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THESIS SUMMARY 

EDWIN JOHN BAILEY 

DOCTOR OF PHILOSOPHY, 1988 

Mathematical models of semiconductor devices are 
developed using the nearly isotropic approximation to the 
Boltzmann transport equation. The formalism treats the steady 
state inhomogeneous cases and an electric field is included in 

the analysis. As well as developing the equations to describe 
the charge transport appropriate boundary value problems are 
discussed. 

A general equation can be developed which, by the 
inclusion or exclusion of certain parameters, is able to describe 

the twelve models that are being considered: the type of 
scatterers, whether non-polar optical, piezoelectric or acoustic 
phonons, the presence or absence of an electric field and the 
order of expansion of the collision integral in terms of the 
phonon energy. Restricted cases of this equation are considered 
and general solutions given. 

One particular model, that of non-polar optical phonon 
scattering in the presence of an electric field with first order 
phonon energy expansion is discussed in detail. The electron 
distribution function and associated current due to an arbitrary 
injected energy distribution of electrons is determined by novel 
semi-analytical means. 

The other possible models, and solutions, are discussed and 
methods of validating the analysis are mentioned.
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CHAPTER ONE 

DEVICE MODELLING 

§1. Introduction 

Pioneering semiconductor work was performed less than 

fifty years ago. The production of working devices then 

contained an element of luck. In the 1980's, it is possible to 

fabricate devices with geometrical features of dimensions less 

than one micron, and yields of eighty percent are not 

uncommon. This is mainly due to the rapid improvement in 

process and process control technology. However it is only 

useful to have very high yields of the devices if they behave as 

predicted: a one hundred percent yield of a transistor that only 

has a tenth of the gain expected is useless. Thus as well as 

having tight control over the process it is essential to be able to 

predict the electrical behaviour of the devices that are 

produced. Assuming that the production process could be 

perfectly controlled then geometries and doping profiles must 

be defined that give the required behaviour. This leads to the 

necessity of developing a semiconductor device modelling 

capability such that all required quantities can be predicted 

accurately, with acceptable precision. Obviously, there are two 

main ways to mathematically model the device, and to achieve 

this aim - computationally or analytically. The former has had 

a great deal of effort directed towards it as it is an extremely 

useful practical tool while the latter has been somewhat 

ignored. This is the opposite to what has happened in other



areas of mathematical modelling, such as fluid mechanics. For 

example, in fluid mechanics the basic equations have been well 

known for over a century and it is relatively recently, in the 

last couple of decades, that computational fluid mechanics has 

come to the fore. This is a more natural progression in that 

time has been spent investigating the mathematical aspects of 

the subject giving a firm base to computational approaches. As 

the advent of semiconductors and computing machines has 

occurred nearly simultaneously (the latter depending on the 

development of the former) there has been emphasis on 

numerical approaches without a particularly well developed 

analytical background. Although computational modelling has 

proved valuable in the analysis and design of device structures 

[1], analytic modelling has a place in this scheme and one that is 

complementary to computational simulations. The area to be 

developed in this thesis is that of analytical semiconductor 

modelling and analytic or semi- analytic mathematical methods. 

Computational models offer several useful features; they 

can nearly remove the iterative approach to device design that 

was prevalent before the advent of such methods; using this 

approach a design was achieved by a combination of simple 

textbook formula [2] and experience. The design usually failed 

i.e. the observed electrical characteristics did not match the 

predicted ones. Then the iterative process would begin, and 

finish when, or if, a satisfactory design was achieved. This 

could take many steps, and prove to be very costly. For present 

day devices this approach is not feasible. Important device 

characteristics (such as gain, junction-breakdown voltage and 

thermal variation of characteristics) may be predicted and thus 
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controlled. This is a key element in device models. Another 

crucially important aspect of simulation is that it allows design 

modifications and also totally original device structures to be 

investigated without ever producing an actual device. Very 

flexible simulations exist that may be used in this manner. This 

again offers a capability that was impossible before such 

software was produced. Finally another aspect that needs to be 

mentioned is that simulations can provide information on 

physically unobservable quantities both in a practical or actual 

sense, such as the electron distribution function. Such 

quantities can prove invaluable in device design. 

Thus computational modelling has a leading role to play in 

device design. However analytic models offer other features. 

Firstly it must be ensured that the modelling problem is 

formulated correctly; if it is not then the only indication of this 

from simulations may be non-convergence, which is an extreme 

waste of resources. Analytical approaches can offer answers to 

such questions, although due to the inherent difficulty of 

semiconductor device modelling the topic is still in its infancy 

[3], Secondly analytic models provide exact answers (modulo 

the background assumptions) and are hence capable of 

validating computer codes. This can be a valuable comparison 

technique as although codes may converge it is no guarantee 

that they have converged to the (unique) solution. Analytical 

results can also provide an initial input to simulations providing 

the first approximation to the solution [4], All computational 

models rely on numerical iteration, and usually are based on 

Newton-Raphson iteration which only converges locally and 
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then quadratically. Thus an accurate initial solution can save 

vast amounts of computer time. 

The two aspects of analytical models that will be of 

concern in this thesis are that analysis can provide general 

models, which can then be used to predict the variation of 

observables with respect to certain parameters. The methods 

and models developed mathematically also form a basis for 

further research and are thus useful in themselves. 

§2. Mathematical modellin 

Essentially this involves the abstraction of the physics, 

and physical environment of the device into a mathematical 

form. It generally is a compromise between reality and 

tractability. The mathematical model will involve mainly 

partial differential equations (cf Chapter 2 and Chapter 4) 

which are then generally solved numerically although more 

esoteric formulations are necessary such as the Boltzmann 

transport equation (BTE), a non-linear integrodifferential 

equation (see Chapter 2). Whatever the model, it must include 

all the essential physics. This may be extremely difficult (see 

(5] for example) and has to be achieved by experience, intuition 

and iteration; comparing observed results with predicted 

results and modifying the equations as necessary. 

The process may be viewed as two distinct steps: the first 

involves setting up the mathematical equations with appropriate 

conditions to describe the situation and the second involves the 

solution of such a model. The latter stage may be achieved in 

several ways (analytically/computationally/approximately ) and 
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is in some ways secondary. If the model is insoluble it can be 

useful to simplify the basic assumptions until the mathematics is 

tractable and then refine. 

Modelling has, in some quarters, become synonymous 

with computational modelling or simulation, particularly finite 

element and finite difference methods. Although the latter 

approaches are providing detailed knowledge of previously 

unknown phenomena they are only part of the secondary 

procedure - namely a solution tool. 

It is essential to firstly develop the correct equations: 

these are well known for medium small devices but for the 

high field regime or in the quantum domain or both, the 

analysis and interpretation of such formulations is 

controversial. In quantum transport theory there is little 

experimental evidence for comparison. 

In this thesis mathematical modelling will mean analytic 

(or semi-analytic) treatment of the appropriate equations, 

involving formulation and, where possible, solution. 

§ emiconductor device model. 

The previous two sections have explained the necessity 

for semiconductor device models and given a brief introduction 

to the modelling idea. Here, the topic of discussion will be 

semiconductors and the essentials for modelling such materials 

will be discussed. 

In the case of semiconductors the abstraction of the 

physical data is an extremely complex operation. 

Semiconductor device physics involves a large number of 
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charged electrons and uncharged phonons which are 

interacting. Surprisingly, simple approximations are quite 

often adequate: the effective electron mass may often be taken 

as constant and the electrons themselves may be treated semi- 

classically. As in most modelling situations it is generally 

impossible to quantitively predict the final effect of an earlier 

simplification and the justification of the ones used in this 

thesis is that they have a firm physical basis. Particular 

assumptions will be noted at the appropriate juncture. 

There are a number of semiconducting materials each 

requiring a different description and there are also a large 

number of semiconducting devices (MOS and bipolar being the 

two main categories), each having different modes of operation 

and requiring different types of models. It is convenient to 

divide the device models into four different regimes and 

discuss each material/device within the particular regime. 

i Tex model. 

These give simple and useful equations relating the 

various device parameters and characteristics. Typical of such 

results is (see [6]) 

BY ceo = BVcgo (1 + B)/™ 

where (in the case of bipolar transistors) 

BY EO : collector emitter breakdown voltage (open base) 
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Br : collector base breakdown voltage (open base) 

B : current gain 

m: exponent, satisfying 4<m<10. 

These may be treated as_ rules to optimise the design. 

Generally, however, such rules have limited accuracy as they 

are often empirically based and also have limited ranged of 

validity. They do not offer a practical mathematical model for 

sophisticated devices and will not be considered further. 

ii Hydrodynamic _model 

The majority of computational effort (excluding Monte 

Carlo simulations) has been directed in solving the following set 

of hydrodynamical equations: 

V2y=4(n-p-c)/e 

ay Toe R Wt a 

a => 

as + v-J = ats) 1 

P 

a: - Tv 

a = qu, ene qD,,V2 + DnVTqn 
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where: 
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k(T) 
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? Ly 
= =r DAy. aPHDE q P p+D,VT ap 

oT 
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ot 

electrostatic potential 

elementary charge 

absolute permittivity 

electron concentration 

hole concentration 

net ionized impurity concentration 

electron current density 

net carrier recombination rate 

hole current density 

electron mobility 

effective electron field 

effective electron diffusivity 

hole mobility 

effective hole field 

effective hole diffusivity 

specific mass density 

specific heat 

lattice temperature 

time 

thermal generation 

thermal conductivity 

effective thermal carrier diffusivity. 
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These constitute a coupled non-linear system of partial 

differential equations, and represent a formidable mathematical 

problem, In most simulations the dimensionality of the 

problem is restricted (usually to two) and transient and thermal 

behaviour is ignored, although for certain applications these 

aspects [5] must be included. The simplified equations given 

above then become 

Y*2~ =n-p-C 

V.(Vn-nVy) = R 

V.(Vp+pVy)=R 

plus associated boundary conditions, where the current 

relations have been substituted in the continuity equations and 

k,T 
the Einstein relation has been assumed - namely D/p = ee 

ky being the Boltzmann constant. Appropriate dimensional 

scales have been used to produce this simplified form. These 

form a coupled non-linear system of elliptic equations with 4 

being a numerically small parameter. Note that as A is small 

singular perturbation techniques are available to study the 

system [7], 

As they are non-linear equations the most common 

numerical technique of solution is to apply Newton-Raphson 

iteration to the set. This generates a set of matrix equations 

which then have to be solved, either coupled together or 

uncoupled (Gummel algorithm). The matrices have specific 

properties such as sparsity which can be taken advantage of [7] 

Once y, n, p are known, then other physical observables may be 

calculated, such as the electric field E = - Vy. 
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Accurate results can be produced providing that the 

limitations of the formulation and the numerical methods are 

remembered: for example it is assumed that medium small (or 

larger) devices are being treated. There are also assumptions 

pertaining to the simplification of the Maxwell equations to the 

Poisson equation. Problems can arise in the numerical analysis 

as convergence is a notoriously difficult problem. However, 

accuracy within a few percent may be achieved by simulation 

in calculations of say breakdown voltages. 

MOS devices are simpler to simulate than bipolar 

Structures as they are essentially unipolar and recombination 

can be ignored, reducing the complexity of the governing 

equations. Bipolar devices can be successfully simulated but 

require the full set of equations as contributions from both 

carriers must be considered. 

Computational modelling is thus an essential design tool. 

However, it requires mainframe computational resources and 

accurate input of data that is difficult to determine. This then 

introduces more problems; to exemplify the latter point 

consider C, the net impurity profile which is the difference 

between the number of ionized donor and acceptor atoms. For 

a typical MOS structure, it would be difficult to measure (in 

two dimensions) the impurity profile, and this is essential input. 

The only sensible answer is to simulate the manufacturing 

process. The problem with this approach is that there can be 

many stages that affect the re-distribution of dopants and the 

physics and chemistry is not well understood. 
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However some progress has been made in one and two 

dimensions [8], but there is a price to pay; computer run times 

for such simulations can be excessive. 

Thus it seems possible to overcome the problem of 

impurity profile distribution, and thus provide accurate initial 

data. 

It is also possible to reduce the time required to run 

simulations by generating an equivalent circuit model; here the 

device is divided into regions and each region is approximated 

by a combination of simple devices such as resistors and 

capacitors whose behaviour may be readily predicted. For 

example, by applying the one dimensional hydrodynamic 

equations to a bipolar transistor it is possible to generate 

expressions for the characteristics (such as the collector 

current) which depend on a small set of measurable parameters 

(91. These parameters may be also determined by simulation or 

measurement. These analytic expressions for the device 

characteristics including the simulated/measured parameters 

may then be coded onto a computer. Due to the relative 

simplicity of such expressions run times may be greatly 

reduced although it can be difficult to model all regions of the 

device accurately due to the inherent simplifying assumptions. 

It is possible to derive mathematical expressions for the 

behaviour of other components (resistors, capacitors, diodes) 

and hence simulate the complete circuit [10], Figure (1.1) 

illustrates the basic ideas: 
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Figure 1.1 
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where: 

Ty = junction current (U = C, B, E) 

Op = forward/reverse current gains 

VaB = aB junction voltage 

Ivs saturation current of v-junction 

and the subscripts C, B and E refer to the collector, base and 

emitter of the transistor. 

From easily measurable parameters, the simple model of 

the bipolar transistor given above may be derived and used to 
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predict the terminal currents. More complex and accurate 

models are available [9] . 

Hence a typical simulation chain may be: 

    
  

    

        
    

  

    

            

    

      

          

    

Figure 1.2 

INPUT MODEL OUTPUT 

PROCESS PROCESS PROCESS 
DETAILS > MODEL > INFORMATION 

DEVICE DEVICE 
MODEL > CHARACTERISTICS 

MEASURED EQUIVALENT 4 
DEVICE > CIRCUIT 
PARAMETERS MODEL 

CIRCUIT CIRCUIT 
MODEL > BEHAVIOUR               

Hence it is possible purely from the process data to predict the 

device's behaviour in an arbitrary circuit without ever 

fabricating a device. This illustrates the flexibility of the 

computational approach. 

Some analytical work has been undertaken on _ the 

hydrodynamic equations, mainly in one dimension. Other areas 

investigated include numerical analysis [11], singular 

perturbation theory [4], and mathematical analysis [12] of the 

equations. 
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iii Boltzmann transport theor 

The hydrodynamic equations are not universally valid 

and at small enough dimensions (for example) they are not 

appropriate. A more sophisticated model is then required and 

for medium small devices the BTE is necessary 

Dt f(x, v, t) = C[f(x, v, t)] 

Dt denoting the convective derivative: 

pe > it ov. ge
 

&
|
~
 

Di = 

E being the external force per unit mass, f(x, v nary t) the carrier 

distribution function which depends on the position x and 

velocity yv of the particle at time t. C denotes the scattering 

functional. The hydrodynamic equations may be derived from 

the BTE by the method of moments [13]. This statistical 

formulation in terms of the above transport equation is 

considerably richer in structure involving a 6n dimensional 

phase space (n being the number of particles). This deeper 

structure gives, and requires, more information and hence is 

more complex. 

Computational approaches are generally based on the 

Monte Carlo method [14] . The carrier's motion within the 

lattice is simulated as a series of free flights and scattering 

events. The interval between collisions and the specific 
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scattering process are generated stochastically by the use of a 

random number sequence. For steady state homogeneous 

phenomena one carrier may be considered representative but 

under more complex conditions a large number of carriers must 

be dynamically modelled. Physical observables (such as the 

current) may be calculated in this way. As a solution method, 

the Monte Carlo technique may be viewed as “experimental” 

providing that accurate physical models are used. This is 

usually the case - the fact that electrons have differing effective 

masses in different valleys can be taken into account. The 

major drawback of this method is that excessive time and 

computational resources are required. However, in certain 

areas [15] the Monte Carlo method is providing extremely 

useful new information. 

Analytically the BTE is intractable and simplifying 

assumptions are essential. This approach is the main topic of 

this thesis and discussion of such methods will be deferred to 

Chapter 2. It becomes more apparent that it is necessary to use 

simple analytical methods in this region as computational 

requirements are prohibitively large. 

v uantum transport models 

Only a brief overview shall be given here. 

Two main branches can be identified: quantum ballistic 

and quantum statistical transport. 

Quantum ballistic transport deals with the electrons 
C16] 

independently and treats their motion ballistically, 
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Quantum statistical transport is a very sophisticated 

theory and is a superset of all the transport theories discussed 

previously; indeed one of the tests of a quantum statistical 

transport is to derive a Boltzmann-like equation from the 

quantum transport equation under suitable assumptions [17], 

Quantum statistical transport is expected to be applicable to the 

next generation of sub-micron devices and as such should 

develop rapidly. 

84 Motivation 

Initially, the work detailed in this thesis began as a 

generalization of a model developed some time ago [18]. The 

model investigated the distribution of electrons and the current 

generated in the base region of a transistor when electrons are 

injected into it from the emitter. The scattering mechanism 

considered was that of non-polar optical phonon scattering and 

the distribution function was assumed to satisfy the nearly 

isotropic approximation (NIA). The treatment was extended to 

include an electric field. However as noted by [19] other 

aspects of the device physics need to be incorporated, namely 

higher (second) order phonon energy contributions than in [18], 

Thus the model has been extended to include these 

contributions as well. This forms the basis of the models to be 

discussed in this thesis. The formulation was extended to other 

scattering mechanisms (namely acoustic and _ piezoelectric 

phonon scattering) rather than just non-polar optical phonon 

scattering. 
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An analytical approach to the solution has been adopted. 

The reasons for this are that the general models can be 

developed and also to illustrate the potential that analytic, and 

particularly semi-analytic, approaches have. 

§5 Summary of thesis 

This thesis considers the problem of the formulation of 

analytic boundary problems in Boltzmann transport theory and 

their solution using analytical and semi-analytical means. 

Chapter 2 discusses the simplification of the BTE from a 

non-linear integrodifferential equation into a second order 

linear partial differential equation using the nearly isotropic 

approximation. It is found that this equation with essentially 

two adjustable parameters may describe a wide range of 

physical phenomena. However, the equation is complicated (as 

the coefficients depend on the independent variables) and is 

not amenable to direct solution. 

Chapter 3 discusses the mathematical boundary value 

problems that are appropriate for the different physical 

solutions described by the equation; the latter include the 

presence or absence of an electric field and the degree of 

truncation of the Taylor series expansion of the collision 

integral. An important point raised is that problems that seem 

physically well posed may not be mathematically well posed. 

Also a general case of the partial differential equation derived 

in Chapter 2 is solved providing a generalization of previously 

published work and indicating the economy of a general 

approach. 
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Chapter 4 is the culmination of the previous two chapters: 

it takes a specific model of a semiconductor device (namely that 

of a device governed by non-polar optical phonon scattering in 

an electric field) which is a generalization of the models 

considered in the previous chapter due to the inclusion of the 

electric field, and attempts to determine the electric current 

that would be observed in the sample, purely by analytical 

means. There are several stages: firstly a boundary value 

problem has to be solved, and although the solution can be 

determined by separation of variables [20] the boundary 

conditions are difficult to fit, and incidentally difficult to model. 

To satisfy the conditions it is necessary to invert a non standard 

singular Fredholm integral equation of the first kind. A model is 

then necessary for the injected current distribution. Once one is 

decided upon then the current may be obtained as an integral. 

No further progress is possible analytically so the current and 

electron distribution function are evaluated numerically. 

Chapter 5 discusses methods of solution for the other 

cases of the partial differential equation derived in Chapter 2 

that have not been discussed in Chapters 3 and 4. Several other 

cases are soluble and general solutions and details are given. 

The applicability of the method developed in Chapter 4 is also 

discussed. 

Chapter 6 gives a summary of the work, the results 

obtained and the major conclusions reached. 
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HAPTER T 

THE TRANSPORT EQUATION 

§1. The Boltzmann equation 

The most important object to be determined in 

transport theory is the distribution function f(x,p,t) which gives 

the number of points in a volume element centred at (x,p), x 

being the position vector andp the momentum vector of a 

particle. | From the distribution function the ensemble average of 

any dynamical quantity may be calculated via 

_ JAG p)fap.t)dpdx 

‘ Jec.p.ddpdx 

where < > denotes the operation of ensemble averaging, which 

(as shown in [21]) gives the physically observed value at time t. 

The distribution function satisfies the classical Liouville 

equation 

z. {f, H}) =0 (2.1.1) 

where H is the Hamiltonian of the system (assumed explicitly 

time independent) and {f,H} denotes the Poisson bracket of f and 

H defined by 
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n 

of dH of oH 
n= >) er Baie opi asi } (2.1.2) 

=O 

n being the number of degrees of freedom of the physical system 

under question. For any realistic Hamiltonian (2.1.1) is 

impossible to solve in general and recourse to approximations is 

necessary. Further it is implicitly assumed in the above 

discussion that the system that is being described is classical in 

the sense that no quantum mechanical effects are included in the 

above formulation. However it is possible to extend the 

formalism to quantum systems [22] by replacing the distribution 

function by a density matrix [23] which is the sum over the 

quantum states of the system, appropriately weighted to take 

account of their relative probabilities and replacing the Poisson 

bracket with its quantum counterpart, the commutator (up to a 

multiplicative constant). The commutator is defined by 

[A,B] = AB-BA 

where A,B are now operators, as is usual in quantum theories; 

classical quantities (such as position, momentum) are replaced by 

corresponding operator forms, these being defined by the 

postulates of quantum mechanics. The corresponding quantum 

Liouville equation is 

ih 08 _|R 
oO [ia] 

Q now being the density matrix of the system and H the 

Hamiltonian operator, denotes Planck's constant. The 
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ramifications of this replacement are fundamental: concepts such 

as phase space and distribution functions have to be revised as 

simultaneous measurement of (say) position and momentum is 

no longer considered possible, a consequence of the Heisenberg 

Uncertainty Principle. It is possible to accommodate the change 

in structure of phase space and the generalization and extensions 

have proven to be particularly fruitfulin high field quantum 

transport [17]. 

(2.1.1) may be viewed as the fundamental kinetic equation 

describing the phase space evolution of the distribution function 

from which other equations may be derived ( such as: BBGKY 

hierarchy; Pauli Master Equation; Boltzmann equation). The 

emphasis here shall be on the particular transport equation 

which is widely used in semiconductor device modelling although 

originally derived for gas like interactions, namely the Boltzmann 

equation. Several derivations are given in the literature [24], and 

we shall use the form most appropriate to our discussion 

Lor of 
at’ “td t Figg = CO (2.1.3) 

(summation convention assumed) where Fj are the components of 

the external force per unit mass and C(f) denotes the collision 

integral which is taken to have the form for binary collisions [25] 

CH= >, {fC-nhPy y- f(1-uf')Py'y } (2.1.4) 
a 

where f'=f(x,yv',t) and Py y' denotes the transition probability 

from the velocity state vy to the velocity state Ve 
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The BTE treats the collision integral quantum mechanically 

and the convective derivative classically although the wave 

nature of the electron is taken into account via the relationship 

mv=hk. p is a parameter which must be included to take account 

of degeneracy : =1 is the degenerate case (when the Pauli 

exclusion principle applies, that is account has to be taken of the 

fact that electrons are fermions and cannot occupy the same 

quantum state) and =O is the non-degenerate case. That wp 

must be included is an indication of the inherent quantum nature 

of the electron, and that it cannot be treated purely classically. 

The ultimate justification comes from quantum transport theory 

{17}, and the semiclassical form of (2.1.3) will be used : 

of Ak of 96 OF , i see 
Deans on A) “ae DFC -uf)P(k,k')-f(1-jf")P(k',k) }(2.1.5) 

where the electron wavevector k and the renormalised electron 

mass me have been introduced. § is the electric field and q the 

electronic charge. Summation and integration will be 

interchanged in the collision term whenever necessary, 

depending on whether a discrete or continuous system is being 

considered. (2.1.5) is the basic transport equation used for the 

rest of this thesis, although in the following sections it will be 

recast in a form appropriate to high field transport. 

As has been mentioned the Boltzmann transport 

equation has proven to be very useful in semiconductor device 

modelling but when device dimensions become small (of 

submicron order) and/or high electric fields are present the 

30



implicit assumptions upon which (2.1.5) is based become invalid. 

Pertinent ones include: 

1) Small interactions between particles 

2) Weak electric fields 

3) Low carrier densities 

4) Point like collisions 

5) Coarse graining in phase space 

Various papers [17],[26] have discussed the range of 

validity of the BTE, and unusual effects ( such as the intra- 

collisional field effect -a prediction that the field may have some 

affect during a scattering event ) are possible for small devices 

and/or high fields. For our purposes we shall assume that the BTE 

equation is valid. 

Mathematically, (2.1.5) constitutes a non-linear partial 

integrodifferential equation for the distribution function which 

should be solved self consistently with the Poisson equation 

eV29=-p 

where € is the permitivity, @ the electric potential and p the space 

charge density and exact analytical solution for any realistic or 

interesting situation is impossible. Even if the distribution 

function could be evaluated exactly it is functionals of the 

distribution function that are required - the transport 

coefficients, such as the current. Computational approaches 

Tequire expensive mainframe resources. There is thus a place for 

simple analytical approaches which can prove useful in 

themselves and also as initial input to computer codes. 
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Perturbative techniques have proven themselves in many areas 

of Mathematics and this is the basis of the method to be 

discussed. 

§2. The collision integral. 

From (2.1.4) we have the following form for the collision 

integral 

c®)=-W(2e)3 f { Pack )fd)-PEK Kf Jak’ (2.2.6) i 

where the position and time dependence have been omitted. A 

factor of Vi (2n)3 has been included as the continuous form of 

the collision integral is being used, V denoting the volume of the 

system. Note that the multiplicative factor is included as we 

have changed from summation to integration. The non- 

degenerate case is being considered in which f(k)<<l and P(k,k') 

has been written for the transition probability density from k to 

k' states. According to first order quantum perturbation theory 

{23] it has the form (Fermi Golden Rule) 

P(kK’) = = Mk) |? 8(E(k)-E(k’)th oq) (2.2.7) 

Here M(k,k') is the transition matrix which depends on the 

particular electron phonon interaction being considered [28] and 

the presence of the delta functional ensures conservation of 

energy, @q denoting the phonon frequency. The plus (minus) 

sign in (2.2.7) corresponds to the absorption (emission) of a 

phonon of frequency @q- Any processes for which 
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k-k'+q# 0 (Umklapp processes) 

will not be considered. 

Note that (2.2.7) is only a semiclassical approximation and 

is not universally legitimate [17] - for example, it requires 

infinite time between collisions. Generally in Boltzmann transport 

theory (2.2.7) is valid if the time between collisions is much 

greater than the duration of the collision event.Again for the 

purpose of this thesis the necessary approximations will be 

assumed valid. 

Below 300K, only single phonon processes are important 

[29] and we have 

1! M(k.k) = VAG) | ng+>t> (2.2.8) 

The plus (minus) sign corresponding to the absorption (emission) 

of a phonon of frequency wq. A(q) depends only on the particular 

scattering process and ng = kpT/ha@q is the occupation number of 

the state q assuming an infinite equilibrium phonon bath. 

Assumptions pertaining to the use of (2.2.8) and its derivation 

are detailed in [28], 

There are many types of scattering processes involving 

electrons - with impurities, phonons and other carriers (both 

electrons and holes). The scattering mechanisms of interest in 

this thesis are shown in Figure (2.1) 
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Mathematical models of these scattering processes will be 

developed later in this chapter. 

The discussion shall now be restricted to the nearly 

isotropic approximation (NIA) to the collision integral; the full 

distribution is assumed to be well approximated by a 

perturbative expansion about its isotropic component 

f(x,k) = fo(x,E)Po(cos®) + kf}(x,E)P1(cos@) (2.2.9) 

where E denotes the electron energy usually taken to satisfy E= 
hk2 
2me 
  

- the parabolic band approximation, @ the angle between 

wave vector and electric field. Pj denotes the Legendre 

polynomial of degree i and fo , fi the symmetric and asymmetric 

components of the full distribution function f respectively. 

Physically, (2.2.9) corresponds to a distribution function that is 

nearly isotropic in momentum space; it is assumed that | fi | << fo 

.The validity of (2.2.9) is discussed in [39], Note that some care is 

needed when comparing with other authors as some use an 

alternative expansion of f : 
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f(x,k) = fo(x,E)Po(cos®) + f1(x,E)P)(cosé) 

omitting the k factor multiplying f, [31] 

Substituting (2.2.9) into (2.2.6) and using (2.2.7),(2.2.8) 

gives upon simplification 

CO= On a Je A(q) [8(4+) {(ng+1)fo(Ek')-ng fo(Ek)} +8(4_) 

(nqfo(E)-(ng+1)fo(K)) + 6(A4) {(ng+1 )k'cos0'f1 (Ek') - 

ngkcos@fi(Ek)} + 5(A-){ngk'cos@'f)(Ek') - (ng+1)kcos@f (Ek) }] 

(2.2.10) 

where 

At = E(K)-E(k’)th og 

and the x-dependence of the functions in (2.2.10) has been 

suppressed. In low field transport fo may be taken to be the 

equilibrium Maxwellian distribution function, and contributions 

to the collision integral from terms involving fo vanish (101. Ip 

high field situations it cannot be assumed that fo is the 

equilibrium distribution and the terms involving it constitute the 

symmetric part of the collision integral Co where 

NV. 
Colfo) = Gays facac) [ 8(44){(ng+1)fo(Ek’)-ng fo(Ek)} + 

K 

5(A_)(ngfo(Ek’)-(ng+1)fo(Ek)} ] 2 AN) 

Similarly, terms involving f; constitute the asymmetric part of 

the collision integral 

Cu(f) = ot Jak Acq) [804,) ((ng+1)k'cos6'ft (Ex)- Q 
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(ngkcos®)fo(Ek)} +8(A_) {ngk'cos0'fo(Ek')-(ng+ 1 )kcos@fo(Ek) | 

(2.2.12) 

Further simplifications to (2.2.11) and (2.2.12) will now be 

discussed. 

§3 Relaxation time approximations 

Further simplification of (2.2.11) and (2.2.12) is essential so 

that the equations derived using the NIA are soluble.A relaxation 

time approximation to the collision integrals will be developed 

[28], 

Firstly, only scattering processes for which the asymmetric 

part of the collision integral can be written in the form 

C(f1) = -kcosé ae (2.3.13) 
1 

will be considered, where T(E) is the energy dependent 

momentum relaxation time [32], (2.3.13) is valid only for 

randomizing collisions (for example, non-polar optical phonon 

scattering) and elastic collisions (acoustic phonon, piezoelectric 

phonon and impurity scattering being in this latter category), 

although relaxation time approximations have been used to gain 

qualitative information about scattering mechanisms which are 

neither randomizing nor elastic (carrier-carrier and polar optical 

phonon scattering being cases in hand). When (2.3.13) is 

applicable explicit expressions may be derived for the relaxation 

time: from (2.2.6) and (2.2.9) 
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C®=-Gas Z (PC. )f(k)-P(k'k)£(K')} dk’ 

f = fo + kficosé 

Thus 

C(£) = C(fo + kficosé) 

Vv 
= C(fo) - ane J {P(k.k')kf1(k)cos6-P(k',k)k'f1(k')cos6"}dk' 

(2.3.14) 

Consider randomizing collisions; the probability of transition 

from the state k to the state k' is independent of k. Hence 

J Pd.) k'ficose'dk' = 0 

as the integral of cos 6' over 6' (which runs from 0 to 2x) 

vanishes. (2.3.14) then simplifies to 

ke, =a. nee C(f) = C(fo) a kf1cos@ i P(k,k')dk 

=Co(fo) Po + kCi(f1) Pi(cosé) (23.15) 

making the obvious identifications. 

For elastic scattering : 

C(fo + kf;cos®) = C(fo) - ~~ J PUKK') {kf (k)cos6-k'fy(k')cos6"} dk’ 
(2n) kK 

(as, for elastic scattering, P(k,k') = P(k',k) ) 

s Vv ’ , k'cos6' = C(fo) - Gn? kcos@fy J dk Pk (1 Pras | 

= Co(fo) Po + kCi(f1) Pi(cosé) (2.3.16) 
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again making the obvious identifications. Hence for the above 

scattering mechanisms the stated form for the asymmetric part 

of the collision has been derived. Note that its functional form 

(2.2.13) arises from the assumptions made about the scattering 

mechanisms and the use of the NIA to the distribution function 

(2.2.9) assumed ; it is not a Legendre expansion of the collision 

integral (see [33]).Comparing (2.2.13) and (2.2.15), (2.2.16) gives 

expressions for the relaxation time : 

  

  

2n)3 = 
Randomizing: T(E) = ( J P(kk')dk' ) : (2.3.17) 

K 

' 2n)3 ‘cos0!' : Elastic: TE) = [Paka eee dk! : 
KE 

(2.3.18) 

Generally, T|(E) may be expressed in the form: 

T(E) = Tsm E* V2 (2.3.19) 

(for the models to be considered here) where Tsm and the sign 

chosen depend on the particular scattering mechanism under 

consideration (see Table 2.1). 

  

  

  

  

TABLE 2.1 

% S s 

NPOP 1/2 -1/2 mt 

AP -1/2 1/2 2 

PP 1/2 1/2 1           
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To (E) being the energy relaxation rate. 

(the values given in columns one and two of table represent the 

values of the exponent n in the formula 

Ti(E) = (Ti)sm E® = (i=0,1 ) 

(Ti)sm being a constant, and K is introduced in (2.3.21). 

Secondly, as it is high field transport that will be considered 

it may be assumed that E >> hag : i.e. that the carrier energy is 

much greater than the phonon energy (a major assumption that 

restricts the analysis to ‘hot’ electron theory). Using this 

assumption the symmetric part of the distribution may be 

expanded by Taylors theorem : 

fo( Etfiog ) = ps fo(n)(ey- =A oa (2.3.20) 
n=0 

enabling (2.2.11) to be considerably simplified by substituting 

(2.3.20) in (2.2.11) and truncating at either first (as in [18]) or 

second order (as in [20]). Both options will be retained here. The 

expression obtained for Co is 

Co(fo) = : Kfo + W22 ats wfo 2.3.21 olfo) = > [Kfo + Way * Bem Kay + Wazy, || (2.3.2) 

with W being the scaled energy. The particular scale factor will 

be introduced shortly. K, Bsm are constants ( all scatterer 

dependent); Bsm representing a second order phonon energy 

contribution to the symmetric collision integral while K is a 
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parameter introduced for convenience. The form of the collision 

integral relevant to this thesis has now been discussed and the 

specific form for the differential equations will now be derived. 

§4._Hot electron transport 

i) Drifted Maxwellian 

Although the sole concern of this thesis shall be the use of 

the nearly isotropic approximation to the BTE, a simpler method 

which has found favour in hot electron modelling - the displaced 

Maxwellian approach [35] - is of interest. This amounts to 

assuming a specific functional form for the distribution function, 

with three adjustable parameters 

(E-¥d-p) } (2.4.22) f(E) = A exp {- ky tle 

where A is a constant, vq the electron drift velocity, p_ its 

momentum and Te the electron gas temperature. Frohlich has 

shown [36] that if the carrier concentration can be considered 

large and the anisotropic component small, then (2.4.22) is valid. 

To determine the three parameters take moments of the 

original BTE (2.1.5), recasting it in momentum space (using 

natural units) 

at<>+Ir< QV>+<eFapp >=< fdp'[p(p') - o(p')] P(p.p’) > 

(2.4.23) 

with < > denoting the process of ensemble averaging, (noting 

that f is assumed to be normalized) » being some arbitrary 

function. Taking 
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@ = pt (r= 0,1,2) 

gives 

<l>=n 

<p> = mvd (2.4.24) 
<p2> = 3mkpTe 

The three equations (2.4.24) are coupled equations which 

may be solved by numerical methods self consistently to give the 

parameters A, vq and Te. 

This method has given useful insight into device operation 

but has one serious flaw ; to obtain consistent results from such 

truncation schemes then the analysis is limited to at most two 

moments of the original equation [22] . 

ii) Legendre expansion 

If the assumptions necessary to ensure the validity of the 

displaced Maxwellian approximation [36] cannot be made then 

the full BTE (2.1.5) must be solved. This is not feasible 

analytically due to its mathematical complexity. If however it is 

assumed that the distribution function is nearly isotropic in 

momentum space, the BTE may be simplified by applying the 

NIA giving two coupled partial differential equations 

2E 2eEE-1/2 
3p Oxf +—5p 2E(Et3/2f1) = Co(fo) (2.4.25) 

f ehe 
ng Oxfo + The AE(fo) = Ci(fi) (2.4.26) 

(where the fact that Legendre functions are orthogonal to each 

other over [-1,1] has been used). 
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(2.4.25) and (2.4.26) constitute two coupled non-linear 

partial integrodifferential equations when explicit forms for the 

collision integrals are inserted. Use of the approximations 

detailed in this chapter, namely the NIA, the assumption that 

E>>t@q and the relaxation time form of the collision terms 

enables them to be reduced to one second order elliptic partial 

differential equation. Making the substitutions gives 

  

ZEc 2 (1 efo _ Xafo 
3mexc 1X ( ax” zm 

an a1] a 3/2 T | fo. PAGES) =C * 3me W"awl i ax Eow)= 2 @a27) 

where A = -e& and dimensionless variables K,W have been 

introduced by the relations 

X= xe x (2.4.28) 

E=EcwW 

Xe, Ec are characteristic length and energy scales (respectively), 

which will be introduced at the appropriate juncture. (2.4.27) 

applies to all the scattering mechanisms to be discussed - the 

specific form of Co will change depending on which is considered. 

However it is possible to generalize (2.4.27) to a single partial 

differential equation that depends on five parameters to cover all 

cases to be considered : 

    

a2f a2f a2 
2 n we ee ee (a“+BsmW Ww 20s Waxt! 5x2 

2Y fo (maz afo 
— n n-1 | — my 7X +{ Ww +W2+(m+n)BsmW: Jw + 

(m+n)WO-1f 9 = 0 (2.4.29) 
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py 3me d= y2= p= (2.4.30) 
HE, LX, 2EcTiTo 

with the doublet of integers (m,n) given in Table 2.2 below. It is 

to be expected that an equation of the form (2.4.29) would result, 

as Co has a similar functional form for all the scattering 

mechanisms considered here (see (2.3.27)) and the energy and 

momentum relaxation times T(E), Ti(E) have similar energy 

dependence (see table 2.1). 

  

  

  

  

TABLE 2.2 

n m 

NPOP 0 1 

AP 1 1 

I od Z         
  

The identification of (m,n) in (2.4.29) has been by inspection 

rather than by derivation; the functional form of the collision 

term for the scattered mechanisms stated was examined and a 

mathematical description, in terms of the two parameters (m,n) 

obtained. The general formalism developed, namely a Legendre 

expansion of the BTE and relaxation time approximation to the 

collision integral will now be used to model devices in various 

environments. 
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§5. Summary 

In this chapter the partial differential equations that will 

form the basis of the study of boundary value problems to be 

discussed in the next chapter have been derived and particular 

assumptions stated. The following specific approximations have 

been made : 

1) that the device may be modelled by the Boltzmann transport 

equation 

2) the distribution function is nearly isotropic in velocity space 

3) the scattering mechanisms are either elastic or randomizing 

These approximations allow the Boltzmann transport 

equation to be reduced to a single linear second order partial 

differential equation for the symmetric part of the distribution 

function. Mathematically the NIA may be viewed as a 

perturbative expansion of the distribution function about its 

isotropic component, enabling it to be reduced to a tractable 

partial differential equation, when suitable assumptions are 

made about the scattering mechanisms. 
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HAPTER EE 

BOUNDARY VALUE PROBLEMS IN SEMICONDUCTOR DEVICE 

MODELLING 

§1. Introduction. 

Mathematical modelling of transport processes will, in 

general, generate non-linear integrodifferential equations. In 

particular, for semiconductor structures, the actual equation 

(which is assumed to incorporate the essential physics) is only 

one aspect of the modelling process: the device geometry and 

appropriate auxiliary conditions must be included. 

The particular kinetic equation used (quantum, 

semiclassical or hydrodynamic) depends on such factors as the 

device geometry, environment and the accuracy required, 

although the effect that the choice of equation has on the latter 

factor can only be judged qualitatively. At the most 

fundamental level when device size is of submicron order and 

we are considering the high field regime perhaps 100 kV cm-l, 

quantum transport equations are essential, either statistical or 

ballistic depending on the prevailing physics. At larger 

geometries, and lower fields, Boltzmann transport theory is 

applicable which is a semiclassical approximation to the full 

quantum transport equations [17],[22], In many situations the 

BTE may be reduced to hydrodynamic equations, which form the 

basis of the majority of numerical device models. Rate equations 

have also proved useful in device modelling [37]. Note that care 

is needed to ensure that the correct equation is used as there is 
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not universal agreement on the ranges of validity of the various 

approaches. [38]. 

As well as the equation the device geometry, which will be 

fixed, has to be included. Only for simple geometries, usually 

one dimensional geometries, will analytic approaches be feasible, 

whereas the scope for numerical simulations is unlimited 

although even these are usually restricted to two dimensions, 

with the hydrodynamic equations forming the mathematical 

basis [39]. Considerations such as symmetry may help, and 

approximations such as semi-infinite domain can alleviate some 

problems in analytic approaches. The geometry may in fact 

intimate a method of solution as in the case of spherical 

symmetry which suggests a transformation of the coordinate 

system or a particular perturbative expansion, in terms of the 

spherically symmetric functions. It may even dictate an 

approximation if it is required to continue analytically; equations 

on infinite domains are much more amenable to treatment by 

integral transforms or separation or variables than those posed 

on finite domains. 

Another crucial aspect is the question of auxiliary 

conditions (initial/final values and boundary conditions). They 

will be mathematical abstractions of the physical situation, such 

as Neumann conditions at contacts representing the fact that the 

field is normal to the contact and apart from general 

considerations to ensure that a realistic compromise between 

mathematical tractability and physical actuality is achieved it 

must also be ensured that the problem is well posed; that is a 

solution exists which is unique and also depends continuously on 

the data. The last condition is very significant physically as the 
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accuracy of all data is limited, both practically and theoretically. 

It would not be expected that any bifurcations in the solution for 

infinitesimal changes in the data would exist. However this is 

not the case as shown in [34] ; models which seem well-posed 

physically may in fact be ill-posed mathematically and non- 

uniqueness of solution may result (however ill-posed problems 

do have a place in mathematics - see [40]). Before leaving the 

discussion there is a point worthwhile of mention: although it 

shall be ensured that the boundary value problems discussed in 

this thesis are well-posed, this does not necessarily infer that the 

BTE is well posed as only linear approximations to the BTE are 

being used. Appropriate auxiliary conditions for non-linear 

partial integrodifferential equations have not been mentioned 

and will not be discussed; it is difficult to ensure that such 

problems are mathematically well posed. Physical intuition may 

act as a guide but the mathematical implications are important; 

thyristors exhibit bistable states and this may be a manifestation 

of an improperly posed non-linear boundary value problem [41]. 

The discussion has been of the essential ingredients to a 

device model: mathematical equation, device geometry and 

boundary value problems. The first two factors have been 

implicit in the formulation of the problem(s) (see Chapter 2). 

The latter factor shall now be discussed, in the context of 

particular examples. 

§2. Boundary value problem 

Appropriate boundary value problems for the equation 
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a2f 6 226 to i 
20YSwax 5x2 

    

a2 oO 
(a2+BsmWn)= a 

tay a +( E> we mtn) BgmW2-l j= + (m+n)W2-lf, =0 

3.2.1.) 

(introduced in Chapter 2, equation (2.4.29)) shall be discussed. 

For convenience the notation discussed below shall be used to 

avoid repetition. 

i) Notation 

There are twelve cases of (3.2.1) to be considered; they 

correspond to the particular scattering mechanism (characterized 

by m,n), the presence or absence of an electric field (represented 

by a) and the order of Taylor expansion of fo (whether truncated 

at first or second order in the phonon energy). The choice a=0 

corresponds to no electric field, while Bsm=0 corresponds to 

truncating the Taylor expansion at first order (Bsm>0 for second 

order expansion). Write 

  

2 
{uv} 2 meena <, Pllc pac ib sm = (@ +BsmW Sw 2a Woxt? 3x2 - 

Oye mot 2 n el pom n-1 ™W 5x -{ Ww +W"+(m+n)BsmW2 Sw + (m+n)W! (3.2.2) 

where 

0 first order truncation 
1 Non-z ant ; 

g CC 1 second order truncation 

0 No electric field 

us v= { 

electric field 
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and the subscript sm (¢ {NPOP, AP, PP}) refers to the scatterer; 

NPOP referring to non-polar optical phonons, AP to acoustic 

phonons and PP to piezoelectric phonons. 

For example the boundary value problem posed in [18] 

corresponds to 

iL 
Lao fo = 0 (and associated auxiliary conditions). 

This classification (in terms of the mathematical structure 

of the operator (3.2.2)) is complementary to that given in [34], 

where the problems were characterized physically in terms of 

the scatterer. 

The four categories of boundary value problems 

{0 0} {1 0} {0 1} Clas} 
e sm? / smo? L sm E sm | 

will now be discussed. 

ii) N ric field, first or terin 

These relatively simple cases, without an electric field and 

first order Taylor series truncation, will be discussed first and in 

detail as they illustrate the salient points and can be treated 

fully. Now, from (3.2.2) 

(00) _ a2 
Lem = = + (m+n)wn-l (3.2.3) 

a noe + Woy 
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(X has been rescaled to X/y). This is a linear second order adjoint 

parabolic differential operator in canonical form. To transform it 

to a more familiar form, write 

{0 0} 
en fo =0 

and define 

j(X,W. ee wm, 30.4 JCGW) = 5¢ (W™Mfo) (3.2.4) 

Physically (3.2.4) corresponds to the current density per unit 

energy interval in the field free case. Operating on fo with 

(3.2.3) and then differentiating with respect to X and 

substituting (3.2.4) gives 

a2j a 
ax2* aw (Wj) =0 @.2.5) 

Define a new coordinate U by 

Ww ds U=f Goi U=(Wew=FlU) (3.2.6) 

and a function Q(X,W) by 

Q(X, W) = WAj(X,W) 
B22) 

Substitution of (3.2.6) and (3.2.7) in (3.2.5) gives 

2Q  aQ 
7) + yu =0 (3.2.8) 
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The above transformations (on both the dependent and 

independent variables) have thus reduced (3.2.3) to the adjoint 

diffusion operator. Note that an important feature of (3.2.8) is 

that it does not admit the same boundary value problems as the 

(one-dimensional) diffusion equation 

2Q 29 _ 3x2” 3U (3.2.9) 

To ensure that the problem is well posed mathematically (3.2.9) 

requires an initial boundary value problem of the form: 

Q(K=0, U) = h(U) 
lim Q(X,U) = g(X) U0 (3.2.10) 

whereas an appropriate boundary value problem for (3.2.8) is a 

final boundary value problem of the form [42] 

Q(X=0, U) = h(U) 
lim Q(XU)=0 (Uo>0) 
U3Uo G2.11) 

Imposition of (3.2.10) on (3.2.8) will give an improperly 

posed boundary value problem and unexpected results will 

occur, Here, (3.2.8) shall be considered subject to conditions 

imposed on a physical observable - namely the current density 

per unit energy interval j(X,W). Various models are considered 

in the literature (see [43]) and for illustrative purposes a simple 

model (with direct physical interpretation) for j(X,W) has been 

chosen to satisfy 
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j(O,W) = Jo &(W-Wo) (Jo constant) 

lim j(X,W) = 0 (WsWo) 
W-Wo 

G.212) 

where 8(z) denotes the delta functional of argument z. (3.2.12) 

represents a monoenergetic injected stream of electrons (of 

energy Wo). Use of the relationships (3.2.6) and (3.2.7) enables 

the boundary value problem to be recast in the form: 

®Q 2 4 
axe oU a 

Q(O,U) = Jo{f-1(U)}9 8(F-1(U) - f1(Uo)) :=h(U) 

lim (f!(U)]" Q(X,U) =0 
f'(U)>f-1(Uo) 

(3.2.13) 

where Uo = f(Wo). The solution to (3.2.13) may be obtained by 

the use of the appropriate Green's function; 

function being [44] 

— rae ae 
G(x,u;E,uo) =) V4e(uo-u)3—*P (40-0) 

0 u>uUo 

and the solution to (3.2.13) is given by: 

QHKU)= J G(X,U;0,2)h(a)de 
oO 

with the function h as defined as in (3.2.13). Thus 
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the required 

(3.2.14)



Wo 

  2 (geo nd “A¢e) 4-1 accu= | arto [f-1(e J" 8(£-1(c)-£-1(Uo)) dt 

oO 

which gives upon integration 

Sia eade ge at dw. 
Oe) = Tamtt(Woy-U8) *? WAEWo)-U) Tay 

(3.2515) 

Finally we have for the current density per unit energy interval 

(noting that wof'(Wo)=1 for the functions defined by (3.2.6)) 

using (3.2.7) 

JoX { -X2 } (3.2.16) 
exp 

JCW).= Wn 4n(f(Wo)-f(W))3 4(f(Wo)-f(W)). 

and from (3.2.4) 

: F(Wo)-F(W) coe Xe se 
fo(X,W) = JoW-{n+m) 4/8 exp { ea 

(3.217) 

(up to a multiplicative constant). 

Figure 3.1 gives a representation of fo(X,W) in the case of 

piezoelectric phonon scattering, taking various values of X. 

(3.2.16), (3.2.17) may be used, as in [18], to calculate such 

quantities as the current transfer ratio a in a transistor where a 

particular scattering mechanism (non-polar optical, piezoelectric 

or acoustic phonon) operates. 
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Wo Wo 
o x2 

JoX | ©xP(-ZG(Wo) = f(W)) 
Ia) = j(X,W)dW = 
| 4 avn J  V(f(Wo) - f0W))3 

oO ° 

  

, 

Jy being a constant (see (3.2.16)) 

Using a change of variable 

Fie 1 ee Aen) 
° = OAF(Wo) - FCW) 

enables the integral to be transformed to 

"2, 2 } { x 
=e =O do <= J fo (Ss Jo(X) oye J e o o erfe 45 oat 3) FO) 

54



Figure 3.1 
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6, denoting the value of o corresponding to W=O. 

Inserting the specific functional forms for f (see (3.1.16) and 

  

  

  

  

Table 3.1) 

TABLE 3,1 

Scattering Mechanism | n f(x) 

NPOP 0 x 

EP -1 i He 

AP +1 In(x)           

gives the following results for the current: 

polar optical phonon scattering 

  

Wo 
J((X) = 1 erfc = ) 

in the case of non- 

whilst in the case of piezoelectric phonon scattering 

  JQ(X) = i. erfc Ress ) 
° 

The most interesting result occurs in the case of acoustic 

phonon scattering when the mathematical model predicts that 

56



To I 

-a constant. 

The current transfer ratio « then evaluates as 

a = erfe {¥ ecwo) : ony 1/2} 

suggesting that, for acoustic phonon scattering, the current 

transfer ratio @ is constant. 

iii lectric_field, first order scatterin 

In these cases an arbitrary electric field is included. The 

operator is still of an adjoint parabolic form and thus admits 

boundary value problems of the type discussed in the previous 

section 

p (10), _ pee a2 a2 
S u — +2 — 

on aw? ~ 2% axaw tY 5x2 

  may | ma2 yee n-1 3.2.18 2 Want 6 wot 8) aay + (nen (3.2.18) 

: : 2 : ob 
Particular solutions to the equation L fo = 0 will be 

discussed in detail in Chapter 4 (for non-polar optical phonon 

scattering) and Chapter 5 (for piezoelectric and acoustic phonons). 

However there are some points relevant to this chapter; the 

canonical form of (3.2.18) is (after suitable scaling) 

2 
Leet) see a +n tae + (m+n)nn-l (3.2.19) 

sm ~ an2 a& 

ir



using canonical coordinates € = X+W mn = W. (3.2.19) is still an 

adjoint parabolic equation and a final boundary value problem is 

thus appropriate (cf (3.2.11),(3.2.19)). 

Note that although physically we would expect that when 

the electric field is removed (ie, « +0) the unique solution to 

(3.2.19) tends to that of (3.2.8), care must be exercised as the 

boundary value problems associated with the problems are not 

necessarily the same. Mathematically stated 

10 10 00 As i ale Ta) see aaylLy ees (fy 02 } 

if, and only if, 

{1 0} 
sm a 70 

Gt 0) 
(BVP) (BVP) 

i.e. the distribution functions will only correspond if the 

boundary value problems are equivalent as « tends to zero. 

An example of the fact that the above behaviour does occur 

may be seen by comparing the solutions of [18] and [34] the 

solutions do not correspond as they use different boundary value 

problems. 

No field, second order rin 

In this case: 

p (1). _ a2 a2 fy Oe 
sm ?=BsmW" 55+ 525 + (WE + Boy (men)W oe 

(m+n)wn-l (3.2.20) 
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Physically, higher order contributions from the phonon 

energy (represented by the positive constant Bsm) are included. 

This changes the nature of the operator from parabolic to elliptic. 

If contributions higher than second order were included then the 

operator would correspondingly increase in order, and 

complexity. As the electron energy is considerably higher than 

the phonon energy these higher order contributions would have 

little physical significance and hence the latter possibility will 

not be considered. Due to the change in the nature of the 

operator the type of boundary value problems admitted is 

fundamentally changed; generally, second order elliptic partial 

differential equations admit Robbins conditions 

a(X,W) fon + b(X,W)fo = c(X,W) (3.2.21) 

where a(X,W), b(X,W) and c(X,W) are functions of the 

independent variables. The subscript n denotes the normal 

derivative of fo and the values of it are prescribed on the 

boundary of the domain. Dirichlet and Neumann conditions are 

special cases, corresponding to the choices a(X,W) = O and b(X,W) 

= 0 respectively. Again, particular cases of (3.2.20) will be 

considered in later chapters and the discussion here will be 

restricted to overall properties of the operator (3.2.20). Firstly 

(3.2.20) will be considered on a finite domain, usually a rectangle 

[a,b]x[c,d]. This makes the analysis more difficult as it usually 

disqualifies separation of variables and recourse to numerical 

computation may be necessary (for which efficient software is 

available see [45]) (3.2.20) may be rewritten in terms of the 
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current density per unit energy interval J(X,W) (which is defined 

as in (3.2.4)) as 

ay a a —— -1 — (wm n. 2, >w (Bom eos (WMJ) + WHJ) + x2 sw (3.2.22) 

(cf (3.2.5) with Bsm = 0) which is unfortunately of little analytical 

use. Again due to the increased complexity of the operator 

(3.2.20), particular examples will be discussed in Chapter 5. 

Similar comments also apply to the correspondence of solutions 

of (3.2.20) and (3.2.3) if we notice that 

lim 

Bsm>0 
(01) _ , {00}. 

Lism = sm 3 

the solutions to these operators may not behave in a similar 

manner as they are subject to totally different boundary value 

problems : compare for example Laplace's equation V 2f = 0 with 

of 
the heat equation V2f=a Pe the former is elliptic and the 

latter parabolic. As a-—>0 then they tend to the same equation 

but it is possible to construct solutions that are independent of a 

which will not correspond as completely different BVP have 

been imposed on the equations. 

Electric _fiel nd_order_s Tin 

This is the most general case and is a formidable operator (it 

includes field and second order phonon energy and is 

analytically intractable) 
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a a2f 9 af o 

RDS all aDOn 
  

{1 1} af 
L gm tok = (02+Bsmw™)—S- - 

  

ay Ofo x ee 

Wax *(Ww m + W2+(m+n)BsmWa-! pio + (m+n)W2-lfo = 9 W ox ori ow 

(3.2.23) 

(3.2.23) is an elliptic equation and the appropriate BVP's are 

those mentioned in (2.3.(iii)). 

§ mmar 

A general description of the boundary value problems associated 

with the mathematical modelling of electron transport in 

semiconductors (subject to the assumptions given in Chapter 2) 

has been given. Two important points are the dramatic increase 

in complexity when an electric field is included and the change 

in nature of the boundary value problems (from parabolic to 

elliptic) when higher order contributions from the phonon 

energy are included. 

Explicit solutions to particular problems are the topic of the 

next chapter. 
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CHAPTER FOUR 

ELECTRON TRANSPORT IN AN ELECTRIC FIELD 

§1. Solution of the governing equation 

The previous chapter discussed the type of mathematical 

problems that the nearly isotropic approximation to the BTE 

poses. As an example we now discuss in detail the case of non- 

polar optical phonon scattering in the presence of an electric 

field, with a first order truncation of the Taylor series (2.3.20). 

The treatment is an extension of that given in [18] where 

non-polar optical scattering was treated in the absence of an 

electric field (i.e. assuming a purely diffusive phenomena) by the 

use of the NIA to the Boltzmann equation. The resulting partial 

differential equation was solved by a Green's function technique 

(cf. section 2, Chapter 3). The inclusion of the field considerably 

complicates the analysis, due to the fact that the equation 

satisfied by the distribution function changes from an adjoint 

diffusion equation with constant coefficients to one whose 

coefficients depend on the independent variables, and it becomes 

necessary to use numerical methods and analytic approximations. 

The partial differential equation describing this particular 

model is: 

a2f o a2f 9 2 a2f 5 

Iwo. ~"Yowex ax2 
  a2 
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may of mo. 2 afo 
a a wn) (m+n)W2-1f 9 = 0 (4.1.1) 

(see (2.4.29)). The solution to (4.1.1) is discussed in [20] where 

the problem was formulated in velocity-position variables, rather 

than in energy position variables as used solely in this thesis, and 

the relevant points shall be reviewed here. Inserting the values 

of (m,n) appropriate to this case and choosing characteristic 

length and energy parameters to make a and y unity: 

uy 
2s Eo=— (4.1.2) 

(with 2% and pw as defined in (2.4.30)) enables (4.1.1) to be 

written in dimensionless form: 

2F fo | af f af, 
ee, + } ae 0 (4.1.3) aw2 7 axow axe W ax t|wt !Jowtw'o= 

(4.1.3) is an adjoint parabolic equation and using canonical 

coordinates 

€=X+W n H = 

reduces it to the normal form: 

8 MSs any B24 f= 0 4.1.4 neta get eS + fo = (4.1.4) 

As shown in [20], solutions to (4.1.4) exist for a final BVP of the 

form. 

63



fo(O,W) = h(W) (4.1.5) 
lim £(X,W) =0 

W0 

and in terms of the original variables the solution is 

°° 

fo(X,W) = Jat B(t) exp(-(t+1)2?W) exp(-(t?+t)X) 
° 

t 
x IFiGyy: 1; @t+l)W) (4.1.6) 

where B(t) is to be determined from the condition (see (4.1.5)) 

2. 

hOW) = fdt BQ) exp-(t+1)W) FiGeaps 1s Qe) (4.1.7) 
Oo 

iF; denotes the confluent hypergeometric function [46] defined 

by 

n 

iF; (a; b; x) = = etn an (4.1.8) 

(a)p denoting the Pochammer symbol 

T(a+n) 
(ap = aay = a(atl).... (atn-1) 

T(z) being the gamma function of argument z 

The main problem is to invert the singular Fredholm integral 

equation of the first kind (4.1.7). This is termed singular due to 
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the semi-infinite range of integration rather than any 

singularities in the kernel. The general form of Fredholm integral 

equations (of the first kind) is 

b 
h(W) = JK(W,t) B(t) at 

a 

Many integral transforms are particular examples of Fredholm 

integral equations of the first kind; one particularly relevant to 

this thesis is the Laplace transform defined by 

°° 

h(W) = fexp(-Wt) B() dt = Lw (B(t)) 
° 

Unfortunately however the kernel of the integral equation (4.1.7) 

viz 

2 
K(,W) = e@DW yr] GES; 1; @t+1)W) 

cannot be converted to any standard form. Approximate (and 

computational) methods exist but would be difficult due to the 

nature of the confluent hypergeometric function. The approach 

developed here will entail deriving a simple analytic 

approximation to the kernel. 

_§2. The boundary condition 

An initial (or boundary) condition on the full distribution 

function satisfying (2.1.5) must be imposed to ensure a unique 

solution. In the NIA 
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f = fo + kf; cos0 

and the single condition on f is in fact sufficient to determine 

conditions on both fo and fj. The boundary value problem on fo 

(see section 3.3) is also sufficient to enable fo and f; to be 

uniquely determined. If a boundary value problem had been 

prescribed on f; then this would be equivalent to a Neumann 

problem for fo due to the relationship between fo and f 

fA eG 
f\(E) = -t1(E) me O%fo tine OEfo 

- see (2.4.26) and (2.3.13). 

The boundary value problem appropriate to this model 

shall be reformulated in terms of physical observables; either 

j(X,W) the current density per unit energy interval (when the 

boundary value problem is prescribed on f;) or n(X,E) the particle 

number density per unit energy interval (when the boundary 

value problem is imposed on fo). It is quite common in 

mathematical modelling to impose conditions on integrals of 

functions as certain observables, such as energy, are usually 

defined as such. Now 

n(x) ax = aX Nf £(Xk) dk 

n(X,E) « VE fo (X,E) (4.2.9) 

N denoting the total number of particles and the symmetry (in k 

space) of fo has been used. 

66



Similarly 

jim = J kxf(X,k) dk 

j(X,E) ~ E*” £,(X,E) (4.2.10) 

As boundary value problems for fo are of interest here, 

then (4.2.9) will be used to translate between the models. 

Some compromise between the realistic distribution (i.e. 

that based on experiment) and the form used for the following 

analysis is necessary, so that the calculations may be effected 

analytically. The functional form chosen for n(X,E) does not affect 

the inversion of (4.1.7), which depends only on the kernel and 

range of integration (providing it satisfies certain reasonable 

mathematical criteria such as continuity) but determines whether 

simple explicit formula can be derived for B(t). Various models 

are plausible to represent the injected current - a mono energetic 

beam of no electrons at X=0 for example, which would be 

mathematically represented by a delta functional. For 

illustrative purposes and also to provide a useful toy model the 

form chosen is 

noe 
n(O.W) = a (4.2.11) 

giving a total number of particles at the origin of 

Jn(O,W)aW = no 
°O 
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and, from (4.2.9) 
Ww Ce 

fo(0,W) = yeO= + hCW) (4.2.12) 

with C being a normalization constant. Other models for n(O,W) 

will be discussed in section (4.5). B(t) shall now be evaluated 

with h(W) as defined in (4.2.12). 

§ lution of the integral ion 

The singular Fredholm integral equation of the first kind (4.1.7) 

possesses a daunting kernel namely 

  K(,W) = e+ 1)?W op, Gen 51; Q2u41)W] (4.2.13) 

It is highly unlikely that it will be possible to invert an integral 

equation with a kernel of the form (4.3.13) analytically, a major 

difficulty being that the integration variable t appears in two 

parameters of the confluent hypergeometric function. Numerical 

methods are available [47] but are not unconditionally stable and 

so in keeping with the general approach of this work, a simple 

semi-analytic solution will be determined. It is intended to 

develop an approximation to the kernel (4.3.13) that will enable 

the integral equation to be inverted. 

Firstly using the relation [3] 
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rete, bine Tay xx (xe Rt 

x large 

it can be seen that for large t and/or W the exponential factor 
2 

e (ttl) W dominates the kernel. W represents the scaled energy 

viz 

4 
Now aD, where Do is the deformation potential constant [18] 

and has an experimentally determined value in the range 109 - 

10!1eVm-!. If the applied field is in the range 105 - 107 Vm:! 

then Eg varies over twelve orders of magnitude. As E, represents 

the energy scale against which E is measured, W = EyEe will 

show a similar variation. Taking the field to be 100 kV cm”! and 

Dy = 1019 eVm-! gives W~ 10-3 for appropriate carrier energies. 

W will thus be considered to be of small magnitude in the 

following analysis, although this is not strictly necessary. 

If W is considered small then the following approximation 

will be shown to be valid 

e-(t+1)°W jp, Car 1; Qteryw) ~ eCt?2W Gatwy (4.3.14) 

Analytically: 
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2 
ett) Wiser 1; (ave1yw)- (1+tW) e-(t+1) w| 

  

= e-(ee1yw Gee" : a ae a W3+ 1(3t+1)(5t+2)(7t43) 
wt 

x (4p2* ad | 

{ Using the expansion 

t Sh whe Ff ares (2ce1yw) = 1+ > Gye JE, ( 2n+1)t+ndr} 
ic a 

~(ee1y2w [31 t+), Sit(t+1)*W3 _7It(t+1)3 sent) | aan2 V+ “aanane + 2an~ane 
<e(t+1)2W | t(t+1)W2 + t(t+1)2W3 + t(t+1)3W4 +... | 

al 

(2n-1)! 
[as G@ ila) = 1 by induction| 

= e(tt1)2W ae 
1-(t+1)W   

assuming (1+t)W <1 

1 1 
Hence for t< w - 1) ao (for W small) the above approximation 

is valid. As W~107> this is valid for t<1000. This error term is 

obviously small over the range of interest. This linear truncation 

is valid as for large t the exponential term dominates, and has 

small magnitude, while for small t, terms of O(W?) again are 

negligible. The difference in magnitude between (4.3.14) and 

(4.3.13) has also been studied numerically, and the above 
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reasoning verified. Using the approximation defined in (4.3.14) 

an explicit solution to the resulting integral equation 

°° 

J pae-(t4)°w (1+tW) dt = h(W) (4.2.15) 
oO 

will now be constructed [48]. 

Integrating (4.3.15) by parts gives 

lim tB(t) 

an J {pe +4 tat a. } GR ea) 
° 

(4.3.16) 

providing that B(t) is exponentially bounded as toe. 

Assuming the result 

Nes [ 29] =O (4.3.17) too | (#1) 

(4.3.16) becomes 

°°. 

J octye(t+1)2W dt = nCW) (4.3.18) 
O° 

with 

ot) = = < { eas } + Bw (4.3.19) 
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Consider (4.3.18): 

-W -(t+1)2W gp = e-W o(vu+i-1) -uW = S Jee dt € ie e-UWdu h(w) 

oO 

(4.3.20) 

after using the substitution u = t? + t. (4.3.20) is in the form of a 

Laplace transform with variable W : 

Lw {9 (u) } = eWncw) 

(Lw denoting the operation of Laplace transforming) which upon 

inversion gives 

p(t) = 2(t+1) p(t2+t) (43521) 

p(t) = Lo {ew h(w) } (4.3.22) 

Thus, formally, an expression for o(t) has been derived. B(t) may 

be evaluated from the first order linear ordinary differential 

equation (4.3.19). The solution is 

t 

B(t) = vol e2t[8+2 |p? e?P o(p) dp ] (4.3.23) 

The constant of integration 5 must be chosen so that 

(4.3.23) satisfies (4.3.17). Putting 
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t 

a(t) = J p2e?? @(p) dp 

the limit required is: 

lim e2t E + “| 
t0 Ce 

Using a Taylor expansion of a(t), noting that 2 i= = a(t) | t=0 

gives 

d= - 2a(t)| = 

Hence: 

Bit) = oo). -2t ie t 2 eP o(p) dp (4.3.24) 

with g(p) defined in (4.3.21), (4.3.22). Hence, for arbitrary h(W), 

the integral equation (4.3.15) has been inverted, and an exact 

solution to the boundary value problems (4.1.5), (4.1.6) has been 

derived, subject to the approximations detailed in this section. 

§4. Evaluation of the current 

Although the distribution function is of primary 

importance; physical observables, such as the current are of 

interest experimentally. 

From (4.2.10) and (2.4.26), (2.3.13) 

a



°° 

i@) =k E32, (x,E) dE (4.4.25) 
oO 

Ofo afo =) B[5> 4)es SHE (4.4.26) 

oO 

k,k, being constants. Note that dimensionless variables are not 

being used in (4.4.26). Integrating (4.4.26) by parts gives 

i= « JEfo dE - e& Jfo se} (4.4.27) 
oO oO 

the boundary terms vanishing due to the limits of integration. 

Strictly, the limits on the integrals are not (0, «); it has been 

assumed that E > ha (see section 2.3), and this dictates the lower 

bound. However low energy carriers furnish little current and 

the lower bound shall be taken to be zero. There have been 

attempts to overcome this problem (see [49]), by using solutions 

appropriate to each energy interval. This is not feasible in this 

analysis. 

In low field transport (see [28]) f) is now assumed to be a 

Maxwell-Boltzmann distribution, and (4.4.27) may be evaluated 

exactly. Generalizations of this procedure have included that in 

[50] which assumed a temperature dependent fo, and extended 

the simple drift-diffusion expression 

74



j=-enmpeE +e De $2 (4.4.28) 

(n being the electron number density, je the electron mobility 

and De its diffusion coefficient) to the temperature dependent 

form 

j = -e&n(x)pe(T) +e < [2@ De(T)] (4.4.29) 

the temperature being spatially dependent. Neither of these 

treatments are appropriate to this analysis as hot electron 

transport is being treated and a Maxwellian distribution is not 

applicable. However the precise functional form for fo is known, 

for an arbitrary injected stream of electrons from Chapter 4, 

although a specific model has been used. This shall be used in 

(4.4.27) to evaluate j(x). Note that (4.4.27) can be expressed in 

drift-diffusion format as (using dimensionless variables) 

j= (D(X,E) nCX,§)) - wCX6) nCX,§) (4.4.30) 

with n given as in (4.2.9), and the explicit dependence of the 

functions involved has been advanced. D(X,€) and y(X,&) have now 

become functions of field and position, being generic diffusion 

and mobility coefficients respectively, given by 

I, 
Ihj2 
  

I 
D(XE) = a W(X,E) = 

with 
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°° 

In = JW" fo (X,W) dW (4.4.31) 
ce} 

Dimensionless variables have been used in (4.4.31) and 

multiplicative constants have been omitted. 

The current j(X) can be expressed in the form 

i d 
JX) = gh -h (4.4.32) 

where E has been replaced by W via E = WEg and the definition of 

In given by (4.4.32) has been used. A specific functional form for 

h(W) must be used to determine B(t). For simplicity and to 

generate a toy model, taking 

aCW) = ie” (4.4.33) 

(see (4.2.11), (4.2.12)) C being a constant, gives 

hCW) = ce (4.4.34) 

and from (4.3.21), (4.3.22) 

o(t) = 2C(t+1) (4.4.35) 

Evaluating the integral (4.3.24), with g(t) given as above gives, 

14 
Bi) =2€ eH { e2t + 43 - 212+ 2t-1 } (4.4.36) 
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This satisfies the condition (4.2.17) (by construction). 

By substitution (4.4.36) satisfies (4.2.15), with the choice of 

boundary condition used ((4.4.34)). From (4.1.6) 

co 

fo(X,W) = 2C ae [e-2t + 48-22 + 2t-1] eo (tt h)W 

oO 

~(t24t)X pe CEee or e(t+t)X | Fy Ma 1; (2t+1)WHe (4.4.37) 

OC Ln [en2t + 403 - 22 42t -1] e (tt PW (P+) xX 
oO 

(1 + tW) dt (4.4.38) 

(using the approximation (4.3.14)). 

For the solution (4.4.38) reversing the order of integration 

and performing the W-integration gives (using (4.4.32) and 

(4.4.31)) 

j(X) = [aw e (t2+t)X {es sesh dt (4.4.39) 

oO 

(38) converges, but is not readily evaluated. (4.4.39) will be 

evaluated numerically; taking the device to be of size 10m and & 

= 100kV cm-! gives Figures (4.1) and (4.2) for fo(X,W) and j(X) 

respectively. 
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§5. High field solution 

Sections two and three of this chapter detail the evaluation 

of the generalized Fourier coefficient B(t) via the assumption that 

W is small. This is not necessarily true as W varies over several 

orders of magnitude, depending on the values of the field & and 

the deformation potential constant Do. W is inversely 

proportional to the characteristic energy scale Ec which itself is a 

function of the applied field and deformation potential constant. 

The magnitude of W will be determined by the range of Ec via 

-1 
the relationship W=E.E, . If their values are such that W is large 

(in the sense that (4.5.40) is a valid approximation) another 

solution to the boundary value problem (4.1.5), (4.1.6) may be 

determined. This approach is somewhat artificial in that it 

dictates a value of Ec, and hence applied field for its validity. 

However the appropriate range of electric field is realistic and 

the solution to the boundary value problem does represent the 

exact distribution function rather than assuming a specific form 

with variable parameters, as in a drifted Maxwellian approach. 

For large z , the confluent hypergeometric function has the 

following asymptotic form 

Zz za-1 
ents 7 aa (4.5.40) 

Zoo 

Thus, the following approximation is valid for large W 
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(2t+1)W -(t+1)/(2t+1) 
1; Qreiyw] ——> Je ieepw) 

t 
(2t+1)W e rep 

  

t 

Pei ; 

(4.5.41) 

(Note that for t 20 (2t+1)W 2W). Using (4.5.41) in (4.1.7) gives 

1 Be r ( t+ 

2t+1 
lee poate et?W dt = h(W) (4.5.42) 

  

"Gal 
° 

If a derivative problem was imposed on fo (i.e. a boundary 

value problem involving the current) then use of the 

relationship 

oF, (a;b;x) = eFi (atl ; b+1 ; x) 

would enable (4.5.40) to be applied to the resulting Fredholm 

integral equation of the first kind. Other problems (see Chapter 

5 and [34]) may admit a similar asymptotic approach. The same 

argument applies to the analysis of section (4.3) 

As it stands, (4.5.42) is intractable. However as W is large, 

and the argument of an exponential function, progress may be 

made: only in the vicinity of t=0 will the exponential function 

have appreciable magnitude; it is highly localized at the origin for 

large W. Hence to a good approximation, the function 
t+1 

we Creasy) can be replaced by its functional form at t=0, namely 

W-. (4.5.41) then becomes 

no



© 

  

J cctye-t?W at = whcw) (4.5.43) 
O° 

with 

t+1 

a Sei) 

C(t) = Pal (4.5.44) £ 
Uy (aa 

(4.5.43) may be readily converted to a Laplace transform by the 

substitution s=t? giving 

Lw { C@s) } = wacw) @ C(t) =L, CHOW) “| sae cas 45) 

and, from (4.5.44), B(t) is then known. As in the low W case, 

h(W) must be modelled. Again, a simple form will be used for 

n(0,W) and the ramifications of this choice investigated. A more 

realistic n(0,W) could be used and numerical techniques applied 

but the object of this analysis is illustrative. 

Taking 

wir 
n(0,W) =a. (W+Wo? (4.5.46) 

(a being a normalization constant, and Wo an arbitrary positive 

dimensionless energy) gives (via (4.2.9)) 

fo(0,W) = hw) = —* (W+Wo)? (4.5.47) 
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(4.5.47) was chosen mainly to facilitate inversion of the Laplace 

transform. Using (4.5.47) in (4.5.45) gives, using (4.5.44) 

t+1 

Gai 
t 

Tar) (1-Wot?) e?Wo (2t+1) (4.5.48)   B(t) = 2otT ( 

Substituting the value obtained for B(t) above gives fo(X,W) as 

t+1 

Gai 

fo(X,W) = 20 { [¢ an ) C-Wot?) et?Wo (2t+1) 

° 

  

C e(HIPW PHOX (sor 1 ; avetyw) | dt (4.5.49) 

t+1 
(a=) °° 

h(W) = fo(O,W)=20 i ise (=) (1-Wot?) et?Wo (2t+1) 

° 

x e(t41)?W or, (55> 1; @tet)W) at 

Thus this is the exact distribution function. The alternative 

viewpoint - that (4.5.49) represents an exact solution if the 

injected stream of electrons has the distribution defined in 

(4.5.49) - is valid: if such a distribution could be generated 

experimentally then the resultant current could be compared 

with the analytic results, providing a useful test of the model. 

81



Using (4.4.32) the current corresponding to the above 

distribution may be evaluated: use of the result [46] 

rc) 

i e Pt pb-1 iF; (a; ¢ ; kt)dt = '(b) p? 2F 1 (a bye: = ) 

° 

(the necessary convergence criteria are satisfied) where 2F; (a, b; 

c; x) denotes Gauss’ function, defined by 

@ (a)n(b)n x” 
oF (a, bs 3 x)= > a aT 

n=o 

enables the W-integration to be performed analytically giving 

  

B(t) e~(U+t)X ae 

* J (t+1)? : Paar sous Gene) dt (4.5.50) 

oO 

_ (B(t) e-(t?4+t)X (2t+1) 
Ib = (tI? Hs se apt) dt (4.5.51) 

° 

Use of the identities 

oF @, Ils x)= (1-x)54 

F, (a, 2; 1; x) = -tatbx 
(1-x)atl 

enables j(X) to be written as (see (4.4.32)) 
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(4.5.52) i@O = ae Bie dt 
oO 

with B(t) given by (4.5.48). 

Figure (4.1) gives the fo(X,W) surface for a device of the order of 

10pm subject to a field of the order of 100 kVcm-! with the 

boundary condition (4.4.34). 

Figure (4.2) gives the electron current corresponding to the 

distribution function given in Figure (4.1). 
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HAPTER FIVE 

MODEL SOLUTIONS 

§1. Introduction 

Chapter 3 discussed the general classes of problem to be 

discussed whereas Chapter 4 solved a particular example in 

detail. Here an intermediate viewpoint shall be used in that the 

method of solution shall be developed although not fully as in the 

previous chapter. 

There are still a number of problems to be discussed, and 
00 

apart from the L pee cases (those without an electric field 

and first order phonon energy expansion), the remaining 

boundary value problems require a large amount of work; the 

general approach expounded in Chapter 3 cannot be extended to 

these cases. 

However some progress can be made analytically and once 

again the mathematical classification of the problems (see 

Chapter 3) provides useful insight. 

§2. Model solutions 

i Electric field, first order rer: 

These cases include an electric field but only consider the first 

order phonon energy contributions to the collision integral. 

This is a parabolic operator, the corresponding partial 

differential equation being: 
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of af, 
ea ra + (m+n)nP1 fo = 0. (5.2.1) a at ) rat 
with n having a value appropriate to the scattering mechanism as 

given in Table 3 of Chapter 3. 

The canonical coordinates: 

n=W &=X+W (5.2.2) 

have been utilized (cf. 3.2.19). Separating the variables in (5.1.1) 

gives: 

fo(&n) = N(n)Z(é) (5.2.3) 

e +1Z =0 Ga)? 16:24) 

a qm =) + Sq (NN) - antm#ON =0 (ii) 

X being the separation constant. Note that the boundary 

conditions must also separate. (5.2.4(i)) is readily soluble but 

the second equation causes more difficulty. Instead of repeating 

the analysis of Chapter 4, and studying the second order ordinary 

differential equations (5.2.4.(ii)) in depth, a different approach 

will be used. Multiplying (5.2.1) by n™ and simplifying gives: 

Qs (nm = + nmtn F) +: (mm+n F) = 0 (5.2.5) 

where F = fo. 
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Writing 

1 

Fn) =exp| - J v2 dv [¥Em=pm¥ En) (5.2.6) 

tecasts (5.2.5) in the form 

a 1 

a ~ nM+Np(m) a 
(n™ pin) mn wy) =0 (5.2.7) 

(5.2.7) is still separable but this is of little practical value. 

Continuing in the spirit of the approach developed in Chapter 3, 

define a coordinate transformation 

u=x(n) (5.2.8) 

such that (5.2.7) becomes 

tt = (niu 3 = =o (5.2.9) 

where the functional form of x (and hence h) may be determined 

by comparison of (5.2.9) and (5.2.7). This approach illustrates 

the similarity between the models generated by 

the L . a and L a operators, as one would expect as they 

only differ by the inclusion of the electric field in the latter. 

(5.2.9) cannot be solved in a general manner; each case shall be 

treated separately. 
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Non_polar_ optical phonon scattering 

This particular case was treated at length in chapter 4. It 

illustrates the increase in difficulty when the electric field is 

introduced; a purely analytic approach applicable in the case of 

zero field has to be replaced by semi-analytic methods. 

Piezoelectric phonon scattering 

In this case (5.1.7) reduces to (see Table 2) 

ao ea) = 60 (5.2510) 

(5.2.10) is in fact equivalent to the corresponding partial 

differential equation. given in [34]: 

0fo Ofo afo 
2—2 — — = Dee ea malin to 0 

(see [34]) 

which may be reduced to 

a a a 
in (1 55 (nfo) ) + 3g (nfo) = 0 

by elementary manipulation. 

The substitution 

yw=nfo 

gives the required result. 

The generalized adjoint diffusion equation (with a non- 

constant diffusion coefficient) may be approached using several 
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different techniques; for example, separation of variables is 

applicable. However by comparison with the adjoint equation 

OW 0 ON mE - 5g (05, a0 (5.2.11) 

the Green's function technique offers scope as the Greens 

function for (5.2.11) is tabulated [44]. As the form of the 

separated solution is known, (see [34]) this suggests that a 

Hankel transform may also be helpful: putting 

1 n=7P (5.2.12) 

transforms (5.2.10) into 

OO malin eo oF Or ae (x =) =0 (5.2.13) 

whence the term involving derivates with respect to r_ is in fact 

a Bessel operator. Care must be exercised as the equation 

(5.2.13) is in fact adjoint to the more usual form of the equation, 

namely (5.2.11). Another consideration is although the boundary 

value problem appropriate to (5.2.1) is 

fo (O,W) = h(W) 

lim fo (X,W) = 0 (5.2.14) 
W- 0 

that appropriate to (5.2.10) as 
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lim 1 
gon 7 ¥ GD= hen) 

lim 1 
noe 7 ¥ mn) = 0 

whilst that for (5.2.13) is 

lim 4 

72 90) = HO) a 
37 

li 4 
poe GE oe) = 0 

This illustrates the care necessary when dealing with such 

problems: transformations may alleviate problems due to the 

form of the equation but aggravate the situation due to the 

boundary conditions. This particular case is an interesting 

boundary value problem which it may be possible to solve 

completely by analytical methods. It would offer a chance of 

comparing the approximate techniques developed in Chapter 4 

with an exact analysis. 

Finally the comments and treatment given here may be 

compared with that given in [34]: by using the method of 

separation of variables Cox derives a solution of the form 
© 

fo(X,W) = J Acne-wx e-WW Io (2 VwW ) dw (5.2.15) 
Oo 
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which satisfies the final boundary value problems (5.2.14) where 

w is the separation constant, Ig denotes the modified Bessel 

function of zeroth order and A(w) must be chosen to satisfy the 

singular Fredholm integral equation of the first kind 

h(W) = J A(w) e ¥W 1, (2V ww ) dw (5.2.16) 
oO 

(i.e. the boundary condition). 

The techniques developed in Chapter Four, of either using a 

"small W" approximation, or an asymptotic approximation, to the 

kernel of the integration equation, namely e YW1,(2Vww ) 

may be applicable. However (5.2.16) is in fact (formally) soluble, 

and is a special case of a more general Fredholm integral 

equation of the first kind: 

°° 

J f(x) K (xt) dx = g(t) (t>0) (6:2.17) 
° 

-xt 
(making the obvious identification K(xt) =e x To(2vxt )). 

The method of solution given in [51]; if use is made of the Mellin 

transform defined by 
° 

M{f(x);s} = J rte) dx. = {*(s) (5.2.18) 
° 

(for suitable f(x)) and also the result 
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M ey i" f(xu)g(u)du ; s| = f*(st+A)g*(1-A+p-s) Gi2i19) 
° 

then Mellin transforming (5.2.17) gives: 

f*(1-s) = K*(s)g*(s) 

with solution 

g*(s) 
i(<)p= wet (5.2.20) 

cm} denoting the inverse Mellin transform) 

In the case in hand: 

g*(s) = M {h(W); s } (6.2.21) 

which is of course model dependent while 

Kes) = M{ e “Io(2Vw) ; s } 

using the notation 

fe oY 1, (2Vw)aw 
oO 

r (si5) G- nae -1] (2,22) 

of Chapter 4. Hence (5.2.20) gives us the 

function A(w) in (5.2.16) and thus via (5.2.15) the exact form of 

the symmetric part of the distribution function. A similar 

procedure to that followed in chapter 4 may be used to evaluate 

the current due to the injected distribution. Suitable models are 
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necessary for h(W), and even then semi-analytic means may be 

required. 

Acoustic phonon scattering 

This case is analytically insoluble and separation of 

variables is inapplicable as it generates a second order ordinary 

differential equation of non-standard form namely: (see 5.2.4) 

d dN d 6 2 
an (1 @y) t mOTN) - aN N=0 (G23) 

for which solutions are not immediately available. 

Thus the only method of solution seems to be numerical 

and further analysis of this case shall be omitted. 

ii No electric fiel nd_order_scatterin 

These form a new class of problems in that the operators 
{0 

Lem are elliptic. They require different boundary value 

problems (see Chapter 3) and are more difficult to solve than the 

preceding cases. 

The general equation to be considered is: 

2 2 a-fo 4+ ofo 

aw2 ax? 
  

  

of o 
wn + (W24(m+n)wn-l ) aa w-lfo =0 

(5.2.24) 
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(or alternatively in terms of the current density per unit energy 

interval: 

2 qym-n 2 wymy y way ,2F _ g 
aw aw | + 2 * 

with J(X,W) defined as in (3.2.4)). 

Again, (5.2.24) is separable; substituting fo(X,W) = 

H(W)T(X) gives: 

  

2T 
at AT =0 (5.2.25) 

42H 1, dH 1 
wa aw2 + (W! +(m+n)Wa- daw + ((m+n) W8-1-)H=0 = (5.2.26) 

(5.2.25) is readily soluble but (5.2.26) generally is not; in 

the cases of acoustic phonon scattering and non-polar optical 

Phonon scattering (5.2.26) may be solved in terms of 

hypergeometric functions [34] whereas in the case of 

piezoelectric phonon scattering (5.2.26) is of non-standard form. 

However the boundary value problems for elliptic partial 

differential equations accentuate the problems: the actual set of 

admissible boundary value problems for elliptic operators is a 

complex subject and the discussion shall be restricted to those 

posed on a finite domain [52]. The most general boundary value 

problem (see (3.3.21)) is of the Robbins type: 

a(x,y) OA + b(xXy) > = c(xy) (5.2.27) 
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with on denoting the normal derivative of the function ». The 

fitting of this type of boundary condition on a finite domain by 

the inversion of a generalized Fourier-Bessel series (generated by 

the solutions of (5.2.25),(5.2.26)) can require considerable 

ingenuity. For example, in the case of acoustic phonon scattering 

Cox has shown that a solution of the form [34] 

fo (GW) =D exp (-Vox ) eW F, (@;2;W) Clo) (5.2.28) 
@ 

exists, C(w) being determined by the boundary value problem, @ 

being a separation constant and ,F, the confluent hypergeometric 

function. (5.2.28) is then subject to a condition of the form 

(5.2.27) on the rectangle [a,b] x [c,d] and inversion of such a 

provlem on a finite domain is impractical analytically. 

Thus no simple analytic solutions are possible. This is 

unfortunate as efficient software exists for elliptic problems and 

comparison of the solutions would have been interesting. 

iii) Electric field, second order_scatterers 

This is included for completeness; there is little chance of 

solving the relevant equations as this case is a generalization of 

all other cases, including the effects of the electric field and also 

higher order contributions from the phonon energy. 

Numerical methods provide the only feasible approach [45] 

and these shall not be considered in this thesis. 

96



CHAPTER SIX 

SUMMARY OF THESIS 

§1. Conclusions 

The overall aim of this thesis has been to develop the theme 

of analytic and semi-analytic modelling and to show that it is a 

useful modelling tool, being in many ways complementary to 

computational modelling. 

Chapter 1 introduced the overall scope of modelling and 

gave a brief review of the various approaches to device modelling, 

concentrating mainly on the comparison between analytic and 

hydrodynamic computational modelling. The main conclusion 

drawn was that computational modelling is an extremely useful, 

practical simulation tool whereas analytic modelling has extensive 

general predictive capabilities and is complimentary to the 

computational method. 

Chapter 2 provides the backbone of the formulation: it 

introduces the BTE, the transport equation used to derive the 

models. The steady state spatially inhomogeneous case is 

considered rather than the more usual space-independent 

formulation. Also the presence of an electric field is included 

which extends previous treatments and provides a more 

appropriate model, in certain circumstances. The collision integral 

is also treated in such a manner that higher order phonon energy 

contributions to the scattering integral are included, up to second 

order. The model includes extensions to previous models such as 
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an arbitrary injected electron energy distribution is considered. 

Due to this formulation there is a need to use a combination of 

mathematical methods and physical approximations (as detailed 

in Chapter 4). 

The mathematical equations used throughout the thesis are 

then developed from the BTE using several approximations and 

assumptions. Firstly it is assumed that the electrons are ‘hot' - 

that the mean electron energy is much greater than the mean 

phonon energy, and that the distribution function of the electrons 

is nearly isotropic in momentum space (the NIA). This allows 

considerable simplification of the BTE, reducing it to a pair of 

coupled equations. A relaxation time approximation is then 

developed for the collision integral (on the assumption that the 

collisions are either elastic or randomizing) and allows the two 

partial integrodifferential equations to be reduced to one second 

order linear partial differential equation. This partial differential 

equation depends on five parameters and covers all cases of 

scatterers non-polar optical phonons, piezoelectric phonons or 

acoustic phonons. The presence or absence of an electric field and 

order of expansion in phonon energy (first or second) is also 

included. The investigation of solutions to this partial differential 

equation forms the major part of the work. 

Chapter 3 introduced the more abstract details that need to 

be considered when performing mathematical modelling: as well 

as deriving appropriate equations the device environment must 

be included. This means practically that various types of 

boundary value problems must be considered for different types 
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of partial differential equations and subtle problems are 

encountered, such as the difference between initial and final 

boundary value problems. It was noted that the different 

equations which are limiting forms of each other, for example 

when the electric field is turned off, do not necessarily have 

solutions related in a similar way. This was ascribed in some 

cases to the fact that the nature of the boundary value problems 

was. different. A particular subset of cases covered by the 

general partial differential equation was solved in general, 

illustrating the power of the approach and also the similarity 

between the models. It became apparent that the inclusion of an 

electric field and/or higher order phonon energy contributions 

considerably complicates the analysis. 

Chapter 4 is the culmination of Chapters 2 and 3: it details 

the solution of a particular case of an equation derived in Chapter 

2 - that for non-polar optical phonon scattering in an electric field 

with first order expansion of the phonon energy contribution, 

subject to a final boundary value problem. The derivation of a 

solution to the partial differential equation without incorporating 

the boundary condition has been achieved [20], There are 

problems incorporating the boundary conditions : it is obviously 

necessary to model the physical distribution of electrons. There 

are several plausible options, and for the purpose of this thesis 

some compromise between the actual distribution and the 

mathematical model has been made. If it is desired to continue 

analytically then this is essential. The purpose of the chapter is 

the inversion of a singular Fredholm integral equation of the first 

kind. The method of solution is suggested by the physics of the 
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situation, and amounts to a functional approximation to the kernel 

of the integral equation, considerably simplifying it. The 

approximation is shown to be valid analytically and this fact has 

been verified numerically. 

Thus a solution has been derived for the distribution of 

electrons within the emitter base region of a transistor in the 

presence of an electric field subject to non-polar optical phonon 

scattering with arbitrary injected distribution. No approximation 

(modulo calculational difficulties) to the form of the distribution 

function has been made. The distribution thus calculated has 

been evaluated numerically. 

From the distribution function transport coefficients may be 

calculated. However due to the complicated nature of the 

distribution function this cannot be completed analytically. A 

semi-analytic approach is used and the necessary integrals 

evaluated numerically. This is seen to be a generalization of 

previous treatments. 

It is worthwhile mentioning that this approach could have 

been used on the other two cases in this model category, and the 

technique may have general mathematical applications. There is 

no experimental work available for direct comparison. The 

purpose of this chapter is twofold: to extend a previously 

proposed model and also to illustrate the scope of semi-analytic 

modelling. Other cases could be treated in a very similar manner 

and this is where the power of this particular approach lies. 
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Chapter 5 discusses, in a more general way, other models, 

appropriate boundary value problems and their solution. An 

aspect of the approach developed in Chapter 5 becomes apparent: 

concise formulations may suggest methods of solution; in the case 

of piezoelectric phonon scattering in an electric field it is seen that 

the problem can be reduced to that of a generalized adjoint 

diffusion equation with concentration dependent diffusivity and 

standard techniques applied. A formal solution to this particular 

problem is derived. 

The other cases are discussed but no simple solutions seem 

to exist, mainly due to the difficulty of incorporating the initial 

condition. Numerical methods are applicable and if necessary 

could be used. 

§ te R rch 

The work in this thesis introduces the ideas of semi- 

analytical Boltzmann modelling and indicates some of the 

advantages of such an approach. 

However, there are many important areas to be developed 

from the work detailed, which has provided an introduction to the 

topic of semi-analytic modelling. 

On the practical side there is the solution of the various 

models that have not been attempted here. The inclusion of an 

electric field has caused mathematical problems and it would be 

most interesting to completely solve the the case of piezoelectric 
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phonon scattering in an electric field with first order phonon 

(1 0) 
ollision t L collision term { pp fy =0 } analytically and to compare it 

with the solution derived in the absence of an electric field. This 

is presently being undertaken. Once the piezoelectric phonon 

case is solved analytically it would also provide a starting point 

to analytically investigate the implications of the ‘small w' or 

asymptotic approximation made in other chapters. The methods 

developed, and applied, in Chapter 4 could also be applied to the 

other cases. The elliptic problems generally do not seem 

amenable to analytic (or semi-analytic) approaches and 

numerical methods seem to be appropriate for this category of 

model. This is feasible as efficient software exists for such 

problems. If this was undertaken it would provide a useful test 

of the semi-analytic approximations and also measure the effect 

of including the second order phonon energy connection. 

One aspect of the models that has not been carefully 

considered is the relative importance of the various scattering 

mechanisms although the non-polar optical phonon scattering is 

usually taken to be the dominant mechanism. It would be 

possible to derive equations to include all, or combinations of, the 

scattering mechanisms considered singly here. Again solution to 

all possible cases would be difficult but certain cases would be 

expected to succumb to analytic methods. There is also the 

relationship between the various boundary value problems to be 

determined; as was noted previously, although the operators 

correspond when the field tends to zero, the solutions do not. This 

was ascribed to the differing boundary value problems. It would 
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be interesting to impose boundary value problems on the 

problems such that the boundary value problems became 

identical when the field was zero, and then to check that the 

solutions were identical. 

One area that could be developed in detail is that of 

perturbative expansions: the nearly isotropic approximation 

represents only one such expansion and others have been applied 

to the BTE, although not in the context of semiconductor device 

modelling. These could be tailored to suit the specialized needs of 

device modelling and knowledge already gained here about 

objects such as the distribution function could be incorporated; it 

is often of Gaussian nature for example and this could be used in a 

similar manner to that in the drifted Maxwellian. 

Ideally, an expansion method that could be applied in more 

general circumstances is required; schemes could be developed 

that amalgamate the nearly isotropic approximation and the 

maximum anisotropy approximation [31] to give one general 

scheme. This could then be used to derive information on the 

distribution function when neither of these approximations was 

appropriate. 

Included within the above would be to extend the treatment 

to take account of two dimensional effects. For example, 

numerical simulations of vertical bipolar transistors suggest that 

the majority of the current flow is one dimensional (and 

equivalent circuit models take account of this fact); this would 
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suggest that analytic treatments can treat the lateral current flow 

perturbatively and an expansion of the form: 

fa,y) = gly) (fo (x) + kf, (x) ) 

may be appropriate. Again appropriate expansions for various 

situations could be developed but this would be expected to be a 

difficult exercise, as it could involve a large number of coupled 

equations. 

A topic that was mentioned briefly but demands the 

majority of effort is that of quantum transport theory. Although 

quantum transport equations have been developed there has been 

little application of them to actual devices. A perturbative 

treatment (in some situations) at least would be appropriate as 

there may only be small deviation from the classical solution. 

Thus the development of a NIA to a quantum distribution could 

be of particular interest. 
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