
Karmarkar's Algorithm: Extensions and Implementation

Abdellah Salhi

Doctor of Philosophy

The University of Aston in Birmingham

September 1989

© This copy of the Thesis has been supplied on condition that anyone who consults it is
understood to recognize that its copyright rests with its author and that no quotation from
the thesis and no information derived from it may be published without the author's prior,
written consent.

1

The University of Aston in Birmingham

Karmarkar's Algorithm: Extensions and Implementation

Abdellah Salhi

Doctor of Philosophy

September 1989

Summary

Linear Programming (LP) is a powerful decision making tool, extensively used in
various economic activities. Its success is mainly due to the efficiency of the simplex
method. In recent years, however, new techniques have emerged.

The present work is concerned with investigating one such technique, namely
Karmarkar's algorithm and its variants, extending it to structured linear programming
problems and efficiently implementing it, taking account of sparsity.

A review of recent work on the algorithm and early polynomial time methods for
LP such as the ellipsoid and the simplicial algorithms is presented. The performance of
the simplex method is also discussed.

One of the major developments in Karmarkar's algorithm is the discovery of dual
variants. Duality allows the method to be simply extended to problems having an
unknown optimum objective value and also to investigate postoptimality analysis. The
study showed that postoptimality analysis is possible with Karmarkar's algorithm in the
three cases considered (cost, right-hand side and rim).

Based on Ye and Kojima's dual variant, a specialized form of the algorithm for
structured LP is presented together with computational results on various problems. The
results show that inherent parallelism of some linear programming problems can be
efficiently exploited with Karmarkar type algorithms. The advantages of decomposition
are also discussed in a wider context (eg. lack of favourable structure).

Finally, an efficient implementation of a variant of the Karmarkar algorithm, which
combines sparsity-preserving techniques for least squares, such as the nested dissection
ordering algorithm and updating techniques is described. The performance of this
implementation on realistic LP problems is reported.

Key Words: Linear Programming, Least Squares, Karmarkar's Algorithm, Duality,

Partitioning.

2

In memory of
Mohand Tayeb Sallzi

3

Acknowledgements

I wish to express my thanks to the following people:

Mr. George R Lindfield, my supervisor, for his support, guidance and being available
whenever needed,

Miss Jacqueline M Archibald for her support, encouragement and friendship throughout
this work,

Dr. Meng Hua for his advice and friendship,

Dr. Brian Gay for all his help,

all members of staff of the Department of Computer Science & Applied Mathematics, and
Computer Services, especially Dr. Les Hazlewood, Neil Toye, Malcolm MacGregor,
Dave Stops and Roy Parsons, for their technical help and advice,

all my fellow research students, especially Rob Thomson and Ian Hardy, for their
stimulating ideas and lively debates.

Finally, I acknowledge the financial support provided by the Algerian Government.

4

List of Contents

Title Page......................... 1

Summary 2

Dedication. 3

Acknowledgements . 4

List of Contents 5

List of Figures I 0

List of Tables 11

I Introduction 12

1.1 A Brief History : 12

1. 1. 1 Algorithm and Problem Complexity 13

1.1.2 Developments in Linear Programming 15

1.1.3 A New Generation of Polynomial Time Algorithms 17

1.2 LP Problem: Statement, Notation and Terminology 18

1.2. 1 The General Form 19

1.2.2 Equivalent Formulations ... 19

1.2.3 Terminology and Geometric Concepts 20

1.3 The Simplex Method 2 1

1.3.1 Performance of the Simplex Method 2 1

1.3.2 Experiments on Randomly Generated Problems 23

1.4 The Ellipsoid Algorithm 24

1.4.1 Constructing Khachyan's Algorithm 24

1.4.2 Improvements to the Basic Algorithm 27

1.4.3 Performance of the Ellipsoid Algorithm 28

1.5 Central Splitting and Simplicial Algorithms of Yamnitsky and Levin 28

1.6 Research Needs and Objectives ... 30

5

2 The Projective Algorithm of Karmarkar: A Survey 32

2.1 Introduction 32

2.2 The Projective Algorithm of Karmarkar 33

2.2.1 Algorithm Complexity 40

2.2.2 Transforming The Standard Form into Canonical Form 41

2.2.3 Solving Problems with unknown z* 44

2.3 Recent Developments in Karmarkar-Type Algorithms 46

2.3.1 Alternative Search Directions 46

2.3.2 Alternative Rescaling ... 48

2.3.3 A Barrier Function Approach to LP 51

2.3.4 Newton Methods for LP 52

2.4 Computational Experience 55

2.5 Conclusions 59

3 Computation of the Projected Gradient and Steplength a 61

3.1 Introduction 6 1

3.2 The Linear Least Squares Problem 61

3.2.1 LSQ Problem and Normal Equations 62

3.2.2 Data Characteristics and Algorithm Performance 62

3.2.3 Numerical Stability and Condition Number 63

3.2.4 Scaling and Preconditioning 63

3.2.5 Sparsity 64

3.2.6 Solving the Least Squares Problem 65

3.2.6.1 Direct Methods ... 65

3.2.6.2 Iterative Methods 68

3.2.7 An Updating Algorithm for Least Squares 71

3.2.8 Exploiting the Sparsity of The Right-Hand Side 73

3.3 Optimum Choice of Steplength a 74

3.3. 1 Constant Steplength 74

3.3.2 Variable Steplength 78

6

4 Duality and Postoptimality Analysis 80

4.1 Availability of dual solutions.................. 80

4.2 Extending Karmarkar's Algorithm to Problems with Unknown z*.......... 81

4.2.1 Computational Experience . 86

4.3 Dual Algorithm of Ye and Kojima 87

4.3.1 Improved Lower Bound on z* 89

4.3.2 Experiments with Algorithm 4.2 92

4.4 Postoptimality Analysis via Karmarkar's Algorithm: Introduction 94

4.4.1 Perturbations in the Cost Vector 96

4.4.2 Perturbations in the Right-Hand Side 98

4.4.3 Perturbations in the Rim .. 100

4.5 Summary 101

5 A Centring Scheme Based on Chebyshev Points 103

5.1 Introduction 103

5.2 T he Chebyshev Problem ... 103

5.3 Converting the Chebyshev Problem into a LP Problem 104

5.4 Equivalence of CP and LP ... 104

5.4.2 LP Problems with Unknown Optimum Objective Value 108

5.5 Convergence of a Sequence of Chebyshev Points 109

5.5.1 An Algorithm for LP 111

5.6 Computational Considerations: Improvements to Algorithm 5.1 112

5.7 Numerical Example 114

5.8 Conclusion 116

6 Karmarkar's Algorithm and Decomposition for Linear

Programn1ing 117

6.1 Introduction ... 117

6.2 Structured LP Problems ... 118

6.3 A Decomposition Algorithm Using Karmarkar's Method 121

6.4 A General Form of Algorithm 6.1 .. 124

7

6.5 Dual Karmarkar Algorithm for Block-Angular LP Problems 128

6.5.1 Computing the Dual Solutions ... 130

6.5.2 Search Direction and Lower Bound on z* 133

6.5.3 A New Partitioning Algorithm for LP 134

6.6 Extending the Partitioning Algorithm to Staircase Structure 135

6.7 Computational Experience and Conclusion 137

6.7. l Tests on Random Generated Structured LP Problems 137

6.7.2 Tests on Non-Randomly Generated LP Problems 139

6.7.3 Conclusion ... 140

7 I mplementa tion of the Proj ective Algorithm and Computa tiona l

Experience 144

7 .1 Introduction 144

7 .2 A Variant of the Karmarkar Algorithm ... 145

7.3 Implementa tions of Algori thm 7. 1. 147

7.3.1 Details of LPKAR 1 148

7.3.1.1 Adjacency Structure of A'D2A'T 149

7.3.1.2 Symbolic Factorization and Storage Scheme 150

7.3.2 Input Data for Codes of Algorithm 7.2 151

7.3.3 Computational Experience ... 152

7.3.3. 1 Hilbert-Type LP problems 158

7.3.3.2 Klee-Minty Problems 159

7.4 Alternative Least Squares methods 160

7.5 Applying Algorithm 7.1 when z* is not a priori known 161

7.6 Comparative Results between LPKAR l (Case 3) and LINDO 164

7.7 Conclusion 165

8 Conclusions and Further Development. .. 167

References 171

Appendix A 182

Appendix 8 184

8

App endi x C 185

A i>pendix D 195

Appendix E 199

Appendix F 206

9

List of Figures

Figure Page

2.1 An Iteration of the Algorithm 37
2.2 Feasible Polytope nril: 37
2.3 A Step Along the Projected Gradient 38
2.4 Rescaling of the Feasible Region 39
2.5 Resu lt of Iteration 2 40
3. 1 Maximum Decrease in Potential Function Occurs for a.= 0.2453 75
3.2 Decrease inc TDx'/eTDx' after Taking a Step of Length a. 76

4.1 The I lalf-Spaces Defined by the Ratios sU)/r (j) 90
5.1 Centring Process of the Chebyshev Approach 109
5.2 Sequence of Chebyshev Points (circles) Converging to x* 115
6.1 Diagram of a 2-Block LP Problem 119
6.2 General Block diagonal LP Problem 120
6.3 Staircase Structure ... 12 l
6.4 Equivalent Block-Angular S tructure ... I 2 l
6.5 QR Factor of the Block-Diagonal Matrix BT ... I 31
6.6 Partitioning the Linking Block of a 5-Stage Staircase LP Problem J 35
6.7 Structures of A? and Fj 136
6.8 A Sample Randomly Generated Problem 139
7 . 1 Adjacency Structure of a Graph .. . 150
7 .2 Decrease in the Potential and Objective Functions for Problem Scagr7 155
7.3 Decrease in the Potential and Objective Functions for Problem Scagr25 156
7.4 Decrease in the Potential and Objective Functions for Problem Sc205 156
7.5 Decrease in the Potential and Objective Functions for Problem Scfxml 157
7 .6 Decrease in the Potential and Objective runctions for Problem Sctap I 157
7.7 Results from LPKARI on Hilbert-Type Problems 159
7.8 Results from LPKARl on Klee-Minty Problems 160
A. I Splitting and Enclosing Process of the Simplicial Algorithm 182
C. I Graph Representation of a Matrix 188
C.2 Minimum Degree Algorithm Applied to Graph C. l l 90
C.3 Nested Dissection of a 5x5 Grid l 92

10

List of Tables

Table Page

2.1 Problems Statistics 55
2.2 Comparative Results between 4 Implementations of Karmarkar

Related Algorithms and MINOS 5.0 S implex Code 59
4.1 5x5 Hilbert Type LP Problem Solved with Todd, Burrell and Gay's Variant 86
4.2 I Ox IO Hilbert Type LP Problem Solved with Todd, Bunell and Gay's Variant 86
4.3 20x20 Hilbert Type LP Problem Solved with Todd, Burrell and Gay's Variant 87
4.4 5x5 Ililbert Type LP Problem Solved with Ye and Kojima's Variant 92
4.5 IOxl0 Hilbert Type LP Problem Solved with Ye and Koj ima's Variant 93
4.6 20x20 Hilbert Type LP Problem Solved with Ye and Kojima's Variant 93
5.1 Paths Followed by Algorithm 4.1 107
5.2 Iteration Count for a Variant of Karmarkar's Algorithm 108
5.3 Points Returned by Algorithm 5.2 115
6. 1 Numerical Results on Randomly Generated Problems 138
6.2 Results from Partitioning (P) and Nonpartitioning (NP) Algorithms 139
7.1 Test Problems Statistics ... 152
7.2 Performance of LPKARI (Case 1) .. 153
7.3 Performance of LPKARI (Case 2) 154
7.4 Performance of LPKARl (Case 3) .. 154
7.5 Performance of LPKARl (Case 4) .. 155
7.6 Comparative Results: LPKARl (Case 3) v LINDO 165

11

Chapter 1

Introduction

1.1 A Ilrief History

Linear Programming (LP) developed from the Twentieth Century's need to solve

problems of production management. Although known to Kantorovich (1939), it

effectively started in 1947 with the design of the simplex method of G.13.Oantzig for

solving optimum planning problems. A period of rapid developments and exciting

discoveries in this new field followed and continue today. In the post-war era LP has

provided a good framework for ihe analysis of class ical economic theories such as the

Walras mathematical model of economy and Leontief Input-Output model. It has also

been successfully used to bring together different fields of pure ma thematics such as

convex sets theory, combinatorics and two-person game theory.

Before LP, various problems of production management were solved by a trial-and-

error approach guided only by experience and intuition. Later, most of those problems

were stated in terms of LP and systematically solved by the simplex method.

It is when combined with the computer that LP is most effective. The widespread use

of LP is main ly due to this combination. Indeed, a large proportion of computing power,

is devoted to solving present day large scale LP problems. This is well expressed in

I Lovasz, 1980 J:

"If one would take statistics about which mathematical problem is using up most of the computer

time in the world, then (not counting database handling problems like sorting and searching) the

answer would be linear programming"

From the beginning, the simplex method was effective on almost any type of LP

problem. Over the years it has been further polished and new variants of it have been

12

developed by Gass, Lemke, Orchard-Hays and others (see Dantzig, 1963). Today, it is a

practical and robust decision making tool, which stands on a firm theoretical basis.

In recent years, however, with the progress of complexity theory, most algorithms

have come under scrutiny and their efficiency questioned. The simplex was no exception,

and was shown to run in exponential time for an artificially built class of LP proble ms

[Klee & Minty, 1972]. This important result encouraged the debate over the efficiency of

the simplex and a crucial question arose: Is LP in the P-class or NP-class?

Before going any further, we ought to define some terminology borrowed from

complexity theory; the definition may help to see how this theory contributes to

understanding algorithms and evaluating their performance.

1.1.1 Algorithm and Problem Complexity

Usually, for a given problem, a range of a lgo1 ithms may be used to solve it. As a

random choice may not be suitable, it is useful to have some crite ria for identifying a

specific algorithm. These criteria are the amounts of CPU time and storage required to run

a code of the algorithm on a computer [Lovasz, 1984).

One of the main concerns of complexity theory is to find, for a g iven algorithm, a

bound on its running time, i.e. its time complexity function, and a bound on the space

requirement, i.e. its space complexity function. The time is usually the only factor

considered. However, the theory can be extended to storage. In finding these bounds, the

problem difficulty is also investigated. This allows us to separate problems into different

complexity classes. Hence, algorithm complexity and problem complexity go hand in

hand, although a distinction between them should be made. Algorithm complexity is the

cost of a particular algorithm, while problem complexity is the minimal cost over all

possible algorithms [Traub & Wozniakowski, 1982].

We have already mentioned two complexity classes: The P-class and the NP-class. The

P-class, probably the most studied, contains problems for which a polynomial time

algorithm has been found, on deterministic computers (like the ones we use in the real

world). A polynomial time algorithm is one with a running time bound, (worst case

13

complexity), which is a polynomial function of the length of the problem data (eg. 2n,

n3+n, etc ...), or behaves asymptotically like one (eg. logn, nlogn, n61ogn, etc ...) [Garcy

& Johnson, 1979; Kronsjo, 1985].

The NP-class contains problems for which a polynomial time algorithm can be found

only on a non-dete1ministic computer. Non-deterministic computers are pure mathematical

inventions. On real life computers only exponential time algorithms can be found for

them. These algorithms have time bounds which are exponential functions, or behave

similarly, (eg. e0 +n, 2°, etc ...). The hardest problems in the NP-class form the NP-

Complete class. Intuitively, problems in the NP-class are of the form, 'determine whether

a solution exists.' Their complementary problems are of the form, 'establish that there are

no solutions'. They constitute the CO-NP-class, I Kronsjo, 1985J.

As early as 1953, von Neumann made the distinction between polynomial and

exponential time algorithms. However, it was not until 1965 that the class of problems

solvable by polynomial algorithms, was identified (see Cook, 1983). This was due to

Edmonds (1965) who first thought that exponential time computability approximately

indicates how difficult a problem is. Consequently, he introduced the notions of "easy"

and "hard" problems and "good" and "bad" algorithms.

In practical terms, this idea of classifying problems and algorithms is not totally

justified. Indeed, many reliable and practical algorithms, such as the simplex method, arc

known to run in exponential time for some cases, and many good algorithms in theory are

inefficient in practice (appropriate examples wi ll be given in the next section). It is in thi s

respect that the average run time, (average complexity), is relevant to understanding the

behaviour of algorithms. However, average time bounds are more difficult to derive, as a

priori probability distributions on the data must be postulated l Lovasz, 1984 J.

Until recently, the LP problem was believed to be in the NP-complete group. It wa-;

thought that the discovery of a polynomial time algorithm for LP would bring an answer

to the outstanding question of whether P=NP. As will be seen in the following sections,

such an algorithm has been discovered, which shows that LP is in the P-class. I Iowever,

a c loser study of the problem's properties revealed that linear programming has the

properties of the NP as well as the CO-NP groups. Because there is strong evidence that

14

NP7'C0-NP, LP can only be in one of them. Further studies supported the argument that

LP is not a member of the NP-class, [Garey & Johnson, 1979; Kronsjo, 1985).

1.1.2 Developments in Linear Programming

The rules for pivot selection of the simplex algorithm are a decisive feature in its

performance. Many new rules, were proposed [Bland, 1977), but soon problems for

which those variants lacked efficiency were also constructed. Note that these problems

have not been observed to occur in the real world, and were appropriately labelled

pathological. However, there is a wide agreement that "well solved" problems are those

for which polynomial time algorithms were found, [Garey & Johnson, 1979]. This is

because exponential time algorithms are only intelligent variations on exhaustive search,

which implies they are costly in terms of computing time. Jt was thus understood, at least

from the theoretical point of view, that the LP problem was still not "well solved". The

search for a polynomial time algorithm for LP continued, encouraged by the need to

answer the theoretical question about the class of LP, and also by the thought, that an

algorithm with a polynomial time worst case bound would increase the efficiency of

managing operations beyond what the simplex provided so far.

In 1979 such a polynomial time algorithm was discovered by the Russian

mathematician Leonid Genrikovitch Khachyan. The algorithm was designed primarily to

recognize compatible systems of linear inequalities in polynomial time in the length of the

data. The underlying idea is reminiscent of the binary search. The latter can be brieny

described [Papadimitriou & Steiglitz, 1982] as follows. Suppose that an integer x is to be

determined in the intcval 11, ZI by performing the test "Is x > b?", for some chosen value

b. The obvious way is to take b in the middle of the interval, thus splitting it into two

parts. The outcome of the test will allow us to drop one part of the interval, and continue

the search in the remaining part. It is stopped when the final interval contains exactly one

integer, which is x, and this happens after n = 1log (Z)l tests. Similarly, the Khachyan

algorithm strives to restrict the search for a solution to one part of the solution set and

discard the other one. This is achieved by the use of ellipsoids whose volumes decrease at

15

every iteration. The process will be explained later. It should already be mentioned that to

apply the algorithm to the linear programming problem, the latter should be converted into

a set of strict linear inequalities. Indeed, the equivalence of LP and strict linear inequalities

is a key feature in the theory of Khachyan's algorithm. Khachyan (1979) established that

LP problems defined in the set of integer numbers can be solved in O(n6Logn) arithmetic

operations.

Much work followed the discovery of the ellipsoid algorithm, and the bulk of it was

aimed at producing practical implementations and codes. However, despite persistent

efforts, no implementation of the algorithm seems to be as efficient as the simplex codes.

In fact the algorithm performed better on Nonlinear Programming Problems (NLP). It

became clear that in terms of practical value, the worst case bound is not very significant.

As a consequen_ce it was thought [Smale, 1983; A vis & Chvatal, 1978] that bounds on the

average performance (average case bounds) of algorithms may be the key to

understanding their behaviour. Consider, for instance, the number of pivot steps on

average taken by the simplex or its variants on problems encountered in practice as well as

randomly generated. This number must be more significant for practical purposes than

that taken on a special class such as the Klee-Minty problems. Studies on the average

performance of the simplex have been undertaken since the early S0's. A good account of

the outcome from these studies may be found in [Shamir, 1987]. This issue will be

further discussed tater.

The search for other polynomial time algorithms for LP continued and in 1982 A. Ju

Levin and Boris Yamnitsky showed that the role of ellipsoids in the Khachyan algorithm

can be played by simplices. The algorithm was shown to be polynomial in the size of the

input data, with a better bound than that of the eltipsoid algorithm. The simplicial

algorithm was based on an early algorithm of Levin (1965). The 1982 version is

characterized by an implementation of Levin's idea so that the algorithm runs in

polynomial time.

With these discoveries, much interest has been paid to the non-combinatorial aspects

of LP, on which the ellipsoid and the simplicial algorithms are based. The interior-point

or nonlinear programming approach to LP is also not new. Brown and Koopmans,

16

mentioned in [Chames et al., 1984), as early as 1951, considered the idea of moving

through the polyhedron of the solution set rather than from vertex to vertex in search of

the optimum, which is the way the simplex method proceeds. The Brown-Koopmans

algorithm proceeds as follows: (a) Start with a point in the constraint set, (b) move in the

direction of the objective functional vector until a constraint boundary is reached, (c) make

a lateral move orthogonal to this direction staying inside the constraint set, (d) repeat the

process until an approximate solution is reached.

The difficulty to maintain feasibility and the slow convergence near the boundaries

constitute the major drawbacks of the Brown-Koopmans algorithm. Variants which aimed

to guarantee the feasibility of the sequence of points generated, were developed using

logarithmic potential and penalty functions [Fiacco & McCormick, 1968]. However, the

increase in the_ size of the problem and the necessity to solve a sequence of nonlinear

programming problems arising fr~m the transformation of the original LP problem, made

these variants uncompetitive with the standard simplex method.

1.1.3 A New Generation of Polynomial Time Algorithms

The basic idea of the Brown-Koopmans algorithm was considered again by Narendra

z. Karma.rkar of AT&T Bell Labs and led to the development of yet another polynomial

time algorithm for LP [Karmarkar, 1984a, 1984b]. The algorithm has worst case bound

of O(n3.5Logn) and is of substantial improvement over the ellipsoid and simplicial

algorithms. Karmarkar's innovation resides in the way feasibility is guaranteed after each

iteration. The use of Projective Geometry and a logarithmic potential function to measure

convergence and polynomial complexity is central to the algorithm. With this new

technique, LP appears to be invariant under rescaling. In other words the change of the

scale unit does not affect LP problems. Indeed, the algorithm is basically a rescaling

process. TI1is is the main feature of the Karmarkar algorithm and the new breed of related

algorithms.

Karmarkar's algorithm works in a transformed space of the original LP problem. The

process is an optimization over a sphere inscribed in a (unit) simplex. At each iteration a

17

step is taken from the centre of the sphere in the direction of the negative projected

gradient of a special objective function with optimum value zero, on the null space of the

constraints matrix. The resulting point is guaranteed to be feasible by appropriate choice

of a steplength a.. At the end of each iteration a projective transformation (rescaling) is

used to bring back the current point into the centre of the inscribed sphere, and the current

simplex into itself. A minimum amount of reduction in the objective function and

especially in the logarithmic potential function is guaranteed at each iteration. The process

is then repeated.

Karmarkar's claim that the method may be up to 50 times faster than the standard

simplex method caused a stir in the Mathematical Programming Community. However,

this claim was not supported by any published experimental results. The first

experimental rt?sults obtained outside the AT&T Bell Labs were not as good as expected.

The first difficulties with the algorithm came from the computation of the projected

gradient. It constitutes the bulk of the work needed at each iteration and is more costly

than one iteration of the simplex method. For many it is a serious contender to simplex

method as a standard way for solving LP problems. However, many aspects of LP such

as duality, sensitivity analysis, sparsity exploitation, remain to be investigated in the

frame of Karmarkar's algorithm and its performance evaluated on a wide range of

problems before it can be fully adopted.

1.2 LP Problem: Statement, Notation and Terminology

A /'intention du novice, we would like to state the general linear programming

problem and equivalent forms before going into the details of the present work. The

notation will be consistently followed in subsequent chapters. Other forms and symbols

will be defined when introduced.

18

1.2.l The General Form

The general problem of 1 in ear programming is the search for the optimum (maximum,

minimum) of a linear function of variables subject to linear relations (equations or

inequalities) called constraints. Some constraints are specific to some or all variables: The

non-negativity constraints (Xj 0) and the non-positivity constraints (xj 0). Some or all

variables can be arbitrary. It is, however, very common to impose a priori the condition

of non-negativity on all variables in economic problems.

According to the above definition, the algebraic formulation of the general LP problem

[Simonnard, 1966] is:

(OLP)=

min (or max) z = Lf . 1 Cj Xj

subject to Lf- 1 aij Xj bi ,

Lj - t aij Xj = bi ,
Xj 0,

x; arbitrary,

i = 1, ... , p,
i = p + 1, ... , m,
j = 1, ... , q,
j = q + l, ... ,n,

whereaij, bi, c;, x; andze R, fori= l, ... ,rn,
and j = 1, ... , n .

1.2.2 Equivalent Formulations

The general LP problem can be put under more compact and easy to handle forms.

These forms are equivalent

The Canonical Forni :
Min cTx
s.t. Ax b

X 0

The Standard Form
Min CTX

s.t. Ax = b
X ~0

C E R0
'

A E Rm,Xn, b E Rm,
'

XE R0
".

CE R"·
A E Rm,Xn,, b E Rm,
XE R"•.

19

The Mixed Form :
Min CTX

s.t.A1x ~b1
A2x = b2

X ~0

CE Rnd

A1 E Rm,xn\ b1 E Rm1

A2 E Rm1xn4, b2 E Rm1

XE Rnd .

To transform the general LP problem to any of the three equivalent forms, elementary

operations and relations are used, such as:

* min f(x) = -maxr-f(x)],

* if Xis arbitrary then X = x+-x·, where x+ = maxro, x] and x· = max[O, -x],

* {aTx = p, aeR0 , xeR0 , peR} = {aTx p and-aTx ~-P},

* a T x :2: p may be replaced by a T x+xs = p, Xs~O, Xs is called a slack variable.

1.2.3 Terminology and Geometric Concepts

A program or a feasible solution is a set of values of the variables which satisfies all

the constraints of the problem. An optimal solution is a finite solution which optimizes

the objective function. It is also called optimal program or optimal plan. A set

K = {xeR0 I aTx = p, aeR0 , PeR} is called a hyperplane. The set { xeR0 I aTx = p,
ae R0 , Pe R} defines a half-space. The intersection of a finite set of half-spaces in R0

forms a polyhedral set, a polyhedron or a polytope. If His a hyperplane, K a polyhedron

and HnK = E = 0, then H is called a supporting hyperplane to K. It should also be noted

that Hn(lnt. K) = 0. The set E = HnK is called a face. If dim(K) = n and dim(E) = k,

then:

If k = n-1 then E is a facet,

if k = 1 then E is an edge,

if k = 0 then E is a vertex.

A relevant constraint is one that corresponds to a supporting hyperplane, or equivalently

there is a feasible point x in the solution set for which the constraint is tight, i.e. satisfied

20

as equality. A (min) LP problem is unbounded if in the feasible set the objective function

c T x is not bounded from below. If the feasible set is empty, the problem is infeasible.

J .3 The Simplex Method

Without going into details, the simplex method can be described as follows.

Usually two phases are needed; in phase I the feasibility or otherwise of the problem

is established and a vertex of the domain of the LP problem is found, if there is any.

Phase II generates a monotone path in the feasible set, in accordance with the objective

function of the problem. The path stops at a vertex when no improvement in the objective

function value is possible, or else at an unbounded edge in which case the problem is

unbounded.

The generation of the path ~orresponds to moving from an extreme point to an

adjacent one at each iteration of the process. This is done by changing one of the vectors

of the current basis with a non-basic vector which becomes basic after pivoting. Thus,

a lgebraically, moving from a vertex to an adjacent one corresponds to changing the

current basis with an adjacent one. In an m by n LP problem, where m < n, a vertex is

determined by m linearly independent tight constraints.

There are many variants of the simplex, and they can differ a great deal. The way the

feasible starting point is found and the criteria for choosing the entering variables into the

basis can be totally different from one variant to another. However, they all generate a

monotone path which ends at an optimal solution to the LP problem, if it admits any.

1.3.1 Performance of the Simplex Method

Given the worst case time bound of the simplex and the shear volume of work spent

on LP since the 40's, LP was suspected by many to be in the NP-class. As worst case

bounds are the easiest to derive and fail to reflect practical experience, many researchers

tried to study the average case behaviour of the simplex. One of the early statements on

the matter is due to Dantzig (1963):

21

"For an m-equation problem with m different variables in the final basic set, the number of iterations

may run anywhere from m as a minimum to 2m and rarely to 3m. The number is usually less than

3m/2 when the re are less than 50 equations and 200 variables (to judge from empirical

observations.) Some believe that for a randomly chosen problem with fixed m, the number of

iterations grows in proportion to n."

The quote reflects results on the performance of the simplex prior to 1963.

Systematic studies of the performance of the simplex method on real life and

randomly generated LP problems have been carried out by many and results can be found

in LMcCall, 1982; Ho & Loute, 1980; Goldfarb & Reid, 1977; Benichou et al., 1977 J.
Over more than 30 years the experience accumulated on the behaviour of simplex is vast.

Ho wever in the scientific literature this experience is not fully documented as most

practitioners in industry and other areas do not keep or publish the results of the ir

experiences. The published results usually concern newly discovered variants of the

simplex applied to standard test problems. This is probably due to the fact that since the

50's the finiteness of the algorithm was accepted by all.

In general, from the results of experiments with the simplex method it is concluded

that simplex runs as a polynomial time algorithm. A rough bound on the number of steps

one would expect to find a feasible solution to a linear program m,ing Phase I of the

simplex is conjectured to be am, where m is the number of equations and a is 2 to 3.

Fo r n large relative to m, the value of a grows slowly as in exp(a) < log2(2+n/m).

These statements made by Dantzig in 1979 after the discovery of the ellipsoid algorithm,

can be regarded as a summary on the average performance of the simplex, as was pointed

out by Shamir (1987). For some problems, however, the number of vertices in the path

of the simplex is unreasonably high, and not reflected in the above conclusions. These

problems arise from Set Partitioning and periodical or time-staged tasks (Staircase

Problems) [Ho & Loute, 1980; Fourer, 1982).

At a meeting in London, Dantzig (1987) reported that a rule for which no exponential

counter example is known, has been pointed out by Zadeh. The rule is: "Choose as

22

entering column one with Cj < 0 which has entered the basis the least number of times so

far." It is also reported in [Papadimitriou & Steiglitz, 1982, p.192j.

1.3.2 Experiments on Randomly Generated Problems

Despite a wealth of experimental results, theorists are cautious about drawing

conclusions when the test problems are few and unrealistic and the hardware may play an

important role in the results. A different experimental approach was considered:

Controlled or Monte Carlo experimenting. Experiments were on rnndomly generated

problem data with respect to some predetermined distribution. The results are compared to

analytical results obtained under the same probabilistic assumptions. This approach may

not bring significant conclusions as methods of random generation of test problems may

innuence the results. However, large classes of problems may be considered and

"realistic" problems may be designed.

The first such experiments due to Kuhn and Quandt, mentioned in LAvis & Chvatal,

1978J, were conducted on nine different pivoting rules for the simplex method. The

results were not very conclusive due to the special form of the problems (constraints

matrix always square and problems of small size). Indeed all the pivoting rules had

almost the same performance and even the random choice rule performed well.

In LAvis & Chvatal, 1978] a simi lar approach has been taken. The performance of

Bland's first rule [Bland, 1977J has been investigated and compared to other pivoting

ru les. Bland's rule performed worse than Dantzig's largest possible improvement rule.

Prom these experiments it appears that the simplex is linear in min(m, n), where m and n

arc the dimensions of the problem.

Experimentation with real world problems and randomly generated problems does not

seem to bridge the gap between the practical efficiency of the simplex and its exponential

worst case bound. Probabilistic analysis is a natural approach as classes of problems with

different distributions of data may be considered and average behaviour evaluated. This

approach was taken by many, (see Shamir, 1987). Important results may be found in

l Orden, 1980; and Smale, 1983]. The results, however, present some disparity due to

23

wide range of assumptions and variants of the simplex. A unified theory of the

probabilistic approach lo the behaviour of the simplex is needed as some models are more

general than others.

1.4 The Ellipsoid Algorithm

In the spring of 1979 LP received much attention with the discovery of a polynomial

time algorithm. Khac hyan (1979), a Russian mathematic ian, developed an algorithm

which has a polynomial worst case bound in the length of the data of the LP problem. The

algorithm was a continuation to the work of Shor, Iudin and Nemirowskiy in the early

70's on the larger class of convex optimization problems. Shor (1977) showed that, for a

convex programming problem, if an a priori bound could be given for the distance from

an initial point to an optimal solution, then a sequence {Ek} of decreasing ellipsoids could

be constructed, each containing an optimal solution. The decrease of the volume of each

Ek depends only on the dimension n of the solution space. Khachyan adapted thic;

approach to the solution of systems o f linear inequalities. I le used the length of the

original data of the problem to derive an a priori bound for the distance of a solution from

the origin. Ile perturbed the right-hand side (RHS) of the linear inequalities to obtain a

lower bound on the volume of the feasible region. These two bounds combined with the

rate at which the ellipsoids were shrinking was enough to obtain a polynomial bound for

the number of iterations necessary to find a solution, if the system has any.

1.4.1 Constructing Khachyan's Algorithm

Solving LP problems is no more diffic ult than solving sets of linear inequalities

LChvatal, 1983; Gacs & Lovasz, 1979, 1981; Khachyan, 1979J. The set of linear

inequalities may be divided into two subsets: The weak linear inequalities and the strict

linear inequalities. It is shown in [Papadimitdou & Steiglitz, 1982; Chvatal, 1983; Apsvall

& Stone, 1980] that a set of linear strict inequalities can be constructed by perturbing the

RHS of weak inequalities, and any solution to one system is also solution to the other.

24

Hence to solve LP in polynomial time it is enough to solve the equivalent system of linear

strict inequalities in polynomial time. The ellipsoid algorithm was designed to meet these

requirements. The method is basically similar to the binary search as was mentioned

earlier. To make this process work when looking for the solution to a set of strict linear

inequalities, lower and upper bounds on the set of solutions are needed. The bounds are

set up as follows.

The set of solutions to a system of strict linear inequalities is a polyhedron K which

can be unbounded or empty. Here, bounded and nonempty polyhedra are considered.

Khachyan derived an upper bound to the set of solutions by considering the smallest ball

(ellipsoid) containing it. The radius of the ball is defined by the length of the data of the

system of linear inequalities. It has been shown [Edmonds, I 967J, through the use of

Cramer's rule, that the number of digits in any coordinate of a solution to a system of

linear inequalities cannot exceed the total number of digits in the m(n+ I) integers aij and

bi of the system. Consider the system

n
Iaifj<bi, i=l, . .. ,m.
j ,-1

(1. 1)

The length of its data is L = mn + r Log IPll. where P is the product of all entries of A and

m [n] m b different from zero, i.e. P = TI TI a ij TI b i·
i= I j . J i=l

From what was said earlier, it can be written that: Vxj e K, -2L Xj 2L. And

geometrically, the polyhedron K can be enclosed in the ball Eo = { x: llxll 2L }.

As a solution to a system of strict inequalities may not exist, it is crucial to know

when the search has to be stopped. The lower bound in the interval of searc h is a

minimum volume ellipsoid. An important lemma [Khachyan, 1979; Gacs & Lovasz,

1979; Apsvall & Stone, 1980] states that: If (1. 1) has a solution, then the volume of its

solution space inside the sphere llxll2 2L is at least 2 -(n+l)L.

25

At each step in the process of the binary search, one part of the solution space is

discarded. To carry on the search, the remaining part of the previous ellipsoid which

contains a solution, if there is one, is enclosed in a smaller ellipsoid.

Suppose that the ellipsoid E = {x : (x - x<k)) TB (k)(x - x<k)) $ 1} is cut by the

hyperplane supporting the half space defined by one of the constraints in (1. 1), say a? x

< bi, for some i. If the centre x<k) of E violates this constraint, i.e. a? x<k) bi, then

define the ellipsoid E' = {x: (x - x<k+l)?B(k+l)(x - x<k+l)) $ 1}, where

It can be shown that E' contains the set of points defined by E and a? x < bi, for

some i, and also has volume less than that of E, [Khachyan, 1979; Gacs & Lovasz, 1979;

Apsvall & Stone, 1980]. A version of the ellipsoid algorithm based on this construction

may be described as follows.

Algorithm 2.1

begin

Initialization: k = 0, L = mn + f Log IPll. x(k) = 0, B(k) = n222LJ.

while (3i I aTx(k) 1 , ie { 1, ...• m}) and (k $ 16n(n+ 1)L) do

endwhile

if (k > 16n(n+ 1)L) then set of strict inequalities incompatible end if

end

26

1.4.2 Improvements to the Basic Algorithm

The volumes of ellipsoids generated by the algorithm are central to its convergence. It

is therefore natural to think that if the size of the enclosing ellipsoid after a cut can be

reduced then convergence is consequently improved. Along this line the following

suggestions were made.

In the basic ellipsoid algorithm the cut which passes through the centre of Ek is used.

T he half ellipsoid { x e Ek I a T x a T Xk } is retained in Ek+ 1- However, as Ek+ 1 is on I y

required to contain the smallest portion of Ek, i.e. { x e Ek I a T x P } , then it is possible

to obtain an e llipsoid of smaller volume using the deep cut a T x p. Shor and

Gershovitch, cited by Bland et al. (1981), first thought of the deep cuts based of the idea

that, if ex is the distance of Xk to the half-space { x e Rn I a T x ~}, then by computing ex

for each inequality and choosing one corresponding to the largest ex guarantees the

deepest cut. The distance ex appears in the step, dilation and expansion parameters which

characterize the ellipsoid method with deep cuts.

Deeper cuts than those obtained with a single constraint can be obtained by combining

inequalities in (1. 1). They are termed "surrogate cuts" by Goldfarb and Todd (1980). It

was noticed that points satisfying (1.1) are not discarded (cut off) by inequa1ities of the

form u TAT x u Tb, when u 0. Hence, by considering a subset of linearly independent

inequalities of (1. 1), it is possible to compute u corresponding to the deepest cut.

However, it is too expensive to do so as a quadratic programming problem arises in the

process. In [Goldfarb & Todd, 1980; Bland et al., 1981] it is recommended to use

surrogate cuts obtained with two constraints at most.

Shor and Gershovitch, again, first thought of using the parallelism of constraints that

may arise in the problem to solve. Two parallel constraints occurring in the problem may

be used simultaneously to construct the new ellipsoid. This ellipsoid will be flat in the

direction of the perpendicular to the constraints, as it is only requi red to contain the slice

encompassed between them. Suppose that a T x P and -a T x -11., then {x e Ek I 11.

27

aTx ~} c Ek+l· The step, dilation and expansion parameters corresponding to parallel

cuts can be found in [Todd, 1982; Konig & Pallaschke, 1981].

1.4.3 Performance of the Ellipsoid Algorith m

From the literature considered, the general consensus is that the ellipsoid method is

computationally inferior to simplex. Because of the large number of ellipsoids to be

evaluated, together with the required high precision, the method seems too expensive to

apply to nontrivial problems. If calculations are carried out with low precision it can

practically solve linear inequality systems in up to 15 variables [Schrijver, 1986J.

T he few numerical results we encountered support this conclusion. An implementation

of the algorithm by Halfin (1983) solved randomly generated linear programs with up to

50 variables in more than 24,000 iterations. Konig & Pallaschke (1981) reported on

solving LP problems in 25 variables and 100 constraints in about 1,500 iterations. A

detailed account of experiments with an APL code of the Khachyan algorithm is also

found in [Bisshopp, 198 1). The experiments were on systems of linear strict inequalities

with integer entries ranging from 5 variables and 10 inequalities to 20 variables and 40

inequalities. Some of the problems required up to 14, 119 iterations.

J .5 Central Splitting an d Simplicial Algor ithms of Yamnitsky and Levin

As for the ellipsoid method, the idea behind the Central Splitting Algorithm (CSA)

LLevin 1965], is also reminiscent of the binary search. CSA was aimed at finding an

approximate solu tion within EE R of the exact solution to the problem of minimizing a

convex function f of n variables on a convex polytope K in the Euclidean space. It is

assumed that f satisfies a Lipschitz condition, i.e. I f(x(1)) - f(x<2)) I~ cp(x(l), x<2)), for

x(l) and x(2) e K where p(x(l), x(2)) is the distance between points x<1) and x(2), and c

the Lipschitz constant which can be a priori determined. The "principal operation" of the

process consists of the following: (a) Find a point x* interior to K, (b) split K into two

28

parts through x*, by a point, a line or a hyperplane depending on the dimension of K, (c)

discard one part according to the relation (Xmin - x*, grad[f(x*)]) < 0.

In [Levin, 1965] the process is explicitly given for the case n=2. The polytope K

being a polygon, the principal operation consists of finding x* and cutting through it with

a straight line. If grad[f(x*)] = 0 then x* = Xmin• Otherwise the points which do not

satisfy the inequality (Xmin - x*, grad[f(x*)]) < 0 are discarded. The choice of point x*

is crucial to the convergence of the algorithm. The part of K, K1, K2 discarded at each

iteration should be large enough to allow rapid contraction of the feasible region. In

LLevin, 1965] it was recommended that the centre of gravity of K be chosen as x*. This is

based on the fact that cutting a convex polygon of area o, with a line passing through its

centre of gravity results in two convex polygons each one having an area not less than

(4/9)0. It can be said that at iteration k, area of Kk is at most (5/9)kcr, which suggests a

geometric convergence of the pro:cess. It should be noticed that for "elongated" areas, the

speed of convergence may not be geometric. However, approximating them with

intervals, which is equivalent to reducing the dimension of the feas ible region, can

overcome the problem. The number of operations can be shown to grow only

geometrically (note: geometric refers to the speed of convergence of geometric series.)

For n 3 a geometric bound can be drawn on the number of principal operations for

similar reasons as earlier. However, the gometric bound does not apply to the total work

involved in a single step of the algorithm. In addition to the principal operation

supplementary work is needed to determine and store information about the retained half

of the feasible region at each iteration (vertices, faces and centre of gravity). The

subsidiary work may grow exponentially with the number of iterations. This results from

the fact that a random polyhedron may have an exponential number of ve11ices l Chvatal,

1983].

To alleviate the difficulties of the CSA, Levin suggested the following: If V is the

volume of a polyhedron K of dimension n, then there is 'Yn e R and an n-dimensional -
simplex S containing K, with volume not exceeding 'Yn V. S is then used in subsequent

splittings. At this point the similarity wi th the ellipsoid method is clear. The embedding

operation may not be required at every step. A geometric decrease in the volume of

29

subsequent simplices is guaranteed for similar reasons as earlier. In [Yamnitsky, 1982J it

has been shown that the modified CSA runs in polynomial time in the length of the input

data. The novelty was a procedure for enclosing a half simplex 112Sk inside a simplex

Sk+l whose volume is less than e-1/2(n+1)2 the volume of Sk.

1.6 Research Needs and Objectives

Much of the work done in LP for over thirty years has been concerned with

improving existing simplex variants and developing new ones. It is only in recent years

that polynomial time algorithms became a topic of wide interest. This interest stems f1 om

LP being widely used on its own and as a building block in many optimization problems,

and also from the general agreement that well solved problems are those for which

polynomial time algorithms were found. Any improvement in solving LP will have a

positive impact on related problems.

The discovery of the ellipsoid LKhachyan, 19791, the simplicial !Levin & Yamnitsky,

1982] and the projective algorithms ended the important debate over the complexity of

LP, at least in the integer model of computation. However on the practical s ide, the gap

remained. It is generally agreed, after investigation, that the ellipsoid and the simplicial

algorithms, in practical terms, are inferior to simplex on most real life LP problems.

Karmarkar's algorithm on the other hand is relatively new and has not been fully

investigated. The algorithm is promising and may be a good alternative to the simplex

method. However, much work remains to be done before definite conclusions can be

drawn. The lack of experimental results in the original Karmarkar's paper and the

conclusion of analysis of the algorithm by Chames et al. (1984), Strang (1985) and

others that the method is inherently slow, stressed the need for further investigation of the

algorithm and its performance.

The overall objective of the present research has been to investigate sonu.: aspects of

Karmarkar's algorithm such as the preponderance of least squares techniques in its

efficient implementation, the optimum choice of the step size to take along the search

direction, the retrieval of dual variables during the course of the algorithm and the

30

exploitation of favourable structure of LP problems. Sparsity exploitation is undoubtedly

the important issue in any efficient implementation of the algorithm. Advanced least

squares techniques were, therefore, called upon to cut down the work needed in an

iteration of the algorithm. The nested dissection ordering algorithm was used in

conjunction with Cholesky method for least squares and also Givens rotations. Large LP

problems were solved with this approach in realistic times.

Structured LP problems constitute an important class to which much work has been

devoted in the frame of the simplex method leading to the design of elegant decomposition

algorithms such as the Dantzig-Wolf algorithm, Rosen's partitioning algori thm and

others. However, these algorithms never outclassed the standard simplex method. We

thus considered the applicability of Karmarkar's algorithm in conjunc tion with some

classical decomposition principles and also specialized it for structured LP problems. This

led to a partitioning Karmarkar_ algorithm which performed better than the straight

application of a variation on the dual Kannarkar algorithm of Ye and Kojima (1987).

An attempt to study postoptimality analysis in the frame of Karmarkar's algorithm

was also made, encouraged by the availability of dual variables.

The polynomial time algorithms discussed in this chapter have a common feature

which is a centring scheme, i.e. the algorithms strive to start a new iteration from the

"centre" of the feasible region. A centre point, is defined as one which is sufficiently

distant from the boundaries of the polytope fSonnevend, 1985; freund, 1988]. In thi s

sense, under certain assumptions, Chebyshev points returned as solu tions to the

Chebyshev minimax problem are "centres" of the simplex containing the feasible region

defined by the linear inequalities. By converting the LP problem into a Chebyshev one,

we attempted to build an algorithm that generates a sequence of points of minimum

deviation converging to the optimum solution of the original LP problem.

31

Chapter 2

The Projective Algorithm of Karmarkar: A Survey

2.1 Introduction

The algorithm of Karmarkar (1984a, 1984b) came as a result of the search for a

methcxi which has polynomial complexity like the ellipsoid and the simplicial methods but

is practical like the simplex. It is related to classical interior point methods, but presents

original features such as the use of projective geometry and a logarithmic potential

function to measure convergence.

Going in the direction of the gradient is the first thing one thinks of when interior

point methods are considered for linear programming. However, this will yield a

substantial improvement in the objective function only if the current feasible point is at the

centre of the polytope, i.e. sufficiently distant from all its boundaries. Consequently, for

an iterative process to work with these ideas, it must alternate between centring the

feasible point and taking a step in the gradient direction.

Classical interior methods of the Brown-Koopmans type have difficulties near the

boundaries, precisely because they lack the centring step. The difficulties, usually, result

in the loss of feasibility and slow convergence. On the other hand, Kannarkar's algorithm

successfully combines the two steps and thus avoids the difficulties of the classical

methods, as will be seen in the convergence analysis of the algorithm.

The centring process is performed by rescaling the feasible region at each iteration

using a projective transformation. This results in approximating the optimization problem

with a minimization over a sphere of known centre and radius. The minimization over a

sphere is then solved by taking a step to its boundary along a projected gradient direction.

The rescaling process combined with the step along the negative projected gradient is then

repeated until optimality is achieved or the problem is recognized to be unbounded or

infeasible.

32

2.2 The Projective Algorithm of Karmarkar

Consider the linear programming problem in standard form

Min cTx

s.t. Ax = b

X;;,?: 0,

where R" is then-dimensional Euclidean space; x, c e R", be Rm and A e Rmxn. The

original Karmarkar algorithm requires that the LP problem is expressed in a special fonn

called the canonical form, which is

PC: Min cTx

s.t. Ax = 0

eTx = 1

where eT = (1, 1, ... , 1).

In addition, it is required that the minimum objective value is 0, and the value of the

objective at any feasible and nonoptimal point is strictly positive. The question of

converting SLPx into PC will be treated in detail later.

The centring scheme of Karmarkar is based on a projective transformation defined by

- 1
T (x) = D x = x'

X T. - 1 ,
e D x

and its inverse
- 1 , Dx'

Tx(X)= T. = X,
e Ox'

where D = diag(x(k)), x(k) being a point in the space of PC.

Transforming PC using T x-1, results in a nonlinear (fractional) programming problem

with the objective function cTOx'/eTDx'. However, eTDx' being positive in the

transformed feasible region and given that c T x has minimum zero, c Tox'/e Tox' has also

minimum zero. Thus, it can be approximated with c Tox'. It follows that the transformed

problem to be considered is

33

P ,.
X • Min cTDx'

s.t. ADx' = 0

eTx• = 1,x'~0,

which is of the required form PC.

This problem is an optimization over the intersection of the simplex 2, = {x' e R0 + I :

x' 0, I, X 1
j = 1}, with the linear subspace TT= {x' e R 0 + 1: x' 0, Ax' = O}. The

centre of the simplex xo•T = (1/(n+ l), 1/(n+l), ...), being a feasible point, a reduction in

the objective function is likely to be achieved along the opposite direction of the projected

gradient p, starting from xo'. However, to insure feasibility after the move, Karmarkar

considered the minimization over the largest inscribed sphere Sr in L, as an

approximation to the minimization over the simplex L This insures feasibility of the

resulting point. The problem is written

Min cTDx'

s.t. ADx' = 0

II x'-(e/n)II cxr

x' 0,

where r = l /)) is the radius of Sr.

From the geometric point of view, there are 3 spaces involved: the space of the

original problem, the space of the homogeneous form of the problem and its image

resulting from the projective transformation. Call the last two spaces respectively x-space

and x'-space. A sketch of the optimization process is as follows (see Fig 2.1).

Let x(k) be a point in x-space. Applying the projective transformation T x to x(k) results

in the cent.re of Sr in x'-space. A new point in x'-space would be x'(k) at the boundary of

Sr. This point is transformed back into the x-space by the inverse projective

transformation Tx-1, resulting in a point x(k+t). It is easy to see that an improvement in

the objective function of Px·s is achieved in the direction of the projected gradient. The

reduction in the objective function of PC is harder to see, when we know that the set of

linear functions is not invariant under projective transformations. In this respect,

Karmarkar introduced the logarithmic potential function F(x) = nlog c T x - Lj log(xj),

34

which is invariant under projective transformations. To see that, we write the potential

function associated to the objective function in the transformed problem

F(x') = Lj log (cTDx'/x'j) (2.2.1)

and in the x-space after applying inverse transformation to x'

F(Tx·1(x')) = Lj log (cTDx'/x'j) - Lj log Xj, (2.2.2)

Expressions (2.2.1) and (2.2.2) are similar except for a constant - Lj log Xj,

Karmarkar proved that a positive constant reduction is achieved in the potential

function associated with c Tox, when moving from the centre of Sr to its boundary. From

(2.2. 1) and (2.2.2), thi s reduction corresponds to some reduction in the image of the

potential function in x-space. It follows that

F(x(k+l)) S F(x(k)) - o, (2.2.3)

where 6 is a positive constant.

Theorem 2.1 (Karmarkar (1984b), Theorem 1):

An algorithm to solve PC that generates a sequence of points {x(k)} satisfying (2.2.3)

wi ll find a feasible point x such that cTx / cTx(0) 2-q in O(n(q+logn)) steps.

Proof'

From (2.2.3) we have F(x(k)) F(x(0)) - ko, i.e.

nlog c T x(k) - Lj log x(k)j $ nlog c T x(0) - Lj log x(0)j - ko,

or equivalently

nlog c'f x(k) - nlog c T x(0) Lj log x(k)j - Lj log x(0)j - k6.

As x(k)j $ 1, from eTx = 1, and x(0) = (1/n, 1/n, ... , 1/n) we can write

nlog c T x(k) - nlog c T x(0) $ nlogn - k6,

and

log c T x(k) - log c T x(O) logn - ko/n.

Thus fork> n/o(q + logn), cTx / cTxo S 2-q Q.E.D.

35

Algorithm 2.1

Karmarkar algorithm generates a sequence of points x(l), x(2), ... , x(k), ... with the

assumption that x(k) 0, k = 1, Assume also that an interior starting point x<O) is

available, and an arbitrarily small value Eis chosen, then the algorithm can be described in

the following steps.

0-k=0

1- Set D = diag(x(k)) and B = (~)

2- Project vector De onto the null space of B to find p = HDc where the projection

matrix H = 1- BT(BBTf1B

3- Normalize p and scale it by the radius r = I /)) of Sr to find the direction

t I p
vec or p = r lfiill •

4- Compute a new feasible point in x'-space by taking a step of length a along p',

starting from the centre e/n of Sr

x' = e/n - ap', a e (0, 1)

5- Apply inverse transformation to x' to find a new point in x-space

(k+l) Dx'
X =--

eTDx'

6- Check for optimality

if cTx(k+t) / cTx(O) s £ then stop (optimum obtained)

else k = k + 1, go to 1- endif

36

x-space x'-space

Fig 2.1 An Iteration of the Algorithm

Illustration:
Consider the problem

Min z = 2x1 - x2

s.t. 3x1 + x2 = 4

X} 0, X2 0,

whose optimum objective value is z* = - 4.

Min 2x1 - x2 - z*x3

s. t. 3x 1 + x2 - 4x3 = 0: .0

x 1 0, x2 0, x3 0.

(4n, o, 3t7)

Fig 2.2 Feasible Polytope .Q(')l:

The problem being under canonical form, the algorithm may be applied if a feasible

interior point is available to start with. For this purpose, point xo = e/3 = (1/3, 1/3, l /3)T

37

is interior feasible, as it belongs to the line segment between points (0, 4/5, 1/5) and (4/7,

0, 3/7) in nru: which is the feasible region. It is also the centre of the simplex :E as

depicted in Fig 2.2.

The first iteration of the algorithm requires rescaling the feasible region, using the

projective transformation T(x) == x ' == D·lx / eTD-lx, and its inverse T•l(x') ==

x = Dx'/e TDx', where D == diag (xo) == diag(1/3, 1/3, 1/3). However, xo being already

at the centre of the simplex, the transformation is equivalent to an identity, which leaves

the region as in Fig 2.2. The objective function, however, has changed. The transformed

problem is

Min 2/3x'1 - l/3x'2 - (z*/3)x'3

s. t. x't + l/3x'2 - 4/3x'3 = 0: Q

x't + x'2 + x'3 == 1 : :E

X2 /

(O, I, O) (0, 415, 1/5)

Fig 2.3 A Step Along the Projected Gradient

In step 2 of Karmarkar's algorithm the steepest descent direc tion in the transformed

feasible region is found. The direction -p' is found by projecting the gradient De onto the

polytope n " I:, i.e. multiplying the projection matrix H with vector De, and considering

the negative of this vector (see Fig 2.3). It is along the negative gradient that the objective

function decreases most rapidly.

In step 4 a move in the direction -p' is made. However, to guarantee feasibilty after

the move, a sphere Sr of radius a[n(n-1)f 112 centered at e/3 is inscribed inside the

triangle r of above figures, and the minimization is over Q" :E " Sr which is a sphere

but of lower dimension. All the points of this lower dimension sphere are feasible. In Fig

2.3 it is the segment which is delimited by Sr inn" :E. Notice that r = [n(n-1)r112 is the

38

radius of the largest sphere that can be inscribed in I.. A fraction a. of r is only taken to

avoid infeasibility, with O < a.< 1. The move is then of length cu, with a= 0.9 and

results in point (0.16, 0.57, 0.27). The point is not optimal as it does not reduce the

objective function to zero. Note that if the move was long enough, we would have

reached the optimum solution, which is the end point (0, 4/5, 1/5) of segment n n 1:.

l lowever, this is so because the feasible region is a segment and the solution is one of its

two vertices. In higher dimensions it would not be so easy to identify the solution.

Having obtained a new point, we can proceed with the next iteration. The problem is

first transformed into

Min 0.32x'1 - .0.57x'2 + l.08x'3

s.t. 0.48x'1 + 0.57x'2 - l .08x'3 = 0 : fl

Fig 2.4 Rescaling of the Feasible Region

Again, the search direction is computed by multiplying the projection matrix Hand the

grad ient of the objective function in above problem. The optimization process over n n l:

n Sr produces point (0.07, 0.59, 0.35) as depicted in Fig 2.5. When transformed back to

the space of the canonical form, point (0.11, 3.56, 1.0) is obtained which is close to the

optimal solution x* = (0.0, 4.0, 1.0). The corresponding objective function is z = 0.67,

which is still much larger than zero. One more iteration is necessary to get a good

approximation to the optimum solution.

39

(0.07, 0.59, 0.35)

Fig 2.5 Result of Iteration 2

2.2.1 Algorithm Complexity

As was seen earlier the potential function is central to the convergence of the

algorithm. At the end of iteration k a constant reduction must occ:ur in the potential

function. However, a constant reduction in the objective function is produced after O(nq)

steps, (Theorem 2.1), for some natural number q.

It is known LEdmonds, 1965; C hvatal, 1983], that if the data of the linear

programming problem are rational numbers then there exists Le N, the set of natural

numbers, such that all nonzero coordinates of the vertices of the feasible region belong to

[2-L, 2+L] and any numerical value of the problem can be described with L digits, i.e. a

binary precision of L digits is sufficient. If we replace q with L then the algorithm

requires O(nL) iterations to find a positive feasible point such that c T x < 2-L.

Consider the number of arithmetic operations per iteration: The computation of p', x'

and x(k+ 1) requires O(n) operations. Most of the work, however. is needed in the

computation of p which requires O(n3) operations. This is because computing p is in

general equivalent to solving a set of linear equations by Gaussian elimination. As each

operation may take O(L) time, then an iteration of the algorithm has time bound of

O(n3L). Thus, the whole algorithm takes, in the worst case, O(n4L2) time to solve a LPP

on the set of rationals Q.

40

In [Karmarkar, 1984b] it was shown that the time bound of the algorithm may be

reduced using a rank-one updating of the diagonal matrix D at each iteration.

operations can be gained if one updates only those entries of D that have changed from

iteration k to iteration k+ 1. The modified algorithm has time bound O(n3.5L2) compared

to O(n6L2) for the ellipsoid algorithm.

Limited experience with medium scale problems [Meggido, 1986] shows that the

improvement in the time bound of the modified algorithm does not appear in practice.

2.2.2 Transforming The Standard Form into Canonical Form

The applicabili ty of Algorithm 2.1 is restricted by the assumptions that the LP

problem is in canonical form and an interior feasible point to start with is available. As the

conversio n of the OLP into standard form (SLPx) has already been dealt with in Chapter

1, the present section is concerned with converting LP problems in standard fonn into the

required form and finding an interio r feasible point. Three methods were suggested

respectively by Karmarkar (1984a), Tomlin (1985) and Lustig(I985).

Metlzod 1:

In Karmarkar (1984a) it was shown that a projective transformation can be used to get

the required canonical form as follows.

Define the projective transformation T from R0 to R0 + 1 by

and x'n+l = 1 - LjX'i.

T transforms x e R11 into the centre of the unit simplex in R11+1• Its inverse is

41

defined on the unit simplex in R0 +1, I, = {x' e R": x' 0, Lj x'j = 1 }. Replacing Xi

in SLPx results in problem

Min cTDx'

s.t. ADx' - x'n+t b = 0

T I I 1 e X + X n+l =
(x', x'n+l);;:: 0,

where D = diag(xi), i = 1, ... , n. The denominator in the objective function is discarded

as the fractional programming problem has also optimum value zero (see section 2.1).

The centre of the the simplex I, is interior feasible.

Method 2:

The use of a projective transformation to convert SLPx into homogeneous form can be

dropped if we assume that an upper bound B on the sum of all entries of x is available

[Tomlin, 1985; Turner, 1987], i.e. LjXj $ B. In this case the conversion may proceed as

fo llows.

Introduce variable Xn+l = 1 such that Ax = Xn+ 1 b, and adjoin constraint Xn+ 1 = 1 to

the problem. This leads to

Min cTx

s.t. Ax - Xn+t b = 0

Xn+l = 1

(x, Xn+t);;:: 0.

As LjXj $ B, another slack variable can be added such that

LjXj + Xn+2 = n, or

LjXj + Xn+l + Xn+2 = l*B = Xn+tB, as Xn+ l = 1.

Transferring the RHS into the left-hand side and factoring leads to

LjXj + (1-B)Xn+l + Xn+2 = 0.

Scale the variables such that their sum is n: x' = nx/B. As two variables have been

added so far, two elements are appended to the vector c, i.e. c•T = (cT, 0, 0). Assume

42

that optimum objective value z* is known, i.e. cTx = c'Tx• = z*. Then it is easy to

transform the problem into one with target value zero. We have

c'Tx• - z* = 0, and LjX'j = n + 2 = n'.

Ilence

c•T x' - z* = c•T x' - (z* / n')LjX'j

= (c'1 - (z* / n'))x'1+ (c'2 - (z* I n'))x'2+ ... + (c'n+2 - (z* I n'))x'n+2

= c" 1x'1 + + ... + C"n•X'n••

The problem in canonical form is:

Min c"Tx•

subject to

{
A -b O) x, _ O
1 11-B) 1 -

x' 0.

Note that two variables and two constraints have been added and the optimization is over

a simplex of sidelength 1, rather than 1/n for :l:. Although this approach allows en+2 T to

be interior feasible the adjoined extra constraints and columns may destroy the o riginal

sparsity of the problem. Also, assuming that an upper bound on the sum of the variables

is known can be restrictive for some problems.

Method 3:

Lustig (1985) and others suggested a simpler and more advantageous method for

transforming LP problems in standard form into Karmarkar's canonical form. It consists

in introducing an extra variable Xn+l attached to the right hand side b. The LP problem is

handled in the form

Min c TX - z*xn+l

s.t. Ax - bxn+l = 0

X, Xn+l 0,

43

with z* assumed to be at hand as well as an interior feasible point x(0) e R". Applying

the projective transformation of Kannarkar leads to

Min cDx' - z*x'n+ 1

s.t. ADx' - b x'n+ 1 = 0

T I I 1 e X + X n+l =
x', x'n+l c?: 0,

where D = diag(x(0)), and (x', x'n+l) e R 0+1. The solution in the original space is given

by inverse transformation. Thus x = x' / x'n+l•

The assumption that an interior feasible point is available may be dropped. Instead,

the following feasibility problem can be solved.

Mint

s.t. Ax + (b - Ae0)t = b

. X, t c?: 0,

for which (eT0 , J)T is interior feasible and extremal t = 0. Algorithm 2.1 is thus directly

applicable and will provide an interior feasible point to the original problem.

2.2.3 Solving Problems with unknown z•

So far it has been assumed that the optimum objective value of the problem in

canonical form is 0, which imposes the condition that z* of the original problem is

known. The assumption is restrictive, as for most problems it is hard to estimate the

optimum objective value be fore hand. To remove the assumption Karmarkar suggested

the combination of the primal and the dual of the LP problem and use of the strong duality

result, which says that if the LP problem is feasible and has finite optimum solution, then

the primal and the dual have same optimum objective value. This can be expressed as

c T x* - IJ Tu* = 0, where u * is the dual optimum solution.

The combination of the primal and dual under standard form leads to the following

minimization problem

44

Mint

Ax + y+ (b - Axo - Yo)t = b

AT u - v+ (C - AT uo + vo)t = C

cTx - bTu + (-cTxo + bTuo)t = 0

(x, u , y,v,t);;?:0,

where tis an artificial variable, driven to zero in the Phase I Karmarkar problem. The

problem is in standard form, thus any of the strategies discussed earlier can be used to

convert it into canonical form. Note that e e R2(m+n)+ 1 is interior feasible and that the

dual solutio ns are also found. However, a disadvantage of this approach is the

considerable increase in the size of the problem

A different approach also suggested by Karmarkar (] 984a) is the sliding objective

function technique. The technique consists in having a lower and an upper bound for the

optimum objective function value, i.e. C. z* u . Trial lower and upper bounds are then

set up as C.' = C. + t/3(u - C.) and u ' = u + 2/3(u - C.). If the potential function is not

improved by a constant value o then C.' is lower than the optimum value. If the optimum of

the objective value drops below u', then u is set to u ' and new trial values are

determined. Karmarkar showed that, when the algorithm is equipped w ith the sliding

objective function technique, it retains its polynomial complexity. The method has been

used by Lustig (1985) and Nickels et al. (1985) in their implementations of the Kannarkar

algorithm. However, it has a disadvantage: it may be hard to set up appropriate values for

Landu.

These techniques for relaxing the requirement of known objective value arc not

satisfactory because of the effect they may have on the problem (growth of the size of

problem in the first method) or the assumptions they are based upon (lower and upper

bound for z* in the second method). In the next section variants o f the Karmarkar

algorithm which handle LP problems under milder assumptions will be reviewed.

45

2.3 Recent Developments in Karmarkar-Type Algorithms

The practical use of the Karmarkar algorithm is made difficult by the assumptions

mentioned earlier but also by the need for accurate computation of the search direction and

the use of a constant steplength throughout the algorithm. Recently, strategies which relax

these assumptions were developed. Linear transformations L Vanderbei et al., 1986;

Kortanek & Shi, 1987], in other words different scalings were investigated. More

c lassical interior point methods such as Newton methods l Vial & De Ghellinck, 1986 I

and Barrier methods [Gill et al., 1986] which were originally intended for nonlinear

optimization were also reinvestigated. Many researchers [Turner, 1986; Dennis et al.,

1986; Shanno & Marsten, 1988] considered using approximate rather than accurate

directions to reduce work in step 2 of Algorithm 2.1, as it accounts for much of the work

needed in an iteration, (0(n3L) arithmetic operations). In the following we discuss relaxed

forms of the Karmarkar algorithm and alternatives which are substantially different from

it.

2.3.1 Alternative Search Directions

We have already mentioned Karmarkar's suggestion of using an approximate

direction pat iteration k+ I obtained by a rank-one updating of (BBT)• I in the expression

of p. This reduces the overall complexity of the algorithm by operations. Shanno

(1988) takes a similar approach and uses a Fletcher-Powell rank-one update of a

Cholcsky factorization of BBT. The Fletcher-Powell update LGill et al., 1981] is based on

the observation that if BBT = LLT, La lower triangular matrix, and if only few clements

of L change in each iteration then it is possible to compute a good approximation L'L 'T to

it using rank-one updates rather than a fresh factorization.

In LDennis et al., 1986; Turner, l 987j a similar idea is considered. Their approach is

to approximate direction p by use of a nonsingular approximation D' to the diagonal

matrix D. Thus, again rank-one updating of the factorization of BBT is possible. The

adopted updating strategy is that used in the classical variable-metric algorithm, i.e. the

13FGS updating method !Gill et al., 198lj.

46

Recall that the expression of the direction vector is p = [I - BT(BBT)-1B]Dc. The

proposed approximation is p' = D·ID'[I - B'T(B'B'T)-1B']D'Tc, where

Note that p = p' when D = D'. The vector -p' is a feasible direction for the linear

programming problem PC as it can be shown to be in the null space of B, and a descent

direction for the potential function (2.2.1), (Theorem 4.2 of Turner, 1987).

The best performance of the variable-metric variant of the Karmarkar algorithm

lTurner, 1987] was observed for the approximation obtained from

((k+l) (k) 0 ,(k)) T
D' - D' + X - X - V V

k+l - k T
V V

for some veR0 •

In the course of the algorithm a restarting strategy may be taken when the updates do

not lead to much improvement in the reduction of the objective function value. The ctllTent

point is then considered as the starting one and the matrix BBT is refactored. Turner

showed that the algorithm retains polynomial complexity.

The correspondence between null space projections and the concept of a reduced-

gradient vector was investigated recently by Shanno and Mars ten (1988) leading to a

reduced-gradient variant of the Karmarkar algorithm. However, as will be seen, this

method did not perform well in practice.

The inexact projections used by Goldfarb and Mehrotra (1988a, 1988b) were inspired

by the following observation. The projected steepest direction descent p used in the

Karmarkar algorithm belongs to a cone of acceptable directions in the null space of B.

Thus any of the directions in the cone can be selected and used in the optimization over a

ball subproblem solved at each iteration of the algorithm. Exact computation of p is

therefore relaxed. Goldfarb and Mehrotra perform this selection by solving approximately

the least squares problem arising when computing p. Their algorithm retains the

polynomial complexity of Algorithm 2.1.

47

2.3.2 Alternative Rescaling

One of the most interesting variants of the Karmarkar algorithm is that proposed by

Vanderbei et al. (1986). The original feature in this variant is the use of a different

rescaling based on a linear transformation as compared to the projective transformation of

all the variants discussed so far. The algorithm works in the positive orthant rather than

the simplex and handles LP problems in the standard form SLPx. The algorithm, seems to

be similar to that briefly described by Dikin (1967).

The idea, as in the Karmarkar algorithm, is to guarantee a "good bite" by talcing a step

in the direction of the projected gradient always from the centre of the feasible polytope.

This is achieved by using a centring scheme based on changing units in the variables in

every iteration. Given a feasible interior point x(0), the linear transfon11ation is
-1 T x(x) = D x = x' ,

where D = diag(x1, x2, ... , x0). Thus, Tx.(x(0)) = x'(0) = e,

T~1(x') = Dx' = x,

and the transformed LP problem is

Min cTDx'

s.t. ADx' = b

x' 0,

for which x'(0) = e is a feasible point. The next iterate x'(l) is obtained by taking a step in

the direction p of the projection of c' = De onto the null space of AD, i.e.

x'(l) = e - exp/ maxj{Pj}, where ex e (0,1).

The convergence of the algorithm was established under the following assumptions.

1) The problem is bounded and feasible.

2) The problem is primal nondegenerate.

3) the problem is dual nondegenerate.

Vanderbei et al. observed that, in practice, the algorithm works equally well on problems

not satisfying these assumptions.

48

Algorithm 2.2 : The Linear Scaling Algorithm

Initialization

k=O

x<k) = x(O)

D = diag(xj<k)), j = 1, ... , n

ae(0,1)

p = HkDC, where Hk = I- (AD)T[(AD)(AD)Tf1cAD)

begin

while p -1; 0 do

p' = p / maxj{Pj>O}

x(k+l) = x(k) - aDp'

k=k+l

D = diag(x/k>), j = 1, ... , n

p = HkDC

endwhile

end

A similar approach is also taken by Cavalier & Schall (1987). They raised the problem

of staying in the flat { Ax = b} when taking a projective step. This problem is related to

finding a direction vector d such that Ad = 0. On computational grounds one has Ax =

E. Thus, if the new iterate is x(k+t) = x(k) + a0d, where a, e e R, then A(x<k>+a0d) =

b+a0E, hence the propagation of errors. There is also the problem of ill-conditioning of

the matrix (AD)(AD)T to invert when computing p . Cavalier and Schall (1987) attempted

to alleviate these difficulties by devising an algorithm for inequality constrained LP

problems. Slack variables are then added to put the problem into standard form and only

the slack variables are concerned with the rescaling. This is based on the idea that

inequalities are easier to satisfy than equations.

The linear rescaling algorithm is also evident in [Barnes, 1986J. Barnes considers the

LP problem in standard form and its dual. Given a feasible pointy to the primal and a

scalar co e JO, 1 [, the ellipsoid

49

(x •-y/ £...J J J ~(.I)
. 1 2
J= Yj

is in the positive orthant. Solving the problem

Min cTx

s.t. Ax = b

(x --y/ £...J J J S';(J)
. 1 2
J= Yj

leads to the point x such that cTx < cTy. An iterative process is then constructed as

follows: If x(0) > 0 and Ax(0) = b then after iteration k where x(k) is calculated, set

D = diag(xlk)), j = 1, ... , n and find x(k+ 1) > 0 from the relation

where Ak = (AD2AT)"1AD2c is a dual feasible solution.

Kortanek and Shi (1987) suggested a hybrid method based on the above algorithm

and a purification procedure to obtain the dual basic optimal solution.

Affine variants of the Karmarkar algorithm developed by Vanderbei et al. (1986),

Cavalier and Schall (1987) and Kortanek and Shi (1987) drop the assumption that the

optimum objective value is at hand, although at the expense of polynomial complexity. It

should be stressed that the loss of the polynomial complexity of affine variants is not

solely due to the relaxation of this assumption, but rather because they are basically

different from the projective algorithm. We recall that they use a s imple translation of the

current iterate toe T rather than projective geometry and work in the positive orthant rather

than the simplex.

Gay (1987), Ye and Kojima (1987) and Todd and Burrell (1986) described variants

of Karmarkar's algorithm which do not require a priori knowledge of optimum objective

value z*. Improving lower bounds on z* were used in these algorithms, based on the

generation of dual variables. The way dual variables are generated will be treated in a

subsequent chapter. Anstreicher (1986b) and more recently Nemirowskiy (1988)

50

versions of the Karmarkar algorithm which also do not require the knowledge of z*. It is

important to mention that these variants retain the polynomial complexity of the

Karmarkar algorithm.

While all algorithms described here solve linear problems, Anstreicher's version

solves the fractional programming problem resulting from the transformation of PC using

the inverse of T x given earlier. A similar approach has also been taken by Padberg

(1986). The idea is to make the Karmarkar algorithm a monotonic process regarding the

value of z, i.e. at each iteration Zk+l > Zk, Recall that in the original projective algorithm

improvement by a constant at each iteration is guaranteed for the potential function and not

the objective function.

2.3.3 A .Barrier Function Approach to LP

An important aspect of the Karmarkar algorithm is that of maintaining feasibility after

each step and insuring reduction in the objective function value monitored by the use of a

logarithmic potential function. The idea is reminiscent of the barrier and penalty functions

approach in nonlinear programming, due to Fri sh (1955) and championed by Fiacco &

McCormick (1968). Gill et al. (1985) suggested using this approach to LP and developed

a class of projected Newton algorithms, in which Karmarkar's algorithm is a particular

case [Fletcher, 1986]. LP problems are handled by being transformed into a nonlinear

programming problem of the form

BAP: Min cl>(x) = c T x - µLj Log Xj

s.t. Ax= b,

X 0,

µ > 0, µ is the barrier parameter.

The algorithm proceeds from a feasible point x > 0 following the Newton direction

d = (V2<I>(x))-1V<I>(x) projected onto Ker(A) to get a feasible pointy (i.e. Ay = b).

More explicitly the Newton search direction d is obtained as the solution of a quadratic

programming problem which is the minimization of a quadratic approximation of <l>(x)

under feasibility constraints. This amounts to problem

51

BQP: Min V<l>(x)d + 112dTV2<1>(x)d

s.t. Ad = 0,

where V<I>(x) = c - µD·1e is the gradient of <l>(x), V2<I>(x) = µD-2 the Hessian and D =

d iag(x1, x2, ... , x0), x being a feasible point to BAP.

The solution of BQP gives d = x - 1/µ D2(c - AT), where A is the solution to the

normal equations AD2A TA = AD2c, and the barrier parameter is chosen as µ = x To(c -

ATt..) [Fletcher, 1986]. Vector dis a descent direction as the Hessian is positive definite

when x > 0. Thus a step of length ex along d results into point y = x + cxd such that <l>(y)

< <I>(x). Hence an iterative process can be constructed. Gill et al. showed that the

projected Newton barrier method, for some parameterµ generates a path parallel to that

followed by the projective algorithm. For µ=0 the barrier method is similar to the linear

rescaling algorithm of Vanderbei et al. (1986).

2.3.4 Newton Methods for LP

By incorporating the objective function of a LP problem as a constraint in a

parametrized feasibility problem, LP can be handled as a linear system without combining

the primal and dual problems. De Ghel linck and Vial (1986) proposed a polynomial

Newton method for linear systems which can be used at most n times (n is the dimension

of the problem space) to solve LP problems. Assume that after incorporating the objective

function into the constraints set as zxo - Lj CjXj = 0, j = 1, ... , n the following problem is

obtained

PLP: Ax = 0, A e Rmx(n+I)

x 2: 0, xo = 1 if bi is replaced by -aiO, i= 1, ... , m.

De Ghellinck and Vial consider a related problem to PLP, i.e.

PLP': Ax = 0, A e Rmx(n+l)

Xj~0 xo:t-0,j=0, l, ... ,n.

Solutions to PLP' are directions rather than points.

A feasible point to PLP' can be found by driving to zero the following potential

function:

52

Ax
'lf(X) = --=r·

e X

The idea is to keep the numerator constant or small and increase the denominator. This

is done by taking a steppe R0+t, from the current iterate x e R+n+I, i.e. x = x + p,

such that x + p 0. Consequently, the potential function is written as

'lf(X) = ~x+p) •
e (x+p)

To keep the numerator constant, De Ghellinck and Vial suggest imposing on the new

iterate the condition Ap = 0. This insures that A(x + p) = Ax. The problem of reducing

the potential function can be formulated as a linear programming problem whose objective

is the denominator eT(x + p). Explicitly, the problem is
n

Max L(xj+P}
j-0

s.t. Ap = 0

X + p 0,

where p is the variable, i.e. the optimization is with respect to p, x being a parameter

such that x > 0. However, the above problem is just as difficult to solve as the original

one. Using the geometric mea(n and)t1/n~thmetic mean inequality, i.e.

n 1 n

I]xj ::;; n+l~xj,
j=O J"'O

the following nonlinear programming problem is considered instead.
n

Max I](xj+P}
j-0

s.t. Ap = 0,

X + p 0.

The advantage of this problem is that the objective is zero whenever Xj + Pj = 0 for some j

and the nonnegativity constraint is implicitly taken dealt with by the maximization

process. If any direction p gives a large value to the objective of the nonlinear problem

then it also forces the quantity 'lf(X) to zero, which solves the problem, [De Ghellinck &

53

Vial, 1986]. Thus, to insure a monotonic increase in the objective function value, the

strict inequalities x + p > 0 are considered in a problem equivalent to the one above, i.e.

PLP":

n
Max F(p) = })og(xj+Pj)

j=O

s. t. Ap = 0.

X + p > 0.

F(p) is concave and a Newton method can be applied to solve PLP", which amounts to

solving a quadratic programming problem to get the search direction p. Meggido (1986)

argues that the nonnegativity constraints may be totally removed.

The Newton algorithm of De Ghellinck and Vial works in the positive orthant of R0+1

and consists of only one phase in which both the feasibility and optimality problems are

solved. It is interesting to note that the algorithm generates points exterior to Ax = 0, i.e.

infeasible; feasibility and optimality are attained simultaneously. It is, however,

considered as an interior point method, related to Karmarkar's algorithm.

Iri and Imai (1986) also suggested a Newton-like method for LP different from the

Karmarkar algorithm in that projective geometry is not used and it has superlinear

convergence while the Karmarkar algorithm is only of linear convergence [Charnes et al.,

1984]. The method uses a Newton search direction to minimize a special barrier function

free of a barrier parameter, and related to the potential function of Karmarkar. The

problem considered is {Min cTx, s.t. Ax~ 0} and the corresponding barrier function is

T m+l

F(x) = (c x)
m

TI(Aj _X-bj)
i= 1

The minimization of F(x) is over the domain of feasibility K={xe R0 I Ax - b 0}. lri

and Imai prove the convexity of F(x) over K to justify the choice of the Newton method.

It is assumed that the problem admits a solution, the target objective value is zero and an

interior starting point is available. Iri and Imai analysed the effect of line search in the

behaviour of the algorithm, as compared to taking standard steps along the chosen

54

dire~tion. It appears that when the line search is used their algorithm converges

quadratically. However, it is not known whether it has a polynomial worst case bound.

2.4 Computational Experience

The lack of experimental results in [Karmarkar, 1984a, 1984b] generated a lot of

interest in the computational side of the projective algorithm. Most of the modifications

discussed in the previous sections were supported by computational experience, which

although limited and not conclusive gives nevertheless good insight in the practicality of

the projective algorithm and related variants. In this section some of the significant

numerical results obtained with implementations of the projective algorithm will be

reviewed.

Tomlin (1985) solved a set of test problems among which are the 7 nontrivial LP

problems listed in Table 2.1.

Problem Rows Columns Slacks

AFIRO 27 32 19
ADLITILE 52 97 4 1
SHARE2B 96 79 83

ISRAEL 174 142 174
BRANDY 220 249 54

E226 223 282 190
BANDM 305 472 0

Table 2.1 Problems Statistics

His implementation is characterized by the use of constant steplengths. He also

investigated the use of Givens rotations in computing the projected gradient. His most

efficient code, with a set to 0.99, performed slightly better than Ketron's WHIZARD

assembly language simplex code only on AFfRO. On the remaining problems of Table 1,

it was slower (2 to 10 times) than WHlZARD.

55

The test set solved by Lustig (1985) included the first five problems of Table I.

Lustig's code of a version of the Karmarkar algorithm, using LSQR subroutine of Paige

and Saunders (1982) to solve the least squares problem arising in the computation of the

projected gradient, performed poorly on all the problems (10 to 115 times slower than the

simplex code MINOS 5.0).

Gill et al. (1986) implemented a projected Newton barrier method of section 2.3.3.

Their code was tested on 14 nontrivial problems including those in Table 1. Three

problems (Degen I , Degen 2 and Degen 3) are highly degenerate. They tested the code

against WHIZARD and MINOS 5.0. For 3 of the problems listed above the barrier

method was slower than MINOS 5.0, (2 to 5 times slower). On the other problems the

barrier method and the simplex codes were comparable. The degenerate problems were

solved with WHIZARD. The barrier method was approximately 2 times slower than

WHIZARD.

Turner (1987) solved 8 problems among which are the first five problems of Table 1.

The tests were against a code of the original Karmarkar algorithm. Periodic restarts were

used in the variable-metric algorithm of Turner to reduce the number of factorizations and

rank-one updates to approximate D at each step. From the results of Turner it appears that

the number of iterations to get a solution is inversely proportional to the number of

factorizations. The code of the variable-metric performed slightly better than that of the

original Karmarkar algorithm, except for AFIRO on which it was 1.5 to 2.5 times slower.

Ye and Kojima (1987) presented limited experimental results with a variant of the

Karmarkar algorithm which works on the standard LP problem, with no a priori

knowledge of the optimum objective value. Dual variables were generated at each iteration

and from their results the dual solution converges faster than the primal.

Shanno and Marsten (1988) implemented two versions of a reduced gradient

algorithm, with exact and inexact-projections, within the framework of the XMP simplex

code. Three problems of small and medium size were solved with the two variants of the

reduced gradient Karmarkar method and the XMP code of the simplex. The reduced

gradient codes took more iterations than the simplex code to solve a ll the problems. 13ut

the interesting result concerned the behaviour of the inexact-projection reduced gradient

56

code: it took less iterations than the version with exact projections on all the three

problems. On the whole, however, Shanno and Marsten did not think that a direct

implementation of the reduced gradient variant would be competitive with the simplex or

even with the original Karmarkar's algorithm. In Shanno (1988) a version of the

Karmarkar algorithm was implemented with the Fletcher-Powell rank-one update of a

known factorization LLT of BBT. He solved randomly generated LP problems with cTx*

= 0 and such that Ae = 0. The code for the original Karmarkar algorithm with a Cholesky

factorization at each step required less iterations but the number of updates (n x (number

of iterations)) was higher than in the modified version.

In Nemirowskiy (1988) experimental results were presented on 16 problems, 12 of

which were randomly generated. He implemented the original Karmarkar algorithm and a

variant which does not require a priori knowledge of optimum objective value and an

admissible plan (i.e. an interior feasible point). This implies that the variant works in one

phase. Variations on the stopping rule and the way (BBT)-1 was dealt with were also

considered. The two algorithms performed in the same order of efficiency with a slight

advantage for his variant. Nemirowskiy reported that a simplex code performed "badly"

on four of the problems.

Vanderbei, Meketon and Freedman (1986) implemented their affine variant of the

Karmarkar algorithm and reported encouraging results on small dense problems. The

affine variant was competitive with the revised simplex method. An implementation of the

affine variant was also carried out by Cavalier and Schall (1987) and was found to be 2 to

3 times faster than Fortran subroutine ZX4LP based on simplex. The test problems were

randomly generated and are of medium size. In Monma and Morton (1987) extensive

numerical results obtained with a Fortran 77 code of a dual affine variant of Kannarkar's

method were presented. 31 test problems including those in Table 1 were solved. Their

code was tested against MINOS 5.0. On 26 of the problems the dual affine variant

outperformed MINOS 5.0 (1.28 to 10.80 times faster). Four of the five problems on

which the dual affine variant did not perfonn so well are included in Table 1. On problem

ISRAEL, MINOS 5.0 was 5.84 times faster. The problem ISRAEL has three very dense

57

columns and several dense rows. This, probably, explains why the Karmarkar variant

performed badly.

Ferris and Philpott (1988) studied the performance of the Karmarkar algorithm and its

rescaling variant on small to medium size problems. A line search to obtain steplength a.

and the sliding objective technique were investigated. Householder transformations and

Givens rotations were used in solving the least squares problems to obtain the projected

gradient search direction. The tests were dgainst the MPSX code of the simplex. On

average the simplex code performed better than the codes of Karmarkar algorithm

variants. The point made however was that the choice of the steplength and techniques for

solving the least squares problem greatly influences the behaviour of any code of the

a lgorithm. In Nickels et al. (1985) and Schonlein (1986) a similar approach was also

taken. Their Fortran IV code of a version of the Karmarkar with no a priori knowledge of

z* was tested against two MP-copes: The Marsten Code and the APEX IV simplex based

package of Control Data, on eight small to medium size problems. The Kannarkar based

program was faster than the Marsten Code on most problems (1.8 to 12 times faster)

except for one problem for which it was over two times slower. Note that the Marsten

Code is not a commercial package. APEX code, however, was 1.2 to 81 times faster than

that of the Karmarkar alg01ithm. Schreck (1986) also implemented Karmarkar's algorithm

with QR decomposition to find the search direction. He solved problems in canonical

form obtained by primal-dual combination suggested in [Karmarkar, 1984a]. The tests

were against APEX. The latter was uniformly better than Schreck's codes K 11 C and

K 11D (which differ only in the stopping rule) except for one (l0xlO)-Maximum

Matching Problem solved in the same time by APEX and K 11 D. On other problems

APEX largely outperformed K 11 C and K 11 D (>> I 00 times faster). The bad

performance of the Kannarkar algorithm in Schreck's implementation is due to the growth

of problem size due to the primal-dual combination.

Goldfarb and Mehrotra (1988b) presented limited results with a code of their relaxed

version of the projective algorithm on the first three problems of Table 1. Emphasis was

put on the role of subroutine COLS [Paige & Saunders, 1982] used when computing

approximately the direction of search, and the effect of rescaling the data. Prom their

58

results it appears that scaling has no substantial effect on the results. But the success of

their method is dependent on COLS, i.e on the solution of the least squares problem.

Problems AFIRO and ADLITfLE were solved in acceptable iteration counts. On the other

hand, the performance of their method on SHARE2B was disappointing. This lack of

robustness was justified by the ill-conditioning of the least squares problem deriving from

SHARE2B.

Imolementation, of Karmail'vll Alr,.orithm bv:
Simolex Tomlin Lustig Gill et al. Monmaetal.

Problems lter CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s~ Iter CPU(s'

AFIRO 6 0.5 17 0.40 14 0.8 19 0.4 22 0.23
.A.DUTILE 98-126 1.0-1.1 24 1.87 29 12.3 26 1.0 22 0.95
SHARE2B 91- 121 1.0-1.4 23 2.80 21 67.4 23 1.4 32 2.98
ISRAEL 231-338 3.7-4.2 30 55.07 33 636.0 41 15.9 41 96.65
BRANDY 292-377 4.1-5.9 33 17.23 35 215.0 28 6.4 34 16.32
E226 471-572 7.5-7.9 37 31.66 59 644.0 37 8.5 42 18.73
BANDM 392-534 6.4 -10. 47 33.13 55 771 .0 33 7.9 31 15.60

Table 2.2 Comparative Results between 4 Implementations of Karmarkar

Related Algorithms and MINOS 5.0 Simplex Code

2.5 Conclusions

From the numerical results briefly reviewed some interesting aspects of the Karmarkar

and related algorithms can be highlighted.

1) The number of iterations required by the Karmarkar algorithm and its variants is in

general low, and grows slowly with the problem size. This conclusion docs not contradict

Karmarkar's claim that the number of iterations required by his algorithm, in general, is

O(Logn). This constitutes the most attractive feature of the algorithm.

2) Some implementations of the algorithm outperfonned the simplex on realistic LP

problems. But the difference in CPU time was never large enough to impose the

tec hnique for adoption as the standard way for solving LP problems. Indeed many of the

results reviewed earlier speak in favour of the simplex, although the comparisons were

59

not very meaningful as simplex based packages have been developed and refined for

years, while Karmarkar based codes are still experimental products.

3) The work in an iteration of the Karmarkar algorithm is substantial. All current

variants of the algorithm are dependent on the solution, in every iteration, of a least

squares problem that can be expensive. Speeding up the convergence of the algorithm,

therefore, is limited by existing technology for least squares problems.

60

I
I

Chapter 3

Computation of the Projected Gradient and the Steplength

3.1 Introduction

After describing Karmarkar's algorithm and related work, we are faced with two

major problems for its efficient implementation, namely the computation of the search

direction p and the optimum choice of the steplength a to take along it. The present

chapter is therefore in two parts. In the first part we look at the least squares (LSQ)

problem and find out what is ~n store that can be used in the implementation of

Karmarkar's algorithm. The second part is devoted to investigating the choice of the

step length.

Very few implementations discussed in Chapter 2 do not consider solving a LSQ

problem when computing the projection matrix in the main step of the algorithm. In

[Tomlin, 1985], it has been argued that the efficiency of the projective algorithm is limited

by the technology for solving LSQ problems. Efficient solution of the LSQ problem is

also relevant to our algorithm based on generating a sequence of Chebyshev points,

treated in Chapter 5, and to different implementations of the projective algorithm

considered in Chapter 7. Based on these arguments we found it necessary, at least for

completeness, to review some important results concerning the LSQ problem. Other

related infonnation will be given as appendices and referred to when necessary.

3.2 The Linear Least Squares Problem

The method of least squares has many applications. In statistics it is used to identify

and estimate parameters, in engineering it is used for curve fitting and data smoothing. In

61

numerical analysis it is used as an "extension" to the well known Gaussian Elimination to

overdetennined (underdetermined) systems of linear equations.

The use of LSQ can be traced back three thousand years, to Chinese mathematicians

LLongley, 1984]. It is, however, credited to Gauss. Methods for LSQ problems predate

computers, although the development of efficient algorithms with sparsity and numerical

stability considerations are recent and strongly linked to the availability of digital

computers.

3.2.1 LSQ Problem and Normal Equations

The LSQ problem is to minimize the norm of the residual vector r = b - Ax of a

system of linear equations Ax = b. Although any norm may be used, it is generally the

Euclidean norm which is considered. The LSQ problem is formulated as follows

min llb -Ax ll2
X

(3.2.1)

The LSQ problem and the normal equations are almost inseparable. They are naturally

derived as follow.

The residual vector r must be orthogonal to the column space of A (or space of AT).

This condition is expressed as r e ker (AT), i.e. AT r = 0 or A T(b - Ax) = 0, which leads

to the normal equations AT Ax = A Tb. The cross-product AT A is a positive definite

matrix.

3.2.2 Data Characteristics and Algorithm Performance

Many techniques are available to solve the LSQ problem. The diversity in the ways

LSQ problems may be approached is due to the different characteristics these problems

may have. Two important characteristics of the data of the problems are the ill-

conditioning of the matrix A and its sparsity, which make techniques for LSQ differ in

their numerical properties and execution time. Any successful method takes account of

62

these two features. However, despite continuous research for powerful methods, large

scale and ill-conditioned problems remain difficult and expensive to solve.

Numerical stability of a technique applied to large ill-conditioned LSQ problems is

achieved, when possible, mainly by scaling and preconditioning the data of the problems.

Sparsity preservation and exploitation is achieved by appropriate matrix decomposition

and ordering.

3.2.3 Numerical Stability and Condition Number

Every operation performed during computation, gives rise to some error. This error

may decay or grow in subsequent calculations. In some cases, errors grow so large that

the computed result is totally redundant. A procedure leading to such results is labelled

numerically unstable. However, some problems are inherently unstable or ill-conditioned,

which may cause bad performance of most procedures on such problems regardless of the

precautions taken [Kronsjo, 1987].

Instability of a solution and ill-conditioning of the corresponding problem may be

monitored by perturbing the data and measuring the effect this has on the solution. In the

case of a system of linear equations Ax = b, where A is square and non-singular, the

measure of instability is contained in the quantity IIAII.IIA-111 defined as the condition

number, Cond(A). As 11111 = 1, for every subordinate norm, and I= AA-1 then 1 = 11111

IIAII IIA-111 = Cond(A). Thus Cond(A) 1 for any matrix.

The condition number indicates the maximum effect of perturbations in A and b on the

exact solution of Ax= b. If Cond(A) is "large", the exact solution may be substantially

changed by even small changes in the data. A is often said to be ill-conditioned. If

Cond(A) is "small", A is said to be well-conditioned.

3.2.4 Scaling and Preconditioning

Scaling and preconditioning are means for improving the condition of a matrix. The

basic purpose of scaling is to make the variables of the scaled problem have the same

63

magnitude and order unity in the solution region. The common way of scaling a matrix is

by multiplying its rows or columns by a factor so that all entries are about size 1. Scaling

is not always easy and satisfactory. Indeed, there is no automatic way of satisfactorily

scaling any matrix.

Preconditioning is another way of scaling. It is aimed at reducing the condition

number of a matrix by multiplying it by suitable matrix. Preconditioners are also viewed

as accelerators of convergence. Among the techniques for LSQ, the iterative ones are

most dependent on preconditioning [Gill et al., 1981] .

•
3.2.5 Sparsity

Sparsity is the characteristic of a matrix with "many" zero entries. Although, It is

difficult to exactly define a sparse matrix, we call a matrix sparse when it is profitable to

exploit its zeros [George & Liu, 1981].

Sparsity exploitation is aimed at reducing the CPU time and storage requirements of

procedures for matrix computation. This is justified by the redundancy of the following

operations.

If a is nonzero then: 0 . a = 0, 0 + a = a, 0 / a = 0, 0 . 0 = 0.

In other words, it is unnecessary to allocate any computing power to these operations as

tl1e results are obvious. Also there is no need to store the zero elements.

One of the main problems in solving sparse systems is that when the matrix is

factored, it suffers fill-in, i.e., nonzeros are created as a consequence of the factorization.

Thus, sparsity tends to be destroyed. In the case of the normal equations, for example,

the Cholesky factor L has more nonzeros than the lower part of AT A. However, it has

been observed that a judicious reordering of the matrix rows and columns can drastically

reduce fill-in. Such a reordering is practically embodied in a permutation matrix, which is

defined as follows.

64

A permutation matrix P is a square matrix whose columns are some permutation of

those of the identity matrix. Matrix Pis orthogonal, i.e. pTp = I. (See Appendix C for

details about ordering algorithms.)

Sparse matrix technology was founded by Ralph Willoughby of I.B.M. in the 60's

[Duff, 1981]. Since then it dominated the design of efficient software in numerical

computations of large systems. In the following sections and subsequent chapters, the

relevance of sparsity considerations for the solution of the LSQ problem and the

implementation of the projective algorithm will be underlined.

3.2.6 Solving the Least Squares Problem

As mentioned earlier there are many techniques for solving LSQ problems. The choice

of a technique may be determined by two main criteria: Numerical stability and Sparsity

exploitation (i.e. cost). Unfortunately, no single technique completely fulfils these

criteria, as problems differ a great deal in the condition of their data and their sizes. For

small scale problems, even when they are ill-conditioned, most techniques can be

successfully applied. However, when the problems are large, the choice of a suitable

technique becomes crucial.

Techniques for LSQ problems may be divided into two categories:

-Direct and

- Iterative.

3.2.6.1 Direct Methods

a) Cholesky Factorization Tech11ique

The Cholesky method is a symmetric variant of the G aussian elimination tailored to

symmetric positive definite (SPD) matrices. Suppose we have to solve the system Ax =

b , where A is SPD matrix, using the Cholesky method. Then a triangular factorization of

A is obtained such that A = LLT, where L is a lower triangular matrix (see Appendix B

for computation details of L). The system at hand may be written as

65

LLTx = b.

Put LTx = y,

and solve Ly= b

by a forward substitution. Then solve LT x = y by a back substitution to obtain x.

The algorithmic form of the Cholesky method applied to Ax = b, with ordering

brought into play is given below [Heath, 1984].

Algorithm 3.0

1- Find a permutation matrix P.

2- Factorize pT AT AP to find a sparse Cholesky factor L.

3-SolveLTz=PTATb.

4- Solve Ly= z.

5- Restore original order: x = Py.

b) Advantages/Disadvantages of Cholesky Method

Speed and widespread availability of Cholesky method are among its major assets.

- For dense problems with m >> n, the number of arithmetic operations needed is

approximately half of that taken by direct methods

- For sparse problems, there are excellent software packages available on the market

such as YMSP, SPARSPAK, MA27.

On the other hand many people find it unreliable for the following reasons.

- Numerical difficulties may originate from problems such as:

* Potential loss of information when explicitly computing the cross-product

AT A and A Tb. This arises from the truncation of the numerical values resulting

from the products due to limited precision on the computer.

* The condition number of AT A is the square of that of A, hence an accurate

solution to the LSQ problem at hand may be difficult to get if not

impossible, especially when A is already poorly conditioned.

66

- A suitable accuracy requires high working precision which results in an increase in

storage requirement for very large problems.

- Explicitly computing the cross-product AT A destroys the sparsity of the original

problem.

c) Orthogonal Methods

The basic idea is to avoid explicit formation of the cross-product AT A, by computing

its Cholesky factor R directly from A. This can be done by orthogonal factorization.

An orthogonal matrix Q of order m is one which satisfies the relation QTQ = I. Such a

matrix is used to reduce A and b into the following forms:

(3.2.2)

where c is of order n, and d of order (m-n) and R is triangular (nxn)-matrix.

Based on the property of Q, it can be written

ATA= AT IA= ATQTQA =[RT o][~] = RTR.

This shows that R is the Cholesky factor of AT A.

Three main methods are available for computing the reductions (3.2.2):

- Gram-Schmidt Orthogonalization, [Longley, 1984]

- Householder Reflections, [Kronsjo, 1987]

- Givens Rotations, [Golub & Van Loan, 1983 J

d) Advantages/Disadvantages of Orthogonalization Methods

Gram-Schmidt and Householder methods reduce A to triangular form by annihilating

the subdiagonal elements in an entire column at each step. The methods are effective for

dense matrices. For sparse matrices, they present some drawbacks: While a column is

annihilated, nonzero elements are eventually created where there was a zero before in the

remaining columns not yet zeroed by the orthogonalization process. These nonzero

67

elements will be zeroed later, but they must be stored for the mean time, which increases

storage requirements [Heath, 1984].

The Givens method reduces A to triangular form by annihilating subdiagonal elements

in a row, unlike the two other methods. It is, however, similar to them, although it

presents the advantage of introducing zeros more selectively [Heath, 1984]. The order in

which the rows are reduced does not affect the zeroing process with respect to the

correctness of the result, but may be used to advantage to preserve sparsity in the factor

R. It should be said that Givens algorithm takes approximately twice the time needed by

Gram-Schmidt and Householder algorithms. But another version of the algorithm known

as the "Fast Givens Rotations", has been discovered by Gentleman (1973). The

performance of this second version is not superior to the original algorithm, in practice.

However, many people favour th~ use of the Givens algorithm due to the flexibility of the

zeroing process [Heath, 1984]. In general the three methods present the same

disadvantage: Even if A and R are sparse, it is unlikely that the orthogonal matrix Q will

be particularly sparse. In section 3.6 we will see how this problem can be alleviated by

using a partitioning algorithm based on QR methods.

3.2.6.2 Iterative Methods for Least Squares

Iterative methods may be good alternatives to direct methods for some large sparse

LSQ problems. One of their advantages, (and that of all iterative processes for any class

of problems, like the projective algorithm itself), is the possibility to stop the iterative

process when an approximate solution to the problem at hand is reached. This obviously

is not possible with direct methods. Another advantage is also the difficulty of obtaining

an accurate solution with direct methods, for some problems. In this respect, iterative

methods are more suitable, as accuracy may be monitored.

A simple iterative scheme, based on the normal equations, referred to in [Golub,

1965], is as follows.

68

Let x(O) be an arbitrary vector, then solve (AT A + cxl)x(k+ I) = A Tb + cxx(k). The

convergence of this process can be proved, when ex > 0 and the spectral radius of cx(A TA

+ cxI)-1 is less than 1. Its implementation can be done using orthogonal transformations.

a) Conjugate Gradient Methods

Conjugate gradient methods are popular because of their robustness and stability for

large problems. They are called upon to replace direct methods, when these are not viable

because of the size or density of the problems matrices. Conjugate gradient methods refer

to a wide class of optimization algorithms which generate search directions without

storing a matrix [Gill et al., 1984]. There are two types of conjugate gradient methods:

The linear an~ the nonlinear methods. For our purposes, linear conjugate gradient

methods will be considered.

Originally, conjugate gradient methods were designed to solve, iteratively, positive

definite systems of linear equations. The iterative process uses the relation x(k+ 1) = x(k) +

CXkPk,where CXk is a non-negative scalar called stcplength, and Pk a vector direction of

search. The vector Pk is obtained as follows:

If the positive definite system to be solved is Qx = -c, the direction of search can be

computed as Pk+l = -(Qx(k+t) + c) + PkPk, with

T
n. _ gk+lQPk
Pk - T •

PkQPk

where gk = Qx(k) + c. The steplength CXk is evaluated with the formula:

b) LSQR Algorithm of Paige &Saunders

LSQR algorithm was designed to solve nonsymmetrical systems of linear equations,

LSQ problems and damped LSQ problems of the form:

69

(3.2.3)

where A is a scalar. The algorithm was intended to solve large and sparse problems. It is

based on the algorithm of Golub and Kahan, cited by Paige and Saunders (1982), to

reduce matrix A to a lower bidiagonal form. However, this algorithm is itself a variation

on the Lanczos process (or tridiagonalization) for symmetric matrices. The solution to

(3.2.3) satisfies the symmetric system

(3.2.4)

where r = b - Ax. Note that (3.2.4) is a symmetric system. Hence, application of the

Lanczos process is possible and l~ads to the forms

(3.2.5)

(3.2.6)

where Bk is (k+l)xk and lower bidiagonal and Yk is the solution of the damped least

squares problem

;'.
0 11(~~ }, - (!')II, ·

Orthogonal transformations may then be used to reliably solve it.

The algorithm LSQR is analytically equivalent to conjugate gradient methods. It

generates a sequence of approximations {xk} such that the residual norm II rk II is

monotonically reduced. Paige and Saunders (1982) claim that it is numerically more

reliable than the standard conjugate gradient methods, in various circumstances. In our

implementation of the projective algorithm, LSQR is also used.

70

3.2.7 An Updating Algorithm for Least Squares

Updating methods are an important feature of LSQ problems. In the real world,

problem data, most of the time, are incomplete. Often new observations are made after the

problem has been already solved. It is, therefore, crucial to be able to incorporate the

effects of these observations into the solution without having to solve it de novo. In our

case, however, the usefulness of such techniques is mainly concerned with efficient

exploitation of the sparsity of the problem. When the problem matrix is sparse except for

few rows, it is attractive to discard the nonsparse rows, which will certainly cause severe

fi ll in the Cholesky factor, solve the resulting incomplete problem, then update its solution

taking account of the removed rows. In the following we shall present an updating

algorithm, due to Heath (1981), which we use in our implementations of variants of the

projective method. The algorithm of Heath (see Appendix D), however, involves storing

an orthogonal matrix which can be very large. In the following we shall present an .
analogous algorithm which does not require explicitly the orthogonal matrix. It will be

shown that the solutions returned by both algorithms are equivalent.

Consider the partitioning of A and b of (3.2.1) into A = [~~] , and b = [:~].

Then (3.2.1) can be written as

(3.2.7)

Let rl (x) = b1 - A1x and r2(x) = b2 - A2x and solve the incomplete problem

(3.2.8)

in variable y, using orthogonal factorization

If z is the effect of the removed rows on the solution x to (3.2.1), then x = y + z.

This leads to the following form of Heath's algorithm.

71

Algorithm 3.1

1- Solve the sparse problem (3.2.8) using orthogonal factorization or Cholesky

method to obtain y = R·lc.

2- Compute F = A2R · l.

3- Compute r2(y) = b2 - A2y.

4- Solve (I + FfT)u = r2(y).

5- Compute z = R-lpT u.

6- X = y + Z,

Lemma 3. 1: The solutions returned by Algorithm 3.1 and Algorithm D (see Appendix D)

are equivalent.

Proof: First we consider the solution returned by Algorithm D, i.e. x = y + z

where z = R·1UTL-1r2(y), U being the orthogonal matrix used in the factorization of

[A2R•l I]T and Lits Cholesky factor. We have

(3.2.9)

or equivalently UR·1A2T =LT.Thus R·1A2T = UTLT and UT = R·TA2TL•T. Substituting

UT in the expression of z we obtain

z = R·l(R-T A2 TL•T)L·1r2(y)

Replace z by its expression in the solution to the full problem to get

x = y + R·1(R•TA2TL•T)L·1r2(y). (3.2.10)

Now consider the solution returned by Algorithm 3.1, i.e., x = y + z, where

z = R-lfTu = R·lR-TA2Tu, u being the solution to the symmetric positive definite

system (I+ FFT)u = r2(y). Assume that u is obtained by the Cholesky method, the

Cholesky factor of (I + FfT) is similar to that obtained in the orthogonal factorization

(3.2. 9) as one can see from

72

(1 +FF,= (FFT+ il= (F 11[fHA2R-T 1] [R-;Ai) = 1L T
Thus u can be written u = L-TL-1r2(y), and substituting it into the expression of z we.

obtain

z = R·1R-T A2 TL-TL-1r2(y)

Replace z by its expression in the solution to the full problem to get

x = y + R·l(R•TA2TL-T)L·lr2(y). (3.2.11)

Expressions (3.2.10) and (3.2.11) of the updated solutions givens by Algorithm 3.1 and

Algorithm Dare similar. Q.E.D.

3.2.8 Exploiting the Sparsity of The Right-Hand Side

Algorithm 3.1 is useful not only in preserving the sparsity of the problem matrix, but

also to exploit that of the RHS. Exploiting any sparsity in the RHS is tedious and

expensive [Duff et al., 1986]. However, when the sparsity is favourably distributed, i.e.

the vector b presents large sequences of zeros, then exploiting it is worthwhile. We are

mainly interested in the situation where the nonzeros in the RHS are only few and

correspond to some relatively full rows in the problem matrix. Thus the partitioning of the

problem as in (3.2. 7) is most appropriate, i.e. A2 contains the full rows and b2 the

nonzeros of the RHS. In this case Algorithm 3.1 is dominated by the orthogonal

factorization carried out in step 1-. The forward substitution y = R·1c is totally discarded,

as the solution to the incomplete LSQ problem (3.2.8) when b 1 = 0, is obviously y = 0.

The solution to the full problem is, therefore, reduced to the updating vector z. Thus x =

z. When matrix A2 has only few rows, applying Algorithm 3.1 and exploiting the

sparsity of the RHS is very attractive. We shall see in Chapter 5 the relevance of this

algorithm to our work.

73

3.3 Optimum Choice of Steplength ex

In all interior-point methods the choice of the step size is crucial and may greatly

influence their convergence. One of the main problems related to the step size is keeping

feasible, as it was noted in the Brown-Koopmans algorithm, cited by Charnes et al.

(1984). In Kannarkar type algorithms things have not much changed and the choice of the

steplength remains crucial, although keeping feasible is mainly dealt with by considering

at each iteration a trivial optimization problem, i.e., minimizing a linear functional over a

sphere. Obviously, the minimum is at the surface of the sphere. However, the radius of

the sphere must be defined in conjunction with the size of the step along the negative

projected gradient of the linear functional to be minimized (that is the transformed

objective function of the LP problem). This results into problem Px·
5

of Chapter 2.

Karmarkar (1984a) recommended a small step size (ex= 1/4) mainly to maintain

polynomial complexity of the algorithm, a better approximation of the objective function

in the transformed space and numerical stability. However practical experience supported

the use of a much larger ex than 1/4. Moreover, using a constant step size for every

iteration is counter-productive, because at each iteration a different minimization problem

is solved.

In the following, aspects of the choice of ex are considered and suggestions for an

optimum choice are made.

3.3.1 Constant Steplength

Theorem 4 of Karmarkar (1984a) states that if x* = ao - exp' minimizes the

transformed objective function then the value of the transformed potential function F' is

such that F'(x*) $ F'(ao) - 6, where ao is the centre of the inscribed sphere in the unit

simplex and 6 a constant defined as
2 2

ex ex n
6(n) = ex - - ------. 2

(n-1)[1- ex*1]

74

Thus,

and

lim = a - a2/2 - a2/(1-a),

lim 6(n) 1/8 if a= 1/4.

The constant 6 is a bound on the decrease in the potential function. Plotting 6 against

a, (Fig 3.1), clearly shows that the optimum reduction 6 is obtained for a= 0.25.

6

0.100

·MOO · OAOO o.aoo

or.

Fig 3.1 Maximum Decrease in Potential Function Occurs for a = 0.2453.

Hence the use of such a constant as steplength is justified. However, in practice,

values of a closer to 1 result in a faster convergence [Shetty & Ben Daya, 1985; Tomlin,

1985; Lustig, 1985]. To explain this phenomenon, let us put aside for a while, the

reasons why a is chosen equal to 1/4, and consider the decrease in the objective function

in the transformed space, i.e.,

C TDao C TD (ao- CXC TDp')
6(a) = --- _ __,_ ___ ___

eTDa0 eTo(a0-acTDp'}

75

After some manipulations, it can be seen that the function has a curve similar to that

represented in Fig 3.2. It appears that large values of ex lead to large decreases in the

transformed objective function.

6

-0.100

Fig 3.2 Decrease in c TDx'/e TQx' After Taking a Step of Length ex

Now we take a similar approach to investigate the conditions under which ex will lead

to a decrease in the objective function value, i.e. z(k+l) < z(k), of problem PC of Chapter

2. First of all the step should not lead to a non-feasible point. This is achieved by

imposing on ex the condition, directly extracted from x' = 1/n e - exp', and represented as

ex$ min y, where ye r = { 1/(np'j), p1 > 0, j = 1, ... , n}. It can be shown that to

guarantee a decrease in the objective function value, ex may be required to take a negative

value or a value larger than 1 [Tomlin, 1985). From the relations

and

one can write

x' = 1/n e - exp'

(k+l)
X

Ox'
T. ' e Dx'

76

and

Put

Then

Thus

(k+l) D(e-na.p')
X =-----T '

e D(e-na.p')

z(k) - a.n C·X ~k)p'.
4,,JJ J

(k+l) J
z =-------

1 - a.nixt>p' j
j

L (k) I
S = n C·X· p · J J J

j

(k)
(k+l) Z - 0.S

z =---
1 - a.r

and r = nlxt>p' j·
j

(3.3.1)

Adding a.rz(k) and substituting it from the right hand side of (3.2.1) will yield the relation

(k) (k+ I) a.s - a.rz (k) s - rz (k)
z -z =----=

1 - a.r .!.. - r
a

(3.3.2)

from which the conditions a. should satisfy to guarantee z(k) > z(k+l), can be derived as

follows.
(k) (k+l) O s-rz(k)

z -z > ---> 0,
1 --r
a

thus we have the cases

and

1) s - rz{k) > 0 .!_ - r > 0,
a.

1 * r > 0 0, r
* r < 0 =>a.may be negative,

77

2) s - rz(k) < 0 .!.. -r < 0,
(l

* r > 0 a may take negative values,

The use of a negative a may be necessary in those situations where a constant positive

steplength does not allow a "steady" convergence towards the solution, in the last

iterations. These situations were termed oscillations. In our experiments, we came across

with some problems for which the algorithm failed to converge to the solution, although

inspection of preliminary iterations showed reduction in the objective function value.

However, many factors may justify this loss of robustness, amongst which are 1) the ill-

conditioning of the problem matrix in the transformed space, and 2) the use of a constant

a when a variable one is more appropriate.

3.3.2 Variable Steplength

The projective algorithm basically works in a simplex. The optimization over a sphere

required at each iteration is a device to keep feasibility. However, it is possible to move

beyond the sphere boundary as long as the resulting point is inside the simplex. Going

beyond the boundaries of the simplex will result in some entry of the new point being

negative. Thus, to guarantee the validity of the move, it is enough to assure that the

smallest element of x{k+l) is not less than a certain value Pj which is set arbitrarily small.

As in the previous section, we consider the relations

and

(k+I)
X

Ox'
T. J

e Ox'

x' = ao - ap'.

Denote y the steplength that allows minj x/k+ l) = Pj, i.e.

(
D(ao- r . n') l . m,nr A

mmj T = tJj•
e D(ao - Y miJ>

1

)

or

78

Thus

or

and

Optimum step Ymin is the minimum of elements obtained from one by one division 0 of

the components of the vectors in the left hand and right hand sides of the above relation.

Thus

'Ymin = minj (Dao - peTDao) 0 (Dp ' - peTDp')

At each iteration Pj is set to a small arbitrary value, Ymin is evaluated as above and ex set to

Ymin·

Finally, we describe a method [Lustig, 1985] for choosing a steplength in every

iteration based on identifying variables which undergo a substantial change during the

progress of the algorithm. It has been observed that, as iterations progress the change in

variables that are null at the solution is very large compared to those that are not null. It is

thus profitable to speed up the zeroing of the variables that will eventually converge to

zero. The ratio test p = minj {l/p'j, p'j > 0, j = 1, ... , n}, may be used to identify such

variables. Lustig (1985), suggests a further test on the identified variable, say Xj, which is

(xjl(p'/xj)) < e, in order to relate the variables in the space of PC of Chapter 2. If Xj

satisfies the condition, ex is set top. Else it is set to pp, where p = .99, .95, or .90.

This approach was used in our experiments and seems to work well.

79

Chapter 4

Duality and Postoptimality Analysis

4.1 Availability of dual solutions

The basic concept of duality is that every linear programming problem (called the

primal) has an associated problem, called its dual, such that a solution to it is provided

whenever a solution to the original problem is found. Thus, whenever a linear

programming problem is solved 'Y!e actually get the solution to two problems. The primal-

dual relationship is important in many respects. It is extensively used in the design of

many variants of the simplex and also in the proofs of theoretical results.

One of the early criticisms of the Karmarkar (1984a) algorithm is that it does not

generate dual solutions. It was thought to be a primal method only. However, this state

of affairs did not last long, as many researchers realized that the computation of the

projected gradient in the main step of the algorithm provided, in certain instances, values

[Fieldhouse & Tromans, 1985; Lustig, 1985], which converged to the dual optimum

solution [Todd & Burrell, 1986; Ye & Kojima, 1987; Gay, 1987].

To see that consider the linear programming problem in standard form and its dual

(P) min c T x (D) max y Tb (4.1.1)

s.t. Ax= b s.t. yTA c

x~O

The problem in the transformed space is

min c •Tx• (4.1.2)

s.t. A'x' = 0

eTx' = l,x' ~ O,

80

where c' = (c To, -z), A' = (AD, -b) and D = diag (x), x being a feasible point to the

primal problem in (4.1.1). Let us write this problem and its dual in a more compact form.

(P') min c•Tx• (D') max b 'T y (4.1.3)

s.t. Bx'= b' s.t. BTy c'

x' ~o
where B = (;} If the solution to the primal is nondegenerate, from complementary

slackness the dual variables y satisfy the dual constraints as equalities, i.e.

(4. 1.4)

Now recall the expression of the projected gradient in Karmarkar's algorithm

p = (I - BT(BBT)-IB)Dc,

and write it as· p = De - BT1t, where 1t = (BBT)-1BDc. Clearly 1t is the solution to the

system BT1t = c', in the sense of least squares. If aT is full rank then the solution to this

system is the same as that of (4.1.4). Tims, vector 1t is dual feasible to (D').

Based on this observation Todd and Burrell (1986) designed a dual variant of the

Karmarkar algorithm which generates dual solutions and uses them to deal with LP

problems whose optimum objective values are not at hand. Ye and Kojima (1987) and

Gay (1987) also devised similar dual projective algorithms. In the following these dual

variants will be presented and their interrelationship studied. Their role in the use of the

Karmarkar algorithm for postoptimality analysis LSalhi & Lindfield, 1988), will also be

discussed.

4.2 Extending Karmarkar's Algorithm to Problems with Unknown z•

The variant of Todd and Burrell was aimed at removing the restrictive assumption

made in the original Karmarkar's algorithm that the optimum objective value z* of the

problem we wish to solve must be known. The idea is to use the dual variables generated

during the course of the algorithm to find ever better lower bounds on z*. The algorithm

works as follows.

81

Consider again problem (4.1.2) with unknown minimum value z*. Let z be an

estimate of z* which we update at each iteration by substituting for c' in (4.1.2), c' - ze.

To choose a good estimate the dual variables can be identified and used to compute the

dual objective value which is a lower bound on z* from duality theory. The dual problem

of (4.1.2) is

max z

s.t. A'T y + ez c'.

Todd and Burrell suggest that z be chosen as

z = minj {(c' - A'T Y)j}

(4.2.1)

(4.2.2)

This choice is justified because it guarantees dual feasibility of (y, z). It remains to find y.

Such a vector can be found according to the observation made earlier. Explicitly, it is

given by

(4.2.3)

The starting dual vector (y(0), z(0)) is found as above, assuming that a feasible interior

point x •(O) to the primal is found. To update the dual variables after iteration k, y(k+ 1) is

computed as the solution to A'T y(k+I) = c'(z(k)), where z(k) is the kth estimate to z*. Let

z(k+l) = minj {(c' - A'T y(k+l))j}, If z(k+l) z(k), then no improvement to the lower

bound on z* is made. Thus z(k) is kept as next estimate, i.e. z(k+l) = z(k). If, on the other

hand, z(k+l) > z(k), then z(k+l) is the new estimate and vector y(k+l) is recomputed as the

solution to the linear system A'Ty(k+l) = c'(z(k+l)).

For computational purposes, the projection matrix Ps = I - BT(BBT)• 1 B can be

written equivalently as Ps = PPA', where P = I - ee T/n. This is valid since A'e = 0. The

advantage of this form of the projection matrix is that matrix B with a full row of ones is

not used. The original sparsity of A, if there is any, is kept except for the extra column

due to b, introduced when forming A'. The projection vector, therefore, is given by

p = Pec'(z(k+l)) = PPA•C'(z(k+l)) = P[c'(z(k+I)) - A'Ty(k+l))].

Todd and Burrell (1986) showed that, assuming A' a mxn-matrix has rank m, (y, z) is

feasible for problem (4.2.1). Along the direction -p / IIPII, a constant reduction of 1/5 in

82

the potential function of Karmarkar described in Chapter 2, is guaranteed for ex= 1/3.

Thus an algorithm with polynomial complexity can be built. Although, Todd & Burrell

showed that their algorithm retains polynomial complexity, its original form does not

seem to be efficient in practice. The choice of steplength ex = 1/3, is only aimed at

achieving polynomial complexity; in practice, values close to 1 are more suitable for

reducing the number of iterations. Also, after some iterations, entries of x(k) get close to

zero, especially in degenerate cases. As D = diag (x(k)), A' = AD becomes ill-

conditioned, and may be rank deficient. In this case, the dual vector (y, z) may not be

feasible for problem (4.2.1). The search direction p is, thus, not good enough, which

prevents the convergence of the algorithm, as a consequence.

The variant of Gay (1987) is similar to that of Todd and Burrell. However, some

differences may be pointed out. For instance, no assumption is made regarding the rank

of A', in Gay's method. Also, the way the bound on the optimum objective value is

updated, is different from that of Todd and Burrell's algorithm.

Consider the problem (4.1.1), where (P) has a nonempty and bounded feasible

region, i.e. it has at least one solution x*. Denote the optimum objective value of (P),

z* = -c T x* and define u and v by

Let

and

u = P A'{~c} and v =PA·[~}
dj(z.) = (u + zv)j

d(z.) = minj {dj for j = 1, 2, ... , n+l}.

Based on an observation by Anstreicher (1986b), that after rescaling the feasible region of

(P) using Karmarkar's projective transformation, d(z.) can be written as

d(z) = min((u + zv)T x', x' 0 and e T x' = 1)

and for any x' such that A'x' = 0 we have

(4.2.4)

83

As x' 0, d(z) increases monotonically with z. The right-hand side of (4.2.4) being

precisely the objective function of (4.1.2) which is zero at the optimum, i.e.

T
[~;] x'* = 0,

then d(z*) 0, (at the optimum). From this observation the adjustment of z can be done

as follows.

If for the current z{k) we have d(z{k)) 0, then no change is made to the value of z(k).

However, if d(z{k)) > 0 then we can find z(k+l) such

z{k+l) z.(k) and d(z(k+l)) = 0.

The value is z.(k+l) = z.(k) + oz.(k), where 6z(k) = maxj {-dj(z)/vj, for all j such that Vj > O}.

Accordingly to the updating of the estimate z(k), the dual solutions at iteration k+ 1 are

updated as follows.

y(k+t) = _ (A'T)tc'(z(k+l)), when z.(k+t) < z(k)

where (A'T)t is the pseudoinverse of A'T and c'(z(k+ 1)) = [De, z(k+l)]. If, on the other

hand, z.(k+t) = z.(k), then y(k+l) = y(k), i.e. no updating is necessary. The use of the

pseudoinverse allows us to find y of minimum length regardless of the column rank of

A'T. The solution vector y is unique when A'T is full rank. Note that this constitutes the

main difference between the variant of Gay and that of Todd and Burrell.

Now, we may describe an algorithm which is basically that of Todd and Burrell

augmented with Gay's approach to updating the dual variables.

Algorithm 4.1

Assume we have the current approximation x(k) to the primal solution, and (y(k), z(k))

to the dual solution, and £ an arbitrary small value, then

1- Compute u, v and d(z.(k)) = minj { (u + z(k)v)j for j = 1, 2, ... , n+ 1}

2- if d(z(k)) 0 then

84

y(k+l) = y(k)

z{k+l) = z(k)

go to 4-

else

find z{k+I) such that z(k+l) > z{k) and d(z(k)) = O.

endif.

3- Compute y(k+l) from

y(k+l) = _ (A'T)tc'(z(k+l)),

where

c'(z(k+l)) = c'- z(k+l)e.

4- Compute. p from

p(k) = -P(u + z(k)v)

5- Compute

x•(k+l) = x(k) + ex p(k) 1 l1p(k>11.

6-Compute

x(k+l) = x•(k+l) / eTx•(k+l).

7- If abs(cTx(k+l) - z(k+l)) <£then stop.

else k = k+l go to 1-, endif.

In step 5-, the suggested value of 1/3 by Todd and Burrell does not seem to be

appropriate as it causes slow convergence in practice. They also suggested the use of a

linesearch of the potential function. It is not clear how this can be done and no numerical

experience is provided which supports this claim. On the other hand, the blocking

technique proposed by Lustig (1985) and given at the end of Chapter 3, may be an

alternative. In the following numerical results, this technique has been used.

85

4.2.1 Computational Experience

We implemented Algorithm 4.1 and solved a set of ill-conditioned LP problems

whose constraints are based on a submatrix of the Hilbert matrix. The problems have also

been considered by Roos (1985). They will be described in described in Chapter 7 where

further experiments are carried on them. The primal solution to these problems is x* = (1,

l, ... , l)T and its dual y* = (2, 1, ... , l)T, as specified in the following tables under

the heading "True Solution".

Todd-Burrell-Gay's Variant H0lADF True Soluuon
Dual Primal Pnmal Dual Pnmal

. 2.0172 0.9993 1.0000 2.0 1.0
0.8023 1.0847 1.0000 1.0 1.0
1.6723 0.7115 1.0000 1.0 1.0
0. 1226 1.3733 1.0000 1.0 1.0
1.3880 0.8327 1.0000 1.0 1.0

lterattons: 8 7

Table 4.1 5x5 Hilbert Type LP Problem Solved With Todd,

Burrell and Gay's Variant

Todd-Burrell-Gay's Vanant H0lADF True Solution
Dual Primal Pnmal Dual Pnmal

2.0102 0.9971 1.0000 2.0 1.0
0.9039 1.0336 1.0000 1.0 1.0
1.2117 0.8991 1.0000 1.0 1.0
0.9741 1.0656 0.9997 1.0 1.0
0.9035 1.0651 1.0013 1.0 1.0
0.8219 0.9997 0.9967 1.0 1.0
0.8591 0.9501 1.0050 1.0 1.0
1.0810 0.9423 0.9955 1.0 1.0
1.9049 0.9828 1.0022 1.0 1.0
0.3273 1.0655 0.9995 1.0 1.0

Iterations: 9 22

Table 4.2 lOxlO Hilbert Type LP Problem Solved With Todd,

Burrell and Gay's Variant

86

Todd-Burrell-Gay's Variant H0lADF True Solution
Dual Primal Primal Dual Primal
1.9932 0.9985 l.00UU 2.0 1.0
1.0732 1.0174 1.0000 1.0 1.0
0.8047 0.9507 1.0000 1.0 1.0
1.0610 1.0210 0.9949 1.0 1.0
1.2038 1.0419 1.0352 1.0 1.0
1.0080 1.0094 0.8433 1.0 1.0
0.9071 0.9819 1.4791 1.0 1.0
0.9261 0.9752 0.0000 1.0 1.0
0.9547 0.9814 2.3625 1.0 1.0
0.9747 0.9906 0.0000 1.0 1.0
0.9909 0.9979 0.9117 1.0 1.0
1.0061 1.0031 1.9910 1.0 1.0
1.0217 1.0071 0.0000 1.0 1.0
1.0360 1.0112 1.4577 1.0 1.0
1.0476 1.0151 0.9156 1.0 1.0
1.0524 1.0177 0.0000 1.0 1.0
1.0461 1.0167 0.0000 1.0 1.0
1.0233 1.0092 0.0000 1.0 1.0
0.9756 0.9919 0.0000 1.0 1.0
0.8922 0.9616 0.0000 1.0 1.0

Iterations: 10 40

Table 4.3 20x20 Hilbert Type LP Problem Solved With Todd,

Burrell and Gay's Variant

From the results of Table 4.1 to 4.3, our implementation of the dual Karmarkar

Algorithm 4.1 seems to return more accurate approximate primal solutions than the Nag

simplex based subroutine HOlADF when the problem is large. These results also

compare favourably with those reported by Roos [1985]. They are relatively more

accurate and obtained in less iterations. In addition, the dual solutions are provided.

4.3 Dual Algorithm of Ye and Kojima

The dual Karmarkar algorithm of Ye and Kojima (1987) is similar to the version of

Gay (1987). The algorithm is applicable under the same assumptions, i.e. the feasible

region is nonempty and bounded and the primal solution is non-negative. However, there

87

are subtle differences in the way bounds on the objective function value are found in Ye

and Kojima's variant. Their approach is developed on the dual of the original problem,

i.e. (D) rather than (D') and seems to lead to better bounds. In the fo11owing we sha11

describe their method and suggest a practical procedure for finding bounds on z*. We

shall also show that the updating of the bounds is equivalent to a one-dimensional LP

problem.

Consider the pair of primal and dual LP problems (4.1.1) and the vector

y(z)T = (A'T)tc'(z)

which is similar to that given by (4.2.3). This can be expressed as

y(z)T = Y2T + zy1T,

where

y 1T = (A'T)t(0, -l)T

y2T = (A'T)t(Oc, 0)T.

(4.3.1)

(4.3.2)

The vector y(z) is dual feasible if AT y(z) s c T, which represents the constraints of the

dual problem (D). Under the assumption that xis positive, Dis positive definite. Thus

DAT y(z) s DcT. If y(z) also satisfies z Sb T y(z), then

(4.3.3)

From equivalence (4.3.4), y(z) is dual feasible and bTy(z) is a lower bound for the

minimal objective value of the original problem, but no less than the current objective

value z at point y(z).

Assume that iteration k has been completed. To find y(k+J) and z(k+l), it is crucial to

find the best z, say z', that guarantees

c'T(z) - A'T y(z) 0,

which can be written using expression (4.3.2) of y(z) as

c'T(z) - A'T Y2 - zA'T YI 0,

or (cTD, -z) - A'Ty2- zA'Ty1 0.

88

(4.3.4)

By splitting the vector between brackets into the sum of two vectors, the above inequality

can be written as

which can be expressed in the form s + zr 0, where

and

S = (~Cl t:T}2
r=(.~l-(~:T}I

z' is the supremum of the set of ratios -s / r, such thats + zr 0. More explicitly, z' is

chosen among elements of the set

In Ye and Kojima (1987), this set was not explicitly given. They suggested that a one-

dimensional search over Z, to find a good lower bound z' on the optimum objective z*,

may be used. However, the procedure which is crucial for the convergence of the

algorithm, was not clearly stated. We developed such a procedure and it is described

below.

4.3.1 Improved Lower Bound on z•

The elements of Z divide the one-dimensional space R into half-spaces, in the

intersection of which may be found a value z' such that z' :s;; z*. Obviously this

intersection may be empty ; in this case no value z' satisfying all the constraints s+rz 0

exists. The half-spaces may be represented as follows (assuming that r(j) * 0, for j = I,

... , n).

89

s+rz~0~
I
I

~In 0
llllfl,'H,'I I

Zgtp
,'H,L/lJH/l,l/,'H,'/Jffl/1

0
0 Zitp
I IIHIHII

l'"~'""l"'l"I'"
2

n,rI111n 11111n tn

ltn

Fig 4.1 The Half-Spaces Defined by the Ratios s(j)/r(j)

(rands are scalar entries of rands)

The above diagram shows the different cases that may arise. When all four case are

present it is likely that their intersection is empty, i.e. a value z' that bounds z* is not

provided by the ratios. However, this seldom happens. On the other hand, when their

intersection is a non-empty interval, its upper bound is the value z' we are looking for.

The ratios z81n, Zgtp, z11n and z11p are determined by the non-redundant inequalities among

s + rz 0. By non-redundant inequality we mean the one that gives for each case the

best ratio. For instance if ratiol > ratio2 > ratio3 ... then ratiol is taken as z810 and the

inequality that produced it is non-redundant. Explicit procedures for determining z' are

given in Appendix E.

Now, we can look at the problem from a different point of view. We need to find the

upper bound (maximum element) of a one-dimensional interval defined by a set of

constraints s + rz 0. This, obviously, is a one-dimensional linear programming

problem which can be formulated as

maxz

s.t. s + rz :':?: 0.

Todd (1988a) also mentions this approach but considers a two-dimensional linear

programming problem. It is not clear how advantageous (or otherwise) it may be if

updating the estimate z' was carried out by solving a one-dimensional LP problem. In our

experiments (Chapter 6 and 7) the technique we have described was used.

90

Algorithm 4.2: Algorithm of Ye and Kojima

Initially, set y(0) = 0, x{0) primal feasible and z(0) a lower bound on the optimuJ?l

objective value. An arbitrary small value Eis pre-set. At iteration k do:

0- if (cTx(k+I) - z(k+l)) ~E then stop, Optimum solution obtained; else go to 1-.

1- Set D = diag(x(k)).

2- Set YIT = (A'T)t(O, -1],

y2T = (A'T)t[cD, O],

c'(z) = [cD, -z],

y(z) = Y2 + ZYl·

3- Find z' such that z' = sup· Z,

where Z = { z I c'(z) - y(z)A';::: 0 }.

4- if z(k) < y(z')b then

y(k+l) = y(z'),

z(k+l) = y(z')b.

else

y (k+l) = y(k),

z(k+l) = z(k).

5- Find point x•(k+l) in the transformed space as follows

where p e [0.27, 0.36].

6- Transfonn back to original space

91

I) D ,(lc+ l)
lc+l X

X - ---- ,(lc+l) '
X n+l

7- k = k+l, repeat from 0-

4.3.2 Experiments with Algorithm 4.2

The same problems solved earlier with Algorithm 4.1 were solved with Ye and

Kojima's algorithm. The results recorded in the following tables show some

improvements over those obtained with Todd, Burrel and Gay's variant; they are closer to

the true solution, especially on the smaller problems. They also compare favourably with

the results returned by the Nag subroutine H0IADF.

Algorithm 4.1 and Algorithm 4.2 were coded in Fortran 77 and run on a VAX 8650,

in single precision.

Ye-Kojima's Variant H0lADF True Solution
Dual Primal Primal Dual Primal

1.9984 1.0000 1.0000 2.0 1.0
1.0127 1.0027 1.0000 1.0 1.0
0.9674 0.9961 1.0000 1.0 1.0
1.0330 1.0082 1.0000 1.0 1.0
0.9885 0.9953 1.0000 1.0 1.0

Iterations: 8 7

Table 4.4 5x5 Hilbert Type LP Problem Solved With Ye and

Kojima's Variant

92

Ye-Kojima's Variant H0lADF True Solution
Dual Primal Primal Dual Primal
1. 9891 1.0005 1.0000 2.0 1.0
1.0450 1.0045 1.0000 1.0 1.0
1.0454 0.9601 1.0000 1.0 1.0
0.8415 1.0519 0.9997 1.0 1.0
0.8959 1.0314 1.0013 1.0 1.0
1.0310 0.9787 0.9967 1.0 1.0
1.1748 0.9574 1.0050 1.0 1.0
1.2173 0.9726 0.9955 1.0 1.0
1.0130 1.0058 1.0022 1.0 1.0
0.7402 1.0382 0.9995 1.0 1.0

Iterations: 9 22

Table 4.5 l0xlO Hilbert Type LP Problem Solved With Ye and

Kojima's Variant

Ye-Koj1ma's Vanant H0lADF True Solubon
Dual Pnmal Pnmal Dual Pnmal

1.9917 0.9604 1.0000 2.0 1.0
1.0668 1.3118 1.0000 1.0 1.0
0.8852 0.4570 1.0000 1.0 1.0
0.9763 0.8338 0.9949 1.0 1.0
1.0487 1.2791 1.0352 1.0 1.0
1.0707 1.3251 0.8433 1.0 1.0
1.0560 1.1605 1.4791 1.0 1.0
1.0239 1.0034 0.0000 1.0 1.0
0.9885 0.9086 2.3625 1.0 1.0
0.9578 0.8672 0.0000 1.0 1.0
0.9360 0.8622 0.9117 1.0 1.0
0.9255 0.8801 1.9910 1.0 1.0
0.9279 0.9108 0.0000 1.0 1.0
0.9447 0.9470 1.4577 1.0 1.0
0.9788 0.9835 0.9156 1.0 1.0
1.0341 1.0165 0.0000 1.0 1.0
1.ll55 1.0436 0.0000 1.0 1.0
1.2236 1.0636 0.0000 1.0 1.0
1.3046 1.0759 0.0000 1.0 1.0
0.5422 1.0807 0.0000 1.0 1.0

Iterations: 9 40

Table 4.6 20x20 Hilbert Type LP Problem Solved With Ye and

Kojima's Variant

93

4.4 Postoptimality Analysis via Karmarkar's Algorithm: Introduction

Postoptimality analysis is concerned with the sensitivity of the solution of a problem

to changes in the original data of the problem. The whole idea can formally be presented

as follows:

Given a problem and its solution obtained using some algorithm, a crucial question

would be: How stable the solution set is to perturbations in the data of the problem? Such

question is most relevant when linear programming is extensively used in real world

applications, as was expressed by Gal (1979):

"An objection frequently heard to more extensive dissemination of the theories of Linear

Programming in the practical field has been that the data which are available in practice are at

once too inexact and too unreliable to provide the basis for the application of 'exact' procedures

like Linear Programming."

Before going into the details of efficient updating of the solution when changes occur

in some component of the problem, it is important to know whether updating is

necessary. This is equivalent to checking the optimality of the solution of the original

problem to the modified one. In this respect it may be useful to briefly recall how this

question is dealt with in the simplex method.

After solving a linear programming problem using the simplex, the last tableau holds

vital information about the problem such as primal and dual solutions, basis inverse and

primal-dual relationships in general. When a change occurs in some parameter of the

problem, it is possible to revise the tableau taking account of the change, then apply the

optimality test of the simplex (dual simplex) to decide whether the solution is still optimal

or updating it is necessary. If Cj were changed to c'.; in a maximization problem for

instance, it is enough to compute oc'j, the corresponding reduced cost. If Oc'.; ;::: 0, then

the solution at hand is still optimal. Otherwise updating it is necessary and can be done by

carrying the simplex iterative process from the revised last tableau.

94

When using Karmarkar's algorithm it is hard to check whether the solution of the

original problem remains optimal after a change has occurred in some parameter without

making the assumption that z'* of the modified problem is at hand. This is due to the fact

that the optimality criterion of the Karmarkar algorithm is based on the gap between the

primal and dual objective values. The approach of the simplex is not readily usable

precisely because its optimality test is different from that of Karmarkar's method.

However, a primal-dual relationship, known as the complementary slackness conditions,

can be used to check the optimality of a point for a LP problem regardless of the method

used to obtain it. The complementary slackness conditions can be formulated as follows

[Chvatal, 1983, p.63].

Consider the pair of primal and dual LP probems in the simple symmetric form:

Primal: Max cTx

s.t. Ax~ b

X 0,

Dual: Min b Ty

s.t. yTA 2! c

y 0.

(4.4.1)

A feasible solution x1*, x2*, ... , x0 * of the primal in (4.1.1) is optimal if and only if

there are numbers YI*, Y2*, ... , Ym* such that

m • •
~>ijYi = cj, whenever xj > 0
i- 1

(4.4.2)
• n •

Yi= 0, whenever Iai.f'j < bi
j - 1

and such that

m •
IaijYi :2:cj, forallj= 1, 2, ... ,n
i - 1

• Yi~O, foralli=l,2, ... ,m.
(4.4.3)

95

In the following we shall present two ways for finding whether the solution point x*

remains optimum after a modification has occured in some parameter of the original

problem. The first approach makes the assumption that z'* of the modified problem is

known, while the second one does not make this assumption and is based on the

complementary slackness conditions. Postoptimal analysis will be studied when discrete

changes occur in the entries of the cost vector, the right-hand side and the rim of the

problem. We shall see how the updating process can be carried out, when necessary,

using Karmarkar algorithm, possibly without considering the perturbed problem as a

completely new one.

4.4.1 Perturbations in the Cost Vector

If a change OCj occurs in entry Cj of c then the new entry c'j is written as

c'j = Cj + OCj. The solved LP problem in S form can be written as

S': min cTx. z*

Its solution is

s.t. Ax· b = 0,

(x, 1) 0.

(x*T, 1), and cTx* • z* = 0.

It is clear that changes in c do not affect the feasibility of x*. However, it may not be

optimal. Knowing that in S' the target objective value is zero, two cases may arise in

respect with optimality of x*.

Assuming that E is pre-set to some arbitrary small value, then

case 1: If c•T x* - z'* €, then x* is optimal solution to the modified problem.

case 2: If c•T x* - z'* > £, then x* is feasible but not optimal. To update the solution

of the modified problem we carry on the Karmarkar solving process from the

state at which x* is a solution to the unmodified problem.

96

This approach is not realistic because of the assumption that z'*, the optimum

objective value of the modified problem, is at hand. A better approach may be based on

the complementary slackness conditions given earlier. Let x* be the solution of the primal

problem in (4.4.1). To decide whether x* is still optimal after Cj becomes c'j, the system

(4.4.2) is set up and solved. If it admits a solution y* satisfying (4.4.3) then x* is still

optimum. Otherwise it is necessary to update it. This can be done as in case 2 above.

Let us show through an example how the sensitivity of the solution to changes in the

cost vector may be studied.

Example 4.1
Max z=2x1+3x2+xJ

s.t. x1+x2+xJS3

x1 + 4x2 + 7xJ S 9

x 1 0, x2 0, XJ 0,

whose solution is x* = (1, 2, 0) and z* = 8.

Assume that cost CJ becomes c'J = 3. Is x* still optimal? To find out we set up the

system (4.4.2), i.e.

Yl* + Y2* = 2

y1* + 4 Y2* = 3.

The solution to this system is y* = (5/3, 1/3), which satisfies the conditions (4.4.3),

especially y1* + 7y2* = 4 c'J = 3. Thus x* remains optimal solution.

Now, an interesting thing to know is how far CJ can be increased without affecting the

optimality of x*. To find out, it suffices to consider CJ as a variable in the condition

y 1 * + 7y2* ;;?: CJ, which leads to c3 S 4. Thus, any value of CJ S 4 will not affect the

optimality of x* and the optimum objective value, as XJ = 0. If, on the other hand, c'J = 7

for instance, x* is no longer optimum solution as conditions (4.4.3) are not satisfied.

However, the point remains feasible and can be used as a starting point for Karmarkar's

algorithm. The new optimum is x'* = (2, 0, 1) and z'* = 11.

97

Let us now consider a change in an entry of c corresponding to a basic optimum

solution, say c2. In this case system (4.4.2) will read

Yl* + Y2* = c2

Yt* + 4 y2* = 3.

Using Cramer's rule to solve the above system, we obtain Yt * = 4t3c2 - 1 and Y2* = 1 -

c2/3. For x* to remain optimum, the values y 1 * and Y2* should satisfy conditions

(4.4.3). These conditions are

4/3C2 - 1 c?: 0

1 - c2/3 c?: 0,

from which the range [3/4, 3] of c2 is derived.

4.4.2 Perturbations in the Right-Hand Side

Consider the linear programming problem

S: max cTx

s.t. Ax= b,

X c?: 0,

and let J be an optimal basis for S. Let Ob be a perturbation of b and assume that Ob is

small enough so that

(A1)- l(b +Ob)~ 0.

This means that J is also an optimal basis for the perturbed problem

s.t. Ax = b + Ob,

X c?: 0.

The optimal basic solution of So is

x1 = (A1)·1b + (A1)·1ob

Xj = 0, j J

z* = bTy* + ob Ty*,

98

where y* is the dual optimal solution. Thus the variation of the optimal value of the

objective function of problem (S), for a variation ob of the right-hand side b small

enough for the optimal basis to remain the same, is ob Ty*.

If a change Obi occurs in entry bi of b then the new entry, say b'i is written as

b'i = bi+ Obj. The solved LP problem in S form can be written as S' of the previous

section, whose optimum primal and dual solutions respectively are x* and y*. The

modified problem with new RHS b' admits y* as a feasible solution. Concerning its

optimality as for the perturbations in c, two cases arise.

Assume that Eis pre-set to some arbitrarily small value, then

case 1: If b':Y* - z'* E, then y* is dual optimal solution to the modified problem.

case 2: If b'T y* - z'* > E, y* i:, dual feasible but not optimal. To update the solution

of the modified problem we carry on the Karmarkar algorithm from the state at

which y* is solution to the unmodified problem.

Here again, the assumption that z'* of the modified problem is available is not

realistic. We drop this assumption and adopt the same approach taken to study the

sensitivity of the solution to changes in the cost vector. When a change occurs in the RHS

of the original problem the dual solution returned by the dual Karmarkar algorithm

remains feasible. Its optimality, however, is not guaranteed.

Consider again Example 4.1 in which b 1 = 3 is changed to b' 1 = 4. The dual of the

modified form can be written as

Max-4y1-9Y2

s.t. -y1 - Y2 -2

-y1 - 4y2 ~-3

-y1 - 7y2 -1

YI 2: 0, Y2 2: 0.

The system (4.4.2) of the complementary slackness conditions for the dual will read

99

- x*1 - x*2 - x*3 = -4

- x*1 - 4x*2 - 7x*3 = -9

x*3 = 0

or equivalently

x*1+x*2 = 4

x*1 + 4x*2 = 9

x*3 = 0.

The solution to the system is x* = (7/3, 5/3, 0) which satisfies conditions (4.4.3). Thus

the dual solution remains optimal.

Sensitivity analysis to changes in the RHS can be studied as for the cost vector, but

working with t~e dual. When the dual solution is no longer optimal, it can be used to start

the Karmarkar algorithm and find.the new optimum solution.

4.4.3 Perturbations in the Rim

We consider simultaneous changes in both the cost vector and the right-hand side of

the LP problem already solved. This is a complex case that can be shown to be tractable

but under a restrictive assumption. W assume that z'*, the optimum objective value of the

modified problem, is available. The rim of the modified problem is c' = c + 6c and

b' = b + ob. Three cases arise.

case 1: If c•Tx* - z'* e, then x* is primal optimal solution to the modified problem.

case 2: If b'T y* - z'* e, then y* is dual optimal solution to the modified problem.

case 3: If c•T x* - z'* > e and b'T y* - z'* > e, then x* and y* are not optimal and

may not be feasible for the modified problem.

The problem has the form

min c•T x' - z'*

s.t. Ax' - b' = 0,

100

(x', 1) 0.

If a feasible point is available then the projective algorithm may be carried out from Phase

II. Otherwise we can get a feasible point using the primal optimal solution already at

hand, i.e. x*.

The system of constraints of above problem may be represented as follows.

or

from which we get x's = b' - Aax'a. If x's 0 then x' is primal feasible. Hence the

primal algorithm can proceed from Phase II. If any entry of x's, say x'sj, is negative,

then it is possible to represent it as the difference of two nonnegative variables, i.e. x'sj =
x'sj 1 - x'sh, where x'sj 1 0 and x'sh 0. A feasible point is thus obtained at the

expense of an extra column. The projective algorithm can proceed from Phase II.

4.5 Summary

In this chapter we have considered variants of the Karmarkar algorithm which provide

dual solutions and use them to deal with problems for which the optimum objective value

is not known. Three algorithms were considered. All of them are basically similar. The

dual variables are generated in the same way as well as the bounds on the optimum

objective value. The differences are in the way the convergence of these algorithms was

established. This Jed to different suggested steps to take along the negative projected

gradient. In practice these steps were found inappropriate. A longer step was used in our

experiments. At least from the theoretical point of view, the variant of Ye and Kojima is

superior to the others; in Todd (1988a) it is shown that it generates better bounds on z*. It

also works under milder assumptions and seems to work on any type of LP problems.

The algorithm will be further discussed in Chapter 6, and used for decomposition.

101

One of the purposes of this investigation of dual Karmarkar algorithms is to find out

whether postoptimality analysis is possible. We have shown that the sensitivity of the

solution to changes in the cost vector, the right-hand side and the rim can be studied using

Kannarkar type algorithms. Updating the solution, after a perturbation has occurred in

these components of the LP problem, is possible but may be expensive. On the small

problems we experimented with, the updating of the solution often took as many

iterations as was necessary to find it in the first place. For problems of this size the

simplex takes no more than one or two steps to find the new solution. However, our

experiments are limited and not conclusive. Further investigation of postoptimality

analysis is necessary.

102

Chapter 5

A Centring Scheme Based on Chebyshev Points

5.1 Introduction

The present chapter is concerned with investigating the possible use of the Chebyshev

problem as a centring scheme in the design of a new algorithm for linear programming.

Centring schemes were successfully used in interior point algorithms for LP discussed in

chapters 1 and 7. We recall that the benefits of such strategies are keeping feasibility and

speeding convergence by allowing large steps to be taken along the gradient direction.

Our approach is similar to that of Levin (1965), used in the simplicial algorithm: After

a Chebyshev point is found, a simplex containing the feasible region is split through the

point, using the objective function as the cutting hyperplane. A Chebyshev point of the

new system of inequalities is found and the operation is repeated, and so on. The

convergence of such a process is established, and numerical results are reported.

5.2 The Chebyshev Problem

Given a set of m linear inequalities in n variables (n < m), the Chebyshev problem is

that of finding point x* in Rn which is equidistant from a set of n+ 1 hyperplanes among

the m inequalities. Such a point is called a Chebyshev point.

Consider a system of linear inequalities

11lx)= ai 1x 1 + ... + ain'Cn + bi :5 0, i = 1, ... , m > n. (5.1)

A Chebyshev point x* is a solution to the system of linear inequalities if

• max Tl i(x) = min max 11 i(x) = L,
l:Si:Sm ll l:SiSm

where L is called the deviation.

103

A system of linear inequalities is solvable if and only if L 0. In this case the

Chebyshev point is unique. The point lies inside the solution set (feasible region) of the

system of inequalities, but also inside the largest simplex defined by any (n+ 1)

inequalities at equal distance from its sides. This holds for consistent systems. Thus we

assume throughout, that the LP problems to be considered have bounded and nonempty

feasible regions.

5.3 Converting the Chebyshev Problem into a LP Problem

It is well known that the Chebyshev problem can be solved as a LP problem

[Zukhovitsky & Avdeyeva, 1966]. The conversion is based on introducing a variable for

the deviation in the set of linear inequalities and optimizing that variable as the objective

function over the polytope defined by the linear inequalities. Following this idea,

introduce variable Xn+l in every inequality of (5.1) and rewrite the system as

The linear programming formulation of the Chebyshev problem is thus

CLP: min Xn+ 1

s.t. ai 1x1 + ... + ainXn + Xn+l + bi ~ 0 (i = 1, ... , m).

Any standard LP technique can be applied to CLP. The solution x* = (x1, x2, ... ,xn)T is

the Chebyshev point and Xn+l = Lits deviation.

5.4 Equivalence of CP and LP

In this section we will look at the LP problem as a Chebyshev problem or a sequence

of Chebyshev problems whose solutions converge to that of the LP.

104

Consider the problem

SLP: min cTx

s.t Ax s; b

/\ feasible point to SLP may be found by solving the Chebyshev problem

min ~ax Tli(x) = L,
X I

for Tl(X)=Ax-b~O.

To find the optimum solution to SLP first assume that the optimum objective value of

the original SLP is known, i.e. c T x* = z*. This equation may be written as two

inequalities in the following manner

{

T •
T • cxs;z

{cx=z}= T •
-C X s; -z .

They are then incorporated in the set of constraints of the LP problem. In other words, we

transform the LP problem into a set of linear inequalities. The Chebyshev problem

corresponding to these inequalities can be written as follows

min ~ax Tli(x) = L,
X I

for

and

Now we consider the corresponding LP problem which is

105

min Xn+l

s. t.

IA 11(X)-bSO,
Xn+l

(c T o)(x)- z *so,
Xn+l

(-c T o)(x) + z * o,
Xn+l

x 0, Xn+ 1 unconstrained.

The advantage of reducing the LP problem into above form resides in its very sparse

cost vector, as z = Xn+l is the linear form to be minimized. The sparsity of the cost vector

results in large savings when solving the least squares problem arising in the computation

of the projected gradient using the Karmarkar algorithm. The solution to the Chebyshev

problem is that of the original LP problem. This corresponds to a deviation equal to zero

as the cut with the objective function hyperplane goes through the solution. Hence the

feasible region is reduced to one single point, i.e. x*.

5.4.1 Numerical Results

Consider the following small problem solved both as a normal LP problem and under

the Chebyshev form using Algorithm 4.1. The paths generated by the algorithm are

different for the two forms of the same problem.

Forml:
M ax 10x 1 + 12x2
s. t 2x1 + 3x2 S 1500

3x1 + 2x2 S 1500
x1 + x2 S600

XI ~ 0, X2 0.

106

The Chebyshev fonn of the problem is

Form2:

Min x3
s.t - 2x1- 3x2+x3 ::2:-1500

-3x1 - 2x2 + x3 -1500
- x 1 - x2 + x3 ::2: - 600

- 10x1 - 12x2 -6600
XJ 0, X2 0.

Iler Solution of Form 1

Xt x2
1 245.5143 245.5143
2 187.8610 374.0975
3 300.2600 298.8201
4 299.1131 300.5751
5 299.9968 299.9864
6 299.9890 299.9983
7 299.9946 299.9945
8 299.9945 299.9946
9 299.9946 299.9946
10 299.9999 299.9999

Solution of form 2
Xt x2 x3

299.9756 300.0193 299.4940
260.0384 333.3012 21.4343
300. 1660 299.8616 0.6035
299.9087 300.0760 4.9205-2
300.0004 299.9996 1.4475-3
299.9997 300.0001 1.1259-4
300.0000 299.9999 3.4651-6

Table 5.1 Paths Generated by Algorithm 4.1 for Two Different
Forms of the Same Problem. The First Point in Both Cases is

Obtained in Phase I of the Algorithm.

We report here some results on a set of small problems solved as simple LP problems

and as Chebyshev problems. The same version of the Karmarkar algorithm has been

used.

107

Problems LP Form Chebyshev Form
Beale's Prob. 10 12

Prob. 2 6 6*
Prob. 3 8 8
Prob. 4 10 11
Prob. 5 12 9*
Prob. 6 10* 9
Prob. 7 8 10

Klee-Minty Prob. 24 22*
Prob.9 4 6

Prob. 10 8 9

Table 5.2 Iteration Count for a Variant of
Karmarkar's Algorithm on a Set of LP Problems

. in 2 Different Forms.

Note: (*) refers to the failure of the algorithm to stop despite converging at some stage to

a good approximate solution.

5.4.2 LP Problems with Unknown Optimum Objective Value

Usually, the optimum objective value of LP problems is not known. In the following

we will show that a sequence of Chebyshev points converges to the solution of the LP

problem at hand without the assumption that z* is available.

Consider again SLP with nonempty feasible domain and nondegenerate optimum

solution. A Chebyshev point Xe exists for the set of constraints and can be obtained by

solving CLP. The objective value of the LP problem is then evaluated at Xe, Thus

If we augment the set of constraints of the Chebyshev problem with the constraints

cTx ze*, this corresponds to cutting the feasible region of the Chebyshev problem

through Xe, The volume of the polyhedron defined by the LP constraints is reduced by a

value which is not zero. The process is then repeated after updating at each iteration the

108

value of 7..c. After a finite number of iterations (cycles) the Chebyshev point is close to x*,

the optimum solution of the LP problem at hand. Hence, when the deviation is zero, the

feasible region of the CLP and the original LP problem are reduced to one point. This is

the optimum solution xc*, and the optimum objective value is z* = 7..c* = cTxc.

5.5 Convergence of a Sequence of Chebyshev Points

In any simplex in R0 , i.e. a simplex with n+l sides, it is possible to inscribe an-

sphere of radius p > 0, whose centre is a Chebyshev point. Cutting through the centre

leads to another simplex which contains half of the previous one. Its Chebyshev point is

at distance p' from the cutting plane. This distance is the deviation of the Chebyshev point

and the radius of the largest sphe~ inscribed in the remaining part of the simplex.

To show that the sequence of Chebyshev points converges to the solution of the LP

problem it is enough to show that the sequence converges to a vertex of the simplex after

a finite number of cuts. This is equivalent to show that after each cut a decrease occurs in

the absolute value of the deviation, i.e. the radius of the new sphere is less than that of the

current one. For simplicity we consider a regular simplex in the plane, Fig.5.1 .

T •
C X = Zc

Fig 5.1 Centring Process of the Chebyshev Approach

109

sin0 = QiA2 I X(h = 01A1 I X01,

X01 = X02 + 0201, •

X02.sin0 + Oi01.sin0 = 01A1,

thus

and

01A1 is the radius of the current sphere, and OiA2 that of the new sphere. As 0201 =
OiA2, then Pl= P2 (1+ sin8). Moving from centre 01 to centre 02 results into decreasing

by o = 0201.sinS the radius of the current sphere. The finiteness of the algorithm

depends on the sign of o. The latter can be shown to be strictly positive as follows.

From the assumption that an n-simplex is defined by the inequalities, it follows that

sin0 > 0. Centres 01 and 02 are obtained at successive cycles k and k+ 1. They are

optimum solutions of two LP problems which differ only in one entry of their RHS.

Denote them x(k) and x(k+I), then

0201 = II X (k} - X (k+l) II=~ I(xt> -xJk+l)r
j= I

As x(k) and x(k+t) are basic solutions, they can be expressed, using Cramer's rule, as

follows
(k) (k+l)

X (k) = _6__ and X (k+l) = _6 __ _
6 6

The matrix of the p«''>lem remains identical from cycle to cycle; we can assume that 6 , the

determinant of the optimum basis remains the same as well, without loss of generality.

But 6 * O always holds. /!.(k) and 6(k+t), however, are different from cycle to cycle, as

they involve the RHS which has one entry changing when updating the objective function

value in the constraint c T x Zc *. We can then write

110

(

(le) (k+l))
/).. -/). .

J J .
j - 1 /).

!).j(k) ¢ 0 and 6/k+l) ¢ 0 from the assumption that the feasible region is nonemty and

Vj e {l, 2, , n}, Vk, 3 (h = j) such that !).h(k) - 6h(k+1) ¢ 0. Thus

5.5.1 An Algorithm for LP

We descri~ our algorithm based on the generation of a sequence of Chebyshev points

converging to optimum solution of LP problems with bounded nonempty feasible

domaine. Nondegeneracy is also assumed. The optimum objective value may not be

known.

Algorithm 5.1

1- Transform the LP problem into a minimax Chebyshev problem.

2- Set up the corresponding LP problem.

3- Solve the LP problem using Karmarkar's algorithm to get a Chebyshev point Xe*

and its deviation L.

4- if ILi = 0 then

x* = Xe*, optimum attained, stop.

else

go to 5-.

endif

5- Cut through xc* by augmenting the Chebyshev problem with the constraint

cTx cTxc*•

6- Repeat from 2-.

111

5.6 Computational Considerations: Improvements to Algorithm 5.1

Each iteration of Algorithm 5.1 is rather a cycle as it involves a linear programming

problem which is as large as the original one. It looks as Algorithm 5.1 cannot be as

efficient as solving the problem directly without passing through transforming it into a

Chebyshev problem. However, there are some obvious improvements one can think of.

These improvements follow.

Improvement one

One of the improvements which can be thought of stems from the geometric

interpretation of the Chebyshev problem. It consists in reducing the number of constraints

in the LP formulation of the Chebyshev minimax problem.

As was noticed earlier an n-simplex in R", defined by n 1-l of the LP problem

constraints, contains the feasible region. These n+ 1 constraints can be identified by the

fact that all of them present the same deviation L to the Chebyshev point. Thus, after the

Chebyshev point has been found, it is possible to remove the constraints with deviation

larger than L. The cut through the point is carried out, and a new Chebyshev point is

found. However, feasibility is no longer guaranteed. Thus, if any of the removed

constraints is not satisfied, it is reintroduced in the reduced problem and a new

Chebyshev point is found. The problem is again reduced and so on. This approach may

be very profitable when m >> n.

Improvement two

Another improvement would be to take advantage of the fact that a Chebyshev point is

a "centre". Thus, a great decrease in the objective function may result from moving in the

direction of steepest descent towards a boundary, starting from a Chebyshev point. The

resulting point is then used in the cutting process. In the following we shall describe a

procedure for finding the steepest descent direction.

112

As in Zoutendjik (1960) a feasible direction can be found by solving a linear problem

derived from CLP. Such a problem can be formulated as

min dn+l

s.t llld) = ai 1d 1 + ... + airPn + dn+l :s; bi , i e I,

I dj I :s; 1, j = 1, ... , n+ 1,

where I is the set of indices of all constraints with deviations negative and larger than -L,

and d the direction.

When d is found a step of length a is taken from Xe* along d resulting into

x = xe* + ad,

where a is chosen, [Zukhovitsky & Avdeyeva, 1966), as the smallest positive value

among

, ... '

These improvements embedded in Algorithm 5.1 result in the following algorithm.

Algorithm 5.2

1- Transform LP problem into a Chebyshev problem.

2- Set up the corresponding LP problem.

3- Solve the resulting LP problem using Karmarkar's algorithm to get a Chebyshev

point Xe* and its deviation L.

4- if ILi = 0, then x* = Xe*, problem solved, stop.

else go to 5-, endif

5- Select the constraints which constitute the sides of the simplex containing the

feasible region (n+ 1 inequalities for which L is the same), and set up reduced

problem.

113

6- Find a feasible direction vector d.

7- Find a and compute x = Xe*+ ad.

8- Cut through x if it is feasible for the overall problem.

9- If the point is not feasible, introduce the violated constraints into the reduced

problem and cut through the previous Chebyshev point.

10- go to 3-.

5.7 Numerical Example

We consider the problem
max x2

s.t. · x1 - x2 1
-2x1 - x2 -14

-x1 - x2~ -8
- 0.5 x1 + x2 -3

x1 0, x2 0.

To apply the algorithm described earlier, we set up the Chebyshev problem
min - x3

s.t. XI -x2-x3~ 1
- 2xI - x2 - x3 -14

- XI - x2 - x3 -8
- 0.5x1 + x2 - x3 -3
XI~ 0, x2 0, x3 0,

where - x3 is the deviation. The solution to this problem using the projective algorithm is

(4.50, 3.44). Given the position of the point in the feasible region, Fig 5.1, it is

interesting to take a move along a feasible direction to get a better point through which we

will do a cut.

114

2•00

10•00

Fig 5.2 Sequence of Chebyshev Points (circles) Converging to x*

Such a feasible direction is obtained as in Zoutendjik (1960) algorithm by solving the

linear programming problem

s.t. j = 1, 2,

where dis the direction vector. The vector direction in this case is d = (0.70, 1.00).

To find a new feasible point (dark points in Fig 5.2), a step a is taken along d . The

steplcngth is obtained using the procedure described in section 5. 7.

Chebyshev poinl.l Interior feasible points a

(4.50, 1.37) (5.37, 2.63) 1.25
(4.50, 2.63) (4.86, 3.14) 0.52
(4.50, 3. 14) (4.65, 3.35) 0.21
(4.50, 3.35) (4.56, 3.44) 0.09
(4.50, 3.44)

Table 5.3 Points Returned by Algorithm 5.2 Partially
Represented in Fig 5.2.

115

·5.8 Conclusion

Algorithm 5.2 seems to work but is tedious and inefficient. However, the idea of

using the Chebyshev problem as a centring scheme in a new interior point algorithm

similar to the simplicial algorithm of Levin is viable and, I believe, may lead to an elegant

method. The major criticism of Algorithm 5.2 is made regarding the work involved in

every cycle. Indeed, any cycle corresponds to solving a problem larger than the original

one, after transformation into a Chebyshev problem. Each cycle will take as many

iterations as Karmarkar's algorithm would take to solve the original problem, although the

iterations are cheaper due to the fact that the problem changes little from cycle to cycle. It

may thus be possible to exploit this characteristic to cut down the work of the overall

algorithm. The time limitation does not allow us to pursue this perspective, however, the

procedure for postoptimality in the case of changes in the right-hand side presented in

Chapter 4, and updating techniques for least squares, may be useful.

116

Chapter 6

Karmarkar Type Algorithms and Decomposition for

Linear Programming

6.1 Introduction

The development of efficient optimization techniques for large structured linear

programs is of major significance in economic planning, engineering and management

science. An extensive literature exists on decomposition, which shows the magnitude of

the effort devoted to the subject (for an excellent review see Geoffrion, 1970). Initially the

idea of decomposition, as suggested by Dantzig and Wolfe (1960), was an extension of

the use of the simplex method to solve large and structured LP problems. With

implementations of this idea large LP problems arising in the oil industry, Government

etc ... were successfully solved. However, the decomposition algorithm, its variants and

many other methods based on different ideas, never outclassed the standard simplex in

terms of labour involved (when these large problems can be handled by the simplex).

Commenting on staircase structured LP problems, Gear et al., cited in [Fourer, 1982]

say:

"Today we know only how to solve it as we would any linear programming problem; but this

type of problem requires more work to solve than does the average problem of the same size.

However, there should be some way to take advantage of its simple structure."

117

Decomposition is usually called upon only when the problem cannot be handled by

the standard simplex method, because of its size. Otherwise the standard simplex is

preferred to decomposition, as it is easier to implement and involves less CPU time.

However, following Gear et al., decomposition should not only allow the solution of

large problems under storage constraints but also in competitive times. Indeed, it should

be viewed, primarily, as a means for mass exploitation of sparsity, when favourable

structure is present. It is also a fact that today CPU time is more of a scarce resource than

storage.

The relative "inefficiency" of decomposition algorithms so far developed, may be due

to their tight relationship with the simplex algorithm. It is, therefore, worthwhile

investigating decomposition in conjunction with interior point methods.

In the following we shall investigate the applicability of interior point methods, of

Karmarkar type, coupled with classical decomposition principals [Rosen, 1964;

Grigoriadis & Ritter, 1969] to structured and even unstructured LP problems. However,

emphasis will be on the specialization of a dual Karmarkar algorithm to block-diagonal LP

problems. A new partitioning algorithm for linear programming will be presented,

supported with experimental results on randomly and non-randomly generated structured

problems.

6.2 Structured LP Problems

Structure is an important attribute of large scale linear programming. Large scale

programs almost always have distinctive structure beside convexity and linearity

properties. There are many types of structure. However, the commonest and most

important are multidivisional, combinatorial, dynamic and stochastic structures. We shall

be interested in multidivisional problems which consist of interrelated subsystems to be

optimized (Geoffrion, 1970). The subsystems can be modules of an engineering system,

reservoirs in a water resources system, departments or divisions of an organization,

118

production units of an industry, or sectors of an economy. The interrelation between the

subsystems is represented with the so called linking constraints or variables.

The commonest structure in large LP problems is the block-angular structure, (see

Fig.6.1). In standard form, such structured LP problems can be written as:

r
s.t. AQ-Xo+ L,Aixi = b 0 ,

j.,l

BjXj = bj,

Xo,Xj~Q,

i = l, ,r.

The dual to the above problem is

T
s.t. A~o

j,. 1

T T
Ai Yo + BiYi Ci,
y O , y i unrestricted,

i = l, ,r.

Fig 6.1 Diagram of a 2-Block LP Problem

119

(6.2.1)

(6.2.2)

The general block-diagonal LP problem with linking constraints and linking variables,

in standard form is show below.

r
s.t. DoY + Dix i = bo,

i=l

Di y + Bix i = bi,
y,xj~o.

i = l, ,r.

Fig 6.2 General Block Diagonal LP Problem

(6.2.3)

Another common structured LP problem is the staircase or time-staged problem. It is

different from the above case in that every two successive blocks are linked by a set of

variables (in the primal form) or constraints (in the dual form). Such a problem in

standard form can be written as:

r+l T
min LCiXi (6.2.4)

ial

s.t. Ai xi+ Bixi+l = bi
Xj 0,

i=l, ,r.

120

Fig 6.3 Staircase Structure Fig 6.4 Equivalent Block Angular

Structure

The staircase structure is amenable to block-diagonal form (Fig 6.4). Solving this type

of LP problems will be considered at the end of this chapter.

6.3 A Decomposition Algorithm Using Karmarkar's Method

The main purpose of decomposition is to exploit the inherent parallelism of block-

angular structured problem, using the relative independence of the subproblems. This

independence is apparent in the formulation of LP problems as:

Opt co T xo + ci T x 1 + ... + cl Xr

s.t. x e Ko n K1 n ... n Kr,

where Opt can be min or max and Ki, i = 0, ... , r, is the convex polyhedron, feasible

domain of the ilh subproblem.

In (6.2.1) the subproblems that are to be considered have the form

min (cT-Y~i)xi
s.t. BjXi=bi, i=l, ... ,r,

Xj~ 0.

The corresponding duals are

121

(6.2.5)

T
max biYi
s.t. (6.2.6)

Assume that an initial feasible vector Y8 is at hand, for which every subproblem

(6.2.5) has a feasible solution, i.e., there exists y8 such that

This assumption is not very restrictive as it is always possible to guess a feasible solution

from the real world interpretation of the problem. However, a systematic way for

providing such a point would be to solve a Phase I problem using Karmarkar algorithm.

In fact this assumption is also made in the original projective method (see Chapter 2).

If we solve each subproblem (6.2.6) using the dual Karmarkar algorithm given in

Chapter 4, the dual solutions Yio will be obtained. The optimum objective value of (6.2.5)

is z? = b TY?. The objective value of the complete problem is

0 TO~ TO
z = boYo+ """hiYi·

i=l

From, the duality theorem, zO is a lower bound on the optimum objective value of the

complete problem.

To see whether the solution obtained is feasible or optimal to the complete problem,

we set up an equivalent problem based on the linking constraints and the nonnegativity

constraints only. The constraints forming the separate blocks are satisfied.

Consider the partitioning of matrices Bi into Bit and Bi2• Bit contains the basic

columns of Bi as per solution of subproblems (6.2.6), and Bi2 contains the nonbasic

columns. Accordingly, we partition other matrices and vectors involved; i.e.

T (T C· - C·1 I - I

122

It follows that

We have also from the partitioning of ith block

B . (x i 1) = b .
I X I' i2

thus

The objective function of the original problem is

Replacing Xii in (6.2.8) by expression (6.2.7) we obtain

Similarly, the linking constraints can be written as

r
AoXo+ L(Ai1xi1 + Ai2xi2] = bo,

i= 1

Substituting Xii in (6.2.10) by its expression (6.2. 7) we o~tain

123

(6.2.7)

(6.2.8)

(6.2.9)

(6.2.10)

(6.2.11)

111e reduced problem is

(6.2.12)

s.t. (6.2. 11) and Xi2 0.

Algorithm 6.1 (based on the algorithm of Rosen (1964))

1- Find a feasible vector YO= y8
2- Using the Karmarkar dual version, solve each subproblem (6.2.6). This provides

the solution to subproblems (6.2.5)

3- Set up the reduced problem (6.2.12) based on the objective function of the original

problem linking and nonnegativity constraints.

4- Solve the reduced problem using Karmarkar's algorithm to get Xi2* and yJ as a

by-product.

if (6.2.12) is not feasible then the dual (6.2.2) of the original problem has an

infinite solution endif.

5- Compute Xi} from (6.2. 7) with Xi2 replaced by Xi2*.

if Xit 0 then (Xil, Xi2*)T is optimum solution .

else replace yg by yJ and repeat from 2- endif

The validity of this algorithm derives from that of the Karmarkar algorithm and

Rosen's scheme. A more general form is considered in the next section.

6.4 A General Form of Algorithm 6.1

In this section we shall consider the structured LP problem of the general form (6.2.3)

which presents linking constraints as well as linking variables. Based on the idea of

variable reduction of Algorithm 6.1, it is possible to derive a decomposition algorithm to

124

which Karmarkar's algorithm can be coupled in a straightforward manner. The algorithm

is basically that of Grigoriadis and Ritter (1969).

Assume that we partition the matrices Bi in (6.2.3) into two parts Bit and Bi2, with

Bil being nonsingular with rank mi. The vectors Xi and Ci being partitioned accordingly ,

we can write

(6.4.1)

Replacing Xil with its expression (6.4.1) in the objective function and the linking

constraints of (6.2.3), we form the following reduced problem

T r T
min <I> + + L 'l{X i2

i- 1

s.t.
r

H oY + L,H ix i 2 = b
i.; 1

y 0, Xj2 0.

(6.4.2)

•

The matrices Ho and H 1 are easily derived, as well as the vectors in the objective

function. They are expressed as follows

(6.4.3)

(6.4.4)

(6.4.5)

(6.4.6)

(6.4.7)

(6.4.8)

Problem (6.4.2) can be solved using Karmarkar's algorithm. Its optimal solution is

Xil. The solution to the original problem is (x*it, Xi2•, y*), obtained by computing x*iJ

125

from the relation (6.4.1). If x*it::? 0 then the optimum solution to the complete problem

is obtained. If among x*it entries there are negative ones, then the optimum solution is

not yet reached. We shall, later, outline a procedure for dealing with negative elements in

Theorem 6.1 [Grigoriadis & Ritter, 1969] (x*it, Xi2•, y*), i = 1, ... , r, is an optimal

solution to (6.2.3) if and only if x*it::? 0.

Proof: The condition is necessary as the solution should satisfy the nonnegativity

constraints of (6.2.3). It is sufficient because from (6.4.1), the reduced problem (6.4.2)

with the additional constraint (6.4.9) is equivalent to (6.2.3). Thus (x*it, Xi2•, y*) is

optimal solution to (6.2.3) if x*it 0. QED.

Suppose that for some i, (x*it)j is a negative component of x*il· The idea is to make

sure that this element is enforced to be nonnegative in the reduced problem. From relation

(6.4.1), (x*it)j is given by equation (6.4.9) enforced to be nonnegative.

(6.4.9)

The subscript j is an index to the rows of the matrices and vectors involved in the

computation of the negative component

Constraint (6.4.9) is then added to reduced problem (6.4.2) and a new cycle is carried

out.

Example 6.1

Let solve the following structured problem using the above generalization of

Algorithm 6.1

126

Min - x1 - x2 - 2x3 - 3x4

s.t. x1 + 2x2 + 2x3 + X4 :S; 40

XJ + 3x2 :S; 30

2x1 + x2 :S; 20

x3 :S; 10

x4 :S; 10

x3 + X4 :S; 15

x1, x2, x3, x4 0.

After adding slack variables, we proceed to the following partitioning of the

problem.

c: 1 1 0 0 2 1 0 0 0 0 0 b

A:. 1 2 0 0 2 1 0 0 0 1 0 40 ho
1 I 0 0 4 2 0 0 0 0 1 50

B tf 1 3 1 0 30 b1

2 1 0 1 20

B2f 1 0 0 1 0 0 0 10 b2
0 1 1 0 0 0 0 10
1 1 0 0 1 0 0 15 -

Di

From above partitioning, we have

(1 3) (1 0 0)
B t 1 = 2 l , and B 2 1 = ! .

The submatrices At t, A12, A21, A22, B12, B22, Do, D1, D2 and the vectors Ci 1, c12,

c21, c22, co, bo, bt , b2 are also easily read. We compute the quantities given by (6.4.3) -

(6.4.8) and set up the reduced problem (6.4.2) as follows

127

s. t. = -7

- o.2(x12)1 - 0.4(x12h - 2(x22)1 - 2(x22h + Y2 = -14

(x12)j, (x22)j, YI, Y2 0.

The problem is solved by Karmarkar algorithm and seems to be unbounded. However an

intermediate feasible solution indicates, when replaced in (6.4.1) that one of the solutions

corresponding to the original problem is negative. The variable is forced to be

nonnegative using equation (6.4.9). This leads to the new reduced problem problem

s. t. = -7

= -14

- (x22)1 + (x22h + Y3 = -5

(x12)j, (x22)j, YI, Y2.Y3 0.

The solution to this problem is (0, 0, 6, 1, 0, 0, 0). Replacing, accordingly in (6.4. I)

gives the solution x1 = 6, x2 = 8, x3 = 4, X4 = 10, x5 = 0, z* = -52. The reduced problem

takes about ten iterations of the Karmarkar algorithm.

6.5 Dual Karmarkar Algorithm for Block-Angular LP Problems

We have shown that Karmarkar algorithm can be adapted to decomposition schemes

for linear programming. In the following we will present a partitioning algorithm for

block-angular LP problems. The dual version of the Karmarkar algorithm is used as

described in chapter 5. However, the pseudoinverse will not be used to compute the dual

solution. Instead, a QR or Cholesky factorization will be used as it is more appropriate for

block-angular matrices as well as decomposition for general least squares problems (see

Chapter 3).

128

The idea behind this partitioning scheme is that at each iteration the computation of

dual solutions is carried out on a modular basis. That is, for each block the corresponding

dual solutions are computed separately, then updated by considering the effect of the

linking variables. Computation of the direction, primal solution and lower bound on the

minimum objective is also made in parallel.

Consider the following block angular LP problem in standard form.

r- 1
. ""' ,T ' nun £.JC ix i + c r'r

i= l

s.t. B \ xi + A\xr = bi ,
Xj~0,xr~o.

i = 1, ... , r-1 .

(6.5.1)

The blocks B'i are (mprni)-matrices and A'i are (mixnr)-matrices; c'i and Xi are ni-

vectors, and bi are mi-vectors, i = 1, ... , r.

Karmarkar's canonical form of (6.5.1) is

r-1 . ""'(D , .IT , (D , IT , , nun £.J jC X j+ "X r - zx n ,+ I
i:, 1

s.t. B'pixi + A'PrCr-bix'n,+-1 = 0,
X 'i 0, X 'r 0, X 'n ,+- l•

i = 1, ... , r-1 .

(6.5.1 ')

Put Ci = DiCi ', Cr = [DrCr', -z], Bi = Bi'Di and Ai = [Ai'Dr, -bi] and write (6.5.1 ') as

r-1
. ""'T , ' nun £..Jcix j+ CrC r

j ,. I

s.t. Bix\ + Aix'r = 0,
x ' i ~0, x'r 0,

i = 1 , ... , r-1 .

Problem (6.5.2) is block angular and homogeneous.

(6.5.2)

Based on the natural structure of (6.5.1), and thus of (6.5.2), the dual variables y are

pru1itioned as follows.

129

D =(D1,D2, .. ,,Dr),

T-(T T T) Y - YI, Y2, ... , Yr-I ·

6.5.1 Computing the Dual Solutions

The computation of the projected gradient in the dual Karmarkar algorithm (Algorilhm

4.2, Chapter 4) is carried out through the computation of the dual variables with the use

of pseudoinverse as

yT = (A')t c', (6.5.3)

where A' and c' refer to the matrix and cost vector of the problem in canonical form. In

this section we shall present an efficient algorithm for computing y T when A' and c'

correspond to the matrix and cost vector of of problem (6.5.2), i.e. A' is block angular.

The procedure is basically an extension of Algorithm 3.1 for structured least squares.

Clearly, equation (6.5.3), gives the solution to the least squares problem

miny II A'T y - c' 112. (6.5.4)

However, solving large structured systems using the pseudoinverse is time

consuming. Cholesr.y decomposition and orthogonal factorization are more appropriate,

as will be seen later.

The problem to solve is depicted in (6.5.5).

T
Br-I

Ai ... A;_1

Yt

Y r-1

y

=

=

130

(6.5.5)

c'.

Assume that the problem is weakly linked, i.e. only few linking variables are present

in the problem, then consider the incomplete problem (6.5.3) based on (6.5.2) from

which we remove equations (AT, AJ, ... , Ar:1)(Yl, Y2, ... , Yr-l)T = Cr,

Bi
y I 1 C 1

= (6.5.6)

T
Br-1 y I f - 1 C r-1

BT y' = c'.

We solve separately the subsystems (6.5.4) in the sense of least squares.

B I.T y'1· = c1• 1· = 1, r- 1 ' ... , (6.5.7)

The QR factorization leads for each subproblem to

A forward substitution delivers y'i = R(1Si-

By computing the separate QR factors, we have actually also computed the QR factor

of the block diagonal matrix BT, as depicted below.

T
QB

0

Fig 6.5 QR factor of the block-diagonal matrix BT

131

Now, applying Algorithm 4.1 of Chapter 4, we update the solution y' by talcing

account of the removed rows (AT, Ai, ... , Ar!i). However, given the structure of the

problem matrix, it is better to apply a parallel version of Algorithm 4.1, which we

propose here.

Algorithm 6.2

1- Solve each subproblem (6.5.7) using Cholesky method or QR factorization.

2- Compute

(
T. -1 T. -1 T 1) F= A1R1 A2R2 ... Ar.1R;.1 =(F1 F2 ... Fr. 1)

3- Compute

4- Solve (I + FfT)u = r2(y'), i.e. compute

5- Compute

6- y = y' + y It .

The computation of u dominates the updating algorithm as it involves the solution of a

square system. However, fFT is a (mrxmr)-matrix, and assuming that the problem is

weakly linked, computing u should not be expensive.

Note: Having the QR factor of BT and orthogonal matrix Q available, they can be used to

solve problems with the same matrix and a different RHS.

132

6.5.2 Search Direction and Lower Bound on z*

The direction of search involves the dual solutions provided by Algorithm 6.2.

According to the partitioning considered earlier, it can be computed in a modular way as

follows.

T-(T T T) P - Pl , P2 , ... , Pr ,

where
T

C X - Z
- n+l en,• i = l, ... ,r-1,

T
C X - Z - ---e n+l n,·

The norm of p is

IIPII = /V LLPij ·
ia !j .. 1

(6.5.8)

(6.5.8')

(6.5.9)

A lower bound on the minimum objective value of (6.5.2) is provided by y Tb, from

the duality theorem of linear programming. Let

UT = (A')t (0, -l)T

VT= (A')t(c, 0)T

where -1 and zero are substituted to the last entry of the cost vector

cT = (qT, c2T, ... , c?Dr, -z),

(6.5.10)

(6.5.11)

of (6.5.2). Vectors U and V can be computed using Algorithm 6.2 without factorizing BT

again as its QR factor is available from the computation of y. Now the dual vector y can

be written as

y = U + zV

or Yi = Ui + zVi, i=l, ... , r-1

(6.5.12)

(6.5.13)

y being the dual solution at iteration k, say. At iteration k+ 1, the new dual vector we are

looking for should primarily satisfy the constraints of the dual problem corresponding to

(6.5.2) and allow a good improvement in the dual objective value. However, as in the

dual version of the projective algorithm given in Chapter 4, we start first by determining

133

the values of z that guarantee feasibility of y, from (6.5.10), then choose as z' the one

that constitutes the best bound on the minimum objective value.

Z = { zeR: c -yA' 0} = {-Ui/ Vi, i = 1, ... , m}.

Because of the parallel nature of the algorithm, we can write for each Yi,

Zi = {-Uij / Vij,j = 1, ... , mi; i = 1, ... , r-1}.

Thus Z = U i Zi, i = 1, ... , r-1 .

(6.5.14)

(6.5.14')

If Z = 0 then the best bound is taken as z' = -00• Otherwise z' = Sup Z, (see Chapter 4).

Having a lower bound z' on z*, and the corresponding dual feasible solution y(z')

given by (6.5 .2), the new dual solutions and objective value are y(k+l) and z(k+l)

obtained as follows.

if z(k) < y(z')b then y(k+l) = y(z') and z(k+l) = y(z')b,

else y(k+ 1) = y(k) and z(k+t~ = z(k) endif. (6.5.15)

We have shown in this section and the previous one that the inherent parallelism of

block-angular LP problems may be exploited in the different compartments of a dual

version of Karmarkar algorithm. In the next section we shall present such an algorithm.

6.5.3 A New Partitioning Algorithm for LP

Algorithm 6.3

0- Initialization: Set x(O) to an interior feasible point, y(O) to 0, z(O) to a lower bound

on optimum objective value z* and E to an arbitrarily small value.

• (r T (k+l) (k+I)) 1-a f ~c ixi -z :5E then stop.
,-1

3- Compute y, U and V applying Algorithm 6.2.

4- Find z' from (6.5.14), and y(k+l) and z(k+l) from (6.5.15).

5- Compute the solution in the transformed space as

134

I Pi . I x i = en - a~, 1 = , ... ,r, 1 11P11

where a is found by one of the techniques described in Chapter 4.

6- Compute primal solution in the original space as

(k+l) X
1
j

Xi = ~, i = 1, ... , r.
rn,

7- k = k + 1, go to 1-.

6.6 Extending the Partitioning Algorilhm to Staircase Structure

We have seen in section 6.2 that staircase structure is amenable to block-angular

structure (Fig 6.4). However; mass sparsity remains in the linking block after

transformation. In this section we will look at the way Algorithm 6.3 can be extended to

exploit this sparsity .

T
B

T
A

Fig 6.6 Partitioning of the Linking Block of the Matrix
Derived from a 5-Stage Staircase LP Problem

135

The obvious approach is to further partition the linking block in order to isolate the

zero sub-blocks. Consider the system (6.5.5) whose matrix has the structure of Fig 6.4.

The matrix in the case of a 5-block problem is represented in Fig 6.6.

We can see that any submatrix AiT has at most two non-zero blocks and at least one

non-zero block. When the original staircase problem has a high number q of stages, then

every submatrix AiT has between q-2 and q-3 zero blocks. For instance, if q = 10, the

number of zero blocks is 7 or 8.

0

0

-1
R

F

Fig 6.7 Structures of A? and Fi,

0

0

Let every submatrix A? be partitioned into q-1 blocks, A~, A;~, ... , Ail 1, if the

original staircase LP problem has q stages. As depicted in Fig 6. 7, Fi has the same

structure as AiT, Thus, Fi can be written as (Fi 1 T Fi2 T ... Fiq-1 T?. The submatrices

Fii-1 and Fii are the nonzero blocks. Because F1 and Fq-1 have each only one nonzero

block, then Fm and Fiq do not exist. According to this partitioning Step 2 of Algorithm

6.2 can proceed as follows.

for i = 1, ... , q do
for j = 1, ... , q-1 do

if j = i -1 or j • i then
Fij = A1lR1-1

else
Fij"" 0

endif

The general matrix F is depicted below.

136

0 F22 0
F =

0 F q- lq-1

Step 3 of Algorithm 6.2 can, in the same way as above, be optimized by considering

only the nonzero blocks of A? when computing r2(y').

6. 7 Computational Experience and Conclusion

In this section we report som~ numerical results on the performance of the partitioning

algorithm on two sets of LP problems also solved with a code of the dual projective

algorithm presented in Chapter 4. The tests were carried out in MATLAB on a Macintosh

SE/30 as well as in CTRLC on a VAX 8650. The times recorded for a comparison

purpose were given, in seconds, by the function ETlME of MATLAB.

6.7 .1 Tests on Random Generated Structured LP Problems

The test problems for Algorithm 6.3 were based on those used by Mangasarian

(1981). l11ese problems were generated as follows. The matrix A was fully dense with

random elements aij uniformly distributed in the interval [-100, lOOj. The right hand side

was chosen such that

n
I,aij if aij > 0,
j= l

n n
-1 + 2 I,a ij if I,a ij S 0, i = 1 , ... , m

j - 1 j .. t

and the cost vector such that

137

b and c so chosen make point e primal optimal.

In our tests the above problems constitute blocks linked with a set of columns also

randomly generated, to form the structured problems. However, vectors b and c of the

structured problems comply with their above definitions, with the linking columns taken

into account. Thus point e is primal optimal. A sample randomly generated 2-block LP

problem is given in Fig 6.8.

The results of these tests are recorded in Table 6.1. The two last columns under the

headings Etime/P and Etime/NP correspond respectively to the performance of the

partitioning algorithm (marked P) and that of Algorithm 4.2 which is a non-partitioning

algorithm (marked NP).

Problems Rows
18

Mang4 18
18
29

Mang6 29
29
40

Mang8 40
42
42

43
43

Mangl0 43
43
43

Cols Blocks Links Etime/P Etime/NP
35 4 2+1 31.12 110.37
36 4 3+1 33.08 113.77
37 4 4+1 35.08 119.73
57 6 2+1 55.83 418.58
59 6 4+1 59.10 437.23
61 6 6+1 63.09 545.90
76 8 2+ 1 89.60 928.87
78 8 4+1 95.47 972.85
85 8 6+1 144.08 1232.30
87 8 8+1 156.92 1259.40

82 IO 2+1 95.75 1127.20
84 IO 4+1 102.43 1150.20
86 IO 6+1 110.67 1235.10
88 10 8+1 119.52 1299.20
88 10 10+1 129.62 1677.30

Table 6.1 Numerical Results on Randomly
Generated Problems

138

Time Ratio
3.55
3.44
3.41
7.45
7.40
8.65

10.37
10.19
8.55
8.03

11.77
11.23
11.16
10.87
12.94

c :

A:

105.35 166.58 174. 31 279 .19 120 . 83 261.10 321. 04 b:

21.13
8.23

75.98

0.87 45 . 24 61. 34 65 . 37 193 . 97
80.96 80 . 7 4 27 .48 48.98 246 . 42
84.74 48.31 88 . 06 77. 40 374 . 52

96. 26 74.69 2 6.12 11. 67 208. 75
99. 33 3 . 77 24. 02 62.49 189.63
83 . 60 42 . 36 34. 04 55.10 215 .11

linking Cols.

Fig 6.8 A Sample Randomly Generated Problem with
Entries of A Uniformly Distributed in (0, 100]

6.7.2 Tests on Non-Randomly Generated LP Problems

Problems which are not randomly generated were also solved with Algorithm 6.3 and

Algorithm 4.2. Xnutl, Xnut2 and HL221 are text book problems. Little4 and Big8 are

constructed by us using text book problems for each block and linking them by additional

variables. Big8 is a 8-block problem, also solved as a 2-block and 4-block problem.

AutoCol and AutoCo2 are variants of the same problem given in ICL 1900 Series, LP

Mark3 User Guide, 1973. We noticed that the problem has favourable structure after

reordering its constraints. Depending on the reordering it can be solved as a 2-block or a

4-block problem. The results of the tests are recorded in Table 6.2.

Problems Rows Cols Blocks Links Etime/P lter. Etime/NP lter. Time Ratio

Xnutl 5 11 2 2+1 30.80 11 29.43 11 0.96
Xnut2 4 10 2 1+1 15.31 7 17.60 8 1.25

HL221 8 18 3 2+1 44.10 10 56.92 10 1.29

Little4 12 24 4 2+1 60.17 11 117.15 11 1.95

AutoCol 32 69 2 7+1 733.05 15 2468.98 16 3.37

AutoCo2 33 71 4 12+1 451.35 15 2468.98 16 5.47

2 2+1 201.12 16 6.13

Big8 25 53 4 2+1 181.20 16 1231.90 16 6 .80

8 2+1 202.47 16 6.08

Table 6.2 Results from Partitioning (P) and Nonpartitioning (NP) Algorithms
on Nonrandomly Generated Problems

139

6. 7 .3 Conclusion

It appears from these results that the partitioning algorithm does cut down the overall

work of the dual Karmarkar algorithm. The partitioning algorithm is between 3 to 12

times faster than Karmarkar's dual variant, except for the 3 first problems of Table 6.2.

This is shown in the last columns of Table 6.1 and Table 6.2 under the heading "Time

Ratio". The bad performance of the partitioning algorithm on the small problems is

justified by their large density; the work involved in the updating of the dual solutions is

substantial. This work becomes negligible only when the density of the problem is low,

which is a characteristic of large structured problems. The updating process also depends

on the number of linking columns. When this number is large, the accuracy of the

solution suffers and the updating process becomes costly. Indeed, it was assumed that the

blocks are weakly linked. It still remains to know how the link affects the overall work

involved and in what proportions.

Note also that a simplex based decomposition algorithm would not outperform the

standard simplex on problems of the same size as the ones used in our tests. Indeed, the

standard simplex is most of the time more effective, in terms of CPU time, than any of its

decomposition variants even on very large problems, [Fourer, 1982]. Our partitioning

algorithm, on the other hand, will perform even better, on large structured problems, than

the straight Karmarkar's algorithm.

An important fact that should be mentioned is that the algorithm is not fundamentally a

decomposition one in the sense that no linear programming subproblems are solved.

Indeed, the partitioning is oriented towards the least squares problem which is solved to

find the dual variables. The theoretical complexity of the partitioning algorithm is,

therefore, that of Algorithm 4.2. A more fundamental partitioning is .considered in

Algorithm 6.1 and its general form, for which we showed that Karmarkar's dual

algorithm is valid as a solution strategy. However, it is not clear how advantageous this

approach is. Recently, Todd (1988b) attempted to build such an algorithm based on the

140

Dantzig-Wolfe decomposition principal. He concluded that the method is unlikely to

provide substantial improvements to the solution of structured LP.

We end up this chapter by showing that, at least from the theoretical point of view,

interior point methods may be advantageous in the context of decomposition.

The concept of volume is at the basis of interior point algorithms. In Karmarkar's

method it is present in the form of a potential function, and "through" it reduction in the

objective function is achieved. More specifically, the potential function is equivalent to the

volume of an ellipsoid generated in the dual space at each iteration (Ye, 1987). As the

potential function is important for the convergence of the algorithm, so is the volume of

the ellipsoid, because optimality is achieved at the same time for both the primal problem

and its dual. It. follows that starting with a smaller volume can be advantageous. First, as

in the case of the ellipsoid algorithm, it takes less iterations to reduce a smaller volume

ellipsoid to near zero; secondly, the work involved is proportional to the size of the

problem and hence the volume of the starting ellipsoid.

We know that the volume grows exponentially with space dimension [Le Tellier,

1984]. To avoid starting with a large volume ellipsoid, it is profitable to work in lower

dimensional spaces. This can be achieved by decomposing the problem into subproblems

defined in lower dimensional spaces.

Consider the linear functional F(x) = c T x, such that

which can be seen as the sum of two functionals f1(x1) and f2(x2) whose parameters are

obtained from the partitioning of the vectors c and x as follows

where x e R", x1e R0 t, x2 e R0 2 and n2 = n - n1. Let us write

141

The logarithmic potential function of Karmarkar as applied to F, f 1 and f2 leads to:

and

These potential functions will arise when we consider an LP with objective function

F(x) and its subproblems with objective functions ft and f2, if we partition the problem

into two. One way of seeing the advantage of decomposition is to show that the potential

function of the full problem is actually larger than the sum of the potential functions

corresponding to the subproblems.

Lemma 6.1 : p1(x1) + P2(x2) < P(x).

Proof:
n

P1 jx 1) + P2 (x 2) = n 1 In (c Jx 1) + (n - n 1) ln (cix 2)- I,tn(xi),
i= l

n (T) n P(x) = I,tn c x - L)n(xi),
i= 1 i=l

= (n - n 1 + n 1) In (c Tx)- I, In (xi),
i,,,1

= n1 In (c \) + (n - n1) In (c Tx)- I, In (xi).
i= l

142

As c T x > 0, '-1 T x 1 > 0 and c2 T x2 > 0, because the problems are solved in the

transformed space and their objective functions must be positive then

and

Thus

It is then clear that P1(x1) + P2(x2) < P(x). Q.E.D.

143

Chapter 7

Implementation of the Projective Algorithm and Computational

Experience

7.1 Introduction

In Chapter 6 we have shown how Karmarkar's algorithm can be adapted to make use

of favourable structures (block-angular and staircase). In those situations whole blocks or

submatrices ~e sparse. This made it possible to specialize Karmarkar's algorithm for

such structures and exploit the sparsity blockwise. However, sparsity often occurs in less

regular patterns.

In this chapter we shall describe how a variant of the projective algorithm was

implemented to solve Klee-Minty and Hilbert type problems as well as real world LP

problems. We shall examine the perfonnance of the algorithm in conjunction with the

form in which the problem is handled and the technology for least squares described in

Chapter 4. Issues related to the coding of the algorithm in Fortran 77 such as data

structures and input data (MPS fonnat) will be discussed.

Two implementations of the algorithm are mainly considered: LPKAR 1 and

LPKAR2. In LPKARl it is assumed that the optimum objective value z* of the problem

is a priori known while in LPKAR2 the assumption is dropped. The canonical form in

which the problem is handled differs for both cases. The first code works on a canonical

form we suggest, in which the objective function is included as a constraint with z* as its

right-hand side. It works in a single phase and is a primal only method. The second code,

LPKAR2 works on canonical form 3 described in Chapter 3. It is a two-phase method

and generates dual solutions.

144

Aspects of sparsity exploitation such as ordering and partitioning will be discussed

and numerical results obtained using LPKARl and LPKAR2 will be presented.

7.2 A Variant of the Karmarkar Algorithm

The original algorithm of Karmarkar (1984a, b) with the indications he gave to set up

the problem in canonical form was implemented and did not perform as efficiently as was

thought. The difficulties encountered were partly due to inflation of problem size after

primal-dual combination to put the problem in the required form, and also to ill-

conditioning in the projection matrix which involves inverting a cross-product matrix of

the form BBT. However, this implementation provided valuable insights to the properties

of the algorithm and its behaviour. The steplength, for instance does not have to be 1/4 as

suggested by Karmarkar to insure convergence. Indeed, values closer to 1.0 and even

larger, as was seen in Chapter 3, greatly improve the speed of convergence. We also

noted that the number of iterations is generally low, which confirmed Kannarkar's claim.

To the light of these observations and experience, we present a variant of the algorithm on

which our codes were based.

Algorithm 7.1

The following algorithm handles problems in standard form, i.e. { xe Rn I min c T x,

Ax= b, x 0}. Assume that an interior feasible point is at hand, then

1- Transform problem into the form

min c 'Tx•
s.t. A'x' = 0,

x' 0,

where c•T = [cT, -z], A' = [A, -b] and x•T= [xT, 1].

2- Initialization
k = 0, £ = 1.0E-06, z = M, where Mis a large value, D = diag(x<0>, 1).

145

3- if c•T x(k) < E stop

4- Compute y = (DA'T) t De'

5- Compute p = De' - (DA •1)y - (e T x(k)/n)e

6- Normalize p, i.e. p' = p/ IIPII

7- x•(k+l) = e - exp', where ex is the steplength

() D ,(k+l) k+l X 8- Compute x = ----
TD ,(k+l) e X

() (k+l) k+l X 9- Compute x = - 1- 1 k+l
Xn

10- D = diag(x(k+l)), c•T = [cT, -cTx(k+l)J, k = k + 1, go to 3-

Algorithm 7 .1 differs from the original Karmar~ar's algorithm and the variant

described by Lustig (1985) in the way the projection matrix and the search direction a.re

computed. This approach is more suitable as the sparsity of the original problem is only

slightly disturbed by adjoining the column corresponding to the right-hand side. When

optimum objective value z* is available, it can be shown that Algorithm 7.1 retains the

polynomial complexity of Karmarkar's algorithm. On the other hand, if z* is not

supplied, then updates of z, i.e. cTx(k+l), after each iteration can be used instead.

However, while it is possible to establish that c T x(k+l) < c T x(k), which implies p' is a

descent direction, it is difficult to show whether the algorithm is polynomial in time. To

make sure that Algorithm 7 .1 has polynomial complexity while dealing with unknown

optimum objective value, the strategy that finds ever better lower bounds on z*, already

presented in Chapters 4 and 6, can be used.

146

7.3 Implementations of Algorithm 7.1

LPKARl and LPKAR2 are two different ways of applying Algorithm 7.1 to a linear

programming problem depending on assumptions made and information available about

the problem. In LPKAR 1 sparsity-exploitation is the central issue. This will involve

symbolic factorization, ordering and updating techniques. In LPKAR2 we investigate the

possibility of solving LP problems without supplying z.* and by using the Moore-Penrose

pseudo-inverse to solve the least squares of step 4 in Algorithm 7.1.

First, let us look at the form under which the problem is handled by LPKAR 1.

Assuming that z.* is available, it is possible to transform the original problem in

standard form into the following equivalent form accepted by Algorithm 7.1.

min A.

s.t. Ax - b - (Ae - b)A. = 0

cTx-z.* + 0A.=0 (7.3.1)

X, A.~ 0,

where A. is an artificial variable.

This problem is in R0 +2 and admits en+2 as an interior feasible point. Algorithm 7 .1 is

readily applicable. One advantage this form of the problem offers is that the optimum

solution is obtained in one phase. Indeed, when A. is reduced to z.ero, the resulting point

x* satisfies the constraints in the original space, i.e. Rn, and also the extra constraint

cTx - z.* = 0. It follows that x* is optimum solution.

The other advantage of above canonical form is that the objective vector is totally

sparse except for one entry corresponding to the artificial variable A.. In LPKAR l this

sparsity is used to reduce the work in an iteration of Algorithm 7.1. The way this is

brought to effect will be shown later. Note that LPKAR 1 is a primal only method as the

original algorithm of Karmarkar.

In the case of LPKAR2, the problem is handled under canonical form 3 presented in

Chapter 2.

147

7.3.l Details of LPKARl

LPKARl uses Cholesky method to deal with the least squares problem of step 4 in

Algorithm 7.1 augmented with sparsity preservation steps comprising the Nested

Dissection Ordering algorithm of George (1982), and a version of the updating technique

for least squares of Heath (1984), described in Algorithm 3.1. Symbolic factorization is

also used to set up appropriate data structures. With these steps added, Algorithm 7.1 can

be described as follows.

Algorithm 7 .2

Assume that a feasible point x(0) is available and that the problem is under canonical

form (7.3.1) accepted by Algorithm 7.1.

1- Initialization

k = 0, e = 1.0E-06, z = M, where Mis a large value, D = diag(x(0), 1).

2- if c•T x(k) < E stop

3- Compute y as follows

a) Remove the full rows of matrix DA 'f

b) Find symbolic representation or adjacency structure of A'D2A'T

c) Find a permutation matrix P using the Nested Dissection Ordering Algorithm

(see Appendix C)

d) Find a symbolic factorization of PA'D2A•TpT, i.e. find the non-zero structure of

the Cholesky factor L of the cross-product

e) Fill the structure with the actual numerical values by applying Cholesky or

Givens method

f) Apply a forward and a back substitution to get the solution y' to the incomplete

least squares problem

g) Apply inverse ordering to get incomplete solution in the original ordering

148

h) Add effect of the removed rows to the solution y' by updating it using Algorithm

7 .1 resulting in y

4- Compute p = De' - (DA'T)y - (c'Tx•(k)/n)e

5- Normalize p, i.e. p' = p/ IIPII
6- x•(k+l) = e - exp', where ex is the steplength

7- Compute () D ,(k+l)
k+l X

X =----
T.D ,(k+I) e X

(k+l) X(k+l)
8- Compute x = - 1- 1 k+l

Xn

9- D = diag(x(k+l)), c•T = [cT, -cTx(k+l)], k = k + 1, go to 2-

Although sparse techniques such as updating and ordering were dealt with

respectively in Chapter 3 and Appendix C, it remains to clarify the procedures involved in

steps b, d, e and f of above algorithm and also the data structures used in its FORTRAN

77 code.

7.3.1.1 Adjacency Structure of A'D2A•T

Ordering algorithms are graph algorithms known to be sensitive to the way the graphs

are represented. In our case, to proceed with the reordering of the cross-product A'D2A'T

and set up the data structures for the Cholesky factor, it is essential to efficiently store its

nonzero structure and retrieve adjacency relations. Thus, the adjacency structure of a

matrix is the representation of its graph.

Let G(x, E) be a graph with N nodes. The adjacency list of a node xe X is a list

containing all adjacent nodes to x and the structure of G is the set of such lists for all its

nodes. The implementation of the structure is done by storing the adjacency lists

sequentially in a one dimensional array ADJNCY along with an index vector XADJ of

length N+ 1 containing pointers to the beginning of the lists in ADJNCY. The extra entry

XADJ(N+ 1) points to next available location in ADJNCY [George & Liu, I 98 I].

149

G:

ADJNCY: 3 4

XADJ: 1 3 6 8 9 11 13

1 2 3 4 5 6 7

Fig 7. l · Adjacency Structure of a Graph

The attractive feature of this approach is that the structure of (A'D)(A'D)T is found

without explicitly forming the cross-product.

7.3.1.2 Symbolic Factorization and Storage Scheme

After applying the nested dissection ordering algorithm, a permutation matrix P is

returned which will help reduce fill-in during the factorization process of PA'D2A'TPT.

However, before proceeding with the actual numerical factorization, a simulation of it, or

symbolic factorization is carried out to set up the data structures to contain the Cholesky

factor in sparse form. The advantage of this approach is that the data structures are static;

thus set up once for all, as the structure of the matrix does not change from iteration to

iteration. Note that at this stage the numerical values of the Cholesky factor are not

explicitly computed.

The data structures returned by the symbolic factorization are a sparse storage scheme

known as the compressed scheme of Sherman, cited in [George & Liu, 1981]. The

scheme has a main one-dimensional storage array LNZ which will contain all nonzero

150

entries in the lower triangular factor of PA'D2A•TpT column-wise, an INTEGER vector

NZSUB which will hold the row subscripts of the nonzeros, and an index vector XLNZ

whose entries are pointers to the beginning of nonzeros in each column in LNZ. In

addition, an index vector XNZSUB is also used to hold pointers to the start of row

subscripts in NZSUB for each column. The diagonal elements are stored separately in

vector DIAG.

7.3.2 Input Data for Codes of Algorithm 7.2

Real world problems usually are stored in MPS format which is standard in industry.

The fonnat, mainly, consists of three sections: constraints type, constraints entries stored

column-wise including the cost vector and the right-hand side. Other sections may be

added such as bounds on variables and free constraints.

Example 7.1:

NAME PROBl
ROWS

N FOB0000l
G ROW0000l
G ROW00002
G ROW00003

COLUMNS
COL0000l
COL0000l
COL00002
COL00002
COL00003
COL00003

RHS
RHS
RHS

ENDATA

FOB0000l
ROW00002
FOB0000l
ROW00002
FOB0000l
ROW00002

ROW0000l
ROW00003

-5.000000 ROW0000l -2.000000
-4.000000 ROW00003 -3.000000
-4.000000 ROW0000l -3.000000
-1. 000000 ROW00003 -4.000000
-3.000000 ROW0000l - 1. 000000
-2.000000 ROW00003 -2.000000

-5.000000 ROW00002 -11. 000000
-8.000000

The problem under MPS format is read into a one-dimensional array ALIST of length

NZ, which is a column-wise storage of the problem matrix. Slack variables are added

according to the type of constraints encountered as well as the two columns, -band -(Ae -

b) required by the canonical form. AUST is accompanied with two INTEGER vectors,

!COL and IT, with lengths NZ and N+ 1, N being the number of total variables in the

151

canonical form. !COL contains the row subscript of each nonzero in AUST, while IT

contains pointers to the beginning of each column.

Our implementation requires that we repeatedly form the matrix A'D2A'T as D

changes from iteration to iteration. Thus, to avoid searching for the rows of A' in A LIST,

we preferred to store again the matrix row-wise. This may seem inefficient regarding

space. However, it makes sense from the time point of view. Consequently, we have

another trio of vectors RA(NZ), IA(NZ) and NA(M+l) containing matrix A' row-wise.

'These arrays are filled in once only by performing a fast sparse-matrix transposition after

ALIST, ICOL and IT have been constructed.

7 .3.3 Computational Experience

Problem Ori~inal Form Canonical Form z*
Rows Cols Rows Cols Nonzeros Density

Chvtll 16 11 17 28 142 29.83 -1402 1.04
Chvt12 17 13 18 32 114 19.79 -273382.1
Alfaut 38 33 39 72 301 10.72 -12233742
RandD 39 15 40 56 396 17.68 -9474.4845
Scsdl 77 760 78 762 3268 5.43 8.666667
Scagr7 129 140 130 187 782 3.22 -233 1390
Scsd6 147 1350 148 1352 5824 2.91 50.50000
Sc205 205 203 206 319 911 1.39 -52.20206
Sctapl 300 480 301 662 2688 1.35 1412.250
Scfxml 330 457 331 602 3203 1.6 1 18416.76
Scagr25 471 500 472 673 2852 0.90 -14753433

Table 7.1 Test Problems Statistics

LPKARl was tested on the problems listed in Table 7.1 whose origins are as follows:

Chvtll and Chvtl2, respectively, are a farm planning LP model and a case study in

forestry described in Chv~tal (1983). Alfaut and RandD were borrowed from ICL LP3

manual (1973). The remaining problems are standard test problems supplied to us by Dr.

152

Etienne Loute of the Catholic University of Lou vain, Belgium and described in Ho and

Loute (1981).

The results reported below (Table 7.2 through 7.5) concern the performance of

Algorithm 7.1 in conjunction with the nested dissection ordering algorithm and the

updating algorithm for least squares. Four versions of LPKARl were run on all the test

problems. 111e versions differ in the ways sparsity is exploited. Four cases arise:

Case 1: Ordering and partitioning were not implemented in LPKAR l (fable 7.2).

Case 2 : The nested dissection ordering algorithm was implemented, but no

partitioning was considered (fable 7.3).

Case 3: The partitioning or updating Algorithm 7.1 was implemented, but no

ordering was performed (Tables 7.4).

Case 4: Both ordering and p~titioning were implemented in LPKARl (Table 7.5).

Beside the CPU time (in sec.) and the number of iterations taken by the four versions

of LPKAR 1 on all the test problems, a column containing the number of non zeros in the

Cholesky factor for each problem is included. This column, with the heading "R

nonzeros", clearly shows advantages and disadvantages of both ordering and updating

techniques.

Problems R Nonzeros Iterations CPU(s)

Chvtll 136 10 0.23
Chvtl2 153 9 0.20
AJfaut 741 16 1.94
RandD 780 14 2.32
Scsdl 3003 13 66.21
Scagr7 7232 20 35.25
Scsd6 10878 15 264.41
Sc205 20914 23 157.25
Sctapl 45150 28 669.00
Scfxml 54519 25 797.36
Scagr25 94244 29 1948.77

Table 7 .2 Performance of LP KAR 1 (Case 1)

153

Problems R Nonzeros Iterations CPU(s)
Chvtll 136 10 0.26
Chvt12 153 9 0.23
Alfaut 741 16 2.12
Rand.D 780 14 2.26
Scsdl 1390 12 64.29
Scagr7 6230 18 30.25
Scsd6 3167 14 240.45
Sc205 20317 22 157.95
Sctapl 45150 27 672.69
Scfxml 54047 25 839.53
Scagr25 79994 25 1404.74

Table 7.3 Performance of LPKARl (Case 2)

Problems RNonzeros Iterations CPU(s)
Chvtl l 136 10 0.24
Chvt12 124 9 0.16
Alfaut 196 16 1.1 6
Rand.D 771 15 2.13
Scsdl 1408 13 42.05
Scagr7 1250 18 9.56
Scsd6 2779 14 217.32
Sc205 1574 22 17.92
Sctapl 8286 28 153.56
Scfxml 12075 25 204.31
Scagr25 4922 28 177.99

Table 7.4 Performance of LPKARl (Case 3)

154

Problems RNonzeros Iterations CPU(s)
Chvtll 136 10 0.24
Chvtl2 61 9 0.14
Alfaut 104 17 1.25
RandD 690 14 1.88
Scsdl 1393 12 49.52
Scagr7 1116 19 10.59
Scsd6 31 19 14 219.35
Sc205 1507 22 19.39
Sctapl 3736 27 128.90
Scfxml 6812 26 180.13
_Scagr25 4848 25 170.59

Table 7 .5 Performance of LP KAR 1 (Case 4)

In these experiments, the potential function as well as the objective function A of the

canonical form (7.3.1) are monitored for some of the problems of Table 7.1. These

functions are represented in the graphs below. The potential function is the logarithmic

function (2.2. 1) of Karmarkar.

0 ------------.

0.8

C: -1000 .Q
0

0.6 C: :,
!IS LL
:8 "iij E
!IS

Q) ...J 0.4 0
Q. -2000

0.2

-3000 ~--------.----.---.-....--l 0.0 4-----r---r--,.-::~......,. ""'-l
0 5 1 0 15 20 0 5 10 15 20

Iterations Iterations

Fig 7.2 Decrease in the Potential and Objective Functions for Problem Scagr7

155

C
.2
0
C
::, u.

'E
Q)

0 a..

-2000

-4000

-6000

-8000

0 5 10 15 20 25 30

Iterations

0.8

0.6
CIS
:8
j 0.4

0.2

0.0 -'-----.-...... ,_.~----.1
0 5 1 0 15 20 25 30

Iterations

Fig 7.3 Decrease in the Potential and Objective Functions for Problem Scagr25

-1000
0.8

C
0 u 0.6 C

CIS ::, u. -2000 :8
"iii E

CIS ""E _J 0.4
Q)

0 a..
-3000

0.2

-4000-"----......... --.------~ 0.04--.---.----,,-...-~196,o,p,.""-f
0 5 1 0 1 5 20 0 5 1 0 1 5 20

Iterations Iterations

Fig 7.4 Decrease in the Potential and Objective Functions for Problem Sc205

156

0

-1000

C
.2
ti
C

-2000

:::,
u..
iii -3000

(l)

0 -4000 a.

-5000

-6000
0 5 1 0 1 5

Iterations

20 25 30

0.8

0.6
ns
:8
-1 0.4

0.2

0 5 1 0 15 20 25 30

Iterations

Fig 7.5 Decrease in the Potential and Objective Functions for Problem Scfxml

0

-1000
0.8

C
-2000 .Q

ti
C
:::, 0.6
u..
iii -3000

Q)

0 j 0.4
Q.. -4000

-5000 0.2

-6000 0.0 + T-.r--T'-,-~Qooi,""9"...,...'i"'"-,.,...t
0 5 1 0 15 20 25 30 0 5 10 15 20 25 30

Iterations Iterations

Fig 7.6 Decrease in the Potential and Objective Functions for Problem Sctapl

157

7.3.3.1 Hilbert-Type LP problems

A version of LPKARl which does not take account of sparsity was tested on a set of

LP problems whose constraints matrix is based on Hilbert matrix. These problems

already used in limited experiments in Chapter 4, can be described as follows. They are of

the form

min cTx

s.t. Ax~ b,

X 0,

where x e R0 , A e R0 xn, c e R" and b e R". Matrix A has entries [aij] = [1/(i+j)], for

i = 1, ... , n andj = 1, ... , n. The RHS is given by

n 1
bi= I -.. ,

. lHJ . J=

The cost vector is given by

2 n 1
C·=-+ """-

1 i+l ~i+j '
J- 2

i= 1,2, ... ,n .

i = l,2, ... ,n.

The primal optimum solution to these problems is x* = (1, 1, ... , l)T. Problems with

n = 4, 6, 10, 15, 20, 25, 30 and 40 were solved and the results depicted in Fig.7.7.

As one would expect, the number of iterations is approximately the same for problems

with n > 6. Around iteration 16, the potential function levels out and shows hardly any

noticeable improvement.

158

0

-200

-0-- n=4
C -400 n= 6 .Q
Q

0 n=10 C
::,

LL
0 n=15 -600

n=20 c
Q)

0 -0- n=25 a.. -800

* n=30

6 n=40
-1000

-1200
0 5 1 0 1 5 20 25 30 35 40

Iterations

Fig 7.7 Results from LPKARl on Hilbert-Type Problems

7.3.3.2 Klee-Minty Problems

The class of problems originally proposed by Klee and Minty (1972) is well known as

linear programming problems with n variables for which the simplex method with various

pivot rules takes an exponential, in n, number of pivots to reach the optimum. The

following form due to Avis & Chvatal (1978) is considered in our experiments , as well as

in [Iri & Imai, 1987].

i-1 i-j
s.t.2I,µ xj +xi ~ l, (i = l, .. . , n),

j=l

159

where O < µ < 0.5. The optimum solution of this problem is Xj = 0, (j = 1, ... , n-1) and

Xn = 1. We performed experiments for the cases with µ = 0.4 and n = 6, 12, 18, 24, 30

and 40. The results are shown in Fig 7.8.

-500
C: [;J n= 6 0

n=12 C:
::, -1000 IJ.. A 0=18
iii

0 n=24
Q)

0 0 n=30
Cl. -1500

CJ n=40

-2000-+--.-----r-...... -.-----r--.--..---.--.-- ..---.--1
0 5 fo 1 5 20 25 30

Iterations

Fig 7.8 Results from LPKARl on Klee-Minty Problems

Although the iteration count is still low for the Klee-Minty problem, the number of

iterations seems to grow slightly with the size of the problem. But it is nothing like the

simplex method. For the Klee-Minty problem of order 40, for instance, the standard

simplex would take approximately 1012 iterations, as compared to 27 iterations the

Karmarkar algorithm takes to find the optimum solution. The growth with the size is

logarithmic and not exponential.

7.4 Alternative Least Squares methods

LPKARl uses Cholesky method to deal with the least squares problem of step 4. Two

other versions of it were written which respectively use Givens orthogonalization method

and the iterative technique of Paige and Saunders (1982), which is a conjugate gradient

method whose FORTRAN 77 code is known as subroutine LSQR. Although small

160

problems were successfully solved with both versions, on larger problems they seemed

slow and unreliable. In the case of Givens rotations, the data structures are mainly those

used for Cholesky method except for a supplementary one-dimensional array to handle

the nonzeros created during the zeroing process.

Subroutine LSQR was intended for large sparse linear systems and least squares

problems. Its use requires the problem matrix to be stored in suitable sparse data

structures and a user supplied routine that performs the product of a matrix A (or its

transpose AT) in sparse format with a vector. More precisely the routine will compute x =

x + Ay and y = y + ATx. Parameters such as tolerance, machine precision and iteration

limit must also be set before calling the subroutine.

The data structures mainly consist of three one-dimensional arrays: RA(NZ), JA(NZ)

and NA(M), where NZ is the number of nonzeros in the problem matrix and M the

number of rows. The problem mi:!,trix is stored row-wise in RA, i.e. nonzero elements of

row one are stored first then those of row two and so on. The corresponding column

index of each nonzero is stored in JA, an INTEGER array. Another INTEGER array,

NA, holds the number of nonzero elements of each row of the matrix.

The main difficulties encountered with LSQR were probably due to instability. The

solutions returned by the subroutine were bad approximations. The iterative process was

never stable and took a number of iterations most of the time equal to the iteration limit

parameter set up at the start of the procedure. The lack of a preconditioner may be the

cause for this inefficiency.

7.5 Applying Algorithm 7.1 when z* is not a priori known

Before dealing with the unknown optimum objective value, it is necessary to find a

starting feasible point. This can be done by solving a feasibility problem, otherwise

known as Phase 1 problem. This problem is similar to the one solved by LPKAR I.

Alternative forms are described in Chapter 2.

The unknown optimum objective value is dealt with by updating the initial value of z

in Algorithm 7.1 with c T x(k) after iteration k. This approach is known as the cutting

161

objective function method. Algorithm 7.1 with the cutting objective is a primal-dual

algorithm. The vector y computed in step 4 is dual feasible. At the end of Phase 2, y is

the true dual optimum solution if the problem is nondegenerate, i.e. x* has at least m+ 1

positive entries, where m is the number of constraints. Otherwise the dual solution is not

unique.

LPKAR2 is a FORTRAN 77 code of this algorithm. Step 4 of Algorithm 7.1 is

canied out using the Nag subroutine F0IBLF for computing the pseudoinverse.

The code was 1un on a subset of the problems listed in Talle 7.1. The results of these

runs are given below. For each problem 5 columns were produced, which respectively

are: The iteration number, the optimum step ex taken at that iteration, the primal objective

value, a lower bound on it and the dual objective value. The blank entries to the last two

columns correspond to Phase 1 iterations in which an interior feasible point is found.

The stopping criterion used i~ based on the gap between the primal objective and its

lower bound. Steplength ex is computed at each iteration using the blocking variable

technique described in Chapter 3.

Problem Name: RandD

ITERAT. ex PRIMAL L.BOUND DUAL
------- ------ -------

1 6.441861428 0 . 6531709614
2 4. 559867337 0.82Ql82E-0l
3 1.445073937 0.77i727E-03
4 4. 621143626 -8884.832099 -16428.78711 -16175.50098
5 3.841302410 -9320 .974037 -13733 .94824 -13591.17871
6 3.682589382 -9412.218261 -11239. 68359 -11188. 44922
7 3 .033384722 -9436.795379 -11 637. 96973 -11584 .12500
8 2 . 566 412224 -9450.617668 -.100000E+21 -.9759"0E+20
9 2 . 358197628 -9463 . 677588 -9715 .130859 - 9708.828125

10 1. 669588275 - 9466.686918 -94 91. 0478 52 -9490.426758
11 2. 635119288 -9467.923004 -9471. 314453 -9471 . 197266
12 1.636255498 -9468. 274640 -94 68 .140625 - 9468 .111328
13 6.255412489 -9472.807924 -9467.330078 -9467.324219
14 2.247326661 -9477.173856 -9565.544922 -9563.179688
15 6.222729319 -9 475.909702 -9474.494141 -9474. 494141

162

Problem Name: Chvtll

ITERAT. (l PRIMAL L. BOUND DUAL ------- ------ -------
1 2.865809331 0.9934241435
2 3.966572662 0. 7941611308
3 2 . 050811475 0.290249E-01
4 1. 008751969 0 .287112E-03
5 9 . 301639104 -11483 . 16638 -19023.27539 -18619.72656
6 2.452507189 -13027.91157 - 17058.04688 -16811. 80273
7 1.972840325 -13286.31012 -17406.45898 -17182.81641
8 14.74104330 -13651 . 34425 -16813.26172 -16627.70703
9 2 . 797717475 -13771.54418 -16001. 35547 -15872.47559

10 4.927777042 -13778.51607 -16125.33691 -15988.55273
11 5.805054359 -13779.43317 -16142.97949 -16004.45898
12 21. 4580399?. -13791. 03023 -16141.19727 -16002.74707
13 10.02461707 -13878.35165 -15772.87598 -15660.45605
14 4.149567088 -14012 . 74683 -14595.31836 -14553.69141
15 20.147874 43 -14015.04564 -14152.19531 -14144.03809
16 20 . 12815984 -14015 . 08041 - 14123 . 12012 -14116 . 76367
17 25.84468262 -14015 . 08173 -14122. 71289 -14116. 38184
18 30.98095870 -14015.08194 -14122.70898 -14116.37793
19 108.0583358 - 14015 . 07551 -14122.70898 - 14116. 37793
20 4 . 082054439 -14015.33463 -14122.70898 -14116. 37793
21 7700.428266 -14015 . 08186 -14122.70801 - 14116. 37695
22 4 . 081874178 -14015 . 08029 -14122.70898 -14116. 37793
23 24228 . 34324 -14015. 05874 - 14122 . 70703 -14116 . 37598
24 237 1190485 . -14015 . 22'300 -14122.57227 -14116 . 25000
25 70 . 28025742 -14021 . 00474 - 14117 . 38281 -14111 . 38184
26 44 .80198279 - 14021 . 03772 - 14021.04102 -14021 . 04102

Problem Name : Chvt12

ITERAT . (l PRIMAL L. BOUND DUAL
------- ------ -------

1 4 .403545515 0.9944982521
2 2. 450272242 0.5077499693
3 1.131387576 0.965917E-02
4 1.005887171 0.944669E-04
5 2. 147604523 -228535.2657 -642805.9375 -626204 . 3125
6 3.016425300 -250208 . 7442 -317029 . 2813 -314349. 6250
7 2 . 819401851 -263412.8438 -312417.2500 -310173.6875
8 3.022792842 -267849 . 2021 -315956.2188 -313710 .1875
9 4.931871498 -269401 . 4924 - 315477 . 8438 - 313141.0000

10 6.209180867 -269913 . 1435 -314532.0625 -312117. 5000
11 9.077869172 -273307 . 8685 -309012.2813 - 306870.6875
12 29 . 57530165 -273377.0912 -273385.5000 -273385.3125
13 29 . 02232090 -273381.8568 - 273382.0000 -273382.0000

163

Problem Name : Alfaut

ITERAT. a PRIMAL L.BOUND DUAL
------- ------ -------

1 5.020584304 0.9987008107
2 5.016395983 0.7061022659
3 1.224532672 0.226881E-0l
4 0 . 997201850 0 . 228803E-03
5 7 . 701221428 -9256687.028 -36732648.00 -36303604.00
6 3 . 943619602 -10490237.48 - 31063900.00 -30724012.00
7 2.934036697 -11106791. 07 -16443347.00 -16347721. 00
8 3. 248521773 -11658852. 95 -14401056 . 00 -14348024.00
9 7.467750399 -12046247.56 - 13226854.00 -13200235.00

10 4. 741095164 -12171514. 61 -12525954.00 -12517692.00
11 5.997308168 -12218466.46 -12263207.00 -12262387.00
12 8 . 387838113 -12230475.94 -12236620.00 -12236546.00
13 13 . 59068778 -12233368.10 -12234 132.00 -12234121 .00
14 27 . 19466703 -12233714. 86 -12233751.00 -12233751.00
15 65 . 21966319 -12233741. 39 -12233742 . 00 -12233742.00

Problem Name ·: Scagr7

ITERAT . a PRIMAL L.BOUND DUAL
------- ------ -------

1 7.405831680 0 .9 981415303
2 6 .199722355 0.9863109023
3 3 .120554655 0.9243653430
4 1.987366289 0.988973E-0l
5 . 9975537117 0.108856E-02
6 9.235479623 -2023372 .180 -21206690 . 00 -21084080.00
7 3. 001158895 - 2171044 . 627 -10496797.00 -104420 40 . 00
8 3 . 235121117 -2250286.867 -3377933 . 750 -3370697.250
9 4. 528271088 -2293157.895 -2505680.500 -2504344.000

10 6.289297716 - 231 9053.392 -2383567.750 -2383144.500
11 10.90774247 -2328609.473 -2354395 . 750 -2354224.000
12 7.018505189 -2329835.032 - 2335393 . 000 -2335359.000
13 9 . 477241468 -2330885.659 -2334042 . 250 -2334019.500
14 7.012442289 -2331150 .209 -2333566.750 -2333549.250
15 8 . 106021664 -2331280 . 375 - 2332203 . 250 -2332196.750
16 7 .107331053 - 2331328 .956 -2331503 . 750 -2331502 . 750
17 18.04304854 -2331369.400 -2331467 .000 -2331466. 500
18 14. 72354161 -2331381.338 -2331431. 750 -2331431. 500
19 21.6 4842011 -2331386.993 -2331391.500 -2331391.500
20 109.6028688 -2331389.556 -2331389.750 -2331389.750

7.6 Comparative Results between LPKARI (Case 3) and LINDO

LINDO (Linear INteractive Discrete Optimizer), [Schrage, I 983], is a commercial

package which does Linear as well as Integer and Quadratic Programming. It is available

on Aston University's VAX 111750 computer. To have an idea about the performance of

164

our codes, we ran a version of LPKARl (Case 3) and LINDO on nine of the test

problems given in Table 7.1. The results are recorded in Table 7.6.

LPKARl (Case 3) LINDO
Problem CPU(s) IT CPU(s) IT
Chvtll 5.79 15 3.69 11
Chvtl2 5.60 14 3.48 9
Alfaut 13.30 15 5.91 43
Scsdl 428.62 12 84.23 454
Scagr7 81.18 18 26.89 213
Sc205 148.73 21 54.89 207
Sctapl 1171.95 26 89.61 412
Scfxml 1614.57 24 191.56 654
Scagr25 1514.95 27 377.13 1284

Table 7.6 Comparative Results: LPKARl (Case 3) v UNDO

From the iteration count point of view, LPKARl is superior to LINDO except on the

small problems Chvtl 1 and Chvtl2. However, LINDO requires less CPU time to solve all

the problems.

Note that the difference in CPU times required by LPKARl (Case 3) given in Table

7.4 and in the above table, is due to the computers used; the results of Table 7.4 were

obtained on a VAX 8650 machine (6.5 mips), while the above results where obtained on

a VAX 11/750 machine (0.7 mips).

7.7 Conclusion

Throughout these experiments, it is confirmed that Karmarkar's algorithm preserves

its attractive features on various types of problems especially the real world problems

listed in Table 7.1. These features, namely, are its low iteration count (logarithmic in the

size of the problem) and its acceptance and use of the duality aspects of linear

programming. Although the work in an iteration of the algorithm is substantially higher

165

than that of the simplex [Tomlin, 1985], it may be effectively reduced when existent

sparsity techniques such as ordering and partitioning are used. In this way, large real

world LP problems can be solved in realistic times as shown in Tables 7.2 through 7.5.

The dependence of the performance of the algorithm on least squares techniques

[Lindfield & Salhi, 1987] is also shown in those tables. This may be held against the

algorithm. However, any improvement in the solution of the least squares problem can

readily be used in Kannarkar's algorithm.

166

Chapter 8

Conclusions and Further Development

When Karmarkar's algorithm came to public attention in 1984 [Kolata, 1984; Emmett,

1985], many criticisms were made regarding its alleged efficiency. It was thought to be

inherently slow despite its polynomial complexity [Charnes et al., 1984]. Its applicability

was restricted to a special class of LP problems with homogeneous constraints and

optimum objective z* = 0. A feasible interior point is also required to start the algorithm.

This is a restrictive requirement because it is known, (von Newmann, cited by Charnes et

al., 1984), that any method which finds a feasible point to a linear programming problem

can find its optimum solution. However, probably the most serious criticism concerned

the algorithm being only primal with no prospects for the important duality concepts to be

used; postoptimatity analysis was, thus, not possible.

At the beginning of this thesis the Karmarkar algorithm was discussed in the context

of early development of polynomial time algorithms for linear programming. 111eoretical

as well as computational results of extensive research aimed at alleviating the difficulties

of the original Karmarkar's algorithm and assessing its performance were reviewed.

For efficient implementation of the algorithm, advanced least squares techniques are

required. In this respect, and for the sake of completeness, this topic was also reviewed

with emphasis on sparsity exploitation. It was found, after an early implementation of the

algorithm, that the size of the step taken in the search direction, greatly innuences the

convergence of the algorithm. Its optimum choice and, in general, the conditions under

which large steps are allowed, were investigated.

167

The duality aspects of the algorithm were studied in conjunction with three main

variants due to Todd and Burrell (1986), Gay (1987) and Ye and Kojima (1987). The

variant of Ye and Kojima seems to be superior, because it works under mild assumptions,

it is easy to implement and theoretically it generates better bounds on the optimum

objective value. However, from their paper it was not clear how, in practice, these

bounds are found. A procedure which works on most problems was, thus, developed.

With dual variables being available through these variants (discussed in Chapter 4), we

were encouraged to investigate their potential use for postoptimality analysis.

Postoptimality analysis for the right-hand side, the cost and the rim was briefly studied as

a result.

Following the underlying ideas of interior point methods, an attempt was made to

design an algorithm for LP based on generating a finite sequence of Chebyshev points.

The algorithm was shown to work on small problems. However, in its present form, it

does not seem to be efficient. Improvements to the algorithm were suggested.

The study of decomposition and partitioning as strategies for reducing the work in an

iteration of the Kannarkar algorithm, constitutes one of the main objectives of this thesis.

Structured LP problems being an important class of problems frequently occurring in real

applications, it was felt that extending the Karmarkar algorithm to such problems was

worthwhile. As a consequence, a specialized variant of the dual Kannarkar algorithm for

structured LP problems was designed and tested on randomly and non-randomly

generated problems. It appears from the experiments that the partitioning variant is

superior to Algorithm 4.2 on structured LP problems. A practical implementation of a

variant of the Karmarkar algorithm, in which sparsity preservation and exploitation is the

central issue, has been developed. The updating algorithm of Heath (1984) and the nested

dissection algorithm [George & Liu, 1981] were used in the resulting code. The code was

shown to work on various types of problems in realistic CPU times. Alternative least

squares methods were also used in different versions of the code. The perfonnance of the

Karmarkar algorithm was discussed in Chapter 7.

168

Among aspects of Karmarkar's algorithm and linear programming discussed or

investigated in this work, postoptimality analysis is without doubt the topic that needs to

be further studied. Without it simplex would not be the powerful decision making tool it

is today. It would be very interesting and useful, therefore, to know how, in real

applications, postoptimality analysis can be carried out via Karmarkar's algorithm or its

variants. Indeed, the future of the algorithm would be rather bleak if it is found to be

unsuitable for postoptimality analysis in real applications. It is unfortunate, due mainly to

time limitations, that our investigation is not conclusive in this respect.

The Chebyshev approach discussed in Chapter 5, is also worthwhile to further

investigate. The method is strongly related to the simplicial algorithm of Levin and

Yamnitsky (1 ~82). To our knowledge, there is no efficient implementation of this

algorithm. Our approach may ~1elp understanding how to efficiently implement it.

Chebyshev problems convert into LP problems with very sparse objective vectors. Only

the entry corresponding to the deviation is nonzero. Exploiting this sparsity may be

beneficial.

At the end of Chapter 6, an attempt to justify decomposition (lemma 6.1) using the

concept of volumes corresponding to the potential function of Karmarkar was made. The

partitioning algorithm developed in that chapter, was not based on that concept. However,

the idea is attractive as it brings more closely the projective and the ellipsoid algorithms.

Indeed, recent developments show the merits of such an approach. Ye (1987), showed

that the potential function of Karmarkar characterizes the logarithmic volume of an

ellipsoid that contains all of the dual solutions. As the potential function decreases, the

volume of the ellipsoid monotonically shrinks lo zero. Todd (1988a), also discusses the

construction of a dual ellipsoid during the course of the Karrnarkar algorithm. The idea of

solving smaJler problems and working in lower dimensions, in order to start with an

overall smaller volume, may be profitable for quick convergence in both the Khachyan

and the Karrnarkar algorithms.

169

Decomposition is also attractive from the point of view of parallelism or concun-ency.

We have shown that favourable structure present in large LP problems may be used to

advantage and our partitioning algorithm lends itself readily to parallel processing.

1 :lowever, it is in large, dense and unstructured linear programming problems that parallel

architecture and concurrent processing are expected to have an impact. In this respect, the

general form of Algorithm 6.1, which applies the concept of decomposition to

unstructured problems, is worth investigating. Note that a parallel version of Karmarkar's

algorithm has been developed by Pan and Reif (1985).

During the investigation of the Karmarkar algorithm, and the review of least squares

techniques, codes were written in order to find out about the practical value of the

methods. The codes are independent from one another. For instance, the code for the

Karmarkar algorithm in which ordering and partitioning are used, is separate from the

code in which no such measures are taken. It would, therefore, be interesting to put the

programs in a library equipped with a user friendly interface. Depending on the size,

density and condition of a LP problem, appropriate routines can, thus, be chosen for its

solution.

From our investigations it appears that Karmarkar's algorithm is a serious alternative

to the simplex method. However, the questio ns raised here need to be answered before

the algorithm is fully adopted as the standard method for linear programming.

170

References

Anstreicher, K.M. (1986a), "A Strengthened Acceptance Criterion for Approximate

Projections in Karmarkar's Algorithm", Operations Res. Lett. 5(4), pp. 211-214.

Anstreicher, K.M. (1986b), "A Monotonic Projective Algorithm for Fractional Linear

Programming", Algorit/zmica 1, pp. 483-498.

Anstreicher, K.M. (1988), "Linear Programming and the Newton Barrier Flow",

Mathematical Programming 41, pp. 367-373.

Apsvall, B. & R .E.Stone (1980), "Khachiyan's Linear Programming Algorithm",

Journal of Algorithms 1, pp. 1-13.

Avis, D. & V_.Chvatal (1978), "Notes on Bland's Pivoting Rule", Mathematical

Programmimg 8, pp. 24-34.

Dames, E.R. (1986), "A Variation on Karmarkar's Algorithm for Linear Programming

Problems", Mathematical Programming 36(2), pp. 174-182.

Benichou, M., J.M.Gauthier, a.Hentges & G.Ribiere (1977), "The Efficient Solution of

Large Scale Linear Programming Problems- Some Algorithmic Techniques and

Computational Results", Mathematical Programming 13, pp. 280-322.

Disshopp, F. (1981), "Khachyan's Algorithm for Linear Programming, Optimisation and

Implementation", Quart. App. Math 38, pp. 415-426.

Ill and, R.G. (1977), "New Finite Pivoting Rules for the Simplex Method", Mathematics

of Operations Research 2, pp. 103-107.

Dland, R.G., D.Goldfarb & M.J.Todd (1981), "The Ellipsoid Method: A Survey",

Operations Research 29(6), pp. 1039-1091.

Burrell, B.P. & M.J.Todd (1985), "The Ellipsoid Method Generates Dual Variables",

Mathematics of Operations Research 10(4), pp. 688-700.

Cavalier, T.M. & K.C.Schall (1987), "Implementing an Affine Scaling Algorithm for

Linear Programming", Comput. Opns. Res. 14(5), pp. 341 -347.

171

Charnes, A., T.Song & M .Wolfe (1984), "An Explicit Solution Sequence and

Convergence of Karmarkar's Algorithm", Research Report CCS 501, Center for

Cybernetic Studies, College of Business Administration S.202, The U niversity of

Texas at Austin, Texas 78712-1177 (512), 471-1821.

Chvatal, V. (1983), Linear Programming, W .H.Freeman & Co, USA.

Cook, S. (1983), "An Overview of Computational Complexity", Communications of the

ACM 26(6), pp. 401 -408.

Dantzig, G.B. & P.Wolfe (1 960), "Decomposition Principle for Linear Programs",

Operations Research 8, pp. 101-111.

Dantzig, G .D. (1963), Linear Programming and Extensions, Princeton University Press,

Princeton, NJ.

Dantzig, G.B. (1987), Private Communication.

Dennis, J.E., Jr., A.M.Morchedi & K.Turner (1986), "A Variable-Metric Variant of the

Karmarkar Algorithm for Linear Programming" , Technical Report 86-13, June

1986, Dept. of Math. Sci., Rice University, Houston, Texas 77251 , USA

Dennis, J.E., Jr., A.M.Morshedi & K.Turner (1987), "A Variable-Metric Variant of the

Karmarkar Algorithm for Linear Programming", Mathematical Programming 39,

pp. 1-20.

Dikin, I.I. (1967), " Iterative Solution of P roblems of Linear and Quadratic

Programming", Soviet Math. Doklady, 8(3), pp. 674-675.

Dodani, M.H. & A.J.G.Babu (1987), "Karmarkar's Projective Method for Linear

Programming: A Computational Survey", Computers and Industrial Engineering

13(1-4), pp. 285-289.

Duff, LS., AM.Erisman & J.K.Reid (1976), "On George's Nested Dissection Method",

STAM Journal of Numerical Analysis 13(5).

Duff, LS., AM.Erisman & J.K.Reid (1986), Sparse Matrix Computation, Academic

Press, London.

172

Edmonds, J. (1965), "Paths, Trees and Flowers", Canadian Journal of Mathematics 17,

pp. 449-467.

Edmonds, J. (1967), "Systems of Distinct Representatives and Linear Algebra", J oumal

of Research of the National Bureau of Standards, 71B, pp. 214-245.

Emmett, A. (1985), "Karmarkar's Algorithm: A Threat to Simplex?", IEEE Spectrum,

pp. 54-55, (December).

Evans, D.J. (1985), Sparsity and Its Applications, Cambridge University Press.

Ferris, M.C. & AB.Philpott (1988), "On the Performance of Karmarkar's Algorithm",

J. Opl. Res. Soc. 39(3), pp. 257-270.

Fiacco, A.N. & G.D.McCormick (1968), Non-Linear Programming: Sequential

Unconstrained Minimization Techniques, Wiley & Sons Ltd.

Fieldhouse, M. & F.W.Trom~ns (1985), "Convergence, Scaling and Duality in

Karrnarkar's Projective Algorithm", Symposium on Karmarkar's and Related

Algorithms for Linear Programming, organized by IMA, held on May the 7th 1985

at the Geological Society, Burlington House, Piccadilly, London.

Fletcher, R. (1986), "Recent Developments in Linear and Quadratic Programming",

Report NA/94, Department of Maths Sciences, University of Dundee, Scotland.

Forsythe, G .E ., M.A.Malcolm & C.B.Moler (1977), Computer Methods f or

Mathematical Computations, Prentice-Hall, Englewood Cliffs, NJ.

Fourer, R. (1982), "Solving Staircase Linear Programs by the Simplex Method, I:

Inversion", Mathematical Programming 23, pp. 272-313.

Freund, R.M. (1988), "An Analog of Karmarkar's Algorithm for Inequality Constrained

Linear Programs, with a 'New' Class of Projective Transformations for Centering a

Polytope", Oper. Res. Lett. 7(1), pp. 9-13.

Frisch, K.R. (1955),"The Logarithmic Potential Method of Convex Programming",

Unpublished, University Institute of Economics, Oslo.

Gacs, P. & L.Lovasz (1979), "Khachyan's Algori thm for Linear Programming", STAN-

CS-79-750, Computer Science Department, Stanford University.

173

Gacs, P. & L.Lovasz (1981), "Khachyan's Algorithm for Linear Programming",

Mathematical Programming Study 14, pp. 61-68.

Gal, T. (1979), Postoptimal Analysis, Parametric Programming and Related Topics,

McGraw-Hill, Inc., USA.

Gary, M.R. & D.S.Johnson (1979), Computers and Intractability: A Guide to the Theory

of NP-Completeness, W.H.Freeman & Company, San Francisco, CA.

Gay, D.M. (1987), "A Variant of Karmarkar's Linear Programming Algorithm for

Problems in Standard Form", Mathematical Programming 37(1), pp. 81-90.

Gentleman, W.M. (1973), "Least Squares Computations by Givens Transformations

without Square Roots", J. Inst. Maths Applications 12, pp. 329-336.

Geoffrion, A.Iyl. (1970), "Elements of Large-Scale Mathematical Programming",

Management Science 16(11.), pp.652-691.

George, A. & J.W.Liu (1981), Computer Solution of Large Sparse Positive Definite

Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.

George, A. & M.T.Heath (1980), "Solution of Sparse Linear Least Squares Problems

Using Givens Rotations", Linear Algebra and Its Applications 34, pp. 69-83.

Ghellinck, G. de, & J.-Ph.Vial (1986), "A Polynomial Newton Method for Linear

Programming", Algorithmica I , pp. 425-453.

Ghellinck, G. de, & J.-Ph.Vial (1987), "An Extension of Karmarkar's Algorithm for

Solving a System of Linear Homogeneous Equations on the Simplex",

Mathematical Programming 39, pp. 79-92.

Gill, P.E., W.Murray & M.H.Wright (1981), Practical Optimization, Academic Press.

Gill , P.E., W.Murray, M.A.Saunders & M.H.Wright (1984), "Sparse Matrix Methods in

Optimization", SIAM J. Sci. Stat. Comp. 5(3), pp. 562-589.

Gill, P.E., W.Murray, M.A.Saunders & M.H.Wright (1988), "Numerical Issues in

Interior-Point Methods", SIAM Conference, San Francisco, June 13-16.

174

Gill, P.E., W.Murray, M.A.Saunders, I.A.Tomlin & M.H.Wright (1985), "On

Projected Newton Barrier Methods for Linear Programming and an EquivaJence to

Karmarkar's Projective Method", Mathematical Programming 36(2), pp. 183-209.

Goldfarb, D. & J.K.Reid (1977), "A practicable Steepest-Edge Simplex Algorithm",

Mathematical Programming 12, pp.361-371.

Goldfarb, D. & M.J.Todd (1982), "Modification and Implementation of the Ellipsoid

Algorithm for Linear Programming", Mathematical Programming 23, pp. 1-19.

Goldfarb, D. & S.Mchrotra (1988a), "Relaxed Variants of Karmarkar's Algorithm for

Linear Programs with Unknown Optimal Objective Value", Mathematical

Programming 40(2), pp. 183-195.

Goldfarb, D. S.Mehrotra (1988b), "A Relaxed Version of Karmarkar's Method",

Mathematical Programming 40(3), pp. 289-315.

Golub, G. & C.Van Loan (1983), Matrix Computations, John Hopkins University Press,

Baltimore, USA.

Golub, G. (1965), "Numerical Methods for Solving Linear Least Squares Problems",

Numerische Mathematik 7, pp. 206-216.

Grigoriadis, M.D. & K.Ritter (1969), "A Decomposition Method for Structured Linear

and Nonlinear Programs", J. of Computer and System Science 3(4), pp. 335-360.

Grotschel, M., L.Lovasz & A.Schrijver (1981), "The Ellipsoid Method and Its

Consequences in Combinatorial Optimization", Combinatorica J (2), pp. 169-197.

I Ia I fin, S. (1983), "The Sphere Method and the Robustness of the Ellipsoid Algorithm",

Mathematical Programming 26, pp. 109-116.

Heath, M.T. (1981), "Some Extensions of An Algorithm for Sparse Linear Least Squares

Problems", Computer Sciences Division at Oak Ridge National Laboratory, PO

Box Y, Oak Ridge Tennessee 37830.

Heath, M.T. (1984), "Numerical Methods for Large Sparse Linear Least Squares

Problems", SIAM J. Sci. Stat. Comp. 4(3), pp. 497-513.

175

Ho, J .K. & E.Loute (1979), "A Comparative Study of Two Methods for Staircase Linear

Programs", ACM Transactions on Mathematical Software 5(4), pp. 17-30.

Ilo, J.K. & E.Loute (1980), "A set of Staircase Linear Programming Test Problems",

Mathematical Programming 20, pp. 245-250.

Jlo, J .K. & E.Loute (1981), "An Advanced Implementation of the Dantzig-Wolfe

Decomposition Algorithm for Linear Programming", Mathematical Programming

20, pp. 303-326.

H ooker, J.N. (1986), "Karmarkar's Linear Programming Algorithm", Interfaces 16,

pp. 75-90.

Imai, H. (1988), "On the Convexity of the Multiplicative Version of Karmarkar's

Potential function", Mathematical Programming 40, pp. 29-32.

Iri , M. & H.Imai (1986), "A .Multiplicative Barrier Func tion Method for Linear

Programming", Algorithmica 1, pp. 455-482.

Jones, P.C. & E.S.Marwil (1982), "Dimensional Reduction Variant of The Ellipsoid

Algorithm for Linear Programming Problems", Mathematics of Operations

Research 7(2), pp. 245-252.

Kantorovich, L.V. (1939), "Mathematical Methods in the Organization and Planning of

Production", Translated in Management Sci., 6, pp. 366-422, (1958).

Karmarkar, N. (1984a), "A New Polynomial-Time Algorithm for Linear Programming",

Proceedings of the 16th Annual ACM Symposium on Theory of Computing, pp.

302-311, Washington D.C.

Karmarkar, N. (1984b), "A New Polynomial-Time Algorithm for Linear Programming",

Combinatorica 4(4), pp. 373-395.

Khachyan, L.G. (1979), "A Polynomial Algorithm in Linear Programming", Soviet

Math. Dok/. 20(1), pp. 191-194.

Klee, V. & G.J.Minty (1972), "How Good Is the Simplex Algorithm?", in Inequalities

Ill, 0. Shisha (Ed.), Academic Press, NY, pp. 159-179,

176

Kojima, M. (1986), "Determining Basic Variables of Optimal Solutions in Karmarkar's

New LP Algorithm", Algorithmica 1, pp. 499-515.

Kolata, G. (1984), "A Fast Way to Solve Hard Systems", Science 225(21), pp. 1379-

1380.

Kortanek, K.O. & M.Shi (1987), "Convergence Results and Numerical Experiments on a

Linear Programming Hybrid Algorithm", E.J.0.R. 32, pp. 47-61.
Konig, H. & D. Pallaschke (1981), "On Khachyan' s Algorithm and Minimal

Ellipsoids", Numerische Mathematik 38, pp. 211-223.

Kronsjo, L. (1985), Computational Complexity of Sequential and Parallel Algorithms,

Wiley & Sons Ltd, GB.

Kronsjo, L. (1987), Algorithms: Their Complexity and Efficiency, (2nd edition), Wiley

& Sons Ltd, GB.

Lawson, C.L. & R.J.Hanson (1974), Solving Least Squares Problems, Prentice-Hall,

Englewood Cliffs, NJ.

Levin, J.A. (1965), "On an Algorithm for the Minimization of Convex Functions",

Dok/ady Akademii Nauk SSSR 160, #6. Translated in Soviet Math. Doklady

vol.160.

Lindfield, G.R. & A.Salhi (1987), "A Comparative Study of the Performance and

Implementation of the Karmarkar Algorithm", presented at the Martin Beale

Memorial Symposium, 6-8 July, The Royal Society, London.

Longley, W.J (1984), Linear Least Squares Computations Using Orthogonalisation

Methods, Marcel Dekker, Inc., NY 10016, USA.

Lovasz, L. (1980), "The Ellipsoid Algorithm: Detter or Worse than the Simplex?",

Mathematical Intelligencer 2, pp. 141-146.

Lovasz, L. (1984), "The Mathematical Notion of Complexity", Proceedings of the 9th

Triennial World Congress of IFAC, Budapest, 2-6 july. (Vol. 3, pp. 1105-1110).

Lustig, I.J. (1985), "A Practical Approach to Karmarkar's Algorithm", TR SOL 85-5,

Department of Operations Research, Stanford University, Stanford, CA 94305.

177

Mangasarian, O.L. (1985), "Iterative Solution of Linear Programs", SIAM J. Numer.

Anal., 18(4), pp. 606-614.

McCall, E.H. (1982), "Performance Results of the Simplex Algorithm for a set of Real

World Linear Programming Models", Communications ACM 25(3), pp. 207-212.

Megiddo, N. (1986), "Introduction: New Approaches to Linear Programming",

Algorithmica 1, pp. 387-394.

Megiddo, N. (1987), "Linear Programming (1986)", Ann. Rev. Comput. Sci. 2,

pp. 119-145.

Monma, C.L. & A.J.Morton (1987), "Computational Experience With a Dual Affine

Variant of Karmarkar's Method for Linear Programming", Operations Research

Letters 6(6), pp. 261-267.

Murty, K.G. & Y.Fathi (1984), "A Feasible Direction Method for Linear Programming",

Operations Research Letters 3(3), pp. 121 -127.

Nemirovskiy, A.S. (1987), "An Algorithm of the Karmarkar Type", Soviet J. Comput.

Syst. Sc. 25(5), pp. 61-74.

Nickels, W., W.Rodder, L.Xu & H.-J.Zimmermann (1985), "Intelligent Gradient Search

in Linear Programming", E.J.O.R. 22, pp. 293-303.

Orden, A. (1980), "A Step Towards Probabilistic Analysis of Simplex Method

Convergence",Mathematical Programming 19, pp. 3-13.

Padberg, M.W. (1986), "A Different Convergence Proof of the Projective Method for

Linear Programming", Operations Research Letters 4(6), pp. 253-257.

Paige, C.C. & M.A.Saunders (1982), "LSQR: An Algorithm for Sparse Linear Equations

and Sparse Least Squares", ACM Transactions Math. Software 8(1), pp. 43-71.

Pan, V. & J.Reif (1985), "Fast and Efficient Algorithms for Linear Programming and for

thr Linear Least Squares Problem", TR-11 -85, Harvard University, Center for

Research in Computing Technology.

Papadimitriou, C.H. & K.Steiglitz (1982), Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ.

178

Rockett, A.M. & J.C.Stevenson (1987), "Karmarkar's Algorithm: A Method for Solving

Large Linear Programming Problems", BYTE, pp. 146-160, (September).

Roos, C. (1985), "On Karmarkar's Projective Method for Linear Programming", Report

85-23, Department of Mathematics and Informatics, Delft University, Netherland.

Rosen, J.B. & J.C.Ornea (1963), "Solution of Nonlinear Programming Problems by

Partitioning", Management Science 10(1), pp. 160-173.

Rosen, J.B. (1964), "Primal Partition Programming for Block Diagonal Matrices",

Numerische Mathematik 6, pp. 250-260.

Salhi, A. & G.R.Lindfield (1988), "Postoptimality Analysis via Karmarkar's Algorithm",

3rd SIAM Conference 011 Applied Linear Algebra, May 23-26, the Concourse

Hotel, Madison, Wisconsin, USA.

Schonlein, A. (1986), "Der Algor~thmus von Karmarkar - Idee, Realisation, Beispiel und

Numerische Erfahrungen", Angewandte lnformatik 8, pp. 344-53.

Schrage, L.E. (1983), User's Manual for LINDO, Universi ty of Chicago, USA.

Schreck, H. (1986), "Experiences with an Implementation of Karmarkar's LP

Algorithm", Methods of Operations Research 54, pp. 535-542.

Schrijver, A. (1986), Theory of Linear and Integer Programming, J. Wiley & Sons Ltd.

Shamir, R. (1987), "The Efficiency of the Simplex Method: A Survey", Management

Science 33(3), pp. 301-334.

Shanno, D.F. & R.E.Marsten (1988), "A Reduced-Gradient Variant of Karmarkar's

Algorithm and Null-Space Projections", J. Opt. Theory and App. 57(3), pp. 383-

397.

Shanno, D.F. (1988), " Computing Karmarkar Projections Quickly", Mathematical

Programming 41, pp. 6 1-71.

Shetty, C.M. & M.Ben Daya (1985), "On the Step Size in Karmarkar's Algorithm",

PDRC Report Series 85-02, School of Industrial and Systems Engineering,

Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

179

Shor, N.Z. (1977), "Cut-off Method with Space Extension in Convex Programming",

Kibernetica 13, pp. 94-95. English Translatio11: Cybernetics 13, pp. 94-96.

Simonnard, M. (1966), Linear Programming, Prentice-Hall, Englewood Cliffs, NJ.

Smale, S. (1983), "On the Average Number of Steps of The Simplex Method of Linear

Programming", Mathematical Programming 27, pp. 241-262.

Sonnevend, Gy. (1985), "An Analytical Centre for Polyhedrons and New Classes of

Global Algorithms for Linear (Smooth, Convex) Programming", Proceedings of

thel2th Conference on System Modelling, Budapest, pp. 866-875.

Strang, G. (1985), "Karmarkar's Algorithm in a Nutshell", SIAM News 18.

Strang, G. (1987), "Karmarkar's Algorithm and Its Place in Applied Mathematics", The

Mathema~ical Intelligencer 9(2), pp. 4-10.

Te llier, H.Le, (1984), "La Geon:ietrie Du Marchand des Quatre Saisons", Science &

Avenir 448, pp. 47-51, (juin).

Todd, M.J. & B.P.Burrell (1986), "An Extension of Karmarkar's Algorithm for Linear

Programming Using Dual Variables", Algorithmica 1, pp. 409-424.

Todd, M.J. (1982), "On Minimum Volume Ellipsoids Containing Part of a Given

Ellipsoid", Mathematics of Operations Research 7(2), pp. 253-261.

Todd, M.J. (1988a), "Improved Bounds and Containing Ellipsoids in Karmarkar's

Linear Programming Algorithm", Mathematics of Operations Research 13(4),

pp. 650-659.

Todd, M.J. (1988b), "Exploiting Special Structure in Karmarkar's Linear Programming

Algorithm", Mathematical Programming 41 , pp. 97-113.

Tomlin, J.A. (1985), "An Experimental Approach to Karmarkar's Projective Methods for

Linear Programming", Proceedings of Symposium on Karmarkar's and Related

Algorithms for Linear Programming, organized by IMA, held on May the 7th 1985

at the Geological Society, Burlington House, Piccadilly, London.

Traub, J .F. & Wozniakowki (1982), "Complexity of Linear Programming", Operations

Research Letters 1(2), pp. 59-62.

180

Turner, K. (1987), "A Variable-metric Variant of the Karmarkar Algorithm for Linear

Programming", Technical Report 87-13, May 1987, Dept. of Math. Sci., Rice

University, Houston, Texas 77251, USA.

Vanderbei , R.J., M.S.Meketon & B.A.Freedman (1986), "A Modification of

Karmarkar's Linear Programming Algorithm", Algorithmica 1, pp. 395-407.

Vial, J.-P. (1986), "Approximate Projections in a Projective Method for the Linear

Feasibility Problem", CORE Discussion Paper N08707, Center for Operations

Research and Econometrics, Universite Catholique de Louvain, Belgium.

Vial, J.-P. (1987), "A Fully Polynomial-Time Projective Method", CORE Discussion

Paper N°8713, Center for Operations Research and Econometrics, Universite

Catholique de Lou vain, Belgium.

Yamnitsky, B. & I.A.Levin (19~2), "An Old Linear Programming Algorithm Runs in

Polynomial Time", 23rd Symposium on Foundations of Computer Science, IEEE,

pp. 327-328.

Yamnitsky, B. (1982), "Notes on Linear Programming", Master's Thesis, Boston

University.

Ye, Y. & M.Kojima (1987), "Recovering Optimal Dual Solutions in Karmarkar's

Polynomial Algorithm for Linear Programming", Mathematical Programming

39(3), pp. 305-317.

Ye, Y. (1987), "Karmarkar's Algorithm and the Ellipsoid Method", Operations Research

Letters 6(4), pp. 177-182.

Zoutendijk, G. (1960), Methods of Feasible Directions, Elsevier Publishing Co.,

Amsterdam.

Zukhovitskiy, S.I. & L.1.Avdeyeva (1966), Linear and Convex Programming,

W.B.Saunders Company, Philadelphia and London.

181

Appendix A: Simplicial Algorithm of Yamnitsky and Levin (1982)

Let L be the length of the input data of a LP problem, and Vo the volume of the

smallest simplex So containing the feasible region K of the problem. According to

Yarnnitsky (1982), given that Vv e K, v a vertex, lvl 2L, So can be the regular simplex

with edges of length 2L. And the vertices of So can be determined without much work.

To outline his algorithm, some definitions are necessary .

Suppose that the regular 3-dimensional simplex (Fig A. l) is the enclosing initial

polyhedron.

Principal Edge "'M G

T

Principal Vertex

Bottom Side

Top Vertex
0

Constructing Hyperplane

Splitting Hyperplane

Fig A. I Splitting and Enclosing Process of the

Simplicial Algorithm

Definitions:

Top Vertex: The vertex among cut off vertices which is most distant from the cutting

hyperplane. Distance here refers to the largest interval (vertex to intersection point

of principal edge with cutting hyperplane.)

182

Set SIDE= {OTB,OTA}, sides containing the principal edge OT.

Set ET= {OB,OA}, all edges coming out of top vertex 0, except the principal edge

OT.

Set EB = {TB,TA}, all edges coming out of principal vertex T, except the principal

edge OT.

Set L = {L1, L2}, all points which are the intersections of the splitting hyperplane

with edges from ET.

Set N = {N 1, N2}, all points which are the intersection of the bottom hyperplane with

lines joining M to points from L.

Constructing Hyperplane: An (m-1)-dimensional hyperplane containing M and all

points of L.

New Sunpl~x: Can be constructed with m+ 1 points, i.e. all points of N, the p1incipal

vertex T and M.

With these definitions in mind, the algorithm may be outlined as follows.

Algorithm F:

0- Construct initial simplex So containing the feasible region.

1- Construct a hyperplane passing through the center of So, parallel to bottom side,

resulting into set points G, Lt, L2.

2- Define the constructing hyperplane which passes through L1, L2 and between top

vertex O and intersection of principal edge and cutting hyperplane, i.e. point G.

3- if the centre of the new simplex is optimal then stop, else go to 1-.

183

Appendix B Cholesky Decomposition

The Cholesky method is a variant of Gauss elimination for symmetric positive

semidefinite mm-matrices. If Mis such a matrix then it can be written in the factored form

M = LLT, as depicted below.

M11 M12 ··• M1n L1 I 0 L1 I L21 · · · Ln1

M21 M22 ··· L21 L22 L22 ... Ln2

=

Mn1 Mn2 ··· Mnn Ln1 Ln2 ··· Lnn 0 Lnn

Lis lower triangular and sometimes called square root of M, given its similati ty with

the scalar case. The method, due to Cholesky and Banachiewicz is described in the

following algorithm for computing L:

for i = 1, ... , n do

i-1
L .. - M .. - ""1

~-II - II ~JI (B. l)
j=l

j = i+ l, ... ,n (13.2)

endfor

184

Appendix C: Sparsity Preservation and Ordering Algorithms

Sparse techniques have been used in the implementation of the simplex algorithm, for a

long time, before their application in any other domaine [Gill et al., 1984; Dantzig, 1963J.

Commercial codes for large LP problems seem even to predate codes for sparse linear

systems of equations. However, it should be noted that the simplex method reduces to the

solution of a set of linear systems.

One of the main problems in solving sparse systems is that when the matrix is

factored, it suffers fill-in. In other words, sparsity tends to be destroyed. In the case of

the normal equations, for example, the Cholesky factor L presents more nonzeros than the

lower part of AT A. However, it has been observed that a judicious reordering of the

matrix rows and columns can drastically reduce fill-in, i.e. the number of nonzeros

created as a consequence of the factorization. Therefore, the computation and storage

requirements are also reduced, if sparsity is exploited. Such a reordering is practically

embodied in a permutation matrix, which is defined as follows.

A permutation matrix Pis a square matrix whose columns are some permutation of

those of the identity matrix. Pis orthogonal, i.e. pTp = I.

If we consider again the system of normal equations AT Ax = b, then a reordered

equivalent symmetric system is the following:

P(ATA)PT(Px) = Pb. (C. l)

The Cholesky method is still applicable to the above system.

The ordering problem can, thus, be defined as that of finding a permutation matrix P.

Although the main objective of ordering algorithms is to reduce the overall fill-in,

there are approaches to the problem, with a different objective. That is reducing the

number of operations by confining the fill-in to some part of the matrix, or locally. We

can talk then about ordering algorithm with local or global strategies [Duff et al., I 986].

Global strategies have the advantage of being easy to design and to implement. They are

the most popular and well studied. In the following, we will present two such algorithms,

185

namely the minimum degree algorithm of Markowitz, and the nested dissection algorithm

of Alan George [George & Liu, 1981].

Before going into the presentation of the algorithms, let us see an example to illustrate

the effect of reordering, on the process of factorization.

Consider the symmetric system

A X

***** *
** *
* * *
* * *
* * *

The Cholesky factor of A is

L =

*
**

=

=

I>,

*
*
*
*
*

L has nonzeros where the lower part of A has zeros. The factorization of A has caused

the fill-in. However, if the system is reordered using the permutation matrix

p =

it becomes

1
1

1
1

186

A' x' = b',

* * * *
* * * *
* * * = *
** * *

***** * *

The factorization of the A' leads to the sparse Cholesky factor

L' =

*
*

*
*

The reduction of fill -in leads to the reduction of work from O(n3) operations for the

original system to O(n) operations for the reordered system.

Beside ordering algorithms, there are more direct ways of exploiting sparsity and

preserving it. For some algorithms, like the Cholesky method, it is easy to see how

sparsity comes to be destroyed. The computation of the cross-product AT A is the source

of the problem. A voiding this computation is a step in the right direction, to preserve

sparsity. Orthogonalization methods were discovered as a result of such strategy. Their

success is, however, also limited.

C-1 Some Useful Terminology and Definitions in Graph Theory

T he formal approach to the ordering problem is based on graph theory, which is

appropriate for handling sparse matrices. Some terms and definitions need be given here.

A graph G consists of a set of vertices X, and a set of edges E. It is noted G = (X, E).

If graph G has n nodes then an ordering is a mapping of { I, 2, ... , n} onto X.

Let Xi and Xj e X, be two nodes of G, then {Xi, Xj} is an edge or element of E, if the two

nodes are linked.

187

For a symmetric nxn-matrix A, we can associate a graph GA= (XA, EA), where XA

is the set of diagonal elements and EA the set of links such that aij = aji,;; O and i -:t j.

Consider the following matrix A with diagonal elements numbered from 1 to 5.

{l) *
* (2) *

(3) *

*
* * (4) *

* (5)

The graph GA of A can be represented as follows

G:
A

Fig C.1 Graph Representation of a Matrix

If we consider a permutation matrix P I, the graphs of A and PAPT are similar.

However, the labelling of their nodes are different. Thus, an ordering is just a different

labelling of the nodes [George & Liu, 1981].

Two nodes Xi and Xj of G are adjacent if { Xi , Xj} e E.

The degree of a node Xi, noted deg(xi), is the number of connections it has with other

nodes. In the above graph G, deg(x4) = 3.

The adjacency structure of a graph is important in the implementation of ordering

algorithms.

The diameter of a graph is the length of the longest path between two nodes.

Nodes being at the extremities of the longest path are termed peripheral, ore nodes

with highest eccentricity.

188

Pseudo-Peripheral nodes are those with high eccentricity, but not with the highest

eccentricity.

C-2 The Minimum Degree Algorithm

This is by far the most popular ordering algorithm. The minimum degree algorithm of

Tinney is based on the Markowitz scheme for reducing fill in the solution of unsymmetric

systems of linear equations by Gauss elimination [Duff et al., 1986; George & Liu,

1981]. The algorithm startegy is to start reducing the columns with few entries, which

corresponds to choosing nodes with least degree. This gave the name of the algorithm.

For a given symmetric graph, the algorithm may be sketched as follows.

1- lnitilize i to 1.

2- Choose node Xi with minimum degree from graph Gi-t = (Xi-1, Ei-J).

3- Eliminate node Xi from Gi-1•

4- i = i + 1,

if (i > Card(X)) then stop else repeat from 2-.

The algorithm produces a new labelling of the graph.

When choosing the node with lest degree, the situation where many such nodes are

present, often arise. A random choice is then made, corresponding to a tie-breaking.

However, tie-breaking strategies give different versions of the minimum degree algorithm

[George & Liu, 1981].

Application of the algorithm to the graph of matrix A, above, proceeds as follows.

Select node (}) relabel it 1.

189

Select node G relabel it 2.

Select node G relabel it 3.

Select node (J) relabel it 4.

Last node (3) relabel it 5.

Fig C.2 Minimum Degree Algorithm Applied to

Graph C.l

The reordered graph becomes:

G T
PAP

190

The permutation matrix produced by the algorithm is

1
1

p = 1
1

1

thus

(3) *
(5) * * *

PAPT= * (1) *
* * (2) *

* * * (4)

The underlying theory of the Markowitz strategy is beyond the scope of this work.

For details see [Duff et al. 1986, p.128]. It must be said, however, that the algorithm is a

heuristic approach and may fail to produce the "best" ordering. Proving that the produced

ordering is optimal is NP-complete.

C-3 The Nested Dissection Algorithm

The nested dissection algorithm is similar to the minimum degree algorithm in that it

attempts to reduce the overall fill-in, and both produce similar orderings. The nested

dissection, however, according to George and Liu (1981), has the advantage of speed and

modest and predictable storage requirements.

The algorithm is a devide-and-conquer method: A heuristic algorithm is used to to

choose a set of nodes, (separator), such that it devides the given graph, and its matrix,

into two parts of approximately equal size. The nodes of the two parts are renumbered

consecutively followed by those in the separator. The process is then recursively repeated

191

on each part and so on, until the dissection of the remaining components is no longer

possible.

* * * * *

* * * * *

I* * I * I * * I
* * * * *

* * * * *

Fig C.3 Nested Dissection of a 5x5 Grid

The nested disse~tion algorithm may be sketched as follows.

0- Gk- 1 = GA.

1- Disconnect the graph Gk of the matrix into two subgraphs Gi and Gj by removing

some nodes, (separator).

2- Relabel the nodes starting from those of the disconnected sub-graph, followed by

those in the separator.

3- If card(Xi) and card(Xj) $ 2 then stop,

else repeat from 1- fork = i and k = j.

endif.

Example: Apply the Nested Dissection Ordering to the following graph

192

The corresponding matrix and its reordering, as in above graphs, according to the

nested dissection algorithm, are:

(1) * *
* (2) *
* (3) *

* * (4) * *
* (5) * *

* (6) *
* (7)

* * (8)

A

(1) *
(2) *

* * (3)
(4)

*
*

* *
(5) *

* * (6) *
* *

*

PAPT

* (7) *
* (8)

Although the minimum degree algorithm is widely used, it can be shown that the

nested dissection method is more advantageous in many cases. The major feature of the

algorithm is that its performance can be analysed for some model problems, and it has

193

been shown to produce optimum ordering for these problems (25-node problems arising

in finite element). Its operation count and the fill-in introduced can be precisely identified

(see Duff et al., 1986). O(n3) operations are needed for nxn grids and the fill-in is

O(n2Ln(n)).

On the other hand there are no known formulae for the order of fill-in or operation

count for the minimum degree algorithm. The difficulty of analysing the performance of

the algorithm stems from the fact that tie-breaking is critical. There are many tie-breaking

strategies and they greately influence the performance of the algorithm. (One such strategy

is, for example, to choose the node of minimum degree which is first in the original

order.) Whatever strategy used, the nested dissection algorithm seems to be superior for

most problems, both in speed and storage requirements.

194

Appendix D Updating Algorithm for Least Squares

Updating methods are an important feature of LSQ problems. In the real world

problem data, most of the time, are incomplete. Often new observations are made after the

problem has been already solved. It is crucial, therefore, to be able to incorporate the

effects of these observations into the solution without having to solve it de nova. In our

case, however, the usefulness of such techniques is mainly concerned with efficient

exploitation of sparsity in the problem data. When the problem matrix is sparse except for

few rows, it is attractive to discard the nonsparse rows, which will ce11ainly cause severe

fill-in in the Cholesky factor. The resulting incomplete problem is then solved and its

solution updated, taking account of the removed rows. In the following we shall present

an updating algorithm, due to Heath (1981), a modification of which we use in

implementing some variants of ~armarkar's algorithm.

111e problem to solve is

min lib -Ax ll2•
X

Consider the partitioning of A and b into

Then (D.1) is written as

Let r1(x) = b1 - A1x and r2(x) = b2 - A2x and solve the incomplete problem

using orthogonal factorization

195

(D.l)

(D. l')

(D.2)

If z is the effect of the removed rows on the solution x to (D.1) then x = y + z. Thus

r1(x) = bt - A1(y + z) = b1 - A1y - A1z = r1(y) - A1z. (D.3)

Similarly r2(x) = r2(y) - A2z.

Because ri(y) is othogonal to the column space of A1T then

From (D.3) we can write

Replacing A 1 T by its QR decomposition, we can write

(RT O)Qq(x) = - (RT O)QA1z.

Thus Qr1(x) = - QA1z. Since length is invariant under an orthogonal transformation, we

have

and

Thus, minimizing II r1 (x) 1122 is equivalent to minimizing II A 1z 1122. (D.2) can, therefore,

be written as

196

(0.4)

Again invariance of length under orthogonal transformations permits to write

(0.4) is then equivalent to

(0.5)

Let u = Rz and v = r2(y) - A2R·1z and write (D.5) as

(0.6)

More explicitly we solve the problem

(0.7)

Using an orthogonal matrix U, (D.7) may be cast into

where

(0.8)

Thus

or

197

Now, we have the triangular system Ls= r2(y), which delivers s. The vector u is

obtained from

with t chosen as zero to minimize the norm, and the updating vector is z = R·1u.

Algorithm D

1- Solve incomplete problem (D.2) using Cholesky method or orthogonal

factoriz;ation to obtain y = R·lc.

2- Compute orthogonal factor:ization (D.8).

3- Compute r2(y) = b2 - A2Y.

4- Computes = L·lr2(y).

5-Compute

6- Compute z = R•lu.

7- X = y + Z.

Note: Algorithm D needs storing orthogonal matrix U whose dimension is that of x.

A more efficient version of this algorithm is given in Chapter 3, (Algorithm 3.1).

198

Appendix E: MATLAB code of Agorithm 6.3

% Implementation of the Partitioning Karmarkar Algorithm,
% Problem has form: min c Tx s . t. Ax=b, x ~O
%
clear;
% Read problem data given in file prob
prob ;
%

% Set up problem into canonical form
%

A(:, nn+l) = b-A*ones(nn , 1) ;
A (: , nn + 2) = - b ;
c= [zeros (l , nn) , 1] ; phase=l ; nn=nn+2 ;
x=ones(l , nn) ; zp=lOOOO ; zO=O ; z=lOOOO ; y=zeros(mm, 1) ;
yl=zeros (mm, 1); k=O ;

% initialize tO to clock

tO=clock ;

% Main loop
%

%

while abs (zO-zp)/(l+abs(zp))>0 . 0001
D=diag (x (l : nn));
Adash=A(: , 1:nn)*D ;

% Set up partitioning of Adash
%

n0=nn-sum(n(2 :nb+l));
if phase==l , z=O ; end ;
cr(l : nn)=[c(l:nn-1),-z] ;
Dcr=D *cr(l : nn) ' ;
DcrO=Dcr(sum(n(l : nb+l)) :nn) ;
residl=DcrO;
resid2=[Dcr0(1:n0-1);0];
uO=eye(nO);
for i=l: nb

il=sum(m(l:i)) ; i2=sum(m(l:i+l))-l;
jl=sum(n(l:i)); j2=sum(n(l:i+l))-l;

199

%

jOl=sum(n(l:nb+l));
Bi=Adash(il:i2, jl:j2);
Ai=Adash(il:i2, jOl:nn);
Dcri=Dcr(jl:j2);

% Apply Algorithm 6.2 to find dual variables, i.e.
% first solve each subproblem using QR method
%

[q,r]=qr(Bi'); di=q'*Dcri;
Rinvi=pinv(r(l:rn(i+l),1:rn(i+l)));

Rinv=[Rinv, [Rinvi;zeros(rnax(rn)-m(i+l),m(i+l))]];
yi=Rinvi*di(l:m(i+l));
yO=[yO;yi];

Fi=Ai'*Rinvi; F=[F, Fi];
uO=uO+Fi*Fi';

residl=residl-Ai'*yi;
if phase==2

y2=[y2;yi];
resid2=resid2-Ai ' *yi;

end;
end;

%

% Update the solution of the incomplete least squares
% problem
%

%

%

pinvu=pinv(uO);
ul=pinvu*residl;
for i=l: nb

il=sum(m(l:i)); i2=sum(m(l:i+l))-1;
y(il:i2) = yO(il:i2)

+ Rinv(l:m(i+l),il:i2)*(F(l:n0,il:i2)) '*ul;
end;

if phase==2

u2=pinvu*[zeros(l,n0-1),-1] ';
for i=l: nb

il=sum(rn(l:i)); i2=surn(rn(l:i+l))-1;
yl(il:i2)=Rinv(l:rn(i+l),il:i2)*(F(l:n0,il:i2)) '*u2;

end;

200

%

u3 = pinvu*resid2;
for i=l: nb
il=sum(m(l : i));
i2=sum(m(l:i+l))-1;
y2(il:i2) yO(il:i2)

+ Rinv(l:m(i+l),il:i2)*(F(l:n0,il:i2)) ' *u3 ;
end;

al=[zeros(l , nn-1),-1);
bl=[Dcr(l:nn-1) ',OJ;

for i=l:nb
il=sum(m(l:i)); i2=sum(m(l : i+l))-1 ;
jl=sum(n(l:i)) ; j2=sum(n(l:i+l))-1;
jO l =sum(n(l : nb+l)) ;
a 1 (j 1 : j 2) =a 1 (j 1 : j 2) -y 1 (i 1 : i 2) ' *Adas h (i 1 : i 2 , j 1 : j 2) ;
al(jOl : nn) = al(jOl : nn)

- yl (il: 12) ' *Adash (il: i2, jOl :nn);
b 1 (j 1 : j 2) = b 1 (j' 1 : j 2) -y 2 (i 1 : i 2) ' *Adas h (i 1 : i 2 , j 1 : j 2) ;
bl(j01:nn)=bl(j01 : nn)

- y 2 (i 1 : i 2) ' *Adas h (i 1 : i 2 , j O 1 : n n) ;
end;

%

% Call Function supinl or supin2 to find
% Max {z I bl+ al*z 0}
%

zO
zO=supinl(al,bl,nn,ty);

yO=y;
yt (l:mm) =y2+z0*yl ;
if z<yt*b & (z0~=-le20) ,z=yt*b;else , y=yO; z=zp;end;
disp(yt);
disp(' Giving dual objective function '),disp(yt*b);

end ;
%

% Calculate search direction
%

cp(l:nn)=Dcr(l :nn);
for i =l:nb

il=sum(m(l:i)); i2=s um(m(l:i+l))-1;
j l =sum(n(l:i)); j 2=s um(n(l : i +l)) - 1;

201

jOl=sum(n(l:nb+l)) ;
cp (j 1 : j 2) = cp (j 1 : j 2) ' -Adas h (i 1 : i 2 , j 1 : j 2) ' * y (i 1 : i 2) ;
cp(j01:nn)=cp(j01:nn) '-Adash(il:i2 , jOl:nn) '*y(i l : i2);

end;
cp (1 :nn) = cp (1 :nn) '

- (c(l:nn-l)*x(l : nn-1) 'z)/nn*ones(l ,nn) ' ;
cpn(l:nn)=cp(l:nn)/norm(cp(l:nn),2) ;

%

% Segment to optimise step size
%

%

tc=O;
for i=l:nn
step(i)=l/(cpn(i));
if step(i) <O , step(i)=le20; tc=tc+l;end;

end;
if tc<nn.

[beta , minb]=min(step(l:nn)) ;
if abs(x(minb)*x(minb)/cpn(minb))<le-9, f=l ;
else, f=.99;end;
s=f*beta;

else
s = . 95 ;

end;

bdash=ones(l ,nn)-s *cpn(l:nn);
bbar(l:nn)=D*bdash'/(ones(l , nn)*D*bdash');
bf=bbar(l:nn)/bbar(nn);
k=k+l ;
x=bf ;
disp(' Iteration :');disp(k) ;
disp('Primal objective function value');
if phase==2

disp(cl(l : nn-l)*x(l:nn- 1) ') ;
else

disp(x(nn-1));
end;
if (abs(x(nn-1))<.005) & (phase==l)

disp(' End of Phase 1') ;
nn=nn-l;phase=2;
A(:,nn)=- b;

202

zp=cl (1: nn-1) *x (1: nn-1) '; c (1 : nn-1) =cl;
x(nn)=l;D=diag(x(l:nn));

elseif phase== 2

end;

zp=cl (1 :nn-1) *x (1 :nn-1) ';
else
zp=x(nn-1);

% Remove content of F, Rinv, yO and y2
F= [] ; Rinv= [] ; yO= [] ; y2= [] ;

time= etime(clock,tO)
end
disp('Primal solution '); disp(x(l :nn));
disp(' Least squares solution giving dual variable values');
disp(yt) ;

%

% Function Supinl is called from the program above . It is
% basically a ratio test to find z ' = sup{zl bl+alz~O}.
% Among the values -bl(i)/al(i) may be found z ' which is
% a lower bound on the optimum objective value z* of the
% problem, i.e. z •~ z* .
% al and bl are n-vectors defined in Chapter 4
%

function zdash = supinl (al , bl, n, ty)
ratio=-bl./al;
disp('ratio='); disp(ratio) ;
ratiomin=ones(l,n)*lelO;
ratiomax=-ratiomin ;
if al>zeros(l,n)

allpos=l;
elseif al<zeros(l,n)

allpos=-1;
else allpos=O;

end;
if allpos==O

for i=l:n
if abs(al(i))> . 0005

if al(i)>O,ratiomax(i) =-bl(i)/al(i);

else,ratiomin(i)=-bl(i)/al(i);end;

end;

203

end;
zl=max(ratiomax);
z2=min(ratiomin);
zsign=-1;
if ty== ' min ', zsign=l ;end;
if zsign*z2>zl , zt=z2; else zt=zl;end;

elseif allpos===l
zt=max(ratio);

else
zt=min(ratio) ;

end;
zdash=zt ;

% The following function Supin2 is an alternative to Supinl
%

function zdash=Supin2(~1,bl,n,ty)
ratio=-bl(l : n) ./al(l:n);
zgtn=-le20;
zgtp=-le20 ;
zltn=le20 ;
zltp=le20 ;
for i =l :n
if abs(al(i))> . 0005
if al(i)>O & bl(i)>O & zgtn<ratio(i), zgtn=ratio(i);
elseif al(i)>O & bl (i)<O & zgtp<ratio(i), zgtp=ratio(i) ;
elseif al(i)<O & bl(i)>O & zltp>ratio(i),

zltp=ratio(i);
elseif al(i)<O & bl(i)<O & zltn>ratio(i),

zltn=ratio(i);
end;

end;
end;
if ty== ' max ', zO=zltn; else , zO=zltp ; end;
if zltn<le20 & zgtp>-le20 , z0=-le20 ;
elseif zgtn>zltn, z0=-le20 ;

elseif zgtp>zltp, z0=-le20;
end ;

zdas h=zO;

204

Sample Input File

% Data file Little4

% Problem Little4, is a 4-block problem
% BOi, i = 1 , .. . , 4 corresponds to the ith block
B01=[4 2;2 5];

B02=[2 4;-1 3;4 6];

B03= [1 -2 20;1 0 2;4 -6 47;1 -2 11] ;

B04=[2 4 3;3 1 4;1 2 2] ;

% AOi , i 1 , ... , 4 corresponds to the linking variables

AOl=[l 2 ;1 - 1] ;

A02=[-10 1;5 0 ;0 -1];
A03=[-1 2;-1 -2;2 -1;3 -1];

A04=[10 0 . 1;0.5 1;1 -1];
% Set up canonical standard form by adding slack variables

% where necessary
B01= [B01, (-1) *eye (2), ze;ros (2, 18), AOl];
B02=(zeros(3 , 4),B02, (-l)*eye(3),zeros(3 , 13),A02] ;
B03=[zeros (4, 9) , B03 , (-1) *eye (4), zeros (4, 6) , A03];
B04= [zeros (3 , 16), B04, (-1) *eye (3), A04];
% A is the problem matrix

A=(B01;B02;B03;B04);
% b the right-hand side
b=[3;4;3;2;5;3;1;3;1;5;4 ; 3];
% cl the cost vector
cl= (8 12 0 0 12 18 0 0 0 6 -8 48 0 0 0 0 5 11 8 0

0 0 34 -11);
% number of variables

nn=24;

% number of constraints

mm=12 ;
% m(i+l) of array m contains the number of constraints in

% block i

m= [1 2 3 4 3] ;
% n(i+l) of array n contains the number of variables in

% block i
n= [1 4 5 7 6);

% nb = number of blocks; ty =minor max

nb= 4;ty= ' min ';

205

Appendix F: Version 4 of LPKARl

C FORTRAN77 CODE OF THE KARMARKAR ALGORITHM, WHICH TAKES ACCOUNT OF

C SPARSITY. THE NESTED DISSECTION ORDERING METHOD OF GEORGE IS

C INCLUDED AS WELL AS THE PARTITIONING (UPDATING) METHOD OF HEATH.

C THESE SPARSITY PRESERVATION AND EXPLOITATION TECHNIQUES ARE DEPLOYED

C WHEN SOLVING THE LEAST SQUARES PROBLEM ARISING IN THE COMPUTATION OF

C THE SEARCH DIRECTION

C

C

SUBROUTINE KRMRKR (M, N, NZ, NA, JA, RA, IT, ICOL, ALIST,

1 CO, C, X, RHS, D, CP)

DOUBLE PRECISION D(*) , CP(*), RHS(*),

1 VARl, VAR, BETA, FI , PF, CO(*) , C(*) , ALIST (*),

1 CTX, _X(*), RA(*), ALPHA

INTEGER N, M, ITER, NZ

INTEGER ICOL(*), IT(*)

INTEGER NA(*) , JA(*)

INTEGER RCHLNK(lO0O) , MRGLNK(l000), MASK (l0O0), PERM(lO0O),

1 XADJ(l00O), ADJNCY(250000), XNZSUB(l000), TEMP(l000) ,

2 NZSUB(15000), XLNZ(lO00) , FIRST(l000) , LINK(l0O0), INVP(lO00),

3 INVP0(l00O), LS(2000), XLS(2000)

CF IS A 2-ROW ARRAY OF REALS THAT WILL CONTAIN THE DENSE THE DENSE

C ROWS OF BT .

DOUBLE PRECISION LNZ(50000), DIAG(lO00), ROW(l00O) ,

1 YBAR(l000), Fl(l000), F(2, 1000) , STEP(2000)

C INITIALIZATION

C ITERATION LIMITE IS SET TO 35

ITLIM = 35

ITER • 1

DO 100 I= 1, N

X (I) • 1. ODO

100 CONTINUE

C (N) • 1. ODO

C INITILIZE CPU TIME VARIABLE

IRESLT • LIB$INIT_TIMER()

IF (.NOT. IRESLT) CALL LIB$STOP(%VAL(IRESLT))

150 CONTINUE

C START MAIN ITERATION •

206

C

C RHS IS IDENTICALLY ZERO EXCEPT FOR ITS LAST ELEMENT RHS(N), DUE TO

C THE FACT THAT C• (0, 0, ... , 0, 1)

C

DO 300 J = 1, N
D (J) .. X (J)

RHS(J) - D(J) * C(J)

CP (J) - RHS (J)

300 CONTINUE

C

C CALCULATE CP: WE SOLVE A LINEAR LEAST SQUARES PROBLEM

C FOR THAT WE NEED TO PASSBAND RHS

C

C

CALL HNDATA (M, N, ITER, NZ , RCHLNK , MRGLNK, MASK, LS, XLS ,

l PERM, INVP, INVP0 , XADJ, ADJNCY, XNZSUB, NZSUB, XLNZ, FIRST,

1 LINK, TEMP, NA, JA, RA, IT, ICOL, ALIST, D, RHS, LNZ, DIAG,

1 ROW, YBAR, Fl, F)

C SOLUTION RETURNED IN RHS : COMPUTE CP - DC - B(TRANSPOSE)Y

C CP(J) HAS BEEN INITIALIZED PREVIOUSLY

C

z .. O.0D0

VARl=0. ODO

DO J = 1, N-2
VARl • VARl + C(J)*X(J)

ENDDO

VARl•VARl+C(N)*X(N)

DO 600 J - 1, N
KSTRT .. NA (J)

KSTOP m NA(J+l) - 1

DO 450 K = KSTRT, KSTOP

I • JA (K)

CP(J) = CP(J)-RA(K)*D(J)*RHS(I)

450 CONTINUE

CP(J)=CP(J)-(VARl-Z)/DFLOAT(N)

600 CONTINUE

C NORMALIZATION OF CP

VAR• 0.0D0

DO 700 J=l, N
VAR= VAR+ CP(J) * CP(J)

207

7 0 0 CONTINUE

DO J-1, N

CP(J)•CP(J)/DSQRT(VAR)

ENDDO

C OPTIMIZATION OF STEPSIZE

ITC • 0

DO I-1, N

C THE FOLLOWING TEST IS NECESSARY TO AVOID DIVISION BY ZERO

IF (DABS(CP(I)) .EQ. 0.000) THEN

STEP(I) = 1.0020

GO TO 301

ENDIF

STEP(I) = 1.0O0/CP(I)

301 IF(STEP(I) .LT. 0.000) THEN

C

STEP(I) 1.0020

ITC• ITC+ 1

ENDIF

ENDDO

IF (ITC .LT. N) THEN

INDEX• 1

BETA .. STEP(l)

DO I=l, N

IF(STEP(!) .LT. BETA) THEN

BETA=STEP(I)

INDEX=!

ENDIF

ENDDO

IF(DABS(X(INDEX)*X(INDEX)/CP(INDEX)) .LT. l.0D-10) THEN

FI "' 1.000

ELSE

FI .. . 9900

ENOIF

ALPHA• FI* BETA

ELSE

ALPHA• 0.9500

ENDIF

C INVERSE TRANSFORMATION

VARl = 0.0D0

DO 800 J "' 1, N

208

X(J) 1.000 - ALPHA* CP(J)

X (J) D (J) * X (J)

VARl VARl + X(J)

800 CONTINUE

DO J=l, N

X(J) X(J)/VARl

ENDDO

X(N) X(N)/X(N-1)

DO J 1, N-1

X(J) = X(J)/X(N-1)

ENDDO

C TEST FOR OPTIMALITY

CTX = 0 . 000

DO J = 1, N-2

CTX = CTX + C0(J) * X(J)

ENDDO

IF(DABS(X(N)) .GT . 1.00-6 . AND. ITER .LT. ITLIM) THEN

PF 0.000

DO J = 1, N

PF - PF+ DLOG(X(N)/X(J))

ENDDO

PRINT*, ITER, X(N)

WRITE(ll, 9994)ITER, ALPHA, X(N), CTX, PF

ITER =ITER + 1

9994 FORMAT(I4, 4(2X, Gl6.10))

GO TO 150

ENDIF

C USED CPU TIME

IRESLT - LIB$SHOW_TIMER()

IF(.NOT. IRESLT) CALL LIB$STOP(%VAL(IRESLT))

CTX=0 . 0D0

DO J=l , N-2

CTX = CTX + C0(J) * X(J)

ENDDO

WRITE(ll, 9993) ITER, ALPHA, X(N), CTX

WRITE(ll, 9996)ITER, (J, X(J), J = 1, N

9993 FORMAT(I4, 3(2X, G16.10))

9996 FORMAT(/, 'END OF SOLUTION AT ITERATION', I6, //,

1 'THE SOLUTION TO PROBLEM IS X = ', //, 4(16, G14.6))

RETURN

209

END

C

C******* GENND

C

GENERAL NESTED DISSECTION (GEORGE & LIU, 1981)

SUBROUTINE GENND(NEQNS, XADJ, ADJNCY, MASK, PERM, XLS, LS)

INTEGER ADJNCY(*), XADJ(*)

INTEGER MASK(*), LS(*), PERM(*), XLS(*)

INTEGER I, NEQNS, NSEP, NUM, ROOT

DO 100 Ial, NEQNS

MASK(I)•l

100 CONTINUE

NUM"" 0

DO 300 I- 1 , NEQNS

C FOR EACH MASKED COMPONENTS

200 IF(MASK(I) .EQ.0) GO TO 300

ROOT=I

C FIND A SEPARATOR AND NUMBER THE NODES NEXT.

CALL FNDSEP(NEQNS, ROOT, XADJ, ADJNCY , MASK, NSEP,

PERM(NUM+l), XLS , LS)

NUM•NUM+NSEP

IF (NUM.GE.NEQNS) GO TO 400

GO TO 200

300 CONTINUE

C SINCE SEPARATORS FOUND FIRST SHOULD BE ORDERED LAST, ROUTINE

C REVRSE IS CALLED TO ADJUST THE ORDERING VECTOR.

400 CALL REVRSE(NEQNS, PERM)

RETURN

END

C

C******** INVRSE: GETS THE ORIGINAL ORDERING FROM PERM

C

SUBROUTINE INVRSE(M, PERM, INVP)

INTEGER PERM(*), INVP(*), N, I, K

DO 100 I .. l, M

K = PERM (I)

INVP(K) = I

100 CONTINUE

RETURN

END

210

C

C******** PERMRV: GETS THE ORIGINAL ORDERING OF THE VECTOR SOLUTION X

C

C

SUBROUTINE PERMRV(N, RHS, PERM)

INTEGER PERM(*), N, I, NUM, TEMP, INDEX

DOUBLE PRECISION RHS(*), VAR

2 INDEX = 0

NUM - N-1

DO 1 I"' 1, NUM

IF (PERM(I) .LT.PERM(I+l)) GO TO 1

TEMP• PERM (I)

VAR• RHS (I)

PERM(I) "'PERM(I+l)

RHS(I) = RHS(I+l)

PERM(I+l) - TEMP

RHS(I+l) = VAR

INDEX• 1

1 CONTINUE

NUM - NUM - 1

IF (INDEX.NE. 0) GO TO 2

RETURN

END

C******** REVRSE: CHANGES ORDER OF ELEMENTS OF PERM

C

SUBROUTINE REVRSE(NEQNS, PERM)

C

C

INTEGER PERM(*), NEQNS, SAUV

DO 10 I"' 1, INT(NEQNS/2)

SAUV "" PERM(!)

PERM(I) = PERM(NEQNS-I+l)

PERM(NEQNS-I+l) = SAUV

10 CONTINUE

RETURN

END

C******** FNDSEP: FIND SEPARATOR

C

SUBROUTINE FNDSEP(NEQNS, ROOT, XADJ, ADJNCY, MASK, NSEP, SEP,

XLS, LS)

211

C

C

INTEGER LS(*), MASK(*), SEP(NEQNS*S), XLS(*), ADJNCY(*)

INTEGER XADJ(*), I, J, JSTOP, JSTRT, MIDBEG, MIDEND, MIDLVL,

1 MPlEND, NBR, NLVL, NODE, NSEP , ROOT, MPlBEG

CALL FNROOT(NEQNS, ROOT, XADJ, ADJNCY, MASK, NLVL, XLS, LS)

C

C IF THE NUMBER OF LEVELS IS LESS THAN 3, RETURN THE WHOLE

C COMPONENT AS THE SEPARATOR.

C

IF (NLVL.GE.3) GO TO 200

NSEP = XLS(NLVL+l)-1

DO 100 I=l, NSEP

NODE• LS(I)

SEP(I)•NODE

MASK(NODE)•0

100 CONTINUE

RETURN

C FIND THE MIDDLE LEVEL OF THE ROOTED LEVEL STRUCTURE.

200 MIDLVL - (NLVL+2)/2

MIDBEG - XuS(MIDLVL)

MPlBEG • XLS(MIDLVL + 1)

MIDEND - MPlBEG - 1

MPlEND - XLS(MIDLVL+2) - 1

C

C THE SEPARATOR IS OBTAINED BY INCLUDING ONLY THOSE MIDDLE-LEVEL

C NODES WITH NEIGHBORS IN THE MIDDLE+l LEVEL. XADJ IS USED TEMPO-

C RARILY TO MARK THOSE NODES IN THE MIDDLE+l LEVEL.

C

DO 300 I• MPlBEG, MPlEND

NODE•LS(I)

XADJ(NODE)=-XADJ(NODE)

3 0 0 CONTINUE

NSEP = 0

DO 500 I• MIDBEG, MIDEND

NODE "' LS (I)

JSTRT= XADJ(NODE)

JSTOP= IABS(XADJ(NODE+l)) - 1

DO 400 J = JSTRT, JSTOP

NBR = ADJNCY(J)

212

IF (XADJ(NBR) . GT. 0) GO TO 400

NSEP=NSEP+l

SEP(NSEP)=NODE

MASK(NODE) = 0

GO TO 500

400 CONTINUE

5 0 0 CONTINUE

C RESET XADJ TO ITS CORRECT SIGN.

C

DO 600 I= MPlBEG, MPlEND

NODE .. LS (I)

XADJ(NODE) = -XADJ(NODE)

6 0 0 CONTINUE

RETURN

END

C*********** ROOTLS: ROOTED LEVEL STEUCTURE

C

C

C

SUBROUTINE ROOTLS(NEQNS, ROOT, XADJ, ADJNCY, MASK, NLVL, XLS,

1 LS)

INTEGER ADJNCY(*) , LS(*) , MASK(*)

INTEGER XLS(*), XADJ(*) , I , J, JSTRT, JSTOP, LBEGIN

INTEGER CCSIZE, LVLEND, LVSIZE,NBR,NLVL, NODE,ROOT

C INITIALIZATION

C

C

MASK (ROOT) = 0

LS(l) = ROOT

NLVL = 0

LVLEND = 0

CCSIZE = 1

C LBEGIN IS THE POINTER TO THE BEGINNING OF THE CURRENT LEVEL, AND

C LVLEND POINTS TO THE END OF THIS LEVEL.

C

C

200 LBEGIN

LVLEND

LVLEND + 1

CCSIZE

NLVL = NLVL + 1

XLS(NLVL) = LBEGIN

213

C GENERATE THE NEXT LEVEL BY FINDING ALL THE MASKED NEIGHBORS OF
C NODES IN THE CURRENT LEVEL .

C

DO 400 I a LBEGIN, LVLEND

NODE= LS(I)

JSTRT = XADJ(NODE)

JSTOP XADJ(NODE + 1) - 1

IF (JSTOP.LT.JSTRT) GO TO 400

DO 300 J = JSTRT, JSTOP

NBR ADJNCY (J)

IF (MASK(NBR) .EQ . 0) GO TO 300

CCSIZE = CCSIZE + 1

LS(CCSIZE) = NBR

MASK(NBR) = 0

300 CONTINUE

4 0 0 CONTINUE

C

C COMPUTE THE CURRENT LEVEL WIDTH.

C IF IT IS NONZERO, GENERATE THE NEXT LEVEL .

C

LVSIZE = CCSIZE - LVLEND

IF (LVSIZE .GT . 0) GO TO 200

C

C RESET MASK TO ONE FOR THE NODES IN THE LEVEL STRUCTURE.
C

C

XLS (NLVL + 1) = LVLEND + 1

DO 500 I= 1,CCSIZE

NODE = LS (I)

MASK(NODE) 1

5 0 0 CONTINUE

RETURN

END

C********** FNROOT

C

FIND PSEUDO-PERIPHERAL NODE

SUBROUTINE FNROOT(NEQNS,ROOT,XADJ,ADJNCY, MASK,NLVL,XLS,LS)

C

INTEGER LS(*),MASK(*),XLS(*),

1 ADJNCY(*)

INTEGER XADJ(*),CCSIZE,J,JSTRT,K,KSTOP,KSTRT,MI NDEG,

214

1 NABOR,NDEG,NLVL,NODE, NUNLVL, ROOT,NEQNS

C

C DTERMINE THE LEVEL TRUCTURE ROOTED AT ROOT.

C

C

CALL ROOTLS(NEQNS,ROOT,XADJ,ADJNCY,MASK, NLVL,XLS,LS)

CCSIZE = XLS(NLVL+l) - 1

IF (NLVL .EQ. 1 . OR. NLVL .EQ. CCSIZE) RETURN

C PICK A NODE WITH MINIMUM DEGREE FROM THE LAST LEVEL.

C

100 JSTRT = XLS (NLVL)

MINDEG = CCSIZE

ROOT LS (JSTRT

200

IF CCSIZE .EQ. JSTRT) GO TO 400

DO 300 J = JSTRT, CCSIZE

NODE= LS(J)

NDEG • 0

KSTRT XADJ(NODE)

KSTOP = XADJ(NODE+l) - 1

DO 200 K = KSTRT , KSTOP

NABOR= AOJNCY(K)

IF (MASK(NABOR) .GT. 0) NDEG • NDEG + 1

CONTINUE

IF (NDEG .GE. MINDEG) GO TO 300

ROOT= NODE

MINDEG • NDEG

300 CONTINUE

C

C AND GENERATE ITS ROOTED LEVEL STRUCTURE .

C

400 CALL ROOTLS(NEQNS,ROOT,XADJ,AOJNCY,MASK,NUNLVL,XLS,LS)

C

IF NUNLVL .LE. NLVL) RETURN

NLVL • NUNLVL

END

IF (NLVL .LT. CCSIZE) GO TO 100

RETURN

C************ SMBFCT SYMBOLIC FACTORISZATION

C

SUBROUTINE SMBFCT (NEQNS,XADJ,ADJNCY,PERM,INVP,XLNZ,MAXLNZ,

215

C

C

1

1

1

1

1

1

1

XNZSUB,NZSUB,MAXSUB,RCHLNK,MRGLNK,MARKER,FLAG)

INTEGER INVP(*),MRGLNK(*) , NZSUB(*),

RCHLNK(*),MARKER(*),PERM(*),

ADJNCY(*)

INTEGER XADJ(*),XLNZ(*),XNZSUB(*),

FLAG,I,INZ, J,JSTOP,JSTRT,K,KNZ,

KXSUB,MRGK,LMAX, M,MAXLNZ,MAXSUB,

NABOR,NEQNS,NODE,NPl,NZBEG,NZEND,

RCHM, MRKFLG

C INITIALIZATION

C

C

NZBEG 1

NZEND 0

XLNZ (1) 1

DO 100 K = 1, NEQNS

MRGLNK(K) = 0

MARKER(K) = 0

100 CONTINUE

C FOR EACH COLUMN KNZ COUNTS THE NUMBER OF NONZEROS IN

C COLUMN K ACCUMULATED IN RCHLNK.

C

NPl = NEQNS + 1

DO 1500 K - 1 , NEQNS

KNZ = 0

MRGK = MRGLNK (K)

MRKFLG = 0

MARKER (K) = K

IF (MRGK .NE. 0) MARKER(K) a MARKER(MRGK)

XNZSUB(K) = NZEND

NODE= PERM(K)

JSTRT

JSTOP

XADJ(NODE)

XADJ(NODE + 1) - 1

IF (JSTRT.GT.JSTOP) GO TO 1500

C

C USE RCHLNK TO LINK THROUGH THE STRUCTURE OF A(*,K) BELOW

C DIAGONAL.

C

216

C

C

C

C

200

RCHLNK(K) = NPl

DO 300 J = JSTRT, JSTOP

NABOR= ADJNCY(J)

NABOR= INVP(NABOR)

IF (NABOR.LE. K) GO TO 300

RCHM = K

M = RCHM

RCHM = RCHLNK(M)

IF RCHM .LE. NABOR) GO TO 200

KNZ = KNZ + 1

RCHLNK(M) NABOR

RCHLNK(NABOR) = RCHM

IF (MARKER(NABOR) .NE . MARKER(K)) MRKFLG 1

300 CONTINUE

TEST FOR MASS SYMBOLIC ELIMINATION

LMAX = 0

IF MRKFLG .NE. 0 .OR. MRGK .EQ.0) GO TO 350

IF MRGLNK (MRGK) .NE . 0) GO TO 350

XNZSUB(K) • XNZSUB(MRGK) + 1

KNZ a XLNZ(MRGK + 1) - (XLNZ(MRGK) + 1)

GO TO 1400

C LINK THROUGH EACH COLUMN I THAT AFFECTS L(*,K).

C

C

350 I = K

400 I= MRGLNK(I)

IF (I.EQ.0) GO TO 800

INZ = XLNZ(I+l) - (XLNZ(I)+l)

JSTRT XNZSUB(I) + 1

JSTOP XNZSUB(I) + INZ

IF (INZ.LE.LMAX) GO TO 500

LMAX = INZ

XNZSUB(K) = JSTRT

C MERGE STRUCTURE OF L(*,I) IN NZSUB INTO RCHLNK .

C

500 RCHM = K

DO 700 J = JSTRT, JSTOP

217

600

700

C

NABOR a NZSUB(J)

M • RCHM

RCHM =RCHLNK(M)

IF (RCHM.LT . NABOR) GO TO 600

IF (RCHM.EQ.NABOR) GO TO 700

KNZ-= KNZ + 1
RCHLNK(M) NABOR

RCHLNK(NABOR) - RCHM

RCHM ""NABOR

CONTINUE

GO TO 400

C CHECK IF SUBSCRIPTS DUPLICATE THOSE OF ANOTHER COLUMN.

C

800 IF (KNZ.EQ . LMAX) GO TO 1400

C

C

C

900

1000

llOO

C

C

C

C

1200

OR IF TAIL. OF K-lST COLUMN MATCHES HEAD OF KTH.

IF (NZBEG.GT.NZEND) GO TO 1200

I - RCHLNK (K)

DO 900 JSTRT=NZBEG,NZEND

IF (NZSUB(JSTRT) - I) 900,1000 ,1200

CONTINUE

GO TO 1200

XNZSUB(K) = JSTRT

DO 1100 JsJSTRT,NZEND

IF (NZSUB(J) .NE.I) GO TO 1200

I "" RCHLNK (I)

IF (I.GT.NEONS) GO TO 1400

CONTINUE

NZEND • JSTRT - 1

COPY THE STRUCTURE OF L(*,K) FROM RCHLNK TO THE DATA

STRUCTURE (XNZSUB, NZSUB) .

NZBEG a NZEND + 1

NZEND NZEND + KNZ

IF (NZEND.GT . MAXSUB) GO TO 1600

I = K
DO 1300 J=NZBEG,NZEND

218

C

C

C

C

C

1300

1400

1500

C

1600

C

I .. RCHLNK (I)

NZSUB(J) • I

MARKER(!) .,. K

CONTINUE

XNZSUB(K) = NZBEG

MARKER(K) = K

UPDATE THE VECTOR MRGLNK. NOTE COLUMN L(*,K) JUST FOUND

IS REQUIRED TO DETERMINE COLUMN L(*,J), WHERE L(J ,K) IS

THE FIRST NONZERO IN L(*,K) BELOW DIAGONAL.

IF (KNZ.LE.1) GO TO 1500

KXSUB .. XNZSUB(K)

I .. NZSUB(KXSUB)

MRGLNK(K) • MRGLNK(I)

MRGLNK(I) .. K

XLNZ(K+l).,. XLNZ(K) + KNZ

MAXLNZ = XLNZ(NEQNS) - 1

MAXSUB = XNZSUB(NEQNS)

XNZSUB (NEQNS+l) • XNZSUB (NEQNS)

FLAG• 0

RETURN

ERROR - INSUFFICIENT STORAGE FOR NONZERO SUBSCRIPTS.

FLAG• 1

RETURN

END

C********** GENERAL SPARSE SYMMETRIC FACTORIZATION

C

C

C

C

1

1

SUBROUTINE GSFCT(NEQNS,XLNZ,LNZ,XNZSUB,NZSUB,DIAG,LINK,

FIRST , TEMP , IFLAG)

DOUBLE PRECISION DIAG(*) , LNZ(*),TEMP(*), DIAGJ, LJK

INTEGER LINK(*), NZSUB(*)

INTEGER FIRST(*),XLNZ(*),XNZSUB(*) , I,IFLAG,II,

ISTOP,ISTRT, ISUB,J,K,KFIRST,NEQNS,NEWK

C INITIALIZE WORKING VECTORS

C

219

DO 100 I•l,NEQNS

LINK (I) = 0

TEMP(I) = 0 . 000

10 0 CONTINUE

C COMPUTE COLUMN L(*,J) FOR J=l, .. . , NEQNS.

DO 600 Jc 1, NEQNS

C FOR EACH COLUMN L(*, K) THAT AFFECTS L(*, J).

DIAGJ = 0.000

NEWK - LINK (J)

200 K - NEWK

C

C

C

C

C

C

IF (K .EQ. 0) GO TO 400

NEWK - LINK (K)

OUTER PRODUCT MODIFICATION OF L(*, J) BY L(*, K)

STARTING AT FIRST(K) OF L(*, K) .

KFIRST = FIRST(K)

LJK = LNZ(KFIRST)

DIAGJ = DIAGJ + LJK*LJK

ISTRT - KFIRST + 1

ISTOP • XLNZ(K+l) - 1

IF (ISTOP .LT. ISTRT GO TO 200

BEFORE MODIFICATION, UPDATE VECTORS FIRST AND LINK

FOR FUTURE MODIFICATION STEPS .

FIRST(K) = ISTRT

I• XNZSUB(K) + (KFIRST - XLNZ(K)) + 1

ISUB = NZSUB(I)

LINK (K) = LINK(ISUB)

LINK (ISUB) - K

THE ACTUAL MOD IS SAVED IN VECTOR TEMP.

DO 300 II• ISTRT, !STOP

ISUB-= NZSUB(I)

TEMP(ISUB) = TEMP(ISUB) + LNZ(II)*LJK

I - I + 1

300 CONTINUE

GO TO 200

C APPLY THE MODIFICATION ACCUMULATED IN TEMP TO COLUMN L(*,J).

C

400 DIAGJ = DIAG(J) - DIAGJ

IF (DIAGJ .LE. 0.000 GO TO 700

DIAGJ = DSQRT(DIAGJ)

220

DIAG(J) • DIAGJ

ISTRT XLNZ(J)

ISTOP = XLNZ(J+l) - 1

IF (ISTOP .LT . ISTRT) GO TO 600

FIRST(J) • ISTRT

I - XNZSUB(J)

ISUB - NZSUB(I)

LINK(J) • LINK(ISUB)

LINK(ISUB) • J

DO 500 II - ISTRT, ISTOP

ISUB .. NZSUB(I)

LNZ(II) • (LNZ(II)-TEMP(ISUB))/DIAGJ

TEMP(ISUB) • 0 . 0D0

I • I + 1

500 CONTINUE

600 CONTINUE

C

700

C

RETURN

ERROR - ZERO OR NEGATIVE SQUARE ROOT IN FACTORIZATION.

IFLAG

RETURN

END

1

C******** HNDATA

C

STORES DATA OF LEAST SQUARES PROBLEM IN APPROPRIATE

DATA STRUCTURES , PERFORMS THE UPDATING OF THE

SOLUTION OF THE INCOMPLETE PROBLEM AFTER REMOVING

THE DENSE COLUMNS

C

C

C

1

1

1

C

1

2

3

C

C

SUBROUTINE HNDATA (M , N,ITER, NZ,RCHLNK,MRGLNK,MASK,LS,XLS,PERM,

INTEGER

INVP,INVP0,XADJ,ADJNCY,XNZSUB,NZSUB,XLNZ, FIRST,LINK,

TEMP,NA, JA,RA,IT,ICOL,ALIST, D,RHS,LNZ,DIAG,ROW

,YBAR,Fl,F)

RCHLNK(*), MRGLNK(*), MASK(*) , PERM(*), INVP(*),

INVP0(*), XADJ(*), ADJNCY(*) , XNZSUB(*) , TEMP(*),

LS(*), XLS(*), NZSUB(*),XLNZ(*),FIRST(*),LINK(*),

NA(*),JA(*),IT(*),ICOL(*)

INTEGER I, J, K, M, N, ITER, NZ, FLAG, MAXSUB, MAXLNZ

DOUBLE PRECISI ON LNZ(*), DIAG(*), RHS(*), ROW(*),

221

1 RA(*), ALIST(*), O(*), XNON0, VARl, F(2, *), F0(2),

1 Fl(*) , FFT(2, 2), V(2), INVFFT(2, 2), YBAR(*)

COMMON/El/FFT,INVFFT

C DISCARD THE TWO DENSE COLUMNS TO SET UP THE INCOMPLETE PROBLEM
N • N - 2

C SET THE DATA STRUCTURES ANO FINO ORDERING ONCE FOR ALL
IF(ITER.LT.2) THEN

CALL STRCTR (M,N, NZ,IT,ICOL,XADJ,AOJNCY)

CALL GENND(M,XADJ,ADJNCY,MASK,PERM, XLS, LS)

FLAG= 0

C SET NUMBER OF NONZEROS TO A MAXIMUM

MAXSUB = 110000

1

CALL INVRSE(M,PERM,INVP)

CALL SMBFCT(M, XADJ,ADJNCY,PERM, INVP , XLNZ, MAXLNZ ,

XNZSUB, NZSUB, MAXSUB, RCHLNK, MRGLNK, MASK,FLAG)

PRINT* , 'NONZERO$ IN R = ' ,MAXLNZ

WRITE(ll, ' (15HNONZEROS IN R =,Il0) ')MAXLNZ

IF (FLAG .EQ. 1) WRITE(ll, ' (6HFLAG •,I2) ')

WRITE (11, 9994)

9994 FORMAT(' ITERAT . ',3X, ' ALPHA ' ,12X, 'LAMBDA' , 14X, ' CTX ' ,15X,'PF ')

WRITE (11 , 9995)

9995 FORMAT(' ------- ',3X, ' ----- ' ,12X, ' ------ ', 14X, '--- ' ,15X, ' -- ' ,/)

ENDIF

C

C COMPUTE ELEMENTS OF DIAG

C

C

650

DO 600 I• 1, M

KSTRT • IT(I)

KSTOP - IT(I+l)-1

XNON0 = 0.0D0

DO 650 KKn KSTRT, KSTOP

J • ICOL(KK)
IF(J.GT.N) GO TO 650

XNON0 = XNON0 + ALIST(KK)*ALIST(KK)*D(J)*D(J)

CONTINUE

DIAG (INVP (I)) XNON0

600 CONTINUE

C COMPUTE OFF DIAGONAL ELEMENTS OF BBT AND INSERT THEM IN LNZ

C

222

C

350

460

89

100

DO 700 I=2,M

KSTRT IT (I)

KSTOP = IT(I+l) 1

DO 550 JL =1, I-1

XNON0 = 0.000

II

JJ

DO 460 KK = KSTRT, KSTOP

J = ICOL(KK)

IF(J.GT.N) GO TO 460

ISTRT = IT(JL)

ISTOP IT(JL+l)-1

DO 350 IH= ISTRT, ISTOP

II = ICOL (IH)

IF(J . NE.II) GO TO 350

XNON0 = XNON0 + ALIST(KK)*ALIST(IH)
GO TO 460

CONTINUE

CONTINUE

INVP (I)

INVP (JL)

IF (II.GT .JJ) GO TO 89

INDEX=II

II = JJ

JJ = INDEX

LSTRT XLNZ(JJ)

LSTOP XLNZ(JJ+l)-1

IF(LSTOP.LT.LSTRT) GO TO 550
KSUB XNZSUB(JJ)

DO 100 K = LSTRT, LSTOP

IF(NZSUB(KSUB) .EQ. II) GO TO 200

KSUB = KSUB + 1

CONTINUE

GO TO 550

200 LNZ(K) = XNON0

550 CONTINUE

700 CONTINUE

* D (J)

C THE RIGHT-HAND SIDE OF THE INCOMPLETE SYSTEM TO BE SOLVED

C IS ALL SPARSE, THUS IT NEED NOT BE COMPUTED

IFLAG = 0

CALL GSFCT(M,XLNZ,LNZ,XNZSUB,NZSUB,DIAG,LINK,FIRST,

223

* D(J)

1 TEMP, IFLAG)

C

C RESTORE DIMENSION AND UPDATE THE SOLUTION (ALGORITHM 3.1)

N -= N + 2

C

C COMPUTE F - R(INVERS) B2(TRANSPOSE)

L - N - 1

DO K-1, 2

KSTRT = NA (L)

KSTOP - NA(L+l) - 1

DO KK - KSTRT, KSTOP

J = JA(KK)

Fl(INVP(J)) - RA(KK) * D(L)

ENDDO

L "' L + 1

CAL~ FORSUB M, XLNZ, LNZ, XNZSUB, NZSUB, DIAG,Fl)

DO J "" 1, M

F (K, J) - Fl (J)

Fl(J) - 0.0D0

ENDDO

ENDDO

C

C COMPUTE f•D2c2 - B2(TRANSPOSE) yA
C D2c2 IS THE SECOND PART OF RHS AS PER DECOMPOSITION

C

ITEMP = N-1

DO I• 1 , 2

F0(I) "'RHS (ITEMP)

KSTRT NA(ITEMP)

KSTOP NA(ITEMP + 1) - 1

DO K KSTRT, KSTOP

J = JA (K)

F0(I) = F0(I) - RA(K) * D(ITEMP) * RHS(J)

ENDDO

ITEMP =!TEMP+ 1

ENDDO

C COMPUTE I+FFT IN FFT

DO I.,. 1, 2

DO J = 1, 2
FFT (I,J) .,. 0.0D0

224

C

DO K • 1, M

FFT (I, J) • FFT(I, J) + F(I, K) * F(J, K)

ENDDO

ENDDO

ENDDO

C FFT .. I+ FFT

FFT(l, 1) • FFT(l, 1) + 1.000

FFT(2, 2) • FFT(2, 2) + 1 . 000

C INVERT FFT

KOO• 0

70004

70003

C

CALL INVERS(KOD, 2)

IF (KOD .NE. 1) GO TO 70003

WRITE (11, 70004)

FORMAT(/, 2X, 'UNSUCCESSFUL INVERSION OF FFT ' /)

STOP

CONTINUE

C THE INVERS OF I+ FFT IS RETURNED IN INVFFT

C COMPUTE V • INVFFT * F0

C

C

DO I• 1, 2

V(I) = 0.0D0

DO J - 1, 2

V(I) • V(I) + INVFFT(I, J) * F0(J)

ENDDO

ENDDO

C COMPUTE F(TRANSPOSE)*V AND STORE IT IN YBAR

DO I• 1, M

C

YBAR (I) • 0.000

DO J = 1, 2

YBAR(I) .. YBAR(I) + F(J, I) * V(J)

ENDDO

ENDDO

C COMPUTE RA(-1) * F(TRANSPOSE)*V, THAT IS RA(-1) * YBAR

CALL BACSUB(M, XLNZ, LNZ, XNZSUB, NZSUB, DIAG, YBAR)

C

C COMPUTE SOLUTION OF COMPLETE PROBLEM IN RHS

225

DO I=l, M

INVP0(I) • PERM(I)

ENDDO

CALL PERMRV(M, YBAR, INVP0)

DO I= 1, M

C RHS (I) = RHS(I) + YBAR(I)

RHS (I) - YBAR(I)
ENDDO

C WRITE (11, 1000) (I, RHS (I), I"'l, M)

RETURN

END

C

C******** STRCTR

C

FINDS THE STRUCTURE NOT THE NUMERICAL VALUES OF BBT

C

1

SUBROUTINE STRCTR (M, N, NZ , !ROW, ICOL, XADJ, ADJNCY)

INTEGER ADJNCY(*), XADJ(*), KSTRT, KSTOP,

I, J , K, II, KK, L, M, N, NZ, IROW(*), ICOL(*)

K=l

DO 700 I=l, M

XADJ(I) = K

DO 600 L=l, I

KSTRT • XADJ (L)

KSTOP • XADJ(L+l)-1

DO 10 II= KSTRT, KSTOP

IF(ADJNCY(II) .NE. I) GO TO 10

ADJNCY (K) = L

K = K +1

10 CONTINUE

600 CONTINUE

KSTRT • IROW (I)

KSTOP = IROW (I+l) - 1

DO 500 JL • I+l, M

DO 400 KK • KSTRT, KSTOP
J • ICOL (KK)

IF(J . GT.N) GO TO 400

ISTRT = IROW (JL)

I STOP IROW (JL+l) - 1

DO 300 IH • ISTRT, !STOP

II "' ! COL (IH)

226

IF (II .NE.J) GO TO 300

ADJNCY(K) • JL

K • K + 1

GO TO 500
300 CONTINUE

C

400 CONTINUE

500 CONTINUE

700 CONTINUE

XADJ(M+l)•K

RETURN

END

C MAIN PROGRAM

C

READS THE DATA OF THE LPP UNDER MPS FORMAT

CREATES A LIST CONTAINING THE CANONICAL FORM

REQUIRED BY THE KARMARKAR ALGORITHM. C

C

CHARACTER*72 CARD

CHARACTER*12 STRING, JCOL

CHARACTER*12 CONSTR(l000)

CHARACTER*12 COL, RHS, OBFUNC

CHARACTER*8 ROW1,RHS1 , ROW2,RHS2

CHARACTER*37 FMT,FMPROB,FSC205,FSCFXM,FSCAGR

CHARACTER*22 FMTHLF,FSCORP,FSCSD,FSCTAP,FSCRS8

CHARACTER*5 PROB

DOUBLE PRECISION VAL1,VAL2,ZOPT, ALIST(20000)

1 , RA(20000),VRHS(l000),RC(2000),B(l000),CTX

INTEGER JA(20000),IA(l0000),NA(l0000)

INTEGER NC(2000),NRHS(l000)

INTEGER IS(2000), IT(20000), IROW(20000), ICOL(20000)

INTEGER MS(SO), NS(S0), M, N, !SUB

DOUBLE PRECISION PRHS(2000), CP(2000), D(2000), X(2000),

1

C

C(2000), CDENSE(2000)

C INITILIZE FORMAT

C

DATA FMTHLF / 1
() I/

DATA FMPROB/' (Al2,2X,A8,2X,Fl2.6,3X,A8,2X,Fl2.6) ' /

DATA FSC205/' (Al2,2X,A8,2X,Fl2.5,3X,A8,2X,Fl2.5) '/

DATA FSCFXM/' (Al2,2X,A8,2X,F12.5,3X,A8,2X,Fl2.5) '/

DATA FSCAGR/' (Al2,2X,A8,2X,Fl2.6,3X,A8,2X,Fl2.6)'/

227

C

C

C

C

20

C

DATA FSCORP/' (A12,2X,A8,2X,F12.6)'/

DATA FSCSD /' (A12,2X,A8,2X,F12.8)'/

DATA FSCTAP/' (Al2,2X,A8,2X,F12.6) '/

DATA FSCRS8/' (A12,2X,A8,2X,Fl2.8) ' /

DATA FMSCRS/' (Al2,2X,A8,2X,F12.5) '/

OPEN(UNIT=12, FILEa'INPUT.DAT;l',STATUS='OLD')

OPEN(UNIT- 11,FILE•'OUTPUT.;1',STATUS• 'OLD')

WRITE(ll,' (33HCASE 4: ORDERING AND PARTITIONING) ')

M - 0
N - 0

READ (12,' (14X,A5) ') PROB

WRITE(ll,' (16HPROBLEM NAME , AS)') PROB

IF PROB.EQ . 'SC205' FMT = FSC205

IF PROB.EQ. ' SCAGR' FMT = FSCAGR

IF PROB.EQ. 'SCORP' FMT FSCORP

IF (PROB(l:4) .EQ.'SCSD')FMT FSCSD

IF PROB . EQ. 'SCFXM' FMT = FSCFXM

IF PROB.EQ. ' SCTAP' FMT = FSCTAP

IF PROB.EQ. 'SCRS8' FMT = FSCRS8

IF (PROB(l:4) .EQ.'PROB')FMT = FMPROB

READ(12, ' (A72) ')CARD

WRITE(ll,' (A72) ')CARD

CALL SIZE(MS,M)

CALL SIZE(NS , N)

WRITE(ll,20)M,N

FORMAT(' ** M • ',16,'

READ(l2,' (A72)') CARD

READ(12,ll)OBFUNC

I = 1

** N • ', I6)

200 READ(12,ll)STRING

11 FORMAT(l2A)

IF(STRING(l:3) .NE. ' COL ') THEN

CONSTR(I) = STRING

I = I+l

GO TO 200

228

ENDIF

C START PROCESSING COL

J = 0

JCOL ...
IC .. 1

I = 1

C BECAUSE THE FORMAT IS CHANGING FROM PROBLEM TO ANOTHER

CONE IS BOUND TO READ IN A BUFFER CARD AND THEN READ

C FROM THE BUFFER TO THE VARIABLES WITH APPROPRIATE FORMAT

C

300 READ(1 2,' (72A) ') CARD

C

VALl O.0D0

VAL2 = 0. ODO

C

C IN THE CA~E OF PROBLEM SCRS8, WHERE TWO FORMATS Fl2 .5 AND

C F12.8 ARE USED, A TEST IS NEEDED

C

C

400

IF (PROB .EQ. ' SCRS8 ') THEN

IF(CARD(lS:22) .EQ . 'COST ') THEN

READ(CARD,' (A12 ,2X,A8,2X,F12.8) ')COL,ROWl,VALl

ELSE

READ(CARD, ' (A12,2X,A8,2X, Fl2. 5) ')COL,ROWl ,VALl

ENDIF

GO TO 400

ENDIF

IF(CARD (40:48) .EQ.' ') THEN

FMTHLF(2:19) ... FMT(2:19)

READ(CARD,FMTHLF) COL, ROWl,VALl

ELSE

READ(CARD,FMT) COL,ROW1,VAL1 , ROW2 , VAL2

ENDIF

CONTINUE

IF(COL .EQ. 'RHS I) THEN

PRINT*, ' NC(IC-l)•',NC(IC-1),J

IF(NC(IC-1) .NE . J) GO TO 500

RA (I) = RC (IC-1)

JA (I) = M+l

IA(I) = NC(IC-1)

229

NA(J) • NA(J) + 1

B(M+l) • B(M+l) + RC(IC-1)

I • I + 1

GO TO 500

ENDIF

IF(COL . NE.JCOL) THEN

J - J + 1

JCOL"' COL

IF(J.GT.l)THEN

IF(NC(IC-1) .EQ. (J-l))THEN

C INSERT COST COEFFICIENT IN THE LAST ROW

RA(I) • RC(IC-1)

JA (I) ... M+l

IA(I) • J-1

NA(J-1) • NA(J-1) + 1

B(M+l) • B(M+l) + RC(IC-1)

I • I + 1

ENDIF

ENDIF

ENDIF

IF(ROW1 . EQ.OBFUNC(5 : 12)) THEN

RC(IC) • VALl

NC(IC) • J

IC• IC+ 1

CHERE WE STORE THE COST VECTOR AS A DENSE VECTOR, THUS:

CDENSE(J)=VALl

GO TO 450

ENDIF

CALL SRCHI(CONSTR,ROWl,M,ISUB)

RA(I) .. VALl

JA(I) • ISUB

IA(I) • J

NA(J) ... NA(J) + 1

B(ISUB) B(ISUB) + VALl

I = I + 1

450 IF(VAL2.NE.0.0D0) THEN

CALL SRCHI(CONSTR,ROW2,M,ISUB)

RA(I) • VAL2

JA(I) ,.. !SUB

IA (I) "' J

230

NA(J) = NA(J) + 1

B(ISUB) B(ISUB) + VAL2

I = I + 1

ENDIF

GO TO 300

500 CONTINUE

C PROCESS COLUMN

NZ= I - 1

J = 1

C

550 READ(12,' (A72) ')CARD

VALl 0.0D0

VAL2 0 .ODO

IF (CARD (4 0 : 4 8) . EQ . • I) THEN

FMTHLF(2:19) = FMT(2:19)

READ(CARD,FMTHLF) RHS,RHSl,VALl

WRITE(ll,FMTHLF) RHS,RHSl,VALl

ELSE

C

READ(CARD,FMT) RHS,RHS1,VAL1,RHS2 , VAL2

WRITE(ll,FMT) RHS , RHS1 , VAL1 , RHS2,VAL2

ENDIF

IF(RHS.EQ.'ENDATA

C PROCESS RHS

') GO TO 600

CALL SRCHI(CONSTR,RHSl ,M,ISUB)

VRHS (J) VALl

NRHS(J) ISUB

J - J + 1

IF(VAL2 .NE.0 . 0D0) THEN

CALL SRCHI(CONSTR,RHS2,M,ISUB)

VRHS(J) = VAL2

NRHS(J) ISUB

J = J + 1

ENDIF

GO TO 550

6 0 0 CONTINUE

C WE NEED THE OPTIMUM OBJECTIVE VALUE OF THE

PRINT *, '**********·**** ENTER ZOPT '

READ(*,lS)ZOPT

15 FORMAT (FlS. 4)

VRHS (J) ZOPT

NRHS (J) = M+l

231

PROBLEM

C INTRODUCE SLACK VARIABLES FOR "•<' AND ' >- ' CONSTRAINTS.

C NO LOGICAL COLUMN IS ADDED TO ' • ' CONSTRAINTS.

C

NN - N

CM + 1 COMES FROM THE FACT THAT COST VECTOR IS JUST ANOTHER ROW

DO 700 I• 1, M

STRING • CONSTR(I)

IF (STRING(l:3) .EQ. • N • .OR .

1 STRING(l:3) .EQ. ' E ') GO TO 700

NZ.,. NZ+ 1

NN = NN + 1

JA(NZ) • I

IA(NZ) • NN

NA(NN) - NA(NN) + 1

IF (STRING (1 : 3) . EQ . ' G ') THEN

RA(NZ) • - 1.0D0

C

C AS B CONTAINS THE SUM OF ELEMENTS OF EVERY ROW THEN IT HAS TO BE

C UPDATED WHEN SLACKS ARE ADDED

C

B(I) - B(I) - l.0D0

ELSEIF (STRING(l:3) .EQ. 'L ') THEN

RA (NZ) .. 1. ODO

B(I) = B(I) + l.0D0

ENDIF

700 CONTINUE

I • 1

NN = NN + 1

900 IF (VRHS(I) .EQ.0.0D0) GO TO 750

NZ= NZ+ 1

J A (NZ) = NRHS(I)

IA(NZ) .,. NN

RA(NZ) = -VRHS(I)

NA (NN) NA(NN) + 1

C

C WE PREPARE THE VALUE OF THE LAST COLUMN OF THE PROBLEM MATRIX

C THAT IS b - Ae. NOTE THAT B = Ae

C

B (NRHS(I)) VRHS(I) - B (NRHS(I))

C

232

C WE SET B(NRHS(I)) TO -B(NRHS(I)) AND PUT IT BACK TO ITS NORMAL

C SIGN LATER IN ORDER NOT TO MISS ELEMENTS OF B CORRESPONDING TO ZERO

C IN VRHS

C

7 50

850

C

34

B(NRHS(I))

I = I + 1

-B(NRHS(I))

GO TO 900

CONTINUE

NN = NN + 1

DO 850 II .. 1, M+l

NZ= NZ + 1

JA (NZ) "' II

IA(NZ) .. NN

NA(NN) ,.. NA(NN) + 1

RA(NZ) "' - B(II)

CONTINUE

WRITE(ll,34)NN, M+l, NZ

FORMAT(' Prob . under Canonical Form • I . , I,
1 'N"' ' , 16, 3X,', M = ', I6, 3X, ' , NZ - ' I6/)

C

M M + 1

C

C TRANSPOSE LIST RA WHICH CONTAINS A COLUMN-WISE, INTO ALIST

C WHICH WILL CONTAIN A ROW-WISE

C TWO VECTORS IT AND IS ARE NEEDED TO PERFORM A FAST SPARSE

C MATRIX TRANSPOSE

901

902

903

DO 901 I 1, M

IS(I) = 0

DO 902 I .. 1, NZ

IS (JA(I)) • IS (JA(I)) + 1

IT (1) 1

DO 903 I 2 , M

IT(I)

DO 904 I

IT(I-1) + IS(I-1)

1, NZ

J = IT(JA(I))

IROW(J) JA(I)

ICOL(J) = IA(I)

ALIST(J) = RA(I)

IT(JA(I)) • J + 1

233

904 CONTINUE

CIT NOW WILL CONTAIN THE ADDRESS OF THE BEGINNING OF EACH ROW

IS(l) • 1

DO 905 I= 2, M+l

IS (I) • IT (I-1)

905 CONTINUE

IA(l) • 1

DO 804 I= 2 , NN+l

IA(I) = IA(I-1) + NA(I-1)

804 CONTINUE

C PASS DATA IN A LIST TO SUBROUTINE KRMRKR

C

1

C

C

CALL KRMRKR (M, NN, NZ, IA, JA, RA, IS, ICOL,

CLOSE (UNIT=ll)

CLOSE(UNIT=l2)

STOP

END

ALIST, CDENSE, C, X, PRHS, D, CP

C ********* SIZE: FINDS DIMENSIONS OF PROBLEM

C

SUBROUTINE SIZE(MS,M)

INTEGER MS(50),M

2 I • 1

K • 1

READ(l2,100) (MS(J), J .. 1,12)

WRITE(ll,100) (MS(J), J=l,12)

100 FORMAT(l2I6)

C

1 IF(K.GT.12) GO TO 2

PRINT *' I MS (I) "' I 'MS (I)

IF(MS(I) .EQ. 0) RETURN

M "" M + MS (I)

I = I + 1

K - K + 1

GO TO 1

END

C ********SRCHI: FINDS CONSTRAINT INDEX

C

234

SUBROUTINE SRCHI(CONSTR, CHAIN, M, ISUB)

CHARACTER*12 CONSTR(lO00)

CHARACTER*l2 STRING

CHARACTER*8 CHAIN

INTEGER ISUB,M,II,I

ISUB - 0

STRING -

DO 10 II = 1, M

STRING• CONSTR(II)

IF(STRING(5:12) .EQ.CHAIN) THEN

ISUB • II

RETURN

ENDIF

10 CONTINUE

C

PRINT *,'CHAIN NOT FOUND'

RETURN

END

C************ FORSUB: GENERAL SPARSE FORWARD SUBSTITUTION TO SOLVE

C TRIANGULAR SYSTEMS

C

C

SUBROUTINE FORSUB (NEQNS , XLNZ, LNZ , XNZSUB, NZSUB, DIAG, RHS)

DOUBLE PRECISION DIAG(*), LNZ(*), RHS(*), RHSJ

INTEGER NZSUB(*), !SUB, J , JJ, NEQNS

INTEGER XLNZ(*), XNZSUB(*), I, II, !STOP, ISTRT

C

100

200

DO 200 J = 1, NEQNS

RHSJ = RHS(J) / DIAG(J)

RHS (J) ,.. RHSJ

ISTRT = XLNZ (J)

!STOP= XLNZ(J+l) -1

IF !STOP .LT. ISTRT) GO TO 200

I= XNZSUB(J)

DO 100 II = ISTRT, !STOP

ISUB = NZSUB(I)

RHS(ISUB) a RHS(ISUB) - LNZ(I I)*RHSJ

I = I + 1

CONTINUE

CONTINUE

235

C

C

RETURN

END

C********** BACSUB

C

SPARSE BACKWARD SUBSTITUTION TO SOLVE

UPPER TRIANGULAR SYSTEMS

C

C

C

300

400

500

SUBROUTINE BACSUB (NEQNS,XLNZ,LNZ,XNZSUB,NZSUB,DIAG,RHS)

DOUBLE PRECISION DIAG(*), LNZ(*), RHS(*l, RHSJ, S

INTEGER NZSUB(*), ISUB, J, JJ, NEQNS, I, II

INTEGER XLNZ(*l, XNZSUB(*l, !STOP, ISTRT

J .. NEQNS

DO 500 JJ 1, NEQNS

S = RHS (J)

ISTRT XLNZ (J)

!STOP= XLNZ(J+l) - 1

IF !STOP .LT. ISTRT) GO TO 400

I= XNZSUB(J)

DO 300 II• ISTRT, !STOP

ISUB .. NZSUB(I)

S • S - LNZ(II)*RHS(ISUB)

I•I+l

CONTINUE

RHS(J) • S / DIAG(J)

J ,,. J - 1

CONTINUE

RETURN

END

C

C***** INVERS: FINDS INVERSE OF A SQUARE MATRIX USING

C GAUSS ALGORITHM. IT IS USED TO INVERT 2X2 MATRICES,

C

C

RESULTING FROM THE 2 FULL COLUMNS ADDED TO THE PROBLEM

SUBROUTINE INVERS(KOD, N)

DIMENSION A(20), BB(20), FFT(2,2), INVFFT(2, 2)

DIMENSION B(20),C(20),IL(20),IC(20)

DOUBLE PRECISION DET, PIVO, X, EPS,A, BB, B, C, INVFFT, FFT

INTEGER KOO, M, N, IL, IC, ID

236

COMMON/El/FFT, INVFFT

EPS = 1. 0D-13

NN=N*N

K=l

DO 22 I=l,N

DO 22 J=l,N

A(K) =FFT (J, I)

K=K+l

22 CONTINUE

DO 1 I=l ,NN

1 BB(I)""A(I)

C FIND MAX PIVOT

DET=l.0D0

NM=-N

DO 11 M=l,N

NM=NM+N

IL(M)=M

IC(M)=M

ID=NM+M

PIVO=BB (ID)

DO 2 J=M,N

JJ=J*N-N

DO 2 I=M,N

II=JJ+I

IF(DABS(PIVO) . GE.DABS(BB(II))) GO TO 2

PIVO=BB(II)

IL(M)=I

IC(M)=J

2 CONTINUE

C PERMUTATION OF LINES AND COLUMNS

I=IL(M)

IF(I.LE.M) GO TO 4

IM=M-N

DO 3 J=l,N

IM-IM+N

JJ=IM-M+I

X=-BB (IM)

BB(IM)=BB(JJ)

3 BB(JJ)=X

4 J=IC (M)

237

IF(J.LE.M) GOTO 6

NJ=N*J-N

DO 5 I=l,N

JM=NM+I

JJ=NJ+I

X=-BB(JM)

BB(JM)=BB(JJ)

5 BB(JJ)=X

C MODIFICATION OF COLUMN

6 IF(DABS(PIVO) .GT . EPS) GOTO 7

DET=0.0D0

KOD=l

RETURN

7 DO 8 L=l,N

IF (L.EQ.M) GOTO 8

LL=NM+L

BB (LL)=-BB(LL)/PIVO

8 CONTINUE

C ALGORITHM OF GAUSS

DO 9 I=l,N

IM=NM+I

II=I-N

DO 9 J=l,N

II=II+N

IF(I.EQ.M) GO TO 9

IF(J.EQ.M) GO TO 9

JJ=II-I+M

BB(II)=BB(II)+BB(IM)*BB(JJ)

9 CONTINUE

C MODIFICATION OF ROW

MJ=M-N

DO 10 J=l,N

MJ=MJ+N

IF(J.EQ.M) GOTO 10

BB(MJ)~BB(MJ)/PIVO

10 CONTINUE

DET=DET*PIVO

C PIVOTING

BB(ID)=l .0D0/PIVO

11 CONTINUE

238

C PERMUTATION ON THE RESULTING MATRIX

M=N

12 M=M-1

IF(M.LE.0) GOTO 16

I =IL (M)

IF(I.LE.M) GOTO 14

Jl=N* (M-1)

J2=N*(I-l)

DO 13 J=l,N

JX=Jl+J

JY=J2+J

X•BB(JX)

BB(JX)=-BB(JY)

13 BB(JY)=X

14 J=IC(M)

IF(J . LE.M) GOTO 12

JlocM-N

DO 15 I=l,N

Jl=Jl+N

J2=Jl-M+J

X=aB(Jl)

BB(Jl)=-BB(J2)

15 BB(J2)=X

GOTO 12

16 CONTINUE

K•O
DO 23 I .. 1,N

DO 2:l. J=l,N

JJ.,,J+K

INVFFT(J,I)=BB(JJ)

21 CONTINUE

K=K+N

23 CONTINUE

RETURN

END

C

C

239

