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Summary

The increasing cost of developing complex software systems has created a need for
tools which aid software construction. One area in which significant progress has
been made is with the so-called Compiler Writing Tools (CWTs); these aim at
automated generation of various components of a compiler and hence at expediting
the construction of complete programming language translators. A number of CWTs
are already in quite general use, but investigation reveals significant drawbacks with
current CWTs, such as lex and yacc. The effective use of a CWT typically requires
a detailed technical understanding of its operation and involves tedious and error-
prone input preparation. Moreover, CWTs such as lex and yacc address only a
limited aspect of the compilation process; for example, actions necessary to perform
lexical symbol valuation and abstract syntax tree construction must be explicitly
coded by the user.

This thesis presents a new CWT called CORGI (COmpiler-compiler from Reference
Grammar Input) which deals with the entire "front-end" component of a compiler;
this includes the provision of necessary data structures and routines to manipulate
them, both generated from a single input specification. Compared with earlier
CWTs, CORGI has a higher-level and hence more convenient user interface,
operating on a specification derived directly from a "reference manual" grammar for
the source language.

Rather than developing a compiler-compiler from first principles, CORGI has been
implemented by building a further shell around two existing compiler construction
tools, namely lex and yacc. CORGI has been demonstrated to perform efficiently in
realistic tests, both in terms of speed and the effectiveness of its user interface and
eITor-recovery mechanisms.

Keywords: programming languages, compiler writing tools, lexical analysis,
syntax analysis.
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Chapter 1

Introduction

The development of complex software systems is a lengthy and error-prone process
but since it is often algorithmic in nature, researchers have examined the possibility
of automating many of its aspects. From this research have emerged a number of
"application generators”, which accept a formalized description of a problem and
produce a procedural implementation of a solution. This has given rise to the
design of so-called fourth generation languages, which are largely application-

oriented.

More specifically, tools have been developed to automate each of the phases of a
"traditional" compiler: lexical analysis, syntax analysis, semantic analysis, code

optimization and generation.

For the lexical analysis phase, systems based on the powerful and general-purpose
regular expression notation, and also on less powerful, special-purpose notations
have been developed. A number of syntax analyser generators, which use either
LR or LL-based algorithms in the syntax analysers that they produce, have been
investigated. Perhaps the most widely used tools to generate lexical analysers and

syntax analysers, are lex (Lesk, 1975) and yacc (Johnson, 1975) respectively.

The automatic generation of routines to perform semantic analysis from a formal
semantic description is a more complex and less-understood process than for lexical
and syntax analysers. This is mainly due to the fundamentally more complex nature

of programming language semantics.
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The majority of systems which automatically generate semantic analysers use
attribute grammar techniques to describe static semantics; also more recently
systems have been developed based on the mathematical rigour of denotational
semantics. In the less well-understood area of code generators, a variety of
different approaches have been investigated which provide algorithms working in
both a machine-dependent and machine-independent manner; this area has been
studied by many researchers. The production of the code generation phase of a
compiler has been the most difficult to automate. The goal of research directed
towards this area of compiler construction is to be able to take a formalized
description of the target machine architecture together with an intermediate
representation of the program being compiled; from these, machine code for the

target architecture should be emitted.

Existing tools have a number of apparent drawbacks. They often require the user to
be conversant with their detailed internal operation, and may only deal with unduly

limited aspects of compilation and their syntax is difficult and error-prone.

This thesis addresses the issue of overcoming the drawbacks of current tools by
automatic construction of the compiler front-end directly from the "reference

manual" grammar. The structure of the thesis is outlined below.

In chapter 2, we review the fundamental principles of programming language
definition and implementation. We note the adoption of formal techniques applied
to the area of syntax definition in a routine and universal manner. The general basis

for compiler construction and organisation is described.

In chapter 3, we investigate the automation of software construction, for which

compiler construction, due to the degree of formality readily available, is a

10
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particularly suitable candidate. Various approaches taken by researchers to the

automation of the process of compiler design and construction are also reviewed.

Chapter 4 gives a more detailed account of the use of lex and yacc in the
construction of compiler front-ends. Thig chapter reveals how lex and yacc
specifications can be constructed for a simple programming language, called MSL.
In this way, we gained experience of the use of these two tools, and established a

number of improvements which should be included in our system.

In chapter 5, we identify the need for a compiler-writing system which uses a
"reference manual" grammar as its input. In this chapter we describe, in broad

terms, the nature of such a system, its functional specification and overall structure.

In chapter 6, we shall describe in more detail the design and construction of our

system as briefly introduced in chapter 5.

In chapter 7, we show how our new system (which we call "CORGI") can be used
to generate a compiler front-end for typical modern programming languages such as
Pascal and Modula-2 and a full compiler for a simple programming language,
namely MSL. Results of a number of tests which we conduct using this system
with grammars for typical modern programming languages are presented. A

general conclusion is given in chapter 8.

Appendix A contains the hand-written version of lex and yacc specifications for
MSL. Tt also contains the hand-written tree-walking routines which perform the
semantic analysis and code generation required for MSL. Appendix B contains the
system specification for MSL, together with the generated programs. Appendix C
contains four MSL source programs together with the results produced by the hand-

written version, the lex and yacc version and the CORGI-generated version of the

11
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compiler. Appendix D contains a demonstration of the error-recovery mechanism
incorporated in our system. Appendix E contains the system specifications for full
Modula-2 together with the test programs used to run the generated front-end. The
same test is done for Pascal. Finally appendix F contains the CORGI specification

of the syntax of CORGI specification.

12
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Chapter 2

Programming Languages - Definition and Implementation

2.1 Definition of programming languages

In this chapter, in order to provide a concrete basis for the subsequent work, we
briefly review in outline the methods used in the Programming Language (PL) field.

This is divided into two major sections, definition and implementation.

A complete definition of a programming language must include descriptions of its
syntax (structure) and its semantics (meaning). Syntax defines the structure of legal
sentences in the language, whereas semantics specifies the meaning of these
sentences. Establishing the separation between syntax and semantics of PLs has

been the subject of considerable debate. The main two contentions are that:

» Syntax covers only the context-free aspects.

+ Semantics covers all other compile-time and all run-time aspects of PLs,
known as static semantics (eg. type compatibility of operators and
operands) and dynamic semantics (eg. procedure call mechanisms)
respectively.

or that:
« Syntax deals with all context-free and context-sensitive aspects.

 Semantics only deals with run-time features of PLs.

The author supports the first view, since it is based on the traditional model of a
compiler, which is well-understood, and there exists no overwhelming evidence to

justify modifying this structure.

13
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One useful and well known way of defining the syntax and the static semantics of a
programming language is by means of a grammar, which is often referred to as a
rewriting system. A grammar is a formal device for specifying in a finite way a
potentially infinite set of sequences of characters grouped in a certain structure. A
grammar consists of terminals, nonterminals, a start symbol, and a set of production

rules (rules for short), informally defined as follows:

« Terminals are the basic symbols (tokens) of the language.

« Nonterminals are the syntactic variables that denote sets of strings. They
also specify the hierarchical structure of the language in question.

« One special nonterminal, the start symbol, is identified as the basis for all

derivations using the grammar.

« The set of production rules specifies the structure of the language.

Formally a grammar is defined to be a quadruple:

G=(V,VnP,S)
Where:

« Vtis an alphabet whose symbols are known as terminals.

« Vn is an alphabet whose symbols are known as nonterminals, with

Vi "Vn =@ and Vt uVn=V

« P is a finite set of pairs called productions (or rules), such that each

production (o,B) has the form
o — B with ae V1, Be V*

« S is known as the sentence symbol (or axiom) and is the starting point in

generating any sentence in the language.

14
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A mathematical theory of grammars was developed by the linguist Noam Chomsky
(1959), who classified grammars into four formal types. The classification depends

on the form of the productions, and may be summarized as follows:

1- Type-0 grammar (Unrestricted): A type-0 grammar is one in which there are no
restrictions on the form of all the productions. These productions have the
following form:

a — B o, Be V*
This type of grammar is much too powerful for PLs although it is still unable to

cope with natural languages.

2- Type-1 grammar (Context-sensitive): A grammar is said to be of type-1 or

context-sensitive if all of its productions have the form

oa— B with lal< 1Bl o, Be V*

where lal denotes the length of ¢, ie. the number of symbols in ¢, and similarly

for IBl. This formal definition means that a grammar is context-sensitive if:

1) The number of symbols, terminals or nonterminals on the left side of
every rule is less than or equal to the number of symbols on the right

side of the rule.

i1) It contains at least one rule where the number of symbols on the left side

of the rule is higher than one.

3- Type-2 grammar (Context-free): A further restriction leads us to the concept of a
Context-Free Grammar (CFG). A grammar is said to be context-free if the left
side of every production consists of a single nonterminal symbol, therefore the

productions have the form

oa— B with o€ VnandBe V¥

15
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Notice that B € V* may be found (Hopgood, 1969) as B € V¥, but it does not
matter since any type-2 grammar with empty rules can be rewritten as an

equivalent grammar without empty rules.

At about the same time as Chomsky's work, the BNF (Backus-Naur Form)
grammar model was developed by Backus and Naur for the syntax definition of
Algol 60 (Backus, 1960). In fact Context-Free Grammars are equivalent in
power to BNF grammars; the differences are basically notational. Hence the
terms BNF and CFG are often used interchangeably. The following are

properties of context-free grammars:

» The question as to whether a context-free grammar is ambiguous is

unsolvable.

» The question as to whether a context-free grammar generates an inherently

ambiguous language is unsolvable.

 The question as to whether two context-free grammars generate the same

language is unsolvable.

* A single stack recognizer for context-free languages can be built.

The above statements are proved by Minsky (1972).

4- Type-3 grammar (Regular, right-linear or left-linear): Even further restrictions
are imposed on productions which form a regular grammar. If each production

of the grammar has one of the forms

A —a with ae Vit
A —Ba A,Be Vn

then the grammar is said to be left-linear or regular or a type-3 grammuar.

Similarly, a right-linear grammar is one where all productions are of the form

A — a with aeVt
A —aB A, Be Vn

16
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In most programming languages, most of the basic symbols such as identifiers,
integers, operators, reserved words, etc can be defined using this type of
grammar. It has been shown that type-3 grammars, that is regular grammars, are
equivalent in power to regular expressions (REs) (Aho and Ullman, 1972).
Moreover, efficient algorithms have been developed to construct finite automaton
recognizers for tokens directly from REs (McNaughton and Yamada, 1960).
The use of REs as a tool for building lexical analysers was originally exploited
by Johnson et al. (1968), and Lesk (1975). The essential properties of regular

expressions are:

» The question of whether two regular expressions generate the same
regular set is solvable.

* The question of whether a regular expression is ambiguous is solvable.

* No regular language is ambiguous.

» There exists an algorithm to determine whether a string belongs to a given
regular set defined by a RE.

 Regular languages can be recognized by a finite-state machine.

» Regular expression cannot describe nested structures such as balanced
parentheses, matching begin-end's, corresponding if-then-else's, and so

on.

The above statements are proved by Minsky (1972).

2.1.1 Syntax

Since 1960 BNF has been widely used in defining formally the syntax of
programming languages. A BNF grammar consists of a set of grammar rules
(productions), which together define programming languages. In the simplest case

a grammar rule may simply list the elements of a finite language ( eg. the alphabet )

17
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< letter > ::=A | B | C | ....... | 2
This grammar rule describes a finite language composed of upper-case letters only.

Despite the power, elegance, and simplicity of BNF grammars, they are not an ideal
notation for describing the syntax of programming languages. This stems from
their inability to naturally express many of the constructs commonly found in
programming language such as optional items, grouping of alternative items and
repetitive items. Therefore, computer scientists have striven to extend the BNF
notation to provide a more natural and consice method for defining language syntax.
Several notations appear in journals and technical reports. Wirth (1977) in his short
communication presents a simple notation that has proven valuable and was

satisfactorily used to define the Pascal standard (BSI 1982).
In conclusion, a good syntactic language description has two primary benefits:

» It helps the programmer write a syntactically correct program.

+ It can be used to determine whether a program is syntactically correct. In
other words, it acts as a processor for the language. The compiler writer
uses the grammar to write the syntax analyser which is able to recognize
all valid programs. This process is now well understood and in fact,
there are program generators that take the grammar of the language and

generate the appropriate analysers from it.

Problems with CFGs

One of the problems which arise in describing the syntax of languages, natural or
programming, using CFGs is ambiguity. Since parts of the meaning of a program
are sometimes specified by the syntactic structure of PLs, ambiguity must be
avoided in some appropriate manner. Typical examples of ambiguous grammars

are:

18
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* The "dangling-else" construct found in Algol-like languages.
» The expression construct, found in most PLs, described as:

expr = expr + expr.

A grammar is said to be ambiguous if it generates multiple syntax trees, which may
lead to multiple interpretations, for any valid program. One important question is: Is
there a general procedure for determining whether a given BNF grammar is
ambiguous? Unfortunately the answer from theoretical studies is disappointing,
since this has been shown to be an undecidable problem of grammars (Hopcroft and
Ullman, 1969). In fact, some languages are inherently ambiguous ie. they cannot
be generated by an unambiguous grammar. However, there might be an algorithm
that could determine with certainty and in a finite time whether a particular grammar
is ambiguous. In addition, certain ambiguities can be resolved by one of the

following techniques:

* Rewrniting the grammar to an equivalent unambiguous one generating the
same language; eg. to solve the "dangling else". Alternatively, an
explicit disambiguating rule can be appended to the grammar. Such a
rule could have the effect of causing each else to be matched with the
closest previous unmatched then ( Aho ez al., 1986).

* Augmenting the grammar with additional information to resolve certain
ambiguities; for example including a table showing the operator

precedence and associativity (Johnson, 1975) and (Early, 1975).

2.1.2 Semantics

We have seen in previous sections that the definition of the syntax of a
programming language is a well-understood process, for which formal methods

exist, allowing easy automation of syntax analyser construction. In order to

19
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completely specify all aspects of a language, however, we also need a mechanism
for describing the meaning of syntactically-correct statements written in that
language. Such a meaning is termed the semantics of a programming language.
Semantic definition does not have a universally agreed method unlike syntactic
definition, and in this section we will examine some of the approaches taken to this

problem.

Often in the original specification of languages such as Algol60 and Fortran, the
syntactic definition was augmented by paragraphs of informal prose, giving the
semantics of each language construct. The main disadvantage of this approach is
that the description is possibly ambiguous (due to the lack of mathematical rigour
and formalism), and this may lead to different implementations by different compiler
writers. It may also result in the language definition being incomplete or

inconsistent.

Due to the inadequacy of an informal prose semantic description, the need has been
identified for a definition mechanism which is precise and understandable, but
which is also mathematically rigorous and formal. This mechanism should aid both
the programmer to construct a correct program and the compiler writer to design a
language implementation consistent with the definition. To this end, three main
approaches have been taken; they are operational, axiomatic and denotational

methods, which are described below.

2.1.2.1 Operational method

The operational method defines the semantics of a programming language by
modelling the execution of program statements on a virtual computer. The virtual
computer is represented in terms of a complex automaton, whose internal states

correspond to the state of a program when it is executing. This state consists of the

20
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program code itself, the value of variables and any housekeeping data required.
Each statement of the program is then described as operations which modify the
state of the automaton. Lucas and Walk (1969) describe the operational method
called the Vienna Definition Language (VDL) (Bjorner & Jones, 1978) that was

used to describe the semantics of PL/I.

There are numerous drawbacks to this approach. Since it uses an idealized model of
the operation of a compiler or interpreter it is useful for the language implementor,
but is difficult for the user who is more interested in an abstract description of

program statements and not in implementation details. Moreover, when tracing the

execution of a program, this method tends to present the result of statements rather
than a clear idea of the program's execution. It is also difficult to prove an
implementation of a program to be correct, since the virtual computer may only
loosely resemble the real computer for which the compiler is being written; due to
lack of mathematical rigour this method of describing the semantics is difficult to

mechanize.

2.1.2.2 Axiomatic method

This method uses axioms or inference rules to define the effect of execution of
program constructs, which are used in a manner similar to mathematical proofs to
show the action of a whole program. It is based on mathematical logic and uses
predicates which must remain true for program variables before and after
performing a particular programming language operation. A typical problem facing
the programmer is to write a program that transforms data satisfying certain

properties ‘D' into results satisfying properties 'R' which may be formalized thus:

{D} program {R}
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If the predicate D ( known as a precondition ) is true before the program is executed,
then the predicate R ( known as a postcondition ) must be true after the program is
executed and has terminated. Thus the operation of program constructs is defined
by transformations of predicates; predicates which describe simple statements (such
as assignment) can be combined via control-flow constructs to build up more

complex operations.

The axiomatic method is relatively easy for the user to understand, but provides no
guidance for the language implementor. Since it has a sound mathematical
foundation, it can be (and indeed has been) used to prove program correctness; such
an idea was originally found in McCarthy & Painter (1967), and more recently in
Thatcher er al. (1980). It has in fact shown the undesirability of such features as
aliasing and the goto statement because of the enormous extra complication they
introduce in correctness proofs. Hoare and Wirth (1973) have worked on this
method, and it was used extensively for the first ime to describe the semantics of a

subset of the programming language Pascal.

2.1.2.3 Denotational method

In the denotational method, each language construct is defined in terms of a
mathematical function, which maps values in the syntactic domain to those of the
semantic domain. Again the program is described in terms of state transformations
on three entities: memory, the input stream and the output stream. Denotational
semantics (Scott & Stratchey, 1971) mix both static and dynamic semantics and
represent them in the A-notation, that is the A-calculus (Hindley & Seldin, 1986)
augmented with data types, working on the abstract syntax of the language. A

denotational semantics definition of a subset of Ada has been presented (Honeywell,

1980).
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The main advantage of this approach is that, as it is not tied to any particular
implementation, it allows the language designer to reason more easily about the
underlying features of program semantics. Also, since it has a firm mathematical
base, it facilitates formal reasoning about programs, and lends itself to
mechanization. In fact, considerable work is being carried out regarding direct
execution of denotational semantics, which would lead to automatic construction of

a whole language compiler.

2.1.2.4 Comparison of methods

None of the methods described above is capable of being applied to all aspects of
language design and implementation. Axiomatic and denotational semantics are
based on different mathematical foundations; the former is based on logic, in
particular, predicate calculus; whereas the latter is based on functions, in particular,
recursively defined functions. Denotational semantics are used to study the detailed
interaction of language constructs independent of their implementation details, and
axiomatic semantics provide a means for program correctness proving. On the other
hand, operational semantics allow guide-lines to be laid down to the implementor.

Unfortunately, these definitions are usually too detailed to be of much use to the

uscer.

Although formal semantic definitions are becoming an accepted tool in defining
some programming languages for example Ada ( using denotational semantics) and
PL/I (using operational semantics), the final definition is still generally given in
prose. The final Ada manual is presented in English prose with BNF defining

formally only its context free syntax.
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2.2 Implementation of programming languages

"Compilers and interpreters are a necessary part of any computer
system -- without them, we would all be programming in assembly

language or even machine language!"

D. A. Gries (1971)

In order to profit from high-level languages (HLLs), a translator is needed. Simply
stated, a translator is a program that translates a scurce language into equivalent
code in some object language generally the machine language of some particular
computer. Translators may be classified into three major classes, depending on the
source language and the object language dealt with. These three classes, namely
“compiler” (the term that was coined in the early 1950's by Grace Murray Hopper),

"assembler" and "interpreter”, are defined as follows:

Compiler

A compiler is a program that translates a program written in a high-level language
such as Fortran into an equivalent machine language of some computer or into

assembly language.

HLLs > machine or assembly language

Assembler

If the source language is an assembly language, and if the object language is the
machine code of a particular computer, either in the form of a relocatable or a
numeric code, then the translator is called an assembler. Assembly language closely
resembles machine language, and is often just a mnemonic version of a computer's

instruction set.
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Interpreter

An interpreter on the other hand, is a program that accepts a source language as
input and executes it. An interpreter, in contrast to a compiler, does not build an

object language representation; it may typically perform two functions:

« It translates a source program written in the source language into an
intermediate form; this part is similar to the analysis part of a compiler.

» It then executes the program in the intermediate form.

A compiler must perform two major tasks: an analysis of the input source program
and the synthesis of the executable object program. Neither analysis nor synthesis
is yet a simple enough task to describe as a single entity. Each of these tasks needs

further subdivision, into what are usually called phases, as we shall see below.

2.2.1 Analysis of the source program

The analysis part of the translation (compilation) process breaks up the source
program into basic components, then builds an intermediate representation of the
source program. One good and widely used method of representing the syntactic
structure of the source program is a linked data structure, known as a syntax tree or

a parse tree. The analysis part may be divided into the following phases:

2.2.1.1 Lexical analysis

The lexical analyser is the simplest part of the compiler, yet is typically the most
time-consuming task in the compilation process as a whole. It is the section that
communicates with the outside world, through the operating system. In discussing
lexical analysis, it is necessary to introduce the terms "lexeme", "pattern”, and

"token", defined as follows:
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* token: a terminal symbol used in the grammar describing the language

* lexeme: a sequence of characters from the source text grouped together in
a particular structure.

* pattern: a formal method for defining a lexeme; in practice a pattern is in

fact a regular expression.

The first task of any programming language processor must be to read in the input
text, character-by-character, grouping them into elementary constituents termed
lexemes. The lexemes are placed in categories (which will be the tokens of the
relevant grammar) such as identifiers, operator symbols, numbers, comments,
keywords, etc, which are then passed to the next phase of the compiler known as
the parser (discussed later in the chapter). Some lexemes are further processed
before being returned to the parser. Lexemes such as numbers are often converted
to an internal representation ( to internal binary-fixed or floating-point form), and
identifiers may be stored in a symbol table. For these lexemes, both their token
number and their value are passed for use by the semantic routines. A typical lexical

analyser performs the following sub-tasks:

» Partition the program into lexemes.

+ Eliminate unnecessary information such as blanks and comments.

+ Establish the nature of symbols - eg. whether they are keywords or
identifiers.

» Enter some preliminary information into a symbol table.

« Output a program listing and error messages.

Although lexical analysis 1s simple in concept, over 50% of compilation time is
often spent in this phase (Waite & Carter, 1985). One reason for this is simply
because there is so much character-level processing; the other reason is that

sometimes in practice it is difficult to find the boundaries between lexical items.
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Feldman (1979) discusses the potential difficulty of token recognition in Fortran77.

A popular example that illustrates this fact is :

DO S0 I

il
[
wn

and

DO 50 I 1,5

The first statement is an assignment, whereas the second statement is a DO
statement. This fact, however, cannot be discovered by the lexical analyser until
reading the decimal point character or the comma. This difficulty arises for two
reasons: keywords are not reserved, and blanks are not significant, hence token
termination depends on statement recognition. In this case, a rather complex
context-dependent analysis algorithm is needed. This algorithm must look far ahead

beyond the end of a lexeme before a token can be determined with certainty.

Specification of tokens

A precise and formal definition of tokens may seem unnecessary, given the simple
structure found in most programming languages. However, the structure of tokens
can be more tedious than we might expect. For example here is an informal
definition for a Pascal string.

" A string can be any sequence of characters and 1is

delimited by a single quote character."
The problems with this definition are:

* Is anull string allowed?
» Can a linefeed character appear in a string?

» And what happens if there is a single quote character in the string?

Hence a precise definition of tokens, such as by using regular grammars, is

necessary.
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2.2.1.2 Syntax analysis

Simply stated, the role of the parser is to examine the sequence of items obtained
from the lexical analyser and discover how these items are grouped together to form
'phrase’ or 'sentence’ fragments. The parser also reports syntax errors. Once the
syntactic structure is recognized, the parser either builds an intermediate
representation known as a syntax tree, which is used to drive semantic processing
after the tree is completely constructed, or calls corresponding semantic routines
directly. The latter technique is needed in order to perform single-pass translation,
which is important for compile-time efficiency; however, not all languages allow
single-pass compilation. In fact, it may be cleaner and clearer to perform distinct

phases of compilation in separate passes.

A great deal of research has been carried out into the design of efficient syntactic
analysis techniques, in particular, techniques that are based on the use of formal
grammars, notably context-free grammars. Some researchers, namely Kasami
(1965), Younger (1967) and Earley (1970) developed algorithms for parsing any
context-free grammar, which was too ambitious and resulted in inefficient parsers.

These methods are termed universal parsing techniques.

There are two common techniques to parsing; top-down and bottom-up techniques.
A parser is considered top-down if it "builds" the parse tree starting from the root
(top) and terminates at the leaves (bottom). However, with a bottom-up technique,
the parser discovers the structure of a parse tree by beginning at its leaves and
continues until it reaches the root of the tree. One feature these two techniques share

is the fact that they both scan the input from left to right, one lookahead symbol at a

time.

The best and commonly used top-down and bottom-up parsing techniques are

known as LL(k) and LR(k) respectively. The first letter L states how the input is
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read that is Left-to right; and the second letter L or R states the kind of parser
produced, that is Leftmost or Rightmost parsing. k is the number of lookahead
symbols; in practice it is 1. Both LL and LR parsers work on sub-classes of CFGs,
namely LL and LR grammars respectively. LL, also known as predictive, parsers
were thoroughly investigated by Knuth (1971) and used in compilers by Lewis er
al. (1976). On the other hand, LR parsers and grammars were first developed by

Knuth (1965).

A great deal of research has been conducted into the theory of LR grammars, the
largest natural class of CFGs that can be parsed with a deterministic pushdown
automaton. Further work has concentrated on the improvement of Knuth's LR
parser, which is considered to be impractical for real systems, and the result has
been the development of the so-called SLR, Simple LR, (DeRemer, 1971) and
LALR, LookAhead LR, (DeRemer, 1969) methods. SLR and LALR parsers
provide significant improvement in terms of the time and space required to construct

a parser from a grammar. This topic is discussed at more length by Aho & Johnson

(1974).

Both LL and LR-like grammars have the same advantage in that they require no
backtracking. Parsers which are linear in both space and time (Aho er al., 1986) can
be produced and errors can be detected at the earliest possible opportunity.
However, LR-like grammars cover a wider class than LL-grammars which also tend

to be less natural.

In addition to the context-free grammar properties given in section 2.1, LL and LR

grammars have the following further properties:

» The question as to whether a grammar is LL(k) or/and LR(k) is solvable.
» The question as to whether a language is LL(k) or/and LR(k) is

unsolvable.
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* Each LL(k) grammar is also LR (k).
« There are LR(1) grammars that are not LL(k) for anv k.

* LR(k) grammars are not ambiguous.

2.2.1.3 Semantic analysis

Semantic analysis is one of the most complex phases of a compiler. It plays a
communication role between the analysis and synthesis parts of the compilation
process. During this phase. the correct syntactic structure (syntax tree) recognized
by the parser is further processed to generate some internal form, a preliminary

version of the final executable program.

The main purpose of this phase is to determine and check the static semantics of the
source code read by the compiler. The static semantics ( discussed earlier in the
chapter) are those restrictions concerned with the scope rules (eg. visibility and
accessibility of program objects) and type rules ( eg. type compatibility of program
objects) of the language in question. The semantic analyser generally also performs
other functions, which vary depending on the logical structure of the compiler, and
the language involved. However, symbol-table maintenance is one of the most

common functions in the translation process of most programming languages.

Much effort has been directed towards the development of techniques, based on
methods with formal mathematical foundation, for defining the static semantics of
programming languages. Several different approaches namely operational,
axiomatic, and denotational have been introduced. These approaches have been

discussed earlier in this chapter.

An alternative approach is based on the concept of grammars. The revised report on
Algol-68 (VanWijngaarden et al., 1976) used a W-grammar, also called a two-level

grammar, to describe the syntax and the static semantics of the language. This type
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of grammar is a context-free grammar augmented with a second grammar allowing
the syntactic treatment of context-sensitivity. Indeed this grammar is found to be
equivalent to a type-0 (unrestricted) grammar which is a rather powerful concept,

but large and complex.

The issue of whether Van Wijngaarden grammars decrease or increase the clarity of
the context-sensitive syntax of a language is a debatable question. However, what
is certain is that there has not been any kind of general parsing technique that can
use these powerful grammars. In fact, it is extremely difficult to visualize a
recognizer for general two-level grammars due to the problem of finding out what

rules are applicable after a certain rule; it is known to be an unsolvable problem.

Another approach based on extending the context-free grammar is the concept of

atm’bﬁtc erammars (AGs). Attribute grammars were initially introduced by Knuth
(1968) as a means for defining the static semantics of programming languages.
AGs are regarded as a suitable tool for use in writing compilers because of their
capability in formally specifying often costly translations; however they may be very
complex and expensive to evaluate, for example, and the evaluation process may not
even terminate in all cases. The literature contains several examples of how various
features of PLs can be described using AGs. A bibliography on (the use of)

attribute grammars was published by Riihd (1980).

Informally stated, an attribute grammar is an ordinary context-free grammar
enhanced by means of attributes and attribute evaluation rules (semantic rules).
Each grammar symbol (terminal or nonterminal) has an associated set of attributes
(inherited and synthesized), and each production rule is provided with the
appropriate semantic rules setting up dependencies between the attributes of
symbols. These dependencies are often represented by a graph from which an

evaluation order for the semantic rules can be derived. Using AGs, the semantics
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are given in a declarative rather than algorithmic (procedural) specification which is
independent of any parsing method. Moreover, AGs have the advantage of being a
context-free grammar based tool in that all the parsing techniques used with CFGs
can also be used with the AGs; yet they still have not reached the popularity of the
former, due to the difficulty of obtaining implementations efficient enough for
practical and general use. At about the same time as Knuth's work on attribute
grammars, Koster (1971a) developed so-called affix grammars, which are a
derivative of Van Wijngaarden grammars; they have the advantage of being
designed to be parsed and are hence generative, whereas attribute grammars were

designed purely for translation purposes.

One of the major problems encountered in the use of attribute grammars is that of
circularity. An attribute grammar is said to be circular if the dependency graph for
some parse tree has a cycle. Cyclical dependencies cause evaluation to fail during
compilation, therefore it is important to be able to decide whether an AG is circular
or not; Knuth (1968) and Bruno & Burkhard (1970) presented an algorithm to solve
this problem. However it is very hard to test an attribute grammar for circularity.
Jazayeri et al. (1975) have shown that for any algorithm there is an infinite number
of grammars, for which the circularity test is of exponential time complexity.
Nevertheless, there are several sufficient conditions that can be checked in

polynomial time (Bochmann, 1976; Jazayeri & Walter, 1975; Kennedy & Warren,

1976).

2.2.1.4 Symbol table

During the compilation process, it is necessary to record the use of identifiers in a
program. For this purpose the compiler uses a data structure called a symbol table.
In this table it stores the character string used to form the identifier together with

further information such as its type (ie. real, integer, character etc.), its class (ie. is
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it a simple or structured variable, etc.), its location in memory, and other specific
attributes. Often, identifiers are stored in separate tables depending on whether they

are labels, procedure names, variable names and so forth.

Information is entered into the symbol table during the lexical and semantic analysis
phases. Whenever an identifier is encountered in the program text, the symbol table
is searched, and if the identifier is not already there, a new entry is formed. The
information can then be used during the semantic analysis to check that the use of an
identifier is correct in its context, and also during code generation, to allocate the

amount of storage required at run-time.

There are three common methods of storing symbol tables, namely: linear lists
(ordered or non-ordered), binary trees and hash tables. This topic is fully

elaborated in Aho et al. ( 1986).

2.2.1.5 Error detection and correction

A compiler must be able to detect errors in a program and should produce
meaningful error messages to allow corrections to be made by the programmer. It
must also be able to continue parsing the program in the face of such errors, since it
1s not acceptable to simply abort the compilation process as soon as an error is
found. Itis useful to group errors according to the compilation phase in which they

are detected; hence there are lexical, syntactic and semantic errors.

A lexical error is found when the input character stream cannot be matched with a
valid token of the language. In order to recover and continue scanning, the lexical
analyser could simply discard characters from the remaining input until a valid token
is found. This strategy, known as "panic mode", may sometimes confuse the

parser. Another error-recovery strategy the lexical analyser may use is error
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transformation eg. inserting a missing character, replacing an invalid character by a

valid one, deleting an extraneous character or swapping two adjacent characters, etc.

Errors detected by the syntax analyser are violations of the context-free specification
of the programming language. LL and LR parsers detect such violations when they
find an error entry in the parsing action table. This means that the location at which
the error is detected is as close as possible to where it actually occurred in the
program text. A simple recovery strategy is to enter "panic mode” and repeatedly
discard input symbols until a synchronizing token (like ";" or "end") is found, and
then start parsing a new nonterminal. A more intelligent but similar error-recovery
scheme known as "error production” is employed by Wirth (1968) for handling
errors in a PL360 compiler and is also used by the parser generator yacc. The

compiler writer can incorporate a production of the following form:

statement --> error ';'

which indicates that if a parsing error is found, the parser should scan until it finds a
semicolon which is the synchronizing token. It then discards symbols from the
parse stack replacing them by the nonterminal statement and finally continues

parsing.

A method that was first used in top-down parsing is known as "local recovery" or
"phrase-level recovery" proposed by Leinius (1970). The parser may insert, delete
or replace the prefix of the remaining input to allow the parser to continue. A
similar concept known as "global recovery"” can be used, whereby the correction is
performed upon the invalid string itself, however due to the costs incurred both in
terms of space and time, this technique is only of theoretical relevance; this

technique can also be used by the lexical analysis at a character level.
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During semantic analysis, typical errors found are undeclared variables and type
inconsistencies. In the case of an undeclared variable the usual eITOr-recovery
mechanism is to create a new entry in the symbol table with attributes assigned
depending on the context in which the variable was found. This variable is flagged
as being declared due to a semantic error, and subsequent error messages are only

produced when a "new" error involving this variable is detected.

2.2.2 Synthesis of the object program

The main purpose of this part of translation deals with the construction of the
executable program from the output (intermediate code, eg. Polish notation)

generated from the semantic analyser. The major phase of this section is code

generation which may be preceded by an optional phase known as code
optimization. If subprograms are compiled separately then the code produced is

passed to a further phase called the linker and loader, which is strictly part of the

operating system software, but of sufficient importance to compiler construction to

be of relevance to our work .

2.2.2.1 Code optimization

The translation of a source code program into an intermediate representation is
mainly concerned with the structure of the program considered in isolated fragments
or blocks, corresponding to language constructs. If code is generated directly from
such an intermediate representation it is likely to be inefficient. The main reason for
this inefficiency is that no account is taken of possible improvements which can be
found by looking at the control and data flow within the program. The phase of the
compiler that attempts to find such improvements is known as code optimization.
The optimizer's task is to create a program whose effect is identical to the original,

but which is more efficient.
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Much optimization can be performed at the level of a basic block of the PL. A basic
block as defined by Tremblay & Sorenson (1985) "is a program fragment that has
only one entry point and whose transfer mechanism between statements is that of

proceeding to the next statement” .

One of the simplest and most effective optimizations is that of constant foldine.

This involves evaluating at compile time, expressions which just involve constants,
and this concept can be extended to variables whose value can be identified as

remaining constant throughout a whole block.

The method of deferred storage is used to optimize store accesses. Instead of

always accessing variables in main memory, it is possible to hold their values in fast
registers. By marking this fact in the symbol table, subsequent access can be made
to those registers rather than to main memory, only resorting to storing the
variable's value at the end of a block. Linked with deferred storage is global

register allocation, which establishes points in the code at which register values

should be dumped to main memory, thus freeing them for later use in the program.
If several statements all reference a common sub-expression, then much redundant
code can be eliminated, by evaluating this sub-expression once and recording the
other references to it. This is particularly effective when used in conjunction with

global register allocation.

After the above techniques have been applied, further improvement can be found by
analysing the code over small "windows". This is so-called "peephole"
optimization (McKeeman, 1965). Typical peephole optimizations are to remove
unreachable code (for instance after jump instructions), simplifying algebraic
expressions (eg. changing a+0 to a), strength reduction (eg. replacing a2 by a*a).
In fact, peephole optimization may be used with either object code, after the target

machine code is produced, or with the intermediate code produced by the analysis
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part. Further useful peephole optimizations include redundant load-store
operations, dead-code elimination, jump-chain compression and application of
idioms specific to the target architecture (eg. best usage of addressing modes, auto-

Increment registers).

2.2.2.2 Code generation

The code generation phase of a compiler takes the intermediate representation of the
program, after it has been optimized as described above, and translates this into an
object language. Depending on the type of translator this could be machine
language, assembly language, or another high-level programming language (eg. a
preprocessor for structured Fortran). In the case of machine language, this may be
absolute, meaning that it can be loaded and executed immediately, or relocatable
which allows program modules to be compiled separately and combined by a

linking loader .

2.2.2.3 Linking loader

The role of the loader is to take the relocatable code which has been generated and to
form it into a single executable code sequence. During code generation, the
compiler will not have been able to use absolute addressing for objects referenced
which are defined in another separately compiled module. Instead it will have
inserted requests for the loader to insert these addresses when the different sections
are combined. Previous phases of the compiler will have stored a table of addresses

as part of the relocatable machine code to be used for this purpose.

When each module is compiled it is assumed to start at some fixed address in
memory, and so a further task of the loader is to relocate addresses so that they are

correct when modules are joined into one executable program. It is usual during

37



Chapter 2

this process to separate data and program segments, since the former can be written

and read, but the latter can usually only be read.

The loader's final task is to set up the program's run-time environment by
initializing the stack, allocating heap space, reserving input/output buffers and

preparing for run-time debugging.

2.3 Summary

In this chapter we have reviewed the fundamental principles of programming
language definition and implementation. We have noted the adoption of formal
techniques applied to the area of syntax definition in a routine and universal manner.
Approaches used in semantic definition are less widely accepted, and we have
presented the most common directions of research towards the formalization of

static semantcs.

We have also described methods for language implementation, through compiler

construction, for which a model structure was presented.

In the next chapter we will begin to investigate the automation of software
construction, for which compiler construction, due to the degree of formality readily

available, is a particularly suitable candidate.
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Chapter 3

Translator Writing Systems

3.1 Brief history and overview

As the development of complex software systems has become increasingly costly, a
need for tools has arisen which aid software construction. A fertile field of research
has been that of so-called compiler writing systems, which facilitate the generation
of programming language translators. Automatic compiler production has grown
from this research and a number of projects have been undertaken with various

degrees of success.

A common use of the above technique is that of translator generators, which are
given a formal description of an input language, and produce a translator from that
language to a specified object form. Translator generators have been employed to

construct:

+ Compilers and interpreters for programming languages (Johnson, 1979
and Feldman, 1979).

» Command line interpreters.

» Editors (both normal and language-based) (Reps ez al., 1983; Reps &
Teitelbaum, 1987)

* Query languages for data base systems.

» Spreadsheets.

» Text formaters and mathematical typesetters (eg. troff, nroff, EQN, PIC
using lex and yacc).

« File processors (eg. awk).
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The production of compilers has seen wide use of translator generators. The first
compiler for Fortran, which was hand-coded, required 18 man-years to develop,
and its successor took a further 10 man-years. There is considerable motivation for
automating this process since hand-coding a compiler for a large high-level
programming language, despite advances in compiler techniques, still typically takes
at least 4 man-years. Work on such automation began with the compiler-compiler
of Brooker and Morris (1962), Brooker (1963) and Rosen (1964). When the
syntax of Algol-60 was specified using a context-free formalism, generation of
syntax analyzers was made possible. Irons (1963) extended this further to

incorporate semantic analysis.

Compiler-compilers are the main subject of this thesis. They range from systems
which assist the development of particular compilation phases (Branquart ez al.,
1977; Leverett er al., 1980; Koskimies er al., 1982: Ganzinger er al., 1982; Reliss,
1987; Yed, 1988), to systems which tried to produce a complete compiler
(DeRemer, 1975; Kastens, 1980; Asbrock er al., 1981). Meijer & Nijholt (1982)
give a large bibliography on compiler-compilers and more recent ones are found in

(Hennessy & Ganapathi, 1986).

An idealized model of a compiler-compiler as shown in Figure 3.1 uses descriptions
of a programming language and a target language and produces a compiler that
translates the source language into the target language. Early attempts to construct
such a system, for example CDL developed by Koster (1971b, 1974a) using a two-
level grammar (Koster, 1974b), did not succeed, since they required an algorithmic
description to be provided by the compiler-writer. This does not approach the
declarative style of specification which is required to ease the task of automatic

compiler construction. As DeRemer (1975) notes:
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" CDL falls short of the ideal because part of the language description as
written in CDL is a set of program fragments that describe what the
translator being constructed is to do, rather than what the language being
described is to be."

Source code

Language Spec.
Compiler-Compiler

Compiler

Machine Spec.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Object code

Figure 3.1 An idealized compiler-compiler model

The failure of systems such as CDL to satisfy the necessary requirements has led to
the partition of compiler specification and generation along the lines of the phases
normally recognized in compiler implementation. Thus lexical, syntactic and
semantic analysis each have their own descriptive languages from which tables are
built to drive general-purpose algorithms appropriate to each phase of the
compilation process. An example of this approach was proposed by DeRemer
(1975). In his system a sequence of BNF-like grammars are used to denote the
various levels of a language. The operation of such system is shown

diagrammatically in Figure 3.2.

Subsequent developments, for example those employing attribute grammars or

denotational semantics, have attempted to use the properties of language semantics
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to produce completely automated construction of the compiler front-end. Advances
have also been made in the automatic mapping of these language semantics into
machine semantics; thus allowing specification of the entire compilation process and

so enabling the construction of code generator generators.

Description
of
phase n

Description
of
phase 2

Description
of
phase 1

Ve e m m e e M R R W W M OWM M M M e R R W™ W R OEM R OM W MW W™ W e w w m w m

Figure 3.2 Compiler-compiler model often used in practice

In the rest of this chapter, we will examine in more detail previous work on
compiler-compiler development, based on the phases of the compilation process on
which a particular system concentrates. We have chosen to group this work as

follows:

* Lexical Analyser Generators.
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» Syntax Analyser Generators.
» Semantic Analyser Generators.

» Code Optimizer and Code Generator Generators.

Lex and yacc, the two most widely used tools, are discussed at greater length in

chapter 4.
3.1.1 Lexical analyser generators

The process of constructing an analyser which is implemented using a finite state
automaton (FSA) to recognize the fundamental lexemes of a given programming
language is both time-consuming and tedious. Since the use of a FSA is well-
understood and algorithmic in nature, it is natural to wish to automate this process.
Thus we need to provide a mechanism via which a lexical analyser can be generated,
given a formal description of the structure of a language's lexical items. However,
since up to 50% of compilation time is spent in lexical analysis (Waite & Carter,
1985), the generated lexical analyser must not be much less efficient than a carefully

constructed hand-written version.

The lexical analyser must be given a number of patterns, specifying how characters
taken from the input stream should be grouped into valid lexemes. To facilitate this
specification, many lexical analyser generators provide a means of naming character

classes (eg. letter = (A-za-z], digit = [0-9]).

There are generally two approaches taken in the operation of a lexical analyser
generator. One is to produce a set of tables, where entries specify state transitions
which occur when particular characters are encountered in the program text being
scanned; thus each entry is given as a character/transition pair. Such tables are then

used to drive a general-purpose scanning algorithm coded once and for all. An
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alternative approach is to output executable code from the lexical specification to

implement a lexical analyser for a particular language.

An executable-code lexical analyser has the advantage of being faster and does not
require significant amounts of storage for state transitions; however it is by
definition produced in a given language and therefore has limited portability. A
table-driven lexical analyser on the other hand, can be easily ported to a new system
by simply recoding the general scanning algorithm; its major disadvantages are that
it can run up to five times slower than an executable-code equivalent (Waite, 1984,

1986), and it requires storage for its tables, which may prove sizeable.

The notation used to specify lexical items can be categorized as either general- or
special-purpose. General-purpose notations are based on regular expressions (REs)
which have been widely studied, and shown to be a powerful tool for lexical
specification. Such a notation can be used in pattern-matching applications other
than compiler front-ends, and are sufficiently expressive to allow lexical analysis of
special-purpose programming languages which have an "unconventional" lexical
structure. However, they do tend to lead to increased execution time due to this

generality.

Special-purpose notations are less expressive, but it has been argued that they cover
most kinds of lexical items used in modern programming languages (Heuring,
1986) and (Horspool & Levy, 1987). However, systems based on such notations
make certain assumptions, which cause some features of PLs to be difficult or
impossible to specify; for example, it may be assumed that integers consist of purely
numeric characters, but the 'C' programming language requires hexadecimal
constants to contain an 'x' as their second character; also the use of string delimiters

can prove tedious using such a notation.




Chapter 3

We shall examine a number of lexical analyser generators, grouped depending on

whether they use a general- or special-purpose notation.
General-purpose lexical analyser generators

The first lexical analyser generator to use the theory of finite automata to build
efficient lexical analyzers was AED-RWORD, developed by Johnson ez al. (1968).
This system uses a notation based on regular expressions, and the structure of a

lexical specification is as follows:

BEGIN { < character class definition > } END
BEGIN { < symbol description > } END
FINI

A typical example would be:

BEGIN space //

letter = /ABCDEFIJKLMNOPQRSTUVWXYZ/
digit = /0123456789/
END
BEGIN identifier (1, Lookup) = letter { letter | digit } $
int (2) = digit { digit } S
plus(3) = + $
comments (4, comment) = /* S
Ignore = space $
END FINI

From this specification, RWORD produces a number of tables together with a series
of routines to be called during scanning; also user-specified routines (eg. Lookup
and comment) may be included, these are called whenever a complete symbol has
been recognized. The construction of this table-driven code is performed in two
stages: first, a version of the finite state automaton is output in the AED-0 language,

then a second phase produces a macro-assembly equivalent.
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Although RWORD represented a significant advance in lexical analyser generator
techniques, it did suffer from some drawbacks: the use of large tables and numerous
subroutine calls when a symbol is being recognized is both space- and time-
consuming, and since the emitted code is in the AED language this severely limits

the portability of the system.

The Alex lexical analyser generator (Mossenbéck, 1986) was developed as part of
the Coco compiler-compiler system (quoted in Mdssenbock, 1986) and produces
code for the lexical analyser written in Modula-2; its input notation is based on
EBNF. However this powerful notation is used in such a restricted way that it can
be argued that in fact the system uses a regular grammar specification. This is
exemplified by the fact that only character classes and literals (but not nonterminals)
may appear on the right-hand side of the lexical productions. Also, the authors
themselves say that the notation is unable to deal with nested comments, thus
necessitating a separate section for comment specification. Each lexical production
gives a number as its left-hand side, being the value returned by the lexical analyser
on recognizing a token. Ambiguities are resolved by taking the longest match, but if
this 1s inappropriate it may be overridden by the user by specifying exceptions to
this rule using the Ir FOLLOWED BY feature. Itis claimed that this feature solves the

Fortran DO-loop problem, described in section 2.2.1.1.

The following is an example specification describing a subset of Modula-2:

CHARACTER SETS

letter = "ABCDEFGHIJKLMNOPQRTSUVWXYZ";
ocdigit = "01234567";
digit = octdigit + "89";
hexdigit = digit + "ABCDEF";
KEYWORDS
1 = "AND"
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2 = "prv"
3 - "IF"
40 = "MODULE"

TOKEN CLASSES
41 = -- identifier
letter { letter | digit } EXCEPT KEYWORDS.
42 = -- integer or cardinal
digit { digit 1}
| octdigit { octdigit } "B"
| digit { hexdigit } "H"

| digit { digit } IF FOLLOWED BY ( "." ".m ).

SINGLE TOKENS
0 = endfile.
l = "&".

46 = "*".

70 = endline.

COMMENTS FROM " (" "x" TQ "x*" ™)" NESTED.

Perhaps the most widely known lexical analyser generator is lex (Lesk, 1975),
which was developed for Unix-based systems; it was used to implement interpreters
for many of the common Unix utilities (eg. awk, PIC, EQN, etc.). Its input
notation allows all features of standard REs. A user-supplied action, written as a C
fragment, is performed whenever the corresponding REs are matched in the input
stream. Lex produces a set of tables which drive a general scanning algorithm, and
are constructed in such a manner as to directly implement a deterministic finite state
automaton from the regular expressions. This means that the resulting analyser is
quite fast even for large sets of regular expressions. A recent improvement to lex,
namely flex (Jacobson, 1987), also incorporates an automatically generated trace
facility, allowing detailed operation of the lexical analyser to be monitored during

execution.
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A conceptually similar lexical analyser generator, called ScanGen, was developed
by Gray Sevitsky, enhanced by Robert Gray, and further changed by Fischer &
LeBlanc (1988). However, ScanGen purely produces tables, requiring the user to
write his own driver; also, unlike Lex, user-specified actions are not allowed to be

included, thus precluding any further processing of tokens.

The LAWS (Lexical Analyzer Writing System) (Gammill, 1983) provides the user
with a means of generating state transition tables and finite state automata, written in
a language designed by Schwanke (1972) for this purpose, namely STATE-DEF.
The STATE-DEF compiler, written in Fortran, produces tables to map characters
encountered into character classes; the finite state automaton interpreter (also written

in Fortran) returns action codes to user-written lexical analyser routines.
Special-purpose lexical analyser generators

The GLA system (Generator for Lexical Analysers) (Heuring, 1986; Waite et al.,
1986) was designed to run in a Unix environment, and can, for example, replace the
use of lex when generating a syntax analyser using yacc. It produces a directly
executable lexical analyser in Pascal and C. In order to increase execution speed of
the generated lexical analyser, it was decided to restrict the allowable symbol sets to
those commonly used in programming languages, ie. identifiers, numbers, strings
and comments. Identifiers and numbers are specified in terms of the set of
characters with which they may start, together with the set of all possible following
characters; strings are defined in terms of their delimiting characters, as are
comments. Thus a complete specification describing the language to be recognized
is partitioned into two sets: the basic symbol specification which defines the set of
'tokens' of the language, treating identifiers and denotations (literals) as 'generic'
ie., it describes them only through their terminal symbol codes. The second set of

specifications consists of definitions for the restricted symbol sets as described
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above. The following is an example specification describing a very small subset of

ISO Pascal for a GLA system:

Basic symbols specification Token definition specification
"+ IDENTIFIER Pascal-Idr [a-zA-Z}[a-zA-Z0-9]
! INTEGER Pascal-Int  [0-9]
<! REAL Pascal-Real [eE]
=" STRING Pascal-Str [']

! DOUBLED
BEGINCOMMENT 1 { (*
'TF' ENDCOMMENT 1 |} *)
'"THEN'

Pascal-Idr.

Pascal-Int.

Pascal-Str.

The Mkscan (Horspool & Levy, 1987) system takes a similar approach to GLA in
that it does not attempt to provide a tool for general pattern matching, but restricts
symbol sets to identifiers, keywords, numbers and special symbols. Its major
motivation was to enhance the user-interface to lexical analyser generator tools, by
using a screen-based, menu-driven approach to lexical specification; thus the
generation and subsequent editing of lexical analysers during their lifetime are
facilitated. However both Mkscan and GLA (and its successors) do not seem to
provide a mechanism for handling certain special kinds of tokens, mentioned earlier,
including space characters. Similarly to GLA, Mkscan produces code rather than

tables to form the generated lexical analyser.
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3.1.2 Syntax analyser generators

Syntax analysis, using a context-free grammar description of a programming
language, is a well-understood task for which there is a sound theoretical base.
Since a paper by Knuth (1965) laid the foundations of automating the production of
syntax analysers, a large number of syntax analyser generators have been
developed; these are found both as part of whole compiler-compilers and as systems
in their own right. By far the majority of modern generators produce syntax
analysers which use LL or LR techniques, with the latter being the most popular,
since they cover a wider class of grammars and provide superior facilities for error
detection. The most notable LR-syntax analyser generator is yacc, designed

originally for the Unix system.

In the following discussion we choose to group syntax analyser-generators based

on whether they produce LL or LR syntax analysers.
LR-syntax analyser generators

There exist a large number of LR-syntax analyser generators, so we have restricted

our discussion to those systems which are representative of the techniques used.

The EAGLE syntax analyser generator (Franzen er al., 1977), developed at the
University of Berlin, was designed with the objectives of using a specification
language to concisely describe the syntax and the static semantics of a programming
language, and to generate practical compilers. The specification language used (also
called EAGLE) is based on extended affix grammars (EAGs) originally proposed by
Watt & Madsen (1983) to exploit the benefits of W-grammars and affix grammars.
The system transforms its EAG input into a form resembling a traditional context-
free grammar. This grammar can then be used as input to a modified version of a

context-free generator, also developed by Watt (1974).
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The syntax analyser which is generated by EAGLE consists of routines for syntax
analysis, static semantic checking, error recovery, and for dumping the derived
syntax tree for use by subsequent code generation phases. The resulting syntax
analyser is not table-driven, but instead produces directly executable code which
implements a so-called characteristic finite state machine (CFSM). For each state of
the CSFM a specific procedure is generated, thereby implicitly containing parsing
information in the flow of control and allowing systematic error handling (both

detection and correction).

The HLP78 (Helsinki Language Processor) (Riihi er al., 1978) system from the
University of Helsinki, was originally designed to study the applicability of using
attribute grammars as input to compiler-compilers. The intention was that by
storing attributes in the parse tree, the intricacies of the details of symbol table
entries would be removed from the grammar level. However the designers found
that an attribute-grammar-based input specification suffers from a lack of
readability, since its essential graph structure is difficult to discern from a linear
description. The original version of this system was restricted to accepting only
pure LALR grammars (DeRemer, 1969) as its input. This guarantees that the
grammar will be non-ambiguous, but imposes a serious restriction on the range of

grammars which can be employed.

Due to the aforementioned short-comings of HLP78, it was later modified to
incorporate a disambiguating mechanism to resolve parsing conflicts thus relaxing
the constraints on the language specification. The manner in which a language's
syntax is specified resembles that of a block-structured programming language with
the intention of concentrating on nonterminals of a grammar. Thus all components
of a nonterminal can be found "nested" within its specification in a hierarchical

rather than rule-based fashion, with the outermost definition being for the start
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symbol of the grammar. This is illustrated by the following outline specification for
Pascal (taken from Koskimies e al., 1988):

nont Program: () -~ () means "no attributes"

token identifier: String = letter(letter|digit)*;
nont ProgramParamList: ();

end ProgramParamList;

nont Block: ();
nont LabelPart: ()

end LabelPart;

nont ConstPart: () ;
end ConstPart;

end Block;
Program = 'PROGRAM' identifier
(I '('" ProgramParamList ')' ) ';' Block '.'‘

end Program.

The later version of this system, namely HLP84 (Koskimies ez al., 1988) produces
a variety of the components of a compiler front-end, namely LL(1), SLR(1) and
LALR(1) syntax analysers and provides two lexical analyser options, one table-

driven and one as directly executable-code. All generated code is emitted in Pascal.

Another project (Roberts, 1988) has attempted to produce optimized syntax analyser
generators (OPG). In this system a context-free grammar is used as input, and
OPG scans this input to determine the appropriate type of syntax analyser to be used
for each rule. Thus a "hierarchy" of complexity is established ranging over regular,
LL(1), LR(1), context-free grammars, listed here in order of increasing power; the

least-cost parsing method is chosen for a particular rule. OPG produces action
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tables to be used in parsing, which are then optimized using traditional algorithms

for optimization during the code generation phase of a conventional compiler.

The PRESTO syntax analyser generator (Elliott, 1988) was designed for languages
having a large set of syntax rules that change frequently. Its specification language
is similar to EBNF, augmented with actions to be taken as a particular part of the
language is parsed. From the grammar rules supplied by the user, PRESTO
constructs a syntax analyser consisting of a table of interpretive instructions which
are language-independent and are stored on file in numeric form. This means that
the driver program for the instructions can be written in a non-recursive language

using a state stack and a return stack.

The generated syntax analyser acts as a finite-state automaton, reading parsing
instructions from the stored table and the source which is to be parsed. The latter is
scanned by a lexical analyser whose sole purpose is to place characters in a buffer;
parsing can then be "backed up" to any point in the buffer (resulting from failed
state transition), but any attempt to back-up further will be reported as a syntax

CITOT.

Other syntax analyser generators of note are LINGUIST-86 (Farrow, 1982), which
concentrates on the use of attribute grammars for semantic analysis; RRP (Dwyer,
1988), which introduces a new notation — Regular Right Part grammars — for
specifying SLR(1) syntax analysers; SLS/1 (Lewi et al., 1975), which emphasizes
semantic analysis and is able to produce two syntax analysers, one suitable for a
production system and the other for educational purposes; and finally yacc, an
LALR(1) syntax analyser generator produced for the Unix system which will be
described in later sections in more detail, since it is used by the system developed

during the work described in this thesis.
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LL-syntax analyser generators

By automating LL-type parsing techniques, the resulting syntax analyser has the
advantage of facilitating processing of its input in a single pass; LR-parsing will
only permit single pass translation for simple programming languages such as a
desk calculator but not for more typical PLs, because of the order in which
information becomes available. However LL-parsing techniques have the drawback

that they can only deal with a restricted class of grammars.

An early LL(1) syntax analyser generator project (Bochmann & Ward, 1978), took
a previously designed LR-syntax analyser generator (Lecarme & Bochmann, 1974)
and modified it to operate in a top-down manner. This system accepts a set of
production rules to specify the language syntax, augmented with embedded
variables, procedures and functions to deal with semantic constraints. These rules
are expressed in a regular expression notation since this ensures that the grammar is
free of left-recursion, which is a necessary precondition of LL(1) parsing. The
system translates this RE description into an equivalent BNF representation, but still

preserving the property of being non-left-recursive.

The ALL(1) compiler generator Aparse (Milton er al., 1979), was designed to
incorporate attributes into an LL(1) grammar, using embedded attribute evaluation
rules and declarations written in C. By considering previously evaluated attributes,
and thus providing a disambiguating mechanism, the syntax analyser is able to
handle a wider class of grammars than normal LL(1) techniques. Aparse consists of
four independent modules: a grammar preprocessor, an ALL(1) syntax analyser
generator, an error-corrector generator and a table compactor. It produces a table-

driven syntax analyser.

The Visible Attributed Translation System (VATS) (Berg er al., 1984) is also an

attributed LL(1) syntax analyser generator based on a previous LL(1) system called
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ATS. In a similar manner to Aparse the grammar is augmented by attribute
evaluation actions, but in addition the user is able to interactively examine the
operation of the syntax analyser. The "visibility" model of VATS displays the
current state of the syntax analyser at each step, and shows previous parsing
reductions, semantic actions and error recovery as they occur; thus the task of

debugging the compiler is considerably eased.

The LLGen syntax analyser generator (Fischer & LeBlanc, 1988), is a system
which accepts a CFG specification and produces a set of tables to be used by a user-
written driver program. The specification consists of three main sections: options
requested for the run; a set of terminal symbols for the grammar; and a set of
production rules. The grammar is augmented by user-supplied semantic actions
which are each identified by a unique number in the syntax analyser's tables. In
addition to these tables, LLGen also produces error-repair tables, with actions
determined by the context-free grammar together with a list of repair costs (a default
cost being inserted if no such list is given). A similar syntax analyser generator,

LALRGen (Fisher & Leblanc, 1988), exists for generating LALR syntax analysers.

The motivation behind the development of the LLgen syntax analyser generator
(Grune & Jacobs, 1988), was to produce LL(1) syntax analysers similar to those
written by hand. LLgen accepts a parameterized extended CFG, with embedded
semantic actions written in C. These parameters, which correspond to C data
structures, are used for communication between grammar rules and semantic actions
in a manner identical to parameters in function calls. This implements a mechanism
for inheriting and synthesizing attributes within the grammar; in fact LLgen uses the
same method for attribute storage allocation as in hand-written recursive-descent
syntax analysers. Further user-supplied functions are used to resolve LL(1)

conflicts in the context-free grammar, and their operation is guided by semantic
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actions. An error-recovery mechanism called "acceptable set recovery” is also

included.

The generated parsing functions from LLgen are emitted as C code (ie. not table
driven), and may be produced from a number of separate files giving the language
specification. These files can then be combined (in a manner similar to the Unix

make facility) to form a single executable syntax analyser.
3.1.3 Semantic analyser generators

The automatic generation of routines to perform semantic analysis from a formal
semantic description is a more complex and less-understood process than for lexical
and syntax analysers. This is mainly due to the more elaborate semantic restrictions
imposed by modern programming languages, and, of course, to the impossibility of

context-free specification.

Many compiler writing systems have subsequently been based on attribute grammar
specifications, generally enforcing the rule that the AG should not be circular, thus
allowing practical systems to be developed. In order to save on compilation time
and storage requirements, it has been suggested that attribute evaluation should be
performed "on-the-fly" during parsing; this means that there is no need to construct
a parse tree. Such a method was used in the SDELTA system (Lorho, 1977), but it
restricts the class of attribute grammar which can be parsed to only those whose

attributes can be evaluated in a left-to-right order. It can thus be used to construct

one-pass compilers.

More generality can be gained by first building a parse tree of the program being
compiled, and then decorating the tree with attribute evaluation rules. A method of
tree traversal must then be defined which ensures that the order of attribute

evaluation adheres to the constraints imposed by the attribute dependency graph
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(Kennedy & Warren, 1976). The resulting syntax analyser will thus operate in a
multi-pass manner. A system for generating such a syntax analyser was proposed
by Fang (1972) using a collection of parallel processes, but this resulted in non-
deterministic behaviour and is hence very inefficient. A deterministic system, called
DELTA (Lorho, 1977), has been developed for general attribute grammars, but it
too trades efficiency for generality since it constructs a dependency graph at compile

time.

In order to gain efficiency, but still cover a reasonably large class of grammars,
Bochmann (1976) suggested that attribute evaluation should be restricted to
grammars which allow evaluation to be performed in a fixed number of left-to-right
passes of the parse tree. This work was extended by Jazeyeri & Walter (1975) to
yield a technique also used in HLP described by Riihi er al. (1978) and in the
LINGUIST-86 system (Farrow, 1982), where passes of the tree are made
alternately left-to-right and right-to-left. This method is also not generally
applicable, but is restricted to grammars allowing this alternating-pass attribute
evaluation. The MUG2 system (Ganzinger er al., 1977) which was developed to
produce multi-pass optimizing compilers, uses a similar method except that it
restricts tree traversal, and hence attribute evaluation, to a number of top-down, left-

to-right passes.

The intention of the so-called KW method (Kennedy & Warren, 1976) is to
maximize the degree of determination of attribute evaluation order at evaluator
construction time rather than at operation time. This approach was taken for
efficiency reasons, but is a more difficult task. In this method, a number of
recursive routines are generated to perform tree-walking. These routines follow a
set of "plans", which are constructed from the grammar. A plan gives a sequence of
evaluation actions to be performed when visiting a node, and visit actions, which

specify the routines to be called next to continue the tree-walk. In contrast to the
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pass-oriented systems described above, the KW method accepts the much larger
class of absolutely noncircular grammars. For a grammar in this class, an
evaluator's action at a node need not depend on the structure of the node's subtrees.
This is because its control mechanism is tailored to the particular attribute grammar
being evaluated. Saarinen (1978) describes a modification of Kennedy & Warren's

method that saves space by keeping attribute values stackwise rather than nodewise.

More recently, researchers have begun to examine the possibility of using
denotational semantics as a specification language, since they provide a formal
description at a suitable level of abstraction from implementation detail (Raskovky &

Collier, 1980; Jones & Schmidt, 1980; Thatcher ef al., 1980; Deschamp, 1980).

The SIS system (Mosses, 1975, 1978) uses semantic equations written in an
applicative language. These equations are translated into a language based on A-
expressions called LAMB, which are then interpreted. This mechanism allows
programs to be run and tested as soon as a formal semantic specification of the
programming language used is available. Jones and Schmidt (1980) have
investigated the use of state transition machines (STMs) as target code. Since STMs

are closely related to the A-calculus they facilitate the process of proving the

compiler correct.

The PERLUETTE system (Deschamp, 1980) also stresses provability of the
generated compiler. In this system a compiler is produced as a number of Lisp-lists
which can be manipulated and evaluated, and it is planned to attach an automatic

theorem prover to verify the compiler.
3.1.4 Code generator generators

The production of the code generation phase of a compiler has been the most

difficult to automate. The goal of research directed towards this area of compiler
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construction is to be able to take a formalized description of the target machine
architecture together with an intermediate representation of the program being

compiled; from these, machine code for the target architecture should be emitted.

One approach to easing the task of designing and writing a code generator is a
procedural one (McKeeman et al., 1970) and also Elson & Rake (1970) who
concentrated especially on code generator specification languages. This involves
taking a machine description, expressed in some formal language, and producing
sets of tables to be used by a skeletal code generation routine. These tables should
also be used to perform optimizations, where many of the techniques used are
machine-independent, The portable C compiler (Johnson, 1978), uses machine
description tables in its code generation phase, but it has not proved possible to

generate these tables automatically.

The Production Quality Compiler-Compiler (PQCC) (Leverett er al., 1980; Cattell,
1980; Cattell et al., 1979) was developed at Carnegie Mellon University and work
was mainly concentrated on the production of compiler back-ends for a variety of
machines, to compete with hand-coded compilers. It works in a manner similar to
yacc (Johnson, 1975), in that it accepts formal language and machine descriptions
and builds tables to be used by a skeletal code-generation and optimization program
called PQC as shown in Figure 3.3. The compiler-writer must supply a syntax
analyser which emits an intermediate representation of the parsed program. This
intermediate representation is an abstract syntax tree expressed in a form named
TCOL. A standard syntax analyser generator like yacc can be used for this purpose.
In order to pass this tree between compiler phases it is "flattened" for input and

output into a notation known as linear graph notation.
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Figure 3.3 The PQCC compiler generator

The machine description used in PQCC is based on the ISP language developed by
Siewiorek et al. (1982) and is non-procedural and easily human-readable. In this
description, the user gives a mapping between machine operations and subtrees of
the TCOL representation. The PQCC system reverses this mapping to create

"templates” which relate TCOL subtrees to machine code sequences.

PQCC acts in several phases, as shown in Figure 3.4, based on the model of an
optimized compiler called BLISS-11 (quoted in Leverett et al., 1980). Each phase
performs a particular part of the code-generation and code-optimization process,
hence the specification can be developed and debugged as manageable subsystems.
The TCOL tree is passed through a series of optimizations, and the system is

parameterized to permit use on a variety of machines. The first optimization phase,
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called FLOWAN, is machine independent and builds a graph of the basic blocks of
the program. It then performs flow analysis, resulting in optimizations such as
moving constant code outside loop bodies. The next group of phases, known
collectively as DELAY, perform a number of source-to-source transformations.
These phases include context determination (adding semantic information regarding
the use of tree nodes as operands), operator propagation (which may result in a
changed order of evaluation), and finding the most efficient address calculations.
The TNBIND phase then performs register allocation, for variables and temporary
results in expressions, and also storage allocation. The penultimate phase, named
CODE, attempts to match subtrees of the optimized TCOL representation with
patterns in the previously produced tables. The matching is goal-directed and takes
account of cost functions for code sequences - if a match cannot be found, axioms
are used to manipulate the subtree until it fits a pattern. Such a method does not
guarantee to always find an optimal solution, but testing showed that it does in
many cases. The last phase, called FINAL, emits machine code, performing any

machine-dependent optimizations which were not found at the TCOL level.

Source code

Object code

Figure 3.4 The PQCC generated compiler
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In the table-driven code-generator developed by Glanville and Graham (1978), also
discussed by Graham (1980), a pattern-matching scheme is also used, but it uses an
LR-based algorithm rather than a goal-directed search. The user must supply
storage allocation, binding and optimization procedures. The code-generator is
provided with tables which are formed from a machine specification, and the
intermediate representation used for the parsed program is Polish-prefix. The
machine description is given in the form of productions of a context-free grammar in
a language called TMDL, and defines a mapping from the intermediate
representation to machine code sequences. The left-hand side of each production
provides the destination of a computation, and the right-hand side consists of the
prefix expressions with semantic rules, together with an equivalent assembly

language format.

The LR algorithm parses the intermediate representation, matching subtrees with the
TMDL description for the target machine and emitting code when a "reduction” is
performed. This method leads to many shift/reduce and reduce/reduce conflicts,
since the target machine description is often ambiguous. Shift/reduce conflicts are
resolved in favour of a shift and reduce/reduce conflicts choose the longest rule as a

match.

The efficiency of this method of generating a code-generator was tested by using it
to replace the back-end of the portable C compiler, and it was found that it produced
as good if not better code. However this approach does have its drawbacks; there is
too close a mapping between the machine description and the intermediate
representation used, which often means totally rewriting the description even for
just a change of language being compiled. Also the system does not address the
machine-dependent optimization issue, although it has been extended by Bird

(1982) to handle machine idioms. A further extension has been proposed to use
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attribute grammars for describing the target machine, machine-dependent

optimizations and code-generation.

Frazer (1977), has used a knowledge-based approach in his system called XGEN
which was written in LISP. This is an attempt at formalizing the ad hoc rules which
are used by assembly language programmers. It was designed to generate good
code for Algol-like languages, but does not provide a mechanism for dealing with
machine-independent optimizations or global register allocation. It does however
allow the specification of machine-dependent optimizations and local register

allocation strategies.

The intermediate representation used in XGEN is called XL, which consists of a
number of tuples. These tuples have only one operator but allow any number of
operands, thus providing a means of giving extra context information. The tuples
are recursively broken down until they are simple enough to produce equivalent

assembly code.

Donegan et al. (1979) have proposed the use of a finite-state machine description in
their code-generator generator language (CGGL) to produce a code-generator
written in Pascal. As the code generator parses the intermediate representation of
the program being compiled it passes through various states, emitting code as it
does so, until it reaches the final state. This approach is noted for its simplicity, but
may be an oversimplification of computer description, since it has difficulty dealing
with more than one machine register. Itis also an unsuitable method for specifying

machine-dependent optimizations.

3.2 Summary

In this chapter, we have reviewed various approaches taken by researchers to the

automation of the process of compiler design and construction. We have seen that

63




Chapter 3

tools have been developed to automate each of the phases of a "traditional” compiler:
lexical analysis, syntax analysis, semantic analysis, and code optimization and
generation. For the lexical analysis phase, we presented systems based on the
powerful and general-purpose regular expression notation, and also on less
powerful, special-purpose notations. We surveyed a number of syntax analyser
generators, which use either LR or LL-based algorithms in the syntax analysers that
they produce, working from a BNF-like description of the language to be compiled.
We saw that the majority of systems which automatically generate semantic
analysers use attribute grammar techniques to describe static semantics; we also
noted that more recently systems have been developed based on the mathematical
rigour of denotational semantics. In the less well-understood area of code
generators, we examined a variety of different approaches, which provide

algorithms working in both a machine-dependent and machine-independent manner.

In the next chapter, we shall give a more detailed account of the program generators
lex and yacc since the system described in this thesis is largely based on these two
tools. In order to determine enhancements which can be made to their user interface
and to the facilities they provide we shall examine, via an illustrative example, their

use in the construction of compiler front-ends.
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Chapter 4

lex and yacc: A Detailed Investigation

4.1 Introduction

Two of the most commonly used tools for the automatic generation of compilers are
lex, a lexical analyser generator, and yacc, a syntax analyser generator. Since this
thesis is largely based on these tools, we present in the following sections an

account of how they function and interact in the production of a compiler front-end.

Also before beginning work on our proposed system which should provide a tool
for automating compiler front-ends, we decided to code lex and yacc specifications
for a small but illustrative example. In this way, we gained experience of the use of
these two tools, and established a number of features which should be included in
our system. We were thus able to gauge the ease of use of lex and yacc and to

target a number of improvements.

The example chosen was to write a compiler for a small BCPL-like language called
MSL (Mini System Language), which is used at Aston as an exercise in practical
compiler writing in the programming language implementation module of a final
year BSc course. The MSL language has facilities for manipulating values of type
integer, boolean and text, and provides an elementary mechanism for establishing
pointer-based data structures, which can include one-dimensional arrays. An MSL
program can be procedurized, but all variables are treated as global. The language

also has simple input/output routines.
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In addition we augmented the lex and yacc specifications in order to produce a
syntax tree, to perform semantic analysis and emit mnemonic code called TM

(Elsworth, 1989) for a hypothetical von Neumann machine.

4.2 The Lex lexical analyser generator

The lex lexical analyzer generator was developed at AT&T laboratories by Lesk
(1975). It is intended as a tool which accepts a high-level specification based on
regular expressions, and generates a C program to recognize instances of these
regular expressions appearing on the input stream. Hence it is useful for
performing editor-like transformations on its input, or for "tokenizing" the input for
use by a language syntax analyser. For this reason it represents a complementary

tool to yacc, and indeed was designed with this in mind.

4.2.1 Input specification

The format of a lex specification is divided into three sections separated by "%%".

The general format is thus:

where the first and third sections are optional and are often omitted. The definition
section allows the user to give names which are to be associated with commonly
used regular expression patterns. For example since alphabetic characters are
permitted in identifiers and keywords of a programming language, the user may

wish to define letter as:

letter [a=zA-2Z]
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He can then use the name "letter" in the rule section, in place of its corresponding
regular expression. The definition section also allows the inclusion of arbitrary C
code fragments placed between the delimiters "%{" and "%)", which are simply

copied unchanged into the file containing the generated lexical analyser.

The rule section is structured as a sequence of regular-expression/action pairs.
Hence a typical rule will appear thus:

integer { printf ("found keyword INT \n"); }

Every time the characters integer are encountered in the input, the message "found

keyword INT" is displayed.

The form of the regular expressions is very similar to these used in QED (Kernighan
et al., 1972) and in the Unix text editor "ed" (Thompson & Ritchie, 1975).
Whenever the characters in the input stream match with one of the regular
expressions, the corresponding action is executed. Character strings not matching
any of the defined regular expressions are copied to the output (so that in a compiler
application, we must ensure that all possible input, including error text, will be

matched).

Lex allows the specification to be ambiguous, in which case the following rule is

applied to resolve the ambiguity:

« The longest match is preferred.

» Among rules which match the same number of characters, the rule given first

is preferred.

eg.
integer {/* keyword action */ )}
fa-z] [a-2z]* { /* 1identifier action */ )
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If the input symbol found is integers then the identifier action is performed, due to
first rule given above, however if the input found is integer then the keyword

action is performed, due to the second rule given above.

In order to implement this matching process, the lexical analyser may need to read a
significant number of characters ahead. However when a string is finally matched,
the input is appropriately backed-up, so that this lookahead process remains

invisible to the user.

The action part of each rule is written by the user as a C code fragment which may
include calls to his own functions or to functions contained in the lex library.
Typically, when lex is used in conjunction with the yacc syntax analyser generator,
these actions will include a statement which returns an integer value identifying the
group of characters consumed from the input stream (ie. the language token). For

example when matching an identifier we would use a rule such as:

(a-zA-2Z2] [a-zA-Z]* return (IDENTIFIER) ;

In many applications the user does not purely require the identifying integer value
returned in the manner described above, but also the actual characters in the Input
which matched the regular expression. For this purpose, lex provides an external
character array called yytext, which is over-written every time a regular expression
is matched. The following example illustrates a rule which will echo the character

string matched:
[a-z]+ printf ("$s", yytext);

Lex does not automatically evaluate the string which it has matched (eg. finding the
integer value of a string of digits). Such an operation must be written by the user as
a C code fragment in the associated action, but lex does provide an external variable

yylval through which this value can be communicated to the syntax analyser. If
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lex is used in conjunction with yacc then yylval should be declared in the generated
syntax analyser as a union of all the types appropriate to the grammar symbols

appearing in yacc rules.

In certain cases, the user may wish to override lex's method of choosing the longest
match from the input stream. The special action REJECT is provided for this
purpose, and calls the lex function yyreject (). Essentially, when lex matches a
RE whose action contains REJECT, it passes on to the next alternative match. This
is particularly useful when definitions of the items being matched overlap; for
example we will need to distinguish between identifiers and keywords of the

language. A lex specification to achieve this would include:

{a-zA-2Z] [a-2zA-2]* { /* 1if yytext isn't in the keyword table
then reject, using REJECT, this and go
and try the identifier rule */ }

[a-zA-Z] [a-zA-20-9]* { /* identifier action */ }

4.2.2 Operation of the generated lexical analyser

The lex specification, as described above , is converted into a C program held in a
file lex.yy.c, see Figure 4.1, with a main function called yylex (). This is an
interpreter which is driven by a number of generated tables, and acts as a
deterministic finite state automaton. The tables are a representation of a transition
diagram for the specified language. This results in the generated lexical analyser
being quite fast even for a large collection of REs. In fact, the time taken to partition
an input stream is proportional only to that input stream's length, regardless of the
complexity of the lex rules, as long as the amount of rescanning required is not
excessive, a condition satisfied for typical PLs. The only overhead of a complex
and large lex specification is the increased size of the code produced to implement

the lexical analyser.
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lex SpeCifiCation iy

leX.yy.C  mmmmfpt

input stream =——————g- - > Seqtgiré(r:lz of

Figure 4.1 The lex lexical analyser generator

According to Jacobson (1987), an author of flex (Paxson, 1988) , a lex generated
lexical analyser can be tuned to gain a factor of 10 performance improvement. flex
is a rewrite of lex intended to improve some of lex's deficiencies: in particular, it
generates lexical analysers much faster, and the analysers use smaller tables and run
faster. flex also provides tracing facilities to allow monitoring of the generated
lexical analyser as it matches input characters with regular expressions; whenever a

pattern is recognized the lexical analyser will write a line of the form:

--accepting rule $<rule n@o>

4.3 The yacc syntax analyser generator

Yacc, which is an acronym for "Yet Another Compiler-Compiler”, was developed
by Johnson (1975) at the AT&T Laboratories and runs mainly on Unix based
systems. It is a tool designed to generate an LALR(1) syntax analyser for a
language, given a specification in the form of a context-free grammar, and has been
used in the production of many Unix utilities, in IDL (Lamb, 1987) and in the
PQCC project (Leverett e al., 1980). It is not strictly a compiler-compiler since it
does not generate code to perform semantic analysis and code generation, however

it does allow the user to manipulate a semantic stack (a stack of attributes associated
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with the grammar symbols used), and to associate semantic actions with grammar
rules. The syntax analyser generated by yacc is intended to be used in conjunction
with a lexical analyser, which can be either hand-coded or produced by a lexical
analyser generator such as lex. Figure 4.2 shows an outline of the syntax

analyser's operation.

Lex specification Yacc specification

'

i Sequence A o Parsed
input ——» yylex tol;fn - | yyparse  —® o

Figure 4.2 Cooperation of lex and yacc

Since the parsing algorithm used in yacc is LALR(1), its power is limited by this
method with respect to the class of grammars for which it can generate a syntax
analyser. However it does allow ambiguous grammars to be used, and provides a

mechanism for resolving conflicts in such grammars.

4.3.1 The input specification

Input to yacc is separated into three parts: the declaration, production and user-
routine sections, where the separation is denoted by "%%". Thus it has the
following structure:

{ declaration }

%%

{ production}

$%
{ user-routine }
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We shall now examine each of these sections in more detail.

Declaration Section

The declaration section has two optional parts. The first of these, delimited by % {
and %}, contains ordinary C declarations which are used to declare variables used
by the user-written routines to deal with semantic actions. This part can also contain

C compiler directives such as #include and #define, for example:

% {

#include <string.g>
#include "tree.h"

#define STSZ 64

char namestack [STSZ];
int sp;

%}

All lines enclosed by %{ and %} are copied to the parser; therefore, they must be in

a correct C syntax.

The second, and most important part contains declarations of the tokens returned by
the lexical analyser. The declaration of tokens may have the following form:

$token tokenl integerl

$token token2 integer2

The optional integers following a token declaration give a numeric value to that
token, and they must be unique. If the integer value is not explicitly stated, then
yacc assigns the token a value above 257, incrementing the value by one for each

token it deals with.
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Production section

The production section contains the context-free grammar of a language, expressed
in a BNF notation, augmented with user-defined actions. The left-hand side of each
production is a nonterminal of the grammar; the right-hand side is a sequence of
zero of more alternatives separated by a bar "I". Each alternative consists of both
terminals and other nonterminals. A quoted single character on the right-hand side
is taken to be a terminal symbol, and unquoted strings of letters and digits not
declared to be tokens are assumed to be nonterminals. There must be a production
in the grammar for each such nonterminal symbol. The form of a yacc production is

as follows:
Production-name : Production-body ;

User-defined actions

The user can insert actions to be performed when a production has been recognized
by the syntax analyser. Such actions are written as a C code fragment delimited by
"{"and "}", and can be placed anywhere in the right-hand side of a production,
provided that this does not cause confusion with other productions. A number of
special symbols in an action are used to refer to specific parts of the right-hand side.
The symbol $$ represents the attribute value of the nonterminal appearing on the
left-hand side of the production; the symbol $i (where i is an integer) represents the
value of the ith grammar symbol of the right-hand side (which may be a terminal or
a nonterminal). Normally the action will compute the value of $$ in terms of some
function of the $i's. If no action is specified, the default is to evaluate $3$ as the
value of the first grammar symbol, that is $1. For example, the operation of a

simple desk calculator would be written as:

expr : expr '+' term { $$ S1 + $3; /* expr = expr + term */ }

| term; { $3 $1; /* expr = term */ }
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Ambiguity

As previously mentioned, yacc allows the use of ambiguous grammars. In order to
resolve an ambiguous production, the user may provide disambiguating rules, but if
these are not supplied yacc takes pre-defined default action. Verification that the
ambiguities have been resolved as user intended can be done by examining a trace
file y.output, which is produced by yacc when called with its "-v" option. This file

contains a list of the states entered by the syntax analyser during its operation.

Two different types of conflicts can occur in LR parsers; shift/reduce and
reduce/reduce. Shift/reduce conflicts occur when the parser has to decide between
shifting, or reducing by a production. Reduce/reduce conflicts occur when the

parser has to decide which of several productions to reduce.

The default action taken by yacc to resolve ambiguity is similar to that of Aho &
Johnson (1974). A shift/reduce conflict is resolved in favour of the shift (which
solves such problems as the "dangling-else™); a reduce/reduce conflict is resolved in

favour of the production appearing earliest in the specification.

If the user wishes to provide his own disambiguating rule, this is done by
specifying the precedence and associativity of operators in a table in the declaration
section. Associativity is indicated by %left (left-associative), %right (right-
associative), or %nonassoc (non-associative). Precedence is given by listing the
operators in ascending order of priority. Thus most shift/reduce conflicts are
resolved by giving precedence and associativity not only to each symbol but also
indirectly to each production involved in a conflict. In situations where an operator
can be either unary or binary (eg. '-'), the user can enforce a particular precedence

by appending the following "tag" to a production:

$prec <terminal>
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where the terminal's precedence and associativity have been given in the declaration

section.

Error-recovery

The error-recovery strategy used by yacc is a form of "panic mode" called "error
production” as described in section 2.2.1.5. In this method, the user augments the

grammar with error productions which are of the form:

A — error B

Where A is a nonterminal and B a sequence of grammar symbols (both terminals
and nonterminals). The symbol error is a reserved word, and yacc treats a
production containing it like any other production. When an error is detected the
syntax analyser behaves as if it had just seen the special symbol error immediately
before the token which caused the error. The syntax analyser then looks for the
nearest production rule for which the error symbol is a valid token and resumes

processing at this rule.

A yacc-compatible tool called SERCC (Systematic Error Recovery Compiler
Compiler) has recently been developed (Yang et al., 1988). It uses an extension to
the "forward move" algorithm (Pennello & DeRemer, 1978), combined together
with the "panic mode" supported by yacc, for its error recovery. It is claimed that
the users of yacc are not obliged to change their yacc input to serve as input to
SERCC. However, when compared with yacc, tests have shown that the number
of states generated by SERCC increases by about one third; also the size of the
parsing table is more than doubled. In the same context Park (Park, 1988) designed
a system, which accepts actions written in a special-purpose language called y+, to

be a preprocessor for yacc.
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User-supplied routine section

Since the actions specified by the user to be performed during parsing may need be
more than a just few statements in length, yacc provides a section in which the user
can declare his own C functions. These can then be called from their associated
productions. In addition, the user must supply a function called yylex (), unless
this has been provided by an external reference. The generated syntax analyser calls
this function to scan the input and return token values corresponding to those listed
in the declaration section. These token values are returned to the syntax analyser by
yylex () via the yacc defined variable yylval. yylex() can either be hand-written

or generated by a tool such as lex.

4.3.2 Operation of the generated syntax analyser

The specification as described above is transformed by yacc into a C program called
v.tab.c, whose main procedure is called yyparse (), see Figure 4.3. yyparse ()
operates as a finite state automaton and is driven by interpreting a set of tables which
specify state transition based on the input tokens. The syntax analyser attempts to
reduce these tokens to the nonterminals appearing in the BNF productions and

carries out the user-defined actions.

The finite state automaton used has four possible actions: shift, reduce, error and
accept. A shift action is performed when the next token is valid in the current state.
A new state is then pushed onto the stack and becomes the current state. When the
syntax analyser has successfully matched the entire right-hand side of a production,
a reduce action is taken. When reducing, the syntax analyser will pop the number
of states corresponding to the number of grammar symbols on the right-hand side of
a production; the current state is then the one remaining on the top of the stack. If

the input cannot be matched against any production then the syntax analyser
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performs an error action as discussed earlier. If the user has not supplied an
appropriate error production, the syntax analyser simply prints an error message.
When the syntax analyser reaches the end-marker of the grammar it enters the accept
state, and returns an indication that its parsed input was a valid sentence of the given

language.

Yace Specification  mem——{i

C compiler . —> a.out

sequence of
tokens >

> Parsed input

Figure 4.3 The yacc syntax analyser generator

4.4 The use of lex and yacc

In the following sections we describe the implementation of an MSL multi-pass
compiler using lex and yacc, and include observations regarding the practical use of
these tools with special reference to the situations where the onus still rests with the
user to add extra code. We have chosen to build a multi-pass compiler for MSL
rather than single-pass since in practice relatively few PLs may be recognized using
a single-pass compiler; also in order to be able to use yacc and its method of passing
attributes in a single-pass style it is necessary to use undesirable techniques such as

rearranging the grammar (Atteson et al., 1989).
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We present first the lex specification, followed by the yacc specification of MSL's
syntax, and finally the routines and data structures added for semantic analysis and

code generation.

4.4.1 MSL lex specification
MSL has the following lexemes:

» integer literal: an integer is a string of digits representing an integer in the range
0..maxint of the target machine.
* boolean literal: a boolean literal is given by the strings TRUE or FALSE,

which are keywords.

» text literal: a text literal is a string of any ASCII characters delimited by double

quotes.
» identifiers: an identifier is denoted by an arbitrary length string of letters and

digits, beginning with a letter, with the first 12 characters significant. Case is

not significant.

» keywords: there are a number of keywords which are reserved, and consists of
a string of letters, where case is not significant.

» operators/delimiters: MSL has a number of logical, arithmetic operators and

various delimiters.

Comments in MSL begin with "--" and continue until the end of the current line of
the program. These can be dealt with during lexical analysis, by simply consuming

characters without returning a value to the syntax analyser.
We can specify these lexemes using the following lex definitions and rules:

integer literals

digit [0-9]
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int ({digit}) ({digit}) *

{int} { return(INT); }

text literals

anybut DQ NL (“\n\"]

text ” \ e {anybut_DQ_NL } * 1 \ e

{text} { return (TEXT); }
Identifiers

letter ‘ [A-Za-z]

idr ({letter}) (({letter}) | ({digit}))*

{idr} { return(IDR); }
Kevwords

("In["in) ("E‘"I"f") { return(IFSYM) ; }

("F"I"f") ("I"l"i") { return (FISYM) : }

("D" | "d") ("O" | "O") { return (DOSYM) : }

... etc for all keywords of MSL

Operators and delimiters

noon { return(ASSop); }
non { return (EQUop); }
"y { return (PLUSop) ;}
... etc for all operators and delimiters of MSL

Comments

"——"{anybut_NL}*[\n] { /* do nothiné */ }

Assembled as a valid lex specification, we obtain:

% {

#include "y.tab.h"
#include <ctype.h>
%}

anybut_ NL (~\n]
anybut_DQ NL [(“\n\"]
digit [0-9]
uplow_case [A-Za-z]
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stringpic {anvbut_DQ NL}

letter {uplow_case}

text "\""{stringpic}*"\""

int ({digit}) ({digit}) *

idr ({letter}) (({letter}) | ({digit})) *
$%

".n { return (ASSop) ; }
n_mn { return (EQUOp) ;

—~—

ki { return (PLUSop) ; }
("IT| L") ("FT|NET) { return (DOSYM) ; }
("F"I"f") ("I"l"i") { return (FISYM) ; }
("O" I "O") ("D" | "d") { return (ODSYM) ; }
{idr} return (IDR) ;

{

{int} { return (INT) ;
{text} { return (TEXT) ; }
"--"{anybut NL}*[\n] { /* it is a comment */ }

%%

Primitive lex specification for MSL

As can be seen from the above specification, it can be quite cumbersome to specify
the keywords of a language explicitly in the lex rules. This form of specification
also results in a large number of cases in the main C switch statement generated by
lex. In many programming languages the patterns (REs) for identifiers and
keywords have much in common; often a neater and more efficient solution is to
determine their inter-relation, and use a function to distinguish between them, by

searching a table of keywords.

In considering the problem of keywords and identifiers more generally, we can
identify three possible cases. If K is the set of keywords, and I the set of

identifiers, then these cases are:

i) InK=¢ - the keywords and identifiers are two disjoint sets
i) IoK - the keywords are a subset of the identifier set
i) JUK# I and INK20

- the keywords and identifiers are two overlapped sets
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The first of these would occur, for example, in a language which uses only lower
case for its identifiers and only upper case for keywords, ie:

L [A-7]

1l = {a-z]
Keyword = LL*
Identifier = 11%*

il

The second case would arise given the following example definitions:

1 [a=-z]

d = [0-9]

Keyword = 11%*
Identifier = 1(1(d)*

The third case is rarer, but would arise where certain characters were allowed only

in keywords, and others only in identifiers such as:

1 [a=-2z]
d [0-9]
Keyword = 1(1}]'-")
Identifier = 1(1[d)*

*

In the case of MSL the keywords are a subset of identifiers thus the following

specification may be used.

. { definition section }
%

;;;" { return (ASSop) ; }
n=n { return (EQUop) ; }
wyw { return (PLUSop) ; }
{;,dx:} { return(screen());}
{int} { return (INT) ; }
{text} { return (TEXT) ; }
%

The function screen () is a routine that checks the input which has been recognized
against a keyword table and returns a code indicating whether it was a keyword or

identifier.

A user who is conversant with lex will know which of the above cases applies; the
method for dealing automatically with these three cases in a lex specification will be

discussed in chapter 6.
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4.4.2 MSL yacc specification

The context-free syntax specification for MSL was given in EBNF for the
aforementioned exercise. As noted in chapter 1, EBNF is commonly used in such
specifications since the features which it has in addition to those of BNF, make

syntactic descriptions more understandable and natural. We present below the

syntax of MSL in EBNF:
Program = ["RESERVE" int ] {ProcDec} Series ".".
ProcDec = "PROC"™ idr [" ("™ Idrlist ™)"] Series "END".
Idrlist = idr {"," idr}.
Series = Stmt {Stmt}.
Stmt = Assignst | Whilest | Ifst

| Callst | Readst | Writest.

Assignst = StoreAccess ":=" Expr.
Whilest = "WHILE" Expr "DO" Series "OD".
Ifst = "IF" Expr "THEN" Series ["ELSE" Series] "FI".
Callst = "CALL" idr [" (" Exprlist ™)"].
Exprlist = Expr {"," Expr}.
Readst = "READ" Optionalplus Readinlist.
Writest = "WRITE"™ Optionalplus Writeoutlist.
Readinlist = Optionalhash StoreAccess

{ "," Optionalhash StoreAccess }.
Writeoutlist = Optionalhash Expr {"," Optionalhash Expr}.

/* The following rules specify the lexical structures and */

/* 1in this exercise these have already been dealt with */
/* using lex but are included for completness */
Optionalhash = ["#"].
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Optionalplus = ["+"].
Expr = Operand {opr Operand}.
Operand = int | text | "TRUE" | "FALSE"
| "@" idr | StoreAccess | " (" Expr ")".
StoreAccess = idr ["!" Operand].
idr = letter { letter | digit }.
int = digit { digit }.
text = """" {stringpic} """"
stringpic = anybut_DQ NL.

Figure 4.4 MSL syntax in EBNF

Although it is more convenient to specify the syntax of a programming language
using EBNF, unfortunately yacc only allows rules to be given using BNF. In order
to transform the EBNF specification into its BNF equivalent, we need to examine
the extra features of EBNF and how to re-express rules which use these features as
BNF rules. There are three such features:

Optional items: If part of the RHS of a rule is enclosed in square brackets "["" and

"]", then this part of the rule is optional; eg. an IF statement in most PLs would be

described as:

Ifst = IF Expr THEN Stmt [ELSE Stmt].

which means that an IF statement may or may not have an ELSE part. The

equivalent yacc rule would be:

Ifst : IF Expr THEN Stmt Elsepart;
Elsepart : /* empty */
| ELSE Stmt;
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Repeated items: If part of the RHS of a rule is enclosed in braces "{" and "}", then

it may be repeated zero or more times; eg. a series of statements in many PLs would

be described as:

Series = Stmt {Stmt}.

which means that series consists of a statement followed by zero or more

statements. The equivalent yacc rule would be:

Series : Stmt Stmts;
Stmts : /* empty */
| Stmt Stmts;

Grouped items: If part of the RHS of a rule is enclosed in round brackets "(" and

")", then it is considered as a single entity. Normally this is used to override the
precedence of catenation over alternation; eg. constant in Pascal is defined as:

constant = [sign] (unsigned-number|const-identifier)

| character-string.

The equivalent yacc rule would be:

Constant : Opsign Grouped-item
| character-string;
Opsign : /* empty */
| sign;

Grouped-item : unsigned-number | constant-identifier;
The algorithm for performing this transformation will be discussed in chapter 6.
The full yacc specification obtained from the original EBNF grammar is shown in
appendix A. This provides purely a recognizer of a context-free-correct program

written in MSL. In order to produce the entire compiler for MSL, lex and yacc

specifications must be augmented with routines to build a syntax tree and symbol
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table, to perform semantic checking, and finally to generate code for the target

machine. We describe this more fully in the next section.

4.4.3 Augmented lex specification for MSL

The lex specification given in section 4.3 simply returns token numbers to the
parser; however, for certain types of tokens, additional information must be made
available. This additional information will be held at appropriate points in the
syntax tree, to be used by semantic analysis and code generation routines. Such
information needs to be extracted and evaluated from the characters forming the

token held in the external array yytext.

The process of augmenting a lex specification varies from one language to another,
depending on the type of lexemes, the form in which the lexemes are given, and
their evaluation functions. For example, for numeric literals, some code needs to be
added to a lex specification to determine the numeric value of the characters in
yytext. This may involve evaluation in various number bases, since many
programming languages allow numeric values to be specified as binary, denary,
octal or hexadecimal constants. Modula-2, for example, uses the letters B and H

appended to the end of a numeric value to indicate base 8 and 16 respectively; eg.

yytext = "110B" evaluates to 6

In MSL, only one representation is allowed which is a denary representation, thus

the augmented lex rule for numbers will be:

{int} { yylval.int = evaluate denary(); return (INT);}

String literals also require some processing, since they may contain special character
sequences to represent non-printable characters, or "escaped"” character values. For

example, in C a string may contain the characters "\n" to indicate a carriage return;
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when the string is evaluated and placed in the syntax tree, these characters should be

replaced by the ASCII value of carriage return; eg.

yytext = "ab\nc” evaluates to ab<CR>c

A further example is the need to replace multiple quotes by a single quote, as in the
use of a quote within a character string in Pascal. The same translation process also

applies to single character literals.

In MSL, a string is delimited by a double quote characters ("), and consists of any
printable characters except double quotes or carriage return, similar to Pascal. The

augmented lex rule for strings in MSL is given below:

{text} { yylval.text = evaluate Pstr(); return (TEXT); }

Tokens such as identifiers and operators must also have their values stored in the
syntax tree for later use by semantic analysis and code generation. The name of an
identifier will need to be available in order to be able to look it up in the symbol
table. The type of operator used determines the instructions which should be

emitted during code generation.

In MSL, the augmented lex rules for operators and identifiers are given below:

I

e { yylval.Vopr PLUSOP; return(PLUSOP); }

o { yylval.vVopr MINUSOP; return (MINUSOP) ; }

{idr} { yylval.vidr = evaluate idr(); return(screen()); }

The full augmented lex specification is given in appendix A.
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4.4.4 Augmented yacc specification for MSL

In order to be able to build a syntax tree, we must include appropriate data structure
declarations for nodes of the tree. In general, each rule in the yacc specification will
correspond to one tree node, and this node will contain pointers to other nodes for
nonterminals on the RHS of the rule, and the values of certain terminals. Thus,
since yacc generates C code, we need to specify a number of appropriate C struct
data types. Each struct may be a union of different types when a rule contains more

than one alternative in its RHS; for example given the following simple rule:
Stmt : Assignst | Whilest | Ifst | Callst | Readst | Writest.
we will need a struct to hold a program node such as:

struct Stmt_type {
int type: /* tag to tell which union alternative */
union {
struct Assignst type *Assignst; /* type=1l, first alternative */
struct Whilest type *Whilest; /* type=2, second alternative */

struct Ifst_type *Ifst; /* type=3, third alternative */
struct Callst type *Callst; /* type=4, fourth alternative */
struct Readst_type *Readst; /* type=5, fifth alternative */

struct Writest type *Writest; /* type=6, sixth alternative */
}RIGHTSIDE;

Data type for "Stmt" node in MSL syntax tree

In order to actually build the syntax tree, given the necessary data structure
definitions as described above, we need to insert actions into the yacc specification.
These actions allocate the appropriate amount of dynamic store when a particular
rule has been matched in the input stream. The rule then returns a pointer to this
allocated store as its result through the yacc internal variable $$. In this way, since
yacc produces an LR-parser, the syntax tree 1s created in a bottom-up manner. Thus
for the stmt rule given above, assuming we have a function mknode () which

acquires the storage necessary for one tree node, the yacc rule for stmt now

becomes:
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Stmt = Assignst { 35
| Whilest { $s
f Ifst { s
| Callst { $s
| Readst { ss
| Writest { $S

= mknode (2,1, $1)
mknode (2,2, $1)
mknode (2, 3, $1)
1)
1)
1)

I

mknode (2,4, $
mknode (2,5, $
mknode (2,6, $
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’

}
;o)
;o)
;o)

}

}

’

’

’

The first parameter of the mknode () function is the number of store units to acquire;

the other parameters are entered into these store units.

Once the syntax tree has been constructed in this manner, semantic analysis and

code generation can be performed by traversing the tree left-to-right and depth-first,

performing appropriate operations for each node as it is visited. Thus we require a

number of "tree-walk" routines for the tree as described by the data structure

definitions. For each node of the tree a walker routine is required. Consider the

following rules:

Ifst : IFSYM Expr THENSYM

{ $$

Op_Else : /* empty */
| ELSE Series

Operand < INT

TEXT

TRUESYM

FALSESYM
INDIRsym IDR
StoreAccess
OBsym Expr CBsym

— A am ey ——

Series
mknode (4,1, $2,5%4,8$5) ;

$S

$$
S$$
$S
$S
$S
$S
$S

Il

1

1l

mknode (2,1, $2) ;

mknode
mknode
mknode
mknode
mknode
mknode
mknode

Op_Else FISYM

};
};

[ N S P N

The simple tree-walk routines that purely visit the nodes without performing any

operations would be:

walk Ifst(ptr)
IFST_TYPE ptr;
{

walk Expr(ptr -> Expr):

walk Series(ptr -> Series);
walk Op Else(ptr -> Op_Else);

} /* end of walk Ifst{() * /

walk Op Else(ptr)
OP-ELSE TYPE ptr;

{
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walk_Series(ptr -> Series);

} /* end of walk Op Else() */

walk Operand (ptr)
OPERAND_ TYPE ptr;

{

switch(ptr -> type) {

case 1 : case 2 : case 3 : case 4 : case 5
break;

case 6 : walk_StoreAccess (ptr->RIGHTSIDE.StoreAccess) ;
break;

case 7 : walk _Expr(ptr -> RIGHTSIDE.Expr) ;
break;

default : printf("ERROR - wrong alternative number\n");
break;

}/* end of switch */

} /* end of walk_Operand() */

However, if what we require is to perform the semantic analysis and code
generation, then the walker routines must include code to do so. The following is

the augmented walker routines for the above rules:

walk Ifst (ptr)
IFST_TYPE ptr;
{

int cj, uj;

walk Expr(ptr -> Expr); cg2(JF,0); cj = PSused;
walk Series(ptr -> Series);
if (ptr -> Op_Else)
{

ng (J,0):

uj = PSused;
}
PS[cj] = PSused+l;
walk Op_Else(ptr -> Op_ Else):
if (ptr -> Op Else)

PS[uj] = PSused+l;

} /* end of walk Ifst() */

walk Op Else(ptr)
OP-ELSE_TYPE ptr;

{

int cj, uj;
if (ptr) walk Series(ptr -> Series);
} /* end of walk Op Else() */

walk Operand (ptr)
OPERAND_ TYPE ptr;

{
BOOLEAN onstack;
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int STpos:
int DSloc;

switch(ptr -> type) ({

case 1 : cg2(LC, ptr->RIGHTSIDE.intsym); break;
case 2 : textual = TRUE;
cg2 (LC, textaddress (ptr->RIGHTSIDE.text)); break;
case 3 : cg2(LC, TMtrue); break;
case 4 : cg2{(LC, TMfalse); break;
case 5 : idrchars = malloc(strlen (ptr->RIGHTSIDE.idr)+1);

strcpy (idrchars, ptr->RIGHTSIDE.idr) ;
checkdeclared (&STpos) ;

cg2 (LC, getRTSL(STpos)); break;

case 6 : walk StoreAccess(Rv,ptr->RIGHTSIDE.StoreAccess,
&onstack, &DSloc); break:;

case 7 : walk Expr(ptr -> RIGHTSIDE.Expr); break;

default : printf("ERROR - wrong alternative number\n");
break;

}/* end of switch */

During tree traversal, semantic analysis and code generation must be performed.
Full detail of routines to achieve this can be found in appendix A. Routines which

we added to perform semantic checking and to build the symbol table are:

CSerror(), STlookup(), checkdeclared(), checkprocidr() and

checkFPidr () .

Routine to produce a mnemonic code equivalent of the source program are:

CGloadcontents (), getRTSL(), textaddress(), cgl(), cg2() and

cg3 ().

Also included are routines to output the symbol table and a generated code, these
being:

ListSymbTab () and ListTMcode() .

Manifest constants and symbol table data structure declaration are given in the

header file define.h.
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4.5 Summary

In this chapter we have given a more detailed account of the use of lex and vacc in
the construction of compiler front-ends, since the system described in this thesis is
largely based on these two tools. We have also seen in this chapter how lex and
yacc specifications can be constructed for a simple programming language, namely
MSL. We have shown informally the process of how a language implementor
proceeds from a "reference manual" grammar to lex and yacc specifications.
Although this process is straightforward for an experienced language implementor,
it certainly requires a definite effort and is error-prone. A significant amount of
training is required to be able to use them effectively. From these specifications we
can obtain only a recognizer for a syntactically correct MSL program. Although the
declaration of the syntax tree, and routines for building this tree and for visiting its
nodes performing semantic analysis and code generation is mechanical, this must
still be added when using lex and yacc. We maintain that much of this additional
effort can be saved by providing a system which takes a single language
specification using a notation convenient to the user, and which performs
automatically the in-core manipulation and input/output of the tree. The aim is
therefore to allow the user to input a "reference manual” grammar for a particular
programming language, and to generate code for the front-end of a compiler for this
language. In the next chapter we shall describe the design and implementation of

such a system.
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Chapter 5

The Problem and the Proposed Solution

S.1 Rationale and intended goals

We have seen in Chapters 3 and 4 that many systems have been developed which
attempt to automate the construction of individual phases of the compilation process,
or indeed the construction of an entire compiler. We note that these systems are
deficient in either of two respects: they either try to provide a large number of
facilites at the expense of clarity of the input specification, or they provide an easy-
to-use interface, but do not include many of the features necessary for writing
realistic software. The first of these two kinds of deficiency results in the user
being given simply a "higher-level” programming language in which to write the
compiler; the second results in a necessity to write many auxiliary routines to

perform tasks not provided automatically by the system.

The most common approach to dealing with generation of a compiler front-end is to
require the user to supply a separate specification for each component phase (eg.
lexical and syntactic specification). This almost always involves a different form of

input notation for the production of each compiler phase.

Having noted the above shortcomings of existing systems our intention is thus to
develop a system which has a simple and clear user interface, but which provides
most of the elements necessary for automatic compiler front-end construction. Our
system, called CORGI (COmpiler-compiler from Reference Grammar Input) uses a
single input specification to describe all the relevant aspects of the language to be

compiled, and extracts from this, the information needed to build both the lexical




Chapter 5

and syntax analysis phases of the compiler. Thus we have unified what previously
required two specifications into a single entity. Additionally, we aim to eliminate
much of the requirement for user-written auxiliary code. To increase the ease-of-
use of the system this specification is given in a form similar to that found in many
language reference manuals, namely EBNF. In addition to the basic functions for
recognizing a correct program in the given language, the system should also
automatically generate declarations for the data structures required to build an
Abstract Syntax Tree (AST), and also a number of routines for manipulating these

data structures and for storing and retrieving them from permanent storage devices.

5.2 Development environment

Many systems have been developed from scratch, without using existing software
already available for fulfilling many of the requirements. Whilst this approach has
its merits, we believe that a more reasonable alternative is to take advantage of
existing software where possible, and avoid the overhead of "re-inventing the
wheel". We therefore chose to adopt a "layered" approach, building additional
functionality on top of the most popular currently existing tools, namely lex and
yacc, but to hide this from the user, by providing a more convenient interface, and
by automatically producing features not directly available with these two tools. We
identified the following shortcomings of lex and yacc, which our system should

address:

« to make best use of lex and yacc a detailed technical understanding of their
internal operation is necessary

« preparation of the lex and yacc specifications is error-prone and tedious

« yacc requires a "low-level" specification (BNF), a backward step from EBNF

« lex and yacc deal with unduly limited aspects of compilation. Much user-

written code is still needed (eg. syntax tree declaration and manipulation).
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Hence our system was designed to free the user from the above constraints, by
allowing him to write a single EBNF specification of the language to be compiled
with the addition of some annotations which will be discussed later. From this

specification is produced:

+ a guaranteed valid lex input specification

» routines for determining values for attributed lexemes
» a guaranteed valid yacc input specification

» data structure declarations for the abstract syntax tree

» routines for tree manipulation in memory and input/output (I/O).
5.3 Functional specification of the CORGI system

As eXpIained above, the CORGI system was not to produce a compiler-compiler
from scratch, but to provide a more convenient interface to the user, and to
automatically generate lex and yacc specifications from a grammar, including
routines for tree building and manipulation; thus the system can be regarded as an
enhancement of these two existing tools. CORGI is designed to be a fully integrated
system which, when presented with an input specification, will produce an
executable parser (including routines for building, manipulating, and performing

input/output of the abstract syntax tree) for the given language.

5.3.1 CORGI input specification

In order to provide a convenient interface to the user, it was decided to use EBNF as
an input notation for CORGI, since this is the most common notation used in
language reference manuals. Spaces, newlines and comments may occur anywhere
in the specification, between any grammar symbols, terminals or nonterminal.

Comments in the input specification may be nested. They are any sequence of
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characters enclosed between "/*" and "*/" as in C. Thus their syntax using EBNF
is:

Comment = n/*" { item } n*/n.

item = Comment | anyprint-char-but-commentstartsymbols.

Following the style of lex and yacc, a full CORGI specification for a language for

which a compiler is being produced consists of three sections separated by "%%".

These are:
{ Annotation } ==> section 1
{ Rules } ==> section 2
%%
{ User's routines } ==> section 3

Each of these sections is described in detail in the following sections.

5.3.1.1 Annotation section

The annotation section describes aspects of the language which we would not
normally wish to treat as part of its syntax (eg. comments) or where description is

tedious using a context-free grammar notation (eg. case sensitivity of keywords).

In order to produce the necessary input for lex to perform lexical analysis, lexemes
of the language are extracted by the CORGI system from the EBNF syntax
description. The user is therefore not required to write regular expressions to

describe these lexemes.

Certain information must however be provided in this section for some lexemes.

This information is divided into four major sections namely Comments, Key-case,

Lexemes and Operators. These sections are described in detail below.
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a) Comments: Comments are an unpleasant exception in the vocabulary of most
programming languages. In fact they are not part of the syntax and should be
deleted by the lexical analyser. A method is needed to allow the user to specify the
symbols which start and end comments. An approach taken by Md&ssenbdck
(1986) was to introduce these symbols using the keywords FROM and TO.
However this does not cater for a language where a comment can be closed by more

than one closing symbol (eg. Pascal).

Hence in the CORGI system we have allowed the user to give a list of alternative
symbols to start and end comments, thus:

STARTCOMMENT ok
ENDCOMMENT myn wk) Motk m e

would be used to describe Pascal comments. The above states that starter "{" can

be matched by "}" or "*)", and that starter "(*" may be matched by "*)" or "}"

In order to deal with languages where there is no explicit closing comment symbol
as such, but a comment ends after a newline is found, CORGI provides the

keyword NEwWLINE ; for example for Ada, this specification would be:

STARTCOMMENT Wt
ENDCOMMENT NEWLINE.

For Mesa (Mitchell, 1979), the specification would be:

STARTCOMMENT M=t
ENDCOMMENT W NEWLINE.

Some languages permit nested comments, eg. Modula-2, and we should allow the
user to specify this in CORGI. This facility cannot be described using regular
expressions, and 1s not supported by lex, however CORGI allows such a feature
using the keyword NESTED to indicate that the comment symbols given can be

nested. For example the Modula-2 specification would be:

STARTCOMMENT mx" NESTED.
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ENDCOMMENT mxy

In chapter 6 we give details of how nested comments are dealt with in the generated

lex input specification.

If this part of the annotation section is omitted, then the language is assumed not to

allow comments at all.

b) Case sensitivity: The case sensitivity of keywords in a language can be difficult

to describe using a normal context-free grammar notation. If the language allows
keywords in lower case only, then these can be given directly in the grammar as in

for example:
whilest = "while" expression "do" statement.

A similar rule would be given for upper case keywords only:

whilest = "WHILE" expression "DO" statement.

The specification becomes more tedious and redundant, if keywords can appear in

lower case or upper case, but not allowing case to be mixed, as in:

whilest = "while"™ expression "do" statement
| "WHILE" expression "DO" statement.

The situation is even more difficult if case can be mixed, thus rendering a concise
specification impossible using the above methods; it would not be reasonable to

expect the user to state all combinations of upper and lower case in keywords.
For example given the CORGI rule for a while statement:

whilest = T"while" expression "do" statement.

then the annotation section may contain one of the following, where we explain their

meaning:

KEYWORD CASE CASE-SIG.
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means only "while" in lower case is allowed.

KEYWORD_ CASE CASE-NONSIG.

means any combination of upper and lower case letters is allowed.

KEYWORD CASE CASE-NOTMIXED.

means either while or wHILE is allowed, but a lexeme such as wh1lE would be

taken as an identifier.

If the case sensitivity part of the annotation section is omitted then the default value

taken iS CASE_NONSIG.

c) Lexemes: As previously mentioned, CORGI extracts the lexemes of a language
from its context-free grammar. As discussed in chapter 3 we define a lexeme to be a
sequence of characters from the source text grouped together in a particular
structure. Krzemien & Kukasiewicz (1976) developed an algorithm which extracts
from the original BNF grammar all so-called "quasi-regular” subgrammars
generating regular languages. However it sometimes extracts certain subgrammars
which are either not normally treated by the lexical analyser (see rule 1) or for which

a finite state automaton (FSA) cannot readily be built (see rule 2).

i

ide { "," idr }. (1)
0 | 1 ] 0 binary-num | 1 binary-num. (2)

idr-1list

binary-num

Rule (1) is regular and hence theoretically an FSA can be built from it, however one
would not wish to use a lexical analyser on such a rule. The rule does not describe a
single indivisible (atomic) unit, instead it describes a group of such units and hence
to treat such a group as a single entity makes the semantic analysis very complex.
Rule (2) is also regular, but since it is not given in regular expression form (it
contains a direct recursive definition) a FSA cannot be built directly from it
therefore some changes have to be made such as:

binary-num = binary-digit { binary-digit }.
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binary-digit = 0 | 1.
Thus in CORGI, lexemes are described using EBNF notation; however this
description must not contain any direct or indirect recursive definitions to avoid the
problem found in rule (2). Violation of this constraint will lead to a circular
definition in the generated lex specification, which will subsequently be faulted by

lex.

In order to isolate the lexemes which lex should be used to detect, and which may
require evaluation (eg. identifiers, strings, numeric constants, etc), the user is
required to list the nonterminal symbols which describe these (usually attributed)
lexemes. This is done by using the keyword LEXEME followed by a list of the
appropriate nonterminals or literals. For example, in a language where the only
attributed lexemes are identifiers, strings and integers, the LEXEME part

of the annotation section would contain:

LEXEME identifier string integer.

where these might be further described in the rules section as:

identifier = letter { letter | digit }.
st ring = URIRIN1] { anybut_DQ__NL } LIETRIRT] .
integer = digit ( digit }.

Note that in some programming languages certain literals are treated in a very special
way. For example, the delimiters "#" and "+" used in read and write statements or
the keywords "TRUE" and "FALSE" used in MSL language. These literals are
now important and needed during the code generation, unlike literals such as "!",
"@" which are needed only for the context-free syntax. These literals may be
treated by the lexical analyser, and therefore may be given in the LEXEME list as

follows:
LEXEME identifier string integer "TRUE™ "FALSE"™ "#' "+

where these might be used in the grammar section as:
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identifier = letter { letter | digit }.
string = """" { anybut_DQ_NL } """".
integer = digit { digit }.
Operand = int | text | "TRUE"™ | "FALSE"

[ "@"™ idr |StoreAccess |"("™ Expr ")".
Optionalhash = ["#"].
Optionalplus = ["+v].

This section is a mandatory part of the annotation section.

¢) Operators: In many programming languages, operators have differing precedence
and associativity and a common problem found in such languages is specifying
expressions. The ideal is to have a formal notation to describe both operator
precedence and asociativity, however such notation is usually only used in standard
BNF and not in the clearer, more natural formulation preferred in EBNF. For

example the syntax of a Pascal expression as given in BSI 6192 is:

expression = simple-expr|[ relational-oprs simple-expr ].
simple-expr = [ sign ] term { adding-oprs term }.

term = factor { multip-oprs factor }.

factor = variable-access | .. | "not" factor.
relational-oprs = "<"["="{US"[US=" NS =" "in",
adding-oprs = "4"|U-"|"or",

multip-oprs "ok | n/n I "div" ’ "mod" [ "and".

Grammar 1

From this set of rules only the operator precedences can be determined; we can
deduce that the operator not has the highest precedence, followed by the
multiplying-operators, then the adding-operators and sign, and finally with
the lowest precedence, the relational-operators; but we can say nothing about
associativity. However from the syntax of an expression given below, even this

deduction is not possible.
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expression = expression operators expression

| unary-oprs expression

| identifier.
operators = adding-oprs | logical-oprs | rela-oprs
| multip-oprs | exponen-oprs.
adding-oprs = B T L AL
logical-oprs = M"and" | "or"™ | T"xor".
rela-oprs e L B D A L 2L
multip-oprs = ntxw ! w/m | "mod" ! "rem".
exponen-oprs = wARAkT

Grammar 2

Passing grammar 1 or grammar 2 to yacc would cause a large number of

shift/reduce and reduce/reduce conflicts.

It would not be reasonable, however, to expect the user to express expression rules
such that operator precedence and associativity can be deduced. For this reason,
CORGI provides an OPERATORS part of the annotation section, where the user
lists operators of the language in ascending order of precedence, together with an
indication as to whether they are left-, right- or non-associative (using the notation
\L, \R, \N respectively). For example, in a language where "*" and "/" have higher
precedence than "+" and "-", and all are left-associative, the OPERATORS section
would be:

OPERATORS
operators = \L { "+" w_u }
\L { Wk n/n } .

If all operators had the same precedence, as in MSL, we would have:

OPERATORS
Operators = \L { wyw w_mn "Wkt u/" } .

The nonterminal symbol operators can then be used on the right hand side of the

expression rule in the grammar without needing to redescribe it. This removes the
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requirement for the redundant information, which needs to be included to achieve
the same results in other systems, notably yacc (Johnson, 1975) and Early's method

(Early, 1975). For example in yacc one would give a specification such as:

$left '+'  '=!

Fleft '*! A

%%

expression : expression '+' expression
| expression '-' expression
| expression '*' expression
| expression '/' expression
| identifier;

instead of the following CORGI input:

OPERATORS
operators = \L { "+ w_un }
\L { "R n/n }.
expression = expression operators expression.

For completeness, the following is the syntax of the CORGI annotation section in
EBNF.

Annotation = [Comments] [Key-case] Lexemes [Operators].
Comment s = "STARTCOMMENT" S-sym ("|"S~sym} ["NESTED"] "."
"ENDCOMMENT" E-sym{E-sym} {"|"E-sym{E-sym}} ".".
S-sym = Literal.
E-sym = S-sym | "NEWLINE".
Key-case = "KEYWORD-CASE" ( "CASE-SIG" | "CASE-NONSIG"
| "CASE—NOTMIXED™ ) ".".
Lexemes = "LEXEME" (Identifier | Literal)
{ ( Identifier | Literal) } "™.'".
Operators = "OPERATORS" Prods ".".
ProdS = Production ProdS | Production.
Production = Identifier "=" PrecedS ".".
PrecedS = Preced PrecedS | Preced.
Preced = [ Assoc ] "{" Op-sym { Op-sym } "}".
Assoc = "\L" | "\R" | "\N".
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Op-sym Literal | Identifier.

Identifier letter { letter | digit | "_ " }.

Figure 5.1 The syntax of the annotation section in EBNF

5.3.1.2 Rule section

The rule section is mandatory, and in it the user describes the context-free syntax of

the language for which a compiler is being developed, using an EBNF notation.

As previously mentioned, descriptions of lexical constructs, such as identifiers,
keywords, numeric constants, literal constants etc, are given in this section as found
in a "reference manual" grammar. This contrasts with other systems such as
DELTA (Lorho, 1977) and MUG1(Wilhelm er al., 1976) where grammar rules are

given in two separate parts:

» the first part being a set of regular expressions for a lexical analyser

+ the second part being a set of BNF rules for constructing a parser.

In such systems, the user must be familiar with both regular expression and BNF
notation and must be able to translate from the typical reference manual form of a

language's grammar to the form required by lex (eg. RE) and yacc (eg. BNF).

Although CORGI accepts a general EBNF grammar, there are some restrictions
which have to be observed. For the description of lexemes, as mentioned in section
5.3.1, the grammar should allow the construction of a FSA, containing neither

directly nor indirectly recursive definitions.

A further restriction is that the grammar describing the language must be in well-
formed EBNF. A well-formed EBNF grammar must follow context-free and

context-sensitive rules. The context-free rules are laid down by the syntax of
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CORGI given in EBNF as shown in figure 5.3; in order to comply with the context-
sensitive rules, it must satisfy the constraints of an LALR(1) grammar (after
allowing for augmentation by operator precedence and associativity annotations).
Compliance with the context-free rules is enforced by CORGI. Where practical,
context-sensitive constraints are also enforced by CORGI, but to avoid extensive
duplication of the work of yacc, the fundamental checking of LALR(1) parsability

must be left to yacc. Further detzils are given in section 6.2.

In the rule section the user gives a description of his language by means of grammar
rules using EBNF notation with some additional information. This grammar is a

sequence of one or more grammar rules where each rule has the following form:

Rule-name = Rule~-body.

Rule-name is an identifier that starts with a letter and continues with either a letter,
digit or underscore. Rule-body, which represents the RHS of the rule, may contain
one or more alternatives which defines the form of the statement of the given
language. Actions may be attached to the RHS of rules, but only for rules that

describe lexemes; in the following section a detailed description of actions is given.

The associated actions

Actions in grammar rules are intended to provide a means of evaluating attributed
lexemes; this will normally result in a call to an evaluation routine. For example,
given the lexemes identifier, string, character and integer, one might

write the following rules:

identifier = letter { letter | digit } ==> evaluate_ idr(0).
string = "r"" o anycharl { anycharl } """" ==> evaluate Cstr.
character = "!" anychar?2 {anychar2 } "'» ==> evaluate_Cchar.
integer = digit { digit } ==> evaluate-denary.
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anycharl anybut_DQ NL.

anychar?2 anybut_SQ NL.

where evaluate_idr, evaluate Cstr, evaluate Cchar and evaluate denary
are predefined evaluation routines. A library of evaluation routines is provided for
this purpose, but the user may override this by inserting his own routines, whose

correctness now becomes the user's responsibility.

Routines contained in the library fall into three categories: those that deal with the
evaluation of integers, strings and characters. The routine evaluate idr (0) is an
exception since it does not belong to any of the three types given above. The (0) is
used to indicate that the case in this particular lexeme is not significant; case-

significance would be denoted by (1). The library contains the following routines:
Routines to evaluate numbers:

evaluate_binary()
evaluate_denary()
evaluate_Hex()
evaluate_Octal()
evaluate_C_Hex()
evaluate_C_Octal()
evaluate_Mod2_Hex()
9. evaluate_Mod2_Octal()
10. evaluate_Ada_int(delimiter, separator)
11. evaluate_token()

11. evaluate(<integer>)

0 1 W kAW

Routines to evaluate strings:
13. evaluate_Cstr()
14. evaluate_Pstr()

15. evaluate_Ostr(escapechar, specialcase, translation)

Routines to evaluate characters:
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16. evaluate_Cchar()
17. evaluate_Pchar()
18. evaluate_Ochar(escapechar, specialcase, translation)

As the evaluation of real literals is generally implementation dependent, provision
for this task is left to the user of CORGI. As it stands, CORGI will maintain the
attribute associated with a real literal as a string, which may be evaluated by a user-

provided routine.

The routines 1 to 4 deal with languages where the radix is not part of the number; it
is known from the language features. These languages usually allow only a single
representation of numbers; binary, denary (eg. Fortran, Cobol, Miranda, Prolog

and Pascal), hexadecimal or octal (eg. Maclisp).

Routines 5 to 10 deal with languages which use a C-like, Modula2-like, or Ada-like
representation respectively. In the C-like languages a number can be denoted as

follows:

31 2453 - denary integers in C; evaluate _denary () can be used
in this case.

037 0265 - octal integers in C ( 0 is the octal specifier);
evaluate C Octal () can be used in this case.

0X1F Oxlff - hexadecimal integersin C ( 0X is the hex specifier);

evaluate C Hex () can be used in this case.

The Modula2-like languages allow numbers to be suffixed with a base specifier

such as the following representations:

672C  146C - octals, type char in Modula2 ( C is the octal specifier);
evaluate_Mod2_Octal() can be used in this case.
1238 6758 - octal integers in Modula2 ( B is the octal specifier),

evaluate Mod2_Octal() can be used in this case.
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24aH  76EH - hexadecimal integers in Modula2 (H is the hex specifier);

evaluate Mod2_ Hex () can be used in this case.

The Ada-like languages include Ada, Pop-11 and Algol-68. In all the following

cases evaluate_Ada_int () can be used. For example

12 123_456 -denary integers in Ada
2#1111_1101# - abinary integer in Ada (‘#' is the separator)

Le6#FE# - a hexadecimal integer in Ada

66 1234 - denary integers in Pop-11

2:101 - a binary integer in Pop-11 (':" is the separator)
8:101 - an octal integer in Pop-11

123 54 - denary integers in Algol-68

2r10001000 - a binary integer in Algol-68 ('r' is the separator)
4r200 - a base 4 integer in Algol-68 (the base can be of any

value up to a maximum of 36)

From the above examples, we notice that the base is given first followed by a
separator (eg. #, : or r) and may be terminated by the separator as in Ada. Thus
two parameters are needed in this case; the first parameter (1 or 0) indicates whether
it is delimited or not and the second parameter gives the separator which may be one
or more characters (eg. "#", ":", "r" etc). Note that in this type of

representation the evaluation of the base must be performed first.

evaluate_token() overrides the default action (which is to evaluate the lexeme to
its text value); with this function the attribute value of the lexeme in question gets the
value of its associated token number. evaluate (<integer>) provides the lexeme
with an integer value; this may be used to associate 0 or 1 to literal such as FALSE

or TRUE found in MSL.
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For the evaluation of characters and strings, we provide evaluate Cchar () or
evaluate_Cstr () which deal with C-like languages and evaluate Pchar () Or
evaluate_pstr() for Pascal-like languages and which also cater for characters and
strings where the delimiter is not (") such as Modula-2 and MSL. We also supply
evaluate_Ochar () and evaluate Ostr() that cater other cases and which require

three parameters:

* An escape character if one is used, eg. "*" or "',

» Special characters eg. tab, newline, backspace characters etc, which must
be given via a string such as "t, n, b".

A string of ASCII equivalents of the above special characters, such as

“13, 20, 21".

When using an EBNF notation to describe both the syntactic and lexical elements of
a language, the use of white space represents a problem. Consider the following

example rules for a Pascal identifier list.

idr-list = idr { ","™ idr }. (1) describes an identifier list

letter { letter | digit }. (2)describes an identifier

idr

Clearly in the first rule, we wish to allow spaces between identifiers in the list.
However in the second rule, spaces should not be permitted within an identifier.
Alternatively if the spaces are allowed then they must be explicitly manifested in the
grammar rule but only in those rules which describe lexemes of the language. For
example in Algol-68 identifiers are allowed to contain spaces, their specification

would be:

idr = 1letter { letter | digit | ™ "™ }.

Another problem which arises, is whether characters appearing in the lexemes are

significant; spaces for example in Algol-68's identifiers are allowed but not
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significant, also underscore in Ada's numbers is allowed but not significant. The
allowable space in Algol-68 is usually used to give a special meaning to the usage of
this particular identifier. eg. the identifier "carpet" is equivalent to the identifier
"car pet", although their intuitive meanings are different. Also the allowable
underscore in Ada is used only for clarity, for example the number 1000 is

equivalent to 1_000. The syntax of such lexemes would be:

i

identifier letter { letter | digit | " " }. (1) Algol-68

number digit { digit | "_" }. (2) Ada

The problem with these two rules, is that we require no significance to be attached
to the allowed space and the underscore in identifiers and numbers respectively.
Therefore we introduce the symbol "#" which may precede factors of a rule. The
presence of this symbol indicates that the following factor is not significant. Rule

(1) and (2) may now be rewritten as follows:

letter { letter | digit | #" " }. (1) Algol-68

identifier

number digit { digit | #"_" }. (2") Ada

A number of predefined rules are provided by the CORGI system for certain

commonly found entities, particularly concerning character classes; these are:

upper_letter = [A-Z]

lower letter = [a-z]

uplow_letter = [A~Za-2]

octdigit =011 1112314151617

digit = octaldigit | 8 | 9

hexdigit = digit | A | B | C | D | E | F

any_PR _char = any printable ASCII character

anybut NL = any printable ASCII character except newline

anybut_DQ = any printable ASCII character except (™)

anybut_SQ = any printable ASCII character except (")

anybut _DQ NL = any printable ASCII character except (") and
newline
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any printable ASCII character except (') and

newline

For completeness the EBNF description of the rules section is given below:

Grammar
Rule
Expression
Term

Factor

Literal
Action
ParamS
Param
Flag
Identifier

Anychar

Rule { Rule } ™.™.

identifier "=" Expression ".".

Term { "|" Term }.

Factor { Factor } [ Action ].

["#"] ( Identifier | Literal )

" (" Expression "™)" | "["™ Expression "}"
"{" Expression "}".

wnne Anychar { Anychar } """".
"==>" Identifier [ " ("™ ParamS ")" ].
Param { "," Param }.

Flag | Literal.

ORI B B

letter { letter | digit | "_" }.

any PR char. /* CORGI predefined */

Figure 5.2 The syntax of the rule section in EBNF

5.3.1.3 User routine section

The third and final section, which is optional, is the user routine section. Here the

user declares any routines which he has used instead of the standard library routines

for evaluating lexemes. Such routines should be coded in the C programming

language. If this section is empty, then it is assumed that only the library routines

are to be used for this purpose.

Figure 5.3 on page 117 gives the EBNF syntax of the complete CORGI input

specification.
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5.4 Overall structure and use of the CORGI system

Having reviewed the input specification we now address the overall organization of
the CORGI system, and how it fits in the use of the system. CORGI is a system
built on top of two existing tools, namely lex and yacc. It operates directly on
"reference manual" grammars which are based on EBNF notation. The main facility
this system provides is the automatic generation of lex and yacc specifications from

one single input presented in EBNF.

For the generation of the lex specification, CORGI automatically establishes the
relationship between keywords and identifiers of the language and uses the most

appropriate method for dealing with them.

For certain types of tokens, additional information must be made available, their
attribute values for example. This additional information will be held at appropriate
points in the syntax tree to be used by semantic analysis and code generation
routines. CORGI inserts lex actions automatically to deal with nested comments; it
also supports tracing facilities via a flag to CORGI, which will cause the current

lexeme and the rule which recognized it to be printed out.

For the generation of the yacc specification the system converts the EBNF notation
into its BNF equivalent, suitable for input to the syntax analyser generator yacc.
yacc error productions are also inserted according to an algorithm similar to the one

given by Schreiner & Friedman (1980) to aid error reporting and recovery.

In addition, our system also automatically generates the necessary C data structure
declarations in order to specify the organization of the abstract syntax tree. For each
rule in the grammar (ie. for each nonterminal), CORGI produces a C struct, which
contains fields to hold pointers to other nonterminals and the attribute values of

certain terminals. Yacc actions are then inserted into the generated yacc input,
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which allocate dynamic storage for nodes of the abstract syntax tree (AST) as the
syntax analyser parses its input stream. Thus when syntax analysis is completed,

the entire AST has been built.

To enable semantic analysis and code generation to be performed, CORGI generates
a number of "walker" routines, which traverse the AST in a left-to-right depth-first
manner. The user can then insert code into these routines for semantic analysis and
code generation, in the knowledge that tree traversal will be bug-free. He is assisted
in this task in that the names of walker routines correspond to the rule names in the

generated yacc input.

Phases of the compiler following syntax analysis may be performed by a totally
separate process. It might be desirable to direct the tree to backing storage to be
used by separate processes, alternatively it might be that all that is required is the
immediate application of semantic analysis and code generation; these two methods
will be known as deferred semantic reduction and direct semantic reduction,
respectively. Deferred semantic reduction is provided for organizational clarity
which is achieved by system modularization; it also provides a means for debugging
which is a very important stage in the software engineering life cycle. The CORGI

system however allows both approaches which are described below.

5.4.1 Deferred semantic reduction

If an intermediate representation of the program is required then the CORGI system
functions as shown in Figure 5.4. The CORGI grammar processor takes the user's
input specification and produces a file containing a lex specification of the
language's lexemes lex.spec and a yacc specification of its syntax yacc.spec.
Lex and yacc are then invoked to form the lexical and syntax analyser phases of the

compiler in lex.yy.c and y.tab.c. Also produced is a series of recursive writer
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routines in writer.c for writing the AST onto permanent storage, together with the
data structure definitions for the abstract syntax tree syntree.h. When the AST is
written to a file tree.dat, it is first flattened into a linear representation, which is
human-readable and includes information available to the compiler-writer for

debugging and tracing purposes.

All these generated files are then passed to the C compiler to produce a parser which
will emit a flattened tree representation of the parsed program. The intermediate
representation for the tree can then be read in by the generated reader routines held
in reader.c which reconstruct the AST into its original form, to be processed by
the semantic analyser and code generator using the generated walker routines
walker.c. User-written code is inserted at appropriate points in the walker
routines. Such code will then be applied to the corresponding tree nodes when the
walker routine is executed. These are then passed to the C compiler to produce the
semantic analysis and code generation phase of the compiler, which take as input the
flattened tree produced by the parser. Hence when parsing is complete, a call will
be made to the top-level writer routine to produce the flattened tree. This call is
automatically inserted into the yacc specification by CORGI. The user will then
invoke the executable file run. x to process this tree and produce the machine code

version of the parsed program.
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The CORGI system

Libraries
lex.yy.c

lex.spec

CORGI

grammar
processor

input
specification

reader.c PARSER

user's code

g 3
5 g
o 0
g
<
B
&
o

Result
souree PARSER tree.dat - or
program intermediate
code

Figure 5.4 Deferred semantic reduction approach
of the CORGI system

5.4.2 Direct semantic reduction

Alternatively, the user can specify via a flag that he does not wish to separate these
phases. The CORGI system in this case will work as follows (see Figure 5.5).
Again lex and yacc specifications are formed and passed through the lex and yacc
processors to create lex.yy.c and y.tab.c. The user should then augment the

generated walker routines to complete the compiler. Hence immediately after
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parsing is complete, a call will be made by CORGI to the top-level walker routine,
which will output the machine code representation of the parsed program. The user

may still use the writer and the reader routines to generate debugging information.

lex.yy.c

CORGI

grammar
processor

input
specification

y.tab.c

PARSER

Result
source . or
rogram PARSER intermediate code
P or
tree.dat

Figure 5.5 Direct semantic reduction approach
of the CORGI system

In this approach reader.c and writer.c are not immediately required but are

generated in case the user wishes to transfer the tree to backing storage at a later

stage.
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Annotation :

* lex.spec - lex specificaton.

* yacc.spec - yacc specification.

* reader.c - the reader of the tree.

*writer.c - the writer of the tree.

*walker.c - the walker of the tree.

* syntree.h - the data structure of the tree.

* tree.dat - the flattened tree (Intermediate Representation)
* lex.yy.c -the C program generated by lex (contains the lexical analyser).
*y.tab.c - the C program generated by yacc (contains the syntax analyser).

* libraries - include evaluation library, make nodes library, augmented yacc

library.

5.5 Summary

In this chapter, we have identified the need for a compiler-writing system which
uses a "reference manual” grammar as its input. We have stated that we do not
intend to "re-invent the wheel"” by designing such a system from scratch, but instead
we propose using existing tools, lex and yacc, with an improved interface and

additonal features.

We have described, in broad terms, the nature of such a system, its functional
specification and overall structure, operating in two possible modes: either
producing an intermediate representation on permanent storage, to be processed

later, or performing further processing directly.

In chapter 6, we shall describe in more detail the design and construction of the

CORGI system as briefly introduced in this chapter.
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In figure 5.3, we give a collected syntax for the whole of a CORGI specification.

InputSpec = Annotation "%%" Grammar [ "%%" Routines ].
Annotation = [Comments] [Key-case] Lexemes [Operators].
Comments = "STARTCOMMENT" S-sym {"|"S-sym} ["NESTED"] "."
"ENDCOMMENT" E-sym{E-sym}{"|"E-sym{E-svm}} ".".
S-sym = Literal.
E-sym = S—-sym | YNEWLINE".
Key-case = "KEYWORD-CASE" ! "CASE=-SIG"™ | "CASE—-NONSIG"
| "CASE-NOTMIXED"™ ) o
Lexemes = "LEXEME" ( Identifier | Literal )
{ ( Identifier | Literal ) } ".".
Operators = "OPERATORS"™ ProdS ".".
Prods = Production ProdS | Production.
Production = Identifier "=" PrecedS ".".
PrecedS$ = Preced PrecedS | Preced.
Preced = [ Assoc ] "{" Op-sym { Op-sym } "}".
Assoc = "\L" | "\R" | ™\N".
Op-sym = Literal | Identifier.
Grammar = Rule { Rule } ".".
Rule = Identifier "=" Expression”™.".
Expression = Term { "[" Term }.
Term = Factor {Factor } [ Action ].
Factor = ["#"] ( Identifier | Literal )
|"(" Expression ")" | "[" Expression "]"
| "{" Expression "}".
Literal = wrwnn Apnychar {Anychar} """"./* CORGI predefined */
Action = "==>" Tdentifier [ " (" ParamS ")" ].
Param$S = Param { ","™ Param }.
Param = Flag | Literal.
Flag = "0o" | "iv.
Identifier = letter { letter | digit | " " }.
Routines = { Anychar }.
Anychar = any PR char.

Figure 5.3 The EBNF syntax of a CORGI specification
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Chapter 6

The Realisation of the CORGI System

6.1 Introduction

We saw in the previous chapter a need for a compiler-compiler which works from a
"reference manual" grammar input. In this chapter we shall describe in more detail

the design and construction of the CORGI system.

CORGT's structure is similar to that of a traditional compiler: it has a front-end and a
back-end. The front-end (or grammar processor) builds an abstract syntax tree of
the input specification, to be used by the back-end. The back-end takes this tree and

uses it to generate a number of files containing the following:

» lex and yacc specifications
» declaration of the necessary data structures for the construction of the AST
for any particular program in the given language

+ reader/writer/walker routines for tree manipulation.

The two phases of the CORGI system are described in detail in the following

sections, and Figure 6.1 shows a diagrammatical overview of their interaction.

+ The CORGI system

]
L]
1 \
]
]

CORGI
specification

Figure 6.1 CORGI overview

118




Chapter 6

6.2 The front-end

In the front-end, the text of a CORGI specification is parsed, following the syntax
rules for such a specification, and its corresponding abstract syntax tree is
constructed. Figure 5.3 gives an EBNF syntactic description of the CORGI input;
this description is self-describing unlike the grammar of yacc which is LALR(2), as
opposed to LALR(1) which is required for processing by yacc. The syntax of the
language accepted by CORGI, given in the form required for processing by CORGI
is given in appendix F. The front-end is itself composed of two phases: one
performing lexical analysis and the other performing syntax analysis. The syntax
analyser repeatedly requests single tokens from the lexical analyser. We chose to
implement these two phases using hand-coded routines; syntax analysis is carried

out in a top-down, recursive descent manner.

During this phase CORGI performs several checks on the input specification. It
ensures that the context-free syntax is fully conformant with that of the CORGI

EBNF as discussed in section 5.3.2.1.

Context-sensitive checking consists of ensuring that the grammar is LALR(1), and
that all the nonterminals are uniquely defined. A non LALR(1) grammar will result
in a parser generating shift/reduce or reduce/reduce conflicts; these are discussed in
section 4.3.1. Since context-sensitive checking is performed by yacc, we believe
that it would be redundant for CORGI to enforce strict LALR(1) constraints.
However, CORGI does check that all nonterminals are uniquely defined, thus
leading to any duplicate or missing definitions being reported before yacc is

invoked.

During this phase, a number of data structures are built and maintained, the principal

ones being:
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* a lexeme list that holds the lexeme names given by the user in the

LEXEME section

an operator table which holds each operator given in the OPERATOR

section together with its precedence and associativity

an abstract syntax tree representing the structure of the rules section from

the CORGI specification

a symbol table holding the nonterminal symbols used in the input

specification

a keyword table for the given language

a table of delimiters for the given language (eg, "!", ",", "@").

Building the abstract syntax tree

As previously mentioned, CORGI builds an abstract syntax tree of the rule section
of the input specification (in a similar manner to a compiler). We shall now examine
precisely how each rule from this section is represented in the tree. For clarity and
convenience we have reproduced below the EBNF syntax of the rule section given

in figure 5.2.

Grammar = Rule { Rule } ".".
Rule = Identifier "=" Expression ".".
Expression = Term { "|" Term }.
Term = Factor { Factor } [ Action ].
Factor = ["#"] ( Identifier | Literal )
| "(" Expression ")"™ | "[" Expression "]"

| "{" Expression "}".

Literal = "vne  Anychar { Anychar } ""vr,
Action = "==>" Tdentifier [ " ("™ ParamS ")" ].
ParamS = Param { "," Param }.

Param = Flag | Literal.

Flag = "o" | "1iv.

Identifier = letter { letter | digit | "_" }.
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Anychar = any_PR char.

The syntax of the rule section in EBNF

The entire input grammar is held in a linked list where each node holds details of a

single rule, eg.
Grammar = Rule { Rule } ".".

18 stored as:

______ — nxtrule —p - -~ —P ... 0

Thus in addition to its contents, a rule has a pointer field to the next rule in the
grammar (nxtrule), with a null pointer ('0') denoting the end of the list.

Each rule of the grammar has the following format:
Rule = identifier "=" Expression ".".

and is thus held as
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"

~—— nxtrule — - - - - — 0

l

expression

- - - -

nonterminal table

where identifier is a pointer to a symbol table entry for the relevant identifier,
and "expression" is a pointer to the rule's right-hand-side (RHS). The RHS,

classed as an expression, has the following syntax:

Expression = Term { "|" Term }.

and is held in a data structure as:

/

expression

..... —t IXUEIM —Pp = = =~ =~ = - —P -————— 0

where terms are held in a linked list. Each node in the linked list of terms is defined
by:

Term = Factor { Factor } [ Action ].
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and is thus held as:
/

expression

/ —t DXterm —p - - - - - — 0
action

Y
_____ —+— nxtfactor —p» - == —Pl - --- 0

H_J

factor

The "action" field of a term is simply a pointer to a string of characters representing
a call to a C function to be performed when that term is matched in the parsed input.

factor points to a further linked list of factors, each of which is defined as:

Factor ["#"] ( Identifier | Literal )

| "(" Expression ")" | "[" Expression "]"
| "{" Expression "}".

A factor is stored in the following structure:

/

factor

—-nxtfactor —p ~ <~ —pp 0

factor type value
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A factor can be one of a variety of types namely identifier, literal, repeated, optional
or grouped expressions. An identifier is further categorized as being either a lexeme
name or a nonterminal name in which case the value of the factor is a pointer to the
symbol table entry for that identifier. Literals can also be further categorized as
keywords, operators or delimiters, where the factor's value is a pointer to a

character string. A repeated, optional or grouped expression has a value being a

pointer to an expression discussed earlier.

Each of the tables which are produced from CORGI input and which are used to
generated lex and yacc specifications is held as an ordered linear array. This

ordering enables us to search these tables using a binary chop algorithm.

The nonterminal table has the form:

nonterminal table

' '

Textual value of A pointer to the rule
the nonterminal which defines this
eg. "program" nonterminal
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The keyword table being:

Keyword table

: —+—» flag
: B
v l
Textual value of Token name corresponding
the keyword to this keyword
eg. "THEN" eg. "THENSYM"

where flag is an integer that takes value O or 1, it indicates whether this keyword is

declared in the annotation section or not.

Any literal given in the CORGI specification that starts with a letter is considered to
be a keyword and is hence stored in the keyword table. Following the convention
of most programming languages, keywords are assumed to start with a letter, and
this can be used to distinguish them from other literals (eg. delimiters). However, if
in some PL this assumption is not met, and the keywords do start with a character
other than a letter, the system will still function correctly but with reduced efficiency
since the keywords will be listed in the lex specification which may increase the

execution time of the lexical analyser.

Operators such as "MOD", "DIV" in Pascal or Modula-2 are also considered as
keywords. This assumption is made in order to deal correctly with their case

sensitivity.

The operator table is held as:
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Operator table
]
' » Operator
\ precedence
1
Textual value of ~ Token name corresponding Operator
the operator to this operator associativity
eg. ||+ll eg‘ HOPIH
and finally the delimiter table:
Delimiter table
R —+» flag
Textual value of Token name corresponding
the delimiter to this delimiter
eg. H,H eg‘ llDELlH

where flag is an integer that takes value O or 1, indicating whether this delimiter is

declared in the LEXEME list or not.
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6.3 The back-end

The purpose of the back-end of CORGI is to take the tree generated by the front-
end, and to use it to construct the necessary input to the lex and yacc tools, together
with data structure definitions and manipulation routines. In the following sections,

we shall describe how this is achieved.

6.3.1 Generating the lex specification

In order to generate a lex specification which is guaranteed to be valid for the given
language, we need to extract the information necessary for each of lex's input
sections, ie, the:

+ definition section

» rule section

 user routine section

6.3.1.1 The lex definition section

Since the lex definition section requires details of character classes and of certain
intermediate regular expressions (REs) used to define the lexemes, these must be
extracted from the EBNF grammars, and then an EBNF-to-RE translation must be
performed. When this extraction is complete, the rules corresponding to lexemes

must be removed from the grammar to avoid them being passed on to yacc.

The first step in this process is to extract the definitions of lexemes which are listed
in the annotation section using the keyword LExEME, and which are held in the data
structure lexeme built by the front-end as described earlier. Thus the definition for
such a rule is now pointed to by its corresponding node in this linked list, and the
rule is removed from the grammar. The rules for these lexemes may refer to other
rules, in which case these rules are also added to the 1exeme data structure, and

their rules are discarded. If any non-lexeme rule in the grammar refers to one of
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these discarded rules, CORGI arranges that the apparently discarded symbols,
which it will always be possible to treat as lexemes, are returned as a new tokens.

For example, suppose we have the following rules as given in BS6192 (1982) for

Pascal:
simple-expression = [ sign ] term { adding-operator term }.
signed-number = signed-integer | signed-real.
signed-integer = [ sign ] unsigned-integer.

signed-real [ sign ] unsigned-real.

Sign = Wy I w_w

and in the annotation section we have:

LEXEME .. Ssigned-number ..

In this case the rule sign will be extracted by our algorithm, since it is indirectly
part of the lexeme signed-number definition; however, it is also part of the

nonterminal definition simple-expression, so CORGI will generate the following

lex input fragment:
signed-number ({signed-integer} | {signed-real})
signed-integer ({sign}) ? {unsigned-integer}
signed-real ({sign})? {unsigned-real}
unsigned-integer ({digit}) ({digit}) *
Sign (n+nl"_n)
%%
{signed-number} { return (SIGNED-NUMBER); }
{sign} { return (SIGN); }

Lex's "longest match" rule ensures that the required behaviour is obtained.
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When the lexemes have thus been extracted from the grammar, then the following
transformations are performed to convert their form from EBNF to lex's regular

expression notation:

« The definition of an item is surrounded by "{" and "}"; for example a
nonterminal in EBNF signed-number becomes {signed-number} in
the generated lex specification.

* Anoptional item eg. (sign] in EBNF becomes ({sign})?

+ A repeated item eg. digit{digit} in EBNF becomes
({digit}) ({digit}h)*

* Grouped items eg. (signed-integer|signed-real) in EBNF

becomes ({signed-integer}|{signed-real}).

For example, consider the following EBNF rules:

identifier = letter { letter | digit }.
integer = digit { digit }.

String — M { Stringchar } mwwren .
letter = uplow_letter.

stringchar = anybut DQ NL.

After translation using the above rules, the definition section of the generated lex

specification would contain:

stringchar {anybut_DQ NL}

letter fuplow letter}

string "\"" ({stringchar}) *"\""

integer ({digit}) ({digit})*

identifier ({letter}) (({letter}) | ({digit})) *

where anybut_DQ NL, uplow_letter are predefined by the CORGI system and

their definition would appear in the generated lex specification as:

anybut_DQ NL (\n\"]
uplow_letter [a=zA-2]
digit [0-9]
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6.3.1.2 The lex rule section

CORGI generates the necessary rules in lex's rule section to deal with operators,

delimiters, lexemes, keywords and comments; we discuss these separately below.

Operators: For each operator from the operator table, CORGI generates a rule of the

form:

"operatocr" { return ( OP-NUMBER) ;}

For example, if the language contains the operators "*", "<>" and "<=", then the

following will be generated:

" { return (OPl); }
P { return (OP2) ; }
ne=m { return (OPB) ; }

where op1, op2, op3 denote the token numbers for "*», wr<>" and "<="v

respectively. It would be clearer if we were able to write:

"ok { return (v*l) ; }
"> { return ('<>"); 1}
ne=m { return ('<="); }

however, the C function is only able to return a single ASCII value, thus the single
quotes may only contain one character or a 3-digit octal number. Hence we are
obliged to generate the more obscure code shown above using op1, op2 and op3.

To aid readability, CORGI includes a comment next to each token declaration in the

yacc definition section, eg:

$token OP1 /* OP1l = "Wxkw */
$token OP2 /* OP2 = "<>" */
$token OP3 /* OP3 = "<=" X/

Delimiters: For each delimiter in the delimuter table, a rule of the following form is

generated:
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"delimiter" { return ( DEL-NUMBER) ;}

For example, given the delimiters ",", "@" and "!" then the following will be

generated:

" , n { return (DEL1) ; }
w@n { return (DEL2); }
wiw { return (DEL3); }

where DEL1, DEL2, DEL3 are the token numbers for »,", =@" and "!"
respectively, and are commented in a manner similar to that of the operators as

described above.

Lexemes: For each lexeme in the lexeme list, we generate a rule similar to the

following:

{lexeme} { return (LEXEME-NUMBER); }

For example, if we have lexemes identifier, string and integer; then a

possible series of rules would be:

{identifier} { return (IDENTIFIER); }
{string} { return (STRING); }
{integer} { return (INTEGER); }

Example 6.1

As discussed earlier, if a new lexeme is extracted from the grammar then a rule is

also generated for that new lexeme of the form:

{newlexeme} { return (NEWLEXEME); }

For example if sign is a new lexeme, then it will appear as:

{sign} { return (SIGN); }

131




Chapter 6

However this solution is not able to accommodate the keywords which are
commonly treated by the identifier RE for efficiency reasons. In section 4.1 we
identified three possible cases which are commonly found in most programming

languages, these are the following:

i) InK=0¢ - the keywords and identifiers are two disjoint sets
i) IDK - the keywords are a subset of the identifier set
1) T U K # 1 - the keywords and identifiers are two overlapped sets

where [ is the set of identifiers and K is the set of keywords.

In order to establish the exact relationship of two regular sets I (for identifier) and K
(for keywords), the following method is used. If S denotes a string, we find the set
of all strings K = {Sj I i=1..N where N is the number of keywords} and then for
each Sj, test if it can be a member of the set I. Let the number of strings which

satisfy this condition be n, then :

1) n=N =1I2K (ie. K is a subset of I).
For this case the specification shown in Example 6.1 may be given as follows:

/* definition section */

e i
o\®

{identifier} { return (screen()); }
{string} { return (STRING); }
{integer} { return (INTEGER); }

Example 6.2 Keywords and identifiers as disjoint
sets

The function screen () is a routine that checks the input which has been recognized
against a keyword table and returns a code indicating whether it was a keyword (and

if so, which keyword) or identifier.
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2)n=0 =2InK=0 (ie. I and K are two disjoint sets).
For this case the specification shown in Example 6.1 may be given as follows:

/* definition section */

kwd ({up_letter}) (({up_letter}) | ({digit}))*
%%

{kwd} { return(look up());}

{identifier} { return (IDENTIFIER); }

{string} { return (STRING); }

{integer} { return (INTEGER); }

Example 6.3 Keywords as a subset of identifiers

3) n<N=INK =20 (ie. I and K are two joint sets).
For this case the specification shown in Example 6.1 may be given as follows:

/* definition section */

kwd ({up_letter}) (({up letter}) | ({digit}))*
{kwd} { val = look _up():
if(val '= 0)
return (val):;
else
REJECT; }
{identifier} { return (IDENTIFIER);}
{string} { return (STRING); }
{integer} { return (INTEGER); }

Example 6.4 Keywords and identifiers as joint sets

The function look_up () is a routine that checks whether the input which has just
been recognized by the keyword rule, is indeed a keyword (which may not be the
case if keywords and identifiers are joint sets). If the input is in fact a keyword then
the 1ook_up () function returns the token number associated to that particular
keyword, otherwise it returns a zero in which case the input is passed to the next

rule using the lex facility REJECT.

133




Chapter 6

In order to implement this solution, we need to determine which rules of the
lexemes match each of the keywords from the keyword table. We found that the
best way of implementing such a scanning problem is to generate a further lex
specification. This specification will only contain rules concerning the lexemes,

where each rule returns a integer value starting from 1 as follows:

/* definition section */

{identifier} { return (1); }
{string} { return (2); }

{integer} { return (3); }

CORGI then runs lex to generate a scanner for the keywords, and calls yylex () for
each of the keywords from the keyword table. A record is kept of how many
keywords are recognized by each rule (this corresponds to the use of n in the
discussion of the three cases above) and is used to distinguish between the three

possible cases mentioned earlier.

Note that in Example 6.3 and Example 6.4, a method is required for generating a
regular expression {kwd) for the keywords which form a finite set. CORGI uses

the following algorithm:

+ As already mentioned in chapter 5, any literal which starts with a letter is
taken as a keyword and is hence stored in the keyword table. Having noted
that keywords start with a letter, we then consider subsequent characters in a
keyword to fall into one of the classes letter or digit, or to form a single
character class of their own. Such characters are termed "continuation
characters".

» for each keyword in the table:

«+ for each continuation character in the keyword:
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ee+ if its character class is not already in continuation character list, add

1t to the list.

Consider the following examples of languages with different types of keywords:

IF THEN ELSE WHILE RE = 1letter(letter)*

IF12 THEN4 ELSE WHILE RE = letter(letteridigit) *

Comments: In order to deal with comments in a thorough manner, we must

consider two possible complicating factors:

« can comments be nested?
« for each symbol starting a comment, is there a unique symbol that may

close that comment?

Comments are dealt with in CORGI by inserting a purpose-built function
comment () into the lex specification. When a comment start symbol is recognised
this function repeatedly calls yylex (), consuming the input text until a valid end-
comment symbol is returned by yylex (); fortunately lex is written in such a way
that recursive calls of this form are acceptable. comment () ensures that each opened
comment is closed by a valid symbol if there is more than one possibility. This

mechanism would deal with any arbitrary nested comments.

For example, Pascal comments can be specified in CORGI as:

STARTCOMMENT m(xw | W
ENDCOMMENT LD AL B | e ok w

for which CORGI will generate the following lex rules:

AR REY { 41f(NESTED || count != 0)
{ count++;
if (comment () != 0)

{
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printf ("Premature EQF\n");
exit;
}

count--;

}

"*) w I "}"

}

{ return(ENDCOMMENT) ; }

{ if (count == 0)

printf ("!!! char <%c> is illegal here\n",yytext[0]); }

As can be noted from the above lex rules, if a symbol which may start a comment is
encountered in the input stream (eg. "(*" or "{") the generated lexical analyser
makes a call to the function comment () which will return O if a comment has been
successfully found, and 1 otherwise. If in a language the end of line character ends
a comment (eg. MSL, Ada) then the highlighted code in the following lex rule is

added.

[\n] { linenumber++;
if (count != 0) return (NEWLINE), }

The final rule included in the lex rule section is intended to intercept the case where
the input does not match any of the supplied rules, indicating a lexical error. This
rule is also used to consume any character from the input, not found by the previous

rules, inside comments as shown above. This rule has the following form:

{ if(count == 0)
printf("!!! char <%c> is illegal here\n",yytext [0]); }

6.3.1.3 The lex user routine section

The user routine section is generated with the following contents:

« declaration and initialisation of the keyword table

« definition of a 1ook_up () function, if the keywords and identifiers are
joint or disjoint sets.

« definition of a screen () function, if the keywords are a subset of

identifiers
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» any routine which the user has placed in CORGI's user routine section.

Note: For operators and attributed lexemes, additional actions must be generated.
These actions deal with maintaining information required for semantic analysis and
code generation. They usually involve saving values (which may need processing
first, eg. evaluation of strings, numbers etc) in the AST. This additional task is
explained in more detail in section 6.3.4, where the abstract syntax tree is studied in

more detail.

6.3.2 Generating the yacc specification

The generation of a yacc specification which is guaranteed to be valid for the given
language (provided that the user supplied grammar is well-formed and LALR(1))
involves extracting information from the user-supplied grammar for each of the yacc

specification sections, ie. the:

 definition section
+ rule section

» user routine section

6.3.2.1 The yacc definition section

The yacc definition section should include the declaration of tokens used in the yacc
grammar. This applies to all the tokens which were referred to in the lex
specification, namely delimiters, operators, lexemes and keywords. For each of

these token types, CORGI generates a yacc specification as follows:

Given delimiters, say ", ", "@"and "!":
$token DEL1 /* DELl = "," %/
$token DEL2 /* DEL2 = "@"  *x/
$token DEL3 /* DEL3 = "!"  x/
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Given operators, say "*", "<>"and "<=":

%token OoP1l /* QP11 = mwxv * /
$token OP2 /* OP2 = "<>" * /
%token OP3 /* OP3 = L= */

Given lexemes, say identifier, string and integer:

Ftoken IDENTIFIER
Ftoken STRING
%token INTEGER

Given keywords, say "IF", "THEN" and "ELSE":

%token IFSYM
%token THENSYM
%token ELSESYM

Also CORGI must generate the appropriate yacc statements to attach associativity
and precedence to operators. For example in the CORGI specification of MSL, we

may have:

OPERATOR
Operators = \L { w1t "<>u "<=" . }

which will be transformed by CORGI into:

%left OP1 OP2 OP3

6.3.2.2 The yacc rule section

Recall that CORGI allows the user to express his rules in EBNF, but yacc requires
its rule section to be written in BNF. Hence we need a means of translating EBNF

to yacc BNF, and to do this we use the following algorithm:

Optional items: For each rule of the form A =0 X] X2 ...... Xn) B

e create a new nonterminal N.
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« replace A by A = aNB;
e create a new rule N=¢€1|X1 X2 ...... Xn:

where € denotes an empty rule

Repeated items: For each rule of the form A =0{X1X2...... Xn} B.

* create a new nonterminal M.
« replace A by A=aMB
* create a new rule M=¢IMZX1 X2 ...... Xn;

where € denotes an empty rule

Note that we use left recursion in the yacc specification since this is preferred by the

LR parser generated by yacc to avoid any risk of possible parse stack overflow.

Grouped items: Foreachruleoftheform A= (X3! X21I...... | Xn) B

e create a new nonterminal Y.

» replace A by A=aY [

I
2
<
it

e create a new rule Y

According to the above algorithms the following two MSL rules:

Program ["RESERVE" int ] { ProcDec } Series "."
ProcDec = "PROC" idr [ "(" Idrlist ")" ] Series T"END".

are in effect transformed into the following set of rules:

Op-reserve ProcDecs Series ™.";
/* empty alternative */
"RESERVE" int;

Program
Op—-reserve

— 4 — 1

ProcDecs /* empty alternative */

ProcDecs ProcDec;
ProcDec "PROCY" i1dr Op-Idrlist Series "END";
Op-Idrlist = /* empty alternative */
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| "(" Idrlist ")";

The full yacc BNF grammar for MSL is given in appendix B.

Further changes to the specification must be made in order to reduce the number of
shift/reduce conflicts which occur when dealing with expressions and operators.
Shift/reduce conflicts arise when a parser has to decide between two legal actions: a
shift, in which case the parser accepts the next lookahead symbol and shifts to the
next state; or a reduction, where the parser replaces the right hand side of a grammar

rule by the left hand side. ~ For example if we have the following rules:

Expression : Expression adding-ops Expression
| Expression multip-ops Expression
| Expression relati-ops Expression

adding-ops S A A
multip-ops A A B AL
relati-ops o t=T ] TS,

then we can remove shift/reduce conflicts by first expanding the occurrences of
adding-ops, multip-ops and relati-ops appearing in the rule for expression,
then giving the operator precedence and associativity in the definition section of the

yacc specification. This transformation would result in the following:

%$left ADDOP MINUSOP MULTOP DIVOP LEQOP NOTEQOP

oo i
o\°

Expression : Expression ADDOP Expression
Expression MINUSOP Expression
Expression MULTOP Expression
Expression DIVOP Expression
Expression LEQOP Expression
Expression NOTEQOP Expression
identifier;

6.3.2.3 The yacc user routine section

All that is required in the yacc user routine section is a main function whose sole

purpose is to make the initial call to yacc's parser function yyparse (), and to
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inform the user of the return status from this function. Hence CORGI inserts the

following code into the user routine section :

o\®
o

main ()
{
#i1fdef LEXDEBUG
debug = 1; /* debug = 1 for debugging and 0 otherwise */
#endif
extern 1int yynerrs;
int flag = 0;

flag = yyparse();

printf ("Compilation error(s): %d\n", yynerrs);
if (flag)

printf ("Compilation aborted\n"):;
else

printf ("Compilation terminated\n");

yyparse () returns zero if the submitted source program does not contain syntax

errors, and returns one otherwise.

6.3.3 The abstract syntax tree declaration

Normally when using lex and yacc, the compiler-writer has to add C declarations of
the data structures needed to construct an abstract syntax tree during parsing, and
routines to manipulate this tree. We consider that this process should be automated
since it is largely mechanical. These are two possible methods for achieving this:
either to generate the necessary input specification for a tool such as IDL (Lamb,
1987), which translates high-level descriptions into data type definitions in C, or to

generate these abstract data types directly within CORGL

In order to evaluate the use of a tool for the automatic construction of the AST, we

shall review briefly the operations of the IDL system.
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6.3.3.1 The IDL system

IDL is a tool designed for supporting the construction of medium to large software
systems. It provides the user with a facility for specifying data structures at a higher

level of abstraction than most conventional programming languages.

The IDL translator takes a user-specified collection of data structures expressed in
terms which relate closely to the problem to be solved, and transforms them into
concrete declarations in a target language and routines for input/output of instances
of these data structures. Instances of these data structures are stored on external
storage devices in an auxiliary description language known as the ASCII External

Representation Language (ERL). Figure 6.2 shows an IDL model of a process.

Input data ( ] ™ Output data
structure User-supplied structure
algorithm

\

\ IDL IDL data IDL

) reader declaration writer

]
Input data IDL Output data
structure \_ utilities Y, structure

Figure 6.2 IDL model of a process

A user-supplied algorithm is written in terms of IDL data declarations and code
which can make use of IDL-generated readers and writers for I/O of instances of

data structures, and utilities for manipulating these instances in memory.
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Expected benefits of IDL.

The philosophy behind IDL is that its data abstraction features allow the user to
reason about his problem mainly in terms of useful data types, rather than in terms
of implementation details. The resulting manipulation and I/O routines are

guaranteed to be bug-free and are accurately and concisely documented by the IDL

specification itself.

IDL Specification.
The basic building blocks of IDL specification are nodes and classes.

Nodes and Attributes

IDL has 4 basic types: integer, rational, boolean, string and 2 structured types

sequence (ordered list) and set (unordered list).

A node is a named collection of zero or more named values called attributes. So a

node corresponds to a C struct, and attributes to members of that struct. For

example:
person ====> name string,
address string,
age integer;
would be equivalent to
struct person {
char *name;
char *address;
int age;

}:

Type names for attributes of a node may also be names of nodes . For example:

binary-tree

===> string,
binary-tree,

binary-tree;

name
left-branch
right-branch
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Classes

A class is name for a variable that can hold a reference to one of a set of nodes or
other classes; thus it is equivalent to a C union. The possible members of this set

are given, separated ( as in BNF ) by a vertical bar. For example:

student :: = research | undergrad | msc

Each of these members could itself be a class or node. To simplify let us consider

them as the following nodes:

research ===> name : string,
dept-code : integer,
supervisor : string,
funding : string;

undergrad ===> name : string,
dept-code : integer,
pers-tutor : string,
yr-of-course : integer;

msc ===> name : string,
dept-code : integer,
IT-or-SEA : boolean,
proj-supev : string;

Structures

All nodes and classes are grouped into named collections called structures. Each
structure has a ROOT followed by a list of nodes and classes. This is usually
employed to construct a structured data type defined by its nodes and classes. For

example:

Structure students Root student-list is

student-1list ====> list : seq.of student
student ::= research | undergrad | msc
end

All nodes and classes of a structure must be "reachable" from the root of that

structure.
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Processes and ports

In order for IDL to create readers and writers for instances of IDL-specified data
structures, the user must give input and output ports (which are typed), collected
together under a process. A process is the IDL model of a computation, and is

therefore equivalent to a C program. A process declaration specifies :

« the name of the process.
» a list of IDL data structures read and written by the process.

» the target language for the process.

For example:
process exams 1S
target C
pre students-in : students;
pre marks-in : marks;
post results-out : results;
end

This may be used in a program to process exam marks and produce a results list.
The prefixes pre and post are used to specify whether a port is used for input or

output respectively.

Assertion

Assertions permit the user to ensure that certain properties are true of his data
structures; these are then used by a program called id1check, which carries out the

checking of these properties. For example:

Assert Forall S in students do s.dept-code > 0 od

will check that each element in the list of students has a department code greater than

Z€rO0.
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Use of IDL in C

The user of IDL must submit a specification to the IDL translator which produces
the necessary data definitions and functions to manipulate instances of these

definitions. The output of the translator consists of two files for each process.

» The first is a .c file which contains the readers and writers and manipulation
routines for that process. This is compiled into a .o file and the original source
file is deleted.

» The second file is a .h file which the user must #include in his algorithm;
this consists of all the typedef statements for his data types and some useful

#define constants and macros.

The user then writes his algorithm in terms of variable declarations using type
names given in the include file and manipulates these variables using the provided
routines. I/O is performed by first opening a file in C's usual fashion
(fopen (. ..)) and passing the resulting file pointer to the IDL generated reading

and writing routines.

Finally the user compiles his algorithm together with the . o file produced by IDL.
When running the executable version produced from compilation, the user must
give all input in ASCII ERL, and will expect output in the same form. IDL also

produces a makefile to maintain the files which it has created.

The scope of IDL

The use of IDL to deal with construction and manipulation of the AST has certain
advantages. It provides bug-free data manipulation and I/O routines, and makes
programs shorter and faster to write. The user can think of the problem in more

abstract terms than getting involved in implementation details. Also, modules of a
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large software project need not be written in a single language (due to use of ASCII
ERL for external data representation ). For example, output from one C program
can become input to a Cobol program as long as both programs have been given the
same IDL data specification, targeted to the appropriate language. The IDL data
specification facilitates communication between members of a project team and
provides language independent documentation of data structures used. However the

tool does have distinct disadvantages listed below:

+ Due to the use of ASCII ERL, modules written using IDL cannot appear
in a chain of processes unless the non-IDL processes also use ASCII
ERL.

+ Although IDL attempts to free the user from implementation details, we
believe that the user must become involved in the intricacies of IDL
outputs.

o It is a very large system, which needs at least 10Mbytes of storage for
installation, and does not run on all Unix machines. We attempted to run
it on HLH ORION under the 4.3 BSD Unix operating system with no
success. However on a SUN 3/160 workstation the IDL tool compiled
and ran successfully. But even in the latter case, many changes were
required to the Pascal sources supplied, and we were also obliged to
subdivide some of the C files since the assembler was unable to cope with
their size.

« The installation of this tool is obviously non-trivial, and in our case
required approximately two months. Installation appears to be subject to
the vagaries of different C and Pascal systems found with different Unix
systems and suppliers.

« IDL is not a standard Unix tool and must therefore be provided separately;

it is designed to be multi-purpose and is hence large for our purpose.
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For these reasons, we decided that despite its attractions and the fact that the use of
IDL would be consistent with our "layered" approach, the disadvantages of IDL are
(at least for our application) overwhelming and therefore render it unsuitable for use
with the CORGI system. The solution we have adopted is discussed in the section

below.

6.3.3.2 The CORGI approach to generating the AST

In order to allow easy construction of an abstract syntax tree during parsing,
CORGI generates the necessary data structure declarations, corresponding to rules
in the generated yacc rule section. Thus for each yacc rule, CORGI produces an
appropriate C struct definition. Such structs have two members. The first member
is an integer which, since a yacc rule may consist of more than one legal alternative,
is used to indicate which alternative has been reduced. The second member is a
union of all of these possible alternatives, where each union member corresponds to

one alternative. We illustrate this point using the following general examples:

(1) For each rule of the form

a X1 X2...Xpn
| Y1 Y2-¥m where xj, y4 and zx are nonterminal
| 21 Z2ue Zp; symbols. i =1..n, J =1..m, k = 1..p

create a new type named A _TYPE as follows

typedef struct a_type *A TYPE; (*)
typedef struct x3 type *Xj_ TYPE;
typedef struct xp type *X2 TYPE;

typedef struct =xpn_type *Xn_TYPE;
typedef struct yij_ type *Yj_ TYPE;
typedef struct y2 type *Yp TYPE;

typedef struct ym_type *Ym_ TYPE;

typedef struct zj_type *Z1_ TYPE;
typedef struct z2 type *Zp TYPE;

148




Chapter 6

typedef struct zp type *Zp_ TYPE;
struct a_type {
int type:;

union {
struct alter_a_ 1 {
X1 _TYPE x1_1;
X2 TYPE X2 2;
Xn_TYPE Xn_nN;
}ALTER a 1;
struct_azter_a_2 {
Y1 _TYPE v1_1;
Y2 TYPE y2_ 2:
Ym TYPE Ym_m;
}JALTER a 2;
struct alter_a_ 3 {
Z1_TYPE z1_ 1;
Z2 TYPE z2 2;
Zp_TYPE zZp_Pi
}ALTER a_3;
JRIGHTSIDE;

}; /* end of node a */

lines such shown in (¥) are used to overcome the declare before use principle in the
definition of C data structure definition. Thus a value of type o TypE will be a

pointer at an a_type structure value.

The field type will indicate which of the alternatives (eg. x1 x2...xn Qr y1
Y2...¥m QL 21 z2... zp) has been parsed. Thus, depending on the structure of
the source program, subsequent routines inserted into the yacc rule section by

CORGI will construct one of the following nodes in the AST:

1 OR |2 c---| |OR |3

| 1] | | | 1 |

YooY vy Yooy

SERY) Xn n ya Y Z1 722 Zk

<41

(2) For each rule which contains terminal symbols, additional facilities are required.

Consider for example the rule:
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a : x31 alpha x) beta

where x1 and x2 are nonterminal symbols, and alpha and beta are either

LEXEME or OPERATOR symbols. CORGI will generate a data structure with the

1/Tia\\
AR

X1  alpha X9 beta

following representation:

~

This representation is given by the following C data declaration.

typedef struct a_type *A TYPE;
typedef struct attribute_type *ATTRIBUTE_TYPE;
struct a_type {

int type;
union {
struct alter_a 1 {
X1_TYPE x] 1;
ATTRIBUTE_TYPE alpha_Z;
X2 TYPE x2 3;

ATTRIBUTE_TYPE beta_4;
}ALTER a 1;
}JRIGHTSIDE;
}; /* end of a node */

struct attribute_ type {
int type:
UVAL textvalue;

}:

typedef union {

int d; /* the lexeme's attribute is an integer */

char oF /* the lexeme's attribute 1s a character */

char *s; /* the lexeme's attribute is a string */
}UVAL;

Note that the names used for the node type declaration and for members of the
resulting struct are generated directly from nonterminal and terminal names in the
grammar specification, augmented with either a suffix or prefix. This allows the

user to clearly see which data structure declarations refer to which rules. This will
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be useful when inserting code to perform semantic analysis and code generation

when walking through the tree. For example, given the following rule:

woon

program:"PROC" procname " ("param list")" declaration proc_body

|"PROC" procname declaration proc bedy ".";

CORGI will generate a declaration for a node in the AST as shown below:

typedef struct program type *PROGRAM TYPE;
typedef struct param list type *PARAM LIST TYPE;
typedef struct declaration_type *DECLARATION_TYPE;

typedef struct proc_body type *PROC_BODY_ TYPE;
struct prcgram type {
int type;
union {
struct alter program_ 1 {
PROCNAME TYPE procname_1;
PARAM LIST TYPE param_list_2;
DECLARATION TYPE declaration 3;
PROC BODY TYPE proc_body 4;

}ALTER program_1;
struct alter_program_Z {

PROCNAME TYPE procname_1;
DECLARATION_TYPE declaration_Z2;
PROC_BODY_ TYPE proc_body_ 3;
}JALTER program 2;
}RIGHTSIDE;

}; /* end of program node */

Code 6.1 The C struct associated with rule program

Node type names are generated by converting the original rule name to upper case
and adding the suffix _Tvpe. Members of the generated C struct (which correspond
to the entries in the RHS of a rule) have names as they appear in the rule, suffixed
by "_" followed by an identifying digit. This is required in order to deal with rules

such as:

expression : expression operators expression;

where it would be illegal to generate a C struct with two members having the same

name, hence the digit suffix is used to differentiate between them.
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6.3.4 Augmenting lex and yacc specifications

Once the data structure definitions have been completed, the lex and yacc
specification can be augmented with actions, which are created automatically by
CORGI, to build the AST, evaluate lexemes, and store information in the tree for

use by semantic analysis and code generation.

For the yacc specification, CORGI performs the following:

» Once all the necessary data types are known together with those symbols which
need to be typed, we can proceed to augment the yacc specification. First the data
types of the value stack must be defined (the default type of the value stack is
integer) which is done in the declaration section of a yacc specification using a
"%union" clause, as shown by the following example which corresponds to the

program rule given above:

$union{
ATTRIBUTE TYPE Vattribute;
PROCNAME TYPE Vprocname;
PROGRAM TYPE Vprogram;

PARAM LIST TYPE  Vparam_list;
DECLARATION TYPE Vdeclaration;
PROC_BODY TYPE Vproc_body;

}:

« Then specific types must be associated with those terminal symbols for which a
value is assigned to yylval during lexical analysis and to those nonterminal

symbols for which $; or $s are referenced. This is achieved by using yacc stype

clauses as shown in the following example:

%type <Vattribute> IDENTIFIER STRING INTEGER
$type <Vprogram> program

stype <Vprocname> procname

$type <Vparam list> param_list

$type <Vdeclaration> declaration

$type <proc_body> proc_body
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« Actions are now generated in the yacc specification. Actions for most rules create
a node, set the value of the result attribute from the values associated with the
symbols on the RHS of the rule, and return a pointer to the node. In this way, the

AST is created in a bottom-up fashion. For example,

program:"PRCC" procname " ("param list")"™ declaration proc_body
{ $$ = (PROGRAM TYPE)mknode (5,1,%2,3%4,%56,37); !}
| "PRCC" procname declaration proc body "."

{ $$ = (PROGRAM TYPE)mknode (4,2,%52,$3,%4); };

where the first parameter to the function mknode () is the number of parameters,
since it is useful to write a single mknode () function that accepts a variant parameter
list; the second parameter indicates the alternative number that will be assigned to the

type field. $;, i = 1, n are pointers to nodes in that alternative.

Lexeme attributes

In an earlier chapter, it was shown how the "==>" construct was used in the
CORGI specification to indicate lexeme evaluation requirements. In such case
values need to be passed from the lexical analyser generated by lex back to the
parser, in addition to the token numbers of lexemes found during scanning. In a lex
specification this is normally achieved using the yacc external variable yylval,
which is declared as a union of all possible types of grammar symbols. CORGI
generates actions in the lex specification which deal with lexeme evaluation ready
for insertion of the resulting value in the AST. Such actions first evaluate the
appropriate lexeme, and set yylval to the result, before returning the lexeme's
token number. They are attached to rules for operators, lexemes, and attributed
keywords and attributed delimiters, as required.

Given below is a CORGI specification which describes a language with lexemes

identifier, string and integer, and in which keywords are a subset of a
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lexeme which is found by CORGI to be the identifier lexeme. Also this

language has an operator "+", and a delimiter "#".

KEYWORD CASE CASE_NONSIG.

LEXEME identifier string integer "#".

OPERATORS

opr = \L {"+"}.

identifier = letter { letter | digit } ==>evaluate_ idr(0).
string = """* { any PR char } """" ==>evaluate_ Cstr.
integer = digit { digit } ==>evalaute_ denary.

From the above specification CORGI will generate the following lex specification.

/* Lex's definition section */

o

H= oo
—_—

/* It is an attributed delimiter */

yylval.vVattribute = (ATTRIBUTE_ TYPE)
malloc (sizeof (ATTRIBUTE_TYPE))

yylval.Vattribute = DEL1l;

yylval.Vattribute->type = 1;

return (DEL1) ;

ngn { /* It is an operator */
yylval.Vattribute = (ATTRIBUTE TYPE)
malloc (sizeof (ATTRIBUTE_TYPE))
yylval.Vattribute->textvalue.d = OP1l;
yylval.Vattribute->type = 1;

return (OP1l);
}

#define IDR_TOKEN IDENTIFIER
int Toknum;
{identifier} { /* It is an attributed lexeme */
Toknum = screen() ;
if (Toknum == IDR_TOKEN)
{
yylval.Vattribute = (ATTRIBUTE_TYPE)

malloc (sizeof (ATTRIBUTE_ TYPE)):
yylval.Vattribute-> textvalue.s =

evaluate idr();

yylval.Vattribute -> type = 3;

}

return (Toknum) ;

{string} { /* It is an attributed lexeme */
yylval.Vattribute = (ATTRIBUTE_ TYPE)
malloc (sizeof (ATTRIBUTE TYPE));
yylval.Vattribute -> textvalue.s =

evaluate_Cstr();

yylval.Vattribute -> type = 3;
return (STRING) ;

{integer} { /* It is an attributed lexeme */
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yylval.vattribute = (ATTRIBUTE_TYPE)
malloc (sizeof (ATTRIBUTE_TYPE));
yylval.vVattribute -> textvalue.s =
evaluate_denary();
yylval.Vattribute -> type = 1;
return (INTEGER);
}

oe
o\

screen() {} /* definition of the screen functions */

8]

6.3.5 Error-recovery

As described in section 2.2.1, the error-recovery strategy used by yacc is known as
the "error production” scheme. In this method the user augments the grammar with
error symbols where appropriate. When an error is detected the generated syntax
analyser behaves as if it had just seen the special symbol "error" immediately before
the token which caused the error. The syntax analyser then takes the nearest rule for

which the error symbol is a valid token and resumes processing at this rule.

However the process of building a robust analyser by including error symbols in
some rules is non-trivial. Adding error symbols in an arbitrary manner may cause
the generation of shift/reduce and reduce/reduce conflicts. A naive user might add
the error symbol as the last formulation of each rule; this approach has the potential
to generate reduce/reduce conflicts as illustrated in the following example:

Given the simple rules:

A : B B :C
| error; | error;

these are equivalent to:

A : C
| error
| error;

The second form, given above, contains two legal alternatives that can be reduced in

the case of error; hence a reduce/reduce conflict will arise. In this particular example
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this has limited significance due to the simplicity of the example given, but more

interesting (difficult) cases arise in practice.

In this section we shall present a technique which is based on the approach used by
Schreiner & Friedman (1985) for the placement of the error symbol in grammar
rules at appropriate points to avoid the difficulties discussed above. One of the main
differences between our work and Schreiner & Friedman (1985), is that we
automatically generate error symbols in their best place. Again the user is relieved
of this arduous task. We believe that using this technique the parser is able to
recover in most cases that arise in practice. The following section presents the

algorithm used in placing the error symbol in grammar rules.

Algorithm for error symbol insertion

In most programming languages, the majority of errors seem to occur in repetitive
constructs, as stated by Schreiner & Friedman (1985), which therefore need special
attention when dealing with error-recovery, unlike optional constructs for which
error-recovery is considerably simpler. In discussing this algorithm we shall, for
convenience, omit the generation of actions which deal with building the abstract

syntax tree.

In order to avoid a cascade of error messages, yacc insists that the parser must shift
three terminal symbols beyond the point of error, before another apparent error
results in a printed error message. But this way, a sequence of errors may result in
only a single error message. With the yacc yyerrox action the parser can be
persuaded to feel that it has accepted enough terminal symbols, and thus to report
errors in close proximity to one another. The placement of error symbols and the

yyerrok action is guided by the recommendations given below.
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« The reason why optional constructs do not present a problem for error-recovery is

illustrated by the following simple example:

Given the rules a = ("+"] and B = [params], CORGI generates the
following:
A : /* empty */ B : /* empty */
| '+ | params;

With the rule a if the parsed symbol were ', instead of '+, the parser would
always reduce by the empty alternative and take the ', as the next lookahead
symbol. With rule B, if there is an error in the input, it will be processed by the
rule describing params. Inevery case the parser would never associate an error
to an optional construct. Therefore an error production is never needed for such

cases.

« For each repetitive construct which contains one single element, the following

algorithm is used:

given the rule A = {B}, CORGI generates the following:

A : /* empty */
| A B { yyerrok; }
] A error;

« For each repetitive construct which contains at least two elements, the following

algorithm is used:

given the rule A = {B C}, CORGI generates the following:

A B C { yyerrok; }
A error

A error C { yyerrok; }
A B error;

» For each grouped construct, the following algorithm is used:
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giventherule A = ( B | ¢ ), CORGI generates the following:
A : B
e
| error;

+ For each rule from the original EBNF of the form a = B ¢ d where Bisa

nonterminal symbol, and c and 4 are terminal symbols, CORGI generates the

following:
A : B cd
| B error d
| B ¢ error
« For each rule of the following form: A = b ¢ D where the first symbol in

the rule is a terminal symbol which is followed by at least one terminal or

nonterminal symbols, CORGI generates the following set of rules:

A : b C D
| b error;

The technique used for the placement of error symbols does not guarantee that a
useful input symbol is not ignored in some error situations; however, it does
guarantee (Schreiner & Friedman, 1985) that no reduce/reduce or shift/reduce
conflicts are introduced. We believe that this technique results in robust syntax
analysers for common language constructs in a systematic manner. This contention

will be demonstrated in the next chapter.

6.3.6 The manipulation routines

The actions inserted into the yacc specification as described in section 6.3.3.2, build
an abstract syntax tree for the source program being parsed. CORGI also generates
routines for input/output of this tree in flattened form, and for tree-walking during

semantic analysis and code generation. The structure of these routines closely
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follows the rules in the generated yacc specification. For each generated data
structure definition of an AST node, CORGI also generates writer, reader and

walker functions.

The writer functions are designed so that when parsing is complete the entire tree
can be flattened and output to permanent storage as described in section 5.4.1.
Typically, the writer functions form a mutually-recursive hierarchy of calls which
begin at the root of the tree, and proceed towards the leaves. If a node
corresponding to a particular rule is not found in the tree, CORGI outputs a zexo
(0) followed by the name of the rule. If however, such a node is present a one
(1) is output with the rule name, and the writer routine then deals with each

"subtree" associated with that node in turn.

Thus for non-leaf nodes, further writer functions are invoked, and for leaf nodes
their attribute values are output. Using this recursive traversal of the tree, a linear
representation is generated, in terms of rule names and terminal values. A writer

routine for the following grammar rule is given in Code 6.2 below:

woon

program: "PROC" procname " ("param list™)" declaration proc_body
[ "PROC" procname declaration proc_body ".";

The data structure associated with this grammar rule, which is given in Code 6.1, is

shown diagrammatically below:
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program
(1) l (2)
ptr to ptr to ptr to ptr to ptr to ptr to pir to
procname  param_list ~declaration  proc_body procname  declaration proc_body

where path (1) represents the first alternative and path (2) represents the second

alternative of the grammar rule given above.

Given input with the form

orocname
declaration
proc_body

the writer function given in Code 6.2 would generate the following linear form of

the abstract syntax tree into the tree dat file.

1 <program>

2 <alternative number of program>

1 <procname>

1 <alternative number of procname>
/* deal with procname routine */

1 <declaration>

1 <alternative number of declaration>
/* deal with declaration routine */

1 <proc_body>

1 <alternative number of proc_body>

/deal with proc_body routine */
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write program(ptr)
PROGRAM TYPE ptr;
{

if (ptr == NULL)
fprintf (fp _data, "O\t<program>\n");
else(

fprintf (fp_data, "l\t<program>\n");

forintf (fp data,"3d\t\t<alternative number of program>\n",

ptxr->type);

.switch (ptr->type) {

case 1 : /* it is alternative 1 */
write procname (
ptr->RIGHTSIDE.ALTER program_l.procname_1);
write param_list(
ptr->RIGHTSIDE.ALTER program l.param_list_2);
write declaration(
ptr->RIGHTSIDE.ALTER program l.declaration_3);
write proc_body (
otr->RIGHTSIDE.ALTER program_ l.proc_body_4);
break;

case 2 : /* it is alternative 2 */
write procname (
ptr->RIGHTSIDE.ALTER program l.procname_1);
write declaration(
ctr->RIGHTSIDE.ALTER program 2.declaration_ 3);
write proc_body (
ptr->RIGHTSIDE.ALTER_program 2.proc_body 4);
break;

default
print£(
"ERROR - Wrong alternative number generated\n");

} /* end of switch */
} /* end of else */
} /* end of write_program() */

Code 6.2 the writer routine of the rule program

The generated reader routines are designed to take the linear representation of the
tree, produced by the tree writer routines, and re-construct the original dynamically
allocated data structures. The overall structure of the reader for the above rule is
equivalent to that of the writer, but reads in the linear representation and re-

constructs the tree rather than writing it.

walker routines which are also generated by CORGI can then be called to perform a
recursive tree-traversal in a similar manner to the writer functions, except that no

output is produced. It is intended that the user of the CORGI system will insert his
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own routines into this generated "template”, to perform semantic analysis and code
generation at appropriate tree nodes. This has the advantage that the tree-walk
routines are guaranteed to provide a bug-free tree traversal, and code which deals
with a particular rule can be easily identified due to the naming conventions used (a
routine which traverses a node A is called walker_a()). The generated walker
routines for the above rule is given in Code 6.3. Using an editor, the user may
insert code in the above walker routine to perform whatever semantic actions are
required for the application; the user's code has access to information stored in the
tree. Language-tailored walker routines may be obtained by simple changes to the
generated walker routines. The user may insert code in the above walker routine to
perform whatever semantic actions are required for the application; the user's code
has access to information stored in the tree. Language-tailored walker routines may
be obtained by simple changes to the generated walker routines. The highlighted

code in the walker routine given in Code 6.3 is an example of user's inserted code.

walk program(ptr)
PROGRAM_TYPE ptr;

{
BOOLEAN anyprocs = FALSE;

int jmain;
if (ptr == NULL) ;
else/
switch (ptr->type) {
case 1 : /* it is alternative 1 */

/* deal with the lexeme identifier */
if (ptr->RIGHTSIDE.ALTER program_ 1l.procname 1)
{

anyprocs = TRUE;

cg2(J,0);

jmain = PSused;
}
walk procname (
ptr->RIGHTSIDE.ALTER program l.procname_ 1) ;
walk param list(
ptr->RIGHTSIDE.ALTER program l.param list_2);
walk declaration(
ptr->RIGHTSIDE.ALTER program l.declaration_3);
walk proc_body(
ptr->RIGHTSIDE.ALTER program l.proc_body 4);
break; N N

case 2 : /* it is alternative 2 */

/* deal with the lexeme identifier */
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if (ptr->RIGHTSIDE.ALTER program l.procname 1)
{
anyprocs = TRUE;
ng (3,0):
jmain = PSused;
}
walk procname (
ptr->RIGHTSIDE.ALTER program_2.procname_1l);
walk declaration(
ptr->RIGHTSIDE.ALTER program 2.declaration_3);
walk proc_body(
ptr->RIGHTSIDE.ALTER program 2.proc_body 4);
break;
default
printf(
"ZRROR - Wrong alternative number generated\n");
}  /* end of switch */

if (anyprocs) /* fix up jump to code */
PS[jmain] = PSused+l; /* for main program */
} /* end of else */
cgl (HALT) ; /* end of the program */
} /* end of walk_program() */

Code 6.3 the walker routine of the rule program

6.4 Error handling in programs generated by lex and yacc

When using lex and yacc, there are two possible types of error which must

be catered for. These are:

« errors detected at generation time

« errors detected at execution time.

The first kind of error occurs due to invalid lex or yacc specifications, caused for
example by the duplicate definition of a nonterminal, an undefined nonterminal or
by any violation of the syntactic rules for defining lex and yacc specifications. These
errors are detected when running the lex and yacc processors to generate the
required lexical and syntax analysers for the desired grammar: hence, the term

generation-time errors.

The second kind of error occurs when executing the programs generated by lex and

yacc, in which case the errors are due to the incompatibility of the source programs
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with the grammar defining the language in which they are written. In this section,

we address specifically the question of these compiler execution-time errors.

One of the disadvantages of building CORGI as a preprocessor to lex and yacc, is
that we are obliged to accept the deficiencies of these two tools. Error reporting and
error messages of lex and yacc are very poor and need to be improved. Methods of
remedying this situation have been reported in the literature; Schreiner & Friedman
(1985) presented an attractive solution to the problem, and we have adopted this

approach in the CORGI system. Their suggestions were as follows:

 modification of the skeletal parser which is held in a file called
Jusr/lib/yaccpar and included into yacc's output
» creating new lex and yacc libraries

« including some additional features into the lex specification.

In the following section we shall show an example of the improvements, which
have been incorporated into our system, by running some source input using the
original and the new debugging facilities. All the other error messages which can

arise during parsing are similarly clarified.

Given the following erroneous input where a list of numbers, separated by spaces,

is expected:

10, 20 30.

The generated syntax analyser using the original debugging facilities would generate

the following output:

state 0, char 037777777777
reduce 2
state 2, char 037777777777
state 4, char 037777777777
reduce 3
state 2, char 037777777777
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state 5, char 054
reduce 4
state 2, char 054

error recovery discards char 44
state 4, char 037777777777

reduce 3
state 2,
state 4,
reduce 3
state 2,
state 3,
reduce 1
state 1,

char 037777777777
char 037777777777

char 037777777777
char 037777777777

char 037777777777

Compilation error(s): 1
Compilation terminated

However using the new debugging facilities the syntax analyser would generate the
following output, which provides far clearer information as to its operation. In a
final operational compiler only lines such as the line marked with (*), which are

more suitable for the typical user, are output.

[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[error 1]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebugl]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]
[yydebug]

push state 0

reduce by (2)

push state 2

reading CONSTANT

push state 4

reduce by (3)

push state 2

reading ',

line 1 near ",":expecting:
push state 5

reduce by (4)

push state 2

recovery discarxds ',
reading CONSTANT
push state 4
reduce by (3)
push state 2
reading CONSTANT
push state 4
reduce by (3)
push state 2
reading '.'

push state 3
reduce by (1)
push state 1

' . "CONSTANT

Compilation error(s): 1
Compilation terminated

(*)

Note that with the original debugging facility, not much information is given about

the type of error, the cause of the error, nor even the line number where the error
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occurred. However all these are given by the new debugging facility. Note also that
the new version reports the input read at each stage unlike the original version. The
numeric ASCII code of characters encountered in the input is used in the original
version when discarding tokens after an error, unlike the new version where the text
of the token is displayed. This facilitates reading of the output and makes error

correction much faster.

6.5 Summary

In this chapter, we have shown how the design outline given in chapter 5 has been
used to construct the CORGI system. We have described how CORGI generates a
valid lex specification for producing a lexical analyser, by extracting information
from the CORGI input specification relating to lexical analysis; we have also shown
how we translate the original EBNF rules corresponding to lexical features into
lex's regular expressions. The manner in which CORGI generates a yacc
specification has also been described, including the translation process from EBNF

to yacc's BNF notation.

We have shown how the generated lex and yacc specifications are further
augmented by CORGIL. The augmentation of the lex specification involved
provision for the evaluation of certain lexemes, storing information in the generated
tree, and processing nested comments. The augmentation of the yacc specification
involved the automatic generation of the error productions and the tree manipulation
actions. These actions deal with the construction and manipulation of the abstract

syntax tree.

As far as the generation of the data structure for the tree and the routines to
manipulate it are concerned, an interesting alternative method was presented, ie

making use of the IDL software tool; however, for the reasons given earlier this
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method was rejected, and a direct method was used to achieve the automatic

construction of the abstract syntax tree and associated manipulation routines.

Another important point discussed in this chapter is the shortcomings of the default
error handling of programs generated by lex and yacc; a way of remedying these

deficiencies was presented.

In chapter 7, we shall present the results of a number of tests which we conducted

using CORGI with grammars for typical modern programming languages.
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Chapter 7

Demonstration and Evaluation of CORGI

7.1 Introduction

The evaluation and validation of a large system is an important step in the software
lifecycle. In order to validate such a system, we should show that its software
components correspond to the original specification. In principle, this may be
performed using formal, mathematical methods; however, currently the cost and
difficulty associated with such an approach makes it viable for use only on small,

highly important parts of the system.

Additional complexity is introduced by the fact that we do not only wish to prove
the correctness of a hand-written program, but also that of generated software. In

fact, for the CORGI system, the following three levels of formal proof would be

required:
Functional specification ———(1)—— implementation
Implementation ——(2) —— programs and specifications
Programs and Specifications ~———(3)— generated program

Due to the impracticality of such formal proof, and given the time constraints of this
research project, we have necessarily limited the validation process to testing using

representative examples.
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7.2 Testing

The CORGI system was developed and tested incrementally using both test data
designed to test very specific parts of the system, and real-life test data such as
grammars for certain programming language such as Modula-2, Pascal, a subset of
C, and MSL. For each of these languages we continued testing until a correct
parser was produced which was able to successfully parse a number of test

programs written in that language.

The design of the system is modular, and hence each module was tested until we
were satisfied as to its correct operation; this meant that as far as possible we were
sure that any errors encountered were due to the current module under development,
or at least to its interface with already tested modules. Thus each module was

gradually integrated into a complete system.

The system is portable across Unix systems, and has been tested on a HLH ORION
running a 4.3 BSD Unix operating system and a SUN 3/160 workstation. The
system is written in the C programming language and it consists of approximately

9000 lines of code.

7.3 Application of CORGI

In this section we shall show how a full CORGI specification should be written,
using the MSL language as discussed previously, and also briefly review extra steps
required for other programming languages. We shall also demonstrate the error-
recovery mechanism, as presented in Chapter 6, for major programming language
constructs which involve repetition and grouping in grammar rules. This will
involve running erroneous source programs through the parser generated by

CORGIL.
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In order to evaluate the performance of CORGI, we shall present results of the test
runs using artificial test specifications and also those for real programming
languages. These results will show the relationship between the number of rules in
the grammar and CPU time required to produce a parser for the grammar. We also
compare the time required by the parser to process a number of example source
programs, with that of a parser produced from hand-written lex and yacc

specifications as discussed in chapter 4.

Finally we shall show how the output of CORGI may easily be augmented so as to

perform semantic analysis and code generation for MSL.

7.3.1 Writing a CORGI specification for MSL

As mentioned in chapter 5 a CORGI input specification has the following format:

Annotation section }

%

%

{
{ Rule section }
{

User's routine section }

The best approach to producing a specification for a given language is to tackle each

section in the order in which they appear in the above format.

Annotation section for MSL: As seen previously this section consists of four

major parts, each of which is given below. The order in which these are specified is

not important.

« Comment: Comments in MSL cannot be nested; they start with "--" and end with

a carriage return, similar to Ada, and hence their CORGI specification would be:

STARTCOMMENT Wt
ENDCOMMENT NEWLINE.
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« Case sensitivity of kevwords: In MSL the case of keywords is not significant, and

this is described as follows:

KEYWORD CASE CASE NONSIG.

« Lexeme list: As previously described in section 4.4.1, lexemes in MSL are:
identifier, integer literal, boolean literal, text literal, keyword, operator and
delimiters. As operators are important for semantic analysis and code generation,

they are treated separately in the next section.

In general, delimiters are only relevant to context free analysis, therefore they are
normally not considered in this section. However there are exceptions which occur
in MSL. The symbols "#" and "+" are in certain contexts (the MSL READ &
WRITE statements) used with special semantic significance, which means that they
are not only important for the context-free features but also for code generation. For

example:

READ + datal, data2

WRITE + #textl, "hello™, #text2, numvalue

The above statements are equivalent to read/write in Pascal as opposed to
readln/writeln, thisis indicated by the presence of the symbol +. The # symbol
on the other hand, indicates that the values of text1 and text2 are to be interpreted

as strings rather than as numeric values such as is the case for the last parameter

numvalue.

In such a case the LEXEME list for MSL may be given as follows:

LEXEME identifier int text "TRUE" "FALSE™ "#".

Note that the optional plus "+" does not appear in the LEXEME list, since it is also

an operator and is dealt with as such, to avoid ambiguity (each symbol must have a
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unique name in lex). The distinction between "+" used in conjunction with
read/write or used as an arithmetic operator (see the example MSL programs in

appendix B) is made during semantic analysis and code generation.

The definition of each of the lexemes from the LEXEME list will be given in the rule

section .
« Operators: Operators in MSL all have the same precedence and the same
associativity, left-to-right. They are therefore described as follows:

OPERATORS
Opr =\L {"+|l W1t ke "/" wgn s wg=1 ">:ll"<>" w1 "%ll "&ll} .

Rule section for MSL: The syntax of MSL in EBNF notation is given in figure

4.5, but we reproduce it here for convenience.

Program = ["RESERVE" int ] {ProcDec} Series ".".
ProcDec = VWPROC"™ idr [" (" Idrlist ")"] Series "END".
Idrlist = idr {("," idr}.
Series = Stmt {Stmt}.
Stmt = Assignst | Whilest | Ifst

| Callst | Readst | Writest.
Assignst = StoreAccess ":=" Expr.
Whilest = "WHILE" Expr "DO" Series "OD".
Ifst = "IF" Expr "THEN" Series ["ELSE" Series] "FI".
callst = “CALL" idr ["(" Exprlist ™)"].
Exprlist = Expr {("," Expr}.
Readst = "READ" Optionalplus Readinlist.
Writest = "WRITE" Optionalplus Writeoutlist.
Readinlist = Optionalhash StoreAccess

{ "," Optionalhash StoreAccess }.

Writeoutlist = Optionalhash Expr {"," Optionalhash Expr}.
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Optionalhash = ["#"].

Optionalplus = ["+"].

Expr = Operand {opr Operand}.

Operand = int | text | "TRUE" | "FALSE"™ | "@" idr
| StoreAccess |" (" Expr ")".

StoreAccess = idr [("!"™ Operand].

idr = letter { letter | digit }.

int = digit { digit }.

text = mwnn {gtringpic} """

stringpic = anybut DQ NL.

MSL syntax in EBNF

The rule section of the CORGI specification for MSL requires only a few minor
additions to the above syntax, namely augmenting the grammar by associating
actions for attribute evaluation with rules which define the lexemes given in the

lexeme list above, as follows:

idr = letter { letter | digit } ==> evaluate idr(0).
int = digit { digit } ==> evaluate denary.
text = "nwnn (stringpic} """ ==> evaluate Pstr.
Optionalhash = ["#"].

evaluate idr(0) is a function that returns a pointer to the text of the identifier,
taking one parameter which indicates the case sensitivity of this lexeme. For MSL,

case is not significant for an identifier and this is indicated by 0.

evaluate denary and evaluate_pstr are two functions from the CORGI
library to evaluate a denary number and Pascal-like string respectively. Note that
evaluate_Pstr() also cater for strings with delimiters being (") as opposed to (') in

Pascal.
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User-routine section for MSL:

In the case of MSL, this section is omitted since all the evaluation routines needed

for MSL lexemes are available in the CORGI library.

It should be noted from comparison of the example of generating an MSL compiler
as discussed earlier that the use of CORGI requires considerably less effort than that
needed when producing lex and yacc specifications by hand. CORGI also has the
advantage of providing an attribute evaluation library, and automatic declaration and
generation of the AST together with processing routines for the data structures

formed.

Appendices A and B provide in full detail a comparison of the use of CORGI as
opposed to the previous method (using lex and yacc) for a realistic example. From

this comparison we see the evident advantages of using CORGL

It should also be noted from the data given in appendix C that a compiler produced
from a CORGI specification can emit identical object code to lex/yacc and hand-
crafted version. Moreover, the CORGI generated compiler shows similar
performance in terms of execution speed to the other alternative approaches; we

shall discuss this issue in more depth in a later section.

7.3.2 Overview of other PLs

We also consider how various features of other programming languages such as
Pascal, Modula-2 and Ada can be specified using the CORGI system, in order to

show that such features can be accommodated.

174



Chapter 7

Note that complete CORGI specifications for Modula-2 and Pascal were written and
tested successfully; complete listings for this work are given in appendix E. Here

we point out some of the more interesting issues which arise.

The CORGI mechanism for dealing with comments is capable of catering for

generally-used styles of comments: most comments fall into one of the following

categories:

« those found in Ada, MSL, Occam, where there is one opening symbol and

one closing symbol:

STARTCOMMENT Mot
ENDCOMMENT NEWLINE.

. those found in Pascal where more than one symbol can be used to close a

comment:

STARTCOMMENT wn | "k
ENDCOMMENT wym LES | LES R wy

« those found in Modula-2 where nested comments are allowed.

STARTCOMMENT "(*"™ NESTED.
ENDCOMMENT nk),

Specification of the case sensitivity of keywords is straightforward, since in most
programming languages case is either significant or non-significant. CORGI
provides facilities for both eventualities, together with the extra possibility where

case is non-significant but cannot be mixed in a single lexeme. Thus the three

possible cases are:

KEYWORD-CASE CASE-NONSIG. as in Pascal, Ada etc...
KEYWORD-CASE CASE-SIG. as in C, Miranda, Modula-2, Occam etc...

KEYWORD-CASE CASE-NOTMIXED.
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One aspect which must be borne in mind when writing the rule section is the

relationship between the grammar rules which describe the lexemes and the other

rules and whether the user calls the CORGI library routines for lexeme evaluation.

A potential problem arises when the user may wish to combine the description of

two different lexemes into one single rule. This case has been identified so far only

in the syntax of Ada (Rogers, 1984) which describes a decimal-literal and

integer as shown below:

decimal-literal

integer
exponent

based-literal

base

based-int

extended-integer

integer [ "." integer ] [exponent].

= digit { [underline] digit}.

= "E" ["+"] integer | "E" "-" integer.

= base "#" based-int ["." based-int] "#"
{exponent].

= integer.

= extended-digit {{underline] extended-digit}.

digit | letter.

Example 7.1

With the LEXEME list as:

LEXEME

decimal-literal based-literal

The evaluation of the integer and decimal-literal lexemes will require separate

functions. However a user wishing to use only the CORGI library functions for

lexeme evaluation may rearrange the grammar given in example 7.1 into the

following grammar rewriting the rules marked (*) below:

decimal-literal
decimal-integer
decimal-real
integer
exponent
based-literal

based-integer

1

decimal-integer | decimal-real.

integer ==> evaluate denary.
integer "." integer [exponent]. (*)

digit { ({underline] digit}.

"E"™ ["+"] integer | "E" "-" integer.

based-integer | based-real.

base "#" based-integer "#"
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==> evaluate_Ada_int ().

based-real = base "#" based-int "." based-int "#"
[exponent] . (*)

base = integer.

based-int = extended-digit {[underline] extended-digit}.

i

extended-integer digit | letter.

Example 7.2

or the following:

decimal-literal = integer ==> evaluate denary
| integer "." integer [exponent]. (*)
based-literal = base "#" based-integer "#"==> evaluate_Ada_int
| base "#" based-int "." based-int "#"
[exponent] (*)

Example 7.3

If the grammar describing decimal-literal and based-literal is given as in

Example 7.2, the the LEXEME list may be given as:
LEXEME decimal-integer decimal-real based-integer based-real ..

However, if the grammar is given in the form of Example 7.3 then the LEXEME list

would be:

LEXEME decimal-literal based-literal ..

In fact this only rarely presents a problem, since the description of lexemes in most
reference manual grammars is given in the form shown in Example 1.2 or 7.3 and

very rarely in the form shown in Example 7.1.

But since the idea of CORGI is to work so far as possible from the reference manual

form of the grammar, it is more consistent and perhaps preferable to adhere to the
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original form of the grammar and provide the necessary additional evaluation

routines.

For Pascal, Modula-2 and C the LEXEME list is straightforward, and may be given

as follows:

For Pascal (BS6192, 1982)

LEXEME identifier signed-integer signed-real character-string.

where each lexeme is as follows:

identifier = letter { letter | digit } ==> evaluate-idr(0).
signed-integer = [sign] unsigned-integer ==> evaluate_ denary.
signed-real = [sign] unsigned-real. (*)
character-string = "'" string—element (string-element }o e

==> evaluate Pstr.

In Modula-2, the LEXEME list would be:

LEXEME identifier integer real string.

where the grammar rules describing the lexemes are as follows:

identifier = letter { letter | digit } ==> evaluate_idr(0).
integer = digit { digit } ==> evaluate denary

| octaldigit { octaldigit } ("B"™ | "C")

==> evaluate_ Mod2_ Octal.

| digit { hexdigit } "H" ==> evaluate Mod2 Hex.
string = "'" { anybut SQ NL } "'" ==> evaluate Pstr

| »»®v { anybut DQ NL } """" ==> evaluate_Pstr.
real = digit { digit } "."™ {(digit} [ScaleFactor].

In C the LEXEME list may be given as follows:
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LEXEME identifier integer-constant floating-constant

string=-constant character-constant.

with the following grammar describing the lexemes as given in the C reference

manual (Harbison & Steele, 1984):

identifier

first-character =

following-character

integer-constant

floating-constant =

string-constant =

character-constant

first-character { following-character }

==> evaluate_idr(1l).

letter | underscore.

letter | underscore | digit.
decimal-constant ==> evaluate_denary
octal-constant ==> evaluate C_Octal
hexadecimal-constant  ==> evaluate_ C_ Hex.

digit-sequence exponent

dotted-digits [exponent]. (*)
wunw ( character } """" ==> evaluate Cstr.
"'" character "'" ==> evaluate Cchar.

Note that an evaluation routine for real numbers is not provided by CORGI since

this is inevitably dependent on the target architecture and therefore is left to the

user's responsibility. The value associated with such lexemes is a string of

characters as it is given in the input. This is in fact the default case for lexemes with

no evaluation action attached to them, as previously discussed.

Operators in most programming languages may be categorized into classes, for

example adding operators, multiplying operators, relational operators etc. Also they

all have one of three types of associativity: left-to-right, right-to-left or non-

associative which is indicated in CORGI by the use of \1, \R or \N respectively.

For example, in Pascal or Modula-2 the oPERATORS section would be:

OPERATORS
relational-oprs
adding-oprs
multiplying-oprs
not-oprs

N T RS R A G LU 6 S AL
= \L { "+" "-" “OR" }.
= \L { "*" "/"™ "DIV" "MOD" "AND" }.
= \R { "NOT" }.
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where the order in which these rules are given is important since it gives the
precedence of the operators (in ascending order). Each of the above operator

nonterminals are used in the grammar as follows:

expression = simple-expr[ relational-oprs simple-expr ].
simple-expr = [ sign ] term { adding-oprs term }.

term = factor { multiplying-oprs factor }.

factor = variable-access | .. | not-oprs factor.

An interesting example is Occam where all the operators have the same associativity
ie. left-to-right and they all have the same precedence. The operators in Occam fall
into two categories: dyadic operators and monadic operators with the same
precedence. This is a very important facet dealing with operators. If for instance

we describe Occam operators as:

OPERATORS
dyadic-operators =\L { .. "+" /" "\/" .}
monadic-operators = \L wow w_mwowgw .

then we are saying that monadic operators have a higher precedence than the dyadic
operators, but this is not the case in Occam, since they all have the same precedence.

Therefore this should be described as:

OPERATORS
Occam—-operator

\L { dyadic-operators
monadic- operators }.

{ . whw "/" n\/u }-

{ L WA w_w owgw }‘

dyadic-operators
monadic-operators

where the grammar for an Occam expression as given by Hoare (1988) 1s:

monadic-operators operand
operand dyadic-operators operand
conversion

operand

expression
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In such situation one may wish to associate the precedence of one class of
operators, already defined, with another class. For instance in some languages the
unary operators are given the precedence of multiplying-operators and the

method illustrated above is the only way to specify such a feature.

73.3 Other limitations of the CORGI system

Certain features of programming languages cannot be specified using the CORGI
system. CORGI does not deal with early programming languages such as Fortran
and Cobol which have column-based layout rules. Also, it cannot cope with certain
modern languages such as Occam and Miranda which use indentation to specify
block structure. However, only limited modifications to CORGI would be required
to allow for this latter feature. The CORGI system assumes that the keywords are
reserved which is not the case with PL/I and Fortran. It appears now to be
generally accepted that programming language design should not incorporate this
feature since it severely restricts the clarity of the language. For example, in PL/I,

one may have the following:

IF THEN THEN ELSE := 1 ELSE IF := 2 which is equivalent to

IF cond THEN statl ELSE stat?

7.3.4 Testing error recovery

As mentioned in chapter 6, the algorithm used to place the error symbol together
with the yyerrok action for the error recovery mechanism is based on that given by
Schreiner & Friedman (1985). In this section we shall demonstrate the efficacy of
an such algorithm using small examples and then give a full MSL test specification.
The results given here are reproduced after running the examples on the HLH

ORION 1/05 Unix machine.
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« The first demonstration deals with an optional list of IDENTIFIERs with the
following EBNF rule:

list = {IDENTIFIER} ".".

which is translated into the following yacc specification which we have augmented
with tracing actions. These tracing actions will show which alternative is reduced
by the parser:

%token IDENTIFIER '.' !

1

list : single-item '.';
single-item : /* empty */

| single-item IDENTIFIER { yyerrok; }

| single-item error {printf("Error type 1l\n"); };
main ()

#ifdef LEXDEBUG
debug = 1; /* debug = 1 for debugging and 0 otherwise */
#endif
extern 1int yynerrs;
int flag = 0;

flag = yyparse();

printf ("Compilation error(s): %d\n", yynerrs);
if (flagq)

printf ("Compilation aborted\n");
else

printf ("Compilation terminated\n");

Given the following input
1) a, ab.

the parser produces the following output:

[error 1] line 1 near ",": expecting: ', CONSTANT
Error type 1

Compilation error(s): 1
Compilation terminated

For the following incorrect input:

2) a, ab abc, abcd.
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the parser produces the following output:

[error 1] line 1 near ",": expecting:'.' IDENTIFIER
Error type 1
[error 2] line 1 near ",": expecting:'.' IDENTIFIER

Error type 1

Compilation erroxr(s): 2
Compilation terminated

The first example shows that the parser has recovered after the error caused by the

"' The value returned by the parser is 0 which indicates that the parser has

b

successfully recovered from a syntax error.

The second example shows not only that the parser has recovered from the first

error but also from the second error and the value returned is again 0.

« The second demonstration deals with a repeated list of at least two elements, in

which case there are more potential errors.

idrlist = IDENTIFIER { "," IDENTIFIER } ".".

which is translated into the following yacc specification:

%token IDENTIFIER '.' ', ' '+'
idrlist : IDENTIFIER list '.' { yyerrok; )
| error list '.' { printf(" Error type 1\n");}

| IDENTIFIER list error
{ printf (" Error type 2\n");};

list :  /* empty */
| list ', ' IDENTIFIER { yyerrok;}
| list error { printf("Error type 3\n");}
| list error IDENTIFIER
{ printf ("Error type 4\n"); yyerrok;}

| 1ist ',' error { printf("Error type 5\n"); };

o\
oo

main ()

{

#ifdef LEXDEBUG

debug = 1; /* debug = 1 for debugging and 0 otherwise */
#endif

extern int yynerrs;
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int flag = 0;

flag = yvparse();

printf ("Compilation error(s): %d\n", yynerrs);
if (flag)

printf ("Compilation aborted\n™);
else

printf ("Compilation terminated\n");

For the following incorrect input:

1) a, ab+t.
the parser produces the following output:

[error 1] line 1 near "+": expecting: ’
Error type 3

Compilation error(s): 1
Compilation terminated

For the second incorrect input:

2) a ab.
the parser produces the following output:

[error 1] line 1 near "ab": expecting: P
Error type 4

Compilation error(s): 1
Compilation terminated

For the following incorrect input:

3) a,.
the parser produces the following output:

[error 1] line 1 near ".": expecting: IDENTIFIER
Error type 5

Compilation error(s): 1
Compilation terminated

For the following incorrect input:

4) a, ab+ abc, abcd abcde.
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the parser produces the following output:

{error 1] line 1 near "+": expecting: ',' '.'
Error type 3 (*)
[error 2] line 1 near "abcde": expecting: ', '.'

Error type 4

Compilation errox(s): 2
Compilation terminated

This demonstration shows that the parser is able to recover in all cases which can
arise in the above example. However, we should note that the first error in input (4)
is recovered through the rule 1ist erroz, ascan be seen from the trace facility *),
and not through the rule with 1ist error IDENTIFIER, and so the third element
of the list abc is discarded. Eliminating this alternative would result in unsuccessful

termination of the parser in the case of a trailing error.

A larger demonstration, which shows the error reporting and recovery performance

achievable in a realistic programming context, is given in appendix D.

7.3.5 The performance of the CORGI system

When considering the performance of a system, the most critical aspect is the time it
requires to execute (since space is no longer at a premium on most modern computer
systems). We have considered the time taken by CORGI to generate a parser using
test data consisting of both artificial examples, and grammar rules for real
programming languages such as Pascal, Modula-2, subset of C, MSL. The goal of
these tests is to show how the time taken relates to the number of rules in the

grammar.
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Modula-2

/ Pascal

Subset of C

200

CPU time

aadasaaalagsaalanaaadasaaalasanalasgnal sanaslaasanalasans

AL L

0 T T T T T T T T T

0 50 100 150 200 250 300

O CPU time No of rules

Figure 7.1 CORGI performance

Figure 7.1 shows the results of a number of test runs; points which are not
annotated refer to artificial data. CPU time was measured using the Unix /lib/time

command, and is the sum of the time used in both "user” and "system" mode.

It should be noted that where points lie off of the plotted regression line this may be\
explained by the level of complexity contained in each rule. A rule is considered
more complex if it consists of a large number of alternatives, or has considerable
repetition, optional and grouping constructs. Thus rules for Pascal were in fact less
complex than those used as an artificial test case, whereas the rules for Modula-2

were more complex.
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Of further interest is the time taken for a generated parser to process a number of test
source programs. In Figure 7.2 we present a comparison of the performance of a
CORGI-generated parser against one produced from hand-written lex and yacc
specifications and one completely hand-coded. The hand-coded version is a top-
down parser (since it not reasonable to hand-code bottom-up parsers) unlike the

generated ones. For accuracy, the results were obtained by timing 10 runs and

dividing.
Hand-written | Lex and yacc CORGI
Source Program version generated version| generated version
(seconds) (seconds) (seconds)
msl.progl 0.07 0.07 0.09
msl.prog2 0.07 0.07 0.09
msl.prog3 0.07 0.08 0.09
msl.prog4 0.11 0.16 0.16
msl.prog5 0.14 0.21 0.23
msl.prog6 0.21 0.33 0.35

Figure 7.2 Time comparisons for three versions of the parser

7.3.6 Compiler construction using the CORGI system

In this section we shall see how we would use the output generated by CORGI to
write the rest of the compiler, namely the semantic analysis and code generation.
For this demonstration we only used MSL as test data because it is reasonably small

and simple but stll sufficient in scope to give a realistic illustration.
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As mentioned in chapter 5, the CORGI system may be used in two ways, which we
termed deferred semantic reduction and direct semantic reduction. In both situations

the CORGI system generates the following files:

» lex.spec : contains the lex specification for the given language

- yacc.spec : contains the yacc specification for the given language

« syntree.h : contains the C declaration of the types needed for the
abstract syntax tree for the source program

s writer.c : contains a setof C routines which write a linear
representation of the source program to a file

* reader.c : contains a set of C routines which read in the linear
representation of the source program and reconstruct the
tree in memory.

e walker.c : contains the C walker routines which visit each node of the

tree to perform user's code.

some further auxiliary routines needed by the above files.

These files are used in two ways depending on whether the compiler writer is using

deferred semantic reduction or direct semantic reduction as described below.

Deferred semantic reduction

In this approach when the parse tree has been built it is written to a file called
tree_dat, using a linear representation which is human-readable. This tree is later
read back in and the tree is re-built in memory using the generated reader routines.
Once the tree has been reconstructed, the walker routines are used to visit its nodes
executing user-supplied code at every node. The usage of this approach involves

the following steps:
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« the execution of the CORGI system generates a parser called PARSER, which is

achieved by using the following command:

CORGI <filename>

where filename is a file that contains the CORGI specification.

« the generated parser is then used to parse an input written in the given language:
PARSER < <input>

This command will parse the input, produce a linear representation of the tree and

will output one of the following set of messages:

«+ Compilation error(s): <n® of errors found>
Compilation terminated

s Compilation error(s): <n® of errors found>
Compilation aborted
« the walker routines generated by CORGI must have been augmented with user's

code (eg. semantic actions and code generation).

« since deferred semantic reduction is used, the walker is not immediately called by
the parser. The abstract syntax tree is written in linear form to a file, and so the
generated reader routines should be used to reconstruct the tree from this file.
When the tree has been reconstructed, a call should be made to the "top-level”
walker routine, which causes calls to be made to further walker routines to

traverse the tree, performing user-supplied semantic analysis and code generation

functions.

A model example of a skeletal main program for achieving this is supplied in a file

backend.c and takes the following form:
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#include “syntree.h" /* the generated syntax tree */
#include "reader.c" /* the generated reader routines */
#include "walker.c" /* the generated walker routines */
/* declaration of constants */

/* declaration of global variables */

main ()
{
PROGRAM_TYPE ptr;

/* declaration and initialisation of variable */
ptr = read Program(); /* read the tree from a file */
printf("\n*** Building the tree successfully completed **x*x\n'") ;
walk Program(ptr); /* visit the tree nodes */

/* print out results */

}/* end of main() */

A shell script is also provided, called backend which will compile and run the

resulting C program. This performs the following:

cc -o run.x backend.c

run.x

Direct semantic reduction

If direct semantic reduction is used, the parser builds an abstract syntax tree, but
instead of writing this to a file, it calls the "top-level” walker routine as soon as
parsing is complete. The set of generated walker routines must first have been
augmented to perform whatever further processing is required. Use of the CORGI

system in this manner takes the following form:
« use of -D option when invoking CORGI to generate the C files, thus:

CORGI -D <filename>
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This will result in the generation of lex and yacc input specifications from the
rules contained in the supplied file, together with walker routines for the

associated abstract syntax tree.

« augment the walker routines with semantic analysis and code generation functions

at appropriate nodes in the AST.

- use the provided shell script create which compiles and links the appropriate

files and libraries as shown by the following commands:

cc -c y.tab.c
cc -c lex.yy.c
cc -o PARSER y.tab.o lex.yy.o -lyacc -leval -lmknode

which will compile and link all the necessary components into an executable
parser. The parser will include a call to the function walker() which makes a call

to the "top-level” walker routine, once parsing is complete. This is generated as:
o o

/* declaration of constants *x/
/* declaration of global variables */

walker (ptr)

PROGRAM TYPE  ptr;
{

/* Declaration and initialisation of variable *x/
walk_Program(ptr); /* visit the tree nodes */

/* print out results */
}/* end of walker() */

« thus when using the parser to compile a source program the following command

is used:

PARSER < <input>

which will parse the given input, build the AST, and walk round the tree

performing semantic analysis and code generation.
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Semantic processing for MSL

As an example of what is involved in augmenting CORGI-generated walker routines
to perform semantic analysis and code generation, let us consider the case of MSL.
In MSL there is no type checking to be done, since a value of any type can be
assigned to any variable. All variables are global and visible throughout the entire
program, and do not require declaration. The only restriction is that a name can
only be used for one purpose in a program - either as a variable name, a procedure
name, or a parameter name (the same name cannot be used as a parameter in more
than one procedure). According to the above semantic constraints, the following

semantic errors may occur:

procedure name already used

« formal parameter identifier already used

« CALL identifier not declared as a procedure name
« wrong number of actual parameters

« improper use of procedure name

« improper use of formal parameter

« procedure not declared.

A symbol table needs to be maintained to support these semantic checks (with an
associated look-up function) and also to allow correct code generation. The
generated code is in the form of an intermediate representation, suitable for a

hypothetical machine called TM. The full TM instruction set is given by Elsworth

(1989).
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A complete listing of the generated compiler for MSL can be found in appendix B;
the test programs used to run this compiler together with the output from the

compiler are given in appendix C.

Practical testing went further than MSL. CORGI specifications for Pascal, Modula-
2 and a subset of C were supplied to CORGI which produced a parser for each of
these languages. A set of example programs written in the specified language were

submitted to the generated parser which parsed these programs successfully.

Full CORGI specifications for Modula-2 and Pascal are given in appendix E
together with their example programs taken from Koffman (1988) and Findlay &

Watt (1981) respectively.

7.4 Summary

In this chapter, we have shown how CORGI was used to generate a full compiler
for a simple programming language, namely MSL. For more complex
programming languages such as Pascal, Ada, Modula-2 we have shown how the
features of such languages are catered for. Full specifications for Pascal and

Modula-2 were written and correct parsers were produced.

We also presented details of the correct operation of our error-recovery mechanism.
Results of a number of test runs were shown, and it was demonstrated that the
performance of a CORGI-generated parser is comparable to that of a parser

produced using hand-written lex and yacc specifications.

We gave an example of how CORGI can be used to construct an entire compiler for

MSL., and noted the limitations of the system.
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Chapter 8

Conclusions

In this thesis we have addressed the issue of automatic construction of the compiler
front-end, in a manner which promotes ease of use as well as correct, efficient
output. This thesis consists of two major sections: the first section reviews the
fundamental principles of programming language definition and implementation and
investigates various approaches taken by researchers to the automation of the
process of compiler design and construction. The second section presents a new

compiler writing system and discusses its philosophy.

Chapter 2 reviewed the essential aspects of programming language definition and
implementation, and formal techniques for hand-crafting a language compiler. In
chapter 3, we gave a detailed and critical review of approaches taken by other
researchers for designing and implementing tools which automate the software
construction process, with particular emphasis on so-called "compiler-compilers”.
Chapter 4 presented a more in-depth account of the use of the best-known existing
compiler-writing tools, namely lex and yacc; in this chapter we recounted our
experience gained when developing a complete compiler for a small but
representative programming language known as MSL. In chapter 5, we identified
the need for a compiler-writing system which uses a "reference manual” grammar as
its input, and produces a parser for the given language together with additional
routines and data structures to be used in subsequent phases of the compiler.
Chapter 6 continued a detailed descriptions of the CORGI system, developed to
achieve the goals referred to in earlier chapters. Finally, in chapter 7 we presented
comprehensive examples of how CORGI can be used to generate parsers for typical

programming languages like Modula-2 and Pascal, and demonstrated the
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construction of an entire compiler by using the small programming language MSL.
We also gave results concerning the efficiency of a CORGI-generated compiler

front-end, relative to both that produced by lex and yacc and a hand-written version.

In appendices B and C, we demonstrate a complete application of CORGI to a
realistic example. In appendix D, we demonstrate the improved error handling we
have implemented, and in appendix E, we show how CORGI may be successfully
applied in generating compiler front-end for Modula-2 and Pascal. Finally appendix
F contains a CORGI specification of the syntax of the CORGI specification. The
CORGI software and the user manual can be obtained from the Department of
Computer Science and Applied Mathematics, Aston University, Birmingham

B4 7ET.

In concluding this thesis, we summarise the project which we have presented, in

relation to other work in the same field of research.

The distinctive features of the CORGI system are that it:

- accepts a specification based directly on a "reference manual” grammar;

« generates automatically a lexical analyser;

. generates automatically a parser together with the data structure
declarations needed for the abstract syntax tree;

« produces a set of routines to manipulate the abstract syntax tree in memory
and input/output;

« builds the tree and maintains it with lexical attributes required for later
processing (eg. semantic analysis and code generation);

« provides a set of library routines for the evaluation of attributes of the
lexemes of the language (this library may be extended by the user);

« provides automatically an error recovery mechanism.
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CORGI possesses certain novel features which distinguish it from previous
compiler-writing systems. To our knowledge, no system based on context-free
grammars automatically generates code to process the abstract syntax tree. CORGI
not only produces the necessary data structure declarations for creating such a tree
during parsing, but it also generates functions to build it, perform input/output to
and from permanent storage, and to walk around the tree during semantic analysis
and code generation. The compiler-writer is then only required to insert code to
perform the latter two stages of the compilation process into generated functions
which are guaranteed to be well-formed, and which reflect the structure of the
grammar used for parsing. In other systems, it is necessary to consider the detailed
structure of the abstract syntax tree, and to write its associated manipulation

functions.

There exist tools based on attribute grammars which do generate complete front-
ends. However the reason for introducing attributions is to specify semantic aspects
and this leads to great additional complication of the language description notation.
But with CORGI we get the abstract syntax tree while still retaining the much more

palatable simplicity of context-free notation.

CORGI can be used to merely generate a recognizer for a language, whilst the front-
end is being tested, and can then be used to complete the first phase of compilation
by building the abstract syntax tree. The error-recovery mechanism can be omitted
during testing, and included simply by specifying a flag to CORGI at the command-

line level.

Rather than re-building from scratch, involving vast effort, we have taken
reasonably effective existing software, namely lex and yacc, and built a new shell

around it to provide an improved facility. This of course involves some loss of
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computational efficiency, but we have shown it to be a satisfactory approach with

significant advantages.

Through a series of tests, we showed that the performance of the CORGI system
compares favourably with hand-written examples, and that the time taken to process
a CORGI specification rises only linearly as the number of rules increases. The
additional time taken by a CORGI -generated parser for the test language MSL, over
a parser generated from hand-written lex and yacc specifications, was shown to be
quite tolerable. We also demonstrated that a CORGI-generated compiler for MSL.
was not significantly inferior to a carefully coded version written directly in C. It
can be seen from the entire compiler produced for MSL, and parsers produced for
Pascal and Modula-2, that CORGI is an easy-to-use, efficient tool for compiler

consbmlction.

Because we have chosen to implement CORGI "on top of” lex and yacc, it might be
said that CORGI in effect provides an improved interface to lex and yacc. We

therefore now look at recent related work concerning lex and yacc.

It has long been noted that lex and yacc have a number of major deficiencies, despite
their obvious popularity; however, only a few of the critics of these tools have
implemented possible improvements. One of these deficiencies has been identified
in its error reports and messages. Schreiner & Friedman (1985) have suggested an
improvement to the error reporting of the lex and yacc environment which was
found to be adequate and hence adapted to our system. Although the error-recovery
mechanism provided by yacc is technically adequate to deal with errors, its effective
use requires a detailed understanding of its internal operation. For example, the
user is responsible for the placement of actions which deal with the error-recovery.
Schreiner & Friedman (1985) have also suggested a mechanism via which user can

effectively deal with the placement of these actions without causing any shift/reduce
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or reduce/reduce conflicts in the generated parser. In CORGI, we have integrated
these ideas into the yacc specification which the system produces, rather than
requiring the user to perform this by hand. Thus CORGI succeeds in improving
error diagnosis and error-recovery in the resulting parser, without undue effort on
the part of the user. Some other interesting work was carried out by Yang er al.
(1988) in the error handling area. They developed SERCC which is based on yacc
with the addition of systematic error recovery capability. It is a yacc-compatible
experimental tool based on LALR(1) grammar. The philosophy of such systematic
error-recovery is that users do not have to adjust their input grammars for error
recovery purposes, unlike yacc. However, SERCC generates more states for error
handling and also the size of the parsing tables generated is more than doubled due

to the lack of structures for compacting these tables.

In a recent paper (Park, 1988), Joseph Park describes a system designed to be a
preprocessor for yacc. The language y+ is used as an input notation allowing the
user to specify actions, for building an AST, to be performed during parsing, and
these actions are translated into C in a yacc specification. This system, however,
still gives the user the responsibility to write his actions for the AST construction in
a programming language (albeit a special-purpose one) and to code all the routines
to manipulate this tree which is a burdensome task since it is repetitious, tedious and
therefore highly error-prone. As this task is completely regular, it can in fact be

fully automated, as has been provided in CORGI.

Although there have been the above attempts to improve yacc, we find that as far as
lex is concerned, there appears to have been no other work designed to enhance its
user interface. For example, when using lex in the normal way, the compiler-writer
is obliged to deal with the evaluation of lexemes such as string literals and numeric

constants himself. However, CORGI relieves him of this burden by automatically
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inserting calls to library evaluation functions for this purpose. The library functions
cover most modern programming language lexemes, but the user can add his own if

they prove insufficient.

We thus find that other work on lex and yacc has concentrated on particular issues,
rather than the overall objective of producing compiler front-ends as effectively as
possible. With CORGI, we believe that we have met the main objectives of the
research mentioned above, as well as addressing the overall problem. Moreover,
CORGI has automated the application of improved error handling and AST

construction, rather than leaving these tasks to the compiler writer.

Although the CORGI system as originally conceived has been completed, the work
could profitably be taken further to incorporate certain additional features, as

follows:

« At present the CORGI system supports only compiler front-end
construction. It would naturally be desirable to allow CORGI specifications
to be further augmented so as to include specification of semantic actions.
The actions might be given in a suitable formal notation or in C code but in
either case should lead to the automatic incorporation of semantic actions into
the generated tree-walking routines. This enhancement would, however,

involve substantial further research.

« As CORGI stands at present, a difficulty arises if the CORGI input is altered
after the user has augmented the generated walker routines with his own
code. When the revised CORGTI input is processed, new walker routines
will be generated, perhaps with very minor changes but the work of editing
these to include the user's code will have to be repeated, which is clearly

undesirable. This problem would be solved if the previous enhancement is
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made, but otherwise, it would be useful to have some form of "intelligent"
editor which would allow the edits involved in augmenting the walker

routines to be recorded and re-used at a later stage.

+ Cater for some modern languages such as occam and Miranda which use
indentation to specify block structure. One suggestion to do this is to
arrange to replace change-of-indentation by a symbol which is returned by
the lexical analyser to the parser to be used as a token, with significance

similar to begin Or end in Pascal.

Overall, we feel that CORGI represents a significant advance in the field of
compiler-compilers. It automatically incorporates the best-known techniques for
using lex and yacc from a convenient reference manual grammar notation, and
provides the compiler-writer with a firm framework on which to base the semantic

analysis and code generation phases of the compiler.
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Appendix A

Appendix A

This appendix contains the hand-written version of lex and yacc specifications for
MSL. It also contains the hand-written walker routines which perform the semantic
analysis and code generation required for MSL. Thus the set of files given in this
appendb(aIC:HW.lex.spec, HW.yacc.spec, HW.walker.c, HW.syntree.h,

HW.define.h. The prefix sw stands for Hand-Written versions.

/*** MSL lex specification - "HW.lex.spec" **x%x/
[ xx*x Hand-written *xx f

5 {

#define ENDTABLE (v) (v=1 + sizeof v /sizeof v[0])

static int screen() ;

int linenumber;

int Toknum;

#include "HW.syntree.h"

#include "y.tab.h"

#include <ctype.h>

char* malloc();

%}

anybut DQ NL [~“\"\n]

digit [0-9]

uplow_case [A-Za-2z]

anybut NL [(“\n]

stringpic {anybut DQ NL}

letter {uplow_case}

text "\""{stringpic}*"\""

int ({digit}) ({digit})*

idr ({letter}) (({letter}) | ({digit}))*

%

o

/* do nothing */
linenumber++;
return (EXCsym) ;
return (OBsym) ;
return (CBsym) ;
return (COMMAsym) ;
return (DOTsym) ;
return (ASSIGNsym) ;
return (INDIRsym) ;
return (DOUBLEQUsym) ;
return (HASHsym) ;

[ \t]
[(\n]

mnwirn
" ( "
n) "
"woon
r
noon

W

u@u
" \ o
"#"

"%ll

ot vt ey vt Ay et et v

yylval.Vopr = PERCop;

return (PERCop) ; }
nen {

yylval.Vopr = ANDop;

return (ANDop) ; }
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"ot {
yylval.Vopr = MULTIop;
return (MULTIop) ; }
"+" {
yvlval.Vopr = PLUSop;
return (PLUSop) ; }

yylval.Vopr = MINUSop;
return (MINUSop) ; }

"/n {
yylval.Vopr = DIVop;
return (DIVop) ; }

"<" {

yylval.Vopr = LESSop;

return (LESSop) ; }
ng="u {

yylval.Vopr = LESSEQop:;

return (LESSEQop) ; }
>y {

yylval.Vopr = NOTEQop;

return (NOTEQop) ; }

yylval.Vopr = EQUALop;
return (EQUALoP) ; }
s {
yylval.Vopr = GREATEROp;
return (GREATEROD) ; }
" >= " {
yylval .Vopr = GREATEREQop;
return (GREATEREQop) ; }
{idr} {
Toknum = screen();
if (Toknum == IDR)
yylval.vidr = (char*)evaluate_ idr();
else
{
upyytext () ;
if (!strcmp (yytext, "TRUE"))
yylval.Vboolean = TRUESYM;
else
if (!strcmp(yytext, "FALSE"))
yylval.Vboolean = FALSESYM;
}

return (Toknum) ; }

{int} { yylval.Vint = evaluate dinary();
return (INT); }
{text} { yylval.Vtext =
return (TEXT) ; }

(char*)evaluate Cstr{();

"-—"{anynut NL}*[\n] { linenumber++; /* it is a comment */ }

{ printf("\n!!! char <%c> is illegal here\n",yytext([0]);}

P
o

/** reserved word table *x/

static struct rwtable( /* reserved word table */
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char *rw_name; /* representation *x/
int rw_vylex; /* yylex() value */
}rwtable[] = {
"CALL"™, CALLSYM,
"DOo", DOSYM,
"ELSE", ELSESYM,
"END", ENDSYM,
"FALSE"™, FALSESYM,
"EIY, FISYM,
"IF", IFSYM,
"OoD", ODSYM,
"PROC", PROCSYM,
"READ", READSYM,
"RESERVE" RESERVESYM,
"THEN", THENSYM,
"TRUE", TRUESYM,
"WHILE", WHILESYM,
"WRITE", WRITESYM,
bi
static int screen()

{

struct rwtable *low = rwtable,

*high = ENDTABLE (rwtable),
*place;

int cond;

char “*pname;

while (low <= high)
{
place = low + (high - low) / 2;:
pname = place -> rw_name;
if ((cond = streqgv(pname)) < 0)
low = place +1;
else
if (cond > 0)
high = place -1;
else return(place -> rw_yylex);
}
return (IDR) ;
}

streqv (pname)
char “*pname;
{

extern char
char *s, *t;

toupper _c();

s = pname; t = yytext;

for(;toupper c(*s) == toupper c(*t); s++,t++)
if(*s == "\0") return (0) ;
return (toupper c(*s) - toupper c(*t)):;

1

upyytext ()

{

extern char
char *s, *t;

toupper c();

t = yytext;
while (*t != '\0")
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{ *s = toupper_c(*t);

*s = '"\0';
yytext = s;
}

char toupper c(c)

char c¢;

{

if (islower(c))

Appendix A

t++; }

return (toupper(c)) ;

return(c) ;

}

vywrap () { return;

yyerror () { return(-1);
/***  MSL yacc specification "HW.yacc.spec" * k% /
[*** Hand-written *kk [

%

#include "mknodes.h"

#include "HW.walker.c"

%)

/** Types associated with grammar symbols **/

sunion {

int

int

char*

char*

int

PROGRAM TYPE
PROCDECS_TYPE
OP_RESERVE_ TYPE
PROCDECLIST TYPE
OP_PARAM TYPE
IDRLIST TYPE
IDRS_TYPE
SERIES_TYPE
STMTS_TYPE

OP ELSE TYPE
OP_ EXPRLIST_TYPE
EXPRLIST TYPE
EXPRS_TYPE

STMT TYPE
ASSIGNST TYPE
WHILEST_ TYPE
IFST_TYPE
CALLST _TYPE
READST TYPE

int

int

WRITEST TYPE
READINLIST TYPE
WRITEOUTLIST TYPE
STORELIST_TYPE
LISTEXPR_TYPE
EXPR_TYPE
OPERAND_TYPE
OPERANDS_TYPE

Vboolean;
vVint;

Vidr;

Vtext;

Vopr;
VProgram;
VProcDecs;
VOp_Reserve;
VProcDeclist;
VOp_Param;
VIdrlist;
VIdrs;
VSeries;
vVStmts;
VOp_Else;

VOp Exprlist;
VExprlist:;
VExprs;
vStmt ;
VAssignst;
VWhilest;
VIfst;
VCallst;
VReadst;
VOptionalplus;
VOptionalhash;
VWritest;
VReadinlist;
VWriteoutlist;
VStorelist;
VListExpr;
VExpr;
VOperand;
VOperands;
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STOREACCESS_TYPE VStoreAccess;
OP_EXCL_TYPE VOp Excl;
} —

/** special character tokens *x/

%token EXCsym /* EXCsym = "!" */
$token PERCop /* PERCop = "&" */
$token ANDop /* ANDop = "&" */
%$token OBsym /* OBsym = " (" */
%token CBsym /* CBsym = ") " */
%token MULTIop /* MULTIop = "*" * /
$token PLUSop /* PLUSop = "+" */
stoken COMMAsym /* COMMAsym = ", " */
$token MINUSop /* MINUSop = "_" */
$token DOTsym /* DOTsym = "™." * /
%token DIVop /* DIVop = "/" */
%token ASSIGNsym /* ASSIGNsym = " =" * /
$token LESSop /* LESSop = "<" */
%token LESSEQop /* LESSEQop = "<=" * /
%token NOTEQop /* NOTEQop = "<>" */
%token EQUALop /* EQUALop = "=" x/
%token GREATEROpP /* GREATEROp = ">" * /
%token GREATEREQop /* GREATEREQop = ">=" * /
$token INDIRSym /* INDIRSym = "@" */
Stoken DOUBLEQUsym /* DOUBLEQUsym = "\"" */
$token HASHsym /* HASHsym = "#" */
/** lexeme tokens **x/
%token IDR
$token INT
%token TEXT
/** The keyword tokens **x/
%token CALLSYM
3token DOSYM
3token ELSESYM
3token ENDSYM
$token FALSESYM
stoken FISYM
stoken IFSYM
%token ODSYM
%token PROCSYM
%token READSYM
%token RESERVESYM
%token THENSYM
%token TRUESYM
token WHILESYM
%token WRITESYM
%token FALSESYM
$token TRUESYM
/** Operator precedence and assoclativity **/
3left PERCop ANDop MULTIop PLUSop MINUSop DIVop LESSop

LESSEQop NOTEQop EQUALop GREATEROp GREATEREQOpP

/** Type declaration. **/
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3type <Vopr> PERCop ANDop MULTIop PLUSop MINUSop
DIVop LESSop LESSEQop NOTEQop EQUALOpP
GREATEROp GREATEREQOP

$type <Vboolean> FALSESYM  TRUESYM
$type <vidr> IDR
$type <Vint> INT
Ttype <Vtext> TEXT
$type <VProgram> Program
3type <VProcDecs> ProcDecs
3type <VOp Param> Op_Param
%type <VOp Reserve> Op_Reserve
%type <VProcDeclist> ProcDeclist
¥type <VIdrs> Idrs
$type <VSeries> Series
type <VStmts> Stmts
3type <VOp Else> Op Else
$type <VOp_ Exprlist> Op_Exprlist
$type <VExprs> Exprs
Stype <VStmt> Stmt
$type <VAssignst> Assignst
$type <VWhilest> Whilest
Stype <VIfst> Ifst
Ftype <VCallst> Callst
type <VExprlist> Exprlist
$type <VIdrlist> Idrlist
3type <VReadst> Readst
$type <VOptionalplus> Optionalplus
$type <VOptionalhash> Optionalhash
$type <VWritest> Writest
$type <VReadinlist> Readinlist
%type <VWriteoutlist> Writeoutlist
$type <VStorelist> Storelist
$type <VListExpr> ListExpr
$type <VOperands> Cperands
stype <VOp_ Excl> Op_Excl
$type <VExpr> Expr
¥type <VOperand> Operand
*type <VStoreAccess> StoreAccess
Start Program { walker($1l); 1};
Program : Op Reserve ProcDecs Series DOTsym

{ $$ = (PROGRAM TYPE)mknode (4,1,$1,5$2,%$3); };
Op Reserve : /* empty { $$ = (OP_RESERVE_ TYPE)NULL; }

B | RESERVESYM INT
{ $$ = (OP_RESERVE_TYPE)mknode (2,1,$2); };

ProcDecs /* empty */ { $$ = (PROCDECS_TYPE)NULL; }

| ProcDecs ProcDeclist

{ $$ = (PROCDECS TYPE)mknode(3,1,51,$2); };
ProcDeclist PROCSYM IDR Op Param Series ENDSYM

{ $$ = (PROCDECLIST TYPE)mknode(4,1,$2,5$3,%4);};

Op_Param /* empty { $$ = (OP_PARAM TYPE)NULL; )}

] OBsym Idrlist CBsym
{ $$ = (OP_PARAM TYPE)mknode(2,1,$2); }
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Idrlist : IDR Idrs { $$ = (IDRLIST TYPE)mknode(3,1,$1,52); };
Idrs : /* empty */ { $$ = (IDRS_TYPE)NULL; '}
| Idrs COMMAsym IDR
{ $$ = (IDRS TYPE)mknode(3,1,$1,$3); 1};

Series : Stmt Stmts { $$ = (SERIES_TYPE)mknode(3,1,51,32); 1};
Stmt : Assignst { $$ = (STMT TYPE)mknode(2,1,$1); }

| Whilest { $$ = (STMT_TYPE)mknode (2,2,$1); }

| Ifst { $$ = (STMT TYPE)mknode(2,3,$1); }

| Callst { $$ = (STMT_TYPE)mknode (2,4,$1); }

| Readst { $$ = (STMT TYPE)mknode (2,5,%$1); }

| Writest { $$ = (STMT TYPE)mknode (2,6,$1); };
Stmts : /* empty */ { $$ = (STMTS TYPE)NULL; }

| Stmts Stmt { $$ = (STMTS_TYPE)mknode (3,1,51,82); };

Assignst : StoreAccess ASSIGNsym Expr

{ $$ = (ASSIGNST_ TYPE)mknode(3,1,%1,$3); }:
Whilest : WHILESYM Expr DOSYM Series ODSYM

{ $$ = (WHILEST_TYPE)mknode(3,1,$2,%54); 1},
Ifst : IFSYM Expr THENSYM Series Op Else FISYM
{ $$ = (IFST_TYPE)mknode (1,$2,%$4,5$5); };

Op Else : /* empty */ { $$ = (OP_ELSE TYPE)NULL; }

| ELSESYM Series { $$ = (OP_ELSE TYPE)mknode (2,1,8$2);1};

Callst : CALLSYM IDR Op Exprlist
{ $$ = (CALLST_TYPE)mknode(3,1,%$2,$3); };

Op_Exprlist : /* empty */ { $$ = (OP_EXPRLIST_ TYPE)NULL; }
| OBsym Exprlist CBsym
{ $$ = (OP_EXPRLIST TYPE)mknode(2,1,%$2); };

Exprlist : Expr Exprs
{ $$ = (EXPRLIST_TYPE)mknode (3,1,$1,%2); };

Exprs : /* empty */ { $$ = (EXPRS_TYPE)NULL; }
| Exprs COMMAsym Expr
{ $$ = (EXPRS_TYPE)mknode(3,1,%51,%$3); };

Readst : READSYM Optionalplus Readinlist
{ $$ = (READST TYPE)mknode(3,1,%$2,$3); };

Writest : WRITESYM Optionalplus Writeoutlist
{ $$ = (WRITEST TYPE)mknode(3,1,%$2,$3); };

Readinlist : Optionalhash StoreAccess Storelist
{ $$ = (READINLIST TYPE)mknode(4,1,51,52,33); };

Storelist : /* empty */ { $$ = (STORELIST_ TYPE)NULL; }
| Storelist COMMAsym Optionalhash StoreAccess
{ $$ = (STORELIST TYPE)mknode(4,1,%51,%$3,$4); };

Writeoutlist : Optionalhash Expr ListExpr
{ $$ = (WRITEOUTLIST TYPE)mknode(4,1,$1,%$2,33); };

ListExpr : /* empty */ { $$ = (LISTEXPR TYPE)NULL; }
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| ListExpr COMMAsym Optionalhash Expr
{ $$ = (LISTEXPR_TYPE)mknode(4,1,%$1,$3,%4); };

Optionalplus : /* empty */ { $$ = 0:
| PLUSop { $$ =1; 1}

Optionalhash : /* empty */ { $ = 0; }
| HASHsym { $$ = 1; };

Expr : Operand Operands { $$ = (EXPR TYPE)mknode(3,1,$1,$2); };

Operands : /* empty */ { $$ = (OPERANDS TYPE)NULL; }

| Operands PERCop Operand

{ $$ = (OPERANDS_TYPE)mknOde(4,l,$l,$2,$3); }
| Operands ANDop Operand

{ $$ = (OPERANDS TYPE)mknode (4,2,51,5$2,$3); )
| Operands MULTIop Operand

{ $$ = (OPERANDS_ TYPE)mknode (4,3,51,$2,8$3); )
| Operands PLUSop Operand

{ $$ = (OPERANDS_TYPE)mknode (4,4,$1,%2,$3); }
| Operands MINUSop Operand

{ $$ = (OPERANDS_TYPE)mknode (4,5,$1,%$2,$3); }
| Operands DIVop Operand

{ $$ = (OPERANDS_TYPE)mknode (4,6,51,$2,$3); }
| Operands LESSop Operand

{ $$ = (OPERANDS TYPE)mknode (4,7,$1,52,5$3); }
| Operands LESSEQop Operand

{ $$ = (OPERANDS_ TYPE)mknode (4,8,$1,5$2,3$3); }
| Operands NOTEQop Operand

{ $$ = (OPERANDS TYPE)mknode (4,9,$1,%2,$3); }
| Operands GREATERop Operand

{ $$ = (OPERANDS_TYPE)mknode (4,10,%1,%2,33);}
| Operands GREATEREQop Operand

{ $$ = (OPERANDS_TYPE)mknode (4,11,51,5%2,5$3);}
| Operands EQUALop Operand

{ $$ = (OPERANDS TYPE)mknode (4,12,%$1,$2,$3);};

’

Operand : INT { $$ = (OPERAND_ TYPE)mknode (2
| TEXT { $% (OPERAND TYPE)mknode (2
| TRUESYM { $$ (OPERAND TYPE)mknode (2
| FALSESYM { $$ (OPERAND_ TYPE) mknode (2
| INDIRsym IDR { $3 (OPERAND_TYPE)mknode (2
l { ) (2
l ) (2

’ 14

’

’

)
)
)
) ;
)
)
)

14
4

’

’

I

StoreAccess $S (OPERAND_TYPE)mknode

1
2
3
4
5
6
OBsym Expr CBsym { $$ = (OPERAND_ TYPE)mknode 7

w v v w0 D
SRR R N e

14
14
14 14
4 4
r r
4 4

’

StoreAccess : IDR Op_ Excl
{ $$ = (STOREACCESS TYPE)mknode(3,1,51,$2); };

Op Excl : /* empty */ { $$ = (OP_EXCL_TYPE)NULL; }
| EXCsym Operand { $$ = (OP_EXCL TYPE)mknode(2,1,$2); };

%

o

main ()

{
#ifdef LEXDEBUG

debug = 1; /* debug = 1 for debugging and 0 otherwise */
#endif
extern int yynerrs;
int flag = 0;

flag = yyparse():;
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printf ("Compilation error(s): %d\n", yynerrs);
if (flag)

printf ("Compilation aborted\n");
else

printf ("Compilation terminated\n");
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/*** The declaration of MSL AST "HW.syntree.h" **x*/

VET 2 Hand-written *xx f
#define NIL 0
#define STRUCT struct
#define UNION union

PROGRAM TYPE;
PROCDECS _TYPE;
OP_PARAM TYPE;
OP_RESERVE_TYPE;
PROCDECLIST TYPE;
SERIES_TYPE;
STMTS_TYPE;
OP_ELSE_TYPE;
OP_EXPRLIST TYPE;
EXPRS_TYPE;

STMT TYPE;
ASSIGNST_TYPE;
WHILEST TYPE;
IFST TYPE;
CALLST_ TYPE;
EXPRLIST TYPE;
IDRLIST TYPE;
IDRS_TYPE;

READST TYPE;
WRITEST TYPE;
READINLIST TYPE;
WRITEOUTLIST TYPE;
STORELIST TYPE;
LISTEXPR_TYPE;
EXPR_TYPE;
OPERAND TYPE;
OPERANDS_TYPE;
OP_EXCL_TYPE;
STOREACCESS_TYPE;

typedef struct Program type
typedef struct ProcDecs_type
typedef struct Op Param type
typedef struct Op_Reserve type
typedef struct ProcDeclist_ type
typedef struct Series_type
typedef struct Stmts_type
typedef struct Op_Else_type
typedef struct Op Exprlist_ type
typedef struct Exprs_type
typedef struct Stmt_type
typedef struct Assignst_type
typedef struct Whilest type
typedef struct Ifst_type
typedef struct Callst_type
typedef struct Exprlist_type
typedef struct Idrlist type
typedef struct Idrs_type
typedef struct Readst type
typedef struct Writest type
typedef struct Readinlist type
typedef struct Writeoutlist type
typedef struct Storelist_type
typedef struct ListExpr type
typedef struct EXpr type
typedef struct Operand type
typedef struct Operands_type
typedef struct Op Excl type
typedef struct StoreAccess_type

% o F b 3F b kX X O b b X % % % b k% % % % X X X X ¥

[ x* Declaration of data structure types **/

STRUCT Program_type{

int type:;
OP_RESERVE_TYPE Op_Reserve;
PROCDECS_TYPE ProcDecs;
SERIES_TYPE Series;

}:
STRUCT Op_Reserve_type {
int type:
int intsym;
i
STRUCT ProcDecs_type{
int type;
PROCDECS_TYPE ProcDecs;
PROCDECLIST_TYPE ProcDeclist;
}:
STRUCT ProcDeclist type({

int type;
char* idr;
OP_PARAM_TYPE Op_Param;
SERIES_TYPE Series;
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STRUCT Op_Param type({
int type;
IDRLIST_TYPE Idrlist;
}:

STRUCT Idrlist type(
int type;
char* idr;
IDRS_TYPE Idrs;

}:

STRUCT 1Idrs_ type({

int type;
IDRS_TYPE Idrs;
char=* idr;

}:

STRUCT Series type/{
int type;
STMT TYPE  Stmt;
STMTS TYPE Stmts;

b

STRUCT Stmts_type({
int type;
STMTS_TYPE Stmts;
STMT TYPE Stmt;

};

STRUCT Stmt_ type({

int type;

UNION {

ASSIGNST TYPE Assignst;
WHILEST TYPE Whilest;
IFST TYPE Ifst;
CALLST_TYPE Callst;
READST_TYPE Readst:;
WRITEST TYPE Writest;
}RIGHTSIDE;

};
STRUCT Assignst_type({

int type:;
STOREACCESS_TYPE StoreAccess;
EXPR_TYPE Expr;

}i
STRUCT Whilest type/{

int type;
EXPR TYPE Expr;
SERIES TYPE Series;

}s
STRUCT Ifst_type(

int type:;
EXPR TYPE Expr;
SERIES_TYPE Series;
OP_ELSE TYPE Op Else;

}s

STRUCT Op_Else_typef{

int
SERIES_TYPE
}s

STRUCT Callst_type({

int
charx*

type;
Series;

type;
idr;

OP_EXPRLIST_ TYPE Op Exprlist;
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STRUCT Op Exprlist_type
int type;
EXPRLIST TYPE Exprlist;

}i

STRUCT Exprlist type({
int type:

EXPR TYPE Expr;
EXPRS_TYPE Exprs;

}:

STRUCT Exprs_type{
int type;
EXPRS_TYPE Exprs;
EXPR_TYPE Expr;

}:

STRUCT Readst_type(

int type;
int Optionalplus;
READINLIST TYPE Readinlist;

}s

STRUCT Readinlist_type({

int
int

type;
Optionalhash;

STOREACCESS_TYPE StoreAccess;
STCRELIST TYPE Storelist;
}i
STRUCT Storelist_type(

int type;
STORELIST TYPE Storelist;
int Optionalhash;

STOREACCESS_TYPE StoreAccess;
}i
STRUCT Writest type({

int type:;
int Optionalplus;
WRITEOQOUTLIST TYPE Writeoutlist;

};
STRUCT Writeoutlist type({

int type:;

int Optionalhash;
EXPR_TYPE Expr;
LISTEXPR_TYPE ListExpr;

b
STRUCT ListExpr typef{

int type;
LISTEXPR TYPE ListExpr;

int Optionalhash;
EXPR TYPE Expr;

bi
STRUCT Expr_type(

int type:;
OPERAND TYPE Operand;
OPERANDS_TYPE Operands;

};
STRUCT Operands_type(

int type:;
OPERANDS_TYPE Operands;
int opr;
OPERAND_TYPE Operand;

}:
STRUCT Operand_type
int type:
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UNION {

int intsym;
char* text;

int truesym;

int falsesym;
char* idr;
STOREACCESS_TYPE StoreAccess;
EXPR_TYPE Expr;
}RIGHTSIDE;

}:

STRUCT StoreAccess_type({
int type;
char* idr;
OP_EXCL_TYPE Op_Excl;

i

STRUCT Op_ Excl type({
int type;
OPERAND TYPE Operand;

}i

[/ xx* MSL walker routines -~ "HW.walker.c" **%x/
[ xx* Hand-written * %% /
#include "HW.syntree.h"
#include "HW.define.h"
#define NULL O

/** global variables **/

int PSused; /* index to highest used program store loca. */
int DSused; /* index to highest used data store location */
int numidrs; /* number of idrs found */
int nunfps; /* number of formal para. */
int numaps:; /* number of actual para. */
int STindex; /* symbol table index */
int currentprocref; /* should be <= maxidrs */
int numerrs; /* number of errors found */
char *idrchars; /* holds the identifier */
char *malloc();
BOOLEAN textual;
/** Start of the program *% /

walker (ptr)
PROGRAM TYPE ptr;
{

int i;

#ifdef WALKDEBUG
printf ("In walker ()\n");

#endif
numidrs = numfps = numaps = STindex = 0;
numerrs = currentprocref = 0;
PSused = 0; DSused = -1;

for(i=1; i<=Maxidrs; i++)
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symtab(i] .idrname = NULL;
symtab{i].class = 0;
symtab(i].idrusage.var_rtsl = -1;
symtab[i].idrusage.PN.entryaddr = -1;
symtab(i].idrusage.PN.numparam = 0;
symtab (i) .idrusage.FP.procref = -1;
symtab(i].idrusage.FP.paramnum = 0;

for(i=0; i<PSsize; 1i++)

{
}

DS{i] = 0; PS{i] = 0;

walk Program(ptr):

printf ("\n**** MSL compilation complete _ \

%d errors reported ****\n", numerrs);

ListSymTab () ; /* print out the symbol table content */
ListTMcode(); /* print out the generated code */

}/* end of walker() */

walk Program(ptr)
PROGRAM TYPE ptr;

{

int

}

jmain;
if (ptr -> ProcDecs)
{
cg2(J,0); jmain = PSused;
}
walk Op Reserve( ptr -> Op_Reserve);
walk ProcDecs(ptr -> ProcDecs);
if (ptr -> ProcDecs)

PS[jmain] = PSused+l;
walk_Series(ptr -> Series);
cgl (HALT) ; /* end of msl program */

walk Op Reserve (ptr)
OP_RESERVE_TYPE ptr;

{
}

1f (ptr) DSused = ptr -> intsym;

walk ProcDecs (ptr)
PROCDECS_TYPE ptr;

{

}

if (ptr)
{
walk ProcDecs(ptr -> ProcDecs);
walk ProcDeclist{ptr -> ProcDeclist);

walk_ProcDeclist (ptr)
PROCDECLIST_ TYPE ptr;

{

idrchars = malloc(strlen(ptr -> idr)+1);
strcpy(idrchars,ptr -> idr);
checkprocidr () ;
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walk Op Param (ptr -> Op Param);
if (currentprocref != 0)
if (symtab[currentprocref].class == Procname)
symtab [currentprocref] .idrusage.PN.numparam = numfps;
numfps = 0;
walk Series(ptr -> Series); cgl(RIN);
currentprocref = 0;

}

walk Op Param (ptr)
OP_PARAM TYPE ptr;
{
if (ptr) walk Idrlist(ptr -> Idrlist);
}

walk Idrlist (ptr)
IDRLIST _TYPE ptr;
{
idrchars = malloc(strlen(ptr -> idr)+1l);
strcpy(idrchars,ptr -> idr);
numfps++;
checkFPidr () ;
walk Idrs(ptr -> Idrs);
}

walk Idrs (ptr)
IDRS_TYPE ptr;
{
if (ptr)
{
walk Idrs(ptr -> Idrs);
idrchars = malloc(strlen{(ptr -> idr)+1l);
strcpy (idrchars,ptr -> idr);
numfps++;
checkFPidr () ;

}

walk_Series (ptr)
SERIES_TYPE ptr;
{
if (ptr)
{
walk Stmt(ptr =-> Stmt);
walk_Stmts(ptr -> Stmts);

}

walk Stmt (ptr)
STMT TYPE ptr;

{
switch (ptr -> type) {

case 1 walk Assignst (ptr -> RIGHTSIDE.Assignst); break;
case 2 walk Whilest (ptr -> RIGHTSIDE.Whilest); break;
case 3 walk Ifst(ptr ~> RIGHTSIDE.Ifst):; break;
case 4 walk Callst (ptr -> RIGHTSIDE.Callst); break;
case S walk Readst (ptr -> RIGHTSIDE.Readst); break;
case 6 : walk Writest(ptr -> RIGHTSIDE.Writest); break;
default : printf("ERROR - wrong alternative number\n"); break;

}/* end of switch */
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}

walk Stmts (ptr)
STMTS_TYPE ptr;
{

if (ptx)

{

walk Stmts(ptr -> Stmts);
walk Stmt (ptr -> Stmt);

}

walk Assignst (ptr)
ASSIGNST_TYPE ptr;
{

BOOLEAN onstack;
int DSloc;

walk StoreAccess(Lv, ptr -> StoreAccess, &onstack, &DSloc);
walk Expr(ptr -> Expr);
if (onstack) cgl(SI);
else cg2(SD,DSloc);
}

walk Whilest (ptr)
WHILEST TYPE ptr;
{

int + start, cj;

start = PSused+l;
walk Expr(ptr -> Expr); cg2(JF, 0); <cj = PSused;
walk Series(ptr -> Series); <cg2(J, start);
PS{cj] = PSused+l;
}

walk Ifst(ptr)
IFST _TYPE ptr;
{

int cj, uj;

walk Expr(ptr -> Expr);
cg2(JF,0); cj = PSused;
walk_ Series(ptr -> Series);
if (ptr -> Op_Else)
{

cg2(J,0);

uj = PSused;
}
PS({cj] = PSused+l;
walk Op Else(ptr —-> Op_Else):
if (ptr -> Op_Else) PS[uj] = PSused+l;

}

walk Op_ Else (ptr)
OP_ELSE TYPE ptr;

{
if(ptr) walk Series(ptr -> Series);

}

walk Callst (ptr)
CALLST_TYPE ptr;
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int procSTref;
int newidr;

idrchars = malloc(strlen(ptr -> idr)+1);

strcpy (idrchars,ptr -> idr);

STlookup (&procSTref, &newidr);

if (newidr)
CSerror (ProcNotDec) ;

else if(symtab[procSTref].class != Procname)
CSerror (NotaProcName) ;

cgl (CALL) ;

numaps = 0;

walk Op_Exprlist (ptr -> Op_Exprlist);

if (procSTref)

if (symtab[procSTref] .class == Procname)

if (symtab[procSTref] .idrusage.PN.numparam != numaps)
CSerror (WrongNumOfAPs) ;

else

cg3(JSR, symtab([procSTref].idrusage.PN.entryaddr,

symtab [procSTref] .idrusage.PN.numparam) ;

}

walk Op Exprlist (ptr)
OP_EXPRLIST TYPE ptr;
{
if (ptr) walk Exprlist(ptr =-> Exprlist);
}

walk Exprlist(ptr)
EXPRLIST TYPE ptr;
{
walk_ Expr(ptr -> Expr);
numaps++;
walk Exprs(ptr -> Exprs);
}

walk Exprs(ptr)
EXPRS_TYPE ptr;
{
if (ptr)
{
walk Exprs(ptr —-> Exprs);
walk Expr(ptr -> Expr);
numaps++;

}

walk Readst (ptr)
READST TYPE ptr;
{
walk Readinlist (ptr -> Readinlist);
if (!ptr -> Optionalplus) cgl(RNL);
}

walk Writest(ptr)

WRITEST _TYPE ptr;

{
walk Writeoutlist(ptr -> Writeoutlist);
if (!ptr -> Optionalplus) cgl (WNL);

229




Appendix A

walk Readinlist (ptr)
READINLIST TYPE ptr;
{

BOOLEAN onstack;
int DSloc;

if (ptr -> Cptionalhash)
walk_StoreAccess(Rv, ptr -> StoreAccess, &onstack, &DSloc);
else
walk StoreAccess(Lv, ptr -> StoreAccess, s&onstack, &DSloc);
if (ptr -> Optionalhash) cgl(RTXT)
else
{
if (tonstack) cg2(LC,DSloc):;
cgl (RNUM) ;
}
walk Storelist (ptr -> Storelist);
}

walk Storelist (ptr)
STORELIST_TYPE ptr;
{
BOOLEAN onstack;
int DSloc;
if (ptr)
{
walk Storelist (ptr —-> Storelist) ;
if (ptr -> Optionalhash)
walk StoreAccess(Rv, ptr—->StoreAccess, &onstack, &DSloc);
else
walk_StoreAccess(Lv, ptr->StoreAccess, &onstack, &DSloc);
if (ptr -> Optionalhash) c¢gl(RTXT) ;
else
{
if ('onstack) cg2(LC,DSloc);
cgl (RNUM) ;

}

walk Writeoutlist (ptr)
WRITEQUTLIST TYPE ptr;
{
walk Expr(ptr -> Expr);
if (ptr -> Optionalhash || textual) cgl (WTXT) ;
else cgl (WNUM);
walk ListExpr(ptr -> ListExpr) ;
}

walk ListExpr(ptr)
LISTEXPR TYPE ptr;
{
if (ptx)
{
walk ListExpr(ptr -> ListExpr);
walk Expr(ptr -> Expr);
if (ptr -> Optionalhash || textual) cgl (WTXT) ;
else cgl (WNUM) ;
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walk Expr(ptr)

EXPR _TYPE ptr;

{
walk_ Operand(ptr -> Operand);
walk_Operands (ptr -> Operands) ;

}

walk Operands (ptr)

OPERANDS TYPE ptr;

{

int opcode;

int i;

if (ptr)

{
walk Cperands (ptr -> Operands);
for(i=0; 1i<12; 1i++4)

if (codes{i] .tokennum == ptr =-> opr)
{
orcode = codes([i].tmcode;
break;

}
walk_Operand(ptr -> Operand);
cgl (opcode) ;

}

walk Operand(ptr)
OPERAND TYPE ptr;
{

BOOLEAN onstack;
int STpos;
int DSloc;

switch(ptr -> type) {

case 1 : cg2(LC,ptr->RIGHTSIDE.intsym); break;
case 2 : textual = TRUE;
cg2 (LC, textaddress (ptr->RIGHTSIDE.text)); break;
case 3 : cg2 (LC, TMtrue); break;
case 4 : cg2(LC,TMfalse); break;
case 5 : idrchars = malloc(strlen(ptr->RIGHTSIDE.idr)+1);
strecpy(idrchars, ptr->RIGHTSIDE.idr) ;
checkdeclared (&STpos) ;
cg2 (LC,getRTSL(STpos)); break;
case 6 : walk StoreAccess(Rv, ptr->RIGHTSIDE.StoreAccess,
&onstack, &DSloc); Dbreak;
case 7 : walk Expr(ptr -> RIGHTSIDE.Expr); break;
default : printf("ERROR -- wrong alternative number\n"); break;

}/* end of switch */
}

walk StoreAccess(use,ptr,onstack,DSloc)
STOREACCESS_TYPE  ptr;

BOOLEAN *onstack;
int use;

int *DSloc;

{

int STpos;

idrchars = malloc(strlen(ptr -> idr)+1l);
strcpy(idrchars,ptr -> idr);
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checkdeclared (&STpos) ;
if (ptr -> Op_Excl)
{
CGloadcontents (STpos) ;
walk Op_Excl(ptr -> Op_Excl);

cgl (ADDop) ;
*onstack = TRUE;
if (use == Rv) cgl(LI);
else
{
if (use == Rv) CGloadcontents (STpos):
else

{
*DSloc = getRTSL(STpos) ;
*onstack = FALSE;

}

walk Op Excl(ptr)
OP_EXCL_TYPE ptr;

{
if (ptr) walk Operand(ptr -> Operand);

}

/************************** STlOOkup() *k*k************************/

STlookup (pos, newidr)

int *pos;

BOOLEAN *newidr;

{

*newidr = TRUE; /* initial assumption */
*pos = 1;

while (*newidr && (*pos <= numidrs))

if (!'strcmp (idrchars, symtab[*pos] .idrname))
*newidr = FALSE;

else (*pos)++;

if (*newidr)

{
numidrs++;
*pos = numidrs;
symtab [*pos] .idrname = malloc(strlen(idrchars)+1);
strcpy (symtab [*pos] .idrname, idrchars) ;
symtab [*pos].class = Undefined;

}

}/* end of STlookup() */

/************************ Checkdeclared() ***********************/

checkdeclared (STpos)
int *STpos;
{

BOOLEAN newidr;

STlookup (STpos, &newidr);
if (newidr)
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symtab{*STpos].class = Variable;
DSused++;
symtab [*STpos] .idrusage.var_rtsl = DSused;
}
}/* end of checkdeclared() */

/*********************** Checkprocidr() ************************/

checkprocidr ()

{
BOOLEAN newidr;

STlookup (§currentprocref, &newidr);
if (newidr)

{
symtab [currentprocref] .class = Procname;
symtab [currentprocref] .idrusage.PN.entryaddr = PSused+l;

}

else CSerror (PrNameNotNew) ;

}/* end of checkprocidr() */

/*-k***‘k‘k*‘k****‘k****‘k‘k****‘k* CheCkFPCidr() ***********************/

checkFPidr ()

{ .

BOOLEAN newidr;
int pos;

STlookup (&pos, &newidr);

if (newidr)

{
symtab[pos].class = Formalparam;
symtab[pos] .idrusage.FP.procref = currentprocref;
symtab [pos] .idrusage.FP.paramnum = numfps;

}

else CSerror (FPnotNew)

}/* end of checkFPidr () x/

/*********************** CGloadcontents () **********************/

CGloadcontents (STref)
int STref;
{

switch(symtab[STref] .class) {
case Procname : CSerror(BadProcNameUs); break;

case Variable : cg2(LD,symtab{STref].idrusage.var_rtsl);
break;

case Formalparam :if (currentprocref ==
symtab[STref] .idrusage.FP.procref)
cg2 (LA, symtab[STref] .idrusage.FP.paramnum) ;
else CSerror(BadFPusage)
break;
default : printf ("It must be wrong case \n");
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}/* end of switch() */

}/* end of CGloadcontents() */

/************************** getRTSL() ***************************/

getRTSL (STref)

int STref;
{
if (symtab[STref] .class == Variable)
return (symtab[STref] .idrusage.var rtsl);
else
{
if (symtab[STref].class == Procname) CSerror(BadProcNameUs)
else CSerror (BadFPusage) ;
return(0) ; /* dummy result for legality */

}/* end else */

}/* end of getRTSL() */

/************************ textaddress () *************************/

textaddress (ptr)
char “*ptr;

{

int i;

int addr;

int tokenlen;
char *p;

p = ptr;
addr = DSused = DSused+l;
tokenlen = strlen(ptr);
DS [DSused] = tokenlen; /* length of text */
for(i=1; i<=tokenlen; i++)
DS [DSused+i] = *p++;
DSused = DSusedt+tokenlen;
return (addr) ;

}/* end of textaddress() */

/********************* cgl()' Cg2(), Cg3() *********************/

cgl(PSitem)
int PSitem;
{
PSused++; PS[PSused] = PSitem;

}

cg?2 (opcode, opnd)
int opcode;
int opnd;

{

cgl (opcode); cgl{opnd):;
}

cg3 (opcode, opndl, opnd2)
int opcode;
int opndl;
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int opnd2;
{

cgl (opcode) ; cgl(opndl); cgl(opnd2);
}

/************************* ListSymTab() ********************‘k‘k***/

ListSymTab ()
{

int i;

printf ("\n**** Symbol Table **xxx\n\n") ;

(

printf ("Entry no. Identifier Class \t\t Data\n");
printf ("-—-———==--=  —-—-————————  ————- \t\t  ~----\n");
for(i=1; i<= numidrs; i++)
{

printf (" $d\t\t %s",1i,symtab[i].idrname);

switch(symtab[i] .class) {

case Procname :printf ("\t\tProcName \tsd\tsd\n",

symtab[i] .idrusage.PN.entryaddr,

symtab[i] .idrusage.PN.numparam); break;
caseFormalparam :printf ("\t\tFormalParam \t3d\tsd\n",

symtab[i] .idrusage.FP.procref,

symtab[i] .idrusage.FP.paramnum) ;

break;

case Variable :printf ("\t\tVariable \t%d\t_ \n",
symtab[i] .idrusage.var rtsl); break:;

case Undefined :printf ("\t\tUndefined \t==\t--\n");
break;

}/* end of switch */

}
printf ("\n");

}/* end of ListSymTab () */

/‘k**‘k******‘k*‘k****‘k‘k******* Cserror() ********************k*****/

CSerror (errtype)
int errtype;

{

printf ("+++ Context error detected - ");

switch (errtype) {

case PrNameNotNew:

printf ("procedure name already used\n"); break;

case FPnotNew

printf ("formal parameter identifier already used\n") ;break;
case NotaProcName

printf (*CALL identifier not declared as a procedure name\n") ;
break;

case WrongNumOfAPs:

printf ("wrong number of actual parameter\n"); break;

case BadProcNameUs :

printf ("improper use of procedure name\n"); break;

case BadFPusage

printf ("improper use of formal parameter\n"); break;

case ProcNotDec : printf ("procedure not declared\n"); break;
}/* end of switch */

numerrs++;

}/* end of CSerror */
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ListTMcode ()
{

int
int

PSindex;
opcode,

PSindex 1;
printf ("xxx*
while (PSindex
{

*xxxkxk*xk**x [,istTMcode ()

3;
j =0
TM code ****\n");

<= PSused)

printf ("%

opcode

) ",PSindex) ;
PS [PSindex];

if (opcode < 1 && opcode > 31)

**")

BAD OPCODE
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*‘k‘k**********************/

’

printf ("x*

else

switch (opcode) {
case J

case LD
case SD
case LC
case LA
case JF
case JT
case JSR
case LI
case SI
case WNUM
case RNUM
case WTIXT
case RTXT
case WNL
case RNL
case CALL
case RTN
case HALT
case ADDop
case SUBop
case MULTop
case DVDop
case LTop
case LEop
case GTop
case GEop
case NEop
case EQop
case LOGORop
case LOGANDop
default

}/* end of switch */

printf("J "); break;
printf£("LD "), break;
printf ("SD "); break;
printf ("LC ") break;
printf ("LAa ") break;
printf ("JF ") ; break;
printf ("JT "), break;
printf ("JSR ") break;
printf ("LI ") break;
printf ("SI "); break;
printf ("WNUM ") break;
printf ("RNUM ") ; break;
printf ("WIXT ") break;
printf ("RTXT "); break;
printf ("WNL ") ; break;
printf ("RNL ") break;
printf ("CALL "); break;
printf ("RIN ") ; break;
printf ("HALT "); break;
printf ("ADD ") ; break;
printf ("SUB ") break;
printf ("MULT "); break;
printf ("DVD "); break;
print£("LT ") break;
printf ("LE ™) break;
printf ("GT "), break;
printf ("GE ") ; break;
printf ("NE ") ; break;
printf ("EQ ") ; break;
printf ("LOGOR ") ; break;
printf ("LOGAND ") ; break;

printf ("Wrong opcode \n");

if (opcode >0 && opcode < 9)

{
PSindex++;

printf ("%d
if (opcode == J
{
PSindex++;
printf ("3%d

", PS[PSindex]) ;

SR)

",PS(PSindex]) ;
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}

printf ("\t");

J++;

if(j == 4) /* printf four instructions in each line */
{ printf("\n™); j = 0; }

PSindex++;

}/* end of while */

}/* end of ListTMcode () */
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Definition of constants HW.define.h xkk* /

define constants for TM operation codes **/

V211

/**
#define LD
#define SD
#define LC
#define LA
#define J
#define JF
#define JT
#define JSR
#define LI
#define ST
#define WNUM
#define RNUM
#define WTXT
#define RTXT
#define WNL
#define RNL
#define CALL
#define RTN
#define HALT
#define ADDop
#define SUBop
#define MULTop
#define DVDop
#define LTop
#define LEop
#define GTop
#define GEop
#define NEop
#define EQop
#define LOGORop
#define LOGANDop
#define TMfalse
#define TMtrue
#define Procname
#define Formalparam’
#define Variable
#define Undefined

QO oUW

w

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
0

1
100
101
102
103

/** define constants for error messages **/

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define
#define

PrNameNotNew
FPnotNew
NotaProcName
WrongNumOfAPs
BadProcNameUs
BadFPusage
ProcNotDec

Lv

Rv

BOOLEAN
FALSE
TRUE

Maxidrs
PSsize

104
105
106
107
108
109
110
111
112

int
0
1

100 /* maximum number of identifie */
400 /* maximum size of the program store */
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#define DSsize 400 /* maximum size of the data store */

typedef struct stentry{

char *idrname; /* identifier name */
int class; /* the identifier class */
union {
int  var rtsl; /* Run-time store location*/
struct procname {
int entryaddr; /* entry addresse */
int numparam; /* number of parameters */
}PN;
struct formalparam ({
int procref; /* procedure reference */
int paramnum; /* parameter number (position) */
}FP;
}idrusage; /* end of union */
}STENTRY;
typedei struct opcode(

int tokennum;
int tmcode;

}OPCODE ;

STENTRY symtab[Maxidrs];

int PS{PSsize]:;

int DS [DSsize];

static OPCODE codes[] ={{263,ADDop}, {265,SUBop}, {(262,MULTop},

{267,DVDop}, {269,LTop}, (270,LEop}, {(273,GTopl, {274,GEop},
{271,NEop}, (272,EQop}, {258,LOGORop}, {259,LOGANDOp}!};

o
oY)
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Appendix B

This appendix contains a CORGI specification for MSL (ms1.spec) , together with
the generated files from CORGI. Thus the set of generated files given in this

appendix are: lex.spec, yacc.spec, writer.c, reader.c, walker.c
syntree.h, define.h. Due to the length of some files we preferred to cut down
most of the body of the generated functions in writer.c, reader.c and
walker.c. The walker given in this appendix is the generated version, ie. it has

not been augmented with code to deal with semantic analysis and code generation

yet.

JxxxR file = msl.spec ***x/
STARTCOMMENT Wem,
ENDCOMMENT NEWLINE.
LEXEME idr int text "TRUE"™ "FALSE"™ "#".
KEYWORD CASE KEY_NONSIG.
OPERATORS
opr = \L { l'%" "&l' "+|' "__n I 4 TT l'/" 'I<'I ll<='l "<>'l 'l>=" ">'| w1 } .
Program = ["RESERVE" int ] {ProcDec} Series ".".
ProcDec = "PROC" idr ["(" Formalparams ")"] Series "END".
Formalparams = idr {"," idr}.

Series = Stmt {Stmt}.

Stmt = Assignst | Whilest | Ifst | Callst | Readst | Writest.

Assignst = StoreAccess ":=" Expr.

Whilest = "WHILE" Expr "DO" Series "OD".

Ifst = "IF" Expr "THEN" Series ["ELSE" Series] "FI".
Callst = "CALL"™ idr ["("™ Exprlist ")"].

Exprlist = Expr {"," Expr}.

Readst = "READ" Optionaldolar Optionalhash Readinlist.
Writest = "WRITE" Optionaldolar Optionalhash Writeoutlist.
Readinlist = StoreAccess {"," Optionalhash StoreAccess }.

Writeoutlist = Expr {"," Optionalhash Expr}.
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Optionalhash = ["#"] ==> evaluate_token.
Optionaldolar = ["+"].
Expr = Operand {opr Operand}.
Operand = int

[ text

| "TRUE" ==> evaluate_ token

| "FALSE" ==> evaluate_token

[ "@" idr

|StoreAccess | " (" Expr ")".
StoreAccess = idr ["!" Operand].
idr = letter { letter | digit } ==> evaluate idr (0).
letter = uplow_case.
int = digit { digit } ==> evaluate denary.
text = """" {stringpic} """ ==> evaluate Cstr.

stringpic = anybut_DQ NL.

31

/**** f:’ ]e = lex spec ****/

#include "syntree.h"

#include "/users/sirius/pg/nad/project/src/backend/Lex/yymark.c”
$ifdef DEBUG /* debugging version - if assert ok */
#include <assert.h>

main ()

{

char *p;

assert (sizeof (int) >= sizeof (char *));
while(p = (char*)yylex())

{

}

if (yyleng <= 1)

printf ("%$-10.10s is \"%s\"\n","yytext[0]",yytext)
else

printf ("%$-10.10s is \"%s\"\n",p,yytext);

#else !DEBUG

#include "y.tab.h"

#endif DEBUG

#define ATTRIBUTE ATTRIBUTE‘._TYPE‘,

#define ENDTABLE (V) (v—1 + sizeof v /sizeof vI[0])
#include <ctype.h>

#include "lexdefs.h"

#include"/users/sirius/pg/nad/project/src/backend/Lex/comment.c"

#define KEYWORD_SIG 0
#define IDENTIF_SIG 0
#define NESTED 0
int gotlexeme = 0;
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int linenumber = 0;

int yycode = 0;

char ch;

static int count = 0;

%}

digit [0-9]

uplow case [A-Za—-z]

anybut DQ NL (*\"\n]

stringpic ({anybut _DQ NL})

letter ({uplow_casel)

text "\"" (({stringpic})) *"\""

int ({digit}) (({digit}))*

idr ({letter}) (({letter}) | ({digit}))*
blank [ \t]
Angvplank}*{digit}+({blank}+.*)?\n {yymark () ;}

[ \t] {/* do nothing */}

[\n] { linenumber++; if(count != 0) return (ENDCOMMENT) ;}

wim { return(DELLl); }
||%|l {
yylval.Vattribute =
(ATTRIBUTE*) malloc (sizeof (ATTRIBUTE))
yylval.Vattribute->textval.d = OP1;
yylval.Vattribute->type = 1; return(OPl); }

wen {
yylval.Vattribute =
(ATTRIBUTE*) malloc(sizeof (ATTRIBUTE))
yylval.Vattribute->textval.d = OP2Z;
yylval.vVattribute->type = 1; return(OP2); }
" { return(DELZ2); }
Ty { return(DEL3); }
"R {
yylval.vVattribute =
(ATTRIBUTE*) malloc(sizeof (ATTRIBUTE))
yylval.Vattribute->textval.d = OPS;
yylval.Vattribute->type = 1; return(OPS); }
"+" {
yylval.Vattribute =
(ATTRIBUTE*) malloc (sizeof (ATTRIBUTE)) ;
yylval.Vattribute->textval.d = OP3;
yylval.Vattribute->type = 1; return(OP3); }
L { return(DEL4); }
w_mw {
yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE))
yylval.Vattribute->textval.d = OP4;
yylval.vVattribute->type = 1; return(OrP4); '}
wow { return (DELS) ; }
VAN {
yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE ));
yylval.Vattribute->textval.d = OP6; N
yylval.Vattribute->type = 1; return(OP6); }
"= { return(DEL6); }
nen {

yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE)) ;
yylval.Vattribute->textval.d = OP7;
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yylval.Vattribute->type = 1; return(OP7); |}

ng=" {
yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE))
yylval.vVattribute->textval.d = OP8;
yylval.Vattribute->type = 1; return(OP8); }
"> {
yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE))
yylval.Vattribute->textval.d = OP9;
yylval.Vattribute->type = 1; return(OP9); }
=" {
yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE))
yylval.Vattribute->textval.d = OP12Z;
vylval.Vattribute->type = 1; return(OP12); }
ll>" {
yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE))
yylval.Vattribute->textval.d = OP1l1l;
yylval.vVattribute->type = 1; return(OP1ll); }
|‘>=|I {
yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE));
yylval.Vattribute->textval.d = OP10;
vylval.vVattribute->type = 1; return(OP10); }
RICA { return(DEL7); 1}
UAN { return(DEL8); }
"#" {
yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE)) ;
yylval.Vattribute->textval.d = DEL9Y;
yylval.vVattribute->type = 1; return(DELY); }
{idr} {
#define IDR_TOKEN IDR
int Toknum;
Toknum = screen();
if (Toknum == IDR TOKEN)
{
yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE))
yylval.Vattribute->textval.s = evaluate_idr();
yylval.Vattribute->type = 3;
}
else
{
if (gotlexeme)
{
yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE)) ;
yylval.Vattribute->type = INT_ PRINT;
yylval.Vattribute->textval.d = Toknum;
}
}
return (Toknum); }
{int} {

yylval.Vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE)) ;
yylval.Vattribute->type = INT_PRINT;
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yylval.vattribute->textval.d = evaluate_decimal();
return (token (INT)) ; }

{text} {
yylval.vattribute =
(ATTRIBUTE*)malloc (sizeof (ATTRIBUTE))
yylval.Vattribute->type = TEXT_PRINT;
yylval.Vattribute->textval.s = evaluate_Cstxz();
return (token (TEXT)) ; }
= {
if (NESTED || count == 0)
{
count++;
if (comment ())
{ printf ("Premature EOF\n"); exit(-1); }
count--—;
}
}
{ 1f(count == 0)
printf ("\n!!! char <%c> is illegal here\n",
yytext [0]);}
/* reserved word table */
static struct rwtable{ /* reserved word table */
char *rw_name; /* representation */
int rw_yylex; /* yylex() value */
int flag; /* indicates whether it is a lexeme or not */
}rwtable{] = |
"CALL", CALLSYM, 0,
"DOo", DOSYM, 0,
"ELSE", ELSESYM, 0,
"END", ENDSYM, 0,
"FALSE", FALSESYM, 1,
wEIn, FISYM, 0,
"Ip"T, IFSYM, 0,
"op©, ODSYM, 0,
"PROC", PROCSYM, 0,
"READ", READSYM, 0,
"RESERVE", RESERVESYM, 0,
"THEN", THENSYM, 0,
"TRUE", TRUESYM, 1,
"WHILE", WHILESYM, 0,
"WRITE", WRITESYM, 0,

};

static int screen()

{

struct rwtable *low = rwtable,
*high = ENDTABLE (rwtable),
*place;

int cond;

char *pname;

while (low <= high)
{
place = low + (high - low) / 2;
pname = place -> rw_name;
if ((cond = streqv(pname)) < 0)
low = place +1;
else
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if (cond > 0)
high = place -1;
else
{
if (place -> flag )
gotlexeme = 1;
return place -> rw_yylex;
1
1
return (IDR_TCKEN) ;

}

streqgv (pname)

char “*pname;

{

extern char toupper c();
char *s, *t;

s = pname; t = yytext;
if (KEYWORD_SIG)
return (strcmp (pname,yytext)) ;

for(;toupper_c(*s) == toupper_c(*t); s++,t++)
if(*s == '\0') return(0);
return (toupper c(*s) - toupper_c(*t));

}

char toupper c(c)

char «c¢;

{
if(islower(c)) return (toupper(c));
return(c);

}

yywrap () { return; }
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/**** fi]e =_yagc.spec ****/

3

#include "syntree.h"
#include "writer.c"
#include "mknodes.h"

5}

/* Types associated with grammar symbols */

%union {

ATTRIBUTE_ TYPE *Vattribute;
PROGRAM_ TYPE VProgram;
NEWRULEZ2_ TYPE Vnewrule?2;
NEWRULE1l TYPX Vnewrulel;
PROCDEC_TYPE VProcDec;
NEWRULE3_ TYPE Vnewrule3;
FORMALPARAMS TYPE VFormalparams;
NEWRULE4_TYPE Vnewruled;
SERIES_TYPE VSeries;
NEWRULES TYPE Vnewrule5;
STMT TYPE vStmt ;
ASSIGNST_TYPE VAssignst;
WHILEST_TYPE VWhilest;

IFST TYPE VIfst;
NEWRULE6 TYPE Vnewruleé6;
CALLST TYPE VCallst;
NEWRULE7_TYPE Vnewrule7;
EXPRLIST TYPEZ VExprlist;
NEWRULEB_TYPE Vnewrule8;
READST_TYPE VReadst;
WRITEST_TYPE VWritest;
READINLIST TYPE VReadinlist;
NEWRULE9~TYPE Vnewrule9;
WRITEQUTLIST_ TYPE VWriteoutlist;
NEWRULE10_ TYPE VnewrulelO;
OPTIONALHASH TYPE VOptionalhash;
OPTIONALPLUS_ TYPE VOptionalplus;
EXPR_TYPE VExpr;
NEWRULE1ll TYPE Vnewrulell;
OPERAND TYPE \VOperand;
STOREACCESS_TYPE VStoreAccess;

NEWRULE12_TYPE
}

Vnewrulel2;

/* operator tokens */

$token oP1 /* OP1 = "3 x /
%token OP2 /* OP2 = Yg" */
Stoken OP5 /* OP5 = " */
%token OP3 /* OP3 = "4 */
$token OorP4 /* Op4 = "-—m */
$token OP6 /* OP6 = "/" */
%$token oP7 /* OP7 = """ */
$token oP8 /* oP8 = r<=v */
$token OP9 /* OP9 = u"<>" */
$token oP12 /* OP12 = "=" */
%$token OoprP1l1l /* OP1l1l = ">w */
$token OP10 /* OP10 = ">=" * /

246

Appendix



Appendix B

/* delimiter tokens */

%token DEL1 /* DEL1 = "t */
$token DEL2 /* DEL2 = " (" x/
%$token DEL3 /* DEL3 = ") " */
$token DEL4 /* DEL4 = ", " */
$token DEL5 /* DELS = "." * /
%$token DEL® / * DEL6 = ":=" * /
%token DEL7 /* DEL7 = "@" *x/
$token DELS /* DEL8 = "\"" */
$token DELY /* DEL9 = "4#" */

/* lexeme tokens */

%token IDR
%token INT
$token TEXT

/* The keyword tokens */

%token CALLSYM
3token DOSYM
$token ELSESYM
%token ENDSYM
%$token FISYM
%token IFSYM
%token ODSYM
%$token PROCSYM
%$token READSYM
%token RESERVESYM
$token THENSYM
%$token WHILESYM
$token WRITESYM
%token TRUESYM
%$token FALSESYM

/* Operator precedence and associativity */
3left OP1l OP2 OP5 OP3 OP4 OP6 OP7 OP8 OP9 OP1l2 OP11l OP1O

/* Type declaration. */

$type <Vattribute> OP1
$type <Vattribute> OP2
$type <Vattribute> OP3
%type <Vattribute> OP4
$type <Vattribute> OP5
$type <Vattribute> OP6
$type <Vattribute> OoP7
$type <Vattribute> OP8
%type <Vattribute> OP9
%type <Vattribute> OP10
$type <Vattribute> OP1l1l
$type <Vattribute> OP12
$type <Vattribute> DELY
$type <Vattribute> IDR
$type <Vattribute> INT
$type <Vattribute> TEXT
$type <Vattribute> TRUESYM
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$type <Vattribute> FALSESYM
$type <VProgram> Program
$type <Vnewrule2> newrule?2
$type <Vnewrulel> newrulel
type <VProcDec> ProcDec
$type <Vnewrule3> newrule3
$type <VFormalparams> Formalparams
stype <Vnewruled> newrule4d
$type <VSeries> Series
$type <VnewruleS5> newrule5
Stype <VStmt> Stmt
$type <VAssignst> Assignst
$type <VWhilest> Whilest
$type <VIfst> Ifst
$type <Vnewrulebt> newruleb
$type <VCallst> Callst
3type <Vnewrule7> newrule?
$type <VExprlist> Exprlist
$type <Vnewrule8> newrule8
$type <VReadst> Readst
%type <VWritest> Writest
$type <VReadinlist> Readinlist
$type <Vnewruled> newrule9
$type <VWriteoutlist> Writeoutlist
$type <VnewrulelO> newrulelO
$type <VOptionalhash> Optionalhash
$type <VOptionalplus> Optionalplus
$type <VExpr> Expr
$type <Vnewrulell> newrulell
%$type <VOperand> Operand
3type <VStoreAccess> StoreAccess
$type <Vnewrulel2> newrulel?2
Start Program { write Program($l); 1};
Program newrulel newrule2 Series DELS

{ $$ = (PROGRAM TYPE)mkncde(4,1,%$1,%$2,83); } ;
newrule2 /* empty */ { $$ = (NEWRULEZ TYPE)NULL; }

| newrule2 ProcDec

{ $$ = (NEWRULE2 TYPE)mknode(3,1,$1,$2);};
newrulel /* empty */ { $$ = (NEWRULEl TYPE)NULL; )

| RESERVESYM INT

{ $$ = (NEWRULEl TYPE)mknode(2,1,52);};
ProcDec PROCSYM IDR newrule3 Series ENDSYM

{ $$ = (PROCDEC_TYPE)mknode(4,1,5$2,$3,54);};
newrule3 /* empty */ { $$ = (NEWRULE3 TYPE)NULL; }

| DEL2 Formalparams DEL3 N

{ $$ = (NEWRULE3_ TYPE)mknode (2,1,$2);};
Formalparams IDR newruled

{$$= (FORMALPARAMS TYPE)mknode(3,1,$1,$2);};

newruled4 : /* empty */ { $$ = (NEWRULE4_TYPE)NULL; }

| newrule4 DEL4 IDR
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{ $$ = (NEWRULE4_TYPE)mknode (3,1,51,3$3)/};
Series : Stmt newruleS
{ $$ = (SERIES_TYPE)mknode (3,1,$1,%2)/};
newrule5 : /* empty */ { $$ = (NEWRULES_TYPE)NULL; }
| newruleb Stmt
{ $$ = (NEWRULES5 TYPE)mknode (3,1, $1,82):1%;
Stmt : Assignst {$$ = (STMT_TYPE)mknode(2,1,%1);}
| Whilest { $$ = (STMT_TYPE)mknode (2,2,5$1);}
| Ifst { $$ = (STMT_TYPE)mknode (2,3,51);}
| Callst { $$ = (STMT_TYPE)mknode (2,4,51);}
| Readst . { $$ = (STMT_TYPE)mknode(2,5,$1) ;}
| Writest { $$ = (STMT_TYPE)mknode(2,6,3$1);};

Assignst : StoreAccess DEL6 Expr
{ $$ = (ASSIGNST TYPE)mknode(3,1,351,$3);};

Whilest : WHILESYM Expr DOSYM Series ODSYM
{ $$ = (WHILEST_TYPE)mknode (3,1,$2,54);};

Ifst : IFSYM Expr THENSYM Series newrule6t FISYM
{ $$ = (IFST_TYPE)mknode (4,1,%2,$4,$5);};

newrule6 : /* empty */ { $$ = (NEWRULE6_TYPE)NULL; }
| ELSESYM Series
{ $$ = (NEWRULE6 TYPE)mknode(2,1,$2);};

Callst : CALLSYM IDR newrule?
{ $$ = (CALLST_ TYPE)mknode(3,1,$2,$3);};

newrule7 : /* empty */ { $$ = (NEWRULE7_TYPE)NULL; }
| DEL2 Exprlist DEL3
{ $$ = (NEWRULE7_ TYPE)mknode (2,1,5$2);};

Exprlist : Expr newrule8
{ $$ = (EXPRLIST TYPE)mknode (3,1,$1,%52);};

newrule8 : /* empty */ { $$ = (NEWRULES_ TYPE)NULL; |}
| newrule8 DEL4 ExXpr
{ $$ = (NEWRULE8 TYPE)mknode (3,1,$1,$3);};

Readst : READSYM Optionalplus Optionalhash Readinlist
{ $$ = (READST TYPE)mknode(4,1,$2,$3,%$4);};

Writest : WRITESYM Optionalplus Optionalhash Writeoutlist
{ $$ = (WRITEST_TYPE)mknode(4,1,$2,$3,%4);};

Readinlist : StoreAccess newrule9
{ $$ = (READINLIST_ TYPE)mknode (3,1,51,%$2);};

newrule9 : /* empty */ { $$ = (NEWRULES TYPE)NULL; }
| newrule9 DEL4 Optionalhash StoreAccess
{ $$ = (NEWRULE9 TYPE)mknode(4,1,51,%$3,%4);};

Writeoutlist : Expr newrulel0
{ $$ = (WRITEOUTLIST TYPE)mknode (3,1,$1,$2);};

newrulel(0 : /* empty */ { $$ = (NEWRULE10_ TYPE)NULL; }
| newrulel0 DEL4 Optionalhash Expr
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{ $$ = (NEWRULE10_TYPE)mknode(4,1,$1,$3,34)/};
Optionalplus : /* empty */ { $$ = (OPTIONALPLUS TYPE)NULL; }
s sspj (OPTIONALPLUS TYPE)mknode (2,1,$1);};
Optionalhash : /* empty */ { $$ = (OPTIONALHASH TYPE)NULL; }
| DELY9 { $$ = (OPTIONALHASH TYPE)mknode(2,1,$1);};

Expr : Operand newrulell
{ $$ = (EXPR _TYPE)mknode(3,1,$1,$2);};

newrulell : /* empty */ { $$ = (NEWRULE1l TYPE)NULL; }

| newrulell OP1l Operand

{ $$ = (NEWRULEll TYPE)mknode(4,1,$1,$2,$3);}
| newrulell OP2 Operand

{ $$ = (NEWRULEll TYPE)mknode (4,2,%51,5$2,353) !}
! newrulell OP3 Operand

{ $$ = (NEWRULEll TYPE)mknode (4,3,$1,52,83);}
| newrulell OP4 Operand

{ $$ = (NEWRULEll TYPE)mknode (4,4,$1,%$2,33):}
| newrulell OP5 Operand

{ $$ = (NEWRULEll TYPE)mknode(4,5,$1,$2,$3)/}
| newrulell OP6 Operand

{ $$ = (NEWRULEll TYPE)mknode (4,6,$1,$2,3$3),}
| newrulell OP7 Operand

{ $$ = (NEWRULE1ll TYPE)mknode (4,7,%1,%$2,$3);}
| newrulell OP8 Operand

{ $$ = (NEWRULEll TYPE)mknode (4,8,$1,%$2,3$3);}
| newrulell OP9 Operand

{ $$ = (NEWRULE1ll TYPE)mknode(4,9,$1,$2,8$3);}
| newrulell OP10 Operand

{ $$ = (NEWRULEll TYPE)mknode (4,10,%1,$2,$3);}
| newrulell OP1ll Operand

{ $$ = (NEWRULE1ll TYPE)mknode(4,11,$1,%$2,83);}
| newrulell OP1l2 Operand

{$$ = (NEWRULEll TYPE)mknode (4,12,%51,5%2,%3);};

Operand : INT {
| TEXT {
| TRUESYM {
| FALSESYM { $S
| DEL7 IDR {
I {
| {

$$ = (OPERAND TYPE)mknode (
(OPERAND_ TYPE) mknode (
(OPERAND_ TYPE) mknode (
(OPERAND TYPE) mknode (
(
(
(

v W»
v W
(I

w
w
[

(OPERAND TYPE)mknode
(OPERAND TYPE)mknode
$$ = (OPERAND TYPE)mknode

»
w
]

StoreAccess
DEL2 Expr DEL3

StoreAccess : IDR newrulel2
{ $$ = (STOREACCESS_ TYPE)mknode(3,1,51,$2);1};

newrulel2 : /* empty */ { $S
| DELl1 Operand { $$

(NEWRULE12 TYPE)NULL; }
(NEWRULE12 TYPE)mknode(2,1,$2);}:

oe

%

in ()

-~ 3
o

#ifdef LEXDEBUG
debug = 1; /* debug = 1 for debugging and 0 otherwise */
#endif
extern int yynerrs;
int flag = 0;
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flag = yyparse();
printf ("Compilation error(s):
if (£lag)

%d\n",

printf ("Compilation aborted\n");

else

printf ("Compilation terminated\n"):

/*

#define
#define
#define
#define
#define
#define

/*

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

/*

typedef
int d;
char c¢:;
char *s;
}UVAL;

/****

definition of constants

NIL 0
STRUCT struct
UNICN union
INT_PRINT 1
TEXT_PRINT 3
OPR_PRINT 1

typedef node types */

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

Program type
newrule2 type
newrulel type
ProcDhec_type
newrule3 type
Formalparams_ type
newruled4_type
Series_type
newrule5 type
Stmt_type
Assignst_type
wWwhilest type
Ifst_type
newrule6 type
Callst_type
newrule7_ type
Exprlist_type
newrule8_type
Readst_type
Writest_ type
Readinlist_type
newruled_ type
Writeoutlist type
newrulel(0_ type
Optionalhash type
Optionalplus_type
Expr_ type
newrulell type
Operand type
StoreAccess_type
newrulel2 type

*/

file = syntree.h
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yynerrs);

****/

PROGRAM_TYPE;
NEWRULE2 TYPE;
NEWRULEl_TYPE;
PROCDEC_TYPE;
NEWRULE3 TYPE;
FORMALPARAMS TYPE;
NEWRULE4_TYPE;
SERIES_TYPE;
NEWRULES_TYPE;
STMT_TYPE;
ASSIGNST TYPE;
WHILEST_TYPE;

IFST TYPE;
NEWRULE6 TYPE;
CALLST_TYPE;
NEWRULE7_ TYPE;
EXPRLIST_TYPE;
NEWRULES_TYPE;
READST TYPE;
WRITEST_TYPE;
READINLIST_ TYPE;
NEWRULES_TYPE;
WRITEQUTLIST TYPE;
NEWRULE10_ TYPE;
OPTIONALHASH TYPE;
OPTIONALPLUS_ TYPE;
EXPR_TYPE;
NEWRULE1l TYPE;
OPERAND_ TYPE;
STOREACCESS_TYPE;
NEWRULE12_TYPE;

declaration of data structure types */

union(
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typedef struct attribute_ type{

UVAL textval;
int type
}ATTRIBUTE“TYPE;

STRUCT Program type({
int type-;
UNION {

STRUCT alter Program_ 1({

NEWRULE1l TYPE
NEWRULEZ_ TYPE
SERIES_TYPE
}ALTER Program 1;
}RIGHTSIDE;
Yi

STRUCT newruleZ type{
int type;
UNION {

newrulel 1;
newrule2_ 2;
Series_ 3;

STRUCT alter newrule2 1{
STRUCT newrule2 type *newruleZ 1;

PROCDEC_TYPE
}ALTER newrule2 1;
}RIGHTSIDE;

}i

STRUCT newrulel type({

ProcDec_2;

int type;

UNION {
STRUCT alter newrulel 1{
ATTRIBUTE_TYPE * INT 1;
}ALTER newrulel 1;

}RIGHTSIDE;

i

STRUCT ProcDec_type({

int type;

UNION {
STRUCT alter ProcDec_1{
ATTRIBUTE_TYPE * IDR_1;
NEWRULE3_TYPE newrule3_ 2;
SERIES_TYPE Series_3;
}ALTER ProcDec_1;

}RIGHTSIDE;

}s

STRUCT newrule3 type{

int type;

UNION {
STRUCT alter newrule3_1{

FORMALPARAMS TYPE
}ALTER _newrule3_1;
}RIGHTSIDE;
b

STRUCT Formalparams_type{
int type;
UNION {
STRUCT alter Forma
ATTRIBUTE_TYPE

Formalparams_1;

lparams_1{
* IDR_1;
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NEWRULE4_TYPE

newruled4 2;

}ALTER_Formalparams_1;

}RIGHTSIDE;
}e

STRUCT newruled type({
int type;
UNION {

STRUCT alter_newrule4_l{
STRUCT newrule4 type *newruled 1;

ATTRIBUTE TYPE
}ALTER newruled 1;
}RIGHTSIDE;
I

STRUCT Series_typef
int type;
UNION {

* IDR 2;

STRUCT alter_Series_1{

STMT TYPE
NEWRULES_TYPE
}ALTER_Series_1;
}RIGHTSIDE;
}s

TRUCT newrule5_type({

Stmt_1;
newrule5 2;

int type;
UNION {
STRUCT alter_newruleS_1{
STRUCT newrule5 type *newrule5_1;
STMT_ TYPE Stmt_2;
}JALTER newrule5 1;
}RIGHTSIDE;

}s

STRUCT Stmt_type({
int type;
UNION {

STRUCT alter Stmt_1{

ASSIGNST TYPE
JALTER Stmt_1;

Assignst_1;

STRUCT alter Stmt_2({

WHILEST TYPE
JALTER Stmt_2;

Whilest_1;

STRUCT  alter_ Stmt_3{

IFST TYPE
}ALTER Stmt_3;

Ifst_1;

STRUCT alter_ Stmt_4{

CALLST TYPE
}ALTER_Stmt_4;

Callst_1:

STRUCT alter Stmt_5{

READST TYPE
JALTER_Stmt_5;

Readst_1;

STRUCT alter Stmt_ 6{

WRITEST TYPE
}JALTER Stmt 6
}RIGHTSIDE;
}; '

STRUCT Assignst_type(
int type;

Writest_1;
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UNION {
STRUCT alter_ Assignst_1/{
STOREACCESS_TYPE StoreAccess_1;
EXPR_TYPE Expr_2;
}ALTER Assignst_1;
}RIGHTSIDE;
)i
STRUCT Whilest typef{
int type;
UNION {
STRUCT alter Whilest 1{
EXPR _TYPE Expr_1;
SERIES_TYPE Series 2;
}JALTER Whilest 1;
}RIGHTSIDE;

}:

STRUCT Ifst_typef

int type:

UNION {
STRUCT alter Ifst 1{
EXPR TYPE Expr 1;
SERIES_TYPE Series_2;
NEWRULE6 TYPE newrule6_3;
}ALTER Ifst_1;

}RIGHTSIDE;

}sr

STRUCT newruleb_ type{

int type:
UNION  {
STRUCT alter newrule6_ 1{
SERIES_TYPE Series_1;
}ALTER newrule6 1;
}RIGHTSIDE;

b

STRUCT Callst_typef

int type:
UNION {
STRUCT alter Callst_1{
ATTRIBUTE TYPE * IDR 1;
NEWRULE7_ TYPE newrule7 2;
JALTER Callst_1;
}RIGHTSIDE;

}s;

STRUCT newrule7_typel

int type:;
UNION {
STRUCT alter newrule7_1{
EXPRLIST_TYPE Exprlist_ﬁ;
}JALTER newrule7_1;
}JRIGHTSIDE;

}s

STRUCT Exprlis

int type;

UNION {
STRUCT

t_typefl

alter Exprlist_1{
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EXPR_TYPE Expr_1;
NEWRULES8_ TYPE newrule8 2;

}ALTER _Exprlist_1;
}RIGHTSIDE;
}:

STRUCT newrule8 type({

int type:;

UNION {
STRUCT alter newrule8 1{
STRUCT newrule8_type *newrule8 1;
EXPR_TYPE Expr 2;

}ALTER newrule8_1;
}JRIGHTSIDE;

};

STRUCT Readst_ type/{

int type;

UNION {
STRUCT alter Readst_1({
OPTIONALPLUS_TYPE
OPTIONALHASH TYPE

Optionalplus_1;
Optionalhash 2;

READINLIST TYPE Readinlist_3;

}ALTER_Readst_1:
}JRIGHTSIDE;

};

STRUCT Writest type({

int type:;

UNION {
STRUCT alter Writest 1{
OPTIONALPLUS_TYPE )
OPTICONALHASH TYPE O

WRITEOUTLIST_TYPE
}ALTER_Writest_1;
}RIGHTSIDE;

b

STRUCT Readinlist_type({

ptionalplus 1;
ptionalhash 2;

Writeoutlist 3;

int type:;

UNION {
STRUCT alter Readinlist_1{
STOREACCESS_TYPE StoreAccess_1;
NEWRULES TYPE newrule9 2;

}JALTER Readinlist_1;
}RIGHTSIDE;

)}

STRUCT newruleS type{

int type:;

UNION {
STRUCT alter newrule9 1{
STRUCT newruleS type

OPTIONALHASH_TYPE

STOREACCESS_TYPE

}ALTER _newrule9_1;
}RIGHTSIDE;

}s

STRUCT Writeoutlist_ typef{
int type:;

*newrule9 1:
Optionalhash 2;
StoreAccess_3;
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UNION {
STRUCT alter Writeoutlist 1({
EXPR_TYPE Expr 1;
NEWRULE10_TYPE newrulelO_2;
}ALTER Writeoutlist 1;
}RIGHTSIDE;
};

STRUCT newrulel0 type({
int type;
UNION {
STRUCT alter_newrulel0_1{
STRUCT newrulel(0_type “*newrulell_1;
OPTIONALHASH TYPE Optionalhash_Z;
EXPR_TYPE Expr_3;
}ALTER newrulelO 1;
}RIGHTSIDE;
}i

STRUCT Optionalhash type({

int type;
UNION {
STRUCT alter Optionalhash_1{
ATTRIBUTE_TYPE * DELS_1;
}ALTER Cptionalhash_1;
}RIGHTSIDE;

}s

STRUCT Optionalplus_type({

int type;
UNION {
STRUCT alter Optionalplus_1{
ATTRIBUTE_TYPE * OP3_1;
}ALTER Optionalplus_1;
}RIGHTSIDE;

b

STRUCT Expr_type({

int type;
UNION {
STRUCT alter_ Expr_1/{
OPERAND_TYPE Operand_1;
NEWRULE1l TYPE newrulell 2;
}JALTER Expr 1;
}JRIGHTSIDE;

}s

STRUCT newrulell typef{

int type;

UNION {
STRUCT alter newrulell 1{
STRUCT newrulell type *newrulell 1;
ATTRIBUTE_TYPE * opr_2;
OPERAND_TYPE Operand 3;
}ALTER_newrulell_l;

}RIGHTSIDE;

}:
STRUCT Operand type(

int type;
UNION {
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STRUCT alter Operand 1/{
ATTRIBUTE_TYPE * INT 1;
}ALTER Operand_1;
STRUCT alter Operand 2{
ATTRIBUTE_TYPE * TEXT 1;
}ALTER Operand 2;
STRUCT alter Operand_3{
ATTRIBUTE TYPE * TRUESYM 1;
}ALTER Operand 3;
STRUCT alter Operand 4{
ATTRIBUTE_TYPE * FALSESYM 1;
}ALTER Operand_4;
STRUCT alter Operand 5{
ATTRIBUTE_TYPE * IDR_1;
}ALTER Operand_5;
STRUCT alter Operand 6{
STOREACCESS_TYPE StoreAccess_1;
}ALTER Cperand 6;
STRUCT alter Operand 7({
EXPR _TYPE Expr_ 1;
}ALTER Operand 7;

}JRIGHTSIDE;

i

STRUCT StoreAccess_type(

int type;
UNION {
STRUCT alter StoreAccess_1{
ATTRIBUTE_TYPE * IDR 1;
NEWRULE1Z2_TYPE newrulel2 2;
}ALTER_StoreAccess_1;
}JRIGHTSIDE;

}s

STRUCT newrulelZ type({

int type;
UNION {
STRUCT alter newrulel2 1{
OPERAND TYPE Operand_1;
}ALTER_newrulelZ_l;
}RIGHTSIDE;
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/**** ﬁj Ie - HI‘;JL’EI c ****/

#include <stdio.h>
FILE *fopen(), *fp data;

write Program(ptr)
PROGRAM TYPE ptr;

{
fp_data = fopen(“"flat_tree","w");

if (ptr == NULL)
fprintf (fp_data,"0\t<Program>\n");
else

{
fprintf(fp_data,"l\t<Program>\n");
fprintf (fp data, "$d\t\t<type_ of_ Program>\n",ptr->type);
switch (ptr->type) {
case 1:/* it is alternative no 1 */
write_newrulel(ptr—>RIGHTSIDE.ALTER_Program_l.newrulel_l);
write newrule2 (ptr->RIGHTSIDE.ALTER Program_l.newruleZ Z2);
write_Series(ptr—>RIGHTSIDE.ALTERﬁProgramﬂl.Series_B);
break;
default :printf ("ERROR : Wrong alternative number generated\n");
}/* end switch */
}/* end else */
}/* end write_ Program */

write newruleZ2 (ptr)
NEWRULE2_TYPE ptr;
{

if (ptr == NULL)
fprintf (fp data, "0\t<newrule2>\n");
else

{
fprintf (fp data, "l\t<newrule2>\n");

fprintf (fp data,"%d\t\t<type_of_ newrule2>\n",ptr->type);
switch (ptr->type) {
case 1l:/* it is alternative no 1 */
write newrule2 (ptr->RIGHTSIDE.ALTER_newruleZ_ l.newruleZ 1);

write ProcDec (ptr->RIGHTSIDE.ALTER newrule2 1l.ProcDec_2);
break; -
default:printf ("ERROR : Wrong alternative number generated\n");
}/* end switch */
}/* end else */
}/* end write newrule2 */

write newrulel (ptr)
NEWRULE1l TYPE ptr;
{

if (ptr == NULL)
fprintf (fp_data, "0\t<newrulel>\n") ;
else

{
fprintf (fp_data, "l\t<newrulel>\n");

fprintf (fp_data, "%d\t\t<type of newrulel>\n",ptr->type);

switch (ptr->type) {

case 1l:/* it 1is alternative no 1 */
fprintf (fp_data, "%d\n",
ptr->RIGHTSIDE.ALTER newrulel 1.INT_1l->type);
switch(ptr->RIGHTSIDE.ALTER newrulel 1.INT 1->type) |
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case 1:/* it is a number */
fprintf (fp_data, "%d\n",
ptr—>RIGHTSIDE.ALTER_newrulel_l.INT_l->textval.d);
break;

case 2:/* it is a character */
fprintf(fp_data,"%c\n",
ptr—>RIGHTSIDE.ALTBR_newrulel_l.INT_l—)textval.c);

reak;

case 3:/* it is a string */
fprintf (fp_data,"%d\n",strlen(
ptr—>RIGHTSIDE.ALTER_newrulel_l.INT_l—>textval.s));
if (strlen(
ptr—>RIGHTSIDE.ALTER_newrulel_l.INT_l—>textval.s))
fprintf(fp_data,"%s\n",
ptr->RIGHTSIDE.ALTER newrulel 1.INT_l->textval.s);
break;

default:printf (" ERROR : Wrong lexeme type generated\n") ;

}/* end switch */

break;

default:printf ("ERROR : Wrong alternative number generated\n") ;
}/* end switch */

}/* end else */

}/* end write newrulel x /

write ProcDec(ptr)
PROCDEC_TYPE ptx;
{ .

if {(ptr == NULL)
fprintf (fp_data, "0\t<ProcDec>\n") ;
else

{
fprintf (fp_data, "1\t<ProcDec>\n");
fprintf (fp_data, "%d\t\t<type_of_ ProcDec>\n",ptr->type);
switch (ptr->type) {
case 1l:/* it is alternative no 1 */
fprintf (fp_data, "%d\n",
ptr—>RIGHTSIDE.ALTER_PIOCDecﬁl.IDR_l—>type);
switch (ptr->RIGHTSIDE.ALTER ProcDec_1.IDR_1l->type) {
case 1l:/* it is a number */ N
fprintf (fp_data, "%d\n",
ptr->RIGHTSIDE.ALTER ProcDec_1l.IDR_l->textval.d);
break; - N -
case 2:/* it is a character */
fprintf (fp_data, "%c\n",
ptr->RIGHTSIDE.ALTER ProcDec 1l.IDR l->textval.c);
break; N - N
case 3:/* it 1is a string */
fprintf (fp_data, "%d\n",strlen(
ptr->RIGHTSIDE.ALTER ProcDec 1.IDR 1-> textval.s));
if (strlen(
ptr->RIGHTSIDE.ALTER ProcDec_l1.IDR_1-> textval.s))
fprintf (fp data,"%s\n",
ptr->RIGHTSIDE.ALTER ProcDec 1.IDR_l->textval.s);
break;
default:printf ("ERROR : Wrong lexeme type generated\n");
}/* end switch */
write newrule3 (ptr->RIGHTSIDE.ALTER ProcDec_1l.newrule3 2);
vbvriti_Series (ptr->RIGHTSIDE.ALTER ProcDec_l.Series 3);
reak; -
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default:printf ("ERROR : Wrong alternative number generated\n") ;

}/* end switch */
}/* end else */
}/* end write ProcDec */

/*** the rest of the writer routines are cut * %% /
/*** douwn due to the length of these routines *x**x /

/**** f; le = :gade: [o] ****/

#include <stdio.h>
¥include "extern.h"
#define realloc_char(s,pt) {\
s = (char*)realloc(s,strlen(s)+2);\
if (s==NULL) \
printf ("cannot realloc char\n");\
* (s+strlen(s)+1)="\0";\

* (s+strlen(s)) = (char)pt;\
}

FILE *fopen(), *fp data;

char *read Program()

{

PROGRAM TYPE ptr;

char ch;

int numchars, i, exists;

#ifdef READDEBUG
printf ("In read Program()\n");
#endif

fp data = fopen("flat_tree","r");
fscanf(fp_data,"%d\t%*s\n",&exists);
if (lexists)

return (NULL) ;
else

{

ptr = (PROGRAM TYPE)malloc (sizeof (STRUCT Program type));

fscanf (fp_data,"%d\t\t%*s\n", & (ptr->type));
switch (ptr->type)
{
case 1l:/* it is alternative no 1 */
ptr->RIGHTSIDE.ALTER Program l.newrulel 1
(NEWRULE1~TYPE)read_newrulel();
ptr->RIGHTSIDE.ALTER Program l.newrule2 2
(NEWRULE2_TYPE) read newruleZ2();
ptr->RIGHTSIDE.ALTER_Program l.Series_3 =
(SERIES_TYPE) read Series();

i

break;

default:printf ("ERROR : wrong alternative number read\n");

}/* end switch */
}/* end else */
#ifdef READDEBUG
printf ("Out read Program()\n");
#endif

return ((char*)ptr);

}/* end read Program */
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char *read newruleZ2()

{

NEWRULEZ_TYPB ptxc;

char ch;

int numchars, i, exists;

#ifdef READDEBUG
printf ("In read newrule2 ()\n");
#endif

fscanf(fp_data,"%d\t%*s\n",&exists);
if ('exists)
return (NULL) ;
else
{
ptr = (NEWRULEZ2_ TYPE)malloc (sizeof (STRUCT newrule2 type));
fscanf (fp_data, "3d\t\t%*s\n", & (ptr->type));
switch (ptr->type)
{
case 1:/* it is alternative no 1 */
ptr->RIGHTSIDE.ALTER newrule2 1.newruleZ 1 =
(NEWRULE2_TYPE) read_newrule2();
ptr->RIGHTSIDE.ALTER newrule2_ 1.ProcDec_2 =
(PROCDEC_TYPE) read_ProcDec () ;
break;
default:printf ("ERROR : wrong alternative number read\n") ;
}/* end switch */
}/* end else */
#ifdef READDEBUG
printf ("Out read newrule2()\n");
#endif

return((char*)ptr);

}/* end read newrule2 */

char *read newrulel ()

{

NEWRULEl_TYPE ptr;

char ch;

int numchars, i, exists;

#ifdef READDEBUG
printf ("In read newrulel()\n");
#endif

fscanf (fp_data, "%d\t%*s\n", &exists);
if (texists)
return (NULL) ;
else
{
ptr = (NEWRULEl_TYPE)malloc(sizeof(STRUCT newrulel type));
fscanf (fp_data, "%d\t\t¥*s\n", & (ptr->type)) ; -
switch (ptr->type)
{
case 1:/* it is alternative no 1 */
ptr->RIGHTSIDE.ALTER newrulel 1.INT 1 =
(ATTRIBUTE_TYPE*)malloc{sizeokaTTRIBUTE TYPE) ) ;
fscanf (fp_data, "%d\n", -
& (ptr->RIGHTSIDE.ALTER newrulel 1.INT 1-> type)) ;
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switch (ptr->RIGHTSIDE.ALTER newrulel 1.INT_l->type)
{
case 1:
fscanf (fp_data, "%d\n", & (
ptr -> RIGHTSIDE.ALTER newrulel 1.INT_l->textval.d));
break;
case 2:
fscanf(fp_data,"%c\n",&(
ptr->RIGHTSIDE .ALTER newrulel 1.INT l->textval.c));
break;
case 3:
ptr->RIGHTSIDE.ALTER newrulel 1.INT l->textval.s =
malloc (2*sizeof (char));
fscanf(fp_data,"%d\n",&numchars);
if (numchars)
{
fscanf (fp_data, "3c", & (
ptr->RIGHTSIDE.ALTER newrulel 1.INT_1-> textval.s[0]));
ptr—>RIGHTSIDE.ALTER_newrulel_l.INT_l—)textval.s[l] = "\0";
for(i=1;i<numchars;i++)
{
fscanf (fp_data, "%c",&ch);
realloc_char(
ptr->RIGHTSIDE.ALTER_newrulel 1.INT_1->t extval.s,ch);
}
}
break;
default:printf ("ERROR : wrong lexeme type read\n");

}/* end switch */
break:;
default:printf ("ERROR : wrong alternative number read\n") ;
}/* end switch */
}/* end else */
#ifdef READDEBUG
printf ("Out read newrulel ()\n");
#endif

return( (char*)ptr);

}/* end read newrulel */

char *read ProcDec ()

{

PROCDEC_TYPE ptr;

char ch;

int numchars, 1, exists:;

#ifdef READDEBUG
printf("In read ProcDec()\n");
¥endif

fscanf (fp_data, "%d\t%*s\n", &exists) ;

if (lexists)
return (NULL) ;

else

{
ptr = (PROCDEC_TYPE)malloc (sizeof (STRUCT ProcDec_type)) ;
fscanf (fp_data, "%d\t\t%*s\n", & (ptr->type)); N
switch (ptr->type)
{
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case 1:/* it is alternative no 1 */
ptr->RIGHTSIDE.ALTER ProcDec_l.IDR_1 = (ATTRIBUTE_ TYPEY)
malloc (sizeof (ATTRIBUTE TYPE))
fscanf (fp_data, "%d\n", & (
ptr->RIGHTSIDE.ALTER ProcDec_1.IDR_1l->type))’
switch (ptr->RIGHTSIDE.ALTER_ProcDec_l.IDR_l->type)
{
case 1l:
fscanf (fp_ data, "%d\n", & (
ptr—> RIGHTSIDE.ALTER ProcDec__ 1. IDR 1->textval.d)):
break:;
case 2:
fscanf (fp_data, "%c\n", & (
ptr->RIGHTSIDE. ALTER ProcDec__ 1. IDR 1->textval.c)):
break;
case 3:
ptr->RIGHTSIDE.ALTER_ProcDec_1.IDR 1- >textval.s =
malloc(Z*SLZeof(char)),
fscanf (fp_data, "%d\n", &numchars) ;
if (numchars)
{
fscanf (fp_data,"%c", &
ptr->RIGHTSIDE.ALTER ProcDec_1.IDR_l->textval. s{01)
ptr->RIGHTSIDE.ALTER ProcDec_ 1.IDR_1->textval. s[1l]
= l\O'-
for (i=1;i<numchars;i++)
{
fscanf (fp_data, "%c",&ch);
realloc char (ptr->RIGHTSIDE.ALTER ProcDec_l.IDR_1->
textval.s,ch);
}
}
break;
default:printf ("ERROR : wrong lexeme type read\n") ;

}/* end switch */
ptr->RIGHTISIDE.ALTER ProcDec_1. newrule3 2 =
(NEWRULE3_TYPE)read_newruleB();
ptr->RIGHTSIDE.ALTER ProcDec_l.Series_3 =
(SERIES_TYPE) read_Series():;
break;
default:printf ("ERROR : wrong alternative number read\n");
}/* end switch */
}/* end else */
#ifdef READDEBUG
printf ("Out read ProcDec()\n");
#endif

return((char*)ptr):;

}

/*** the rest of the reader routines are cut * % % /
/*** douwn due to the length of these routines **x/
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printf ("\nStart reading in the tree:--
read Program() ;

ptr =
printf ("Finished

[ xxxk file = walker.c *kkk /
#include <stdio.h>
#include "syntree.h"
#include "define.h"
#include "reader.c"
/* global variables */
int PSused; /* index to the highest used program store location */
int DSused; /* index to highest used data store location <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>