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THESIS SUMMARY

The main aim of this thesis is to investigate the application of methods of differential
geometry to the constraint analysis of relativistic high spin field theories. As a starting
point the coordinate dependent descriptions of the Lagrangian and Dirac-Bergmann
constraint algorithms are reviewed for general second order systems. These two
algorithms are then respectively employed to analyse the constraint structure of the
massive spin—1 Proca field from the Lagrangian and Hamiltonian viewpoints.

As an example of a coupled field theoretic system the constraint analysis of the massive

Rarita—Schwinger spin—% field coupled to an external electromagnetic field is then

reviewed in terms of the coordinate dependent Dirac-Bergmann algorithm for first order
systems. The standard Velo-Zwanziger and Johnson—Sudarshan inconsistencies that
this coupled system seemingly suffers from are then discussed in light of this full
constraint analysis and it is found that both these pathologies degenerate to a field-
induced loss of degrees of freedom.

A description of the geometrical version of the Dirac-Bergmann algorithm developed by
Gotay, Nester and Hinds begins the geometrical examination of high spin field theories.
This geometric constraint algorithm is then applied to the free Proca field and to two
Proca field couplings; the first of which is the minimal coupling to an external
electromagnetic field whilst the second is the coupling to an external symmetric tensor
field. The onset of acausality in this latter coupled case is then considered in relation to
the geometric constraint algorithm.

KEYWORDS : Differential geometry, Constraint analysis, Relativistic
high spin field theories, Geometric constraint algorithm,
Acausality
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CHAPTER 1

INTRODUCTION

The use of a Lagrangian or Hamiltonian function to describe finite dimensional classical

mechanics in the unconstrained case is a standard procedure [1]. In general the

Lagrangian L describing such systems depends on n generalized coordinates g;, n

. .. . . . . o’L '
corresponding velocities q; and sometimes also on time. The matrix W =[a, Iy J has
q; 9q; '

maximal rank n for an unconstrained system and in these instances the Lagrangian is
said to be regular. The Lagrangian and Hamiltonian formalisms are closely linked and
given a particular Lagrangian the first step in the transition to the Hamiltonian side is to
introduce the canonical momenta p; . In the regular case, where the momenta are
independent functions of the velocities, there exists a simple prescription to obtain-the
Hamiltonian. However many dynamical systems are encountered where W 1is of a
singular nature, that is it is not of maximal rank, and this usually indicates that the
system will possess an underlying constraint structure. Furthermore when IW!=0 1itis
" no longer possible to solve the canonical momenta uniquely for all the velocities and the
transition to the Hamiltonian formalism is far more complicated in the singular case. It
was the desire for a systematic means of investigation of constrained dynamical systems
which ultimately resulted in the development of the Lagrangian constraint algorithm and
the Dirac-Bergmann algorithm for constrained Lagrangian and Hamiltonian theories

respectively.

The main theme of this thesis lies not so much with finite dimensional dynamical
systems but more with field theories which are systems with an infinite number of
degrees of freedom. By analogy with the finite case the usual starting point for the
analysis of a field theory is that of a physically meaningful Lagrangian. Many field
theories are described by singular Lagrangians and as before this tends to imply the

possibility of the existence of constraints. Typically for high spin field theories with




spins greater than z , it is found that the number of physical degrees of freedom is less

than the number of components of the field object used to describe the field. This is
readily seen in the case of the massive spin—1 Proca field which is usually described in
terms of a four—vector, A, say. However, the Proca field is known to have three
independent degrees of freedom and in order to eliminate the unwanted degree of
freedom a constraint equation is required. The extension of the finite dimensional
Lagrangian and Dirac-Bergmann constraint algorithms to the infinite dimensional case is
relatively straightforward with only a few field theoretic anomalies appearing en route
[2]. One of the main differences that does arise is that in the finite case the constraints
are algebraic relations whereas they are generally partial differential equations in the field

theoretic instance.

The constraint analysis of a free high spin field theory, that is one where there is no
couplin g. to any other fields, is basically just a complexity problem which usually does
not lead to any kind of inconsistency. As an illustration of this the free Proca field will
be analysed via both the Lagrangian and Dirac-Bergmann algorithms. On the other
hand it has long been known that many types of inconsistency can occur when high spin
fields are coupled to themselves or to external fields and consequently there is great
interest in studying coupled systems. Some of the most common inconsistencies are :-

1) algebraic inconsistencies between the equations of the analysis in the presence of

an external field,

1) change in the number of physical degrees of freedom,

ii) loss of constraints,

1v) acausal propagation of the physical degrees of freedom,

V) ﬁon—positive definiteness of the commutators or anticommutators on quantizing
the theory.

More specifically Velo and Zwanziger [3] discovered at the classical level that the

massive spin—1 Proca field coupled to an external symmetric tensor field propagated
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acausal modes for certain values of the external field. This pathology of acausality was
also observed, again by Velo and Zwanziger [4], in the case when an external
electromagnetic field is coupled to the massive spin—% Rarita—Schwinger field. A few
years before Velo and Zwanziger's work, Johnson and Sudarshan [5] found on
quantizing the theory of this coupled Rarita—Schwinger system that the anticommutators

were indefinite.

The Rarita—Schwinger field coupled to an external electromagnetic field is clearly a field
theory which seems to suffer from some of the above inconsistencies under certain
circumstances. In order to look at this coupled system more carefully it will be
analysed using the Dirac-Bergmann algorithm. This coupled Rarita-Schwinger system
is an example of a first order field theory and since the constraint algorithms referred to
so far in this thesis only apply to second order systems then strictly speaking a first
order version of the Dirac-Bergmann algorithm should be employed for this analysis.
This issue of a specific first order formulation of the Lagrangian and Dirac-Bergmann
constraint algorithms was recently tackled by Scherer [6]. First of all he presented a
first order finite dimensional formulation of the constraint algorithms on the Lagrangian
and Hamiltonian sides and then he generalized these ideas to cover the infinite
dimensional case. The investigation of this coupled Rarita—Schwinger system will be
such that it is essentially a detailed review of the constraint analysis of Hasumi, Endo
and Kimura [7] carried out in the context of Scherer's first order Dirac—Bergmann
algorithm. Since this Dirac—-Bergmann algorithm is described in the explicitly time
independent case then the external electromagnetic field is taken to be time independent

so that a smooth application of the constraint algorithm can be effected.

One of the major difficulties in the analysis of the constraint structure of a coupled high
spin field theory is that there is a large number of possible coordinate dependent
formulations of the same theory. Some high spin field theories have however been
developed which seem to avoid the aforementioned inconsistencies and these theories

owe their 'success' in the main to their geometric nature. It therefore seems natural to
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reformulate the above coordinate based high spin inconsistencies in terms of a
coordinate independent geometrical framework. In doing this a deeper insight into the

problems associated with coupled high spin field theories will hopefully be gained.

The geometrical formulation of finite dimensional regular classical mechanics is now
well documented [8]. In geometrical terms if a differentiable manifold Q represents the
configuration space of a dynamical system then the tangent bundle TQ represents
velocity phase space and the cotangent bundle T*Q represents phase space. As a
consequencé of this Lagrangian and Hamiltonian mechanics are geometrically
formulated on TQ and T*Q respectively. The cotangent bundle T*Q 1is an example
of the important concept of a symplectic manifold, that is a manifold with a strongly
nondegenerate closed 2-form  defined omrit. As already stated T*Q physically
represents phase space whereas the 2—form  is basically a geometrical generalization

of the Poisson bracket of Hamiltonian mechanics. Geometrically Hamilton's equations

of motion in the unconstrained case are given by i(XH)o) =dH where H is a real—
valued function on T*Q known as the Hamiltonian and Xy is a vector field called the
Hamiltonian vector field. The dynamics of the system are determined by solving the
geometric Hamilton equations for Xy which equivalently amounts to finding the
integral curves of Xy . The strong nondegeneracy of the 2—form ® on T*Q ensures

that the linear map b : T(T*Q) — T*(T*Q), defined by b(XH) = i(XH)m, is an

isomorphism. Consequently the geometric Hamilton equations can always be solved

uniquely for Xy, thatis Xy =b-1(dH).

When considering a constrained system from a geometrical viewpoint the 2—form ® on
some manifold M is no longer strongly nondegenerate but 1s instead either weakly
nondegenerate or degenerate. If ® is weakly nondegenerate or degenerate then it is
said to be presymplectic and correspondingly (M, co) is then called a presymplectic
manifold. An essential first step towards the goal of geometrizing the aforementioned
coordinate based inconsistencies would be the development of a geometrical constraint

algorithm. Such an initial step was taken when Gotay, Nester and Hinds [9] published
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a geometrical formulation of the Dirac—Bergmann algorithm which actually generalized
and irhproved on the local coordinate dependent version of this constraint algorithm.
Their geometric constraint algorithm gives the necessary and sufficient conditions for the
solvability of generalized Hamilton-type equations of the form i(X)w =& on some
presymplectic manifold (M, co) where o is a closed 1-form called the Hamiltonian
1-form. The only prerequisite that is needed before this geometric algorithm can be set
into action is that there should exist an underlying presymplectic manifold (M, 03).
Once under way the geometric constraint algorithm is an iterative process which looks
for solutions of a generalizéd Hamilton equation on successively smaller submanifolds
of M with consistency of the solutions maintained at each iteration. Furthermore the
geometric algorithm of Gotay, Nester and Hinds is field theory friendly since it is set in
an infinite dimensional symplectic geometrical arena. As a consequence of this, this
geometrical algorithm is the most practical means of geometrically analysing the
constraint structure of a high spin field theory. In fact, as a demonstration of their
algorithm, Gotay, Nester and Hinds geometrically investigated the case of the
electromagnetic field. At a slightly later date, Gotay and Nester [10] generalized the
geometric algorithm and they then geometrically examined the massive spin—1 Proca

field with this generalized algorithm.

In order to make geometrical contact with the inconsistencies discussed earlier it will be
necessary to geometrically investigate some coupled field theoretic systems. To this end
two Proca field couplings will be analysed in this thesis via the Gotay—Nester—-Hinds
algorithm. Before this is undertaken this geometric algorithm will be applied to the free
Proca field so as to gain some experience in using the algorithm. The two Proca field
couplings that will be considered are the Proca field minimally coupled to an external
electromagnetic field and the Proca field coupled to an external symmetric tensor field.
In both these examples it is assumed that the relevant external field is time independent
since the geometric constraint algorithm is only applicable to systems which do not
display any explicit time dependence. From the coordinate dependent work of Velo and

Zwanziger [3] it is known that the electromagnetic coupling leads to a consistent system

13



of equations on the final constraint submanifold. However, as previously mentioned,
the coupling of a symmetric tensor field to the Proca field exhibits acausality for certain
values of the external field. This symmetric tensor field coupling is therefore of great

interest in terms of studying how the acausality pathology is manifested geometrically.

In light of the above discussion, the thesis can conveniently be divided into two parts.
The first part is concerned with the coordinate dependent approach to high spin field
theories whilst the second part is devoted to the geometrical investigation of these

theories. A more detailed description of the contents of each chapter will now be given.

Chapter II provides a brief summary of the mechanics of unconstrained dynamical
systems from both the Lagrangian and Hamiltonian viewpoints. In the first instance
only finite dimensional systems are considered but these ideas are then extended to the

infinite dimensional case, thereby covering field theoretic systems.

The first section of chapter III deals with the analysis of finite dimensional constrained
Lagrangian systems. Having examined these types of system a detailed review of the
Dirac-Bergmann algorithm for finite dimensional constrained Hamiltonian systems is
then given. In the final section of this chapter an indication of how these finite
dimensional constraint algorithms can be generalized to the field theoretic case is
described. For simplicity the Lagrangian and Dirac—Bergmann constraint algorithms are
described for systems which are not explicitly time dependent. In preparing for the later
geometrical approach to constrained high spin field theories, the massive spin—1 Proca
field is investigated via the coordinate dependent Lagrangian and Dirac—Bergmann

constraint algorithms.

The constraint algorithms of chapter III are for quite general second order systems.
However numerous first order systems exist and it is the purpose of chapter IV to
investigate the constraint structure of such systems. The format of chapter III is

maintained in this chapter in that the constraint algorithms are reviewed first of all for
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finite dimensional Lagrangian and Hamiltonian systems and then these concepts are
extended to the infinite dimensional case. As before only systems showing no explicit
time dependence are considered. The last part of this chapter is devoted to the

examination of the massive spin—% Rarita—Schwinger field coupled to an external

electromagnetic field via the first order Dirac—Bergmann constraint algorithm. To
conclude with the implications of the constraint analysis of this coupled system are then

discussed.

Chapter IV marks the end of the coordinate based approach to high spin field theoriesin
this thesis. In chapter V a brief survey of some of the more important ideas of
differential geometry is given. The main concepts are introduced under the general
headings of differentiable manifolds, the tangent space at a point of a manifold, fibre

bundles and differential forms and their properties.

Equipped with the differential geoemtric ideas presented in chapter V, chapter VI begins
with a discussion on symplectic forms and symplectic manifolds. These two concepts
are initially introduced in the most general of terms and then, more specifically, they are
considered from the point of view of dynamical systems. The second section of this
chapter covers the dynamically important notions of integral curves and the fibre
derivative. Chapter VI is concluded by giving the geometrical version of time
independent Hamiltonian mechanics in the regular case. In particular Hamilton's

equations of motion and the Poisson bracket are put in a geometrical background.

Before giving an account of the geometrization of the time independent Dirac—Bergmann
algorithm, chapter VII opens by introducing the idea of a presymplectic manifold. This
is then followed by two slightly modified descriptions of the Gotay—Nester-Hinds
geometric algorithm. The first of these descriptions is fairly abstract whilst the second
one is more useful when it comes to applying the geometric algorithm to field theoretic
examples. In the next section of chapter VII a physically meaningful classification

scheme for the submanifolds generated by the geometric algorithm is reviewed. This
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chapter finishes by applying the more practical version of the geometric algorithm to the
case of the massive spin—1 Proca field. By considering this example it is then possible
to directly compare the geometric analysis of the Proca field with the corresponding

coordinate based Dirac-Bergmann investigations given in chapter II1.

The whole of chapter VIII is concerned with the application of the geometric algorithm
- to coupled field theoretic systems. In particular the cases of the Proca field minimally
coupled to an external electromagnetic field and the Proca field coupled to an external
symmetric tensor field are geometrically examined in this chapter. Chapter VIII
culminates in a propagation analysis on the equations of motion and constraints of this

symmetric tensor field coupling.
Chapter IX, the final chapter of this thesis, consists of a concluding discussion along
with an indication of the possible directions the research project could follow in order to

improve and expand on the work done so far.

The summation convention is assumed throughout this thesis unless it is specifically

stated otherwise.
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PART 1

THE COORDINATE DEPENDENT APPROACH
TO HIGH SPIN FIELD THEORIES
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CHAPTER II

A BRIEF REVIEW OF THE DYNAMICS OF UNCONSTRAINED
SYSTEMS

There are many good texts covering in some detail the subject of classical mechanics, for
example Goldstein [1]. This chapter is designed to set the scene for the forthcoming
discussion of constrained dynamical systems, as well as being a precursor for the

translation of the coordinate dependent description of dynamics into a geometrical

framework.
A Lagrangian and Hamiltonian analysis of finite dimensional unconstrained
systems

Consider a dynamical system described by the n independent generalized coordinates

daq.
dy, ---» 4y and their respective velocities denoted by q, ..., q,, where ;= % for
1=1,...,n. The dynamics of the system will be assumed to be derivable from an action
A given by
L
A = JL(ql, qi’ I) dt 1 = 1, ...,n (21)

)

between the times t; and t, where L=L(qi, q t) is the Lagrangian function. The

usual Hamilton's variational principlé applied to (2.1) gives the familiar Euler—Lagrange

equations, that is

d (dL JL .
d @) e 0 i=1, .0 (2.2)

18



Since L depends at most on first order derivatives it follows from (2.2) that the Euler—

Lagrange equations will at most be of second order.

From (2.2) the equations for the accelerations are found to be

acizgqj g + aéizgqj g + aca:lg)t - g—:i =0 L,j=1,..,n (2.3)
or equivalently

Wi (q, q, t) q; = E (q, ds t) Lj=1,...,n (2.4)
where

Wi(a, 4, t) = ac'izgqj i,j=1,..,n (2.5)
and

E(q, 4 t) = s_cl; B aquzgqj g - azizlz;t Lj=1..n (26

If IWl#0, where W =[W;], then the Lagrangian is said to be regular or non-—

singular and it follows that (2.4) can be written as

2.7)

I
—
M
“
=

G = Y;(a, & 1) E Lj

where Y = [Yij] = W-1. Clearly all the equations given by (2.7) are of second order

and the motion of the system is determined uniquely for all time by specifying 2n initial

conditions, for example the ng;'s and the n ¢'s at the initial time t, .
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Besides the Lagrangian description there is also the Hamiltonian formulation of
dynamics. This formulation differs from the Lagrangian one in that now the motion of
the system is described by a set of 2n independent first order equations. The usual

starting point for making the transition from Lagrangian to Hamiltonian mechanics is to

introduce generalized or canonical momenta, p;, which are defined by

_ oL

p, = % (a. g 1) i=1,..,n (2.8)

The quantities (q, p) are known as canonical variables. It should be noted that the

space spanned by the q's is known as the configuration space, whereas (q, ('1)

describe velocity phase space and (q, p) describe momentum phase space, which will

be referred to merely as phase space. In addition (q, d, t) and (q, p, t) are

respectively local coordinates for velocity and momentum state space.

Mathematically the objective in going from the Lagrangian to Hamiltonian formalism is

to change the variables in the dynamical functions from (q, ¢, t) to (q, p, t). This

involves trying to uniquely solve the equations defining the canonical momenta, that is

(2.8), in terms of the velocities ¢;. This can only be done if the Jacobian J given by

=) - [55]
%, ILag aq

From (2.5) it is seen that this condition is equivalent to IW!# 0 and so it follows that

a(y)

£ 0 i,j=1,..,n (2.9)

there is a unique solution ¢; =c; (q, p, t) for (2.8) only when the Lagrangian is regular.

Consequently when the Lagrangian is regular it is possible to switch between (q, Qs t)

and (q, p, t) in a one to one manner.

Consider now the function H, called the Hamiltonian function, defined by

H=p¢g-L(qq 1) i=1,..,n (2.10)

20



from which it follows that

. L .
dH = ¢ dp; ~ gq— dg; - % dt i=1,..,n (2.11)

i

after use of (2.8). In the present analysis where the Lagrangian is regular then (2.11)

suggests that the Hamiltonian H is a function of the g's, p's and t, thatis
H = H(g, p, ). (2.12)

Taking the total differential of (2.12) leads to

o oH oH
dH = — dq; + — dp; + — dt 1 =1,..., 2.13
3, oy T : ’ 219

1 Pi

and since in the regular case the coordinates and momenta are independent then a

comparison of (2.11) and (2.13) reveals that

g =2 i= 1.0, (2.14)
aPi

JdL _ _oH i=1,..n (2.15)

dq; dq;

db _ oH (2.16)

ot ot

By substituting (2.8) into (2.2) it is readily seen that

.._d_t.. —_ p1 = a— 1 = 1, | (217)

i

and as a consequence of (2.17) equation (2.15) now becomes

_oH
dq;

p; = i=1,..,n. (2.18)
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Equations (2.14) and (2.18) are known as Hamilton's equations of motion and they

represent the aforementioned set of 2n coupled first order differential equations. They

will have a unique solution for all time if the initial values at time t; of the n g;'sand n

p;'s are specified.
From (2.10) and (2.12) it follows that
L(q, 4 t) = p;g - H(g, p, 1) i=1,..,n (2.19)

and it should be noted that Hamilton's equations of motion, like the Euler—Lagrange
ones, can also be obtained from an action. In other words varying the action obtained

by putting (2.19) into (2.1), that is

12 ’ .
A = f(pi ¢ — H(g, p, 1) dt i=1,..,n, (2.20)

b
as a functional of the q; and p; leads to Hamilton's equations.

By employing Hamilton's equations as given by (2.14) and (2.18), then the time
development of a function B = B(q, p, t) defined on momentum state space is given by
dB 0B

@ o + {B, H} (2.21)

where

0B dH 0B 0H
(B.H) = == o= - = =

_ i=1,..n (2.22)
dq; dp;  dp; 9q;

is the Poisson bracket of B with H. More generally the Poisson bracket of two

differentiable functions, B and C, on momentum state space is defined to be
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9B oC 9B JC

- i =1,...,n. (2.23)
dq; 9dp; dp; dq;

{B(q,p,1),C(q, p, 1)} =

From (2.23) it can be verified that if B, C and D are functions on momentum State

space and c; and ¢, are constants then the Poisson bracket has the following

properties :-
i) It is antisymmetric, that is
{B,C} = - {C, B}. (2.24a)
11) It is linear in that
{(cl B + ¢y C), D} = ¢; {B,D} + ¢, {C,D}. (2.24b)
iii) {cl, B} = 0. (2.24c¢)
1v) It obeys the product rule
{BC,D} = B{C,D} + {B,D}C. (2.244d)

V) It satisfies Jacobi's identity, that is

{B,{C,D}} + {C, {D,B}} + {D, {B,C}} = 0. (2.24¢)

In addition to the above there are also the so—called fundamental Poisson brackets of the

g's and p's. They satisfy

Il
o

{qi, qJ} 1,] =1,..,n, (225)

{pi’ pJ}
{ai, pj} = & ij=1,..,n (2.27)
23

I
o

i,j=1..,n, (2.26)




B Analysis of classical unconstrained field theories

Up to this point only regular systems with a finite number of degrees of freedom have
been investigated. An outline of how this analysis can be extended so as to incorporate
field theories, which are systems with an infinite number of degrees of freedom, will
now be considered [2]. This is also a convenient opportunity to introduce some of the
notation that will be used in describing any subsequent field theoretic examples. Only
four-dimensional space—time will be considered and in terms of coordinates this is given

by
X = x4 = (xo, x1, x2, x3) = (xo, 5) (2.28)

where x = (xl, X2, x3) is a three—dimensional space vector and x0 is assumed to

play the role of the time parameter. The metric is taken to be

ghv = g,y = diag (1,-1,-1,-1) wv =0,...,3 (229

It was seen for a Lagrangian system with a finite number of degrees of freedom that the

dynamics is described by the coordinates q(t) for i =1, ..., n. In the infinite

dimensional case the dynamics is taken to be described by the N space—time dependent

functions Q(x) where I is some discrete index running from 1 to N. In essence the

discrete label 1 of the g;(t) in the finite dimensional case has been replaced by the

continuum label x and the additional discrete label I in the following manner
q;(H = qt, 1) — qit, x) = Qx). (2.30)

A field theoretic Lagrangian L 1is a functional in the N fields Q; and their time

: . dQ o
derivatives which are denoted by Q; where Q; = gx—(') = dg Q. If only first derivatives

are admitted in the Lagrangian then
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L = L[Q, Q] (2.31)

where the square brackets indicate functional dependence and Q stands for the array of

N fields Q. Locally the Lagrangian given by (2.31) can be expressed in terms of a

Lagrangian density L by

L = J L d3x (2.32)

where [ isafunction of the Q and the derivatives ;—Q;E auQ for u=0, ..., 3, thatis
X

L=L (Q, auQ). The d3x in (2.32) indicates that the integral is over all space.

The field theoretic analogue of the action A given by (2.1) is a functional of the Q and

can be expressed as

L
A=AQ] =|Ldt = | £ d. (2.33)
fra-]

Variational considerations in relation to the action A given by (2.33) lead to the Euler—
Lagrange field equations
d (oL oL

9 (_j _% I=1,..,N (2.34)
ot {8Q; 0Q

where &L is the functional derivative of L. with respectto Q. Equivalently equation
I

(2.34) can be expressed in terms of the Lagrangian density in which case the Euler—

Lagrange field equations become

(2.35)

nu
p—
Z W

9L ) 3L _ u
a“[a(au QI)] oQ ° I
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In going over to the Hamiltonian formulation the canonical momenta, denoted by TT(x),

are defined to be

L oL
[M(x) = —— = —= I=1,.,N 2.36
8QI(X) aQ{(X) ( :
and the Hamiltonian H is given by
H = J(nl(x) Qix)) &3k - L I=1,..,N. (2.37)

In a manner similar to (2.32) this Hamiltonian can be written in terms of a Hamiltonian

density H, thatis

H = jH d3x (2.38)

where

H=IIQ - L I=1,..N. (2.39)

The field theoretic versions of Hamilton's equations of motion, given by (2.14) and

(2.18) in the regular finite case, are respectively

. OH
= I=1,..,N 2.4
Q9 = 5 (2.40)
and
. OH
I = - I=1,...,N. (2.41
(x) 5000 )



Consider now two phase space functionals, B[Q, H] and C[Q, H], which have no
explicit time dependence in that they only depend on time through the Q and IT. The

field theoretic Poisson bracket of B and C is defined to be

o 5B oC 3 OB 6C d3z
A J (SQI(Z) SIli(z)  3Il(2) SQI(Z)) )

I=1,...,N (242

which is essentially a generalization of (2.23). It should be noted that the field theoretic
Poisson bracket is only defined for equal times, that is x% = y0. In terms of (2.42)

equations (2.40) and (2.41) can be rewritten as

Q® = {Qx), H(x?)} I=1,..,N (2.43)

and

Mx) = {I1(x), H(x°) } I

I
[y
-
M
z

(2.44)

respectively. Furthermore, the field theoretic analogues of the fundamental Poisson

brackets given by (2.25), (2.26) and (2.27) in the finite case are respectively

{Qux), Qx(¥) }yo_yo = 0 LI =1,..,N, (2.45)
{0, T fo_yo = 0 LI = (2.46)
(Qe0, MW }o_p = §Bx-y LI (2.47)

1l |
[ [
M -
M M
Z Zz
M J

where 83(x —y) is the three—dimensional Dirac delta function.
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CHAPTER III

ANALYSIS OF DYNAMICAL SYSTEMS WITH CONSTRAINTS

In this chapter a detailed review of the Lagrangian and Dirac—Bergmann constraint
algorithms is presented along similar lines to the treatment given by Sudarshan and
Mukunda [11]. First of all the constraint analysis of Lagrangian systems whose
Lagrangians are not regular is investigated in terms of the Euler-Lagrange equations as
equations for the accelerations. Having examined these .systems the transition from the
Lagrangian to the Hamiltonian formalism in the case when the Lagrangian is again not
regular is then considered. In essence the investigation of constrained Lagrangian or
Hamiltonian systems is an involved iterative process and as a consequence of this only
systems that are not explicitly time dependent will be analysed in order to simplify
matters. The constraint analysis will be initially described for finite systems and then an
outline of how these ideas can be extended to the field theoretic case will be discussed

and illustrated by an example.

A Lagrangian description of finite dimensional constrained systems

In terms of the generalized coordinates q; and their respective velocities q; for
i =1, ..., n, encountered in chapter II, the starting point of this analysis is the

Lagrangian L given by

L = L(qi’ ql) 1= 1, veey 1IN (31)

Initially the g; and @; are all assumed to be independent of one another. From (2.3),

bearing in mind that the system under consideration has no explicit time dependence, the

Euler-Lagrange equations containing the accelerations can be written as

Wi (a. 9) G = Ei (a0, 9) i,j=1..n (3.2)
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where

d2L
Wi(a, 9) = =—— i,j=1,..,n (3.3)
J( ) aQian‘
and
dL 02L
E(q,9) = — - = a; L,j=1,..,n (3.4)
( ) dq;  9g; aqj' !

It was seen in chapter II that if [WI=0 then the Lagrangian is regular; however in many
cases it is found that IW! =0 and this gives rise to the possible presence of constraints.
When IWI =0 it is not possible to solve for all the accelerations in the manner of (2.7)

and the Lagrangian is said to be singular.

Clearly if IW! =0 then not all the rows of W are independent and if R denotes the rank
of W, which is calculated by treating the q; and ¢; as independent, then R <n. It
then follows that W has (n — R) zero eigenvalues and (n — R) corresponding linearly
independent left null eigenvectors, A2 for a=1, ..., (n —R). It should be noted that
the A2 are linearly independent provided that, as previously mentioned, the g; and q;
are treated as independent at this stage of the analysis. The A2 satisfy the conditions

1, ..., (n = R)
=1, ..., n

A8 (a, 4) Wy (e, ) = 0 3.5)

and as a consequence of this if the Euler-Lagrange equations given by (3.2) are

contracted with the A2 then

The conditions



M (@ 9) B (2, 4) = 0 LT e

represent (n — R) relations between the q; and ¢; . More generally any relations

between the q; and ¢; that come out of the analysis are known as constraints in the

Lagrangian sense. These constraints are a consequence of the Euler-Lagrange equations

of motion and they place restrictions on the choice of the initial values of the g; and q;.

The relations represented by (3.7) can behave in one of three possible ways and these

will now be outlined :-

1)

1)

The first possibility is that some or maybe all of the relations may in fact be
inconsistent. As a simple example to illustrate this, consider the Lagrangian given

by

L(q,9) =q-q (3.8)

Putting (3.8) into the Euler-Lagrange equations given by (3.2) leads to the
nonsensical statement that 0 = 1. From this point henceforth it will be assumed
that the Lagrangian of the system under consideration is such that no
inconsistencies occur at any stage of the analysis. When this is the case the
Lagrangian is said to be admissible.

The second possibility is that the Lagrangian is such that the (n — R) relations:
given by (3.7) are satisfied identically. In this case there are no real constraints
and the motion can only be determined from the Euler—Lagrange equations (3.2).
However, since the rank of W is R, which is less than n, then there are only R
independent equations in (3.2). (3.2) can thus be used to’ express R of the
accelerations in terms of the remaining (n — R) accelerations, all of the coordinates
and all of the velocities. Without any loss of generality it is possible to solve for

the first R accelerations and this leads to equations of the form
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G = fi (415 -+ Qr> Q15 ++-5 AR 5 AR+15 > Qo AR+15 -+os Gno
dRa1s -o-s dn) k=1..,R (3.9)

(3.9) represents R second order equations which may be solved by choosing an

arbitrary set of functions of time for the coordinates qg,;, ..., q; and then
specifying a physicaHy meaningful set of initial values at t=0 forthe q;, ..., qg
and qj, ..., Qg . The qq, ..., qg are then uniquely determined at any later time

by (3.9).

It should be noted that the appearance of arbitrary functions of time in the general
solution of the equations of motion is a characteristic feature of constrained

systems. The initial conditions are not sufficient to obtain a unique solution for the

system because different choices of the arbitrary functions give rise to different

solutions.
The third and most general possibility is that the relations given by (3.7) are

neither identically fulfilled nor give rise to any inconsistencies. Remembering that

the q; and q; are still taken to be independent, suppose that of these (n — R)
equations K of them are functionally independent, K; of them are functionally
dependent and K, of them are identically satisfied. Clearly

K +K; +K; = (n —R). In order to distinguish these K independent Lagrangian

constraints from the others suppose they are written in the form

C(q,4) =0 r=1,..,K <@-R). (3.10)

Consider now a 2n-dimensional space, S say, defined by the independent coordinates

q; and the velocities q; for i=1, ..., n. The situation in light of the constraints (3.10)

is one where the motion of the system is restricted to a (2n — K)—dimensional surface V

in S. In the determination of the surface V it is important to ensure that functions of

constraints, for example (Cl)z, are not treated as independent constraints. To ensure
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that this problem does not arise the constraints C, are chosen such that the (K x 2 n)

matrix

i
—

.o

=R

(3.11)

v e

ac, G r
dg; dq; i

has finite elements and is of maximal rank K. It should be noted that the q; and ¢, are

initially treated as independent when evaluating the derivatives in (3.11) and only after

this differentiation are they restricted to V.

The rank of W was originally evaluated in the space S where the q; and ¢; are

independent. However it is now known that the q; and §; are not all independent

since they satisfy (3.10). In view of this the rank of W must be re—evaluated with the

q; and q; restricted to the surface V. When this is carried out it may be found that the

rank of W decreases and consequently it may then be possible to find further left null

eigenvectors which in turn may lead to more independent constraints between the g;

and ¢; . This means that the motion will then be restricted to a surface of lower

dimension than V. This process may repeat itself until eventually, for a finite system,

the rank of W no longer decreases.

The upshot of all this is that the motion is described by (3.2) and is restricted to a

(2n - K’)—dimensional surface V’ which is defined by K’ independent constraint

equations

C(q,q) =0 r=1,.,K < @-R) (3.12)

where R’ is the rank of W on the surface V’. As a consequence of (3.12) it follows

that

Ai(q. 4) Ei(q,9) =0 i=1,..,n (3.13)
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is automatically satisfied on V’ for every left null eigenvector A of W on V’.

Up to this point of the analysis only algebraic manipulations have been performed to
arrive at the constraints (3.12). It is however a dynamical system that is being
investigated and in principle it is possible that the constraints could change with time and
this in turn would mean that the number of physical degrees of freedom of the system
would also change with time. This would be an unacceptable state of affairs and so to
prevent it from happening the constraints must be preserved in time. In other words a
constraint valid at some initial time must remain valid for all subsequent times. This
involves differentiating the constraints (3.12) with respect to time and this may
ultimately lead to further independent constraints and the possibility of further

independent equations for the accelerations after some algebraic manipulation.

The constraints arrived at in (3.12) can now, by algebraic manipulations, be split into a

maximum number depending on the q; alone and the remainder depending also on the

q; in a non-trivial manner. These constraints will be termed type A and type B

respectively. In light of this separation (3.12) can equivalently be written as

Cl@ =0 s=1,..,K, (3.14a)

(3.14b)

where it has been assumed that there are K1 type A and K2 type B constraints.

Clearly K1 + K2 =K’. Obviously all the type A and B constraints are independent.

Consider now the conditions that the type A constraints are preserved in time. These

are given by taking the time derivative of (3.14a) and this leads to

d (@) @ . _ s=1,.. K
a_t_( ) = ———aql q; = 0 . 1. (3.15)
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By adding (3.15) to (3.14b) and considering the combined set (3.14) and (3.15) as a
whole it may be possible to find further independent type A and B constraints after
some algebraic manipulation. If further independent type A constraints are generated in
this way then the time derivatives of these must be added to the existing constraint
system and the above process must be repeated until after a finite number of repetitions

the procedure terminates.

The final situation is then one where there are now K1 type A and K2 type B

independent constraints, that is

CXq) =0 s=1,..,K (3.16a)

s

C(q. 4)=0 t=1..K . (3.16b)

The time derivatives of the type A constraints (3.16a) automatically vanish as a

consequence of (3.16). The constraint equations (3.16) define a surface V” in S to

which the motion is now restricted. In addition since (3.16a) does not generate any new

type B constraints it follows that K2 > K1 .

Now if the constraints (3.16a) are differentiated twice and the constraints (3.16b)
differentiated once with respect to time then respectively, the following equations are

obtained

@e(ch) _PC@ L 0@, _,

de2 dq;0q; U7 g O
s=1, ... K, (3.17a)
1, ] =1, , n

a (Cl(a. 9)) _9C(a. 9) o 9Ci(q, 4) i -0

0q; aq;
t=1,.., K2. (3.17b)
i=1, ..., n .
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It is readily apparent that (3.17a) and (3.17b) contain accelerations and some of them
may be further equations for the accelerations independent of the Euler-Lagrange
equations (3.2). By considering equations (3.17) in conjunction with (3.2) then the

system of equations for the accelerations given by

v=1, ,n+K”+K”
W, 4 = E, 12 (3.18)
]j=1, ..., n
is obtained where W’ = [WVJ] is an ((n + K1 + sz x n) matrix given by
Wy
och i,j=1,...,n
W = aqj s=1, ..., K1 (3.19)
ic;i t=1, ..., K2
| aq; -
and E' = [Ev] is an ((n + K1 + Kz) x l)column vector given by
- E, -
A =
) 82Cs i G i,] 1, ...,”n
E’=| 0q;dq = s=1. K (3.20)
ad? t=1, R I(2

All the steps outlined previously that were applied to (3.2) must now be gone through
again with respect to (3.18). In general W’ will not be of maximal rank and further
constraints independent of (3.16) may be found when (3.18) is contracted with the left
null eigenvectors of W’. These new constraints may change the rank of W’ and as
before this may lead to more independent constraints and so on until the rank of W’ no
longer changes. Any new type A constraints could then lead to more type A and B

constraints by a single differentiation with respect to time whereas differentiating the
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newly uncovered type A constraints twice and the type B constraints once with
respect to time could lead to new equations for the accelerations and so on and so forth.
For an admissible Lagrangian this iterative procedure will eventually terminate leaving

the following situation.

There are R”” independent equations for the accelerations given by

” ”

W (a. Q) § = E(q, q) Pz b R™<n  gan

The motion is restricted to a surface V*” in S defined by the K1 independent type A

and K2 independent type B constraints given by

Cl@=0 s=1,...,K, (3.22a)

Cl(q. 4) =0 t=1,.,K . (3.22b)
The equations

c%(cl:@) =0 s=1,..K/ (3.23)

are algebraically derivable from (3.22) or in other words they are satisfied on V. In

addition the equations given by

Q(Cﬁ(q)) =0 s =1, ..., K’

dt2 1°

%(C?(q q)> =0 t=1,..,K (3.24b)

(3.24a)

are algebraically derivable from (3.21) and (3.22). All this can be summed up by saying

that any algebraic or derivative operation on (3.21) and (3.22) does not lead to any new
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independent constraints or equations for the accelerations. It should also be noted that

K1 < K2 < R” < n.

The constraint analysis is now finally complete and in order to round off the analysis of
constrained Lagrangian systems the general form of the solutions to the above equations

will now be investigated. Consider first of all the type A constraints given by (3.22a).

Since these represent K1 independent equations it follows that the (Kl x n) matrix

aC2 (@ s=1, ., K’ (3.25)
aqi i .. .

777

has maximal rank K1 on V™. Therefore it is in principle possible to rewrite the type B

constraints such that the first K1 of them are of the form

1, (3.26)

Suppose that the remaining (Kz -~ Kl) type B constraints are denoted by

D; (g, 4) =0 =1, (Kz— KI) (3.27)

The type B constraints given by (3.22b) depend on the velocities in an essential way and

so the (K2 X n) matrix
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o (acy] [ect
|i8C?(q,c’1)] _| %% (jaqj'] _ | %
aq; B _59_(DB) oDy
bog; ~ Y/ d Log;
s =1, ..., K1
t =1,.., K
2 (3.28)
u =1,...,(K2—K1)
1,j=1,...,n

117

has maximal rank K2 on V™. With this in mind it is, in principle, possible to arrange

things such that the first K2 equations for the accelerations are in fact the time

derivatives of (3.26) and (3.27), that is

lok o2ch -

S ql + S ql qJ - 0 S 1, ey Kl (3.29)
dq; dq; 9g; i,j=1, .., n

and
B B ”
oD u=1, , (K, —

al?“ G+=—4=0 ( 2 1) (3.30)
9¢; dq; i=1,..,n

respectively. The remaining (R"' - Kz) equations for the accelerations will now be

written as
" o~ . r . m = 1’ e, R;;; _ rer
ij(q’ Q) g =E (9. 9) . ( 2) . (3.31)

Thus all the information of the dynamical system is contained in (3.22a), (3.26), (3.27),

(3.29), (3.30) and (3.31).
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Now the type A constraints (3.22a) can be used to express K1 of the generalized

coordinates in terms of the remaining (n - Kl) coordinates. Without any loss of

generality the type A constraints can be written as

a=1, ..., K

|
a = &a 3.32
1 s (qc) C = (K]A + 1), ..., N ( )

for some functions g, . By using (3.32) in conjunction with (3.26) and (3.29) it is

possible to remove these first Kl coordinates from the theory completely. This means

that everything in the system is then expressible in terms of the (n - Kl) coordinates

qe» their velocities q; and their accelerations g . In this way the type A constraints are

essentially eliminated from the theory leaving a system with (n - KI) coordinates

subject to (K2 - Kl) type B constraints

DJ(9 @) = D)(£(%) o> £(dor do): do) = Fy (dos o) = O

u=1, .., (Kz—Kl)

a=1 K7 (3.33)

.o K
(K1 + 1), ..,n

Q
I

and a set of (Kz - KI) + (R’” - Kz) = (R”' - KI) independent equations for the

accelerations { , that is

=1, .., (K -7
OF, .  OF, ST ( L
.u o6 + — 4 =0 - ’ (3.342)
aqc aCIc g = (KI + 1 s eeey 11
m = 1’ o, (RIII _ K';)
W dp» q q = E dp» qp e (334b)
mo(P P) o m(P ) 0‘,P=(K1+ 1), ..., n
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It should be noted that (3.33) is merely (3.27) with everything expressed in terms
of the q; whereas (3.34a) and (3.34b) represent (3.30) and (3.31) respectively with

everything written in terms of the g, . The situation is now one such that the

1y

motion is constrained to a (Zn —2K': - (K2 KJD = (2n - K1 - Kz) -

12

dimensional surface in the 2<n - K 1)

dimensional space {qo, qc}.

Now the equations of motion given by (3.34a) ensure that if the type B constraints in the
form of (3.33) are satisfied at t = 0 then they will be satisfied for all subsequent times.
From this it follows that the constraint equations (3.33) need only be used in restricting
the permitted initial values and only the acceleration equations (3.34) need to be

considered in order to determine the motion of the system.

The acceleration equations (3.34) represent (R’ — K ) equations in terms of the
q p 1] ¢d

(n - K1> accelerations (5 . Thus equations (3.34) make it possible to express

R”” — K accelerations d,, in terms of the remainin accelerations, {, say, in the

following way

Go = he (9p- dp 5 9a- das Ga) o B =1, ~~,(Rm - K1) (3.35)

where are some functions and the number of qa s

h(l
(n - K1 ) - (R”’~ KI) = (n ~R”’) . In light of this separation of the
accelerations it has correspondingly been assumed in (3.35) that the coordinates q; and
the velocities q; have been separated into  qy's and qa's and qg's and qu's
respectively. Since none of the type B constraints (3.33) can depend on the q, and g,

alone it follows from the form of (3.35) that there are no equations of motion for the

qa - As a consequence of this the g, remain arbitrary and the overall situation is

similar to that described earlier in case ii). The solutions to (3.35) are obtained by
choosing arbitrary functions of time, one for each of the g, , and then by assigning

initial values at t = 0 for the q, and (, which are consistent with the type B
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constraints (3.33). The q, are then uniquely determined for all time and they will

always satisfy (3.33).
As a final comment it should be noted that since the type A constraints can be used to
eliminate some of the coordinates, then the most general form of a constrained

Lagrangian system is one in which only type B constraints are present.

B Dirac—Bergmann algorithm for finite dimensional constrained Hamiltonian

systems

It was seen in chapter II that the transition from the Lagrangian to the Hamiltonian
formalism is only straightforward when the Lagrangian is regular. In this case it is

possible to uniquely express all the n velocities @; in terms of the canonical momenta

p; . defined by (2.8), and the generalized coordinates q; . However when the

Lagrangian is singular it is no longer possible to solve the equations defining the

canonical momenta, that is

_ 9L

% (a, 9) i=1,..,n, (3.36)

Pi

for all the velocities uniquely. It should be noted that (3.36) is the explicitly time

independent analogue of (2.8).

Now by using (3.36), equation (3.3) can be written in the form

Wij(q’ q) = — L,j=1,...,n (3.37)

Suppose for a singular system that the rank of W is R where R <n. Then it follows

that there are only R independent momenta p;, and it is only possible to solve (3.36)
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for R of the velocities in terms of the q; , the p, and the remaining (n — R) velocities

qg - In other words
y = & () Pv> dB) i=1,..,n (3.38)

where without any loss of generality it may be assumed that y runs from 1 to R and B
from (R + 1) to n. The index b takes on R values outof 1, ..., n. Substituting

(3.38) back into (3.36) gives
i = & (95 4y ) = & (95 f4(qj» Pos d8), ds)
= hi (qj’ pb’ qB) . i = 1, ey I (339)

It immediately follows that for those R values that the index b assumes that hy = py

whilst the other (n —R) functions of h must be independent of the gy since if this is
not true then it would be possible to solve for more of the velocities. In this latter case

(3.39) reduces to the conditions
he (4;, Pv) j=1,..,n (3.40)

where € assumes the (n—R) values outof 1, ..., n that b does not. The (n—-R)

relations between the q; and py, given by (3.40) are called primary constraints because

the equations of motion are not used to derive them. The n relations (3.38) and

(3.40) are completely equivalent to (3.36) and the functions f, and hg are determined

in a unique way in (3.38) and (3.40).
Now it was seen in chapter II for regular Lagrangians that equations (3.36) mediated the

transformation from velocity phase space (q, q) to phase space (q, p) in a one to one

manner. Furthermore in the regular case the Hamiltonian H is a function of the ¢

42



and p; obtained by substituting the solutions ¢; = ¢; (q, p) of (3.36) into the

expression
H =p; ¢ - L(q, q) i=1,..n (3.41)

(3.41) is the explicitly time independent version of (2.10). In the singular case where

the n q;, the R py and the (n~R) g are taken to be the 2n independent coordinates

the Hamiltonian takes on the uniquely determined form
H = pl q1 —_ L(q, q) = W(qi’ pb’ qB) 1 = 1, ooy 1IN (342)

In (3.42) whenever the index i takes on one of the values of & then pe has to be
replaced by hg (qj, pb) of (3.40) and whenever i assumes one of the values of ¥

then g, has to be replaced by fY(qj, Dbs qB) of (3.38).

On evaluating the partial derivatives of W with respect to the independent variables g,

Py and qg, the following results are obtained :-

o~

oW _dhe 0 AL oL o
dq; 9oq; — '9q; 9q; 94y g
oh
e, L i= 1.0, (3.43)
ag; aq;
W . Fp Jof, oL 9f + g ohe
oy " opy Gy 9Py © 3py
. ohg
- gy + 4y =, (3.44)
Py,
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oW of, 9L oL of,
N T T = (3.45)

dgg  ddg  9G, 0qp

where (3.43), (3.44) and (3.45) have been simplified by making use of (3.36). From

(3.45) it follows that the function W, which was originally expressed in terms of the

~variables q;, p, and dg, is in fact not a function of the unsolved velocities dg - In

light of this (3.42), (3.43) and (3.44) now respectively become

Pidi -~ L(a, q) = W(g;, py) i=1,..,n (3.46)
dL aVV ahs . . 1 (3.47)

- =T - 1=1,...,n .

dq;  dg; dq;
and

g Al g e (3.48)

b = — — _— . .

oy, : opy

By comparing (3.48) with (3.38) it can be assumed without any loss of generality that
like the 7y the index b also runs from 1 to R and the index g, like B, runs from (R + 1)
to n. In this way the py, can be taken to be the p, and the gg to be the G, . Now
with this in mind and by making use of the Euler-Lagrange equations in the form of
(2.17), that is

<Ly i=1..n (3.49)

aq;
then (3.47) and (3.48) can be written in the Hamilton-like form

oW  dhg |

_ 1=1, ..., n 3.50
=57 T ge=(R+1),..,n" (3.50)
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Y= 50 7 54
dpy dpy N

=1, ..., R

(R+1),...,n" (3-51)

m =
[

(3.50) and (3.51) are analogous to the Hamilton equations of motion for regular systems
given by (2.18) and (2.14) respectively. However in (3.50) and (3.51) there are extra

terms on the right-hand side which are linear in the unsolved velocities qe and

furthermore in the singular case there are only (n + R) equations compared to the 2n

equations in the regular case.

Equations (3.50) and (3.51) in conjunction with the primary constraints (3.40) are the
start of the constraint analysis in Hamiltonian form. At this stage of the analysis there

are as many undetermined velocities ¢, as there are primary constraints, that is to say

(n — R). These undetermined velocities correspond to the initially undetermined
accelerations of the constrained Lagrangian analysis, but in the Hamiltonian case the Qe
must be retained as coordinates of the phase space. Now, in a manner similar to that
seen in the Lagrangian case, demanding that the primary constraints are preserved in
time could lead to new constraints on the coordinates and momenta as well as new
equations relating some of the unsolved velocities to the coordinates and momenta.
Eventually the situation is reached where there is a full set of constraints and a set of
relations between the coordinates, the momenta and the unsolved velocities such that the
time derivatives of the constraints do not lead to any new equations of either sort. At
this point only a subset of the original (n — R) undetermined velocities will still be
undetermined; the others can all be expressed in terms of the coordinates and the
momenta. Those velocities that remain undetermined each give rise to one arbitrary
function of time in the solutions of the Hamilton equations in direct analogy to the

arbitrary functions corresponding to the undetermined accelerations in the Lagrangian

analysis.

From (2.21) the time development of a function defined on phase space, B = B(q, p)

say, in the regular case, where no explicit time dependence is assumed, is given by
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a = (B.H] (3.52)

where H is the Hamiltonian of the system. It should be noted that in the regular case
the Poisson bracket in (3.52) is defined over all phase space. Unfortunately for singular
systems, where constraints are present, the motion does not take place on full phase

space (q, p). Instead the motion is restricted to a subspace of full phase space and the

function W(qi, py) is only defined on this subspace. In order to overcome this

problem a modification of the major objects of analytical dynamics, such as Poisson
brackets and the Hamiltonian, is required. In essence the dynamical object under
consideration is evaluated in the first instance as if the q; and p; are independent and
only at the end of the construction are these variables restricted to the subspace defined

by the constraint equations.

Ideally it would be nice to work entirely on the hypersurface defined by the constraints
but in practice this is not always convenient. Consequently if the analysis is to be
carried out in full phase space, then there must be some means of distinguishing
between equations which are only true on the constraint hypersurface and those which
are true to some extent off this hypersurface. In this context the concept of equations
being true off the constraint hypersurface refers to the fact that the equations hold in
some finite shell around the hypersurface. To this end the ideas of weak and strong

equations will now be introduced.

Suppose that the constrained hypersurface in phase space is denoted by M and that
B = B(q, p) and C = C(q, p) are two phase space functions defined in a finite

neighbourhood of M. The values of B and C on M are obtained by replacing the

variables p, by the functions hs(qi, pY) of (3.40). In other words the value of B on

M is given by
B(q;, pj)IM = B(qj; Py he(0js Py)) - (3.53)
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If after this replacement B and C become equal, thatis if B and C are equal on M,

then they are said to be weakly equal and this is denoted by

B(ai» Pi) = C(as ps) i=1..,n (3.54)

Consider now the 2n—dimensional gradients of B and C at each point in phase space

which will respectively be denoted by VB and VC. These gradients are given by

VB = a~B—, dB i=1,..n, (3.552)
dg; dp;

VC = [a—c 8&) 1=1,...,n. (3.55b)
dq; op;

Suppose that VB and VC are evaluated on M, that is the partial derivatives of these.

gradients are calculated by treating the g; and p; as initially independent and only then

restricting them to M. If after this the gradients are equal on M and in addition B and
C are equal on M, then B and C are said to be strongly equal. Strong equality

between B and C is denoted by
B(ai, i) = C(ai> pi) i=1..,n (3.56)

and can be summarized by B=C ifand onlyif B=C and VB = VC. It goes without
saying that since weak and strong equality depend on the underlying constraint

hypersurface then the definition of equality will change if the constraint hypersurface

changes.

Initially the constraint hypersurface M is defined by the primary constraints (3.40).

Since the functions hg =hg (q i p"/) are well—defined it follows that the functions

¢ = ¢ (4j Pj) = Pe = he (qj Py) j=1,..n (3.57)
y=.1,..,R
e=R+1,...,n
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are defined throughout the whole of phase space. The constraint hypersurface M can

then be defined in terms of the weak equations
¢ (a5 pj) = O e =R+1),..,n (3.58)

. D
It is apparent from (3.57) that the ¢. do not vanish strongly because a_‘i’g = 8¢, where
P

T

T like € runs from (R + 1) to n, does not vanish on M.

Consider now the case that B and C are weakly, but not necessarily strongly equal. It
is important to know to what extent this equality is effective off the constraint
hypersurface. The answer to this lies in the following theorem which, together with its

proof [11], are fundamental to the analysis of constraints in Hamiltonian form.

Theorem

If B and C are weakly equal on a constraint hypersurface defined by ¢, =0 then the

strong equality
0B oC
B-0¢—=C~ 0 — (3.59)
ape ape
also holds.
Proof

On the constraint hypersurface only the g; G=1,...,n) and the p, (y=1,...,R) are

actually independent; the remaining p, are given by (3.40). Thus only the differentials

dq; and dp, are independent on the constraint hypersurface whereas the dp, are
determined by
oh, ohg
dpe = —— dq; + = dpy. (3.60)
© 0q Opy
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. B .
Consequently on the constraint hypersurface aa— and 2 cannot strictly be evaluated.
Pe Pe

However by replacing the p, by the he of (3.40) in B and C and remembering that

B =C then this leads to the following equations valid on the constraint hypersurface :-

a“li-i-gliahe:»-ag.{.ig%

T i =1,...,n, 3.61
99 dp. 9  dq | dpe aq J (3.61a)
B, BR_X kN L, ...R (3.61b)
dpy  Ope dpy, dp,  Ip; Ip, TE LR '
Now from (3.57)

oh 0

e % e = (R+1)oin, (362

aqj aqj j =1, ..,n

oh 0 -

ohe 90 e = R+D. om0

dpy opy =1, ..., R

By using (3.62) the equations (3.61) can be expressed in terms of the ¢, giving rise to

the weak equations

) 0B 0 oC .

—|B -6, — |~ —|C -0, — j=1..,n, (3.63a)

aqj( ) ope aqj[ ’ aps)

(B9, B2 (e, ) y=1..R (3.63b)
£ €5

apy dpe apy Pe

9°B
where the term ¢, 3q. 9p

] €

, which should appear on the left-hand side of (3.63a), along

with all similar terms, vanishes because ¢ =0 on the constraint hypersurface.

In (3.63b) the range of ¥ is 1 to R. Howeverif y isreplaced by an index 1 lying in

the range (R + 1) to n then the weak equality is still maintained because each side of

£

0
(3.63b) becomes zero due to the fact that —— = ¢, .
opq
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In light of this the index Y can be extended to an index J running from 1 to n, thatis

(3.63b) can be written as

0 oB 0 oC
Bt —|=——[C-0,>=| j=1,..

£
where it is understood that (3.64) is trivially true for j>R.

Since it was originally assumed that B = C then it is apparent that

oB oC
B — ¢8£ =~ C — ¢£5p— (3.65)
€ £

and since (3.63a) and (3.64) show that the gradients of (B - 0 ai:—) and (C - 0 g_c)
£ pE

are weakly equal it immediately follows that (3.59) holds.
QED

An important special case of the above theorem occurs if C is taken to be the zero

function. Then if B vanishes weakly it is strongly equal to a linear combination of the

weakly vanishing functions ¢, which define the constraint hypersurface. In other

words if B = 0 then

B =¢, — . (3.66)

The results generated by the above theorem will now be applied to the constrained
Hamilton equations given by (3.50) and (3.51). The concept of weak equality can be

used to replace the constrained Hamiltonian function w (qj, py) by any function
W (qj, ), defined on full phase space, which is weakly equal to W . Whereas

W ((lj’ pY) is independent of the pg there is no need for the new function W to be
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independent of these off the constraint hypersurface M. From (3.63a) and (3.64) it
follows that since W is independent of the p, and W =W that

BW 0 oW j=1, ..., n
~ — W 9 9
an aq: [ P aPsJ e=(R+1),..,n’ (3.67)
oW o oW j=1, ...,n
— = — |W — A ’ 3
dp;  op; [ o apsj e=R+1) 68

Now substiguting (3.67) and (3.68) into (3.50) and (3.51) and at the same time
replacing the h, by the ¢, as given by (3.62), leads to the following weak equations

. a aW a¢£ j = 11
o ——— W_ | _ — = A
% aqj[ ’ apsj o © e=®R+D,.,n> O
0 oW 09, y=1, .., R
Qy = W -0 — CY (3.70
Y apy( : aps} apy e =(R + 1), )

Just as was found for (3.63b) the range of the index ¥ in (3.70) can be extended to an

index j whichruns from 1 to n without destroying the weak equality. When

0
j=1>R both sides of (3.70) simply become q, because a—:“’ = 8¢ . In view of this

T

(3.70) can be rewritten as

J oW oy j=1,..,n
b . .67
v apj( o ang op; N e=R+1),..,n (3.71)

Suppose now that a function H=H (q j» Pj) isintroduced where

oW
H(qj pj) = W(qj Pj) = % o . (3.72)

€
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This function H is characterized by the property of being strongly equal to W , that is

H = W, but it is otherwise arbitrary. In terms of the H given by (3.72) equations

(3.71) and (3.69) can now be written respectively as

U

{q9; H} + {qj, ¢E} de i=1,..,n, (3.73)
{py H} + {pj’ q)g} flg ] = 1,“,,11. (374)

g

U

p;

The {, } in (3.73) and (3.74) denotes the usual Poisson bracket defined over all phase

space and in an analogous manner to (2.23) this is given by

0B dC _dB oC

B(q, p), C(q, =
(3. p), C(a. p} dg; dp;  dp; 9dq;

i=1,...,n (3.75)

Equations (3.73) and (3.74) together with the primary constraints (3.58) are equivalent

to the original Lagrangian system. The unsolved velocities §. are still present in (3.73)
and (3.74) but they always appear multiplied by the weakly vanishing functions O .

The Poisson brackets of the g, with any phase space function are to be regarded as

undefined. It should be noted that (3.73) and (3.74) can also be written in the form

g = {q; Hp} i=1,..,n, (3.76)
pj = {pj Hp} i=1..,n (3.77)

where Hp is the primary Hamiltonian given by

Hp = H + 0, 4. (3.78)

The time preservation of the primary constraints (3.58) will now be considered where

time differentiation is interpreted as the generalization of (3.52) suggested by (3.73) and
(3.74). In other words if B(q;, p ;) is a function defined on full phase space then

dB . .
B g+ {Bo}a. (3.79)
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From (3.79) it then follows that the condition that the primary constraints (3.58) are

preserved in time leads to the set of equations

{(bg, H} + {dpg, q>n} Gy = 0 e,mn = R+1),..,n (3.80)

(3.80) must now be examined for any new constraints or new information on the qn .
The only place the qn occur in (3.80) is linearly in the second term and consequently the

determination of the qn hinges on the nature of the matrix of constraints

P=[{oe on }] (3.81)

It was seen at (2.24a) that the Poisson bracket is antisymmetric in its arguments and
therefore it follows that the matrix P is also antisymmetric. There are two possibilities

to now consider :-

1)  The simplest possibility is that P is non-singular on the constraint hypersurface
M, thatis
IPI# 0, (3.82)

in which case all of the previously undetermined velocities get determined by
(3.80). It should be noted that since a non—singular antisymmetric matrix must be

of even order then from the form of P in (3.81) it follows that there must be an

even number of primary constraints in this case. Suppose that [(P—l)gs]

denotes the weak inverse of P, that is

(PDze {0600} = By (3.83)

then from (3.83) and (3.80) it can be seen that

6 = — (P Ve {q)n, H} M = R+1),..,n  (3.84)
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Substituting (3.84) back into (3.79) leads to the general equation of motion

= B - {B o) G {on B} 89

(3.85) together with the primary constraints (3.58) completely determine the
motion of the system. There are no unsolved velocities and the situation

corresponds to the Lagrangian case in which no arbitrary functions of time occur

in the solutions of the equations of motion. Initial conditions for the q; and p;

can be specified arbitrarily at time t = 0 provided these conditions satisfy the

primary constraints at t = 0. The q; and p; can then be determined for all

subsequent times via the equations of motion (3.85). It should be noted that if the

B in (3.85) is replaced by one of the ¢, then (3.85) vanishes weakly showing the

the constraints are preserved in time. Overall in this case there are restrictions on
the initial conditions but no arbitrariness in the motion.
The second and more general possibility is that the matrix P given by (3.81) isin

fact singular on M, thatis

[Pl = 0. (3.86)

It is now not possible to determine all of the unsolved velocities g, from (3.80).

Suppose that the rank of P evaluated on M is Rp, in other words
rank P = Rp, (3.87)

where clearly since there are only (n —R) ¢, then Rp <(n—R). In this case it
then follows that P must have (n - R - Rp) zero eigenvalues and

(n - R - Rp) corresponding linearly independent left null eigenvectors

AD (qj, pj) which satisfy

A; (aj: P;) {% ¢n} =0 b=1..,(n-R-Rp). (3.89)
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Operating on (3.80) with the Ab gives rise to

e {0aH} =0 b=l (n-R-Ry) (389

after use of (3.88). Equations (3.89) are further conditions on the q; and p;. If

(3.89) are already identically satisfied on M then no new constraints are

generated.  On the other hand if they are not satisfied on M then further

constraints exist between the q; and p; and the motion of the system becomes
restricted to a hypersurface of lower dimensionality, M’ say, than M. Suppose

that out of (3.89) there are A constraint equations which are independent amongst

themselves and of the ¢, and let these be denoted by the functions g (a5 p i) =0

for 8 =1 to A. The new constraint hypersurface M’ is now defined by the

(n —R + A) weak equations

0 = 0 e =R+1D,..,n, (3.90a)
%o = 0 8 =1..,A (3.90b)

and is of dimensionality 2n—(n — R + A) = (n + R — A). It is important to
remember that weak and strong equality are always defined relative to the current

constraint hypersurface; at this present stage of the analysis the weak equality in

(3.90) is therefore defined relative to M’. The constraints ¥ = 0 have been
obtained from the equations of motion and they are known as secondary

constraints.

Now the rank of P must be re-computed, in light of the new constraints, on M’. It

may be found that it is less than Rp ultimately giving rise to more conditions of the

form of (3.89). These may in turn generate more independent secondary constraints

which must be added to the existing Xg =0 and as a consequence of this the constraint

hypersurface will be further restricted, to M” say. In a manner similar to that seen in

the Lagrangian analysis this will then necessitate a further re—evaluation of the rank of
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P. This process of having to re—compute the rank of P will eventually end when no

new independent secondary constraints are uncovered.

The situation will then be such that the motion is restricted to a hypersurface M”

defined by (n —R) primary constraints and A’ secondary constraints, that is

0 = 0 e = R+1),..,n, (3.91a)
Xe =0 8 =1,..., A (3.91b)

on M”. The rank of P will now be R, and A’ will be such that A’ < (n - R - R'P).

Additionally for every left null eigenvector A of P satisfying

A {% ¢n} = 0, (3.92)

the condition

he {0 H} =0 (3.93)

is obeyed on M”.

The A’ secondary constraints arose from the requirement that the primary constraints be
preserved in time. Now the secondary constraints must also be preserved in time.

From (3.79) this will require an analysis of the equations

l
(@)
m

il
~~
=
+
—_
gl
=

(3.94a)

{q)e,H} + {0000} Gy =
{

voo B} + {00 0n } 4 = 0 0= 1., A (3.94b)

in a manner analogous to the analysis of (3.80). The coefficient matrix of the ¢, 1s

now the ((n - R + A') x (n — R)) rectangular matrix
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{d)g,q)n} e,n=(R+1), .., n.
{Xea%} =1, .., A

(3.95)

Each left null eigenvector of the matrix E has the form (Xs, le) and satisfies

(heho) E =2 { 6c: 0} + 2 {xe.00} = 0. (3.96)

Operating on equations (3.94) with each of the left null eigenvectors (7&5, 7&9) yields

a condition on the q; and p; of the form
XE{%,H} + 2o {xe H} =0 (3.97)

after use of (3.96). Of course (3.97) will contain nothing new if all the Ag are zero
since it will then simply reduce to (3.93). On the other hand if the Ay are not all zero
then (3.97) is either identically satisfied on M” or else it implies a new independent

tertiary constraint. The time preservation of this new constraint will generate an

additional equation containing the g, which results in an extension of (3.94). This

process of obtaining new equations involving the ¢, and new constraints by

considering the time preservation of existing constraints will eventually terminate.

At this point the situation is such that there are (n —R) primary constraints and A”

l-ary constraints where, 12> 2, which define a hypersurface M””, in other words

0, = 0 e=®R+1,..n, (3.982)
%o = 0 0=1,..,A" (3.98b)

’77

where the weak equality now refers to M™ . The velocities ¢, satisfy the system of

equations

57



{oe v} + {on 00} ay=0 e=®eDwn  (Goo
{xor B} + {10, On}dn =0 0=1.,A" (3.99b)

In addition for every left null eigenvector (7‘9 K;) of the ((n ~-R+A”)x (n - R))

matrix E” given by

, [{oe0n}] e,n=(R=+1), .., n,
E" = B (3.100)
{xe. 04} 0=1,..,A
then the following condition is satisfied
A, {%, H} + Ay {Xe, H} = 0. (3.101)

The constraint analysis is now finally over. The ¢, and g form a complete set of

constraints and no more equations for the ¢, can be generated.

The only outstanding task that now remains is to investigate to what extent equations

(3.99) actually determine the ¢, . The answer to this depends on the rank of the matrix

E’ in (3.100). Suppose the rank of E” when it is evaluated on M is given by
rank B = Rgr < (n — R). (3.102)

It therefore follows that equations (3.99) determine precisely Rg linearly independent

combinations of the q, in terms of the q; and p; and this leaves (n -R - RE,)

linear combinations completely arbitrary. It should be noted that if E” is of maximal

rank, that is (n — R), then there are no arbitrary linear combinations of the g, and in this

case it is possible to fix all the . as functions of the ¢; and p;. When E’ is not of
maximal rank then the problem is one of determining which linear combinations are

determined and which are arbitrary.
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This problem is approached by introducing the concept of first and second class
constraints . This new classification of constraints is applicable to primary and l-ary
constraints, where 1> 2. A first class function is defined as one whose Poisson bracket
with the complete set of constraints vanishes weakly. All other constraint functions are

said to be second class.

The aim is now to divide all the constraint functions 0. and Yg into first and second
class functions. This division will first of all be done for the primary constraints ¢, = 0.

Since Rg- is the rank of E’ then this number represents the maximum number of

linearly independent columns of E’ and consequently there must be (n - R - REI)

independent relations between the columns of E’. Suppose such a set of relations is

given by

{q>£, q>n}c1> ~ 0 = 1,.,(n-R-Rg),  (3.1032)

{ %o, 04 } @, = 0 I=1,..,(n-R-Rg)  (3.103b)

where the CD% are the coefficients in these relations. Due to the algebraic nature of the

primary constraints then they could equally well be replaced by any (n — R) linearly

independent combinations of themselves without harming the theory. Taking (3.103) as
a lead, suppose that the ¢, are replaced by the (n - R - RE/) independent

combinations
1
o = CDn q>n 1=1,..., (n - R - RE,) (3.104)

along with Rg- other independent combinations ¢, where m runs from 1 to Rg . It

then follows from (3.103) that the Poisson bracket of any of the ¢, with all other

constraints vanishes weakly, that is

{¢1,¢y} = {¢1,¢m} = {¢1,x9} =0 I'=1..(n-R-Rg). (3105
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The ¢, cannot possess this property for if they did this would imply further relations
between the columns of E’ in addition to (3.103). The ¢, are therefore first class

constraints whereas the ¢,, are second class constraints.

Consider now the constraints x4 = 0 which without any loss of generality can be

replaced by the new set

X'e = Sox Xx + Tep ¢ + Ugp 0 = O (3.106)

where S = [SQK] is a non-singular matrix and T = [Tel] and U = [Uem] are

rectangular matrices. The matrices S, T and U are chosen so that as many possible

independent combinations 7 of the ¥ which are first class can readily be constructed.

This leaves a balance of second class constraints 7y of the xg. The ¥ satisfy the

conditions
{XLvXL'} = {XL’ XM} =~ {XL’ ¢1} = {XL, ¢m} = 0. (3.107)

It follows from the above that no first class constraints can be constructed from the

and ¢, alone.
Equations (3.99) can now be rewritten in terms of the full set of constraints ¢;, 0., , X

and Y. First of all it should be noted that the g, always occur in the combination

dg G in (3.99) aﬁd this can be re—expressed as
O G = 01 Q + Oy Qn (3.108)

where the Q; and Q, are linearly independent combinations of the g . In light of

this, equations (3.99) now become
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{6, H} = 0, (3.109a)

{x.. H} =0, (3.109b)
{0m H} + {0 0u } Qu = 0, (3.109¢)
{xm. B} + {xM, ¢m'} Qu = 0. (3.109d)

The Q; no longer appear in (3.109) because they are combined with first class
constraints, ¢, which have vanishing Poisson brackets with all other constraints.
Equations (3.109) are completely equivalent to (3.99) and consequently no new
equations for the Q; and Q, can be generated. It immediately follows that there are as
many undetermined combinations of the velocities Q as there are primary first class
constraints and further, each Q, appears as an arbitrary function of time in the
Hamiltonian equations of motion. The linear combinations of the velocities Q,, are

determined by (3.109¢) and (3.109d) whereas (3.109a) and (3.109b) merely express

properties of the function H and the first class constraints ¢; and y; .

In order to see how (3.109c) and (3.109d) determine the Q_, consider the square matrix

A of Poisson brackets of the full set of second class constraints, that is

[ {om o} { omonanr}
) {XM’q)m'} {XM’XM'}

A (3.110)

Now A must be non-singular on the constraint hypersurface M™ for if it was singular
then there would be at least one linear relation between the rows or columns of A. This
in turn would imply the existence of a linear combination of second class constraints
having weakly vanishing Poisson brackets with all the second class constraints. From
the nature of the definition of a first class object this linear combination of second class
constraints would also have weakly vanishing Poisson brackets with the first class
constraints and from this it follows that this linear combination of second class
constraints is in fact a first class quantity. This statement contradicts the original

assumption that the set of first class constraints is maximal and so A cannot be singular
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on M™. Since A is non-singular and antisymmetric then it follows that A must also

be of even dimension.

If the inverse of A is given by

Gmm' GmM’
G=A1= [ ] (3.111)

GMm’ Gmwm-

then the following conditions are satisfied

Gmm' {q)m" q)m"} + GmM' {XM’; (Dm”} = amm” 5 (31123)
Gmm’ {‘Pm’, XM”} + G {XM', XM"} = (), (3.112b)
GMmr {¢m', ¢m"} + Gum {xM', ¢m,,} = 0, (3.112c¢)
GMnr {¢m', xw} + Gy {xM', xM»} = Sy - (3.1124d)

Combining (3.109¢) and (3.109d) and making use of (3.112a) leads to the condition

Q. ~ -G, {¢m', H} ~ Gy {XM', H} (3.113)

whereas if (3.112¢) is used instead of (3.112a) then the condition

Gyt {q>m,, H} + Gy {XM,, H} ~ 0 (3.114)

is obtained. (3.114) is a property of H and the combinations of second class

constraints (GMm' ¢ + Gum XM') )

Substituting (3.113) into (3.79), after use of (3.108), gives rise to

L BH + (B0} Q- (B on) G {0m H}
— {B, 0n} G {xM', H} (3.115)
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Equation (3.115) unfortunately does not exhibit the second class constraint functions

0, and 7y symmetrically. However the expression

- {B. xm } Gy {¢m», H} - {B, xm } Guwr {XM,, H} (3.116)

is seen to vanish weakly in light of (3.114) and so (3.116) can be added to (3.115) to

give

& = {B.H} + {B,¢1}Q1 - {B,¢m} G’ {q)m,,H}
- {8, Om} Gawr {XM" H} - {B,XM} GMm’ {¢m,, H}
- {B. 2} Guwr {XM" H} : (3.117)

Suppose now that L, is used to denote the entire set of second class constraints ¢,
and Xy where the first Rg of the p, are the ¢, and the remainder are the ;. In

addition let the matrix elements of A and G be denoted now by A,  and G,,-

respectively. (3.117) can now be written in the more symmetrical form

%13— ~ (B,H) + {B, 0} Q - {B, uv} Gy {u H} (3.118)

The final formalism for a singular Hamiltonian system thus consists of the general
equation of motion (3.118), a set of first class constraints given by ¢;=0 and ¥ =0
and a set of combined second class constraints given by [, = 0. The Hamiltonian
. H(q i P j) is determined unambiguously in full phase space because it is strongly equal
to the known function W(qj, py) . In addition H has the property that its Poisson
brackets with the first class constraint functions ¢; and ¥; vanish weakly due to

(3.109a) and (3.109b). This property of H combined with the way that the second
class constraints appear in (3.118) ensures that all the constraints are preserved in time.
Thus if the initial conditions on the q; and p; are specified at t=0 such that they are
consistent with the constraints and the Q; are specified arbitrarily as functions of time

then the equation of motion (3.118) can be solved for the g; and p; atany subsequent
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time. Since the constraints are satisfied for all time then the motion which started on the

constraint hypersurface M”” will always remain on M. As is to be expected there is

a great deal of similarity between this final situation and the one found in the

corresponding Lagrangian analysis.

C Analysis of field theories with constraints

Up to this point the constraint algorithms described in sections A and B of this chapter
only deal with dynamical systems with a finite number of degrees of freedom. The aim
now is to give an indication of how these constraint algorithms, in both the Lagrangian
and Hamiltonian cases, can be extended so that they also cover the field theoretic case.
In essence the generalization to the field theoretic case is relatively straightforward

although there are obviously some important differences which will now be examined

[2].

Consider first of all the Lagrangian case. In terms of the Lagrangian density defined by
(2.32) the field theoretic Euler-Lagrange equations are given by (2.35). Equations

(2.35) can equivalently be written as

2L d2L
3(2, Q1 )oQy (3 @) + 3(2, )2(a, Q) (22 )
oL =
L yIhod e
Suppose that
%L (3.120)

(Wi = 3(3, @1 )2(3, @)

then (3.119) becomes
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(Wi (3,9, Q) = g—é’l - ﬁ%%)a—(lr (3. Q) - (3.121)

The field theoretic analogue to (3.2) is given by expressing (3.121) in the form

(Wr)oo (80 dg QI) = aaél - 8(8 az;)aQI (8ILL QJ)
n

= (Wn)oi (80 9 QJ) - (Wn)io (290 Qy)
- (W) (aiaj Q) i,j=1,...,3 (3.122)

and since x0 is the time development parameter it is

02L
8(80 QI)a(aO Q)

(Wn)oo = (3.123)

which determines whether the Lagrangian density, and consequently the Lagrangian, is

singular or not. If

[[(Wir)oo]| = © (3.124)

then not all the accelerations 0y dy Qj in (3.122) can be determined and the possibility

of constraints arises.

The remainder of the analysis now proceeds in a manner similar to that detailed in
section A of this chapter. However spatial derivatives, that is derivatives with respect to
the 'xi where i=1 to 3, will now occur in the constraints due to the nature of some of
the terms on the right—hand side of (3.122). As a consequence of this, field theoretic

constraints are in general no longer algebraic relations but differential equations instead.

It can be seen from the definition of the field theoretic canonical momenta TIl(x) given

by (2.36) that
65



oIl
— 2w (3.125)

after comparison with (3.123). Consequently if

=0, (3.126)

Eool

in other words if (3.124) holds, then the system will once again be singular. In an
analogous way to the finite Hamiltonian case, (3.126) indicates the presence of primary
constraints and these may ultimately be deduced from (2.36). The primary constraints,
along with any l-ary Hamiltonian constraints for 1>2 that may be uncovered, will in

general in the field theoretic case be functionals of the variables Q; and II! and their

spatial derivatives. That is to say, suppose the primary constraints are denoted by

0t =0 then
¢ = ¢£[Q, I, (9; Q), (0, 11)] i=1,..3. (3.127)

Although the primary constraints in this instance are labelled by the finite index € there
are in fact an infinite number of them; that is one for each € and each space point. In
view of this sums that occurred in the finite dimensional analysis become integrals in the
field theoretic analysis. In order to illustrate this last statemeﬁt consider the primary
Hamiltonian given by (3.78) in the finite case. In going to the infinite dimensional case

the primary Hamiltonian Hp is given by
Hp = H + f (vt 05(x) ) dx (3.128)

where the ug(x) are Lagrange multiplier functions. By analogy with (2.38) equation

(3.128) can also be written as
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Hp ='[}£pd35 | (3.129)

where Hp is the primary Hamiltonian density. A comparison of (3.78) and (3.128)

indicates that the multipliers u.(x) are now playing the role of the velocities Qe -

The field theoretic analogue of (3.79) for determining the time development of a

functional B of phase space variables and their spatial derivatives is

9B
So=0m = B.H) + [ (ww {Bo, o)) Sy (3130

where the field theoretic Poisson bracket in (3.130) is defined by (2.42). Equation

(3.130) can equivalently be written in terms of the primary Hamiltonian Hp of (3.128)

by

9B ~ {B, Hp}. (3.131)

-From (3.130) it follows that the condition for the field theoretic primary constraints

0t =0 to be preserved in time is given by

0 = {oxt0, H} + [ () {0500, 7)) ey (3.132)

where 1 assumes the same values as the index €. By analogy with the finite case it is

the nature of the matrix

[Pen (& 0] = [{0200, 070} o _ o] (3.133)
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in (3.132), which is continuous in x and y butdiscrete in € and 7, that now governs

the determination of the multipliers Uy -

Now if the determinant of (3.133) does not vanish then it possesses an inverse
-1 . :
[Png(y, z)] which must satisfy the conditions

J (Pen(® v PLo(y, 1)) dy = f (P (% ¥) Pre(y, 2)) &y

= 8 (x - 2). (3.134)

.. -1 . . . .
However this inverse, [Pn ‘i(y, z)], 1s not necessarily unique since

[P:&(y, 2) + 'ﬁ;l&(y, z):| (3.135)

would also be an inverse of (3.133) if [ﬁ;é(y, z):| satisfied the condition

J (Pm (x, ¥) ﬁ;é(y, z)) By = 0. (3.136)

This non—uniqueness in the inverse of (3.133) is a purely field theoretic phenomenon
which comes about because the inverse of (3.133) must also be an inverse in the
continuous labels x and y. There is no counterpart of this in the finite dimensional

analysis.

If on the other hand the determinant of (3.133) vanishes, then by analogy with (3.88) in

the finite case, the algorithm prescribes looking for eigenvectors AP of (3.133) with

zero eigenvalues which satisfy
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f (X:(x) Pen (%, x))d%g = 0. (3.137)

However once again in the field theoretic case (3.137) is not sufficient by itself to

determine the K: uniquely.

Suppose that the situation has now been reached where all the independent primary and
l-ary constraints for 1>2 have been found and the task of finding the maximal number
of first class constraints is being considered. It was seen in the finite case that the first
class constraints could be found by algebraic manipulations. Unfortunately the situation
is not as simple in the field theoretic case because now the constraints are differential
equations and it is possible that a linear combination of constraints and their spatial

derivatives could become a first class constraint.

Having succeeded in separating the constraints into a maximal number of first and
second class constraints then the second class constraints can be used to define the

matrix

A= [A6e 0] = [{ro00, 1t} ] (3.138)

where [ denotes the second class constraints. The A matrix in (3.138) is the

analogue of the matrix given by (3.110) in the finite dimensional analysis. Unlike the

finite case there is now no reason for A to be non-singular and as already seen even if
it was non-singular its inverse will not necessarily be unique. Consequently in the field

theoretic case it no longer means anything to say that the number of second class

constraints is even.

In conjunction with the above field theoretic peculiarities a truly rigourous treatment of

the field theoretic case requires a careful consideration of spatial boundary conditions as
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done, for example, in the paper by Steinhardt [12]. This comes about because the
constraints found in the analysis are differential equations which according to (3.127)
can depend on spatial derivatives. However in order to give a clear exposition of the
constraint analysis in any subsequent field theoretic calculations this boundary condition

problem will not be examined in any greaf detail.

So far the constraint algorithms have been described in only the most general of terms
and now seems to be an ideal opportunity to demonstrate the practical application of
these algorithms. To this end the specific example of the massive spin—1 Proca field
will be considered. This field theoretic example will be analyzed in the first instance via
the Lagrangian constraint algorithm and then via the Dirac-Bergmann constraint

algorithm.

A Lagrangian L for the spin—1 Proca field A, is given by

1 2
L =f("ZFLW F“V+m7Ap Au) d3x uv =0,...,3 (3.139)

where

(3.140)

and the metric convention (2.29) has been adopted. A comparison of (3.139) with
(2.32) indicates that the Lagrangian density L in this example is
] m?

L Fyy BY + 5

=~ Fy A, Ar (3.141)

and this may equivalently be written as

L= —% ghY gvo (au A, -0y Ap) (ay Ag - 0dg AY) + %ngAuAY

uv,y,c=0,...,3. (3.142)
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Now from (3.142) it is found that

oL
————— = Fbt = 9B AT _ g AB B,t=0,..3 (3.143)
o(9: Ap)
and consequently
oL = goghh _gabght o B, AT =0,..,3 (3.144)
9(91 Aq)3(0: Ap)

From a comparison of (3.144) and (3.120) it immediately follows that
(WaB)M = gt ghh — goB ght (3.145)
since in (3.144) it is the fields A, which represent the Q; of (3.120). Therefore

(Wop)oo = g% gh0 — gf (3.146)

and in matrix form (3.146) is given by

0000
0100

[(Wag)oo] =| 5 0 1 o (3.147)
0001

Clearly from (3.147) I[(WQB)OO]I =0 and the rank of [(WaB)oo] 1s 3. This signals

the presence of constraints in the system and also indicates that not all of the

accelerations are determined at this stage.

From (2.35) the Euler-Lagrange equations are given by
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9, (2% 9k g (3.148)

and after making use of (3.143) and the fact that

9L _ 2Ac (3.149)
A,

the Euler-Lagrange equations (3.148) become

3y 0% Ad — 3, DM AT _ m2 AT = () ok =0, .., 3. (3.150)

Now when « takes on the values i=1, ..., 3 then (3.150) becomes

3901 A + ;91 AT — 380 Al — 3,1 Al - m2 Al = 0

i,j=1,..3 (3.151)

Equations (3.151) contain the accelerations for each of the Al, thatis 9y % Al, and so

they represent equations of motion for the Al
On the other hand, when o = 0 then (3.150) leads to the condition

0;00Al — 9,01 A0 — m2A0 =0 1=1,..3. (3.152)

Equation (3.152) does not contain any acceleration—type terms and so is in fact a
constraint; it could be termed a Lagrangian primary constraint. It should also be noted

that this constraint is a partial differential equation.

The constraint given by (3.152) could equally well have been obtained, in a manner
more in keeping with the previous description of the Lagrangian constraint algorithm, if
both sides of
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(e ) < £ - )

= (Wap)oi (80 J; AB) = (Wap)io (ai 9o AB)
= (Wap)s; (2: 95 Ap) (3.153)

had been contracted with the components of (100 0), which is a left null eigenvector of

(3.147). Equation (3.153) is merely (3.122) rewritten for the case under consideration.

Since the elements of (3.147) are all constants it follows that its rank will not change in
light of the constraint (3.152). Consequently the next step of the algorithm is to
consider the time preservation of (3.152). The time preservation condition is found by
differentiating (3.152) with respect to time which after some minor rearrangement leads

to the condition
0; 0 09 Al — 00,0 A0 — m2dy A = 0 1=1,..,3. (3.154)

(3.154) clearly involves acceleration terms in the form 9,39 (9; Af) and so (3.154)

must now be considered in conjunction with (3.151) as well as, if necessary, the

constraint (3.152) to see if it leads to any new constraints or equations of motion. By
substituting dy 0% Al from (3.151) into (3.154) it is found that

m? (9; Ai + 9y A%) = 0 i=1,.,3 (3.155)
and since m=#0 it imrﬁediately follows that

J; Al + 95 A0 =0 i=1,..3. (3.156)

(3.156) is known as the Lorentz condition and it can also be written in the form

aoAO — ai Ai =0 1= 1, ceey 3. (3157)
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Equation (3.156) is a new constraint which may be termed a Lagrangian secondary
constraint. The requirement that this new constraint is preserved in time leads to the

condition

930 A0 + 309, Al = 0 i=1,..3 (3.158)

Now if (3.158) is substituted into (3.152) the equation

9O A0 + 3,9 A0 + m2A0 = 0 i=1.,3 (3.159)

is obtained. (3.159) is an equation of motion for A0 because it contains the
acceleration of A0, namely d,0% A® . Equations (3.151) and (3.159) together

determine all the accelerations of the field A, and so the Lagrangian constraint analysis

is complete.

In passing it should be noted that if the constraint (3.156) is substituted into (3.151)

then the equations of motion for the Al simplify down to

dgd? Al + ajaJAi + m2Al =0 i,j =1,...,3.  (3.160)

The constraint analysis of the Proca field will now be investigated via the Dirac—

Bergmann algorithm and the results obtained will be compared with those of the

Lagrangian constraint algorithm. The momenta conjugate to A, are according to (2.36)

given by

[ p=0,..,3 (3.161)

_ 9L
3(30A,)

and after using (3.143) these momenta become

74



IT* = FHO u=20,..3. (3.162)
Clearly from (3.162) when W =1, where i runs from 1 to 3, the.n
[T = FO = 91 A0 — 90 Al = 9j A, - 0; Ay i=1,..,3 (3.163)
whereas when =0 then

I10 = F00 = Q. (3.164)

Equation (3.163) contains the velocities (80 Ai), whilst (3.164) expresses the fact that
(80 AO) does not occur in the Lagrangian density given by (3.142). (3.164) is

consequently a primary constraint which can be expressed in the form

U

¢0 = I10 = 0. (3.165)

In reality there are an infinite number of these primary constraints; namely one for each

space point.

A space-time decomposition of the Lagrangian density given by (3.141) leads to the

equation
| | m?2 m?2 ..
L-_—iF K _ZFijFij+7AOA0_7AiAi L,] = ,...,3 (3.166)
and after substituting (3.163) into (3.166) this gives rise to
1 . 1 m? m?2 —_—
L =—2—H*H1—ZFUFU + '2—A0A0—7AiAi L,j=1,...,3. (3.167)

From (2.39) the Hamiltonian density is defined to be
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H=T(3A,) - L L=0..,3 (3.168)

and after use of (3.167) this simplifies to

. : 1 . 1 m?2 m?
H =TI (30 A;) - 3 NI+ 2 By By — = AgAg + 5 AjA;. (3.169)
However substituting the velocities (80 Ai) from (3.163) into (3.169) leads to a

Hamiltonian density of the form

m? m?

- . 1
TIiTH + [T (al AO) +Z FlJ FlJ -5 AOAO + > AiAi‘ (3.170)

1
Ho=3

From a consideration of (3.128) and (3.129) it then follows that the primary

Hamiltonian is given by

2
Hp =f6nini+ni(aiA0)+ IZ Fi; Fij_nlz— Ag Ag

m? 043
+ T2 AL A +up I )dZ(_ (3.171)

where ug is a Lagrange multiplier function.

In this example the equal-time fundamental Poisson brackets, implied by (2.47), are

{Au(x), HV(Y)}Xo:yo = 5: Fx-y (3.172)

and in accordance with (2.45) and (2.46) all the other combinations are zero.

The next stage of the algorithm is to ensure that the primary Hamiltonian constraint
given by (3.165) is preserved in time. From a consideration of (3.131) this condition

will hold if
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0=~ {9 Hp} = {110, Hp) (3.173)

and from the nature of the fundamental Poisson brackets (3.172) only the terms of Hp
containing A, will be different from zero in (3.173). Therefore (3.173) may be

rewritten as

0= HO(x),f (Hi(ai Ag) - ‘% Aq Ao)d3y (3.174)

and after a partial integration (3.174) becomes

0= Ho(x),J (ai(ni Ag) - Ag(, ITi) - r% Ag Ao)d3y . (3.175)

The first term of the integral in (3.175) can be transformed into a surface integral by

using Gauss' divergence theorem. In other words
f (0i(11 Ag)) dy = J (T Ag) n; ds =J (TIi Ag) dS; (3.176)

where the n;(y) are the components of the outward normal to the surface S. It was

" mentioned earlier that boundary conditions would only be treated at a formal level and in
view of this it will be assumed that (3.176) vanishes at infinity. The time preservation

condition for the primary constraint, that is (3.175), thus reduces further to

2
0 = 3 I10(x), (— Ag(9; T1) - B Ag Ag [Py (3.177)

and this may equivalently be written as
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0 =f {Ho(x), (— Ao(, TIi) - ‘323 Ag AO)(y)} RE (3.178)

After some minor manipulation (3.178) gives rise to the condition

o; I + m2A; = 0 i=1,..3 (3.179)
(3.179) 1s a secondary Hamiltonian constraint which may be denoted by

x0=0; Il + m?2 A, = 0. (3.180)
This secondary Hamiltonian constraint can readily be seen to be the weak equality
version of the primary Lagrangian constraint (3.152) if the ITi given by (3.163) are

substituted into (3.179).

The time preservation of the secondary Hamiltonian constraint (3.180) must now be

considered. Once again from (3.131) this is ensured provided that
0= {x% Hp} = {(8; 1 + m2 Ag), Hp } (3.181)
after use of (3.180). The o;IT' term of %° only has non—vanishing Poisson brackets

with the terms of Hp containing A;, whereas the m? A, term only has non—-vanishing

Poisson brackets with the terms of Hp containing TI9 . In light of this (3.181)

becomes
) 2
0= (al ni)(X), f (Z]i ij FJk + %‘ A_] AJ)?’X +
m? Ag(o), | (w0 ) @3y (3.182)
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and (3.182) may now be written as

0= 2ol J {ow. (3 Fiey) Fue) + ézEAi(y) A s

+J { m2 A0, up(y) TIO(y) } @3y . (3.183)

Ultimately (3.183) reduces to the condition

m?uy — m20;A; = 0 (3.184)
and once again since m # 0 (3.184) becomes

ug — d; A; = 0. | (3.185)

The condition (3.185) determines the only Lagrange multiplier function u; and the

Dirac-Bergmann constraint analysis is therefore complete.

In order to round off this constrained Hamiltonian analysis consider from (3.131) the

time development of A, that is

99 Ag(x) = {Ag(x), Hp}. (3.186)

Equation (3.186) simplifies to

dg Ag(x) =J’ { Ap(x), up(y) TIO(y) } d3y = ug(x) (3.187)

and therefore as mentioned earlier the Lagrange multipliers, in this case there is only the

u, , take on the role of the velocities that could not originally be solved for; dg Ag in
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this instance. On substituting (3.187) into (3.185) it is readily seen that (3.185) is the

weak version of the secondary Lagrangian constraint given by (3.157).

Similarly from (3.131) the time development of the A; is given by

aoAi(X) = {Ai(X), Hp} 1= 1, ,3

and this can equivalently be written as

9o Ai(x) zf {Ai(x), @- T I + T1i( AO))(y)} By .

After some manipulation (3.189) leads to the condition
do A; = ITh + 0, Ay i=1,..,3
Equation (3.190) is essentially just the weak version of (3.163).
On the other hand the time development of the ITi from (3.131) is
9o Iix) = {IIi(x), Hp } i=1,..,3

and after substitution of the relevant terms of Hp, (3.191) becomes

m?2

9o TTi(x) zf {Hi(x), (}1 Fip Fjy + 5 A, Aj)(y)} By .

After some calculation the upshot of (3.192) is

BOHi = BJFﬁ — m2Ai.
80

(3.188)

(3.189)

(3.190)

(3.191)

(3.192)

(3.193)



By substituting F; and I1i, as given by (3.140) and (3.163) respectively, into (3.193)

it can be seen that (3.193) is merely the weak version of the equations of motion (3.151)

which were obtained in the Lagrangian analysis.

As a final point it is of interest to note, in light of the fundamental Poisson brackets, that

{69, 0°(n)} = {M0), Oy} = 0, (3.194)
{2060, X% } = {(8; T + m2 Ag)(x), (3; Ti + m2 Ag)(y)} = 0 (3.195)

and

{0000, X0 } = {000, (3; T1' + m2 Ag)(y)} = —m2HBx-y). (3.196)
Since m # 0 it follows that the right-hand side of (3.196) does not vanish in general.
Consequently the primary and secondary Hamiltonian constraints, given by ¢0 and y°

respectively, are both second class because (3.196) shows that neither of them have

weakly vanishing Poisson brackets with all the other constraints.
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CHAPTER 1V

CONSTRAINT ANALYSIS OF FIRST ORDER DYNAMICAL SYSTEMS

The constraint analysis examined in chapter 11, via the Lagrangian and Dirac—Bergmann
algorithms, was described for quite general second order systems. These are Systems
whose Euler-Lagrange equations are second order differential equations since they are
equations containing acceleration terms. The special case of constrained first order
systems, where the Euler-Lagrange equations are of first order, will now be considered
from the point of view of the analysis given by Scherer [6]. In a manner in keeping
with chapter III the constraint algorithms on the Lagrangian and Hamiltonian sides will
first of all be reviewed for finite first order systems. The results of this finite
dimensional analysis will then be extended to the field theoretic case. Finally a field
theoretic example will be investigated via the first order Dirac-Bergmann algorithm in

order to illustrate an application of this algorithm.

A Description of the Lagrangian and Dirac—-Bergmann constraint algorithms for

finite first order systems

Consider first of all the Lagrangian analysis where once again the system is described by

the initially independent generalized coordinates q; and their corresponding velocities

q;, for i=1 to n, in the 2n—dimensional space S. The most general Lagrangian L

allowed in this analysis is one which is linear in the velocities. In other words

it
—
M

L = L(Cli, C'li) = q; Aj@ q - H (@ 1, ., D (4.1)
where A = [Aij] represents an (n x n) matrix depending only on the q; and H' isa
function also depending only on the q;. Once again no explicit time dependence has

been assumed for this analysis.



Substituting (4.1) into (2.2) leads to Euler-Lagrange equations of the form

(Aij*AJ‘i'i"QI aaiqzi_(h a%j = ?): i,j,1=1,...n (4.2)

and these may be rewritten as

Wi@ q; = Ei@ (4.3)
where clearly

Wi@ = Ay - Ay + q 9y - q 9y (4.4)

aq; og;

and

E(@ = L (4.5)

dg;

Now if IWis 0 then W possesses an inverse Y, say, and consequently (4.3) can be

solved for all the velocities, that is

G = Y;(@ E; L,j=1,..,n (4.6)

On the other hand it is more likely that IW! =0 in which case not all the velocities in
(4.3) can be determined and this indicates the possible presence of constraints. The
Lagrangian constraint algorithm now proceeds in a similar manner to that described in

section A of chapter III.

Since W is singular then it follows that it has (n — R) zero eigenvalues and (n — R)

corresponding linearly independent left null eigenvectors where R is the rank of W. If
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(4.3) 1s then contracted with these left null eigenvectors this will result in a set of
relations between the ;. Of these relations only a subset of them may be functionally
independent and these independent relations will be termed primary Lagrangian
constraints. These constraints have the effect of restricting the space S to a constraint

surface of lower dimensionality.

In light of these primary constraints the rank of W, which was originally evaluated
assuming that the g; were all independent, may now decrease when it is re—evaluated
on this constraint surface. If this happens then the above procedure must be repeated
until the rank of W does not change when it is computed on the current constraint
surface. The upshot of all this is that there are now K independent primary Lagrangian

constraints given by

C(q) =0 r=1,..,K 4.7
which define a constraint surface V in S.

The next stage of the algorithm is to ensure that the constraints given by (4.7) are

preserved in time on V. This requirement leads to the conditions

=1

i (CI(Q)) _ é% . r
dt B

and these are clearly a new set of equations for the velocities. (4.8) must now be
considered in conjunction with (4.3) and this leads to the system of equations for the

velocities given by

W@ ¢ =E (@) s=1,..,m+K) (4.9)

where
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, i i,57=1, ..., n
W = [Wsj]' = | aC, r=1, ..., K (4.10)
%, s=1, ..., (n+K)
and
E;
’ ’ _ 0 1 = 19 » I

E=[E] -] s=1 ., (n+k) - @D

0

It should be noted that W’ is an ((n + K) x n) matrix and E’ is an

((n + K) x 1) column vector which has K rows of zeros.

From here the analysis continues by investigating the rank of W’ which in general will

not be maximal. If the rank of W’ is R’ then W’ will have (n + K - R’) linearly

independent left null eigenvectors. By contracting (4.9) with the left null eigenvectors of

W’ more relations between the q; will be obtained. Of these a certain number of them
may be functionally independent amongst themselves and the primary constraints given
by (4.7). These new independent relations are secondary Lagrangian constraints and

they restrict the constraint surface V to one of lower dimensionality.

As seen before the rank of W’ may decrease when it is computed on this new constraint
surface and the above process has to be repeated until the rank of W’ no longer changes

and all the K, say, secondary constraints

C;(q) =0 t=1,..,K (4.12)
have been obtained. The constraint surface is now denoted by V’.
The secondary constraints (4.12) must now be preserved in time and this gives rise to

the conditions

85



Q ’ ad[ . t
dt (Ct(Q)> - a_qJ q =0 ]

nn
p—

5K
Y

(4.13)

When equations (4.13) are considered in conjunction with (4.9) the following system of

equations

W@ 4§ = E u=1..,(n+K+K) (414)

is obtained. In (4.14) W”=|W. ] is an ((n+ K +K’) x n) maix and

E” = [Eu] is an ((n + K + K') X 1) column vector which are respectively given

by
W j=1, ..., n
. S/J s=1, ..., (n + K)
W =lac, t=1, .., K (4.15)
aq‘j u:l,...,(n+K+K')
and
E
o s=1, ..., (n+K)
=1 . u=1,.., (n+K+K) *I16
0

Equations (4.14), (4.15) and (4.16) have been obtained in a similar way to equations
(4.9), (4.10) and (4.11) and the previous steps of the analysis must now be repeated

until the following situation is reached.

There are K Lagrangian constraints given by

C'V”(Q) =0 v=1..,K" (4.17)
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and the velocities obey the equations

W@ 4 =E (@ w=1..,(0+K”) (418)

where W’ = [WWJ] is the ((n + K”’) x n) matrix given by

Wij 1,_] =1, ...,n
W/// - aCV vV = 1, ey K,” (419)
o Wt (e k)

and E” = [EW] is the ((n + K”’) x l) column vector given by

E;
» 0 i=1, ..., n
B = : w=1, .., (n + K'_”) - (4.20)
0
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Overall the motion is restricted to a surface V” in S. The left null eigenvectors of
W’ produce no new constraints which are independent of those given by (4.17). In
addition if rank W =R"” <n then R" of the velocities can be determined whereas
the remaining (n - R"') velocities appear as arbitrary functions of time in the solutions

to the equations of motion.

In going over to the Dirac-Bergmann Hamiltonian analysis the canonical momenta, as

given by (3.36), are found from (4.1) to be

p; = q; Ay L,j=1,..,n (4.21)

It was seen in the second order case described in section B of chapter III that the

momenta are in general dependent on both the q; and ¢; and it was then possible to

solve for some of the @; in terms of the q; , the independent momenta and the
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remaining ¢; . However since the momenta in (4.21) do not depend on the velocities in

any way then they yield n primary Hamiltonian constraints which can be written as
%4, p) =p; - g Aj = 0 (4.22)

where = denotes weak equality as described in chapter III.

Now from (3.42) the Hamiltonian is found to be

H(q, p) = H'(@) (4.23)

after using (4.1). By analogy with (3.78) the primary Hamiltonian Hp is given by

Hp(q, p) = H'(@ + y; ¢ (4.24)
where the Lagrange multipliers u; are now playing the role of the velocities.

The time development of a function B = B(qi, pi) defined on full phase space is by

analogy with (3.79)

% =B~ {B,H}+{B ¢;}uy i=1..n (4.25)

or equivalently in terms of Hp

B _ B~ (B, Hp). (4.26)

In (4.25) and (4.26) the brackets denote the full phase space Poisson brackets as given

by (3.75).
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The next step in the algorithm is to demand that the primary Hamiltonian constraints

(4.22) are preserved in time. From (4.25) this requirement is guaranteed if
0=~ {0, HY} + {0, o} i,j=1..,n 4.27)

and after use of (3.75), (4.27) becomes

oH’ JdA . dA .
0=~ - A A+ q IJ-QI . y;
dq; daq; an'
L,j1=1,...,n. (4.28)
In view of (4.4) and (4.5) equation (4.28) can be rewritten as
0=-E + W uj Lj=1,...,n (4.29)

However since the primary constraints (4.22) only restrict the momenta, which do not
occur in (4.29), then the equality in (4.29) may be taken to be strong and so (4.29)

becomes

W@ vy = Ei@) =1, ..n (430

The underlying constraint structure of (4.30) can now be investigated in direct analogy

to the Lagrangian constraint analysis of (4.3). The condition that (4.30) has solutions

for the u; when IWl =0 leads to a set of secondary Hamiltonian constraints

Xe(q) = O 0 =1,..,K (4.31)

which are identical to the primary Lagrangian constraints (4.7).
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The condition that the secondary constraints (4.31) are preserved in time must now be

considered.and this is guaranteed from (4.25) if

, j=1, ..., n
0= {xom )+ {x0.0} y 6=1,..,k 32
and this simplifies to
axe j=1, ..., n
3g; 7 o=1,.. K @33

The time preservation conditions for the primary constraints (4.30) must now be

considered in conjunction with the time preservation conditions for the secondary

constraints (4.33) and this leads to the system of equations for the u

W@ v = E(@) s=1,..,(n+K) (4.34)

where W’ = [w’sj] and E' = [Es] are given respectively by (4.10) and (4.11). The

weak equality in (4.34) corresponds to the restriction of the motion to the constraint

surface V in the Lagrangian analysis.

The Dirac-Bergmann constraint algorithm now continues in precisely the same way as

the Lagrangian constraint algorithm except that time preservation is now ensured via

{constraint, Hp} =0 (4.35)

and it is the multipliers u; which are now to be determined rather than the velocities ¢; .

The following situation is eventually reached.
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There are n primary Hamiltonian constraints given by (4.22) and K’” l-ary

Hamiltonian constraints

x'q,(q) = 0 ¢ =1,...,K” (4.36)

where 12 2. The Hamiltonian constraints given by (4.36) are just the Lagrangian

constraints given by (4.17). In addition the u; satisfy the conditions

W@ u = E @ w=1.,(n+K”) (437

where W = [WWJ] and E” = [Ew] are respectively given by (4.19) and (4.20).

As in the Lagrangian case the conditions for the existence of solutions of u ; lead to no

1444

new constraints independent of those given by (4.36). Also if rank W’ =R’” <n

- will remain

then, as seen in the Lagrangian constraint analysis, (n — R”’) of the U

completely arbitrary.

Finally, it is of interest to note that the Hamilton equations of motion are given by

g = {ap Hp} =y i=1..,n (4.38)

and

0 .
I:')i = {pi’ HP} = Uj £ (qk Aki) l,_],k =1, ey I (439)
J

(4.38) merely emphasizes the already known fact that the multipliers are taking on the

role of the velocities in the Dirac—Bergmann algorithm.
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B Analysis of field theoretic first order systems with constraints

An indication of how the last section can be generalized to the infinite dimensional case
will now be discussed [6]. The most general field theoretic Lagrangian L that is

admitted for the forthcoming analysis is

L-[(QAb@ (3 0) -k@)@x B

where the AH = [AI‘;] are matrices depending on the fields Q and K is a function

depending also on the Q. Now from a consideration of (2.32) it follows from (4.40)

that the Lagrangian density L of the system is

L= £(Q 9, Q) - QAKQ (3. @) - KQ. (4.41)

By defining

H'(Q, 9 Q) = KQ - QAf (3, Q) 0N @a2)

it can readily be seen that (4.41) can then be re—expressed in the space—time decomposed

form

L= QANQ (3, Qr) - H(Q, 3 Q). (4.43)

The field theoretic Euler-Lagrange equations are found to be

9AY oA? o’
[AIOI - AJOI + QL éEI;J— QL ﬁIJ(ao Q) = —— -

oH’ I,J,L = N
Op | —= > PR (4.44)
k(a(ak QI)] k=1, ..,3



after substitution of (4.43) into (2.35). (4.44) can be written in the more compact form

Wi(Q (35 Q) = E(Q) L] =1,..,N (4.45)

where obviously

oA oA?
Wh(Q = AY - AV + @ Y _ g U (4.46)
i I I L BQI LaQJ
and
oH’ oH’
E(Q = — - |7 |- (4.47)
I o (a(ak QI)J

(4.45) is the field theoretic analogue of (4.3) of the finite dimensional analysis except
that now it is possible for spatial derivatives to occur in the subsequent analysis. The
problem of spatial boundary conditions that ensues due to the presence of these spatial
derivatives will be treated in the same way as it was in section C of chapter III; in other
words it will not be treated too rigourously. With this borne in mind the Lagrangian
constraint analysis proceeds from (4.45) essentially as it did from (4.3) in the finite case

until a similar final situation is reached.

Consider now the Dirac-Bergmann analysis of (4.43). By putting (4.43) into (2.36) the

field theoretic canonical momenta are found to be

I = Qy A(Q LI =1,..,N  (4.48)

By analogy with (4.22) in the finite dimensional case, (4.48) yields the N primary

Hamiltonian constraints

ol =TI - Q A = 0 LI =1,..,N  (4.49)
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From (2.39) the Hamiltonian density H is found in this case to be
HQ. ) =H(Q, 9, Q) k=1,..,3 (4.50)

and after consideration of (3.128) and (3.129) it follows from (4.50) that the primary

Hamiltonian density is given by
Hp(Q. 11) = H(Q, 9, Q) + yy ¢l. (4.51)

The uy in (4.51) are multiplier functions which again assume the role of the velocities.

Now from (3.129) it follows that the primary Hamiltonian Hp is given by
Hp = [ (H(Q 3 Q) + us 01) &x. (4.52)

Furthermore it can be seen from (3.131) that the time development of a functional B of

phase space variables and their spatial derivatives can be expressed by

9B = 1809, [ Hpy) @y (4.53)

after a consideration of (3.129). The field theoretic Poisson brackets in (4.53) are

defined by (2.42).

As in the finite case the conditions that the primary constraints (4.49) are preserved in

time must now be considered. This is ensured from (4.53) if
0 = 3 0l(x), J Hop(y) d3y (4.54)
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or equivalently if
0 = [ {0160, B} &y + [ {0100, 0¥} wty) By (4.55)

After some manipulation (4.55) becomes
Wi Q) vy = E(Q (4.56)

where Wiy and E; are respectively given by (4.46) and (4.47). The fact that the

equality in (4.56) can be taken to be strong follows from an argument similar to the one

given after (4.29) in the finite case.

Now, as was seen in the infinite dimensional Lagrangian constraint algorithm, the
analysis proceeds from (4.56) just as it did from (4.30) in the finite dimensional case

until once again a similar final situation is reached.

As an application of the field theoretic version of the Dirac-Bergmann algorithm for first
order systems the case of a massive spin—% particle coupled to an external
electromagnetic field will now be considered. This example has the additional advantage
in that it will also serve to show how the constraint algorithm can be used to handle
coupled systems. The investigation of this coupled system will take its lead from the

work done by Hasumi, Endo and Kimura [7] but will be such that it is a more detailed

look at the constraint analysis of this system than the one presented by them.

A hermitian Lagrangian density L for the Rarita~Schwinger spin—% field vy,

minimally coupled to an external electromagnetic field A, is given by
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L =5 e gy s u(3vp) -7 99 (3, 7) % % v
.

im Y ore \Up ~ 1eehon N Ys Y Wp Av

AP, R,V =0, ..., 3.

(4.57)

In this analysis the metric convention given by (2.29) has been adopted. In (4.57) the

gamma matrices 7, satisfy the Clifford algebra

W+ W = 2gky nv=20..,3

and additionally

Ys =1Y " Y2 Y3

and

GHv = é_(yu AR yu) L,v =0,...,3.

Also in (4.57)

— T
W}LZ\U)\ Yo A=0,..3

and the convention €923 = —g;,,5 =1 has been assumed.

(4.58)

(4.59)

(4.60)

(4.61)

At this point it is important to remember that the constraint algorithms have all been

described for the explicitly time independent case. With this in mind the external

electromagnetic field A, must be assumed to be time independent if the previously

described Dirac-Bergmann constraint algorithm is to be successfully applied to this first

order example. With this assumption it follows that A, depends only on the spatial

coordinates x! where i=1 to 3.
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Now a space-time decomposition of (4.57) leads to

1 _ 1 —
L = 5 eMH0 [, s y“(ao Wp) + 5 eMPRE G vs (ak \VP)
1 _ 1 T
7 el (ao \h) s Yu Wp — 5 EMPHK (ak Wl) s Vo
+ im Yy, oM Yo — i eehpuy Vi YS T VYo A,

A,
k

o

s },;, \Y =3 0, ey 3 ) (462)

The momenta conjugate to (\)[;\) . and (\;II)E , where a denotes a bispinor index and

runs from 1 to 4, are in accordance with (2.36) defined to be

oL A=0,.. 3
A - T s s
(H )a - [a(ao Wk)l a=1,..,4 (4.63)
and
t_(_ 9L A=0,.. 3
™.~ o) SIiile e

respectively. By putting (4.62) into (4.63) and (4.64) it is found that

n =0 a=1..,4 (4.65a)
1 i, 3, k=1, .., 3,

T, = -z—(s‘“l vl s v, Yo)a A (4.65b)

(HS)T =0 a=1..,4 (4.65¢)

1 .. i
2ET R v). 2i0 T (4.65d)

™
|
s
~
]

and equation (4.49) then implies that (4.65) yields the following primary constraints
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¢, =10, = 0 a=1,..4 (4.662)
’ 1, i,j, k=1, .., 3,
0y =TI — 2(= vivs Yo} = 0 A (4.066)
(cpf)* = (HS)T ~ 0 a=1..,4, (4.66¢)
kot S i, i, k=1, .., 3.
(%) 3 (H) S Gk CR 2R 7R T0 N AR U (4.664)
The Hamiltonian density H is defined to be
T
H = I (ao W) + (aowu)(nu)f - L po=0,..3 (4.67)

(4.67) is merely an extension of (2.39) which incorporates the conjugate fields \VL .

After some manipulation (4.67) becomes

H o= 5 0 s (3w, + 5 2 (3, 72) % . v

— im Vi oM Wp + iegehrny Vi Y5 Y;l Wp Av

A,p,u,v=0,..,3
k=1, ..,3 (4.68)

and from (4.51) it follows that the primary Hamiltonian density Hyp is given by
Hp = H + ¢“+ T Q)“T p=0,..,3 (4.69)
L Hua @, uua(a) a=1,..,4 '
where u,,(x) and u:a(x) are Lagrange multiplier functions which are as yet
undetermined.

The fundamental equal-time Poisson brackets are from a consideratibn of (2.47) found

to be

{Wua(x), H;(y)} = {wja(x), (H‘g)T(y)} =8 5 Pr-y  (@.70)
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and from (2.45) and (2.46) all the other combinations are zero.

The next step of the analysis is to ensure that the primary Hamiltonian constraints (4.66)
are preserved in time. Consider first of all the time preservation of (4.66¢). From

(4.54) this is guaranteed provided that
_ N 5 _ ont ) 3
0 ~ (tb) (), | Hpy) dyp = (H) ), | Hp(y) d°y (4.71)

and from the form of the fundamental Poisson brackets (4.70) only the terms of Hp

that contain \yg will make any contribution to (4.71). In view of this (4.71) can be

written as

0 = (Hg)’r(x),f (_ %sopuk (%b)T (Yo ¥s Yp(ak ‘Vp))b
gOphk (ak(WOb)T) (Yo Ys Y ‘I’P)b"im (WOb)T (YO o Wp)b

g0pry (\VOb)T (Yo Ys Yu Vo Av)b) (y) d3y

BN —

+
a.

1, .03 7. @mn

A partial integration of the second term in the integral in (4.72) leads to

f 6 eOpuk (ak(WOb)T) (Yo Ys Yu ‘Vp)b) (y) 3y =
f (% gOpuk 8k( (WOb)T(YO Ys Y \Vp)b)) (y) By —

f (% g0k (wioy ) T(v0 s v (2 wp))b) (y) ddy e
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and the first integral on the right-hand side of (4.73) can be transformed into a surface
integral by Gauss' divergence theorem in a manner similar to (3.176). If this surface

integral is assumed to vanish at infinity then (4.72) now becomes

o= [{y . (e (vo)' (s m(2uvs)

- 1m (WOb)T (Yo o0p Wp)b +ie glpry (\VOb)T ('Yo Ys Yu Vo Av)b )(Y) }

ddy  (4.74)
and this simplifies to the condition
ol D y; + my y; = 0 i,j=1,..,3 (4.75)
where
D; = 0; — ieA; 1=1,..3. (4.76)
(4.75) is a secondary Hamiltonian constraint which will be denoted by
X =0l Dy y; + my y; =~ 0. (4.77)

A similar time preservation analysis of the primary constraint (4.66a) leads to another

secondary Hamiltonian constraint which is essentially the conjugate of ¥ , thatis

xT Yo

7 (Di* Wj) G + my; ¥ ~ 0 i,j=1,...,3  (478)

where

D = 3 + ieA, i=1..,3 (4.79)
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Now the time preservation condition for the primary constraint (4.66d) is

0~ (qf;)T(x), [EROr

= ((HE)T - lj (ekij Yo ¥s ¥; \yi)a)(x), j Hp(y) d3y (4.80)

after consideration of (4.54). Once again by taking the nature of the fundamental

Poisson brackets (4.70) into account equation (4.80) becomes

0 = (Hf)T(X),f (— %elp“i (v (YO ¥s Yu (ai \Vp))b

+ % glppi (ai(\lflb)T) (Yo Ys Yu \pr)b—im(\Vlb)T(Yo cle \Vp)b
+ ie glPny (\Vlb)T (YO Ys Yu Vo Av)b —
3w &1 (yio)t (15 Yo)cb)(y) d3y

—% (E55(Yo ¥s ¥)ac Wie) (%), f (ulb HL)(y) d3y

I k1=1,..,3 (4.81)

and after a consideration of the spatial boundary conditions (4.81) eventually simplifies

1o

okl u; = o Dy yo — e ¥y Y5 Yo Dy W~ mK g -
imy, oy +ieck y; Ay 1,5,k = 1,..,3. (4.82)
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By a similar argument the time preservation requirement for the primary constraint
T

i

(4.66b) leads to the conjugate of (4.82), that is to say an equation ciontaining the u

It should be noted that (4.56) of the general analysis is in essence now represented by
(4.82) in this example except that the equality is no longer taken to be strong due to the

occurrence of the secondary Hamiltonian constraints given by (4.77) and (4.78).

(4.82) must now be investigated to see to what extent the u; can be determined. By

operating on both sides of (4.82) with

__;_(»Yl»\{k ~ 2glK) Lk=1..73 (4.83)

and making use of the fact that

~ L4k — 2g1k) oki = gl Lk1=1,..3 (484
F Y

it is found after some manipulation that

u =Dy yp + 1%y Dy +iey Ag - imyp v
-3 Y% ¥ o Dj % - 5 ¥ L,j,1=1..3 (485

Thus the multipliers u; have now been determined and if a similar analysis is performed

on the conjugate of (4.82) then this will lead to the determination of the uIr .

The time preservation of the secondary Hamiltonian constraints given by (4.77) and

(4.78) must now be examined. The condition that (4.77) is preserved in time is
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o
U

200, [ oy a3y

(64 Dy + m v )0, J' Hop(y) BBy (4.86)

after use of (4.53). (4.86) is equivalent to

0 =3 ((ciiDy),y wjb)(x),j (ulc Hi)(y) a3y

+ (m(Yj)ab ij)(x),J (ulc ch)(y) d3y

i,j, 1=1

ey 3
a, b, c= .

- (4.87)

Pt 2
-

and this ultimately becomes
ol D; uy + my u =0 iL,j=1,..3. (4.88)

Substituting for uj, as given by (4.85), into (4.88) leads, after making use of the

secondary constraint (4.77), to the condition
2Ry Wo + Tx y, = 0 k=1..,3 (4.89)

where the matrix R is
1 e T ..
R = 5(1 . (ﬁ)‘“ pij) L,j=1,..,3 (4.90)

and the matrices I'¥ are
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O = (7% (3) (¥ 7570 (3 40) = 0 ¥ 71 (31 o)

+oylyk oyl Fij)) i k=1,..,3 (491

and the Fij in (4.90) and (4.91) are given by
Fij = 0; A - d; A, L,j=1,...,3 (4.92)
Equation (4.89) is a tertiary Hamiltonian constraint and it will be denoted by
0 = 2Ry, yo + Ik yy = 0. (4.93)

The corresponding tertiary Hamiltonian constraint obtained by considering the time

preservation of the secondary constraint (4.78) is

8 = 6% v, = 29, YR + ¥, [k = 0. (4.94)

The remainder of the constraint analysis now hinges on the nature of the matrix R in
(4.90), that is to say whether R is singular or non-singular. It is found that R

satisfies the relation

R2 - R + 5(1 - (—)2 N, Ni) =0 i=1..3 (4.95)
m

where the N; are the components of the magnetic field vector and are given by

Ni = = gik Fix Lk =1,...,3 (4.96)

DO »—

As a consequence of (4.95) it follows that

R = @2 (1 - (%T N, Ni)z . (4.97)
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There are now two possibilities to consider :-

1) As the first case suppose that IRl # 0. The constraint analysis continues by
demanding that the tertiary constraints given by (4.93) and (4.94) are preserved

in time. For the constraint (4.93) this is guaranteed from (4.53) if

0= je(x), J. Hp(y) d3y

~

= I(2RyO Vo + Ty )), j Hp(y) d3y (4.98)

\

and this can be expressed as
0 = ¢ ((2RY0)ab Vo)), J (u(,c HS)@) d3y

+ ((Fk>ab ka)(x),J (ulc Hi)(y) d3y

k,1= .., 3
a, b,c 1, o, 4 (4.99)

o

After some manipulation (4.99) leads to the condition
2Rypug + Tkuy = 0 (4.100)
and since |RI+# 0 (4.100) can be used to determine the multipliers ug, that is

uy = -% Yo R-1Tky, (4.101)

where the uy, are given by (4.85). A corresponding analysis of the time

T

preservation condition of (4.94) leads to the determination of the u o

105



The constraint analysis is now complete because all of the multipliers have been
determined and no more constraints are generated. By computing the Poisson
brackets of all the possible combinations of the constraints it is found that none
of the constraints have weakly vanishing Poisson brackets with all the other

constraints. Consequently all the constraints are second class.

The second case is when IRI=0 or equivalently from (4.97)

1 - (—— N, N; = 0. (4.102)

The situation now becomes much more complicated and in order to simplify the

subsequent calculations it will henceforth be assumed that 9, A;j =0 and
F;; = constant. With these last two assumptions in mind the external field is now

a constant pure magnetic field and from (4.91) the I'k become

Tk = (yk + (—le—z) i vk yi Fijj. (4.103)

3m

At this point of the analysis it is convenient to introduce the matrix R which is

defined to be
R=1-R=2il1+]|-]6iF. (4.104)
R S ) A b -
When R is singular, that is when (4.102) holds, then (4.95) reduces to

RZ = R (4.105)

and from this it is trivial to deduce that

N
o
I

N

(4.106)
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and

RR = RR = 0. (4.107)

The form of equations (4.105) and (4.106) indicate that the matrices R and R

are projection operators. In light of this the constraints (4.93) and (4.94) can be

projected with these matrices and this gives rise to the conditions

RO = 2Ry, y, + RI*y, = O, (4.108a)

R =6 =RI*y, ~0 (4.108b)
and

6R = 2§, Y, R + ¥, T*R = 0, (4.109a)

6R = 6 = §, [*R = 0. (4.109b)

Equations (4.108) are equivalent to (4.93) whereas equations (4.109) are

equivalent to (4.94).

The constraint analysis now proceeds by investigating the consistency conditions
for the time preservation of (4.108) and (4.109). Therefore consider first of all

the time preservation of (4.108a) which is ensured from (4.53) provided

r

(e
U
A

(RO)(x), f K ply) d3y

\

il
A

(ZRYO Yy + RTk \Ifk)(X), J- Hp(y) d3y_ . (4110)

\

(4.110) is equivalent to
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0 =~ 3 ((2RY) s WOb)(X)aJ. (Uoc HS)Q’) d3y

. (OU*waHmef(?krI}wcﬁx

k,1=1, ..., 3
a b,c=1, ”’4 (4.111)
and this ultimately gives rise to the condition
2Ryy ug + Rk u = 0. (4.112)
From (4.112) it is readily seen that
1
Ruy =~ -5 ¥ RI* u (4.113)

where I' and u, are respectively given by (4.103) and (4.85). Thus the

consistency condition of (4.108a) has determined Ru, and in a corresponding

manner the time preservation of (4.109a) would lead to the determination of

ugR.
On the other hand the time preservation condition of (4.108b) is from (4.53)

0= 180, [ a0 @y p = 3 (Rrxy oo, [ e @y @y

which, after a consideration of the form of Hp as given by (4.69), can be

written as
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0 =\ ((RT¥),, ka)(x)»J (ulc Hl)(y) d3y

k,1="1
a

1 , 3
, b, c

07 4. @115)

-

(4.115) then gives rise to the condition
RIky, = 0 (4.116)

which after making use of equations (4.104), (4.103) and (4.85) and the
constraints (4.77) and (4.93) and performing some extensive rearrangement

results in the equation

R vy W + RAK y, = 0 | (4.117)

where

' i 2¢ .
AR = o+ (m)(gm*z)z Fi, DUy Fj; 7 gk

+(F)(%JFijDigjk ik, Lm=1,..3. (4118)

(4.117) 1s a quaternary Hamiltonian constraint equation which will be denoted

by

£ =Ry v + RAk y =~ 0. (4.119)

In addition the demand that (4.109b) is preserved in time leads correspondingly

to the quaternary Hamiltonian constraint

gh=yl v R+yl (AR =0 (4.120)
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where the (Dl)T in (Ak)T are given by
(D) = 3 + je Al. (4.121)

The new tier of quaternary constraints (4.119) and (4.120) must, like all the
previously uncovered constraints, be preserved in time. The consistency

condition of (4.119) is from (4.53)

0 -~ J 00, [ Hpy) @y

\

= J(ﬁYo Yo + RAX \Uk)(x)’ f Hp(y) d3y (4.122)

.

and this ultimately becomes

0= ((ﬁYO)ab WOb)(X), J (uoc HS)(y) d3y
+ ((ﬁAk)ab ka)(x), J- (ulc Hl)(y) d3y

be= il s @12
Equation (4.123) in turn reduces to
Ryy up + RAx u = 0 (4.124)
from which it follows that
Ruy = — vy RAK u . (4.125)
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In this way the consistency condition for (4.119) has determined ﬁuo in terms

of the uy given by (4.85). In an analogous manner the time preservation

condition of (4.120) would result in the determination of ugﬁ .

The determination of uy is now effected by adding together (4.113) and

(4.125), that is

Uy = — 7 [%an RAK Juk | (4.126)

after noting from (4.104) that

R+R=1L (4.127)

A corresponding combination of the expressions for uBR and ugﬁ would

clearly determine uB

At this point the constraint analysis of the system terminates because all the
multipliers have now been determined and no more constraints are generated.
Furthermore, the new quaternary constraints do not have weakly vanishing
Poisson brackets with all the other constraints and so, as in the case when

IRl # 0, all the constraints are second class.

Prior to the investigations of Hasumi, Endo and Kimura [7], whose constraint analysis

constitutes the basis of the detailed calculations that have just been considered, a lot of

other work had been done on the Rarita—Schwinger field coupled to an external

electromagnetic field. In particular, Johnson and Sudarshan [5] observed on quantizing

the theory that the anticommutators of this coupled Rarita—Schwinger system were non—

positive definite. Later Velo and Zwanziger [4] discovered, at the classical level, that for

111



certain values of the external electromagnetic field the system either propagated acausal

modes or did not propagate at all.

One of the main aims of the paper by Hasumi et al was to thoroughly analyse the
Johnson—-Sudarshan pathology in terms of the Dirac-Bergmann algorithm. In doing this
they found that for certain values of the external electromagnetic field, given by (4.102),
then the constraints (4.93) and (4.94) could not be used freely as Johnson and
Sudarshan had correspondingly assumed in their analysis. Indeed it has just been
explicitly demonstrated that when the condition (4.102) holds then a new tier of
constraints, that is (4.119) and (4.120), is obtained and this indicates that the original
Johnson-Sudarshan analysis was incomplete for these critical field values. This new
hierarchy of constraints results in a change in the number of degrees of freedom of the
system and the anticommutators of the theory in these cases are far more complicated

than the ones derived by Johnson and Sudarshan.

Velo and Zwanziger's acausal modes of propagation were uncovered when the
characteristic determinant of their 'true equation of motion' was analysed. This 'true
equation of motion' was obtained by freely substituting their secondary constraint into
their original equation of motion. At a first glance Velo and Zwanziger's free use of
their secondary constraint seems very reminiscent of the Johnson-Sudarshan analysis
which ultimately led to the non—positive definiteness of the anticommutators.
Furthermore Velo and Zwanziger showed that the onset of acausality occurred when the

magnitude of the external electromagentic field satisfied (4.102).

All of this would seem to suggest a common origin for the Johnson—Sudarshan and
Velo—Zwanziger inconsistencies. This point was addressed by Kobayashi and
Takahashi [13] who converted the Rarita-Schwinger field coupled to an external
electromagnetic field into an equivalent constrained mechanical model. With the aid of
this mechanical model they demonstrated that the Rarita—Schwinger paradoxes discussed

above do indeed have a common origin. They identified this origin as being the non—
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existence of a unique inverse of the matrix (4.90) when the external electromagnetic field

satisfies the critical condition given by (4.102).

Now Hasumi et al showed that the Johnson—Sudarshan constraint analysis was
incomplete and in light of the fact that the Johnson—Sudarshan and Velo—Zwanziger
inconsistencies share a common origin, it analogousiy follows that the Velo—Zwanziger
analysis must also be incomplete. The original Velo—Zwanziger treatment was carried
out using a version of the Lagrangian constraint algorithm whereas the work of Hasumi
et al and the detailed investigation given in this chapter were tackled via the Dirac—
Bergmann algorithm. In a recent article Cox [14] completed the Velo—Zwanziger
constraint analysis on the Lagrangian side and at the same time he also demonstrated the
equivalence of his results to those obtained by Hasumi et al on the Hamiltonian side.
Not surprisingly Cox uncovered a new level of constraints for those values of the
external field satisfying (4.102) and this again signalled a change in the number of

degrees of freedom of the system.

The upshot of all this is that for those critical values of the external field, given by
(4.102), Hasumi et al and Cox have respectively shown that the Johnson-Sudarshan
and Velo—Zwanziger diseases do not actually s_urface because the original constraint
analyses which led to their discovery were incomplete. Instead it transpires in both
cases that a new level of constraints is unearthed and consequently the Johnson—
Sudarshan and Velo—Zwanziger inconsistencies are both seen to degenerate to a loss of

degrees of freedom.
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PART 2

THE GEOMETRICAL APPROACH TO
HIGH SPIN FIELD THEORIES
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CHAPTER V

A BRIEF REVIEW OF DIFFERENTIAL GEOMETRY
The aim of this chapter is to introduce some of the main concepts of differential
geometry that will be required for the subsequent geometrical treatment of dynamical

systems.

A Differentiable manifolds

Essentially a manifold is a generalization of the concept of a surface in Euclidean space.
However a manifold is defined such that it is a space in its own right rather than being
an embedding in some higher dimensional space. More precisely an n—dimensional
topological manifold M is a Hausdorff topological space such that for every point
m € M there exists an open set U C M and a homeomorphic mapping ¢ from U to
an open set V C R™. The pair (U, cp) is called a chart at m and U is known as the
domain of the chart. A chart is also often referred to as a local coordinate system or a
parameterization. The coordinates (xl, cees x“) of the image ¢(m) e R™ of the point
m € M are called the local cvoordinates of m in the chart (U, (p). The above
definition of a manifold basically states that M is a collection of points which locally,

that is within a particular chart domain, look like R™.

Two charts on a manifold M, (Ul, (pl) and (Uz, (pz) , are said to be compatible if

for U nU,# ¢, where ¢ denotes the empty set, then the sets (pl(Ul N U2) and

(pz(Ul N U2) are open subsets of R™ and the overlap maps ¢ o (p2_1 and ¢, o0 (p;1

are continuously differentiable to all orders, that is the overlap maps are C*=. This is

illustrated in figure 5.1.
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Figure 5.1 Compatibility of two charts on a manifold

This compatibility condition between charts ensures that there is a smooth

transformation between the local coordinate system associated with the chart (U 1 (pl)
and the one associated with (Uz, (pz) in the region covered by both coordinate

systems.

An atlason M is a set of compatible charts {(US, (ps)} of M such that the set of

domains {US} covers M, thatis M=U U;. M may however have many different
S

atlases on it and so the concept of the equivalence of atlases is required. An atlas B; on
M is equivalent to an atlas B, on M if every chartin B; is compatible with every
chartin B, or alternatively the two atlases are equivalent if and only if B; U B, is also
an atlas. This defines an equivalence relation on the set of all atlases for M and each

equivalence class S of atlases is said to be a differentiable structure for M.

A C= differentiable manifold is then defined to be the ordered pair (M, S) where S is
a differentiable structure on M. In general a differentiable manifold is simply referred to
as a manifold; in other words no reference is made to its associated differentiable

structure.

A function g on a manifold M is a mapping g: M — R such that a real number is
assigned to each point m € M. Suppose now that (U, (p) isachartat me M then it

follows that go ¢! is a mapping from an open set V C R™ into R. The mapping

g o @~ represents the function g in the local chart (U, (p). Furthermore a function g
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is said to be C> differentiable at m ona C= differentiable manifold M if in a chart
(U, cp) atm, the mapping go @1 is C= differentiable at @(m). In view of this a
function g:M — MR issaidtobe C= on M ifitis C= differentiable at each point

m e M and the space of C= functions on M is denoted by either C=(M) or F(M).

Consider now a mapping f between two manifolds M, , of dimension n say, and
M,, of dimension p, thatis f: M; = M,. f issaid to be C= differentiable at

m € M, if there is a chart (Ul, (pl) at m and a chart (Uz, (pz) at f(m) e M, with

f(Ul) C U, such that the map @,0fo (p;1 is C= differentiable at @;(m). In

particular a mapping between manifolds f: M; - M, isa C> diffeomorphism if f is
C= differentiable and in addition f is a bijection and the map ! : M, —» M, is also

C= differentiable. Two manifolds M; and M, are said to be diffeomorphic if and

only if there exists a diffeomorphism between them. .

B The tangent space at a point of a manifold

The tangent space of a manifold M at a point me M is denoted by T,,M and in
essence it models the manifold at m. Put another way T M is a local linear
approximation to M at m. There are several equivalent ways of defining the tangent
space of a manifold and the one that will be adopted here is the so—called curves
approach [8]. Basically this is a coordinate independent approach that makes use of the

concept of a tangent vector as being the tangent at a point me M to a curve on M

passing through m.

A curve through m e M is amapping ¢:I— M from an open interval I CR into M

with 0 € Tand c(0) = m. The curve is said to be smooth if the map ¢ is C=

differentiable.

Consider now two curves at m € M, ¢; and ¢y, and let (U, (p) be a chart on M

such that me U. Then c¢; and c, are said to be tangential at m € U with respect to
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the chart (U, (p) if @oc; and @ o ¢y, whenever these maps make sense, are
tangential at @(m). The tangency of @oc, and @oc, at @(m) is meaningful since

this tangency refers to the usual tangency of curves in R™. Al this is illustrated in

figure 5.2.

R R4
0 ¢

Figure 5.2 Tangency of two curves at a point of a manifold

Iy

)

It follows from the above that two curves are tangent with respect to the chart (U, (p)

provided they have identical tangent vectors in (U, (p) .

Suppose now that there are two charts (Ul, (pl) and (Uz, (pz) where me U; and
m € U, . Itcan be shown [8] that twocurves ¢; and ¢, are tangentat me M with
respect to (Ul, (pl) if and only if they are tangent at m € M with respect to

(Uz, (pz). This ensures that the tangency of any curves at m € M is independent of

the underlying chart as mentioned earlier.

The above idea of tangency at m € M is in fact an equivalence relation among the

curves at m. The equivalence class of such curves at m € M will be denoted by [c],,

where ¢ is a representative of the class. All curves in a given equivalence class have
the same tangent vector at m and so this tangent vector is defined by identifying it with

the equivalence class of curves tangent at m.

In light of the above the tangent space T;;M of a manifold M ata point me M is

defined to be the set of all tangent vectors at m. In other words
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TM = {[c]m scisacurve at me€ M}. (5.1)

It should be noted that the tangent space T, ;M is a vector space isomorphic to R™ if M
is an n-dimensional manifold. Since T, M is a vector space it follows that it must

have a basis. It can be shown [15] that if the coordinates of a neighbourhood of me M

are denoted by (xl, xn) then a basis for T M is given by (i i) .

ox! ’ > 9xn

This basis is known as the natural basis for T, M.

The tangent bundle of M is the union of all its tangent spaces and it will be denoted by

TM. Thus

™= U T_M. (5.2)

Consider now a mapping between an n-dimensional manifold M; and a p-dimensional
manifold M,, thatis f : My — M, and suppose that f is C= differentiable at

m e M, . Then there is an associated linear mapping between the tangent spaces of M,
and M, given by f, : T, M; — Tgy)M, such that a tangent vector in T;M; is
mapped into a tangent vector in Ty )M, . If in terms of tangents to curves through m

the equivalence class [c],, denotes a tangent vector v, € T, )M, then f, v, € Ty )M,

is given by
fo ([c]m) = [fo clim- (5.3)

The mapping f, is known as the push—forward map. Furthermore if there is a third

manifold My of dimension q and a C= differentiable mapping between manifolds

h:M, — M;j then

(hof)y = hyofy. (5.4)
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C Fibre bundles

The idea of the tangent bundle of a manifold introduced in section B of this chapter is

just a particular example of a more general geometric structure known as a fibre bundle.

In general terms a bundle [16] is a triple (B, M, H) where B is a topological space

known as the bundle space, M is also a topological space known as the base space and
I1:B — M is a continuous surjective map called the projection map. The inverse image

IT-}(m) for m e M is termed the fibre at m and is denoted by F, . Furthermore if
forall me M, IT-Y(m) is homeomorphic to some common space F then F is called
the typical fibre and the bundle is said to be a fibre bundle. In the specific case when the

space F is a vector space then the fibre bundle is termed a vector bundle.

A C= differentiable bundle is then one which satisfies the above conditions except that

B and M are now C= differentiable manifolds and the projection map IT is also C=

differentiable.

For convenience a bundle (B, M, H) is often just denoted by the bundle space B.

The tangent bundle TM will now be described in terms of the above fibre bundle

language. TM can be given a fibre bundle structure and this consists of the base

manifold M, the bundle manifold itself TM, which is represented by (m, vm) for all

me M and all v, € T, M, and a projection map Ty;: TM — M which is such that

(M, V) = m. (5.5

The fibre at m 1is given by 't{,ll(m) and in this case it is the tangent space at m, that is

T, M. In addition the typical fibre is R". Now if M is an n-dimensional manifold

then TM is a 2n—dimensional manifold. Suppose that in a chart (U, (p) the point
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m € M has coordinates (xl, x“) and the components of v, are (vrln vees vn)

then the bundle TM has local coordinates (xl, XMV V?n)
m

Consider now a general bundle (B, M, H)‘ A cross—section of this bundle is a

mapping X : M — B with the property that
ITo X = ldM (56)

where idy; is the identity on M. If x isa C> differentiable mapping then a vector

field on M is defined to be a cross—section of the tangent bundle TM. In essence a
vector field associates to each point m € M a tangent vector v, € T,M by the

mapping m — (m, vm). The set of all C= cross—sections of TM is denoted by

XK(M) and so a vector field on M is an element of X(M).

The tangent bundle is not the only bundle structure that a differentiable manifold
possesses. Before elaborating on this further consider first of all the following. If E is

a vector space then its dual space, denoted by E*, is the space of linear functionals

from E to R. Suppose that a basis in E is given by ¢ = (e, - €y ), then a basis in
E*, given by o= (ocl, oo ocn), satisfies
ei(o) = <ela>= 3§ L,j=1..n (5.7)

where <!> denotes the natural pairing such that E x E¥ —R. Vectors in the space E

are said to be contravariant whilst those in E* are covariant.

Returning now to the consideration of other bundle structures on M suppose that the

vector space E is in fact the tangent space to M atm, thatis T,,M. The dual space of

T.M, T:nM, is called the cotangent space at m € M and its elements are called

cotangent vectors or covariant vectors in contrast to elements of T,_M which are
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sometimes called contravariant vectors. It can be shown [15] that if (% v ai) is
X Xt

the natural basis for T,;M in some neighbourhood of m € M, then a natural basis for

* K . . . . . . 3
T,M in this neighbourhood is given by (dxl, dxn) and from a comparison with

(5.7) it immediately follows that

dxi>> = 8 Lj=1,..,n (5.8)

0
<is

In direct analogy to the case of the tangent bundle the union of all cotangent spaces, that

is kr# T;M, can also be given a bundle structure and this is known as the cotangent
bundle T*M. The cotangent bundle consists of the triple (T*M, M, T;A) where T*M
is represented by (m, Q)m) forall me M and all o, € T;M and T;A is the

projection map ’E;d : T*M — M which is such that

1y(m, ©,) = m. (5.9)

A covariant vector field isa C= cross—section of the cotangent bundle T*M and it is

often called a 1-form. In other words a I-form on M is the assignment of a covariant

* . .
vector w, € T_M at each point me M. The set of all C= cross—sections of T*M

is denoted by X*(M).

The above ideas behind the tangent and cotangent bundles can be generalized and this
leads to the concept of tensor bundles on differentiable manifolds. A tensor of type

(r,s) atapoint m of a manifold M is given in terms of a multilinear mapping [16]

(itom) x (3t,M) - R (5.10)



(5.10) indicates that the Cartesian product of T;]M rtimes and T /M s times is

mapped into the reals. The set of tensors of type (r,s)at me M constitutes a tensor

space of the manifold M at the point m, T_*(M), which is said to be contravariant of

order r and covariant of order s. As was seen in the tangent and cotangent cases it is
now possible to take the manifold M together with the set of tensor spaces of type
(r, s) suggested by (5.10) forall me M and give this a bundle structure. The result of
this is a tensor bundle of type (r, s) which is denoted by Trs(M). It then follows, in
direct analogy to the previous arguments, that a tensor field of type (r,s) on M isa
C= cross—section of Trs(M) or equivalently a ténsor field of type (r, s) is the
assignment of a tensor of type (r, s) at each point m € M. Finally it should be noted in
passing that TLO(M) and T%!(M) can be identified with the tangent bundle TM and

the cotangent bundle T*M respectively.

D Differential forms and their properties

Consider now the important case of the tensor space which is covariant of order k ata

point m of the manifold M, thatis To*(M). From (5.10)

k
™ : (KT,M) > R (5.11)
and from these multilinear maps consider only the ones which are totally antisymmetric.

These antisymmetric maps form a subspace A:;(M) of Tr(r)l’k(M) and its elements are

known as exterior differential k—forms on M at a point m. As before the spaces of
exterior differential k—forms at all points m € M can be collected together to form a
bundle Ak(M), a C= cross—section of which is an exterior differential k—form field on

M. The set of C= cross—sections of AK(M) will be denoted by Qk(M). Exterior

differential k—form fields are often simply referred to as k—forms.
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Some elementary properties of k—forms will now be outlined. The sum of two k—forms
is itself a k—form and the product of a k~form with a function is still a k—form. In
addition if for a given k—formon M, k >n, where n is the dimension of M, then the

k—form is identically zero [15].

It should be noted that the bundle of k—forms on M, that is AK(M), is more than just a
Vector space; it is in fact a module over F(M) = C(M), the space of all C*= functions
on M. In the simplest of terms a module over F(M) is essentially a generalization of a
vector space in which the scalars are elementsvof F(M). Furthermore a C* function on
M can be viewed as a O-form, that is to say an element of QY(M), and in view of this

it follows that QO(M) = F(M). In addition it should be noted that QIM) = X*(M).

Now between forms there is defined a multiplication known as the exterior or wedge

product which is denoted by A. If o, e QkM), B, ce QIM), then the exterior

product satisfies the following conditions :-

i) a A B e QktI(M) (5.12a)
and

oA = DB A ). (5.12b)

The condition given by (5.12b) shows that the exterior product is in general not

commutative.

ii) The exterior product is associative, that is

(arB)rt=or(Bnrr). (5.12¢)
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1i1) The exterior product is distributive in that

ar(B+o)=(axnrB)+(anro) (5.12d)
and
(@+n)aB=(anrB)+(nnrB). (5.12¢)
iv) fro = fo | (5.126)
and
f(a r B) = (fa) A B = a n(£B) . (5.12g)
Consider now a local coordinate system x = (x1, ..., x7), thena I-form ® on M,
thatis € QI(M), is given in terms of the natural basis for T' M, (dx1, ..., dxn),
by
® = a(x) dxi i=1..,n (5.13)

where the ay(x) are to be regarded as either O—forms or equivalently C> functions.

More generally it can be shown [15] that in a chosen chart then a basis for k—forms on

an n—dimensional manifold M is given by the G:) independent k—forms

I
{axanax® iy =1, . n} (5.14)

where the capital I's indicate ordered natural numbers, that is I; <Ij,; . From this it

follows that a 2—form & can be written locally as
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I I 1 . .
c = ar 1, dx!adx? = 37 & dx! A dxJ

1SIl<...<IkSn

% a .. dx' AL Adx® ii=1,..,n (5.16)

Il

where the a..

ij 1n (5.15) and the I in (5.16) are totally antisymmetric. A k—

formis C= differentiable provided that all its strict components ar, ... Ik(x) are C=

functions of x.
Besides the exterior product between forms there is a unique operator d, known as the

exterior derivative, which acts on forms. If o, e Q¥M), Be QM) and fe F(M)

then the exterior derivative possesses the following properties :-

i) do e Qk+1(M). (5.17a)

Thus d mapsa C= differentiable k—form into a C= differentiable (k + 1)

form.

i) The exterior derivative is linear in that

d(o + 1) = do + dn (5.17b)
and if A is a constant then
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d(re) = A(do). (5.17¢)

i) d(oc A B) = (da) A B + (-ka n (dB) . (5.17d)

iv) dz = 0. (5.17¢)

V) df is the ordinary differential of f.
vi) The mapping d is a local operation in thatif o and 1 coincide on an open set
U C M then dae=dn on U. In other words the behaviour of o outside of U

does not affect do on U,

A k-form o is said to be exact if it is of the form o = d§ for some (k — 1)—form &
and closed if doo=0. Clearly from (5.17¢) every exact form is closed but the converse
is not generally true. In fact only locally is it true to say that a closed form is exact and

this is known as the Poincaré lemma [17].

In addition to the exterior derivative which from (5.17a) was seen to raise the degree of
a form there exists a contraction operation which lowers the degree of a form. This
contracted multiplication is known as the inner or interior product. Suppose that
X e X(M) isavector fieldon M and o e QK(M) then the inner product of by X

is the differential form, ixo or i(X)o, of degree (k — 1) defined by

(ix @)(X1, - Xiet) = (X, Xy, .0, Xy ) - (5.18)

(5.18) makes sense since a consideration of (5.11) suggests that a k—form can be
defined as a functional on a set of k vector fields and likewise a (k — 1)-form is a
functional of (k — 1) vector fields. Now if o, 1 e Q¥M), B e Q(M), we QI(M),

fe F(M) and X e X(M) then the inner product satisfies the following :-

i) i(X)a e Qk1(M). (5.19a)

127



This merely re—iterates the fact that the inner product takes a k—form into a

(k — 1)~form.
i) The inner product is linear in that
iX) (e +1) = iX)o + XM (5.19b)

and if A is a constant then

i) = A(1X)w). (5.19¢)
i) iX)(a » B) = (i) A B + Dk a (IX)B) . (5.19d)
iv) i(X)? = 0. (5.19)
v) iOf = 0. (5.19)
vi) i(Xw = oX). (5.19g)

(5.19g) expresses the fact that the inner product takes a 1—form into a O—form,

that is a C= function.
vil)  The inner product is a local operation.

Consider now property vi) of the interior product in a local coordinate system

(xl, cees xn) in the specific case when the 1-form @ is given by ® =df for some

f e F(M). From property v) of the exterior derivative it follows that ® can locally be -

written as

o = df = ﬁ dxi i=1,..n (5.20)
ox!
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In terms of the natural basis for TaM, (aa—] e, éa—), the vector field X can be
X xn

expressed as

. 0
X = Xi(x) — j =1,...,n, (5.21)
oxJ

where the XJ are its components. From (5.19g) it follows that

X))o = iX)df = df(X) = <X|df> = Xi o 1=1,..,n (5.22)

ox!
after use of (5.8).

(5.22) is in fact the local version of an operation known as the Lie derivative of a
function f with respect to the vector field X. From this it follows that if fe F(M)
and X e X(M) then the Lie derivative of f with respect to X, which is denoted by

Lf, is defined to be
Lyf = ix df. (5.23)

The Lie derivative of a function is a local operation which is linear in that if f, g e F(M)

and X € X(M) then
Ly(f+g) = Lxf + Lxe. (53.24)

Furthermore it also satisfies the condition

Ly(fg) = (Lxf)g + f(Ixe) - (5.25)

A consideration of (5.23) and (5.19g) reveals that the Lie derivative maps functions into

functions.
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The above concept of the Lie derivative of a function can readily be extended so that it
acts on other geometric objects. Consider first of all the case of the Lie derivative acting

on forms. Suppose a,m € Qk(M), Be QM) and X € X (M) then the Lie

derivative satisfies

i

LX(a + n) Lyo + Lyn (5.26)

and

Ly(o o B) = (Lxa) A B + a r (LyxB) (5.27)

where (5.26) and (5.27) are the obvious generalizations of (5.24) and (5.25)
respectively for forms. The Lie derivative also commutes with the exterior derivative,

that is

Ly(do) = d(Lye) . (5.28)
It is apparent that the Lie derivative maps k—forms into k—forms.
As a specific example to illustrate some of the properties of the Lie derivative suppose
that f, ge F(M) and X € X(M) then the Lie derivative of the 1-form ® =fdgis

found from (5.27) to be

Ly(fdg) = (ix df)dg + fd(ix dg) (5.29)

after use of (5.23) and (5.28). By appealing to the pfoperties of the exterior derivative

and the inner product it is easy to show that

(ix d + dix)(fdg) = Ly (fdg). (5.30)

130



(5.30) indicates that
LX = 1xd + diX (5.31)

for the arbitrary l1-form ® = f dg. Furthermore with Ly as given by (5.31) it

immediately follows that Ly f, for an arbitrary function f, reduces to the definition

(5.23) after use of (5.19f). As a matter of fact (5.31) holds quite generally for higher
degree forms and it is known as Cartan's identity. In light of (5.31) and (5.19e) it is
straightforward enough to show that the Lie derivative also commutes with the inner

product, that is
LX iX . iXLX . (532)

The Lie derivative can also act on vector fields. In order to see this suppose that

X,Ye X(M) and ot € Qk(M) then

This result essentially follows from (5.25) if iyo 1is treated as a product, that is
iy = a(Y). In the case when a is a 1-form given by o =df, for some fe F(M),

then (5.33) gives rise to

and this can equivalently be written as

iLdef = (iX diy d-1iy dix d) f (5.35)
after making use of (5.23), (5.28), (5.31) and the fact that
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iy iy df = 0. (5.36)

Now in a local coordinate system (xl, ey x“) the left-hand side of (5.35) is, by

analogy with (5.22), given by

iy ydf = (LXY) a—f i=1,..,n (5.37)

whereas it can be shown that the right-hand side of (5.35) is locally given by

- Yl

o " (x )— i,j=1,..,n (5.38)

oY1 ' 1
(ix diyd —iydixd)f = (XJ X j B

after a consideration of the form of (5.21) and making use of (5.22). However it is easy

to show locally that

(X, Y]Of = (XY — YX)(f = (XJ’ ! yj0X! )
oxJ 8

,j=1,..,n (539

Since f is arbitrary it follows from the local arguments given by (5.37), (5.38) and

(5.39) that the Lie derivative of Y withrespectto X is

LyY = [X, Y] (5.40)

after using (5.35). The right-hand side of (5.40) is known as the Lie bracket of the
vector fields X and Y. It should be noted that (5.40) was obtained by considering the

arbitrary 1-form o = df, but the result still holds for forms of higher degree.

Suppose now there is a mapping f between the n— and p—dimensional manifolds M,

and M, respectively, thatis f: M; — M, , whichis C> differentiable at me M; .

The map f induces a map f*, called the pull-back map, on k-forms such that if
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Afn (Ml) and Aﬁm)(Mz) represent the space of k—forms at me€ M; and f(m) e M,

respectively, then

B Agmy(Mz) = A(M,). (5.41)

If v, € T,,)M; then as seen in section B of this chapter f,v, € TgmyM, and with this

in mind the pull-back (f*oc) of the k—form o on M, is defined to be

(Fra)m) (v, .oos Vi) = B mM)(fvys s L), (5.42)

The k—-form (f*a) is also known as the form induced by f from o. Furthermore if

o, Me Qk(Mz) and B e Ql(Mz) then the pull-back map satisfies the following :-
i) (o +m) = ffo + o). (5.432)

From this it follows that the pull-back map is linear. Also if A is a constant

then

f*(ha) = A(f*a). (5.43b)

i) f*(o & B) = (f*a) A (£4B). (5.43c)
1ii) The exterior derivative d commufes with f* thatis

f*(da) = d(f*a). . (5.43d)

In the instance when there is a third manifold M; of dimension q, say, and a C=

differentiable mapping h where h : M, — Mj; then the composite map
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(hof) : M; = Mj induces the map (h o f)* such that k—forms on Mj; are pulled back

to M, . In other words

(ho D+ Ajmy(Ms) = Ap(My) (5.44)

and since the map f* is given by (5.41) and

k k
h* Ah(f(m))(M3) — Af(m)(Mz) (5.45)
it follows from (5.41), (5.44) and (5.45) that

(hof)* = f*oh*. (5.46)

Additionally in the simple case when f isa Ce differentiable mapping f: M; - M,

and g isa C= differentiable function on M, , thatis g: M, — R, then the pull-back

of g under f is given by

f*(g) = gof. (5.47)
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CHAPTER VI

A REVIEW OF HAMILTONIAN MECHANICS IN GEOMETRICAL
FORM

This chapter describes how the usual equations of finite dimensional Hamiltonian
mechanics, as discussed in section A of chapter II, can be expressed in a coordinate
independent geometrical framework. Only systems without any explicit time

dependence will be considered in this analysis.

Suppose that the differentiable manifold Q represents the configuration space of some
dynamical system with n degrees of freedom and that locally Q has coordinates given
by q;,for i=1 to n. The tangent bundle of Q, TQ, can be identified with velocity
phase space and local coordinates on TQ are given by (qi, qi) where here the ¢; is
merely a notation which does not necessarily imply an explicit time derivative. In view
of this the geometrical formulation of Lagrangian mechanics essentially takes place on
the manifold TQ. On the other hand the geometrical version of Hamiltonian mechanics

takes place on the cotangent bundle of Q, T*Q, which is basically phase space with

local coordinates given by (qi, Pi) -

A Symplectic manifolds

Geometrically the Poisson bracket of Hamiltonian mechanics is an example of a
symplectic form on the cotangent bundle T*Q of the configuration space Q. In order
to elaborate on the idea of a symplectic form consider a general manifold M. Then a
symplectic formon M is a strongly nondegenerate closed 2—form ® on M. The term

strongly nondegenerate will now be discussed.

Consider first of all a vector space E and a 2-form  defined on it, that is

w: E x E > R. In this instance ® is said to be strongly nondegenerate if (X, Y)=0
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forall Y € E implies X = 0. There are several different but equivalent ways of

characterizing strong nondegeneracy [8] and two of these are given as follows :-

1) Suppose that o= (al, e ocn) is a basis for E*, the dual space of E, then in

local coordinates the 2—-form @ can be written as
O = O 0 A Q Lj=1,..,n (6.1)

where the @;; are antisymmetric so that @;; = — ®;; . The 2-form @ is then
strongly nondegenerate if and only if |[u)ij]| # 0. Thus for strong
nondegeneracy the antisymmetric matrix [(oij] must be non—singular and so it

follows that [O)ij], and consequently E and E*, must be of even dimension.

i) Consider the linear map b : E — E* defined by

<Yh)> = oX,Y) (6.2)

for X, Y € E where <!> again denotes the natural pairing encountered in
section C of chapter V. Then ® is strongly nondegenerate if and only if the

map b is an isomorphism.
These concepts of strong nondegeneracy described above for the vector space E are
readily carried over to a general manifold M. For instance the map
b: TM — T*M, which from (6.2) can alternatively be defined as

b(X) = i(X)w (6.3)

where X 1is a vector field on M, can be thought of in terms of its action on each fibre of

TM since a fibre of TM at some point m € M was seen in section C of chapter V to



be the vector space T M. A 2-form ® on M is then said to be strongly

nondegenerate if and only if b is an isomorphism.

The usefulness of a strongly nondegenerate 2—form  on M is that it can be used to
link the spaces TM and T*M. This link is effected by the mapping b described above
which maps vector fields into 1-forms and the inverse of b, #, which maps 1-forms
into vector fields. Suppose that X is avector fieldon M and B isa I-form on

M, thatis X € X(M) and 3 € X*(M), then from (6.3)

b : X(M) — X*(M) (6.4)
X = bX) = X = iXo

whereas the map # is defined by

# 1 XFM) — X(M) (6.5)
B — #(B) = p* = b-1(B).

The strong nondegeneracy of  guarantees that b is an isomorphism and that its

inverse # uniquely exists.

In light of the above a symplectic manifold, denoted by (M, (o), 1s a manifold M with

a symplectic form @ defined on it.

A very important symplectic manifold is the cotangent bundle T*M of some manifold
M. Bearing dynamical considerations in mind consider now the specific case of the
symplectic manifold T*Q, that is the cotangent bundle of some configuration space Q.

It follows from the earlier discussion on strong nondegeneracy that T*Q is even

dimensional. In terms of the local coordinates (qi, pi) on T*Q the canonical or

Liouville 1-form 6 isa I-formon T*Q defined by
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0 = p;dq 1=1,..n (6.6)

From the canonical 1-form (6.6) a symplectic form ® on T*Q can be constructed in

the following way
® = —-db = dq; » dp; i=1,...,n (6.7)
- after making use of (5.17d) and (5.12b).

It should be remembered that a general symplectic form ® on a symplectic manifold

(M, @) would, in light of (5.15), normally look like
W = O‘)ij dxi A dxi 1,] = 1$ aeey 1N (68)

in the local coordinate system (xl, ety xn). However Darboux's theorem [15] states

that for every point m e (M, o)) it is always possible to replace the coordinates

(xl, ey x“) by new coordinates, in this case (ql, cevs Qs Pls eees pn), known as

canonical coordinates such that @ can be written in the form given by (6.7).

B Digression on integral curves and the fibre derivative

First of all the dynamically important concept of an integral curve [16] will be
introduced. It was seen in section C of chapter V that a vector field on a manifold M
associates to each point m € M a tangent vector v, € T M. From a geometrical
standpoint a vector field can be viewed as the right-hand side of a system of first order
differential equations. In order to expand on this suppose that ¢ is a smooth curve on

M through me M, thatis from section B of chapter V

c:IcBR - M

6.9
t — c(t) (69)
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where 0 € I and c(0) = m. In addition suppose that X € X (M) is a vector field on

M. If now the tangent at each point c(t) of the curve c is the vector X(c(t)), in other

words the differential equation

€0 - Xew » (6.10)

is satisfied for all t e I, then the curve c is said to be an integral curve of X
through m e M. Equations of the type (6.10) are often encountered when dealing with

dynamical systems as will be seen later.

Consider now a local coordinate system (xl, ooy xn) on some neighbourhood of the
point m € M. Let the coordinates of the point c(t) of the curve ¢ in this

neighbourhood be given by

ci(t) = xioc(t) i=1,..,n (6.11)

and let the components of the vector field X in this coordinate system be given by X! .

Then locally (6.10) becomes the set of first order differential equations

df;ft) = Xi(ce(D) i=1,..,n (6.12)
supplemented by the initial conditions
i=1,..,n (6.13)

ci(0) = xioc(0) = xi(m)
(6.12) exhibits the first order differential equation nature of a vector field. The existence

and uniqueness of solutions to (6.12) subject to the initial conditions (6.13) is

encompassed in the standard theory of ordinary differential equations.
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The ideas behind the fibre derivative map will now be described. In geometrical terms it
has been seen that Lagrangian mechanics takes place on the tangent bundle TQ of some
configuration space Q. From this it follows that a Lagrangian function L is a function
on TQ, thatis L :TQ — M. The background for the geometrical formulation of
Hamiltonian mechanics is T*Q and in general there is no canonical isomorphism
between TQ and T*Q. However given a Lagrangian L on TQ it is then possible to
define a preferred map /I:"L : TQ — T*Q which is known as the fibre derivative. The

fibre derivative gets its name from the fact that it can be defined in terms of its action on

a fibre. In order to see this suppose that v wge T,Q and L : T,Q — R where L,

q’

1s defined to be
L, =L|T,Q qe Q, (6.14)

thatis L, is the restriction of L to the fibre T,Q over q € Q. The fibre derivative

A
FLq of Lq 1s then defined to be

<wq|/1:“Lq (vq)> = ad{ L, (vq + twq)

(6.15)
t=0

where < |2 is again the natural pairing introduced in section C of chapter V. From
A
the form of the left-hand side of (6.15) it can be seen that FLq(vq) € TzQ and

A
consequently U FLq(vq) for all qeQ is part of T*Q. In essence the
q
A
<waFLq (vq)> of (6.15) is the derivative of L, along the fibre T,Q over qe Q

in the direction of W -

A
In terms of the local coordinates (qi, qi) on TQ then the fibre derivative FL is such

that

(an &) = FL(a5 §;) = (qi, 2—;) i=1,..n (6.16)
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A
The Lagrangian L is said to be regular if the fibre derivative FL 1is a local

diffeomorphism and it can be shown [8] in terms of the local coordinates (qi, qi) that

this condition is given by

£ 0 ,j=1,...,n.  (6.17)

[5554]
dg; 9q;

Equation (6.17) is just the regularity condition encountered in section A of chapter II. In
A

the stronger case when FL is a global diffeomorphism then L is said to be

hyperregular. In the hyperregular case the Lagrangian formalism of mechanics on TQ

is equivalent to the Hamiltonian formalism on T*Q.

C The geometrical formulation of Hamiltonian mechanics

With the help of the ideas introduced in sections A and B of this chapter it is now
possible to give the geometrical description of Hamiltonian mechanics [8]. From a
geometrical viewpoint there are two advantages in considering a dynamical system
formulated on T*Q, that is in Hamiltonian form. The first of these is that vector fields
can be associated with first order differential equations as seen in section B of this
chapter. This ties in nicely with the fact that Hamilton's equations, as derived in section
A of chapter II, are themselves a set of first order differential equations. The second
advantage is that T*Q has a natural symplectic structure defined on it and this was

outlined in section A of this chapter.

A
Consider now the Hamiltonian function H on FL(TQ) C T*Q, thatis H: T*Q — R,

which is defined via

H o FL(w) = <WI%L(W)> — L(w) (6.18)

A
where w e TQ, L is the Lagrangian and FL is the fibre derivative defined by (6.15).

Furthermore suppose that ® denotes a symplectic form on T*Q and that the condition
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w(XH, Y) = i(Y)dH = (dH) . Y (6.19)

is satisfied. In (6.19) Y is an arbitrary vector field on T*Q, X is a vector field on

T*Q known as the Hamiltonian vector field and H is the Hamiltonian given by (6.18).

Equation (6.19) can alternatively be written in the form

i(Xi)o = b(Xy) = aH (6.20)

from a consideration of (6.3). Since ® is strongly nondegenerate then the inverse of b,

thatis #, uniquely exists. As a consequence of this the Hamiltonian vector field Xy is

uniquely determined by (6.20), that is

Xy = bY(dH) = #(dH) = (dH)* (6.21)
after appealing to (6.5).

The connection between (6.20) and the usual Hamilton equations given by (2.14) and

(2.18) will now be investigated. In terms of the local coordinates (qi, pi) on T*Q

then 2 y eees 2. , 9 s eees 2 represents a basis for vector fields on T*Q. In
dq, dq, = dp, dp

n

view of this consider the Hamiltonian vector field on T*Q, Xy, given by

N S C)s U i =1 ..n (6.22)
dp; 9q;  9q; Ip;

where the H in (6.22) is understood to be the Hamiltonian function in the local

coordinate system. Equation (6.12) then indicates that (qi(t), pi(t)) can only be an

integral curve of Xy given by (6.22) if

dCIi . aH .
TEa=5 i=1..n (6.23)
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and

dpj _ . _ oH

=D = 1 = 1, ceey I 6.24
% A (6.24)

E{—pl

In other words, after comparing equations (6.23) and (6.24) with (2.14) and (2.18)
respectively, it follows that (qi(t), pi(t)) is an integral curve of (6.22) if and only if

. Hamilton's equations are satisfied.

Now from an argument similar to (5.22) it can be seen from (6.22) that

oH
i(Xy) dg, = = i=1,.., 6.25
(Xu) dq o n (6.25)
and
oH
i(Xy) dp; = — — i=1..,n 6.26
( H) p 20 ( )

In the local coordinate system (qi, pi) the symplectic form ® on T*Q is given by

(6.7) and so it follows that
l(XH)(D = l(XH) (dql A dpl)
= (i(Xn) dq;) » dp; —dg; ~ (i(Xu) dpi) i=1,..,n (6.27)

after using (5.19d). Substituting (6.25) and (6.26) into (6.27) leads to

. oH oH )
1(XH)w = —a—— dp; + a—ql dg; = dH i=1,..,n (6.28)

i
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(6.28) thus verifies (6.20) in terms of local coordinates provided the Hamiltonian vector
field Xy is given in the form of (6.22). The upshot of the above local calculations is
that equation (6.20), in conjunction with the vector field given by (6.22), is equivalent
to the usual Hamilton equations (2.14) and (2.18). It should be noted however that the
geometric formulation of Hamiltonian mechanics, that is (6.20), does not depend on any

coordinate system and in addition it is also true globally.

The statement made at the start of section A of this chapter about the Poisson bracket of
Hamiltonian mechanics being nothing more than a symplectic form on T*Q can now be
elaborated upon further. Suppose B, C € F(T*Q) are C= functions on T*Q. Then
by analogy with (6.20) the symplectic form ® on T*Q associates the vector fields Xg

and X to the functions B and C respectively via

i(Xg)o = dB, (6.29a)

(Xo)w

dC. (6.29b)

Once again the strong nondegeneracy of @ ensures that Xy and X uniquely exist

and by comparison with (6.21) it follows that

Xp = (dB), (6.30a)
Xc = (dO) . (6.30b)

The Poisson bracket of B and C intermsof ®, Xg and X is then defined to be

(B,C} = o(Xg, Xc). (6.31)

(6.31) can equivalently be written as

(B,C} = —i(Xp)i(Xc)w = i(Xc) i(Xp)w (6.32)
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and from (6.29) this simplifies down to

(B,C) = -i(Xg)dC = i(Xc) dB. (6.33)

By making use of the definition of the Lie derivative of a function, that is (5.23), it

immediately follows that (6.33) can alternatively be expressed as

{B,C} = —LXBC = LXCB~ (6.34)

The verification that (6.31) is equivalent to the usual Poisson bracket given by (3.75)

will be demonstrated by applying local arguments to (6.33). Suppose in the local
coordinate system (q;, p;) on T*Q that dB is given by

dB = g—B dq; + gg dp; i=1..n (6.35)

1 Pi
and by analogy with (6.22) that X is given by

_9€ 9 € 9 i=1..n (6.36)

© dp; dq;  9q; 9p;

Then by considering a generalization of the local calculation (5.22) it follows from

(6.33) that

<[22
(api dq;  9q; Ip;

9B 9C 3B aC

- i=1,..n (6.37)
dq; dp;  9p; 9g;
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after substituting for (6.35) and (6.36). Equation (6.37) is indeed the same as the
expression for the Poisson bracket given by (3.75). It should be noted that the
geometrical version of the Poisson bracket, that is (6.31), is of course coordinate

independent.
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CHAPTER VII

THE GEOMETRICAL FORMULATION OF THE DIRAC-BERGMANN
ALGORITHM

In chapter VI it was seen how the equations of finite dimensional regular Hamiltonian
dynamics in the explicitly time independent case could be translated into a coordinate
independent geometrical formalism. In this chapter the geometrical reformulation of the
Dirac-Bergmann constraint algorithm for explicitly time independent singular systems,
which was described in a coordinate framework in chapter III, will be revie;ved in terms
of the Gotay—Nester—Hinds algorithm [9]. This geometrical constraint algorithm
basically globalizes the local Dirac-Bergmann theory of constraints. Furthermore the
Gotay—Nester-Hinds algorithm is expressed in the language of infinite dimensional
symplectic geometry and this thus ensures that it is of direct applicability to field

theoretic problems.

At this point it should be remembered that the basic concepts of differential geometry
introduced in chapter V were only discussed in the finite dimensional case, that is for
manifolds modelled on R™. However the majority of these differential geometric ideas
are directly carried over to the infinite dimensional case [15] provided the manifolds
under consideration are Banach manifolds. In the infinite dimensional case a Banach
manifold is a manifold ‘which is modelled on an infinite dimensional Banach space.
With this in mind it will be assumed for the forthcoming analysis of the geometric
constraint algorithm that all manifolds are C> differentiable Banach manifolds and that

a submanifold of a Banach manifold is itself a Banach manifold.

Having given the details of the geometric constraint algorithm the remainder of this
chapter will be devoted to the geometrical investigation of the massive spin—1 Proca field

via this constraint algorithm.
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A The Gotay—Nester—Hinds aleorithm

Before going on to describe this algorithm the idea of a presymplectic manifold will first

of all be introduced. Consider a Banach manifold M and let ® be a closed 2—form on

M. Then by analogy with (6.3) in the finite dimensional case there is a linear map

b:TM — T*M defined by

bX) = X0 = iX)o (7.1)

where X is a vector field on M. There are now three possibilities to consider about the

map b :-

1) The first of these is that the map b is an isomorphism. In this case, by analogy
with chapter VI, the 2—form ® on M is said to be strongly nondegenerate and
(M, (1)) is called a symplectic manifold.

1) The second possibility occurs when b is injective but not surjective in which
case ® is said to be weakly nondegenerate and (M, co) 1s then a weakly
symplectic manifold.

ii1) The final and most general possibility is that b is neither injective nor surjective

and when this happens o is said to be degenerate.

For the sake of simplicity when @ is either a weakly nondegenerate or degenerate 2—
form then it will henceforth be referred to as presymplectic. Correspondingly when

is presymplectic then (M, 0)) is a presymplectic manifold.

Furthermore if N is a submanifold of a presymplectic manifold (M, (o) with
inclusion map j where j: N — M then N is said to be a constraint submanifold and

(M, 0, N) is called a canonical system.
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The starting point of the geometric constraint algorithm is the generalized Hamiltonian—

type equation given by
i(X)O)l = 0 (7.2)

where o is a closed 1-form on the presymplectic manifold (Ml, col) called the
Hamiltonian 1-form and X is a vector field on M; . The Hamiltonian 1-form o,
gets its name from the fact that locally it is always possible to find a Hamiltonian H; on

M, such that- oo; = dH; . When «; = dH; then it is readily seen that (7.2)

corresponds in essence to (6.20).

The geometric constraint algorithm gives necessary and sufficient conditions for the
solvability of X in (7.2). In accordance with the coordinate based Dirac-Bergmann
algorithm the geometric constraint algorithm is an iterative procedure which looks for
solutions of (7.2) on successively smaller manifolds with consistency of the solutions
maintained at each stage. The formalism is quite general in that it only requires the

existence of a presymplectic manifold for its execution.

Now if o is in the range of the map -b: TM; — T*M, defined by (7.1) then the

Hamilton equations, (7.2), have consistent solutions and can be solved for X giving
X = b (o) (7.3)
in a manner analogous to (6.21). However «; will in general not be in the range of b

but instead there may exist points of M; , which are assumed to form a submanifold

M, of M;, such that 0L1|M2 is in the range of b|M, . The situation is then one of

trying to solve (7.2) restricted to M, , that is

(iX)0; - )M, = (X))o, - o) oj = 0 (7.4)
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where j, : My — M; is the inclusion map. (7.4) possesses solutions but for them to be

physically meaningful the motion of the system must be constrained to the submanifold

M, . This will be ensured provided the vector field X 1is 'tangent' to M, in which

case the motion will not be able to evolve off M, into an unphysical domain. The

above 'tangent' condition is guaranteed if X e Tm, My where in this instance
TM2 M2 = (_]2)* (TM2 Mz) (75)

and Ty, M, represents the assignment of a tangent vector in T, M, ateach me M,,

thatis Ty, My € X(My) .

This tangency demand may not necessarily be satisfied and then solutions of (7.2)

restricted to M3 , where Mj is a submanifold of M, , must be considered. The

submanifold M; is defined to be

M, = {m e My:a(m)e (Ty, Mz)*’ } (7.6)

where the term (TM2 Mz)L in (7.6) is interpreted as meaning b (TM2 M2) . Since
Ty, M € X(M,) it follows from (7.5) that Ty, My C X(M;) . Now it was seen

in section A of chapter VI that the map b takes vector fields to 1-forms and so in the

present case
b : X(M;) = X*(M;) . (7.7

b
In view of (7.7) it can be seen that (TM2 Mz) - X*(Ml) .

As before it must now be insisted that all solutions of (7.2) restricted to M3 are in fact
'tangent' to M5 . This in general will necessitate further restrictions and consequently a

further submanifold M, C M5 will have to be considered and so on.
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Proceeding with the algorithm in the manner described above leads to the generation of a

sequence of submanifolds

M 2 M, B My oMy e M, e (7.8)

with their respective inclusion maps such that

MiD>M,DM; D ...MDM,; D .. (7.9)

where

M1+1 = {m (S Ml . al(m) (S ('I‘M1 I\/Il)B } (710) .

for 12 1. The term (TM1 Ml)b in (7.10) is here taken to mean b((kl)* (TM1 Ml))

where for 122 the map k; is given by
kl = j2 o j3 0...0 jl’ (711)

that is it is the composite of successive inclusion maps between the submanifolds of the

sequence given by (7.8). Clearly from (7.11) k;:M;— M, . In the case when

1=1 then k; is taken to be the identity map on M, , thatis k; : M; = M; . By an

argument paralleling the one given after (7.6) it is readily seen that

(Tm, Ml)" C X¥(M)

In the infinite dimensional case the sequence of submanifolds given by (7.9) may not

terminate at all or it may terminate in one of the three possible ways outlined below :-
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The situation 1=K is reached such that Mg = ¢, where ¢ is the empty set.

This case implies that the generalized Hamilton equations given by (7.2) have no

solutions and consequently there is no dynamics.

The situation 1=K isreached such that Mg # ¢ but dim Mg = 0. This results

in a constraint submanifold consisting of isolated points and as in i) above there

is no dynamics.

There exists a K such that Mg = Mg, ; with dim Mg # 0. This case arises

when there is a final constraint submanifold My which is non—trivial and on

which there are consistent equations of the form
(i(X)o; —oy)IMg =0 (7.12)

with X 'tangent' to My . The statement that X 1is 'tangent’' to My here

means that X e Ty Mg = (kK)*(TMK MK) where kg is given by (7.11)

in the case when 1 =K. This final constraint submanifold Mg corresponds to

the constraint submanifold N mentioned earlier.

On the other hand if the sequence of submanifolds does not terminate then the final

constraint submanifold may be viewed as the intersection M,, of all the submanifolds

M, . The situation then reduces to one of the three cases described above depending on

whether M_ =6, dimM_ =0 or dimM_, #0.

The only systems of interest are those that terminate in the manner of iii). In these

cases, due to the nature of the constraint algorithm, there is at least one solution to the

Hamilton equations guaranteed and in addition this solution is 'tangent' to My .

Furthermore it should be noted that any solution X of (7.12) is not unique since any

vector field Y on M, satisfying
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which is also in (TMK MK) can be added to X and this is still a solution of (7.12).

In other words (X + ker oy N (TMK MK) ) is also a solution of (7.12) where

ker w, is defined to be

ker ©, = {Ye T, Ml:i(Y)w1=O}. (7.14)

In addition the final constraint submanifold My is maximal in the sense that if P is any

other constraint submanifold on which equations (7.2) are satisfied then P C My .

B An alternative formulation of the geometric constraint algorithm

The description of the Gotay—Nester—Hinds algorithm given in the last section is too

abstract in that it is of little value when it comes to the explicit determination of the

submanifolds M. Itis therefore necessary to obtain an alternative expression for the

submanifolds M; which is equivalent to (7.10) but is of greater practical use.

Before this redefining of the M; can be given some new definitions are required. Once

again it will be assumed that N is a constraint submanifold of the presymplectic

manifold (M, 0)) with inclusion map j: N — M. For each p e N then the

symplectic complement, (TPN)L, of jx(T,N) = (TPN) in T,M is defined to be
(TN)" = {ze TM:0lN(x, 2) =0 ¥V x e (TyN) ] (7.15)

where T,M denotes the tangent space of M restricted to the points p e N and ®IN

is the restriction of ® to the points of N. (TN)L is then given by
L= L
(TN)L = péJN (TpN) . (7.16)
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An equivalent but sometimes more convenient definition of (TN)+ is from [9] given by

(TN = U {ze T,M:j*[i@w] = 0}. (7.17)

Returning now to the problem of finding a more practical definition of M; , consider

first of all the submanifold M, . From (7.10) M, is formally characterized by

M, = {m € My :oy(m) e (Ty, Ml)"} (7.18)

and this may equivalently be expressed as

M2 = {m € Ml : <ZIOL1> (m) =0V Ze (TMl)_L} (719)

where as before < |> denotes a natural pairing which in this case is such that
TM; x T*M; — R. The consistency conditions <(TM1)'L|0(.1> =0 in (7.19)

correspond to the secondary constraints of the Dirac—Bergmann algorithm of chapter III

and M, is known as the secondary constraint submanifold.

The situation is now one of solving (7.4) with the demand that X 1is 'tangent' to M,

and this in turn may lead to further consistency conditions. Suppose that W e (’I‘Mz)J‘

is an arbitrary element of (TMz)l then it can be shown [9] that consistency with (7.4)

implies
<Wlo,>0 j, = 0. (7.20)

(7.20) may not always hold and consequently (7.2) must be restricted to those points of

M, where

< () o> = 0. (7.21)
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Continuing in this way, as was seen in section A of this chapter, the algorithm generates

a sequence of submanifolds

M, 2oM, BoMy J (7.22)

where now for 121 the M, are defined by

My = {me M:<Zloy>m) =0 v ze (TM)Y (7.23)

and from (7.17)

(M)t = U {ze T M, (1) [iwo] = 0}. (7.24)
1

The kj in (7.24) are given by (7.11) for 122 and k; is once again the identity map

on M; . The constraint functions on M;_; which define M; are a globalization of the

l-ary constraints of the Dirac-Bergmann algorithm and these take the form

(™) o> =0 (7.25)

for 12 2.

As before the geometric constraint algorithm may never terminate or it may terminate in
one of the three possible ways as outlined in section A of this chapter. The fact that
there always exists at least one solution X to (7.12) in case iii) follows from the

general theorem [9] :-

Theorem

The canonical equations given by (7.12) possess solutions ‘tangent' to My if and only
if
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< (™M) ey > = 0. (7.26)

It should be noted that this theorem is independent of the geometric constraint algorithm.
In factif N is any constraint submanifold of a presymplectic manifold (M, 0)) then
the equations

(iX)o-a)lN =0 (7.27)
have solutions 'tangent' to N if and only if

<(TN)Lle> = 0. (7.28)

The final situation obtained from the geometric constraint algorithm is the canonical

system (Ml, ®q, MK) with the equations of motion given by (7.12).

C A classificaton scheme for submanifolds of presymplectic manifolds

It would be useful to have a physically meaningful classification scheme for
submanifolds of presymplectic manifolds. Such a classification scheme for symplectic
manifolds is discussed in an article by Menzio and Tulczyjew [18]. The generalization

of this scheme to the presymplectic case will now be reviewed.

Suppose that (M, , N) is a canonical system with inclusion j: N — M. Now for
each pe N C M consider the spaces j*(TpN) = T,N € T,M and (TpN)L, as

given by (7.15). The constraint submanifold is then said to be :-

i) isotropic if forall pe N TN C (TPN)l,
ii) coisotropic or first class if forall pe N TN O (TpN)L,
iil) weakly symplectic or second class if forall pe N T,N N (TpN)L = {0},

iv)  Lagrangianifforall pe N TN = (TPN)l .
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If N does not fit into any of the above four categories then it is said to be a mixed

constraint submanifold.

The importance of this classification scheme is in its application to the final constraint

submanifold My of the geometric constraint algorithm. In this way the nature of the

dynamical system to which (7.12) corresponds can be determined.

D The geometric analysis of the Proca field

In order to illustrate an application of the Gotay—Nester—Hinds algorithm the massive
spin—1 Proca field will now be investigated. In choosing this example it will be possible
to compare the results of this geometric analysis directly with those of the coordinate

dependent Dirac-Bergmann analysis of the Proca field given in section C of chapter III.

The starting point of this geometric constraint algorithm is taken to be the Lagrangian L
given by (3.139) where once again the metric convention (2.29) is adopted. A space—

time decomposition of (3.139) leads to

L[A, A] %j(A A - 24, (23 Ag) + (9, A0)(3; Ap)

~ (0;A)(0;A) + (3;A)(9;4)) + m2 A2

“m2A;A;) b j=1,..,3 (729
where Ai=80A

For the subsequent analysis all manifolds are assumed to be suitably well-behaved C=

Banach manifolds. The configuration space Q 1in this field theoretic example is taken to

be A, = (AO, Ai) whereas velocity phasespace TQ is the manifold parameterized by

(Au’ Av) where W, v=0,...,3.
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To apply the Gotay—Nester—Hinds algorithm it is necessary to go over to the
Hamiltonian side. It was seen in section B of chapter VI that this transition is effected

A
by the fibre derivative map FL. In this present case the fibre derivative is defined by

%L(Au, AV> . (Ap, BG) = DL (Aw Av) . BG uv,p,o=20,..3

(7.30)

where DL (A o AV> . EG denotes the Frechét derivative along the fibre parameterized

by léo . In terms of local coordinates DL (Aw AV) is given by fi . All this 1s

essentially a generalization of (6.16) where the q; and q; have respectively been

replaced by A, and A“ . Therefore it follows from the Lagrangian given by (7.29),

that

DL (A A) Bo = 2 B + 85;

. B,

=J(Ai Bi- (3;A¢) B)d  i=1,..,3 (73D

where the dark dot, ¢, in (7.31) represents a 'scalar product’ over spatial coordinates.

A
It was seen in section B of chapter VI that the fibre derivative FL : TQ — T*Q is only a
global diffeomorphism if L is hyperregular. However, in general and certainly in this

A
case, the fibre derivative map is only a map into T*Q. More specifically FL. maps TQ

A
into M; = FL(TQ) € T*Q where M, is taken to be a submanifold of T*Q.

If T*Q is parameterized by (Ap, HG) then the natural pairing < 12> : TQ x T*Q —» R

is defined to be
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<(A, AV>|(Ap,H0>> = <(a, A)l(a, )> ~ <Alm>

=J(Aini + AOH0> dBx i=1..,3. (7.32)

A consideration of the form of equations (7.30), (7.31) and (7.32) then indicates that
FL(A, A) = (A Aj- 35 Ag) (7.33)
and this in turn suggests that the canonical momenta should be defined by
Il = A, — 3; A i=1,..,3. (7.34)
Since T1° does not appear in the fibre derivative this means that (7.33) can be written as

FL(Aw A) = (A, 0,T1) (7.35)

in light of (7.34). The fact that T10 does not appear in (7.35) is expressed in terms of

local coordinates by

[°=—=20 (7.36)

which, in accord with (3.164), means that AO does not occur in the Lagrangian given

by (7.29).
From these considerations it follows that (7.36) is a primary constraint. Furthermore

s
the submanifold M; C T*Q that TQ is mapped into by FL, is the primary constraint

submanifold which is locally characterized by (7.36).
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Now as seen in section A of chapter VI, T*Q always carries a natural symplectic
structure irrespective of whether the Lagrangian is regular or singular. Suppose € isa
symplectic form on T*Q and that j, : M; — T*Q is the inclusion map. Then the 2—

form ®; on M; obtained by pulling € back with j;, thatis

o = (j1)*Q, (7.37)

is in general presymplectic. The geometric constraint algorithm given in section B of

this chapter can now be applied to the presymplectic manifold (M 1, ® 1).

Consider now the symplectic form Q on T*Q. In this field theoretic case €2 is given

by

Qve® o, w® 1) = <vlt> - <wlo>

=J.(vi’ci+v0 10 - w; 0l - wy 60) d3x i=1,...,3 (7.38)

after consideration of (7.32). In (7.38) (v @ 0) and (w @ ’c) are tangent vectors

to T*Q. The notation (v @ 0) will now be elaborated on.

Locally a chart on a manifold M can be considered as a representation of M around
some point by a subspace of a vector space E. Let U C E be the domain of some chart
on M. In terms of this chart then TU =U x E and T*U = U x E* are respectively a
charton TM and T*M where E* is the dual space of E. In light of this and a
consideration of the argument after (5.5), a point m € TM has the local representation
m = (x, u) where x € U and ue E. Correspondingly a point m”e T*M has the

local representation m’ = (x, k) where again x € U and now A € E*. In terms of

this notation a chart on T(T*M) is given by

T(T*U) = (U x E*¥) @ (E x E*). (7.39)
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From (7.39) the local representation of a tangent vector to T*M, thatis ze T (T*M)

say, is given by
z = (x, 7») @ (w, T) (7.40)

where w € E and 1 € E*. In (7.40) the (x, k) represents the base point on T*M

of the tangent vector, that is m’, whereas (w, ‘c) represents the tangent vector on

T*M. A shorthand notation for (7.40), which highlights the vector part of the tangent

vector, 1s given by
z=w®1 (7.41)
where the base point (x, 7\.) has been suppressed.

Bearing the above in mind it follows that (v @ ¢) and (w @ 1) in (7.38) are

given in full by

(voo)=(A10) ® (v,0), (7.42a)
(wor)=(A,1) & (w, 1) (7.42b)

where (A, H) and (A’, H’) are the base points on T*Q of these tangent vectors.

The first step of the geometric constraint algorithm proper is to determine (TMl)L.

From a consideration of (7.15) for each m; € M, , (Tml MI)L is the set of all tangent

vectors on M; which annihilate all other tangent vectors on M , that is

(Tmy Mi)* = {z€ Tp M1 01(6,2) =0 V x & Ty M, }. a3
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Suppose x = (A, H) @ (v, 0) ~ (v @ 0) € Tml M; is an arbitrary tangent vector
on My and z= (A, H) @ (w, ‘C) ~ (w ® “c) € Tml M, is a typical tangent vector

on M; whére m; = (A, H) € M; . Then the term w;(x, z) =0 in (7.43) is given by

0O=ox2=0(v@oc,wd®1)~Qveoc,wdr)

viti+ vy 10— w0l — wy o0) d3x (7.44)
0 1 0

after use of (7.38). Now since x = (A, H) @ (v, G) € Tml M;  where
(A, H) € M, it follows from a consideration of (7.36) and (7.39) that I1® =0 and

00 = 0. By a similar argument for z = (A, l'I) ) (w, ’:) € Ty M, it is found that

I1°=0 and 10=0. In view of the fact that ¥ =10=0 then (7.44) becomes

J.(vi Ti— w; 1) d% = 0 i=1..,3 (7.45)

However since the tangent vector x is arbitrary it follows that v; and ol are arbitrary
and so (7.45) can only hold if 71 =w; =0 foreach i=1to 3. Thus in this way, only

wq of z isleft undetermined and this is arbitrary. Consequently the most general form

of z= (A, H) ® (w, ‘c) ~ (w ® ‘C) € (Tm1 Ml)l is given by

z=(w®1)=(wp0,0,0)® (0,0,0,0) = (wo,0) & (0,0) (7.46)
where wy is arbitrary.

A
Now given a Lagrangian L on TQ then the fibre derivative FL induces a Hamiltonian

A
H on T*Q in the manner of (6.18). In this particular case FL induces a Hamiltonian

H; on M, and from a consideration of (6.18) this is given by
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H, = <(a, A)lFL(a, A)> - L[A, A] (7.47)

and after using (7.29), (7.32) and (7.33) this becomes

1 . .
H, = zf (As A= (3 A0)(3; Ag) + (31 A)(3; A)
- (al AJ)(aJ Al) — m2 A(% + m2 Ai Al) d3ﬁ

i,j=1,..3. (7.48)
By putting the Ai from (7.34) into (7.48) it is found that

H A, O] = %J' (ni ITi + 2T1i(0; Ag) + (9; A)(9; A))

— (81 AJ)(aJ Al) — m?2 A% + m? Ai Al) d35

Lj=1,...,3 (7.49)

The next stage of the geometric constraint algorithm is to ensure that the primary
constraint (7.36) is preserved in time. From the algorithm this is guaranteed provided

the consistency condition

<(t™y)HaE,> = 0 | (7.50)

is satisfied. It should be noted that in this analysis the Hamiltonian 1-form o, has

been replaced by the specific closed 1-form dH, .

For an arbitrary tangent vector z on M, given by

z=(A, H) D (w, 1:) ~(w D ‘c) € Ty, My, where (A, H) € M, then
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dH (A, T1) . (w @ 1) = i(w © 1) dH, (A, TT) ~ < Ty, M JdH; (my)>

SH SH, SH, SH,
Y0 sas T M A
0 1

1 =1,..,3 (7.51)

In essence (7.51) is a generalization of (5.22). Furthermore, as seen earlier, the dot in

H1
8110’

the term 10 » for example, represents a 'scalar product' over spatial coordinates.

Now as seen before for z = (A, H) ® (w, *c) € Ty, M; where (A, H) € M, , then

19 =10 = 0. In addition by taking account of the relevant terms of (7.49) it is found

that
11.21;11 — . 8?11 %J (T TTE + 21T6(8; Ag)) d3x
=J‘(11[Hi+8iA0]) d3x iL,l1=1,..,3 (752
Also

OH 5 . m?2 2
Wq * 1 = Wo°*| T — I (81 Ao) - 7‘ AO d3L
5A,

= Wo.; 2 J (ai (T Ag) - (9; Hi) Ag - mjzA%)} d3x
(7.53)

after a partial integration. The integral of the first term on the right—hand side of (7.53)
can be transformed into a surface integral via Gauss' divergence theorem in the same

way as in (3.176). As in chapter III boundary conditions will again only be treated at a
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formal level. In view of this the surface integral mentioned above will be assumed to

vanish at infinity in accord with the argument given after (3.176). (7.53) now becomes

SH, 3 : m2 2
R _ (9, T1i) Ay - B2 A2) g3
Wo 5A, W ™ J( ( ; ) 0 5 0) X

cen 3. (7.54)

I
—
~~
83

(=]
[
2
=
[
3
3o}
>
(=]
e
~
[o 9
w
>
Il
by

Furthermore

oH d 1
e o |2 [(Gia)@iA) - (34)G; A)

+ m2 A A;) d3x i,j,1 =1,...,3. (7.55)

(7.55) leads, after some manipulation and consideration of spatial boundary conditions,

to

SH,
SA

= J‘ (Wi [aJ ai A_] - aJ aJ Ai + m? Al]) d3§

Wl'
i1 =1,..,3.  (7.56)

Hence by putting 19 =0 and equations (7.52), (7.54) and (7.56) into (7.51) it is found

that

dH, (A, 1) . (w @ 1) = J (¢i[TTi + 9; Ag] + wo[-0; ITi — m? Aoj

+ W; [a_]al AJ —al aJ As1 + m2 Al]) d3_)_(_
Lj=1,..3 (157
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(7.57) is true for any tangent vector on M, . Suppose then that z € (Tml Ml)L.

Substituting z= (w @ 1) e (T, MI)L, as given by (7.46), into (7.57) gives rise to

aHy (A, T1) . (w © ©) ~ <(Toy, M) ldHy () >

= f (wo[-0; ITi — m2 Ag]) d3x i=1..,3 (7.58)

It follows from (7.50) and (7.58) that the condition for the time preservation of the

primary constraint (7.36) is given by

j(wo[-ai i - m2 Ag])d = 0 i=1..,3  (1.59
Now since wj, is arbitrary then (7.59) immediately implies that
o; I+ m2A; =0 i=1,..3. (7.60)

(7.60) is a secondary Hamiltonian constraint. This secondary constraint restricts the

motion of the system to a submanifold M, C M; which is determined by (7.60).

Clearly, as is to be expected, (7.60) is equivalent to the secondary Hamiltonian

constraint (3.180) to within a weak equality.
Continuing with the geometric constraint algorithm it is now necessary to ensure that the

secondary constraint (7.60) is preserved in time. This is assured provided the

consistency condition

< (TMp)*ar,> = 0 (7.61)

holds. It should be noted that (7.61) is just (7.21) with the o, replaced by dH; .
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Consequently it is now necessary to find (TM2)l . From (7.15) for each m; € M,
then (Tm2 Mz)L is the set of all vectors in the tangent space of M, restricted to M,

which annihilate all vectors in (jz)*(Tm2 Mz) = T, My, where j,: My = M, is

the inclusion map. In other words

(T, Ma)* = {z € To, My 0|My(x,2)=0 ¥V xe T, Mz}. (7.62)

Suppose z=(A, 1) ® (w,1) ~ (w ® 1) e T, M; isa typical tangent vector on
M, restricted to M, and that x = (A, 1) ® (v,0) ~(v ® 6) e T, M, isan
arbitrary vector, where (A, T1) e M, . Now for z= (A, I1) ® (wTeTm2 M,
where (A, T1) e M, C M; itis found as before that 10 =10 = 0. On the other

hand for x = (A, H) S (v, 0’) € Tpn, M, where (A, H) e M, it follows from

(7.36) and (7.60) that T1°=0 and o, I1' + m2A; =0 and consequently 6% =0 and

0; 6' + m? vy = 0. Therefore the term (01|M2(x, z) =0 in (7.62) is given by

0 = 0;IM,(x,2) = (olle(v @o,w®d ’c) ~ Q(v ®o,wo ‘C)

J(vixi— w; o) d3x i=1.,3 (7.63)

after appealing to (7.38) and taking into account the fact that 10 = 6% =0. Now the v,
are arbitrary and so are the ¢! since they satisfy 0; 6+ m2 vy =0 for arbitrary v, .

Consequently (7.63) can only hold if 1i=w; =0 foreach i=1to 3. Asin the

evaluation of (Tm1 Ml)L the wy of z is undetermined and so remains arbitrary.

Therefore

(Tm, Ma)* = {(WO, 0)@ (0,0)e T, M, :wpis arbitrary}. (7.64)

Substituting z=(w @ 1) & (Tp, Mz){ as given by (7.64), into (7.57) yields
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dHy(A, TT) . (w © 1) =~ <(Tp, Mz)ildHl(m2)>

= J (wo[-0; I = m2 Ag]) d3k = 0 i=1..,3, (7.65)

after using (7.61), as the time preservation condition of the secondary Hamiltonian

constraint (7.60). Howeveron M, , 0, ITi + m2 Ay =0 and so (7.65) is automatically

satisfied.

The geometric constraint analysis of the Proca field is now complete. In order to round

off this geometric analysis the equations of motion of the system will now be examined.

Since <(TM2)l|dH1> = 0 then it follows from the comments made after the

theorem in section B of this chapter that there is at least one solution to the Hamilton

equations

evaluated on M, , which is 'tangent' to M, . In essence (7.66) is just (7.2) with
oy = dH; . Now for (A, H) € M, then the statement that the Ilamilton equations

(7.66) are evaluated on M, can be written as

iX)ol(A, 1) = dH,(A, T1) . (7.67)

Furthermore for X to be 'tangent' to M, then Xe Ty M, .

Suppose now that the vector field X is obtained by assigning a tangent vector of the
form x=(A, M) ® (a,&)~(a @ §)e Ty My ateach my=(A, ) e M,.
For vectors like x it can be seen from previous, similar considerations that
MM0=E0=0, 9,1T1i+m2A,=0 and 0;&' + m?ay=0. In addition suppose that Z is

an arbitrary vector field generated by the assignment of an arbitrary tangent vector of the
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form z = (A, H) @ (b, n) ~ (b S n) € Tn, M; at each  point

m, = (A, H) € M, . Similar arguments to those used before indicate that

[19=m0=0 for vectors of the form of z.

In terms of the arbitrary vector field Z, the equations of motion (7.66) can be written as
1(2) iX)w, = i(Z) dH, (7.68)

and by analogy with (6.19), (7.68) can equivalently be expressed as

(X, Z) = (dHl) .Z . (7.69)

In terms of the vector fields X and Z defined above then it follows from a

consideration of (7.67) and (7.69) that the equations of motion on M, are
o(a@ &, b@n)l(Aa, D) =dg(A,0).(b@n).  (7.70)

By following a similar approach to that which led to (7.63) it is found that the left-hand

side of (7.70) is given by

o;(a ® £, b @ n)l(A, 1T) :j(aini- biE)dBx  i=1,..,3 (7.71)

On the other hand the right—hand side of (7.70) is given by

dH,(A, 11). (b @ n) =J(ni[ni +9; Ag] + b[9;9; A,

Lj=1,..,3 (172
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(7.72) is basically just (7.57) after noting that d; Il + m2 Aj =0 on M, and that the
T and w; have respectively been replaced by the mi and b;. On equating (7.71) and

(7.72), it follows that (7.70) gives rise to

J(ai ni-b; &) dx =J.(ﬂi[ni +0; Ag] +

bl[aJ ai A_] - aJ aJ Ai + m?2 Al]) d3_)_(_

L,j=1,..3 (7.73)
By equating the coefficients of the arbitrary 1! and b; in (7.73) it is found that
a; = Il + 0, A, i=1,...,3 (7.74)

and |

§ = —0,0,A; + 0,0, A; — m? A, i,j =1,..,3. (7.75)

Now for a vector of the form x ~ (a S &) € Ty, My itis known that

9, & + m2a, = 0 i=1,..,3 (7.76)

and so on substituting (7.75) into (7.76) it is found that

Due to the fact that m # 0, then (7.77) becomes

2 = 9 A i=1..,3 (7.78)
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Thus the vector field X ~x = (a @® &) is from (7.74), (7.75) and (7.78) given by

.X~x

((aOa 2;) @ (&, éi))

((al Ai’ I+ ai AO) @ (0, aJ aj Ai - 83 ai A_] — m? Al)) (7.79)

where £0=0 because x T, My .

The vector field X, given by (7.79), together with the primary constraint (7.36) and the

secondary constraint (7.60) constitute the end product of the geometric analysis of the

Proca field. Furthermore the final constraint submanifold is M, .

Now from the discussion after (7.40) it follows that the (a, i) in the representation of

the vector field X ~x = (A, H) @ (a, &) is in the tangent space and consequently it is

found that

a, = 99 Ag = Ay, (7.80a)
a, = 0yA, = A i=1,.,3, (7.80b)
£0 = 9,10 = IO, (7.80¢)
Ei = 9yITi = IIi i=1,.,3. (7.80d)

(7.80) comes about essentially as a generalization of the arguments leading to (6.23) and

(6.24). In this case the A and II are the field theoretic versions of the q and p

respectively and X ~ (a ) i) is a generalization of Xy =(—g§ @ (— Z—H-D , as given
q

i i

by (6.22).

A comparison of (7.79) and (7.80) thus reveals that the equations of motion of the Proca

system are
Ay = 9 A i=1,.,3, (7.81)
Ay =TI+ 9 A i=1..,3, (7.82)
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o = 0, (7.83)
1

3,9, A; - 9,9, A; - m2 A g = Lo,3 (7.84)

These equations of motion will now be compared with the ones obtained in the
coordinate dependent analysis given in section C of chapter IIl. By putting (3.187) into
(3.185) it is readily seen, to within the weak equality, that the resulting condition is

equivalent to (7.81). Clearly (3.190) is just the weak version of (7.82). Furthermore

by substituting Fj; , as given by (3.140), into (3.193) it immediately follows that the

resulting equation is equivalent to (7.84). Therefore, as was to be expected, the
equations of motion obtained via the geometric analysis are the same as those obtained

from the corresponding coordinate dependent approach.

Finally, the nature of the Proca system can be investigated by applying the classification

scheme, outlined in section C of this chapter, to the canonical system (Ml, Wy, M2)

with inclusion j, : M, — M, . In order to apply the classification scheme in this case it

is necessary to consider the spaces Ty, My = (J2)s(Tm, M2) and (Tp, 1\42)L at
each mye M, . Suppose then for the sake of argument that
z=(A )@ (w, 1) ~ (W ® 1) e (Tp,My)" where m, = (A, 1) e M,.
The most general formof z& (Tp, Mz)-L is given by (7.64). On the other hand if
2=(A, 1)@ (w, 1) ~(w®1)e (Tm, Mz) then as seen previously for

m2=(A,H)E Mz, HO:T():O, ail_li-i-mz A():O and ai‘ci+m2 Wo = Q.
However for the condition 9; T + m2 wg =0 to hold when z is also an element of

(Tm2 Mz)L, then it follows from (7.64) that wy must be equal to zero. In view of

this it is found that

(Tm, M2) O (T, Mz)i = {0} (7.85)

172



and this is true for all m, € M, . From classification iii) of section C of this chapter it
follows immediately that the final constraint submanifold M, is in fact weakly
symplectic or second class. Consequently the Proca canonical system (M 1> ©1, M2)
is also weakly symplectic or second class. This is in accord with the coordinate based
analysis given in section C of chapter III where the constraints were found to be second

class after a consideration of (3.194), (3.195) and (3.196).
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CHAPTER VIII

THE APPLICATION OF THE GEOMETRIC CONSTRAINT ALGORITHM
TO COUPLED SYSTEMS

The geometrical analysis of a free field was investigated in section D of chapter VII
where the Proca field was the field theoretic system under consideration. The purpose
of this chapter is to apply the geometric constraint algorithm to two coupled field
theoretic systems. The first of these systems will be the Proca field minimally coupled
to an external electromagnetic field whilst the second system will be that of the Proca
field coupled to an external symmetric tensor field. These two examples are quite
distinct in that the couplings are introduced into the Lagrangian in two very different
ways. In the first example the external electromagnetic field is incorporated into the
Lagrangian in the kinetic or derivative terms whereas the symmetric tensor field in the
second example 1s incorporated in the potential or non—derivative part of the Lagrangian.
Furthermore it is known from the work of Velo and Zwanziger [3] that the minimal
coupling of the electromagnetic field to the Proca field leads to causal propagation whilst
the corresponding symmetric tensor field coupling, under some circumstances, leads to

acausal propagation.

More generally it is important to note that the geometric constraint algorithm only applies
to systems which do not display any explicit time dependence. As a consequence of
this, in order to employ the geometric constraint algorithm as it stands, it is necessary to
assume that all external fields are time independent. However, of course, the external
fields can still be assumed to be dependent on spatial coordinates without affecting the

geometrical theory in any way.

The geometrical treatment of the aforementioned coupled Proca systems will be tackled
using a fairly straightforward generalization of the techniques employed in section D of

chapter VIIL.
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A The geometrical investigation of the Proca field minimally coupled to an external

electromagnetic field

A Lagrangian L for the Proca field B, minimally coupled to an external

electromagnetic field A, is given by

1
L =J (_ 7 (Guw)" (GH) + m? (By)' (Bu))d—’z
pv =0,...,3 (8.1)
where

wBy = Dy B, v =0,..,3. (8.2)
In (8.2) D, is the 'derivative’ given by
D, = o, — ie A, p=20,..,3 (8.3)

where A is dependent only on spatial coordinates, that is A, =Au(xi) where

i=1to 3. Asin all previous field theoretic calculations the metric convention is again

taken to be given by (2.29).

The Lagrangian (8.1), which forms the starting point of this analysis, is essentially the

same as the one given in [3]. Additionally in order that the charged Proca field B, , in

the presence of an external electromagnetic field A, , obeys the principle of

conservation of electric charge then the Lagrangian describing the system should be

invariant under global gauge transformations of the form [19]
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B, — B' = eix B, w=20,..3, (8.4a)
n

B, - (Bu) = B w=0,..3 (8.4b)

where % is an arbitrary space—time independent real parameter. It is for this reason that

the Bp in (8.1) must be complex.

A space—time decomposition of (8.1) gives

L[B, B+, B, B+] = | (B Bi-ie Ao B B, - B/(3;Bo) +
ie A{B] By + ic AgB; B; + ¢2AZB, B; -
ie AgB; (3; Bg) — €2 AgA; B; Bo—(ai BS)Bi
+ ie Ag (ai B;)Bi + (ai B;;)(ai By) —
ieAi(ai BB)BO ~ ie A; By B; — €2 AgA; By B;
+ ie A BS (9; Bg) + €2 A A BS By - (ai B;)(ai Bj)
+ (ai B;)(aj B;) - ¢2A;A;B B; + ¢2 A;A;B/ B;
—ie A Bj* (0; B)) + ie A, Bj* (9; B;) -
e A (ai B;)Bi + ie A (ai B;)Bj +
m2 B, By — m2 B Bi)di*g Lj=1,..,3

(8.5)

where Bi =dy B;. The * in (8.5) in this instance refers to the usual operation of

complex conjugation.
The geometric analysis now proceeds from (8.5) essentially in the same way as the free
Proca field treatment given in section D of chapter VII. The only slight difference is that

there are now twice as many field variables due to the presence of the complex conjugate
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variables B; and Bi* , where 1=11to 3. Asin the free Proca case, all the manifolds in

this coupled investigation will be assumed to be well-behaved C= Banach manifolds.
The configuration space Q is now given by

(B, B*) = (Bu’ B:) = (B 0> Bis B:), B’:) . Velocity phase space TQ, on the other

hand, is now parameterized by (B, B*, B, B*) = (Bp, B:, Ba, B;) )

The fibre derivative /I:"L is defined by
FL(B, B*, B, B*). (B, B*, C, C*) = DL(B, B*, B, B*) .(C, C*) (8.6)

where, by analogy with (7.30), DL(B, B*, B, B*) . ( C, C*) is the Frechét

derivative along the fibre parameterized by (C C*) . In a local coordinate system

DL(B, B*, B B*) is represented by (§~L— a.L) and so it can be seen from the

oB  &B*

Lagrangian given by (8.5), that

DL(B, B*, B, B*).(C, C*) = oL, C, + oL, Cy + 5.* - C + ==+ C
5B, 8B, 8B, 5B,

*

=f((}§i*+ie Ag B - 9; Bo—ieAiBB) G
+ (Bi _ie Ay B, -~ 9; By + ie A, BO) C:)dk
i=1,..3. (8.7)
If phase space T*Q is parameterized by (B, B*, II, H*) = (Bp,’ B:, e, (HB)*)

then the natural pairing <1>:TQ x T*Q — MR is now defined to be
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<(B, B*, B, B)I(B, B*, 11, 1*)> ~ <(B, BX)I(I11, 1*)>

=J (Bi ITi + By 10 + B, (IT)* + BS(I’IO)*)d35
i=1,..3 (8.8)
From the definition (8.8) in conjunction with (8.6) and (8.7), it is found that

i

A . . - % * *
FL(B, B*, B, B*) = (B, B*, B; +ic Ag B; — 9; By —ie A; By ,

B, —ie Ag B; - d; By + ie A; BO). (8.9)

The form of (8.9) suggests that the canonical momenta are given by

*
i

Il = B, + ieAgB; — 9, By — ie A; B, i=1..,3 (8.10a)

(TT)* = B; — ic AgB; — 3; By + ic A; By i=1..3 (8.10b)
(8.9) can equivalently be written as
FL(B, B*, B, B*) = (B, B*, 0, IIi, 0, (ITi)*) (8.11)
after making use of (8.10). From (8.11) it can be seen that

m =0, (8.12a)
(1) = 0. (8.12b)

Equations (8.12) are primary constraints and they characterize the primary constraint

A
submanifold M; € T*Q which FL maps TQ into.

Suppose now that Q denotes a symplectic form on T*Q and that j; : M; —» T*Q is

an inclusion map. Then the 2—form ®; induced on M; by the pullback of Q on T*Q
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is given by (7.37). As before the geometric constraint algorithm can now be applied to

the resulting presymplectic manifold (M 1> col).

In the present case the symplectic form Q on T*Q is given by

Q((v, v¥) ® (o,0%*), (w, w*) @ (1, 1*))

<(v, v*)l(r, 1:*)> - <(w, w*)l(c, 0*)>

J (Vi T+ ve 10+ vi(t)* + vy (0)* - w; ol

— w09 - w(o)* - WB(OO)*)(pL i=1,..,3 (813

after appealing to (8.8). In (8.13) ((v, v¥) @ (0, 0%)) and ((w, w*) ® (1, 1*))
are tangent vectors to T*Q and they are basically the generalization of (v @ ¢) and
(w ® t) encountered in section D of chapter VIL. By analogy with (7.42),
((v, v¥) ® (o,0%)) and ((w, w*) ® (7, t*)) are a shorthand notation for

((v,v*)® (o,0*)) = (B, B*, I, I1*) @ (v, v¥, 0, 6%), (8.14a)
((w, w¥) ® (v, %)) = (B", (B)*, IT", (IT')*) @ (w, w*, T, T*) (8.14b)

where (B, B*, II, H*) and (B', (B’)*, IT’, (H')*) are the base points on T*b

of these tangent vectors.

The determination of (TMl)l will now be considered. For each point m; € M, ,

(Tm1 Ml)l is given by (7.43). Suppose then that
X = (B, B*, II, H*) @ (v, v¥, o, (5*) ~ ((v, v*) @ (G, 0*)) € T, M; isan

arbitrary tangent vector on M; and

z=(B, B* I, 11*) @ (w, w*, 1, 7%) ~ ((w, w*) @ (1,7%))e T, M, isa
typical tangent vector on M, , where my = (B, B*, I1, H*) € M, . It then follows

that
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0 =02 = OJ]_((V, v*) @ (0, G*), (w, w*) @ (’c, r*))

~ Q((v, V*) D (0, 0*), (w, w*) S (r, ’E*))
=J (Vi T+ vy 10 + V:(Ti)* + VB(TO)* — w; ol

-~ wg o0 — w:(ci)* - WB(O’O)* )d32(_ (8.15)

after use of (8.13). Now with x given in the form above where
m; = (B, B*, II, H*) e M, , it follows from (8.12) and a geneyalization of the
argument given after (7.44) that IT0 = (HO)* =0 and oY= (GO)* = (. Similarly for
the tangent vector z, itis found that I10= (HO)* =0 and 1% = (’CO)* = (. Since

= (GO)* =10 = (10)* =0 then (8.15) reduces to

J. (Vi i+ v:(ri)* - w; ol - w?(oi)*)dﬁ =0
1 =1,...,3. (8.16)

. . . * . . s
In view of the fact that the tangent vector X is arbitrary, then the v;,v, , ¢' and (01)*

must themselves be arbitrary and so (8.16) can only be satisfied if

ti=(t)* = w; = w: =0 foreach i=11t03. As a consequence of all these

. . . * .
considerations it can be seen that only the w; and w, of the tangent vector z remain

undetermined and SO the most general form of

z= ((w, w*) &) (’c, ’c"‘)) € (Tm1 Ml)L is given by

z = ((w, w*) @ (1,1%)) = ((wo, 0, wy, Q) @ (0,0, 0, Q)) (8.17)

where w; and wg are arbitrary. (8.17) is clearly just the generalized version of

(7.46).
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An extension of (7.47) indicates that the Hamiltonian H; induced on M, by the fibre

A
derivative FL is in this case given by

. . A . . . .
H, = <(B, B*, B, B*)lFL(B, B*, B, B*)>> - L[B, B*, B, B*]. (8.18)
From a consideration of (8.5), (8.8) and (8.9), it is found that (8.18) gives rise to

H, =f (}’32‘ Bj —e2 Ap B. By +iec Ag B (9;By) + 2 Ag A; B} By —
ie Ag (ai B‘(;)Bi - (ai Bg)(ai Bg) + ie A, (ai B;;) B, +
e2 Ay A; By B;—ie A; By(9; Bg) —e2 A; A; B, By + (ai B}‘)(ai B;)
- (ai Bj)(aj Bi)+e2AiAiBj Bj—e2 A; A;B/ B; +
e A&1 BJ* (al BJ) — 1e 1A1 B_]* (aJ BI) + ICAJ ]31 (al B;)
~ie A; B, (ai B}‘)- m2 By By + m2 B; Bi)d3§

Lj=1,...,3 (819

If the B: and Bi , given respectively by (8.10a) and (8.10b), are now substituted into

(8.19) then

H,[B, B*, I1, I1*] =f ((ni)* Ili - ie Ag B (TI)* + (ai Bg)(ni)* +
ie A; By (T1)* + ie AgB; I + (9; By) ITi —
ie A;Bo [T + (ai BJ’.")(ai B;) - (ai B;‘)(aj B;) +
2 A;A;B; Bj - 2 A AB] B; + ic A;B(; B))
~ ie A;B;(9; B;) + ic A|B, (ai B;) -
ic A, Bj(ai B;‘) - m2B; By + m? B Bi)d3x_
Lj=1,..,3  (820)
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The time preservation of the primary constraints (8.12) is guaranteed provided the

consistency condition (7.50) is sativsfiecL Suppose  that
z=(B, B*, II,11*) ® (w, w*, T, t*) ~ ((w, w*) ® (1, 7*)) e T,, M, isan

arbitrary tangent vector on M; , where (B, B* TII, H*) € M;, then

dH, (B, B*, I, IT*) . ((w, w*) @ (1, 1%))

i((w, w*) ® ('t, %)) dHl(B, B*, I, T1*) ~ T, Mi|dH;(m;)>

— OH, e 0} 1) * oH,
= T em () 5(110) + () 5(11)*
. 8H, SH, . 8H, . 8H,
Woe =t + wie—t 4 wie—k 4w e—p 1 =1,..,3 (821
6B0 6B1 OB 0B,

Now for the tangent vector z € T, My, where m, = (B, B*, II, H*) € M, , it has

been seen before that 10 = (HO)* =0 and 10 = (”co)* = 0. Furthermore it is found

from (8.20) that

SH,
SIT!

Tl e

It

o SHI [ (@) i+ ie ag B 11+ (3, By

—ie A; By ITi) d3x

J (ti [(IT)* + ie Ag B; + 9; By — ie A; By]) d3x

L,1=1,..3. (8.22)

From similar considerations it follows that

=j ((ti)* [nu ie Ag B + 9; By + ie A; By Dd3x
Ll=1,..,3 (823
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In addition

SH, 8
® - WO *
8B, 8B,

Wo

J- ((alBo) Hi — ie Ai BO Hi -
m?2 B; BO) d3x

=j (wo [—ai Ili —ie A; ITi — m?2 BZDd&

i=1,..,3 (8.24)

after a partial integration and a consideration of the spatial boundary conditions similar to

that which led to (7.54). A corresponding argument indicates that

* SH * . . .
W ¢ 5B£ = J‘ (wo [-0; (T)* + ie A; (TT))* — m?2 BO]) d3x
i=1,..,3. (8.25)
Also
W-SH1 N J ie Ag B; ITi + (9; B: ) (9; B;) -
1 SBI - W SBI ( 0 i (1 J) i

(ai B:)(aj Bl) + 62 Ai Ai B; B_] —62 Ai A_] B; Bi
+ie A B (9; Bj) ~ie A;B] (9; B;) +

ie A, Bi(ai B;)—ie A; B, (ai B;‘)+

m?2 B; Bi) d3x
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=j(wi[ie AgIli—9;9;B; +3;0; B, +e2 Aj A; B}
~ 2 A[A/B, —ieaj(Aj Bi)+ieaj (AiBj)+
. * . * * 3
ie A; (ai Bj)—le A (8j Bi)+ m? BiDdg .

,j,1=1,...,3 (8.26)

after some partial integrations and the usual consideration of spatial boundary

conditions. Similarly

. SH,
5B,

=J(w: [-ie Ag (IT)* - 9;9; B; + 0;0; B; + e2 A; A; B;
— e2 Ai A_] B_] +ie aJ(AJ Bi)—ie a_l(r’\l B_]) -
ie A_] (a1 B_]) + ie A_] (8J Bl) + m2 Bl] ) d3_7£

iLj,1=1,..3 (827

Thus by substituting 10 = (’EO)* = 0 and equations (8.22), (8.23), (8.24), (8.25),

(8.26) and (8.27) into (8.21) it is found that
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(B, B, TL T ((w, w) © (3,7%))

=J (Ti[(ni)* + i.e Ag B;+ 9; By —ie A; By + (ri)*[ni -
ie Ag B +0; By + ic A, B’g}+w0[_aini _ie A, ITi
~ m? BB} - wy [—ai(ni)* +ie A; (TT)* - m2 B0}+
wi[ie AgTIi—3;9;B] +9;0; B} +e2 AjA; B] —e2 A; A B]
—ied; (A;B) +ied; (A B) +lieAj (ai B;)—ie A (aj B’f)
+ m? B;“]+wi* [<ie Ag (TI)* = 3,3, B, + 3;9; B + e2 A A; B,
— ¢2A; AjB; +ie 0 (A; B;) —ie 9; (A; B)) —ie A;(9; B))

+ ie A; (0, B;) + m2 B;] )d& L,j=1,..,3  (8.28)

Suppose now that z € (Tm1 Ml)l. Making the substitution

z=((w, w*)® (1,1%)) e (Tm, Ml)l , as given by (8.17), in (8.28) leads to the

condition

(B, B, 1L T1%) (3, w9) © (5,5%)) ~<(Ty, My) ity (mp)>

=f (wo [-ai ITi — ie A;I1i — m2 B’{)] + wy [-9; (TH)* +

ie A; (IT))* — m2 By )dk i=1..,3. (8.29)

A consideration of (7.50) and (8.29) indicates that the primary constraints (8.12) are

preserved in time if

f (Wo [——8i ITi - ie A; IT1 — m? BB} + w:) [-o; (TT)* +

ie A; (ITH)* — m2 By] )d& =0 i=1..,3 (8.30)
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and since wq and WS are arbitrary, it follows from (8.30) that

~3;Tli—ie A; Tl —m2 B, = 0 i=1,..,3, (8.31a)

—0; (T1)* +1ie A; (IT))* —m2 By = 0 i=1.,3 (8.31b)

Equations (8.31) are secondary Hamiltonian constraints which define a new

submanifold M, C M; to which the motion is now restricted.

Now the demand that the secondary constraints (8.31) are preserved in time is ensured
provided the consistency condition (7.61) is obeyed. Consequently the determination of

(TMZ)‘L must now be considered. For each m; € M, , (Tm2 Mz)J‘ is given by

(7.62) where, as before, (jz)* (Tm2 Mz) = (Tm2 Mz) and j, : M, —» M, isthe

inclusion map. Suppose then that
z=(B, B II,T1*) @ (w, w*, 1, 7%) ~ ((w, w*) ® (1, t%)) e Ty M, isa
typical tangent vector on M, restricted  to M, and  that
x=(B, B*, II,11*) ® (v, v*, 0, 0%) ~ ((v, v*) ® (0,0%)) e Ty, M, is
an arbitrary vector, where (B, B*, I1, I1*) € M, . Now the above ze T, My,
where (B, B*, II,I1*)e M, € M;, is such that I10 = (II%)* =0

and 10 = (ro)* = (. For the vector x € Tmz M, , where(B, B*, II, H*) e M,,

it follows from (8.12) and  (8.31) that 10 = (II)* = 0,
—0; [Tt —ie A; IT! — m? B; =0 and -0;(IT)*+ie Ai(Hi)* -~ m? By = 0 and

consequently o0 = (00)* =0, —0;cl—ie Ajol —-m?v, = 0 and

-9;(o1)* + ie Aj{(ol)* —m?2 vy = 0. Therefore it follows that
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0= 0)1|M2(x, z) = (DIIMZ ((v, v*) @ (0, 0*), (W, W*) @ (’c, ’t*))

~ Q((v, v*) ® (0, 0*), (w, w*) @ (’c, 'c*))

=f (Vi Ti o+ v:(ri)* ~ w; Ol — w?(ci)*)d-& (8.32)

after Subsﬁtuﬁng 1:0 = (TO)* = 00 = (GO)* = (0 into (8.13). Now the Vi and V: are

arbitrary and so are the o©! and (Gi)* since they respectively satisfy the
conditions -0; 6! —ie A; ¢l — m? vg =0 and -0; (o})* +ie A, (ci)* —m2vy=0 for

arbitrary vg and vy. In view of this (8.32) can only be satisfied if

ti=(ti)* =w; = wi* =0 foreach i=1to 3. In this investigation of (Tm2 M2)L the

wqo and wg are not determined and so they remain arbitrary. In light of the above

(Tan, Mz)i = {(wo,g, Wo» g) ® (0,0,0,0)e T, M, :

w, and W; are arbitrary} . (8.33)

On substituting z = ((w, w*) @ (1, 1*)) € (Tm2 Mz)l, as given by (8.33), into

(8.28) it 1s found that

dH, (B, B, 11, 11%) . ((w, w*) ® (7, t%)) ~ <(Tp, Mz)l|dH1(m2)>

:J. (Wo{—ai Hi — ie Ai Hi - m2 BB} + W(’; [—al(l_,ll))'< + 1e Ai (H‘)*

~ m2 By] )dk i=1,..,3 (8.34)

On remembering that -0; 1t — ie A; 11 — m? BB =0 and

-—ai(l'li)* +ie Ai(Hi)* -m?By=0 on M, itcan be seen that (8.34) automatically

satisfies (7.61), the time preservation condition of the secondary constraints (8.31).

187



-

At this point the geometric constraint analysis of the Proca field minimally coupled to an
external electromagnetic field terminates. However, in order to give a full geometric

picture the equations of motion of this coupled system will now be considered.

First of all suppose that the vector field X is such that it is composed of a vector of the

form x = (B, B*, I, H*) @ (a, a*, &, &*)~((a, a*) @ (&, 2’;*)) e Tp, M
at each point m, = (B, B*, II, H*) € M, . From similar arguments to those

considered before it can be seen that II0 = (HO)* =£0 = (2’;0)* =0,
3 i—ie AT -m2B; = O, —9;(TH)* +ie A;(T1))* — m2 By = 0,

—0; &l —ie A; §i—m? a:; =0 and —0;(&i)* +ie A;(E1)* —m2ay =0 for vectors like x.

Furtherinore suppose Z is an arbitrary vector field obtained by

the assignment of an arbitrary vector of the form
z=(B, B, I, 11*) ® (b, b*, n,n*) ~((b, b*) ® (n,n*))e T, M; at

each point m, = (B, B*, II, H*) € M, . For vectors of the form of z then

10 = (no)* =m0 = (no)* =0.

With the vector fields X and Z given above it follows, by analogy with the arguments

leading to (7.70), that the equations of motion on M, are in this case given by

o ((a, a%) ® (&,&%), (b, b¥) @ (n,n*)I(B, B*, I1, IT*)

= dH,(B, B*, I, I1*) . ((b, b*) @ (m,n*)) . (8.35)

(8.35) can be written as
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j (aini i a;‘(ni)* ~ b, Ei— b;‘(g}i)*)d%

= J. (ni [(I)* + ie Ag Bj+0; By — ie A; Bo] + (ﬂi)*[ni
—ie Ay B[ + 9, By +ic A; B ]+bi[ic AgTli-0d,0; B;
+ 0,9, B +> AjAj B/ —c? A, A B[ —ic 9 (A B]) +
ie 9; (Ai B;) + ie A, (ai BJ’.’)- ie A, (aj B:)+ m?2 B?}
+ b, [e Ag(T)* = 0,0, B; + 9,0, B, + €2 A; A B; -
€2 A; A;B;+icd; (A; B;) —ic 9; (A; B)) —ic A; (9; B))

+ ie A; (9 B;) + m2 B;]) d3x j=1,..,3 (8.36)

since the left-hand side of (8.35) is derived from a similar argument to that which led to

(8.32) and the right-hand side of (8.35) basically originates from

(8.28)  after  remembering that —9;Ill —ie A; [T} — m? BS =0 and
—ai (Hl)* +1e AI(Hl)* — m2 BO =0 on M2 .

On equating the coefficients of the arbitrary b;, bi* ,M! and (ni)* in (8.36), it is

found that
a; = (I)* + ie AgB; + 9; By — ic A; By i=1..3 (837
ai* = [II - ierBi* + 0; Bg + ie A Bg i=1,...,3 (8.37b)
and
£ = —ieAgIli + 0;9;B; — 9;0;B; — €2 AjA;B; +

ezAiAjB; + ie o, (AjBi*) - e d; (AiB;) -

ie A, (ai B;) + e A (aj B;‘) - m2B; ij=1..,3 (838
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(E_,l)* = ie Ao(nl)* + aJ aJ Bi - BJ ai BJ - 62 AJ AJ Bi +
ez‘AlzéxJ BJ — 168J (AJ Bl) + 168J (Al BJ) +

ie A; (0; B;) - ie A;(9; B;) - m?B; i,j=1,..,3  (8.38b)

Now for a vector of the form of x ~ ((a, a*) @ (E_,, &*)) € Ty, M, itis known

that
~9,E — e A& - m2 a; =0 i=1,..3, (8.39a)
~3i(&)* + e A((E)* — m2ag = 0 i=1,..,3 (8.39b)
Therefore on putting (8.38a) into (8.39a) it is found, after using (8.31a), that

m2ag — ie(9; Ag)IT + iem2 Ay B, + €2 Fij A B; -

ie Fj; (ai BJ‘.‘) ~ m23;B - iem?A;B =0 i,j=1..3 (8.40)

where the Fij are given by (4.92). Since m# 0 then (8.40) can be written as

*

a, = iem2 (3; AO)Hi —ie AgBy — e2m2F; A B; +

ie m~2Fij(aiB;‘) + 3;B +ieAB i,j=1,..,3.  (8.41)

Correspondingly if (8.38b) is substituted into (8.39b), it is found that

g = —ie I'l’l_2 (al Ao)(nl)* + ie AO BO — 62 m“2 FU Ai BJ
—ie m2F;; (9; Bj) + 9;B; — ie A; B; ij=1.,3 (8.42)

after using (8.31b).

The vector field X ~x = ((a,a*)@(&,i*)) = ((ao,ai,af;,af) @ (go,gi,(go)*,(gi)*))

is therefore fully determined in light of (8.37), (8.38), (8.41) and (8.42) and the fact
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that &0 = (&0)* = (. This vector field X, the primary constraints (8.12) and the

secondary constraints (8.31) are the final results of the geometric constraint analysis.

The final constraint submanifold is therefore M, .

By analogy with (7.80) it is found for X ~ x = (B, B*, 1, T1*) @ (a, a*, &, £%)

that

ay = JyBy = By, (8.43a)
8y = 09 By = By, (8.43b)
a; = 9B, = B, i=1..,3 (8.43¢)
a =0JyB, =B i=1,..,3  (8.43d)
£0 = 9o II0 = IO, (8.43¢)
(£0)* = 3, ((10)*) = (T0)*, (8.43f)
Ei = 9,Tli = IIi i=1..3, (8.43g)

(8)* = 3 ((m)*) = ()

CH (8.43h)

Pk
Il
—_
:

In view of (8.43), (8.37), (8.38), (8.41) and (8.42) and the fact that &0 = (&0)* =0, it

follows that the equations of motion of this system can be written as

EO = —1le m—‘z(ai Ao)(nl)* + ie AO BO - 62 m_2 FIJ Ai BJ -

iem2F;(d; Bj) + ;B —ieA;B;  i,j=1,..,3 (3844
By = iem2(d; Ag)ITi — ie AgBy — e2m2F A, B; +

ie m2 Fij-(ai B]‘) + ;B +ieAB,  i,j=1,..,3  (8.45)
B; = (TII)* + ie AgB; + 3; By — ie A; By i=1,...3  (8.46)
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B, = IT — ieAgB, + d; B, + ie A; By P=1,..,3 (847

1

I° = 0, (8.48)
(10)* = o, | (8.49)

[T = —ie AgTl + 9;9;B] — 9,9, B] — e2 AjA;B] + 2 A;A/B]

+ie 9 (A; B} ) —ie 9, (A B) i Aj(ai B;‘) +

ie A (aj B’{) ~ m2B; Lj=1,..,3 (850

(IT)* = ie Ag(TH)* + 3,0, B; — 9;0; B; — ¢2A;A;B; +
€2 A A;B; — ie 9 (A; B)) +ic 9;(A; By) +ie A;(9; B))

~ie A;(9; B;) — m2B; ,j=1,..,3  (8.:5D

To conclude with, the nature of the Proca system minimally coupled to an external
electromagnetic field will be investigated. In a manner analogous to the free Proca case,

the classification scheme in section C of chapter VII will be applied to the canonical
system (Ml, (0P Mz) with inclusion j, : My, — M; . This necessitates a

consideration of the spaces T, M = (jz)* (Tm2 M2) and (Tm2 Mz)l

each m, € M, . Suppose then that
z=(B, B, I, T1*) ® (w, w*, 1, v*) ~ ((w, w*) @ (1,7%)) e (Tp, M2)
where m, = (B, B*, II, H*) € M, . The most general form of z e (Tm2 M2)

given by (8.33). However if
z=(B, B*, II, I*)® (w, w*, 1, TH) ~ ((w W) @ ('c, %)) e (Tm2 Mz)

then as before for m2=(B, B*, H,H*)e M, , HO:(HO)*=’CO:(TO)*=O
3 Mi-ie AT -m2B, = 0, -9, (T1)* +ie A(TI))* — m2 By = 0,

0 and —ai(‘ti)* + ie Ai(’ci)* - m2 wy = 0. For the

—0, T —ie A; 11 — m? wg
conditions —9; Ti — ie A;T! — m? W; =0 and —ai('ci)* +ie Ai(’ci)* -m2wy=0 to
hold when z is also an element of (Tm2 M2)i , it follows from (8.33) that

wo = wg = 0. Therefore the condition (7.85) holds for each m,; € M,. Consequently it
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is found from the classification scheme in section C of chapter VII that this coupled

system is second class just like the free Proca case.

B The eeometrical investgation of the Proca field coupled to an external symmetric

tensor field
In order to keep the notation in line with that employed in section A of this chapter, the

Lagrangian L for the Proca field B, coupled to an external symmetric tensor field THY

is taken to be

L =f (- %(HW)T (Emv) + m2(By)" BE + A (B,)T T Bv)d35

v =20,...,3 (8.52)

where

il
L

H,, = 9, B, - 3, B, WV =0..,3 (853

Hv i
and A is a coupling constant. Since the tensor field THV is symmetric then

THY = Tvu uv =20,..3 (8.54)

and in addition THV is assumed to be dependent only on spatial coordinates, that is

TH = TPW(xi) where i=1to 3.

It should be noted that the Lagrangian (8.52) is basically the one adopted in [3]. Once

again the metric convention given by (2.29) is assumed throughout this analysis.

A space—~time decomposition of (8.52) leads to
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L, me, b, 5] = (5] B, - B[(0,30) - (3,B) B+

(ai B;j(ai By) - (ai BJ”.‘)(ai B|) + (ai B}‘)(aj B;)

A By To; Bi— A B, T;o Bg + A B Ty Bj)dk

ij=1..3 (8.55)

where as before Bi =dg B; .

The analysis now closely parallels that given in section A of this chapter. Configuration
space Q is given by (B, B*) whilst velocity phase space TQ is parameterized by

o . A
(B, B*, B, B*) . The fibre derivative FL is defined by (8.6) and once again

DL (B, B*, B B*) is locally represented by @—; . ESBL*)' In view of this, it follows

from (8.55) that

DL (B, B*, B, B*).(C, C*) = oL, C, + oL, Cp + oL, C + xL . o
8B; 5B, 3B, :Y

=J ((B:‘ - ai BB) Ci + (Bl — ai Bo) Cr)ds'z(_
i=1,..73 (8.56)

With phase space T*Q parameterized by (B, B*, II, H*), then the natural pairing
<|I>:TQ x T*Q — R is defined by (8.8). Following a similar argument to that

leading to (8.11), it is found in this case that

A . . - * .
FL (B, B*, B, B*) = (B, B*, 0, B; - 9; By, 0, B, — 9, Bo) (8.57)

where the canonical momenta are
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Tk

Il = B, - 9; B, i=1,.,3, (8.58a)

1 1

(1) = B; — 9; By i=1,..23. (8.58b)

In addition it can be seen from (8.57) that I10 = (HO)* = 0. In other words equations

(8.12) hold in this case also. Thus the primary constraints of the current analysis, that is
(8.12), are just the same as the ones obtained in the case of the Proca field minimally

coupled to an external electromagnetic field. As before these primary constraints define

A
a submanifold M; C T*Q which FL takes TQ into.

The starting point of the geometric constraint algorithm is the presymplectic manifold

(Ml, (01) where, as in section A of this chapter, ®; is the presymplectic form

induced on M, by pulling Q on T*Q back with the inclusion map j; : My — T*Q.

As in the previous geometric calculations the next step of the analysis is to find

(TMl)L. Precisely as in the determination of (Tm1 Ml)L in the investigation of the

Proca field minimally coupled to an external electromagnetic field, it is found in this case

that the most general form of (Tm1 Ml)L is also given by (8.17).

The Hamiltonian H; induced on M; can now be found in an analogous manner to

(8.19) by considering (8.55), (8.8) and (8.57) in conjunction with (8.18) and this leads

to

H, =J (Bf B; - (ai B:))(ai By) + (ai B;)(ai B;) -
(ai B;)(a}. B;) - m2 By By + m? B; B; - A By Tgq By
+ A BB TOi Bi + A B:‘ TiO BO - A B: TU Bj)d:;_)i
Lj=1.,3 (859

Eliminating the B; and B; in (8.59), by using (8.58a) and (8.58b), gives rise to
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H, [B, B*, IT, IT* =J ((Hi)* i+ (I1)* (ai B5)+ I1i (9; By)
+ (ai B;‘)(ai B;) -(ai B;‘)(aj B;) —m2 By B
+ m2B] B, — A Bj Tog By + A By Tg; By +

AB, Ty By — A B; Ty Bj)d3z<_

Li=1,..3  (8.60)

The primary constraints (8.12) will be preserved in time if (7.50) is satisfied. Now for

an arbitrary tangent vector on M, given by

z=(B,B* II,T1*) ® (w, w*, 1,1%) ~((w, w*)® (1,7%)) e T, My,
where (B, B*, II, 1'[*) € M, , then dH; (B, B*, II, H*) . ((w, w*) ® (’c, fc"‘))

oH
is given by (8.21). In view of this consider first of all the term The —

— . From (8.60)
it is found that
SR J((HI*H1+H(8 Bo)) d3x
8IT! snl
=j(n:i[(ni)* +9; Bo]) d3x i,l1=1,.,3 (8.61)

and from similar considerations

SH,

(t1)* S J((v) [nwaiBngﬁ i1=1,..,3 (8.62)

Additionally

196



SH; 5
5B, 5B,

Wy J (Hl (al Bo)—m2 BE BO—)\.BBTOO BO

+ AB] Ty Bo)d3g

=J (WO l:-“ai Hl — m2 B:; - )\,TOO Bz + )\.Tio B:‘} )d?’Z(_
i=1,...,3 (8.63)

after a partial integration and the usual consideration of spatial boundary conditions.

Correspondingly

* OH * .
WO’S—B(,;l = J. (WO [-—ai (Hl)* — m2 BO - 7\,T00 BO +

AT B;] ) d3x i=1..,3. (8.64)

Furthermore

SH, 5

55 = | 58] j((ai B;.“)(ai B;) - (ai B;‘)(ajBi)

+ m2 B): Bi + )\.BB TOi Bl-—kBr Tl_] Bj)d?’L
:J (Wl[—-aj aJ B:‘ + aj ai B: + m2 B: + )\'TOi B:) —

ATj; B;jl )d35 Lj,1=1..,3 (865

after some partial integrations and the usual consideration of spatial boundary terms. A

similar procedure reveals that
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*

SH .
B,

- ATj Bj] ) d¥ il =1,..,3 (866

On substituting (8.61), (8.62), (8.63), (8.64), (8.65) and (8.66) into (8.21) and using

the fact that 0 = (t0)* = 0 since z = ((w, wH) @ (t, %)) e T, My , it is found

that

dH, (B, B*, I1, 1#) . ((w, w*) ® (1, 7*)) ~ < Ty, M;|dH(m)>
=J (’ci [(t1)* + 9, By] + (t)* [ni + 0, B;} +

o [—ai ITi — m2 By — ATgo By + ATig Bj] +

wy [-9;(TT)* = m2 By = ATgg Bg + ATjo Bi] +

w{—aj 9; B} +9;3; B} + m2 B +ATq; By — ATj; B}kjl

+ w [-3;9; By +0;9; Bj+ m2B; + ATq; By

AT B;] )dk Li=1..3 (86D

If now z e (Tm1 M1>L, as given by (8.17), is put into (8.67) then, by an analogous

argument to the one leading to (8.30), the condition

f (wo [—ai ITi - m2 Bjy — ATgg By + ATy B:} + vt [-9,(T)

— m2? By - ATy Bg + ATy Bi] )dk =0 i=1..,3 (868

is obtained. (8.68) is the time preservation condition for the primary constraints (8.12)

. * . .
and since wg and w,, are arbitrary, it follows that

9, Tl — m2B) — ATgg By + ATy B = 0 i=1,..3, (8.692)
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~3;(TI)* — m2By — ATy By + ATpB; =0 i =1..3 (8.69b)

Equations (8.69) are secondary Hamiltonian constraints which restrict the motion of the

system to a submanifold M, C M; .

The time preservation of the secondary constraints (8.69) is ensured provided the
consistency condition (7.61) holds. In view of this it is necessary to find (TMz)L . As
before for each m, € M, , (Tm2 Mz)L is given by (7.62). Following the path taken in
determining (Tm2 Mz)L in section A of this chapter, it will again be assumed that
zZ = (B, B*, II, H*) @ (w, w¥*, T, 1*) ~ ((w, w*) @ (’c, ’C*)) IS Tmz M, is
a typical vector and that

x= (BB TLIF) ® (v, v 6,0¢) ~ ((vwv) @ (5,09) € Ty, My s

an arbitrary vector, where (B, B*, I, H*) € M, . As seen before for the
ze Ty, M, given above, then 110 = (T10)* = 10 = (t0)* = 0. On the other
hand for the vector x € Tm2 M, , where (B, B*, I1 H*) e M, , it follows from

(8.12) and (8.69) that I10 = (I10)* = 0, —3; ITi - m2 By~ ATg By + ATy B; =0
and —Bi(Hi)* —m2 By -ATgy By +AT;p B; =0 and  furthermore that

00 = (0-0)>r= = O, —ai Gi — m? VB - KTOO Vz; + kTiO V: = 0 and

—9;(o1)* — m2 vy —ATgg vo + ATjg v; = 0. Then in light of the above, it can be seen

from (8.32) that

0= 0)1|M2(x, zZ) =J (Vi T+ v: (Ti)* - w; Ol - w: (Gi)*)d3§. (8.70)

Now the v; and vi* along with the ¢! and (Gi)* are arbitrary since they satisfy
—aici—mZVS—KTOOVS-F}\,Ti()V:=O and
—Bi(Gi)* —m2vy—A Ty v+ A Tyg vy =0 forarbitrary vg and VS . Consequently

(8.70) can only be satisfied if T= (Ti)* =w;, = wi* =( for each i="1to 3. In this
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. . * . 3
determination of (Tm2 Mz)l the wg and w, are undetermined and so they remain

arbitrary. As a result of these considerations it is found that the most general form of

(Tm2 M2>l is given by (8.33); in other words it is the same as the one uncovered in the
analysis of the Proca field minimally coupled to an external electromagnetic field.

On substituting z = ((w, w*) @ (*c, ’E*)) € (Tm2 Mz)l, as given by (8.33), into

(8.67) it is found, by analogy with the derivation of (8.34), that

<(Tlrn2 Mz)LIdHl(m2)> :j (Wol:—ai Hi — m2 B:; - ’/)\, TOO BB + 7L TiO B:j]

+ W; [—al(l—ll)* — m? BO _— TOO BO

+ % Tio B;] )d—& i=1..,3 (8.71)

On M, , however, it is known that —9; [T} — m? B; -ATgo B; +A Ty B: =0 and

—0;(T1i)* — m2 By — A Tgg By +A Tjp B; = 0 and consequently (8.71) automatically
vanishes thus satisfying (7.61), the condition that the secondary constraints (8.69) are

preserved in time.
As before, this signifies the end of the geometric constraint algorithm for the Proca field
coupled to an external symmetric tensor field. To complete the geometric investigation

of this coupled system the equations of motion will now be analysed.

As in section A of this chapter suppose that the vector field X is such that

X~x=(B,B*,H,H*)@ (a, a*,é,c‘,*)e Tm2M2 for each
m,=(B, B*, T, T1*) e M, . In  this case 110 = (T19)* = 0,
9, TTi — m2 By — A Tgo By + A Tip B; =0 and
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—0;(T11)* —m2 By~ A Tgo Bg + A Typ B; =0 and furthermore 0= (£0)* =0,
—ai(&i)* ~m?2 ay—A Topag + A Tjg a; = 0. In addition suppose that Z is an arbitrary
vector field given by Z~z= (B, B*, I, I1*) @ (b, b*, m, n*)e T, M, for

each m, = (B, B*, IT, H*) e M, . For this vector field

IO = (11%)* =m0 = (n°)* = 0.

The equations of motion of this system on M, are given by (8.35). In this case (8.35)

can be written as

J (ai ni + a:(ni)* _ by Ei- b’;(&i)*)d%
=j (T]i [(T)* + 9; By + (mi)* [Hi + 0, BB} +

bi[»—aj 3;B; +3;9; B] + m2 B + 4 Ty; By — & T B}‘}
+ b, [-9;0;B;+d;0; B; + m2 By + 1 Tg; By -

A T;; Bj] )d% Lj=1..3 (8.72)

because the left—hand side of (8.35) is deduced from similar reasoning to that which

resulted in (8.70) and the right-hand side of (8.35) essentially comes from (8.67) after

using the  fact  that —0; 11 — m? B:)—k Too B; +A Ty B: =0 and

—ai(ﬂi)*—m2 BO_XTOO BO +>\.Ti0 Bi=0 on Mz.

On equating the coefficients of the arbitrary by, bi* ,n! and (ni)* in (8.72), it 18

found that

a, = (IT)* + 9; By i=1,..,3 (8.732)
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and
£ = 9,;B; - 9;9;B, - m2B] — ATg; By + AT; B,

Lj=1..,3

(él)* = aJ aJ Bi - aJ ai B_] - m2 Bi - 7\‘T0i BO + 7\,le BJ

Lj=1,..3.

(8.73b)

(8.74a)

(8.74b)

Now it is known for a vector of the form of x ~ ((a, a*) @ (& é*)) e Tp, M,

that
_aiai - m2a; - 7\.T00 a; + 7\'Ti0 a: =0 i=1,...,3,

_ai(ai)* — m2ay — ATgpag + ATjpa = 0 1i=1,..3.

On putting (8.73b) and (8.74a) into (8.75a) it is found that

mz(ai B;‘) + M(3; Ty0)By + 21 Tio(ai BB) -1 (2; T;B; -
xTij(ai B}‘) + AT — (m2 + X Tog)ag = 0

Lji=1,..3

after using (8.54). Since m =0 then (8.76) can alternatively be written as

(8.75a)

(8.75b)

(8.76)

(1 + 7\,m_2 Too)a; = ai B:‘ + Km—z(ai TIO)B; + 2)\.m—2 Tio(ai BB)

— 7\.m‘2 (al TlJ)B: - 7\.m‘2 le (al B:) +

7\.m‘2Ti0Hi 1,_] = 1,...,3.
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In a corresponding manner if (8.73a) and (8.74b) are put in (8.75b), it is found that

(1 + 7\.m‘2 Too)ao = ai Bi + 7\.m—2(ai TiO)BO + 2}\.m—2 Tio(ai Bo)
— am2 (9; Tj;)B; — Am=2 T} (9; B)) +
Am-2 Tyo(T11)* Lj=1,..,3 (878

From a consideration of equations (8.43) along with (8.73), (8.74), (8.77) and (8.78),

it can be seen that the equations of motion of this system are given by

(1 + Am-2 TOO)B{) = 0;B; + 7Lm_z(ai TiO)BO *
2Am=2 Tyo(9; By) — Am=2 (9; Tj;)B;
— Am2 Tij(ai Bj) + A2 Ty(TI)*

ij=1,..,3, (879

(1 + }\,I’I‘l_2 Too)B; = ai B: + )\.m_z(ai TlO)B; +
2>\.m_2 Tio(ai B:;) — )\.rn_2 (al TIJ)BJ*

— 7\.m—2 le(al BJ )‘*‘ }\,rl'l"2 Tio Hi

i,j=1,..,3,  (8.80)

B, = (TI)* + 9; By i=1..,3 (8.81)
B = I + 3; B, i=1,..,3, (8.82)
I = 0, (8.83)
()= = o, (8.84)

I = ajajBl — ajalBj — szi — xTOiBO + KTPBJ
Li=1,..,3 (885

(I—Il)* = aJaJBl - aJalBJ — mZBi — }\'TOiBO + )\'TJlBJ

,j=1,..,3 (886
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It should be noted that (8.83) and (8.84) come about because &Y = (&0)* =0 for

X = ((a, a*) ® (&, &*))e Tm2 M, .

Equations (8.79), (8.80), (8.81), (8.82), (8.83), (8.84), (8.85) and (8.86) together
with the primary constraints (8.12) and the secondary constraints (8.69) are the final set
of equations obtained from the geometric analysis. As in the case of the Proca field

minimally coupled to an external electromagnetic field, the final constraint submanifold

1s Mz.

As in section A of this chapter, the nature of the Proca system coupled to an external

symmetric tensor field can be ascertained by considering the spaces
Tm2 M, and (Tmz Mz)J‘ at each m, € M, . Suppose then that

2= (B, B* T, 11%)® (w, w*, 1,1%) ~ ((w, w*) ® (1,7%)) € (T, Mj)*

where m, = (B, B*, IT, H*) € M, . It has already been seen that the most general
form of ze (Tp, Mz)L is given by (8.33). On the other hand if

2= (B, B*, I, T1#) ® (w, w¥, 1,1%) ~ ((w, w*) & (1,7%)) € (T, M)
then for m2=(B, B*, I1, H*)e M, , H0=(HO)*=IO=(‘CO)* =0,
—aini—(m2+>\,T00)B; + leOB:‘ = 0,

—al(l—ll)* — (m2 + A T00> BO + A TiO Bi = O,

—ai’ti—(mz + A T00> W8+ }'TiO W:: =0 and

—0;(th)* - (m2 + A Too) Wo+ A Tow; = 0. At this point it will be assumed that

. - * - .
(m2 + A Too) £ 0 so that equations of motion for By and By exist and are given

by (8.79) and (8.80) respectively. With this assumption it can readily be seen that the

conditions -0, T - (m2 + A Too) w; + ATy w: =0 and
—Bi(’ci)* - (m2 + A Too) wo + A T;g w; = 0 will only hold when z is also an
element of (Tmz M2>J‘, as given by (8.33), if wy = W; = (. Therefore, as seen in

section A of this chapter, (7.85) holds for all m; € M, provided the assumption
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(m2 + A Ty 0) £0 is satisfied. It then follows from the classification scheme given in

section C of chapter VII that the Proca system coupled to an external symmetric tensor

field is second class when (m2 + A Ty o) # 0.

The acausal propagation, mentioned at the start of this chapter, that can sometimes occur
when a symmetric tensor field is coupled to the Proca field will now be investigated. It
can readily be seen that equations (8.80), (8.82), (8.84) and (8.86) are just the complex
conjugate equations of (8.79), (8.81), (8.83) and (8.85) respectively. In view of this
only equations (8.79), (8.81) and (8.86) and the secondary constraint (8.69b) will be
considered for the propagation analysis. From this point onwards it will be assumed
that only the T component of THV is different from zero. This assumption greatly
simplifies the analysis whilst still allowing the acausal nature of the system to be

exhibited. Since Ty =Tj; = 0 it follows that (8.79), (8.86) and (8.69b) now

respectively become

(1 + Am-2 TOO)BOI = 9, B i=1..,3 (8.87)

(TH)* = 9,9, B; — 9;9; B; - m2B; Lj=1,..,3 (888
and :

~3;(T)* — (m2 + X Tpp)Bo = 0 i=1..,3 (8.89)

By taking the time derivative of (8.87) and making use of (8.81) and (8.89), then this

gives rise to the condition

éo - (1 + 7\,m'2 Too)—l ai ai BO + m2 BO =0 1 = 1, ,3 (890)

after some manipulation. It should be noted that in the derivation of (8.90) it has been

assumed that (1 + Am~—2 Too) #0. (8.90) is essentially a 'wave equation' for By .
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On the other hand the time derivative of (8.81), after using (8.87) and (8.83), leads to a

'wave equation' for the B;, that 1s

. Am-2T
B1—88B1+81 o 00 8Bj +m2Bi=O
17 1 + )\.l’fl_2 TOO

where once again it has been assumed that (1 + Am~2 Too) = 0.

In deriving the 'wave equations' (8.90) and (8.91) the equations of motion obtained
from the geometric analysis have been converted into a second order system of
equations. From this second order formalism it is then possible to complete the
causality analysis along the lines of Velo and Zwanziger [3]. In factif v=0 and v=1
are substituted into Velo and Zwanziger's final equation of motion then it is found that
the 'wave equations’ for By and B; are respectively obtained providing all the
assumptions made en route to (8.90) and (8.91) are taken into account. In other words,
(8.90) and (8.91) together are equivalent to Velo and Zwanziger's final equation of
motion and consequently the propagation analysis then proceeds precisely as it does in
[3]. The upshot is that the Proca field coupled to an external symmetric tensor field

propagates acausal modes for those values of the external field satisfying

—l<7Lm‘2T00<O.
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CHAPTER IX

CONCLUSIONS

The overall objective of this thesis was to cast the long—established coordinate dependent
approach to high spin field theories into a coordinate independent geometrical context.
The motivation behind this was to try to gain a deeper insight into the various
inconsistencies that plague high spin field theories coupled to themselves or to external
fields. The Gotay—Nester-Hinds constraint algorithm [9] seems to be the most
appropriate means of geometrically analysing high spin field theories from the practical
point of view and consequently this algorithm has been the basis for all the geometrical

calculations of this thesis.

Initially, in order to gain some orientation in the area of high spin field theories, the
coordinate dependent versions of the Lagrangian and Dirac—Bergmann constraint
algorithms were applied to the free massive spin—1 Proca field. This was more than just
an exercise in using these constraint algorithms because the results of the Dirac—
Bergmann analysis were later to be compared directly with the corresponding results

obtained from the geometric investigation of the Proca field.

However, the main concern of this thesis was the investigation of coupled, rather than
free; field theoretic systems. The first steps along this path were taken when the first
order version of the coordinate dependent Dirac-Bergmann algorithm was applied to the
massive Rarita~Schwinger field coupled to an external electromagnetic field. Since this
Dirac—Bergmann algorithm was described for explicitly time independent systems in the
thesis, the electromagnetic field was assumed to be time independent for ease of
application of the theory. The approach adopted for the analysis of this coupled system
was such that it was basically a detailed re-working of the constraint analysis of
Hasumi, Endo and Kimura [7]). Hasumi et al's results had shown that the constraint

analysis of Johnson and Sudarshan [5] was incomplete for certain critical values of the
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external electromagnetic field. It was for precisely these critical field values that
Johnson and Sudarshan had observed that the anticommutators of their quantized theory
were non—positive definite. In completing the constraint analysis of this coupled system
on the Hamiltonian side, Hasumi et al found a new tier of constraints appearing at the
critical field condition and as a consequence of this they effectively demonstrated that the
Johnson—Sudarshan pathology was pre—empted by a loss of degrees of freedom. Ina
corresponding analysis on the Lagrangian side, paralleling that of Hasumi et al, Cox
[14] has shown that the Velo-Zwanziger [4] acausality inconsistency similarly

degenerates to a loss of degrees of freedom.

This degeneration of the Johnson-Sudarshan and Velo—Zwanziger diseases to a loss of
degrees of freedom is very interesting. It in effect indicates that the type of
inconsistency that troubles the Rarita-Schwinger field coupled to an external
electromagnetic field is more restricted than was originally thought. Of course this
coupled system still suffers from a loss of degrees of freedom pathology but the full

constraint analysis has given a deeper understanding of the inconsistency problem.

It was the desire to express the Johnson-Sudarshan and Velo-Zwanziger
inconsistencies in a geometrical formalism that initially generated the interest in
geometrizing coupled high spin field theories. Before the daunting task of geometrizing
this coupled Rarita—Schwinger theory could seriously be contemplated, the Gotay—
Nester—Hinds geometric algorithm was applied to two Proca field couplings in order to
gain a flavour of the geometrical approach to coupled high spin field theories. The first
of the couplings that was considered was the minimal coupling to an external
electromagnetic field, whereas the second one was the coupling to an external symmetric
tensor field. The geometric constraint algorithm in its current formulation does not
handle explicitly time dependent systems and so to facilitate the direct use of the

algorithm the above external fields were assumed to be time independent.
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The aforementioned coupled Proca systems in the time dependent case have already been
analysed via a coordinate dependent Lagrangian constraint algorithm by Velo and
Zwanziger [3]. Their investigations revealed that the Proca field minimally coupled to
an external electromagnetic field gave rise to a completely consistent system of field
equations. On the other hand the symmetric tensor field coupling was found, under
certain circumstances, to either propagate acausal modes or not to propagate at all.
Consequently it was of great interest to discover how the acausality in the symmetric

tensor coupling was manifested geometrically.

It was found that the acausality inherent in the coupled symmetric tensor case only really
surfaced in the latter stages of the overall analysis after the constraint equations and
equations of motion had been uncovered by the geometﬁc constraint algorithm. These
equations of motion were seen to be first order in time derivatives but the equations for
the time derivatives of the canonical momenta, II! and (Hl)* were noted for
containing second order spatial derivatives. This meant that the theory was not a first
order formalism in the true sense. The propagation analysis of a system with this kind
of formulation is not encompassed by standard theory. Before a causality analysis was
performed on these equations of motion it was first of all assumed, mainly for the sake
of simplicity, that only the T% component of the symmetric tensor field THY was non—

zero. The equations of motion, with the aid of the constraints, were then transformed

into second order 'wave equations' for the fields By and B; by eliminating the
canonical momenta (Hi)*. The resulting 'wave equations' were found to be equivalent
to Velo and Zwanziger's final equation of motion and the subsequent propagation

analysis then proceeded precisely as it had done in Velo and Zwanziger's paper [3].

The symmetric tensor field coupling to the Proca field represents one of the simplest
coupled high spin field theories exhibiting the acausality pathology. Part of the
simplicity of this coupled theory lies in the fact that the acausality only becomes apparent
when all the equations of motion and constraints have been determined. Unfortunately

being then forced to convert these equations of motion to a second order formalism has
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meant that the causality analysis of the system has not strictly speaking been cast into a
geometrical background. Furthermore unlike the more complicated Rarita-Schwinger
field coupled to an external electromagetic field where it has been shown by Cox [14]
that the acausality degenerates to a loss of degrees of freedom, there seems to be no pre—
emption of the aca'usality of this symmetric tensor coupled system. Indeed the final
constraint submanifold of this coupled Proca field, on which the propagation analysis is
performed, must in some way decompose into three distinct regions where each of these
regions possesses a different propagation property depending on the strength of the
symmetric tensor field. More specifically one of these regions must represent the case
of no propagation whatsoever, another must represent causal propagation and the final

case must cover acausal propagation. The causality analysis of the theory found that the

values of the external field governing acausal propagation were —1 <A m2 Tyo < 0.

The decomposition of the final constraint submanifold in the symmetric tensor coupling
gives rise to some important issues. All of the geometrical analysis in this thesis has
essentially been carried out at the formal level in that it was the determination of the
constraints and the equations of motion and their subsequent analysis that was of
primary importance. The actual nature of the constraint submanifolds obtained at each
stage of the geometric constraint algorithm was not really considered in any depth. For
a fully detailed and rigourous geometrical interpretation of a field theory it would be
necessary to carefully consider the partial differential equations that characterize a
particular submanifold, together with any associated boundary conditions. In the case
of the Proca and symmetric tensor coupling it seems that a thorough investigation of all
the constraint submanifolds of the system is not crucial since the value of the external
field only appears to affect the final constraint submanifold. However in the case of the
Rarita-Schwinger field coupled to an external electromagnetic field it is known from
coordinate based arguments that the value of the external field can radically alter the
course of the analysis. From the geometrical viewpoint this would mean that a careful

treatment of each of the constraint submanifolds of the theory would be required in order
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to successfully analyse the pre—emption of the Johnson—Sudarshan and Velo—Zwanziger

inconsistencies by a loss of degrees of freedom.

The geometric constraint analysis of the free Proca field and the two coupled Proca cases
via the Gotay—Nester—Hinds algorithm was seen to be a lengthy and cumbersome
process. Gotay and Nester [10] have taken some steps to try to improve on the original
geometric constraint algorithm by developing a generalized version of the Gotay—
Nester-Hinds algorithm and they then applied this generalized algorithm to the free
Proca case. For further research it would be interesting to discover whether or not this
generalized constraint algorithm has any real calculational advantages over the Gotay—
Nester—Hinds algorithm. Obvious candidates for this type of investigation are the free
Rarita~Schwinger field and the Rarita-Schwinger field coupled to an external
electromagnetic field. However, some preliminary calculations revealed that the Gotay—
Nester—Hinds algorithm, and consequently probably the generalized algorithm as well,
did not seem very suited to dealing with the free massive spin—% Rarita—Schwinger
field. The reasons for this are not clear but may revolve around the fact that the Rarita—
Schwinger system is described by a Lagrangian which is first order in velocities
whereas the free and coupled Proca Lagrangians are in essence second order in the
velocities. Recently Carifiena, Lopez and Rafiada [20] have translated Scherer's [6]
analysis of finite dimensional first order constrained systems into a geometrical arena.
By extending Carifiena et al's work to the infinite dimensional case it should then, at
least in principle, be possible to geometrically probe the free Rarita—Schwinger field and

ultimately the case of this field coupled to an external electromagnetic field.

As a final point the extension of the Gotay-Nester-Hinds and generalized geometric
constraint algorithms such that they would be applicable to time dependent systems is a
further refinement of the theory that could be looked into. A description of the
geometric approach to time dependent finite dimensional regular Hamiltonian systems is
presented in Abraham and Marsden [8]. The dynamics in such instances no longer takes

place on phase space given by T*Q, but rather on momentum state space given by

211




T*Q x R, where time is the parameter on R. Since T*Q is even dimensional then the
manifold T*Q xR must be of odd dimension and consequently it cannot be symplectic.
The generalization of these finite dimensional time dependent concepts to the infinite
dimensional singular case would form the basis for a possible time dependent

formulation of the geometric constraint algorithms.
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