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CHAPTER--1 INTRODUCTION

1.1 HISTORICAL BACKGROUND

The word robot was used by a Czechoslovakian playwright Karel Capek in his play
entitled “R.U.R.” In Slav. languages, the word robot indicates a machine that
resembles human workers. Initially, the robots were manufactured as slaves to replace
human workers but towards the end, they turned against their creators and anhilated the
entire human race. Since 1926, robots appeared in films such as METROPOLIS and
STAR WARS have given people a conception of robots as humans like machines with
intelligence and individual personalities. Some of these imaginative expectations of
robots created in such films, are much more advanced than are the actual robots which

are available at present time.

The definition of robot is vague, since it depends upon the human perception of them.

Webster's dictionary defines a robot as :---

“an automatic device that performs the functions ordinarily ascribed to human beings ".

Such a definition is far too broad since devices like washing machines and dishwashers

may also be considered as robots.

The concise Oxford dictionary has defined robot as:---

" apparently human automation, intelligent and obedient but impersonal machine".
Clearly this definition does not accurately define present day robot nor does it

differentiate from other types of automation. The Robot Institute of America has defined

industrial robot like this,
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a robot is programmable multi-functional manipulator designed to move materials, parts,

tools, or specialized devices, through variable programmed motions for the performance

of a variety of tasks."

This definition appears to imply that the robot is a general purpose device with external
sensors to provide some intelligence to the machine to perform various tasks. The term
manipulator is not defined. It is not clear whether a single axis mechanism qualifies as a

manipulator. The Japanese industrial robot association ( JIRA ) in 1980 has defined robot

asi---

"versatile, flexible mechanisms with displacement functions similar to those of human

limbs or with displacement functions controlled by sensors and means of recognition.”

Even this definition, appears to be vague and includes maximal effort manipulators and
remote control manipulators. Finally The British Robot Association has defined robot

as:-

"an industrial robot is a reprogrammable device designed to manipulate and transport
parts, tools or specialized manufacturing implements through variable programmed

motions for the performance of specific manufacturing tasks."

From the various definitions of the robot, it is evident that there is no internationally
agreed definition of a robot. However, robots still have features which distinguish them

from hard automation. Whatever our perception of robots is, they must be capable of

being :---
(2) Reprogrammable and hence will be computer controlled.
e dimensional space i.e several degrees of

(b) Able to show multiple movements in thre

freedom.

(c) Provided with external sensors, if they require interaction with the environment.

14



(d) Able to support different grippers.

(e) Able to take decisions by comparing data received from many sensors and reacting

accordingly in a preprogrammed way

The development of robots has occured along two paths: domestic and industrial [
STAUGAARD, Jr. 1987 1. Domestic or personal robots have been primarily developed
for the home hobbyist market. These robots can have features like voice synthesis (
speaking ), sensing light levels, detecting motion, moving around and sonar type
navigation systems. Industrial robots have been developed to perform various
manufacturing tasks such as welding, spray painting, pick and place and assembly
operations. Most of the present robots still have very limited sensing ability,
consequently they cannot alter their sequence of operations when obstructions or

unexpected circumstances arises.

Like all other fields, development of robot technology has occured in distinct phases or
generations. The first generation robots were able to repeat certain fixed sequence of
operations. They were like ‘dumb’ robots as they did not have any idea of the robot
environment, whether an object to be grasped is present or not. These robots are more
commonly known as pick and place robots. They were mainly used in welding, paint
spray and simple assembly operations. These robots were mainly programmed by limit

switches, resetting stops on indexable drum or cams.

Second generation robots may be called clever robots. They are equipped with range of

sensors and are controlled by computers. The integration of sensors in the control of the

robot confers an ability to interact with their environment. The main method of

programming these robots is by writing textual program using high level languages.
The third generation robots are referred to as intelligent (SMART ) robots. These robots

are still in the research stage. They make extensive use of data bases, sensors, complex

software and Artificial Intelligence (AD) techniques. The aim is to give robots an

15



instruction similar to a human worker. The robot will automatically plan the sequence of
operation, trajectory, collision avoidance etc. and will perform the desired task
automatically. This is still an active area of investigation and there are numerous

problems which must be resolved before robots are able to perform jobs like human

beings.

The early development of robots is summarised in the following table:

YEAR REFERENCE NAME COMMENTS

1945 Goetz 1963 Teleoperator handle radioactive substances

1948 Goetz 1963 Handyman Teleoperator by GE

1959 FUetal 1987 - First industrial robot by
Unimation

1961 Ernst 1962 MH-1 Computer controlled
mechanical hand

1962 Tomoric and Boni - Hand with pressure sensor

1962

1963 FU et al. 1987 Verstran Commercial robot by AMFC

1968 Mc Carthy 1968 - Robot with hand, eyes and
ears

1972 Bolles and Paul --- Assembled water pump

1973

1972 Ejiri et al. 1972 - Assembled machinery from
drawing

1973 Will 1975 --- IBM arm

1974 FU et al. 1987 T3 Computer controlled robot by
Cincinnati Milacron

1978 Faverto 1978 “e- Polar 6000 for welding

1979 Borrowman 1979  RMS Duplicate of human arm for
NASA

Table 1.1 Early developments of robots
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Currently, there are numerous industrial robots available in the market which are almost
invariably computer controlled. They vary in size, shape, joint type and driving

mechanism and are described in chapter 2.

1.2 ROBOTICS

With lowering cost of computer hardware, robots have attracted considerable interest
within industrial and academic research establishments which has led to the development

of a completely new field known as robotics. It is a highly interdisciplinary field that

ranges from the design of mechanical and electrical components to sensor technology,

computer systems and artificial intelligence. Robotics is a generic term which embraces

the following main subject areas :

(a) Robot arm kinematics

(b) Robot arm dynamics

(c) Planning of trajectories

(d) Control of robot manipulators

(e) Robot sensors

(f) Robot programming languages

(g) Robot intelligence and task planning

Since the field is so vast, it is beyond the scope of this work to describe each of these

subjects in detail. Robot programming languages (f) is one of the most active areas of

research in robotics and will be considered in detail in this dissertation.
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1.3 ROBOT PROGRAMMING

The robot programming provides the essential interface between the robot and human
operator. Robot programming requires the use of a programming language. Methods of
robot programming and robot programming languages are discussed in chapter 3. There
are numerous programming languages some of which are new and others are modified
versions of existing languages. General and specific requirements of robot programming
languages are described in chapter 4. Two extreme approaches in robot programming
can be identified. On one hand, there are low level programming languages which
requires the user to specify every minute detail in programming and majority of them
suffer from a lack of portability since they were devised specifically for a particular
robot type. At the other extreme, are task-oriented programming languages/systems
which are mainly used by Al researchers. This type of programming is very complex,
relies heavily on sensor feedback, the use of expert systems and is very active area of
research, as yet only in its infancy. No commercially available programming systems
are available at this level. Clearly, there is a huge gap between the two approaches. For
robots to become more accessible to industry in the near future, they must be easy to
program, preferably in high level language perhaps with limited number of sensors.
Other ideal features of the language include portability. interactivity, extensibility,
modularity and commercial availability. Such a language should be designed to cater the
needs of a non-specialist programmer. In order to bridge the gap between these two
extreme programming strategies, it was decided to investigate a hybrid approach
towards the programming of a robot which constituted the original contribution to the

use of Forth for controlling a robot.

It was decided to use Forth as a programming language as it was specifically written for
process control applications. The language and those features which render it an ideal
language for robot programming are described and discussed in chapter 5. Forth is

extensible and allows the user to define data structures suitable for specific application.
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The programming methodology of Forth allows the user to define very abstract levels of
command using English like syntax appropriate to task execution. For example, to pick

up an object in Forth the word may be defined as follows:
objectl GRAB

The user is provided with a vocabulary of task-oriented commands for various purposes.
The user is not expected to learn language or write any program in formal sense because
all the information and code is well hidden from the user. What the user is expected is to
learn is which command to use and Reverse Polish Notation (RPN). For example, to

move shoulder, the command would be :
125 shoulder move

It was also decided to extend the data structure of Forth to develop software tools to
facilitate robot programming both for the ease of understanding and for programming
purposes. Forth uses reverse Polish notation and is a stack oriented language. This
feature makes it suitable for developing data structures because actual data is not required
at the time of defining new data structures. A development system consisting of a
Motorola 6809 microcomputer, Smart arm, simulator and ultrasonic transducer is
described in chapter 6. The development of Forth software along with a method of
calibration of robot joints and a solution to the inverse kinematic problem for Smart arm
is described in chapter 7. The conclusion and recommendations from the studies are

described in detail in chapter 8.
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CHAPTER -- 2 ROBOT ARM AND ROBOTIC COMPONENTS

2.1 ROBOT ARM

A robot arm, like the human arm, is composed of links held together by joints. A joint
is the part of the arm which connects two adjacent links and allows relative motion

between them as shown in figure 2.1 below :

joint link

Figure 2.1 showing relationship between links and joints.

Thus a robot arm can be considered to be an articulate chain of links connected in series
by suitable joints. Each robotic arm has a base, which is usually attached to the fixed
surface, or floor. The first link of the arm is attached to the base and other links are in
turn attached to the next link by a joint. The last link is relatively free and is commonly
attached to a specialised tool which is more commonly known as hand or end-effector
or gripper. The joint motions of a robot are generated by actuators that are either
hydraulic, pneumatic or electrical. These actuators are either active at the joints or

produce an action at a distance which is transmitted by belts, pulleys, and chains etc.
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2.2 TYPES OF JOINTS

Most common types of joints are revolute and prismatic and less common one is known

as ball and socket.

2.2.1 PRISMATICJOINT

This type of connection allows the prismatic or linear motion between the two adjacent

links, as shown in figure 2.2 below :

Figure 2.2 showing prismatic joint

It is composed of two nested links, or of one link sliding along another. In other words,

one part can move (slide) on a line straight outward or inward in relaton to the other part.

2.2.2 REVOLUTE JOINT

This connection permits revolute, or rotary, motion between two adjacent links. The two
links are joined by a common hinge, so that one part can move in a swinging motion in

relation to the other part, as shown in figure 2.3 below :
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Figure 2.3 showing revolute joint.

This joint rotates along in a single axis.

2.2.3 BALL AND SOCKET JOINT

This type of connection is composed of more than one joint and enable motion in more
than one axis as shown in figure 2.4. This type of joint exist between shoulder and fore-
arm and pelvis and thigh. This type of joint is not commonly used in robots for difficulty
of activating joints of this type. However, many robots include 3 separate revolute joints

whose axis of motion intersect at one point as shown in figure 2.4 below :
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Figure 2.4 showing ball and socket joint and its axis of motion.

2.3 DEGREES OF FREEDOM (DOF)

Generally speaking every joint in a robotic arm enables a relative motion between two
links and allows the links one degree of freedom. When the relative motion occurs along
or around a single axis, the joint has one degree of freedom. When the motion is along or
around more than one axis of motion the joint has two or 3 degrees of freedom. Thus the

number of joints in a robot arm is also referred to as numbers of degrees of freedom.

Most robots have between 4 and 6 DOF.

2.4 CLASSIFICATION OF ROBOTS BY TYPE OF JOINT:
Robots can be classified by joint type in to 5 groups:

(i) Cartesian

(i) Cylindrical

(iil) Spherical

(iv) Horizontal articulated
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(v) vertical articulated

The usual convention for comparison is by 3 joints closest to the robot base, and letter R
is used for revolute and P for prismatic, in the order they occur, beginning with the joint

closest to the base. For example, RPP indicate a robot whose base joint is revolute and

whose 2nd and 3rd joints are prismatic.

2.4.1 CARTESIAN ROBOTS

These robots have 3 prismatic joints and hence are referred to as PPP. The characteristic

features of these robots are :

(a) have a small work envelope (volume),
(b) high degree of rigidity ,

(c) capable of greater accuracy,

(d) control is simple due to linear motion of the links and fixed inertial load caused by

fixed moments of inertia throughout the work envelope.

The robots of this type has three linear axis.

This type of robots are ideally suited for closely calibrated tasks and machining. For

example, IBM's RS-1 and SIGMA from Olivett.

2.4.2 CYLINDRICAL ROBOTS

These robots arms consist of one revolute joint and two prismatic joints, hence are

referred to as RPP. The characteristic features of these robots are:
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(a) Larger than Cartesian work envelope.
(b) Mechanical rigidity is slightly lower than Cartesian robot.

(c) Control is bit more complicated than in cartesian models, due to the varying moments

of inertia at different points in the work envelope and to the revolute base joint.

It has two linear and one rotary axis. The robots of this type are suitable for pick and
place applications. The example of this type of robot include Versatran 600 robot made
by Prab.

2.4.3 SPHERICAL ROBOTS

These robots have two revolute and one prismatic joint and are commonly referred as

RRP. The robots of this type have the following characteristics:
(a) Larger working envelope.
(b) Lower degree of mechanical rigidity than cylindrical models.

(c) Control is more complicated than in cylindrical robots, because of the rotary motion

of the first two joints.

These robots have one linear and two rotary axis. The robots of this type are best suited

for long and straight reach operations. The examples of this type of robots include

Unimate space 2000B from Unimation Inc.

2.4.4 HORIZONTAL ARTICULATED ROBOTS

Arms of these robots have two revolute joints and one prismatic joint hence are referred

as RRP. The robots of this type have following features:

25



(a) Work envelope is smaller than those of spherical robots but larger than Cartesian
cylindrical robots.

(b) Robots of this type are appropriate for assembly operations due to vertical linear

motion of the 3rd axis.

2.4.5 VERTICAL ARTICULATED ROBOTS

This type of robots include 3 revolute joints hence referred as RRR. Robots of this type
are similar in structure to human arms which also have only revolute joints. The

characteristic features of these robots are:

(a) Work envelope is larger than any other type.

(b) Mechanical rigidity is lower.

(c) No great degree of precision can be achieved in locating the end effector.

(d) Control is complicated and difficult, because of 3 revolute joints and because of

variances in the load moment and moments of inertia throughout the work envelope.

This is most popular type of robot and avoids prismatic joints. Examples of this type of

robots include PUMA from Unimation Inc. and T3 from Cincinnati-Milacron.

2.5 ROBOT ACTUATORS

Robot actuator is a device for producing mechanical movement. Robotic manipulators

commonly use one of the three basic drive systems: hydraulic, electric or pneumatic.
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2.5.1 HYDRAULIC ACTUATORS

Hydraulics is a Greek word for water. However, in robot drive systems oil is used
instead of water. The oil is placed under pressure so that the energy from the oil is used

to move the manipulator. A typical hydraulic actuator consists of hydraulic piston,

hydraulic servo valve, electric motor and hydraulic power supply.

Hydraulic actuators are useful in robots which carry high payload of several tons, as it is

possible to generate an extremely high force in a small volume.

2.5.2 ELECTRIC ACTUATORS

The electric actuation is most common method among the three methods of actuation in
industrial robots. Electric motors are used to lift and position medium to heavy weight
objects. They are easily controlled with a computer. Electric motors can be used on direct
current ( DC ) or alternating current ( AC ). These motors are equipped with positional
information systems that continuously feed positional information back to the control.
The motors used for robotic control have speed control so as to control the speed of the
joints while appproaching the destination. Another important consideration is the

availability of the braking system sO that when the robot has reached the desired position

the motor must Stop.

The main disadvantage of this form of actuation is that the power-to-weight or torque-to-
weight ratio is smaller than that of hydraulic motors. Also, the current density is high,

which causes problems of power loss and overheating. Another common method of

electric actuation is the use of stepper motors. The description of each of these motors is

beyond scope of this work. The readers can refer to TODD [1986 ], LHOTE et al. [1987

], MILLER (1988 ] and MALCOLM Jr. [1988 ] for further detail.
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2.5.3 PNEUMATIC ACTUATORS

Pneumatic actuators use air to drive a piston. The main difference between hydraulic and
pneumatic systems is that former transfers fluid under pressure while the latter transfers
air under pressure. Pneumatic Systems are used when light loads have to be manipulated
by the robot. A pneumatic System consists of an air compressor and air storage tank. The
compressor is usually driven by an electric motor. An electrical signal controls a valve
which, in turn, control the flow of air in to a cylinder. Pneumatic systems are limited to
pick and place manipulators as the compressibility of air makes it difficult to desi gn servo
systems. In this mode of operations, the valves are either fully open or closed and each
actuator stops only at the end of its travel. A pneumatic actuator is commonly used for the

robot gripper of an electric or hydraulic robot.

2.6 ROBOT SENSORS

In order to perform tasks like humans, a robot must have a sensing capability so that it
can interact with its environment. This is very desirable feature, if the robot has to have
some degree of intelligence, so that it can receive information about its working
environment and take some decisions on the basis of information received i.e collision
avoidance, shape recognition, robot guidance, object identification and handling and
grasp failure. Hence sensors in robotics have drawn considerable interest in research
in the last 10 years or so. The basic sensing devices used in robotics are sensors and
transducers. A transducer is a device which is capable of converting a physical non-
electrical input quantity in to an electrical output quantity . A sensor is defined as a
device , usually based on a transducer, capable of converting a physical non-electrical
input quantity in to an electrical output quantity and of processing it according to a given
algorithm, so that its output can be sent to a device such as computer. These electrical

signals are processed by the robot controller, which instructs the robot to perform the
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desired task. Robot sensors varies considerably in complexity from simple limit switches

to highly sophisticated vision systems,

2.6.1 CLASSIFICATION OF ROBOTIC SENSORS

Robotic sensors can be broadly classified in to two main groups: internal and external.
The internal sensors usually forms integral part of the robot such as potentiometers,
tachometers, etc,. and are used for the movement of the robot. The external sensors are
mainly used to sense the environment of the robot. External sensors can be further
subdivided in to contact and non-contact sensors. As the name implies, the contact
sensors makes physical contact with the objects being manipulated and noncontact get
information without making such contact. The contact sensors include pressure, tactile,
force and torque sensors. The noncontact sensors include vision, proximity sensing and
sonar ranging,temperature sensors and chemical detectors. The sensor classification is

shown in figure 2.5 below :
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ROBOT SENSORS

Internal

v

otentiometer,
tical encoders

Contact

/

Force,Temp.,
Torque, Tactile

External

Non contact

Vision, Optical proximity,
Ultrasonic, Inductance,
Capacitance, Hall-effect

Figure 2.5 showing classification of robotic sensors

Detail description of each type of sensor is beyond the scope of present study. Further
information about each of these sensors is provided by REBMAN and TRULL [1983],
SNYDER [1985], HILL and SWORD [1973], St. CLAIR and SNYDER [1978],

DARIAO et al. [1983], LEATHAM-JONES [1987] and RUOCCO [1987].
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CHAPTER--3

ROBOT PROGRAMMING AND PROGRAMMING LANGUAGES

3.1 INTRODUCTION

Since their development in the sixties all industrial robots have had some means of being
programmed. It is this feature, being programmable, which distinguishes robot
manipulation from pure automation. Robot programming is the essential means of
interfacing the human with an industrial robot to perform various prescribed tasks. A
major obstacle in the use of manipulators as general purpose assembly machines is the
lack of a suitable and efficient means of communication between the user and the robotic
system, so that the manipulator can perform the desired tasks. Consequently robot
programming has become a major focus of attention in the present decade. At present
unfortunately there is no standard universally acceptable definition of what constitutes
a robot programming language. A NATO report [1986 ] of the working group on robot

programming languages formulated this definition :

"a robot programming language is a means by which programmers can express the

intended operations of a robot and associated activities.”

The group emphasised that a robot language in addition to expressing the motion of a
robot , must also allow the programmer to interface with a large number of items such as

sensors, geometric modelling, systems planners and robot control systems etc.

At present there are nearly as many types of robotic languages as there are types of
robot. The methods used in programming commercially available robots varies from the

simplest, teach by hand approach through high level programming languages to complex

task-oriented problem solving techniques.
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For assembly and more complex handling operations teach by hand methods are

inadequate . Furthermore, it is essential to integrate sensors into the software of the

robot controller.

3.2 TYPES OF ROBOT PROGRAMMING

In order to execute a task by the robot, it is necessary to be able to give it appropriate
instructions on how and in which order to approach and execute the task. These
instructions to the robot can either be given in the form of textual programming or by
manually teaching it the appropriate sequence required for the execution of a task. Robot
programming as shown in figure 3.1 and 3.2 can be achieved in one of two ways: on-

line programming and off-line programming.
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PROGRAMMING

N

ON-LINE

OFF-LINE

VAN

N\

LOW HIGH LEVEL
INPUT THROUGH LEVEL LANGUAGES
e.g limit LANGUAGES
switches
MANUAL POWERED
LEAD THROUGH LEAD THROUGH
e.g Simulator e.g Teach pendant

Figure 3.1 showing types of robot programming,.
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Manual Guiding Below this level, the
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o3 ——=a0

Manual input

Figure 3.2 showing types of robot programming and language levels

3.3 ON-LINE PROGRAMMING

By this method the robot is programmed directly by the human operator the main feature
being that the robot is actually used during the programming process. The appropriate
data such as positions and orientations of joints are read directly from the robot
controller and is saved in memory. The saved data can be read and sent to the robot
controller, later on, to repeat the taught task. Hence on-line programming essentially
sing the robot first in teach mode and later in repeat mode. This type of

involves u

programming is also referred to as teach and repeat mode of programming which can be

carried out in one of two ways Viz :- manual input and lead through programming.
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3.3.1 MANUAL INPUT

Manual input [MAIR 1987] uses limit switches or mechanical stops to start and
terminate the movement of the robot. Robots using these type of programming are
simple, low cost and non-servo controlled. However, because of the lack of

sophistication and of complex electronics it is disputable whether such devices should be

classified as robots.

These robots are used mainly in pick and place type of applications such as with machine
tools, press servicing and the loading of injection moulding and die-casting machines. In
simpler devices, the motion of robot is controlled by bolting metal blocks to the axes of
the robot which function as stops. In more sophisticated robots, cams or pegs are
mounted on a cylindrical drum, which rotates and makes contacts with micro-switches.
These switches activate solenoids which open and close the hydraulic or pneumatic

control valves resulting in the activation or deactivation of robot motors.
3.3.2 LEAD THROUGH PROGRAMMING

Lead through programming involves moving the robot by the operator through a series of
locations or points to execute a task. The operator has complete control over the motion
path. In order to teach a task, the operator allows the robot to move through its working
space in the desired motion path and record the relevant joint angles of each joint in its
memory. This sequence of positions saved in memory can be retrieved during the
playback mode so that the taught task can be repeated. This method of programming is
sometimes referred to as guiding since the operator is essentially guiding the robot and
has complete control on the path and sequence of operations performed by it. Teaching
an be achieved by means of a joystick, a set of push buttons or

the robot in this way ¢

using a master slave system. This method of programming was principal means of
programming first generation robots in the early 60's when robots were first being used

for industrial applications and still is the most commonly used method of programming
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industrial robots. The main advantage of this type of programming is that it is simple to
learn and the user is not expected to have any programming experience and is quite
adequate for repetitive applications such as spot welding, paint spraying and pick and
place applications. The main drawback is that the teaching is done on-line using the
robot, so that if the robot is part of a complex industrial assembly system, the whole
production line may have to be stopped, which is normally unacceptable. Furthermore, a
taught task cannot be modified in any way, so that even a slight change in component

size, position or orientation will require repeating the whole sequence of teaching and

saving.

This simplest level of programming is also inadequate for complex applications which
may require sensor integration such as part recognition using vision system. This type of
programming can be achieved by one of the two ways: manual lead-through ( simulator

) and powered lead-through ( teach-pendant ).

The main advantages and disadvantages of on-line programming are summarised in table

3.1 below:
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ADVANTAGES

1 Easy to learn by the operator and
quick to implement.

2 Collisions with other objects and
equipment can be avoided by the
operator by observing during the
teaching session

3 Operator can transfer his/her manual

skill during teaching session

4 No additional testing or debugging is

necessary.

DISADVANTAGES

It can be tedious and time consuming
for complex applications.

Since it involves using the robot, which
has be disconnected from executing its
present task during teaching session
thus loosing valuable production time.

Program modification is not possible,
thus a slight change in task will require
complete teaching of the task.

Sensors can not be integrated.

Programs are robot specific hence are
not portable.

Synchronisation with other devices is

not possible.

Table 3.1 comparing advantages and disadvantages of on-line programming.

3.4 OFF-LINE PROGRAMMING

Off-line programming implies, in robotics, writing a program off-line with respect to the

robot and on-line with respect to the comp

uter using a computer terminal. Thus, the robot

is not used during the program development stage but is needed at the final stage to test

the program with the parts to be manipulated.
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From computer science point of view off-line programming is true programming in
robotics applications. Evidently, the off-line programming requires a programming
language which may be assembly language or a high level language. The use of assembly
language in robot programming is rarely found in literature because of the obvious
advantages of high level languages over assembly languages and machine codes. Robot
programming using a high level language (off-line) has the following advantages over

teach by hand methods (on-line):

(a) Programs are easy to develop to high level constructs.

(b) It is possible to describe a task more naturally using a high level language.
(c) Programs are more portable.

(d) The existing program can be easily modified when robot task is changed.
(e) Provide decision making facilities

(H) Allows mathematical operations to be performed.

(g) Allows the development of structured and textual programs which are readily

understood by the programmer.

(h) Supports the development of software off-line and subsequent down loading it to the

robot thereby, saving the valuable time and cost in software development.
(i) Allows integration with other systems such as CAD/CAM facilites.
(j) Supports modularity.

During the last two decades various high level languages have been developed either as
extensions to existing languages or by writing new customised languages for robot

programming which are reviewed in the next section (3.5).
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3.5 REVIEW OF ROBOT PROGRAMMING LANGUAGES

The field of robot programming has been a highly active area of research in the last two
decades. A number of robot languages have been reported and newer ones are constantly
being added to the list. Most of these languages were developed for a particular type of
robot to run on a specific hardware. BONNER [1982] has described and compared 14
robot programming languages. GINI and GINI [1984] have also described languages
which were mainly developed in Europe. GRUVER et al. [1983] has also carried out a
comparative evaluation of 8 commercially available robot programming languages. Thus
it appears that perhaps there are as many robot languages as robot types. It is not possible
to describe each of these languages in significant detail, however, some of these
languages will be briefly described in order to highlight their important features. In this
section table 3.2 summarises the background information and table 3.3 carries out a
comparative account of these languages. Further information about these languages is

contained in appendix A.
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Language Year

WAVE 1970-75
AL 1974
HELP 1975
LAMA-S 1975
SIGLA 1975
RAPT 1975-80
VAL 1975-78
MAL 1977
AML 1977-84
AUTOPASS 1977 +
LM 1979
MCL 1979
LRS 1979
ROBEX 1980

Origin

Stanford

Stanford

General

Electric

France

Olivetti

University
of
Edinburgh

Unimation

Milan Poly.
Italy

IBM

IBM

Mc Donald
Douglas

Spain

Aachen, W.
Germany

Computer
Hardware

PDP-10
PDP-6

PDP-10
PDP-11

PDP-11

Mini
computer

PDP-11/45

Mini
computer

IBM 370,
4360, 5530,

Motorola
68000

Mainframe

Main frame

PDP-11/73

40

Robot arm

Stanford

Stanford
Puma

Allegro
Pragma
A3000

Sigma

Puma

Milan Poly.

IBM RS-1,
7535

IBM

Robitron,
Renault,
Kremlin

no specific

Scara robot

No. of arms  Flexibility

1+

1+

1+

to other
devices

no

yes

yes

yes

no

yes

yes

yes

yes

yes

'References

Paul a 1976
Paul b 1983

Finkel et al.
1975, MC
Lellan 1981

Gini and
Gini 1984,
Donato and
Camera
1980

Falex and
Parent 1979

Banzano and
Buronzo
1979

Ambler
1982

Shimano
1979,
Shimano et
al. 1984

Gini et al.
1979

Grossman
1985,
Grossman
and short
1985

Liberman
and Wesley
1977

Hendy and
Braley

1986, Mazer
1984

Wood and
Fugelso
1983

Puente et al.
1986

Weck et al.
1984




PASRO 1981 Biomatic, ——en —— e Gini and
W. Germany Gini11984,
Biomatic
1983
FA-BASIC 1982 - c———— e ——- J— Mohri et al.
1985
RAIL 1982 Automatix -— Robovision, -—- — Franklin and
Inc. Cybervision Vandenburg
1982
AR-BASIC 1983 American -— ——— 1 yes Gilbert et
Robot Corp. al. 1984
SRL 1984 Uni. Independent Independent -— B Blume and
Karlsruhe, Jacob 1984
W. Germany
Table 3.2 Background information on robot languages.
Language Language Base Comm. Applicat- Sensors  Vision  Data Parallel Lang.
level lang. availabi- ions types execu- type
lity tion
WAVE Assembly  -------- no Assembly  yes yes Frames,  -------- Interpre-
Language operations vectors, tive
loop
counters
AL High Conc. yes Assembly yes yes Scalar, yes Interpre-
level Pascal operations Arrays, tive
Vector,
Frames
HELP —- Mixture yes Assembly  yes no same as yes Interpre-
of HLL operations ALGOL tive
LAMA-S Assembly LAMA no handicap-  yes no Frames yes compiled
level (MIT) ped people
SIGLA Machine  ---- no - no no counter yes Interpre-
Lang. tive
RAPT High APT no Assembly  no no Frames, no -
operations Vectors,
Against,
Fit etc
VAL Assembly new yes process yes no same as yes Interpre-
level control WAVE, live
VALl
Sema-
phore
MAL - BASIC no Mechanical yes no Arrays, yes Interpre-
like Assembly Variables, tive
Syntax Constants
, Frames
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AML High PL1 Yes Plant floor yes yes INT, Real, . yes /Interpre-
Automation Strings tive and
Compiler
AUTOPA- Very High PL1 no Mechanical yes yes PL1, ————- R
SS level Assembly Frames,
Vectors
LM High Pascal yes Assembly  yes yes Pascal, - -
operations Frames
MCL High APT yes Assembly  yes yes Frames no Compiled
operations
LRS High Pascal no General yes yes Pascal and ---- Interpre-
Frames tive
ROBEX  Low level APT no FMS yes no Variables, no -
Frames,
Arrays
PASRO  High Pascal no ——— ——amn ————- Int, Real, no ———
Boolean,
VEct,
Rot,
Frame
FA- High BASIC no FMS no yes basic - Interpre-
BASIC tive
RAIL High Pascal yes Welding, no yes Pascal and ---o--- Interpre-
Man., Frames tive
Vision
AR- High Basic yes Man. yws yes Basic and  --- Interpre-
BASIC systems, Position tive
FMS
SRL High ALand no Assembly  yes no INT, Real, yes —ceeen
Pascal operations String,
Vect, Rot,
Frame,
Interrupt,
Sqrt, Exp

Table 3.3 comparing main features of robot programming languages

3.5.1 OTHER LANGUAGES AND SOFTWARE SYSTEMS

In addition to the languages described above there are other language systems have been

reported in the literature. These include MHI, MINI, TEACH, ML, EMILY and MAPLE

[ LOZANO PEREZ 1983 ], LMAC, LPR, portable AL, VML [GINI et al. 1979 ].
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ANORAD, FUNKY, PAL, RCL, RPL, T3 [ BONNER 1982 ], LMAC [HAURAT and
THOMAS 1983}, voice communication with robots [LEVAS and SELFRIDGE 1983 ],
HANDEY [ LOZANO PEREZ et al. 1987]. Other programming and language systems

are summarised in table 3.4 below :
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AUTHOR COMMENTS

PRICE 19 84 Ofg-ltine programming system known as ROPL for ASEA
ToDots.

AZ7ZAM and

UNUVAR 1985

DERBY 1984

GOMMA and
LAWRENCE 1985

CARAYANNIS et al.

1989

BURCKHARD and
MARCHINDO 1984

WILL 1979
ASADA and
[ZUMI 1987

PERTIN-TROCCAZ
1987

RAZ 1989
STOBART 1987

BLUME 1984

LIM and LOY 1984
FAVERIJON 1986
HAURAT and
THOMAS 1983

TROVATO and
SCHREINER 1987

KOSSMAN and
MALOWANY 1987

Graphical off-line robotic planning and rogramming system
(GRIPPS) P & P o

Off-line programming of two industrial robots using a general
arm simulation program (GRASP)

Interface for robot programming

Integrated programming environment for a robotic workcell
(SAGE)

Mult-robot system for programming system for programming
the assembly robot known as LERNA.
Software issues for using robots in assembly applications.

A methodology for the automatic generation of robot
programs for hybrid position/force control.

Accessibility analysis for automatic grasping.

Use of graphical software for simulating robot motion.

Use of geometric modelling system for the off-line
programming.

Use of a robot Data Base (RODABAS) for implicit level of
programming.

Use of robot programming and teaching using Graphic Tablet.
A system for object level programming of industrial robots.

Software tools known as LMAC for programming of robot
system.

Language system known as LABICS for dedicated real time
control of robot system.

A system known as RCCL which is modular, extensible and
portable.




JETLEY 1984 B)eb\:;lopment of a Rhino operating language (ROL) for Rhino

ADORNTI et al 1984 A system known as D-LISP for vision processing.

SOROKA 1987 A language known as CONC for analysing concurrent robot
programs.

NAYLOR et al. 1987 A graphical off-line robot programming system
(PROGRESS). P &%

KURAU 1979 PEARL for Programming computer controlled manipulator.

LAUGIER 1984 Robot programming using LM and CAD facilities.

CHAN and

VOELCKER 1986 A new language for machine processing/programming
language (MPL).

TRONCIE et al. 1988  Graphical interactive programming.

WLOKA 1986 Development of a robot simulation system known as
ROBSIM.

SATO and

HIRAI 1987 Language-aided Robotic Tele-operation system ( LARTS).

SHENG and

DAVIES 1987 A high level approach to programming a robotic FMS.

Table 3.4 robot programming systems and languages.

3.6 CLASSIFICATION OF ROBOT PROGRAMMING LANGUAGES

Robot programming languages described in the previous section may be classified on the
basis of their development as a robot programming language. The earliest robots during
the 1960's were used only in the teach-repeat mode for simple operations. This mode of
operation was sufficient for applications such as spray paintings and spot welding where

a single task was endlessly repeated. Rapid developments in the application of robots in

industry coupled with the availability of inexpensive and powerful computers  has

changed this trend towards programming robots via programs written in programming
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languages. Usually these languages have special built in features which apply to the
problems of programming robots (manipulators) and hence are called Robot

Programming Languages. These languages can be grouped into 3 main categories |

CRAIG 1986 | :

3.6.1 SPECIALISED MANIPULATION LANGUAGES

These newly developed languages have been devised for the sole purpose of
controlling robots and contain many robot specific features and unique routines. They
may or may not be considered true general purpose computer programming languages.
One such language VAL, developed in 1975 to control the industrial robots is based on
WAVE, for use as a manipulator control language. As a general purpose computer
language it is quite weak. For example, it does not support floating point arithmetic and
character strings. Even the sub-routines cannot pass arguments. A more recent version of
VAL called VALII [ SHIMANO et al. 1984 ] was introduced which overcomes some of
these shortcomings. Another language of this type is AL which is a high level

programming language developed at the Stanford Al laboratory and has ALGOL like

block structure and syntax.

3.6.2 EXTENDED EXISTING COMPUTER LANGUAGES

These robot programming languages have been developed by adding a library of robotic
specific sub-routines to existing popular computer languages such as PASCAL and
BASIC. The user writes the program in the original computer language by making calls
to the specialised robot specific routines. AR-BASIC and FA-BASIC are both special
versions of BASIC. PASRO, Pascal for Robots which has been developed by the
y Biomatic, is based on the Pascal with additional data types and

German compan

procedures devised to perform robot specific tasks which are stored in a library and are
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callable by the Pascal compiler . The procedures used are provided to drive the arm

either in point to point or along a continuous path. JARS [ CRAIG 1986 ] developed
by NASA's Jet propulsion Laboratory, is also based on PASCAL.

3.6.3 NEW GENERAL PURPOSE LANGUAGES

These robot programming languages are developed by first creating a new general
purpose language and then adding a library of predefined robot-specific sub-routines.
Examples of such languages are LM, HELP, LAMA-S, MAL, SRL, ROBEX,
LMAC AL, RAPT, SIGLA, and AUTOPASS. Since a great deal of time and effort is
involved in developing and testing new languages, it is much more convenient to

develop extensions to existing general purpose languages.

3.7 LEVEL OF ROBOT PROGRAMMING

The level of programming depends on the level of detail in which robot operations are to
be expressed. BONNER and KANG [ 1982 ] have described five levels of
programming: microcomputer, point-to-point, primitive motion, structured and task
oriented level of programming. According to GINI [1987 ] there are four levels of robot

programming: joint level, manipulator level , object level and task level, which are

summarised in figure 3.3 below:

Number Level of Programming Language/s
S Human Intelligence
4 Task Level Programming AUTOPASS, LAMA
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3 Object Level Programming  RAPT, AUTOPASS
2 Manipulator Level AL, AML, MCL, ROBEX,
Programming SRL, VALIi
1 Joint Level Programming VAL, SIGLA, HELP,
MCL

Figure 3.3 Levels of robot programming

3.7.1 JOINT LEVEL PROGRAMMING

This is the simplest and lowest level of robot programming. The task to be performed by
the manipulator is expressed simply in terms of the control commands required to drive
the individual motors and actuators of each joint so that the manipulator end-effector is
aligned at a particular position and prescribed orientation. The user then instructs the

individual joints of the manipulator to execute the task. Typical instructions may include :

move joint 1 by 5 steps.

This method of programming robot is best suited to the programming of cartesian
robots where robot joints slide in straight lines. The main disadvantage of this level of
programming is that the user has to know the complex geometry and mechanism for
accessing each actuator of the robot. There is some confusion over this level of
programming. VAN AKEN and VAN BRUSSEL | 1988] describe this level of

programming as teach or guided level. This point of view is arguable since from

programming point of view teach by guiding is not true programming since the user

merely guides the robot through its work space by aids such as teach pendants and

merely saves the desired points in computer memory without the need to write any

textual program. BONNER and KANG [1982] describe joint level programming as
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primitive level programming as it is first step towards writing a true textual program
using a programming language. The robotic languages which supports this level of

programming include SIGLA, HELP, VAL and AML.

3.7.2 MANIPULATOR LEVEL PROGRAMMING

At this level of programming the operator controls the position and movement of the
manipulator in Cartesian space quite independently of the arm joints. This method is
marked improvement over the previous level as the user does not need to be familiar with
robot geometry. The motion of the robot involves the specification of successive
locations in the form of a frame which is related to the robot end-effector. Some of these
languages support sensors such as force torque, touch, proximity and vision system
which may be used to verify the location of objects or to modify robot motions. This type
of programming is more commonly known as explicit level as the user must specify
explicitly each step the robot has to take, such as, specification of position and orientation
of the object to be manipulated, robot path, speed and destination location etc. Most
languages which support this level of programming use structured control constructs and
provide extensive use of co-ordinate transformations, complex data structures, sensor
integration and parallel processing facilities. A typical instruction may include, move arm
to grasp bolt, which itself may be present and oriented in a specified position.
Languages which offer this level of programming include, VALII, AML, ROBEX, SRL,
AL and MCL. VALII allows the user to express the position and orientation of the
manipulator end-effector in space in terms of transformations. In ROBEX and MCL,

which are extensions of NC machine tool programming techniques, the points and

matrices can be defined to describe positions and orientations of the manipulator. Some

authors [ BONNER and KANG 1982 ] describe this level as structured level

programming
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3.7.3 OBIJECT LEVEL PROGRAMMING

Object-level languages allow the user to define operations in terms of objects being
manipulated and hence simplify the programming task. It allows the human operator to
describe in a natural way an assembly task the robot is to perform. This level of
programming requires some knowledge of the objects which are present in the
manipulator’s working environment. Additionally it might make use of external sensory
information. A typical example might be to instruct the manipulator to pick up an object,
decide its shape, position and orientation, grasp it and deliver it to the required
destination. The languages which have such features include AL, SRL, RAPT which
represent objects with frames. For example a typical command in RAPT may look like

this :

move/A , perto, ( TOP of B ),-3 i.e. it will move object A towards the top of B by 3
units of distances. Languages such as AL, LAMA and AUTOPASS also provide some
features which support this level of programming. But LAMA and AUTOPASS have

not been yet implemented commercially.

3.7.4 TASK LEVEL PROGRAMMING

This is a completely new approach in robot programming, is the highest and most
complex level of programming and is mainly used by Al researchers. This level of
programming conceals low level aids like sensors and co-ordinate transformation from
the user. These languages allow the user to command the desired sub-goals of the task
directly, rather than specify the details of the every action the robot has to take. This level
of programming is sometimes referred to as implicit level programming as opposed to
explicit level programming. In the latter type the user is required to explicitly express in a

computer program all the sequences of manipulator motions required to accomplish the
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task which necessitates the user being familiar with all of the basic operations of a

manipulator in order to write the required program.

A task-level programming system must have the ability to perform many tasks
automatically. It allows the user to describe the task in a high level language (tasks
specification), a task planner will then consult a data base (word model) and transform
the task specification in to robot level programming (robot program synthesis) which

will accomplish the task. For example if an instruction to
"screw the interlock and the bracket together"

is issued, the system must have an accurate and most up to date account of its
environment, shape, position and orientation of the objects. It must be able to choose a
good grasping location of the object, grasp it and plan a collision free trajectory. Thus a
task level programming system must have the ability to perform many tasks
automatically. Whilst this might appear to be an ideal way of programming, no such
system as yet exist and is an active topic of research. The world model for such a system
must be able to cope with unexpected obstacles, error recovery, poor or failed grasping

of objects, degree of accuracy of manipulator and integration with external sensors.

AUTOPASS devised by IBM is claimed to meet the criteria of a true task level
programming. It uses instructions such as might be given to a human assembly

worker. Although this type of programming of robots appears to offer an ideal approach
the actual program becomes so complex which along with numerous uncertainities
which arise in the real world domain of the robot that real task level programming is still
in its infancy. Consequently much more research is needed in this area. Another language

which provides some features for this level of programming is LAMA.
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3.7.5 LEVEL OF PROGRAMMING BY NATO’s REPORT

A NATO report [NATO 1986] on robot programming languages has identified the
following 3 levels of robot programming :

(a) joint level
(b) manipulator level
(c) task level

The report has recommended the inclusion of two new levels of programming: DEVICE
level and FEATURE level. The device level is a level where low level interface to the
sensors and joints of the robot takes place. The feature level lies between manipulator and
task levels and is the level at which high level sensor data processing occurs. The report
has further emphasized that a language system should provide a complete working
environment for the development of robot software so as to support world modelling,

sensors , user interface etc. as shown in figure 3.4 below:

Aston University

Content has been removed for copyright reasons
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CHAPTER--4 REQUIREMENTS ANALYSIS OF ROBOT PROGRAMMING
LANGUAGES

4.1 INTRODUCTION

Just like other computer applications such as database, process control etc, which need
specific programming facilities related to that area, robot programming also requires
certain unique features in the programming languages. In this section an attempt will be
made to highlight some of the essential components of a programming language used to
develop software for robotic applications. Unfortunately there is no agreement on the
robot programming requirements amongst robot software developers. This in the main,
may be ascribed to two factors; firstly since the field of robot programming is currently
an active area of research, therefore new robot programming languages with supposedly
better robot specific features are appearing quite rapidly and secondly the diversity and
application range of robots is increasing continuously with the development of more
accurate, faster, and sensor based sophisticated robots. Hence it is difficult to generalise
on the requirement at present state. However it is possible to discern, in the field of robot

programming some general and special requirements as follows in the next section.

4.2 GENERAL REQUIREMENTS

This section covers the general desirable features of those HLL’s which are useful in
writing software for computer programming as well as robotic applications. However, it
must be born in mind that some of these requirements affect each other and must not be
considered in isolation as they are desirable features for providing a suitable environment
for the development and maintenance of software for particular applications. For

example, maintainability of a program depends upon readability, writeability and

modularity etc.
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The desirable features of a robot programming language include :

1 EASY TO LEARN

2 EFFICIENCY AND SPEED

3 MODULARITY

4 PORTABILITY

5 DATA TYPES AND ABSTRACTIONS
6 READABILITY

7 MAINTAINABILITY

8 COMMERCIAL AVAILABILITY

9 PROGRAMMING SUPPORT/ENVIRONMENT
10 WRITEABILITY

1T FLOW OF CONTROL

12 INTERACTIVITY

13 EXTENSIBILITY

14 CONCURRENT PROGRAMMING

4.2.1 EASY TO LEARN

Every programming language has its own unique syntax, structures and programming
style . As the fundamentals of some languages are easier to learn than others, some of

which may require an extended learning period before serious use can be made of the
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features offered by that language. RAMBIN and TAYLOR [1986 Jsuggest that if the
language is easy to learn it will considerably shorten the software development time
thereby reducing the overall cost of the system. Clearly, a language which is easy to
learn is much more likely to be accepted by the users and this factor could play a crucial
role in acceptance of the software and hence its future marketability. This fact is even
more important for a robot programming language since most users will be non-
professional programmers or might have some knowledge of machine tool programming[
WECK et al.1984 ]. Thus a good high level language with sophisticated syntax may find
difficulty in being accepted on the shop floor. Industry may be reluctant to accept such
sophisticated program systems which require qualified computer science professionals in

terms of an extra cost involved in employing them.

422 EFFICIENCY AND SPEED

Efficiency of a programming language can be regarded as speed of execution and
utilisation of memory space. The purpose of the optimisation is to reduce the program
size, increase execution efficiency and reduce data storage requirements. A language
should therefore provide transformations which allows efficient use of a code. With
considerable decrease in hardware cost efficiency may not appear to be important in terms
of processing power and storage capacity, but it is still relevant under real time systems
such as robotics where the response time may often lie within certain critical constraints.
Since general real time programs and robots using real time features such as complex
vision systems and mathematical models requiring many iterative calculations can be
highly computationally intensive so that the language must be fast (i.e capable of
efficient implementation). However, overloads caused by using high level languages for
clarity , simplicity, structured programming techniques, control structures etc do

outweigh the loss of speed rather than using machine codes or assemblers.
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423 MODULARITY

Modularity is the capability of dividing a program in to some smaller units, known as
modules which may be developed independently of each other. Each module may by
itself perform a simple task. At subsequent stage, these modules can be integrated into
one larger module. This is quite a desirable feature of any programming language
because software may be developed and tested as smaller units. Additionally, a complex
program can be developed as free standing modules by different programmers and

subsequently combined together to create a hierarchical system.

Modularity leads to structured programming which leads to enhanced flexibility, so that a
programmer can at will interchange modules, adding to and modifying them, or
removing them during program development or maintenance time, at will. It also adds to

the reuseability of the code.

A language should provide facilities for the definition (creation) of modules and also for
information hiding. Such a language should also provide facilities for interfacing a

sequence of modules into a higher level more complex hierarchical modules.

42.4 PORTABILITY

Portability is the independence of a program from the underlying hardware. This is very
important feature of software for computer applications including robotics. Ideally the

software written for an application should run on other hardware without modification.
Unfortunately, complete portability is almost impossible to achieve in robotic

applications. For a robot software to be portable it should be independent of:

(a) Computer hardware

(b) Type of robot
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(a) COMPUTER HARDWARE

Large industrial manufacturing systems often employ a variety of computers ranging
from main frame to microprocessors. They also use a variety of operating systems.

Hence a programming language must be compatable with as many of these computers as

possible.

WECK et al. [1984] recommends that Computer portability requires the use of standard
computer system and a well accepted high level programming language such as Pascal or

Fortran for this purpose.
(b) TYPE OF ROBOT

Robot programming suffers from program portability as different robots have different
dimensions, geometry, sensors and employ different mathematical models to solve
kinematic equations. If a manufacturing company uses robots supplied by different
companies , all using different programming languages, then maintaining a complete
integrated system may turn out to be very complex, which might even require
professional programmers who are familiar with different systems. Even interfacing one
system with other system may prove very tedious. Hence industry will gain significant
benefit from a general portable language which can be independent of type of robot used.

Unfortunately, at present, the majority of current robot languages and systems are highly

dependent on the type of robot used.

Although there are obvious difficulties in achieving a complete portability it would be
much more desirable to have some degree of portability, where most of the language
constructs are independent of the robot configuration, types of sensors and processors
and /O devices used. Thus in order to transfer software from one robot type to another it

will always be necessary to make certain changes, but the fewer the changes required the
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better it is from software portability point of view. Perhaps a better approach would be to

design the software in modular form so that only certain modules would need to be

rewritten or modified.

Languages like Forth do support modular programming and most of the modules are
independent of robot type and /O devices. Thus transportability of software in such
languages is much easier to achieve. In such a case, for instance, the user only need to
change the contents of certain variables and constants used in configuration and lengths

of robot joints.

4.2.5 DATA TYPES AND ABSTRACTIONS

All high level languages do provide some basic data structure available to the
programmer such as variables, constants, arrays, files etc. These data structures are
defined for programmer who explicitily manipulates them in program statements. Each
of these data structures can be used to create new data objects according to predefined

data types such as integer, character, real and string etc. supplied by the language.

Each language comprises a set of primitive data types that are built in to the language. A
good language should provide facilities which allow the programmer to define new data
types. These features are not included in old languages like Fortran and Cobol, whereas

modern languages such as Pascal, Ada and Forth do allow the user to declare new data
types.

A programming language should provide facilities that assist the programmer in
constructing his own abstractions. Information hiding is the term used for the design of
programmer-defined abstract data types so that each component should hide as much
information as possible from the user of the component. Any information hidden in an

abstract data type is referred to as encapsulated when the language prohibits the user

access to the information hidden threin. Information hiding is desirable feature in any
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program and can be implemented using any programming language, but encapsulation

does depend on the design of the language chosen.

SIMULA 67, FORTH, concurrent Pascal, CLU, Modula-2, Smalltalk and ADA, allow a
programmer, to a varying degrees, to define an abstract data type by providing a special
language construct for encapsulation [GHEZZI and JAZA YERI 1987]. A comparative
study of data structures in Pascal, ADA, C, ALGOL 68 and FORTRAN has been
described by FEUR and GEHANI [1984] and MALONE [1984]. The importance of data
structures, types and abstractions in the improvement of system clarity, reliability and

modularity in programming has been discussed by SHANKAR [1980]

Robot programming involves the manipulation of different objects in its work space.
This requires the programming language to declare appropriate data structures suitable for
each application. The data structure may be in the form of variables, constants, arrays
etc. For efficient programming the names of these variables should be task orientated e.g
name of joints variables should if possible be given as waist, shoulder, elbow, gripper
etc for ease of understanding. Similarly variables which store co-ordinates positions
should have names like Xlen, Ylen, Zlen, Yaw, Pitch, Roll etc. The most common way
of describing positions and orientations is by means of frames. The base of the robot and
its end-effector can also be defined by a suitable frame. The relation between these two
frames depends upon the geometry of the robot, number and types of joints. The
solution of inverse kinematic problem of a robot depends upon solving these frames. A
programming system must contain appropriate support modules to solve these
transformations. In the same way, each object, along with properties present in the
working environment of the robot have a characterstic frame assigned to them. Actual
robot programming is thus assigning and relating frames to each other. According to
VAN AKEN and VAN BRUSSEL [ 1988 ] defining a frame comprises two elements :--
(i) the assignment of numerical values to the variables defining positions and orientations

of the frame. (ii) the selection of a suitable reference for the frame.
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A language must provide facilities for the declaration of these data types which is not
only useful in the development of program but also at latter stages when it may be
necessary to extend or modify the existing program. Thus data structures which allow the
user to define abstract data types is an essential requirement of a robot programming
language. Languages such as Forth contain inbuilt features of this type. One of the major
advantages of using a high level language for robot programming is that it can offer data
structure to the user which hides away minor details of an instruction and only permits
the use of an abstract command e.g P1 P2 move. The move command is easy to
understand by operators who do not need to know the information hidden therein. Thus

data abstraction is a very desirable feature in robot programming.

42.6 READABILITY

Readability is one of the desirable features of any programming language and of robot
programming in particular. If commands convey clearly the action they are intended to
take it is much easier to use these commands especially if the user happens to be a non-
programmer, which is quite likely to be the case in robotic applications. In addition it is
much easier to modify the section of the code if it is readable and its action is well and
clearly understood. This could be of great importance and could save considerable time

in program maintenance since the person making the modifications is not likely to be the

original designer.

Readability helps in understanding the logic of the program and is of great assistance in
error identification merely by examining the program. It also decreases learning time.
Readability is however largely a matter of style and taste yet considerably enhances
program understanding by examining the code. For example, the commands like GOTO
or GOSUB makes it very difficult to read and follow the flow of the program. The

program cannot be followed from one end to another instead one has to jump around
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within the program in order to understand it. Readability in robot programming can be

considerably increased by assigning suitable application orientated names to variables
and constants such as waist, shoulder, arm, move etc. For example, longer the name of
the variable, easier it is from the user point of view to understand its meaning and

purpose. Thus a language should ideally allow sufficiently long names for variables and

constants.

4.2.7 MAINTAINABILITY

Maintainability relates the maintenance of software after it is released to the user. All
software in its life time will require some maintenance, which imposes certain
requirements on the programming language. The program must be readable but readily
modifiable. Maintenance is generally the most expensive item within the whole software
cycle. It may be as much as 80% of the overall cost of the software product [Dyer 1985].
Summervile [1982 ] classifies actions taken under the heading of maintenance of

software falls into three categories:
(a) PERFECTIVE
(b) ADAPTIVE

(c) CORRECTIVE

A survey by LIENTZ and SWANSON (1980 ] suggests that approximately 65%
maintenance was perfective, 18% adaptive and 17% corrective. In robot programming
the perfective and adaptive maintenance may play major roles, as robot applications may

require occasional modifications in tool size, shape etc. Thus software maintainability is

quite important in robotic applications.
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4.2.8 COMMERCIAL AVAILIBILITY

It is quite important that a language be readily available on commercial scale for various
hardware configurations with suitable extensions for various specialised applications at a
reasonable cost. This may result in robot manufacturers selecting the language for the

system development. This ready availability may result in the following;
() greater awareness by the people.

(ii) more literature being available to assist in learning the language.
(ii1) possibility of training the staff in learning the language.

(iv) easier to accept the language for adaptation to application.

4.2.9 PROGRAMMING SUPPORT/ENVIRONMENT

Robot program development, like other computer application programs require
programming support such as editors, debugger etc. A good programming language
must provide a programming environment in order to support the programmer. Robot
programs tend to be complex and can be difficult to debug and, like other programs some
time require external data, ask the user to input the data or even may require corrective
actions. It is easier to develop and test individual small sections of code one at a time
instead of writing a complete program. Thus an interactive programming language is
much more advantageous than the compile type which may involve many laborious edit-
compile-run type of cycles. Therefore by using interpretive languages, the small

modules can be interactively tested and debugged.

The robot tasks may involve complex motions requiring long execution time, hence a
program failure must have a facility to restart the program at an error stage rather than

resetting and starting all over again so that robot programming systems should have the
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facility to modify the program on-line and restart at any time. The debugging system
should have the facility to record sensor output so that during debugging, the interaction
between robot via the sensors and its environment can be used in ‘the debu gging process
if required. Since the sensory information and real time interactions are not usually
reproducible. A simulation facility which can allow the program to be tested without
actually using the robot during the development of the program can save considerable
amount of time. Simulation can be useful since complex trajectories and motions are
difficult to visualise without actually seeing their actions so that simulation can be very
useful tool in program development. Since robot systems are rarely used as stand alone
machines they need to communicate with other robots and other devices such as belts,
moving parts, vision etc, so that programming languages should address such problems
like communication, interaction, synchronisation with such devices which form part of

the complex robotic system such as in the case of FMS type of applications.

4210 WRITEABILITY

Writability of a programming language refers to the possibility of expressing a program
in such a way so that it appears natural to the application [GHEZI and JAZAYERI 1987).

For example, a robot program may contain a command :
“ move waist 5 steps” which appears natural to this application.

Thus the program should appear as a problem solving tool without having to worry about
language detail. High level languages generally are far more writeable than low level
languages. Since latter has to include addressing mechanisms and actions of the contents

of certain registers which makes them very difficult to understand.
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42.11  FLOW OF CONTROL

Flow of control refers to the method by which programmer can specify the flow of
execution within the program. Most high level programming languages provide the
constructs to control the sequence in which individual statements are executed. A
language providing good control structure can considerably enhance the readability and
the maintainability of the program. There are three main types of control structures

provided by most high level languages, namely sequencing, selection and repetition.
(1) SEQUENCING

Sequencing mechanism specify that execution of a statement must follow the execution of

another statement. For example,

(1) SELECTION

selection allows the programmer to specify a choice to be made among a certain number

of possible alternative statements. For example,

IF -------THEN-----ELSE----ENDIF
(iii) REPETTTION

Repetition allows the programmer to repeat a certain code of a program over a specified

number of times or until a condition is satisfied. For example,

DO ----LOOP
DO----mmoeeee WHILE--------- LOOP
BEGIN ------------ WHILE------END



For non-sensor robot programming the program follows a fixed sequence of an

operation, but a robot using signals from various sensors may have to take certain
decisions on the basis of information received from them, so that, for example, output
from such sensors may require the robot program to take certain actions or branch to
different sections within the program. For instance, a robot using a vision system may
wish to ascertain whether a part to be picked from a specified location has arrived or not.
If not arrived clearly there is no point in trying to pick it up. The robot may have to
consult some inner model and branch accordingly under these unexpected circumstances.
Similarly error detection and correction may require decisions from sensors e.gifan
object to be manipulated is in the correct position and orientation then move it, otherwise

send an error message.

Most robot actions are performed under conditions of great uncertainty due to the real
world situation e.g an object may not be present at specified location, it may have wrong
size or shape etc. To deal with such uncertainties the programming language must
provide a rich control structure. With increasing use of sensors in conjunction with
complexities of robot programming it is essential to have as many additional control

structures as possible including those found in fourth generation languages such as

REPEAT ------ UNTIL,

In additon to these control facilities, robot program may require to receive control signals
from other devices working as a part of a complex systems such as FMS, multirobots or

other machines such as feeders, belts and NC machines etc.
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4.2.12 INTERACTIVITY

Interactive languages allow the user to develop and test the software immediately and
save considerable time during the development stage of the software as the small sections
of the code can be interactively tested for the desired action. If necessary, they can be
quickly modified and retested. This supports the modular design of software, since each
module can be independently developed and tested and considerable time can be saved in

debugging the program as well.

In the case of compiled languages the user has to write the complete program, compile it
and then run it. All the errors in such languages are reported at compile or run time and
the program debugging becomes complex. Even for a slight modification in the program,
the programmer must go through edit compile and run cycle. Thus the programmer loses

valuable time during software development stage.

Interpretive languages have many advantages over compiled ones in robotic applications
as well, since interpreter execute the codes as it encounters them. Hence a program is
quicker to change as minor modifications in program do not require the whole program to
be recompiled. Interpretive languages help in rapid debugging, another ideal feature for
developing a large and complex software such as robotics. Although interactive
languages tend to be rather slow but they far outweigh the advantages in complex

applications such as robotics.

4.2.13 EXTENSIBILITY

Extensibility is an extremely important feature of a robot programming language. Since
every programming language will require some extensions in order to make it suitable for

new application as no language can possibly provide facilities for every conceivable types

of applications. This is more important in robotics as new and diverse applications are
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emerging all the time. Language extensibility can be a major factor in the selection of a
language for robot programming [RAMBIN and TAYLOR 1986 ]. An extensible
language should provide facilities to the programmer to add new data structures and
program features (constructs) to fulfill new application requirements. ADA, AML

[MANDUTIANU 1988 ], C and Forth are examples of extensible languages.

4.2.14 CONCURRENT PROGRAMMING

A concurrent program consists of parts which can run parallel to each other. Concurrency
arises naturally in real time control systems including robotics. On a single processor
concurrency is achieved by performing one section of a code of a subprogram at a time,
then jumping to another and finally returning to original one. Whilst this feature is
important, since it increases the speed of a system, this kind of facility is not found in
many general purpose high level languages. Modern languages which do provide
concurrency include concurrent Pascal, Modula, Modula-2, Occam, concurrent C and
ADA. Some of the constructs provided by these languages to achieve concurrency are

SEMAPHORES and RENDEZVOUS.

Concurrency is important in robot programming since robot programs tend to be complex
and involve the moving of joints, monitoring sensors, performing complex calculations,
preventing collisions, interfacing with the operator and communicating with other real
time devices. Common areas which are suitable for concurrent programming, comprises
the performance of mathematical calculations such as multiplications of rows by
columns in solving homogeneous transformations and simultaneous movements of robot
joints in order to align the robot end-effector to a prespecified location. Such sensor
based robots may have to wait for signals from sensors in order to synchronise with
external events. Multirobot systems will have to communicate with each other and other

devices. Hence, concurrent programming can play significant role in such applications.
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Parallel processing is becoming more significant with the development of autonomous
and adaptive robotic systems. COX and GEHANI [1989] have discussed the advantages
of concurrent programming in robotics and recommend that concurrent C is an ideal
language for robot programming. The importance of concurrency in robot programming
is presently being realised and even the use of transputers in robot programming has been
reported. BROEK and BOER [1989 ] have described a parallel transputer system for
automatically loading different sized parcels into a container. STAVENUITER et al.
[1989] have described the use of transputers for the control of a flexible robot arm.
Similarly, GEFFIN and FURHT [1989] have discussed the use of parallel processing

using transputers and OCCAM to control the motion of a robot arm.

43 SPECIAL ROBOT REQUIREMENTS

In addition to general desirable features of a robot programming language discussed in
the previous section (4.2), the field of robotics demands some additional features from a
programming language. Some of these special requirements are discussed by WECK et
al. [1984], LOZANO-PEREZ [1983 ], RAMBIN and TAYLOR [1986 ], HAYNES
[1985], BONNER [1982 ] and VAN AKEN and VAN BRUSSEL [1988 ]. An ideal

robot programming language should also fulfill the following robot specific requirements

1 METHODS OF DEFINING POINTS IN SPACE
2 MOTION SPECIFICATION

3 SENSOR INTERACTION

4 DECISION MAKING

5 COLLISION CHECKING
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6 HUMAN ROBOT INTERACTION
7 MATHEMATICAL LIBRARY
8 WORLD MODELLING

9 ON-LINE PROGRAMMING FACILITY

4.3.1 METHODS OF DEFINING POINTS IN SPACE

A Robot programming language must provide some means of specifying the position and
orientation of the end-effector in three dimensions. This may be in Cartesian co-ordinates
( x,y,z) system for cartesian robots or in cylindrical co-ordinates (x,y,8) both of which
can be defined relative to fixed reference systems. This reference system may coincide
with the base of a robot or some other convenient location. This method of co-ordinate
specification is known as world co-ordinate system. In the case of other types of
geometrical configurations such as polar or jointed arm robots, an alternative suitable co-
ordinate system may be necessary which may ultimately require conversion into cartesian

co-ordinate system.

432 MOTION SPECIFICATION

In those applications where a robot end-effector must follow a specific path, it may be
necessary to define a set of points the locus of which define the trajectory through
which robot arm must pass. The specification of initial and final position may not be
adequate in those circumstances because some applications might require the robot to
approach the grasping position from a certain direction in order to avoid hitting or

colliding with other objects in the work space.
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In the same way a specific path must be followed by the robot for certain applications
such as assembling some parts together. There may be occasions when - it may be
necessary for the robot to follow a specific path in order to avoid collisions with the
obstacles on its way to its final destination. This can be provided by specifying via
points. The via points are those points through which robot must pass while moving
from source to its destination. Clearly, robots do not have to stop at these points. A

typical sequence may be like this:
“move P1 P2 via P3”

The continuous path between the points may be in the form of straight line, along a
circular path or other more complex route which will depend upon the specific

application.

43.3  SENSOR INTERACTION

For robots to be able to interact with their surroundings or environment they must be able
to obtain feedback from the sensors attached to them. Without these sensors robots are of
very limited use. In non-sensor based robots the parts to be manipulated by the robot
must be delivered consistently to an accurate pre-specified location and at a precise
orientation. The destination must be clearly stated, so must be the path of the robot. It is
the responsibility of the operator that these criteria be met otherwise robot may miss the
object, collide with an obstacle on its way or even deliver the object at the wrong place.
This may also require the building of special tools to place objects at the correct position
and orientation. In non-sensor based robots there can be no provision for grasp failure or
ability to cope with uncertainties. Slight variations in size, shape and position of the tool

may require additional modification of other tools which could add considerable costs.
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The use of sensors can overcome lots of such problems. LOZANO-PEREZ [1983] and
VAN AKEN and VAN BRUSSEL [1988 ] have suggested the following advantages of

using sensors:

(1) the identification of objects

(i) checks for the presence of parts to be manipulated.

(ii1) the determination of the relation between the robot and other objects.

(iv) the determination of the exact location of the part.

(v) checks for the presence of a part at a specified location.

(vi) the initiation and termination of robot actions.

(vil) to take appropriate branching decisions on the basis of sensory information.
(viii) the compliance with external constraints.

The programming language must provide general input/output mechanism for obtaining
sensory data and controlling their operation. Additionally , languages should provide
programming flow control facilities so that suitable alternative algorithm may be followed

depending upon the type of sensory data.

43.4 DECISION MAKING

A robot program must be able to receive data from its sensors, analyse it and make
appropriate decisions on the basis of this received data. For example, feedback from a
sensor may inform the robot controller that an object has arrived so that it can proceed to

pick it up. On the other hand if it failed to arrive at the expected destination there is no
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point in trying to pick it up. Hence a programming system must provide such fail-safe

decision making facilities.

4.3.5 COLLISION CHECKING

Robot programming languages should supply features such as collision checking and
collision avoidance. A sensor may inform the robot that there is an unexpected object on
its way to its destination then provision must be provided to take appropriate preventative
measures to avoid such collisions so that robot must be able to react to varying conditions
within its working area. This is very complex since it requires the robot to have complete
up to date knowledge of all the objects, their numbers, size and shapes in order to ensure
that by transferring from location A to B it will not collide with other objects in the
proposed trajectory. Such a model will require input of clearance/tolerance limits in the
program for avoiding collision. For checking collisions, it will be necessary to obtain
input from sensors. Therefore these features are more relevant to the task level of
programming. Current robot programming languages do not provide as yet, this type of

facility.

43.6 HUMAN ROBOT INTERACTION

Any robot programming system would almost certainly involve some kind of interaction
with the user. Commands supplied by the language must be easy to learn by the operator
and easy to use. In the earlier robots, programming using on-line techniques involved
considerable human interaction. For example, teaching it a job, saving and retrieving a
trajectory when required. This feature is equally important in off-line programming. The
vocabulary of commands provided by the language must be easy to type and understand.

Unfortunately, most of the currently available robot programming languages are not easy
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to understand from the user point of view, since they are designed by and for the people
who are familiar with the computers,

MORRISSEY [1985] has discussed the importance of user friendly robot programming
language with reference to a language known as SAVVY. This author emphasises that
majority of the robot users are not familiar with any computer programming language and
are certainly not likely to be familiar with hexadecimal addresses, baud rates, arrays etc.
The user would normally expect to be able to write a useful program in a very short
time. For this reason the programming languages must be very easy to learn, avoid any
complicated commands and the declaration of arrays or variables etc. be as self
explanatory as possible. The language must have straight English syntax and must
provide meaningful error messages when necessary. The interactive languages also
improve human robot interaction as the user can type a command and be able to test

immediately whether it works or not and whether it performs its designated action.

437 MATHEMATICAL LIBRARY

Since off-line programming systems involves performing complex mathematical
calculations the language must provide a complete library of functions such as square,
square root and trigonometric functions, otherwise a considerable amount of time may be
wasted in implementing them by the user. These functions should, if needed, be
available as an extension to the language for special applications. Robot programming
involves the solving of complex equations using these functions. Thus the

implementation of these functions must be efficient to improve the speed of the system.
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4.3.8  WORLD MODELLING

World modelling involves the description of geometric and physical properties of the
objects and their interelations in the working environment of the robot. This kind of
information is essential for robots which require to sense their environment so that they
can, independently plan the sequence of their operations upon receipt of one command
from their operator. This type of programming is more commonly known as task level
programming which involves three components viz (i ) world modelling which is a data
base representing robot and objects in its environment (ii) the task specification which is
a command used to describe the task in a high level language (iii) robot program
synthesis which is a process of transformation of task into robot level program . World
modelling is an essential component of task level programming, but is not required where

robot actions have been explicitly specified by the operator.

The task level programming is used by Al researchers, since the programming requires
data which specifies the type, size, location and numerous other physical
characteristics such as appearance, type of surfaces etc. This requires the setting up of a
data base for the robot so that when it receives information about its surroundings from
the sensors, it can consult this data base (model ) and infer the physical properties of the

object, its interrelation with other objects.

439 ON-LINE PROGRAMMING FACILITY

There is no doubt that programming a robot off-line has many advantages, however in
an industrial environment circumstances may arise when it may be desirable to program
them on-line. This may be due to the fact that a particular task is very difficult to model
mathematically, the textual program is complex or the user need to transfer his skill by
moving robot arm very skilfully through a particular path perhaps at a speed which can

be controlled by intuition only. Hence a programming language must provide language
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CONSIructs so as to permit robot use in order to teach a job manually. It should also offer

facilities for saving such tasks perhaps in secondary memory and retrieving it when
desired.

75



CHAPTER --5 FORTH

5.1 HISTORICAL BACKGROUND

Forth, a high level computer language, was invented by MOORE [1974], for real time
programming, while working at The National Radio Astronomy Observatory, Virginia,
U.S.A. He was looking for a language, suitable for use on minicomputers, which is
fast, requires less memory and is flexible so as to control a radio telescope. The word
FORTH, originated from FOURTH, since Moore wanted to call it a Fourth generation
language, but the computer IBM-311, permitted only 5 characters, hence the truncated
name FORTH. The first professional application of Forth was in 1971 on a Honeywell
316 minicomputer and its purpose was to collect Astronomical data at National Radio
Astronomy Observatory (NRAO). In 1973, Moore founded his company for the
development of Forth Programs known as Forth Inc. Since its introduction, Forth has
steadily gained in popularity, particularly for use on micros. There is a Forth-Interest-
Group (FIG), which is essentially a users' group and its aim is to increase the knowledge
of Forth. There is a Forth standards team, the latest is Forth-83, which has superseded
Forth-79 standard. There are different versions of Forth, which are suitable for many

and diverse applications such as Poly-Forth, FIG-Forth, MMS-Forth etc.

52 FORTH APPLICATIONS

Forth is lately gaining in popularity as more and more programmers are realising its
power and advantages over conventional languages. Forth can be implemented on most
of the popular micros which are commercially available such as Intel, Motorola, Zilog,
Texas, Commadore Pet, IBM PC etc. Atari [SALMAN et al. 1984] has developed a
special version of Forth called Game-Forth for TV games. The film industry has used
Forth to control cameras for producing films like "Star Wars", "Battle Beyond the Stars"

etc. The use of Forth in controlling and monitoring the Hopkins Ultra-Violet Telescope,
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in space shuttle experiments is discussed by BALLARD [1984]. VAN BREDA and
PARKER [1983] have described the use of Forth for the collection of data at the Royal
Greenwich Observatory using Motorola 6800 and 6809 microprocessors. HARPER
[1983] has described the role of Forth in the development of a multichannel analyser for

low illumination level image detection in astronomy and space research.

Forth has also been used in multi-tasking applications [BUTTERFIELD 1984] in which a
microcomputer performs more than one task under programmed conditions. WEISS
[1984] has described applications of Forth in special areas which include Artificial-
Intelligence, Diesel Electric Locomotive Trouble Shooting Air (Delta) expert systems,
data-base systems like SAVVY ( which is a natural language system for generating
application programs ) and SIMPLEX ( an integrated data-base system with a Pascal-like
interpretive language ), word processing, Macintosh-like windows and graphics.
TULSKIE and DIMEO [1983] have given a brief summary of a special version of Forth
known as FORC, for Robotic Control. These authors claim that FORC offers all the
convenience of a high level language but retains the speed of assembly language.
LAGERGREN [1983] has described the use of Forth in monitoring the speed of tow
boats, in order to determine the fuel consumption. LOTSPIECH and RUEHLE [1984],
described the generalised interrupt handler for Intel 8085 microprocessor. BRODIE
[1981], in the introduction of his excellent book, refers to applications in such diverse
fields as cardiac monitoring, automotive ignition analysis, the measurement of moisture
content of grains and baggage handling by a major U.S. airline. MACINTYRE (a,b)
[1985], described the use of Forth in the automation of a laboratory using MMS-Forth.

5.3 FORTH AND ROBOTICS

Forth provides a complete programming environment for software development. Forth

has the following important features which make it suitable language for a real time

programming including robotics :

(i) Interactivity
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(i) Extensibility

(iii) Compilation

(iv) Editor

(v) Assembler

(vi) Secondary memory
(vi1) Operating System
(viii) Transportability
(ix) Execution Speed
(x) Compactness

(xi) Direct memory access

5.3.1 INTERACTIVITY

Forth is an interactive type of language[ HEDLEY 1981 ] which means that the
commands, known as words in Forth, are executed as soon as they are entered at the
keyboard. For example by entering $ 41 Emit, the output will be (ASCII character) letter
A. This feature of Forth renders it much easier to debug since each instruction can be

tested immediately and reflects the modular approach of the language.

5.3.2 EXTENSIBILITY

Forth has a vocabulary of certain core words in its dictionary. In addition, it allows the

user to write application oriented words which can be added to the dictionary or kept
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separately in a secondary memory such as disc or tape, for loading into Forth when

required.

5.3.3 COMPILATION

Forth has a built-in compiler and every newly defined word is complied into dictionary.
Each newly complied word, is defined in terms of the previously defined words. For
example, Forth words * (multiply), and . (print) can be combined to form a new word

which can be defined as follows:

: MLTPLY-PRNT (nl,n2 -------- )

Once this word is compiled, it will perform the function of these two words on

execution.

5.3.4 EDITOR

Forth provides an editor, which allows the user to edit and change a program as and
when necessary. The editor itself is a vocabulary of Forth words, which are usually

stored on a disc and can be loaded into memory.

53.5 ASSEMBLER

Forth often has a built-in assembler, which allows the user to define assembler
mnemonics in machine code which can be used in the same way as other Forth words.
There are two special words in Forth for this purpose known as CODE and NEXT, the
former being equivalent to a Colon (:) and later to a semi-colon (;), (as defined in

section 5.4.11). For example, SEI, is a mnemonic in 6809 processor, to set the interrupt
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mask bit in its condition code register and its machine code is $ OF. The Forth assembler
code will be:

HEX CODE SEI OF NEXT.

This facility is very useful in handling peripheral devices. The programmer can build an
assembler vocabulary of suitable words for a particular application. This Forth code runs

nearly as fast as machine code, thus increasing the execution speed of the language.

5.3.6 SECONDARY MEMORY

Forth provides words which allow blocks of memory to be loaded from mass storage
devices such as disc . It provides a small area of memory called Buffers, which in Forth
used in this research is of 2K bytes. Forth organises its mass storage memory into
screens of 1024 characters so that there are 16 lines of 64 characters per line on each
screen and each screen is numbered. The Forth word LOAD, loads the contents of a
specified screen (block) into memory. These words will now become part of the Forth
dictionary during current session. This feature of Forth, which makes mass storage:
memory to appear as part of Forth dictionary, is known as virtual memory. If the user
wishes to load more screens than the number of block buffers available on the system,

the block which was loaded first of all will be stored back into secondary memory before

bringing in the new block.

5.3.7 OPERATING SYSTEM

Forth provides a complete operating system environment, since it provides the user with
facilities like editing, assembling, interpreting, compiling, addressing mass memory
storage (DOS) and handling peripherals. All these facilities are available in a

comparatively very small memory size which is smaller than a typical operating system.
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For example, the Forth operating system requires significantly less than 8k bytes of

memory.

5.3.8 TRANSPORTABILITY

Forth has been implemented on almost all the popular micros and mini computers.

Changing from one micro to another for instance, only requires the assembly section of

the vocabulary to be rewritten.

5.3.9 EXECUTION SPEED

The execution speed of Forth is much faster than other high level languages (HLLs) and
is 20-75% slower than equivalent assembly language programs [MANNONI 1980].
However, Forth does allow time critical sections of the program to be written in

assembler form, which will run much faster .

5.3.10 COMPACTNESS

Forth is very compact language. For example, the memory occupied by core Forth words

and complete operating system is usually less than 8K bytes.

5.3.11 DIRECT MEMORY ACCESS

Forth provides words like @ ( pronounced as fetch ), ! ( pronounced as store) and
DUMRP etc which provide direct access to memory locations. This is an important feature

of the language which is only provided by a few high level languages such as MODULA

and C.
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54 FORTH LANGUAGE

Forth language has five key elements [ RATHER and MOORE 1979 1 : words,
stack/stack operations, arithmetic/logical operations, extending the compiler and

dictionary.

54.1 WORDS

A word (contrary to general computer terminology of 2-bytes) in Forth represents an
instruction and is named as any combination of characters (1-31) and numbers even
including punctuation marks. Each Forth word is separated by at least one space

(delimiter). For example, the following are permissible Forth words:
+, %, 7, ., DUP, APPLE, PORT, ASIDE, IRQ-?, OVER, LIST etc.

In reality, Forth language is simply a vocabulary of such words.

542 STACK/STACK OPERATIONS

Forth usually uses a 16-bit push-down stack. The stack [ HILLBURN and JULICH
1976 ] is a set of memory locations, which works on a last-in, first-out basis,
abbreviated as LIFO. When a datum is placed on the stack, all the previous data items are
moved down by one location. This is known as push operation. When a data is removed
from the stack, all items move one location upwards, this is known as pop operation.

Another point to note is that Forth uses post-fix (Reverse Polish Notation - RPN)

notation instead of infix notation to which most users are more accustomed. The figure

5.1 shows the difference between infix and post-fix notation.
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Infix notation Postfix notation
6* 3 63 *
3+2+7 32 7+ +
6* (3+2) 63 2 + *

Fig.5.1 Infix/Post-Fix Notations.

Forth is a stack oriented language and has two types of stacks: the data stack and return
stack. The data stack deals with data handling and the return stack is more often used by
the Forth system to store some indices or pointers while executing Forth words. The
typical use of return stack is in executing loops when indices are placed on the return
stack. The user is however, allowed limited access to the return stack in order to move
some parameters there. The essential condition is that any number placed on the return
stack during the execution of a word must be removed before the end of definition
otherwise Forth will crash. The return stack words are summarised in Appendix B (

table B5 ).

Forth 83 provides certain stack manipulation words for the numbers placed on the stack
so that they can be removed, duplicated or moved around to change their relative

positions. These words include DUP, SWAP, ROT, OVER, P ICK, ROLL etc. Some

of these stack manipulation words are summarised in Appendix B (table B1 ).

It is customary to show stack effect before and after an operation by enclosure within

parentheses. For example, the word DUP expects a 16 bit number n on the stack before

execution and leaves two identical numbers (n n) on the stack at the end of its operation

e
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5.4.3 NUMBERS AND ARITHMETIC OPERATORS

Forth allows the user to work in different number bases by storing an appropriate base
number in a variable called BASE. For example, to change to base hexadecimal one can

type:
16 BASE !

The Forth word ! (store) saves 16 into variable called BASE. To change this base in to

binary, one can type:

2 BASE !

Thus it is much more easier in Forth to work in different number bases. It is also
possible to convert a number in one base to another. For example, let us assume that the

current base is 16 and by typing the following will leave 26 on the stack.

1A DECIMAL = -------- > 26

Most versions of Forth provide the word HEX or HEXADECIMAL, which sets the

current base to 16. In the same way the word BINARY sets the base to 2.
Forth provides arithmetic operator for the following types of numbers:

(a) 16 bit single precision integers (n).

(b) 16 bit unsigned single number (u).

(c) 32 bit double length integers (d)

(d) 32 bit unsigned double length numbers (ud).
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Forth provides arithmetic operators such as +, -, *, / etc. for performing mathematical

operations. These are  summarised in appendix B ( table B2 ).

A suitable combination of arithmetic and stack operators may allow solution of various
algebraic expressions. For example, to calculate n1(nl + n2), the value of n1 and n2 are

needed on the stack. The word needed to evaluate this equation may be defined as

follows:

: EQUATION (nl, n2 ---eee-m--n)

OVER ( move second item to top )

+ (addnl andn2 )

* ( multply nl by sum of nl and n2)

; (‘end of definitions )

This could be shown by the following stack diagram:

operation stack
nl n2
over nl n2 n]
+ nl (nl+n2)
* nl * (nl+n2)

The above operators work only on single length numbers ranging between + 32767
10 -32768 This means with 16 bits one can represent numbers from 0 to 65535.

Some applications might require the handling of numbers which are outside this range.
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For these circumstances Forth supplies double precision arithmetic and stack operators

such as 2SWAP, 2DUP, D+ etc.These words are summarised in Appendix B (table B3).

5.4.4 MIXED LENGTH OPERATORS

Forth supplies some mixed length operators such as M+, M/, M* etc., of which the
most common ones are summarised in Appendix B ( table B4 ). Forth also supplies

words like U. and U* which works on unsigned single length numbers.

5.4.5 FLOATING POINT VS FIXED POINT ARITHMETIC

Most computers allow the use of floating point arithmetic. However, Forth advocates the
idea of fixed point arithmetic i.e by treating all numbers as integers, leaving up to the
programmer to know the exact position of the decimal point. However, both types of
number representations have advantages and disadvantages. A Math co-processor can

give considerable advantage when using floating point numbers.

5.4.6 INPUT OUTPUT (1/0) WORDS

Forth provides output words for printing characters. The most important character

output word is EMIT, which sends the character represented by a number on the stack to

the VDU. For example,

For the control of input from the keyboard, Forth provides words such as KEY, 7KEY,
EXPECT. WORD etc. The word KEY allows the user to put ASCII characters on the
stack from the keyboard. For example, by typing word KEY followed by return, nothing

appears to happen as Forth is waiting for the user to press a key from the keyboard. On
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receiving a key, it will leave on the stack its equivalent ASCII value. The main use of this

word is to wait for the user to press a key to proceed so that the ASCII value entered by
the user can be used for example, to branch off within the next part of the program. A
related word to KEY is ?KEY, available on some systems which allows execution of
program to continue until a key is depressed. The word EXPECT, allows a specified a
number of characters to be received from the keyboard and also expects the starting
address where these characters are to be stored. Another useful input word is WORD,
which reads a number from the input, using the character ( commonly blank, ASCII 32 )
as a delimiter. It leaves the address of the string, containing the character count in the

first byte on the stack.

5.4.7 COMPARISON OPERATORS AND BRANCHING

Forth provides comparison operators such as >, <, = etc. for decision making in the
algorithm. These operators carry out comparison with numbers on top of the stack and
leaves true (1) or false (0) flag on the stack. The value of this flag may be used to jump to
different program sequences as desired. The common comparison operators are

summarised in Appendix B (table B6).

In order to branch the sequence of an operation, on the basis of information (flag)

provided by the comparison operators, Forth provides the following two types of branch

instructons:
IF --eeee- THEN
| QS——— ELSE ------------ THEN

These instructions can only be used in colon definitions. Forth word IF expects a flag on

the stack . In case of IF --- THEN, a positive number or value 1 will allow the execution
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of Forth words followed by the IF and false flag will make it to jump to word/s after
THEN. The use of IF ---- ELSE ------- THEN allows additional branching choice. The
true flag preceeding IF allows the code to be executed placed between IF and ELSE and
then jump to code after THEN. However a zero flag, will allow it to skip execution after

ELSE and on completion of which it will continue with the code placed after THEN.

Logical operators like AND , OR etc. can be used to combine  the effect of more than
one comparison operator to prepare a combined argument for the IF statement. For

example, a word to calculate the area of a rectangle can be defined in the following way :

:AREA (L W-rrmeeeee area or error )
DUP ( duplicate width )

>0 ( check if width is positive )
OVER ( copy length to the top of stack )
>0 ( check if length is positive )
AND ( combine 2 flags with AND )
IF ( start branching )

* ( calculate area )

ELSE (if false flag)

2DROP ( clear stack )

" error " ( print error message )
THEN
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: (‘end of definition )

Forth provides words like EXIT, QUIT, ABORT to prevent Forth to continue execution
of words and return the control to keyboard. This is more commonly used along with [F
THEN type of words. The word EXIT terminates the execution of the current word and
proceeds to branch off to execute next word in the sequence. The word QUIT completely
quits 1.e it ignores the rest of the words and returns control to the keyboard. ABORT, on
the other hand does the same job as the QUIT, but clears the stack as well. These words
are useful in error checking such as preventing division by zero and branches programs

flow to other words or completely quitting the Forth.

5.4.8 LOOPS

Loops provides a facility for the programmer to repeat a certain section of the code by a
prespecified number of times. For ordinary repetitive actions, Forth provides two types

of words of constructs known as (a) definite and (b) indefinite loops.
(a) DEFINITE LOOPS

The definite looping is achieved by :

The word DO expects two parameters on the stack i.e the limit value and the index value

as shown below:
nl n2 DO action LOOP
where nl and n2 are limitand index values respectively

This word must be used inside a colon definition (as defined in section 5.4.11) and its

use can be illustrated by the following word:
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: LOOPING 5 0 DO I. LOOP :

This word on execution will print numbers 0 through 4 but not 5.

In the above example, the loop index has been increasing by 1 every time the action

within DO------ LOORP is repeated. This can be changed by using +LOOP, as shown in

the following examples:
HEXAJUMP 24 0 DO I. 6 +LOOP ;

This word will print numbers 0, 6, 12, 18.

(b) INDEFINITE LOOPS

Indefinite loops allow the programmer to repeat a certain code indefinitely until a

specified condition is met. The Forth words to achieve this include:

BEGIN----------=-- WHILE-----UNTIL

These words must be enclosed within a colon definition. The operation of the BEGIN----

UNTIL loop is illustrated below:

BEGIN ACTION f UNTIL

The word BEGIN will start the execution of action which must leave a flag (f) for

UNTIL. If this flag is false (0), the loop will continue, whereas, a true flag (1) will

terminate the loop.

Another indefinite loop word is:
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In this type of loop, the test occurs before WHILE. If the flag is true, the execution will

continue to the end of the loop and transfers the control to BEGIN in order to start the

loop again otherwise the loop will terminate.

5.4.9 FORTH DICTIONARY AND VOCABULARIES

All the words defined in Forth are saved in a linear list of words known as dictionary in
the order in which they are compiled. During search time, this dictionary is searched

backward starting with the latest word. It grows from low to high address.

Vocabulary is a collection of related words which is a subset of the whole language in the
dictionary. The main vocabulary is named FORTH. Some systems also provide
additional vocabularies such as EDITOR and ASSEMBLER. In fact, first word in the
dictionary is Forth which is actually the name of Forth vocabulary. It has the effect of
calling the basic vocabulary of Forth and is in effect executed on start up. Forth allows
the user to create as many vocabularies as necessary. A new vocabulary can be created by

a defining word known as vocabulary as follows:

VOCABULARY ROBOT

This will create new dictionary known as ROBOT. In order to enter new words 1n to this

dictionary, it has to be made current which is achieved by typing:

ROBOT DEFINITIONS

There are two user variables, CONTEXT and CURRENT which are associated with
vocabularies. The CONTEXT allows a particular vocabulary to be searched first. For
example, by typing ROBOT will allow this vocabulary to be searched first. If a word is
not found in this vocabulary, then the interpreter will search vocabulary Forth which is a

default vocabulary. CURRENT is another user variable which points to the vocabulary in
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to which new words are currently being added. The word DEFINITIONS may be
defined :

DEFINITIONS CONTEXT@ CURRENT !

It is important to realise that whilst the words are added in to dictionary as they are
compiled, during search time, the only words which will be searched will be those
present in the CONTEXT vocabulary. That is one reason, why one can have more than
one word with same name in different vocabularies. It is also possible to define

vocabularies within a vocabulary as illustrated below:
VOCABULARY ROBOT ( parent vocabulary )

ROBOT DEFINITIONS

VOCABULARY SIMULATOR (' sub-vocabulary of ROBOT )
5.4.10 FORTH DICTIONARY STRUCTURE

As described above, Forth saves all the words in a dictionary. Each word consists of two

parts; the header which enables the word to be identified and the body which defines its

contents.

(a) HEADER

The header of a word consists of two parts, the name field address (NFA) and the link
field address (LFA). The NFA of a word contains character count and actual characters
(1-31) which constitute it. The first byte of NFA also contains some additional
information required by the interpreter during execution of a Forth word. Bits 1-5
contain word length ( 1-31 characters ). Bit 6 is known as smudge bit which is used to
indicate whether a Forth word is compiled without an error. Bit 7 is known as

precedence bit which informs the interpreter whether this word is to be executed

immediately. Bit 8 is used during dictionary search to locate the start of NFA of a word.
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The LFA contains the address of the NFA of the previous word in the dictionary, which
is used by Forth interpreter during a dictionary search. Thus LFA of each word is linked
to the word defined before it. This type of arrangement is known as threaded-coding,
which renders dictionary search faster. At search time, the interpreter starts with most
recently defined word and follows the "chain" backwards, using the address in each link

field to locate the next definition in reverse order. Fig. 5.2 shows dictionary entry of a

Forth word ROT.

Name field address
of previous word

3 R H

E

A

0 T D
LFA

—

CFA B

O

D

PF A Y

Fig.5.2 Dictionary entry of Word ROT.

(b) BODY

The body of a Forth word also consists of two parts, code field address (CFA) and
parameter field address (PFA). The CFA of a word, distinguishes between a variable,

a constant or a colon definition. This is the beginning address of an instruction (word)

93




that is loaded into the instruction pointer when the word is to be executed. For example,

in the case of a variable, the CFA points to the code that places the address of the variable
on the stack whilst in case of constant, it points to the code which pushes the value of the

constant on to the stack. In the case of a colon definition, CFA points to the code that

executes the rest of the definition.

The PFA of a word contains the beginning address of the definition of the word. It also

contains the PFA's of other words which constitute this word.

Forth provides certain words to get addresses of the words compiled in dictionary. The
word ' ( pronounced as tick) finds PFA of the word in the dictionary. The word FIND
returns CFA of a word in the dictionary. Forth 83 provides certain words such as
>BODY, >NAME, >LINK etc. which converts addresses of the Forth words and some

of them are summarised in Appendix B ( table B7 ).

54.11 EXTENDING THE DICTIONARY

One of the most striking features of Forth is that the programmer can define new words

according to a particular application. There are five ways of extending the Forth

dictionary:

(a) COLON

(b) CODE

(c) VARIABLES/CONSTANTS

(d) VOCABULARY

(¢) DEFINING WORDS ( CREATE and DOES>)

(a) COLON (3)
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The definition of a new word begins with a colon (2), followed by its heading (name),

then its contents and ends with a semi-colon (;). Consider the following example of a

word known as DVD-PRNT:
DVD-PRNT (n1,n2 ---- n) / .

Beginning of name stack notation contents End of compilation

compilation
This word will divide second number by the top number on the stack and print the result.
(b) CODE

As described in section 4.3.5, the word CODE is used to define assembler mnemonic
words in its terms of their machine codes. For example, the word CLI in 6809 system

can be defined in Forth like this:
HEX CODE CLI 0OE NEXT

Now CLI becomes a part of Forth vocabulary and can be used like other words. The

word CODE is equivalent to colon and NEXT is equivalent to ; in Forth.
(c) VARIABLES/CONSTANTS
(i) Vanables

Variables are used to create new words whose contents can be chan ged when required. A
typical example of the use of variable is a Forth word BASE, which contains the number

base that is currently being used. In order to change from one base to another, the

number base stored in this variable is changed. For example:
: Decimal 10 Base!;

: HEX 16 Base!;
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: Binary 2 Base!;

Variables produce a similar dictionary entry to other words and allot two bytes to store its

value. When word variable is invoked, it places its address on the stack.

(i) CONSTANTS

Constants are similar to variables, except that formers are used to store the values that
will not change. For example, a constant known as limit whose value is 500 can be

defined as follows:
500 Constant Limit
(d) VOCABULARY

As described above Forth allows the grouping of similar words into a vocabulary. In a
current vocabulary the compiler can only search for certain words and allows the user to
branch off to different vocabularies. The main advantage of this facility is to reduce

considerably the search time by looking for a limited number of words.
() DEFINING WORDS ( CREATE and DOES> )

One of the unique features of Forth is its ability to define a word which can be used to
define a series of related words. The newly defined words are compiled like other Forth
words in the dictionary. A defining word on execution creates a dictionary header for the
created word along with other necessary information which is needed for the new word

to be executed. This is a very powerful feature of Forth. The basic Forth word to create a

defining word is CREATE. For example:

CREATE FRED
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This will create a header for the word FRED in the dictionary and when this word is

executed its address is placed on the stack. In fact the words like variable and constant

are also defined using CREATE. For example:

VARIABLE CREATE 0

.
Yy Y

Keying in  VARIABLE TEMPERATURE creates a new dictionary entry called
TEMPERATURE and will initialise to 0, its first two bytes. The user can define any
number of variables using this defining word. Another word which is used in
conjunction with CREATE is DOES>. This word specifies the execution behaviour (run

time) of the newly defined word. The word CONSTANT may be defined :
: CONSTANT CREATE , DOES> @ :
compile ime behaviour run time behaviour

At compile time, the CONSTANT expects the name of new word and its contents which
are saved by the word compile (, ) into the address of new word. For example:

1000 CONSTANT 1K

This will create a constant 1K and compile 1000 in its address. After compilation when
word 1K is executed (i.e at run time ) its address is put on the stack automatically, but

word @ after DOES> will read the value saved at this address and will place it on the

stack.

The use of defining words can be illustrated for defining arrays. A defining word to

create one dimensional arrays can be defined as follows:

1D-ARRAY  (n-------- )
CREATE ( create dictionary entry )

2 * ( calculate byte offset)
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ALLOT ( move dictionary pointer)

DOES> (run time behaviour )

SWAP (' move element number to top )
2% ( calculate byte offset )

+ (‘address + offset )

; ( end of definition )

This word is known as the defining word since it can be used to define different one

dimensional arrays. The new arrays can be defined this way:
10 1D-ARRAY TEMP

15 1D-ARRAY PRESSURE

40 1D-ARRAY VALUES

At execution, each array expects the element number on the stack which is multplied by
2 to make it a byte offset and is then added to the start address of the parameter field.

This returns corresponding address of the element in the array. To save some values in

the array one can type:

5 0 TEMP ! ( will store 5 in the first element )

20 1 TEMP ! ( will store 20 in to second element )

Later, to recover these values, one can type:

1 TEMP@ - - > 20

The array index must be on the top of the stack before executing TEMP. It must also be

within the range 0 to 9 in this example, since the program contains no checks upon the
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range of the index. However, range checking can be integrated in to the definition of 1D-
ARRAY, if necessary.

5.4.12 FORTH EDITOR

Editor is used to enter and alter programs. For this purpose, Forth supplies an EDITOR
which is a vocabulary of related Forth words made available to the programmer. In order
to conserve memory, the Forth editor is kept on a disc and can be loaded when

necessary by keying in:
nLOAD ------ where n is the start block number of the editor.

This will compile all the editor words in to a vocabulary known as EDITOR. Forth,
unlike most common high level languages does not save information in files. Instead,
Forth words are stored in units of 1024 characters (1K) known as blocks. The user can
list a specified block on the screen, and load its contents into the computer memory with

suitable words. For example:

75 LIST

This will list the contents of block number 75 onto the screen. The Forth word LIST
stores the block number in a variable called SCR and then transfers its contents to a

buffer. Another command word with block is LOAD which is used like this:

75 LOAD This word will send block 75 to the text interpreter via the input stream

which will compile all definitions into the dictionary.

The Forth editor is not standard and different versions of Forth use different editors, but
they all include facilities to add, delete, insert words, clear screen, copy screens etc. A

block of screen is made available to the user with line numbers ranging from 0-16 and

each line can have up to 64 characters. In addition to this, 64 bytes of memory is made
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available above PAD and is referred to as scratch pad memory. This is used to store a line

which is being deleted or added so that it can at later stage be re-inserted or replaced into
a block buffer. At the end of editing in order to transfer this change back to disc, Forth

provides a word called FLUSH or SAVE-BUFFERS which are synonymous.

Forth editor uses buffers for editing. Most common versions provide two buffers of

1024 characters each. The word BLOCK moves a specified block number into one of

these buffers. For example:
20 BLOCK

This word will transfer the contents of BLOCK number 20 into buffer which is least
recently used and hence leaves its starting address on the stack. The contents of a block

can be examined by typing:
20 BLOCK 1024 TYPE

The availability of such buffers helps to treat secondary memory as a virtual memory.
Since the contents of the block most recently used was saved in block buffers, the
system does not have to read from the disc each time. This speeds up reading and
writing to disc, particularly if same data is being used frequently. Any changes made to
the contents of a disc can be made permanent by a word known as UPDATE which
marks the buffers to be stored on the disc before they are used again by setting a flag.
The only difficulty with UPDATE, is that, if the buffers are not used again before the
power is turned off, the modified contents will not be saved on the disc. To ensure that,
user must type SAVE-BUFFERS or FLUSH before the end of the session as a
precaution. Some versions of Forth, provide another word called EMPTY-BUFFERS,
which unassigns the marked buffers which are not be saved on the disc. In some

versions it fills the buffer with nulls or blanks ( ASCII 32 ). However, this word is not

required by Forth 83 standard.
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5.4.13 INTERPRETATION, COMPILATION AND EXECUTION

Forth allows the user to enter a set of characters or numbers from the keyboard. All the
input occurs via the input stream, a flow of numbers and words separated by
spaces/blanks ( ASCII 32 ). As soon as enter key is depressed the Forth acts upon them
by the interpreter. Input from the keyboard or discs is interpreted in the same way. To
receive terminal input, Forth is in an indefinite loop which is a part of the word QUIT.
This word clears return stack, sets execute mode and expects terminal input until the
input stream is not expanded and there is no error. If there is an error, QUIT passes
control to ABORT which resets the system and starts again and comes out of the loop
with a suitable message. If no error is detected, QUIT attempts to interpret the input
stream by breaking it into separate words and numbers, which may be compiled,
executed or placed on to the stack. After the interpretation of the input stream, the control
is returned to the keyboard to receive new input. If the input is coming from terminal,
then variable BLK contains 0, otherwise it is from the disc in which case BLK contains
the block number of the disc which is sending the input. Each word or number must be
separated by a null character [ASCII 32 ]. Forth then searches for it in the dictionary to
see if it is a Forth word. It then checks contents of a variable called STATE. If the
contents of this variable is 0, (i.e Forth is in compile mode ) and word is in the
dictionary, it is executed. However, if the contents of the variable STATE is 1, then, if
the word is immediate, it is executed otherwise its CFA is compiled in to dictionary given
by Forth word HERE, which points to the next available location in memory where new
words are to be added. If the interpreter cannot locate it as a word, then it tries to convert
it into a number in the current base. If the number is a valid number ( i.¢ all digits are 1
umber in the current BASE ), then this number is either compiled ( if

less than the n

STATE = 1 i.e Forth is in compile mode ) or placed on the stack ( STATE =0 ),
otherwise an error message is returned and control is passed to ABORT again. If no

errors are detected, during interpretation of the input or doing execution, a usual Forth

message " O.K " is displayed on the screen.
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Compilation is the process of entering new words, numbers or strings to the dictionary.
As discussed previously, Forth provides words like colon :, CREATE, VARIABLE,
CONSTANTS etc. to define new words. The : is the most common Forth word used to

compile new words. Its action can be illustrated by the following word:

NEW  WORD! WORD2 WORD3

’

The : (colon) creates a dictionary entry and saves the value at HERE as its name field
address (NFA). If this word is already in dictionary, it will display a suitable error or
warning message. Then it finds NFA of the previous word in the dictionary and stores it
in the link field address (LFA) of the word NEW, in order to allow a dictionary search at
subsequent stage. This is called header of the new word. Then the address of the
machine code needed to execute colon definitions is placed in the code field address
(CFA) of the word NEW. Then CFA of the subsequent words in the definition i.e of
WORDI1, WORD2, WORD3 are saved in the parameter field address (PFA) of this
word. The ; (semicolon ) marks the end of the definition by placing the address of EXIT
in the last position of the body of word NEW and also returning Forth to its execute
mode by saving 0 in the variable STATE. The semicolon also checks to ensure that there
are no compilation errors. If no error is detected, it sets the smudge bit so that the new
word can be detected in dictionary search. However, in case of error, the dictionary
pointers backs to where it was originally. Some Forth systems, leave the header in the

dictionary and simply prevent its access by not setting smudge bit.

Forth allows a word to be executed during compilation by making it immediate. For this

purpose, there is word known as IMMEDIATE. Consider the following example:
TEST! ." compiling" ; IMMEDIATE

TEST2 TEST1 ." compiled " ;
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When TEST2 is being compiled, TEST] being immediate word will be executed and will

print the message " compiling " on the screen. However, when the word TEST?2 is

executed, the message will only be " compiled "

The word IMMEDIATE informs Forth to mark the most recently defined word to be
executed immediately when it is encountered, even though Forth is in compile mode.
This is achieved by setting the precedence bit in the name field of the word made as
immediate. However, an immediate word can be forced to compile during compilation by
using the word [ COMPILE ], pronounced as " bracket-compile ", as shown in the

following example:
TEST3 [ COMPILE] TESTI ."COMPILED ";

During compilation of TEST3, no message will be displayed. However, on execution the

following messages will be displayed:
compiling  compiled

The word [ COMPILE ], simply ignores the precedence bit. Another word which can
cause execution during compilation is the use of [, pronounced as left bracket and ],

pronounced as right bracket which can be used as shown below:
TEST4 [ ." checking for compilation "]} ." Tam compiled "

This word during compilation will print the first message. After compilation, on
execution of TEST4, will only print second message. The word [, simply changes

Forth from compile mode to execution mode and ], from execution to compile mode by

changing the content of variable STATE.

Execution of a compile word in Forth involves using pointers such as the instruction (

interpreter ) pointer, word pointer, jump register and return stack. The first stage in

executing a word is to load the CFA of the word in to the instruction pointer. If it is a
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colon definition, the contents of its CFA are saved on return stack and the instruction
pointer loads the PFA of the first word which is a part of original word's definition. It
increments the pointer to the next address, saves its contents on return stack and goes on

to execute the next word. The process is repeated until each word is executed and is

terminated by encountering EXIT.

5.4.14 FLEX FORTH IMPLEMENTATION

Forth used in this project was originally implemented by CADGE [1986 ]. Forth, as
described previously, is a stack oriented language supporting two types of stack.
MOTOROLA 6809 architecture which provides two hardware stack pointers is suitable
for the implementation of Forth, and hence eliminates the need for software pointers.
Forth was therefore written on 6809 assembler and uses Flex Operating System sub-
routines for both terminal and disk input / output. The original implementation was

according to Forth 79 standard whose limitations were :
(a) It only provided 16 bit arithmetic.
(b) No floating point was available.

(c) It only provided line editor.

As a result, it was updated by PARKES [1987 ] in an attempt to overcome these

drawbacks and at the same time incorporate some features of Forth-83. This newer,

updated version provided the following additional facilities:
(a) Double number words.
(b) Forth editor.

(c) Copy disk utility.
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(d) Mixed length arithmetic operators.

(e) Extended precision.
(f) Floating point arithmetic.
(8) Graphic routines including a turtle graphic compiler.

The implementation detail for this latest implementation of Forth is given by PARKES

[1987]. Forth memory map using FLEX operating system is given in Appendix C.

5.5 FORTH SOFTWARE DEVELOPMENT

From the software engineering point of view, program design in Forth is top-down,
structured and interactive in nature. At the design stage, the programmer splits his
problem into smaller units using a top-down approach, until small, easily definable
independent modules known as words are arrived at, each of which can be written and
tested individually. Program development and testing involves writing these low level
words using a bottom-up approach. Subsequently these words are carefully combined
together to form high level word/s. The process of combining existing words into higher
level word/s is repeated, like building a pyramid, until the programmer is left with one or
two very high level words to be executed for a particular application. Such a very high

level abstract word on execution will perform the action of all the underlying words. The

software design methodology is illustrated in figure 5.3 below:
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Fig. 5.3 Forth program development.
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CHAPTER---6  DESCRIPTION OF THE DEVELOPMENT SYSTEM USED

6.1 ROBOT DEVELOPMENT SYSTEM

The robot supplied by System Control was equipped with an interface which did not
work satisfactorily. Thus in order to drive the robot by the microcomputer it was
necessary to build a replacement hardware along with other hardware. The robot system

is shown in block diagram format in figures 6.1 and 6.2.

ROBOT

Robot Arm B= Robot Interface -<—>A

e

Ultrasonic System

g Ulrasonic Interface je—g—

Simulator L =1 Simulator Interface }esfe

P &= Connector
Forth |je—o{ Hard P I
Disc A

6809 SYSTEM

Figure 6.1 Robot development system.

This system includes the robotic arm, the ultrasonic system and a simulator each of

which is interfaced to 6809 microcomputer through appropriate interfaces. The purpose
of these interfaces is to allow the transfer of data between the microcomputer and the
robotic arm with its associated units. These interface units convert information coming

from the robot to the microcomputer into a compatible form for the computer and, during
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reverse transfer, to convert information from the computer to the robot system in an
appropriate format.

30V Ultrasonic

-
Interface

Mains | Power Power control unit
Unit 000 @ [|n Robot Ribbon|  Smart
LED's  Switch ' cabfc Arm
Interface
Y 1Ribbon
Connector
Mains 1
. Simulator
Simulator (—&s— A/D 2-way
I
Convertor
connector
Mains 1
A PIA
| VDU | C .
Keyboard I M ROLA LB Printer
Mains | 6809
Mains

Figure 6.2 Robotic development system system showing connections.
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6.2 6809 MICROPROCESSOR (MPU)

The MC6809 is an 8-bit microprocessor developed by Motorola. Even though it is an 8-
bit processor, it contains many facilities that would only be expected to be found on 16-
bit CPU'S. It is the successor to MC6800 and interfaces with all 6800 peripherals. The
processor has many advanced features compared with its predecessor [ MOTOROLA
1979 1 such as additional registers, instructions and addressing modes.
Associated with the MPU are Random Access Memory (RAM), Read Only Memory
(ROM) and programmable interfaces like Peripheral Interface Adapter (PIA),
Asynchronous Communication Interface Adapter (ACIA). All of these devices use a
single 5-V power supply. Each of the 6809 family components can be connected directly

to the microprocessor address and data buses.

6.3 THE REGISTERS

MC6809 MPU has five 16 bit registers : X and Y index registers, user stack pointer (U),
hardware stack pointer (S), and program counter (PC). Additionally, it has four 8 bit

registers : direct page register (DP), condition code register (CC), accumulators A and B

(A,B) as illustrated in figure 6.3 below:
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15 7 0

PROGRAM COUNTER (PC )

INDEX REGISTER (X)

INDEX REGISTER (Y)

HARDWARE STACK POINTER (S)

USER STACK POINTER (U )

ACCUMULATOR A
(ACCA)
ACCUMULATOR B
(ACCB)
CONDITION CODE REG.
(CC)
DIRECT PAGE REG.
(DP)

Fig.6.3 Showing Registers of the 6809.

6.3.1 ACCUMULATORS (AB)

Registers A and B

are 8 bit general purpose accumulators which are used for arithmetic

calculations and data manipulation. The two accumulators can be concatenated to form a

16-bit register kn

significant byte.

own as D register in which case the A register forms the most
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6.3.2 DIRECT PAGE REGISTER (DP)

The direct page register of the MC6809 is provided to enhance the Direct Addressing
Mode. The content of this register appear at the higher address output (A8-A15) during
direct addressing instruction execution. The direct page is concatenated with the byte
following the direct mode op code to form a 16-bit effective address. This allows the
direct mode to be used at any place in memory, under program control. In order to allow

compatibility with MC6800, all the bits are cleared by RESET.

6.3.3 INDEX REGISTERS (X,Y )

MC6809 provides two identical 16-bit (two-byte) registers (X,Y) which are
primarily used to modify addresses. These registers may be incremented, decremented,
loaded, stored or compared by means of appropriate instructions. These registers are
used for indexed mode of addressing. They provide a 16-bit address to be added to or
subtracted from an optional offset for indexed instructions to generate an effective
address of the instruction. This address may be used to point to data directly. As indexed
mode of operations, provide automatic pre-increment and post-decrement options, these

registers may be used to implement software stacks, queues and buffers.

6.3.4 PROGRAM COUNTER

PC is a 2-byte register that holds the address of the next location whose contents are to
be fetched. As soon as the contents of a memory location are fetched, the Program
Counter Contents are incremented and points to the next program location. Relative

addressing is provided so that program counter can be used as an index register.
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6.3.5 STACK POINTERS (U,S)

The stack pointer contains an address of a location where the status of the MPU registers
may be stored under certain conditions, when it has to perform other functions such as
during an interrupt or a branch to subroutine. The address which is in the SP is the
starting address of sequential memory locations in Random access memory (RAM),
where the contents of microprocessors registers will be stored. MC6809 provides two
stack pointers: hardware stack pointer ( S ) and user stack pointer (U ) both of which
are 16-bit registers. They contain the address that points to the top of a push-down/ pop-
up stack. The hardware stack pointer (S) is used by the hardware during sub-routine calls
and interrupts to save sub-set or entire machine status. The user stack pointer (U) is
exclusively controlled by the programmer to allow arguments to be passed to and from
sub-routines. Both pointers allow data and machine state to be pushed on to the stack or
pulled from the stack in a last-in first-out (LIFO) manner. The main difference between
MC6800 and MC6809 stack pointer is whereas the former points to the next free location
on the stack, the latter points to the top of the stack i.e the last byte placed on the stack.
Both pointers support push and pull instructions. The push instruction decrements the
stack pointer before the data is stored while the pull instruction increment the stack
pointer after the data is recovered. Both the U and S registers have the same indexed-
mode addressing capabilities as the X and Y index registers. This allow the MC6809 to

be used efficiently as a stack processor, greatly enhancing its ability to support higher

level languages and modular programming.

6.3.6 CONDITION CODE (STATUS ) REGISTER (CC)

Condition Code is a 8-bit register which is used to test the results of certain instructions.

The results are mainly used by the MPU for branch instructions. Such branches will
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occur according to the status of specific bits in this register. Figure 6.4 shows the

diagram of the 6809 status register.

Carry/borrow
Overflow
Zero
Negative

|

Interrupt mask

Half carry
FIRQ mask
Entire flag

Fig.6.4 The Condition Code (Status) Register.

6.4 INTERFACING AND PERIPHERAL DEVICES

Microcomputers communicate with the outside world through Inputs/Outputs (1/O)
devices or peripherals. The most common peripherals include visual display unit (VDU),
paper printer, magnetic tape cassette, disc memories, keyboard, analog-to-digital (A/D)
and digital-to-analog (D/A) converters etc. The process of connection of one or more of

these devices to a computer is known as interfacing, as depicted in fig. 6.5. This requires

a special hardware circuitry, the purpose of which is to allow [FALK 1974] the transfer

of information between the microprocessor and a particular device such as VDU,
keyboard and printer etc. Interface hardware converts the information coming from the

device to the computer into a compatible format for the computer and, during a reverse

transfer. to convert information from the computer to the device into the appropriate
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format. In addition, the interface must reconcile any timing difference between the MPU

and the device.

DATA BUS DATA
MPU ERIPHER A
+ DEVICE
MEMORY RFACE
SIGNALS

Fig.6.5 Block Diagram of a Typical Interface.

The 6809 microprocessor has mainly two programmable interface adaptors known as
Peripheral Interface Adaptor (PIA) and Asynchronous Communications Interface
Adaptor (ACIA). The former is used for parallel transfer of data and latter for serial

transfer of data to or from the device. Both devices are flexible as their function can be

changed by programming.

The 6809 microprocessor has memory-mapped I/O, which means that it treats the 1/0
devices in the same way as memory as shown in Fig.6.6. It is worth noting that PIA,

ACIA, RAM and ROM all share the same data bus and address bus with the MPU.
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Address Bus

Data bus

RO

PIA

ACIA

Fig.6.6 Memory-Mapped /O System.

6.5 PORT ADDRESS

The 6809 system has 4 1/O ports for interfacing the MPU to its peripherals. Ports 0 and

1 are for general interfacing and ports 2 and 3 are dedicated for controlling the disc drive

and the printer respectively. Figure 6.7 below summarises the port addresses:-
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PORT NUMBER MEMORY ADDRESS
(Hex)
0 E040-E043
1 E020-E023
2 E068-E06B
3 E06C-EO6F

Figure 6.7 showing port addresses in memory.
6.6 PERIPHERAL INTERFACE ADAPTOR (PIA)
6.6.1 INTRODUCTION

PIA [MOTOROLA 1979] is a special piece of hardware which allows peripherals devices
to be interfaced to the MPU. It is programmable, and is used for the parallel transfer of
data to and from a device and can be used in interrupt driven or non-interrupt driven
modes. The PIA consists of two ports A and B, which are independent of each other
and are almost identical in their mode of operation. It communicates with the MPU via an
8-bit bidirectional databus, three chip select lines, two interrupt request lines, a read/write

line, an enable line and a reset line ( fig.6.8).

The PIA has 16 peripheral data lines (PAO-PA7 and PBO- PB7) for transfer of data
between PIA and the peripheral devices. These lines are organised into two separate sets
of 8, referred to as set A and B, corresponding to the ports A and B, of the PIA. These
lines can be programmed to be all input or all output or any desired combination of both.
Each port of the PIA, consists of three registers known as, Peripheral Data Register

(DR), Data Direction Register (DDR) and Control Register(CR) , as shown in Block

diagram of the PIA in Fig.6.8 below:
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Fig.6.8 Block Diagram of MC6821 PIA Chip (Motorola's Manual).
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6.6.2 PERIPHERAL DATA REGISTER (DR)

This register, also known as the Data Register (DR), is an 8-bit register in the PIA
which holds the current data to be input to or output from the PIA. In addition, attached
to this register on each port are two peripheral control lines CA1/CB1 and CA2/CB2.
The CA1/CB1 is interrupt input line only, active high to low or low to high transitions on
this line set the interrupt flag bit-7 of the control register. The control line CA2/CB2 on
DR may be programmed to act as interrupt input line or output line by setting the

appropriate bits of the control register.

6.6.3 DATA DIRECTION REGISTER (DDR)

This is also a 8-bit register, the purpose of which is to decide whether each bit in data
register is to be used as an input or output. For example, storing 1 or 0 in a particular bit
of DDR will make the corresponding line of the DR as an output or an input

respectively.

6.64 CONTROL REGISTER (CR)

The two identical control registers A and B, one on each side of the PIA are also 8-bits

wide. These control registers allow the MPU to control the operation of the four

peripheral control lines CA1, CA2, CBI and CB2 and also the direction of the flow of

data from the peripheral. The function of the individual bits of the CR as shown in

Fig.6.9 below:
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Fig.6.9 Control Register (CRA).

6.6.5 ADDRESSING THE PIA’s REGISTERS

Each PIA has 3 registers on each side. But only four addresses are allocated for them.
Each control register has its own address. The data register ( DR ) and data direction

register ( DDR ) share one address as shown in fig. 6.10 below:

SIDE REGISTER | ADDRESS

DRA/DDRA | E040

CRA E041

DRB/DDRB| E042

CRB E043

Fig.6.10 Addresses of PIA Registers (Port 0).

The initial configuration of PIA involves writing 0 into bit-2 of CR. This selects DDR.

By writing a suitable number into the DDR, the direction of data lines is selected. The

configuration is completed by storing 1 in bit-2 of the CR, which selects the data register.
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6.7 FLEX DISC OPERATING SYSTEM

The FLEX Operating System was released by Technical systems Consultants Inc. (TSC)
in 1978. The Operating System is comprised of three main parts, the File Management
System (FMS), the Disk Operating System (DOS) and Utility Command Set (UCS). The
FMS handles the allocation and removal of files on disks. All of the file space is allocated

dynamically, and the space used by a file can be reused immediately on deletion of that

file.

The UCS contains many utility programs which reside on disk and are only loaded as
and when they are required. This, beside saving on memory, allows easy expansion of
FLEX by just creating a new command file either with the new utility or by an application

contained within.

The DOS performs functions such as terminal input/output, file specification parsing,
command argument parsing and error reporting. It provides the communications link

between the user and the FMS.

Programs developed in 6809 machine code on the FLEX system can make use of calls
available to the FLEX operating system to handle such things as disk and keyboard
input/output. The standard FLEX editor is the TSC text editing system which is a line
based editor. It supports such commands as those to insert, delete, replace and find,
single or groups of lines and characters. The FLEX operating system also supports the
TSC 6809 Mnemonic Assembler which will accept all the standard 6809 Mnemonics. It
will assemble a file with source code of any length so long as the memory can
accommodate the symbol table. The assembler is of the two pass type and produces
output in the form of a binary disk file. Further information about the FLEX operating

system and accompanying editor and assembler can be found in the FLEX users Manual

[ 1979] and FLEX programmer's Manual [ 1979 ].
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6.8 SMART-ARM

Smart Arm 6R/450, serial number 83041 was supplied by Systems Control of Cleveland
U.K who produce a range of arms designed for research purposes. The robot arm is
shown in plate 1 (facing this page) and its schematic diagram is given in figure 6.11.
The arm was rigidly fixed to a stable base by screwing the base plate by fixing screws

through 4 drilled holes. This plate has a square base of 140 mm length.

Hand

f

Elbow \

¥ Bar linkage

‘)Vn'st

<g— Gripper

Shoulder—————j

Figure 6.11 showing schematic diagram of the Smart arm

The arm is fairly rigid and made of mainly Aluminium for lightweight. It has 6 revolute
joints commonly known as waist (rotate ), shoulder, elbow, wrist, hand and gripper.
Whilst each joint can rotate in one plane only, the arm has a maximum of 5 degrees of
freedom, since gripper only opens or closes for holding the object and hence does not

affect the arm co-ordinates. Each of three larger joints, namely waist, shoulder and
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elbow are driven by servo motors which operate on 0-12 volts range. The remaining

three joints are driven by servo motors which operate on 5 volts.

6.8.1 WAIST

The base of the robot which houses the waist motor is cylindrical in shape with square

base 100 mm wide and 147 mm in height. The waist rotates in a horizontal plane through

approximately 120 O of arc.
6.8.2 SHOULDER

Above the base of the arm is a set of plates to which a motor is attached on each side to
activate shoulder and elbow joints respectively. The shoulder joint, which is cylindrical
1s attached to a shaft. As the motor rotates the shaft, the shoulder joint moves up and
down. It has a maximum span of 180 O, but for manipulating objects on the ground in
front of the working area of the arm, it was decided to use angular span of 0-90 ©. The

shoulder is 27 cm long, 6.3 cm wide and 0.5 cm thick.

6.8.3 ELBOW

Elbow is linked to the end of the shoulder unit. The movement of the elbow is achieved
by means of a horizontal bar which is attached to the base shaft which in turn is linked
to the motor. This avoids having to attach a motor at the junction of shoulder and
elbow. The horizontal bar is attached to the base shaft by a linking mechanism such that
as the shaft moves, it moves the linking mechanism, which subsequently moves the bar,
hence the elbow joint. As the pivoted joint is moved inwards or outwards it pushes the

elbow joint via the horizontal bar downward or upward respectively, so that the angle

which elbow joint makes with the shoulder arm plate also varies. Hence in order to keep
this angle constant the movement of the shoulder also results in the movement of the

elbow by about 90% of its value. When the elbow moves alone, it does not affect the
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angle made by the shoulder joint with the horizontal plane. The purpose of this
mechanism is that when shoulder moves, the angle made by the elbow with respect to
horizontal plane remains constant. The maximum angular span of the elbow is also 180
0. Due to this bar linkage mechanism it is only possible to operate up to 120 © in order to

avoid hitting this horizontal bar against the shoulder. This joint is 18cm long and 5.1cm

wide.

6.8.4 HAND

Hand is attached to the rear end of the elbow joint by cutting a hole in its plate. The servo
mechanism controlling it is also attached here. It also moves by a revolute joint which
allows the hand to move up and down. It has an angular span  of 120 ©. The hand

extends to the rear end of the gripper plate.

6.8.5 WRIST

Wrist is directly linked to the hand and has no length of its own, since it only rotates
that section of the hand which is connected to the gripper, both clockwise and anti-
clockwise. It is also controlled by a servo attached to itself. Its maximum rotation is
about 270 O. Tt allows the flat end-plate of the gripper to orient in different directions in

order to find the best position to grasp the object.

6.8.6 GRIPPER

The gripper also forms part of the hand. It is operated by a servo to which it is directly

attached. It has a flat end-plate which is 4.5cm long and 2.5cm wide on one end and a

rod which can be moved in and out by the servo to open or close the gripper. When
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fully open the distance between the fixed flat plate and the movable rod is about 4.0 cm

in length.

6.9 ROBOT INTERFACE

The purpose of this hardware unit is to select a specific joint and send appropriate digital

data to move the selected joint by a specified amount from the 6809 microcomputer. It

receives input from the PIA of 6809, power pack unit and sends output to the servo

units/motors of the arm via a ribbon lead. The digital data received from the computer is

converted into the corresponding analogue signal which is further converted into a pulse

width of 1-2ms. This pulse is compared with the pulse produced by the robot servo

mechanism which depends on the current position of a joint by means of a comparator.

Then appropriate signal is sent to the motor to move a joint to the required position. The

main components of the interface are shown in figure 6.12 below:

bit Robot
port A V8 b - D/A - Mono Servo
Decoder convertor s@bl§ circuit
Port B circuit
PR
Astable
Muld
Vibrator
PIA ROBOT INTERFACE ROBOT SERVO

Figure 6.12 Showing robot interface ( block diagram )
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Since the interface is designed using standard integrated circuits ( IC's) supplied by the

RS components, only brief information of each component is given in this section.

Robot Interface consists of a 3/8 bit decoder, 6 D/A converters, 6 buffers (operational
amplifiers), 6 transistors, 6 monostable circuits, 6 capacitors and resistors (10 nF), an

astable circuit with a capacitor as shown in figure 6.13 below:
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6.9.1 3/8 BIT DECODER

This IC is known as 74LS138, receives inputs AQ, A1, A2 from port A of PIA and also
has one enable line (A3) which acts as a chip select and is active high. It has eight output
lines. The output from each of the 6 lines is connected to each of the 6 D/A convertors

which permits the selection of the required D/A convertor.

6.9.2 D/A CONVERTOR

There are 6 D/A convertors one for each joint of the arm each of which receives an output
from the 3/8 bit decoder. Each IC is unipolar 8 bit D/A convertor (Z2848). It is supplied

with a reference voltage (Vref) of 2.5v and has an enable line which is active low. The
data in the converter is held even if it is disabled i.e goes high. It produces an output

voltage known as (Vout).

When the chip is enabled it latches 8 bit data from the data bus and converts it into an
output voltage which is proportional to the digital data received by the converter as

shown in figure 6.14 below :

DATA VOLTAGE
0 0
128 1.25
255 2.50

Figure 6.14 showing relationship between data and voltage
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Accuracy = 2.5/255 = 0.0098V approximately 0.01V/bit( 10mv)

It was found that, by supplying voltage directly in intervals of 0.01V to the arm's
servos, the movement of the arm was very small indeed. So it was decided that using
more accurate D/A converters like 12/16 bits will not significantly improve the precision
of the arm and cost would be much higher. Assuming a joint has a maximum of 180 ©
angular movement, then it can be programmed in one of the following ways as shown in

figure 6.15 below :

% Angular Input Output

movement | movement | data voltage
0 0 0 0
100 180 255 2.5

Figure 6.15 showing relationship between data and movement

6.9.3 BUFFER (operational Amplifier)

It receives an output (Vout) from the D/A converter and its main function is to keep this

voltage stable and pass it to the transistor circuit.

6.9.4 TRANSISTOR

It receives Voyt from buffer and converts in to proportional current.

128




6.9.5 MONOSTABLE CIRCUIT

This IC known as 555 monostable circuit for timing and produces a pulse width modular
output depending upon the input voltage. It is connected to the transistor via a rcsistbr
and a capacitor (0.01pf). It works on the principle that it generates a pulse at certain time
interval (in this case 20ms) equal to the time taken for the voltage to attain 2/3 of its Vc.
The pulse width generated by this circuit depends on the data received by the D/A
converter from data bus, and hence Vg produced by it. For a data value of 255 a pulse
of Ims width is generated and for 0 data a pulse of 2ms is generated. The pulse width

produced this way is fed into the servos of the robot arm.

6.9.6 ASTABLE MULTIBRATOR

This is another standard IC which produces a pulse at 20ms interval. It generates a +ve
as well as -ve pulses at 20ms intervals but 0.01pf capacitor ignores the +ve pulse. This
circuit generates a pulse for each of the 555 monostable circuits and acts as a relay so that

the signals coming from D/A converters are activated (seen) by 1t and sent to the Servo

circuit of the robot arm.

6.10 ROBOT SERVO CIRCUIT

Each joint of the arm is operated via a servo circuit. The output pulse of 1-2ms, which is
proportional to the data sent to a particular joint from each of the monostable circuits is

fed in to the appropriate servo circuit. Each servo circuit has a built in monostable circuit

similar to the 555 monostable in the robot interface. Each motor of the arm moves the

joint by moving a potentiometer to which it is attached. The current position of the

potentiometer is read into this monostable circuit to which itis linked via a capacitor . The

output of this circuit will also generate a pulse between 1-2 millisecond width, depending
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upon the current position of the joint. These two pulses, one coming from the joint
position and the other from the interface are compared by a circuit known as comparator.
The output of this comparator produces a resultant pulse. If the two pulses are of the
same width and phase, no movement of joint is necessary. On the other hand if the

resultant pulse is positive then the joint rotates in the appropriate direction.

6.11 POWER PACK/UNIT

This is connected to mains supply and supplies power to robot's motors. It can send
voltage up to 12V, but it was found that values in the range 8-10V kept the arm very
steady. The higher voltages result in a shaky arm. It also shows a current drawn by the
circuit for generating pulse width at 50ms interval. The output from this unit is fed to

power control unit.

6.12 POWER CONTROL (VOLTAGE REGULATOR) UNIT

This unit is connected to power pack. It is used to supply power of 5V to robot interface
and send voltage first to the three large motors 1.e Waist, Shoulder and elbow followed
by the 3 small servo's i.e hand, wrist and gripper. This was done in order to avoid
sending data from the programmer first to smaller Servo's which may drag the arm along
the ground and eventually cause damage to the Servos or the IC's in the interface during

the power on procedure and other movements of the arm.

When the power, from the power unit is applied, the red LED comes on. At this stage
PIA is configured and the required data (usually 128) is sent to each of the joints.The
data is actually sent to the robot's arm via the robot interface only after the push button
switch (red) has been pressed. When the yellow LED is lit indicating that the data has

been sent to the large motors, after which data is sent to the remaining 3 joints (hand,
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wrist and gripper) resulting in a green light. For the best results, it is advised that IC's
should be supplied with power for about 5 minutes before sending data to the arm for
warm up. Before this unit was built, it was found that by careless use and handling such
as hitting the joints by obstructions etc. used to upset the joints calibration considerably.
This unit has overcome these problems. Also the arm used to be shaky if the large

motors were sent voltage above 7, but now the arm is quite stable even up to 10V, which

has increased the speed of the joints,

6.13 SIMULATOR

This unit (see plate 2 facing this page) is designed to be look alike of robot-arm. The
purpose of this unit is to allow the user to teach robot a task by guiding through the
various steps involved in the execution of a task. Although programming a robot to
perform a task is advantageous in many ways, there are still occasions when the writing
of a program may involve tedious programming and complex mathematical calculations
even for relatively simple tasks, such as welding along a seam and remote controlled
applications. Thus the user needs to have this facility available when it is more
convenient to teach a task by saving various steps involved in memory and be able to
repeat this task when necessary. Manufacturers of robots tend to recognise this need and
usually provide a teach pendant, which is hand held device and allows the user to move
the arm in steps and save them. The simulator has advantages over teach pendants, since
the user is holding it in his/her hand and can use a combination of intuition and skill to
direct the arm for every minute movement in the desired direction. The user does not
need to be close to the actual arm, which can be of great advantage if robot is performing

a task in a hazardous environment such as in nuclear plant, handling corrosive

substances etc. from a remote and safe distance.

The simulator was constructed of wood as shown in figure 6.16 for low cost and light

weight. It has a scale of 1:2 (simulator : robot) for each joint, so that its appearance is

very similar to the arm itself.
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Fig. 6.16 showing schematic diagram of the simulator.

The movement of each joint of the simulator is achieved by placing a potentiometer
between the two joints. As the joint is moved, the attached potentiometer produces a
proportional voltage which is fed to the A/D converter. Altogether there are 5
potentiometers fitted to the simulator, one for each of the following joints: waist,
shoulder, elbow, hand and wrist. Since the gripper is only used for opening and closing
the arm's gripper, it was decided to use a push button switch so that when the switch is
fully open, it sends a O data to the arm's gripper, when it is pressed it sends a data of 255

which closes it. The voltage input from each of these joints is fed in to the simulator

interface via a switch.
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6.14 SIMULATOR INTERFACE

This mainly consists of a 8 channel, 8 bit A/D converter I.C (7581 JN) supplied by RS
components. The device contains an 8-bit successive approximation analogue to digital
converter, an 8 channel input multiplexer, 8*8 dual port RAM, three state data drivers,
address latches and microprocessor compatible control logic. It can accept up to 8
analogue inputs and subsequently converts each into an eight-bit binary word using the
successive approximation technique. In this case only 6 analogue channels were used,
one from each of the simulator’s six joints. The converted results are stored in the
internal 8*8 dual-port RAM. Conversion from each channel takes 80 clock periods with a
complete scan through all 8 channels taking 640 input clock periods. When a channel
conversion is complete, the successive approximation register contents are loaded in to
the appropriate channel location of the 8*8 dual port RAM. When the successive
channels are completed the converted data, in digital form for each of the 6 joints, is
saved in a memory slot, which is ready and can be read in to the port B of PIA via the
data bus. The converted data for each joint lies between 0-255 and is saved into an array,

from which it can be sent to the robot arm in any desired order.

6.15 ULTRASONIC TRANSDUCER

This unit was devised to attach a transducer to the arm, so that it can obtain information
regarding its environment. Robots with transducers are becoming more important, so

that the arm if necessary and under programmed conditions, can interact with its

surroundings and take necessary actions.

The ultrasonic transducer was selected for its low cost, readily availability, well

established technique with which most technologists are familiar. It has wide applications
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in industry, medicine and other areas of technology and consequently has attracted

considerable interest in robotic research as well.

The ultrasonic transducer supplied by RS components (stock no. 307-351 and 367)
operates at 40KHZ. It consists of a transmitter unit and a receiver unit and is attached to
the gripper of the robot arm. The range measurements are made by measuring the time
taken for an ultrasound pulse to be reflected back from an obstacle and received by the
receiver unit. This timing process is implemented in the hardware in its interface. The
timing delay can be used in calculating the range of the object (obstacle) which can be
used for obstacle avoidance when robot is programmed to move from one point to
another via a specified trajectory. Another application of this transducer is object
location. Ultrasonic transducers are also widely used in mobile robots.The ultrasonic
transmitter is capable of emmitting 106 dB (0 dB=2*10-4 pbar) and the receiver has a
sensitivity of 0-65 dB (0dB=1ubar/vm). The transducer contains piezoelectric crystal as

shown in figure 6.17 below:

Voltage

Piezoelectric
crystal

Fig. 6.17 showing ultrasonic transducer.

6.16 ULTRASONIC INTERFACE

This consists of a transmitter (307-351) ( figure 6.18 ) which is capable of emitting

106dB, a receiver (307-367) has a sensitivity of -65dB and a timer to count pulse delay

times.
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RECEIVER

TRANSMITTER

TIMER (2240 )

Fig. 6.18 Delay in firing and receiving ultrasonic wave.

After firing the ultrasonic pulse from the transmitter, the time counter unit 2240 is started
and terminated when the echo is received by the receiver. In order to eliminate any delay
propagated within a timing circuitary, a feedback transducer is used to ensure that timing
begins at exactly the moment the ultrasound pulse leaves the transmitter. To use the
transducer for range measurement, it has timer which is to be resetted and initialised by
the software. The contents of the timer is calibrated, by placing an obstacle at a known
distance, firing the transducer and reading the contents of the timer. The procedure is
repeated by placing the object/ obstacle at a different distance. These delays can be
plotted against measured distances to determine a relation between these two quantities.
The contents of the delay timer can be read by sending them to the port B of the PIA. The

actual distance of the object can be calculated by the equation developed from calibration

graph as shown in chapter 7.3.
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CHAPTER -7 RESULTS AND EVALUATION

7.1 INTRODUCTION

In order to test the effectiveness of Forth as a robot programming language, the
development of software and its suitability is described in this chapter. Software design

philosophy of Forth is illustrated with an example in section 7.6

A method for the calibration of robot joints, the solution to inverse kinematic problem (
IKP ) for the Smart arm and the calibration of ultrasonic transducer and necessary
extensions to Forth are described. The required extensions to Forth may be sub-divided

into the following sections:

(a) Additional mathematical operations words.
(b) Input/Output ( I/O ) words.

(c) Joint movement words.

(d) Point-to-point movement words.

(e) Simulator words.

(f) Trajectory generation words.

(g) Ultrasonic sensor words.

(h) Block movement words.

In section 7.7 the usefulness of Forth in Robotics is described with examples using the
developed software. Section 7.8 contain brief summary of the chapter. Since
description of each and every word will render this chapter very lengthy, it was decided

to describe a selection of high level abstract words in each section. The low level words
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which are necessary to develop these high level words are listed along with their actions

in appropriate sections of appendix D.

7.2 CALIBRATION OF JOINT MOVEMENT

The Smart arm has revolute joints, which move in an angular form in a fixed plane. Since
the digital data needed to cause these joints to articulate is sent from the computer via the
robot interface which converts the data into proportional voltage and moves the joints in
an angular fashion, it was necessary in the first instance to establish a relation between
the data and the resultant angular movement. For this purpose the following approaches

were considered:

(a) potentiometrical method

(b) Direct angular measurement

(c) Trigonometrical method

(a) POTENTIOMETRICAL METHOD

This involves using an angular potentiometer with a supplied voltage. The potentiometer
can be rotated and minimum and maximum voltages produced are recorded. The
potentiometer can also be linked to a circular scale by a needle which allows angular

readings to be read from the scale. Thus by rotating the potentiometer, the angle

described and voltage output can be recorded.

This potentiometer can now be inserted at the junction of two joints and the output from it
can be linked to the voltameter. As the joint is slowly moved by sending data in short
intervals, the output voltage is recorded. Thus a set of readings can be obtained for data

value and voltage output produced. Since the relation between voltage and angular
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movement of potentiometer is already known, it is possible to relate data to the angle

between the joints.

The method appears to offer a fairly accurate way of relating joint an gle to the input data.
The main difficulty encountered was that for most joints, it was not possible to place a
potentiometer at the junction of these joints due to the construction of the arm so this

approach could not be used.
(b) DIRECT ANGULAR MEASUREMENT

In this method, each joint in turn was moved by sending data in small intervals and angle
between the two joints was measured by placing a protractor at their junction. It was
possible to measure angle for joints such as hand and elbow, but again due to geometry
of the arm, it was difficult to measure waist, shoulder and gripper angles. Although the
method is simple, does not require any mathematical conversions, it was found to be not

very accurate and cannot be  used for all the joints, so that it was also not pursued.
(¢) TRIGONOMETRIC METHOD

This method relies on the fact that when data is sent to a joint, the link moves in an
angular fashion with respect to the other link to which it is attached and hence form a
fixed angle. Since the links are rigid solids, they can be treated as straight lines of fixed
length hence a trigonometric function can be derived. Thus, by varying the data to a
particular joint, and measuring the corresponding height of the moveable joint from the
ground, the calculation of the joint angle for each data value is possible. This method of

calibration being simple, accurate and applicable to all joints was adopted and will be

described in the following sections.
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7.2.1 WAIST CALIBRATION

Waist or rotate joint rotates in a horizontal plane. This was calibrated by mapping the

working area of the arm as shown in figure 7.1 below.

Robot fixing

plate Fixing holes
180° <

NN

Arcs of differnt radius

Figure 7.1 showing mapped area covered by waist

For this purpose white paper was placed on the floor to which the arm is fixed. The arm
was removed and the centre of the base plate, was determined by drawing straight lines

through the centre of the holes and their intersection gave the centre of the arm’s base.

By using a large protractor, the working area was divided in to sectors from 0-1800 at
interval of 50. Using a large compass the area was also divided into arcs of varying

radius referenced to the centre of the base plate. The radius ranges from 0-42cm.
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For calibration purposes the waist was removed so that the centre of the gripper's plate
was just above a line corresponding to one of the angles on the mapped area, the data

value for this was noted. The results obtained are summarised in table 7.1 below:

Waist
40 50 60 70 80 90 100 110 120 130 140 150 160

angle

35 70 94 114 134 153 170 186 202 216 230 242 254

Data

Table 7.1 showing relationship between angles and waist data.

This procedure was repeated to cover most of the mapped area. The graph, depicted in

figure 7.2 shows the relation between input data values and angles measured in

degrees.
waist calibration graph
300 -
200
3
2
=
100
0 v T v T v T M 1
0 50 100 150 200
waist angle

Figure 7.2 showing graph between waist angle and data
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Since the graph was not linear, it was divided in to smaller sections of linear segments
and the slope for each segment was calculated. Suitable equations were developed for

each segment which are summarised in table 7.2 below:

Angle range (°)
61 Equation
0-60 2.75 + 61— 69.5
60-100 2.00*61-27.0
100+ 1.41 * 61 + 30.5

Table 7.2 Angular range and appropriate equations for waist.

During the actual conversion of an angle to a specified data, the software selects the
appropriate equation and carries out relevant conversion. The angle which waist makes

with respect to the horizontal plate is referred to as 01.
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7.2.2 SHOULDER CALIBRATION

For the calibration of the shoulder the relation was derived by reference to figure 7.3

below:
shoulder ———&=-
b f h
02
a
Figure 7.3 showing angle made by the shoulder
03------- Angle made by shoulder at the moveable shaft, measured anti-clockwise in the

horizontal plane.

a-------- Fixed height of robot base from ground to shaft (220mm)

b-------- Fixed length of shoulder (270mm)

R Height of tip of shoulder from the  ground, when it makes an angle 82.

f-a------ Distance from top of shoulder tip to the horizontal surface.

From Trigonometry:
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sin 02 = (f-a)/b
therefore 67 = sin-! (f-a)/b

Since a and b are constants, 82 is only function of f, the total height. The calibration is
performed by changing input data and measuring the corresponding height of shoulder

above the ground (f). The results are summarised in table 7.3 below:

Data

0 20 40 60 80 100 120 140 150 160 170 174
value
Calculated

9 83 77 68 58 48 38 24 17 10 3 0
angle 6

Table 7.3 showing relationship between measured angles and shoulder data.

The graph as shown in figure 7.4 below shows the relation between the data values and

the angle 67.

shoulder calibration graph

200 A

Data

0 20 40 60 80 100
Shoulder angle

Figure 7.4 showing graph between shoulder angle and data
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The graph was not linear hence it was divided in to different linear sections and the

relevant equations developed are summarised in table 7.4 below:

Angle range

& (o)g Equation
0-38 ~-143*62 + 174
38-80 209 * & +200.2
80 + 28 % & +2574

Table 7.4 Angular range and appropriate equations for shoulder.

Whilst shoulder is capable of movements up to 1809, but the best range was considered

to be from 0-90° since movement of shoulder away from the user is of little use for

manipulating objects.
7.2.3 ELBOW CALIBRATION

The elbow joint was calibrated in the same way as shoulder. The elbow was moved by
sending data to it and the height from the centre of the washer which connects end of

elbow to the hand was measured. The relation between the angle and the height was

derived using figure 7.5 below:
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Elbow

Shoulder—g
b

Figure 7.5 showing relationship between shoulder and elbow

03 - Angle made by the elbow joint with horizontal plane.

c - Fixed length of elbow joint.

f - Height of the end of shoulder attached to elbow from the ground.
y - Distance of free end of elbow from the ground.

From Trigonometry: sin 83 = (f-y)/c

03 = sin"1(f-y)/c

Since c is constant, f has to be measured only once, changing data will only affect y.
Since the motion of the elbow is restricted by the position of shoulder, the angular span

considered was between 0-900. The results obtained are summarised in table 7.5 below:
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Data
value 150 137 125 112 98 82 66 44 20 0
Calculated

& 0 10 20 30 40 50 60 70 80 90
angle

Table 7.5 showing relationship between measured angles and elbow data.

The relationship between input data values and measured angles is shown in figure 7.6

below.
Elbow calibration graph

200
[~ ]
= 100
=

0 v T v T v T Y Y 1
0 20 40 &0 80 100

Elbow angle

Figure 7.6 showing graph between elbow angle and data
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From this graph suitable equations were developed which are summarised in table 7.6

below:
Angle range
& (0) Equation
0-32 -125% 8 4+ 150
32-58
-1.53 ¢ 8 +158.5
58 + D22 % B  +198

Table 7.6 Angular range and appropriate equations for elbow.

7.2.4 HAND CALIBRATION

The hand was calibrated using the trigonometric relation derived by setting the arm as

shown in figure 7.7 below:

Hand
Elbow
@

04

d

Shoulder
f h
i 1

Figure 7.7 showing relationship between hand and elbow
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04--Angle made by hand with elbow measured clockwise.
h---variable height, tip of hand from the ground.
d---fixed length of hand.

f---height from ground to the joint of elbow and hand,
measured from the centre of the washer.

sin 04 = (f-h)/d

04 = sin-1 (f-h)/d

The shoulder is set to the vertical by sending zero data.The elbow joint is maintained
perpendicular to the shoulder so that it is always parallel to the ground and makes a zero
angle with horizontal plane. By sending different data to the hand, the corresponding

height (h) was measured and results obtained are summarised in table 7.7 below:

Measured
angle 90 70 50 30 10 0 -10 -30 -50
Data 230 212 194 170 148 135 124 94 70

Table 7.7 showing measured angles and data values for hand.
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A graph correlating input data values with resultant measured angles is depicted in

figure 7.8 below.

Hand calibration graph

300 -

Data

-100

H v 1

0 100

Hand angle

Figure 7.8 showing graph between hand angle and data

The equations developed from this graph are summarised in ta

ble 7.8 below:

Ang(: rzgl)g © Equation
40-90 09* 8 +230
8-40 105 * & +247
<8 ~143* B8 +265.91

Table 7.8 Angular ran

ge and appropriate equations for hand.

149




7.2.5 WRIST CALIBRATION

Since the wrist rotates in a plane which is perpendicular to the working area of the robot,
the distance of the end effector (gripper) from the base remains constant, so that the
method of calibration used for shoulder, elbow and hand joints cannot be applied here.
The wrist calibration was carried out by moving the arm in such a way, that when the
waist angle is 900, the hand points vertically down such that the tip of the gripper is
about Smm from the ground surface. Wrist data was recorded with the flat plate of the
robot arm facing towards the observer which was chosen as the reference. The wrist
was then rotated through 909 first in clockwise and then in an anti-clockwise direction.
The required data was recorded each time. It was assumed that the wrist rotates linearly
for the intermediate values. Although this does not appear to be a very accurate method,
but since wrist is mainly used to orient the hand gripper, the most suitable orientations of
the gripper are 00, and 90°. A more accurate method may be developed to measure the
angle made by wrist by placing the arm gripper a few cm above the ground which is
mapped by protractor and sending different data values to rotate the wrist. The data for

the intermediate angles can thus be obtained. The results obtained for the calibration are

summarised in table 7.9 below:

Orientation of Left hand of] Facing Right hand

flat plate of gripper| user user of user
Data values 20 156 243
Angles (o) 0 90 180

Table 7.9 Relationship between measured angles and wrist data.
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A plot of data values and measured angles is depicted in figure 7.9 below.
Wrist calibration graph
300 -
200 =
]
I
=
100 -
0~ ¥ ] v i
0 100 200
Wrist angle

Figure 7.9 showing graph between wrist angle and data

Equations developed from this graph are summarised in table 7.10 below:

Angle
& uation

range Eq
0-90 153 % 4 +18
90-180 098 * & +69.7

Table 7.10 Angular range and appropriate equations for wrist.

7.2.6 GRIPPER CALIBRATION

The gripper is used for grabbing or measuring the objects to be manipulated. Hence it

was considered to use only two positions for it i.e open and closed for which respective

data values are 0 and 255 units.
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7.3 CALIBRATION OF ULTRASONIC TRANSDUCER

The ultrasonic transducer was fired to an obstacle at a measured distance and the
corresponding delay ( contents of data register B of PIA ) in receiving the reflected
ultrasonic pulse was measured. The results obtained are summarised in table 7.11 below:

40 45

Distance
10 15 20 25 30 35

(cm)
29 56 8 110 137 164

191 218

Delay data

Table 7.11 showing measured data values against known distance.

a linear relationship between

A graph of these values as shown in figure 7.10 below is

them.
Ultrasonic transducer calibration graph

y=-25+54x R=1.00

300 -
200 -
)
=
¥
)
100 A
0
0 10 20 30 40 50
Distance
Figure 7.10 showing graph between delay data and distance

From the graph the following equation was developed :

Delay (D) = 5.22 * x - 20.5
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where x is the distance in cm of the object/obstacle from the ultrasonic transducer.

7.4 SMART ARM KINEMATICS

Robot arm kinematics deals with the analytical study of the geometry of motion of the
arm with respect to a fixed reference co-ordinate system, without regard to the actuators
which cause the motion. Industrial robots or manipulators comprise several rigid bodies,
called links or joints, connected by revolute (revolving) and prismatic (sliding) joints.
The angles between the links joints are called the joint angles. Kinematic correlates the
position of these links or joints with the joint angles within the working space of the
robot. The relationship between the two main topic areas in robot kinematics are depicted

in figure 7.11 below:

(a) Direct kinematic problem ( DKP )

DKP deals with the calculation

Direct i . Position and
Joint angles |— - Kinematic p————8- ]

kinematics orientation of
61,62,83, calculations Inverse gripper

il el
64,065,06 ) ) (x,y,z, 91,82-)
kinematics
Figure 7.11 Direct and Inverse Kinematic Problem

of the position and orientation of the end-effector

(gripper) with reference to 2 fixed co-ordinate system, which is usually the base of the

arm and hence referred to as the base co-ordinate system, from the input joint angles.
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(b) Inverse kinematic problem (IKP)

IKP deals with the calculation of joint angles for each joint, from the given position and
orientation of the robot end-effector. This calculation is generally the more useful, since
for the manipulation of objects, the user needs to specify the exact position and
orientation of the object so that calculations must be performed to work out the necessary

joint angles in order to align the arm tip to the required position.

7.4.1 METHOD OF SOLUTION

Generally, there are two approaches taken in solving direct as well as inverse kinematic

problems, namely: the mathematical approach and geometric approach.
(a) Mathematical Approach

This method uses the application of vector and matrix algebra to describe and represent
the spatial geometry of the links of a robot arm with respect to a fixed reference point.
This involves the setting up of a homogeneous transform matrix to describe the spatial
relationship between the two adjacent rigid mechanical links and hence to compute
relationship between all the links, to achieve a final solution. This approach can be

applied both to direct as well as inverse kinematic problems.

Since the geometry of different arms varies there is no universal single method for setting

up and hence solving these transformations. The main advantage of this method is that

transformations for a given manipulator lead to fairly straightforward method for the

computation of the joint angles which can in general be applied to all manipulators.

The main disadvantages of this approach arise when the mathematical derivation may not

be straightforward in the case of some manipulators, there is no feel for the physical

154




world and the associated limitations such as singularities and solution to transformations

require special trigonometric function such as ATAN.

(b) GEOMETRICAL APPROACH:

In this approach, a close and careful analysis of the robot arm geometry is made so that
accurate geometrical relationships between all joints and joint angles is established.
Clearly, the geometrical relation must depend on the geometry of a particular robot arm.
From the specified position and orientation of the end-effector (gripper), using these
geometrical relationships, starting with the target co-ordinates, it is possible to work out
the required co-ordinates of each joint one by one. This assigns to each joint a unique
co-ordinate for a required location of the end-effector rather than a range of values. In the
next section, a geometrical relation for the Smart arm which was used in this project is

described.

The main advantages of the geometric approach [ SADRE et al. 1984 ] are that it is a
relatively simple method, it avoids solutions which might seem reasonable, but in fact do
not work for certain allowable arm configurations and lastly it helps to identify the
presence or absence of singularities. Nevertheless this approach does suffer from the
fact that there is still no rigorous, well-established method which can be applied to all
manipulators. Thus this approach is mainly dependent upon the geometry of a particular

manipulator for which a solution is desired and it requires a great deal of geometric

visualization capability.

7.42 GEOMETRICAL RELATION (IKP) FOR SMART-ARM

For Smart arm which has five degrees of freedom, it was decided that waist, shoulder

and elbow joints will be used to Jescribe the position and wrist and hand joints the
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orientation of the arm. Since the waist rotates parallel to the base plane, it was
appropriate to express this angle in degrees of arc. Hence cylindrical ~co-ordinates were
considered to be the best way to describe the position of the arm. It should be noted,
however, that the use of cylindrical co-ordinates do restrict the path taken by the robot's
end-effector, to arcs of circles which is of some considerable advantage, since the aim is
to cover as much volume as possible so that the actual locus followed by the robot is
irrelevant. Therefore in order to define the exact position of the end-effector in 3
dimensions x, y, 01 co-ordinates are required. The wrist and hand angles were used to
describe the orientation of the object to be manipulated. The origin of the co-ordinates
was taken at the centre of the base of the robot which is actually 22cm below the base of
shoulder joint. The co-ordinate positions and angular conventions for all the joints are

summarised in figure 7.12 below:
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NAME EXPTANATION

01--—- defines the angle made by waist measured in clockwise direction.

02------- defines the angle made by the shoulder with the respect to the base measured

from the plane parallel to the ground surface in anti-clockwise direction.

03------- the angle made by the elbow with shoulder joint measured clockwise from

the plane parallel to the ground surface.

04------- the angle made by the wrist measured in anti-clockwise direction. When flat

plate of the gripper faces user itis equal t0 900 .

05------ the angle made by the hand with elbow measured clockwise, parallel to the

ground surface.

06----- the angle made by the gripper usually zero when closed and 120 when opened.

X--=m-- the distance of the object to be manipulated from the centre of the base of the arm

towards the user (radius of the arc).

y------ the height of the object to be manipulated from the ground surface or working

Figure 7.12 Explanation of positions and angles used.

Since the value of 01, 18 independent of the values of x, y, it is possible to define

position in terms of x, and y and 8 1 will define a particular point on the arc of radius x

cm as shown in figure 7.1. Hence the co-ordinate system is reduced to two dimensional

system namely x and y. Thus the working area of the arm can be viewed as arcs of

different radius and location of each section is given by angle 61, and the height by y.
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Consider as an example, that a user is required to align the tip of the robot's arm for the

co-ordinates shown in figure 7.13 below:

Position Orientation ('0)
x=32 cm 04 =90
y=15 cm 5 =90
01 =900

Figure 7.13 Required position and orientation of gripper.

Starting with the known position of the gripper (point P1), the stepwise calculation of

other joint co-ordinates  1s performed by using figure 7.14 shown below:

P2 (32,2890)

P1 (32,15,90)

origin  —

Fig. 7.14 showing calculation of joint co-ordinates.
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Since 01 only affects the position of the end-effector on an arc and 64 the orientation of

the flat plate of the gripper they are not needed for the calculation of the joint angles

involving the shoulder, elbow and hand joints.
CALCULATION OF CO-ORDINATES OF POINT P2 in fig. 7.14 :---

Firstly 635, the angle made by the hand with respect to a horizontal surface must be

considered. It is convenient to consider vertical and horizontal components separately.
horizontal component i.e.along x-axis = d Cos85

( d-- length of hand in cm)

=d* cos 90

=0cm

vertical component i.e along y-axis = d Sin 65

=d Sin (90)

=1*d=1*13=13cm.

Therefore, the co-ordinates of point P2 becomes:

x =32-0 =32cm

y = 15+13 = 28cm.

61 =900

CALCULATION OF CO-ORDINATES OF POINT P3 :--

This requires the calculations of angles 82 and 63 in fig. 7.14
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CALCULATION OF THE ANGLE 67

From figure 7.14 h =28-22 = 6¢cm.

where h is the value of y-axis (height) from the level of shoulder movement.

since 82 =0a+p (fig.7.14)
and h1=Sina

therefore o = Sin-1 (/1)

= Sin-1 (6/32.56)

a = 10.62

Angle P can be computed by considering triangle with sides b,c an

Application of the cosine rule gives :-
cos B = (12 + b2 - ¢2)/ (2*b*])

which on substitution yields
B=33570

Therefore 87 = o+ B =44.19°
CALCULATION OF 63

Let 63+62=Y (fig. 7.14)

64 =180 -7y

and Cos 64 =-cosY

using cosine rule:-  COS Y= (12-b2-c2)/ (2*¥b*c)
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so that y=cos-1 (12-b2-c2)/(2*b*c)
which on substtution yields

v = cos-1 (1060-729-324)/(2*27*18)
= cos-1(7/972)=89.59 0

since Y=02 + 63

83 =y - 02=89.59 - 44.19=45.40 0

since 84 only affects the orientation of the gripper face plate, its value does not effect the

calculations of positions of various joints.
Now if desired, it is possible to calculate the co-ordinates of point P3 :
Sin 62 =D/b ( Dis vertical height from P3 to shoulder level in fig. 7.14)
or D = b*sin 62
= 27%sin (44.19)
=18.82
thus the y component of the point p3 is:-
=18.82 +22.0=40.82cm (a=22cm)

similarly, the x-component for point P3 can be calculated as follows:

since cos 02=x3/b ( X3 is the distance at the shoulder height along x-axis )

x3 = 27*cos 02

=27* cos(44.19)
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=19.36 cm

Therefore co-ordinates of point P3 using cylindrical co-ordinates may be written in the

form :-
( 19.36,40.82,90 9)

In order to align the tip of the gripper to the point P1 as shown in figure 7.13 (i.e 32, 15
90 0) only the calculations of angles 67 and 03 are required. Using appropriate
equations obtained from the calibration graphs ( section 7.2 ), these angles values may be
converted into the corresponding data values required for each joint and when these
values are sent to the arm, the gripper will align itself at the required position and

orientation.

7.5 EXTENSIONS TO FORTH

In order to move robot under different programmed conditions necessary extensions to

Forth are described. These words are kept separately on a disc between screens 41 and

243 and can be loaded when required by a command such as:

41 LOAD

These extension words are described below:

7.5.1 ADDITIONAL MATHEMATICAL OPERATIONS WORDS

Forth does not support specialised arithmetic operations such as square roots, cube roots,

powers trigonometric functions and floating point operations etc. In order to perform co-

ordinate transformations i.€ DKP and IKP in robot kinematics, it is necessary mainly to

' i i i i mentation of such functions can be
implement trigonometnc functions. The imple
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achieved either by the use of polynomials or by means of look up tables. Unfortunately,

olynomial soluti i 'S seri ~ o :
poly tions like Taylor's series, are very time consuming since they involve

large number of iterations. Thus in the interest of speed it was decided to go for a look-

up table for each angle.
(a) SINE LOOK-UP TABLE

Screen (41) contains the sine values of the angles from 0° to 909 in the interval of 10.
These values are saved in a constant known as SIN at the next available address in
dictionary given by Forth word HERE. Because Forth does not support floating point
decimal, although this implementation has some especially written words for it, therefore
it was decided to save the sine values of the angles multiplied by 10,000. The Forth

word SINE is defined as follows :

SINE (n----------- n)
ABS ( returns absolute value )
360 MOD ( scale to within 360 )
180 MOD ( divide by 180, leaves remainder and quotient )
SWAP ( move remainder to the top of stack . )
90 MOD ( divide by 90 )
IF ( if quotient is positive )
90 swap - ( subtracts from 90 )
THEN 2 * ( calculate offset )
SIN + ( add to the start address of SIN )
@ ( read angle value )
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SWAP ( move sign flag to the top of stack )

IF NEGATE ( change sign if flag is positive )

THEN

; ( end of compilation )

For example, Forth word
35 SINE
on execution will leave the sine value of angle 359 multiplied by 10,000 on the stack.

Upon input of any angle, it is first converted in to the 0-360° range then it is further
examined if the angle lies between 180-360, in which case the sign of the angle value
will be negative. Finally it is reduced to 0-900 range and the corresponding sine value is

read from the table. Some of angle values obtained this manner are listed in table 7.12

below:

Sine value 5,000 -5,000 -10,000 8660 0 10,000 -10,000
* 10,000

Angle 30 210 270 300 360 450 630

Table 7.12 showing sine values

(b) INVERSE SINE

In order to calculate an angle of an inverse sine value from an input number which is

multiplied by 10 000, it was decided to search the sine look-up table at specified

intervals, until the nearest integral angle value is found. Standard interpolation
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techniques such as Newton's Forward or Backward Difference Formula ( NFF/NBF)

were examined. However, in the interest of speed and level of accuracy required a simple
linear interpolation method of calculating the actual angle was found to be sufficiently

accurate. For this purpose first some low level words were written, which include :

ARC-SINE-RANGE? ( n------ n,f)

This word check range of the input value and check that it lies within the range of 0 to

10,000 and returns true flag if it is out of these limits.
ARC-SINE-SGN ( n--------- [n]

This word saves the sign of input number in a variable and returns the absolute value on

the stack.

The overall high level word is ARC-SINE which carries out limits checks, saves sign,
performs the angle search and interpolation and returns the appropriate angle on the

stack. This word is defined as follows :

: ARC-SINE (N —memmemmeen Angle )

ARC-SINE-RANGE? ( check range )

IF DROP ." Out Of Range " ( error message )

ELSE ARC-SINE-SGN ( check and save sign )
ARC-SINE-LIMITS? (Equalto0or%07?)

IF 1 DROP ( Clear stack )

ELSE SEARCH ( Search and interpolate )
THEN ARC-SINE-ANGLE ( getangle)

THEN SGN C@ ( get sign value )
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IF 180 SWAP -

(If -ve , take away from 180 )

THEN

5 ( end of compilation )

The angles obtained by inputting ARC-SINE values are shown in table 7.13 below :

Arc-sine 5.000 5
* 10,000 , 736 7,071 8,192 9,063 9,659 9,962 10,000
Angle 30 35 45 55 65 75 85 90

Table 7.13 showing arc-sine values.

(c) COSINE TABLE

Since sine and cosine of an angle are related to each other by the relation:

cosx = sin(90-x)

Thus to find cosine of an input angle, first 900 is added to it then its sine value is found

using sine look-up table. Therefore no separate implementation of this function was

considered necessary.

The word COS is defined like this :

: COS € n)

90 + ( adds 90 to input angle )

SINE ( look up sine look-up table )
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(d) ARC-COSINE

ARC-COSINE, like ARC-SINE checks range, saves the sign and calculate angle from

Sine table and then converts it in to corresponding cosine. The word ARC-COS is

defined as follows :
: ARC-COS e — aﬂglC )

(‘expect no. * 10,000 on the stack )

ARC-SINE ( get ARC-SINE angle from SINE LOOK-UP Table )
SGN C@ ( check if sign is negative )

IF 180 SWAP - (if so, subtracts from 180 )

ELSE 90 SWAP - ( otherwise subtracts 90 )

THEN

(e) TANGENT TABLE

It was decided to implement this table from 0-90° in the interval of 10 in the same way

as sine look-up table except double precision numbers and operators were used. The

difficulty arises when angle is closer to 900, since the curve rapidly increases towards

infini I imes its
infinity. The word tangent returns the tangent value as a multiple of 10,000 times it

actual value and is defined as follows :
: TAN (n =-mmmmmmmn d)

4 * ( multiply n by 4 to calculate offset address )

167



TANGENT ( supply start address of look up table )

+ ( calculate actual address )

The word PORT, which allows the user to select the appro

2@ ( read contents of double length address )

; ( end of definition )

(f) SQUARE € P— n)

This word returns the square of an input number.

(g) SQUARE-ROOT ¢ p— n)

This word returns the square-root of an input number.

7.5.2 INPUT/OUTPUT (/O ) WORDS

The words used to configure robot to the microcomputer, select particular joint and send

the appropriate data to move it were developed and saved in a vocabulary known as a

ROBOT. This vocabulary contains the following words:
(a)PIA CONFIGURATION WORDS

Forth words to configure PIA as well as to select appropriate bits to be stored in its

control register for different purposes were developed.

priate PIA is defined as

follows :
HEX ( change number base to 16)
- PORT (N =mmmmmmmmmees Addr)

168



" .
20 ( multiply port no. by 20)

E040 (place this address on the stack )

SWAP - ( subtracts from E040 )

For example, 1 PORT will generate address $EO20, the commencement address of the

PIA at that port.

Since each side of the PIA has three registers, but only two addresses are allocated in
memory for them as described in section 6.6.5 the data register and data direction
register share one address between them and control register has its own address. This
requires the special mechanism for addressing these registers as described previously.
The three registers on each side of PIA are declared as variables with their obvious

abbreviations as shown in figure 7.15 below :

Port Name of register Abbreviation
Data register DREGA
A Data direction register DDREGA
Control register CREGA
Data register DREGB
B Data direction register DDREGB
Control register CREGB

Figure 7.15 showing variables names for the PIA Registers.
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Appropnate words were defined and tested to select each side of peripheral data lines as

all inputs or all outputs or any desired combination as may be required. There are words
to read data from data registers, clear flag bits (bits-6, 7) of control register, write into the

control register, or select the PIA to act in handshake mode, or pulse mode and choice of

enabling or disabling interrupt etc.

For example, if it is desired to configure the A side of the PIA on port 0, so that all
peripheral data lines are inputs to the MPU, and to select the data register, it is necessary

to use the following combination of Forth words in order to achieve this:

: APORT-INPUT  (------m-mmmmm- )

APORT ( configure Port A of PIA )
ALL-INPUTS ( leaves O on the stack for all lines input)
DATADIRSA ( write 0 in DDR for all data lines input )
SLCTDR (leaves 4 on the stack )

WRITECRA ( complete configuration )

In a similar way the words like APORT-OUTPUT, BPORT-INPUT and BPORT-

OUTPUT were defined. In addition to this, words which programme PIA for handling

. ; iting 1 he data register
interrupts, hand shake modes, reading the contents and writing in to the da gl

were also developed and tested.
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(b) ROBOT CONFIGURATION WORDS

To configure the robot to the PIA and select its appropriate joint, suitable Forth words

were written. For example, consider the word :
: CONFIG-ROBOT ( ---------- )
APORT-OUTPUT

BPORT-OUTPUT ;

This word on execution will configure both ports of the PIA as outputs in order to enable
robot. In order to improve the readability of words, it was decided to use the names of

the arm joints, as constants, which are listed along their values in table 7.14 below :

Joint . .
o Waist Shoulder Elbow  Wrist  Hand  Gripper

name

Value 1 2 3 4 5 6
stored

Table 7.14 showing values of joint constants.
Each constant name upon execution leaves a corresponding value on the stack.

753 JOINT-MOVEMENT WORDS
The movement of each joint is achieved by selecting an appropriate joint via port A and

sending the specified data via port B of the PIA. In order to select a joint, the joint

number and 8 is written in to port A . This number sets up bit 3 of the control register

which is an enable bit for the robot. The movement of the joint is accomplished as

follows :

WAIST 128 MOVE
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This will select joint waist and send data value of 128 to it. The word MOVE is a high
level word which is defined like this :

: MOVE (1) U5 | v S— )

( expect joint no. n1 and data value n2 on the stack )

OVER DUP ( move second item to the top and duplicates it )
WRITEDATA ( Save joint no. in datareg. A )

DATA + C@ ( get previously sent data to this joint )

SWAP DUP ROT = ( compare new data with old data )

IF (if it is true )

DUP DUP CR ." same data, no movement is required "

ELSE ( otherwise )

DUP WRITEDATB ( write new joint value in to data reg. )
OVER DATA + C! ( write new data in to array DATA)
DUP 8 + ( add 8 to joint no. )

WRITEDATA ( enable robot joint )

DELAY ( allow joint to reach its destination )
WRITEDATA ( disable robot joint)

THEN (endif)
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The word MOVE expects both joint number and a data value on the stack. All data values

sent to the arm are saved in an array called DATA. When new data is sent to a joint, it is
compared with the previous contents of the array DATA. If both are same, a message is
returned to the user indicating that since the new data is exactly same as that previously

sent no movement of the specified joint is required.

In order to read the latest data sent to a joint the following type of words were written
WAI-DAT ----- which leaves on the stack, the latest data value sent to the joint waist
In the same way words like SHL-DAT, ELB-DAT, WRI-DAT, HAN-DAT and GRI-

DAT were written for the other joints.

In order to allow movement of a specified joint from an existing place (data value) to
another location the word called STEP was defined. It allows the movement of the
selected joint to its left or right; up or down; clockwise or anti-clockwise appropriate to

the joint movement, by a certain number of steps. The word STEP is defined as follows :

: STEP (n1n2----n1n3n4)

3 * ( multiply step no. by 3 )
OVER DATA C@ ( get previously sent data )
SWAP;

: LEFT (nln2---n)

( decrement previous data by a certain value)

A typical use of this word would be :

WAIST 3 STEP LEFT MOVE
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This word will move joint WAIST by 3 steps leftwards from its present position.

7.5.4 POINT-TO-POINT MOVEMENT WORDS

Point-to-point movement of the arm is achieved by the user pre-specifying position and
orientation, the end-effector must adopt within the working volume of the robot arm. The
word POSTN expects 3 numbers x, y, 6 on the stack and saves them in the variables x2,
y2 and array theta respectively. The word ORIENT saves wrist angle ( 84) in array
theta + 3 and hand angle in theta + 4. The word ARM-MOVE using IKP as described
earlier, calculates appropriate joint angles, selects the relevant equations from calibration
of joint graphs, calculates the data for each joint and then sends them to the robot in a
prespecified way. All the joint data values are saved in an array called JOINTS, the
contents of which can be examined by a word known as JOINTS?. Intermediate
calculated angles are saved in an array called ANGLES whose contents may be

examined by use of the word ANGLES?. Some illustrative examples of the application

of these words are :-
32 12 90 POSTN
90 90 ORIENT

ARM-MOVE

These words will allign the tip of the arm gripper at 32 cm. away from the centre of the

arm base, 12 cm. above the ground surface at a WAIST angle of 90° which is along

the horizontal axis. The gripper's flat plate will be oriented towards the user and hand of

the arm will point vertically downwards so as to be poised to grab an object from the

ground.
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The word ARM-MOVE is defined using another high level Forth word CALC-SAVE
which is defined as follows:

: CALC-SAVE (C— )

CALC-XY ( calculate co-ordinate at the end of elbow)
CALC-L2 (calc. X1'2 and Y1'2 and save in var.L.2)
CALC-THEETA2 (calc. angle theta 2 and save in var. )
CALC-THEETA3 ( calc. angle theta 3 and saves in var. )
CALC-J1 ( convert theta 1 in to joint data )
CALC-J2 (- 2 - )

CALC-J3 (“ 3 )

CALC-J4 «* 4 " )

CALC-J5 ce 5 )

The word ARM-MOVE is defined as follows :
| CALC-SAVE ( convert co-ordinate in to joint values )
2 JOINTS 1 + C@ MOVE DELAY ( move joint no. 2)

3 JOINTS 2 + C@ MOVE ( move joint no. 3)

4 JOINTS 3 + C@ MOVE DELAY ( move joint no. 4)

|
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5JOINTS 4 + C@ MOVE DELAY (move jointno. 5 )

1JOINTS C@ MOVE DELAY (move joint no. 1)

A combination of Forth words POSTN, ORIENT and ARM-MOVE were used to
measure the positional accuracy of robot arm. For this purpose, the arm was allowed to
move to a specified position and orientation. In order to measure accuracy along an axis,
all the co-ordinate values apart from the one being investigated are kept same. After
moving the arm, the actual position of the gripper was measured in cm using a ruler. The

average results obtained for x-axis are summarised in table 7.15 below:

Entered X

e | 20 22 24 26 28 30 32 34 36 38 40 42 44
Measured

Measued Xl 25 24 26 28 20 30 32 335 358 38 396 42 43

Table 7.15 showing entered and measured X co-ordinate value.

The results reveals that for the most accurate range along the x-axis values lies within 28-

42 cm when the measured error is less than 1 cm. In the same way the values for y co-

ordinate were changed while others were maintained constant. The results obtained are

summarised in a similar manner in table 7.16 below:

Enered Y | , 4 ¢ 8 0 12 14 16
co-ordinate
Measured Y | , , 59 78 10 12 141 16
co-ordinte

Table 7.16 showing entered and measured Y co-ordinate values

It was found that the measured values along y-axis are more accurate than in the case

along the x-axis It was also found that during repeated use of the arm the positional
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accuracy was affected particularly if the gripper happened to collide with other objects or

ground. Thus it was found necessary to repeat the joint calibration process periodically.

This is a time consuming process, but nevertheless it is recommended that this should

be carried out from time to time to achieve reasonable positional accuracy. A comparison

of the input values with experimentally measured values indicates that the error level lies

within the range 0-1 cm.

Some experiments were conducted to show the overall effect of positional error by

changing more than one joint axis at a time. The results are summarised in table 7.17

below:
Aumber entered co-ordinates measured error
x (cm) y (cm) 0 (0) x (cm) y (cm) 0 (0)
1 26 6 90 -1.0 0.5 -2.0
2 28 8 60 -1.0 0.2 1.0
3 30 12 100 -2.0 0.2 1.0
4 30 10 90 -1.5 0.3 1.0
5 32 18 120 -1.0 0.1 2.0
6 32 10 90 -0.25 00 -20
7 34 6 80 -1.0 0.0 1.0
8 36 10 90 -1.0 0.0 -1.0
9 38 12 110 -1.0 -1.0 2.0
10 40 6 70 -1.5 -0.3 2.0
11 42 16 60 1.0 -0.4 -1.0
12 44 14 120 0.5 0.2 1.0

Table 7.17 showing overall positional error

These results show that ov
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7.5.5 SIMULATOR WORDS

In order to teach a task using simulator, save it in secondary memory for future use if
desired, retrieve it and repeat its action at subsequent stage a considerable number of

Forth words were developed and tested.

To enable the simulator to the microcomputer, the PIA should be configured as :

APORT-OUTPUT BPORT-INPUT

The microcomputer receives digital data after conversion with A/D converter and saves it
_in an array called SIMU. This data is later on scaled by a word called CONV-SIMU-
DATA and saved in an array called ARM-DAT. The simulator is then disabled and the
scaled data is sent to the robot arm. The purpose of scaling is to convert data coming
from simulator so that when the scaled data is sent to arm, for the convenience of the
user, each joint appears to be more or less in the same position and orientation as the

simulator's joints.

Often at the end of the learning session with the simulator, the user would have liked to
save few trajectories, for future use. One way of achieving this is to use Forth editor
and save the data values on a given screen or block and reload them when needed in the
future. This method is rather cumbersome, since a large amount of data may have to be
manually typed onto the screen using screen editor. Instead a better approach was taken

to use some dedicated blocks/screens for saving data and transfer it automatically via

buffers in to the main memory.
Typical use :

<Trajectory name> BLK-SAVE

During a learning session, the user will be asked if he wishes to save this trajectory on a

dedicated screen. During a learning session with the simulator, the user cannot be sure
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before-hand, of number of points required to complete a task and whether a taught
trajectory needs to be saved on the disc for future use. For this purpose, it was decided to
compile the total number of points and joint data for each point in to the PFA of
trajectory or task being taught. At the end of teaching session the user is asked if he/she
wishes to save the taught task permanently on the disc. In order to achieve this, it was
decided to create two arrays by using a defining word known as BLOCK-ARRAY which
is used like this :

347 2 BLOCK-ARRAY INDEX-BLOCKS
350 4 BLOCK-ARRAY DATA-BLOCKS

The newly defined word INDEX-BLOCKS will reserve 2 blocks for saving trajectory
index ( i.e block number, block-offset, trajectory name ). In the same way, DATA-
BLOCKS will reserve 4 blocks starting with block number 350 for saving trajectory data
( i.e block number, block offset, number of trajectories ). The data to and from these

arrays can be moved to the disc and vice versa via buffers as illustrated in figure 7.16

below :
BLOCKS--->ARRAY
4.*»,
DISC MAIN
 «§——3> BUFFERS (——
MEMORY MEMORY
INDEX-BLOCKS -— = INDEX-ARRAY
DATA-BLOCKS —=— B DATA-ARRAY

BLOCKS<---ARRAY

<

Figure 7.16 showing movement of trajectory data.
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These words are defined as follows :

: BLOCKS-->ARRAY (- )

TRJ-IND-ARRAY ( move index blocks to array )
TRJ-DAT-ARRAY ( move data blocks to array )

: ARRAY-->BLOCKS (— )

ARRAY-TRJ-IND ( transfer contents of index array to blocks )
ARRAY-TRJ-DAT e — data --------------- )

The words CLR-IND-BLKS and CLR-DAT-BLKS are used to initialise index and data
blocks respectively. Another high level word, BLK-SAVE, moves the contents of data
and index blocks to corresponding arrays and asks the user if a trajectory has ever been
saved on these blocks in which case the previous block number, block-offset and number
of trajectories is written in to appropriate variables otherwise the arrays are initialised and
the trajectory data is saved in to array called DATA-BLOCKS. The word UPDATE-
INDEX saves the block number, block-offset and first 3 characters of trajectory name in
the array called INDEX-BLOCKS. The overall very high level word is LEARN which
was defined by a defining word CREATE---DOES>. It is a defining word which at the
time of execution will expect the name of a trajectory to be created. During the execution

it will ask the operator a choice if he/she wishes to save a particular point by pressing the

key 'S' from the keyboard or terminate by pressing key "T". The data will be saved in the

named trajectory. The word LEARN is defined as follows:
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: LEARN ( —memmmmemeee- ) (expect name of trajectory at run time ) -
CREATE

HERE ( get PFA of new word )

DUPO, ( Inidalise PFA of new word )
START-KEY BEGIN ( ask for an input key )

ENABLE-SIMULATOR WAIT-KEY CR CR ( wait for an input key )
DUP 83 = (is S key depressed ?)

IF COMPILE-DATA ."save the point" CR THEN

DUP 84 =IF (is key T depressed )

TERMINATE ( disable simulator)

ELSE DROP 0 THEN ( remove key value and leave O for loop)
UNTIL

CR CR ." do you wish to save data on disc now?"
CR SELECT-KEY ( wait for an input Y/N)
IF BLK-SAVE UPDATE-INDEX

ELSE DROP THEN ( remove address )

SMUDGE DOES> (leave PFA of new word on execution )
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In order to search and retrieve the saved trajectory some words such as REPLAY, TRAJ-
ENTER, SEARCH-NAME, COMBINE-FLAGS, BLK-NUM-OFF, CALC-BUFF-
ADDR etc. were developed and tested. The word TRAJ-NAME-LOCATE which was
defined by the combination of some of these words allows the user to enter name of the
trajectory to be searched, compare it with the names of saved trajectories and returns its

address otherwise it warns the user and aborts. The high level word is TRAJ-DATA-
LOCATE which is defined as follows :

: TRAJ-DATA-LOCATE (- Addr)
TRAJ-NAME-LOCATE ('start addr. of traj. name in index array )
BLK-NUM-OFF

( get blk. no. and offset of trajectory )

CALC-BUFF-ADDR ( get addr. of data for traj. in data array)

The use of this word can be illustrated like this :
TRAJ-DATA-LOCATE REPLAY ----—--- from disc

<Trajectory name > REPLAY  ------- from dictionary

A dedicated screen 347 will save name, block no. and offset of a particular trajectory. So
when an operator types the name of a trajectory, a search is carried out in the trajectory
index. If a trajectory of that name already exists then its block number and block-offset

where its corresponding data is kept is returned on the stack. In order to terminate the

search, a dummy 999 is saved in place of trajectory name after the last trajectory in the

index. Therefore if a trajectory is not found i.e. 999 is encountered, an appropriate error

message is returned to the user.
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A taught trajectory after a while may become redundant, hence it may be necessary to
remove it from the disc. Some Forth words were written to implement this change. The
overall word to delete a trajectory is called TRAJ-DELETE. This word transfers the
contents of disc blocks to arrays, asks the user to enter the name of trajectory, delete it

and then readjust the contents of index and data arrays by moving the appropriate

number of bytes.

The word TRJ-DIRECTORY was written for the user to search array INDEX-BLOCKS

and displays the trajectory name, block-offset and number of points for each trajectory.

In order to test the developed words, new trajectories were created using word LEARN.
These trajectories were saved on the dedicated blocks for future use. Every time a new
trajectory was saved, the word TRAJ-DIRECTORY was used to see if the contents of
trajectory index were updated. The contents of array containing trajectory data were also
examined to check if corresponding data for this trajectory has been added to it. At later
stage, one of the saved trajectory was deleted using Forth word TRAJ-DELETE and
again contents of trajectory index and data array were examined to check if they were
updated. All the words related to simulator were tested and found to work satisfactorily

and each of the saved trajectories accurately repeat the stored action.

From user point of view, these simulator words offer great advantage as all the house

keeping including creating, saving, deleting and updating trajectories is done

automatically. However, it is quite complex and involved writing and testing of a

considerable number of Forth words as shown in Appendix D.

The use of a Simulator offers greater advantage than hand held teach pendent, as it looks

like the arm, human touch is involved, so that during teaching session the operator can

use their skills and select which point is worth saving. Itis also ideal for remote control

applications such as encountered in nuclear reactors and hazardous environment.
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7.5.6 TRAJECTORY GENERATION WORDS

A trajectory can be defined by specifying the series of intermediate points needed to
execute a desired task. For this purpose, some Forth words were developed and tested
to define individual points which can subsequently be combined to define a new
trajectory. The low level words developed for this purpose include POSXY, INPUT-
NUM, CLR-SCR, SPATIAL-MESSAGE, ENTER-POINT-DATA etc. The high level
word DEFINE-POINT expects the name of the point and allows the user to enter data for
the location of the point with respect to a fixed co-ordinate system. The word INPUT-
POINT allows the user to enter a predefined point name and returns its PFA. The READ-
POINT-DATA expects the PFA of the point and returns the data values for the co-
ordinates. To define a new trajectory, the high level word is DEFINE-TRAJ. It is a
defining word and expects the name of new trajectory at the run time. Other high level
words include MOVE-POINT and MOVE-TRAJ which expect the name of previously
defined point or trajectory respectively before execution and send the appropriate data to

the arm. The typical use of these words can be illustrated as below:
<point name> MOVE-POINT

<Trajectory name> MOVE-TRAJ

If the user wishes to save any of the defined points or trajectories, the words created for

saving simulator trajectories can also be used. However, it must be borne in mind that
only first three characters of the name will be saved on the disc. All trajectories saved in

this way can be subsequently retrieved using words created for simulator trajectories.
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7.5.7 ULTRASONIC SENSOR WORDS

Some words were written and tested for range measurements. The word CONFIG-ULT,

configures ultrasonic transducer to the microcomputer and is defined as follows:

: CONFIG-ULT (e — )
APORT-OUTPUT ('select port A as output )
BPORT-INPUT ( select port B as input )

0 WRITEDATA ( clear data register A )

After the ultrasonic transducer is fired, it starts the clock and later, terminates it when the
pulse is returned. This delay in time is written into data register B of PIA. This time
delay is later on converted into a measurement of the distance between object and
transducer by the word CALC-DISTANCE. The calculations are based on the equations
developed ( section 7.3) by measuring the time delay for known distances of the objects.
The high level word is ENABLE-ULT, which configures, resets, fires the transducer and

returns the distance of the object. It is defined as follows:

: ENABLE-ULT e )

CONFIG-ULT ( configure ultrasonic )
RESET-ULT ( reset the clock )

DELAY FIRE-ULT ( fire ultrasonic and start clock )

DELAY READATB ( read delay between firing and receiving )

DUP CR."the time delay read from DREGBis " CR.
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CALC-DISTANCE

(convert delay in to distance )

0 WRITEDATA ( disable ultrasonic by clearing DREGA )

7.5.8 BLOCK MOVEMENT WORDS

Present Forth implementation does not have any words needed to move words
contained in one screen to another screen. This facility is very desirable since during
software development it may be necessary to move blocks around, insert new screens in
between existing ones etc. Towards overcoming this deficiency, it was decided to write
suitable words to provide this type of facility. The word CLR-BLK, initialises a given
screen. BLK-COPY, copies the contents of a source block ( screen ) to a given block. A
similar word BLK-MOVE transfers the contents of a block to a specified block. In order

to move multiple blocks, the word BLKS-MOVE was defined as follows:

BLKS- MOVE ( source no., destination no., no. of screens)
0 DO ( start loop )
2DUP ( copy top two items )
I+ ( add loop index to no. of screens )
SWAPI + ( add loop index to destination block no. )
SWAP BLK-MOVE ( move the blocks )
LOOP (end loop )
2DROP ( clear stack )
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The movement of a block is achieved by first copying the content of a block to buffer and

then transfering it to its destination block. The definition of BLK-COPY is as follows:

: BLK-COPY  (nl,n2 )

( n2 is destination block and n1 is source block )

SWAP BLOCK ( move source screen to buffer )
SWAP BUFFER ( assign buffer to destination screen )
1024 ( no. of bytes to move )

CMOVE ( transfers bytes )

UPDATE ( set buffer flags for updating )
SAVE-BUFFERS ( transfer contents to disc )

In the same way, BLKS-COPY was defined to copy a certain number of blocks from a

source to destination block.

7.6 FORTH SOFTWARE DESIGN

As described earlier in chapter 5.5, Forth software development involves top-down

design and bottom-up developing and testing. In order to illustrate this design

philosophy, the development of a Forth word ARM-MOVE will be described. This word

as previously defined ( section 7.5.4) 1is used to move the arm to a specified position

and orientation. It expects the desired co-ordinate values in appropriate variables. First

187




of all this abstract high level word is sub-divided into new words MOVE and
CALC-SAVE. This process is repeated until fairly low level words which can be easily
defined are obtained. Implementation starts by defining these low level words including
declaration of variables and constants. In this particular example, this includes declaring
variables and constants such as alpha, beeta, joints and theta etc and defining associated
words such as sine, square, port etc. These low level words are progressively assembled
in to a hierarchy which culminates in the high level abstract word ARM-MOVE, the
execution of which in turn causes the execution of all the underlying words. Words
developed at each level are tested for their desired action. The word ARM-MOVE is easy
to use as it conveys the meaning of its action. Whilst the user is normally, only expected
to use this high level word , however the related low level words can also be used
directly in the development of new word/s or on their own. For example, the word move
in this example is also used in the definition of words such as TRAJ-MOVE, POINT-
MOVE etc thus allowing reusability of code. The hierarchical development of word

ARM-MOVE is shown in figure 7.17 below:

188




ARM-MOVE
calc-save \ove
calc-jt-data *
4 config-robot

calc-jt-angle / \
/ \ conﬁg-p\ortA config-;ortB

calc-theeta2 calc-theeta3

calc-alpha calc-beeta  calc-gama Aport  All-output  Bport
calc-xy calc-12  arc-cos arc-sine

Npbod

LOW LEVEL WORDS, VARIABLES, CONSTANTS

Figure 7.17 showing the development of Forth words

In a similar way, hierarchical relationship between other Forth words developed in

section 7.5 is shown in appendix D (fig. D1-D6).
7.7 FORTH SOFTWARE AND ROBOT PROGRAMMING

Forth appears to be an ideal language for robot programming since it contains the

following features which are particularly suitable for software development in robotcs,

viz:
(a) interactiveness
(b) modular design

ll (c) extensibility
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(d) extended data structure
(e) user-friendliness

(f) reusability of code

(a) INTERACTIVENESS

Since Forth is interactive in nature, the word defined in Forth can be tested immediately
in order to ascertain whether it performs the expected action. This is sharp contrast to
the compiled languages such as Pascal where it is necessary to edit, compile and run
in order to check whether the code is working. This feature of Forth saves considerable
time in software development. To illustrate this, consider the Forth word PORT. This
word on execution, expects a port number on the stack and returns the appropriate
address. This can be tested by typing the following commands which will return the

following addresses:
0 PORT-------- > $E040
1 PORT-------- > $E020

(b) MODULAR DESIGN

Forth allows software to develop in small modules by combining simple Forth words
which already exist in the dictionary. Each module can be tested interactively. Different

modules can then be combined together to produce an another more complex module

which itself, can be tested interactively. For Example :

module 1

PORT (n -- addr) ( provide port address)
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20 * E040 SWAP - ;

module 2

: ASIDE (addr ----) (saves address in appropriate variables )

DUP DUP DREGA DDREGA 1 + CREGA ;

After developing and testing these two modules, they can be combined to define a new

module as follows:

module 3

- APORT (----) ( perform the action of modules 1 and 2 )
0 PORT ASIDE ;

It is noteworthy that each of these smaller modules can be combined together to form
progressively larger and more complex modules. This feature allows the user to develop
abstract high level word which on execution will perform the action of all the underlying

words. In fact all the high level words described in section 7.5 are developed and tested

in a modular way.
(¢ ) Extensibility

Another advantage of Forth is the ease with which the language can be extended which
allows the development of application words such as waist, shoulder, port, all-inputs,
all-outputs, move, move-arm, simulate, learn and replay etc. All the extension words
described in section 7.5 represent extensions to the Forth kernel. Once these words

have been compiled, they become part of Forth dictionary and can be used along with

other core words.
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(d) EXTENDED DATA STRUCTURE

Forth allows the user to define words, which at the time of execution can be used to
create a set of new words. For this purpose the words defined are CREATE and DOES>.
The word Create defines the compile time behaviour of the defining word and creates a
dictionary header, while DOES> defines the run time behaviour of the defining word and
returns the PFA of the word at execution time. In addition extra code can also be

suffixed after DOES> to be executed at run time.

An example of CREATE and DOES> as a defining word is LEARN, which names
trajectories at teaching sessions with the simulator. This word expects the name of new

trajectory as input from the keyboard ,e.g
LEARN TRAJECTORY!
LEARN TRAJECTORY?2

Thus user can define as many trajectories he wishes and name them according to choice.
Each of these trajectories named by LEARN will be just like other FORTH words which
can be executed according to the code written after the word DOES> in LEARN. The
trajectory named this way will not only create a dictionary header like other FORTH
words but also save the data in it. The main advantage of Reverse Polish Notation (RPN)
and stack operating languages is that actual data is not required at the time of defining
new data structure. For example, the word LEARN is defined to save data in the PFA of
the word defined by it so that at the time of defining LEARN the user is not concerned
about the extent of data to be saved which may vary from one to many thousands of

points. At later stage when data is saved in a new trajectory it can be retrieved to repeat

the action of a taught trajectory ot be transfered by suitable words to be saved on the disc

for future use. To repeat the trajectory leamed in this way there is another FORTH word

known as REPLAY which can be used as follows:
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<trajectory name> REPLAY

e.g. TRAJECTORY1 REPLAY

which will replay the data saved in the trajectory. Additionally the programme will ask
the user at the end of teaching session whether the data in the trajectory is to be saved in
secondary memory ( i.e DISK ) for future use. This transfer will be done automatically
rather than going through the EDITOR which would be very laborious and time

consuming especially for trajectories containing large number of points.
(e) USER-FRIENDLINESS

This is another useful feature of Forth, that the words written more or less resemble the
action they are taking, so the syntax of the command is very much like ordinary English,
so that user does not need to have any detailed knowledge of the language. However,
the user might will have to get used to the fact that the commands are entered using

postfix notation €.g waist 100 move, rather than move waist 100.

LEARN <TRAJECTORY> --- to teach a trajectory by the simulator and to replay it.

<TRAJECTORY> REPLAY etc.

(f) REUSABILITY OF CODES

The words written for one module can also be used in developing other modules as well,

e.g the word MOVE can be useful just to move a joint by a special data, or it can be put

in other words like MOVE_ARM, JT_MOVE, REPLAY etc. In the same way word

REPLAY was developed to replay a taught trajectory. However, this word can also be

used to repeat the operation of a trajectory defined by entering co-ordinate values.

7.8 SUMMARY

In this chapter methods of calibration of robot joints and ultrasonic transducer are

described.

193




Methods of solution to inverse kinematic problem (IKP) for robots are discussed and a

geometrical method of solution to IKP for Smart arm used in this project is described

with an example.

A number of extensions to Forth necessary to control robot under various programmed
conditions are described with suitable examples. In order to keep the chapter as brief as
possible only a selection of high level abstract words are described. Forth software
design philosophy is illustrated with an example in section 7.6. The usefulness of Forth
as a robot programming language is described using developed software. It appears that

Forth is an ideal language for programming robots.

In order to determine whether this version of Forth on Motorola 6809 was fast enough to
perform the required trigonometric calculations involving slution to IKP, a timing
comparison of Forth software used in performing these calculations with actual speed
of the robot motors was undertaken. It is described in Appendix E and the results
obtained are summarised in table E1. The results indicate that for this robot the time taken
to perform these calculation is on the averge 4-5 times faster for each degree of joint
movement. However, for a fast robot, the computation time may become significant

proportion of the equivalent joint movement, in which case techniques involving faster

calculations should be examined.
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CHAPTER---8 CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE WORK

8.1 FORTH AS A ROBOT PROGRAMMING LANGUAGE

Forth appears to be an ideal language for robot programming. The software developed is
designed for the user who is non-programmer. The commands are easy to understand,
having ordinary English-like syntax and convey the meanings of the actions to be
performed by the robot so that a user can commence to program the robot with a
minimum of training. For programming, it is only necessary for the user to be provided
with a vocabulary of robot specific commands at appropriate levels from very low
level to very high abstract level. The only initial difficulty the new user might possibly
experience arises from the fact that Forth uses postfix notation, and hence commands
must be entered in reverse order. For example, in order to move a shoulder joint by a

specified data, Forth command will be shoulder 100 move instead of move shoulder 100.

Forth allows the programmer to develop data structures in the form of defining words
suitable for specific application. The idea of a defining word is very useful in Forth to
produce a number of generically related words. For example, a defining word DEFINE-

TRAJ can be used to define as many trajectories as required.

Forth supports the development of software in layer fashion by combining multiples of
‘low level words to produce high level abstract word which allows the programmer to
develop a hierarchical software. The user then has the option to choose the level of

abstraction required in order to execute a task. Since Forth is a stack based language

which uses postfix notation, it allows the programmer to define data structures without

needing actual data. This feature of Forth was found to be very beneficial in robot

programming.
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Forth can also be used as an object oriented programming language (OOPL)

[POUNTAIN 1987 ]. This feature of Forth is worth exploring as object oriented

programming is drawing considerable attention even in robot programming.

Forth is relatively a simple language and provides low level commands to the
programmer who is expected to use them to develop high level commands. This may on
occasions be frustrating as sufficient programming power may not be immediately

available to the programmer.

Standard implementations of Forth do not provide mathematical operators such as
square, square root and trigonometric functions which are frequently needed in robot
programming. Implementation of these functions is in consequence rather time
consuming. However, some vendors are now in a position to supply these and other
specialised extensions to the language. Forth does not supply any debugging aid to the
programmer. However, this is not a major drawback, since the language is interactive

and allows software to be developed and tested interactively.

8.2 FORTH AND REQUIREMENT AN ALYSIS OF ROBOT PROGRAMMING

In chapter 4, a requirement analysis of robot programming was conducted. Figures 8.1

and 8.2 below summarise how Forth fulfils these requirements:
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GENERAL REQUIREMENTS
Easy to learn

Efficiency/speed

Modularity

Portability

Data types and abstractions
Readability

Maintainability

Commercial availability

Programming support/ environment
Writability

Flow of control

Interactivity

Extensibility

Conc. programming

COMMENTS

fairly easy

fast and compact

supports modular programming

portable, may require minor changes

supports abstraction and encapsulation

good, programmer dependent

good

implementation available on most mini and micro-
computers

very good, provide complete operating system
being extensible, very good

provide very good control structure

yes

yes

some versions provide multi-tasking facilities

Fig. 8.1 Forth and general requirements of robot programming

SPECIAL REQUIREMENTS
Methods of defining points in space
Motion specification

Sensor interaction

Decision making/collision checking

Human robot inieraction

COMMENTS

extensible hence possible

possible

easy to integrate /O devices including sensors
possible not exploited, require sensors

very good, as no programming experience is

required by the user

Mathematical library standard versions do not support floating point
and standard mathematical operators. However,
extensions are available or easy to implement.

World modelling beyond the scope of this work, possible to
implement.

On-line programming easy to implement facility

Fig. 8.2 Forth and special requirements of robot programming
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8.3 FORTH AND LEVELS OF ROBOT PROGRAMMING

As described in chapter 3.7, the robot programming languages can also be classified
accordin gto the level of programming they offer. This level varies from simplest point to
point to complex task level programming. Most of the existing robot programming
languages operate at one or two of these levels. This approach is very restrictive,
because, if for example, an application»nccds to be changed or modified, the level of
programming may also change as a result. In such circumstances, either a new language
is required or the whole software will have to be rewritten. However, since Forth
software is, characteristically developed in layer fashion so that, one level of
programming is built on another level which allows the user considerable flexibility in
selecting the desired level of programming according to the application. Forth is,
therefore, a superior language in this respect as it allows user access from lowest
machine level to complex abstract level. Therefore, because of this characteristic, Forth

being a better language does not fit into this arbitrary kind of classification.

8.4 FORTH AND TASK ORIENTED PROGRAMMING

Task oriented programming uses sensors, world modelling and Al techniques. TRACY
[ 1987 ] has reported that Forth can be used as an Al language since it is easier to extend
Forth with data structures than it is to add performance to an existing language.
However, it is to be seen how well Forth behaves as an Al language. Common Al
languages like LISP and PROLOG are not very suitable for real time programming [
ROCK 1989 ]. Thus Forth indeed, may emerge as an ideal candidate for sensor based

task oriented robot programming language and further investigation in this direction is

recommended.
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8.5 FORTH IMPLEMENTATION

Forth used in this project was initially implemented by CADGE [1986] and subsequently
updated by PARKES [1987]. This implementation seems to be working satisfactorily.
Although most of the words conform to the Forth 1983 standard, few additional words
need to be added to the Forth kernel. It was also noticed that every word defined by
using CREATE and DOES> requires a code which is about 18 bytes long in order to
specify that it is a defining word. This is a poor approach and waste of time and memory,
which may be avoided by pointing a code to different pointers when the instruction
DOES> is encountered in the same way as variables, constants and colon words are

distinguished from each other.

Some difficulty was experienced with the word LOAD. For example, by defining the

Forth word LOADS as follows:
- LOADS 18 LOAD 100 LOAD 200 LOAD ;

Upon execution, LOADS only loads blocks starting with block number 200 and does

not load previous blocks.

Forth control structure works as follows:

IF --- ELSE -- THEN

The word THEN at the end is misleading and a better word, ENDIF, can be defined as

follows:

. ENDIF [COMPILE] THEN ; IMMEDIATE
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8.6 SOFTWARE PORTABILITY

As discussed in chapter 4.1 the robot programming suffers from program portability
because robots manufactured by different manufacturers are different. This can present
considerable difficulties to industry using different robots and programming languages.
Most of the current robot programming languages supplied by robot manufacturers are
tailored to be used on specific robot type and hence are not easily portable. Software
portability is, in consequence a very desirable feature. One way of overcoming this type
of problem is to devise a standard interface between programming system and robot
controller which would take into account the size, shape, type and number of joints of

each robot.

Forth software is moderately portable since most Forth software is independent of robot
type and underlying hardware. In order to transfer software in Forth, programmer only
has to change system dependent low level, J/O and robot specific words. Therefore, it
would be an interesting and useful exercise to investigate how much modification is
necessary when using the developed software to control robots designed by a range of

manufacturers.
8.7 SMART ARM ACCURACY

The robot arm used in this project is not suitable for very accurate positioning of the end-
effector. As stated in chapter 7.5.4 some experiments were conducted to show the net
effect of positional error by changing more than one joint axis at a time. Results show
that the combined positional error lies between 1.0 cm and -2.0 cm. These results are not
conclusive but show the possibility of error cumulation or cancellation. However,

robot positional accuracy is a separate field in its own right and further investigation in

this field is recommended. It is to be seen that how much inaccuracy is related to the

limitation of the arm and to what extent can it be improved by strategies of movements

in software such as deliberately slowing down the robot before reaching the target. For
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example, rather than sending the arm to its final destination in one go it may be possible
to move it closer to the target and complete the final path in small increments. A second
difficulty arose with the arm from accidental hitting of the arm against floor and or other
objects, which caused further errors in its positional accuracy so that the robot joints had

to be recalibrated fairly frequently which is time consuming and affects the robot’s

efficiency.

8.8 ROBOT SENSORS

The use of sensors in robot programming is a separate field in its own right. It was
neither intended nor possible to integrate many sensors in the present study. However,
in order to demonstrate that Forth can readily integrate sensors, an ultrasonic transducer
was attached to the arm and suitable Forth words, to measure distance of an object from
the hand were developed and tested. The use of ultrasonic in robot programming is

certainly worth investigating.

It is possible to use ultrasonic in automatic object location and grasping. This can be
achieved by allowing the robot to scan its work zone by systematically moving it in
small intervals. For this purpose, the robot hand should be horizontal and ultrasonic
transducer should point downwards. The robot should be allowed to move in small
steps and each time an ultrasonic transducer enabled to measure the distance from the
floor. The measured distance can be saved in an array. When the distance between two
successive locations is appreciable it is due to the presence of an object on the floor. The

co-ordinates of the arm saved previously in an array can be used to identify the location

of the object.

Other areas where ultrasonic can be useful are in collision avoidance, object recognition

and collision free trajectory planning. Since velocity of sound varies with temperature
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and humidity etc. it is desirable to calibrate the transducer from time to time or work in a

consistent and carefully controlled environment.
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APPENDIX A - FEATURES OF ROBOT PROGRAMMING LANGUAGES

1 WAVE

WAVE was one of the first robot programming languages developed at Stanford artificial
intelligence laboratory in 1975 [PAUL a,1976 1, [ PAUL b 1983]. It was designed to
control Stanford arm and runs on the PDP-10 and PDP-6 computers. The language is
interpretative and resemble assembly language programming. It was mainly developed
for assembly applications such as assembling a water pump, brush calligraphy, crank
turning, assembly of a pencil sharpener and mounting a door hinge. The language allows
declaration of transformations to convert cartesian co-ordinates to joint co-ordinates. The
position and orientation of objects is described by 4*4 homogeneous transformation
matrices. The position is described in cartesian co-ordinates and orientation in Euler's

angles. A transform variable T1 is used to combine position and orientation like this:
TRANS T1 20,30,1,0,90,0

where 20,30,1 are distances along x,y,z axis of the robot hand with respect to a fixed
reference and 0,90,0 are Euler angles. The other data types provided by the language are
VECTORS and LOOP COUNTERS. It also supports sensors such as force, touch and
vision. The language supports the definition of MACROS. It is reported that the speed of
operation of WAVE for assembly operations is between one third and quarter of that of a
human operator. The main reason for this is that manipulator comes to rest at the end of
each operation. Also the form of the program is very much like assembly language and

lacks structure.
2 AL (Arm language)

AL, also was developed at Stanford artificial Intelligence Laboratory, is a high level

programming language system and was developed as an extension to WAVE. It has
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ALGOL like control and block structure and syntax. The AL system consists of three

components [Mc LLELLAN 1981]

(i) The compiler

(i) The interactive source code interpreter
(ii1) Run tme system.

The components (i) and (ii) run on a PDP-10 under the WAITS operating system and (iii)
runs on a PDP-11. The language is written in PDP-11 assembler. It is based on
concurrent PASCAL. It can be used to control up to four robot arms (2 PUMA 600 and 2
Stanford arms) simultaneously. The original implementation required a large main frame
computer but stand alone computer systems were made available at later stage. The
language uses co-ordinate systems which can be related to each other. It provides
facilites for looping, branching and synchronising parallel processes such as performing
calculations and simultaneous motion of arm. The language also has provision for
describing the motion of robots and use of sensory data. It also provide data types for
scalar (e.g arithmetic operations) as well as vector operations such as rotation and
translation. [FINKEL et al.1975] have discussed language features with programming
examples. A new interactive version of AL was written in Pascal OMSI to run on a PDP-
11/45. This version which is particularly useful for controlling PUMA robots and can be
obtained commercially. [BINFORD 1979 ] has pointed out the following features of the

language:
(i) High level language with ALGOL like control structure.
(ii) Language is written in high level language (SAIL).

(iii) Language designed for two levels i.e motion level and planning level of assembly

operations.

(iv) Control structures consists of FOR, WHILE, DO, IF CASE and MACROS.
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(v) Data structures include scalars, arrays and variables.
(vi) Supports data base/world model.
(vii) Supports concurrency, synchronisation and exception handling.

(viii) Support force sensor control and vision.

3 HELP

HELP is an interactive high level language developed by General Electric company
(Digital Electronic Automation, D.E.A) for their PRAGMA A3000 and ALLEGRO
assembly robot [DONATO and CAMERA 1980]. It runs on DEC PDP-11 computer. It
has ALGOL like block structure and syntax like PASCAL. The locations are specified in
cartesian co-ordinates. The language is easy to learn and supports structured
programming. It provides facilities for branching, subroutines, and parallel processing.
The language can control up to four arms having up to 12 degrees of freedom for all
arms. Sensors can also be integrated in to the system. The main application areas include

automotive industry, electronic assembly and precision mechanisms.

4 LAMA-S

LAMA-S was developed by SPARTACUS project, France [ FALEK and PARENT
1979]. 1t is based on a language LAMA devcloped at Massachusettes Institute of
Technology ( MIT ), Artificial intelligence(Al) laboratory in 1976. It was meant for
controlling Al robots. The purpose of the language was to develop robots for
handicapped people in everyday life such as serving drinks and food. Its syntax is
comparable with assembly language programming. But the language is much more

flexible and easy to write than other conventional assembly level languages. LAMA-S
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used APL as implementation language. The user level commands are translated in to an
intermediate low level commands language known as PRIMA before execution. The
language allows the execution of a program either sequentially or in parallel format. It
provides parallel processing, sensor integration, frame instructions, mathematical
operations, control instructions and control of I/O devices. According to the authors,
APL implementation of the language is not suitable for industrial robots due to the

following shortcomings:

(i) Require APL machine to run.

(ii) APL syntax is not convenient to follow.

(iii) The language syntax is not always perfect.

(iv) It is difficult to implement interactive programming.
5 SIGLA ( SIGma LAnguage )

SIGLA language was developed in 1975 by Olivetti for their SIGMA robots
[BANZANO and BURONZO 1979]. It is a complete software system and incorporate a
supervisor to interpret the job, a teaching module to allow teaching by guiding, an
execution module, provisions for editing and saving the data. This is mainly used for
assembly purposes. The basic system runs on 8K 16bit word length general purpose
minicomputers having 4K ROM and 4K RAM with optional RAM available up to a

maximum of 32K. The language provides the following features:
(1) Parallel operations

(ii) Simultaneous control of more than one arm.

(iii) Interpretative structure

(iv) Variable instruction set to suit the user's requirements.
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The main drawback of the language is that instructions do not convey the meaning of the

actions taken by them, hence programs are difficult to write.

6 RAPT (Robot APT)

RAPT is a robot assembly language developed at University of Edinburgh [AMBLER
1982]. The language is based on numerically controlled machine tool language known as
APT. It employs world modelling and describe assembly language operations in terms of
relative spatial relationship between the objects rather than specifying the actual motion of
robot. The program consists of the description of the parts, the robot, workstation and
assembly plan. The system keeps a careful record of the relative geometric relation of
objects in the assembly after each operation. This type of programming is known as
object level programming as description of assembly operations is independent of the

robot moton.

RAPT uses contact relations between objects such as AGAINST, FIT, COPLANAR to
specify the relationship between object features. These features which can be planar or
spherical faces, cylindrical shafts, edges and vertices are defined by means of frames. A

typical command may be as follows:

PLACE block1 SO THAT (block2-facel AGAINST block1-facel)

This instruction will place block 1 on block 2 with their first face against each other.

Another example program example may be like this :
move/A,PER TO ,( TOP of B ),-3

i.e to move object A towards the top of B by 3 units of distance.
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The primary emphasis of the RAPT has been on task specification. However it does not

deal with obstacle avoidance, automatic grasping or sensory operations.

7 VAL ( Versatile Assembly Language )

VAL is a computer based control system and programming language which was designed
specifically to control a PUMA robot of Unimation Inc. [SHIMANO 1977]. It has been
designed over a period of several years. The first version of the language was written in
1975 to run on PDP-11/45. The language is based on WAVE which was originally
developed at Stanford artificial intelligence laboratory. The original version of the
language had only few instructions set such as controlling point to point motion and
single segment joint interpolated motions. New facilities such as integer arithmetic,
various control structures and increased trajectory control were made available during
1976-78. In 1978 it was commercially made available to control unimation PUMA robot.
The purpose of the language is to provide facilities to easily define robot tasks. The
language provides an editor which allows the user to create new or modify existing
programs. It allows deletion or insertion of new program steps. The language being
interactive, the editor can also be used to help program debugging as modifications to
program can be made and tested instantly. The language also provide facilities for
specification of location (position and orientation) of robot, program branching,
subroutines, integer calculations, signalling to external devices and system interrogation

(i.e state of currently executing program).

A new version of VAL known as VALII was later introduced. It provides the following

facilities [ SHIMANO et al. 1984] :

(i) Network communication facilities which allows the system to be interfaced to a

supervisory computer.
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(ii) Mathematical capabilities equivalent to those found in a structured high level computer

programming language.

(ii1) Enhanced operator interface.

(iv) Extended sensory interfacing capabilities.
(v) Real time trajectory modification.

(vi) Facilities for performing simultaneous robot and process control activities.

8 MAL ( Multipurpose Assembly Language )

MAL [GINI et al. 1979] is a multitask system for mechanical assembly orientated
applications. The language was developed at the Milan Polytechnic, Italy to program a
specially designed two arm super system robot for assembly operations. The syntax of
the language is like basic. The purpose of the language was to design an interactive
language which is easy to understand. The main features of the language include parallel

execution, S€nsor support, process synchronisation and various movement instructions.

MAL system is made up of two components; compiling and executing. The compilation
part allows the user to create, update and maintain the source program. The execution
part is responsible for the execution of the sequences in the program. The important

feature of the language is provision of task synchronisation between different activities in

the assembly operations for parallel programming.
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9 AML (A manufacturing language )

AML was developed by IBM in 1982 initially to control IBM 's robot RS-1 (7565 robot)
and 7535 electric robot from SCARA assembly robot which is a cartesian arm with linear
hydraulic motors and active force feedback from end effector sensors and is produced in
Japan by SANKYO. The language was the result of research carried out by IBM in their
laboratory at York Town Heights in the mid 1970's. The aim was to develop a general
purpose plant floor automation language rather than just a robot programming language.
The language is well structured and highly interactive. It contains subsets which are
suitable for the programmers with wide range of experience. Various implementations of
the original version were produced to improve the language and overcome its short

comings as a general purpose plant floor language between 1982-84.

The main features of the language are summarised below [GROSSMAN 1985 1],

[GROSSMAN and SHORT 1985 ] :

(i) A powerful language with structured programming capabilites.

(ii) Supports sensor integration.

(iii) Computer independent as it runs on IBM 370, 4360, 5531 and Motorola MC-68000.
(iv) Robot independent as it can control different robots.

(v) Can control NC machines and other mechanical devices such as material transport

system, material storage system €tc.

(vi) Although language is interactive it also provide compilation facilities in applications
which do not involve motion such as vision system and geometric modelling where

speed of the system is an essential requirement.

(vii) Offers multitasking facilities, semaphores for process synchronisations and a

method for managing the terminal as a shared resources.
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(viii) Open system i.e to allow users to link AML to their own software written in C or

other languages.

(ix) Other features such as integration with CAD/CAM systems and data types and

operator extensibility.

10 AUTOPASS ( Automated Parts Assembly System )

AUTOPASS is a very high level programming system for the computer controlled
mechanical assembly operation. It is being developed by IBM at T.J. Watson research
centre in New York [ LIBERMAN and WESLEY 1987]. The language is based on PL1
and make use of the facilities of this language as well as its data structure. It is a task
level programming language. The language describes assembly operations rather than

robot motions.

The language is based on relationships between objects and assembly operations which
allows the user to describe assembly operations to the robot in the same way as to
instruct a human operator using ordinary English like statements. A typical assembly

instruction given to an operator may be like this:
Screw a nut onto a bolt.

The language involves setting of a data base known as world model and contains
information about all the objects. It will have information regarding the shape, size,
location, physical properties such as stability of objects and support relationship between
the objects. It also contains information regarding the spatial positions and relations
amongst objects and assembly or attachment relationship between them. Each object is a
modelled as a polyhedron i.e in terms of their vertices, edges and surfaces, by using a
geometric design processor and accessed by a pointer at the object vertex. These

techniques are widely used in computer aided design ( CAD ) and allow inference

220



deductions for collision checking during trajectory planning. The world model is updated
at the end of each assembly operation as the relationship between the objects may change.

The programming system decides on grasp choice and plan robot trajectories.

The language statements can be divided into two classes namely assembly related and
miscellaneous statements. The assembly related statements are concerned with
specification of assembly operations. The miscellaneous statements are used for
specification of control flow, declaration of geometric variables and description of

inspection operation. AUTOPASS provides three groups of assembly related statements:

(i) State change statements which describes an assembly operation such as placement and

adjustment of parts.
(ii) Tools statements which describes the types of tools to use.
(iii) Fastener statements which describes a fastening operation.

For example, an operation of inserting a bolt and tightening may appear like this in

AUTOPASS:
PLACE bolt ON beam SUCH THAT bolt-tip IS ALIGNED WITH beam-bore;

The compiler transform the assembly instructions in to a program that directs the robot
through the necessary motions required to execute the task. The motion commands are
generated by consulting a geometric data base which contains up to date information
about all the objects and their interrelations. During compilation the user interacts with the

compiler to resolve any ambiguities detected by the compiler in the program.

11 LM (Language Manipulation )

LM was developed at the University of Grenoble, France in 1979 for the programming

of assembly robots and is implemented commercially by machine dynamics [HENDY
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and BRALEY 1986]. It was written to control Robitron, Renault and Kremlin robots.
The language is based on PASCAL. It has retained many features of Pascal and provides
robot specific routines. In addition to the general features of Pascal, it provides special
frames for the specification and orientation of the robot. The language allows
communication with other devices in the robot work cell including other robots, /O
operations, world modelling, interaction with various sensors including vision system.
An extension of the language LM-GEO [MAZER 1984] first developed at the Artificial
Intelligence department of Edinburgh university support object level programming by

describing geometrical relationships between the objects, a unique feature of RAPT
12 MCL (Manufacturing Control Language )

MCL was developed by McDonald Douglas Corporation of U.S.A. It is a high level
language and is an extension of a popular numerical control language known as APT.
The philosophy behind the creation of this language was that an off-line programming
language must be able to control the modern robotic workcells including robots and
associated machinery. The language is aimed at off-line programming of robots and
controlling a number of other devices associated with the robots such as conveyor belts,
vision system and other machines which form a complete automated workcell. MCL

provide the following capabilities [ WOOD and FUGELSO 1983 ]:
(i) To contol any robot by selecting an appropriate routine.

(ii) To control complete manufacturing cells including all the devices in the robot

workcell.

(iii) To process real time sensory data and make logical decisions based on this

information.

(iv) Vision processing for locating or inspecting components in the workcell.
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(v) Program verification to indicate whether a given program can be used on any of the

cells described in the data base.

(vi) Allow different frames of reference to define points and objects.

13 LRS (Lenguaje para Robots con Sensors )

LRS is a PASCAL based language to control SCARA type robots with sensors attached
to it [ PUENTE et al.1986 ] developed at University of Madrid in 1987. It is claimed
that the language is highly portable and can be transferred to other computer hardwares
and can control different robots with slight modifications. The language is implemented
on PDP-11/73 mini-computer and runs under RSX-11M operating system. The SCARA
robot known as DISAM E-65/81 has four degrees of freedom was also developed by the
university. It is provided with force/torque, ultrasonic range detector, a mobile camera, a
static camera and touch sensors. The language provides basic data structure of PASCAL
as well as extended specialised data structure for the definition of locations, specification
of motion etc. It also provides two levels of movement instructions namely guarded and
compliant motions. In the guarded movements, the system obtains the status of various
sensors and verify the command to be executed. The compliant motion require constant
feedback from sensors such as force/torque sensors. Since the language is based on

PASCAL, it supports structured level programming.

14 ROBEX

ROBEX is an off-line programming system developed at Aachen, West Germany
[WECK et al. 1984]. The language is based on popular numerical control machine

| language known as APT. The aim was to develop a language to control a complete
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flexible manufacturing system (FMS) controlling robot and other devices in its

environment. It allows sensor signal processing and geometric modelling.

15 PASRO (PASCAL for Robots )

PASRO was developed by Biomatic, a German company and is based on Pascal
[BIOMATIC 1983 J. It has geometric data types similar to SRL. The language is
provided with robot specific library of routines to make it suitable for robot
programming. It provides standard data types of Pascal such as integer, real, boolean and
structured data types like arrays, records and files etc. The language supports arithmetic
operations, co-ordinate transformation, trigonometric functions, frames, rotaion matrices
and world modelling. It also provides move commands by the specification of joint and

distances, speed control and sensor integration.

16 FA-BASIC (Factory Automation )

FA-BASIC is a unified language developed as an extension to BASIC [ MOHRI et
al.1985]. The main purpose of the language was to develop a system which can be used
not only to control a robot, but also its associated devices. Normally, these devices are
controlled by using different hardware and software systems. This language is meant to
control all the devices in a factory workcell. The language consists of the following three

sub systems:
(i) FA-BASIC/R ; for controlling robots.

(ii) FA-BASIC/V; for controlling vision systems.

224



(iii) FA-BASIC/C; for programming programmable logic controllers.

The language provides two types of commands known as common commands and
problem oriented commands. The former are used for program declaration, expression
and flow control and has the same format as BASIC, whereas the latter are provided for
programming devices including robots. The FA-BASIC/R which control robot, uses a
teaching system which saves data for taught positions in the form of a table. The
language also provides commands for sensor integration and graphical teaching

techniques. The software is developed in modular form.

17 RAIL

RAIL was developed by Automatix Inc. as a high level language for éomputcr aided
manufacturing [ FRANKLIN and VANDENBURG, 1982). It is designed to control
company's Robovision ( a system for robot arc welding ), Cybervision, ( assembly
operations ) and Autovision ( Machine vision ) systems and general manufacturing
equipment. It is an interpreter language and is based loosely on PASCAL. The system
runs on Motorola 68000. The language provides commands for moving robot, welding
equipment and offers an easy accessing input or output lines connected to the
equipments. Data types includes integers, real numbers, character strings, arrays, points,
paths and reference frames. Program control structures are similar to those of PASCAL.

The language also supplies a library of mathematical operators such as square roots and

trigonometric functions.

18  AR-BASIC ( American Robot- BASIC)

AR-BASIC is a trade mark of American robot corporation [ Gilbert et al. 1984 ] and was

made commercially available in 1983. The language is based on Basic and provides
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interpretive programming system. The main aim of the system was to provide a language

to control various manufacturing devices in industry including robots. It is proclaimed
that the language provides programming environment which increases productivity for
designing software for either stand alone robots or complete flexible manufacturing

system ( FMS ) environment. The programming system consists of the following

components:

(1) Basic language facilities.

(ii) Provision for position definition and motion control.
(iii) Text file editing.

(iv) Provision for controlling I/O devices.

(v) File and memory system control.

(vi) Vision system programming.

The author claims that the language is highly user friendly and provides a set of English
like commands. The language provides interactive debugging facilities and contain
commands to locate the position of program breakpoint, robot's current position, speed
and frame reference etc. The data structure of the language allows the programmer to
define robot position, carry out motion control, control of I/O devices and vision system.
It also has provision for the interpolation to achieve straight line, joint co-ordinate or

circular motion. It also supports sensor integration via /O ports.

19 SRL ( Structured Robot Language )

SRL was developed in 1984 by [ BLUME and JACOB 1984] at the University of
Karlsruhe, West Germany. The language is based on experience with the robot

programming language AL with PASCAL elements. The language is supposedly easy to
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learn, independent of hardware used and adaptable to new applications. It provides
facilities for parallel processing, sensor integration, world modelling and variety of robot
motion commands. The data structure is based on PASCAL with new data types such as
SEMAPHORE and SYSFLAG provided for process synchronisation. The
SEMAPHORE is used for synchronisation and queuing with programs and SYSFLAG
for synchronisation between programs. Some of the data types such as VECTER,
ROTATION and FRAME are inherited from AL. The frame is used to describe the
position and orientation of the robot gripper. The language supports a planning module
for task oriented programming which would consult world model, get sensor feedback
and allow the automatic program generation. One part of the program is known as system
specification, which allows the language to adopt to different robots, hardware types and
sensors. This feature makes the language portable. The language also provides various
move commands such as to achieve point-to-point motion, linear interpolation, trajectory

calculations and via points etc.
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APPENDIX B - FORTH WORDS

STACK MANIPULATION WORDS

Operator Pronunciation Stack notation

dot

DUP dupe

SWAP swap

ROT rote

OVER over

PICK pick

ROLL roll

DUP query-dupe

DEPTH  depth

(nl n2---n2 nl)

(nl1 n2 n3---n2 n3 nl)

(nl1 n2 ----n1 n2 nl)

(n1 ---n ---n1)
(nl---n---nl)
(n---nn)

(n1 n2 n3-----n)

Action

prints top no.

duplicate top no.

reverses top two no. on stack

rotate 3rd item to top

make copy of 3rd no.to top

copy nth no. to top of stack

rotate nth no.to the top of stack

dup if n is non-zero

return count n, total no. of item

Table B1 showing stack manipulation words.
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ARITHMETIC OPERATION WORDS

Operator  Pronunciation Stack effect Action

+ plus (nl1 n2---n) adds nl and n2

- minus (nl n2--- n) subtract n2 from nl

* star (nl n2---n) multiplies n1 and n2

/ slash (n1 n2---n) divides n1 by n2 leaves quotient
MODE  mod (ul u2----urem)  returns remainder only

/MODE slash-mode (ul u2---urem,uquot) returns remainder and quotient after division

Table B2 showing arithmetic operators.
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DOUBLE PRECISION NUMBERS AND OPERATORS

Word Pronunciation Stack effect Action

2SWAP  two-swap (d1 d2---d2 d1) swap top two numbers
2DUP two-dup duplicate top number
2DROP two-drop remove the top number
20VER two-over (dl1d2---d1d2d1) copy second number to top
D+ d-plus (d1 d2---d) adds two 32 bit numbers
D- d-minus (d1 d2---d) subtracts d2 from d1

DNEGATE d-negate

DR

d-dot-r

changes sign of 32 bit no.

prints signed 32 bit number

right justified

Table B3 double length stack and arithmetic operators.




MIXED LENGTH OPERATORS

Word

M*/

Pronunciation

m-plus

m-slash

m-star

m-star-slash

Stack effect

(d nn----d)

Action

adds a 32 bit no. to a 16 bit no.,

returns 32 bit number

divide 32 bit no. by 16 bit no.returns

16 bit quotient

multiply two 16 bit nos, returns 32

bit result

multiply 32 bit no. by 16 bit no.,

divides resultby 16 bit, return 32 bit

result
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Table B4 showing mixed length operators




RETURN STACK WORDS

Word Pronunciation Stack effect Action
>R to-R (n----) move 1 to return stack
R> r-from o n) transfer to parameter stack
I 1 (-mmmmee n) copies top of return stack

no. to parameter stack

Table B5 return stack words

COMPARISON OPERATORS WORDS

Operator Stack effect Action

= (n1 n2-----f) true flag if equal

> (n1 n2 ----f) true flag if n1 > n2

< (n1 n2 ----f) true flag if n1 < n2

0= (n--------- f) true flag if nis O

0< (n -------- f) true flag if nis -ve

0> (n---------- f) true flag if n is +ve
NOT (fl--------- 2) reverses the sign of flag

Table B6 showing comparison Operators.
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FORTH 83 ADDRESS CONVERSION WORDS

Word

ffect

>BODY

>NAME

>LINK

BODY>

NAME>

LINK>

N>LINK

L>NAME

Pronunciation Stack e

to-body ( CFA----PFA)
to-name ( CFA---—--- NFA)
to-link ( CFA-------- LFA)
from-body ( PFA-------- CFA)
from-name ( NFA-------- CFA)
from-link ( LFA-------- CFA)
Name-to-link ( NFA-------- LFA)
Link-to-name (LFA ----—--- NFA )

Table B7 showing some Forth 83 address conversion words.
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APPENDIX C - FORTH MEMORY MAP

Figure 1 below shows the memory map for the implementation of the Forth in this
research project. Under the Flex operating system the RAM from $0000 to $BFFF is free
for application programs to use. The RAM from $C000 to $FFFF is reserved for Flex.
The area of memory between $0000 to $O5FF is free for use by the Flex print spooler,
which enable Forth users to access this function while using Forth. The number of block
buffers are implementation dependent. However, there is a trade off between memory
used and speed of operation. The more buffers that are available, the faster disk access
will be but less RAM will be available to the user. As a compromise two block buffers
were used in this implementaion, which is also, in most of the Forth implementations.
The system variables are placed immediately after the predefined dictionary and before

the user dicnonary.
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FLEX OPERATING SYSTEM

RETURN STACK

KEY BOARD INPUT BUFFER

PARAMETER STACK

PAD

USER DICTIONARY

DISC BUFFERS

PREDEFINED DICTIONARY

FORTH KERNEL

FLEX SYSTEM CALLS

PRINT SPOOLING MEMORY

$ FFFF

$ BFFF

$ BBE4

$ 2700

$ 1E50

$ 0800

$ 0620

$ 0600

$ 0000

Figure C1 showing Forth memory map.
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APPENDIX D - FORTH EXTENSION WORDS AND THEIR HIERARCHICAL
DIAGRAMS

The following tables include Forth extension words in alphabetical order with brief
explanation and stack manipulations using standard Forth notations. The symbols to the
left of dashes indicate the order in which item are placed on the data stack and those on
the right-hand indicate the items left on the stack after the execution of a Forth word. The

hierarchical relationship between these words is shown in figures D1-D6.

(a) ADDITIONAL MATHEMATICAL OPERATIONS WORDS

word stack explanation

manipulation

ARC-COS n--—--- angle given input arc-cos value, returns
corresponding angle.
ARC-SINE n ----- angle  given input arc-sine value, returns
corresponding angle.
ARC-SINE-ANGLE n----- n return arc-sine angle
| ARC_SINE-RANGE? n--—-nf carries out range check on input angle,
- returns angle and flag.
| ARC-SINE-SGN n ---- [n] save sign of an angle in variable SGN
3 and returns absolute value.
COS n---n return cosine value multiplied by
10,000 of an input angle.
G variable contains 0 or 1 if two angles
EQL are same or different.
INTERPOLATE n,n ---- angle carries out interpolation
INTERVAL n---2or 10 decide on search interval of 2 or 10.
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SEARCH n --- angle carries out search, “interpolate and
returns angle.

SEARCHI n---n search look up table at 300 interval

SEARCH2 n----n,interval perform second search at 2 or 100
Interval.

SGN e variable to save sign of an input angle.

SIN$£._ eeee- constant to save sine values multiplied
by 10,000 for angles from 1-90°

SINE n---n return sine value multiplied by 10,000
of an input angle.

sN.° -~ e varible to hold intermediate sign flag

TAN n ---- angle return tangent value multiplied by
10,000 of an input angle

SQUARE n------ n provide square of an input number
calculate square root of n
constant which contain tangent values

SQRT n-----n times 10,000 for angles between 1-90°

TANGENT -

UPDATE-SN n------ update contents of variable SN

=< nl,n2 ---nl.f compare nl and n2, returns nl and true

flag if n1 is equal to or less than n2.

Table D1 Additional mathematical operations words

( b)) INPUT/ OUTPUT WORDS

word stack explanation

manipulation

ALL-INPUTS = === 0 leaves O on the stack
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ng

ALL-OUTPUTS
APORT
APORT-INPUT
APORT-OUTPUT
ASIDE

BPORT
BPORT-INPUT
BPORT-OUTPUT
BSIDE

CLINE1

CLINE2
CLRFLGSA

CLRFLGSB

CONFIG-ROBOT
CREGA

CREGB

DATADIRSA
DATADIRSB
DDREGA

DDREGB
DREGA

DREGB
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leaves 255 on the stack

provide address for port A

configure port A as data input
configutes port A as data output

write port A addresses in to variables.
provide address for port B

configure port B as data input
configure port B as data output

write port B addresses in to variables
perform logical OR on nl and n2
perform logical OR twice

read data register A to clear control reg.
A

read data register B to clear control reg.
B

configure robot to computer

variable to hold the address of control
register A

variable to hold the address of control
register B

configure port A as input or output
configure port B as input or output

variable to hold the address of data
direction register A
variable to hold the address of data
direction reister B

variable to hold the address of data
register A

variable to hold the address of data
register B



ELBOW
GRIPPER
HAND
H>L
HNDSHK

INPUT

IRQ
IRQCA1?

IRQCA2?

IRQCB1?

IRQCB2?

L>H
NOIRQ
OUTPUT

PPORT
PULSMD
READATA
READATB
READCRA
READCRB
SET-ROBOT
SHOULDER
SLCTDR
TOGDN

........
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constant leaves 3 on stack

constant leaves 6 on stack
constant leaves 5 on stack
detect high to low transition

leave 0,0 on the stack for PIA to act in
handshake mode

leave 0 on the stack for selecting port as
input

used to select PIA for interrupt mode.

check if bit 7 of the control register A is
set

check if bit 6 of the control register A is
set

check if bit 7 of the control register B is
set

check if bit 6 of the control register B is
set

detect low to high transitions
configure PIA for no interrupt mode

leave 4 on the stack for selecting port as
output

return address of 0 port on the stack
configure PIA for pulse mode

read contents of data register A

read contents of data register B

read contents of control register A
read contents of control register B
move robot to set position

constant leaves 2 on stack

leave 4 on the stack

configure PIA for toggle down mode



TOGUP
WAIST
WRIST
WRITECRA
WRITECRB
WRITEDATA
WRITEDATB
>CREGA
>CREGB

2,1
------ 1
------ 4
n--—-—-
[
- -
-

nl, n2 ----
nl, n2 ---

configure PIA for toggle up mode
constant leaves 1 on stack
constant leaves 4 on stack

write n into control register A
write n into control register B
write n into control register A
write n into control register B
write into control register A

write into control register B

Table D2 Input/Output words

(¢) JOINT MOVEMENT WORDS

word

ACLK

BCK

CLKW

DATA

stack
manipulation
nl,n2 ----n
nl,n2----n
nl, n2 ----n
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explanation

used with STEP to move hand
anticlockwise

used with STEP to move shoulder
backward

used with STEP to move wrist
clockwise

array to store data sent to joints




DELAY
DELAYS
DISABLE-JIT
DN

ELB-DAT
ENABLE-JT
FRW

GRIP-CLOSE
GRIP-DAT
GRIP-OPEN
HAN-DAT
INIT-DATA
JT-ADDR
LEFT
MOVE
READ-JT
RIGHT
SHL-DAT
STEP

(8]
UPDAT-JT
WAI-DAT
WRI-DAT

nl, n2 ---n

nl, n2 ----

nl,n2
nl,n3,n4

nl,n2 ---n
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cause delay of approx. 1 second
cause specified delay
disable robot joint from computer

used with STEP to move elbow
downward

provide latest elbow data
enable a robot joint to computer

used with STEP to move shoulder
forward

closes gripper

provide latest gripper data

open gripper

provide latest hand data

initialises array called DATA

vriable to hold address of a joint

used with STEP to move waist to left
move a specified joint (nl) by data n2
read contents of a variable JT-ADDR
used with step to move waist right
provide latest data sent to shoulder

used to move a joint (nl) by n2 steps
from current position

used with step to move elbow joint up
update contents of variable JT-ADDR
provide latest data sent to waist

provide latest data sent to wrist

Table D3 Joint movement words




( d ) Point to point movement words

word stack
manipulation
Al e

AIPHA e

ANGLES? - nl, n2 -
ARM-MOVE ~ eeeeee

BL e
BEETA e
ct e

CALC-ALPHA o

CALC-BEETA
CALC-GAMA ... v

CALCJI e
CALC-J2 -
CALC-J3 e
CALCJ4 e
CALCJS -
CALCj6

CALC-L2

CALCSAVE ~ — 7~
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explanation

constant to hold fixed height of
shoulder

vriable to hold intermediate angle o
display all joint angles

move arm to specified position and
orientaton

constant to hold length of shoulder
variable to hold intermediate angle

constant to hold fixed length of elbow
calculate intermediate angle o
calculate intermediate angle f3

calculate intermediate angle Y

calculate data for joint 1 and saves in
array JOINTS

calculate data for joint 2 and save in
array JOINTS

calculate data for joint 3 and save in
array JOINTS

calculate data for joint 4 and save in
array JOINTS

calculate data value for joint 5 and save
in array JOINTS

calculate data for joint 6 and save in
array JOINTS

calculate sum of x2 and y2 and save in
variable L2

calculate data for all joints and save in
array JOINTS




......

CALC-THEETA2

CALC-THEETA3

CALC-XY

D1
INIT-JOINTS

INIT-THEETA

JOINTS

JOINTS?

......

ORIENT

POSTN

THEETA

X1

X2
Y1

Y2

Table D4 point to point movement words

nl, n2---- nl,f

ni,n2 ---- nl, f
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calculate angle 62 and save in array
THEETA

calculate angle 63 and save in array
THEETA

resolve hand angle into x, y
components and save them in variables
X1 and Y1 respectively

constant to hold fixed length of hand
initialises array JOINTS

initialises variable theeta

array to hold data for all joints

display data for all joints

write wrist and hand angles into array

THEETA

write co-ordinate values into variables
X2, Y2 and array THEETA respectively
array to hold joint angles

variable to hold intermediate value of x
co-ordinate

variable to hold input value of x co-
ordinate

variable to hold intermediate value of y
co-ordinate

variable to hold input value of y co-
ordinate

check if n1 is equal to or less than n2

check if nl is equal to or greater than n2




( e ) simulator words

ARM-DAT

7ARM-DAT

ARRAY-BLK

ARRAY-->BLOCKS

ARRAY-TRJ-BLKS

ARRAY-TRJ-DAT

ARRAY-TRAJ-IND

BLK-ARRAY

BLK-NO.

BLK-NUM-OFFSET

BLK-OFFSET

BLK-SAVE

BLOCK-ARRAY

BLOCKS-->ARRAY

Ca

addr,nl,n2 ---

nl,n2 ---
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array to save arm data

leave on stack data sent to arm

move nl blocks starting with block nl
from array whose starting address 1s
addr

transfer contents of index and data
arrays to disc

move arrays to disc blocks

transfer trajectory data from array to
blocks

move trajectory index from array to
blocks

move contents of nl blocks starting
with n2 to array whose address is addr

variable to hold block number on which
trajectory is saved

given address ( pfa ) addr of a

trajectory, returns its block number n2
and block offset nl

variable to store block offset of a
trajectory in a block

given start adress (addr) of a trajectory
name, save it on a block n2 and at an

offset of nl

a defining word, expect start block no.
(n1), and no. of blocks ( n2) to be used
for defining an array whose name
should follow this word

transfer contents of index and data
blocks from disc to array

allow 8 bit value to be compiled at
address given by HERE




CALC-BUFF-ADDR

CALC-BYTE-MOVE

CALC-BYTE-REMOVE

CALC-LINE-NO.

CHECK-END

CLR-DAT-BLKS

CLR-IND-BLKS

CLR-TRJ-BLKS
COMBINE-FLAGS

COMPILE-DATA

CONV-SIMU-DATA

DATA-BLOCKS

DATA-BYTES-PULL

DELAY

ENABLE-SIMU
ENABLE-SIMULATOR

GET-BLKS

INDEX-BLOCKS

nl,n2 ---- addr
nl,n2,---
nl,n2,n3

nl ----- nl,n2
addr --- addr,n
addr---- addr,f
addr.f,f,f --
addr

addr,b ----
addr,b
nl,n2,n3 -----
addr ----- n2,nl
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givep block no. n2, block offset nl give
starting address of a trajectory

calculate no. of bytes of trajectory data
to be removed

calculate no. of bytes to be removed
from trajectory index

calculate line number to be removed
from index array given trajectory
address (addr) , leave line no. n on
stack

given pfa (addr) of a trajectory, check if
end of trajectory index is reached

initialise disc blocks used for saving
trajectory data

initialise disc blocks used for saving
trajectory index

initialise index and data blocks on disc

combine flags during index search

compile data at address (addr) for b no.
of points

scale simulator data before sending to
arm

word defined by block-array to be used
for storing data of trajectories to be
created using simulator

pull n3 bytes in array data given block-
offset n1 and and no. of bytes n2 in a

trajectory

causes delay of approx. 1 second
configure simulator

enable simulator to the arm

given starting address of an array return
no. of blocks used (n1) and start block

no. n2

word defined by index-block to save
index of trajectories to be saved using
simulator




IND-BYTES-PULL

INIT-SIMU

JT-MOVE

LEARN

LINE-TYPE

LINES-TYPE

READ-ARRAY

REPLAY

SAVE-SIMU-SCALE
SEARCH-NAME

SELECT-KEY
SIM

SIMU

7SIMU
SIMU-ARRAY

SIMU-DATA

SIMU-RPT
SIMU-SAVE-DATA

SIMU-SCALE

START-KEY

TERMINATE

addr,n ---

addrl,addr2,n -

addrl,addr2,n -

addr---
addr,nl,n2
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pull index bytes using addr as starting
address of trajectory name and n its line
no.

initialises array simu

send simulator data to arm joints

expect trajectory name on stack at run
time for creating a new trajectory using

simulator

qh;splay a specified (n) trajectory index
e

display n no. of trajectory index lines
read contents of array, return start
address addr, no. of bytes used nl and

no. of start block

given address of a trajectory , pfa
replay its action

save scale up values in array simu-scale

search the name of an entered trajectory
in the index, given its pfa

wait for a y or n key to be pressed
enable simulator on inputting a key
array to save simulator data

read data from simulator

defining word which expect size n and
name of an array at compile time

array created to save simulator data
using defining word simu-array

allow simulator to enable again

enable simulator, saves its data in an
array called simu-data

array to hold scale up values for
simulator

allow simulation to start after pressing
a key

ask for an input key to be pressed to
terminate simulaton




TRAJ-DELETE

TRAJ-ENTER

TRAJ-INDEX

TRAJ-NAME
TRAJ-NO.

TRJ-DAT-ARRAY

TRI-DATA-LOCATE

TRI-DIRECTORY

TRJ-IND-ARRAY

TRIJ-NAME-LOCATE

UPDATE-BLK-OFFSET

UPDATE-DATA-BLKS

UPDATE-IND-BLKS

UPDATE-IND-OFF

UPDATE-INDEX

WAIT-KEY

|

ask to input a saved trajectory and delete
it

aslg to enter the name of a saved
trajectory

variable to hold start block no. of
trajectory index
array to save entered trajectory name

variable to store no. of trajectories
saved

move trajectory data from disc blocks to
array

ask to enter trajectory name, search
index and leave address where data is
stored

display all the trajectories saved in index

move trajectory index from block ( disc)
to array

ask to enter trajectory name, search
index and leave its start address or an
erTor message

update contents of variable block-offset

updata data blocks after removing n2
bytes with block offset nl

updat index block, nl is no. of bytes in
trajectory and addr 1s address (pfa) of
trajectory name

update index offset when nl is no. of
bytes in trajectory removed and n2 its
line number

update the contents of an index on a
disc block n2 and at block offset nl

wait for a to input

Table D5 simulator words
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( f ) trajectory generation words

word stack
manipulation
DEFINE-POINT
DEFINE-TRAJ addrl,addr2 ---
addry --_-
DELIVER X,y,a.b,C -=-----
ENTER-POINT-DATA --—----
GRAB xvY)aobvc """
INPUT-NUM - [n].f
INPUT-POINT  ----m-- addr
MOVE-POINT addr --------
MOVE-TRAJ addr -----
PICK-PLACE -
READ-POINT-DATA addr ---- n6,n5
----- nl
SELECT-POINTS  ----- addrl,
addr2---addm
SPATIAL-MESSAGE -
VIA-POINT vaaavb’c ------

explanation

defining word to create new points,
expect point name to be entered

defining word which expect the name of
trajectory at run time, asks to enter the
name of joints to generate a trajectory

deliver an object to a specified location
where x,y,a specify position and b,c
orientation of destination

ask to input data to define a point

move the arm to pick up an object at
these co-ordinate values, see DELIVER

ask to input a number, returns its
absolute valueand true flag if n0. is
correctly entered

ask to input point name and returns its
pfa

expect pfa of a defined point and move
the arm to that point

given the start address of a perviously
defined trajectory, move the arm to
follow this trajectory

pick up an object from a prespecified
location and deliver it to a known
location

enter point name ( pfa) andreturns its
co-ordinate values

ask to enter names of previously
defined points and leave their pfa’s

display a message on the vdu giving the
order in which co-ordinate values are to
be entered by the user

allow to specify position ( x,y,a ) and
orientation ( b,c) of a via point
followed by arm

Table D6 trajectory generation words
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( g ) ultrasonic sensor words

words

CALC-DISTANCE

CONFIG-ULT

ENABLE-ULT

FIRE-ULT
RESET-ULT

stack
manipulation

( h ) block movement words

words

BLK-COPY

BLKS-COPY

BLOCK-LOAD

BLOCK-SAVE

CLR-BLK
CLR-BLKS

stack
manipulation

explanation

calculate distance of an obstacle from
delay data (n) saved in data reg. B of
PIA

configure ultrasonic transducer

reset ultrasonic transducer, configure
and fire it

transmit ultrasonic ray

reset ultrasonic transducer

Table D7 ultrasonic transducer words

explanation

copy the contents of block nl on to
block n2

copy n3 blocks starting at block nl to
blocks starting at block n2

copy contents of a block n in to a buffer
whose address is addr

save the contents of a buffer to block
n

initalise block n

initialise n2 blocks starting at block nl

Table D8 block movement words
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HIERARCHICAL DIAGRAMS FOR FORTH WORDS :

(i) additional mathematical operations words

} t
A

}
si:c arc-sine tangent
in arc-sine-angle
}
interpolate
scax{h
* \ -sine-limits?
arc-sine-range  eql-flg  searchl search2 interval arc-sine-sgn

LOW LEVEL WORDS, VARIABLES, CONSTANTS

Figure D1 hierarchical relationship between additonal mathematical operations words
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(ii) Input/Output ( VO ) words

con;g-ultmsonic config-robot config-simulator
aport-input aport-output bport-input  bport-output

all-inputs

LOW LEVEL WORDS, VARIABLES, CONSTANTS

Figure D2 hierarchical relationship between /O words
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(iii) simulator words
LEARN

P N

update-index simulate blk-save terminate

b\

array-->blocks blocks-->array select-key

L g

trj-dat-gray  trj-ind-array
key

enable-simulator

* simu-rpt

enable-simulator
* data-blocks  array-trj-ind

enable-simu index-blocks

I

config-simu conv-simu-data

LOW LEVEL WORDS, VARIABLES, CONSTANTS

Figure D3a hierarchical relationship between simulator words
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TRJ-DIRECTORY  TRIJ-DELETE REPLAY
lim;s-lypc trj-data-locate
line-type

blk-num-off blocks-->arra array-->blks trj- name—locatc

calc- byte-rcmove updatc—md-blks updatc-data—blks

A=)

update- blk-of calc -byteg-move

calc-line-no. update -ind-off

index-blocks md—bytcs -pull
data-bytes pyll

data-blocks

. check-end
trj-ind-array

search-name

bl

traj-enter

T traj-name

LOW LEVEL WORDS, ARRAYS, CONSTANTS

Figure D3b hierarchical relationship between simulator words
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(iv) trajectory generation words

DEFINE/TRAJECI‘ORY MOVE-TRAJ SET-ROBOT
dcﬁne -point select-points move-point arm-move
\ _
jorient
cnter—pomt -data read-point-data  postn

T

input-num spatial-message

}

LOW LEVEL WORDS, VARIABLES, CONSTANTS

Figure D4 hierarchical relationship between trajectory generation words
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(v) ultrasonic transducer words

CALC-DISTANCE

}

fire-ult

}

enable-ult

}

reset-ult

!

config-ult

/X

aport-output bport-input

A

LOW LEVEL WORDS, VARIABLES, CONSTANTS

Figure D5 hierarchical relationship between ultrasonic transducer words

(vi) block movement words

CLR-BLKS BLOCK-SAVE
* blks-copy
clr-blk 4 P
\ blk-copy
block-load

LOW LEVEL WORDS, ARRAYS, CONSTANTS

Figure D6 hierarchical relationship between block movement words
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APPENDIX E -- TIMING COMPARISON OF FORTH SOFTWARE

In order to align the robot gripper at a specified position and orientation, the solution to
the inverse kinematic problem is necessary. This solution involves a considerable number
of trigonometric calculations as described in section 7.4.2 in order to compute the data
value which is to be sent to each joint of the robot. These calculations are complex and
take considerable time. It was decided to establish whether the version of Forth
implemented on Motorola 6809 and used in this research project was fast enough to
perform these calculations. A comparison between the time taken by Forth to perform
these calculations and the time taken by the robot motors to move each joint to the target

position was undertaken.

The speed of each motor was determined by recording the time taken by each motor to to
rotate it through a known angle. The time taken by Forth words to perform the necessary
computations in order to calculate the data value required by each joint to achieve the
target position and orientation of the gripper was determined by executing relevant Forth

words placed in a definite loop. The results obtained are summarised in table E1 below:
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. Time to move a Computation time for joint movement
Joint joint one degree ,
(ms/deg ) Time (ms) | equivalent joint angle (deg)

Waist 10 2 0.2

Shoulder 20 2.5 0.125

Elbow 12.5 23 0.184

Wrist 10 1.8 0.18

Hand 6 1.7 0.283

Table E1 showing timing comparison.

These results show that although complex trigonometrical calculations take considerable
computer time, they are still on the average only equivalent to a quarter degree of joint
movement. However, if a fast industrial robot is employed, which when fully extended
can move between 1-3 m/s, then the speed of computation will become more relevant,
hence much faster computation will be necessary. This may require implementing Forth

on a faster processor, Or using a maths co-processor which can perform these

trigonometrical calculations much faster.
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