will be 

shown that the solutions returned by both algorithms are equivalent. 

Consider the partitioning of A and b of (3.2.1) into A = [ ~~] , and b = [:~]. 

Then (3.2.1) can be written as 

(3.2.7) 

Let rl (x) = b1 - A1x and r2(x) = b2 - A2x and solve the incomplete problem 

(3.2.8) 

in variable y, using orthogonal factorization 

If z is the effect of the removed rows on the solution x to (3.2.1), then x = y + z. 

This leads to the following form of Heath's algorithm. 

71 



Algorithm 3.1 

1- Solve the sparse problem (3.2.8) using orthogonal factorization or Cholesky 

method to obtain y = R·lc. 

2- Compute F = A2R · l. 

3- Compute r2(y) = b2 - A2y. 

4- Solve ( I + FfT )u = r2(y). 

5- Compute z = R-lpT u. 

6- X = y + Z, 

Lemma 3. 1: The solutions returned by Algorithm 3.1 and Algorithm D (see Appendix D) 

are equivalent. 

Proof: First we consider the solution returned by Algorithm D, i.e. x = y + z 

where z = R·1UTL-1r2(y), U being the orthogonal matrix used in the factorization of 

[A2R•l I]T and Lits Cholesky factor. We have 

(3.2.9) 

or equivalently UR·1A2T =LT.Thus R·1A2T = UTLT and UT = R·TA2TL•T. Substituting 

UT in the expression of z we obtain 

z = R·l(R-T A2 TL•T)L·1r2(y) 

Replace z by its expression in the solution to the full problem to get 

x = y + R·1(R•TA2TL•T)L·1r2(y). (3.2.10) 

Now consider the solution returned by Algorithm 3.1, i.e., x = y + z, where 

z = R-lfTu = R·lR-TA2Tu, u being the solution to the symmetric positive definite 

system ( I+ FFT )u = r2(y). Assume that u is obtained by the Cholesky method, the 

Cholesky factor of ( I + FfT ) is similar to that obtained in the orthogonal factorization 

(3.2. 9) as one can see from 
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(1 +FF,= (FFT+ il= (F 11[fHA2R-T 1] [ R-;Ai) = 1L T 
Thus u can be written u = L-TL-1r2(y), and substituting it into the expression of z we. 

obtain 

z = R·1R-T A2 TL-TL-1r2(y) 

Replace z by its expression in the solution to the full problem to get 

x = y + R·l(R•TA2TL-T)L·lr2(y). (3.2.11) 

Expressions (3.2.10) and (3.2.11) of the updated solutions givens by Algorithm 3.1 and 

Algorithm Dare similar. Q.E.D. 

3.2.8 Exploiting the Sparsity of The Right-Hand Side 

Algorithm 3.1 is useful not only in preserving the sparsity of the problem matrix, but 

also to exploit that of the RHS. Exploiting any sparsity in the RHS is tedious and 

expensive [Duff et al., 1986]. However, when the sparsity is favourably distributed, i.e. 

the vector b presents large sequences of zeros, then exploiting it is worthwhile. We are 

mainly interested in the situation where the nonzeros in the RHS are only few and 

correspond to some relatively full rows in the problem matrix. Thus the partitioning of the 

problem as in (3.2. 7) is most appropriate, i.e. A2 contains the full rows and b2 the 

nonzeros of the RHS. In this case Algorithm 3.1 is dominated by the orthogonal 

factorization carried out in step 1-. The forward substitution y = R·1c is totally discarded, 

as the solution to the incomplete LSQ problem (3.2.8) when b 1 = 0, is obviously y = 0. 

The solution to the full problem is, therefore, reduced to the updating vector z. Thus x = 

z. When matrix A2 has only few rows, applying Algorithm 3.1 and exploiting the 

sparsity of the RHS is very attractive. We shall see in Chapter 5 the relevance of this 

algorithm to our work. 
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3.3 Optimum Choice of Steplength ex 

In all interior-point methods the choice of the step size is crucial and may greatly 

influence their convergence. One of the main problems related to the step size is keeping 

feasible, as it was noted in the Brown-Koopmans algorithm, cited by Charnes et al. 

(1984). In Kannarkar type algorithms things have not much changed and the choice of the 

steplength remains crucial, although keeping feasible is mainly dealt with by considering 

at each iteration a trivial optimization problem, i.e., minimizing a linear functional over a 

sphere. Obviously, the minimum is at the surface of the sphere. However, the radius of 

the sphere must be defined in conjunction with the size of the step along the negative 

projected gradient of the linear functional to be minimized (that is the transformed 

objective function of the LP problem). This results into problem Px·
5 

of Chapter 2. 

Karmarkar (1984a) recommended a small step size (ex= 1/4) mainly to maintain 

polynomial complexity of the algorithm, a better approximation of the objective function 

in the transformed space and numerical stability. However practical experience supported 

the use of a much larger ex than 1/4. Moreover, using a constant step size for every 

iteration is counter-productive, because at each iteration a different minimization problem 

is solved. 

In the following, aspects of the choice of ex are considered and suggestions for an 

optimum choice are made. 

3.3.1 Constant Steplength 

Theorem 4 of Karmarkar (1984a) states that if x* = ao - exp' minimizes the 

transformed objective function then the value of the transformed potential function F' is 

such that F'(x*) $ F'(ao) - 6, where ao is the centre of the inscribed sphere in the unit 

simplex and 6 a constant defined as 
2 2 

ex ex n 
6(n) = ex - - ------. 2 

(n-1)[ 1- ex*1] 
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Thus, 

and 

lim = a - a2/2 - a2/(1-a), 

lim 6(n) 1/8 if a= 1/4. 

The constant 6 is a bound on the decrease in the potential function. Plotting 6 against 

a, (Fig 3.1), clearly shows that the optimum reduction 6 is obtained for a= 0.25. 

6 

0.100 

·MOO · OAOO o.aoo 

or. 

Fig 3.1 Maximum Decrease in Potential Function Occurs for a = 0.2453. 

Hence the use of such a constant as steplength is justified. However, in practice, 

values of a closer to 1 result in a faster convergence [Shetty & Ben Daya, 1985; Tomlin, 

1985; Lustig, 1985]. To explain this phenomenon, let us put aside for a while, the 

reasons why a is chosen equal to 1/4, and consider the decrease in the objective function 

in the transformed space, i.e., 

C TDao C TD (ao- CXC TDp') 
6(a) = --- _ __,_ ___ ___ 

eTDa0 eTo(a0-acTDp'} 
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After some manipulations, it can be seen that the function has a curve similar to that 

represented in Fig 3.2. It appears that large values of ex lead to large decreases in the 

transformed objective function. 

6 

-0.100 

Fig 3.2 Decrease in c TDx'/e TQx' After Taking a Step of Length ex 

Now we take a similar approach to investigate the conditions under which ex will lead 

to a decrease in the objective function value, i.e. z(k+l) < z(k), of problem PC of Chapter 

2. First of all the step should not lead to a non-feasible point. This is achieved by 

imposing on ex the condition, directly extracted from x' = 1/n e - exp', and represented as 

ex$ min y, where ye r = { 1/(np'j), p1 > 0, j = 1, ... , n}. It can be shown that to 

guarantee a decrease in the objective function value, ex may be required to take a negative 

value or a value larger than 1 [Tomlin, 1985). From the relations 

and 

one can write 

x' = 1/n e - exp' 

(k+l) 
X 

Ox' 
T. ' e Dx' 
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and 

Put 

Then 

Thus 

(k+l) D(e-na.p') 
X =-----T ' 

e D(e-na.p') 

z(k) - a.n C·X ~k)p'. 
4,,JJ J 

(k+l) J 
z =-------

1 - a.nixt>p' j 
j 

L (k) I 
S = n C·X· p · J J J 

j 

(k) 
(k+l) Z - 0.S 

z =---
1 - a.r 

and r = nlxt>p' j· 
j 

(3.3.1) 

Adding a.rz(k) and substituting it from the right hand side of (3.2.1) will yield the relation 

(k) (k+ I) a.s - a.rz (k) s - rz (k) 
z -z =----= 

1 - a.r .!.. - r 
a 

(3.3.2) 

from which the conditions a. should satisfy to guarantee z(k) > z(k+l), can be derived as 

follows. 
(k) (k+l) O s-rz(k) 

z -z > ---> 0, 
1 --r 
a 

thus we have the cases 

and 

1) s - rz{k) > 0 .!_ - r > 0, 
a. 

1 * r > 0 0, r 
* r < 0 =>a.may be negative, 

77 



2) s - rz(k) < 0 .!.. -r < 0, 
(l 

* r > 0 a may take negative values, 

The use of a negative a may be necessary in those situations where a constant positive 

steplength does not allow a "steady" convergence towards the solution, in the last 

iterations. These situations were termed oscillations. In our experiments, we came across 

with some problems for which the algorithm failed to converge to the solution, although 

inspection of preliminary iterations showed reduction in the objective function value. 

However, many factors may justify this loss of robustness, amongst which are 1) the ill-

conditioning of the problem matrix in the transformed space, and 2) the use of a constant 

a when a variable one is more appropriate. 

3.3.2 Variable Steplength 

The projective algorithm basically works in a simplex. The optimization over a sphere 

required at each iteration is a device to keep feasibility. However, it is possible to move 

beyond the sphere boundary as long as the resulting point is inside the simplex. Going 

beyond the boundaries of the simplex will result in some entry of the new point being 

negative. Thus, to guarantee the validity of the move, it is enough to assure that the 

smallest element of x{k+l) is not less than a certain value Pj which is set arbitrarily small. 

As in the previous section, we consider the relations 

and 

(k+I) 
X 

Ox' 
T. J 

e Ox' 

x' = ao - ap'. 

Denote y the steplength that allows minj x/k+ l) = Pj, i.e. 

( 
D(ao- r . n') l . m,nr A 

mmj T = tJj• 
e D(ao - Y miJ>

1

) 

or 
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Thus 

or 

and 

Optimum step Ymin is the minimum of elements obtained from one by one division 0 of 

the components of the vectors in the left hand and right hand sides of the above relation. 

Thus 

'Ymin = minj (Dao - peTDao) 0 (Dp ' - peTDp') 

At each iteration Pj is set to a small arbitrary value, Ymin is evaluated as above and ex set to 

Ymin· 

Finally, we describe a method [Lustig, 1985] for choosing a steplength in every 

iteration based on identifying variables which undergo a substantial change during the 

progress of the algorithm. It has been observed that, as iterations progress the change in 

variables that are null at the solution is very large compared to those that are not null. It is 

thus profitable to speed up the zeroing of the variables that will eventually converge to 

zero. The ratio test p = minj {l/p'j, p'j > 0, j = 1, ... , n}, may be used to identify such 

variables. Lustig (1985), suggests a further test on the identified variable, say Xj, which is 

(xjl(p'/xj)) < e, in order to relate the variables in the space of PC of Chapter 2. If Xj 

satisfies the condition, ex is set top. Else it is set to pp, where p = .99, .95, or .90. 

This approach was used in our experiments and seems to work well. 
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Chapter 4 

Duality and Postoptimality Analysis 

4.1 Availability of dual solutions 

The basic concept of duality is that every linear programming problem (called the 

primal) has an associated problem, called its dual, such that a solution to it is provided 

whenever a solution to the original problem is found. Thus, whenever a linear 

programming problem is solved 'Y!e actually get the solution to two problems. The primal-

dual relationship is important in many respects. It is extensively used in the design of 

many variants of the simplex and also in the proofs of theoretical results. 

One of the early criticisms of the Karmarkar (1984a) algorithm is that it does not 

generate dual solutions. It was thought to be a primal method only. However, this state 

of affairs did not last long, as many researchers realized that the computation of the 

projected gradient in the main step of the algorithm provided, in certain instances, values 

[Fieldhouse & Tromans, 1985; Lustig, 1985], which converged to the dual optimum 

solution [Todd & Burrell, 1986; Ye & Kojima, 1987; Gay, 1987]. 

To see that consider the linear programming problem in standard form and its dual 

(P) min c T x (D) max y Tb ( 4.1.1) 

s.t. Ax= b s.t. yTA c 

x~O 

The problem in the transformed space is 

min c •Tx• (4.1.2) 

s.t. A'x' = 0 

eTx' = l,x' ~ O, 
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where c' = (c To, -z), A' = (AD, -b) and D = diag (x), x being a feasible point to the 

primal problem in ( 4.1.1 ). Let us write this problem and its dual in a more compact form. 

(P') min c•Tx• (D') max b 'T y (4.1.3) 

s.t. Bx'= b' s.t. BTy c' 

x' ~o 
where B = ( ;} If the solution to the primal is nondegenerate, from complementary 

slackness the dual variables y satisfy the dual constraints as equalities, i.e. 

(4. 1.4) 

Now recall the expression of the projected gradient in Karmarkar's algorithm 

p = (I - BT(BBT)-IB)Dc, 

and write it as· p = De - BT1t, where 1t = (BBT)-1BDc. Clearly 1t is the solution to the 

system BT1t = c', in the sense of least squares. If aT is full rank then the solution to this 

system is the same as that of ( 4.1.4). Tims, vector 1t is dual feasible to (D'). 

Based on this observation Todd and Burrell ( 1986) designed a dual variant of the 

Karmarkar algorithm which generates dual solutions and uses them to deal with LP 

problems whose optimum objective values are not at hand. Ye and Kojima (1987) and 

Gay (1987) also devised similar dual projective algorithms. In the following these dual 

variants will be presented and their interrelationship studied. Their role in the use of the 

Karmarkar algorithm for postoptimality analysis LSalhi & Lindfield, 1988), will also be 

discussed. 

4.2 Extending Karmarkar's Algorithm to Problems with Unknown z• 

The variant of Todd and Burrell was aimed at removing the restrictive assumption 

made in the original Karmarkar's algorithm that the optimum objective value z* of the 

problem we wish to solve must be known. The idea is to use the dual variables generated 

during the course of the algorithm to find ever better lower bounds on z*. The algorithm 

works as follows. 
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Consider again problem (4.1.2) with unknown minimum value z*. Let z be an 

estimate of z* which we update at each iteration by substituting for c' in ( 4.1.2), c' - ze. 

To choose a good estimate the dual variables can be identified and used to compute the 

dual objective value which is a lower bound on z* from duality theory. The dual problem 

of ( 4.1.2) is 

max z 

s.t. A'T y + ez c'. 

Todd and Burrell suggest that z be chosen as 

z = minj {(c' - A'T Y)j} 

(4.2.1) 

(4.2.2) 

This choice is justified because it guarantees dual feasibility of (y, z). It remains to find y. 

Such a vector can be found according to the observation made earlier. Explicitly, it is 

given by 

(4.2.3) 

The starting dual vector (y(0), z(0)) is found as above, assuming that a feasible interior 

point x •(O) to the primal is found. To update the dual variables after iteration k, y(k+ 1) is 

computed as the solution to A'T y(k+I) = c'(z(k)), where z(k) is the kth estimate to z*. Let 

z(k+l) = minj {(c' - A'T y(k+l))j}, If z(k+l) z(k), then no improvement to the lower 

bound on z* is made. Thus z(k) is kept as next estimate, i.e. z(k+l) = z(k). If, on the other 

hand, z(k+l) > z(k), then z(k+l) is the new estimate and vector y(k+l) is recomputed as the 

solution to the linear system A'Ty(k+l) = c'(z(k+l)). 

For computational purposes, the projection matrix Ps = I - BT(BBT)• 1 B can be 

written equivalently as Ps = PPA', where P = I - ee T/n. This is valid since A'e = 0. The 

advantage of this form of the projection matrix is that matrix B with a full row of ones is 

not used. The original sparsity of A, if there is any, is kept except for the extra column 

due to b, introduced when forming A'. The projection vector, therefore, is given by 

p = Pec'(z(k+l)) = PPA•C'(z(k+l)) = P[ c'(z(k+I)) - A'Ty(k+l))]. 

Todd and Burrell ( 1986) showed that, assuming A' a mxn-matrix has rank m, (y, z) is 

feasible for problem (4.2.1). Along the direction -p / IIPII, a constant reduction of 1/5 in 
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the potential function of Karmarkar described in Chapter 2, is guaranteed for ex= 1/3. 

Thus an algorithm with polynomial complexity can be built. Although, Todd & Burrell 

showed that their algorithm retains polynomial complexity, its original form does not 

seem to be efficient in practice. The choice of steplength ex = 1/3, is only aimed at 

achieving polynomial complexity; in practice, values close to 1 are more suitable for 

reducing the number of iterations. Also, after some iterations, entries of x(k) get close to 

zero, especially in degenerate cases. As D = diag (x(k)), A' = AD becomes ill-

conditioned, and may be rank deficient. In this case, the dual vector (y, z) may not be 

feasible for problem ( 4.2.1 ). The search direction p is, thus, not good enough, which 

prevents the convergence of the algorithm, as a consequence. 

The variant of Gay ( 1987) is similar to that of Todd and Burrell. However, some 

differences may be pointed out. For instance, no assumption is made regarding the rank 

of A', in Gay's method. Also, the way the bound on the optimum objective value is 

updated, is different from that of Todd and Burrell's algorithm. 

Consider the problem ( 4.1.1 ), where (P) has a nonempty and bounded feasible 

region, i.e. it has at least one solution x*. Denote the optimum objective value of (P), 

z* = -c T x* and define u and v by 

Let 

and 

u = P A'{~c} and v =PA·[~} 
dj(z.) = (u + zv)j 

d(z.) = minj {dj for j = 1, 2, ... , n+l}. 

Based on an observation by Anstreicher ( 1986b ), that after rescaling the feasible region of 

(P) using Karmarkar's projective transformation, d(z.) can be written as 

d(z) = min((u + zv)T x', x' 0 and e T x' = 1) 

and for any x' such that A'x' = 0 we have 

(4.2.4) 
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As x' 0, d(z) increases monotonically with z. The right-hand side of (4.2.4) being 

precisely the objective function of (4.1.2) which is zero at the optimum, i.e. 

T 
[~;] x'* = 0, 

then d(z*) 0, (at the optimum). From this observation the adjustment of z can be done 

as follows. 

If for the current z{k) we have d(z{k)) 0, then no change is made to the value of z(k). 

However, if d(z{k)) > 0 then we can find z(k+l ) such 

z{k+l) z.(k) and d(z(k+l)) = 0. 

The value is z.(k+l) = z.(k) + oz.(k), where 6z(k) = maxj {-dj(z)/vj, for all j such that Vj > O}. 

Accordingly to the updating of the estimate z(k), the dual solutions at iteration k+ 1 are 

updated as follows. 

y(k+t) = _ (A'T)tc'(z(k+l)), when z.(k+t) < z(k) 

where (A'T)t is the pseudoinverse of A'T and c'(z(k+ 1)) = [De, z(k+l)]. If, on the other 

hand, z.(k+t) = z.(k), then y(k+l) = y(k), i.e. no updating is necessary. The use of the 

pseudoinverse allows us to find y of minimum length regardless of the column rank of 

A'T. The solution vector y is unique when A'T is full rank. Note that this constitutes the 

main difference between the variant of Gay and that of Todd and Burrell. 

Now, we may describe an algorithm which is basically that of Todd and Burrell 

augmented with Gay's approach to updating the dual variables. 

Algorithm 4.1 

Assume we have the current approximation x(k) to the primal solution, and (y(k), z(k)) 

to the dual solution, and £ an arbitrary small value, then 

1- Compute u, v and d(z.(k)) = minj { (u + z(k)v)j for j = 1, 2, ... , n+ 1} 

2- if d(z(k)) 0 then 
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y(k+l) = y(k) 

z{k+l) = z(k) 

go to 4-

else 

find z{k+I) such that z(k+l) > z{k) and d(z(k)) = O. 

endif. 

3- Compute y(k+l) from 

y(k+l) = _ (A'T)tc'(z(k+l)), 

where 

c'(z(k+l)) = c'- z(k+l)e. 

4- Compute. p from 

p(k) = -P(u + z(k)v) 

5- Compute 

x•(k+l) = x(k) + ex p(k) 1 l1p(k>11. 

6-Compute 

x(k+l) = x•(k+l) / eTx•(k+l). 

7- If abs(cTx(k+l) - z(k+l)) <£then stop. 

else k = k+l go to 1-, endif. 

In step 5-, the suggested value of 1/3 by Todd and Burrell does not seem to be 

appropriate as it causes slow convergence in practice. They also suggested the use of a 

linesearch of the potential function. It is not clear how this can be done and no numerical 

experience is provided which supports this claim. On the other hand, the blocking 

technique proposed by Lustig (1985) and given at the end of Chapter 3, may be an 

alternative. In the following numerical results, this technique has been used. 
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4.2.1 Computational Experience 

We implemented Algorithm 4.1 and solved a set of ill-conditioned LP problems 

whose constraints are based on a submatrix of the Hilbert matrix. The problems have also 

been considered by Roos ( 1985). They will be described in described in Chapter 7 where 

further experiments are carried on them. The primal solution to these problems is x* = ( 1, 

l, ... , l)T and its dual y* = (2, 1, ... , l)T, as specified in the following tables under 

the heading "True Solution". 

Todd-Burrell-Gay's Variant H0lADF True Soluuon 
Dual Primal Pnmal Dual Pnmal 

. 2.0172 0.9993 1.0000 2.0 1.0 
0.8023 1.0847 1.0000 1.0 1.0 
1.6723 0.7115 1.0000 1.0 1.0 
0. 1226 1.3733 1.0000 1.0 1.0 
1.3880 0.8327 1.0000 1.0 1.0 

lterattons: 8 7 

Table 4.1 5x5 Hilbert Type LP Problem Solved With Todd, 

Burrell and Gay's Variant 

Todd-Burrell-Gay's Vanant H0lADF True Solution 
Dual Primal Pnmal Dual Pnmal 

2.0102 0.9971 1.0000 2.0 1.0 
0.9039 1.0336 1.0000 1.0 1.0 
1.2117 0.8991 1.0000 1.0 1.0 
0.9741 1.0656 0.9997 1.0 1.0 
0.9035 1.0651 1.0013 1.0 1.0 
0.8219 0.9997 0.9967 1.0 1.0 
0.8591 0.9501 1.0050 1.0 1.0 
1.0810 0.9423 0.9955 1.0 1.0 
1.9049 0.9828 1.0022 1.0 1.0 
0.3273 1.0655 0.9995 1.0 1.0 

Iterations: 9 22 

Table 4.2 lOxlO Hilbert Type LP Problem Solved With Todd, 

Burrell and Gay's Variant 
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Todd-Burrell-Gay's Variant H0lADF True Solution 
Dual Primal Primal Dual Primal 
1.9932 0.9985 l.00UU 2.0 1.0 
1.0732 1.0174 1.0000 1.0 1.0 
0.8047 0.9507 1.0000 1.0 1.0 
1.0610 1.0210 0.9949 1.0 1.0 
1.2038 1.0419 1.0352 1.0 1.0 
1.0080 1.0094 0.8433 1.0 1.0 
0.9071 0.9819 1.4791 1.0 1.0 
0.9261 0.9752 0.0000 1.0 1.0 
0.9547 0.9814 2.3625 1.0 1.0 
0.9747 0.9906 0.0000 1.0 1.0 
0.9909 0.9979 0.9117 1.0 1.0 
1.0061 1.0031 1.9910 1.0 1.0 
1.0217 1.0071 0.0000 1.0 1.0 
1.0360 1.0112 1.4577 1.0 1.0 
1.0476 1.0151 0.9156 1.0 1.0 
1.0524 1.0177 0.0000 1.0 1.0 
1.0461 1.0167 0.0000 1.0 1.0 
1.0233 1.0092 0.0000 1.0 1.0 
0.9756 0.9919 0.0000 1.0 1.0 
0.8922 0.9616 0.0000 1.0 1.0 

Iterations: 10 40 

Table 4.3 20x20 Hilbert Type LP Problem Solved With Todd, 

Burrell and Gay's Variant 

From the results of Table 4.1 to 4.3, our implementation of the dual Karmarkar 

Algorithm 4.1 seems to return more accurate approximate primal solutions than the Nag 

simplex based subroutine HOlADF when the problem is large. These results also 

compare favourably with those reported by Roos [ 1985]. They are relatively more 

accurate and obtained in less iterations. In addition, the dual solutions are provided. 

4.3 Dual Algorithm of Ye and Kojima 

The dual Karmarkar algorithm of Ye and Kojima (1987) is similar to the version of 

Gay (1987). The algorithm is applicable under the same assumptions, i.e. the feasible 

region is nonempty and bounded and the primal solution is non-negative. However, there 
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are subtle differences in the way bounds on the objective function value are found in Ye 

and Kojima's variant. Their approach is developed on the dual of the original problem, 

i.e. (D) rather than (D') and seems to lead to better bounds. In the fo11owing we sha11 

describe their method and suggest a practical procedure for finding bounds on z*. We 

shall also show that the updating of the bounds is equivalent to a one-dimensional LP 

problem. 

Consider the pair of primal and dual LP problems ( 4.1.1) and the vector 

y(z)T = (A'T)tc'(z) 

which is similar to that given by (4.2.3). This can be expressed as 

y(z)T = Y2T + zy1T, 

where 

y 1T = (A'T)t(0, -l)T 

y2T = (A'T)t(Oc, 0)T. 

(4.3.1) 

(4.3.2) 

The vector y(z) is dual feasible if AT y(z) s c T, which represents the constraints of the 

dual problem (D). Under the assumption that xis positive, Dis positive definite. Thus 

DAT y(z) s DcT. If y(z) also satisfies z Sb T y(z), then 

(4.3.3) 

From equivalence (4.3.4), y(z) is dual feasible and bTy(z) is a lower bound for the 

minimal objective value of the original problem, but no less than the current objective 

value z at point y(z). 

Assume that iteration k has been completed. To find y(k+J) and z(k+l), it is crucial to 

find the best z, say z', that guarantees 

c'T(z) - A'T y(z) 0, 

which can be written using expression (4.3.2) of y(z) as 

c'T(z) - A'T Y2 - zA'T YI 0, 

or (cTD, -z) - A'Ty2- zA'Ty1 0. 
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By splitting the vector between brackets into the sum of two vectors, the above inequality 

can be written as 

which can be expressed in the form s + zr 0, where 

and 

S = (~Cl t:T}2 
r=(.~l-(~:T}I 

z' is the supremum of the set of ratios -s / r, such thats + zr 0. More explicitly, z' is 

chosen among elements of the set 

In Ye and Kojima (1987), this set was not explicitly given. They suggested that a one-

dimensional search over Z, to find a good lower bound z' on the optimum objective z*, 

may be used. However, the procedure which is crucial for the convergence of the 

algorithm, was not clearly stated. We developed such a procedure and it is described 

below. 

4.3.1 Improved Lower Bound on z• 

The elements of Z divide the one-dimensional space R into half-spaces, in the 

intersection of which may be found a value z' such that z' :s;; z*. Obviously this 

intersection may be empty ; in this case no value z' satisfying all the constraints s+rz 0 

exists. The half-spaces may be represented as follows (assuming that r(j) * 0, for j = I, 

... , n). 
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Fig 4.1 The Half-Spaces Defined by the Ratios s(j)/r(j) 

(rands are scalar entries of rands) 

The above diagram shows the different cases that may arise. When all four case are 

present it is likely that their intersection is empty, i.e. a value z' that bounds z* is not 

provided by the ratios. However, this seldom happens. On the other hand, when their 

intersection is a non-empty interval, its upper bound is the value z' we are looking for. 

The ratios z81n, Zgtp, z11n and z11p are determined by the non-redundant inequalities among 

s + rz 0. By non-redundant inequality we mean the one that gives for each case the 

best ratio. For instance if ratiol > ratio2 > ratio3 ... then ratiol is taken as z810 and the 

inequality that produced it is non-redundant. Explicit procedures for determining z' are 

given in Appendix E. 

Now, we can look at the problem from a different point of view. We need to find the 

upper bound (maximum element) of a one-dimensional interval defined by a set of 

constraints s + rz 0. This, obviously, is a one-dimensional linear programming 

problem which can be formulated as 

maxz 

s.t. s + rz :':?: 0. 

Todd ( 1988a) also mentions this approach but considers a two-dimensional linear 

programming problem. It is not clear how advantageous (or otherwise) it may be if 

updating the estimate z' was carried out by solving a one-dimensional LP problem. In our 

experiments (Chapter 6 and 7) the technique we have described was used. 
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Algorithm 4.2: Algorithm of Ye and Kojima 

Initially, set y(0) = 0, x{0) primal feasible and z(0) a lower bound on the optimuJ?l 

objective value. An arbitrary small value Eis pre-set. At iteration k do: 

0- if (cTx(k+I) - z(k+l)) ~E then stop, Optimum solution obtained; else go to 1-. 

1- Set D = diag(x(k)). 

2- Set YIT = (A'T)t(O, -1], 

y2T = (A'T)t[cD, O], 

c'(z) = [cD, -z], 

y(z) = Y2 + ZYl· 

3- Find z' such that z' = sup· Z, 

where Z = { z I c'(z) - y(z)A';::: 0 }. 

4- if z(k) < y(z')b then 

y(k+l) = y(z'), 

z(k+l) = y(z')b. 

else 

y (k+l) = y(k), 

z(k+l) = z(k). 

5- Find point x•(k+l) in the transformed space as follows 

where p e [0.27, 0.36]. 

6- Transfonn back to original space 
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I ) D ,(lc+ l) 
lc+l X 

X - ---- ,(lc+l) ' 
X n+l 

7- k = k+l, repeat from 0-

4.3.2 Experiments with Algorithm 4.2 

The same problems solved earlier with Algorithm 4.1 were solved with Ye and 

Kojima's algorithm. The results recorded in the following tables show some 

improvements over those obtained with Todd, Burrel and Gay's variant; they are closer to 

the true solution, especially on the smaller problems. They also compare favourably with 

the results returned by the Nag subroutine H0IADF. 

Algorithm 4.1 and Algorithm 4.2 were coded in Fortran 77 and run on a VAX 8650, 

in single precision. 

Ye-Kojima's Variant H0lADF True Solution 
Dual Primal Primal Dual Primal 

1.9984 1.0000 1.0000 2.0 1.0 
1.0127 1.0027 1.0000 1.0 1.0 
0.9674 0.9961 1.0000 1.0 1.0 
1.0330 1.0082 1.0000 1.0 1.0 
0.9885 0.9953 1.0000 1.0 1.0 

Iterations: 8 7 

Table 4.4 5x5 Hilbert Type LP Problem Solved With Ye and 

Kojima's Variant 
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Ye-Kojima's Variant H0lADF True Solution 
Dual Primal Primal Dual Primal 
1. 9891 1.0005 1.0000 2.0 1.0 
1.0450 1.0045 1.0000 1.0 1.0 
1.0454 0.9601 1.0000 1.0 1.0 
0.8415 1.0519 0.9997 1.0 1.0 
0.8959 1.0314 1.0013 1.0 1.0 
1.0310 0.9787 0.9967 1.0 1.0 
1.1748 0.9574 1.0050 1.0 1.0 
1.2173 0.9726 0.9955 1.0 1.0 
1.0130 1.0058 1.0022 1.0 1.0 
0.7402 1.0382 0.9995 1.0 1.0 

Iterations: 9 22 

Table 4.5 l0xlO Hilbert Type LP Problem Solved With Ye and 

Kojima's Variant 

Ye-Koj1ma's Vanant H0lADF True Solubon 
Dual Pnmal Pnmal Dual Pnmal 

1.9917 0.9604 1.0000 2.0 1.0 
1.0668 1.3118 1.0000 1.0 1.0 
0.8852 0.4570 1.0000 1.0 1.0 
0.9763 0.8338 0.9949 1.0 1.0 
1.0487 1.2791 1.0352 1.0 1.0 
1.0707 1.3251 0.8433 1.0 1.0 
1.0560 1.1605 1.4791 1.0 1.0 
1.0239 1.0034 0.0000 1.0 1.0 
0.9885 0.9086 2.3625 1.0 1.0 
0.9578 0.8672 0.0000 1.0 1.0 
0.9360 0.8622 0.9117 1.0 1.0 
0.9255 0.8801 1.9910 1.0 1.0 
0.9279 0.9108 0.0000 1.0 1.0 
0.9447 0.9470 1.4577 1.0 1.0 
0.9788 0.9835 0.9156 1.0 1.0 
1.0341 1.0165 0.0000 1.0 1.0 
1.ll55 1.0436 0.0000 1.0 1.0 
1.2236 1.0636 0.0000 1.0 1.0 
1.3046 1.0759 0.0000 1.0 1.0 
0.5422 1.0807 0.0000 1.0 1.0 

Iterations: 9 40 

Table 4.6 20x20 Hilbert Type LP Problem Solved With Ye and 

Kojima's Variant 
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4.4 Postoptimality Analysis via Karmarkar's Algorithm: Introduction 

Postoptimality analysis is concerned with the sensitivity of the solution of a problem 

to changes in the original data of the problem. The whole idea can formally be presented 

as follows: 

Given a problem and its solution obtained using some algorithm, a crucial question 

would be: How stable the solution set is to perturbations in the data of the problem? Such 

question is most relevant when linear programming is extensively used in real world 

applications, as was expressed by Gal (1979): 

"An objection frequently heard to more extensive dissemination of the theories of Linear 

Programming in the practical field has been that the data which are available in practice are at 

once too inexact and too unreliable to provide the basis for the application of 'exact' procedures 

like Linear Programming." 

Before going into the details of efficient updating of the solution when changes occur 

in some component of the problem, it is important to know whether updating is 

necessary. This is equivalent to checking the optimality of the solution of the original 

problem to the modified one. In this respect it may be useful to briefly recall how this 

question is dealt with in the simplex method. 

After solving a linear programming problem using the simplex, the last tableau holds 

vital information about the problem such as primal and dual solutions, basis inverse and 

primal-dual relationships in general. When a change occurs in some parameter of the 

problem, it is possible to revise the tableau taking account of the change, then apply the 

optimality test of the simplex (dual simplex) to decide whether the solution is still optimal 

or updating it is necessary. If Cj were changed to c'.; in a maximization problem for 

instance, it is enough to compute oc'j, the corresponding reduced cost. If Oc'.; ;::: 0, then 

the solution at hand is still optimal. Otherwise updating it is necessary and can be done by 

carrying the simplex iterative process from the revised last tableau. 
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When using Karmarkar's algorithm it is hard to check whether the solution of the 

original problem remains optimal after a change has occurred in some parameter without 

making the assumption that z'* of the modified problem is at hand. This is due to the fact 

that the optimality criterion of the Karmarkar algorithm is based on the gap between the 

primal and dual objective values. The approach of the simplex is not readily usable 

precisely because its optimality test is different from that of Karmarkar's method. 

However, a primal-dual relationship, known as the complementary slackness conditions, 

can be used to check the optimality of a point for a LP problem regardless of the method 

used to obtain it. The complementary slackness conditions can be formulated as follows 

[Chvatal, 1983, p.63]. 

Consider the pair of primal and dual LP probems in the simple symmetric form: 

Primal: Max cTx 

s.t. Ax~ b 

X 0, 

Dual: Min b Ty 

s.t. yTA 2! c 

y 0. 

(4.4.1) 

A feasible solution x1*, x2*, ... , x0 * of the primal in (4.1.1) is optimal if and only if 

there are numbers YI*, Y2*, ... , Ym* such that 

m • • 
~>ijYi = cj, whenever xj > 0 
i- 1 

(4.4.2) 
• n • 

Yi= 0, whenever Iai.f'j < bi 
j - 1 

and such that 

m • 
IaijYi :2:cj, forallj= 1, 2, ... ,n 
i - 1 

• Yi~O, foralli=l,2, ... ,m. 
(4.4.3) 
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In the following we shall present two ways for finding whether the solution point x* 

remains optimum after a modification has occured in some parameter of the original 

problem. The first approach makes the assumption that z'* of the modified problem is 

known, while the second one does not make this assumption and is based on the 

complementary slackness conditions. Postoptimal analysis will be studied when discrete 

changes occur in the entries of the cost vector, the right-hand side and the rim of the 

problem. We shall see how the updating process can be carried out, when necessary, 

using Karmarkar algorithm, possibly without considering the perturbed problem as a 

completely new one. 

4.4.1 Perturbations in the Cost Vector 

If a change OCj occurs in entry Cj of c then the new entry c'j is written as 

c'j = Cj + OCj. The solved LP problem in S form can be written as 

S': min cTx. z* 

Its solution is 

s.t. Ax· b = 0, 

(x, 1) 0. 

(x*T, 1), and cTx* • z* = 0. 

It is clear that changes in c do not affect the feasibility of x*. However, it may not be 

optimal. Knowing that in S' the target objective value is zero, two cases may arise in 

respect with optimality of x*. 

Assuming that E is pre-set to some arbitrary small value, then 

case 1: If c•T x* - z'* €, then x* is optimal solution to the modified problem. 

case 2: If c•T x* - z'* > £, then x* is feasible but not optimal. To update the solution 

of the modified problem we carry on the Karmarkar solving process from the 

state at which x* is a solution to the unmodified problem. 
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This approach is not realistic because of the assumption that z'*, the optimum 

objective value of the modified problem, is at hand. A better approach may be based on 

the complementary slackness conditions given earlier. Let x* be the solution of the primal 

problem in (4.4.1). To decide whether x* is still optimal after Cj becomes c'j, the system 

(4.4.2) is set up and solved. If it admits a solution y* satisfying (4.4.3) then x* is still 

optimum. Otherwise it is necessary to update it. This can be done as in case 2 above. 

Let us show through an example how the sensitivity of the solution to changes in the 

cost vector may be studied. 

Example 4.1 
Max z=2x1+3x2+xJ 

s.t. x1+x2+xJS3 

x1 + 4x2 + 7xJ S 9 

x 1 0, x2 0, XJ 0, 

whose solution is x* = (1, 2, 0) and z* = 8. 

Assume that cost CJ becomes c'J = 3. Is x* still optimal? To find out we set up the 

system (4.4.2), i.e. 

Yl* + Y2* = 2 

y1* + 4 Y2* = 3. 

The solution to this system is y* = (5/3, 1/3), which satisfies the conditions (4.4.3), 

especially y1* + 7y2* = 4 c'J = 3. Thus x* remains optimal solution. 

Now, an interesting thing to know is how far CJ can be increased without affecting the 

optimality of x*. To find out, it suffices to consider CJ as a variable in the condition 

y 1 * + 7y2* ;;?: CJ, which leads to c3 S 4. Thus, any value of CJ S 4 will not affect the 

optimality of x* and the optimum objective value, as XJ = 0. If, on the other hand, c'J = 7 

for instance, x* is no longer optimum solution as conditions (4.4.3) are not satisfied. 

However, the point remains feasible and can be used as a starting point for Karmarkar's 

algorithm. The new optimum is x'* = (2, 0, 1) and z'* = 11. 
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Let us now consider a change in an entry of c corresponding to a basic optimum 

solution, say c2. In this case system (4.4.2) will read 

Yl* + Y2* = c2 

Yt* + 4 y2* = 3. 

Using Cramer's rule to solve the above system, we obtain Yt * = 4t3c2 - 1 and Y2* = 1 -

c2/3. For x* to remain optimum, the values y 1 * and Y2* should satisfy conditions 

(4.4.3). These conditions are 

4/3C2 - 1 c?: 0 

1 - c2/3 c?: 0, 

from which the range [3/4, 3] of c2 is derived. 

4.4.2 Perturbations in the Right-Hand Side 

Consider the linear programming problem 

S: max cTx 

s.t. Ax= b, 

X c?: 0, 

and let J be an optimal basis for S. Let Ob be a perturbation of b and assume that Ob is 

small enough so that 

(A1)- l(b +Ob)~ 0. 

This means that J is also an optimal basis for the perturbed problem 

s.t. Ax = b + Ob, 

X c?: 0. 

The optimal basic solution of So is 

x1 = (A1)·1b + (A1)·1ob 

Xj = 0, j J 

z* = bTy* + ob Ty*, 
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where y* is the dual optimal solution. Thus the variation of the optimal value of the 

objective function of problem (S), for a variation ob of the right-hand side b small 

enough for the optimal basis to remain the same, is ob Ty*. 

If a change Obi occurs in entry bi of b then the new entry, say b'i is written as 

b'i = bi+ Obj. The solved LP problem in S form can be written as S' of the previous 

section, whose optimum primal and dual solutions respectively are x* and y*. The 

modified problem with new RHS b' admits y* as a feasible solution. Concerning its 

optimality as for the perturbations in c, two cases arise. 

Assume that Eis pre-set to some arbitrarily small value, then 

case 1: If b':Y* - z'* E, then y* is dual optimal solution to the modified problem. 

case 2: If b'T y* - z'* > E, y* i:, dual feasible but not optimal. To update the solution 

of the modified problem we carry on the Karmarkar algorithm from the state at 

which y* is solution to the unmodified problem. 

Here again, the assumption that z'* of the modified problem is available is not 

realistic. We drop this assumption and adopt the same approach taken to study the 

sensitivity of the solution to changes in the cost vector. When a change occurs in the RHS 

of the original problem the dual solution returned by the dual Karmarkar algorithm 

remains feasible. Its optimality, however, is not guaranteed. 

Consider again Example 4.1 in which b 1 = 3 is changed to b' 1 = 4. The dual of the 

modified form can be written as 

Max-4y1-9Y2 

s.t. -y1 - Y2 -2 

-y1 - 4y2 ~-3 

-y1 - 7y2 -1 

YI 2: 0, Y2 2: 0. 

The system (4.4.2) of the complementary slackness conditions for the dual will read 
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- x*1 - x*2 - x*3 = -4 

- x*1 - 4x*2 - 7x*3 = -9 

x*3 = 0 

or equivalently 

x*1+x*2 = 4 

x*1 + 4x*2 = 9 

x*3 = 0. 

The solution to the system is x* = (7/3, 5/3, 0) which satisfies conditions (4.4.3). Thus 

the dual solution remains optimal. 

Sensitivity analysis to changes in the RHS can be studied as for the cost vector, but 

working with t~e dual. When the dual solution is no longer optimal, it can be used to start 

the Karmarkar algorithm and find.the new optimum solution. 

4.4.3 Perturbations in the Rim 

We consider simultaneous changes in both the cost vector and the right-hand side of 

the LP problem already solved. This is a complex case that can be shown to be tractable 

but under a restrictive assumption. W assume that z'*, the optimum objective value of the 

modified problem, is available. The rim of the modified problem is c' = c + 6c and 

b' = b + ob. Three cases arise. 

case 1: If c•Tx* - z'* e, then x* is primal optimal solution to the modified problem. 

case 2: If b'T y* - z'* e, then y* is dual optimal solution to the modified problem. 

case 3: If c•T x* - z'* > e and b'T y* - z'* > e, then x* and y* are not optimal and 

may not be feasible for the modified problem. 

The problem has the form 

min c•T x' - z'* 

s.t. Ax' - b' = 0, 

100 



(x', 1) 0. 

If a feasible point is available then the projective algorithm may be carried out from Phase 

II. Otherwise we can get a feasible point using the primal optimal solution already at 

hand, i.e. x*. 

The system of constraints of above problem may be represented as follows. 

or 

from which we get x's = b' - Aax'a. If x's 0 then x' is primal feasible. Hence the 

primal algorithm can proceed from Phase II. If any entry of x's, say x'sj, is negative, 

then it is possible to represent it as the difference of two nonnegative variables, i.e. x'sj = 
x'sj 1 - x'sh, where x'sj 1 0 and x'sh 0. A feasible point is thus obtained at the 

expense of an extra column. The projective algorithm can proceed from Phase II. 

4.5 Summary 

In this chapter we have considered variants of the Karmarkar algorithm which provide 

dual solutions and use them to deal with problems for which the optimum objective value 

is not known. Three algorithms were considered. All of them are basically similar. The 

dual variables are generated in the same way as well as the bounds on the optimum 

objective value. The differences are in the way the convergence of these algorithms was 

established. This Jed to different suggested steps to take along the negative projected 

gradient. In practice these steps were found inappropriate. A longer step was used in our 

experiments. At least from the theoretical point of view, the variant of Ye and Kojima is 

superior to the others; in Todd (1988a) it is shown that it generates better bounds on z*. It 

also works under milder assumptions and seems to work on any type of LP problems. 

The algorithm will be further discussed in Chapter 6, and used for decomposition. 
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One of the purposes of this investigation of dual Karmarkar algorithms is to find out 

whether postoptimality analysis is possible. We have shown that the sensitivity of the 

solution to changes in the cost vector, the right-hand side and the rim can be studied using 

Kannarkar type algorithms. Updating the solution, after a perturbation has occurred in 

these components of the LP problem, is possible but may be expensive. On the small 

problems we experimented with, the updating of the solution often took as many 

iterations as was necessary to find it in the first place. For problems of this size the 

simplex takes no more than one or two steps to find the new solution. However, our 

experiments are limited and not conclusive. Further investigation of postoptimality 

analysis is necessary. 
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Chapter 5 

A Centring Scheme Based on Chebyshev Points 

5.1 Introduction 

The present chapter is concerned with investigating the possible use of the Chebyshev 

problem as a centring scheme in the design of a new algorithm for linear programming. 

Centring schemes were successfully used in interior point algorithms for LP discussed in 

chapters 1 and 7. We recall that the benefits of such strategies are keeping feasibility and 

speeding convergence by allowing large steps to be taken along the gradient direction. 

Our approach is similar to that of Levin (1965), used in the simplicial algorithm: After 

a Chebyshev point is found, a simplex containing the feasible region is split through the 

point, using the objective function as the cutting hyperplane. A Chebyshev point of the 

new system of inequalities is found and the operation is repeated, and so on. The 

convergence of such a process is established, and numerical results are reported. 

5.2 The Chebyshev Problem 

Given a set of m linear inequalities in n variables ( n < m ), the Chebyshev problem is 

that of finding point x* in Rn which is equidistant from a set of n+ 1 hyperplanes among 

the m inequalities. Such a point is called a Chebyshev point. 

Consider a system of linear inequalities 

11lx)= ai 1x 1 + ... + ain'Cn + bi :5 0, i = 1, ... , m > n. (5.1) 

A Chebyshev point x* is a solution to the system of linear inequalities if 

• max Tl i(x ) = min max 11 i(x) = L, 
l:Si:Sm ll l:SiSm 

where L is called the deviation. 
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A system of linear inequalities is solvable if and only if L 0. In this case the 

Chebyshev point is unique. The point lies inside the solution set (feasible region) of the 

system of inequalities, but also inside the largest simplex defined by any (n+ 1) 

inequalities at equal distance from its sides. This holds for consistent systems. Thus we 

assume throughout, that the LP problems to be considered have bounded and nonempty 

feasible regions. 

5.3 Converting the Chebyshev Problem into a LP Problem 

It is well known that the Chebyshev problem can be solved as a LP problem 

[Zukhovitsky & Avdeyeva, 1966]. The conversion is based on introducing a variable for 

the deviation in the set of linear inequalities and optimizing that variable as the objective 

function over the polytope defined by the linear inequalities. Following this idea, 

introduce variable Xn+l in every inequality of (5.1) and rewrite the system as 

The linear programming formulation of the Chebyshev problem is thus 

CLP: min Xn+ 1 

s.t. ai 1x1 + ... + ainXn + Xn+l + bi ~ 0 (i = 1, ... , m). 

Any standard LP technique can be applied to CLP. The solution x* = (x1, x2, ... ,xn)T is 

the Chebyshev point and Xn+l = Lits deviation. 

5.4 Equivalence of CP and LP 

In this section we will look at the LP problem as a Chebyshev problem or a sequence 

of Chebyshev problems whose solutions converge to that of the LP. 
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Consider the problem 

SLP: min cTx 

s.t Ax s; b 

/\ feasible point to SLP may be found by solving the Chebyshev problem 

min ~ax Tli(x) = L, 
X I 

for Tl(X)=Ax-b~O. 

To find the optimum solution to SLP first assume that the optimum objective value of 

the original SLP is known, i.e. c T x* = z*. This equation may be written as two 

inequalities in the following manner 

{ 

T • 
T • cxs;z 

{cx=z}= T • 
-C X s; -z . 

They are then incorporated in the set of constraints of the LP problem. In other words, we 

transform the LP problem into a set of linear inequalities. The Chebyshev problem 

corresponding to these inequalities can be written as follows 

min ~ax Tli(x) = L, 
X I 

for 

and 

Now we consider the corresponding LP problem which is 
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min Xn+l 

s. t. 

IA 11( X )-bSO, 
Xn+l 

(c T o)( x )- z *so, 
Xn+l 

(-c T o)( x ) + z * o, 
Xn+l 

x 0, Xn+ 1 unconstrained. 

The advantage of reducing the LP problem into above form resides in its very sparse 

cost vector, as z = Xn+l is the linear form to be minimized. The sparsity of the cost vector 

results in large savings when solving the least squares problem arising in the computation 

of the projected gradient using the Karmarkar algorithm. The solution to the Chebyshev 

problem is that of the original LP problem. This corresponds to a deviation equal to zero 

as the cut with the objective function hyperplane goes through the solution. Hence the 

feasible region is reduced to one single point, i.e. x*. 

5.4.1 Numerical Results 

Consider the following small problem solved both as a normal LP problem and under 

the Chebyshev form using Algorithm 4.1. The paths generated by the algorithm are 

different for the two forms of the same problem. 

Forml: 
M ax 10x 1 + 12x2 
s. t 2x1 + 3x2 S 1500 

3x1 + 2x2 S 1500 
x1 + x2 S600 

XI ~ 0, X2 0. 
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The Chebyshev fonn of the problem is 

Form2: 

Min x3 
s.t - 2x1- 3x2+x3 ::2:-1500 

-3x1 - 2x2 + x3 -1500 
- x 1 - x2 + x3 ::2: - 600 

- 10x1 - 12x2 -6600 
XJ 0, X2 0. 

Iler Solution of Form 1 

Xt x2 
1 245.5143 245.5143 
2 187.8610 374.0975 
3 300.2600 298.8201 
4 299.1131 300.5751 
5 299.9968 299.9864 
6 299.9890 299.9983 
7 299.9946 299.9945 
8 299.9945 299.9946 
9 299.9946 299.9946 
10 299.9999 299.9999 

Solution of form 2 
Xt x2 x3 

299.9756 300.0193 299.4940 
260.0384 333.3012 21.4343 
300. 1660 299.8616 0.6035 
299.9087 300.0760 4.9205-2 
300.0004 299.9996 1.4475-3 
299.9997 300.0001 1.1259-4 
300.0000 299.9999 3.4651-6 

Table 5.1 Paths Generated by Algorithm 4.1 for Two Different 
Forms of the Same Problem. The First Point in Both Cases is 

Obtained in Phase I of the Algorithm. 

We report here some results on a set of small problems solved as simple LP problems 

and as Chebyshev problems. The same version of the Karmarkar algorithm has been 

used. 
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Problems LP Form Chebyshev Form 
Beale's Prob. 10 12 

Prob. 2 6 6* 
Prob. 3 8 8 
Prob. 4 10 11 
Prob. 5 12 9* 
Prob. 6 10* 9 
Prob. 7 8 10 

Klee-Minty Prob. 24 22* 
Prob.9 4 6 

Prob. 10 8 9 

Table 5.2 Iteration Count for a Variant of 
Karmarkar's Algorithm on a Set of LP Problems 

. in 2 Different Forms. 

Note: (*) refers to the failure of the algorithm to stop despite converging at some stage to 

a good approximate solution. 

5.4.2 LP Problems with Unknown Optimum Objective Value 

Usually, the optimum objective value of LP problems is not known. In the following 

we will show that a sequence of Chebyshev points converges to the solution of the LP 

problem at hand without the assumption that z* is available. 

Consider again SLP with nonempty feasible domain and nondegenerate optimum 

solution. A Chebyshev point Xe exists for the set of constraints and can be obtained by 

solving CLP. The objective value of the LP problem is then evaluated at Xe, Thus 

If we augment the set of constraints of the Chebyshev problem with the constraints 

cTx ze*, this corresponds to cutting the feasible region of the Chebyshev problem 

through Xe, The volume of the polyhedron defined by the LP constraints is reduced by a 

value which is not zero. The process is then repeated after updating at each iteration the 
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value of 7..c. After a finite number of iterations (cycles) the Chebyshev point is close to x*, 

the optimum solution of the LP problem at hand. Hence, when the deviation is zero, the 

feasible region of the CLP and the original LP problem are reduced to one point. This is 

the optimum solution xc*, and the optimum objective value is z* = 7..c* = cTxc. 

5.5 Convergence of a Sequence of Chebyshev Points 

In any simplex in R0 , i.e. a simplex with n+l sides, it is possible to inscribe an-

sphere of radius p > 0, whose centre is a Chebyshev point. Cutting through the centre 

leads to another simplex which contains half of the previous one. Its Chebyshev point is 

at distance p' from the cutting plane. This distance is the deviation of the Chebyshev point 

and the radius of the largest sphe~ inscribed in the remaining part of the simplex. 

To show that the sequence of Chebyshev points converges to the solution of the LP 

problem it is enough to show that the sequence converges to a vertex of the simplex after 

a finite number of cuts. This is equivalent to show that after each cut a decrease occurs in 

the absolute value of the deviation, i.e. the radius of the new sphere is less than that of the 

current one. For simplicity we consider a regular simplex in the plane, Fig.5.1 . 

T • 
C X = Zc 

Fig 5.1 Centring Process of the Chebyshev Approach 
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sin0 = QiA2 I X(h = 01A1 I X01, 

X01 = X02 + 0201, • 

X02.sin0 + Oi01.sin0 = 01A1, 

thus 

and 

01A1 is the radius of the current sphere, and OiA2 that of the new sphere. As 0201 = 
OiA2, then Pl= P2 (1+ sin8). Moving from centre 01 to centre 02 results into decreasing 

by o = 0201.sinS the radius of the current sphere. The finiteness of the algorithm 

depends on the sign of o. The latter can be shown to be strictly positive as follows. 

From the assumption that an n-simplex is defined by the inequalities, it follows that 

sin0 > 0. Centres 01 and 02 are obtained at successive cycles k and k+ 1. They are 

optimum solutions of two LP problems which differ only in one entry of their RHS. 

Denote them x(k) and x(k+I), then 

0201 = II X (k} - X (k+l) II=~ I(xt> -xJk+l)r 
j= I 

As x(k) and x(k+t) are basic solutions, they can be expressed, using Cramer's rule, as 

follows 
(k) (k+l) 

X (k) = _6__ and X (k+l) = _6 __ _ 
6 6 

The matrix of the p«''>lem remains identical from cycle to cycle; we can assume that 6 , the 

determinant of the optimum basis remains the same as well, without loss of generality. 

But 6 * O always holds. /!.(k) and 6(k+t), however, are different from cycle to cycle, as 

they involve the RHS which has one entry changing when updating the objective function 

value in the constraint c T x Zc *. We can then write 
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( 

(le) (k+l)) 
/).. -/). . 

J J . 
j - 1 /). 

!).j(k) ¢ 0 and 6/k+l) ¢ 0 from the assumption that the feasible region is nonemty and 

Vj e {l, 2, .... , n}, Vk, 3 (h = j) such that !).h(k) - 6h(k+1) ¢ 0. Thus 

5.5.1 An Algorithm for LP 

We descri~ our algorithm based on the generation of a sequence of Chebyshev points 

converging to optimum solution of LP problems with bounded nonempty feasible 

domaine. Nondegeneracy is also assumed. The optimum objective value may not be 

known. 

Algorithm 5.1 

1- Transform the LP problem into a minimax Chebyshev problem. 

2- Set up the corresponding LP problem. 

3- Solve the LP problem using Karmarkar's algorithm to get a Chebyshev point Xe* 

and its deviation L. 

4- if ILi = 0 then 

x* = Xe*, optimum attained, stop. 

else 

go to 5-. 

endif 

5- Cut through xc* by augmenting the Chebyshev problem with the constraint 

cTx cTxc*• 

6- Repeat from 2-. 
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5.6 Computational Considerations: Improvements to Algorithm 5.1 

Each iteration of Algorithm 5.1 is rather a cycle as it involves a linear programming 

problem which is as large as the original one. It looks as Algorithm 5.1 cannot be as 

efficient as solving the problem directly without passing through transforming it into a 

Chebyshev problem. However, there are some obvious improvements one can think of. 

These improvements follow. 

Improvement one 

One of the improvements which can be thought of stems from the geometric 

interpretation of the Chebyshev problem. It consists in reducing the number of constraints 

in the LP formulation of the Chebyshev minimax problem. 

As was noticed earlier an n-simplex in R", defined by n 1-l of the LP problem 

constraints, contains the feasible region. These n+ 1 constraints can be identified by the 

fact that all of them present the same deviation L to the Chebyshev point. Thus, after the 

Chebyshev point has been found, it is possible to remove the constraints with deviation 

larger than L. The cut through the point is carried out, and a new Chebyshev point is 

found. However, feasibility is no longer guaranteed. Thus, if any of the removed 

constraints is not satisfied, it is reintroduced in the reduced problem and a new 

Chebyshev point is found. The problem is again reduced and so on. This approach may 

be very profitable when m >> n. 

Improvement two 

Another improvement would be to take advantage of the fact that a Chebyshev point is 

a "centre". Thus, a great decrease in the objective function may result from moving in the 

direction of steepest descent towards a boundary, starting from a Chebyshev point. The 

resulting point is then used in the cutting process. In the following we shall describe a 

procedure for finding the steepest descent direction. 
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As in Zoutendjik ( 1960) a feasible direction can be found by solving a linear problem 

derived from CLP. Such a problem can be formulated as 

min dn+l 

s.t llld) = ai 1d 1 + ... + airPn + dn+l :s; bi , i e I, 

I dj I :s; 1, j = 1, ... , n+ 1, 

where I is the set of indices of all constraints with deviations negative and larger than -L, 

and d the direction. 

When d is found a step of length a is taken from Xe* along d resulting into 

x = xe* + ad, 

where a is chosen, [Zukhovitsky & Avdeyeva, 1966), as the smallest positive value 

among 

, ... ' 

These improvements embedded in Algorithm 5.1 result in the following algorithm. 

Algorithm 5.2 

1- Transform LP problem into a Chebyshev problem. 

2- Set up the corresponding LP problem. 

3- Solve the resulting LP problem using Karmarkar's algorithm to get a Chebyshev 

point Xe* and its deviation L. 

4- if ILi = 0, then x* = Xe*, problem solved, stop. 

else go to 5-, endif 

5- Select the constraints which constitute the sides of the simplex containing the 

feasible region (n+ 1 inequalities for which L is the same), and set up reduced 

problem. 
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6- Find a feasible direction vector d. 

7- Find a and compute x = Xe*+ ad. 

8- Cut through x if it is feasible for the overall problem. 

9- If the point is not feasible, introduce the violated constraints into the reduced 

problem and cut through the previous Chebyshev point. 

10- go to 3-. 

5.7 Numerical Example 

We consider the problem 
max x2 

s.t. · x1 - x2 1 
-2x1 - x2 -14 

-x1 - x2~ -8 
- 0.5 x1 + x2 -3 

x1 0, x2 0. 

To apply the algorithm described earlier, we set up the Chebyshev problem 
min - x3 

s.t. XI -x2-x3~ 1 
- 2xI - x2 - x3 -14 

- XI - x2 - x3 -8 
- 0.5x1 + x2 - x3 -3 
XI~ 0, x2 0, x3 0, 

where - x3 is the deviation. The solution to this problem using the projective algorithm is 

(4.50, 3.44). Given the position of the point in the feasible region, Fig 5.1, it is 

interesting to take a move along a feasible direction to get a better point through which we 

will do a cut. 
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2•00 

10•00 

Fig 5.2 Sequence of Chebyshev Points (circles) Converging to x* 

Such a feasible direction is obtained as in Zoutendjik (1960) algorithm by solving the 

linear programming problem 

s.t. j = 1, 2, 

where dis the direction vector. The vector direction in this case is d = (0.70, 1.00). 

To find a new feasible point (dark points in Fig 5.2), a step a is taken along d . The 

steplcngth is obtained using the procedure described in section 5. 7. 

Chebyshev poinl.l Interior feasible points a 

(4.50, 1.37) (5.37, 2.63) 1.25 
(4.50, 2.63) (4.86, 3.14) 0.52 
(4.50, 3. 14) (4.65, 3.35) 0.21 
(4.50, 3.35) (4.56, 3.44) 0.09 
(4.50, 3.44) 

Table 5.3 Points Returned by Algorithm 5.2 Partially 
Represented in Fig 5.2. 
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·5.8 Conclusion 

Algorithm 5.2 seems to work but is tedious and inefficient. However, the idea of 

using the Chebyshev problem as a centring scheme in a new interior point algorithm 

similar to the simplicial algorithm of Levin is viable and, I believe, may lead to an elegant 

method. The major criticism of Algorithm 5.2 is made regarding the work involved in 

every cycle. Indeed, any cycle corresponds to solving a problem larger than the original 

one, after transformation into a Chebyshev problem. Each cycle will take as many 

iterations as Karmarkar's algorithm would take to solve the original problem, although the 

iterations are cheaper due to the fact that the problem changes little from cycle to cycle. It 

may thus be possible to exploit this characteristic to cut down the work of the overall 

algorithm. The time limitation does not allow us to pursue this perspective, however, the 

procedure for postoptimality in the case of changes in the right-hand side presented in 

Chapter 4, and updating techniques for least squares, may be useful. 
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Chapter 6 

Karmarkar Type Algorithms and Decomposition for 

Linear Programming 

6.1 Introduction 

The development of efficient optimization techniques for large structured linear 

programs is of major significance in economic planning, engineering and management 

science. An extensive literature exists on decomposition, which shows the magnitude of 

the effort devoted to the subject (for an excellent review see Geoffrion, 1970). Initially the 

idea of decomposition, as suggested by Dantzig and Wolfe (1960), was an extension of 

the use of the simplex method to solve large and structured LP problems. With 

implementations of this idea large LP problems arising in the oil industry, Government 

etc ... were successfully solved. However, the decomposition algorithm, its variants and 

many other methods based on different ideas, never outclassed the standard simplex in 

terms of labour involved (when these large problems can be handled by the simplex). 

Commenting on staircase structured LP problems, Gear et al., cited in [Fourer, 1982] 

say: 

"Today we know only how to solve it as we would any linear programming problem; but this 

type of problem requires more work to solve than does the average problem of the same size. 

However, there should be some way to take advantage of its simple structure." 
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Decomposition is usually called upon only when the problem cannot be handled by 

the standard simplex method, because of its size. Otherwise the standard simplex is 

preferred to decomposition, as it is easier to implement and involves less CPU time. 

However, following Gear et al., decomposition should not only allow the solution of 

large problems under storage constraints but also in competitive times. Indeed, it should 

be viewed, primarily, as a means for mass exploitation of sparsity, when favourable 

structure is present. It is also a fact that today CPU time is more of a scarce resource than 

storage. 

The relative "inefficiency" of decomposition algorithms so far developed, may be due 

to their tight relationship with the simplex algorithm. It is, therefore, worthwhile 

investigating decomposition in conjunction with interior point methods. 

In the following we shall investigate the applicability of interior point methods, of 

Karmarkar type, coupled with classical decomposition principals [Rosen, 1964; 

Grigoriadis & Ritter, 1969] to structured and even unstructured LP problems. However, 

emphasis will be on the specialization of a dual Karmarkar algorithm to block-diagonal LP 

problems. A new partitioning algorithm for linear programming will be presented, 

supported with experimental results on randomly and non-randomly generated structured 

problems. 

6.2 Structured LP Problems 

Structure is an important attribute of large scale linear programming. Large scale 

programs almost always have distinctive structure beside convexity and linearity 

properties. There are many types of structure. However, the commonest and most 

important are multidivisional, combinatorial, dynamic and stochastic structures. We shall 

be interested in multidivisional problems which consist of interrelated subsystems to be 

optimized (Geoffrion, 1970). The subsystems can be modules of an engineering system, 

reservoirs in a water resources system, departments or divisions of an organization, 
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production units of an industry, or sectors of an economy. The interrelation between the 

subsystems is represented with the so called linking constraints or variables. 

The commonest structure in large LP problems is the block-angular structure, (see 

Fig.6.1). In standard form, such structured LP problems can be written as: 

r 
s.t. AQ-Xo+ L,Aixi = b 0 , 

j.,l 

BjXj = bj, 

Xo,Xj~Q, 

i = l, .... ,r. 

The dual to the above problem is 

T 
s.t. A~o 

j,. 1 

T T 
Ai Yo + BiYi Ci, 
y O , y i unrestricted, 

i = l, .... ,r. 

Fig 6.1 Diagram of a 2-Block LP Problem 
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The general block-diagonal LP problem with linking constraints and linking variables, 

in standard form is show below. 

r 
s.t. DoY + Dix i = bo, 

i=l 

Di y + Bix i = bi, 
y,xj~o. 

i = l, .. . . ,r. 

Fig 6.2 General Block Diagonal LP Problem 

(6.2.3) 

Another common structured LP problem is the staircase or time-staged problem. It is 

different from the above case in that every two successive blocks are linked by a set of 

variables (in the primal form) or constraints (in the dual form). Such a problem in 

standard form can be written as: 

r+l T 
min LCiXi (6.2.4) 

ial 

s.t. Ai xi+ Bixi+l = bi 
Xj 0, 

i=l, .... ,r. 
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Fig 6.3 Staircase Structure Fig 6.4 Equivalent Block Angular 

Structure 

The staircase structure is amenable to block-diagonal form (Fig 6.4). Solving this type 

of LP problems will be considered at the end of this chapter. 

6.3 A Decomposition Algorithm Using Karmarkar's Method 

The main purpose of decomposition is to exploit the inherent parallelism of block-

angular structured problem, using the relative independence of the subproblems. This 

independence is apparent in the formulation of LP problems as: 

Opt co T xo + ci T x 1 + ... + cl Xr 

s.t. x e Ko n K1 n ... n Kr, 

where Opt can be min or max and Ki, i = 0, ... , r, is the convex polyhedron, feasible 

domain of the ilh subproblem. 

In (6.2.1) the subproblems that are to be considered have the form 

min (cT-Y~i)xi 
s.t. BjXi=bi, i=l, ... ,r, 

Xj~ 0. 

The corresponding duals are 
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T 
max biYi 
s.t. (6.2.6) 

Assume that an initial feasible vector Y8 is at hand, for which every subproblem 

(6.2.5) has a feasible solution, i.e., there exists y8 such that 

This assumption is not very restrictive as it is always possible to guess a feasible solution 

from the real world interpretation of the problem. However, a systematic way for 

providing such a point would be to solve a Phase I problem using Karmarkar algorithm. 

In fact this assumption is also made in the original projective method (see Chapter 2). 

If we solve each subproblem (6.2.6) using the dual Karmarkar algorithm given in 

Chapter 4, the dual solutions Yio will be obtained. The optimum objective value of (6.2.5) 

is z? = b TY?. The objective value of the complete problem is 

0 TO~ TO 
z = boYo+ """hiYi· 

i=l 

From, the duality theorem, zO is a lower bound on the optimum objective value of the 

complete problem. 

To see whether the solution obtained is feasible or optimal to the complete problem, 

we set up an equivalent problem based on the linking constraints and the nonnegativity 

constraints only. The constraints forming the separate blocks are satisfied. 

Consider the partitioning of matrices Bi into Bit and Bi2• Bit contains the basic 

columns of Bi as per solution of subproblems (6.2.6), and Bi2 contains the nonbasic 

columns. Accordingly, we partition other matrices and vectors involved; i.e. 

T ( T C· - C·1 I - I 
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It follows that 

We have also from the partitioning of ith block 

B . (x i 1) = b . 
I X I' i2 

thus 

The objective function of the original problem is 

Replacing Xii in (6.2.8) by expression (6.2.7) we obtain 

Similarly, the linking constraints can be written as 

r 
AoXo+ L(Ai1xi1 + Ai2xi2] = bo, 

i= 1 

Substituting Xii in (6.2.10) by its expression (6.2. 7) we o~tain 
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111e reduced problem is 

(6.2.12) 

s.t. (6.2. 11) and Xi2 0. 

Algorithm 6.1 (based on the algorithm of Rosen (1964)) 

1- Find a feasible vector YO= y8 
2- Using the Karmarkar dual version, solve each subproblem (6.2.6). This provides 

the solution to subproblems (6.2.5) 

3- Set up the reduced problem (6.2.12) based on the objective function of the original 

problem linking and nonnegativity constraints. 

4- Solve the reduced problem using Karmarkar's algorithm to get Xi2* and yJ as a 

by-product. 

if (6.2.12) is not feasible then the dual (6.2.2) of the original problem has an 

infinite solution endif. 

5- Compute Xi} from (6.2. 7) with Xi2 replaced by Xi2*. 

if Xit 0 then (Xil, Xi2*)T is optimum solution . 

else replace yg by yJ and repeat from 2- endif 

The validity of this algorithm derives from that of the Karmarkar algorithm and 

Rosen's scheme. A more general form is considered in the next section. 

6.4 A General Form of Algorithm 6.1 

In this section we shall consider the structured LP problem of the general form (6.2.3) 

which presents linking constraints as well as linking variables. Based on the idea of 

variable reduction of Algorithm 6.1, it is possible to derive a decomposition algorithm to 
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which Karmarkar's algorithm can be coupled in a straightforward manner. The algorithm 

is basically that of Grigoriadis and Ritter (1969). 

Assume that we partition the matrices Bi in (6.2.3) into two parts Bit and Bi2, with 

Bil being nonsingular with rank mi. The vectors Xi and Ci being partitioned accordingly , 

we can write 

(6.4.1) 

Replacing Xil with its expression (6.4.1) in the objective function and the linking 

constraints of (6.2.3), we form the following reduced problem 

T r T 
min <I> + + L 'l{X i2 

i- 1 

s.t. 
r 

H oY + L,H ix i 2 = b 
i.; 1 

y 0, Xj2 0. 

(6.4.2) 

• 

The matrices Ho and H 1 are easily derived, as well as the vectors in the objective 

function. They are expressed as follows 

(6.4.3) 

(6.4.4) 

(6.4.5) 

(6.4.6) 

(6.4.7) 

(6.4.8) 

Problem (6.4.2) can be solved using Karmarkar's algorithm. Its optimal solution is 

Xil. The solution to the original problem is (x*it, Xi2•, y*), obtained by computing x*iJ 
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from the relation (6.4.1). If x*it::? 0 then the optimum solution to the complete problem 

is obtained. If among x*it entries there are negative ones, then the optimum solution is 

not yet reached. We shall, later, outline a procedure for dealing with negative elements in 

Theorem 6.1 [Grigoriadis & Ritter, 1969] (x*it, Xi2•, y*), i = 1, ... , r, is an optimal 

solution to (6.2.3) if and only if x*it::? 0. 

Proof: The condition is necessary as the solution should satisfy the nonnegativity 

constraints of (6.2.3). It is sufficient because from (6.4.1), the reduced problem (6.4.2) 

with the additional constraint (6.4.9) is equivalent to (6.2.3). Thus (x*it, Xi2•, y*) is 

optimal solution to (6.2.3) if x*it 0. QED. 

Suppose that for some i, (x*it)j is a negative component of x*il· The idea is to make 

sure that this element is enforced to be nonnegative in the reduced problem. From relation 

(6.4.1), (x*it)j is given by equation (6.4.9) enforced to be nonnegative. 

(6.4.9) 

The subscript j is an index to the rows of the matrices and vectors involved in the 

computation of the negative component 

Constraint (6.4.9) is then added to reduced problem (6.4.2) and a new cycle is carried 

out. 

Example 6.1 

Let solve the following structured problem using the above generalization of 

Algorithm 6.1 
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Min - x1 - x2 - 2x3 - 3x4 

s.t. x1 + 2x2 + 2x3 + X4 :S; 40 

XJ + 3x2 :S; 30 

2x1 + x2 :S; 20 

x3 :S; 10 

x4 :S; 10 

x3 + X4 :S; 15 

x1, x2, x3, x4 0. 

After adding slack variables, we proceed to the following partitioning of the 

problem. 

c: 1 1 0 0 2 1 0 0 0 0 0 b 

A:. 1 2 0 0 2 1 0 0 0 1 0 40 ho 
1 I 0 0 4 2 0 0 0 0 1 50 

B tf 1 3 1 0 30 b1 

2 1 0 1 20 

B2f 1 0 0 1 0 0 0 10 b2 
0 1 1 0 0 0 0 10 
1 1 0 0 1 0 0 15 -

Di 

From above partitioning, we have 

(1 3) (1 0 0) 
B t 1 = 2 l , and B 2 1 = ! . 

The submatrices At t, A12, A21, A22, B12, B22, Do, D1, D2 and the vectors Ci 1, c12, 

c21, c22, co, bo, bt , b2 are also easily read. We compute the quantities given by (6.4.3) -

(6.4.8) and set up the reduced problem (6.4.2) as follows 
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s. t. = -7 

- o.2(x12)1 - 0.4(x12h - 2(x22)1 - 2(x22h + Y2 = -14 

(x12)j, (x22)j, YI, Y2 0. 

The problem is solved by Karmarkar algorithm and seems to be unbounded. However an 

intermediate feasible solution indicates, when replaced in (6.4.1) that one of the solutions 

corresponding to the original problem is negative. The variable is forced to be 

nonnegative using equation (6.4.9). This leads to the new reduced problem problem 

s. t. = -7 

= -14 

- (x22)1 + (x22h + Y3 = -5 

(x12)j, (x22)j, YI, Y2.Y3 0. 

The solution to this problem is (0, 0, 6, 1, 0, 0, 0). Replacing, accordingly in (6.4. I) 

gives the solution x1 = 6, x2 = 8, x3 = 4, X4 = 10, x5 = 0, z* = -52. The reduced problem 

takes about ten iterations of the Karmarkar algorithm. 

6.5 Dual Karmarkar Algorithm for Block-Angular LP Problems 

We have shown that Karmarkar algorithm can be adapted to decomposition schemes 

for linear programming. In the following we will present a partitioning algorithm for 

block-angular LP problems. The dual version of the Karmarkar algorithm is used as 

described in chapter 5. However, the pseudoinverse will not be used to compute the dual 

solution. Instead, a QR or Cholesky factorization will be used as it is more appropriate for 

block-angular matrices as well as decomposition for general least squares problems (see 

Chapter 3). 
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The idea behind this partitioning scheme is that at each iteration the computation of 

dual solutions is carried out on a modular basis. That is, for each block the corresponding 

dual solutions are computed separately, then updated by considering the effect of the 

linking variables. Computation of the direction, primal solution and lower bound on the 

minimum objective is also made in parallel. 

Consider the following block angular LP problem in standard form. 

r- 1 
. ""' ,T ' nun £.JC ix i + c r'r 

i= l 

s.t. B \ xi + A\xr = bi , 
Xj~0,xr~o. 

i = 1, ... , r-1 . 

(6.5.1) 

The blocks B'i are (mprni)-matrices and A'i are (mixnr)-matrices; c'i and Xi are ni-

vectors, and bi are mi-vectors, i = 1, ... , r. 

Karmarkar's canonical form of (6.5.1) is 

r-1 . ""'(D , .IT , (D , IT , , nun £.J jC X j+ "X r - zx n ,+ I 
i:, 1 

s.t. B'pixi + A'PrCr-bix'n,+-1 = 0, 
X 'i 0, X 'r 0, X 'n ,+- l• 

i = 1, ... , r-1 . 

(6.5.1 ') 

Put Ci = DiCi ', Cr = [DrCr', -z], Bi = Bi'Di and Ai = [Ai'Dr, -bi] and write (6.5.1 ') as 

r-1 
. ""'T , ' nun £..Jcix j+ CrC r 

j ,. I 

s.t. Bix\ + Aix'r = 0, 
x ' i ~0, x'r 0, 

i = 1 , ... , r-1 . 

Problem (6.5.2) is block angular and homogeneous. 

(6.5.2) 

Based on the natural structure of (6.5.1), and thus of (6.5.2), the dual variables y are 

pru1itioned as follows. 
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D =(D1,D2, .. ,,Dr), 

T-( T T T) Y - YI, Y2, ... , Yr-I · 

6.5.1 Computing the Dual Solutions 

The computation of the projected gradient in the dual Karmarkar algorithm (Algorilhm 

4.2, Chapter 4) is carried out through the computation of the dual variables with the use 

of pseudoinverse as 

yT = (A')t c', (6.5.3) 

where A' and c' refer to the matrix and cost vector of the problem in canonical form. In 

this section we shall present an efficient algorithm for computing y T when A' and c' 

correspond to the matrix and cost vector of of problem (6.5.2), i.e. A' is block angular. 

The procedure is basically an extension of Algorithm 3.1 for structured least squares. 

Clearly, equation (6.5.3), gives the solution to the least squares problem 

miny II A'T y - c' 112. (6.5.4) 

However, solving large structured systems using the pseudoinverse is time 

consuming. Cholesr.y decomposition and orthogonal factorization are more appropriate, 

as will be seen later. 

The problem to solve is depicted in (6.5.5). 

T 
Br-I 

Ai ... A;_1 

Yt 

Y r-1 

y 

= 

= 
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Assume that the problem is weakly linked, i.e. only few linking variables are present 

in the problem, then consider the incomplete problem (6.5.3) based on (6.5.2) from 

which we remove equations ( AT, AJ, ... , Ar:1 )(Yl, Y2, ... , Yr-l)T = Cr, 

Bi 
y I 1 C 1 

= (6.5.6) 

T 
Br-1 y I f - 1 C r-1 

BT y' = c'. 

We solve separately the subsystems (6.5.4) in the sense of least squares. 

B I.T y'1· = c1• 1· = 1, r- 1 ' ... , (6.5.7) 

The QR factorization leads for each subproblem to 

A forward substitution delivers y'i = R(1Si-

By computing the separate QR factors, we have actually also computed the QR factor 

of the block diagonal matrix BT, as depicted below. 

T 
QB 

0 

Fig 6.5 QR factor of the block-diagonal matrix BT 
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Now, applying Algorithm 4.1 of Chapter 4, we update the solution y' by talcing 

account of the removed rows ( AT, Ai, ... , Ar!i ). However, given the structure of the 

problem matrix, it is better to apply a parallel version of Algorithm 4.1, which we 

propose here. 

Algorithm 6.2 

1- Solve each subproblem (6.5.7) using Cholesky method or QR factorization. 

2- Compute 

( 
T. -1 T. -1 T 1) F= A1R1 A2R2 ... Ar.1R;.1 =(F1 F2 ... Fr. 1) 

3- Compute 

4- Solve (I + FfT)u = r2(y'), i.e. compute 

5- Compute 

6- y = y' + y It . 

The computation of u dominates the updating algorithm as it involves the solution of a 

square system. However, fFT is a (mrxmr)-matrix, and assuming that the problem is 

weakly linked, computing u should not be expensive. 

Note: Having the QR factor of BT and orthogonal matrix Q available, they can be used to 

solve problems with the same matrix and a different RHS. 
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6.5.2 Search Direction and Lower Bound on z* 

The direction of search involves the dual solutions provided by Algorithm 6.2. 

According to the partitioning considered earlier, it can be computed in a modular way as 

follows. 

T-( T T T) P - Pl , P2 , ... , Pr , 

where 
T 

C X - Z 
- n+l en,• i = l, ... ,r-1, 

T 
C X - Z - ---e n+l n,· 

The norm of p is 

IIPII = /V LLPij · 
ia !j .. 1 

(6.5.8) 

(6.5.8') 

(6.5.9) 

A lower bound on the minimum objective value of (6.5.2) is provided by y Tb, from 

the duality theorem of linear programming. Let 

UT = (A')t (0, -l)T 

VT= (A')t(c, 0)T 

where -1 and zero are substituted to the last entry of the cost vector 

cT = ( qT, c2T, ... , c?Dr, -z ), 

(6.5.10) 

(6.5.11) 

of (6.5.2). Vectors U and V can be computed using Algorithm 6.2 without factorizing BT 

again as its QR factor is available from the computation of y. Now the dual vector y can 

be written as 

y = U + zV 

or Yi = Ui + zVi, i=l, ... , r-1 

(6.5.12) 

(6.5.13) 

y being the dual solution at iteration k, say. At iteration k+ 1, the new dual vector we are 

looking for should primarily satisfy the constraints of the dual problem corresponding to 

(6.5.2) and allow a good improvement in the dual objective value. However, as in the 

dual version of the projective algorithm given in Chapter 4, we start first by determining 
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the values of z that guarantee feasibility of y, from (6.5.10), then choose as z' the one 

that constitutes the best bound on the minimum objective value. 

Z = { zeR: c -yA' 0} = {-Ui/ Vi, i = 1, ... , m}. 

Because of the parallel nature of the algorithm, we can write for each Yi, 

Zi = {-Uij / Vij,j = 1, ... , mi; i = 1, ... , r-1}. 

Thus Z = U i Zi, i = 1, ... , r-1 . 

(6.5.14) 

(6.5.14') 

If Z = 0 then the best bound is taken as z' = -00• Otherwise z' = Sup Z, (see Chapter 4). 

Having a lower bound z' on z*, and the corresponding dual feasible solution y(z') 

given by (6.5 .2), the new dual solutions and objective value are y(k+l) and z(k+l) 

obtained as follows. 

if z(k) < y(z')b then y(k+l) = y(z') and z(k+l) = y(z')b, 

else y(k+ 1) = y(k) and z(k+t~ = z(k) endif. (6.5.15) 

We have shown in this section and the previous one that the inherent parallelism of 

block-angular LP problems may be exploited in the different compartments of a dual 

version of Karmarkar algorithm. In the next section we shall present such an algorithm. 

6.5.3 A New Partitioning Algorithm for LP 

Algorithm 6.3 

0- Initialization: Set x(O) to an interior feasible point, y(O) to 0, z(O) to a lower bound 

on optimum objective value z* and E to an arbitrarily small value. 

• ( r T (k+l) (k+I)) 1-a f ~c ixi -z :5E then stop. 
,-1 

3- Compute y, U and V applying Algorithm 6.2. 

4- Find z' from (6.5.14), and y(k+l) and z(k+l) from (6.5.15). 

5- Compute the solution in the transformed space as 
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I Pi . I x i = en - a~, 1 = , ... ,r, 1 11P11 

where a is found by one of the techniques described in Chapter 4. 

6- Compute primal solution in the original space as 

(k+l) X
1
j 

Xi = ~, i = 1, ... , r. 
rn, 

7- k = k + 1, go to 1-. 

6.6 Extending the Partitioning Algorilhm to Staircase Structure 

We have seen in section 6.2 that staircase structure is amenable to block-angular 

structure (Fig 6.4). However; mass sparsity remains in the linking block after 

transformation. In this section we will look at the way Algorithm 6.3 can be extended to 

exploit this sparsity . 

T 
B 

T 
A 

Fig 6.6 Partitioning of the Linking Block of the Matrix 
Derived from a 5-Stage Staircase LP Problem 
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The obvious approach is to further partition the linking block in order to isolate the 

zero sub-blocks. Consider the system (6.5.5) whose matrix has the structure of Fig 6.4. 

The matrix in the case of a 5-block problem is represented in Fig 6.6. 

We can see that any submatrix AiT has at most two non-zero blocks and at least one 

non-zero block. When the original staircase problem has a high number q of stages, then 

every submatrix AiT has between q-2 and q-3 zero blocks. For instance, if q = 10, the 

number of zero blocks is 7 or 8. 

0 

0 

-1 
R 

F 

Fig 6.7 Structures of A? and Fi, 

0 

0 

Let every submatrix A? be partitioned into q-1 blocks, A~, A;~, ... , Ail 1, if the 

original staircase LP problem has q stages. As depicted in Fig 6. 7, Fi has the same 

structure as AiT, Thus, Fi can be written as (Fi 1 T Fi2 T ... Fiq-1 T?. The submatrices 

Fii-1 and Fii are the nonzero blocks. Because F1 and Fq-1 have each only one nonzero 

block, then Fm and Fiq do not exist. According to this partitioning Step 2 of Algorithm 

6.2 can proceed as follows. 

for i = 1, ... , q do 
for j = 1, ... , q-1 do 

if j = i -1 or j • i then 
Fij = A1lR1-1 

else 
Fij"" 0 

endif 

The general matrix F is depicted below. 
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0 F22 0 
F = 

0 F q- lq-1 

Step 3 of Algorithm 6.2 can, in the same way as above, be optimized by considering 

only the nonzero blocks of A? when computing r2(y'). 

6. 7 Computational Experience and Conclusion 

In this section we report som~ numerical results on the performance of the partitioning 

algorithm on two sets of LP problems also solved with a code of the dual projective 

algorithm presented in Chapter 4. The tests were carried out in MATLAB on a Macintosh 

SE/30 as well as in CTRLC on a VAX 8650. The times recorded for a comparison 

purpose were given, in seconds, by the function ETlME of MATLAB. 

6.7 .1 Tests on Random Generated Structured LP Problems 

The test problems for Algorithm 6.3 were based on those used by Mangasarian 

(1981). l11ese problems were generated as follows. The matrix A was fully dense with 

random elements aij uniformly distributed in the interval [-100, lOOj. The right hand side 

was chosen such that 

n 
I,aij if aij > 0, 
j= l 

n n 
-1 + 2 I,a ij if I,a ij S 0, i = 1 , ... , m 

j - 1 j .. t 

and the cost vector such that 
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b and c so chosen make point e primal optimal. 

In our tests the above problems constitute blocks linked with a set of columns also 

randomly generated, to form the structured problems. However, vectors b and c of the 

structured problems comply with their above definitions, with the linking columns taken 

into account. Thus point e is primal optimal. A sample randomly generated 2-block LP 

problem is given in Fig 6.8. 

The results of these tests are recorded in Table 6.1. The two last columns under the 

headings Etime/P and Etime/NP correspond respectively to the performance of the 

partitioning algorithm (marked P) and that of Algorithm 4.2 which is a non-partitioning 

algorithm (marked NP). 

Problems Rows 
18 

Mang4 18 
18 
29 

Mang6 29 
29 
40 

Mang8 40 
42 
42 

43 
43 

Mangl0 43 
43 
43 

Cols Blocks Links Etime/P Etime/NP 
35 4 2+1 31.12 110.37 
36 4 3+1 33.08 113.77 
37 4 4+1 35.08 119.73 
57 6 2+1 55.83 418.58 
59 6 4+1 59.10 437.23 
61 6 6+1 63.09 545.90 
76 8 2+ 1 89.60 928.87 
78 8 4+1 95.47 972.85 
85 8 6+1 144.08 1232.30 
87 8 8+1 156.92 1259.40 

82 IO 2+1 95.75 1127.20 
84 IO 4+1 102.43 1150.20 
86 IO 6+1 110.67 1235.10 
88 10 8+1 119.52 1299.20 
88 10 10+1 129.62 1677.30 

Table 6.1 Numerical Results on Randomly 
Generated Problems 
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Time Ratio 
3.55 
3.44 
3.41 
7.45 
7.40 
8.65 

10.37 
10.19 
8.55 
8.03 

11.77 
11.23 
11.16 
10.87 
12.94 



c : 

A: 

105.35 166.58 174. 31 279 .19 120 . 83 261.10 321. 04 b: 

21.13 
8.23 

75.98 

0.87 45 . 24 61. 34 65 . 37 193 . 97 
80.96 80 . 7 4 27 .48 48.98 246 . 42 
84.74 48.31 88 . 06 77. 40 374 . 52 

96. 26 74.69 2 6.12 11. 67 208. 75 
99. 33 3 . 77 24. 02 62.49 189.63 
83 . 60 42 . 36 34. 04 55.10 215 .11 

linking Cols. 

Fig 6.8 A Sample Randomly Generated Problem with 
Entries of A Uniformly Distributed in (0, 100] 

6.7.2 Tests on Non-Randomly Generated LP Problems 

Problems which are not randomly generated were also solved with Algorithm 6.3 and 

Algorithm 4.2. Xnutl, Xnut2 and HL221 are text book problems. Little4 and Big8 are 

constructed by us using text book problems for each block and linking them by additional 

variables. Big8 is a 8-block problem, also solved as a 2-block and 4-block problem. 

AutoCol and AutoCo2 are variants of the same problem given in ICL 1900 Series, LP 

Mark3 User Guide, 1973. We noticed that the problem has favourable structure after 

reordering its constraints. Depending on the reordering it can be solved as a 2-block or a 

4-block problem. The results of the tests are recorded in Table 6.2. 

Problems Rows Cols Blocks Links Etime/P lter. Etime/NP lter. Time Ratio 

Xnutl 5 11 2 2+1 30.80 11 29.43 11 0.96 
Xnut2 4 10 2 1+1 15.31 7 17.60 8 1.25 

HL221 8 18 3 2+1 44.10 10 56.92 10 1.29 

Little4 12 24 4 2+1 60.17 11 117.15 11 1.95 

AutoCol 32 69 2 7+1 733.05 15 2468.98 16 3.37 

AutoCo2 33 71 4 12+1 451.35 15 2468.98 16 5.47 

2 2+1 201.12 16 6.13 

Big8 25 53 4 2+1 181.20 16 1231.90 16 6 .80 

8 2+1 202.47 16 6.08 

Table 6.2 Results from Partitioning (P) and Nonpartitioning (NP) Algorithms 
on Nonrandomly Generated Problems 
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6. 7 .3 Conclusion 

It appears from these results that the partitioning algorithm does cut down the overall 

work of the dual Karmarkar algorithm. The partitioning algorithm is between 3 to 12 

times faster than Karmarkar's dual variant, except for the 3 first problems of Table 6.2. 

This is shown in the last columns of Table 6.1 and Table 6.2 under the heading "Time 

Ratio". The bad performance of the partitioning algorithm on the small problems is 

justified by their large density; the work involved in the updating of the dual solutions is 

substantial. This work becomes negligible only when the density of the problem is low, 

which is a characteristic of large structured problems. The updating process also depends 

on the number of linking columns. When this number is large, the accuracy of the 

solution suffers and the updating process becomes costly. Indeed, it was assumed that the 

blocks are weakly linked. It still remains to know how the link affects the overall work 

involved and in what proportions. 

Note also that a simplex based decomposition algorithm would not outperform the 

standard simplex on problems of the same size as the ones used in our tests. Indeed, the 

standard simplex is most of the time more effective, in terms of CPU time, than any of its 

decomposition variants even on very large problems, [Fourer, 1982]. Our partitioning 

algorithm, on the other hand, will perform even better, on large structured problems, than 

the straight Karmarkar's algorithm. 

An important fact that should be mentioned is that the algorithm is not fundamentally a 

decomposition one in the sense that no linear programming subproblems are solved. 

Indeed, the partitioning is oriented towards the least squares problem which is solved to 

find the dual variables. The theoretical complexity of the partitioning algorithm is, 

therefore, that of Algorithm 4.2. A more fundamental partitioning is .considered in 

Algorithm 6.1 and its general form, for which we showed that Karmarkar's dual 

algorithm is valid as a solution strategy. However, it is not clear how advantageous this 

approach is. Recently, Todd (1988b) attempted to build such an algorithm based on the 
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Dantzig-Wolfe decomposition principal. He concluded that the method is unlikely to 

provide substantial improvements to the solution of structured LP. 

We end up this chapter by showing that, at least from the theoretical point of view, 

interior point methods may be advantageous in the context of decomposition. 

The concept of volume is at the basis of interior point algorithms. In Karmarkar's 

method it is present in the form of a potential function, and "through" it reduction in the 

objective function is achieved. More specifically, the potential function is equivalent to the 

volume of an ellipsoid generated in the dual space at each iteration (Ye, 1987). As the 

potential function is important for the convergence of the algorithm, so is the volume of 

the ellipsoid, because optimality is achieved at the same time for both the primal problem 

and its dual. It. follows that starting with a smaller volume can be advantageous. First, as 

in the case of the ellipsoid algorithm, it takes less iterations to reduce a smaller volume 

ellipsoid to near zero; secondly, the work involved is proportional to the size of the 

problem and hence the volume of the starting ellipsoid. 

We know that the volume grows exponentially with space dimension [Le Tellier, 

1984]. To avoid starting with a large volume ellipsoid, it is profitable to work in lower 

dimensional spaces. This can be achieved by decomposing the problem into subproblems 

defined in lower dimensional spaces. 

Consider the linear functional F(x) = c T x, such that 

which can be seen as the sum of two functionals f1(x1) and f2(x2) whose parameters are 

obtained from the partitioning of the vectors c and x as follows 

where x e R", x1e R0 t, x2 e R0 2 and n2 = n - n1. Let us write 
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The logarithmic potential function of Karmarkar as applied to F, f 1 and f2 leads to: 

and 

These potential functions will arise when we consider an LP with objective function 

F(x) and its subproblems with objective functions ft and f2, if we partition the problem 

into two. One way of seeing the advantage of decomposition is to show that the potential 

function of the full problem is actually larger than the sum of the potential functions 

corresponding to the subproblems. 

Lemma 6.1 : p1(x1) + P2(x2) < P(x). 

Proof: 
n 

P1 jx 1) + P2 (x 2) = n 1 In (c Jx 1) + (n - n 1) ln (cix 2)- I,tn(xi), 
i= l 

n ( T ) n P(x) = I,tn c x - L)n(xi), 
i= 1 i=l 

= (n - n 1 + n 1) In (c Tx)- I, In (xi), 
i,,,1 

= n1 In (c \) + (n - n1) In (c Tx)- I, In (xi). 
i= l 

142 



As c T x > 0, '-1 T x 1 > 0 and c2 T x2 > 0, because the problems are solved in the 

transformed space and their objective functions must be positive then 

and 

Thus 

It is then clear that P1(x1) + P2(x2) < P(x). Q.E.D. 
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Chapter 7 

Implementation of the Projective Algorithm and Computational 

Experience 

7.1 Introduction 

In Chapter 6 we have shown how Karmarkar's algorithm can be adapted to make use 

of favourable structures (block-angular and staircase). In those situations whole blocks or 

submatrices ~e sparse. This made it possible to specialize Karmarkar's algorithm for 

such structures and exploit the sparsity blockwise. However, sparsity often occurs in less 

regular patterns. 

In this chapter we shall describe how a variant of the projective algorithm was 

implemented to solve Klee-Minty and Hilbert type problems as well as real world LP 

problems. We shall examine the perfonnance of the algorithm in conjunction with the 

form in which the problem is handled and the technology for least squares described in 

Chapter 4. Issues related to the coding of the algorithm in Fortran 77 such as data 

structures and input data (MPS fonnat) will be discussed. 

Two implementations of the algorithm are mainly considered: LPKAR 1 and 

LPKAR2. In LPKARl it is assumed that the optimum objective value z* of the problem 

is a priori known while in LPKAR2 the assumption is dropped. The canonical form in 

which the problem is handled differs for both cases. The first code works on a canonical 

form we suggest, in which the objective function is included as a constraint with z* as its 

right-hand side. It works in a single phase and is a primal only method. The second code, 

LPKAR2 works on canonical form 3 described in Chapter 3. It is a two-phase method 

and generates dual solutions. 
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Aspects of sparsity exploitation such as ordering and partitioning will be discussed 

and numerical results obtained using LPKARl and LPKAR2 will be presented. 

7.2 A Variant of the Karmarkar Algorithm 

The original algorithm of Karmarkar (1984a, b) with the indications he gave to set up 

the problem in canonical form was implemented and did not perform as efficiently as was 

thought. The difficulties encountered were partly due to inflation of problem size after 

primal-dual combination to put the problem in the required form, and also to ill-

conditioning in the projection matrix which involves inverting a cross-product matrix of 

the form BBT. However, this implementation provided valuable insights to the properties 

of the algorithm and its behaviour. The steplength, for instance does not have to be 1/4 as 

suggested by Karmarkar to insure convergence. Indeed, values closer to 1.0 and even 

larger, as was seen in Chapter 3, greatly improve the speed of convergence. We also 

noted that the number of iterations is generally low, which confirmed Kannarkar's claim. 

To the light of these observations and experience, we present a variant of the algorithm on 

which our codes were based. 

Algorithm 7.1 

The following algorithm handles problems in standard form, i.e. { xe Rn I min c T x, 

Ax= b, x 0}. Assume that an interior feasible point is at hand, then 

1- Transform problem into the form 

min c 'Tx• 
s.t. A'x' = 0, 

x' 0, 

where c•T = [cT, -z], A' = [A, -b] and x•T= [xT, 1]. 

2- Initialization 
k = 0, £ = 1.0E-06, z = M, where Mis a large value, D = diag(x<0>, 1). 
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3- if c•T x(k) < E stop 

4- Compute y = (DA'T) t De' 

5- Compute p = De' - (DA •1)y - ( e T x(k)/n)e 

6- Normalize p, i.e. p' = p/ IIPII 

7- x•(k+l) = e - exp', where ex is the steplength 

( ) D ,(k+l) k+l X 8- Compute x = ----
TD ,(k+l) e X 

( ) (k+l) k+l X 9- Compute x = - 1- 1 k+l 
Xn 

10- D = diag(x(k+l)), c•T = [cT, -cTx(k+l)J, k = k + 1, go to 3-

Algorithm 7 .1 differs from the original Karmar~ar's algorithm and the variant 

described by Lustig (1985) in the way the projection matrix and the search direction a.re 

computed. This approach is more suitable as the sparsity of the original problem is only 

slightly disturbed by adjoining the column corresponding to the right-hand side. When 

optimum objective value z* is available, it can be shown that Algorithm 7.1 retains the 

polynomial complexity of Karmarkar's algorithm. On the other hand, if z* is not 

supplied, then updates of z, i.e. cTx(k+l), after each iteration can be used instead. 

However, while it is possible to establish that c T x(k+l) < c T x(k), which implies p' is a 

descent direction, it is difficult to show whether the algorithm is polynomial in time. To 

make sure that Algorithm 7 .1 has polynomial complexity while dealing with unknown 

optimum objective value, the strategy that finds ever better lower bounds on z*, already 

presented in Chapters 4 and 6, can be used. 
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7.3 Implementations of Algorithm 7.1 

LPKARl and LPKAR2 are two different ways of applying Algorithm 7.1 to a linear 

programming problem depending on assumptions made and information available about 

the problem. In LPKAR 1 sparsity-exploitation is the central issue. This will involve 

symbolic factorization, ordering and updating techniques. In LPKAR2 we investigate the 

possibility of solving LP problems without supplying z.* and by using the Moore-Penrose 

pseudo-inverse to solve the least squares of step 4 in Algorithm 7.1. 

First, let us look at the form under which the problem is handled by LPKAR 1. 

Assuming that z.* is available, it is possible to transform the original problem in 

standard form into the following equivalent form accepted by Algorithm 7.1. 

min A. 

s.t. Ax - b - (Ae - b)A. = 0 

cTx-z.* + 0A.=0 (7.3.1) 

X, A.~ 0, 

where A. is an artificial variable. 

This problem is in R0 +2 and admits en+2 as an interior feasible point. Algorithm 7 .1 is 

readily applicable. One advantage this form of the problem offers is that the optimum 

solution is obtained in one phase. Indeed, when A. is reduced to z.ero, the resulting point 

x* satisfies the constraints in the original space, i.e. Rn, and also the extra constraint 

cTx - z.* = 0. It follows that x* is optimum solution. 

The other advantage of above canonical form is that the objective vector is totally 

sparse except for one entry corresponding to the artificial variable A.. In LPKAR l this 

sparsity is used to reduce the work in an iteration of Algorithm 7.1. The way this is 

brought to effect will be shown later. Note that LPKAR 1 is a primal only method as the 

original algorithm of Karmarkar. 

In the case of LPKAR2, the problem is handled under canonical form 3 presented in 

Chapter 2. 

147 



7.3.l Details of LPKARl 

LPKARl uses Cholesky method to deal with the least squares problem of step 4 in 

Algorithm 7.1 augmented with sparsity preservation steps comprising the Nested 

Dissection Ordering algorithm of George ( 1982), and a version of the updating technique 

for least squares of Heath (1984), described in Algorithm 3.1. Symbolic factorization is 

also used to set up appropriate data structures. With these steps added, Algorithm 7.1 can 

be described as follows. 

Algorithm 7 .2 

Assume that a feasible point x(0) is available and that the problem is under canonical 

form (7.3.1) accepted by Algorithm 7.1. 

1- Initialization 

k = 0, e = 1.0E-06, z = M, where Mis a large value, D = diag(x(0), 1). 

2- if c•T x(k) < E stop 

3- Compute y as follows 

a) Remove the full rows of matrix DA 'f 

b) Find symbolic representation or adjacency structure of A'D2A'T 

c) Find a permutation matrix P using the Nested Dissection Ordering Algorithm 

(see Appendix C) 

d) Find a symbolic factorization of PA'D2A•TpT, i.e. find the non-zero structure of 

the Cholesky factor L of the cross-product 

e) Fill the structure with the actual numerical values by applying Cholesky or 

Givens method 

f) Apply a forward and a back substitution to get the solution y' to the incomplete 

least squares problem 

g) Apply inverse ordering to get incomplete solution in the original ordering 
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h) Add effect of the removed rows to the solution y' by updating it using Algorithm 

7 .1 resulting in y 

4- Compute p = De' - (DA'T)y - (c'Tx•(k)/n)e 

5- Normalize p, i.e. p' = p/ IIPII 
6- x•(k+l) = e - exp', where ex is the steplength 

7- Compute ( ) D ,(k+l) 
k+l X 

X =----
T.D ,(k+I) e X 

(k+l) X(k+l) 
8- Compute x = - 1- 1 k+l 

Xn 

9- D = diag(x(k+l)), c•T = [cT, -cTx(k+l)], k = k + 1, go to 2-

Although sparse techniques such as updating and ordering were dealt with 

respectively in Chapter 3 and Appendix C, it remains to clarify the procedures involved in 

steps b, d, e and f of above algorithm and also the data structures used in its FORTRAN 

77 code. 

7.3.1.1 Adjacency Structure of A'D2A•T 

Ordering algorithms are graph algorithms known to be sensitive to the way the graphs 

are represented. In our case, to proceed with the reordering of the cross-product A'D2A'T 

and set up the data structures for the Cholesky factor, it is essential to efficiently store its 

nonzero structure and retrieve adjacency relations. Thus, the adjacency structure of a 

matrix is the representation of its graph. 

Let G(x, E) be a graph with N nodes. The adjacency list of a node xe X is a list 

containing all adjacent nodes to x and the structure of G is the set of such lists for all its 

nodes. The implementation of the structure is done by storing the adjacency lists 

sequentially in a one dimensional array ADJNCY along with an index vector XADJ of 

length N+ 1 containing pointers to the beginning of the lists in ADJNCY. The extra entry 

XADJ(N+ 1) points to next available location in ADJNCY [George & Liu, I 98 I]. 
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G: 

ADJNCY: 3 4 

XADJ: 1 3 6 8 9 11 13 

1 2 3 4 5 6 7 

Fig 7. l · Adjacency Structure of a Graph 

The attractive feature of this approach is that the structure of (A'D)(A'D)T is found 

without explicitly forming the cross-product. 

7.3.1.2 Symbolic Factorization and Storage Scheme 

After applying the nested dissection ordering algorithm, a permutation matrix P is 

returned which will help reduce fill-in during the factorization process of PA'D2A'TPT. 

However, before proceeding with the actual numerical factorization, a simulation of it, or 

symbolic factorization is carried out to set up the data structures to contain the Cholesky 

factor in sparse form. The advantage of this approach is that the data structures are static; 

thus set up once for all, as the structure of the matrix does not change from iteration to 

iteration. Note that at this stage the numerical values of the Cholesky factor are not 

explicitly computed. 

The data structures returned by the symbolic factorization are a sparse storage scheme 

known as the compressed scheme of Sherman, cited in [George & Liu, 1981 ]. The 

scheme has a main one-dimensional storage array LNZ which will contain all nonzero 
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entries in the lower triangular factor of PA'D2A•TpT column-wise, an INTEGER vector 

NZSUB which will hold the row subscripts of the nonzeros, and an index vector XLNZ 

whose entries are pointers to the beginning of nonzeros in each column in LNZ. In 

addition, an index vector XNZSUB is also used to hold pointers to the start of row 

subscripts in NZSUB for each column. The diagonal elements are stored separately in 

vector DIAG. 

7.3.2 Input Data for Codes of Algorithm 7.2 

Real world problems usually are stored in MPS format which is standard in industry. 

The fonnat, mainly, consists of three sections: constraints type, constraints entries stored 

column-wise including the cost vector and the right-hand side. Other sections may be 

added such as bounds on variables and free constraints. 

Example 7.1: 

NAME PROBl 
ROWS 

N FOB0000l 
G ROW0000l 
G ROW00002 
G ROW00003 

COLUMNS 
COL0000l 
COL0000l 
COL00002 
COL00002 
COL00003 
COL00003 

RHS 
RHS 
RHS 

ENDATA 

FOB0000l 
ROW00002 
FOB0000l 
ROW00002 
FOB0000l 
ROW00002 

ROW0000l 
ROW00003 

-5.000000 ROW0000l -2.000000 
-4.000000 ROW00003 -3.000000 
-4.000000 ROW0000l -3.000000 
-1. 000000 ROW00003 -4.000000 
-3.000000 ROW0000l - 1. 000000 
-2.000000 ROW00003 -2.000000 

-5.000000 ROW00002 -11. 000000 
-8.000000 

The problem under MPS format is read into a one-dimensional array ALIST of length 

NZ, which is a column-wise storage of the problem matrix. Slack variables are added 

according to the type of constraints encountered as well as the two columns, -band -(Ae -

b) required by the canonical form. AUST is accompanied with two INTEGER vectors, 

!COL and IT, with lengths NZ and N+ 1, N being the number of total variables in the 
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canonical form. !COL contains the row subscript of each nonzero in AUST, while IT 

contains pointers to the beginning of each column. 

Our implementation requires that we repeatedly form the matrix A'D2A'T as D 

changes from iteration to iteration. Thus, to avoid searching for the rows of A' in A LIST, 

we preferred to store again the matrix row-wise. This may seem inefficient regarding 

space. However, it makes sense from the time point of view. Consequently, we have 

another trio of vectors RA(NZ), IA(NZ) and NA(M+l) containing matrix A' row-wise. 

'These arrays are filled in once only by performing a fast sparse-matrix transposition after 

ALIST, ICOL and IT have been constructed. 

7 .3.3 Computational Experience 

Problem Ori~inal Form Canonical Form z* 
Rows Cols Rows Cols Nonzeros Density 

Chvtll 16 11 17 28 142 29.83 -1402 1.04 
Chvt12 17 13 18 32 114 19.79 -273382.1 
Alfaut 38 33 39 72 301 10.72 -12233742 
RandD 39 15 40 56 396 17.68 -9474.4845 
Scsdl 77 760 78 762 3268 5.43 8.666667 
Scagr7 129 140 130 187 782 3.22 -233 1390 
Scsd6 147 1350 148 1352 5824 2.91 50.50000 
Sc205 205 203 206 319 911 1.39 -52.20206 
Sctapl 300 480 301 662 2688 1.35 1412.250 
Scfxml 330 457 331 602 3203 1.6 1 18416.76 
Scagr25 471 500 472 673 2852 0.90 -14753433 

Table 7.1 Test Problems Statistics 

LPKARl was tested on the problems listed in Table 7.1 whose origins are as follows: 

Chvtll and Chvtl2, respectively, are a farm planning LP model and a case study in 

forestry described in Chv~tal (1983). Alfaut and RandD were borrowed from ICL LP3 

manual ( 1973). The remaining problems are standard test problems supplied to us by Dr. 
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Etienne Loute of the Catholic University of Lou vain, Belgium and described in Ho and 

Loute (1981). 

The results reported below (Table 7.2 through 7.5) concern the performance of 

Algorithm 7.1 in conjunction with the nested dissection ordering algorithm and the 

updating algorithm for least squares. Four versions of LPKARl were run on all the test 

problems. 111e versions differ in the ways sparsity is exploited. Four cases arise: 

Case 1: Ordering and partitioning were not implemented in LPKAR l (fable 7.2). 

Case 2 : The nested dissection ordering algorithm was implemented, but no 

partitioning was considered (fable 7.3). 

Case 3: The partitioning or updating Algorithm 7.1 was implemented, but no 

ordering was performed (Tables 7.4). 

Case 4: Both ordering and p~titioning were implemented in LPKARl (Table 7.5). 

Beside the CPU time (in sec.) and the number of iterations taken by the four versions 

of LPKAR 1 on all the test problems, a column containing the number of non zeros in the 

Cholesky factor for each problem is included. This column, with the heading "R 

nonzeros", clearly shows advantages and disadvantages of both ordering and updating 

techniques. 

Problems R Nonzeros Iterations CPU(s) 

Chvtll 136 10 0.23 
Chvtl2 153 9 0.20 
AJfaut 741 16 1.94 
RandD 780 14 2.32 
Scsdl 3003 13 66.21 
Scagr7 7232 20 35.25 
Scsd6 10878 15 264.41 
Sc205 20914 23 157.25 
Sctapl 45150 28 669.00 
Scfxml 54519 25 797.36 
Scagr25 94244 29 1948.77 

Table 7 .2 Performance of LP KAR 1 (Case 1) 
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Problems R Nonzeros Iterations CPU(s) 
Chvtll 136 10 0.26 
Chvt12 153 9 0.23 
Alfaut 741 16 2.12 
Rand.D 780 14 2.26 
Scsdl 1390 12 64.29 
Scagr7 6230 18 30.25 
Scsd6 3167 14 240.45 
Sc205 20317 22 157.95 
Sctapl 45150 27 672.69 
Scfxml 54047 25 839.53 
Scagr25 79994 25 1404.74 

Table 7.3 Performance of LPKARl (Case 2) 

Problems RNonzeros Iterations CPU(s) 
Chvtl l 136 10 0.24 
Chvt12 124 9 0.16 
Alfaut 196 16 1.1 6 
Rand.D 771 15 2.13 
Scsdl 1408 13 42.05 
Scagr7 1250 18 9.56 
Scsd6 2779 14 217.32 
Sc205 1574 22 17.92 
Sctapl 8286 28 153.56 
Scfxml 12075 25 204.31 
Scagr25 4922 28 177.99 

Table 7.4 Performance of LPKARl (Case 3) 
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Problems RNonzeros Iterations CPU(s) 
Chvtll 136 10 0.24 
Chvtl2 61 9 0.14 
Alfaut 104 17 1.25 
RandD 690 14 1.88 
Scsdl 1393 12 49.52 
Scagr7 1116 19 10.59 
Scsd6 31 19 14 219.35 
Sc205 1507 22 19.39 
Sctapl 3736 27 128.90 
Scfxml 6812 26 180.13 
_Scagr25 4848 25 170.59 

Table 7 .5 Performance of LP KAR 1 (Case 4) 

In these experiments, the potential function as well as the objective function A of the 

canonical form (7.3.1) are monitored for some of the problems of Table 7.1. These 

functions are represented in the graphs below. The potential function is the logarithmic 

function (2.2. 1) of Karmarkar. 
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7.3.3.1 Hilbert-Type LP problems 

A version of LPKARl which does not take account of sparsity was tested on a set of 

LP problems whose constraints matrix is based on Hilbert matrix. These problems 

already used in limited experiments in Chapter 4, can be described as follows. They are of 

the form 

min cTx 

s.t. Ax~ b, 

X 0, 

where x e R0 , A e R0 xn, c e R" and b e R". Matrix A has entries [aij] = [ 1/(i+j) ], for 

i = 1, ... , n andj = 1, ... , n. The RHS is given by 

n 1 
bi= I -.. , 

. lHJ . J= 

The cost vector is given by 

2 n 1 
C·=-+ """-

1 i+l ~i+j ' 
J- 2 

i= 1,2, ... ,n . 

i = l,2, ... ,n. 

The primal optimum solution to these problems is x* = (1, 1, ... , l)T. Problems with 

n = 4, 6, 10, 15, 20, 25, 30 and 40 were solved and the results depicted in Fig.7.7. 

As one would expect, the number of iterations is approximately the same for problems 

with n > 6. Around iteration 16, the potential function levels out and shows hardly any 

noticeable improvement. 
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Fig 7.7 Results from LPKARl on Hilbert-Type Problems 

7.3.3.2 Klee-Minty Problems 

The class of problems originally proposed by Klee and Minty ( 1972) is well known as 

linear programming problems with n variables for which the simplex method with various 

pivot rules takes an exponential, in n, number of pivots to reach the optimum. The 

following form due to Avis & Chvatal (1978) is considered in our experiments , as well as 

in [Iri & Imai, 1987]. 

i-1 i-j 
s.t.2I,µ xj +xi ~ l, (i = l, .. . , n), 

j=l 
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where O < µ < 0.5. The optimum solution of this problem is Xj = 0, (j = 1, ... , n-1) and 

Xn = 1. We performed experiments for the cases with µ = 0.4 and n = 6, 12, 18, 24, 30 

and 40. The results are shown in Fig 7.8. 
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Fig 7.8 Results from LPKARl on Klee-Minty Problems 

Although the iteration count is still low for the Klee-Minty problem, the number of 

iterations seems to grow slightly with the size of the problem. But it is nothing like the 

simplex method. For the Klee-Minty problem of order 40, for instance, the standard 

simplex would take approximately 1012 iterations, as compared to 27 iterations the 

Karmarkar algorithm takes to find the optimum solution. The growth with the size is 

logarithmic and not exponential. 

7.4 Alternative Least Squares methods 

LPKARl uses Cholesky method to deal with the least squares problem of step 4. Two 

other versions of it were written which respectively use Givens orthogonalization method 

and the iterative technique of Paige and Saunders (1982), which is a conjugate gradient 

method whose FORTRAN 77 code is known as subroutine LSQR. Although small 
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problems were successfully solved with both versions, on larger problems they seemed 

slow and unreliable. In the case of Givens rotations, the data structures are mainly those 

used for Cholesky method except for a supplementary one-dimensional array to handle 

the nonzeros created during the zeroing process. 

Subroutine LSQR was intended for large sparse linear systems and least squares 

problems. Its use requires the problem matrix to be stored in suitable sparse data 

structures and a user supplied routine that performs the product of a matrix A (or its 

transpose AT) in sparse format with a vector. More precisely the routine will compute x = 

x + Ay and y = y + ATx. Parameters such as tolerance, machine precision and iteration 

limit must also be set before calling the subroutine. 

The data structures mainly consist of three one-dimensional arrays: RA(NZ), JA(NZ) 

and NA(M), where NZ is the number of nonzeros in the problem matrix and M the 

number of rows. The problem mi:!,trix is stored row-wise in RA, i.e. nonzero elements of 

row one are stored first then those of row two and so on. The corresponding column 

index of each nonzero is stored in JA, an INTEGER array. Another INTEGER array, 

NA, holds the number of nonzero elements of each row of the matrix. 

The main difficulties encountered with LSQR were probably due to instability. The 

solutions returned by the subroutine were bad approximations. The iterative process was 

never stable and took a number of iterations most of the time equal to the iteration limit 

parameter set up at the start of the procedure. The lack of a preconditioner may be the 

cause for this inefficiency. 

7.5 Applying Algorithm 7.1 when z* is not a priori known 

Before dealing with the unknown optimum objective value, it is necessary to find a 

starting feasible point. This can be done by solving a feasibility problem, otherwise 

known as Phase 1 problem. This problem is similar to the one solved by LPKAR I. 

Alternative forms are described in Chapter 2. 

The unknown optimum objective value is dealt with by updating the initial value of z 

in Algorithm 7.1 with c T x(k) after iteration k. This approach is known as the cutting 
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objective function method. Algorithm 7.1 with the cutting objective is a primal-dual 

algorithm. The vector y computed in step 4 is dual feasible. At the end of Phase 2, y is 

the true dual optimum solution if the problem is nondegenerate, i.e. x* has at least m+ 1 

positive entries, where m is the number of constraints. Otherwise the dual solution is not 

unique. 

LPKAR2 is a FORTRAN 77 code of this algorithm. Step 4 of Algorithm 7.1 is 

canied out using the Nag subroutine F0IBLF for computing the pseudoinverse. 

The code was 1un on a subset of the problems listed in Talle 7.1. The results of these 

runs are given below. For each problem 5 columns were produced, which respectively 

are: The iteration number, the optimum step ex taken at that iteration, the primal objective 

value, a lower bound on it and the dual objective value. The blank entries to the last two 

columns correspond to Phase 1 iterations in which an interior feasible point is found. 

The stopping criterion used i~ based on the gap between the primal objective and its 

lower bound. Steplength ex is computed at each iteration using the blocking variable 

technique described in Chapter 3. 

Problem Name: RandD 

ITERAT. ex PRIMAL L.BOUND DUAL 
------- ------ -------

1 6.441861428 0 . 6531709614 
2 4. 559867337 0.82Ql82E-0l 
3 1.445073937 0.77i727E-03 
4 4. 621143626 -8884.832099 -16428.78711 -16175.50098 
5 3.841302410 -9320 .974037 -13733 .94824 -13591.17871 
6 3.682589382 -9412.218261 -11239. 68359 -11188. 44922 
7 3 .033384722 -9436.795379 -11 637. 96973 -11584 .12500 
8 2 . 566 412224 -9450.617668 -.100000E+21 -.9759"0E+20 
9 2 . 358197628 -9463 . 677588 -9715 .130859 - 9708.828125 

10 1. 669588275 - 9466.686918 -94 91. 0478 52 -9490.426758 
11 2. 635119288 -9467.923004 -9471. 314453 -9471 . 197266 
12 1.636255498 -9468. 274640 -94 68 .140625 - 9468 .111328 
13 6.255412489 -9472.807924 -9467.330078 -9467.324219 
14 2.247326661 -9477.173856 -9565.544922 -9563.179688 
15 6.222729319 -9 475.909702 -9474.494141 -9474. 494141 
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Problem Name: Chvtll 

ITERAT. (l PRIMAL L. BOUND DUAL ------- ------ -------
1 2.865809331 0.9934241435 
2 3.966572662 0. 7941611308 
3 2 . 050811475 0.290249E-01 
4 1. 008751969 0 .287112E-03 
5 9 . 301639104 -11483 . 16638 -19023.27539 -18619.72656 
6 2.452507189 -13027.91157 - 17058.04688 -16811. 80273 
7 1.972840325 -13286.31012 -17406.45898 -17182.81641 
8 14.74104330 -13651 . 34425 -16813.26172 -16627.70703 
9 2 . 797717475 -13771.54418 -16001. 35547 -15872.47559 

10 4.927777042 -13778.51607 -16125.33691 -15988.55273 
11 5.805054359 -13779.43317 -16142.97949 -16004.45898 
12 21. 4580399?. -13791. 03023 -16141.19727 -16002.74707 
13 10.02461707 -13878.35165 -15772.87598 -15660.45605 
14 4.149567088 -14012 . 74683 -14595.31836 -14553.69141 
15 20.147874 43 -14015.04564 -14152.19531 -14144.03809 
16 20 . 12815984 -14015 . 08041 - 14123 . 12012 -14116 . 76367 
17 25.84468262 -14015 . 08173 -14122. 71289 -14116. 38184 
18 30.98095870 -14015.08194 -14122.70898 -14116.37793 
19 108.0583358 - 14015 . 07551 -14122.70898 - 14116. 37793 
20 4 . 082054439 -14015.33463 -14122.70898 -14116. 37793 
21 7700.428266 -14015 . 08186 -14122.70801 - 14116. 37695 
22 4 . 081874178 -14015 . 08029 -14122.70898 -14116. 37793 
23 24228 . 34324 -14015. 05874 - 14122 . 70703 -14116 . 37598 
24 237 1190485 . -14015 . 22'300 -14122.57227 -14116 . 25000 
25 70 . 28025742 -14021 . 00474 - 14117 . 38281 -14111 . 38184 
26 44 .80198279 - 14021 . 03772 - 14021.04102 -14021 . 04102 

Problem Name : Chvt12 

ITERAT . (l PRIMAL L. BOUND DUAL 
------- ------ -------

1 4 .403545515 0.9944982521 
2 2. 450272242 0.5077499693 
3 1.131387576 0.965917E-02 
4 1.005887171 0.944669E-04 
5 2. 147604523 -228535.2657 -642805.9375 -626204 . 3125 
6 3.016425300 -250208 . 7442 -317029 . 2813 -314349. 6250 
7 2 . 819401851 -263412.8438 -312417.2500 -310173.6875 
8 3.022792842 -267849 . 2021 -315956.2188 -313710 .1875 
9 4.931871498 -269401 . 4924 - 315477 . 8438 - 313141.0000 

10 6.209180867 -269913 . 1435 -314532.0625 -312117. 5000 
11 9.077869172 -273307 . 8685 -309012.2813 - 306870.6875 
12 29 . 57530165 -273377.0912 -273385.5000 -273385.3125 
13 29 . 02232090 -273381.8568 - 273382.0000 -273382.0000 
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Problem Name : Alfaut 

ITERAT. a PRIMAL L.BOUND DUAL 
------- ------ -------

1 5.020584304 0.9987008107 
2 5.016395983 0.7061022659 
3 1.224532672 0.226881E-0l 
4 0 . 997201850 0 . 228803E-03 
5 7 . 701221428 -9256687.028 -36732648.00 -36303604.00 
6 3 . 943619602 -10490237.48 - 31063900.00 -30724012.00 
7 2.934036697 -11106791. 07 -16443347.00 -16347721. 00 
8 3. 248521773 -11658852. 95 -14401056 . 00 -14348024.00 
9 7.467750399 -12046247.56 - 13226854.00 -13200235.00 

10 4. 741095164 -12171514. 61 -12525954.00 -12517692.00 
11 5.997308168 -12218466.46 -12263207.00 -12262387.00 
12 8 . 387838113 -12230475.94 -12236620.00 -12236546.00 
13 13 . 59068778 -12233368.10 -12234 132.00 -12234121 .00 
14 27 . 19466703 -12233714. 86 -12233751.00 -12233751.00 
15 65 . 21966319 -12233741. 39 -12233742 . 00 -12233742.00 

Problem Name ·: Scagr7 

ITERAT . a PRIMAL L.BOUND DUAL 
------- ------ -------

1 7.405831680 0 .9 981415303 
2 6 .199722355 0.9863109023 
3 3 .120554655 0.9243653430 
4 1.987366289 0.988973E-0l 
5 . 9975537117 0.108856E-02 
6 9.235479623 -2023372 .180 -21206690 . 00 -21084080.00 
7 3. 001158895 - 2171044 . 627 -10496797.00 -104420 40 . 00 
8 3 . 235121117 -2250286.867 -3377933 . 750 -3370697.250 
9 4. 528271088 -2293157.895 -2505680.500 -2504344.000 

10 6.289297716 - 231 9053.392 -2383567.750 -2383144.500 
11 10.90774247 -2328609.473 -2354395 . 750 -2354224.000 
12 7.018505189 -2329835.032 - 2335393 . 000 -2335359.000 
13 9 . 477241468 -2330885.659 -2334042 . 250 -2334019.500 
14 7.012442289 -2331150 .209 -2333566.750 -2333549.250 
15 8 . 106021664 -2331280 . 375 - 2332203 . 250 -2332196.750 
16 7 .107331053 - 2331328 .956 -2331503 . 750 -2331502 . 750 
17 18.04304854 -2331369.400 -2331467 .000 -2331466. 500 
18 14. 72354161 -2331381.338 -2331431. 750 -2331431. 500 
19 21.6 4842011 -2331386.993 -2331391.500 -2331391.500 
20 109.6028688 -2331389.556 -2331389.750 -2331389.750 

7.6 Comparative Results between LPKARI (Case 3) and LINDO 

LINDO (Linear INteractive Discrete Optimizer), [Schrage, I 983], is a commercial 

package which does Linear as well as Integer and Quadratic Programming. It is available 

on Aston University's VAX 111750 computer. To have an idea about the performance of 
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our codes, we ran a version of LPKARl (Case 3) and LINDO on nine of the test 

problems given in Table 7.1. The results are recorded in Table 7.6. 

LPKARl (Case 3) LINDO 
Problem CPU(s) IT CPU(s) IT 
Chvtll 5.79 15 3.69 11 
Chvtl2 5.60 14 3.48 9 
Alfaut 13.30 15 5.91 43 
Scsdl 428.62 12 84.23 454 
Scagr7 81.18 18 26.89 213 
Sc205 148.73 21 54.89 207 
Sctapl 1171.95 26 89.61 412 
Scfxml 1614.57 24 191.56 654 
Scagr25 1514.95 27 377.13 1284 

Table 7.6 Comparative Results: LPKARl (Case 3) v UNDO 

From the iteration count point of view, LPKARl is superior to LINDO except on the 

small problems Chvtl 1 and Chvtl2. However, LINDO requires less CPU time to solve all 

the problems. 

Note that the difference in CPU times required by LPKARl (Case 3) given in Table 

7.4 and in the above table, is due to the computers used; the results of Table 7.4 were 

obtained on a VAX 8650 machine (6.5 mips), while the above results where obtained on 

a VAX 11/750 machine (0.7 mips). 

7.7 Conclusion 

Throughout these experiments, it is confirmed that Karmarkar's algorithm preserves 

its attractive features on various types of problems especially the real world problems 

listed in Table 7.1. These features, namely, are its low iteration count (logarithmic in the 

size of the problem) and its acceptance and use of the duality aspects of linear 

programming. Although the work in an iteration of the algorithm is substantially higher 
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than that of the simplex [Tomlin, 1985], it may be effectively reduced when existent 

sparsity techniques such as ordering and partitioning are used. In this way, large real 

world LP problems can be solved in realistic times as shown in Tables 7.2 through 7.5. 

The dependence of the performance of the algorithm on least squares techniques 

[Lindfield & Salhi, 1987] is also shown in those tables. This may be held against the 

algorithm. However, any improvement in the solution of the least squares problem can 

readily be used in Kannarkar's algorithm. 
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Chapter 8 

Conclusions and Further Development 

When Karmarkar's algorithm came to public attention in 1984 [Kolata, 1984; Emmett, 

1985], many criticisms were made regarding its alleged efficiency. It was thought to be 

inherently slow despite its polynomial complexity [Charnes et al., 1984]. Its applicability 

was restricted to a special class of LP problems with homogeneous constraints and 

optimum objective z* = 0. A feasible interior point is also required to start the algorithm. 

This is a restrictive requirement because it is known, (von Newmann, cited by Charnes et 

al., 1984), that any method which finds a feasible point to a linear programming problem 

can find its optimum solution. However, probably the most serious criticism concerned 

the algorithm being only primal with no prospects for the important duality concepts to be 

used; postoptimatity analysis was, thus, not possible. 

At the beginning of this thesis the Karmarkar algorithm was discussed in the context 

of early development of polynomial time algorithms for linear programming. 111eoretical 

as well as computational results of extensive research aimed at alleviating the difficulties 

of the original Karmarkar's algorithm and assessing its performance were reviewed. 

For efficient implementation of the algorithm, advanced least squares techniques are 

required. In this respect, and for the sake of completeness, this topic was also reviewed 

with emphasis on sparsity exploitation. It was found, after an early implementation of the 

algorithm, that the size of the step taken in the search direction, greatly innuences the 

convergence of the algorithm. Its optimum choice and, in general, the conditions under 

which large steps are allowed, were investigated. 

167 



The duality aspects of the algorithm were studied in conjunction with three main 

variants due to Todd and Burrell (1986), Gay (1987) and Ye and Kojima (1987). The 

variant of Ye and Kojima seems to be superior, because it works under mild assumptions, 

it is easy to implement and theoretically it generates better bounds on the optimum 

objective value. However, from their paper it was not clear how, in practice, these 

bounds are found. A procedure which works on most problems was, thus, developed. 

With dual variables being available through these variants (discussed in Chapter 4), we 

were encouraged to investigate their potential use for postoptimality analysis. 

Postoptimality analysis for the right-hand side, the cost and the rim was briefly studied as 

a result. 

Following the underlying ideas of interior point methods, an attempt was made to 

design an algorithm for LP based on generating a finite sequence of Chebyshev points. 

The algorithm was shown to work on small problems. However, in its present form, it 

does not seem to be efficient. Improvements to the algorithm were suggested. 

The study of decomposition and partitioning as strategies for reducing the work in an 

iteration of the Kannarkar algorithm, constitutes one of the main objectives of this thesis. 

Structured LP problems being an important class of problems frequently occurring in real 

applications, it was felt that extending the Karmarkar algorithm to such problems was 

worthwhile. As a consequence, a specialized variant of the dual Kannarkar algorithm for 

structured LP problems was designed and tested on randomly and non-randomly 

generated problems. It appears from the experiments that the partitioning variant is 

superior to Algorithm 4.2 on structured LP problems. A practical implementation of a 

variant of the Karmarkar algorithm, in which sparsity preservation and exploitation is the 

central issue, has been developed. The updating algorithm of Heath (1984) and the nested 

dissection algorithm [George & Liu, 1981] were used in the resulting code. The code was 

shown to work on various types of problems in realistic CPU times. Alternative least 

squares methods were also used in different versions of the code. The perfonnance of the 

Karmarkar algorithm was discussed in Chapter 7. 
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Among aspects of Karmarkar's algorithm and linear programming discussed or 

investigated in this work, postoptimality analysis is without doubt the topic that needs to 

be further studied. Without it simplex would not be the powerful decision making tool it 

is today. It would be very interesting and useful, therefore, to know how, in real 

applications, postoptimality analysis can be carried out via Karmarkar's algorithm or its 

variants. Indeed, the future of the algorithm would be rather bleak if it is found to be 

unsuitable for postoptimality analysis in real applications. It is unfortunate, due mainly to 

time limitations, that our investigation is not conclusive in this respect. 

The Chebyshev approach discussed in Chapter 5, is also worthwhile to further 

investigate. The method is strongly related to the simplicial algorithm of Levin and 

Yamnitsky ( 1 ~82). To our knowledge, there is no efficient implementation of this 

algorithm. Our approach may ~1elp understanding how to efficiently implement it. 

Chebyshev problems convert into LP problems with very sparse objective vectors. Only 

the entry corresponding to the deviation is nonzero. Exploiting this sparsity may be 

beneficial. 

At the end of Chapter 6, an attempt to justify decomposition (lemma 6.1) using the 

concept of volumes corresponding to the potential function of Karmarkar was made. The 

partitioning algorithm developed in that chapter, was not based on that concept. However, 

the idea is attractive as it brings more closely the projective and the ellipsoid algorithms. 

Indeed, recent developments show the merits of such an approach. Ye (1987), showed 

that the potential function of Karmarkar characterizes the logarithmic volume of an 

ellipsoid that contains all of the dual solutions. As the potential function decreases, the 

volume of the ellipsoid monotonically shrinks lo zero. Todd (1988a), also discusses the 

construction of a dual ellipsoid during the course of the Karrnarkar algorithm. The idea of 

solving smaJler problems and working in lower dimensions, in order to start with an 

overall smaller volume, may be profitable for quick convergence in both the Khachyan 

and the Karrnarkar algorithms. 
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Decomposition is also attractive from the point of view of parallelism or concun-ency. 

We have shown that favourable structure present in large LP problems may be used to 

advantage and our partitioning algorithm lends itself readily to parallel processing. 

1 :lowever, it is in large, dense and unstructured linear programming problems that parallel 

architecture and concurrent processing are expected to have an impact. In this respect, the 

general form of Algorithm 6.1, which applies the concept of decomposition to 

unstructured problems, is worth investigating. Note that a parallel version of Karmarkar's 

algorithm has been developed by Pan and Reif (1985). 

During the investigation of the Karmarkar algorithm, and the review of least squares 

techniques, codes were written in order to find out about the practical value of the 

methods. The codes are independent from one another. For instance, the code for the 

Karmarkar algorithm in which ordering and partitioning are used, is separate from the 

code in which no such measures are taken. It would, therefore, be interesting to put the 

programs in a library equipped with a user friendly interface. Depending on the size, 

density and condition of a LP problem, appropriate routines can, thus, be chosen for its 

solution. 

From our investigations it appears that Karmarkar's algorithm is a serious alternative 

to the simplex method. However, the questio ns raised here need to be answered before 

the algorithm is fully adopted as the standard method for linear programming. 
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Appendix A: Simplicial Algorithm of Yamnitsky and Levin (1982) 

Let L be the length of the input data of a LP problem, and Vo the volume of the 

smallest simplex So containing the feasible region K of the problem. According to 

Yarnnitsky (1982), given that Vv e K, v a vertex, lvl 2L, So can be the regular simplex 

with edges of length 2L. And the vertices of So can be determined without much work. 

To outline his algorithm, some definitions are necessary . 

Suppose that the regular 3-dimensional simplex (Fig A. l) is the enclosing initial 

polyhedron. 

Principal Edge "'M G 

T 

Principal Vertex 

Bottom Side 

Top Vertex 
0 

Constructing Hyperplane 

Splitting Hyperplane 

Fig A. I Splitting and Enclosing Process of the 

Simplicial Algorithm 

Definitions: 

Top Vertex: The vertex among cut off vertices which is most distant from the cutting 

hyperplane. Distance here refers to the largest interval (vertex to intersection point 

of principal edge with cutting hyperplane.) 
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Set SIDE= {OTB,OTA}, sides containing the principal edge OT. 

Set ET= {OB,OA}, all edges coming out of top vertex 0, except the principal edge 

OT. 

Set EB = {TB,TA}, all edges coming out of principal vertex T, except the principal 

edge OT. 

Set L = {L1, L2}, all points which are the intersections of the splitting hyperplane 

with edges from ET. 

Set N = {N 1, N2}, all points which are the intersection of the bottom hyperplane with 

lines joining M to points from L. 

Constructing Hyperplane: An (m-1 )-dimensional hyperplane containing M and all 

points of L. 

New Sunpl~x: Can be constructed with m+ 1 points, i.e. all points of N, the p1incipal 

vertex T and M. 

With these definitions in mind, the algorithm may be outlined as follows. 

Algorithm F: 

0- Construct initial simplex So containing the feasible region. 

1- Construct a hyperplane passing through the center of So, parallel to bottom side, 

resulting into set points G, Lt, L2. 

2- Define the constructing hyperplane which passes through L1, L2 and between top 

vertex O and intersection of principal edge and cutting hyperplane, i.e. point G. 

3- if the centre of the new simplex is optimal then stop, else go to 1-. 
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Appendix B Cholesky Decomposition 

The Cholesky method is a variant of Gauss elimination for symmetric positive 

semidefinite mm-matrices. If Mis such a matrix then it can be written in the factored form 

M = LLT, as depicted below. 

M11 M12 ··• M1n L1 I 0 L1 I L21 · · · Ln1 

M21 M22 ··· L21 L22 L22 ... Ln2 

= 

Mn1 Mn2 ··· Mnn Ln1 Ln2 ··· Lnn 0 Lnn 

Lis lower triangular and sometimes called square root of M, given its similati ty with 

the scalar case. The method, due to Cholesky and Banachiewicz is described in the 

following algorithm for computing L: 

for i = 1, ... , n do 

i-1 
L .. - M .. - ""1 

~-II - II ~JI (B. l) 
j=l 

j = i+ l, ... ,n (13.2) 

endfor 
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Appendix C: Sparsity Preservation and Ordering Algorithms 

Sparse techniques have been used in the implementation of the simplex algorithm, for a 

long time, before their application in any other domaine [Gill et al., 1984; Dantzig, 1963J. 

Commercial codes for large LP problems seem even to predate codes for sparse linear 

systems of equations. However, it should be noted that the simplex method reduces to the 

solution of a set of linear systems. 

One of the main problems in solving sparse systems is that when the matrix is 

factored, it suffers fill-in. In other words, sparsity tends to be destroyed. In the case of 

the normal equations, for example, the Cholesky factor L presents more nonzeros than the 

lower part of AT A. However, it has been observed that a judicious reordering of the 

matrix rows and columns can drastically reduce fill-in, i.e. the number of nonzeros 

created as a consequence of the factorization. Therefore, the computation and storage 

requirements are also reduced, if sparsity is exploited. Such a reordering is practically 

embodied in a permutation matrix, which is defined as follows. 

A permutation matrix Pis a square matrix whose columns are some permutation of 

those of the identity matrix. Pis orthogonal, i.e. pTp = I. 

If we consider again the system of normal equations AT Ax = b, then a reordered 

equivalent symmetric system is the following: 

P(ATA)PT(Px) = Pb. (C. l) 

The Cholesky method is still applicable to the above system. 

The ordering problem can, thus, be defined as that of finding a permutation matrix P. 

Although the main objective of ordering algorithms is to reduce the overall fill-in, 

there are approaches to the problem, with a different objective. That is reducing the 

number of operations by confining the fill-in to some part of the matrix, or locally. We 

can talk then about ordering algorithm with local or global strategies [Duff et al., I 986]. 

Global strategies have the advantage of being easy to design and to implement. They are 

the most popular and well studied. In the following, we will present two such algorithms, 
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namely the minimum degree algorithm of Markowitz, and the nested dissection algorithm 

of Alan George [George & Liu, 1981 ]. 

Before going into the presentation of the algorithms, let us see an example to illustrate 

the effect of reordering, on the process of factorization. 

Consider the symmetric system 

A X 

***** * 
** * 
* * * 
* * * 
* * * 

The Cholesky factor of A is 

L = 

* 
** 
*** 
**** 
***** 

= 

= 

I>, 

* 
* 
* 
* 
* 

L has nonzeros where the lower part of A has zeros. The factorization of A has caused 

the fill-in. However, if the system is reordered using the permutation matrix 

p = 

it becomes 

1 
1 

1 
1 
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A' x' = b', 

* * * * 
* * * * 
* * * = * 
** * * 

***** * * 

The factorization of the A' leads to the sparse Cholesky factor 

L' = 

* 
* 

* 
* 

***** 

The reduction of fill -in leads to the reduction of work from O(n3) operations for the 

original system to O(n) operations for the reordered system. 

Beside ordering algorithms, there are more direct ways of exploiting sparsity and 

preserving it. For some algorithms, like the Cholesky method, it is easy to see how 

sparsity comes to be destroyed. The computation of the cross-product AT A is the source 

of the problem. A voiding this computation is a step in the right direction, to preserve 

sparsity. Orthogonalization methods were discovered as a result of such strategy. Their 

success is, however, also limited. 

C-1 Some Useful Terminology and Definitions in Graph Theory 

T he formal approach to the ordering problem is based on graph theory, which is 

appropriate for handling sparse matrices. Some terms and definitions need be given here. 

A graph G consists of a set of vertices X, and a set of edges E. It is noted G = (X, E). 

If graph G has n nodes then an ordering is a mapping of { I, 2, ... , n} onto X. 

Let Xi and Xj e X, be two nodes of G, then {Xi, Xj} is an edge or element of E, if the two 

nodes are linked. 
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For a symmetric nxn-matrix A, we can associate a graph GA= (XA, EA), where XA 

is the set of diagonal elements and EA the set of links such that aij = aji,;; O and i -:t j. 

Consider the following matrix A with diagonal elements numbered from 1 to 5. 

{l) * 
* (2) * 

(3) * 

* 
* * (4) * 

* (5) 

The graph GA of A can be represented as follows 

G: 
A 

Fig C.1 Graph Representation of a Matrix 

If we consider a permutation matrix P I, the graphs of A and PAPT are similar. 

However, the labelling of their nodes are different. Thus, an ordering is just a different 

labelling of the nodes [George & Liu, 1981]. 

Two nodes Xi and Xj of G are adjacent if { Xi , Xj} e E. 

The degree of a node Xi, noted deg(xi), is the number of connections it has with other 

nodes. In the above graph G, deg(x4) = 3. 

The adjacency structure of a graph is important in the implementation of ordering 

algorithms. 

The diameter of a graph is the length of the longest path between two nodes. 

Nodes being at the extremities of the longest path are termed peripheral, ore nodes 

with highest eccentricity. 
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Pseudo-Peripheral nodes are those with high eccentricity, but not with the highest 

eccentricity. 

C-2 The Minimum Degree Algorithm 

This is by far the most popular ordering algorithm. The minimum degree algorithm of 

Tinney is based on the Markowitz scheme for reducing fill in the solution of unsymmetric 

systems of linear equations by Gauss elimination [Duff et al., 1986; George & Liu, 

1981]. The algorithm startegy is to start reducing the columns with few entries, which 

corresponds to choosing nodes with least degree. This gave the name of the algorithm. 

For a given symmetric graph, the algorithm may be sketched as follows. 

1- lnitilize i to 1. 

2- Choose node Xi with minimum degree from graph Gi-t = (Xi-1, Ei-J). 

3- Eliminate node Xi from Gi-1• 

4- i = i + 1, 

if ( i > Card(X) ) then stop else repeat from 2-. 

The algorithm produces a new labelling of the graph. 

When choosing the node with lest degree, the situation where many such nodes are 

present, often arise. A random choice is then made, corresponding to a tie-breaking. 

However, tie-breaking strategies give different versions of the minimum degree algorithm 

[George & Liu, 1981]. 

Application of the algorithm to the graph of matrix A, above, proceeds as follows. 

Select node (}) relabel it 1. 
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Select node G relabel it 2. 

Select node G relabel it 3. 

Select node (J) relabel it 4. 

Last node (3) relabel it 5. 

Fig C.2 Minimum Degree Algorithm Applied to 

Graph C.l 

The reordered graph becomes: 

G T 
PAP 
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The permutation matrix produced by the algorithm is 

1 
1 

p = 1 
1 

1 

thus 

(3) * 
(5) * * * 

PAPT= * (1) * 
* * (2) * 

* * * (4) 

The underlying theory of the Markowitz strategy is beyond the scope of this work. 

For details see [Duff et al. 1986, p.128]. It must be said, however, that the algorithm is a 

heuristic approach and may fail to produce the "best" ordering. Proving that the produced 

ordering is optimal is NP-complete. 

C-3 The Nested Dissection Algorithm 

The nested dissection algorithm is similar to the minimum degree algorithm in that it 

attempts to reduce the overall fill-in, and both produce similar orderings. The nested 

dissection, however, according to George and Liu ( 1981 ), has the advantage of speed and 

modest and predictable storage requirements. 

The algorithm is a devide-and-conquer method: A heuristic algorithm is used to to 

choose a set of nodes, (separator), such that it devides the given graph, and its matrix, 

into two parts of approximately equal size. The nodes of the two parts are renumbered 

consecutively followed by those in the separator. The process is then recursively repeated 
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on each part and so on, until the dissection of the remaining components is no longer 

possible. 

* * * * * 

* * * * * 

I* * I * I * * I 
* * * * * 

* * * * * 

Fig C.3 Nested Dissection of a 5x5 Grid 

The nested disse~tion algorithm may be sketched as follows. 

0- Gk- 1 = GA. 

1- Disconnect the graph Gk of the matrix into two subgraphs Gi and Gj by removing 

some nodes, (separator). 

2- Relabel the nodes starting from those of the disconnected sub-graph, followed by 

those in the separator. 

3- If card(Xi) and card(Xj) $ 2 then stop, 

else repeat from 1- fork = i and k = j. 

endif. 

Example: Apply the Nested Dissection Ordering to the following graph 
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The corresponding matrix and its reordering, as in above graphs, according to the 

nested dissection algorithm, are: 

(1) * * 
* (2) * 
* (3) * 

* * (4) * * 
* (5) * * 

* (6) * 
* (7) 

* * (8) 

A 

(1) * 
(2) * 

* * (3) 
(4) 

* 
* 

* * 
(5) * 

* * (6) * 
* * 

* 

PAPT 

* (7) * 
* (8) 

Although the minimum degree algorithm is widely used, it can be shown that the 

nested dissection method is more advantageous in many cases. The major feature of the 

algorithm is that its performance can be analysed for some model problems, and it has 
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been shown to produce optimum ordering for these problems ( 25-node problems arising 

in finite element). Its operation count and the fill-in introduced can be precisely identified 

(see Duff et al., 1986). O(n3) operations are needed for nxn grids and the fill-in is 

O(n2Ln(n)). 

On the other hand there are no known formulae for the order of fill-in or operation 

count for the minimum degree algorithm. The difficulty of analysing the performance of 

the algorithm stems from the fact that tie-breaking is critical. There are many tie-breaking 

strategies and they greately influence the performance of the algorithm. (One such strategy 

is, for example, to choose the node of minimum degree which is first in the original 

order.) Whatever strategy used, the nested dissection algorithm seems to be superior for 

most problems, both in speed and storage requirements. 
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Appendix D Updating Algorithm for Least Squares 

Updating methods are an important feature of LSQ problems. In the real world 

problem data, most of the time, are incomplete. Often new observations are made after the 

problem has been already solved. It is crucial, therefore, to be able to incorporate the 

effects of these observations into the solution without having to solve it de nova. In our 

case, however, the usefulness of such techniques is mainly concerned with efficient 

exploitation of sparsity in the problem data. When the problem matrix is sparse except for 

few rows, it is attractive to discard the nonsparse rows, which will ce11ainly cause severe 

fill-in in the Cholesky factor. The resulting incomplete problem is then solved and its 

solution updated, taking account of the removed rows. In the following we shall present 

an updating algorithm, due to Heath (1981 ), a modification of which we use in 

implementing some variants of ~armarkar's algorithm. 

111e problem to solve is 

min lib -Ax ll2• 
X 

Consider the partitioning of A and b into 

Then (D.1) is written as 

Let r1(x) = b1 - A1x and r2(x) = b2 - A2x and solve the incomplete problem 

using orthogonal factorization 
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If z is the effect of the removed rows on the solution x to (D.1) then x = y + z. Thus 

r1(x) = bt - A1(y + z) = b1 - A1y - A1z = r1(y) - A1z. (D.3) 

Similarly r2(x) = r2(y) - A2z. 

Because ri(y) is othogonal to the column space of A1T then 

From (D.3) we can write 

Replacing A 1 T by its QR decomposition, we can write 

(RT O)Qq(x) = - (RT O)QA1z. 

Thus Qr1(x) = - QA1z. Since length is invariant under an orthogonal transformation, we 

have 

and 

Thus, minimizing II r1 (x) 1122 is equivalent to minimizing II A 1z 1122. (D.2) can, therefore, 

be written as 
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(0.4) 

Again invariance of length under orthogonal transformations permits to write 

(0.4) is then equivalent to 

(0.5) 

Let u = Rz and v = r2(y) - A2R·1z and write (D.5) as 

(0.6) 

More explicitly we solve the problem 

(0.7) 

Using an orthogonal matrix U, (D.7) may be cast into 

where 

(0.8) 

Thus 

or 

197 



Now, we have the triangular system Ls= r2(y), which delivers s. The vector u is 

obtained from 

with t chosen as zero to minimize the norm, and the updating vector is z = R·1u. 

Algorithm D 

1- Solve incomplete problem (D.2) using Cholesky method or orthogonal 

factoriz;ation to obtain y = R·lc. 

2- Compute orthogonal factor:ization (D.8). 

3- Compute r2(y) = b2 - A2Y. 

4- Computes = L·lr2(y). 

5-Compute 

6- Compute z = R•lu. 

7- X = y + Z. 

Note: Algorithm D needs storing orthogonal matrix U whose dimension is that of x. 

A more efficient version of this algorithm is given in Chapter 3, (Algorithm 3.1 ). 
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Appendix E: MATLAB code of Agorithm 6.3 

% Implementation of the Partitioning Karmarkar Algorithm, 
% Problem has form: min c Tx s . t. Ax=b, x ~O 
% 
clear; 
% Read problem data given in file prob 
prob ; 
% 

% Set up problem into canonical form 
% 

A( :, nn+l) = b-A*ones(nn , 1) ; 
A ( : , nn + 2 ) = - b ; 
c= [ zeros ( l , nn) , 1] ; phase=l ; nn=nn+2 ; 
x=ones(l , nn) ; zp=lOOOO ; zO=O ; z=lOOOO ; y=zeros(mm, 1) ; 
yl=zeros (mm, 1 ); k=O ; 

% initialize tO to clock 

tO=clock ; 

% Main loop 
% 

% 

while abs (zO-zp)/(l+abs(zp))>0 . 0001 
D=diag (x (l : nn)); 
Adash=A(: , 1:nn)*D ; 

% Set up partitioning of Adash 
% 

n0=nn-sum(n(2 :nb+l)); 
if phase==l , z=O ; end ; 
cr(l : nn)=[c(l:nn-1),-z] ; 
Dcr=D *cr(l : nn) ' ; 
DcrO=Dcr(sum(n(l : nb+l)) :nn) ; 
residl=DcrO; 
resid2=[Dcr0(1:n0-1);0]; 
uO=eye(nO); 
for i=l: nb 

il=sum(m(l:i)) ; i2=sum(m(l:i+l))-l; 
jl=sum(n(l:i)); j2=sum(n(l:i+l))-l; 
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% 

jOl=sum(n(l:nb+l)); 
Bi=Adash(il:i2, jl:j2); 
Ai=Adash(il:i2, jOl:nn); 
Dcri=Dcr(jl:j2); 

% Apply Algorithm 6.2 to find dual variables, i.e. 
% first solve each subproblem using QR method 
% 

[q,r]=qr(Bi'); di=q'*Dcri; 
Rinvi=pinv(r(l:rn(i+l),1:rn(i+l))); 

Rinv=[Rinv, [Rinvi;zeros(rnax(rn)-m(i+l),m(i+l))]]; 
yi=Rinvi*di(l:m(i+l)); 
yO=[yO;yi]; 

Fi=Ai'*Rinvi; F=[F, Fi]; 
uO=uO+Fi*Fi'; 

residl=residl-Ai'*yi; 
if phase==2 

y2=[y2;yi]; 
resid2=resid2-Ai ' *yi; 

end; 
end; 

% 

% Update the solution of the incomplete least squares 
% problem 
% 

% 

% 

pinvu=pinv(uO); 
ul=pinvu*residl; 
for i=l: nb 

il=sum(m(l:i)); i2=sum(m(l:i+l))-1; 
y(il:i2) = yO(il:i2) 

+ Rinv(l:m(i+l),il:i2)*(F(l:n0,il:i2)) '*ul; 
end; 

if phase==2 

u2=pinvu*[zeros(l,n0-1),-1] '; 
for i=l: nb 

il=sum(rn(l:i)); i2=surn(rn(l:i+l))-1; 
yl(il:i2)=Rinv(l:rn(i+l),il:i2)*(F(l:n0,il:i2)) '*u2; 

end; 
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% 

u3 = pinvu*resid2; 
for i=l: nb 
il=sum(m(l : i)); 
i2=sum(m(l:i+l))-1; 
y2(il:i2) yO(il:i2) 

+ Rinv(l:m(i+l),il:i2)*(F(l:n0,il:i2)) ' *u3 ; 
end; 

al=[zeros(l , nn-1),-1); 
bl=[Dcr(l:nn-1) ',OJ; 

for i=l:nb 
il=sum(m(l:i)); i2=sum(m(l : i+l))-1 ; 
jl=sum(n(l:i)) ; j2=sum(n(l:i+l))-1; 
jO l =sum(n(l : nb+l)) ; 
a 1 ( j 1 : j 2 ) =a 1 ( j 1 : j 2) -y 1 ( i 1 : i 2) ' *Adas h ( i 1 : i 2 , j 1 : j 2 ) ; 
al(jOl : nn) = al(jOl : nn) 

- yl (il: 12) ' *Adash (il: i2, jOl :nn); 
b 1 ( j 1 : j 2 ) = b 1 ( j' 1 : j 2 ) -y 2 ( i 1 : i 2 ) ' *Adas h ( i 1 : i 2 , j 1 : j 2 ) ; 
bl(j01:nn)=bl(j01 : nn) 

- y 2 ( i 1 : i 2 ) ' *Adas h ( i 1 : i 2 , j O 1 : n n ) ; 
end; 

% 

% Call Function supinl or supin2 to find 
% Max {z I bl+ al*z 0} 
% 

zO 
zO=supinl(al,bl,nn,ty); 

yO=y; 
yt ( l:mm) =y2+z0*yl ; 
if z<yt*b & (z0~=-le20) ,z=yt*b;else , y=yO; z=zp;end; 
disp(yt); 
disp( ' Giving dual objective function ' ),disp(yt*b); 

end ; 
% 

% Calculate search direction 
% 

cp(l:nn)=Dcr(l :nn); 
for i =l:nb 

il=sum(m(l:i)); i2=s um(m(l:i+l))-1; 
j l =sum(n(l:i)); j 2=s um(n(l : i +l)) - 1; 
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jOl=sum(n(l:nb+l)) ; 
cp ( j 1 : j 2 ) = cp ( j 1 : j 2 ) ' -Adas h ( i 1 : i 2 , j 1 : j 2 ) ' * y ( i 1 : i 2 ) ; 
cp(j01:nn)=cp(j01:nn) '-Adash(il:i2 , jOl:nn) '*y(i l : i2); 

end; 
cp (1 :nn) = cp (1 :nn) ' 

- (c(l:nn-l)*x(l : nn-1) 'z)/nn*ones(l ,nn) ' ; 
cpn(l:nn)=cp(l:nn)/norm(cp(l:nn),2) ; 

% 

% Segment to optimise step size 
% 

% 

tc=O; 
for i=l:nn 
step(i)=l/(cpn(i)); 
if step(i ) <O , step(i)=le20; tc=tc+l;end; 

end; 
if tc<nn. 

[beta , minb]=min(step(l:nn)) ; 
if abs(x(minb)*x(minb)/cpn(minb))<le-9, f=l ; 
else, f=.99;end; 
s=f*beta; 

else 
s = . 95 ; 

end; 

bdash=ones(l ,nn)-s *cpn(l:nn); 
bbar(l:nn)=D*bdash'/(ones(l , nn)*D*bdash'); 
bf=bbar(l:nn)/bbar(nn); 
k=k+l ; 
x=bf ; 
disp( ' Iteration :');disp(k) ; 
disp( 'Primal objective function value'); 
if phase==2 

disp(cl(l : nn-l)*x(l:nn- 1 ) ' ) ; 
else 

disp(x(nn-1)); 
end; 
if (abs(x(nn-1))<.005) & (phase==l) 

disp( ' End of Phase 1') ; 
nn=nn-l;phase=2; 
A(:,nn)=- b; 
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zp=cl ( 1: nn-1) *x ( 1: nn-1) '; c ( 1 : nn-1) =cl; 
x(nn)=l;D=diag(x(l:nn)); 

elseif phase== 2 

end; 

zp=cl (1 :nn-1) *x (1 :nn-1) '; 
else 
zp=x(nn-1); 

% Remove content of F, Rinv, yO and y2 
F= [] ; Rinv= [] ; yO= [] ; y2= [] ; 

time= etime(clock,tO) 
end 
disp( 'Primal solution '); disp(x(l :nn)); 
disp( ' Least squares solution giving dual variable values'); 
disp(yt) ; 

% 

% Function Supinl is called from the program above . It is 
% basically a ratio test to find z ' = sup{zl bl+alz~O}. 
% Among the values -bl(i)/al(i) may be found z ' which is 
% a lower bound on the optimum objective value z* of the 
% problem, i.e. z •~ z* . 
% al and bl are n-vectors defined in Chapter 4 
% 

function zdash = supinl (al , bl, n, ty) 
ratio=-bl./al; 
disp( 'ratio='); disp(ratio) ; 
ratiomin=ones(l,n)*lelO; 
ratiomax=-ratiomin ; 
if al>zeros(l,n) 

allpos=l; 
elseif al<zeros(l,n) 

allpos=-1; 
else allpos=O; 

end; 
if allpos==O 

for i=l:n 
if abs(al(i))> . 0005 

if al(i)>O,ratiomax(i) =-bl(i)/al(i); 

else,ratiomin(i)=-bl(i)/al(i);end; 

end; 
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end; 
zl=max(ratiomax); 
z2=min(ratiomin); 
zsign=-1; 
if ty== ' min ', zsign=l ;end; 
if zsign*z2>zl , zt=z2; else zt=zl;end; 

elseif allpos===l 
zt=max(ratio); 

else 
zt=min(ratio) ; 

end; 
zdash=zt ; 

% The following function Supin2 is an alternative to Supinl 
% 

function zdash=Supin2(~1,bl,n,ty) 
ratio=-bl(l : n) ./al(l:n); 
zgtn=-le20; 
zgtp=-le20 ; 
zltn=le20 ; 
zltp=le20 ; 
for i =l :n 
if abs(al(i))> . 0005 
if al(i)>O & bl(i)>O & zgtn<ratio(i), zgtn=ratio(i); 
elseif al(i)>O & bl (i)<O & zgtp<ratio(i), zgtp=ratio(i) ; 
elseif al(i)<O & bl(i)>O & zltp>ratio(i), 

zltp=ratio(i); 
elseif al(i)<O & bl(i)<O & zltn>ratio(i), 

zltn=ratio(i); 
end; 

end; 
end; 
if ty== ' max ', zO=zltn; else , zO=zltp ; end; 
if zltn<le20 & zgtp>-le20 , z0=-le20 ; 
elseif zgtn>zltn, z0=-le20 ; 

elseif zgtp>zltp, z0=-le20; 
end ; 

zdas h=zO; 
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Sample Input File 

% Data file Little4 

% Problem Little4, is a 4-block problem 
% BOi, i = 1 , .. . , 4 corresponds to the ith block 
B01=[4 2;2 5]; 

B02=[2 4;-1 3;4 6]; 

B03= [1 -2 20;1 0 2;4 -6 47;1 -2 11] ; 

B04=[2 4 3;3 1 4;1 2 2] ; 

% AOi , i 1 , ... , 4 corresponds to the linking variables 

AOl=[l 2 ;1 - 1] ; 

A02=[-10 1;5 0 ;0 -1]; 
A03=[-1 2;-1 -2;2 -1;3 -1]; 

A04=[10 0 . 1;0.5 1;1 -1]; 
% Set up canonical standard form by adding slack variables 

% where necessary 
B01= [B01, (-1) *eye (2), ze;ros (2, 18), AOl]; 
B02=(zeros(3 , 4),B02, (-l)*eye(3),zeros(3 , 13),A02] ; 
B03=[zeros (4, 9) , B03 , (-1) *eye (4), zeros (4, 6) , A03]; 
B04= [zeros (3 , 16), B04, (-1) *eye (3), A04]; 
% A is the problem matrix 

A=(B01;B02;B03;B04); 
% b the right-hand side 
b=[3;4;3;2;5;3;1;3;1;5;4 ; 3]; 
% cl the cost vector 
cl= (8 12 0 0 12 18 0 0 0 6 -8 48 0 0 0 0 5 11 8 0 

0 0 34 -11); 
% number of variables 

nn=24; 

% number of constraints 

mm=12 ; 
% m(i+l) of array m contains the number of constraints in 

% block i 

m= [ 1 2 3 4 3] ; 
% n(i+l) of array n contains the number of variables in 

% block i 
n= [ 1 4 5 7 6); 

% nb = number of blocks; ty =minor max 

nb= 4;ty= ' min '; 
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Appendix F: Version 4 of LPKARl 

C FORTRAN77 CODE OF THE KARMARKAR ALGORITHM, WHICH TAKES ACCOUNT OF 

C SPARSITY. THE NESTED DISSECTION ORDERING METHOD OF GEORGE IS 

C INCLUDED AS WELL AS THE PARTITIONING (UPDATING) METHOD OF HEATH. 

C THESE SPARSITY PRESERVATION AND EXPLOITATION TECHNIQUES ARE DEPLOYED 

C WHEN SOLVING THE LEAST SQUARES PROBLEM ARISING IN THE COMPUTATION OF 

C THE SEARCH DIRECTION 

C 

C 

SUBROUTINE KRMRKR (M, N, NZ, NA, JA, RA, IT, ICOL, ALIST, 

1 CO, C, X, RHS, D, CP) 

DOUBLE PRECISION D(*) , CP(*), RHS(*), 

1 VARl, VAR, BETA, FI , PF, CO(*) , C(*) , ALIST (*), 

1 CTX, _X(*), RA(*), ALPHA 

INTEGER N, M, ITER, NZ 

INTEGER ICOL(*), IT(*) 

INTEGER NA(*) , JA(*) 

INTEGER RCHLNK(lO0O) , MRGLNK(l000 ), MASK (l0O0), PERM(lO0O), 

1 XADJ(l00O), ADJNCY(250000), XNZSUB(l000), TEMP(l000) , 

2 NZSUB(15000), XLNZ(lO00) , FIRST(l000) , LINK(l0O0), INVP(lO00), 

3 INVP0(l00O), LS(2000), XLS(2000) 

CF IS A 2-ROW ARRAY OF REALS THAT WILL CONTAIN THE DENSE THE DENSE 

C ROWS OF BT . 

DOUBLE PRECISION LNZ(50000), DIAG(lO00), ROW(l00O) , 

1 YBAR(l000), Fl(l000), F(2, 1000) , STEP(2000) 

C INITIALIZATION 

C ITERATION LIMITE IS SET TO 35 

ITLIM = 35 

ITER • 1 

DO 100 I= 1, N 

X (I) • 1. ODO 

100 CONTINUE 

C (N) • 1. ODO 

C INITILIZE CPU TIME VARIABLE 

IRESLT • LIB$INIT_TIMER() 

IF ( .NOT. IRESLT) CALL LIB$STOP(%VAL(IRESLT)) 

150 CONTINUE 

C START MAIN ITERATION • 
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C 

C RHS IS IDENTICALLY ZERO EXCEPT FOR ITS LAST ELEMENT RHS(N), DUE TO 

C THE FACT THAT C• (0, 0, ... , 0, 1) 

C 

DO 300 J = 1, N 
D (J) .. X (J) 

RHS(J) - D(J) * C(J) 

CP (J) - RHS (J) 

300 CONTINUE 

C 

C CALCULATE CP: WE SOLVE A LINEAR LEAST SQUARES PROBLEM 

C FOR THAT WE NEED TO PASSBAND RHS 

C 

C 

CALL HNDATA (M, N, ITER, NZ , RCHLNK , MRGLNK, MASK, LS, XLS , 

l PERM, INVP, INVP0 , XADJ, ADJNCY, XNZSUB, NZSUB, XLNZ, FIRST, 

1 LINK, TEMP, NA, JA, RA, IT, ICOL, ALIST, D, RHS, LNZ, DIAG, 

1 ROW, YBAR, Fl, F) 

C SOLUTION RETURNED IN RHS : COMPUTE CP - DC - B(TRANSPOSE)Y 

C CP(J) HAS BEEN INITIALIZED PREVIOUSLY 

C 

z .. O.0D0 

VARl=0. ODO 

DO J = 1, N-2 
VARl • VARl + C(J)*X(J) 

ENDDO 

VARl•VARl+C(N)*X(N) 

DO 600 J - 1, N 
KSTRT .. NA (J) 

KSTOP m NA(J+l) - 1 

DO 450 K = KSTRT, KSTOP 

I • JA (K) 

CP(J) = CP(J)-RA(K)*D(J)*RHS(I) 

450 CONTINUE 

CP(J)=CP(J)-(VARl-Z)/DFLOAT(N) 

600 CONTINUE 

C NORMALIZATION OF CP 

VAR• 0.0D0 

DO 700 J=l, N 
VAR= VAR+ CP(J) * CP(J) 
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7 0 0 CONTINUE 

DO J-1, N 

CP(J)•CP(J)/DSQRT(VAR) 

ENDDO 

C OPTIMIZATION OF STEPSIZE 

ITC • 0 

DO I-1, N 

C THE FOLLOWING TEST IS NECESSARY TO AVOID DIVISION BY ZERO 

IF (DABS(CP(I)) .EQ. 0.000) THEN 

STEP(I) = 1.0020 

GO TO 301 

ENDIF 

STEP(I) = 1.0O0/CP(I) 

301 IF(STEP(I) .LT. 0.000) THEN 

C 

STEP(I) 1.0020 

ITC• ITC+ 1 

ENDIF 

ENDDO 

IF (ITC .LT. N) THEN 

INDEX• 1 

BETA .. STEP(l) 

DO I=l, N 

IF( STEP(!) .LT. BETA) THEN 

BETA=STEP(I) 

INDEX=! 

ENDIF 

ENDDO 

IF(DABS(X(INDEX)*X(INDEX)/CP(INDEX)) .LT. l.0D-10) THEN 

FI "' 1.000 

ELSE 

FI .. . 9900 

ENOIF 

ALPHA• FI* BETA 

ELSE 

ALPHA• 0.9500 

ENDIF 

C INVERSE TRANSFORMATION 

VARl = 0.0D0 

DO 800 J "' 1, N 
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X(J) 1.000 - ALPHA* CP(J) 

X (J) D (J) * X (J) 

VARl VARl + X(J) 

800 CONTINUE 

DO J=l, N 

X(J) X(J)/VARl 

ENDDO 

X(N) X(N)/X(N-1) 

DO J 1, N-1 

X(J) = X(J)/X(N-1) 

ENDDO 

C TEST FOR OPTIMALITY 

CTX = 0 . 000 

DO J = 1, N-2 

CTX = CTX + C0(J) * X(J) 

ENDDO 

IF(DABS(X(N)) .GT . 1.00-6 . AND. ITER .LT. ITLIM) THEN 

PF 0.000 

DO J = 1, N 

PF - PF+ DLOG(X(N)/X(J)) 

ENDDO 

PRINT*, ITER, X(N) 

WRITE(ll, 9994)ITER, ALPHA, X(N), CTX, PF 

ITER =ITER + 1 

9994 FORMAT(I4, 4(2X, Gl6.10)) 

GO TO 150 

ENDIF 

C USED CPU TIME 

IRESLT - LIB$SHOW_TIMER() 

IF(.NOT. IRESLT) CALL LIB$STOP(%VAL(IRESLT)) 

CTX=0 . 0D0 

DO J=l , N-2 

CTX = CTX + C0(J) * X(J) 

ENDDO 

WRITE(ll, 9993) ITER, ALPHA, X(N), CTX 

WRITE(ll, 9996)ITER, (J, X(J), J = 1, N 

9993 FORMAT(I4, 3(2X, G16.10)) 

9996 FORMAT(/, 'END OF SOLUTION AT ITERATION', I6, //, 

1 'THE SOLUTION TO PROBLEM IS X = ', //, 4(16, G14.6)) 

RETURN 
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END 

C 

C******* GENND 

C 

GENERAL NESTED DISSECTION (GEORGE & LIU, 1981) 

SUBROUTINE GENND(NEQNS, XADJ, ADJNCY, MASK, PERM, XLS, LS) 

INTEGER ADJNCY(*), XADJ(*) 

INTEGER MASK(*), LS(*), PERM(*), XLS(*) 

INTEGER I, NEQNS, NSEP, NUM, ROOT 

DO 100 Ial, NEQNS 

MASK(I)•l 

100 CONTINUE 

NUM"" 0 

DO 300 I- 1 , NEQNS 

C FOR EACH MASKED COMPONENTS 

200 IF(MASK(I) .EQ.0) GO TO 300 

ROOT=I 

C FIND A SEPARATOR AND NUMBER THE NODES NEXT. 

CALL FNDSEP(NEQNS, ROOT, XADJ, ADJNCY , MASK, NSEP, 

PERM(NUM+l), XLS , LS) 

NUM•NUM+NSEP 

IF ( NUM.GE.NEQNS) GO TO 400 

GO TO 200 

300 CONTINUE 

C SINCE SEPARATORS FOUND FIRST SHOULD BE ORDERED LAST, ROUTINE 

C REVRSE IS CALLED TO ADJUST THE ORDERING VECTOR. 

400 CALL REVRSE(NEQNS, PERM) 

RETURN 

END 

C 

C******** INVRSE: GETS THE ORIGINAL ORDERING FROM PERM 

C 

SUBROUTINE INVRSE(M, PERM, INVP) 

INTEGER PERM(*), INVP(*), N, I, K 

DO 100 I .. l, M 

K = PERM (I) 

INVP(K) = I 

100 CONTINUE 

RETURN 

END 
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C 

C******** PERMRV: GETS THE ORIGINAL ORDERING OF THE VECTOR SOLUTION X 

C 

C 

SUBROUTINE PERMRV(N, RHS, PERM) 

INTEGER PERM(*), N, I, NUM, TEMP, INDEX 

DOUBLE PRECISION RHS(*), VAR 

2 INDEX = 0 

NUM - N-1 

DO 1 I"' 1, NUM 

IF ( PERM(I) .LT.PERM(I+l) ) GO TO 1 

TEMP• PERM (I) 

VAR• RHS (I) 

PERM(I) "'PERM(I+l) 

RHS(I) = RHS(I+l) 

PERM(I+l) - TEMP 

RHS(I+l) = VAR 

INDEX• 1 

1 CONTINUE 

NUM - NUM - 1 

IF (INDEX.NE. 0) GO TO 2 

RETURN 

END 

C******** REVRSE: CHANGES ORDER OF ELEMENTS OF PERM 

C 

SUBROUTINE REVRSE(NEQNS, PERM) 

C 

C 

INTEGER PERM(*), NEQNS, SAUV 

DO 10 I"' 1, INT(NEQNS/2) 

SAUV "" PERM(!) 

PERM(I) = PERM(NEQNS-I+l) 

PERM(NEQNS-I+l) = SAUV 

10 CONTINUE 

RETURN 

END 

C******** FNDSEP: FIND SEPARATOR 

C 

SUBROUTINE FNDSEP(NEQNS, ROOT, XADJ, ADJNCY, MASK, NSEP, SEP, 

XLS, LS) 
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C 

C 

INTEGER LS(*), MASK(*), SEP(NEQNS*S), XLS(*), ADJNCY(*) 

INTEGER XADJ(*), I, J, JSTOP, JSTRT, MIDBEG, MIDEND, MIDLVL, 

1 MPlEND, NBR, NLVL, NODE, NSEP , ROOT, MPlBEG 

CALL FNROOT(NEQNS, ROOT, XADJ, ADJNCY, MASK, NLVL, XLS, LS) 

C 

C IF THE NUMBER OF LEVELS IS LESS THAN 3, RETURN THE WHOLE 

C COMPONENT AS THE SEPARATOR. 

C 

IF ( NLVL.GE.3) GO TO 200 

NSEP = XLS(NLVL+l)-1 

DO 100 I=l, NSEP 

NODE• LS(I) 

SEP(I)•NODE 

MASK(NODE)•0 

100 CONTINUE 

RETURN 

C FIND THE MIDDLE LEVEL OF THE ROOTED LEVEL STRUCTURE. 

200 MIDLVL - (NLVL+2)/2 

MIDBEG - XuS(MIDLVL) 

MPlBEG • XLS(MIDLVL + 1) 

MIDEND - MPlBEG - 1 

MPlEND - XLS(MIDLVL+2) - 1 

C 

C THE SEPARATOR IS OBTAINED BY INCLUDING ONLY THOSE MIDDLE-LEVEL 

C NODES WITH NEIGHBORS IN THE MIDDLE+l LEVEL. XADJ IS USED TEMPO-

C RARILY TO MARK THOSE NODES IN THE MIDDLE+l LEVEL. 

C 

DO 300 I• MPlBEG, MPlEND 

NODE•LS(I) 

XADJ(NODE)=-XADJ(NODE) 

3 0 0 CONTINUE 

NSEP = 0 

DO 500 I• MIDBEG, MIDEND 

NODE "' LS (I) 

JSTRT= XADJ(NODE) 

JSTOP= IABS(XADJ(NODE+l)) - 1 

DO 400 J = JSTRT, JSTOP 

NBR = ADJNCY(J) 
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IF ( XADJ(NBR) . GT. 0) GO TO 400 

NSEP=NSEP+l 

SEP(NSEP)=NODE 

MASK(NODE) = 0 

GO TO 500 

400 CONTINUE 

5 0 0 CONTINUE 

C RESET XADJ TO ITS CORRECT SIGN. 

C 

DO 600 I= MPlBEG, MPlEND 

NODE .. LS (I) 

XADJ(NODE) = -XADJ(NODE) 

6 0 0 CONTINUE 

RETURN 

END 

C*********** ROOTLS: ROOTED LEVEL STEUCTURE 

C 

C 

C 

SUBROUTINE ROOTLS(NEQNS, ROOT, XADJ, ADJNCY, MASK, NLVL, XLS, 

1 LS) 

INTEGER ADJNCY(*) , LS(*) , MASK(*) 

INTEGER XLS(*), XADJ(*) , I , J, JSTRT, JSTOP, LBEGIN 

INTEGER CCSIZE, LVLEND, LVSIZE,NBR,NLVL, NODE,ROOT 

C INITIALIZATION 

C 

C 

MASK (ROOT) = 0 

LS(l ) = ROOT 

NLVL = 0 

LVLEND = 0 

CCSIZE = 1 

C LBEGIN IS THE POINTER TO THE BEGINNING OF THE CURRENT LEVEL, AND 

C LVLEND POINTS TO THE END OF THIS LEVEL. 

C 

C 

200 LBEGIN 

LVLEND 

LVLEND + 1 

CCSIZE 

NLVL = NLVL + 1 

XLS(NLVL) = LBEGIN 
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C GENERATE THE NEXT LEVEL BY FINDING ALL THE MASKED NEIGHBORS OF 
C NODES IN THE CURRENT LEVEL . 

C 

DO 400 I a LBEGIN, LVLEND 

NODE= LS(I) 

JSTRT = XADJ(NODE) 

JSTOP XADJ(NODE + 1) - 1 

IF ( JSTOP.LT.JSTRT) GO TO 400 

DO 300 J = JSTRT, JSTOP 

NBR ADJNCY ( J) 

IF (MASK(NBR) .EQ . 0) GO TO 300 

CCSIZE = CCSIZE + 1 

LS(CCSIZE) = NBR 

MASK(NBR) = 0 

300 CONTINUE 

4 0 0 CONTINUE 

C 

C COMPUTE THE CURRENT LEVEL WIDTH. 

C IF IT IS NONZERO, GENERATE THE NEXT LEVEL . 

C 

LVSIZE = CCSIZE - LVLEND 

IF ( LVSIZE .GT . 0) GO TO 200 

C 

C RESET MASK TO ONE FOR THE NODES IN THE LEVEL STRUCTURE. 
C 

C 

XLS ( NLVL + 1) = LVLEND + 1 

DO 500 I= 1,CCSIZE 

NODE = LS (I) 

MASK(NODE) 1 

5 0 0 CONTINUE 

RETURN 

END 

C********** FNROOT 

C 

FIND PSEUDO-PERIPHERAL NODE 

SUBROUTINE FNROOT(NEQNS,ROOT,XADJ,ADJNCY, MASK,NLVL,XLS,LS) 

C 

INTEGER LS(*),MASK(*),XLS(*), 

1 ADJNCY(*) 

INTEGER XADJ(*),CCSIZE,J,JSTRT,K,KSTOP,KSTRT,MI NDEG, 
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1 NABOR,NDEG,NLVL,NODE, NUNLVL, ROOT,NEQNS 

C 

C DTERMINE THE LEVEL TRUCTURE ROOTED AT ROOT. 

C 

C 

CALL ROOTLS(NEQNS,ROOT,XADJ,ADJNCY,MASK, NLVL,XLS,LS) 

CCSIZE = XLS(NLVL+l) - 1 

IF ( NLVL .EQ. 1 . OR. NLVL .EQ. CCSIZE) RETURN 

C PICK A NODE WITH MINIMUM DEGREE FROM THE LAST LEVEL. 

C 

100 JSTRT = XLS ( NLVL) 

MINDEG = CCSIZE 

ROOT LS ( JSTRT 

200 

IF CCSIZE .EQ. JSTRT) GO TO 400 

DO 300 J = JSTRT, CCSIZE 

NODE= LS(J) 

NDEG • 0 

KSTRT XADJ(NODE) 

KSTOP = XADJ(NODE+l) - 1 

DO 200 K = KSTRT , KSTOP 

NABOR= AOJNCY(K) 

IF ( MASK(NABOR) .GT. 0) NDEG • NDEG + 1 

CONTINUE 

IF ( NDEG .GE. MINDEG) GO TO 300 

ROOT= NODE 

MINDEG • NDEG 

300 CONTINUE 

C 

C AND GENERATE ITS ROOTED LEVEL STRUCTURE . 

C 

400 CALL ROOTLS(NEQNS,ROOT,XADJ,AOJNCY,MASK,NUNLVL,XLS,LS) 

C 

IF NUNLVL .LE. NLVL) RETURN 

NLVL • NUNLVL 

END 

IF ( NLVL .LT. CCSIZE) GO TO 100 

RETURN 

C************ SMBFCT SYMBOLIC FACTORISZATION 

C 

SUBROUTINE SMBFCT ( NEQNS,XADJ,ADJNCY,PERM,INVP,XLNZ,MAXLNZ, 
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C 

C 

1 

1 

1 

1 

1 

1 

1 

XNZSUB,NZSUB,MAXSUB,RCHLNK,MRGLNK,MARKER,FLAG) 

INTEGER INVP(*),MRGLNK(*) , NZSUB(*), 

RCHLNK(*),MARKER(*),PERM(*), 

ADJNCY(*) 

INTEGER XADJ(*),XLNZ(*),XNZSUB(*), 

FLAG,I,INZ, J,JSTOP,JSTRT,K,KNZ, 

KXSUB,MRGK,LMAX, M,MAXLNZ,MAXSUB, 

NABOR,NEQNS,NODE,NPl,NZBEG,NZEND, 

RCHM, MRKFLG 

C INITIALIZATION 

C 

C 

NZBEG 1 

NZEND 0 

XLNZ (1) 1 

DO 100 K = 1, NEQNS 

MRGLNK(K) = 0 

MARKER(K) = 0 

100 CONTINUE 

C FOR EACH COLUMN ... . KNZ COUNTS THE NUMBER OF NONZEROS IN 

C COLUMN K ACCUMULATED IN RCHLNK. 

C 

NPl = NEQNS + 1 

DO 1500 K - 1 , NEQNS 

KNZ = 0 

MRGK = MRGLNK (K) 

MRKFLG = 0 

MARKER (K) = K 

IF ( MRGK .NE. 0) MARKER(K) a MARKER(MRGK) 

XNZSUB(K) = NZEND 

NODE= PERM(K) 

JSTRT 

JSTOP 

XADJ(NODE) 

XADJ(NODE + 1) - 1 

IF ( JSTRT.GT.JSTOP) GO TO 1500 

C 

C USE RCHLNK TO LINK THROUGH THE STRUCTURE OF A(*,K) BELOW 

C DIAGONAL. 

C 
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C 

C 

C 

C 

200 

RCHLNK(K) = NPl 

DO 300 J = JSTRT, JSTOP 

NABOR= ADJNCY(J) 

NABOR= INVP(NABOR) 

IF (NABOR.LE. K) GO TO 300 

RCHM = K 

M = RCHM 

RCHM = RCHLNK(M) 

IF RCHM .LE. NABOR) GO TO 200 

KNZ = KNZ + 1 

RCHLNK(M) NABOR 

RCHLNK(NABOR) = RCHM 

IF ( MARKER(NABOR) .NE . MARKER(K) ) MRKFLG 1 

300 CONTINUE 

TEST FOR MASS SYMBOLIC ELIMINATION 

LMAX = 0 

IF MRKFLG .NE. 0 .OR. MRGK .EQ.0) GO TO 350 

IF MRGLNK (MRGK) .NE . 0) GO TO 350 

XNZSUB(K) • XNZSUB(MRGK) + 1 

KNZ a XLNZ(MRGK + 1) - (XLNZ(MRGK) + 1) 

GO TO 1400 

C LINK THROUGH EACH COLUMN I THAT AFFECTS L(*,K). 

C 

C 

350 I = K 

400 I= MRGLNK(I) 

IF (I.EQ.0) GO TO 800 

INZ = XLNZ(I+l) - (XLNZ(I)+l) 

JSTRT XNZSUB(I) + 1 

JSTOP XNZSUB(I) + INZ 

IF (INZ.LE.LMAX) GO TO 500 

LMAX = INZ 

XNZSUB(K) = JSTRT 

C MERGE STRUCTURE OF L(*,I) IN NZSUB INTO RCHLNK . 

C 

500 RCHM = K 

DO 700 J = JSTRT, JSTOP 
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600 

700 

C 

NABOR a NZSUB(J) 

M • RCHM 

RCHM =RCHLNK(M) 

IF (RCHM.LT . NABOR) GO TO 600 

IF (RCHM.EQ.NABOR) GO TO 700 

KNZ-= KNZ + 1 
RCHLNK(M) NABOR 

RCHLNK(NABOR) - RCHM 

RCHM ""NABOR 

CONTINUE 

GO TO 400 

C CHECK IF SUBSCRIPTS DUPLICATE THOSE OF ANOTHER COLUMN. 

C 

800 IF (KNZ.EQ . LMAX) GO TO 1400 

C 

C 

C 

900 

1000 

llOO 

C 

C 

C 

C 

1200 

OR IF TAIL. OF K-lST COLUMN MATCHES HEAD OF KTH. 

IF (NZBEG.GT.NZEND) GO TO 1200 

I - RCHLNK (K) 

DO 900 JSTRT=NZBEG,NZEND 

IF (NZSUB(JSTRT) - I) 900,1000 ,1200 

CONTINUE 

GO TO 1200 

XNZSUB(K) = JSTRT 

DO 1100 JsJSTRT,NZEND 

IF (NZSUB(J) .NE.I) GO TO 1200 

I "" RCHLNK (I) 

IF (I.GT.NEONS) GO TO 1400 

CONTINUE 

NZEND • JSTRT - 1 

COPY THE STRUCTURE OF L(*,K) FROM RCHLNK TO THE DATA 

STRUCTURE (XNZSUB, NZSUB) . 

NZBEG a NZEND + 1 

NZEND NZEND + KNZ 

IF (NZEND.GT . MAXSUB) GO TO 1600 

I = K 
DO 1300 J=NZBEG,NZEND 
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C 

C 

C 

C 

C 

1300 

1400 

1500 

C 

1600 

C 

I .. RCHLNK ( I) 

NZSUB(J) • I 

MARKER(!) .,. K 

CONTINUE 

XNZSUB(K) = NZBEG 

MARKER(K) = K 

UPDATE THE VECTOR MRGLNK. NOTE COLUMN L(*,K) JUST FOUND 

IS REQUIRED TO DETERMINE COLUMN L(*,J), WHERE L( J ,K) IS 

THE FIRST NONZERO IN L(*,K) BELOW DIAGONAL. 

IF (KNZ.LE.1) GO TO 1500 

KXSUB .. XNZSUB(K) 

I .. NZSUB(KXSUB) 

MRGLNK(K) • MRGLNK(I) 

MRGLNK(I) .. K 

XLNZ(K+l).,. XLNZ(K) + KNZ 

MAXLNZ = XLNZ(NEQNS) - 1 

MAXSUB = XNZSUB(NEQNS) 

XNZSUB (NEQNS+l) • XNZSUB (NEQNS) 

FLAG• 0 

RETURN 

ERROR - INSUFFICIENT STORAGE FOR NONZERO SUBSCRIPTS. 

FLAG• 1 

RETURN 

END 

C********** GENERAL SPARSE SYMMETRIC FACTORIZATION 

C 

C 

C 

C 

1 

1 

SUBROUTINE GSFCT(NEQNS,XLNZ,LNZ,XNZSUB,NZSUB,DIAG,LINK, 

FIRST , TEMP , IFLAG ) 

DOUBLE PRECISION DIAG(*) , LNZ(*),TEMP(*), DIAGJ, LJK 

INTEGER LINK(*), NZSUB(*) 

INTEGER FIRST(*),XLNZ(*),XNZSUB(*) , I,IFLAG,II, 

ISTOP,ISTRT, ISUB,J,K,KFIRST,NEQNS,NEWK 

C INITIALIZE WORKING VECTORS 

C 
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DO 100 I•l,NEQNS 

LINK (I) = 0 

TEMP(I) = 0 . 000 

10 0 CONTINUE 

C COMPUTE COLUMN L(*,J) FOR J=l, .. . , NEQNS. 

DO 600 Jc 1, NEQNS 

C FOR EACH COLUMN L(*, K) THAT AFFECTS L(*, J). 

DIAGJ = 0.000 

NEWK - LINK (J) 

200 K - NEWK 

C 

C 

C 

C 

C 

C 

IF ( K .EQ. 0) GO TO 400 

NEWK - LINK (K) 

OUTER PRODUCT MODIFICATION OF L(*, J) BY L(*, K) 

STARTING AT FIRST(K) OF L(*, K) . 

KFIRST = FIRST(K) 

LJK = LNZ(KFIRST) 

DIAGJ = DIAGJ + LJK*LJK 

ISTRT - KFIRST + 1 

ISTOP • XLNZ(K+l) - 1 

IF ( ISTOP .LT. ISTRT GO TO 200 

BEFORE MODIFICATION, UPDATE VECTORS FIRST AND LINK 

FOR FUTURE MODIFICATION STEPS . 

FIRST(K) = ISTRT 

I• XNZSUB(K) + (KFIRST - XLNZ(K)) + 1 

ISUB = NZSUB(I) 

LINK (K) = LINK(ISUB) 

LINK ( ISUB) - K 

THE ACTUAL MOD IS SAVED IN VECTOR TEMP. 

DO 300 II• ISTRT, !STOP 

ISUB-= NZSUB(I) 

TEMP(ISUB) = TEMP(ISUB) + LNZ(II)*LJK 

I - I + 1 

300 CONTINUE 

GO TO 200 

C APPLY THE MODIFICATION ACCUMULATED IN TEMP TO COLUMN L(*,J). 

C 

400 DIAGJ = DIAG(J) - DIAGJ 

IF ( DIAGJ .LE. 0.000 GO TO 700 

DIAGJ = DSQRT(DIAGJ ) 
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DIAG(J) • DIAGJ 

ISTRT XLNZ(J) 

ISTOP = XLNZ(J+l) - 1 

IF ( ISTOP .LT . ISTRT) GO TO 600 

FIRST(J) • ISTRT 

I - XNZSUB(J) 

ISUB - NZSUB(I) 

LINK(J) • LINK(ISUB) 

LINK(ISUB) • J 

DO 500 II - ISTRT, ISTOP 

ISUB .. NZSUB(I) 

LNZ(II) • (LNZ(II)-TEMP(ISUB))/DIAGJ 

TEMP(ISUB) • 0 . 0D0 

I • I + 1 

500 CONTINUE 

600 CONTINUE 

C 

700 

C 

RETURN 

ERROR - ZERO OR NEGATIVE SQUARE ROOT IN FACTORIZATION. 

IFLAG 

RETURN 

END 

1 

C******** HNDATA 

C 

STORES DATA OF LEAST SQUARES PROBLEM IN APPROPRIATE 

DATA STRUCTURES , PERFORMS THE UPDATING OF THE 

SOLUTION OF THE INCOMPLETE PROBLEM AFTER REMOVING 

THE DENSE COLUMNS 

C 

C 

C 

1 

1 

1 

C 

1 

2 

3 

C 

C 

SUBROUTINE HNDATA (M , N,ITER, NZ,RCHLNK,MRGLNK,MASK,LS,XLS,PERM, 

INTEGER 

INVP,INVP0,XADJ,ADJNCY,XNZSUB,NZSUB,XLNZ, FIRST,LINK, 

TEMP,NA, JA,RA,IT,ICOL,ALIST, D,RHS,LNZ,DIAG,ROW 

,YBAR,Fl,F) 

RCHLNK(*), MRGLNK(*), MASK(*) , PERM(*), INVP(*), 

INVP0(*), XADJ(*), ADJNCY(*) , XNZSUB(*) , TEMP(*), 

LS(*), XLS(*), NZSUB(*),XLNZ(*),FIRST(*),LINK(*), 

NA(*),JA(*),IT(*),ICOL(*) 

INTEGER I, J, K, M, N, ITER, NZ, FLAG, MAXSUB, MAXLNZ 

DOUBLE PRECISI ON LNZ(*), DIAG(*), RHS(*), ROW(*), 
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1 RA(*), ALIST(*), O(*), XNON0, VARl, F(2, *), F0(2), 

1 Fl(*) , FFT(2, 2), V(2), INVFFT(2, 2), YBAR(*) 

COMMON/El/FFT,INVFFT 

C DISCARD THE TWO DENSE COLUMNS TO SET UP THE INCOMPLETE PROBLEM 
N • N - 2 

C SET THE DATA STRUCTURES ANO FINO ORDERING ONCE FOR ALL 
IF(ITER.LT.2) THEN 

CALL STRCTR ( M,N, NZ,IT,ICOL,XADJ,AOJNCY) 

CALL GENND(M,XADJ,ADJNCY,MASK,PERM, XLS, LS ) 

FLAG= 0 

C SET NUMBER OF NONZEROS TO A MAXIMUM 

MAXSUB = 110000 

1 

CALL INVRSE(M,PERM,INVP) 

CALL SMBFCT(M, XADJ,ADJNCY,PERM, INVP , XLNZ, MAXLNZ , 

XNZSUB, NZSUB, MAXSUB, RCHLNK, MRGLNK, MASK,FLAG) 

PRINT* , 'NONZERO$ IN R = ' ,MAXLNZ 

WRITE(ll, ' (15HNONZEROS IN R =,Il0) ')MAXLNZ 

IF ( FLAG .EQ. 1 ) WRITE(ll, ' (6HFLAG •,I2) ' ) 

WRITE (11, 9994) 

9994 FORMAT( ' ITERAT . ',3X, ' ALPHA ' ,12X, 'LAMBDA' , 14X, ' CTX ' ,15X,'PF ' ) 

WRITE (11 , 9995) 

9995 FORMAT( ' ------- ',3X, ' ----- ' ,12X, ' ------ ', 14X, '--- ' ,15X, ' -- ' ,/) 

ENDIF 

C 

C COMPUTE ELEMENTS OF DIAG 

C 

C 

650 

DO 600 I• 1, M 

KSTRT • IT(I) 

KSTOP - IT(I+l)-1 

XNON0 = 0.0D0 

DO 650 KKn KSTRT, KSTOP 

J • ICOL(KK) 
IF( J.GT.N) GO TO 650 

XNON0 = XNON0 + ALIST(KK)*ALIST(KK)*D(J)*D(J) 

CONTINUE 

DIAG (INVP (I)) XNON0 

600 CONTINUE 

C COMPUTE OFF DIAGONAL ELEMENTS OF BBT AND INSERT THEM IN LNZ 

C 
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C 

350 

460 

89 

100 

DO 700 I=2,M 

KSTRT IT (I) 

KSTOP = IT(I+l) 1 

DO 550 JL =1, I-1 

XNON0 = 0.000 

II 

JJ 

DO 460 KK = KSTRT, KSTOP 

J = ICOL(KK) 

IF(J.GT.N) GO TO 460 

ISTRT = IT(JL) 

ISTOP IT(JL+l)-1 

DO 350 IH= ISTRT, ISTOP 

II = ICOL (IH) 

IF(J . NE.II) GO TO 350 

XNON0 = XNON0 + ALIST(KK)*ALIST(IH) 
GO TO 460 

CONTINUE 

CONTINUE 

INVP ( I) 

INVP (JL) 

IF (II.GT .JJ) GO TO 89 

INDEX=II 

II = JJ 

JJ = INDEX 

LSTRT XLNZ(JJ) 

LSTOP XLNZ(JJ+l)-1 

IF( LSTOP.LT.LSTRT) GO TO 550 
KSUB XNZSUB(JJ) 

DO 100 K = LSTRT, LSTOP 

IF( NZSUB(KSUB) .EQ. II) GO TO 200 

KSUB = KSUB + 1 

CONTINUE 

GO TO 550 

200 LNZ(K) = XNON0 

550 CONTINUE 

700 CONTINUE 

* D (J) 

C THE RIGHT-HAND SIDE OF THE INCOMPLETE SYSTEM TO BE SOLVED 

C IS ALL SPARSE, THUS IT NEED NOT BE COMPUTED 

IFLAG = 0 

CALL GSFCT(M,XLNZ,LNZ,XNZSUB,NZSUB,DIAG,LINK,FIRST, 
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1 TEMP, IFLAG) 

C 

C RESTORE DIMENSION AND UPDATE THE SOLUTION (ALGORITHM 3.1) 

N -= N + 2 

C 

C COMPUTE F - R(INVERS) B2(TRANSPOSE) 

L - N - 1 

DO K-1, 2 

KSTRT = NA (L) 

KSTOP - NA(L+l) - 1 

DO KK - KSTRT, KSTOP 

J = JA(KK) 

Fl(INVP(J)) - RA(KK) * D(L) 

ENDDO 

L "' L + 1 

CAL~ FORSUB M, XLNZ, LNZ, XNZSUB, NZSUB, DIAG,Fl) 

DO J "" 1, M 

F (K, J) - Fl (J) 

Fl(J) - 0.0D0 

ENDDO 

ENDDO 

C 

C COMPUTE f•D2c2 - B2(TRANSPOSE) yA 
C D2c2 IS THE SECOND PART OF RHS AS PER DECOMPOSITION 

C 

ITEMP = N-1 

DO I• 1 , 2 

F0(I) "'RHS (ITEMP) 

KSTRT NA(ITEMP) 

KSTOP NA(ITEMP + 1) - 1 

DO K KSTRT, KSTOP 

J = JA (K) 

F0(I) = F0(I) - RA(K) * D(ITEMP) * RHS(J) 

ENDDO 

ITEMP =!TEMP+ 1 

ENDDO 

C COMPUTE I+FFT IN FFT 

DO I.,. 1, 2 

DO J = 1, 2 
FFT (I,J) .,. 0.0D0 
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C 

DO K • 1, M 

FFT (I, J) • FFT(I, J) + F(I, K) * F(J, K) 

ENDDO 

ENDDO 

ENDDO 

C FFT .. I+ FFT 

FFT(l, 1) • FFT(l, 1) + 1.000 

FFT(2, 2) • FFT(2, 2) + 1 . 000 

C INVERT FFT 

KOO• 0 

70004 

70003 

C 

CALL INVERS(KOD, 2) 

IF ( KOD .NE. 1) GO TO 70003 

WRITE ( 11, 70004) 

FORMAT(/, 2X, 'UNSUCCESSFUL INVERSION OF FFT ' /) 

STOP 

CONTINUE 

C THE INVERS OF I+ FFT IS RETURNED IN INVFFT 

C COMPUTE V • INVFFT * F0 

C 

C 

DO I• 1, 2 

V(I) = 0.0D0 

DO J - 1, 2 

V(I) • V(I) + INVFFT(I, J) * F0(J) 

ENDDO 

ENDDO 

C COMPUTE F(TRANSPOSE)*V AND STORE IT IN YBAR 

DO I• 1, M 

C 

YBAR (I) • 0.000 

DO J = 1, 2 

YBAR(I) .. YBAR(I ) + F(J, I) * V(J) 

ENDDO 

ENDDO 

C COMPUTE RA(-1) * F(TRANSPOSE)*V, THAT IS RA(-1) * YBAR 

CALL BACSUB(M, XLNZ, LNZ, XNZSUB, NZSUB, DIAG, YBAR) 

C 

C COMPUTE SOLUTION OF COMPLETE PROBLEM IN RHS 

225 



DO I=l, M 

INVP0(I) • PERM(I) 

ENDDO 

CALL PERMRV(M, YBAR, INVP0) 

DO I= 1, M 

C RHS (I) = RHS(I) + YBAR(I) 

RHS (I) - YBAR(I) 
ENDDO 

C WRITE (11, 1000) (I, RHS (I), I"'l, M) 

RETURN 

END 

C 

C******** STRCTR 

C 

FINDS THE STRUCTURE NOT THE NUMERICAL VALUES OF BBT 

C 

1 

SUBROUTINE STRCTR ( M, N, NZ , !ROW, ICOL, XADJ, ADJNCY) 

INTEGER ADJNCY(*), XADJ(*), KSTRT, KSTOP, 

I, J , K, II, KK, L, M, N, NZ, IROW(*), ICOL(*) 

K=l 

DO 700 I=l, M 

XADJ(I) = K 

DO 600 L=l, I 

KSTRT • XADJ (L) 

KSTOP • XADJ(L+l)-1 

DO 10 II= KSTRT, KSTOP 

IF(ADJNCY(II) .NE. I) GO TO 10 

ADJNCY (K) = L 

K = K +1 

10 CONTINUE 

600 CONTINUE 

KSTRT • IROW (I) 

KSTOP = IROW (I+l) - 1 

DO 500 JL • I+l, M 

DO 400 KK • KSTRT, KSTOP 
J • ICOL (KK) 

IF(J . GT.N) GO TO 400 

ISTRT = IROW (JL) 

I STOP IROW (JL+l) - 1 

DO 300 IH • ISTRT, !STOP 

II "' ! COL (IH) 
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IF (II .NE.J) GO TO 300 

ADJNCY(K) • JL 

K • K + 1 

GO TO 500 
300 CONTINUE 

C 

400 CONTINUE 

500 CONTINUE 

700 CONTINUE 

XADJ(M+l)•K 

RETURN 

END 

C MAIN PROGRAM 

C 

READS THE DATA OF THE LPP UNDER MPS FORMAT 

CREATES A LIST CONTAINING THE CANONICAL FORM 

REQUIRED BY THE KARMARKAR ALGORITHM. C 

C 

CHARACTER*72 CARD 

CHARACTER*12 STRING, JCOL 

CHARACTER*12 CONSTR(l000) 

CHARACTER*12 COL, RHS, OBFUNC 

CHARACTER*8 ROW1,RHS1 , ROW2,RHS2 

CHARACTER*37 FMT,FMPROB,FSC205,FSCFXM,FSCAGR 

CHARACTER*22 FMTHLF,FSCORP,FSCSD,FSCTAP,FSCRS8 

CHARACTER*5 PROB 

DOUBLE PRECISION VAL1,VAL2,ZOPT, ALIST(20000) 

1 , RA(20000),VRHS(l000),RC(2000),B(l000),CTX 

INTEGER JA(20000),IA(l0000),NA(l0000) 

INTEGER NC(2000),NRHS(l000) 

INTEGER IS(2000), IT(20000), IROW(20000), ICOL(20000) 

INTEGER MS(SO), NS(S0), M, N, !SUB 

DOUBLE PRECISION PRHS(2000), CP(2000), D(2000), X(2000), 

1 

C 

C(2000), CDENSE(2000) 

C INITILIZE FORMAT 

C 

DATA FMTHLF / 1 
( ) I/ 

DATA FMPROB/' (Al2,2X,A8,2X,Fl2.6,3X,A8,2X,Fl2.6) ' / 

DATA FSC205/' (Al2,2X,A8,2X,Fl2.5,3X,A8,2X,Fl2.5) '/ 

DATA FSCFXM/' (Al2,2X,A8,2X,F12.5,3X,A8,2X,Fl2.5) '/ 

DATA FSCAGR/' (Al2,2X,A8,2X,Fl2.6,3X,A8,2X,Fl2.6)'/ 
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C 

C 

C 

C 

20 

C 

DATA FSCORP/' (A12,2X,A8,2X,F12.6)'/ 

DATA FSCSD /' (A12,2X,A8,2X,F12.8)'/ 

DATA FSCTAP/' (Al2,2X,A8,2X,F12.6) '/ 

DATA FSCRS8/' (A12,2X,A8,2X,Fl2.8) ' / 

DATA FMSCRS/' (Al2,2X,A8,2X,F12.5) '/ 

OPEN(UNIT=12, FILEa'INPUT.DAT;l',STATUS='OLD') 

OPEN(UNIT- 11,FILE•'OUTPUT.;1',STATUS• 'OLD') 

WRITE(ll,' (33HCASE 4: ORDERING AND PARTITIONING) ' ) 

M - 0 
N - 0 

READ (12,' (14X,A5) ') PROB 

WRITE(ll,' (16HPROBLEM NAME , AS)') PROB 

IF PROB.EQ . 'SC205' FMT = FSC205 

IF PROB.EQ. ' SCAGR' FMT = FSCAGR 

IF PROB.EQ. 'SCORP' FMT FSCORP 

IF (PROB(l:4) .EQ.'SCSD')FMT FSCSD 

IF PROB . EQ. 'SCFXM' FMT = FSCFXM 

IF PROB.EQ. ' SCTAP' FMT = FSCTAP 

IF PROB.EQ. 'SCRS8' FMT = FSCRS8 

IF (PROB(l:4) .EQ.'PROB')FMT = FMPROB 

READ(12, ' (A72) ')CARD 

WRITE(ll,' (A72) ')CARD 

CALL SIZE(MS,M) 

CALL SIZE(NS , N) 

WRITE(ll,20)M,N 

FORMAT( ' ** M • ',16,' 

READ(l2,' (A72)') CARD 

READ(12,ll)OBFUNC 

I = 1 

** N • ', I6) 

200 READ(12,ll)STRING 

11 FORMAT(l2A) 

IF(STRING(l:3) .NE. ' COL ' ) THEN 

CONSTR(I) = STRING 

I = I+l 

GO TO 200 
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ENDIF 

C START PROCESSING COL 

J = 0 

JCOL ... 
IC .. 1 

I = 1 

C BECAUSE THE FORMAT IS CHANGING FROM PROBLEM TO ANOTHER 

CONE IS BOUND TO READ IN A BUFFER CARD AND THEN READ 

C FROM THE BUFFER TO THE VARIABLES WITH APPROPRIATE FORMAT 

C 

300 READ(1 2,' (72A) ') CARD 

C 

VALl O.0D0 

VAL2 = 0. ODO 

C 

C IN THE CA~E OF PROBLEM SCRS8, WHERE TWO FORMATS Fl2 .5 AND 

C F12.8 ARE USED, A TEST IS NEEDED 

C 

C 

400 

IF (PROB .EQ. ' SCRS8 ') THEN 

IF(CARD(lS:22) .EQ . 'COST ') THEN 

READ(CARD,' (A12 ,2X,A8,2X,F12.8) ')COL,ROWl,VALl 

ELSE 

READ(CARD, ' (A12,2X,A8,2X, Fl2. 5) ')COL,ROWl ,VALl 

ENDIF 

GO TO 400 

ENDIF 

IF(CARD (40:48) .EQ.' ') THEN 

FMTHLF(2:19) ... FMT(2:19) 

READ(CARD,FMTHLF) COL, ROWl,VALl 

ELSE 

READ(CARD,FMT) COL,ROW1,VAL1 , ROW2 , VAL2 

ENDIF 

CONTINUE 

IF(COL .EQ. 'RHS I) THEN 

PRINT*, ' NC(IC-l)•',NC(IC-1),J 

IF(NC(IC-1) .NE . J) GO TO 500 

RA (I) = RC (IC-1) 

JA (I) = M+l 

IA(I) = NC(IC-1) 
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NA(J) • NA(J) + 1 

B(M+l) • B(M+l) + RC(IC-1) 

I • I + 1 

GO TO 500 

ENDIF 

IF(COL . NE.JCOL) THEN 

J - J + 1 

JCOL"' COL 

IF(J.GT.l)THEN 

IF(NC(IC-1) .EQ. (J-l))THEN 

C INSERT COST COEFFICIENT IN THE LAST ROW 

RA(I) • RC(IC-1) 

JA (I) ... M+l 

IA(I) • J-1 

NA(J-1) • NA(J-1) + 1 

B(M+l) • B(M+l) + RC(IC-1) 

I • I + 1 

ENDIF 

ENDIF 

ENDIF 

IF(ROW1 . EQ.OBFUNC(5 : 12)) THEN 

RC(IC) • VALl 

NC(IC) • J 

IC• IC+ 1 

CHERE WE STORE THE COST VECTOR AS A DENSE VECTOR, THUS: 

CDENSE(J)=VALl 

GO TO 450 

ENDIF 

CALL SRCHI(CONSTR,ROWl,M,ISUB) 

RA(I) .. VALl 

JA(I) • ISUB 

IA(I) • J 

NA(J) ... NA(J) + 1 

B(ISUB) B(ISUB) + VALl 

I = I + 1 

450 IF(VAL2.NE.0.0D0) THEN 

CALL SRCHI(CONSTR,ROW2,M,ISUB) 

RA(I) • VAL2 

JA(I) ,.. !SUB 

IA ( I) "' J 
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NA(J) = NA(J) + 1 

B(ISUB) B(ISUB) + VAL2 

I = I + 1 

ENDIF 

GO TO 300 

500 CONTINUE 

C PROCESS COLUMN 

NZ= I - 1 

J = 1 

C 

550 READ(12,' (A72) ')CARD 

VALl 0.0D0 

VAL2 0 .ODO 

IF ( CARD ( 4 0 : 4 8) . EQ . • I) THEN 

FMTHLF(2:19) = FMT(2:19) 

READ(CARD,FMTHLF) RHS,RHSl,VALl 

WRITE(ll,FMTHLF) RHS,RHSl,VALl 

ELSE 

C 

READ(CARD,FMT) RHS,RHS1,VAL1,RHS2 , VAL2 

WRITE(ll,FMT) RHS , RHS1 , VAL1 , RHS2,VAL2 

ENDIF 

IF(RHS.EQ.'ENDATA 

C PROCESS RHS 

' ) GO TO 600 

CALL SRCHI(CONSTR,RHSl ,M,ISUB) 

VRHS (J) VALl 

NRHS(J) ISUB 

J - J + 1 

IF(VAL2 .NE.0 . 0D0) THEN 

CALL SRCHI(CONSTR,RHS2,M,ISUB) 

VRHS(J) = VAL2 

NRHS(J) ISUB 

J = J + 1 

ENDIF 

GO TO 550 

6 0 0 CONTINUE 

C WE NEED THE OPTIMUM OBJECTIVE VALUE OF THE 

PRINT *, '**********·**** ENTER ZOPT ' 

READ(*,lS)ZOPT 

15 FORMAT (FlS. 4) 

VRHS (J) ZOPT 

NRHS (J) = M+l 
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C INTRODUCE SLACK VARIABLES FOR "•<' AND ' >- ' CONSTRAINTS. 

C NO LOGICAL COLUMN IS ADDED TO ' • ' CONSTRAINTS. 

C 

NN - N 

CM + 1 COMES FROM THE FACT THAT COST VECTOR IS JUST ANOTHER ROW 

DO 700 I• 1, M 

STRING • CONSTR(I) 

IF ( STRING(l:3) .EQ. • N • .OR . 

1 STRING(l:3) .EQ. ' E ' ) GO TO 700 

NZ.,. NZ+ 1 

NN = NN + 1 

JA(NZ) • I 

IA(NZ) • NN 

NA(NN) - NA( NN) + 1 

IF ( STRING (1 : 3) . EQ . ' G ' ) THEN 

RA(NZ) • - 1.0D0 

C 

C AS B CONTAINS THE SUM OF ELEMENTS OF EVERY ROW THEN IT HAS TO BE 

C UPDATED WHEN SLACKS ARE ADDED 

C 

B(I) - B(I) - l.0D0 

ELSEIF ( STRING(l:3) .EQ. 'L ' ) THEN 

RA (NZ) .. 1. ODO 

B(I) = B(I) + l.0D0 

ENDIF 

700 CONTINUE 

I • 1 

NN = NN + 1 

900 IF ( VRHS(I) .EQ.0.0D0) GO TO 750 

NZ= NZ+ 1 

J A (NZ) = NRHS(I) 

IA(NZ) .,. NN 

RA(NZ) = -VRHS(I) 

NA (NN) NA(NN) + 1 

C 

C WE PREPARE THE VALUE OF THE LAST COLUMN OF THE PROBLEM MATRIX 

C THAT IS b - Ae. NOTE THAT B = Ae 

C 

B (NRHS(I)) VRHS(I) - B (NRHS(I)) 

C 
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C WE SET B(NRHS(I)) TO -B(NRHS(I)) AND PUT IT BACK TO ITS NORMAL 

C SIGN LATER IN ORDER NOT TO MISS ELEMENTS OF B CORRESPONDING TO ZERO 

C IN VRHS 

C 

7 50 

850 

C 

34 

B(NRHS(I)) 

I = I + 1 

-B(NRHS(I)) 

GO TO 900 

CONTINUE 

NN = NN + 1 

DO 850 II .. 1, M+l 

NZ= NZ + 1 

JA (NZ) "' II 

IA(NZ) .. NN 

NA(NN) ,.. NA(NN) + 1 

RA(NZ) "' - B(II) 

CONTINUE 

WRITE(ll,34)NN, M+l, NZ 

FORMAT( ' Prob . under Canonical Form • I . , I, 
1 'N"' ' , 16, 3X,', M = ', I6, 3X, ' , NZ - ' I6/) 

C 

M M + 1 

C 

C TRANSPOSE LIST RA WHICH CONTAINS A COLUMN-WISE, INTO ALIST 

C WHICH WILL CONTAIN A ROW-WISE 

C TWO VECTORS IT AND IS ARE NEEDED TO PERFORM A FAST SPARSE 

C MATRIX TRANSPOSE 

901 

902 

903 

DO 901 I 1, M 

IS(I) = 0 

DO 902 I .. 1, NZ 

IS (JA(I)) • IS (JA(I)) + 1 

IT (1) 1 

DO 903 I 2 , M 

IT(I) 

DO 904 I 

IT(I-1) + IS(I-1) 

1, NZ 

J = IT(JA(I)) 

IROW(J) JA(I) 

ICOL(J) = IA(I) 

ALIST(J) = RA(I) 

IT(JA(I)) • J + 1 
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904 CONTINUE 

CIT NOW WILL CONTAIN THE ADDRESS OF THE BEGINNING OF EACH ROW 

IS(l ) • 1 

DO 905 I= 2, M+l 

IS (I) • IT (I-1) 

905 CONTINUE 

IA(l) • 1 

DO 804 I= 2 , NN+l 

IA(I) = IA(I-1) + NA(I-1) 

804 CONTINUE 

C PASS DATA IN A LIST TO SUBROUTINE KRMRKR 

C 

1 

C 

C 

CALL KRMRKR ( M, NN, NZ, IA, JA, RA, IS, ICOL, 

CLOSE (UNIT=ll) 

CLOSE(UNIT=l2) 

STOP 

END 

ALIST, CDENSE, C, X, PRHS, D, CP 

C ********* SIZE: FINDS DIMENSIONS OF PROBLEM 

C 

SUBROUTINE SIZE(MS,M) 

INTEGER MS(50),M 

2 I • 1 

K • 1 

READ(l2,100) ( MS(J), J .. 1,12) 

WRITE(ll,100) ( MS(J), J=l,12) 

100 FORMAT(l2I6) 

C 

1 IF(K.GT.12) GO TO 2 

PRINT *' I MS (I) "' I 'MS (I) 

IF(MS(I) .EQ. 0) RETURN 

M "" M + MS (I) 

I = I + 1 

K - K + 1 

GO TO 1 

END 

C ********SRCHI: FINDS CONSTRAINT INDEX 

C 

234 



SUBROUTINE SRCHI(CONSTR, CHAIN, M, ISUB) 

CHARACTER*12 CONSTR(lO00) 

CHARACTER*l2 STRING 

CHARACTER*8 CHAIN 

INTEGER ISUB,M,II,I 

ISUB - 0 

STRING -

DO 10 II = 1, M 

STRING• CONSTR(II) 

IF(STRING(5:12) .EQ.CHAIN) THEN 

ISUB • II 

RETURN 

ENDIF 

10 CONTINUE 

C 

PRINT *,'CHAIN NOT FOUND' 

RETURN 

END 

C************ FORSUB: GENERAL SPARSE FORWARD SUBSTITUTION TO SOLVE 

C TRIANGULAR SYSTEMS 

C 

C 

SUBROUTINE FORSUB (NEQNS , XLNZ, LNZ , XNZSUB, NZSUB, DIAG, RHS) 

DOUBLE PRECISION DIAG(*), LNZ(*), RHS(*), RHSJ 

INTEGER NZSUB(*), !SUB, J , JJ, NEQNS 

INTEGER XLNZ(*), XNZSUB(*), I, II, !STOP, ISTRT 

C 

100 

200 

DO 200 J = 1, NEQNS 

RHSJ = RHS(J) / DIAG(J) 

RHS (J) ,.. RHSJ 

ISTRT = XLNZ (J) 

!STOP= XLNZ(J+l) -1 

IF !STOP .LT. ISTRT) GO TO 200 

I= XNZSUB(J) 

DO 100 II = ISTRT, !STOP 

ISUB = NZSUB(I) 

RHS(ISUB) a RHS(ISUB) - LNZ(I I )*RHSJ 

I = I + 1 

CONTINUE 

CONTINUE 

235 



C 

C 

RETURN 

END 

C********** BACSUB 

C 

SPARSE BACKWARD SUBSTITUTION TO SOLVE 

UPPER TRIANGULAR SYSTEMS 

C 

C 

C 

300 

400 

500 

SUBROUTINE BACSUB (NEQNS,XLNZ,LNZ,XNZSUB,NZSUB,DIAG,RHS) 

DOUBLE PRECISION DIAG(*), LNZ(*), RHS(*l, RHSJ, S 

INTEGER NZSUB(*), ISUB, J, JJ, NEQNS, I, II 

INTEGER XLNZ(*l, XNZSUB(*l, !STOP, ISTRT 

J .. NEQNS 

DO 500 JJ 1, NEQNS 

S = RHS (J) 

ISTRT XLNZ (J) 

!STOP= XLNZ(J+l) - 1 

IF !STOP .LT. ISTRT) GO TO 400 

I= XNZSUB(J) 

DO 300 II• ISTRT, !STOP 

ISUB .. NZSUB(I) 

S • S - LNZ(II)*RHS(ISUB) 

I•I+l 

CONTINUE 

RHS(J) • S / DIAG(J) 

J ,,. J - 1 

CONTINUE 

RETURN 

END 

C 

C***** INVERS: FINDS INVERSE OF A SQUARE MATRIX USING 

C GAUSS ALGORITHM. IT IS USED TO INVERT 2X2 MATRICES, 

C 

C 

RESULTING FROM THE 2 FULL COLUMNS ADDED TO THE PROBLEM 

SUBROUTINE INVERS(KOD, N) 

DIMENSION A(20), BB(20), FFT(2,2 ), INVFFT(2, 2 ) 

DIMENSION B(20),C(20),IL(20),IC(20) 

DOUBLE PRECISION DET, PIVO, X, EPS,A, BB, B, C, INVFFT, FFT 

INTEGER KOO, M, N, IL, IC, ID 
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COMMON/El/FFT, INVFFT 

EPS = 1. 0D-13 

NN=N*N 

K=l 

DO 22 I=l,N 

DO 22 J=l,N 

A(K) =FFT (J, I) 

K=K+l 

22 CONTINUE 

DO 1 I=l ,NN 

1 BB(I)""A(I) 

C FIND MAX PIVOT 

DET=l.0D0 

NM=-N 

DO 11 M=l,N 

NM=NM+N 

IL(M)=M 

IC(M)=M 

ID=NM+M 

PIVO=BB ( ID) 

DO 2 J=M,N 

JJ=J*N-N 

DO 2 I=M,N 

II=JJ+I 

IF(DABS(PIVO) . GE.DABS(BB(II))) GO TO 2 

PIVO=BB(II) 

IL(M)=I 

IC(M)=J 

2 CONTINUE 

C PERMUTATION OF LINES AND COLUMNS 

I=IL(M) 

IF(I.LE.M) GO TO 4 

IM=M-N 

DO 3 J=l,N 

IM-IM+N 

JJ=IM-M+I 

X=-BB (IM) 

BB(IM)=BB(JJ) 

3 BB(JJ)=X 

4 J=IC (M) 

237 



IF(J.LE.M) GOTO 6 

NJ=N*J-N 

DO 5 I=l,N 

JM=NM+I 

JJ=NJ+I 

X=-BB(JM) 

BB(JM)=BB(JJ) 

5 BB(JJ)=X 

C MODIFICATION OF COLUMN 

6 IF(DABS(PIVO) .GT . EPS) GOTO 7 

DET=0.0D0 

KOD=l 

RETURN 

7 DO 8 L=l,N 

IF (L.EQ.M) GOTO 8 

LL=NM+L 

BB (LL)=-BB(LL)/PIVO 

8 CONTINUE 

C ALGORITHM OF GAUSS 

DO 9 I=l,N 

IM=NM+I 

II=I-N 

DO 9 J=l,N 

II=II+N 

IF(I.EQ.M) GO TO 9 

IF(J.EQ.M) GO TO 9 

JJ=II-I+M 

BB(II)=BB(II)+BB(IM)*BB(JJ) 

9 CONTINUE 

C MODIFICATION OF ROW 

MJ=M-N 

DO 10 J=l,N 

MJ=MJ+N 

IF(J.EQ.M) GOTO 10 

BB(MJ)~BB(MJ)/PIVO 

10 CONTINUE 

DET=DET*PIVO 

C PIVOTING 

BB(ID)=l .0D0/PIVO 

11 CONTINUE 
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C PERMUTATION ON THE RESULTING MATRIX 

M=N 

12 M=M-1 

IF(M.LE.0) GOTO 16 

I =IL (M) 

IF(I.LE.M) GOTO 14 

Jl=N* (M-1) 

J2=N*(I-l) 

DO 13 J=l,N 

JX=Jl+J 

JY=J2+J 

X•BB(JX) 

BB(JX)=-BB(JY) 

13 BB(JY)=X 

14 J=IC(M) 

IF(J . LE.M) GOTO 12 

JlocM-N 

DO 15 I=l,N 

Jl=Jl+N 

J2=Jl-M+J 

X=aB(Jl) 

BB(Jl)=-BB(J2) 

15 BB(J2)=X 

GOTO 12 

16 CONTINUE 

K•O 
DO 23 I .. 1,N 

DO 2:l. J=l,N 

JJ.,,J+K 

INVFFT(J,I)=BB(JJ) 

21 CONTINUE 

K=K+N 

23 CONTINUE 

RETURN 

END 

C 

C 
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