A SEMANTIC MODELLING APPROACH TO
KNOWLEDGE BASED STATISTICAL SOFTWARE

KEVIN WILLIAM LAWSON
Doctor of Philosophy

THE UNIVERSITY OF ASTON
February 1989

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the
author’s prior, written consent.

The University of Aston

A SEMANTIC MODELLING APPROACH TO
KNOWLEDGE BASED STATISTICAL SOFTWARE

Kevin William Lawson
Doctor of Philosophy
1989

Summary

The topic of the thesis is the development of knowledge based statistical software.
The shortcomings of conventional statistical packages are discussed to illustrate the
need to develop software which is able to exhibit a greater degree of statistical
expertise, thereby reducing the misuse of statistical methods by those not well versed
in the art of statistical analysis. Some of the issues involved in the development of
knowledge based software are presented and a review is given of some of the systems
that have been developed so far. The majority of these have moved away from
conventional architectures by adopting what can be termed an expert systems
approach.

The thesis then proposes an approach which is based upon the concept of semantic
modelling. By representing some of the semantic meaning of data, it is conceived that a
system could examine a request to apply a statistical technique and check if the use of
the chosen technique was semantically sound, i.e. will the results obtained be
meaningful. Current systems, in contrast, can only perform what can be considered as
syntactic checks.

The prototype system that has been implemented to explore the feasibility of such an
approach is presented, the system has been designed as an enhanced variant of a
conventional style statistical package. This involved developing a semantic data model
to represent some of the statistically relevant knowledge about data and identifying sets
of requirements that should be met for the application of the statistical techniques to be
valid. Those areas of statistics covered in the prototype are measures of association and
tests of location.

Keywords : statistical software, knowledge based software, semantic modelling.

Acknowledgements

[would like to thank my supervisor Paul Golder for his much appreciated advice
and assistance throughout the stages of this research. My thanks also go to SERC for

their financial support.

Chapter 1
Chapter 2

Chapter 3

Chapter 4
Chapter 5

Contents

Jeithoduction satk. Jx s 0L MRS B L E L e 9
The Development of Knowledge Based Statistical Software.............. 12
2.1 Conventional Statistical SOftWArEc.vveeneerrnrneensnrenennns 12
2.2 Background to Knowledge Based Statistical Software............. 14
2.3 Some Knowledge Based Statistical Software........................ 19
2,4, Canclusions «of Reviesn . oM. ol bt 24
A Semantic Modelling Approacheeueuieneneneeneueeneenenannennns 26
Sk MoBvEHoRyl, ot) S e B) SR 26
3.2 Representing Semantic Knowledge.............c.ovvevevnenennennnnn, 28

3.2:1 Sempntic Mo@ellifie ..o .. o conbnannaos s b onand o 28

3.2.2° Demantic NCOWOIES 05 s vsionossobnes sosbusnsdthodh 34
3.3 Statistical “Data MOURIS...c.uuniis il ot vosiidiisins donvesiotss 35
3.4 VResRArCh DB o sl T i e oo e e 36
Introduction to the Prototype System.......c.ovvrieerneenrunreneenreneenenns 38
AT SeTRaNtic DEtTNIDABED: .t evnc ot coshiincs ol T m o e 42
Nl aemantic Concents:, Ja s dvil ol s B0 Bl 42
Sk woymBole OB ettt e e e e 48

9. 2.1 " BNty TYDE TaXOROIIN 1o v st iiusss st lonensnsesnnsensisnsd 48

§.2.2 MEasUrement DITBCIONY. vsssesrssmnssmnsissins sosisosass 49

w I LRI b SR S SRR LT e CO 51

5.2 48 CONVErIOn IIICCIONY . o v coeans s dedossarovmpinnsisssiasiss 54

5.3 Semantic Data Model Manipulation Commands and Procedures. .55

b 8 2 ST (2 n e g T it S S R S T LT s A 56
J:0% MCasUrement SCheMES..citveurernesisesnrsoonerosssssasnnass 56
s il LT SRR e e AR P i S 58
X R o R TR i L o B R o S e 59

Chapter 6

Chapter 7

3. 3.6 " CONVOLSION “SCHEMIES. ovooeuottiinstonnessobossssnssssodunassis 61
5.4 File Storage of the Semantic Data Model............c.cccceuenenn.n... 62
Statistical Tests and Semantic Requirements..............cvcuevvvnvnnnnn.n. 64
6.1 Backevound to SHSUCRL TSR .. coiienesrs ossinmsstonibssihens dion 64
B.1.1 "Measures: of (ASS0CIatION. . viii s hhtrretanerssasenssans 64
6.1.2 Tests for Differences in Two Samples...................... 66
6.1.3 Tests for Differences in K Samples...........cccueuenn..... 71
6.2 Semantic Requirements OVEIVIEWoeverveenenrennsenenenennns 74
6.3 Representation of Semantic Requirements.............c....even..... 76
6.4 Description of Semantic Requirements............ce.ueveuvnnennnn.s 79
04l - HOmOEenConS BHUHES (... v s e din s oiaiiteansess e nss 79
G4 2. Belated SamMPIPY .. . Lot s iot ss it ot e Mo s s s 80
643 Number Of SAMPIES «. ot cnmsenrossisiamsosarosniosssnsansasil 80
6.4.4 Homogeneous Properties.........cooovvevevveeieierereraennns 80
R N O ST e T 81
YO TR R e R T I e e | 84
6.4.7 Equality OF VatIaneegciii sessesessitsnsbnonsnnentons tons 85
GRS SIZE ROl SAMDIeE.. ok e e o 86
6.4.9 Expected Frequencies in Contingency Tables.............. 87
GOR RERIME 10 il Bt b st e v b e et 87
The Operation of Validating the Use of a Statistical Test.................. 88
P SO ST e S (ORGSR IR . et S 88
7.2 The Clasg of Test Level Opetation ... tu....clavavsiismniiansisssiies 91
7.3 Applying the Class of Test Requirements............ccoevvvvenennens 91
7.4 Reviewing the Results of the Class of Test Requirements......... 94
T VRS TESE LeVE] TOIDCTAION., L. . i i eert it sndyinseiine ihvnsassssnopan 97
7.6 Applying the Test ReqQUIreIents ...oceevenreienrnaiiresensmsmsenss 102
O BT O SRR 1 SRR, . S I 102

Chapter 8

References .

Appendix A
Appendix B

To0:2 1 i NASTOEEn o P o T e L 103

FR I I T R e e e e I 108
7:6.4 “Equality of VERanCes . ic . coce s snsssiisaiiososnbons 109

ekl 1o O1Ze: Of SAMPIeS . vilesscisisnnasansasisntYana Biohie el 109
7.6.6 Expected Frequencies in Contingency Tables............ 109

1.7° Explaining the Requirements of a Test ... c.ccomcivenviieviaonansss 112
7.8 Explaining the Rejection of a User Requested Test............... 113
7.9 Reviewing the Validation of the Selected Test..................... 113
s 5T 7o) R P e . 115
8.1 The Prototype SYSIEal i i S i icassass sessinsn g 115
8.2 -Assessinent of Using MeMAatal.. uunvetnrsonessssasssomnsomnse 118
8.3 “ERensions 10 e MOIAdALE. conuisho by soness savisss cas s snatss 119
8.4 Limitations of a System Using Metadata........................... 120
8.5 The Future for Knowledge Based Statistical Software............ 121
... 122
Dl . N e e TR, e b ok M B e AT 126
ve i U BT R LS T e M. o e S 134
J2 9 L b T R R B e eV W S 137
B.28 Motlel toUUNESBRS i1 s o i ors s rhosi s e satnenssnss it autnetann b 144
2 A L o T T TS L RIS ST ol ok S O 179
B.q evwordBtidar . il Srs o et s e P e 217
B35 CIRSSCREERAIFIAHE o vidii li o vecs snorssnbosinciiisesss i odvaniass 218
 CRIRS VT o U) e T O ORI S s 218
B LocCHBCaIn 80 tuesci ivii e har oo hesosarmasss nsorbon ssonsnsnosssns 218
B8 ONApwilKCOBILHAY. it orsvies e onem s it s 218

2
—

3.1
3:2
3.3
3.4
4.1
5.1
3.2
2,9
5.4
5.8
5.6
5.7
5.8
6.1
71
el
73
7.4
Al

Figures

Stages of a Statistical AnBIYSIS. ..l R it issssasis i s 18
Example Entity-Relationship DXMagram 5.l cseticiimisasssos sviss s 30
Entity Relation EMPEONEE .0t ciiiiien sisssonniissstnstnss ot ongnten tosnns 30
Relationship Relation PROJECT-WORKERcccceiuiiurieeernriasesesaonenns 31
Exaniple BM/TE Entity” Type HICTarohy. . cuoecoiloseoiossmsssunesss oiisssdbisnnis 33
Main Components of the Implemented Prototypecceevviiineeiienennnen. 38
Vseof the Enty TyDE TaXOROIIY «.iodos bunsasiiavossnssisors caeensisssasseesunies 43
Entity | TyDe SNOBE o it i sin s tine reire s e taban s rhsA Te St aelsine duaasdd 43
Representation of an Entity Taxonomyc.ccevvviiieiriiiiniiiiiineneenennenns. 49
Chiahtative Mrastrement NOGR . o S0ttt icuuase s snasabies savinnuissdetbile i 50
Quantitative Measirenieiit NOGE T ... isanasitsss sesins o ivadinicds i s inprisas st 51
OESEE NOQE -0 o i s i st s AN TN L i Sne s LR St IR S . - 52
Vo avglors oy 1 i S STRSTRG SOt i, ARell i ISR NS W K 52
e T g et s I (T L TR O SRR e S e e o SR 54
Semantic Requirements Representation. i iiiissiitiesosnsssssssossnsos 77
ATSHNent List REPIESENIAHON iauaiiiasucs ivnsie s inbssmnssbinsn pisssossssssonsen b 89
Manipulation of Argument List Representation..........ccoceeueueenenenenenennnns. 93
Farmation of 4 Contingenicy Table .. . ot o i i diiiin aivsiasnanysrsasas 110
Representation of Contingency Table Marginal Frequencies.................... 111
Entity Taxonomy and Datasets Used in Example.........ccccccevueervvrenrnnnns 127

g
6.1
71

Tables

Measurement Level and Measurement Scheme Combinations

Requirements of STHSHCAl TeSIS .. o aravpoensansossavsiossesisss

State Transition Table for Argsummary

Chapter 1

Introduction

Although the use of machinery for statistical purposes can be traced back to the
production of tables on mechanical calculators, it was not until the arrival of general
programming languages, Fortran in particular, that machinery was widely used for
statistical analysis.

Single stand-alone programs to perform a specific task can be considered as the first
generation of statistical software. These programs were usually written by statisticians
for their own personal use and involved a great deal of, often repeated, work. To write
a program required a thorough knowledge of the intricacies of the steps constituting the
chosen test or technique. A good working knowledge of a general purpose
programming language was also called for. Some programs did get published, but due
to inconsistencies in data formats there were problems in attempting to run several
programs to perform a multi-stage analysis.

Some of the problems of the above approach were to some extent alleviated by the
release of libraries of pre-compiled subroutines to perform common well defined tasks.
An analysis could then be built up using a piecemeal approach with calls to the
appropriate subroutines. This development allowed a user to program at a slightly
higher numeric level. For example, being able to call a procedure to perform a matrix
inversion rather than having to program the individual steps of a particular algorithm.
Good libraries have an advantage in that they provide a set of well designed, tested and
consistent subroutines. However, it is still necessary to write the main program to call
the subroutines and manipulate the data.

The early 1960’s saw the emergence of integrated statistical systems with their own
problem orientated command languages. These provided the flexibility of subroutine
libraries but allowed users to program at a more statistically orientated level. This

obviated the need to know a general programming language, although some early

languages were based on Fortran. Also, the batch approach to programming has
largely given way to systems able to operate in an interactive manner. This has obvious
advantages when working at the exploratory stages of an analysis.

Papers by Chambers (1980) and Nelder (1984) chronicle in more detail the
development of statistical computing, discussing computing in general and in particular
statistical software.

The most recent research efforts into the further development of statistical software
have been concerned with the production of software able to demonstrate some degree
of statistical expertise.

In chapter 2, the need to develop software with a greater degree of statistical
expertise is examined, illustrating some of the shortcomings of the current generation
of software. A review is given of literature which has discussed issues and problems
involved in developing knowledge based software and has proposed solutions, with
the emphasis of much of the literature being placed upon the application of artificial
intelligence techniques. To conclude the chapter, a brief description is given of a
number of knowledge based systems that have been under development to date.

An alternative approach to knowledge based statistical software is proposed in
chapter 3. By representing more of the semantic meaning of data, it is suggested that
conventional style systems could be enhanced and be better able to detect the misuse of
statistical methods. The background information to the research proposals is presented,
that is the representation of semantic knowledge - in the areas of database management
systems and artificial intelligence - and the inclusion of metadata in statistical database
management systems.

Chapter 4 provides an overview of the prototype system that has been developed to
investigate the viability of the research proposals. The implementation is presented
with reference to the main components of the system and the areas of statistics that it
supports.

A detailed description of the semantic data model is given in chapter 5. Attention is

focused on: the semantic concepts which constitute the knowledge about the data; the

10

symbolic objects that organise and structure the knowledge; the commands and
routines to manage and manipulate the objects.

Chapter 6 begins with a brief description of the specific statistical methods that are
supported by the system, identifying some of the conditions which should be met for
their correct use. The scheme adopted to represent the requirements is illustrated,
pinpointing the knowledge in the data model that can be used to validate each of them.

The operation of the system in validating the use of the statistical methods is
reported in chapter 7. Included is how the checks are performed and the feedback that
is given to the user.

Finally, the conclusions of the research are presented in chapter 8.

11

Chapter 2

The Development of Knowledge Based Statistical Software

2.1 Conventional Statistical Software

As statistical software has evolved, the knowledge required of someone to use a
computer to perform an analysis has gradually diminished. The need to understand or
even know about the low level numeric operations of a particular test or technique has
all but disappeared, with packages providing high level commands such as
regress (x, y). Command languages have become more flexible and natural, moving
away from a computer orientated approach. The fixed format numeric codes of the past
have given way to a free format English like dialogue. Hand (1985b) noted that there
had been a tendency to make statistical software as easy to use as possible, this has
mirrored the trend in other areas of applications software, e.g. word processing
packages. Indeed, there would seem little point in needlessly making something
difficult to use.

Paralleling, or more probably outstripping the developments in statistical software,
have been the advances in computer science. Hardware has become more powerful and
yet at the same time cheaper. The outcome of which is that computers are now much
more readily available.

As a result of the progress outlined above, statistical software has become much
more accessible. The ability to apply statistical techniques is no longer the preserve of
professional statisticians, researchers in all manner of domains are now able to
autonomously analyse their experimental data. A large number of these users can be
termed as being statistically naive, that is they may be experts in their own fields of
research but have only a limited knowledge and appreciation of statistics.

Statistical software provides the mechanics to perform an analysis and has done

well in performing this function (Chambers, 1981), the facilities offered by the larger

12

packages are now reasonably complete. Hand (1984) summed up existing statistical
software as containing arithmetic and algebraic expertise, systems know how to
compute a test statistic. Given data that is the correct type and of the right shape
(e.g. real vectors of the same length), the package can manipulate it to produce the
result. However, it can be said that only syntactic checks are performed, current
packages are largely unintelligent in that they do not check if the assumptions of the
test are met. It is up to the user to know if it is appropriate to apply a particular test. An
analysis only produces intelligible results if it is appropriate to the data. With current
statistical packages, the user is left to interpret the results obtained and attach meaning
to them.

As was mentioned above, many users of statistical software are not themselves
experts in the area of statistics, Hooke (1980) remarked that by making statistics more
accessible, use had been replaced by overuse and misuse. Unfortunately, incorrect use
of statistical software is not reported and users are often unaware of their mistakes and
misconceptions. A number of studies into the use of statistical methods in medical
Journals (Badgley, 1961; Schor & Karten, 1966; Gore ez al., 1977; Glantz, 1980;
Altman, 1982) have found that approximately 50% of published papers using
statistical methods contained inappropriate or incomplete analyses. Errors were found
to have occured throughout the stages of applying an analysis, either in the design of
an experiment, in calculating results or drawing conclusions.

Nelder (1977) opined that misuse of statistical software was bringing the subject of
statistics into disrepute, a sentiment similarly echoed from other quarters.
Chambers (1981) advocated that software should do more than merely perform blind
computational algorithms and that statisticians had a moral obligation to provide users
with better guidance. To that end, there has been a growing interest in developing
knowledge based statistical software as a means of providing a greater degree of
support to users. It is hoped that some of the misuse can be filtered out, resulting in

more correct and appropriate analyses being performed.

13

2.2 Background to Knowledge Based Statistical Software

An early paper to appear which advocated making statistical software more
intelligent was by Nelder (1977). He observed that current software was largely
unintelligent as no use was made of the data to check if the assumptions regarding a
statistical procedure were satisfied. To illustrate his point, regression analysis was
used to discuss checks that could be applied to protect a model from a number of
sources of distortion. In addition, it was also noted that to facilitate further checking it
would be valuable for a program to require a user to specify information external to the
actual data items themselves.

Gale (1986a) remarked that at that time techniques for implementing Nelders ideas
lacked the power to achieve the desired objectives. Since then there has been an
enormous interest in artificial intelligence (AI) research and the prospects for programs
to be able to exhibit some degree of intelligence look brighter.

Chambers (1981) was one of the first to discuss the application of Al techniques to
the development of statistical software. In particular, he considered the possibility of
expert software being able to perform some of the functions of a consultant statistician.
An earlier paper by Jones (1980) had considered the possibility of a computer
program being able to act as a statistical consultant. He noted that the attitudes and
personalities of both the client and consultant were important factors in the
collaboration of the two. To that end, he discussed some negative stereotypes of
consultants that a program would need to avoid, as well as good characteristics that
ought to be retained. Some negative stereotypes of clients were also highlighted which
a program would need to cater for.

The consultant statistican has often been the role model when considering what
knowledge based software could be used for (Hand, 1984, 1985a, 1986; Hahn,
1985). By examining some of the functions carried out by a human expert, some
potential uses have been identified. Generally speaking, the proposals for systems

have encompassed the following five tasks :-

14

(1) statistical answering and referral services;
(i) the refinement of research objectives;

(iii) choosing appropriate statistical techniques;
(iv) correctly applying a particular technique;
(v) interpretation of results.

Hahn (1985) described software falling into the first category as requiring only
“dumb statistical intelligence”. However he saw these type of systems as providing a
useful source of information for both statisticians and non-statisticians alike,
addressing fairly general and mundane matters. As an answering service, questions
regarding statistical techniques such as their use, sources of reference and packages
providing an implementation could be dealt with. A computerised statistical index
could provide users with information regarding books, articles and available software.
By computerising such information, access to it is made much easier - with regards to
searching - and the time lag for it to become available is reduced. Hahn recognised that
it may be dubious to describe such systems as being intelligent, but felt that they
established a precedent for software to provide information regarding statistical
methodology, rather than just applying statistical methods. He noted that such systems
were feasible and were being implemented in a number of ways.

Software able to assist in refining research objectives and questions was discussed
by Hand (1986). He saw such systems as being of benefit during the design stage of
an experiment. This could involve ensuring that, at a minimal cost, results are obtained
which are both accurate and able to answer the questions of the researcher. This is an
important and cost effective exercise, although unfortunately the advice of a statistician
is sometimes not sought until after the data has been collected.

The third area where it has been envisaged that knowledge based software could
make a contribution is in the choice of an appropriate statistical technique. This could
be in the form of a fairly broad system, performing at a very high level and requiring a
great deal of expertise, for example conducting a discourse with the user and

suggesting that regression analysis would be appropriate for the problem at hand.

15

Alternatively, if a broad technique had already been decided upon, the choice could be
at a much lower level requiring less expertise, an example of this task could be
choosing an appropriate bivariate test of location.

The division of expertise between choosing and applying a technique is somewhat
blurred. Hand (1985b) noted that if the technique chosen was regression analysis, a
considerable amount of expertise and effort would still be required to ensure that the
model developed was appropriate. However, once a test of location has been selected
the bulk of the work has been done, the effort involved in applying it correctly is
considerably less in comparison.

Knowledge based software able to interpret the results of an analysis was briefly
covered by Hand (1986) and is an area still to be looked at in any great detail.

As can be seen from the five areas discussed, knowledge based software is seen as
an opportunity to broaden the role that software can play in the area of statistics. The
type of systems suggested go beyond the scope of existing statistical packages.

Software able to adequately perform all of the functions of a human consultant are a
long way off. Jones (1980) felt that only a limited number of problems could be
tackled by a computer program, similarly Hahn (1985) thought that there were greater
chances for success if effort was concentrated on producing systems for limited
specialised tasks. General systems have not been attempted and the tasks which have
received the most attention are :-

(1) technique selection - choosing a technique appropriate to the problem;
(i) technique application - guiding a user to a correct and proper application of
an advanced statistical technique, e.g. regression analysis.

Analogies have been drawn between these aspects of statistical consultancy and
medical diagnosis, for which the expert system MYCIN (Shortliffe, 1976) has been
developed. The most striking similarity which has been identified is one of having to
make a choice from a number of alternatives arranged in an ill-structured domain.
There are however certain differences which set statistical applications apart. Firstly,

statistical systems for data analysis should make use of two sources of information,

16

namely the user and the data. Also, medical systems can assume a user with some
knowledge of the domain, which is not true of statistical systems. Indeed,
Hand (1985a) noted that when considering the areas for which expert systems had
been applied, what was striking were not the similarities but the differences.

In addressing the problem of choice (for regression analysis this would be choosing
an appropriate model), a strategy for making this choice has to be educed and
represented. In developing statistical expert systems, statisticians have been forced to
consider in detail how they go about their own consultancy work. This aspect of
consultancy had previously received little attention, but has now become the focus of
research effort and has yielded benefits which go beyond the development of
computerised consultancy.

Consideration must also be given as to the role that intelligent software should play.
If it were possible to produce software able to automatically look at the data, carry out
the analysis and output the results, would such systems be desirable? Hand (1984)
termed this the oracle approach, both he and Hahn (1985) opined that software
assuming such total control was not desirable. One reason for this conclusion is due to
the very nature of statistics, which is a discipline that is not used in isolation. Rather,
its use is to explore and explain phenomena occuring in a ground domain, that is the
discipline it is being applied to. Intelligent statistical software is envisaged to contain
statistical knowledge. However, as Hand (1984) noted, “effective statistical work
involves a subtle interplay between two types of knowledge, the statistical and that of
the domain of study” and preferred to talk of “the notion of expert systems for giving
statistical advice”. It would not be practical to try and encapsulate into statistical
software the required domain knowledge. Since statistics is applied across such a
diverse range of disciplines, the work involved to elicit and represent such knowledge
would be immense. However, the user of these proposed systems will possess the
required domain knowledge and it would seem prudent to make use of this.

Because of the need for domain knowledge, the role that is generally suggested for

intelligent statistical software is that of an advisor, to guide the user to an appropriate

17

and sound analysis. When a researcher seeks the advice of a human consultant, a
dialogue takes place between the two and both parties are involved in making a
decision as to an appropriate course of action. It would seem sensible for intelligent
software to assume a similar role.

The stages of an analysis could be considered in a simplified form as in figure 2.1.

Pose Translate to Choose and Interpret Translate to
research | ——P» statistical perform statistical research
questions questions analysis results results

Figure 2.1 Stages of a Statistical Analysis

Throughout the above stages, a knowledge of the domain of application is required.
Initially, the statistician will talk through the problem with the researcher, often in the
language of the researcher. The purpose of this is to clarify the objectives of the
analysis, of which the client may initially only have a vague notion. The skill of the
consultant is to recognise the salient points and to formulate an analysis appropriate to
the problem. Conversely, once the results of the analysis have been obtained, the
meaning must be conveyed to the researcher in their own language. This task is an
important one, as the results of one analysis will often lead to further questions and
analyses. Chambers (1981) felt that this ability to bridge the gap between the two
fields of knowledge would be a difficult function for software to imitate.

When it comes to using statistical software, non-statisticians may be happy to sit
back and be given an answer. However, it is often the case that there is no definitive
answer, there are often conflicts which need to be resolved and depending upon their
relative importance different solutions will be adopted. For a user that has some
statistical expertise, software dictating an answer will not be appreciated. Such a user
will wish to compare their own initial ideas with the systems conclusions before

deciding on a course of action to embark upon. By involving the user in the decision

18

process, not only will the analysis be better able to answer the required questions, but
the user will have a greater understanding of what has been done and why.

The fact that statistical software is used by people with such differing levels of
statistical expertise causes further problems in the development of intelligent systems.
Although it is convenient to discuss users as being statistically naive or experts, they
do in fact fall upon a continuum and not a dichotomy. The needs of these users will
differ, indeed the needs of a user will alter over time as expertise is gained. Those with
a weak grasp of statistics will require a system to have good explanatory facilities to
make clear the unknown, whereas those with a better knowledge will merely want to

be reminded of points which may have been forgotten.

2.3 Some Knowledge Based Statistical Software

Initial attempts at introducing statistical expertise as a means of reducing misuse
came in the form of interfaces, or front-ends, to existing statistical packages. One in
particular was BUMP (Smith ez al., 1983), this was written as an interface to the
MULTIVARIANCE program which is used for univariate and multivariate analysis of
variance, covariance, regression and repeated measures analysis. Although an initial
aim was to make access to the package easier for non-statisticians (due to the fact that
an analysis is described using an awkward system of numeric codes), the possibilities
of preventing misuse and providing pedagogical facilities were also explored. The
system operated by questioning the user about their problem and was then able to
produce a complete MULTIVARIANCE program. Work on producing interfaces was
limited and the majority of research has concentrated on expert systems solutions,
although Wolstenholme & Nelder (1986) have recently been working on a front-end
to GLIM.

Gale (1985) observed that efforts to apply Al techniques to statistical software were
taking two distinct directions :-

(i) providing guidance for those with little training in statistics;

19

(i) making software more productive for professionals.

Gale noted that software for experts would require more statistical knowledge to be
represented. Since the representation of statistical knowledge for machine use is still in
its infancy, he felt that more usable software would be initially developed in the former
direction. Some work aimed at the professional has been carried out which has
focussed on the study and representation of strategy (Huber, 1986; Oldford &
Peters, 1986). However, most systems have concentrated on providing guidance for
non-statisticians.

One of the most important of the early expert systems, certainly one which has
received the most attention, is REX (Gale & Pregibon,1982; Pregibon & Gale, 1984)
which was developed at Bell Laboratories. This is a Regression EXpert and aims to
safely guide a user to perform a simple linear regression analysis. The principle it
adopts is to consider a user’s request to fit a regression model and to check the
assumptions underlying the technique. A number of tests are carried out, if a problem
is detected the system attempts to find a solution which is acceptable to the user. When
there are no problems which remain unresolved, the analysis is complete and the model
has been determined. The mechanics of the analysis are performed using the S System
(Becker & Chambers, 1984) which has also been developed at Bell Laboratories. As
well as providing guidance, Gale and Pregibon also wanted the system to provide
instruction and interpretation, to educate users in regression analysis and to be able to
explain the meaning of results obtained. They felt that expert systems techniques
offered advantages over conventional programming styles in providing these facilities.
REX used a combination of production rules and frames to represent its statistical
knowledge, a detailed description of which is given in Gale (1985).

Oldford & Peters (1984) have also focussed on multiple linear regression analysis
but have tackled development using a bottom up approach. Four major subtasks within
linear regression analysis were identified, they decided to concentrate on building

prototype systems for those individual tasks before combining them into an overall

20

system. The paper discussed the first such subsystem which addressed the problems
involved in detecting and correcting collinearity.

The RX project (Blum, 1982) aimed to tackle the problem of converting a research
goal into a statistical goal. It did so by restricting the domain of application to medicine
and was able to translate a research question posed in medical terminology into a
description of a statistical study capable of answering the question. To achieve this it
was necessary for the knowledge base to represent both medical and statistical
concepts. The system was used to design studies which could examine the existence of
causal relationships in a database of longitudinal medical records. The system was then
able to add newly found information to a third portion of the knowledge base
concerned with causal relationships.

There were a number of early systems which undertook to explore the difficulties
associated with developing software capable of assisting in the selection of an
appropriate statistical technique. Notable amongst them were two by Hajek &
Ivanek (1982) and Portier & Lai (1983).

Hajek and Ivanek considered the application of Al techniques to software for
exploratory data analysis. Their aim was to develop a consultancy system to assist in
the use of the GUHA package (a brief description of which can be found in Hajek &
Havranek (1978)), which is oriented towards nominal and dichotomous data. A
subsystem GQUANT was implemented for the ASSOC procedure, to search for
associations in the data. GQUANT had 34 rules, by asking the user up to 9 questions a
choice could be made from 6 statistical tests, e.g. chi-square and Fisher exact. The
principle adopted was to view data analysis as a search, the goal of which is ill-
defined. A fully fledged system, GUHA 80, was planned but never implemented.

A system which attempted to tackle the problem of a user not understanding the
meaning of a question was produced by Portiér and Lai. The STATistical PATHfinder
(STATPATH) was a menu-driven system which identified an appropriate analysis by
performing a binary tree search, the tree being represented as production rules. The

objective in asking the user questions was to narrow down the field of possibilities. If

21

the user was unable to give a yes or no answer then both lines of questioning were
followed up. One problem that exists is that once a number of questions are answered
as unknown the avenues to explore increase rapidly. Also, the system is unable to
guard against a user mistakingly thinking that they are able to give a definite answer to
a question.

Of late, those aspects of statistical work for which expert systems have been
developed has widened. Dickson & Talbot (1986) are developing a system for use on
a microcomputer to perform data validation functions. The choice of a microcomputer
application was to facilitate the use of electronic measuring devices, some data capture
procedures were described in Dickson (1984). The aim is for the system, which has
been written in BASIC, to monitor data input and to highlight possible errors to the
operator. The authors perceive validation as a dynamic process with the system being
able to learn from information recorded and the responses of the operator.

A system able to learn a strategy was the aim of an ambitious project that was
undertaken at Bell Laboratories. It was envisaged that Student (Gale & Pregibon,
1984; Gale, 1986b) would be able to learn by means of example. When Gale and
Pregibon developed REX, a number of regression analyses were performed using the
S system. The strategy was constructed by analysing the steps carried out and
questioning why certain actions were taken. Gale and Pregibon designed Student to
work in the same way, to observe a professional statistician performing an analysis
using a statistical package and to ask questions. This approach would allow a
professional statistician to develop a knowledge based system for an aspect of data
analysis without the need to know about the internal representation. The statistician
would first conduct an analysis for a technique that is new to the system. By then
adding further examples the strategy can be extended and consolidated. Another
perceived advantage of this approach is that it would allow the builder to bias the
knowledge and vocabulary towards a specific domain of application. For such a

project to succeed enormous problems would have to be overcome and some progress

22

was made. Work on the system has now ceased after four years as Gale and Pregibon
could not see it reaching a satisfactory state for at least another year.

Although the majority of knowledge based statistical software that has been under
development has been in the form of expert systems, often implemented using
production rules, work in other directions has proceeded.

Baines & Clithero (1986) are developing a user-friendly package for the design and
analysis of experiments using standard programming methods. They noted that
packages in general use were unsafe for an inexpert user because they are
predominantly concerned with computational aspects. Although there are often the
facilities to perform validity checks, a certain degree of statistical expertise is required
of the user to know what checks to perform and how to interpret the results. Baines
and Clithero sought to add some consultancy features to aid inexpert users. The
structure of the program, which was written in Fortran rather than Lisp or Prolog, was
a tree network to represent all possible outcomes. Those outcomes considered as
having exceptional combinations of circumstances were not dealt with and the user
advised to consult a statistician. The program consisted of a top level overview module
to determine which area of experimental design was appropriate for the problem. If
successful, control would be passed to a design and analysis module. At that time three
such modules were being implemented for simple comparative, factorial and response
surface experiments.

The term knowledge enhancement system has been used to describe the KENS
program (Hand, 1987), this was felt to be more appropriate than calling it an expert
system. Its function is not to guide a user in conducting an analysis but to provide
information, in this particular case about nonparametric statistical methods. The
objective was to provide a tool to allow a user with some knowledge of the domain to
explore the subject and enhance their knowledge. Hand was motivated to develop the
system for use in his role as a consultant statistician, to assist him in choosing
appropriate tests and to remind him of concepts which may have been forgotten. In

designing the system he felt that a production rule architecture would not provide for

23

the flexible type of interaction envisaged. Hand considered that they were well suited
for diagnostic problems of choosing from a number of alternatives, but less so when
the objective was not as clearly predetermined. The architecture developed was a
network representation. Nodes were used to encode portions of text (frames) and
single words or phrases (descriptors). The system consists of three graphs, which can
be regarded as semantic networks. The relationship graph links descriptors and
represents associations between them. Frames are cross referenced in the reference
graph . The concept graph links the frames with the descriptors that define them. Upon
invoking KENS the user enters a descriptor which is used to initiate a search for
relevant frames. A descriptor can be preceeded by a relation which modifies the search,
for example to look for frames which are related to antonyms of the descriptor. If
successful, the system will return a list of frames with a ranking as to their likely
relevance, the user can either look at a frame or enter a new descriptor. As well as
giving textual information, a frame may also give a further list of frames which may be
of use. Although not initially intended for the statistically naive, during the course of
development KENS has been extended and is now more suitable for such a user. A
version of KENS has been made available as a prototype system and is still under

development.

2.4 Conclusions of Review

The software described in the previous section does not constitute an exhaustive
review of the knowledge based statistical systems that have been produced. It does
however illustrate the diversity of the research and development work that has been
carried out. Two points have emerged that are of particular interest. An increasing
number of aspects of statistical work have been the subject of investigation for the
development of knowledge based systems. Secondly, there has been a diversification
of the types of systems developed, that is they are not all expert systems with a

production rule architecture.

24

There are as yet no commercially available statistical knowledge based systems,
those that have been under development have so far reached the feasibility
demonstration stage. This is a reflection of the youth of the field and significant

progress has been made towards the production of such a system.

25

Chapter 3
A Semantic Modelling Approach

3.1 Motivation

Conventional statistical packages which are currently in common use are lacking in
that they contain arithmetic and algebraic expertise but little or no statistical expertise.
This expertise is left for the user to provide, whose statistical knowledge is often
limited, leaving the software open to misuse.

Attempts aimed at producing software able to exhibit some degree of statistical
expertise have to a great extent concentrated on using expert systems techniques. This
approach seeks to encode a strategy which is able to guide a user to perform a safe and
appropriate analysis. A number of methods have been employed to represent the
strategy, including production rules and decision trees. The interface to such systems
is usually of a conversational type, which endeavours to mimic an interaction with a
human expert. In general, expert systems solutions have been developed for relatively
narrow topics which require a great depth of knowledge, with regression analysis
being a classic example.

The research into expert systems represents a shift away from statistical software
built using conventional architectures, which have evolved towards command driven
systems encompassing a wide and diverse range of statistical facilities. One of the
advantages of such systems, which has influenced development to move in this
direction, is that of flexibility. Command driven systems provide a flexible tool to
perform data analysis, whereby at any point the user is able to call from a variety of
functions. This is particularly useful when performing an exploratory type analysis,
where the purpose is to examine and to gain some insight of the data. Use will be made
of graphical displays and plots, summary statistics and tests to elucidate relations

between samples. In many cases the user will have some initial ideas to explore but

26

will not have a totally predetermined set of commands to enter. The path of such an
analysis is determined dynamically with the results of earlier commands having a
bearing on its future direction. In such cases, a suitable system would be one which is
command driven and enhanced with statistical expertise to offer some protection
against possible misuse. In considering expert software for conducting analyses, in
contrast to software for choosing appropriate statistical methods, Hand (1985a)
considered that sophisticated variants of conventional packages may be the most
suitable.

One of the problems with current statistical packages is that when a user issues a
command to perform some operation, statistical or numeric, all that the package is able
to do is check to see if the command is syntactically correct. That is to see if the correct
number of arguments of an appropriate type have been given, for example two numeric
vectors of the same length. It would be desirable if packages could be enhanced such
that they were also able to check on the semantics of the command. That is to be able to
advise on whether or not the test specified is appropriate for the data given, will the
result obtained have any sensible meaning. This would involve checking that the
conditions regarding the use of the test are not violated. The reason why current
statistical packages are unable to offer much assistance to users in this respect is due to
the limited amount of knowledge that they have about the data. When data is entered
into a statistical package it is typically identified by its type (e.g. numeric,
alphanumeric, boolean) and stored in a suitable data structure. To be able to apply a
number of semantic checks, and hence advise on the soundness of applying a statistical
test, more must be known about the data than its type, some semantic knowledge of
what the data represents is required. Some packages, for example SPSS, have
represented other information about data such as variable and value labels, but this has
been purely for documentation and display purposes. If a system required more
semantic information to be entered about the data, possibly in a manner akin to the data
definition approach of database management systems, then a model could be

constructed to represent some of the semantic meaning of the data. When analysing a

27

request to perform a statistical operation, it would then be possible for a system to
report back to the user the result of applying a number of semantic checks which had

consulted both the actual data items and also the semantic knowledge about the data.

3.2 Representing Semantic Knowledge

3.2.1 Semantic Modelling

Researchers working in the area of database management systems have also been
interested in representing more of the semantic meaning of data. It was proposed that
the use of more semantic models would make the database design stage more
systematic and that systems based on such models would be able to respond more
intelligently to user requests.

The standard database systems (implemented with relational, network or
hierarchical models) are not totally devoid of semantic information but have only a very
limited understanding of the meaning of the data. The objective has therefore been to
extend the knowledge represented in these existing data models, to add on an extra
layer. This task of representing meaning has been termed semantic modelling.
Codd (1979) recognised that the exercise of representing meaning was a never-ending
one which would only be accomplished in part, however he saw it as one worth
pursuing and felt that even small successes would be valuable.

The term semantic modelling has been used to denote the overall activity of
representing meaning. A multitude of different models have been proposed but despite
their differences they have typically adopted a similar approach to the problem,
described by Date (1986) as follows :-

(i) a set of semantic concepts are identified that can usefully represent
information about the real world;

(i) a set of symbolic objects are designed to represent the semantic concepts;

28

(iii) integrity rules are devised for the symbolic objects to ensure that the
database is accurate and correct;
(iv) asetof operators are defined to manipulate the symbolic objects.

Date (1986) considered a data model to consist of the objects, rules and operators
but thought that some developers had concentrated almost solely on the data structures
to the detriment of the latter two aspects.

Of the many semantic models that have been developed, two which have been
particularly influential are the entity-relationship model (Chen, 1976) and the RM/T
model (Codd, 1979; Date, 1983).

The entity-relationship model was one of the first semantic data models to be
proposed. Chen sought to include the advantages of the three basic models and
designed the entity-relationship model to be a generalisation and extension of them.
Central to the entity-relationship approach is the view that the real world can be
modelled in terms of enzities and relationships, these are the semantic concepts of the
model. Chen defined an entity as being “a thing that can be distinctly identified”, for
example a particular person or event. Entities can be classified into entity sets, which
do not necessarily have to be mutually disjoint, and tests for set membership can be
performed. A relationship was identified as being “an association among entities”. A
relationship set was then defined as being a mathematical relation among a number of
entities taken from one or more entity sets. As usual relationships can be one-to-one,
one-to-many or many-to-many. Information about the entities and relationships is in
the form of attribute-value pairs. An attribute is some quality or quantity which is
observed or measured as a value taken from a value set, set membership for values
would also need to be validated.

To assist in the database design stage Chen developed a diagrammatic notation, the
entity-relationship diagram, a simple example from Chen’s paper is given in
Figure 3.1. The diagram indicates that an employee works on a number of projects

and a project has a number of workers involved in it.

29

Employee Project

Entity Set Relationship Set Entty Set

Figure 3.1 Example Entity-Relationship Diagram

A database would consist of information relevant to the entities and relationships of
that part of the world being modelled. The entities and relationships would first be
identified and represented in an entity-relationship diagram, the attributes and value
sets could then be defined. The information about the concepts identified would then
be represented using enrity and relationship relations. Chen proposed that an entity
relation would consist of information for a number of entities, each of the same entity
type, measured over a number of attributes. The entities would be identified by a
primary key consisting of either a single or a combination of attributes. A relationship
relation would then associate one or more entity relations. The primary key of a
relationship relation would be composed of the primary keys of the entity relations
involved. Relationship relations could also have their own independent attributes.

The entity relation for the entity type EMPLOYEE from Figure 3.1 could be
defined as in Figure 3.2.

¢~ Primary Key —»
Attribute Employee-No Name Age
Value Set Employee-No it | Wit No-of-Years

Name Name

Entity
Tuples

Figure 3.2 Entity Relation EMPLOYEE

30

If the entity relation PROJECT had a primary key PROJECT-NO then the
relationship relation PROJECT-WORKER could be as shown in Figure 3.3.

e imayKey —

Ezggon Employee Project

Role Worker Project

Attribute Employee-No Project-No Percentage-of-Time
Value Set Employee-No Project-No Percentage

Relationship
Tuples

Figure 3.3 Relationship Relation PROJECT-WORKER

Chen’s paper was largely concerned with the modelling aspects of the entity-
relationship model and he only briefly discussed data integrity, information retrieval
and data manipulation aspects. With regard to data integrity, testing for set membership
has already been mentioned. Chen noted that some attributes could be drawn from a
subrange of a value set, for example ages of employees as a subrange of all ages, a
particular value could also be constrained by the value of another attribute, an
employees tax value will be less than their salary value. Chen expressed an opinion
that rules for retrieval, insertion, deletion and updating would be simpler and clearer
when using the entity-relationship model but did not expand on this aspect to any great
extent.

The RM/T model has been designed as an extension of the basic relational model.
The original version was proposed by Codd (1979), since then a number of
refinements have been made and the improved version has been described by

Date (1983).

31

RM/T is also founded on the assumption that the real world can be modelled in

terms of entities which can be classified into entity types. However in contrast to the

entity-relationship model, a relationship is considered as being a special kind of entity.

The constructs provided by RM/T allow a number of relationships to be represented.

In RM/T, entities and entity types are classified into one of three categories :-

()

(ii)

Characteristic

A characteristic entity performs a subordinate function to qualify or
describe a superior entity upon which it is existence-dependent. Such
entities were defined to represent the occurrence of repeating groups. For
example, a purchase order will consist of quantities of a number of items.
An entity type ORDER could be declared with a characteristic entity type
ORDERLINE. For each entity of type ORDER there will then be a number
of entities of type ORDERLINE, one for each item in the purchase order.
RM/T allows characteristic entities to have further lower level characteristic
entities to describe them.
Associative

Associative entities represent relationships between two or more entities
that are in all other respects independent. Since associations are considered
as being entities they can have characteristic entities to describe them and

may also be part of other associations.

(1) Kernel

Entities which exist independently and are neither characteristic nor

associative are kernel entities.

All three categories of entity type can have information about them in the form of

properties, cf. attributes in the relational model.

In RM/T entity types can form type hierarchies, that is an entity type can have a

number of subtypes and may itself be a subtype of some supertype. Type hierarchies

can be formed for all three classes of entity type but a hierarchy can only contain entity

types of the same class, that is the subtype of a kernel entity type will also be a kernel

32

entity type. Codd noted that the advantage of allowing such hierarchies was that
properties of entity types could be declared at the most general level. Consider the

entity type hierarchy in Figure 3.4.

Employee

Clerical_worker

I
I I

Clerk Secretary

Figure 3.4 Example RM/T Entity Type Hierarchy

Those properties declared for employees will also apply to all subtypes, however
properties specific to clerks can be declared lower down.

Information about entities is represented in E-relations and P-relations. For each
entity type an E-relation is generated, this is a unary relation which will be used to
record which entities of that type exist, the properties of those entities are recorded in
P-relations. Codd proposed that entities would be identified by system controlled
surrogates, the values of which would be hidden from the user. It is the surrogate
values that are stored in the E-relations and which identify the properties in the P-
relations. When information about an entity is entered a surrogate value is generated, it
is not only inserted into the E-relation for that entity type but also into the E-relations of
all supertypes. The properties are then entered into the appropriate P-relations.

Much of the description of the RM/T model was concerned with the modelling
aspects of representing information about entites and the relationships between them. A
number of integrity rules were described, these were developed to ensure that the
database is maintained in a consistent state. A number of high level operators to
manipulate the information to provide users with a variety of views of the database

were also outlined.

33

From the published work of those developing semantic database models, the one
aspect which has been predominant is that of developing constructs to represent the
part of the real world being considered. The primary semantic concepts which the
many models have sought to represent, albeit using different formalisms, have been
objects, attributes and relationships among objects. Many of the papers have been ata
purely theoretical level, with models being proposed and updated. It is only recently
that database management systems based upon a semantic model have become
commercially available. The initial use that semantic models were put to was as design
tools. A schema to represent the real world would be designed using a semantic model
and then transformed to one of the standard models, often the relational model. The
entity-relationship model has emerged as the most popular although a number of
extensions have been incorporated since Chen’s initial proposals.

Those systems which have been implemented have concentrated on the data
integrity aspects and operators to manipulate the information to answer user requests.
As yet, intelligent database systems capable of making inferences from the information

in the model have yet to get beyond an initial theoretical stage.

3.2.2 Semantic Networks

Other work on representing semantic knowledge has been carried out in the field of
artificial intelligence, in particular with the development of semantic networks.

This representation was initially conceived by Quillian (1966), his intention was to
use a network consisting of nodes and links to represent the semantics of English
words. He wished to build a model of human memory based on the idea of
associations, such that human-like use of the meaning of the words could be made.
Each of Quillian’s word concepts was made up of other words, with the organisation
thus resembling that of a conventional dictionary. Since Quillian’s work, research has
continued in the use of semantic networks for representing the meaning of English text

such that inferences can be made.

34

A semantic network, in its simplest form, consists of a collection of nodes
interconnected by a set of arcs. Although originally designed to represent natural
language concepts, it has been recognised that this type of representation is general
enough to represent other forms of knowledge. Nodes can be used to represent objects
or concepts of some kind, with arcs denoting binary relations between them. One use
in particular has been for representing taxonomic hierarchies, that is hierarchically
classifying classes of objects. Semantic networks have been used to represent various
types of taxonomies, a number of which have been discussed by Brachman (1983).
Most have been based upon the foundation of set theory and have used the concept of
inheritance of properties. A hierarchical classification scheme has the opportunity to
distribute properties throughout the levels of the taxonomy offering an efficient storage
scheme. The classification of entity types in semantic database models can be regarded

as semantic networks.

3.3 Statistical Data Models

The notion of representing information about statistical data in the form of a data
model is consistent with the development of statistical database management systems.
Such systems have been necessitated by the need to handle increasingly large and
complex data sets. The data management facilities of most general statistical packages
were seen to be deficient in such circumstances and a database approach appeared to
offer a solution. Systems based on the relational model have been predominant, for
example the RAPID system which has been developed at Statistics Canada
(Hammond, 1983).

In order to effectively administer the data, both the users and the systems software
require a reasonably detailed description of the contents of the database. This
information has been in the form of metadata, that is data about data. McCarthy (1982)

described metadata as being “systematic descriptive information about data content and

organisation”. There is as yet no consensus of agreement as to what this metadata
should constitute, although there is of course endless scope.

A paper by Lundy (1984) proposed that the definition of metadata could be
approached from two directions: a functional perspective based on proposed use; an
operational outlook founded on the type of information incorporated in database
manipulation systems. The main purposes for representing metadata have been
identified as being to enhance documentation, retrieval and display features. In storing
data with a complex structure, for example hierarchical, metadata is needed by the
system to locate data which has been requested by a user. Users will also wish to
document the source and content of a database when storing large and numerous data
sets. The presentation of tables and graphics can be greatly enhanced with the
accompaniment of additional non-essential information. McCarthy noted that metadata,
in contrast to data, would be primarily textual.

In considering the role of metadata, it has chiefly been seen as an aid to data
management. This is in accordance with its role in general database systems, although
different types of metadata specific to a statistical application have been identified.
Metadata has been used to verify the correctness of some numeric operations but its
use for statistical purposes is something that has not been considered to any great

extent.
3.4 Research Objectives

The objective of the research is to implement a prototype system as a means of
exploring the feasibility of semantic modelling as an approach to knowledge based
statistical software. This will entail developing a model to represent some of the
semantic meaning of statistical data and devising a set of semantic checks which can be
applied to validate some of the assumptions underlying the use of statistical methods.

The checks will be intended to see if a test is suitable for the data that has been

36

specified, that is will the application of a test be sensible. It is not intended to confirm
that a test is appropriate for the hypothesis of the user.

It is possible to neither represent all of the semantic meaning about the data nor to
verify all of the requirements regarding the proper use of a test. For practical purposes
the amount of semantic knowledge that can be represented is limited, hence the checks
that can be performed are restricted by the knowledge available. The problem is that of
deciding what knowledge to represent. A system which requires a vast amount of
information about the data to be declared will not be popular with users, conversely the
level of checking must be sufficient to make the use of such a system beneficial. Also
the marginal return on increasing the amount of knowledge in the model diminishes as
more knowledge is added, once an optimal point is reached the increase in the level of
checking that can be done is low in proportion to the amount of extra knowledge
required.

It is hoped that if the approach appears to be workable, some conclusions regarding

the content of a semantic model can be drawn as a result of the work carried out.

37

Chapter 4

Introduction to the Prototype System

A prototype system has been developed using VAX Pascal to explore the feasibility
and practicability of a semantic modelling approach to knowledge based statistical
software. The system has been designed as an enhanced variant of the command
driven general purpose packages that are currently put to widespread use. The
enhancements that have been incorporated aim to reduce the amount of misuse of the
statistical facilities provided. By representing more semantic knowledge about the data

the system is better able to validate a request to perform a statistical operation.

USER

Model
Management
System

Statistics
Validation
System

Statistical
Knowledge

Backing
Store

Figure 4.1 Main Components of Implemented Prototype

38

In developing the system a number of simplifications and limitations have been
made but these do not affect the underlying approach. Figure 4.1 illustrates the main
components of the implementation and their interaction. The system itself consists of
two main sections, a model management system and a statistics validation system, the
information that it operates on is the semantic data model and the statistical knowledge.

The user declares and queries the knowledge represented in the semantic data model
using commands that are processed by the routines comprising the model management
system. The semantic data model is represented by the system as a number of Pascal
data structures, these structures are extended as more semantic knowledge and data is
added to the model and searched whenever information is required. Long term storage
is achieved by maintaining a copy of the data model in the backing store. Whenever it
is necessary to add information to the data model, the model management system also
updates the copy in the backing store. When the system is invoked, the data structures
representing the semantic data model are initialised from any information in the backing
store, which for the purposes of the prototype are Pascal text files.

The statistical knowledge consists of the requirements that must be met for the
statistical methods to be applicable. When the user issues a command to perform a
statistical operation on a number of arguments, the statistics validation system searches
the semantic data model to examine the knowledge that has been declared about the
arguments to determine if the requirements can be satisfied. The statistical knowledge
is represented in a number of Pascal data structures, which are initialised when the
program is invoked from information in the backing store. The method devised to
represent the statistical knowledge results in a program that is not rule-based but not
wholly procedural either.

The command language that has been developed for the prototype has commands
which follow the general syntax given below.

< command name > < list of arguments >
The command name is parsed by the main program, if it is found to be valid a call is

made to the relevant procedure in the model management system or the statistics

39

validation system. These procedures read in the arguments of the command and either
report any error that has been made or perform the required actions.

There are also a number of procedures performing auxiliary functions. The
procedure gerzoken is called whenever an item of input is required by the main program
or a procedure processing a command. Gettoken reads in the next lexical token and
determines if the input is a reserved keyword, an identifier, a numeric value, a special
symbol or erroneous. Appropriate values are assigned to the record variable roken to
reflect the input found. Any errors that are found are reported with a call to the
reporterror procedure. A parameter is passed identifying the type of error found such
that the routine can produce a suitable error message, a character string is also passed
which may be used to further pinpoint the source of the error.

Those aspects of the system which can be thought of as forming the user interface
have only been developed to a limited extent, but they are sufficient for the purposes of
developing and testing the prototype. With regard to the model management system,
the error checking is thorough and the messages produced are adequate but there is no
help facility to give the required syntax of a command or to explain the meaning of the
terminology used. The statistics validation system does explain the results of validating
the use of a statistical operation and can also provide information about the
requirements that must be met for the operation to be appropriate. By default both sets
of information are provided, the user can however issue the command NOEXPLAIN
to indicate that only the results are required, the command EXPLAIN can be issued to
return to the default setting.

It is conceived that by adopting a semantic modelling approach to knowledge based
statistical software it would be possible to produce a general purpose statistical system
able to offer support over a wide range of statistical tests and techniques. For the
prototype version it was necessary to limit the areas of statistics that could be covered,
those areas chosen were measures of association and tests of location. The choice was

made to develop the prototype for these areas because :-

40

(1) they are commonly used, introductory statistics courses are included in a
great many degree programs and there is a tendancy for people to use what
is familiar to them;

(ii) superficially they appear simple in the literature and are easy to calculate
using a statistical package. Users may have a false impression that they
understand about the statistic and proceed to use it independently. This is
less likely to occur with those advanced techniques where it is more readily
apparent that assistance is required.

As a result, measures of association and tests of location are commonly and
unwittingly misused and therefore seemed to provide a suitable testing-ground for the
approach. The system does not actually compute the result of any measure of
association or test of location where usage has been validated, this task does not
however present any problems.

An example of the system running is given in Appendix A. The execution trace
illustrates the use of a number of the model management commands to display the
contents of a data model that has been declared, this is followed by an example of the

operation of the statistics validation system.

41

Chapter 5

The Semantic Data Model

5.1 Semantic Concepts

The first task was to identify the concepts which would be used as the basis of the
semantic knowledge to be represented in the model. The semantic models proposed for
general purpose database management applications have been founded upon the
concepts of entities, attributes and relationships. These concepts have been proposed
as a means of representing the real world in terms of objects and their properties. A
similar approach and notation has been adopted but the model has been developed to
incorporate information which can represent the statistical nature of data. These
concepts have been built onto the framework of a relational schema. Designing a
system based on a basic database model is in accord with the need to develop statistical
software with data management facilities, akin to those of database systems. Haux &
Jockel (1986) argued that there was a need for intelligent statistical systems which
could combine, in an integrated manner, both data management and data analysis
functions. The reason for selecting the relational schema as the foundation for the
model is that it has emerged as the one most commonly used for general database
management systems and it has also been chosen by the majority of those developing
statistical databases.

In deciding what semantic knowledge to represent about the data, a starting point is
to consider :-

(i) what class or type of object the data is being measured for;

(i) which specific instances or objects the data is pertaining to;

(i) what property of the object is the data depicting, that is some quality or
quantity is being represented or measured, e.g. a height or an examination

result;

42

(iv) how the quality or quantity is being represented, for example an
examination result could be represented as a percentage or as a grade.

The fundamental data structure of the model has been termed a daraser. This is a
rectangular construct which consists of data measured for a number of entities,
instances of an entity type, over a number of attributes, cf. a table in the relational
model. In order to include the required semantic information it was necessary to
represent knowledge about datasets, entity types, entities and attributes.

Entities can be identified as being of a specific entity type and a hierarchical
taxonomy has been used to classify these entity types, relationships between entity
types can then be examined. Only two types of links have been implemented, generic
and nongeneric, to allow one entity type to be declared as being a specialisation of
another. The reason for including an entity type taxonomy in the data model is that it
provides an efficient method of representing knowledge that different entity types are
in fact similar. Some statistical methods will only produce meaningful results if the
data involved is measured for objects that are alike. In the semantic modellin g literature
little attention has been paid to the use of entity taxonomies and the variety of
relationships that should be possible. Semantic network applications have also been

satisfied with denoting that one type is a generalisation of another. In both these areas

Root
NG non-generic link
G generic link NG NG NG
Type A Type B Type C
G G G
Type Al Type A2 Type C1

Figure 5.1 Use of the Entity Type Taxonomy

43

the purpose of the taxonomy has primarily been to allow for the inheritance of
properties rather than to represent what the objects are. The use of the two links that
have been implemented allows a number of sub-trees of ‘like’ entity types to be
constructed below the root node. Figure 5.1 illustrates that there are three distinct
types of entities, with type A having two subtypes and type C one.

The data in a dataset will be for a number of entities which are instances of an entity
type. This type will be represented in the entity taxonomy. For each dataset, it would
be desirable to be able to identify these instances. This has been achieved by following
the usual relational database convention of declaring key fields. One or a combination
of the attributes can be declared as constituting a unique key to identify the instances in
a dataset. The use of keys makes it possible to compare the instances from a number of
datasets to see if they coincide. This is an important property of the data to be able to
recognise, for some statistical methods only paired or related samples can be used
whereas with other methods independent samples should be treated in a different
manner to those which are paired or related. It is optional for a key to be declared for a
dataset and the concept of secondary keys has not been implemented.

Attributes are used to record the properties of entities, in a basic relational model
they are drawn from domains. A domain is usually defined as being a set of atomic
values from which the data is drawn. This is concerned with the type and range of
possible values and has analogies with the programming language concept of a data
type. Attributes which record the same property but using a different notation would be
specified as being drawn from different domains, for example heights in centimetres
and heights in inches. This loss of information is of little consequence in a general
purpose database system as domains are primarily conceptual, the main use of which is
for data validation purposes. For a statistical application, information about the domain
of an attribute can be more usefully represented as several items of information. In the
model that has been developed these items are concerned with ‘what’ the property is

and ‘how’ it is being denoted.

S

It is important to know what property is being represented by data, comparing the
data of different attributes would be meaningless unless it was homogeneous. By
separating what the property is and how it is being denoted, it is possible for the
system to differentiate between the following three cases :-

(i) the property being represented is the same and it is being represented in the
same way, thus indicating homogeneous data;

(i) the property being represented is the same but it is being represented in
different ways, it is possible to obtain homogeneous data if it can be
converted into a common method of representation;

(iii) the property being represented is different, the data cannot therefore be
made homogeneous.

The “what’ part, termed the aztribute type, has been represented as a character
string, e.g. “height”. In considering ‘how’ the data is being represented, this is
concerned with the measurement aspects, e.g. measured using inches. Representing
this semantic knowledge has been achieved by including in the model, information
about the level of measurement and the measurement scheme used for each attribute. A
committee of the British Association for the Advancement of Science debated the
subject of measurement and identified a classification of scales of measurement, as
described by Stevens (1946). The classes are determined by both the manner in which
the data is measured and by the formal mathematical properties of the scales. The
importance of these scales is that the mathematical and statistical operations that can be
meaningfully applied to data are dependent upon their scale of measurement.

The scales - nominal, ordinal, interval and ratio - were identified as follows :-

(i) a nominal scale uses symbols to denote group membership, this is the
lowest level of measurement;

(ii) an ordinal scale has the additional property that the groups can be ordered
such that a greater-than relationship can be identified between them;

(i) with an interval scale the difference between any two values can be

determined;

45

(iv) aratio scale has the property of having a true zero such that the ratio of any
two values is independent of the unit of measurement.

These scales have been adopted for the data model. In addition it has proved useful
to distinguish as a separate category any data which is represented usin g rank values,
ranks are usually classified as being a type of ordinal scale. For attributes that have
nominal, ordinal, interval or ratio scale data there will in addition be information about
the unit of measurement used to record the data, this is not required for rank level data.
The distributional properties of data is also very useful information to have. It is
possible for the user to declare if they know that interval or ratio level data is drawn
from a normally distributed population. No other distributional aspects have been
implemented.

The knowledge about how the data has been recorded is completed with a
description of the measurement scheme that has been used. There are descriptions of
all the schemes that have been declared to the system in a measurement directory. The
measurement schemes can be classified as being either qualitative or quantitative. A
qualitative scheme will consist of a closed or an open set of categories, that is a finite
or an infinite set of possible values. Closed sets are either unordered or ordered and a
list of possible values is stored. For each quantitative measurement scheme the upper
and lower bound of possible values will be stored. By having knowledge of the set or
range of possible values, data validation functions can be performed as the data is
entered. For all attributes with interval and ratio level data there will be an associated
quantitative measurement scheme, in the case of rank data there will be no such
scheme. Ordinal level data could also have been measured using a quantitative scheme,
this is to allow for data such as IQ scores, or alternatively the values may have been
drawn from an ordered set of qualitative categories. All nominal data is qualitative and
could be represented as values drawn from open or closed sets.

The level of measurement and measurement scheme combinations that can be

declared for an attribute are summarised in Table 5.1.

46

Level of Measurement Measurement Scheme Restrictions
Ratio Quantitative

Interval Quantitative

Rank

Ordinal Quantitative

Ordinal Qualitative, Closed Set, Ordered
Nominal Qualitative, Closed Set

Nominal Qualitative, Open Set

Table 5.1 Measurement Level and Measurement Scheme Combinations

The last aspect of semantic knowledge that has been represented is a directory
containing information on how to convert data from one measurement scheme to
another. It is possible for data to be converted from one quantitative measurement
scheme to another, to convert quantitative data into ordered qualitative categories or to
convert one set of closed categories to another. Of the quantitative to quantitative
conversions that are possible, only linear transformations of the form y = ax+c have
been implemented, where ¢ will be zero for all ratio scale conversions. To categorise a
quantitative set of data a range of values are mapped onto one of the categories of the
qualitative measurement scheme. When converting data from one category set to
another, each category in the source scheme is mapped onto a category in the target
measurement scheme,

Users will declare the semantic knowledge about their sets of data and a semantic
data model consisting of an entity taxonomy, a dataset directory, a measurement
directory and a conversion directory will be built. The data structures to store this
information and the routines to build the model are described in the remaining sections

of this chapter.

47

5.2 Symbolic Objects

This section describes the Pascal data structures that are used for the internal

representation of the semantic data model.

5.2.1 Entity Type Taxonomy

The entity taxonomy is represented as a dynamic data structure using a node for
each entity type that is declared. An entity type will have one immediate supertype, of
which it is a specialisation of, and could subsequently have any number of immediate
subtypes. The representation was required to support operations to traverse up and
down the taxonomy in addition to the need to add a new entity type as a subtype of an
existing type.

A diagrammatic representation of the structure used to denote an entity type is given

in Figure 5.2.

Supertype
| ol Next entity
Ent_name Super_rel I — Wos in chaii
Head of chain
of subtypes
Figure 5.2 Entity Type Node

Each entity type node will contain the following information :-
(i) ent_name - a character string that identifies the entity type;
(i) super_rel - an enumerated type to indicate the relationship between the
entity type and its immediate supertype, it will take the value nongeneric or

generic;

48

(i) superpointer - a pointer to the immediate supertype node;
(iv) subpointer - a pointer to the head of a chain of entity types which have this
entity type as their immediate supertype, this pointer will have the value
NIL if there are no subtypes;
(v) nextpointer - a pointer to the next entity type in the chain of entity types
which share a common supertype.
An example of how an entity taxonomy would be represented is given in
Figure 5.3. The root node, which is predeclared by the system, has been declared as
the supertype of three entity types (EntA, EntD and EntE), the nodes for these entity

types have been chained together. Two subtypes have been declared for EntA and one

for EntE.
Ent_root ——| Root P
EntA 4', ——»| Eap |\ ——| il |
EnB | [e EntC [N EntF |\

Figure 5.3 Representation of an Entity Taxonomy

5.2.2 Measurement Directory

A binary tree structure has been used to represent the measurement directory which
is indexed by the measurement name. It was decided to use this type of data structure
because it provides an efficient method of searching for a particular measurement
scheme entry. It is beneficial to have a single directory containing information about

both qualitative and quantitative measurement schemes. The use of a Pascal variant

49

record solves the problem of needing to store different information about each type of
measurement scheme.

The common part of the measurement node will represent the following
information :-

(i) measname - a character string that identifies the measurement scheme;

(i) leftp, rightp - pointers to build the binary tree;

(i) meas_type - an enumerated type to indicate the type of measurement
scheme being represented, this acts as the zag field for the node and will
take the value qualmeas or quantmeas.

If the meas_type field has the value qualmeas then the measurement node will be as

shown in Figure 5.4.

Chain of
Measname | Meas_type || Cattype | Settype | Ordtype | Numofcat | ——9 Category

¢l \¥ Nodas
Left and

Right
Subtrees

Figure 5.4 Qualitative Measurement Node

The additional information that is stored for a qualitative scheme is as follows :-

(i) cattype - an enumerated type which indicates the type of the data, the user
may have represented the category labels as numeric values or as character
strings, this field will take the value identifier or numeral,

(i) settype - an enumerated type which will either have the value openset or
closedset to designate a set of possible values which is infinite or finite;

(i) ordtype - if there are a finite set of possible values, the members may be
unordered or ordered,

(iv) numofcat - in the event of a closed set this field indicates the number of

categories;

50

(v) cathead - a pointer to the head of a chain of category nodes.
For closed sets, each permissible value is stored in a category node. For category
sets where there is an underlying order present, the values are stored in ascending

order from the head to the tail of the chain.

Measname | Meas_type || Lowerbound | Upperbound

[
'R
Left and

Right
Subtrees

Figure 5.5 Quantitative Measurement Node

If the measurement scheme being represented is quantitative, as denoted by a
meas_type value of quantmeas, the variant record will be in a form as illustrated in
Figure 5.5. The information specific to a quantitative measurement scheme is
represented as follows :-

(i) lowerbound - a real value indicating the minimum of the allowable range;

(i) upperbound - a real value indicating the maximum of the allowable range.
5.2.3 Dataset Directory

The dataset directory is organised as a binary tree which can be searched for
alphabetically by dataset name. This directory contains all of the information relating to
the datasets and their associated attributes. For each dataset that has been declared there
will be a node in the tree containing information pertaining to the dataset as a whole,
such a node is shown in Figure 5.6.

The information in the dataset node is as follows :-

(i) ds_name - a character string to identify the dataset;

(ii) leftp, rightp - pointers to build the binary tree;

51

(iii) ent_type - a pointer to an entry in the entity type taxonomy, the entities in

Entty Type

? Chain of
\ Ds_name I Instances | ——4» Attribute

- i

Left Right
Subtree Subtree

Figure 5.6 Dataset Node

the dataset will be instances of this entity type;

(iv) instances - the number of instances that have been entered for the dataset;

(v) attchain - a pointer to the head of a chain of attribute nodes.

A node will be generated for each attribute that is declared for the dataset. The
attribute nodes will be stored in the order in which they are declared. Key attributes are
declared first in their order of significance in the key. A dataset as a whole is referred
to as <dsname> whereas a specific attribute is referenced as <dsname>.<attname>,

whereupon the chain is searched for the required node. The attribute nodes are as in

Figure 5.7.

Meas

Att_name

Att_role | Att_type | Datalevel | Att dist I Mode |

Data

Figure 5.7 Attribute Node

The knowledge represented in the attribute node is as follows :-

()

att_name - a character string to identify the attribute;

52

Next
Attribute

(i1)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

att_role - an enumerated type value, if the field is set to key it signifies that
the attribute forms part of the key of the dataset, otherwise the value will be
non_key;

att_type - a character string to designate what property the attribute is
representing, e.g. height;

datalevel - denotes the level of measurement of the data which will be
nominal, ordinal, rank, interval or ratio;

att_dist - an enumerated type whose value is set to normaldist if the user
has declared a knowledge that the data is drawn from a normally
distributed population;

meas_p - a pointer to an entry in the measurement directory to indicate
which measurement scheme has been used to record the data, this field will
be NIL for any rank level data;

mode - identifies the type of the data which is stored for the attribute,
identifier signifies alphanumeric data otherwise numeral indicates numeric
data;

char_p, num_p - the data for the attribute is stored in an array which is
referenced by a pointer in the attribute node, the mode value acts as the tag
field so that the pointer is of the appropriate type, i.e. to a character or
numeric array;

next_att - a pointer to the next attribute node in the chain.

The user’s original data, as they enter it into the system, will be either alphanumeric
or numeric. All quantitative and rank data is stored as it is entered in a numeric array.
For qualitative data, the user may have represented the category labels using either
alphanumeric or numeric values. For qualitative data from closed sets, the index of the
category value in the value set is stored instead. When a category value is entered it is
necessary to search through the list of permissible values to validate set membership.
Although the index values are not stored, the category value at the head of the chain is

regarded as having the index value 1. Since categories for ordered sets are stored in

53

ascending order from head to tail, the index value preserves the underlying order. The
advantage of storing the index value is that all data likely to be used for statistical
operations is stored in numeric arrays, with only qualitative data from open sets having
alphanumeric labels being stored in character arrays. Being able to handle the data in a
consistent manner is also an advantage with regard to performing data conversions. All
of the data to be converted will be numeric and the information relating to conversions
involving qualitative measurement schemes can be stored with respect to the index
numbers of the categories.

To simplify the implementation of the prototype, the data has been stored in arrays
of size 50. For a practical application a storage system able to cope efficiently with

large and small sets of data would be required.

5.2.4 Conversion Directory

Each entry in the directory contains the information on how to convert data from
one measurement scheme to another. A conversion scheme is identified by its name,
from_to, which is formed by concatenating the names of the source and target
measurement schemes. The directory is organised as a binary tree which is searched

for by name, a conversion node is shown in Figure 5.8.

Qntgnt_p
From_to | Typeofconv presse——negt. A] C

ol
¥ Qntglt_p

Left and Next
per | Index | ——9»
Right tp Qntgltnode

Subtrees

Qlglt_p

Next

Toindex | ——P Qltgltnode

Figure 5.8 Conversion Node

54

The tag field zypeofconv identifies the type of conversion as being gnt_gnr, qnt_qlt
or glt_qlt. The type of the pointer to the information on how to perform the conversion
is determined by this value, it has the respective types gnigns P, quiqlt_p or qliqlt p.

To represent how to convert from one quantitative measurement scheme to another
it is necessary only to store the constants from the equation

target = a * source + c.

A quantitative to qualitative conversion involves splitting the range of the
quantitative measurement scheme into a number of sub-ranges. These sub-ranges are
mapped onto the categories of the qualitative scheme in a form as shown below.

lowerbound < toindex; < upper;

upper; < toindex; < upper;

upper, < toindex, < upperbound
A chain of nodes are created which contain the upper and toindex values for each
sub-range, these nodes are stored in ascending order of quantitative sub-ranges.
Converting one qualitative measurement scheme to another involves mapping each
source category label to one in the target category scheme. This can be viewed as

below.

fromindex; = toindex;

fromindex; = toindex;

fromindex, = toindex,
Each node in the chain contains the toindex values which relate to the fromindex

categories in the order in which they are stored in the measurement directory entry.

5.3 Semantic Data Model Manipulation Commands and Procedures

A minimal set of commands have been implemented to define, add data to and query

a data model. The system checks the syntax and semantics of user issued commands

55

and outputs error messages as appropriate. For a commercial system the interface
would need to be substantially further developed. In particular, to assist users in
defining a knowledge base by explaining the meaning of terminology. For example, as
it stands it is necessary to declare the level of measurement of an attribute, for a novice
user who was not able to declare the level it would be desirable to be able to question

the user such that the level could be deduced.

5.3.1 Entity Types

The command ADDENT is used to add an entity type to the taxonomy.
ADDENT <newenttype> <superenttype> <relat ionship>

The system searches the taxonomy to ensure that the new entity type, newenttype,
has not already been declared and that the specified supertype, superenttype, has. The
only other check that is carried out is to see that a valid relationship has been given. If
no error has occured, an entity type node is generated and is then added to the
taxonomy at the head of the chain of subtypes for the superenttype node.

The entity types that have been declared in the taxonomy can be displayed using the
SHOWENTD IR command.

SHOWENTDIR <enttype>
This displays the part of the taxonomy from the enttype node downwards, to

display the whole taxonomy the entity type ROOT can be specified.

5.3.2 Measurement Schemes

The user can declare a new measurement scheme to the system by issuing the
ADDMEAS command.
ADDMEAS <measname> <meastype>
The system will initially check that the measname scheme does not already exist in

the directory and that a valid meastype value of qualmeas or quantmeas has been given.

56

If no error has been found the appropriate procedure, getqualinfo or getquantinfo, is
called to complete the process of declaring the measurement scheme.

Alternatively, if during the course of some other operation, for example declaring an
attribute, the user enters the name of a measurement scheme which is unknown to the
system, the user will have the option of adding it to the directory. Should the user wish
to do so, the appropriate procedure will be called to complete the operation.

The procedure getqualinfo questions the user to complete the information about the
qualitative measurement scheme being declared. One of the parameters, measspec,
conveys to the procedure a knowledge of what is already known of the qualitative
scheme, thus avoiding asking the user unnecessary questions. The possible values that
will be passed are :-

(i) ordqual - an ordered set of closed categories;

(i) unordqual - an unordered set of closed categories;

(iii) orddich - an ordered set with two categories;

(iv) unorddich - an unordered set with two categories;

(v) dich - a closed set with two categories which may be unordered or ordered;

(vi) qual - nothing is known of the measurement scheme other than it is
qualitative.

When the user has issued the ADDMEAS command the parameter measspec will be
passed the value qual.

If the measspec parameter has the value qual then the procedure getqualinfo will ask
the user if the set of categories is open or closed, since for all other measspec values it
is known that there is a closed set. For closed sets of categories where the ordering is
unknown, the system will query the user for the required value. For all types of
qualitative scheme the user will be questioned as to whether the categories are
represented with alphanumeric or numeric labels.

For measurement schemes with a closed set of categories the procedure
gerqualclasses is called. The user is prompted to enter the category labels one at a time.

For each new label, the list of category nodes of previously declared labels is searched

57

to ensure uniqueness within the scheme before a new node is generated and added to
the tail of the list. The procedure ensures that at least two possible labels are declared
and in the case of a dichotomy the process is halted once two valid labels have been
entered, the measspec parameter is passed for this purpose.

The procedure getquantinfo obtains the lower and upper bounds of the permissible
range of values for the quantitative measurement scheme. The upperbound should be
greater than the lowerbound and the keywords min and max can be used to specify the
extents of the range of real values, these have been given artificial values.

Once the measurement scheme has been correctly declared it is inserted into the
appropriate place in the tree.

Two commands have been implemented to view the knowledge stored in the
measurement directory. The SHOWMEASDIR command displays the names of each
scheme declared in the directory, in alphabetical order, along with their meas_type
values. For more detailed information about a specific measurement scheme,
measname, the SHOWMEAS command can be used.

SHOWMEAS <measname>

For a qualitative scheme the set and datatype values are displayed, in the case of a

closed set the list of value labels is also given. The lower and upper range values are

given in the event of the measname scheme being quantitative.

5.3.3 Datasets

A new dataset is declared by issuing the ADDDS command.
ADDDS <dsname> <enttype>
The dataset directory is searched to ensure that the new dsname is unique. The
command indicates that the new dataset will record data about instances of the entity
type enttype, the taxonomy is searched to check that the specified entity type has been
declared. If no errors have occured, a dataset node is generated and added to the

dataset directory in the appropriate place.

58

The dataset directory can be queried with the SHOWDSD IR command. This displays
the name of each dataset, in alphabetical order, with their corresponding ent_type and

instances values.
5.3.4 Attributes

Once a dataset has been declared, the attributes for it can be entered using the
ADDATT command.

ADDATT <dsname>

Having verified that the dataset dsname is present in the directory, for which no
attributes have currently been declared, the system prompts the user to enter the
information about each attribute one at a time, verifying the entry for one before
prompting for the next. The information for any key attributes is initially requested and
then that for those which do not form part of the key. The information for each
attribute is in a form as shown below.

<attname> TYPE = <typename> LEVEL = <datalevel>
MEAS = <measname> NORMAL

The attname value is given first and the remaining items can be given in any order as
required. The list of currently declared attributes for the dataset is checked to ensure
that the new attribute name is unique. For each attribute that is declared, the TYPE and
LEVEL values should be given, the other items may or may not be required.

For nominal, ordinal, interval and ratio level data a measurement scheme for the
attribute must be given. The system will search the measurement directory to see if the
specified scheme has been declared. If it has, the function meastypeOK is called to see
if it conforms to the level of measurement value given for the attribute. Alternatively,
the user is asked if they wish to add the measurement scheme to the directory. If the
user does not wish to do so then they are asked to re-enter the information for the
attribute, it was decided to take this course of action for simplicities sake. Should the

user wish to declare the new measurement scheme the relevant procedure to do so is

59

called. For nominal level data the getqualinfo procedure is called with a measspec
parameter of qual. Ordinal level data however could be measured by a qualitative or
quantitative measurement scheme. The user is queried as to which and in the case of
the former the getqualinfo procedure is called with a measspec value of ordqual. For all
quantitative data, be it ordinal, interval or ratio, the getquantinfo procedure is called.
The NORMAL field is optional for interval and ratio level data.

Once it is verified that the information for the attribute is complete and correct, a
new attribute node is generated and added to the tail of the chain of attribute nodes. At
this point in time, the array to contain any future data is not generated, i.e. the char P
or num_p pointer field is set to NIL.

For a particular dataset, the attributes that have been declared for it can be displayed
with the SHOWATT command.

SHOWATT <dsname>
The attributes are displayed in the order in which they were declared and the

information associated with each is shown.

5.3.5 Instances

Once the attributes have been declared for a dataset the actual data items can be

entered with the ADDINST command.
ADDINST <dsname>

If no instances have been declared for the dataset, the arrays to store the data are
generated, otherwise the new data is added to what has previously been entered. The
user is prompted to enter the data an instance at a time, one value for each attribute.
The data is checked to see that it conforms to what is expected, i.e. that the data type is
correct and the value is in accord with any measurement scheme specifications. In
order to check a value which represents a label from a qualitative measurement scheme
with a closed set of categories the catsearch procedure is called. For a valid label the

index number is returned, so that it can be stored in the data array, otherwise a 0 is

60

returned signifying an eroneous label. The number of items for each attribute is
noelements and the new items are stored in array locations noelements+1.

If the instances in the dataset are identified by a key, then once a data item has been
validated and stored for each attribute, it is necessary to check the uniqueness of the
new key. For datasets whose instances are identified by a key it has been found useful
to store the instances in key order. Thus when adding a new instance to an already
sorted list, the key can be checked for uniqueness at the same time as inserting it into
its correct location. The procedure sortinstances works through the data to find the
position, newpos, where the new instance, currently stored in position noelements+1,
should be inserted. If the key is found to be a repeated value then an error message is
output, the data ignored and the value of noelements is not incremented. Otherwise the
system moves down by 1 the data items from newpos to noelements and inserts the
new data for each attribute. For simplicity it is assumed that the number of instances
does not exceed the number that can be stored in a data array.

Having dealt with the most recently entered instance, the user is prompted to enter
the next. By dealing with one instance at a time a better description of any errors made
can be given.

The instances which have been entered for a dataset can be displayed using the
SHOWINST command.

SHOWINST <dsname>

For data items which are stored as the index to a category label from a qualitative

measurement scheme, the actual label is retrieved from the entry in the measurement

directory and is displayed instead of the index.

5.3.6 Conversion Schemes

The user does not volunteer to the system how to convert from one measurement
scheme to another, as with the other components of a data model, but the system calls

the procedure gerconvinfo as and when the conversion directory does not contain an

61

entry which is required. Before proceeding, the user is asked if they know how to do
the required conversion. If it is possible, the system examines the measurement
schemes participating, frommeas and tomeas, to identify the type of conversion
involved and calls the appropriate procedure to obtain the required information.

For a qnt_qnt conversion, the user is asked for a non-zero multiplying factor and a
constant term for the equation tomeas = a*frommeas+c.

In the case of a qnt_qlt conversion the user is asked for the boundaries of the
quantitative sub-ranges, in ascending order, and is required to enter the corresponding
qualitative category label for each. The system guarantees that the entire range of the
quantitative measurement scheme is covered and that valid category labels are given.
For the last sub-range, the keyword upper can be used to signify the upper bound of
the quantitative scheme instead of the numeric value.

Information on how to perform a glt_qlt conversion is obtained by prompting the
user with the frommeas category labels in turn and requesting the corresponding
tomeas category labels for each.

For gnt_qglt and qlt_glt conversions, the qualitative labels entered by the user for the

tomeas scheme are validated by calling the catsearch procedure.

5.4 File Storage of the Semantic Data Model

The information entered into a data model is stored in a number of Pascal text files.
As the information is declared and added to the components of the data model the files
are generated by the system and updated. This is done such that they always reflect the
current content of the data model. When the system is invoked at the start of a run, the
information is loaded from the files into appropriate Pascal data structures.

The file entdir.dat contains an entry for each entity type, as new types are declared
their information is appended to the end of the file.

Each measurement scheme is recorded in the measdir.dat file and each conversion

scheme in the file convdir.dat. Similarly, for every dataset that is declared there is an

62

entry in the dsdir.dat file. In each case the new entries are appended to the end of their
respective files, when loaded at the start of a run the trees are exactly re-created as they
were, which is hopefully in a reasonably balanced form.

The entry in the dsdir.dat file contains the information given in the ADDDS
command. When the attributes are declared for the dataset, dsname, a file called
<dsname>.ait is generated which will have an entry for each attribute.

Finally, files are created to store the actual data which is entered for the datasets. A
separate file is used for each attribute, its name is formed by concatenating the dataset
and attribute names, i.e. <dsname+attname>.dat. Once the new data has been entered,
and possibly sorted into a key order, the files to store the data are completely re-written
such that the data can be re-loaded in any key order which exists. This method would
be wasteful when adding to large sets of data, but the time taken is not noticable for the

size of sets handled in this implementation.

63

Chapter 6

Statistical Tests and Semantic Requirements

6.1 Background to Statistical Tests

Having consulted a number of statistical packages and textbooks, a selection of
measures of association and tests of location (for both 2 and k sample situations) were
chosen. In the text of the thesis, the word ‘test’ is used (for simplicity) to refer to
measures of association and tests of location. These tests were selected on the basis of

being commonly used and covering a reasonable range of problems for each area.
6.1.1 Measures of Association

(a) Pearson’s Product Moment Correlation Coefficient
This is a measure of the strength of a linear relationship between paired samples
assumed to be drawn from normally distributed populations.

It is calculated as

r = Ry where -1 <r<1

‘\/[nEx2 - (}.'.x)z][nzy2 - (Ey)z]

The significance of the correlation can be tested using
n - :
t=r ey with df =n - 2.
(b) Spearman’s Rank Correlation Coefficient

This coefficient measures the strength of a positive or negative relationship between

the ranks of two samples. For each pair of ranks the difference (d; = X; - Y;) is taken

and the coefficient is calculated as

6xd?

L e

where -1<r, <1

If the proportion of ties is not too large the effect on ry is negligible, however for a

large number of ties (where t; is the number of observations tied for rank 1) a correction

factor can be incorporated so that

Zx2 + Zy2 - £d2

Yo

2 =x23y2
20 T2 - 1
with Tx2 =202l g gpg q o O D

The significance of the correlation can be tested using

with df =n-2

(¢) Kendall’s Rank Correlation Coefficient
Similarly to 1y, this coefficient measures the amount of a positive or negative

relationship between two ranked samples, it is calculated as

2. Sa. b
T = Wza_‘"ﬁl where -1<1<1

if xj=x; 0 if yj=y; for (i=1ton-1,j=i+lton)

+1 if x; < Xx; +1 if yj <y;
aij—{ bij={
11fx,>xJ 11if yi>y;j

In the event of tied ranks (where t; is the number of ties at rank i) a corrected

formula can be used

2a;bj;
\/(n(n -1)) (n(nz- 1 Ty)

The significance of T can be tested using

it - 1)
T

where T, =

and similarly for T,

T-U 22n + 5
z = - where |, = 0 andc%=9—r(1—(—r—1f'—l))

65

(d TauC

This coefficient is derived from Kendall’s rank correlation for situations where there
are a large number of tied ranks, details of which can be found in Kendall &
Stuart (1979). The coefficient is suitable for data arranged as an ordered rxc

contingency table and is calculated as

2m Xa;b;: .
te = —5—— where m = min (r,c)and -1 <t.< 1
n<(m - 1) =

The Zaijbij value is computed as in (c) above.
(¢) Cramer’'sV
This measure of association requires an rxc contingency table to be constructed. It is

based upon the %2 statistic, which can be used to test the significance of the

association. The statistic is calculated as

2
V = -ﬁ% where m = min (r-1,c-1)and0<V <1

(f) Pearson’s Coefficient of Contingency
This coefficient is applicable for the same situations as Cramer’s V and is also based
on a x? statistic calculated from an rxc contingency table.

The coefficient is calculated as

min(r-1, c-1)
+ min(r-1, c-1)

. X2 e
C = 5 o whereOSC_\jl

6.1.2 Tests for Differences in Two Samples

(a) Normal Statistic
This can be used to compare the means of two samples of size n; and n,. For small
samples (n; < 30 or ny < 30) it is necessary to assume that the samples are drawn from

normally distributed populations with known variances 02] and G%. However for large

samples (n; 2 30 and n, 2 30) the central limit theorem applies and no assumptions

66

regarding the population distributions are necessary, in addition if o1 and o7 are not
known then the estimates s, and s, can be used instead.
The test statistic, which is approximately distributed as a standard normal variable,

is calculated as

zZz =
S ox
nj nz

(b) tTest
The t test is for comparing the means of two samples, for small samples (n; < 30
or n, < 30) it must be assumed that the parent populations are normally distributed.
There are three forms of the t test which are used in the following situations :-
(i) for independent samples with population variances that can be assumed
equal, the test statistic, which exactly follows a t distribution with
df = ny + n3 - 2, is calculated as

Xi - X2 (ny - st + (ng - 1)s2

n; +ng - 2

~

where s3 =

Sp a - H;
(i) in the case of independent samples where common population variances
cannot be assumed, a statistic which approximates to the t distribution can
be calculated, for conservatism the degrees of freedom value is rounded

down to the nearest integer

a8 g2
—— — -—+ —
X1 = X n, n
t'=1—2 with df = : &
5% 2 §5 2
87 53 [; [A
ntong ni n
+
n; -1 na - 1

(iii) for paired samples, the difference in the pair of values (d; = x;; - X5;) is
calculated, no consideration need be given as to whether the population
variances are equal since the test statistic uses the differences between the

paired observations.

67

The test statistic is calculated as

d — where s? = 2d? - (3d)*/n
Sd / -\Jn d Vi far |

withn=n;=n,anddf=n- 1.

(c) Wilcoxon Matched Pairs Signed Ranks Test

This test can be used to detect any kind of difference in two paired samples (with
the null hypothesis being that there is no difference). The absolute differences between
each matched pair are obtained and ranked in order of magnitude. The sums of the +ve
and -ve differences are then calculated, which under the null hypothesis would be
about equal. Where there is no difference in a pair of observations, i.e. d=0, the pair is
dropped and the value of n (the number of pairs) is reduced accordingly. For pairs
with the same absolute difference average ranks are assigned.

Let T equal the smaller of the two sums of ranks. For small values of n, tables are
consulted to test the significance of the T value. For larger samples (typically n > 25)

the value of T is approximately normally distributed with

+ 1 1)(2 1
uT=n(n4) and 2=n(n+2)in+)

If there are tied ranks, a corrected form of 6% is calculated as

n(n+ 1)2n + 1) - 1!2itj(tj =)+ 1)
S 24 =

where g is the number of tied groups and t; the number of observations tied for rank j.

The significance of T is then tested using the standard normally distributed variable

o by
or

z

(d) Sign Test
This test is appropriate for establishing a contrast in two related samples and

requires only that a difference, +ve or -ve, can be found for each pair of observations.

68

Let x be the lower of the sums of +ve and -ve differences, tied observations (where
there is no difference in the pair of values) are dropped from the data and the value of n
reduced. The null hypothesis which is tested is that the median difference is zero. For
small samples (typically n < 25) the significance of x is tested by consulting
cumulative binomial tables. For larger values of n, x is approximately normally
distributed with

Vn

and0x=—i-

(ST

Hy =

The significance of x is then tested using

The test actually assumes that the data comes from an underlying continuous

distribution, a correction term for continuity can be incorporated giving a test statistic

of

. (xx0.5) - n, {x + 0.5 when x < n/2
3 = US€ L x - 0.5 when x > n/2
X

(¢) Mann-Whitney U Test
This test is a nonparametric alternative to the t test and determines whether two
independent samples have been drawn from the same population.
Let nj = the number of cases in the smaller of the two groups,
n; = the number of cases in the larger of the two groups.
The samples are combined and ranked where
R = the sum of the ranks assigned to the group of size n;,
R = the sum of the ranks assigned to the group of size ny.
The value of U is taken as the smaller of the two values U’ and U” which are
calculated as

ny(ny + 1
U’ = nn, +——2-—-—-R1 and U” = nn, +~L(23——-——)-R2

69

For small samples, the significance of U is tested by consulting tables of critical

values. For larger samples

Hu =£'12r2 and o - S122E R + 1)

12

In the event of ties average ranks are assigned. If the ties are just between
observations in the same group there is no effect, however if ties occur between
groups (where t; is the number of observations tied for rank i) then a corrected form of

Oy is used.

G = [N] [N(Nz : 1)1_22(ti3 2] i~ i AL

The significance of U is tested using the standard normally distributed variable

7 Dty
Gu
() McNemar Test

This test is suitable for paired samples which have been represented on a

dichotomy. A contingency table can be constructed to summarise the data.

SAMPLE Y
0 1
o] A B
SAMPLE X
1 C D

The test ignores the observations for pairs which have the same value, i.e. cells A
and D, but concentrates on those pairs where the values are different. The test
examines whether or not there is a difference in the probability of one combination of
values (0,1) against the other (1,0). The test statistic, shown below, is calculated to
compare the observed with the expected distribution of observations in cells B and C.

[B-(B+C)212 [C-(B+C)2]2 (B -C)?

e M vt 53 A o g R

70

Since the chi-squared distribution, which is continuous, is used to approximate a
discrete distribution a correction for continuity can be included so that the test statistic
is calculated as

(IB-Cl-1)2

X2 =g with df = 1.

(g) Fisher Exact Probability Test
This test is applicable for data from two independent samples which fall into a

dichotomy, as shown below.

CLASS
0 1

SAMPLEX | A B A+B

SAMPLEY | C D C+D

A+C B+D N

The test compares the two samples to see if the data differs in the proportions with
which it falls between the two classes. Given that the marginal totals are fixed, the

probability of the observed distribution of values can be calculated as

_ (A +B)! (C+D)! (A +C)! (B +D)!
PN NT Al B! C! D!

By also calculating the probabilities of the more extreme deviations, and summing
these probabilities, the null hypothesis can be tested. For a two-tailed test the

probabilities are doubled.

6.1.3 Tests for Differences in K Samples .

(a) Randomised Block Design

A randomised block design can be used to test for differences in population means

of k related samples. It is assumed that the observations are drawn from normally

71

distributed populations which have a common variance. The data is analysed as a two-
way ANOVA without interaction, with one factor assigned to samples (k levels) and
the other to blocks (n levels). The model is
Yi=H+Bi+T+e; (i=1ton,j=1tok)
(b) One-Way Analysis of Variance
A one-way ANOVA can be used to detect differences in the population means of k
independent samples, each of size n;. The analysis assumes that the populations are
approximately normal with a common variance. The one-factor model that is used is
Yi=H+Bi+e; (i=1tok,j=1tony)
(c) Friedman Two-Way ANOVA by Ranks
The Friedman test is a nonparametric alternative to the randomised block design and
tests if k related samples are drawn from the same population. The data is considered
as being arranged in a table with
N rows - the number of observations for each sample,
K columns - the number of samples.
Each row is ranked from 1 to k, with tied values being assigned average ranks. The
sum of ranks (R;) is calculated for each column, which under the null hypothesis
would be about equal.

The test statistic is calculated as

12 .S
Q = N_I((I(—'i'l)l?lR% - 3N(K+1)

In the event of tied values average ranks are assigned, a corrected form of the test

statistic can be calculated, where t; is the number of ties for row j with rank k.

12

k
NKEK+ D) ZR% - 3N(K+1)

i=]

Zt2(ty - 1)

L3 NK(KZ-1)

72

When the number of rows and columns is not too small the statistic follows a %2
distribution with df = K - 1, otherwise a table of critical values must be consulted to
obtain the significance.

(d) Kruskal-Wallis One-Way ANOVA

The Kruskal-Wallis test is a k sample generalisation of the Mann-Whitney U test
and is useful for detecting whether k independent samples are drawn from different
populations.

The samples are combined and ranked where

n; = the number of cases in the j*" sample (Zn; = N),
R; = the sum of ranks for the j sample.

The test statistic is calculated as

12 R?

= pel R
SN R g o0

In the event of tied values, where t; is the number of ties for rank i, a corrected form

of the test statistic is calculated as

12 kR?
NN+ D) % B D
) A CEEY
N(NZ-1)

The value of H is approximately distributed as a %2 distribution with df =k - 1.
(¢) Cochran Q Test

This test is applicable for k related samples with dichotomised data. The test
establishes whether the proportion of responses for each category is the same for each
sample. A two-way table with n rows and k columns is constructed, consider the
categories of the dichotomy to be types A and B.

Let G; = the total number of A responses in column j,

L; = the total number of A responses in row i.

73

The test statistic, which is approximately a %2 distributed variable with df = k - 1, is

calculated as

k
(k- 1) [3G f--(zG)z]

k):Li - sz
i=1 i=1
(f) Chi-Squared Test

A chi-squared test can be used for k independent samples, measured as discrete
categories. It detects any difference in the distribution across the categories among the

samples where

Z Z Q-L—El)— with df = (k-1)(n-1)

i=1 j=1 Elj

The size of the expected frequencies should be checked, it is common to state that it

is desirable if fewer than 20% are less than 5 and none are less than 1.
6.2 Semantic Requirements Overview

The objective of the system is to try and ensure that statistical tests are used which
are appropriate for the data concerned. Siegel (1956) noted that “associated with every
statistical test is a model and a measurement requirement; the test is valid under certain
conditions, and the model and measurement requirement specify those conditions”.
The statistical model was identified as being the nature of the population and the
manner of the sampling. The user will request that a statistical test is to be performed
on a number of samples, each specified using a format of <dsname>.<attname>, the
system then performs a number of checks which use the information in the semantic
data model and the actual data values to verify some of the model and measurement

requirements.

74

Nelder (1977) had discussed three alternatives for checking the assumptions of a
statistical test :-
(i) for the system to apply a number of standard checks by default;
(i) for a number of standard checks to be provided for the user to request;
(i) for a set of low level functions to be provided, a tool-kit, for the user to
program their own checks.

The needs of the inexperienced user are best met by the first alternative and this was
the method adopted. Although the checks are applied by default, the user does have
some control as the results are not all automatically accepted by default. It is extremely
difficult, if not impossible, to specify a set of hard and fast rules which could be
applied to automatically decide if the use of a test was sound. Depending upon the
particular circumstances, some of the requirements need not be exactly met, for
example the assumption that data is normally distributed. In the case of subjective
issues, the system permits a user’s wish to prevail. This provides a further argument
against adopting an authoritarian approach. The implementation aspects of this are
discussed in the next chapter.

The checks that have been implemented are performed at two levels, they validate
the following :-

(i) thata class of tests is applicable, e.g. measures of association;
(i) that a specific test is the appropriate type of test, e.g. Pearson’s PMCC.

The initial objective was that given a number of arguments by the user, the
appropriate type of test checks would be applied, if successful the system would then
apply the checks for the particular statistical test specified. It seemed desirable that if
the type of test was applicable, but the test chosen by the user was not appropriate, for
the system to be able to recommend one that was. A natural extension to this was to
allow a user to just specify the type of test required, e.g. measure of association, if the
type of test is applicable the system would recommend a particular test to the user. The
user can therefore either enter the name of a specific test if one is known, or if not just

the name of the type of test required. The system performs the class of test checks on

75

the arguments given and forms them into groups that the type of test is applicable to. If
the user has given suitable arguments then there will be just the one group. The checks
for a particular test can then be applied to each of those groups of arguments. Allowing
the program to operate in this manner has been made easier because of the hierarchical
organisation of the semantic requirements of the tests.

In recommending a measure of association, the system will choose a test to make
the best use of the level of measurement of the data. All of the tests of location have
been grouped together and the strategy adopted in selecting one is to: make the best use
of the level of measurement; take advantage if the samples are paired or related; select a
test specifically for two samples rather than a general test for k samples. Should the
user specify a test that does not make the best use of the data the system will still allow
its use. An alternative, that has not been implemented, would be to allow the use of the

test but to point out to the user that a more powerful test may be applicable.

6.3 Representation of Semantic Requirements

The semantic requirements of the statistical tests must be represented in a manner
that permits the two modes of use envisaged, those being :-

(i) tolook at the requirements of a user specified test to see if it is appropriate;
(i) to recommend a test suitable for the arguments given, this involves looking
at the requirements to identify a test.

This desired objective has been achieved by using a representation as depicted in
Figure 6.1. Three arrays of pointers have been used to represent the following sets of
requirements :-

(i) class_checks - indexed by the name of the type of test, i.e. association and
location;
(ii) assoc_checks - indexed by the name of the measure of association;

(iii) loc_checks - indexed by the name of the test of location.

76

array of

pointers
r'y
chain of
checknodes
index | —t———pp| semcheck | ~t-p L‘lf:i |
\ 4

Figure 6.1 Semantic Requirements Representation

The pointers in the arrays reference a chain of checknodes. Each checknode
contains a semcheck field - this is a keyword identifying a semantic requirement - and a
pointer to the next node in the chain. This arrangement allows a varying number of
requirements to be specified.

To verify the requirements of a type of test the index of the class_checks array is
used to locate the appropriate pointer. Each node in the chain is processed one at a time
with the keyword identifying the requirement that is to be validated. The corresponding
array of test requirements, assoc_checks or loc_checks, is then used to perform the
second stage of checking.

If the user has specified a particular test, the relevant chain of checknodes is located
using the index of test names. The requirements are considered in the order in which
they occur in the chain. If a requirement is not satisfied the test is deemed inappropriate
and any remaining requirements are ignored. If however the end of the chain is reached
then the test is accepted as being applicable.

When the system is attempting to select a test to recommend to the user, either
because only the type of test was given or if the test preferred by the user was
inappropriate, the system must consider the requirements to identify a test name. For
the assoc_checks and loc_checks arrays the indices are ordered according to the

strategy for choosing a test. For example, a two sample test for paired interval level

77

6.1a Classes of Test

Association
Location

relatedinst

simenttype egdomains

6.1b Measures of Association

Pearson intqnt normal
Spearman ranked
Kendall ranked
Tau_c ordqlt
Cramers_V nomcat chifreq
Coeff of cont nomcat chifreq

6.1c Tests of Location
Normal _test twosample eqintqnt nige30
T_paired twosample relatedinst eqintqnt normal
Randomised_block relatedinst eqintqnt normal eqvar
T _common twosample eqintqnt normal eqvar
T _separate twosample eqintgnt normal
One_way AOV eqintqgnt normal eqvar
Wilcoxon twosample relatedinst eqordqnt
Sign_test twosample relatedinst eqordqlt
Friedman_AOV relatedinst eqordqlt
Mann_Whitney twosample eqordqlt
Kruskal Wallis eqordqlt
McNemar_test twosample relatedinst eqdichcat
Cochran_Q relatedinst eqdichcat
Chi_squared eqnomcat chifreq
Fisher exact twosample eqdichcat

Table 6.1 Requirements of Statistical Tests

78

data appears before a similar test that does not assume paired samples. The tests can
therefore be considered in index order, the first one for which all of the requirements
are satisfied will be the one recommended.

Table 6.1 shows the requirements that have been specified for the type of tests and
the specific tests, the meanings of which are described in section 6.4. The
requirements are ordered in the chains from left to right as they appear in the table.
They are ordered such that they can be sensibly applied, that is there is no point in
checking for normality until it is known that the data is quantitative.

The requirements for the three arrays are stored in the files class_checks.dat,
assoc_checks.dat and loc_checks.dat, the information is read into the Pascal data

structures when the program in invoked.

6.4 Description of Semantic Requirements

The requirements keywords that can be specified are described in the following
sections, some of which study each sample in isolation to see if a condition is satisfied
whereas others will consider the group of samples as a whole to examine the existence

of a required common characteristic.

6.4.1 Homogeneous Entities

It may be required that for a sensible application of a test the data should be
measured for similar types of objects. That is the datasets of the attributes that are
involved should be measuring data for entities that are of a similar type, this
requirement is identified by the keyword simenttype. It can be validated by searching
the entity type taxonomy. From the entity types referenced in the dataset nodes it is
possible to work up the entity type nodes in the taxonomy, whilst the links are

denoting a generic relationship, to find the most generic entity types for each of the

79

datasets. The requirement is satisfied if the most generic nodes identified in the

taxonomy for each of the datasets are the same.

6.4.2 Related Samples

A number of the tests are intended for use with paired or related samples, specified
with the keyword relaredinst. That is the instances of the datasets for each of the
attributes that have been given should somehow match up. For samples that are
attributes from the same dataset no further effort is required. However if the datasets
for the attributes are different then each dataset must have a key field where the values
of the attributes comprising the key coincide. Since the instances of a dataset are stored

in key order it is simple to see if two datasets have the same set of key values.

6.4.3 Number of Samples

Some tests are restricted to being used specifically in a twosample situation whereas
there are others that are more general and are applicable for k samples (ksample),

where k = 2.

6.4.4 Homogeneous Properties

The objective of performing a test of location is often to decide whether or not a
number of samples could have been drawn from the same or similar populations. This
is achieved by examining the distribution of the sample values by means of some
parametric or nonparametric technique. For this to be a meaningful operation the data
under consideration should be comparable, that is like should be compared with like.
In this situation the requirement eqdomains is specified. The att_type field of an

attribute node denotes what property is being represented. For a comparison of data

80

values to be appropriate this field should have the same value for each of the attributes,
in this way the system can ensure that heights are not compared with weights.
As well as the att_type value the method of recording the data must also be taken

into consideration, this aspect of homogeneity is covered in the next section.

6.4.5 Measurement

It is important to take account of the measurement of the data in deciding the
soundness of applying a statistical test, since all tests assume something of the data.
The measurement requirements are concerned with both the level of measurement and
the measurement scheme used to record the data.

The vast majority of textbooks on statistical techniques use the level of measurement
as the basis for deciding upon the type of data for which a particular test is applicable.
It is in fact common for such textbooks to use the assumed level of measurement of the
data as a means of classifying the tests. An alternative approach that has been adopted
by some, notably Marascuilo & McSweeney (1977), is to concentrate on stipulating
these measurement conditions with respect to the distributional properties of the data.
Statistical data is identified as being one of two types :-

(i) qualitative - which is subdivided into ordered and unordered data:
(i1) quantitative - which has the subclasses discrete and continuous.

The requirement for the correct application of a test concerned with the measurement
aspect of the data can then be specified with respect to the four classes of data
identified.

For the most part the level of measurement is used as the foundation upon which the
various semantic measurement requirements are specified.

With regards to parametric statistical tests, some require the data to have a ratio level
of measurement but for most of them data which is at least interval will suffice.

Amongst the most powerful of the nonparametric tests are those which are based on

ranking the data. Such tests can be used for interval and ratio level data where all of the

81

conditions for the use of a parametric test are not satisfied, for example if it cannot be
assumed that the data is drawn from a normally distributed population. Alternatively, it
is generally accepted that most rank tests are applicable to ordinal level data, with
corrected formulae being used in the event of tied ranks. Earlier publications suggested
that the data should have an underlying continuous distribution but more recently it has
been felt that this assumption is unnecessarily restrictive. Conover (1980) advocated
that most rank tests were suitable as long as the sample values can take more than one
possible value, i.e. P(X = x) <1 for each x, the theory underlying this belief
appears in Conover (1973). This standpoint has been adopted and the system will
allow most rank tests to be used with ordinal level data.

One test where there appears to be less of a consesus of agreement is the Wilcoxon
Matched Pairs Signed Ranks test, this ranks the absolute differences of each pair of
values. Siegel (1956) considers that the differences should be at least ordinal, a
footnote indicates that this really requires the data to lie at least between an ordinal and
interval scale. Lehmann (1975) does not mention the level of measurement but states
that it is desirable to avoid ties whereas Marascuilo & McSweeney (1977) classify the
test as being suitable for quantitative data. Yet another alternative is given by
Conover (1980) who regards the test as being for interval level data. It was decided
that for this test the requirement would be for the data to be quantitative, which could
be ratio, interval or ordinal. Most of the sources of reference given seem to regard the
number of ties to be the crucial point and requiring quantitative data will often keep the
number of ties down, although this cannot of course be guaranteed. An alternative
course of action would be to also allow ordered qualitative data where the number of
ties is not too many. Since it was not possible to find an agreed quantified value for
‘not too many’ this idea was discarded.

Rank tests have been discussed in relation to ratio, interval and ordinal level data.
For tests which rank the samples individually, rather than in some collective way, a
further more relaxed requirement allows attributes with a datalevel value of ratio,

interval, ordinal or rank to be used.

82

Other nonparametric tests, often based on contingency tables, require only that the
data can be grouped into ordered or unordered categories. Some tests are more specific
and it is necessary for the categories to be a dichotomy.

For tests based upon the assumption of homogeneous properties an additional
measurement requirement is that the measurement scheme used for each sample should
be the same. The measurement level and measurement scheme requirements are
considered together and given as a single keyword, there is one specified for each test
and their requirements are summarised as follows :-

(i) eqrargnt - ratio level data that can be represented with the same
measurement scheme;

(ii) rargnt - ratio level data;

(iii) eqintgnt - interval or ratio level data that can be represented with the same
measurement scheme;

(iv) intqne - interval or ratio level data;

(v) ranked - ordinal, rank, interval or ratio level data;

(vi) eqordgnt - ordinal, interval or ratio level data that can be represented with
the same quantitative measurement scheme;

(vii) eqordqlt - ordinal, interval or ratio level data that can be represented with
the same measurement scheme;

(viii) ordqlt - ordinal, interval or ratio level data;

(ix) eqnomcat - data that can be represented with the same qualitative
measurement scheme;

(x) nomecar - data that can be represented with a qualitative measurement
scheme;

(xi) eqdichcat - data that can be represented with the same dichotomous
qualitative measurement scheme.

The system will initially check the attribute node for each argument to see that the
level of measurement values satisfy the requirement. If these are suitable the system

may then need to examine the measurement schemes to see if the data is in an

83

appropriate form for the test. To obtain the form desired it may be necessary to convert
the data for some or all of the attributes involved to another measurement scheme. The

need to perform a data conversion will be due to one or a combination of the following

reasons :-
(i) to getall of the data recorded using the same measurement scheme:
(i) to categorise quantitative data;

(iif) to form the data into a dichotomy.
6.4.6 Normality

A number of the statistical tests assume that the samples are drawn from normally
distributed populations, an assumption specified using the keyword normal. The
requirement is satisfied for a sample if the azz_dist field of the attribute node has the
value normaldist or the number of instances is 30 or more, since in the latter case the
central limit theorem applies. Otherwise a test is applied to determine the likelihood of
normality, although such tests cannot guarantee complete accuracy they can act as a
guide. The test chosen was the one presented by Shapiro & Wilk (1965) which is
applicable on a single sample, there may be a more recent test which has more
desirable characteristics and if so it would be simple to do a substitution.

The test is applied to a random sample of size n, x;,Xp,...,X,, Which is ordered
such that y; £y, ... <y,.

The values

k
b= 21 a5.i41(Yo-is1-y;)) where k=nDIV2
1=
n ~ =
and $2 = _):l(yi- y)2
1=

are computed using the tabulated values of a, ;.

84

The test statistic is then calculated as

and the significance evaluated using tables of critical values of W.

The file shapwilkcoeff.dat contains the values of a, ;,; in ascending order of i from
3 to 29 followed by the 5% critical values of W for the corresponding values of n.
These values are read from the file into Pascal arrays which are then used by the

routine.

6.4.7 Equality of Variances

A requirement that is specified for some tests is that the samples should be drawn
from populations having equal variances, denoted by the requirement keyword eqvar.

In a two sample situation the F test is used with the test statistic computed as

F =

vl
Sl

To test the significance of the statistic, use is made of a NAG library routine to
return the probability associated with the calculated F value.
For the more general k sample situation a test presented by Bartlett (1937) is used.

This examines the equality of k normally distributed samples, with the ith sample

having n; elements and ¥'n; = N. The sample variances (sf) are calculated with each
having ¢; = nj - 1 degrees of freedom.

The average of the estimated variances is calculated as

2ok

It is then possible to compute

k Lot 1 -
X 2). ¥ ¢; In(s? * % @
M = ®In(s?) El ¢iln(s{) and A 3(k - 1)|:i§1 i]

85

with the the test statistic being

M
1 + A

As noted, this statistic assumes that the samples are normally distributed, if this
assumption cannot be made a modification according to Box (1953) is used with the
test statistic

M

Y2
1+T

where Ya.= Bz -3

An estimate given by Anscombe (1960) is used for 7y,

3 N3 |:U+2 Se é_]
v(V+2) (1+(N-1)p¢} - 3N [v (Ee)? N
where v=N-k, p2=—k- and €jj = X;j - ;1
V(N -1)

Both Box’s and Bartlett’s test statistics are distributed as ¥2 variables with k-1
degrees of freedom, a call to a NAG library routine returns the probability associated
with the computed statistic.

As with testing for normality, different or more extensive statistics may be more
appropriate to compare the equality of variances and the implementation could be easily

changed to accommodate them.

6.4.8 Size of Samples

The normal test is often recommended for comparing the means of two large
independent samples. For large samples, where n; > 30 is commonly taken as being
large, the central limit theorem means that no assumptions regarding the population
distributions need be made and in addition the population variances need not be known
since the sample estimates can be used instead. It is usual for the t test to be

recommended in the case of small samples. To accommodate this convention the

86

requirement nige30 is specified for the normal test. Each sample is checked to see that

30 or more instances have been declared for the datasets of the attributes involved.

6.4.9 Expected Frequencies in Contingency Tables

A number of tests for categorised data involve the calculation of the 2 statistic from
a contingency table. The existence of small values of expected frequencies can result in
a large distortion occuring in the test statistic. Textbooks recommend the pooling of
categories to avoid these undesirable small frequencies. The definition of small is not
however consistent. Some recommend that no expected frequencies should be less
than 5 whereas others consider that none less than 1 is more reasonable. A common
condition that is given is that none should be less than 1 and only 20% less then 5.

This last alternative has been adopted and is specified with the chifreq keyword.

6.5 Résumé

In identifying a set of requirements that can be specified for a type of test or a
specific test to be applicable, use has been made of all of the semantic knowledge that
is represented in the data model. The keywords simenttype, relatedinst, eqdomains,
eqratqnt, ratqnt, eqintqnt, intqnt, ranked, eqordqnt, eqordqlt, ordqlt, eqnomcat,
nomcat and eqdichcat are concerned with the knowledge about objects, instances,
properties and measurement. In addition, there are others which can be regarded as
being more involved with numeric issues and the actual data, those being normal,

eqvar, chifreq, twosample, ksample and nige30.

87

Chapter 7

The Operation of Validating the Use of a Statistical Test

7.1 Preliminaries

A request to perform a statistical test can be made by entering either the name of a
class of tests or the name of a specific test. This request is accompanied by the list of
arguments that the test is to be applied to, that is

either <testclass> <dsname>.<attname> <dsname>.<attname> ...
or <testname> <dsname>.<attname> <dsname>.<attname>

The function of the main program is to read in the name of a command entered by
the user and to call the relevant procedure, which will then read in any arguments and
process the command. For a request to perform a statistical test the procedure
procstatreq is called, the actual parameters passed to it are dependent upon the
command entered, the name of the command is parsed and identified by the variable
token.ttype. The values of the parameters passed to procstatreq are determined by the

following section of code from the main program.

CASE token.ttype OF

association : procstatreqg(association, nulltest, twosample) ;
location : procstatreg(location, nulltest, ksample);
pearson..coeff of cont

procstatreq(association, token.ttype, twosample) ;
normal test..fisher exact

procstatreg(location, token.ttype, ksample);

END ;

The first parameter of the procedure procstatreq identifies the type of test required,

this information is inferred if the name of a specific test is entered. The second

88

parameter denotes whether the user has requested any specific test, a value of nullrest
indicates that only the desired type of test name was given. The final parameter
signifies the number of arguments that can be given for the type of test. This
requirement is given as a parameter rather than as a semantic requirement in the
class_checks array since it serves a number of functions. It is used to check both the
syntax and the semantics of the original command as it is entered and is used again
once the class of test checks have been performed. These operations are explained in
later sections of the chapter.

The first task of the procedure procstatreq is to read in the arguments that the user
has supplied. As was briefly mentioned in section 6.2, the objective of performing the
checks at the type of test level is to form these arguments into groups such that a test of
the required type can be applied to each group. The information about the arguments
must be represented in a form that allows the organisation of the groups to be depicted.

A representation as shown in Figure 7.1 has been used to facilitate this need.

Dataset Attribute
node node

A4
il

Listheadhead ———» No_items | ——p» Ll] 1> ge:;;j‘;“’“"d"
Next listheadnode Data Measurement
in chain array node

Figure 7.1 Argument List Representation

The variable listheadhead points to the head of a chain of listheadnodes, there is one
such node for each list (or group) of arguments. The information about an argument in
a list is represented in an itemnode, for each listheadnode there will be a chain of
itemnodes, one for each argument in the list.

A listheadnode contains the following fields :-

(i) nexthead - a pointer to the next listheadnode in the chain;

89

(i) no_items - an integer recording the number of nodes in the chain of
itemnodes, i.e. the number of arguments in the list;

(1) itemhead - a pointer to the head of the chain of itemnodes.

The fields of an itemnode represent the information about an argument as follows :-

(i) dsinfo - a pointer to the dataset node of the argument;

(i) attinfo - a pointer to the attribute node of the argument;

(iif) convdata - this field is a pointer to a data array and will initially have the
value NIL, if it is necessary to convert the original data (referenced by a
pointer in the attribute node) to satisfy a requirement, an array referenced
by this pointer will be generated to contain the converted data:

(iv) measinfo - a pointer to an entry in the measurement directory identifying
the measurement scheme of the converted data, this pointer will have the
value NIL until a conversion is made;

(v) nextitem - a pointer to the next itemnode in the chain.

To satisfy a particular measurement requirement it may be necessary to convert the
data for some or all of the arguments to a different measurement scheme. This requires
an extra set of data to be generated, since the original copy must be left as it is. By
using a field in the itemnode to reference the converted data, the system can easily
check which arguments required conversions to be made. In addition, since the
generated data is only required for the current command, it can easily be disposed of
once the system has completed processing the steps of the command. If a test were to
be applied, any converted data referenced in the itemnode would be used instead of the
original data located via the attribute node.

When the procedure procstatreq is invoked a listheadnode is generated and
initialised, to begin with there will be just one list of arguments. As the information
about each argument is read in and validated, an itemnode is generated and added to the
chain, the no_items field in the listheadnode is also incremented. For an argument to be
valid at least 3 instances must have been declared for the dataset, i.e. the attribute will

have 3 or more items of data.

90

Once the end of the list of arguments has been reached, the system uses the
no_items value in the listheadnode to check that the number of arguments entered is
valid for the type of test required. In the event of an error occuring, either in validating
a particular argument or checking the number of arguments, an error message is output
and the command aborted. In this situation the listheadnode and any itemnodes that
have been generated are disposed of. If however the arguments of the command have
been parsed and no error has resulted, the first stage of applying the semantic

requirements, at the class of test level, is initiated.

7.2 The Class of Test Level Operation

The actions performed at the class of test level are divided into two stages :-
(i) applying the semantic requirements and if necessary splittin g the arguments
into groups;
(i) reviewing the resultant organisation of the arguments to see if the system
can proceed to the test level stage and if needed reporting the outcome back

to the user.
The controlling procedure procstatreq calls the procedures checkclassreq and

reviewclasschecks for the former and latter tasks respectively.

7.3 Applying the Class of Test Requirements

The procedure checkelassreq is called from procstatreq as
checkclassreq(class_checks[testclass])
The actual parameter is a pointer to the head of the chain of checknodes identifying
the requirements of the class of tests required. The overall operation of the procedure
can be seen as

for each semantic requirement
consider each group in turn and divide into any subgroups

91

For example, in the case of a test of location there are two semantic requirements
that must be processed, the above operation will therefore be as follows -

() the original single list of arguments is considered and formed into groups
of those having a similar entity type;

(i) each of the groups formed after (i) are considered independently and those
arguments measuring the same quality or quantity are formed into
subgroups.

After processing the second semantic requirement each listheadnode will reference a
chain of itemnodes, each denoting arguments having data measured for similar entity
types and measuring the same quality or quantity.

This exercise may involve manipulating the argument list representation to remove
an itemnode from one list and either adding it to another existing list or creating a new
one. An example of how this manipulation is achieved is illustrated in Figure 7.2. Part
of an argument list representation is shown in Figure 7.2A, one or more semantic
checks have been applied and the arguments have been split into a number of groups.
A semantic requirement is about to be applied to the group of arguments in list_1, the
current list of interest being identified by the pointer variable listrocheck. The pointer
lastlisthead will be used to indicate the last listheadnode that has been created for
itemnodes that are currently in listtocheck. Lastlisthead is therefore initially set to
listtocheck since no extra listheadnodes have yet been created. The system decides if an
item is appropriate for the list it is currently in by comparing it with the item at the head
of the list of itemnodes. This comparison is done according to the criteria of the
semantic requirement. If the criteria is not met then the itemnode must be removed
from the list. It can then be compared with those items at the head of any lists up to and
including that identified by lastlisthead and added to a list if appropriate. If it is not
compatible with any of these then a new listheadnode is created for it, this node is
placed after the one referenced by the pointer lastlisthead and the pointer is then
updated. For the situation depicted in Figure 7.2A, itemB is compared with itemA and

the requirement is for example not met. Since there are no other lists that itemB can be

92

added to a new listheadnode, list_la, is created and the pointer lastlisthead advanced.
The new state of that part of the argument list representation is shown in Figure 7.2B.

ItemC will then be compared with itemA to ascertain as to whether it should stay in

Listtocheck —p»

et > List1 | =—®|ltem A| ——»|ltem B| ——|ltem C

Nextlisthead —» List2 | —+—p»

Figure A

Listtocheck —9» List 1 | ——9»|ltem A| ——p|Item C

Lastlisthead —» List 1a | =——p»|Item B

Nextlisthead —9» List2 | —t+—p

Figure B

Figure 7.2 Manipulation of Argument List Representation

list_1, if not it would be compared with itemB and possibly added to list_la or may
require a new listheadnode to be created. Once the itemnode at the tail of listtocheck
has been processed, those arguments represented in lists up to and including that
identified by lastlisthead will have been grouped according to the requirements up to
the current one being applied. The listheadnode referenced by the pointer nextlisthead

then becomes the next list to check.

93

Having applied all of the semantic requirements for the class of test. the system will
then report back any changes in the organisation of the argument list representation to

the user, as described in the next section.

7.4 Reviewing the Results of the Class of Test Requirements

The procedure reviewclasschecks is called from procstatreq as

reviewclasschecks(testclass, typeoftestargs)

The actual parameters that are passed enable the system to identify :-

(i) the class of tests required, and hence the semantic requirements that have
been applied to the argument list from the class_checks array;

(i) the number of arguments that must be represented in each list for it to be
possible to apply a test, i.e. twosample or ksample.

Having applied the class of test level semantic requirements to the initial single list
of arguments, the first task of the procedure is to determine if the resulting groups of
arguments, identified by the existence of a listheadnode in the chain referenced by the
pointer variable listheadhead, contain sufficient members for it to be feasible to
perform a test. The no_items field of each listheadnode is inspected to see if it
conforms to the range required by the typeoftestargs parameter. Those listheadnodes
containing sufficient itemnodes for a test to be applied are chained together and
referenced by the pointer variable validlists. Conversely, the pointer variable
invalidlists identifies a chain of any listheadnodes representing groups with too few
members.

Once all of the listheadnodes have been assigned to either validlists or invalidlists,
the action of the procedure will be dependent upon which of the three possible
situations has occured, those being that :-

(i) the validlists chain is empty.
No test can be applied since none of the groups formed as a result of

applying the class of test requirements contained enough arguments, the user

94

(i1)

is informed that the arguments are such that no test of the desired class is
applicable.

there is at least one listheadnode in the invalidlists chain or one or more
listheadnodes in the validlists chain.

That is, after the class of test level of checking it has been found that it is
not possible to perform a single test on all of the arguments.

If the invalidlists pointer is not NIL then the arguments represented by the
chain of listheadnodes are displayed and the user told that a test of the class
specified cannot be applied to any of those arguments.

The system then informs the user of those arguments that can be used.
That is, if validlists contains one listheadnode then a single test can be
applied whereas if there is more than one listheadnode in the chain a test can
be applied to each of the groups of arguments.

For example, if seven arguments were entered the groups could be in a

form that results in the following output.

Cannot apply a test of location to the following argument (s)

<dsname>.<attname>
<dsname>.<attname>

Can apply a test of location to each of the following groups

<dsname>.<attname>
<dsname>.<attname>

<dsname>.<attname>
<dsname>.<attname>
<dsname>.<attname>

The user is then asked if they wish the system to continue and attempt to
apply a test to those arguments where possible. If the user decides that there
is no benefit in continuing, either because of the arguments that cannot be

used or due to the grouping of the arguments, the listheadnodes and

95

itemnodes referenced by the pointer validlists are disposed of and the pointer
is set to NIL.

(iii) there is one listheadnode in the validlists chain and the invalidlists chain is
empty.

In this situation there is nothing to report back to the user. The arguments
originally given are still in a single list and will be processed at the next stage
as initially requested by the user.

In situations (i) and (ii) above, it will have been found that it is not possible to
proceed in a manner as the user had originally wished. This would tend to suggest that
the user was unfamiliar with the requirements to apply a test of the class requested. If
the EXPLAIN facility is switched on, this is the default when the system is invoked,
the requirements of the class of test involved are explained. The list of the requirements
that have been applied are found in the class_checks array at the index position
indicated by the testclass parameter. The procedure expclassreqs receives as a
parameter a pointer to the first checknode in the chain, each of the checknodes are
considered and a brief canned textual explanation appropriate to the semcheck keyword
is then produced as shown below. The string passed to the parameter testclassstr is
appropriate for the class of test involved and is either “measure of association” or “test

of location”.

WRITELN;
WRITELN('The requirement(s) for a ', testclassstr,
'are as follows :-'");
WRITELN;
WHILE ptocheck <> NIL
DO WITH ptocheck ~ DO BEGIN
CASE semcheck OF
egdomains
WRITELN(' Each sample should be measuring the ',
'same quality or quantity.');
relatedinst :
WRITELN(' The instances of each sample should be related.'):
simenttype :
WRITELN(' Each sample should be measured for ',

96

‘the same type of entity.')
END;
ptocheck := nextcheck
END

At the end of the procedure reviewclasschecks, any listheadnodes and itemnodes
referenced by the pointer invalidlists can be disposed of since they are of no further
use. The validlists chain of listheadnodes are then assigned back to the listheadhead
pointer. This pointer will be NIL if the system found that it would not be possible to
apply a test to any group of arguments or if the user decided not to continue to try and
apply a test with the arguments organised in the modified form. Otherwise the system
will attempt to validate the use of a test for each of the groups of arguments represented

by a listheadnode.

7.5 The Test Level Operation

The controlling procedure procstatreq inspects the pointer listheadhead and if it does
not have the value NIL the procedure checktestreq is called, as below., to perform the

test level operations.

CASE testclass OF

association : checktestreg(testclass, assoc_checks, testname);
location : checktestreq(testclass, loc_checks, testname)
END;

The formal parameters of the procedure checktestreq are as follows :-
(i) testclass - this parameter has the value association or location to denote the
class of test involved.
(i) testchecks - an array of pointers referencing the semantic requirements of
the tests of the class required, the array assoc_checks or loc_checks is
passed as the actual parameter. The index of the testchecks array will be

identical to that of the array being passed as the actual parameter. The

97

conformant array parameters firsemest and lasttest can be used to identify
the lower and upper bounds respectively of the testchecks array. These
array bounds are used if it is required of the system to recommend a
suitable test.
(iif) usertest - the value of this parameter is the name of the test that the user
wishes to use, it has the value nulltest if no specific test was requested.
The objective of the procedure is to use the semantic requirements represented by
the array testchecks to validate the use of a statistical test for each group of arguments.

The overall operation of the procedure is given in the outline algorithm below.

WHILE another listheadnode to process
DO BEGIN
IF more than one group of arguments
THEN display arguments currently being considered

state := searching { for a test }
IF user has requested a specific test
THEN BEGIN
validate use of the test - A

IF testis suitable
THEN state := testfound

ELSE BEGIN
Ir the explain facility is switched on
THEN BEGIN
list requirements of test --B
explain which requirement could not be met --C
END

ELSE just inform user that test cannot be applied
does user wish to search for a test
IF nO THEN state := searchfailed
END
END
IF state = searching
THEN first test to consider has index firsttest
WHILE state = searching
DO BEGIN { consider current test }
validate use of the test - A
IF testis suitable
THEN BEGIN
inform user of name of recommended test

98

IF the explain facility is switched on
THEN list requirements of test -—-B
does user wish to apply recommended test
IF yes
THEN state := testfound
ELSE state := searchfailed
ND
ELSE IF test justconsidered had index lasttest
THEN BEGIN
state := searchfailed
inform user that search has been unsuccessful
END
ELSE test to consider has the next index value in the array
END
IF state = testfound
THEN review any data conversions etc --D
END

=1

Those parts of the algorithm identified by the labels A, B, C and D are explained in
more detail in later sections of this chapter, a knowledge of their inner workings is not
required at this stage of the test level description.

The procedure examines each listheadnode in turn and the arguments in the group
about to be considered are displayed if there is more than one listheadnode in the chain.
To record the current situation of the test level operation, regarding the arguments in
the listheadnode under consideration, the variable stare is used. If the system has yet to
endorse the use of a test the current situation is searching, the initial value. Eventually
either a test will be deemed appropriate, denoted by the value testfound, or the search
for an acceptable applicable test will have failed, indicated by state having the value
searchfailed.

If the user has requested a specific test to be used, i.e. the usertest parameter was
not passed a value of nulltest, the system will first see if that test is appropriate. The
procedure validatetest is called to check whether a particular test can be applied to a
group of arguments (see section 7.6). If the data is suitable for the test, the state
variable is updated to testfound. Otherwise the system informs the user that their

preferred test is not suitable. If the EXPLAIN facility is set to on, the user is told of the

99

requirements of the test (section 7.7) and given a reason as to why the one that failed
could not be met (section 7.8), alternatively a simple message is output to the screen.
The user will then be queried as to whether they wish the system to try and recommend
an appropriate test. If the answer is no, the state variable is set to searchfailed (i.e. no
test has been accepted for the data), otherwise state will still have the value searching.

The system will search for a test to recommend to the user either if the user’s
preferred test was unsuitable for the data or if no specific test was requested. As was
mentioned earlier in section 6.3, the system will consider each test in the array
testchecks according to their index order, the first index of the array is denoted by the
conformant array parameter firsttest. The system will consider the tests in turn until
either one is found to be acceptable or the end of the list is reached, identified by the
index value lasttest. The current test under consideration is validated using the
validatetest procedure.

If the test is found to be applicable the user is informed of the system'’s choice, a list
of the requirements of the test is also given if the EXPLAIN facility is set to on. The
system will then ask the user if they wish to accept the recommendation. If they do the
process has been successful and the state variable is set to testfound, otherwise it is
assigned the value searchfailed. This latter course of action is taken, to halt the search
process once a recommended test has been rejected by the user, since it was decided
that the system would only recommend one test. The alternative would be to continue
through the list recommending other tests for which the requirements are met. The
system will endorse the use of a user requested test that does not make the best use of
the data, it may be that the user has a good reason for doing so. However, it was felt
that if a user did not wish to accept a suggested test for some particular reason, and
was not able to enter the name of an acceptable test, they would be best served by
seeking the advice of a statistician to discuss the problem to be overcome. The
existence of such problems that cannot be solved by the use of a predetermined
strategy serves to highlight the fact that computer programs, no matter how good they

are, will never replace human experts.

100

If the requirements of the test under consideration could not be met, the test with the
subsequent index value would be the next candidate. If however the end of the list has
been reached, i.e. the index value of the current test is the same as lasttest, the state
variable is set to searchfailed and the user is informed that the data could not be

manipulated into a form for a test to be applicable.

Having completed the above process for a group of arguments, successfully
validating the use of a test may have involved transforming the data in some way to
obtain a form suitable for the test requirements. If a suitable test has been found the
system will report back to the user a summary of any transformations that have been
applied to the data (section 7.9).

As is evident from the outline of the strategy adopted for the procedure
checktestreq, if the system has to recommend to the user a test that is appropriate for
the data it may be necessary to check the requirements of a number of tests before it
may be possible to make a recommendation. To avoid the need to repeat the application
of the same semantic check a number of times, the results of any checks that are
applied to the current group of arguments are stored in a number of variables. When
validating the use of a test the values of these variables can be examined, with it only
being necessary to consult the information in the semantic data model to apply the
check if the result is not already known. The variables are initialised in the checktestreq
procedure each time a different listheadnode is considered, the procedures actually
performing the semantic checks then update the variables as appropriate. Although
primarily beneficial when validating the use of a test, these variables have also proved
to be useful in the event of it being necessary to explain to the user why their requested
test was inappropriate. The use of the variables is explained further in sections 7.6, 7.8

and 7.9.

101

7.6 Applying the Test Requirements

The procedure validatetest is called each time the controlling procedure checktestreq
needs to validate the requirements of a particular test. The formal parameters of the
procedure validatetest are as follows :-

(i) candtest - the test that the procedure is to validate;

(i) ptocheck - a pointer to the head of the chain of checknodes identifying the
requirements of the test being considered;

(iif) ptolisthead - a pointer to the listheadnode identifying the arguments that the
test is to be validated for;

(iv) ptofailedcheck - the checknode of a requirement that cannot be met is
referenced by this pointer, if all of the requirements are met and the end of
the chain is reached the parameter will return with a value of NIL,
signifying that the test is suitable.

As was stated in section 6.3, the checknodes will be considered in turn until either a
requirement cannot be met or the end of the chain is reached. Whereas the objective at
the class of test level was to group the arguments such that the requirements were met
for each resultant group, at this level the system wishes to determine if the
requirements are met for the arguments in the group identified by the current
listheadnode.

As has already been noted, the program records the results of the semantic
requirements performed on the current group being considered. The application of the
semantic requirements and the manipulation of the data and the results variables is

described in the following sections 7.6.1 to 7.6.6.

7.6.1 Related Samples

The procedure checkrelargs is called if the argsrel variable still has its initial value of

relunknown. It determines as to whether the instances of the arguments in the group

102

can be regarded as being related and will result in the argsrel variable being set to
related or unrelated as appropriate. The requirement relatedinst is ratified if the argsrel

variable has the value related.

7.6.2 Measurement

The measurement requirement of a test specifies the level of measurement demanded
of the data and also any addition restriction that is placed upon the measurement
schemes of the arguments involved. To validate such a requirement the level aspect
will first be investigated before considering any constraint placed upon the
measurement schemes used to record the data.

The variable argsummary is used to summarise the levels of measurement of the
arguments in the ptolisthead group being considered, those levels distinguished are
ratio, interval, rank, ordinal with a quantitative measurement scheme, ordinal with a
qualitative measurement scheme, nominal with a closed set of categories and
nominal with an open set of categories. The values that argsummary can take, to
reflect the combination of levels, are as follows :-

(1) startstate - the initial value;

(i1) allrat - all ratio;

(iii) intrat - ratio or interval;

(iv) allgnt - ratio, interval or ordinal (quant);

(v) rankqnt - ratio, interval, rank or ordinal (quant);

(vi) rankqlt - ratio, interval, rank, ordinal (quant) or ordinal (qual);

(vii) ordqnt - ratio, interval, ordinal (quant) or ordinal (qual);

(viii) allord - all ordinal (qual);

(ix) nomgqnt - ratio, interval, ordinal (quant), ordinal (qual) or nominal (closed);

(x) allglt - ordinal (qual) or nominal (closed);

103

PIBISPI[PAOU QJEISPI[EAOU JJRISPI[EAOU QJRISPI[EAOU JRISPI[BAOU JRISPIBAOU JBISPI[EAOU | JjpiSpijeAOU
ArISpIEAOU by)by jubwou IejspieAou jubwou jubwou bre
drISpI[EAOU jubwou juburou jubwiou JrISPIEAOU jubwou jubwou jubuwou
drISpI[EAOU nbye pIoj® jubpio Jbyuex jubpio jubpio pio[e
d)rIspijeAOU jubwou jubpio jubpio byues jubpio jubpio jubpio
ARISPI[PAOU 2JRISPI[EAOU byuex) byues 1 byuex Jbyuex byuex byues
QRISPI[BAOU JRISPI[PAOU 1byuer jubyuex Jubyuer jubyuer jubyuex jubyuex
ArISpIrAOU jubwou jubpio wubje jubyuex jubje jubype jubje
d)rISpI[EAOU jubwou jubpio jubje jubyuex Jenul Jenul Jenur
JeISpI[EAOU jubwou jubpio yubjre jubyuex jenul weae Jel|e
AwISpIEAOU nbye pIoj[® jubje jubyuex enur eae qeIsuels
(uado) (pasopo) (jenb) (yuenb)
[eunou [eurou [BUIpIO [eulpIO yuer [eAsd)ul oner

Table 7.1 State Transition Table for Argsummary

104

(xi) novalidstate - the levels of measurement of the arguments are such that
none of the tests can be applied, that is either there is a combination of rank
and nominal level data or an argument has nominal (closed) data.

The initial value of startstate is assigned to argsummary in the checktestreq
procedure when a new group is about to be processed. To compute the appropriate
value of argsummary the attribute node of each argument is examined in turn to
determine its level. The value of argsummary is then updated to reflect the data of those
arguments considered thus far. The state transition table for the argsummary variable is
shown in Table 7.1. The updated value of argsummary (given in the main body of the
table) is dependent upon its current value (in the left hand margin) and the argument
being considered (as shown in the top margin). For example, if the value of
argsummary was currently allord and the next argument had a level of ordinal (quant),
the value would be updated to ordgnt.

The value of the argsummary variable enables the system to determine if the level of
measurement values are suitable for the test concerned. The reason for having a richer
set of possible values than is necessary to accomplish this task is that the extra
information can be used when considering any measurement scheme requirement.

The system may also have to examine the measurement schemes used to record the
data before it can establish whether the measurement requirement can be met. The
results of inspecting the schemes used and any attempts to convert the data into an
appropriate form are recorded using the following variables :-

(i) qntdata - the result of examining the arguments for a test requiring
quantitative data;

(i) qltdata - the result of examining the arguments for a test requiring
qualitative data;

(i) dichdata - the result of examining the arguments for a test requiring

dichotomous data.

105

Each variable will take one of the following values, indicating that :-

@

(ii)
(iii)

(iv)

dataunknown - the measurement schemes have not yet been examined for a
level associated with the variable;

origOK - the original data is suitable for the requirement;

convOK - after performing some conversions the data is in an appropriate
form, that is converted data has been generated for at least one of the
arguments;

cannotconv - the data cannot be converted into an appropriate form for the

level associated with the variable.

It was found to be advantageous to use three variables to record the results of

examining the measurement schemes of the arguments as it provides a simple and

complete means of recording what checks and conversions have been made.

To check whether the data of the arguments has been measured using, or can be

converted to, the same measurement scheme the procedure checksamemeas is called.

This procedure is used for the purpose of validating the requirements eqratqnt,

eqintqnt, eqordqnt, eqordglt, eqnomcat and eqdichcat, it has the following formal

parameters :-

()
(ii)

(ii1)

ptolisthead - a pointer to the listheadnode under consideration.

measspec - the type of the measurement scheme that must be common to
each argument, the value quant will be passed for the requirements
eqratqnt, eqintqnt and eqordqnt; quant or ordqual for eqordglt; ordqual or
unordqual for eqnomcat; orddich or unorddich for eqdichcat. For the last
three requirements the value passed will be dependent upon the
argsummary value.

stateofdata - the result is returned via this parameter, the actual parameter
will be qntdata, qltdata or dichdata which will initially have the value

dataunknown.

If the arguments have not been measured with the same measurement scheme, one

which is of an appropriate type, the user is prompted to enter the name of the

106

measurement scheme to use, or NONE if it is not possible to convert all of the
arguments to the same scheme. The user can enter the command SHOWARGMEAS to
display the original measurement schemes used for the arguments and
SHOWCANDMEAS to display those entries in the measurement directory that are of the
type required. If the measurement scheme entered does not exist in the directory and
the user wishes to declare it the appropriate procedure will be called to do so,
otherwise the system will check that the chosen scheme is of the appropriate type. Each
argument that has not been measured using the required scheme is then checked to see
that the conversion is possible, which may necessitate the addition of entries to the
conversion directory. If all of the conversions are possible the system would then
generate the converted data as required. Upon leaving the procedure, the stateofdata
parameter will have been set to origOK, convOK or cannotconv.

The system may also have to examine the measurement schemes of the arguments to
validate the requirement nomcat, which requires that each argument be measured usin g
a qualitative measurement scheme. If the argsummary value is allord or allglt the
requirement can be validated without any further work, if however some or all of the
arguments are quantitative then the procedure categoriseqnt is called. The variable
qltdata is passed as a parameter so that the result of trying to categorise the data can be
returned. Each argument is examined and the user is prompted to enter the name of a
qualitative measurement scheme for each of those that are quantitative, this may
involve the addition of measurement and conversion schemes to the corresponding
directories. If the data of an argument could not be converted into an appropriate form
the result would be for the variable gltdata to return with the value cannotconv,
otherwise it would have the value convOK with converted data having been generated
where required.

The system is able to affirm the measurement requirement of a test using the
argsummary variable and where relevant the variables qntdata, gltdata and dichdata.
This is illustrated in the following section of code which is for the requirement

eqnomcat.

107

egnomcat
BEGIN
IF (argsummary IN [allrat..allgnt, ordgnt..allozd))
AND (gltdata = dataunknown)
THEN BEGIN
checksamemeas (ptolisthead, ordqual, gltdata);
IF gltdata = cannotconv THEN dichdata = cannotconv
END
ELSE IF (argsummary = allqlt) AND (gltdata = dataunknown)
THEN BEGIN
checksamemeas (ptolisthead, unordqual, gltdata):

IF gltdata = cannotconv THEN dichdata := cannotconv
END;
testOK := gltdata IN [origOK, convOK]

END ;

7.6.3 Normality

The procedure checknormalargs checks the normality of the arguments in the group
being considered, with the result being recorded using the variable argsnormal. For a
number of statistical tests that assume normally distributed data, it is well known that
under certain conditions sensible results can still be obtained with non-normal data, for
example if the data is symmetrical. For this reason the user is allowed to insist on
applying a test even if the system applied check for normality fails. The procedure
works through the list of arguments and checks each for normality, if the check on an
argument fails the user is informed and asked whether or not they wish to assume
normality. In addition to giving a yes or no answer there is the alternative of accepting
a default option, in which case the system errs on the side of caution and normality is
not assumed. If an extra set of converted data has been generated for an argument the
normality check is applied to that data, otherwise the original data referenced in the
attribute node is used

If each argument passes the normal check the variable argsnormal will be assigned

the value normalOK, if one or more arguments are assumed to be normal the value is

108

assnormal, otherwise the value returned from the procedure checknormalargs will be

nonnormal. The normality requirement is satisfied by either of the first two values.

7.6.4 Equality of Variances

As with the requirement that the data should be normally distributed, tests which
assume that the variances of the samples involved are approximately equal can
sometimes be applied when this is not the case, without unduly effecting the result.
The user has the option of assuming that the variances of the samples are equal if the
result of applying the relevant test of equal variances is significant, again the user can
accept a system default (this does not assume equality). In calculating the variance of a
sample a generated set of converted data is used instead of the original version.

The variable argvar records the result of checking the equality of the sample
variances. The values that it can take once the check has been performed are eqvarOK,
the check could find no significant difference, asseqvar, the user wishes to assume that
the variances are equal, and unegvar, in which case the requirement will not be

satisfied.

7.6.5 Size of Samples

The variable numinst records the result of validating the requirement nige30. If the
requirement is satisfied it will have the value instOK, otherwise the value assigned will

be insttoolow.

7.6.6 Expected Frequencies in Contingency Tables

To validate the calculation of a chi-squared statistic on data to be arranged in a
contingency table, it is necessary to examine the expected frequencies for each of the

cells to ensure that they conform to the criteria given in section 6.4.9. The chi-squared

109

statistic is used as a k-sample test of location and also forms the basis for two of the
two-sample measures of association. The manner in which the contingency table
would be formed is dependent upon whether it was being constructed for a measure of

association or a test of location, as is illustrated in Figure 7.3.

Sample B measurement

scheme with n categories n Samples
< -
Sample A Common
measurement measurement
scheme with scheme with
T categories I categories
Measure of Association Test of Location

Figure 7.3 Formation of a Contingency Table

The approach adopted by the system in performing the above mentioned validation
is to compute the marginal totals of the table, from which the expected frequencies can
be calculated. If the frequencies are too small the user is questioned as to whether any
of the categories can be combined, in the case of a measure of association there may be
two measurement schemes involved, for a test of location the samples are not
combined. The process will continue until either the frequencies are acceptable or it is
not possible to combine any more categories. Although the marginal totals have to be
compiled differently depending upon the type of test involved, the process of
validating the expected frequencies can be performed in a consistent manner.

To ratify the frequency requirement, the system computes and records the marginal
frequency totals for the rows and columns of the virtual table, in addition to the
information concerning which categories contribute to which total. The system is able
to manipulate the categories, with the assistance of the user, to try and obtain marginal

totals that produce acceptable expected frequencies. The contingency table information

110

is represented in a form as shown in Figure 7.4, with the pointers controw and

contcolumn referencing the row and column information respectively.

Measurement Node

?

Controw ——9> l numdivisions | —r—%| members | freq | — g:(::pnode
Measurement Node
| Fin, Next
Contcolumn ——9 numdivisions | —t—%| members | freq | — Groupnode

Figure 7.4 Representation of Contingency Table Marginal Frequencies

The controw and contcolumn pointers reference groupinfo nodes which in turn
point to a chain of groupnode nodes. The fields of a groupinfo node are as follows :-

(i) measused - a pointer to the measurement scheme used to divide the
dimension of the table, for the column of a test of location this pointer will
be NIL since the marginal totals are formed for the number of items in each
sample;

(i) numdivisions - the number of marginal totals for the row or column;

(iii) grouphead - a pointer to the head of the chain of groupnodes.

There will be one groupnode for each marginal total of the dimension of the table
being represented by the groupinfo node, with each node containing the following
information :-

(i) members - if the dimension of the table has been divided according to
measurement scheme categories, this field will identify the set of index
numbers of the categories that contribute to the marginal total;

(ii) freq - an integer denoting the marginal total;

(iii) nextnode - a pointer to the next groupnode in the chain.

111

An integer variable, conttotal, is used to record the total frequency for the
contingency table, i.e. the sum of the row and column marginal totals.

The expected frequencies can be calculated using the freq fields and the conttotal
value. If the expected frequencies are too small the system searches for the set of
categories with the smallest marginal total, provided that there are more than two
divisions, and will ask the user if it can be combined with another, in the case of
ordered categories this would be restricted to one that was adjacent. If the divisions can
be combined the members and freq fields of the two nodes are added together and the
redundant node is removed from the chain, the numdivisions field is also decremented.
In the case of a measure of association where the same measurement scheme has been
used for both arguments, it is necessary to adjust both the controw and contcolumn
representations.

If combining the categories proved to be successful, the data would then be
converted to reflect the grouping of the categories. If converted data had previously
been generated for an argument, to satisfy a measurement requirement, it would be
overwritten, otherwise an array would be generated to store it. In either case the
measinfo pointer in the itemnode would not be changed.

The systems attempt at validating the chifreq requirement is recorded using the
variable argfreq, this will take the value freqOK if successful and fregroolow

otherwise.

7.7 Explaining the Requirements of a Test

As at the class of test level, the system is able to produce portions of canned text to
explain to the user the requirements for the use of a particular test. The procedure
showtestreq is passed in the form of parameters the name of the test involved and also
a pointer to the head of the chain of checknodes identifying the requirements of the
test. The procedure works through the chain producing text appropriate for the

semcheck keyword of each node. The procedure is used when the use of a user

112

suggested test has not been validated or when the system is recommending a test to the

user.

7.8 Explaining the Rejection of a User Requested Test

If the procedure validatetest determines that a particular test is unsuitable to be
applied to a group of arguments, a pointer is returned which identifies the requirement
that could not be met (the pointer has a value of NIL if the use of the test is endorsed).
The procedure expfailedcheck is passed this pointer as a parameter and is able to
explain to the user why their requested test could not be applied to the data. The
semcheck keyword is used to produce a textual message relevant to the failed
requirement. In the case of that being a measurement requirement, the system inspects
the appropriate variable - qntdata, qltdata or dichdata - to determine whether the
requirement was not met because the data could not be converted into an appropriate

form or because the level of measurement values were unsatisfactory.

7.9 Reviewing the Validation of the Selected Test

Having selected a test for a group of arguments, the system reviews the results of
any decisions made or actions performed during the process of validating the
requirements of the test. The procedure reviewtestchecks works through the
requirements of the selected test, it examines the associated variables recording the
results of the procedures called to validate the requirements to decide if there is
anything to report.

If the user has chosen to assume that a requirement is met, a message is output to
warn that care should be taken when interpreting the results of the test. The
assumptions that may have been made are that :-

(1) the data is normally distributed, i.e. argsnormal has a value of assnormal;

113

(ii) the variances of the samples are equal, signified by argvar having the value
asseqvar.

If the EXPLAIN facility is set to on the system will also highlight any data
conversions that have been made and why they were necessary. From the
measurement requirement keyword and the corresponding result variable (qntdata,
qltdata or dichdata), the system can deduce if the original measurement schemes of the
arguments were unsuitable. A message is output to explain why the conversions were
required, i.e. to obtain a common measurement scheme or to categorise quantitative
data, in addition to a list of those arguments where converted data was generated
(including the names of the measurement schemes of the original and converted data).

To satisfy the chifreq requirement some of the categories of the measurement
scheme(s) involved may been combined. From the row and column representations of
the contingency table information the system can list any groups of categories that have

been formed.

114

Chapter 8

Conclusions

Having conducted the research, a number of conclusions can be drawn about the
merit of using metadata in the development of knowledge based statistical software,
further work that could be undertaken to more fully investigate the approach and some
of its limitations. Some conclusions can also be made regarding the future for

knowledge based statistical software in general.

8.1 The Prototype System

The objective of implementing a prototype system was to identify elements of
metadata, in the form of semantic knowledge, such that a system could refer to the
information to validate the use of a number of measures of association and tests of
location. Having designed and implemented the prototype, it appears that by adopting
such an approach it would be possible to enhance conventional style packages to
provide a greater degree of statistical support and in doing so reduce the amount of
misuse of statistical methods. Further research into the approach would therefore be
worthwhile.

The prototype system allows the user to control the direction of the analysis, but
monitors the commands issued to try and ensure that the data is appropriate and the
results obtained will be meaningful. The checks that are performed, which see if the
requirements for the correct use of a test are met, will result in one of the following :-

(i) the system cannot validate a requirement and informs the user that the test
is not appropriate and cannot be applied, for example a request to apply a
test requiring at least interval level data when some of the data is nominal;

(i) the system cannot validate a requirement and asks the user if they wish to

continue, for example in the case of the normality assumption;

115

(iii) the system validates the requirements and allows the test to be applied.

By including these alternatives the system has achieved the objective of preventing
blatant misuse, yet giving a user the opportunity to make use of their knowledge of the
situation to decide on subjective issues.

There remain a number of aspects of the prototype which could be further
enhanced, a few areas of development are discussed below. Some of these features
could not be incorporated into the prototype due to the time constraint placed upon the
research whilst others are ideas that have come to light during the course of the
implementation.

For the measures of association and tests of location that have been included, there
may be other requirements that ought to be validated before their use is approved. The
prototype system has predominantly been concerned with semantic issues, these may
need to be more thorough, but the more numeric checks concerned with the actual data
items have not been extensively covered. To take the paired samples t test as an
example, Preece (1982) discussed the following topics which he thought should be
considered before applying the test: outliers; homogeneity of the source of the data;
trends; transformations; degree of precision of the data recording. It is fairly simple to
add extra requirements, and the code to validate them, to the system. For some of the
assumptions and requirements underlying the correct use of a test it may not be realistic
for a system to attempt to check that they are met. It may be better to just remind the
user of them, e.g. the independence of sample values, in the form of a checklist and
having provided the information to leave it to the user to continue if they feel that none
have been violated.

For those issues which are subjective, where the user should be given the option of
continuing the process of validating the use of a test even though the system is unable
to verify that a particular requirement is met, more information should be given to
assist the user in making the decision. In the case of the normality assumption, textual
information could be given to explain under which conditions normality is not too

crucial, in addition to a plot of the data and the skewness and kurtosis coefficients.

116

The semantic knowledge about the data could also be used to enhance the
explanation of the results obtained following the application of a statistical test or
technique. Part of this could be to try and produce an explanation more oriented
towards the ground domain of the user, the semantic knowledge encodes domain
specific terminology and information to support this. If the user is able to understand
the meaning underlying the result of the analysis, they will be able to determine if their
initial hypothesis has been tested, it was noted in section 3.4 that the system does not
attempt this task. Further research could extend the system to check that an analysis
will be in accord with the aims of the user, e.g. does it matter that Pearson’s PMCC
can only detect a linear relationship.

Other enhancements that could be made to the prototype are more concerned with
developing a ‘proper’ implementation, as would be required for a commercial system.

The data definition stage of declaring the required semantic knowledge about the
data would need enhancing to provide the user with more assistance. For example, to
use the prototype it is necessary to know what the level of measurement is for an
attribute. The assistance that is given should be designed to be pedagogical.

The usual set of data manipulation functions should also be integrated. These would
include editing and data selection functions, at present the data can only be specified
using the dsname.artname format.

The data management aspect of statistical software was not considered at all in the
prototype version. A commercial system would need to be able to handle large sets of
data, missing data and possibly provide more data structures to facilitate the processing
of more varied and complex data formats. The use of a database management system
could be explored, one feature of this development would be to decide which part of
the data model, if any, should be loaded into programming language data structures
and what information should be read from the database each time it was needed.

To produce a system with a practical use it would of course be necessary to extend
the areas of statistics covered. It would have to be further substantiated that statistical

software based on a semantic modelling approach could be developed to provide

117

support to the range of statistical facilities required of a general purpose statistical

package.

8.2 Assessment of Using Metadata

The majority of the research that has been undertaken in the area of knowledge
based statistical software has been to develop systems based upon a consultation with a
professional statistician. In order to ascertain whether or not a recommendation can be
made, such systems engage in a discourse with the user. The user is questioned for
information as and when it is required, building up a picture of the data a fragment at a
time. By way of contrast, the research has considered an approach whereby a model of
the data is declared, which contains the knowledge of the data that may be required.

An advantage of having a single data definition stage to make known the metadata is
that it allows the data model to be declared for the users by local experts, those with a
knowledge of both the domain of application and statistics. When using the system to
perform a statistical analysis, a statistically naive user would be spared any questions
regarding the statistical nature of the data, for example the level of measurement. The
system would be able to validate any data that the users may have enter and also verify
that requests to apply statistical techniques are appropriate. A separate data definition
stage would also seem particularly suited to situations where repeated trials or surveys
are involved. The metadata content will typically remain unaltered, to a great extent,
and can act as a template for the structure of any new data. In the case of large sets of
data, the metadata model would also serve as a good source of documentation.

A further advantage of defining the metadata beforehand is that the system has
access to some domain specific terminology and knowledge. The need to combine
statistical and ground domain knowledge was identified as being one of the major

problems in developing knowledge based statistical software.

118

8.3 Extensions to the Metadata

The semantic knowledge that has been represented in the data model of the
prototype seems to have a general utility and would be commonly used to validate the
requirements of a range of statistical methods. Further work could investigate in what
way the metadata content of the model could be usefully extended.

A number of possible areas of metadata that could be incorporated are :-

(i) Atthe data level.

The levels of measurement identified could be extended to include
counts as a separate category, they can be regarded as being more
specialised than ratio level data.

(i) At the attribute level.

Functional relationships that can be identified between attributes could
be represented. One attribute could be related to, or computed from, one or
more other attributes.

(iii) At the dataset level.

It may prove to be profitable to include metadata about the source of the
data or any sampling procedures that have been used. For example, the
entity instances of a particular entity type can be regarded as a set, with the
specific entities of a dataset being a subset. A subset may have been
selected because of the value or values of one or more of the properties of
the entities, e.g. a sample of salesmen aged over 40.

The investigation to determine what extra metadata ought to be added to the data
model could be aided by focussing on a number of application areas. This could result
in :-

(1) the identification of further items of generally useful metadata;
(i) the recognition that different application areas have different metadata

needs and models tailored to the application would be more suitable.

119

The initial aim was to work towards the development of a general purpose data
model, however this will not be possible if the metadata has to be biased because of the
nature of the data involved or due to the favoured statistical techniques that are
employed.

As has been argued earlier in the thesis, it would not be practical to continue adding
further to the data model ad infinitum, the problem is deciding what extra knowledge

should be added and where to draw the line.

8.4 Limitations of a System Using Metadata

As the metadata content of a data model is extended, the likelihood of requiring the
declaration of information that is not subsequently used also increases. This problem
does not occur if the information is acquired by the system incrementally. A solution
would be to have a core section of the metadata that must be given prior to entering the
actual data, leaving it optional to declare the remainder. If the system required a piece
of information that was marked as unknown, the user would be asked to supply the
relevant metadata such that it could be added to the model.

A problem would occur if the time taken to search the metadata and validate the
requirements had adverse effects on the response time of the system. With the
prototype there is no noticeable degradation, indicating that there is room for further
processing to be carried out.

The motivation for adopting an approach that could enhance conventional style
command driven packages was to provide a flexible tool to do general data analysis. A
system performing such a function would seem to be able to use metadata to try and
ensure that the statistical methods are not misused. For areas such as experimental
design or the application of advanced statistical techniques (e.g. regression or time
series analysis), a metadata approach may have to be supplemented with other

knowledge.

120

8.5 The Future for Knowledge Based Statistical Software

Much of the research that has been carried out in the area of knowledge based
statistical software has concentrated on the development of what the artificial
intelligence community have termed expert systems. These systems have generally
sought to encode a strategy to guide a user to perform a particular task by taking the
role of a consultant statistician, such software seems particularly suited to these tasks.
Although as yet none have become commercially available, the prevailing feeling at the
Compstat 88 conference (which is one of the most prestigious conferences devoted to
computational statistics) was that some systems would appear on the market within 12
months.

Although useful expert systems will become available in the near future, work
should continue to develop other forms of knowledge based statistical software. Expert
systems should not be seen as the solution, but as one of a number of methods by
which software is able to provide statistical support and guidance. Research should
continue to develop systems based on other architectures, to provide other forms of
assistance by adopting other roles.

At Compstat 88, it was noticeable that there was a tendency to avoid the expression
expert systems and to use instead the term consultancy systems. Nelder (1988)
reported a realisation that systems would not be capable of being authoritarian and
should instead be libertarian. Although software will almost certainly never achieve the
level of expertise of a human statistician, it is possible to improve significantly on the

packages that are currently being used, many of which have their roots in the 1960’s.

References

Altman, D.G. (1982), “Statistics in Medical Journals”, Statistics in Medicine 1,
pp. 59-71.

Anscombe, F.J. (1960), “Examination of Residuals”, Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, pp. 1-36.

Badgley, R.F. (1961), “An assessment of Research Methods Reported in 103
Scientific Articles from Two Canadian Medical Journals™, Canadian Medical
Association Journal 85, pp. 246-250.

Baines, A. & Clithero, D.T. (1986), “Interactive User-Friendly Package for Design
and Analysis of Experiments”, COMPSTAT 86 (7th Symposium, Rome, Italy),
Physica-Verlag, pp. 320-325.

Bartlett, M.S. (1937), “Properties of Sufficiency and Statistical Tests”, Proceedings of
the Royal Society Series A 160, pp. 268-282.

Becker, R.A. & Chambers, J.M. (1984), S: An Interactive Environment for Data
Analysis and Graphics, Wadsworth Advanced Book Program.

Blum, R.L. (1982), Discovery and Representation of Causal Relationships from a
Large Time-Orientated Clinical Database: The RX Project, Springer-Verlag.

Box, G.E.P. (1953), “Non-Normality and Tests on Variances”, Biometrika 40,
pp. 318-335.

Brachman, R.J. (1983), “What IS-A Is and Isn’t: An Analysis of Taxonomic Links in
Semantic Networks”, Computer 16(10), pp. 30-36.

Chambers, J.M. (1980), “Statistical Computing: History and Trends”, The American
Statistician 34(4), pp. 238-243.

Chambers, J.M. (1981), “Some thoughts on Expert Software”, Computer Science and
Statistics: Proceedings of the 13th Symposium on the Interface, Springer-Verlag,
pp. 36-40.

Chen, P.P.S. (1976), “The Entity-Relationship Model - Toward a Unified View of
Data”, ACM Transactions on Database Systems 1(1), pp. 9-36.

Codd, E.F. (1979), “Extending the Database Relational Model to Capture More
Meaning”, ACM Transactions on Database Systems 4(4), pp.397-434.

Conover, W.J. (1973), “Rank Tests for One Sample, Two Samples, and K Samples
Without the Assumption of a Continuous Distribution Function”, The Annals of
Statistics 1(6), pp. 1105-1125.

Conover, W.J. (1980), Practical Nonparametric Statistics (2nd Edition), Wiley.

Date, C.J. (1983), “The Extended Relational Model RM/T”, in An Introduction to
Database Systems: Volume II, Addison-Wesley, pp. 241-289.

Date, C.J. (1986), “Semantic Modelling”, in An Introduction to Database Systems:
Volume I (4th Edition), Addison-Wesley, pp.609-623.

Dickson, J.M. (1984), “Data Capture and Validation Using Portable Terminals”,
COMPSTAT 84 (6th Symposium, Prague, Czechoslovakia), Physica-Verlag,
pp. 473-478.

Dickson, J.M. & Talbot, M. (1986), “Statistical Data Validation and Expert Systems”,
COMPSTAT 86 (7th Symposium, Rome, Italy), Physica-Verlag, pp. 283-288.

Gale, W.A. (1985), “Knowledge Representation in Data Analysis”, Proceedings of
the Fourth International Symposium on Data Analysis and Informatics
(Versailles, France), North-Holland, pp. 703-719.

Gale, W.A. (1986a), “Overview of Artificial Intelligence and Statistics”, in Gale,
W.A. (ed), Artificial Intelligence and Statistics, Addison-Wesley, pp. 1-16.

Gale, W.A. (1986b), “Student Phase 1 - A Report on Work in Progress”, in Gale,
W.A. (ed), Artificial Intelligence and Statistics, Addison-Wesley, pp. 239-265.

Gale, W.A. & Pregibon, D. (1982), “An Expert System for Regression Analysis”,
Computer Science and Statistics: Proceedings of the 14th Symposium on the
Interface (New York, USA, July 1982), Springer-Verlag, pp. 110-117.

Gale, W.A. & Pregibon, D. (1984), “Constructing an Expert System for Data
Analysis by Working Examples”, COMPSTAT 84 (6th Symposium, Prague,
Czechoslovakia), Physica-Verlag, pp. 227-236.

Glantz, S.A. (1961), “Biostatistics: How to Detect, Correct and Prevent Errors in the
Medical Literature”, Circulation 61(1), pp. 1-7.

Gore, S.M., Jones, 1.G. & Rytter, E.C. (1977), “Misuse of Statistical Methods:
Critical Assessment of Articles in BMJ from January to March 19767, British
Medical Journal 1, pp. 85-87.

Hahn, G.J. (1985), “More Intelligent Statistical Software and Statistical Expert
Systems: Future Directions”, The American Statistician 39(1), pp. 1-16.

Hajek, P. & Havranek, T. (1978), “The GUHA Method - Its Aims and Techniques”,
International Journal of Man-Machine Studies 10, pp. 3-22.

Hajek, P. & Ivanek, J. (1982), “Artificial Intelligence and Data Analysis”,
COMPSTAT 82 (5th Symposium, Toulouse, France), Physica-Verlag, pp. 54-
60.

Hammond, R.G. (1983), “RAPID: A Statistical Database Management System”,
Computer Science and Statistics: Proceedings of the 15th Symposium on the
Interface (Texas, USA, March 1983), North-Holland, pp. 31-34.

Hand, D.J. (1984), “Statistical Expert Systems: Design”, The Statistician 33, pp.351-
369.

Hand, D.J. (1985a), “Statistical Expert Systems: Necessary Attributes”, Journal of
Applied Statistics 12(1), pp.19-27.

Hand, D.J. (1985b), “Choice of Statistical Technique”, Bulletin of the International

Statistical Institute (Proceedings of the 45th Session, Vol. 3, Amsterdam,
August 1985), pp. 21.1-1 to 21.1-16.

123

Hand, D.J. (1986), “Expert Systems in Statistics”, The Knowledge Engineering
Review 1(3), pp. 2-10.

Hand, D.J. (1987), “A Statistical Knowledge Enhancement System”, Journal of the
Royal Statistical Society Series A 150(4), pp. 334-345.

Haux, R. & Jockel, K.H. (1986), “Database Management and Statistical Data
Analysis: The Need for Integration and for Becoming More Intelligent”,
COMPSTAT 86 (7th Symposium, Rome, Italy), Physica-Verlag, pp. 407-414.

Hooke, R. (1980), “Getting People to Use Statistics Properly”, The American
Statistician 34(1), pp. 39-42.

Huber, P.J. (1986), “Environments for Supporting Statistical Strategy”, in Gale,
W.A. (ed), Artificial Intelligence and Statistics, Addison-Wesley, pp. 285-294.

Jones, B. (1980), “The Computer as a Statistical Consultant”, Bulletin in Applied
Statistics 7(2), pp. 168-195.

Kendall, M. & Stuart, A. (1979), The Advanced Theory of Statistics Volume 2:
Inference and Relationship (4th Edition), Charles Griffin & Co.

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based On Ranks,
Holden-Day.

Lundy, R.T. (1984), “Metadata Management”, Database Engineering, 7(1), pp. 43-
48.

Marascuilo, L.A. & McSweeney, M. (1977), Nonparametric and Distribution-Free
Methods for the Social Sciences, Brooks/Cole.

McCarthy, J.L. (1982), “Metadata Management for Large Statistical Databases”,
Proceedings of 8th International Conference on Very Large Databases (Mexico),
pp. 234-243.

Nelder, J.A. (1977), “Intelligent Programs, The Next Stage in Statistical Computing”,
in Barra, J.R. (ed), Recent Developments in Statistics, North-Holland, pp.79-
86.

Nelder, J.A. (1984), “Present Position and Potential Developments: Some Personal
Views, Statistical Computing”, Journal of the Royal Statistical Society Series A
147(2), pp. 151-160.

Nelder, J.A. (1988), “How Should the Statistical Expert System and its User See
Each Other 77, COMPSTAT 88 (8th Symposium, Copenhagen, Denmark),
Physica-Verlag, pp. 107-116.

Oldford, R.W. & Peters, S.C. (1984), “Building a Statistical Knowledge Based
System with Mini-Mycin”, Proceedings of the ASA: Statistical Computing
Section, pp. 85-90.

Oldford, R.W. & Peters, S.C. (1986), “Implementation and Study of Statistical
Strategy”, in Gale, W.A. (ed), Artificial Intelligence and Statistics, Addison-
Wesley, pp. 335-353.

Portier, K.M. & Lai, P. (1983), “A Statistical Expert System for Analysis
Determination”, Proceedings of the ASA: Statistical Computing Section, pp.
309-311.

Preece, D.A. (1982), “t is for Trouble (and Textbooks): A Critique of Some Examples
of the Paired-Samples t-test”, The Statistician 31(2), pp.169-195.

Pregibon, D. & Gale, W.A. (1984), “REX: An Expert System for Regression
Analysis”, COMPSTAT 84 (6th Symposium, Prague, Czechoslovakia),
Physica-Verlag, pp. 242-248.

Quillian, M.R. (1966), “Semantic Memory”, Report AFCRL-66-189, Bolt Beranek
and Newman, Cambridge, Massachusetts, USA.

Schor, S. & Karten, I. (1966), “Statistical Evaluation of Medical Journal
Manuscripts”, Journal of the American Medical Association 195(13), pp. 1123-
1128.

Shapiro, S.S. & Wilk, M.B. (1965), “An Analysis of Variance for Normality
(Complete Samples)”, Biometrika 52, pp. 591-611.

Siegel, S. (1956), Nonparametric Statistics for the Behavioral Sciences, McGraw-
Hill.

Shortliffe, E.H. (1976), Computer-based Medical Consultations: MYCIN, Elsevier
Scientific.

Smith, AAM.R,, Lee, L.S. & Hand, D.J. (1983), “Interactive User-friendly Interfaces
to Statistical Packages”, The Computer Journal 26(3), pp. 199-204.

Stevens, S.S. (1946), “On the Theory of Scales of Measurement”, Science,
103(2684), pp. 677-680.

Wolstenholme, D.E. & Nelder, J.A. (1986), “A Front End for GLIM”, in Haux, R.
(ed), Expert Systems in Statistics, Gustav Fischer, pp. 155-177.

Appendix A

Example

The text of the thesis describes the knowledge that is represented in the data model,
the requirements that can be specified for a type of test or a particular test to be valid
and how the system uses the semantic knowledge and the data to validate the various
requirements. The system has been tested to ensure that it runs as specified and this
example is given merely for completeness.

Figure A.1 illustrates the entity taxonomy that has been declared in the example data
model, showing the organisation of the entity types and the relationships between
them. The three data sets that have been declared (sec_info, clerk_info and eng_info)
are also displayed together with their respective attributes, more of the content of the
example data model is given in the trace of the program running.

Finally, the trace gives the outcome of a request to perform a statistical test.

126

Ampes qof oumN Arees oprIn) UEN L} Arepeg QUEN
ojur Sug oJur Y1) ojur 20§
~ g
e 38 .\ = .\.\c.\
S f e
/ i o
pEEl o) Amw11008
N
B <
//...
1oumduy Jolensiunupy RJeuey
3
D 5
wounaedagy 2okoydwsg
ON ON
100y

Figure A.1 Entity Taxonomy and Datasets Used in Example

127

ST
0T
¢l

sasuejlsujg adA3 A3tjumg

DIMANID
OINANED
OTMENED
OINENED
DIVANID
DIMANIONON
OIMANIONON
OITdd¥ ION

2dA3 zadns 03 uoT3ERTaYy

PR-AARCE OICEY
HHINIONE

OdNI DS
0JNI ONI
OdNI MJ3T1D

128 eleq

ITPSPMOYS <

HIOYNYIW
AYYLAYOHS
A4ITO
HOLVELSINIWAY
HHINIONI
JIXOTdWI
INAWLYYd3a
LO0d

od&3 A313ug

3001 ITPIUSMOYS <

utewunt ¢

128

HINOW ¥dd SaNnod
AWYN
ON SNI LYN

seay

¥vAX ¥dd SANNOd
44Xl ONd

AWYN

ON SNI L¥N

seay

dvdX ¥Ad SANNOd
AAYEO OINITD
AWYN

ON SNI I¥N

seap

0OILVd
TYNIWON
TYNIHON

TeAa]

OILvd

TYNIWON
TYNIWON
TYNIWON

T2A97

OI1vd

TYNITdO
TYNIWON
TYNIHON

12497

XMYTYS
AWYN dWd
al awd

adi3 13v¥

XEYTVS
FdXIL dor
AWYN dWd

ar dwd

adi3 13v

AMYTYS
FAYHO
AWYN dWd
ar awd

adi3 33%

XM NON XAYIYS

X3 NON AWYN
AEM ar
aTox 33¥ sweu 33¥

OJUT 03§ 3JIBMOYS <

X3M NON XAYIVS
X3 NON gopr
X3 NON TWYN
pch az
8101 33V sweu 33y

ojut bus 33BMOYS <

X3 NON XAYTIYS
X3 NON AAYHO
X3 NON TWYN
xax ar
87101 33¥ sweu 33y

OJUT YISO IIBMOYS <

9

¥ OINETD
€ OI¥ATO
Z OINATO
T JINETO

—-: @21e sanytea Axobajeo prrep

pa19pi0o 21e saTaobaje)d ‘earje]lrrenb = adiy seay

epeib OTISTO sSeswmoys <

YATIJIIINAAI = ad&3 ejeq “‘usdo = =dA3 395 ‘saTjejrrenb = adi3 sesy

OU SUT 3RU SPIWMOYS <

SYIWINYNO

¥VAX ¥Ed SaNnod

SYAWINYND HINOW ¥dd SANNOA

SYAWTYNO
SYAWTIYNO
SYAWTYNO
SYAWTYN0

adk3 sesy

ON SNI IVN
AWYN

qdXL ONI
FAVYD OIHITO

sueu SESy

ITPSEaWMOYS <

130

P2leTa2x Jou aie

sjusunbie ayj e@sneoaq aTqejldsooe jou sem 3523 pajsenbax ayg

Tenba aq prnoys syjdwes yoes JO 2OUBTIBA Y]

p2InqTalsTp AfTewIou =q prnoys o7dwes yoea UuT BIEP SUIL
2uaYos juswainsesw awes eyl bursn aTeos TeazajuT

u®e 1SEaT 3B U0 painseaw 2 PINOYS eIRP BYJL

p23jeraa1 aq prnoys aydues yoes JO S3aDUBISUT BY]

-1 SMOTTOJ S® @I® YDO0Td UESIWOANYY 103 sjuswaxtnbex ayg

KieTes-ojur I=1o +

: Axeres‘ojur bue Azeres-ojur 09s YOOT(P2STWOPURIT <

131

Xew = punoq Iaddp
00°0 = punoq IamMmoT
aaT3e3tjuenb = adi3y sesy
aeak 1ad spunod sesumoys <
IYDIdIDdTE
TYOINYHOENH
-: 21e sonyTea Axobajeo pTTeEA

pa1spioun a1e satxcbaje)d ‘eatiejTrenb = adi3 seay

adi3 bua seswmoys <

Tenba aq prnoys a1dwes yoea Jo adueTIRA BYJ

p23InqTI3sTp ATTewrou aq prnoys ardwes yoes ut ejep ayj
swayos jusweInseaw swes ayj bursn oTeos TeAILjUT

u®e 1SE8T 1B U0 pPIINSEIW 8q PINOYs eBiep ayj

—-: SMOTTOJ SB aIe AOY AYM HANO 103 sjuawaxtnbax ayg
AOY XYM ENO §T UOTIEOOT JO 3593 papuaumOOaYy

sok : (3Tnegap/ou/sak) peinqriistp ArTewrou ST
XMVIYS"OANI ONI UT B3Iep @yl jeyl awnsse o3 ysim nok oq

0 : Juelsuod Iajuy
Z1 : T030e3 ButATdriTnu x9jugm
sak : ou/sek zamsuy

dv3X ¥3d SaNnod o3
HINOW ¥3d SANNOd WoIJ 3I2AU0D 03 97qrssod 3T ST
zeak xed spunod : (ENON I0) 9Sn O3 SWBYOS JUSWSINSEIW ID3UF

d¥EX ¥dd SANNOd XEVTIVS *0dNI MYATO
MVYEX ¥dd SANNO4 XUVIVS *OANI ONI
HINOW ¥dd SANNod XEVIVS "0dNI DdS

seawbiemoys : (ENON I0) @Sn 0] SWLAYOS JuUSWLINSEIW Iajuyg
SWaYDds jJuswAInsesw aarjejrjuenb
BWES 3Yl YITM painsesaw aq 03 spsau juaumbie yoegmy

§ak : (ou/sak) UOTIED0T JO 3§93 B I0J YOIeAS 03 YSTM ok oQ

132

weiboid woxy BUTITXH
3tnb <

AOY XUM INO K1dde o3 coxad TTeD
pe3InqrIilsTp AllewIou ST BjlEp
Syl Jeyl] SsWNSSe 3§93 SY]l SOUTS £3[NS3I aYyj

butiaaidiajuT usym ua)}e] Sq PINOYS 21D ‘BuTuiey

¥YAX ¥Y3d SANNOd O3 HINOW ¥dd SANNOd WOIJ Pa3IIDAUCD XMYTYS OANI OIS
OEGEOW juswBInNSeaW sWes 2yl 03 pa23I8AUO0D ﬂUWﬂ WM£ m.u.ﬂﬁ 0£.H

sak : (ou/sak) 3893 sty3 A7dde 03 ystM nOA oqg

133

Appendix B

Program Listings

Given on the following two pages is the organisation of the procedures which
constitute the program code, grouped according to the relevant section of the system.
The remainder of the appendix lists the files which comprise the total implementation,
the files and contents being :-

(i) main.pas - the majority of the type declarations, the auxiliary routines and
the main program,;

(i) model_routines.pas - the model management system;

(1) check_routines.pas - the statistics validation system;

(iv) keyworddir.dat - a list of the character strings and corresponding
enumeration type values for the reserved words of the command language;

(v) classcheckdir.dat - the classes of tests requirements;

(vi) assoccheckdir.dat - the measures of association requirements;

(vii) loccheckdir.dat - the tests of location requirements;

(viii) shapwilkcoeff.dat - the coefficients for the Shapiro-Wilk test of normality.

134

AUXILIARY skipwhitespace, skipblankchar,
gettoken, reporterror, setup
MODEL — Entity etypesearch, addetype, etypeaddition,
MANAGEMENT Taxonomy displayentdir
—— Dataset dstypesearch, adddstype, dstypeaddition,
Directory displaydsdir
—— Measurement meassearch, addmeasscheme, catsearch,
Directory newcatnode, getqualclasses, getqualinfo,
getquantinfo, measaddition, meastypeOK,
displaymeas, displaymeasdir,
displaycandmeas, wantstodecmeas
—— Conversion convsearch, addconvscheme,
Directory gengntqltnode, gengltqltnode,
getconvinfo, performconv
— Attributes atttypesearch, addattnode,
atttypeaddition, displayatt
—— Instances instaddition, charcatvalue,
numcatvalue, displayinst
— Backing loadkeywords, loadsemchecks,
Store loadmeasdir, loadconvdir, loadenttree,

loadattlist, loaddstree, loadknowbase,
saveetype, savedstype, saveattlist,
savedata, savemeasscheme,
saveconvscheme

135

STATISTICS
VALIDATION

— Checks

— Data

Conversion

—— Test Level

— Type of
Test Level

— Preliminary

and Control

checkeqdom, checkenttype, checkrelinsts,
checkrelargs, checknumargs,
checknormalargs, Ftest, Bartlett, Box,
checkeqvar, checknige30, addcontnode,
setupcontnodes, setcontfregs,
formassoccont, formloccont, efreqOK,
findminfreq, combgroups,
trytocombgroups, regroupdata,
combassoccat, combloccat, checkchifreq,
performsummary

convertdata, checksamemeas,
disposegenqlt, catogoriseqnt,
dichqltdata

validatetest, showtestreq, expfailedcheck,
displaycombcats, displayconvargs,
reviewtestchecks, disposecontinfo,
checktestreq

removeitem, createlist, addtolist,
disposeoflist, checkclassreq,

expclassreqs, reviewclasschecks

genitemnode, procstatreq

136

B.1 Main.pas

PROGRAM MAIN (INPUT, OUTPUT, keyworddir, checkdir, entdir,

CONST wordlength

TYPE

dsdir, attdir, datafile, measdir, convdir,
shapwilkcoeff) ;

doublelength
nullname = ' i
messagelength = 30;

keywordmax = 100;

datalength = 50;

prompt = *> 4.

contprompt = '+ !';

contchar = ':!';

underscore = ' ';

minreal = -1E7;

maxreal = 1lE7;

word = PACKED ARRAY [1l..wordlength] OF CHAR;

doubleword = PACKED ARRAY [1..doublelength] OF CHAR;

numarray = ARRAY [l..datalength] OF REAL;

chararray = ARRAY [l..datalength] OF word;

textmessage = VARYING [messagelength] OF CHAR;

errortype = (continue, attdup, attexist, attmiss, dsexists,
dsmiss, entexists, entmiss, eqexp, identexp, insuffinst,
invarg, invinfo, invlevel, invmeas, invmeastyp,
invnumarg, invrel, invval, measexists, measmiss, noatts,
noinsts, nolevel, nomeas, notype, numexp);

validtokens = (addatt, addds, addent, addinst, addmeas,
showargmeas, showatt, showcandmeas, showdsdir, showentdir,
showinst, showmeas, showmeasdir, exptok, noexptok, quit,
association, location,
pearson, spearman, kendall, tau_c, cramers_v, coeff of_cont,
normal test, t paired, randomised block, t_common,
t_separate, one_way aov, wilcoxcn, sign_test, friedman_aov,
mann_whitney, kruskal wallis, mcnemar_test, cochran_gq,
chi_squared, fisher exact, nulltest,
nongentok, gentok, opentok, closedtok,
yestok, notok, deftok,
typetok, leveltok, meastok, normtok,
qualmeas, quantmeas, chartok, numtok,
nomtok, ordtok, ranktok, inttok, rattok,
endofline, assign, dot, identifier, numeral, endofinfo,
min, max, upper, nonetok, errtoken);

statcomms = association..fisher exact;

valid tests = pearson..nulltest:;

classtype = association..location;

assoctype = pearson..coeff of cont;

loctype = normal test..fisher_ exact;

validregs = (twosample, ksample, egdomains, relatedinst,
simenttype, normal, egvar, nige30, chifreq,
eqratgnt, ratgnt, egintgnt, intgnt, ranked, eqordgnt,
eqordqglt, ordglt, egnomcat, nomcat, egdichcat);

testtype = twosample..ksample;

taxon_relation = (not_applic, nongeneric, generic);

role_type = (key, non_key);

data_levels = (none, rank, nominal, ordinal, interval, ratio):
meas_level = qualmeas..quantmeas;

qualsettype = (setunknown, openset, closedset);

137

qualordtype = (ordunknown, unordered, ordered);

datatype = identifier..numeral;

sortofmeas = (quant, ordqual, unordqual, gqual,
unorddich, dich);

convtype = (gnt_gnt, gnt_glt, glt_glt);

enodepointer = ~ e node;

dsnodepointer = "~ ds_node;

attnodepointer = ~ att_node:;

numpointer = * numarray;

charpointer = * chararray;

measpointer = * meas_node;

catnodepointer = ~ cat_node;

gntgntpointer = * gntgntnode;

gntgltpointer = * gntgltnode;

gltgltpointer = ~ gltgltnode;

checkpointer = *~ checknode;

convpeointer = * conv_node;
keywordentry = RECORD

keystr : word;

keytoken : validtokens

END;
e node = RECORD

ent_name : word;

super rel : taxon_relation;

superpointer,

subpointer,

nextpointer : enodepointer

END;
ds _node = RECORD

ds_name : word;

leftp,

rightp : dsnodepointer;

ent _type : enodepointer;

instances : INTEGER;

attchain : attnodepointer

END;
att_node = RECORD

att_name : word;

next_att : attnodepointer;

att ‘role : role type;

att_type : word;

datalevel : data levels;

att_dist : (normaldist, distunknown);

meas_p : measpointer:

CASE mode : datatype OF
identifier : (char p : charpointer);
numeral : (num p : numpointer)

END;

meas_node = RECORD
measname : word;

leftp,
rightp : measpointer;
CASE meas_type : meas_level OF
qualmeas :
(cattype : datatype:;
settype : qualsettype;
ordtype : qualordtype;
numofcat : INTEGER;
cathead : catnodepointer);
quantmeas :
(lowerbound,

upperbound : REAL)
END;

138

orddich,

cat_node = RECORD
next : catnodepointer;
CASE cattype : datatype OF
identifier : (charvalue : word):;
numeral : (numvalue : REAL)
END;
conv_node = RECORD
from to : doubleword;
left p,
right p : convpointer;
CASE typeofconv : convtype OF
gnt_gnt : (gntgnt_p : gntgntpointer);
gnt_glt : (gntglt p : gntgltpointer);

gl qit @ (gltglt p gltgltpointer)
END;
gntgntnode = RECORD
2y
c : REAL
END;
gntgltnocde = RECORD
upper : REAL;
index : INTEGER;
next : gntgltpointer
END;
gltgltnode = RECORD
toindex : INTEGER;
next : gltgltpointer
END;
checknode = RECORD
semcheck : validreqs;
nextcheck : checkpointer
END;

tokeninfo = RECORD
CASE ttype : validtokens OF

identifier : (tchars : word):;
numeral : (tnum : REAL);
OTHERWISE ()

END;

VAR keywordtable : ARRAY [l..keywordmax] OF keywordentry;
numofkeywords : INTEGER;
ent_root : enodepointer;
ds_root : dsnodepointer;
meas_root : measpointer;
conv_root : convpointer;
class_checks : ARRAY [classtype] OF checkpointer;
assoc_checks : ARRAY [assoctype] OF checkpointer;
loc_checks : ARRAY [loctype] OF checkpointer;
lowercase, uppercase, digits, letters,
wordchars, numberstart : SET OF CHAR;
token : tokeninfo;
explain : BOOLEAN;

PROCEDURE skipwhitespace;

BEGIN
WHILE (INPUT ~ = ' ') OR (INPUT" = contchar)
DO BEGIN
IF EOLN(INPUT) THEN WRITE (prompt) ;
GET (INPUT)
END
END; { proc skipwhitespace }

139

PROCEDURE skipblankchar;

BEGIN
WHILE ((INPUT ~ = ' ') OR (INPUT ~ = contchar))
AND (NOT EOLN (INPUT))
DO IF INPUT * = contchar
THEN BEGIN
WRITE (contprompt) ;
READLN
END
ELSE GET (INPUT)
END; { proc skipblankchar }

FUNCTION strlen (
VAR string : PACKED ARRAY [lower..upper : INTEGER] OF CHAR)
INTEGER;

VAR index : INTEGER;

BEGIN

strlen := 0;

FOR index := lower TO upper

DO IF string[index] <> ' ' THEN strlen := index
END; { funct strlen }

PROCEDURE gettoken;
PROCEDURE checkkeywords;
VAR index : INTEGER;

BEGIN
index := 1;
WHILE (token.ttype = identifier) AND (index <= numofkeywords)
DO WITH keywordtable[index] DO BEGIN
IF token.tchars = keystr
THEN token.ttype := keytoken;
index := index + 1

END;
IF token.ttype = min
THEN BEGIN
token.ttype := numeral;
token.tnum := minreal
END
ELSE IF token.ttype = max
THEN BEGIN

token.ttype := numeral;
token.tnum := maxreal
END
END; { proc checkkeywords |}

PROCEDURE readword;

{ reads a string of text into token.tchars,
valid characters are letters, digits and underscore with
letters being converted to uppercase, if the string
is longer than wordlength the remaining characters
are passed over and ignored }

140

VAR ch : CHAR;
i,
strlength : INTEGER;

BEGIN

token.ttype := identifier;
token.tchars := nullname;
strlength := 0;

ch := INPUT *;
WHILE (ch IN wordchars) AND (strlength < wordlength)
DO BEGIN
strlength := strlength + 1;
IF ch IN lowercase
THEN token.tchars[strlength] := CHR(ORD(ch) - 32)
ELSE token.tchars([strlength] := ch;
GET (INPUT) ;
ch := INPUT *
END;
WHILE INPUT ~ IN wordchars DO GET (INPUT) ;
checkkeywords
END; { proc readword }

PROCEDURE readnumber;

{ reads in a numeric value a character at a time,
where the sign is optional, and assigns the numeric
value to token.tnum }

VAR sign : (negative, positive);
digit,
fractdiv : INTEGER;

BEGIN

token.ttype := numeral;
sign := positive;

token.tnum := 0;
IE INPUT ~ IN [t=%, %3]
THEN BEGIN

EF INPUT Mo -1
THEN sign := negative;
GET (INPUT)
END;
IF NOT (INPUT ~ IN digits)
THEN token.ttype := errtoken
ELSE BEGIN
WHILE INPUT ~ IN digits
DO BEGIN
digit := ORD(INPUT ~) = ORD('0');
token.tnum := token.tnum*10 + digit;
GET (INPUT)
END;
IF INPUT & = ' 1t
THEN BEGIN
GET (INPUT) ;
fractdiv := 10;
WHILE INPUT ~ IN digits
DO BEGIN
digit := ORD(INPUT ~) - ORD('0");
token.tnum := token.tnum + digit/fractdiv;
GET (INPUT) ;
fractdiv := fractdiv * 10
END
END;

141

IF sign = negative
THEN token.tnum := token.tnum * (-1);
END
END; { proc readnumber }

BEGIN { gettoken }
skipblankchar;
IF INPUT " IN letters THEN readword
ELSE IF INPUT * IN numberstart THEN readnumber
ELSE IF EOLN(INPUT) THEN token.ttype := endofline
ELSE IF INPUT "~ = '=!
THEN BEGIN
token.ttype := assign;
GET (INPUT)
END
ELSE IF INPUT ~ = 'S§°'
THEN BEGIN
token.ttype := endofinfo;
GET (INPUT)
END
ELSE IF INPUT ~ = '_!
THEN BEGIN
token.ttype := dot;
GET (INPUT)
END
ELSE token.ttype := errtoken
END; { proc gettoken }

PROCEDURE reporterror (
errorstate : errortype;
errorarg : textmessage);

PROCEDURE trimarg;
{ to remove trailing spaces from errorarg |}

BEGIN
WHILE (errorarg.length > 1)
AND (errorarg[errorarg.length] = ' ')
DO errorarg.length := errorarg.length - 1
END; { proc trimarg }

BEGIN { reporterror }
trimarg;
CASE errorstate of
attexist : WRITELN('Error, attributes have already been ',
‘declared for ',errorarg):;

attdup : WRITELN('Error, attribute name ',errorarg,
' has been duplicated');

attmiss : WRITELN('Error, attribute ',errorarg,
' does not exist');

dsexists : WRITELN('Error, data set ',errorarg,
' already exists');

dsmiss : WRITELN('Error, data set ',errorarg,

' does not exist');
entexists : WRITELN('Error, entity type ',errorarg,

' already exists'):;
entmiss : WRITELN('Error, entity type ',errorarg,

' does not exist');
egexp : WRITELN('Error, = expected after ',errorarg):;
identexp : WRITELN('Error, identifier expected for ',errorargqg) ;
insuffinst: WRITELN('Error, insufficient instances (=310

142

'have been declared for ',errorarg);

invarg : WRITELN('Error, invalid argument found'):;
invinfo : WRITELN('Error, token found is not an ',
'appropriate keyword');
invlevel : WRITELN('Error, invalid level of measurement given');
invmeas : WRITELN('Error, measurement specified is unsuitable');

invmeastyp: WRITELN('Error, meas type of QUAL or QUANT must ',
'be specified');

invnumarg : WRITELN('Error, number of arguments expected = ',
errorarg) ;

invrel : WRITELN('Error, invalid relationship specified');

invval : WRITELN('Error, an invalid data value has been ',

'entered for ',errorarqg):;
measexists: WRITELN('Error, measurement scheme already exists');

measmiss : WRITELN('Error, measurement scheme ',errorargqg,
' does not exist');

noatts : WRITELN('No attributes have been declared for ',
errorarqg) ;

noinsts : WRITELN('No instances have been declared for ',
errorarg) ;

nolevel : WRITELN('Error, no LEVEL value declared');

nomeas : WRITELN('Error, no MEAS value declared');

notype : WRITELN('Error, no TYPE value declared');

numexp : WRITELN('Error, numeric value expected for ',errorargqg)

END
END; { proc reporterror |}

$INCLUDE 'MODEL ROUTINES.PAS/NOLIST'
$INCLUDE 'CHECK ROUTINES.PAS/NOLIST'

PROCEDURE setup;

{ initialise knowledge base }

BEEGIN
lowercase := ['a'..'z'];
uppercase = ['A'..'2%]);
letters := lowercase + uppercase;
1

digits 2= [0} JNILT:
wordchars := letters + digits + [underscore];

numberstart := ['0'..'9','="', "+'];
explain := TRUE;

loadknowbase
END; { proc setup }

BEGIN { main program }

setup;
REPEAT
WRITELN;
WRITE (prompt) ;
skipwhitespace;
gettoken;
CASE token.ttype OF
addatt : atttypeaddition;
addds : dstypeaddition;
addent : etypeaddition;
addinst : instaddition;
addmeas : measaddition;
showatt : displayatt;
showdsdir : displaydsdir;

143

showentdir : displayentdir;

showinst : displayinst;

showmeas : displaymeas;

showmeasdir : displaymeasdir;

exptok : explain := TRUE;

noexptok : explain := FALSE;

association : procstatreg(association, nulltest, twosample) ;
location : procstatreg(location, nulltest, ksample);

pearson..coeff of cont

procstatreg(association, token.ttype, twosample) ;
normal test..fisher exact :

procstatreqg(location, token.ttype, ksample);

quit : WRITELN('Exiting from program') ;
OTHERWISE WRITELN('Error, invalid command')
END;
READLN;
UNTIL token.ttype = quit
END. { prog main }

B.2 Model_routines.pas

{ file model routines.pas }

CONST dir = '[LAWSONKW.PROJECT]';
attspec = '.ATT';

TYPE filename = VARYING [doublelength] OF CHAR;

VAR keyworddir,
checkdir,
entdir,
dsdir,
attdir,
datafile,
measdir,
convdir : TEXT;

PROCEDURE saveetype (
VAR ename,
supername : word;
VAR super_rel : taxon_relation); FORWARD;

PROCEDURE savedstype (
VAR newname,
newtype : word); FORWARD;

PROCEDURE saveattlist (
VAR dsname : word;
atthead : attnodepointer); FORWARD;

PROCEDURE savedata (
VAR ptods : dsnodepointer); FORWARD;

PROCEDURE savemeasscheme (
VAR ptomeas : measpointer); FORWARD;

PROCEDURE saveconvscheme (
VAR ptoconv : convpointer); FORWARD;

144

{**x*x*xxkxk%x* pascal structure routines ****xxkxkikx)

PROCEDURE etypesearch (
VAR currentnodep : enodepointer;
VAR reqg_ent : word;
VAR regnodep : enodepointer);

{ search recursively for entity type req ent,
reqnodep is set to point to it if found and
set to NIL otherwise }

BEGIN
IF currentnodep = NIL
THEN regnodep := NIL
ELSE WITH currentnodep * DO
IF ent_name = req ent
THEN regnodep := currentnodep
ELSE BEGIN
etypesearch(subpointer, req ent, reqgnodep) ;
IF regnodep = NIL
THEN etypesearch (nextpointer, req ent, regnodep)
END
END; (proc etypesearch }

PROCEDURE addetype (
VAR super p : enodepointer;
VAR new_type : word;
VAR link type : taxon_ relation):

{ add new entity type new_type to the sub-types
of super p with relationship link type }

VAR temp p : encdepointer;

BEGIN
NEW (temp p) ;
WITH temp p "
DO BEGIN
ent_name := new_type;
super_rel := link type;
superpointer := super p:
subpointer := NIL;
nextpointer := super p “~.subpointer
END;
super p “.subpointer := temp p
END; { proc addetype }

PROCEDURE etypeaddition;

{ input arguments for ADDENT command and check valid,
if OK, call procedures to add the new type to the taxonomy
and to the entity directory file }

LABEL endofproc;
VAR new_ent,
super ent : word;
ent p : enodepointer;
taxon link : taxon_relation;

145

PROCEDURE dealwitherror (
errorstate : errortype:
errorarg : textmessage);

BEGIN
reporterror (errorstate, errorarg):;
GOTO endofproc

END;

BEGIN
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'new entity type'):
new_ent := token.tchars;
etypesearch (ent_root, new_ent, ent _p);
IF ent_p <> NIL
THEN dealwitherror (entexists, new_ent);
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'super entity type'):
super_ent := token.tchars;
etypesearch(ent_root, super ent, ent p);
IF ent_p = NIL
THEN dealwitherror (entmiss, super_ent);

gettoken;

CASE token.ttype OF
nongentok : taxen_ link := nongeneric;
gentok : taxon_link := generic;

OTHERWISE dealwitherror(invrel, nullname)
END;

WRITELN;

addetype (ent_p, new_ent, taxon_link);
saveetype (new_ent, super_ent, taxon link);
endofproc:
END; { proc etypeaddition }

PROCEDURE displayentdir;

{ input argument for the SHOWENTDIR command,
if OK, call the display procedure to recursively print
out the entity taxonomy below the given argument }

LABEL endofproc;
VAR entname : word;
reqp : enodepointer;

PROCEDURE dealwitherror (
errorstate : errortype:;
errorarg : textmessage);

BEGIN
reporterror(errorstate, errorarg);
GOTO endofproc

END;

PROCEDURE display (
VAR currentnodep : enodepointer;
margin : integer);

BEGIN

WITH currentnodep "
DO BEGIN

146

WRITELN (ent_name:margin, super_rel:50-margin);
IF subpointer <> NIL
THEN display(subpointer, margin+2);
IF nextpointer <> NIL
THEN display(nextpointer, margin)
END
END; { displav }

BEGIN { displayentdir }
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'entity type'):
entname := token.tchars;
etypesearch(ent_root, entname, reqp);
IF regp = NIL
THEN dealwitherror(entmiss, entname);
WRITELN; WRITELN;
WRITELN ('Entity type', 'Relation to super type':39);
WRITELN;
WITH regp °
DO BEGIN
WRITELN (ent_name:wordlength, super rel:50-wordlength) ;
IF subpointer <> NIL
THEN display(subpointer, wordlength+2)

END;
endofproc:
END; { proc displayentdir }

PROCEDURE dstypesearch (
VAR ptocurrent : dsnodepointer;
VAR regds : word;
VAR ptoregds : dsnodepointer);

{ search recursively for data set regds,
ptoreqds is set to point to it if found
and set to NIL otherwise }

BEGIN
IF ptocurrent = NIL
THEN ptoregds := NIL
ELSE WITH ptocurrent ~ DO
IF reqds = ds_name
THEN ptoregds := ptocurrent
ELSE IF reqds < ds_name
THEN dstypesearch(leftp, reqds, ptoreqds)
ELSE dstypesearch(rightp, reqds, ptoreqgds)
END; { proc dstypesearch }

PROCEDURE adddstype (
VAR ptocurrent,
newnode : dsnodepointer);

{ add the new data set newnode to the alphabetically
ordered binary tree of data sets }

BEGIN
IF ptocurrent = NIL
THEN ptocurrent := newnode
ELSE IF newnode ".ds_name < ptocurrent ~.ds_name
THEN adddstype (ptocurrent ~.leftp, newnode)
ELSE adddstype (ptocurrent ~.rightp, newnode)

147

END; { proc adddstype }

PROCEDURE dstypeaddition;

{ input arguments for the ADDDS command,
if OK, generate a ds_node and call procedures to
add it to the data set tree and directory file }

LABEL endofproc;
VAR newname, newtype : word;
ptods : dsnocdepointer;

PROCEDURE dealwitherror (
errorstate : errortype;
errorarg : textmessage);

BEGIN

reporterror (errorstate, errorarg);
GOTO endofproc
END;

BEGIN
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'new data set name');
newname := token.tchars;
dstypesearch(ds root, newname, ptods);
IF ptods <> NIL THEN dealwitherror(dsexists, newname) ;
gettoken;
IF token.ttype <> identifier
THEN dealwitherror (identexp, 'entity type of dataset');
newtype := token.tchars;
NEW (ptods) ;
WITH ptods *°
DO BEGIN
ds_name := newname;
leftp := NI
rightp := NIL;
instances := 0
attchain := NI
etypesearch (ent_root, newtype, ent_type)
END;
IF ptods “.ent type = NIL
THEN BEGIN
DISPOSE (ptods) ;
dealwitherror (entmiss, newtype)
END;
WRITELN;
adddstype (ds_root, ptoeds):
savedstype (newname, newtype) ;
endofproc:
END; { proc dstypeaddition }

PROCEDURE displaydsdir;

{ for SHOWDSDIR command, call procedure display to recursively
print the data set tree in alphabetical order}

PROCEDURE display (
VAR currentnode : ds_node);

148

BEGIN
WITH currentnode
DO BEGIN
IF leftp <> NIL
THEN display(leftp *):;
WRITELN (ds_name, ent_type ".ent name:18, instances:7);
IF rightp <> NIL
THEN display(rightp ")
END
END; { proc display }

BEGIN { displaydsdir }
IF ds_root = NIL
THEN WRITELN('No data sets declared')
ELSE BEGIN
WRITELN; WRITELN;
WRITELN('Data set', 'Entity type':21, 'Instances':16);
WRITELN;
display(ds_root *)
END
END; { proc displaydsdir }

PROCEDURE meassearch (
VAR ptocurrent : measpointer;
VAR regmeas : word;
VAR ptoregmeas : measpointer);

{ recursively search for scheme regqmeas, set ptoregmeas
to point to it if found otherwise set to NIL }

BEGIN
IF ptocurrent = NIL
THEN ptoregmeas := NIL
ELSE WITH ptocurrent ~ DO
IF reqmeas = measname
THEN ptoregmeas := ptocurrent
ELSE IF regmeas < measname
THEN meassearch (leftp, regmeas, ptoregmeas)
ELSE meassearch(rightp, regmeas, ptoregmeas)
END; { proc meassearch }

PROCEDURE addmeasscheme (
VAR ptomeas,
newmeas : measpointer);

{ add newmeas to appropriate place in alphabetically
ordered binary tree of measurement schemes }

BEGIN
IF ptomeas = NIL
THEN ptomeas := newmeas
ELSE IF newmeas ”".measname < ptomeas ”.measname
THEN addmeasscheme (ptomeas *.leftp, newmeas)
ELSE addmeasscheme (ptomeas *.rightp, newmeas)
END; { proc addmeasscheme }

PROCEDURE catsearch (
VAR cathead : catnodepointer;
VAR token : tokeninfo;
VAR catpos : INTEGER);

149

{ search for category value reqcharcat/reqnumcat
and return index position via catpos which is set
to 0 if the value is not found }

VAR ptocat : catnodepointer;
index : INTEGER;

BEGIN
index := 0;
catpos := 0;
ptocat := cathead;
WHILE (ptocat <> NIL) AND (catpos = 0)
DO BEGIN
index := index + 1;
CASE ptocat “.cattype OF
identifier :
IF token.tchars = ptocat “~.charvalue
THEN catpos := index
ELSE ptocat := ptocat ".next;
numeral :
IF token.tnum = ptocat ”~.numvalue
THEN catpos := index
ELSE ptocat := ptocat *.next
END
END

END; { proc catsearch }

PROCEDURE newcatnode (
VAR cathead,
current : catnodepointer);

{ generate new cat node, place at end of list headed
by cathead and set current to point to it }

BEGIN

IF cathead = NIL

THEN BEGIN
NEW (cathead) ;
current := cathead

END

ELSE BEGIN
NEW (current ”.next):;
current := current ”.next

END;
current ".next := NIL
END; { proc newcatnode }

PROCEDURE getqualclasses (
VAR ptomeas : measpointer;
measspec : sortofmeas);

{ input category values for qualitative scheme and call
procedure newcatnode in building chain of value nodes

VAR typeofdata : datatype;
indexnum,
catindex : INTEGER;
ptocat : catnodepointer;
morecats : BOOLEAN;

150

}

BEGIN
WRITE ('Enter values one per line, ');
IF ptomeas " .ordtype = ordered
THEN WRITE('in ascending order, '):;
WRITELN('terminating list with §');
typeofdata := ptcmeas “.cattype:
indexnum := 1;
morecats := TRUE;
WHILE morecats
DO BEGIN
REPEAT
READLN;
WRITE ('Enter category ',indexnum:3,' : ');
gettoken;
UNTIL token.ttype IN [typeofdata, endofinfo];
WRITELN;
IF token.ttype = typeofdata
THEN BEGIN
catsearch (ptomeas “.cathead, token, catindex);
IF catindex <> 0
THEN WRITELN ('This category value has already been entered')
ELSE BEGIN
newcatnode (ptomeas *.cathead, ptocat);
ptocat ".cattype := typecfdata;
CASE typeofdata OF
identifier : ptocat “.charvalue := tocken.tchars;
numeral : ptocat “.numvalue := token.tnum
END;
IF (indexnum = 2) AND (measspec IN [orddich, unorddich])
THEN morecats := FALSE;
indexnum := indexnum + 1
END
END
ELSE BEGIN
morecats := indexnum <= 2;
IF morecats
THEN BEGIN
WRITELN('At least 2 categories must be declared');
IF ptomeas “~.cathead <> NIL
THEN BEGIN
DISPOSE (ptomeas ".cathead):;

ptomeas ".cathead := NIL
END;
indexnum := 1
END
END
END;
ptomeas ~. numofcat := indexnum - 1

END; { proc getqualclasses }

PROCEDURE getqualinfo (
VAR newname : word;
measspec : sortofmeas;
VAR ptomeas : measpointer);

{ get info about new qualitative meas newname which is of
type measspec, if a closed set call proc getgualclasses }

BEGIN
NEW (ptomeas) ;
WITH ptomeas *
DO BEGIN

151

measname := newname;
leftp := NIL;
rightp := NIL;
meas_type := qualmeas;
numofcat := 0;
cathead := NIL;
IF measspec = qual
THEN BEGIN
REPEAT
READLN;
WRITE('Is the set of values open/closed : ');
gettoken;
UNTIL token.ttype IN [opentok, closedtok];
WRITELN;
IF token.ttype = opentok
THEN settype := openset
ELSE settype := closedset

END

ELSE settype := closedset;

IF settype = openset

THEN ordtype := unordered
ELSE IF measspec IN [unordqual, unorddich]
THEN ordtype := unordered

ELSE IF measspec IN [ordqual, orddich]
THEN ordtype := ordered
ELSE BEGIN
REPEAT
READLN;
WRITE ('Are the values ordered yes/no : ');
gettoken;
UNTIL token.ttype IN [yestok, notok]:
WRITELN;
IF token.ttype = notok
THEN ordtype := unordered
ELSE ordtype := ordered
END;
REPEAT
READLN;
WRITE ('Are the data items of type character/numeric : ');
gettoken;
UNTIL token.ttype IN [chartok, numtok];
WRITELN;
IF token.ttype = chartok
THEN cattype := identifier
ELSE cattype := numeral;
IF settype = closedset
THEN getqgualclasses (ptomeas, measspec)
END;
addmeasscheme (meas_root, ptomeas);
savemeasscheme (ptomeas)
END; { proc getqualinfo }

PROCEDURE getquantinfo (
VAR newname : word;
VAR ptomeas : measpointer);

{ get info about quantitative scheme }
BEGIN
NEW (ptomeas) ;

WITH ptomeas *
DO BEGIN

152

measname := newname;
leftp := NIL;
rightp := NIL;
meas_type := quantmeas;
REPEAT
READLN;
WRITE('Enter the lower bound of the meas scheme : ');
gettoken;
UNTIL (token.ttype = numeral) AND (token.tnum < maxreal) ;
WRITELN;
lowerbound := token.tnum;
REPEAT
READLN;
WRITE('Enter the upper bound of the meas scheme : '):
gettoken;
UNTIL (token.ttype = numeral) AND (token.tnum > lowerbound) ;
WRITELN;
upperbound := token.tnum
END;
addmeasscheme (meas_root, ptomeas);
savemeasscheme (ptomeas)
END; { proc getquantinfo }

PROCEDURE measaddition;

{ input arguments for ADDMEAS command and check wvalid,
if OK, generate new meas_node, get info and add new scheme
to measurement tree and directory file }

LABEL endofproc;
VAR newmeas : word;
ptomeas : measpointer;

PROCEDURE dealwitherror (
errorstate : errortype;
errorarg : textmessage);

BEGIN
reporterror(errorstate, errorarg);
GOTO endofproc

END;

BEGIN
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'new measurement name');
newmeas := token.tchars;
meassearch (meas_root, newmeas, ptomeas);
IF ptomeas <> NIL
THEN dealwitherror (measexists, newmeas);

gettoken;
CASE token.ttype OF
qualmeas : getqualinfo(newmeas, qual, ptomeas);

quantmeas : getquantinfo(newmeas, ptomeas);
OTHERWISE dealwitherror (invmeastyp, nullname)
END;
endofproc:
END; { proc measaddition }

FUNCTION meastypeOK (
VAR ptomeas : measpointer;

153

measspec : sortofmeas) : BOOLEAN;

{ see if meas pointed at by ptomeas conforms to measspec }

BEGIN
WITH ptomeas ~ DO
CASE measspec OF

quant : meastypeOK := meas type = quantmeas;

ordqual : meastypeOK (meas_type = qualmeas) AND
(ordtype = ordered) ;
(meas_type = qualmeas) AND
(ordtype = unordered) ;

unordqual : meastypeCOK

qual : meastypeOK := meas_type = qualmeas;

orddich : meastypeOK := (meas_type = gqualmeas) AND
(ordtype = ordered) AND (numofcat

unorddich : meastypeOK := (meas_type = qualmeas) AND

(ordtype = unordered) AND
(numofcat = 2);
dich : meastypeOK := (meas_type = qualmeas) AND
(numofcat = 2)
END
END; { funct meastypeCK |}

PROCEDURE displaymeas;

{ input argument for SHOWMEAS command and check vwalid,
if OK, output info about required measurement scheme }

LABEL endofproc;

VAR dispmeas : word;
ptomeas : measpointer;
ptocat : catnodepointer;

PROCEDURE dealwitherror (
errorstate : errortype;
errorarg : textmessage);

BEGIN
reporterror (errorstate, errorarqg);
GOTO endofproc

END;

BEGIN
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'measurement name');
dispmeas := token.tchars;
meassearch (meas_root, dispmeas, ptomeas);
IF ptomeas = NIL
THEN dealwitherror(measmiss, dispmeas);
WRITELN; WRITELN;
WITH ptomeas *

DO BEGIN
CASE meas_type OF
qualmeas :
BEGIN
WRITE(' Meas type = qualitative, ');

IF settype = openset

THEN WRITELN(' Set type = open, Data type =',cattype:1l1l)

ELSE BEGIN
IF ordtype = unordered
THEN WRITELN(' Categories are unordered')

154

ELSE WRITELN(' Categories are ordered');
WRITELN;
WRITELN(' Valid category values are :-');
ptocat := cathead;
WHILE ptocat <> NIL

DO WITH ptocat ~ DO BEGIN

CASE cattype OF

identifier : WRITELN (charvalue:20);

numeral : WRITELN (numvalue:12:2)
END;
ptocat := next
END
END
END;
quantmeas :
BEGIN
WRITELN(' Meas type = quantitative');
WRITE(' Lower bound =');

IF lowerbound = minreal
THEN WRITELN('min':4)
ELSE WRITELN (lowerbound:12:2) ;
WRITE(' Upper bound =');
IF upperbound = maxreal
THEN WRITELN('max':4)
ELSE WRITELN (upperbound:12:2)
END
END
END;
endofproc:
END; { proc displaymeas }

PROCEDURE displaymeasdir;

{ for SHOWMEASDIR command, call procedure display to recursively
print the measurement schemes in alphabetical order }

PROCEDURE display (
VAR currentmeas : meas_node);

BEGIN
WITH currentmeas
DO BEGIN
IF leftp <> NIL THEN display(leftp *);
WRITELN (measname, meas_type:11);
IF rightp <> NIL THEN display(rightp *)
END
END; { proc display 1}

BEGIN { displaymeasdir }
IF meas_root = NIL
THEN WRITELN('No measurement schemes defined')
ELSE BEGIN
WRITELN; WRITELN;
WRITELN ('Meas name', '"Meas type':18);
WRITELN;
display (meas_root %)
END
END; { proc displaymeasdir }

PROCEDURE displaycandmeas (
measspec : sortofmeas);

155

{ display those meas schemes which are of type measspec }
VAR index : INTEGER;

PROCEDURE display (
VAR ptomeas : measpointer);

BEGIN
IF ptomeas “~.leftp <> NIL
THEN display (ptomeas”. leftp);
IF meastypeOK (ptomeas, measspec)
THEN BEGIN
IF (index MCD 3 = 0) AND (index <> 0)
THEN WRITELN;
index := index + 1;
WRITE (ptomeas ”.measname:18)
END;
IF ptomeas”™. rightp <> NIL
THEN display (ptomeas ~.rightp)
END; { proc display |}

BEGIN (displaycandmeas }

index := 0;
display(meas_root) ;
WRITELN;

IF index = 0
THEN WRITELN('No candidate measurement schemes declared')

END; { proc displaycandmeas }
FUNCTION wantstodecmeas : BOOLEAN;
BEGIN

WRITELN ('This meas scheme is new to the system');
REPEAT

READLN;
WRITE ('Do you wish to declare it (yes/no) : ');
gettoken;

UNTIL token.ttype IN [yestok, notok];

WRITELN;

wantstodecmeas := token.ttype = yestok

END; { funct wantstodecmeas }

PROCEDURE convsearch (
VAR ptocurrent : convpointer;
regconv : doubleword;
VAR ptoregconv : convpointer);

{ search for regconv in conversion directory,
set ptoregconv to point to it if found otherwise to NIL }

BEGIN
IF ptocurrent = NIL
THEN ptoregconv := NIL
ELSE WITH ptocurrent *~ DO
IF regconv = from to
THEN ptoreqconv := ptocurrent
ELSE IF reqconv < from to
THEN convsearch(left_p, reqconv, ptoregconv)
ELSE convsearch(right_p, reqconv, ptoregconv)
END; { proc convsearch }

156

PROCEDURE addconvscheme (
VAR ptocurrent,
newconv : convpointer);

{ add newconv to the appropriate place in alphabetically
ordered binary tree of conversion schemes }

BEGIN
IF ptocurrent = NIL
THEN ptocurrent := newconv
ELSE IF newconv “.from to < ptocurrent *.from to
THEN addconvscheme (ptocurrent ~.left p, newconv)
ELSE addconvscheme (ptocurrent “~.right_p, newconv)
END; { proc addconvscheme }

PROCEDURE gengntgltnode (
VAR head,
current : gntgltpointer);

{ add new gntgltnode to list headed by head and
set current to point to it }

BEGIN
IF head = NIL
THEN BEGIN
NEW (head) ;
current := head
END
ELSE BEGIN
NEW (current ~.next):;
current := current “.next
END;
current “.next := NIL
END; { proc gengntgltnode }

PROCEDURE gengltgltnode (
VAR head,
current : gltgltpointer);

{ add new gltgltnode to list headed by head and
set current to point to it }

BEGIN
IF head = NIL
THEN BEGIN
NEW (head) ;
current := head
END
ELSE BEGIN
NEW (current “.next);
current := current ".next
END;
current “.next := NIL
END; ({ proc gengltgltnode }

PROCEDURE getconvinfo (
VAR frommeas,
tomeas : measpointer;

157

VAR ptoconv : convpointer);

get info about converting frommeas to tomeas
and add to conversion tree and directory file }

PROCEDURE getgntgntinfo (
VAR ptoconv : convpointer);

{ prompt for and input info on how to do quant/quant conversion }

BEGIN
WITH ptoconv
DO BEGIN
typeofconv := gnt_gnt;
NEW (gntgnt_p) ;
WITH gntgnt p *

~

DO BEGIN
REPEAT
READLN;
WRITE('Enter multiplying factor : ');
gettoken;
UNTIL (token.ttype = numeral) AND (token.tnum <> 0);
WRITELN;
a := token.tnum;
REPEAT
READLN;
WRITE ('Enter constant : ');
gettoken;
UNTIL tocken.ttype = numeral;
WRITELN;
¢ := token.tnum
END
END

END; { proc getgntgntinfo }

PROCEDURE getgntgltinfo (
VAR ptoconv : convpointer);

{ prompt for and input info on how to do quant/qual conversion }

VAR ptogntglt : gntgltpointer;
lower : REAL;
indexnum : INTEGER;

BEGIN
WITH ptoconv *
DO BEGIN
typeofconv := gnt_glt;
gntglt p := NIL;

lower := frommeas “.lowerbound;
REPEAT
gengntgltnode (gntqlt_p, ptogntqglt);
REPEAT
READLN;

WRITE ('For the range');
IF lower = minreal

THEN WRITE('min')

ELSE WRITE (lower:12:2);

WRIZEL" to : “):
gettoken;
IF token.ttype = upper
THEN BEGIN
token.ttype := numeral;

158

~

token.tnum := frommeas
END;
UNTIL (token.ttype = numeral) AND (token.tnum > lower)
AND (token.tnum <= frommeas *.upperbound);
WRITELN;
ptogntglt “.upper
REPEAT
READLN;
WRITE('The value is : ');
gettoken;
indexnum := 0;
IF token.ttype = tomeas “~.cattype
THEN catsearch(tomeas *.cathead, token, indexnum);
UNTIL indexnum <> 0;
WRITELN;
ptogntglt ~.index := indexnum;
lower := ptogntglt “.upper
UNTIL ptogntglt ”~.upper = frommeas *.upperbound
END
END; { proc getgntgltinfo }

.upperbound

token.tnum;

PROCEDURE getgltgltinfo (
VAR ptoconv : convpointer);

{ prompt for and input info on how to do qual/qual conversion }

VAR ptogltglt : gltgltpointer;
ptocat : catnodepointer;
toindexnum : INTEGER;.

BEGIN
WITH pteoconv *
DO BEGIN
typeofconv := glt glt;
gltglt p := NIL;
ptocat := frommeas " .cathead;
WHILE ptocat <> NIL
DO BEGIN
gengltgltnode (gltglt_p, ptogltglt):
REPEAT
READLN;
WRITE ('The value ');
CASE ptocat “.cattype OF

identifier : WRITE (ptocat “.charvalue);
numeral : WRITE (ptocat ”.numvalue:12:2)
END;
WRITE (" converts to : ")
gettoken;

toindexnum := 0;

IF token.ttype = ptocat “.cattype

THEN catsearch(tomeas ~.cathead, token, toindexnum) ;
UNTIL toindexnum <> 0;

WRITELN;
ptogltglt ~.toindex := toindexnum;
ptocat := ptocat ”.next
END
END

END; { proc getgltgltinfo }

BEGIN { getconvinfo }
REPEAT
READLN;
WRITELN('Is it possible to convert from ', frommeas ~.measname);

159

WRITELN('to ':31,tomeas "~.measname);
WRITE ('Answer yes/no : ');
gettoken;
UNTIL token.ttype IN [yestok, notok];
WRITELN;
IF token.ttype = yestok
THEN BEGIN
NEW (ptoconv) ;
WITH ptoconv *
DO BEGIN
from to := frommeas " .measname + tomeas ~.measname;
ieft o s NI
right p := NIL;
IF frommeas “.meas_type = quantmeas
THEN BEGIN
IF tomeas ".meas_ type = quantmeas
THEN getgntgntinfo (ptoconv)
ELSE getgntgltinfo (ptoconv)
END
ELSE getgltgltinfo (ptoconv)
END;
addconvscheme (conv_root, ptoconv) ;
saveconvscheme (ptoconv)
END
END; { proc getconvinfo }

PROCEDURE performconv (
VAR ptoconv : convpointer;
VAR fromds,
tods : numarray;
VAR noitems : INTEGER);

{ convert the data in fromds using ptoconv to tods }

VAR i : INTEGER;
ptogntglt : gntgltpointer;
ptogltglt : gltgltpointer;
index : REAL;

BEGIN
CASE ptoconv ".typeofconv OF
gnt_gnt :
WITH ptoconv “.gntgnt p *
DO FOR i := 1 TO noitems
DO tods[i] := a * fromds[i] + c;
ant glt
FOR i := 1 TO noitems
DO BEGIN

ptogntglt := ptoconv “.gntglt_ p;
WHILE fromds([i] > ptogntqglt ~.upper
DO ptogntqglt := ptogntglt ”*.next;
tods[i] := ptogntglt “.index
END;
glt glt :
FOR i := 1 TO noitems
DO BEGIN
ptogltglt := ptoconv ~.qgltqlt p;
index := 1;
WHILE index <> fromds[i]
DO BEGIN
ptogltglt := ptogltglt *.next;
index := index + 1

160

END;
tods[i] := ptogltglt ~.toindex
END
END
END; { proc performconv }

PROCEDURE atttypesearch (
VAR atthead : attnodepointer;
VAR regatt : word;
VAR ptoregatt : attnodepointer);

{ search for regatt in the list headed by atthead,
set ptoregatt to point to it if found otherwise set to NIL }

VAR found : BOOLEAN;

BEGIN
ptoregatt := atthead;
found := FALSE;
WHILE (ptoregatt <> NIL) AND NOT found
DO IF ptoregatt “.att_name = reqatt
THEN found := TRUE
ELSE ptoregatt := ptoregatt “.next_att
END; { proc atttypesearch }

PROCEDURE addattnode (
VAR headatt,
lastatt,
newatt : attnodepointer);

{ add newatt to list headed by headatt and set
lastatt to point to it }

BEGIN
IF headatt = NIL
THEN headatt := newatt
ELSE lastatt “.next_att := newatt;
lastatt := newatt;
lastatt “.next att := NIL
END; { addattnode }

PROCEDURE atttypeaddition;

{ prompt user for info required for ADDATT command,
if all OK build list of newly declared attributes }

LABEL endofattinfo, endofproc;
VAR dsname,
newtype,
newmeas : word;
newlevel : data_levels;
normalatt : BOOLEAN;
ptods : dsnodepointer;
ptoatt,
lastatt,
newatt : attnodepointer;
ptomeas : measpointer;
state : (readkey, readother, allread);
attprompt : VARYING [10] OF CHAR;
attnum : INTEGER;

161

measOK : BOOLEAN;

PROCEDURE dealwitherror (
errorstate : errortype;
errorarg : textmessage);

BEGIN
reporterror(errorstate, errorarg):;
GOTO endofproc

END; { proc dealwitherror }

PROCEDURE infoerror (
errorstate : errortype;
errorarg : textmessage);

BEGIN

DISPOSE (newatt) ;

reporterror (errorstate, errorarg)
END; { proc infoerror }

BEGIN { atttypeaddition }
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'data set name');
dsname := token.tchars;
dstypesearch(ds_root, dsname, ptods);
IF ptods = NIL
THEN dealwitherror(dsmiss, dsname):;
IF ptods ".attchain <> NIL
THEN dealwitherror(attexist, dsname);
WRITELN ('Enter key attributes, one per line, ',
'terminate list with $');
state := readkey:;
attprompt := 'Key':;
attnum := 1;
REPEAT
READLN;
WRITE (attprompt,attnum:3,"' > ');
gettoken;
CASE token.ttype OF
endofinfo :
BEGIN
state := SUCC(state);
IF state = readother
THEN BEGIN
WRITELN ('Enter other attributes, terminate list with $');
attprompt := 'Att'
END
END;
identifier :
BEGIN
NEW (newatt) ;
WITH newatt *
DO BEGIN
atttypesearch(ptods “.attchain, token.tchars, ptoatt):
IF ptoatt <> NIL
THEN BEGIN
infoerror (attdup, token.tchars):;
GOTO endofattinfo

END;

att_name := token.tchars;
newtype := nullname;
newlevel := none;

162

newmeas := nullname;
normalatt := FALSE;
gettoken;
WHILE token.ttype <> endofline
DO BEGIN { read in info about attribute }
CASE token.ttype CF
typetok
BEGIN
gettoken;
IF token.ttype <> assign
THEN BEGIN
infoerror (egexp, 'TYPE'):;
GOTO endofattinfo
END;
gettoken;
IF token.ttype <> identifier
THEN BEGIN
infoerror(identexp, 'type argument');
GOTO endofattinfo
END;
newtype := token.tchars
END;
leveltok :
BEGIN
gettoken;
IF token.ttype <> assign
THEN BEGIN
infoerror(egexp, 'LEVEL');
GOTO endofattinfo

END;
gettoken;
CASE token.ttype OF

nomtok : newlevel := nominal;
ordtok : newlevel := ordinal;
ranktok : newlevel := rank;
inttok : newlevel := interval;
rattok : newlevel := ratio;

OTHERWISE BEGIN
infoerror (invlevel, nullname);
GOTO endofattinfo
END
END
END;
meastok :
BEGIN
gettoken;
IF token.ttype <> assign
THEN BEGIN
infoerror (egexp, 'MEAS');
GOTO endofattinfo
END;
gettoken;
IF token.ttype <> identifier
THEN BEGIN
infoerror(identexp, 'meas argument');
GOTO endofattinfo

END;
newmeas := token.tchars
END;
normtok : normalatt := TRUE;

OTHERWISE BEGIN
infoerror(invinfo, nullname);
GOTO endofattinfo

163

END
END;
gettoken

END;
{ verify info entered about attribute }

IF state = readkey
THEN att role := key

ELSE att_role := non key;
IF newtype = nullname
THEN BEGIN

infoerror (notype, nullname) ;
GOTO endofattinfo
END;
att_type := newtype;
CASE newlevel OF
none :
BEGIN
infoerror(nolevel, nullname) ;
GOTO endofattinfo
END;
rank :
BEGIN
datalevel := newlevel;
att_dist := distunknown;
meas_p := NIL;
mode := numeral;
num p := NIL
END;
CTHERWISE
BEGIN
IF newmeas = nullname
THEN BEGIN
infoerror (nomeas, nullname) ;
GOTO endofattinfo
END;
meassearch(meas_root, newmeas, ptomeas);
IF ptomeas = NIL
THEN BEGIN
IF wantstodecmeas
THEN CASE newlevel OF
nominal : getqualinfo (newmeas, qual, ptomeas);
ordinal :
BEGIN
REPEAT
READLN;
WRITE('Is this measurement scheme qual/quant : ');
gettoken;
UNTIL token.ttype IN [qualmeas, quantmeas]:;
IF token.ttype = qualmeas
THEN getqualinfo (newmeas, ordqual, ptomeas)
ELSE getquantinfo (newmeas, ptomeas)

END;
interval, ratio : getquantinfo(newmeas, ptomeas)
END
ELSE GOTO endofattinfo
END
ELSE BEGIN

CASE newlevel OF
nominal : measO

K := meastypeOK (ptomeas, qual);
ordinal : measOK

= meastypeOK (ptomeas, quant) OR
meastypeOK (ptomeas, ordqual) ;
interval, ratio : measOK := meastypeOK(ptomeas, quant)
END;

164

IF NOT measOK
THEN BEGIN
infoerror (invmeas, nullname) ;
GOTO endofattinfo
END;
END;
datalevel := newlevel;
IF (newlevel IN [interval, ratio]) AND normalatt
THEN att_dist := normaldist
ELSE att_dist := distunknown;
meas_p := ptomeas;
IF (ptomeas ".settype = openset)
AND (ptomeas "~.cattype = identifier)
THEN BEGIN
mode := identifier;
char p = NIL
END
ELSE BEGIN
mode := numeral;
num p := NIL

END
END
END
END;
addattnode (ptods “~.attchain, lastatt, newatt);
attnum := attnum + 1;
endofattinfo :
END;
endofline : ;

OTHERWISE WRITELN('Error, invalid symbol found')
END;
UNTIL state = allread;
WRITELN;
saveattlist (ptods "~.ds_name, ptods “.attchain);
endofproc:
END; { proc atttypeaddition }

PROCEDURE displayatt;

{ read argument for SHOWATT command, if OK list the
attributes declared for the required data set }

LABEL endofproc;

VAR dsname : word;
ptods : dsnodepointer;
ptoatt : attnodepointer;

PROCEDURE dealwitherror (
errorstate : errortype;
errorarg : textmessage);

BEGIN
reporterror (errorstate, errorarq);
GOTO endofproc

END;

BEGIN
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'data set name');
dsname := token.tchars;
dstypesearch(dsﬁroot, dsname, ptods);

165

IF ptods = NIL
THEN dealwitherror(dsmiss, dsname);
IF ptods “.attchain = NIL
THEN dealwitherror(noatts, dsname);
WRITELN; WRITELN;
WRITELN('Att name', "Att role':18, 'Att type':10, 'Level':18,
'Meas':14);
WRITELN;
ptoatt := ptods “.attchain;
WHILE ptoatt <> NIL
DO WITH ptoatt ~ DO BEGIN
WRITE (att_name,att_role:10,att type:18,datalevel:10);
IF att dist = normaldist
THEN WRITE('NORMAL':8)
ELSE WRITE(' ':8):
IF meas p <> NIL
THEN WRITE (meas p "~ .measname:18);
WRITELN;
ptoatt := next_att
END;
endofproc:
END; { proc displayatt }

PROCEDURE instaddition;

{ input argument for ADDINST command and check wvalid,
prompt user for data an instance at a time and validate }

LABEL endofproc:

VAR dsname : word;
ptods : dsnodepointer;
noelements : INTEGER;
erroroccured : BOOLEAN;
ptoatt : attnodepointer;

PROCEDURE dealwitherror (
errorstate : errortype:;
errorarg : textmessage);

BEGIN
reporterror(errorstate, errorarg);
GOTO endofproc

END; { proc dealwitherror }

PROCEDURE getlineofdata;

{ input an item of data for primary version of each attribute }

LABEL endofdatainput;
VAR index : INTEGER;

PROCEDURE dataerror (
errorstate : errortype;
errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg):
erroroccured := TRUE;

GOTO endofdatainput

END; { proc dataerror }

BEGIN { getlineofdata }

166

ptoatt := ptods “.attchain;
REPEAT
WITH ptoatt *~ DO BEGIN
IF datalevel = rank
THEN BEGIN
IF token.ttype <> numeral
THEN dataerror(invval, ptoatt ~.att_name) ;
IF token.tnum <= 0
THEN dataerror(invval, ptoatt ~.att_name);

num p “[noelements + 1] := token.tnum
END
ELSE CASE meas_p ".meas_type OF
qualmeas :

BEGIN

IF token.ttype <> meas _p “.cattype
THEN dataerror (invval, ptoatt ~.att_name) ;
IF meas_p ".settype = closedset
THEN BEGIN
catsearch(meas_p “.cathead, token, index);
IF index = 0
THEN dataerror(invval, ptoatt “.att_name)
ELSE token.tnum := index
END;
CASE mode OF
identifier : char_p ~[noelements+l] := token.tchars;
numeral : num _p ~[noelements+l] := token.tnum
END
END;
quantmeas :
BEGIN
IF token.ttype <> numeral
THEN dataerror(invval, ptoatt “~.att_name);
IF (token.tnum < meas p “.lowerbound)
OR (token.tnum > meas_p " .upperbound)
THEN dataerror(invval, ptoatt ~.att_name);
num p “[noelements + 1] := token.tnum
END
END;
ptoatt := next_att;
gettoken;
END;
UNTIL ptoatt = NIL;
endofdatainput :
END; { proc getlineofdata }

PROCEDURE sortinstances;

{ sort instances into key order }

VAR 1,
newpos : INTEGER;
state : (equal, cont, found);

tempword : word;
tempnum : REAL;

BEGIN
newpos := 1;
state = cont;
WHILE (newpos <= ncelements) AND (state = cont)
DO BEGIN
ptoatt := ptods “.attchain;
state := equal;
WHILE (ptoatt <> NIL) AND (state = equal)

167

DO IF ptoatt “.att_role <> key
THEN ptoatt := NIL
ELSE WITH ptoatt ® DO BEGIN
CASE mode OF
identifier :
IF char_p " [noelements + 1] < char p " [newpos]
THEN state := found
ELSE IF char_p “[noelements + 1] > char p " [newpos]
THEN BEGIN
state := cont;
newpos := newpes + 1
END;
numeral :
IF num p “[noelements + 1] < num p " [newpos]
THEN state := found
ELSE IF num p “~[noelements + 1] > num p " [newpos]
THEN BEGIN
state := cont;
newpos := newpos + 1
END
END;
IF state = equal THEN ptoatt := next_att
END
END;
IF state = equal
THEN BEGIN
WRITELN('Error, key value is not unique');
erroroccured := TRUE
END
ELSE BEGIN { shuffle down elements }
ptoatt := ptods “.attchain;
WHILE ptoatt <> NIL
DO WITH pteocatt ~ DC BEGIN
CASE mode OF

identifier :
BEGIN
tempword := char p " [noelements + 1];
FOR i := (noelements + 1) DOWNTO newpos
DO char_p “[i+l] := char p ~[i];
char_p "[newpos] := tempword
END;
numeral :
BEGIN
tempnum := num p “[noelements + 1];
FOR i := (noelements + 1) DOWNTO newpos
DC num p ~[i+l] := num p ~[i];
num p *[newpos] := tempnum
END
END;
ptoatt := next_att
END
END
END; { proc sortinstances |}

BEGIN { instaddition }
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'data set name');
dsname := token.tchars;
dstypesearch (ds_root, dsname, ptods);
IF ptods = NIL
THEN dealwitherror(dsmiss, dsname);
WITH ptods ~

168

DO BEGIN

IF attchain = NIL
THEN dealwitherror (noatts, dsname);
IF instances = 0 { need to gen data arrays }
THEN BEGIN

ptoatt := attchain;

WHILE ptoatt <> NIL

DO WITH pteatt ~ DO BEGIN

CASE mode OF
identifier : NEW(char p);

numeral : NEW(num_p)
END;

ptoatt := next_att
END

END;
noelements := instances;
WRITELN ('Enter instances one per line, terminate with §');
REPEAT
READLN;
WRITE ('DATA> ');
gettoken;
CASE token.ttype OF
endofinfo, endofline : ;
OTHERWISE
BEGIN
erroroccured := FALSE;
getlineofdata;
IF NOT erroroccured AND (attchain “.att_role = key)
THEN sortinstances;
IF NOT erroroccured THEN noelements := noelements + 1
END
END;
UNTIL token.ttype = endofinfo;
WRITELN;
IF instances <> noelements
THEN BEGIN
instances := noelements;
savedata (ptods)
END
END;
endofproc :
END; { proc instaddition }

FUNCTION charcatvalue (
VAR ptomeas : measpointer;
reqgqindex : REAL) : WORD;

{ find character category at position regindex }

VAR index : INTEGER;
ptocat : catnodepointer;

BEGIN
index := 1;
ptocat := ptomeas “.cathead;
WHILE index < regindex
DO BEGIN
ptocat := ptocat ".next;
index := index + 1
END;
charcatvalue := ptocat ~.charvalue
END; { funct charcatvalue }

169

FUNCTION numcatvalue (
VAR ptomeas : measpointer;
regindex : REAL) : REAL;

{ find numeric category at position reqindex }

VAR index : INTEGER;
ptocat : catnodepointer;

BEGIN

index := 1;

ptocat := ptomeas ~.cathead;
WHILE index < regindex

DO BEGIN
ptocat := ptocat “.next;
index := index + 1
END;
numcatvalue := ptocat ”".numvalue
END; { funct numcatvalue }

PROCEDURE displayinst;

{ input argument for SHOWINST command and check that
instances have been declared, display each instance
for each attribute }

LABEL endofproc;

VAR dsname : word;
i : INTEGER;
ptods : dsnodepointer;
ptoatt : attnodepointer;

PROCEDURE dealwitherror (
errorstate : errortype;
errorarg : textmessage)

BEGIN
reporterror(errorstate, errorarg);
GOTO endofproc

END;

BEGIN
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'data set name');
dsname := token.tchars;
dstypesearch (ds_root, dsname, ptods);
IF ptods = NIL
THEN dealwitherror(dsmiss, dsname);
WITH ptods *
DO BEGIN
IF attchain = NIL
THEN dealwitherror(noatts, dsname);
IF instances = 0
THEN dealwitherror(noinsts, dsname);
WRITELN; WRITELN;
FOR i := 1 TO instances
DO BEGIN
ptoatt := attchain;
WHILE ptoatt <> NIL

170

DO WITH ptoatt * DO BEGIN
IF datalevel = rank
THEN WRITE (num p ~[1]:12:2)
ELSE CASE meas_p ".meas_type OF
gqualmeas
CASE mode CF
identifier : WRITE(char_p ~[i] :18);
numeral :
IF meas_p “.settype = openset
THEN WRITE (num p ~[i] :9:2)
ELSE CASE meas_p “.cattype OF

identifier :
WRITE (charcatvalue (meas p, num p ~[i]):18);
numeral :
WRITE (numcatvalue (meas_p, num p ~[i]):9:2)
END
END;
quantmeas : WRITE (num p ~[i] :12:2)
END;
ptoatt := next_att
END;
WRITELN
END
END;
endofproc:

END; { proc displayinst }

[e F ok koK Kk kK file routines **********}

PROCEDURE loadkeywords;

BEGIN
OPEN (keyworddir, dir + 'KEYWORDDIR', HISTORY := OLD);
RESET (keyworddir) ;
numofkeywords := 0;
WHILE NOT EOF (keyworddir)
DO BEGIN
numofkeywords := numofkeywords + 1;
WITH keywordtable [numofkeywords]
DO READLN (keyworddir, keystr, keytoken)
END;
CLOSE (keyworddir)
END; { proc loadkeywords }

PROCEDURE locadsemchecks;

PRCCEDURE genchecknode (
VAR head,
current : checkpointer);

BEGIN
IF head = NIL
THEN BEGIN
NEW (head) ;
current := head
END
ELSE BEGIN
NEW (current ”.nextcheck):;
current := current ”*.nextcheck
END;

171

current " .nextcheck := NIL
END; { proc genchecknode }

PROCEDURE loadcheckset (
VAR checkarray :
checkfile : filename);

VAR current :
index :

checkpointer;
statcomms;

BEGIN
OPEN (checkdir, checkfile,
RESET (checkdir) ;
WHILE NOT EOF (checkdir)
DO BEGIN
READ (checkdir, index):;
checkarray([index] := NIL;
WHILE NOT EOLN (checkdir)
DO BEGIN
genchecknode (checkarray[index],
READ (checkdir,
END;
READLN (checkdir)
END;
CLOSE (checkdir)
END; { proc loadcheckset }

HISTORY := OLD)

.

current) ;
current “.semcheck)

BEGIN { loadsemchecks |}

ARRAY[lower. .upper:statcomms] OF checkpointer;

loadcheckset (class_checks, dir + 'CLASSCHECKDIR');
loadcheckset (assoc_checks, dir + 'ASSOCCHECKDIR') :

loadcheckset (loc_checks, dir + 'LOCCHECKDIR')
END; { proc loadsemchecks }

PROCEDURE loadmeasdir;

VAR ptomeas : measpointer;
ptocat : catnodepointer;
i : INTEGER;
BEGIN
meas_root := NIL;
OPEN (measdir, 'MEASDIR', HISTORY := OLD, ERROR := CONTINUE) ;
IF STATUS (measdir) = 0
THEN BEGIN
RESET (measdir) ;
WHILE NOT ECOF (measdir)
DO BEGIN
NEW (ptomeas) ;
WITH ptomeas °
DO BEGIN
READ (measdir, measname, meas_type)
leftp := NIL;
rightp := NIL;
CASE meas_type OF
qualmeas :
BEGIN
READLN (measdir, cattype, settype, ordtype, numofcat);
cathead := NIL;
FOR i := 1 TO numofcat
DO BEGIN

newcatnode (cathead, ptocat);
ptocat “.cattype := cattype;

172

CASE cattype OF

identifier : READLN (measdir, ptocat ~.charvalue);
numeral : READLN (measdir, ptocat “~.numvalue)
END
END
END;
quantmeas : READLN (measdir, lowerbound, upperbound)
END
END;
addmeasscheme (meas_root, ptomeas)
END;
CLOSE (measdir)

END
END; { proc loadmeasdir }

PROCEDURE loadconvdir;

VAR ptoconv : convpointer;
ptogntglt : gntgltpointer;
ptogltglt : gltgltpointer;

BEGIN
conv_rcot := NIL;

OPEN (convdir, 'CONVDIR', HISTORY := OLD, ERROR := CONTINUE)
IF STATUS (convdir) = 0

THEN BEGIN
RESET (convdir) ;
WHILE NOT EOF (convdir)
DO BEGIN
NEW (ptoconv) ;
WITH ptoconv °
DO BEGIN
READLN (convdir, from to, typeofconv):;
left p := NIL;
right_p := NIL;
CASE typeofconv OF
gnt_gnt :
BEGIN
NEW (gntgnt_p) ;

WITH gntgnt_p * DO READLN(convdir, a, c¢)
END;

gnt_qlt :
BEGIN
gntglt p := NIL;
WHILE convdir ~ <> '§'
DO BEGIN
gengntgltnode (gntglt p, ptogntglt);

WITH ptogntglt * DO READLN (convdir, upper, index)
END;

READLN (convdir)
END;
it gito:
BEGIN
qltglt p := NIL;
WHILE convdir ~ <> 'S¢
DO BEGIN
gengltgltnode (gltglt p, ptogltqglt):;

WITH ptogltglt ~ DO READLN (convdir, toindex)
END;

READLN (convdir)
END

END;

173

addconvscheme (conv_root, ptoconv)
END
END;
CLOSE (convdir)
END
END; { proc loadconvdir }

PROCEDURE loadenttree;

VAR ent_name, super ent : word;
super_rel : taxon_relation;
ptosuper : enodepointer;

BEGIN
NEW (ent_root) ;
WITH ent root *
DO BEGIN
ent name := 'ROOT i
super rel := not_applic;

superpointer := NIL;

nextpointer := NIL;

subpointer := NIL
END;

OPEN (entdir, 'ENTDIR', HISTORY := OLD, ERROR := CONTINUE) ;
IF STATUS (entdir) = 0
THEN BEGIN
RESET (entdir) ;
WHILE NOT EOF (entdir)
DO BEGIN
READLN (entdir, ent_name, super_ent, super rel);
etypesearch (ent_ root, super_ent, ptosuper):;
addetype (ptosuper, ent_name, super_ rel)
END;
CLOSE (entdir)
END
END; { proc loadenttree }

PROCEDURE loadattlist (
VAR dsname : word;
VAR atthead : attnodepointer;
VAR noelements : INTEGER);

VAR attfile : filename;
lastatt, currentatt : attnodepointer;
measname : word;
ch & chax;

PROCEDURE loadchardata (
VAR char_p : charpointer;
datafilename : filename);

BEGIN
OPEN (datafile, datafilename,
HISTORY := OLD, ERROR := CONTINUE) ;
IF STATUS (datafile) = 0
THEN BEGIN
RESET (datafile) ;
noelements := 0;
NEW(char p);
WHILE NOT EOF (datafile)
DO BEGIN

174

noelements := noelements + 1;
READLN (datafile, char_p " [noelements])
END;
CLOSE (datafile)
END
ELSE char p := NIL
END; { proc locadchardata }

PROCEDURE loadnumdata (
VAR num p : numpointer;
datafilename : filename);

BEGIN
OPEN (datafile, datafilename,
HISTORY := QOLD, ERROR := CONTINUE) ;
IF STATUS (datafile) = 0
THEN BEGIN
RESET (datafile) ;
noelements := 0;
NEW (num_p) ;
WHILE NOT EOF (datafile)
DO BEGIN

noelements := noelements + 1;
READLN (datafile, num p “[noelements])
END;
CLOSE (datafile)
END
ELSE num p := NIL
END; { proc loadnumdata }

BEGIN { loadattlist }
attfile := dsname + attspec;
OPEN (attdir, attfile, HISTORY := OLD, ERROR := CONTINUE) ;
IF STATUS (attdir) = 0
THEN BEGIN
RESET (attdix) ;
WHILE NOT EOF (attdir)
DO BEGIN
new (currentatt) ;
WITH currentatt ~
DO BEGIN
READ (attdir, att_name, att_role, ch, att_type,
datalevel, att_dist, mode);
IF datalevel = rank
THEN meas_p := NIL
ELSE BEGIN
READ (attdir, ch, measname) ;
meassearch (meas_root, measname, meas_p)

END;
CASE mode OF
identifier : loadchardata (char_p, dsname + att_name) ;
numeral : loadnumdata(num_p, dsname + att name)
END;

READLN (attdir) ;
addattnede (atthead, lastatt, currentatt)
END
END;
CLOSE (attdir)
END
END; { proc loadattlist }

PROCEDURE loaddstree;

175

VAR ds_type : word;
newds : dsnodepointer;

BEGIN
ds_root := NIL:
OPEN (dsdir, 'DSDIR', HISTORY := OLD, ERROR := CONTINUE) ;
IF STATUS (dsdir) = 0
THEN BEGIN
RESET (dsdir) ;
WHILE NOT EOF (dsdir)
DC BEGIN
NEW (newds) ;
WITH newds *
DO BEGIN
READLN (dsdir, ds name, ds_type);
etypesearch(ent_root, ds_type, ent_type);
leftp := NIL;
rightp := NIL;
instances := 0;

attchain := NIL;

loadattlist (ds_name, attchain, instances)
END ;

adddstype (ds_root, newds)
END;
CLOSE (dsdir)
END
END; { proc loaddstree }

PROCEDURE loadknowbase;

BEGIN

loadkeywords;
loadsemchecks;
locadmeasdir;

loadconvdir;

loadenttree;

loaddstree
END; { proc loadknowbase }

PROCEDURE saveetype {
VAR ename,
supername : word;
VAR super_rel : taxon_ relation };

BEGIN

OPEN (entdir, 'ENTDIR', HISTORY := UNKNOWN) ;
EXTEND (entdir) ;

WRITELN (entdir, ename, supername, super rel:l11);
CLOSE (entdir)
END; { proc saveetype }

PROCEDURE savedstype {
VAR newname,
newtype : word };

BEGIN

OPEN (dsdir, 'DSDIR', HISTORY := UNKNOWN) ;
EXTEND (dsdir) ;

WRITELN (dsdir, newname, newtype):;

176

CLOSE (dsdir)
END; { proc savedstype }

PRCCEDURE sawveattlist {
VAR dsname : word:
atthead : attnodepointer };

VAR attfile : filename;

BEGIN
attfile := dsname + attspec;
OPEN (attdir, attfile, HISTORY := NEW):
REWRITE (attdir) ;
WHILE atthead <> NIL
DO WITH atthead ~ DO BEGIN
WRITE (attdir, att_name, att role, att_type:17,
datalevel, att_dist:12, mode:11);
IF meas_p <> NIL
THEN WRITE (attdir, meas p ~.measname:17);
WRITELN (attdir);
atthead := atthead “.next att

END;
CLOSE (attdir)
END; { proc saveattlist }

PROCEDURE savedata |
VAR ptods : dsnodepointer }:;

VAR datafilename : filename;
ptoatt : attnodepointer;
i : INTEGER;

BEGIN
WITH ptods *
DO BEGIN
ptoatt := attchain;
WHILE ptoatt <> NIL
DO WITH ptoatt ~ DO BEGIN
datafilename := ds_name + att_name;
OPEN (datafile, datafilename, HISTORY := UNKNOWN) ;
REWRITE (datafile) ;
CASE mode OF

identifier :

FOR i := 1 TO instances

DO WRITELN (datafile, char p ~[i]);
numeral :

FOCR i := 1 TO instances
DO WRITELN (datafile, num p ~[i])
END;
ptoatt := next_ att;
CLOSE (datafile)
END
END
END; { proc savedata }

PROCEDURE savemeasscheme {
VAR ptomeas : measpointer };

VAR ptocat : catnodepointer;
i : INTEGER;

177

BEGIN
OPEN (measdir, 'MEASDIR', HISTORY := UNKNOWN) ;
EXTEND (measdir) ;
WITH ptomeas *
DO BEGIN
WRITE (measdir, measname, meas_type:10);
CASE meas_type CF
qualmeas :
BEGIN
WRITELN (measdir, cattype:11, settype:10, ordtype:10,
numofcat:4);

ptocat := cathead;
FOR i := 1 TO numofcat
DO BEGIN

CASE cattype OF
identifier : WRITELN (measdir, ptocat “~.charvalue);

numera . : WRITELN (measdir, ptocat ~.numvalue)
END ;
ptocat := ptocat “.next

END

END;
quantmeas : WRITELN (measdir, lowerbound, upperbound)
END
END;
CLOSE (measdir)
END; { proc savemeasscheme }

PROCEDURE saveconvscheme ({
VAR ptoconv : convpointer };:

VAR ptogntglt : gntgltpointer;
ptogltglt : gltgltpointer;

BEGIN
OPEN (convdir, 'CONVDIR', HISTORY := UNKNOWN) ;
EXTEND (convdir) ;
WITH ptoconv *
DO BEGIN
WRITELN (convdir, from to, typeofconv:8):
CASE typeofconv OF
gnt_gnt :
WITH gntgnt_p * DO WRITELN (convdir, a, c);
gnt_qglt :
BEGIN
ptogntglt := gntglt p;
WHILE ptogntglt <> NIL
DO WITH ptogntglt ~ DO BEGIN
WRITELN (convdir, upper, index:3):;
ptogntglt := next
END;
WRITELN (convdir, '$')
END;
it glt -
BEGIN
ptogltqglt := gltglt p;
WHILE ptogltglt <> NIL
DO WITH ptogltglt ~ DO BEGIN
WRITELN (convdir, toindex:3);
ptogltglt := next
END;

178

WRITELN (convdir, 'S$')
END
END
END;
CLOSE (convdir)
END; { proc saveconvscheme }

{ file model routines.pas }

B.3 Check_routines.pas

{ file check_routines.pas }

TYPE listheadpointer = ~ listheadnode:;
itempointer = * itemnode;
listheadnode = RECORD
nexthead : listheadpointer;
no_items : INTEGER;
itemhead : itempointer
=) -
itemnode = RECORD
dsinfo : dsnodepointer;
attinfo : attnodepointer;
convdata : numpointer;
measinfo : measpointer;
nextitem : itempointer
END;
gpinfopointer = * groupinfo;
gpnedepointer = * groupnode;
groupinfo = RECORD
measused : measpointer;
numdivisions : INTEGER;
grouphead : gpnodepointer
END;
groupnode = RECORD
members : SET OF 1..100;
freq : INTEGER;
nextnode : gpnodepointer
END;
summarystate = (startstate, allrat, intrat, allgnt, rankgnt,
rankglt, ordgnt, allord, nomgnt, allglt, novalidstate);
relstate = (relunknown, related, unrelated);
normalstate = (normunknown, normalOK, assnormal, nonnormal) ;
varstate = (varunknown, eqvarOK, asseqgvar, uneqvar);
inststate = (instunknown, instOK, insttoolow);
fregstate = (frequnknown, freqOK, freqtoolow);
datastate (dataunknown, origOK, convOK, cannotconv) ;

]

VAR listheadhead : listheadpointer;
argsummary : summarystate;
argsrel : relstate;
argsnormal : normalstate;
argvar : varstate;
numinst : inststate;
argfreq : fregstate;
controw,
contcolumn : gpinfopointer;
conttotal : INTEGER;

179

dichdata,

gltdata,

gntdata : datastate;
shapwilkcoeff : TEXT;

FUNCTION gOlbbf (
VAR i1,
i2 : INTEGER;
VAR a : REAL;
VAR ifail : INTEGER) : REAL; EXTERN;
{ NAG library routine to return F dist probability }

FUNCTION g0lbcf (
VAR x : REAL;
VAR n,
ifail : INTEGER) : REAL; EXTERN;
{ NAG library routine to return Chi square probability }

PROCEDURE displayarg (
VAR ptoitem : itempointer);

BEGIN
WITH ptoitem *
DO WRITE (dsinfo “.ds_name:strlen(dsinfo ~.ds_name), '.',
attinfo “~.att_name:strlen(attinfo ~.att_name))
END; { proc displayarg }

PROCEDURE displayarglist (
VAR ptolisthead : listheadpointer);

{ display each argument name in the list headed by ptolisthead }
VAR ptoitem : itempointer;
BEGIN

ptoitem := ptolisthead ~.itemhead;
WHILE ptoitem <> NIL

DO BEGIN

displayarg(ptoitem) ;

WRITELN;

ptoitem := ptoitem ~.nextitem
END

END; { proc displayarglist }

PROCEDURE displayargmeas (
VAR ptolisthead : listheadpointer);

{ display each argument name and the meas used
for each item in the list headed by list head }

VAR ptoitem : itempointer;
arglen : INTEGER;

BEGIN
ptoitem := ptolisthead *.itemhead;
WHILE ptoitem <> NIL
DO WITH ptoitem ~ DO BEGIN
displayarg(ptoitem);

180

arglen := strlen(dsinfo”.ds_name) + strlen(attinfo”.att_name);
WRITELN (attinfo ~.meas p " .measname:5l-arglen);
ptoitem := nextitem
END
END; (proc displayargmeas }

{***x**xx*k*x*x* gemantic check routines ***xxkxxxx%]

PRCCEDURE checkegdom (
VAR iteml,
item2 : itempointer;
VAR checkOK : BOOLEAN) ;

{ class level check to see if iteml and item2 have
the same att type values, assign result to checkOK }

BEGIN
checkOK := iteml “~.attinfo “.att_type
= item2 “.attinfo “.att_type
END; { proc checkegdom }

PROCEDURE checkenttype (
VAR iteml,
item2 : itempointer;
VAR checkOK : BOOLEAN) ;

{ see if iteml and item2 are of similar entity
types, assign result to checkOK }

FUNCTION mostgenent (
ptoent : enodepointer) : word;

BEGIN
WHILE (ptoent ~.super rel = generic)
AND (ptoent ~.ent_name <> 'ROOT')
DO ptoent := ptoent “.superpointer;
mostgenent := ptoent ”.ent_name
END; { funct mostgenent }

BEGIN { checkenttype }
IF iteml “~.dsinfo = item2 ~.dsinfo
THEN checkOK := TRUE
ELSE checkOK := mostgenent (iteml ~.dsinfo “.ent_type)
= mostgenent (item2 “.dsinfo ~.ent_type)
END; { proc checkenttype }

PROCEDURE checkrelinsts (
VAR dsl,

ds2 : dsnodepointer;

VAR checkOK : BOOLEAN);

{ see if instances in dsl and ds2 are the same,
assign result to checkOK }

TYPE statustype = (nilatt, otheratt, keyatt):
statetype = (checking, diffkey, samekey);
VAR attl, att2 : attnodepointer;
keystate : statetype;
attlstatus, att2status : statustype;

181

FUNCTICN attstatus (
VAR ptoatt : attnodepointer) : statustype;

BEGIN
IF ptoatt = NIL
THEN attstatus := nilatt

ELSE IF ptoatt “.att_role = non_key
THEN attstatus := otheratt
ELSE attstatus := keyatt
END; { funct attstatus }

PROCEDURE comparechar (
VAR setl,
set2 : charpointer;
VAR instances : INTEGER;
VAR state : statetype);:

VAR index : INTEGER;

BEGIN
index := 1;
WHILE (state = checking) AND (index <= instances)
DO IF setl “[index] <> set2 “~[index]
THEN state := diffkey
ELSE index := index + 1
END; { proc comparechar }

PROCEDURE comparenum (
VAR setl,
set2 : numpointer;
VAR instances : INTEGER;
VAR state : statetype):

VAR index : INTEGER;

BEGIN
index := 1;
WHILE (state = checking) AND (index <= instances)
DO IF setl ~[index] <> set2 “~[index]
THEN state := diffkey
ELSE index := index + 1
END; { proc comparenum }

BEGIN {(checkrelinsts }
IF dsl = ds2
THEN checkOK := TRUE
ELSE IF dsl “~.instances <> ds2 ".instances
THEN checkQOK := FALSE
ELSE BEGIN
attl := dsl ".attchain;
att2 := ds2 ".attchain;
IF (attl “.att_role <> key) OR (att2 ~.att_role <> key)
THEN checkOK := FALSE
ELSE BEGIN
keystate := checking;
WHILE keystate = checking
DO BEGIN
attlstatus := attstatus(attl);
att2status := attstatus(att2);
IF (attlstatus = keyatt) AND (att2status = keyatt)
THEN BEGIN
IF attl “~.att_type <> att2 ~.att_type

182

THEN keystate := diffkey
ELSE BEGIN
IF attl ~.meas p <> att2 ~.meas p
THEN keystate := diffkey
ELSE BEGIN
CASE attl “.mode OF
identifier :
comparechar(attl ~.char p, att2 ~.char p,
dsl ~.instances, keystate);
numeral :
comparenum(attl “.num p, att2 ~.num p,
dsl “~.instances, keystate)
END;
IF keystate = checking
THEN BEGIN
attl = attl “.nextiatt:
att2 := att2 “~.pext att
END
END
END
END
ELSE IF (attlstatus <> keyatt) AND (att2status <> keyatt)
THEN keystate := samekey
ELSE keystate := diffkey
END;
checkOK := keystate = samekey
END
END
END; { proc checkrelinsts }

PROCEDURE checkrelargs (
VAR ptolisthead : listheadpointer);

VAR firstitem,
currentitem : itempointer;
checkOK : BOOLEAN;

BEGIN
argsrel := related;
firstitem := ptolisthead *.itemhead;
currentitem := firstitem ".nextitem;
WHILE (currentitem <> NIL) AND (argsrel = related)
DO BEGIN
checkrelinsts(firstitem ”.dsinfo, currentitem ~.dsinfo, checkOK) ;
IF NOT checkOK
THEN argsrel := unrelated
ELSE currentitem := currentitem *.nextitem
END
END; { proc checkrelargs }

PROCEDURE checknumargs (
typecftestargs : testtype;
VAR numargs : INTEGER;
VAR checkOK : BOOLEAN) ;

BEGIN
CASE typeoftestargs OF
twosample : checkOK := numargs = 2;
ksample : checkOK := numargs >= 2
END
END; { proc checknumargs }

183

PROCEDURE checknormalargs (
VAR ptolisthead : listheadpointer);

VAR i, j : INTEGER;
a : ARRAY [3..29, 1..15] OF REAL;
critw : ARRAY [3..29] OF REAL;
ptoitem : itempointer;
checkOK : BOOLEAN;

PROCEDURE shapwilk (
Yy : numarray;
VAR n : INTEGER;
VAR checkOK : BOOLEAN);

VAR k, i, minindex : INTEGER;
temp,
ysum,
ysqgrsum,
Ssqgr,
b,
w : REAL;

BEGIN
checkOK := TRUE;
FOR k := 1 TO n-1
DO BEGIN
minindex := k;
FOR 1 := k+1 TO n
DO IF y[i] < y[minindex]
THEN minindex := i;
IF minindex <> k
THEN BEGIN
temp := yl[k];
v([(k] := y[minindex];
y[minindex] := temp
END
END;
ysum := 0;
ysgrsum := 0;
FOR 4 = 1.70'n
DO BEGIN
ysum := ysum + y[i];
ysgrsum := ysqgrsum + y[i] * y[i]

0

END;

Ssgr := ysgrsum - ysum * ysum / n;

S =li0) >

FOR i1 := 1 TO n DIV 2

DO b :=b + aln, il * (y[n-i+l] - y[i]);
w := b*b / Ssgr;

checkOK := w >= critw([n]

END; { proc shapwilk }

BEGIN { checknormalargs }

OPEN (shapwilkcoeff, dir + 'SHAPWILKCOEFF.DAT', HISTORY := OLD);
RESET (shapwilkcoeff) ;

FOR i := 3 TO 29

DO FOR j := 1 TO (i+l) DIV 2

DO READ (shapwilkcoeff, ali,jl):

{ a[i,]] contains coefficient a(n-i+l) for j=n }
FOR i := 3 TO 29

DO READ (shapwilkcoeff, critw[i]):;

CLOSE (shapwilkcoeff);

argsnormal := normalOK;

184

ptoitem := ptolisthead ~.itemhead;
WHILE (ptoitem <> NIL) AND (argsnormal <> nonnormal)
DO WITH ptoitem ~ DO BEGIN
IF (attinfo “.att_dist <> normaldist)
AND (dsinfo “~.instances < 30)
THEN BEGIN

shapwilk(attinfo ~,num p ~, dsinfo “~.instances, checkOK) :

IF NOT checkOK
THEN BEGIN
WRITELN;
REPEAT
READLN;
WRITE ('Do you wish to assume that the data in ');
displayarg(ptoitem) ;

WRITELN;
WRITE(' 4is normally distributed (yes/no/default)
gettoken;
UNTIL token.ttype IN [yestok, notok, deftok];
WRITELN;
CASE token.ttype OF
yestok : argsnormal := assnormal;
notok, deftok : argsnormal := nonnormal
END
END
END;
ptoitem := nextitem
END

END; { proc checknormalargs }

PROCEDURE Ftest (
VAR ptolisthead : listheadpointer;
VAR checkOK : BOCLEAN):;

VAR ptoitem : itempointer;
vl, v2, icode : INTEGER;
s8l, 82, F, critP : BREAL;

PROCEDURE calcssgr (
VAR ssgr : REAL;
VAR df : INTEGER);

VAR i : INTEGER;
X, Xsgr : REAL;
ptodata : numpointer;

BEGIN
IF ptoitem “.convdata <> NIL
THEN ptodata := ptoitem “.convdata
ELSE ptodata := ptoitem “.attinfo “.num p;
x = 0;
xsqgr := 0;
df := ptoitem “.dsinfo ~.instances - 1;
FOR i := 1 TO df+l
DO BEGIN
x = x'#4 ptodata *[i];
Xsgr := xsqr + SQR(ptodata ~[i])
END;

ssqr := xsqr/df - SQR(x)/ ((df+1l) *df)
END; { proc calcssqgr }

BEGIN { Ftest }
ptoitem := ptolisthead *.itemhead;

185

Y

calessqgrisl; »1):
ptoitem := ptoitem “.nextitem;
calcasgr(sZ, vZ);
icode := 0;
IF a8l > a2
THEN BEGIN
F := s5l1/s2;
critF := g0lbbf(vl, v2, F, icode)
END
ELSE BEGIN
F = 32/31;

critF := g0lbbf(v2, vl, F, icode)
END;

checkQOK := critfF >= 0.05

END; { proc Ftest }

PROCEDURE Bartlett (
VAR ptolisthead : listheadpointer;
VAR checkOK : BOOLEAN) ;

VAR ptoitem : itempointer;
ptodata : numpointer;
i, k, ni, phi, df, icode : INTEGER;
ssqrphi, invphi, philnssqr, x, xsqr, ssqr,
A, M, teststat, critchi : REAL;

BEGIN

k := ptolisthead “.no_items;
ssgrphi := 0;

phi := 0;

invphi == 0;
philnssqgr := 0;
ptoitem := ptolisthead ~.itemhead;
WHILE ptoitem <> NIL
DO BEGIN
ni := ptoitem “~.dsinfo “.instances;
IF ptoitem “.convdata <> NIL
THEN ptodata := ptoitem “~.convdata
ELSE ptodata := ptoitem “.attinfo “.num p;
x := 0;
xsqgr := 0;
FOR i := 1 TO ni
DO BEGIN
X = x + ptodata *~[i];
xsgr := xsqr + SQR(ptodata ~[i])
END;
ssgr := xsqr/(ni-1) - SQR(x)/(ni*(ni-1));
ssgrphi := ssqgrphi + ssgr*(ni-1):
phi := phi + ni - 1;
invphi := invphi + 1/(ni-1);
philnssqr := philnssqgr + (ni-1)*LN(ssqr):;
ptoitem := ptoitem “~.nextitem

END;

avssqgr := ssqrphi / phi;
M := phi*LN(avssqr) - philnssqr;
A := (invphi - 1/phi) [/ (3*(k-1)):
teststat := M / (1+A);
df := k-1;

icode := 0;
critchi := gOlbecf(teststat, df, icode);
checkOK := critchi >= 0.05

END; { proc Bartlett }

186

avssqgr,

PROCEDURE Box (
VAR ptolisthead : listheadpointer;
VAR checkOK : BOOLEAN) ;

VAR ptoitem : itempointer;
ptodata : numpointer;
k, phi, N, ni, i, v, df, icode : INTEGER;
ssqrphi, philnssqr, esqr, equad, x, xsqr, xcub, xquad,
xi, ssqgr, avssqr, M, rhosgr, gamma2, teststat : REAL;
critchi : REAL;

BEGIN
k := ptolisthead “.no_items;
ssqrphi := 0;
phi := 0;
philnssgr := 0;
N := 0;
esgr := 0;
equad := 0;
ptoitem := ptolisthead “.itemhead;
WHILE pteoitem <> NIL
DO BEGIN
ni := ptoitem “~.dsinfo “~.instances;
IF ptoitem “~.convdata <> NIL
THEN ptodata := ptoitem “.convdata
ELSE ptodata ptoitem “.attinfo “.num p;
X = 0;
xsqgr := 0;
xcub 0;:
xquad := 0;
FOR 1 := 1 TO ni
DO BEGIN
xi := ptodata ~[i];
o= % xis
xsqgr := xsgr + SQR(xi):;
xcub := xcub + xi*SQOR(xi);
xquad := xquad + SQR(SQR(xi))
END;
ssgr := xsqr/(ni-1) - SQR(x)/(ni*(ni-1));
ssgrphi := ssqgrphi + ssqgr*(ni-1);
phi := phi + ni - 1;
philnssqr := philnssqr + (ni-1)*LN(ssqr);
N := N + ni;
esqgr := esqr + xsgr - SQR(x)/ni;
equad := equad + xquad - 4*xcub*x/ni + 6*xsgr*SQR(x)/SQR(ni)
= 3*SQR(SQR(x))/(ni*SQR(ni)) ;
ptoitem := ptoitem ~.nextitem
END;
avssqr := ssqgrphi / phi;
M := phi*LN(avssqr) - philnssqr;
v o= N = k;
rhosgr := k / (v*(N-1));
gamma2 := N*SQR(N) * (((v+2)*equad)/(v*SQR(esqr))-3/N) /
(v* (v+2) * (1+ (N-1) *SQR (rhosqgr)) =3*N) ;
teststat := M / (1 + gamma2/2);
dff = =T
icode := 0;
critchi := g0lbcf(teststat, df, icode);
checkOK := critchi >= 0.05
END; { proc Box }

]

187

PROCEDURE checkegvar (
VAR ptolisthead : listheadpointer);

VAR checkOK : BOOLEAN;

BEGIN
IF ptolisthead “.no_items = 2
THEN Ftest (ptolisthead, checkOK)
ELSE IF argsnormal = normalOK
THEN Bartlett (ptolisthead, checkOK)
ELSE Box(ptolisthead, checkOK) ;
IF checkOK
THEN argvar := egvarOK
ELSE BEGIN
WRITELN;
REPEAT
READLN;
WRITELN('Do you wish to assume that the sample');
WRITE(' variances are equal (yes/no/default) : ');
gettoken;
UNTIL token.ttype IN [yestok, notok, deftok];
WRITELN;
CASE token.ttype OF

yestok : argvar := asseqgvar;
notok, deftok : argvar := uneqvar
END
END

END; { proc checkegvar |}

PROCEDURE checknige30 (
VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer;

BEGIN
numinst := instOK;
ptoitem := ptolisthead ~.itemhead;
WHILE (ptoitem <> NIL) AND (numinst = instOK)
DO WITH ptoitem *
DO IF dsinfo “.instances < 30
THEN numinst := insttoolow
ELSE ptoitem := nextitem
END; { proc checknige30 }

PROCEDURE addcontnode (
VAR infohead : gpinfopointer;
VAR ptogroup : gpnodepointer);

BEGIN

IF infohead ~.grouphead = NIL

THEN BEGIN
NEW (infohead ~.grouphead) ;
ptogroup := infohead “.grouphead
END

ELSE BEGIN
NEW (ptogroup ~.nextnode) ;
ptogroup := ptogroup " .nextnode

END;
ptogroup “.nextnode := NIL
END; { proc addcontnode }

188

PROCEDURE setupcontnodes (
VAR infohead : gpinfopointer;
VAR ptoitem : itempointer);

VAR ptogroup : gpnodepointer;
i : INTEGER;

BEGIN
NEW (infohead) ;
IF ptoitem ~.measinfo <> NIL

THEN infohead ~.measused := ptoitem “~.measinfo

ELSE infohead " .measused := ptoitem ~.attinfo ~.meas p;
infohead ".numdivisions := infohead ~.measused ~.numofcat;
infohead ~.grouphead := NIL;
FOR i := 1 TO infohead "~.numdivisions

DO BEGIN

addcontnode (infohead, ptogroup) ;
WITH ptogroup

DO BEGIN
members := [i1];
freq := 0;
nextnode := NIL

END

END

END; { proc setupcontnodes }

PROCEDURE setcontfregs (
VAR infohead : gpinfopointer;
VAR ptoitem : itempointer);

VAR ptodata : numpointer;
ptogroup : gpnodepointer;
instances,

i, j : INTEGER;

BEGIN
IF ptoitem ~.convdata <> NIL
THEN ptodata := ptoitem “.convdata
ELSE ptodata := ptoitem ".attinfo “.num p;
instances := ptoitem ~.dsinfo *.instances;
FOR i := 1 TO instances
DO BEGIN
ptogroup := infohead *.grouphead;
FOR j := 1 TO TRUNC(ptodata ~[i]) - 1

DO ptogroup := ptogroup ”.nextnode;
ptogroup “.freq := ptogroup “.freq + 1
END
END; { proc setcontfregs }

PROCEDURE formassoccont (
VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer;

BEGIN
ptoitem := ptolisthead “.itemhead;
setupcontnodes (controw, ptoitem);
setcontfregs (controw, ptoitem);
ptoitem := ptoitem “.nextitem;

189

setupcontnodes (contcolumn, ptoitem);
setcontfregs (contcolumn, ptoitem);
conttotal := ptoitem ~.dsinfo ”~.instances
END; { proc formassoccont }

PRCCEDURE formloccont (
VAR ptolisthead : listheadpointer):

VAR ptorownode,
ptocolumnnode : gpnodepointer;
ptoitem : itempointer;

BEGIN

ptoitem := ptolisthead ~.itemhead;

{ set up a row node for each meas category }
setupcontnodes (controw, ptoitem) ;

NEW (contcolumn) ;

contcolumn *.measused := NIL;

contcolumn “.numdivisions := ptolisthead "~.no_items;
contcolumn “.grouphead := NIL;

WHILE ptoitem <> NIL

DO BEGIN

{ add new column node for current arg and update
the required row frequencies with its data }

addcontnode (contcolumn, ptocolumnnode) ;

setcontfregs (controw, ptoitem);

ptocolumnnode “.freqg := ptoitem ”~.dsinfo ~.instances;
conttotal := conttotal + ptocolumnnode “.freq;
ptoitem := ptoitem ~.nextitem
END

END; { proc formloccont }

FUNCTION efreqOK : BOOLEAN;

VAR below5,
belowl,
totalcells : INTEGER;
expfreq : REAL;
ptorownode,
ptocolumnnode : gpnodepointer;

BEGIN
below5 := 0
belowl := 0
ptorownode := controw “.grouphead;
WHILE ptorownode <> NIL
DO BEGIN
ptocolumnnode := contcolumn ”~.grouphead;
WHILE ptocolumnnode <> NIL
DO BEGIN
expfreq := ptorownode “.freq * ptocolumnnode “.freq
/ conttotal;
IF expfreq < 5 THEN below5 := below5 + 1;
IF expfreq < 1 THEN belowl := belowl + 1;
ptocolumnnode := ptocolumnnode *.nextnode
END;
ptorownode := ptorownode ".nextnode
END;

CERE T T

totalcells := controw “.numdivisions * contcolumn ”.numdivisions;

efreqOK := (belowS/totalcells < 0.2) AND (belowl = 0)
END; { funct efreqCK }

190

PROCEDURE findminfreq (
VAR infohead,
mininfo : gpinfopointer;
VAR minfreq,
minindex : INTEGER);

VAR ptogroup : gpnodepointer;
index : INTEGER;

BEGIN

IF (infohead ”.measused <> NIL) AND (infohead *.numdivisions > 2)
THEN BEGIN

ptogroup := infohead “.grouphead;

index := 1;

WHILE ptogroup <> NIL

DO WITH ptogroup ~ DO BEGIN
IF ((freq = minfreq) AND
(infohead ~.numdivisions > mininfo ~.numdivisions))
OR (freqg < minfreq)

THEN BEGIN
mininfo := infohead;
minfreqg := freq;
minindex := index
END;
Ptogroup := nextnode;
index := index + 1
END

END
END; (proc findminfreq }

PROCEDURE combgroups (
VAR infohead : gpinfopointer;
VAR toindex,
fromindex : INTEGER);

VAR ptogroupl,
ptogroupZ,
ptogroup3 : gpnodepointer;
i : INTEGER;

BEGIN

ptogroupl := infohead ~.grouphead;

FOR i := 2 TO toindex

DO pteogroupl := ptogroupl “.nextnode;

ptogroup2 := ptogroupl;

FOR i := toindex+l TO fromindex-1

DO ptogroup2 := ptogroup2 *.nextnode;

ptogroup3 := ptogroup2 “.nextnode;

{ ptogroupl points to group at toindex,
ptogroup2 points to group before fromindex,
ptogroup3 points to group at fromindex }

infohead ".numdivisions := infohead ~.numdivisions - 1;

WITH ptogroupl *

DO BEGIN
members := members + ptogroup3 "~ .members;
freq := freq + ptogroup3 “.freq

END;

ptogroup2 “.nextnode := ptogroup3 ".nextnode:

DISPOSE (ptogroup3)

END; { proc combgroups }

191

PROCEDURE trytocombgroups (
VAR datacomb : BCOLEAN);

VAR minfreq, i, j, numcat,
numonline,
minindex,
toindex : INTEGER;
mininfo : gpinfopointer;
ptogroup : gpnodepointer;
ptomeas : measpointer;

BEGIN
minfreq := MAXINT;
findminfreqg(controw, mininfo, minfreq, minindex);
findminfreq(contcolumn, mininfo, minfreqg, minindex);
IF minfreq = maxint
THEN argfreq := freqtoolow { no possibility of combining groups }
ELSE BEGIN
ptomeas := mininfo “.measused;
IF NOT datacomb
THEN BEGIN
WRITELN;
WRITELN ('Frequencies are low, need to combine categories');
WRITELN('for a qualitative test to be used')
END;
WRITELN;
WRITELN ('Categories in ',
ptomeas " .measname:strlen(ptomeas *.measname),
' have currently been grouped as follows :-');
WRITELN('Group Members','Freq':49);

e i
ptogroup := mininfo “.grouphead;
numcat := ptomeas " .numofcat;

WHILE ptogroup <> NIL
DO WITH ptogroup * DO BEGIN
WRITE(i:4,"' ');
numonline := 0;
FOR j := 1 TO numcat
DO IF j IN members
THEN BEGIN
IF numonline = 3
THEN BEGIN
WRITELN;
WRITE(' Sy
numonline := 0
END;
CASE ptomeas ~.cattype OF

identifier : WRITE (charcatvalue (ptomeas, j):18);
numeral : WRITE (numcatvalue (ptomeas, j):9:2)
END;
numonline := numonline + 1
END ;

WRITELN (freq:58-numonline*18) ;
1= % g;
ptogroup := nextnode
END;
WRITE ('Need to combine those in group',minindex:3);
IF ptomeas ".ordtype = unordered
THEN WRITELN(' with another group')
ELSE WRITELN(' with an adjacent group');
toindex := 0;

192

REPEAT
READLN;
WRITE ('Enter group number to combine with (or NONE) : ');
gettoken;
CASE token.ttype OF
nonetok :
BEGIN
{ user indicates that categories can be combined no more }
argfreq := freqgqtoolow;
dichdata := cannotconv
END;
numeral :
BEGIN
IF (TRUNC (token.tnum) <> minindex) AND
(TRUNC (token.tnum) IN [1..mininfo *.numdivisions])
THEN BEGIN
toindex := TRUNC (token.tnum) ;
IF ptomeas “.ordtype = ordered
THEN IF NOT (toindex IN [minindex-1, minindex+1])
THEN toindex := 0
END;
IF toindex = 0
THEN WRITELN('Error, invalid group number entered')
END;
OTHERWISE WRITELN('Error, invalid command')
END;
UNTIL (token.ttype = nonetok) OR (toindex <> 0):
WRITELN;
IF argfreq <> fregtoolow
THEN BEGIN
datacomb := TRUE;
IF minindex < toindex
THEN BEGIN
i := minindex;
minindex := toindex;
toindex := i
END;
IF controw ”~.measused = ptomeas
THEN combgroups (controw, toindex, minindex) ;
IF contcolumn " .measused = ptomeas
THEN combgroups (contcolumn, toindex, minindex)
END
END
END; { proc trytocombgroups }

PROCEDURE regroupdata (
VAR ptoitem : itempointer;
VAR infohead : gpinfopointer);

PROCEDURE regroup (
VAR fromds,
tods : numpointer;
VAR noitems : INTEGER);

VAR i,
index : INTEGER;
ptogroup : gpnodepointer;

BEGIN
FOR i := 1 TO noitems
DC BEGIN

193

ptogroup := infohead “~.grouphead;

index := 1;
WHILE NOT(TRUNC (fromds ~[i]) IN ptogroup *.members)
DO BEGIN
ptogroup := ptogroup “.nextnode;
index := index + 1
END;
tods “[i] := index
END
END; { proc regroup }

BEGIN { regroupdata }
WITH ptoitem *
DO BEGIN
IF convdata = NIL
THEN BEGIN
NEW (convdata) ;
regroup (attinfo ~.num p, convdata, dsinfo "~.instances)
END
ELSE regroup (convdata, convdata, dsinfo ~.instances)
END
END; { proc regroupdata }

PROCEDURE combassoccat (
VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer:;

BEGIN

ptoitem := ptolisthead *.itemhead;

IF controw “~.numdivisions <> controw “~.measused ”.numofcat

THEN regroupdata (ptoitem, controw);

ptoitem := ptoitem ".nextitem;

IF contcolumn ~.numdivisions <> contcolumn ~.measused ~.numofcat

THEN regroupdata (ptoitem, contcolumn)
END; { proc combassoccat }

PROCEDURE combloccat (

VAR ptolisthead : listheadpointer);
VAR ptoitem : itempointer;
BEGIN

ptoitem := ptolisthead ".itemhead;
WHILE ptoitem <> NIL

DO BEGIN

regroupdata (ptoitem, controw);
ptoitem := ptoitem “~.nextitem
END

END; { proc combloccat }

PROCEDURE checkchifreq (
VAR ptolisthead : listheadpointer;
testclass : classtype);

VAR datacomb : BOOLEAN;
BEGIN

{ form contingency table }
IF testclass = association

194

THEN formassoccont (ptolisthead)
ELSE formloccont (ptolisthead);
datacomb := FALSE;
REPEAT
IF efreqOK
THEN argfreq := freqOK
ELSE trytocombgroups (datacomb) ;
UNTIL argfreq <> frequnknown;
IF (argfreq = freqgOK) AND datacomb
THEN IF testclass = association
THEN combassoccat (ptolisthead)
ELSE combloccat (ptolisthead)
END; { proc checkchifreq }

PROCEDURE performsummary (
VAR ptolisthead : listheadpointer)

{ summarise data levels of arguments
in list headed by ptolisthead }

VAR ptoitem : itempointer;
ptoatt : attnodepointer:;

BEGIN
ptoitem := ptolisthead *.itemhead;
WHILE (ptoitem <> NIL) AND (argsummary <> novalidstate)
DO BEGIN
ptoatt := ptoitem ~.attinfo;
IF ptoatt ~.datalevel = ratio
THEN CASE argsummary OF

startstate : argsummary := allrat;
allord : argsummary := ordgnt;
allglt : argsummary := nomgnt;
OTHERWISE

END

ELSE IF ptoatt "“.datalevel = interwval
THEN CASE argsummary OF

startstate, allrat : argsummary := intrat;
allord : argsummary := ordgnt;
allqglt : argsummary := nomgnt;
OTHERWISE

END

ELSE IF pteoatt ~.datalevel = rank
THEN CASE argsummary OF
startstate..allgnt : argsummary := rankgnt;
ordgnt, allord : argsummary := rankqlt;
nomgnt, allglt : argsummary := novalidstate;
CTHERWISE
END
ELSE IF ptoatt “.meas_p ”".meas_type = quantmeas
{ ordinal quantitative }
THEN CASE argsummary OF

startstate..intrat : argsummary := allgnt;
allord : argsummary := ordgnt;
allglt : argsummary := nomgnt;
OTHERWISE
END

ELSE IF ptoatt ".meas_p ".ordtype = ordered
{ ordinal qualitative }
THEN CASE argsummary OF
startstate : argsummary := allord;
allrat..allgnt : argsummary := ordgnt;

195

rankgnt : argsummary := rankqglt;
OTHERWISE
END
ELSE IF ptoatt ".meas_p “.settype = closedset
{ nominal closed set }
THEN CASE argsummary OF

startstate, allord : argsummary := allglt;
allrat..allgnt, ordgnt : argsummary := nomqgnt;
rankgnt, rankglt : argsummary := novalidstate;
OTHERWISE

END

ELSE { nominal open set } argsummary := novalidstate;
ptoitem := ptoitem ~.nextitem
END
END; { proc performsummary }

{¥*x*x*kxxkxx* converting data for test routines ***xxkxkkxx)

PROCEDURE convertdata (
ptoitem : itempointer;
VAR ptoregmeas : measpointer;
VAR stateofdata : datastate);

{ check that arg in ptoitem is measured using reqmeas,
if not see if the data can be converted,
set stateofdata to cannotconv if conversion not possible }

VAR argmeas : word;
convreqg : BOOLEAN;
ptoconv : convpointer;
i : INTEGER;

BEGIN
argmeas := ptoitem “.attinfo “.meas _p ”.measname;
convreq := argmeas <> ptoreqmeas " .measname;
IF convreq
THEN BEGIN
convsearch(conv_root, ptoitem*.attinfo”.meas_p”.measname
+ ptoregmeas”.measname, ptoconv) ;
IF ptocenv = NIL
THEN getconvinfo(ptoitem®.attinfo”.meas_p, ptoreqmeas, ptoconv);
IF ptoconv = NIL
THEN stateofdata := cannotconv
END;
IF (stateofdata <> cannotconv) AND (ptoitem ~.nextitem <> NIL)
THEN convertdata (ptoitem "~ .nextitem, ptoregmeas, stateofdata);
IF stateofdata <> cannotconv THEN
IF convreqg
THEN BEGIN
IF ptoitem ~.convdata = NIL
THEN NEW(ptoitem “.convdata);
ptoitem ”.measinfo := ptoregmeas;
performconv(ptoconv, ptoitem ~. attinfo “.num p *,
ptoitem ~.convdata *, ptoitem “~.dsinfo ~.instances)
END
END; { proc convertdata }

PROCEDURE checksamemeas (
VAR ptolisthead : listheadpointer;
measspec : sortofmeas;

196

VAR stateofdata : datastate);

{ see if all data measured using same suitable meas scheme,
if not ask for scheme tc use and check conversions possible,
set stateofdata to appropriate value }

VAR ptoitem : itempointer;
ptomeas : measpointer;
meastouse : word;

PRCCEDURE checkconv;

BEGIN

stateofdata := convOK;

convertdata (ptolisthead ~.itemhead, ptomeas, stateofdata):
IF stateofdata = cannotconv
THEN stateofdata := dataunknown

END; { proc checkconv }

BEGIN { checksamemeas }
ptoitem := ptolisthead ~.itemhead;
ptomeas := ptoitem ”.attinfo ”.meas_p:
REPEAT
ptoitem := ptoitem ".nextitem;
IF ptomeas <> ptoitem “.attinfo ".meas_p
THEN ptomeas := NIL;
UNTIL (ptcitem ~.nextitem = NIL) OR (ptomeas
IF ptomeas <> NIL
THEN IF meastypeOK(ptomeas, measspec)
THEN statecfdata := origOK;
IF stateofdata = dataunknown
THEN BEGIN
WRITELN;
WRITELN ('Each argument needs to be measured with the same');
CASE measspec OF
quant :
WRITELN(' gquantitative measurement scheme');
ordqual :
WRITELN(' ordered qualitative measurement scheme');
unordqual :
WRITELN(' wunordered qualitative measurement scheme');
orddich s
WRITELN(' ordered dichotomous measurement scheme');
unorddich :
WRITELN (' wunordered dichotomous measurement scheme')
END; 5
REPEAT
READLN;
WRITE ('Enter measurement scheme to use (or NONE) : ');
gettoken;
WRITELN;
CASE token.ttype OF
nonetok : statecfdata := cannotconv;

NIL) ;

showargmeas : displayargmeas (ptolisthead);
showcandmeas : displaycandmeas (measspec) ;
identifier :

BEGIN

meastouse := token.tchars;

meassearch (meas_root, meastouse, ptomeas);
IF ptomeas = NIL
THEN BEGIN
IF wantstodecmeas
THEN BEGIN

197

IF measspec = gquant
THEN getquantinfo (meastouse, ptomeas)
ELSE getqualinfo (meastouse, measspec, ptomeas);
checkconv
END
END
ELSE IF ptomeas <> NIL
THEN IF meastypeCK (ptomeas, measspec)
THEN checkconv
ELSE WRITELN('Error, measurement scheme entered is’',
' not of an appropriate type')
END;
OTHERWISE WRITELN('Error, invalid command')
END;
UNTIL statecfdata <> dataunknown
END
END; { proc checksamemeas }

PROCEDURE disposegenglt (
VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer;

BEGIN
ptoitem := ptolisthead “.itemhead;
WHILE ptoitem <> NIL
DO WITH ptoitem ~ DO BEGIN
IF measinfo <> NIL
THEN IF measinfo “.meas_type = qualmeas
THEN BEGIN
DISPOSE (convdata) ;
convdata := NIL;
measinfo := NIL

END;
ptoitem := nextitem
END;
gltdata := dataunknown

END; { proc disposegenglt }

PROCEDURE categoriseqnt (
VAR ptoitem : itempointer;
VAR stateofdata : datastate);

{ for nomcat, work through args any for any which are quant
find out if the data can be categorised and how }

VAR ptoargmeas,
ptoregmeas : measpointer;
ptoconv : convpointer;
meastouse : word;

PROCEDURE checkconv;

BEGIN
convsearch (conv_root, ptoargmeas ~.measname +
ptoregmeas ”.measname, ptoconv);
IF ptoconv = NIL
THEN getconvinfo (ptoargmeas, ptoregqmeas, ptoconv);
IF ptoconv = NIL
THEN stateofdata := dataunknown
ELSE stateofdata := convOK

198

END; { proc checkconv }

BEGIN { categoriseqnt }
ptoargmeas := ptoitem ~.attinfo “~.meas_p;
ptoconv := NIL;
IF ptoargmeas ”~.meas_type = quantmeas
THEN BEGIN
WRITELN;
WRITE ('Attribute ') ;
displayarg (ptoitem) ;
WRITELN(' is measured in ', ptoargmeas ”~.measname) ;
WRITELN ('and needs to be converted to an ordered',
' qualitative scheme');
REPEAT
READLN;
WRITE ('Enter measurement scheme to use (or NONE) : ');
gettoken;
CASE token.ttype OF
nonetok : stateofdata := cannotconv;
showcandmeas : displaycandmeas (ordqual) ;
identifier :
BEGIN
meastouse := token.tchars;
meassearch (meas_root, meastouse, ptoreqmeas);
IF ptoregmeas = NIL
THEN BEGIN
IF wantstodecmeas
THEN BEGIN
getqualinfo(meastouse, ordqual, ptoregmeas):
checkconv
END
END
ELSE IF ptoregmeas <> NIL
THEN IF meastypeOK (ptoreqgmeas, ordqual)
THEN checkconv
ELSE WRITELN('Error, measurement scheme entered',
' is not of an appropriate type')

END;
OTHERWISE WRITELN ('Error, invalid command')
END;
UNTIL stateofdata <> dataunknown;
WRITELN
END;

IF (stateofdata <> cannotconv) AND (ptoitem ~.nextitem <> NIL)
THEN categorisegnt (ptoitem “.nextitem, stateofdata);
IF (ptoconv <> NIL) AND (stateofdata <> cannotconv)

THEN BEGIN

NEW (ptoitem ”.convdata);

ptoitem ~.measinfo := ptoregmeas:

performconv (ptoconv, ptoitem “~.attinfo “.num p *,

ptoitem ~.convdata ”, ptoitem ~.dsinfo “.instances)
END
END; { proc categoriseqnt }

PROCEDURE dichgltdata ¢

VAR ptolisthead : listheadpointer);
VAR ptomeas : measpointer;
BEGIN

WITH pteolisthead ~.itemhead *
DO IF measinfo <> NIL

199

THEN ptomeas := measinfo
ELSE ptomeas := attinfo ~.meas_p;
IF meastypeCK(ptomeas, dich)
THEN dichdata := gltdata
ELSE BEGIN
combloccat (ptolisthead) ;
dichdata := convOK
END
END; (proc dichgltdata }

{X*xxkxxkk*x*x tost level routines *xxx%kskskkk |

PROCEDURE validatetest (
VAR candtest : valid tests;
ptocheck : checkpointer;
VAR ptolisthead : listheadpointer;
VAR ptofailcheck : checkpointer);

{ apply checks headed by ptocheck to arguments in list
ptolisthead and set ptofailcheck to any checknode
where a requirement cannot be met }

VAR testOK : BOOLEAN;

BEGIN
testOK := TRUE;
WHILE (ptocheck <> NIL) AND testOK
DO BEGIN
CASE ptocheck *.semcheck OF
twosample :
checknumargs (twosample, ptolisthead “.no_items, testOK);
relatedinst :
BEGIN
IF argsrel = relunknown
THEN checkrelargs (ptolisthead);
testOK := argsrel = related
END;
normal :
BEGIN
IF argsnormal = normunknown
THEN checknormalargs (ptolisthead);
testOK := argsnormal IN [normalCK, assnormal]
END;
eqgvar :
BEGIN
IF argvar = varunknown
THEN checkeqvar (ptolisthead);
testOK := argvar IN [egvarOK, asseqvar]
END;
nige30 :
BEGIN
IF numinst = instunknown
THEN checknige30 (ptolisthead) ;
testOK := numinst = instOK
END;
chifreq :
BEGIN
IF argfreqg = frequnknown
THEN BEGIN
IF candtest IN (pearson..coeff of cont]
THEN checkchifreq(ptolisthead, association)

200

ELSE checkchifreqg(ptolisthead, location)

END;

testOK := argfreq = freqOK
END;
egratgnt..eqgdichcat
BEGIN

IF argsummary = startstate
THEN performsummary(ptolisthead) ;
CASE ptocheck ~.semcheck OF
egratgnt
IF argsummary = allrat
THEN BEGIN
IF gntdata = dataunknown
THEN checksamemeas (ptolisthead, quant, gntdata);
IF gntdata = cannotconv
THEN testQOK := FALSE
ELSE IF gltdata = convOK
THEN disposegenglt (ptolisthead)

END

ELSE testOK := FALSE;
ratgnt :

IF argsummary <> allrat

THEN testOK := FALSE

ELSE IF gltdata = convOK
THEN disposegenglt (ptolisthead) ;
egintgnt :
IF argsummary IN [allrat, intrat]
THEN BEGIN
IF gntdata = dataunknown
THEN checksamemeas (ptolisthead, quant, gntdata):
IF gntdata = cannotconv
THEN testOK := FALSE
ELSE IF gltdata = convOK
THEN disposegenglt (ptolisthead)
END
ELSE testOK := FALSE;
intgnt :
IF NOT (argsummary IN [allrat, intrat])
THEN testOK := FALSE
ELSE IF gltdata = convOK
THEN disposegenglt (ptolisthead) ;
ranked :
IF NOT (argsummary IN [allrat..rankgnt])
THEN testOK := FALSE;
eqgordgnt :
IF argsummary IN [allrat..allqgnt]
THEN BEGIN
IF gntdata = dataunknown
THEN checksamemeas (ptolisthead, quant, gntdata);
IF gntdata = cannotconv
THEN testOK := FALSE
ELSE IF gltdata = convOK
THEN disposegenglt (ptolisthead)

END
ELSE testOK := FALSE;
egordglt :
IF argsummary IN [allrat..allgnt, ordgnt, allord]
THEN BEGIN

IF (argsummary IN [allrat..allgnt])
AND (gntdata = dataunknown)
THEN BEGIN
checksamemeas (ptolisthead, quant, gntdata);
IF (gntdata <> cannotconv) AND (gltdata = convOK)

201

THEN disposegenglt (ptolisthead)
END;
IF NOT (gntdata IN [origOK, convOK])
AND (gltdata = dataunknown)
THEN BEGIN
checksamemeas (ptolisthead, ordqual, gltdata):
IF gltdata = cannotconv THEN dichdata := cannotconv
END;
testOK := (gntdata IN [origOK, convOK]) OR
(gltdata IN [origQOK, convOK])
END
ELSE testOK := FALSE;
ordglt
IF NOT (argsummary IN [allrat..allord])
THEN testOK := FALSE
ELSE IF gltdata = convOK
THEN disposegenglt (ptolisthead) ;
egnomcat :
BEGIN
IF (argsummary IN [allrat..allgnt, ordgnt..allord])
AND (gltdata = dataunknown)

THEN BEGIN

checksamemeas (ptolisthead, ordgqual, gltdata);

IF gltdata = cannotconv THEN dichdata := cannotconv
END

ELSE IF (argsummary = allglt) AND (gltdata = dataunknown)
THEN BEGIN

checksamemeas (ptolisthead, unordqual, gltdata);

IF gltdata = cannotconv THEN dichdata := cannotconv
END;
testOK := gltdata IN [origOK, convOK]
END;
nomcat :

IF (argsummary IN [rankgnt, rankglt, novalidstate])

OR (gltdata = cannotconv)
THEN testOK := FALSE
ELSE IF (argsummary IN [allrat..allgnt, ordgnt, nomgnt])

AND (gltdata = dataunknown)
THEN BEGIN
categoriseqgnt (ptolisthead ~.itemhead, gltdata):;
IF gltdata = cannotconv

THEN BEGIN
testOK := FALSE;
dichdata := cannotconv
END
END;
egdichcat :
BEGIN

IF NOT (argsummary IN [rankgnt, rankglt, novalidstate])
AND (dichdata = dataunknown)
THEN BEGIN
IF gltdata IN [origOK, convOK]
THEN dichqgltdata (ptolisthead)
ELSE IF (argsummary IN [allrat..allgnt, ordgnt..allord])
THEN BEGIN
checksamemeas (ptolisthead, orddich, dichdata);
IF dichdata = cannotconv
THEN gltdata := cannotconv
END
ELSE checksamemeas (ptolisthead, unorddich, dichdata)
END;
testOK := dichdata IN [origOK, convOK]
END

202

END

END

END;

IF testOK THEN ptocheck := ptocheck ~.nextcheck
END ;
IF testOK
THEN ptofailcheck := NIL
ELSE ptofailcheck := ptocheck

END; { proc validatetest }

PROCEDURE showtestreqg (
VAR testtoapply : valid tests;
ptocheck : checkpointer);

BEGIN
WRITELN;
WRITELN('The requirements for ',testtoapply:16,
' are as follows :=');
WRITELN;
WHILE ptocheck <> NIL
DO WITH ptocheck * DO BEGIN
CASE semcheck OF

twosample :

WRITELN(' The test is used in a two sample situation');
relatedinst :

WRITELN(' The instances of each sample should be related'):;
normal :

WRITELN(' The data in each sample should be normally’,

' distributed');

egvar :

WRITELN(' The variance of each sample should be equal');
nige30 :

WRITELN(' Each sample should be measured for at least 30°',
' instances');
chifreq :
BEGIN
WRITELN(' The frequencies for each of the measurement');
WRITELN (' scheme categories should not be too small')
END;
egdichcat :
WRITELN(' The data should be formed into a dichotomy',
' in the same way');
nomcat :
BEGIN
WRITELN(' The data should be measured using closed');
WRITELN(' qualitative measurement schemes')
END;
egnomcat :
BEGIN
WRITELN(' The data should be measured using the same');
WRITELN (' closed qualitative measurement scheme')
END;
ordaglt o
WRITELN(' The data should be measured on at least an',
' ordinal scale');
egqordglt :
BEGIN
WRITELN(' The data should be measured on at least an'):;
WRITELN(" ordinal scale using the same measurement scheme')
END;
ranked :
WRITELN(' The data should be quantitative or rank'):;

203

egordgnt :

BEGIN
WRITELN(' The data should be quantitative and measured');
WRITELN (' using the same measurement scheme')

END;

intgnt :

WRITELN(' The data should be measured on at least an',

' interval scale'):;

egintgnt :

BEGIN
WRITELN(' The data should be measured on at least an');
WRITELN (' interval scale using the same measurement',

' scheme')

END ;

ratgqnt :

WRITELN(' The data should be measured on a ratio scale');

eqgratgnt :

BEGIN
WRITELN(' The data should be measured on a ratio scale');
WRITELN (' using the same measurement scheme')

END

END;
ptocheck := nextcheck
END
END; { proc showtestreq }

PROCEDURE expfailedcheck (
VAR semcheck : validreqgs):

BEGIN
WRITELN;
WRITE ('The requested test was not acceptable because ');
CASE semcheck OF
twosample :
BEGIN
WRITELN ('more than two');
WRITELN(' arguments have been given')
END;
relatedinst :
BEGIN
WRITELN('the arguments');
WRITELN(' are not related')
END;
normal :
BEGIN
WRITELN ('normality'):
WRITELN(' cannot be assumed for each sample')
END;
egvar :
BEGIN
WRITELN('equality of');
WRITELN (' wvariances cannot be assumed')
END;
nige30 :
BEGIN
WRITELN ('each argument');
WRITELN(' doces not have 30 or more instances')
END;
chifreq :
BEGIN
WRITELN('the frequencies');
WRITELN(' of the measurement scheme categories are too small')

204

END;
egdichcat :

IF dichdata = cannotconv

THEN BEGIN
WRITELN;
WRITELN('

END

ELSE BEGIN
WRITELN;
WRITELN('

END;

nomcat,

the data cannot be converted into a suitable form')

the level of measurement of the data is unsuitable')

egnomcat :

IF gltdata = cannotconv

THEN BEGIN
WRITELN;
WRITELN('

END

ELSE BEGIN
WRITELN;
WRITELN('

END;

ordglt, ranked, intqgnt,

BEGIN
WRITELN;
WRITELN ('

END;

egordglt :

IF gltdata =

THEN BEGIN
WRITELN;
WRITELN ('

END

ELSE BEGIN
WRITELN;
WRITELN ("

END;

the quantitative data cannot be categorised')

the level of measurement of the data is unsuitable!')

ratgnt

the level of measurement of the data is unsuitable')

cannotconv

the data cannot be converted into a suitable form')

the level of measurement of the data is unsuitable')

egordgnt, egintgnt, egratgnt :
IF gntdata = cannotconv

THEN BEGIN
WRITELN;
WRITELN("

END

ELSE BEGIN
WRITELN;
WRITELN ('

END

END
END;

the data cannot be converted into a suitable form')

the level of measurement of the data is unsuitable')

{ proc expfailedcheck }

PROCEDURE displaycombcats;

PROCEDURE showgroups (

VAR infohead

VAR i,
ptogroup

BEGIN

j, numonline :

: gpinfopointer);

INTEGER;
gpnodepointer;

WITH infohead *

DO BEGIN

WRITELN('Categories in ',
measused "~.measname:strlen(measused *.measname),

205

' have been grouped as follows :-');
i = 1;
ptogroup := grouphead;
WHILE ptogroup <> NIL
DO WITH ptogroup ~ DO BEGIN

WNRITE(Y (')
numonline := 0;
FOR j := 1 TO measused “.numofcat
DO IF j IN members
THEN BEGIN
IF numonline = 3
THEN BEGIN
WRITELN;
WRITE(" L0 I
numonline := 0
END;

CASE measused ".cattype OF
identifier : WRITE (charcatvalue (measused, j):18);

numeral : WRITE (numcatvalue (measused, j):9:2)
END;
numonline := numonline + 1
END;
WRITELN(') ') :

i o= 3% 1.
ptogroup := nextnode
END
END;
WRITELN
END; { proc showgroups }

BEGIN { displaycombcats }
IF controw ".numdivisions <> controw ".measused ”.numofcat
THEN showgroups (controw) ;
IF contcolumn ~.measused <> NIL
THEN IF (contcolumn ”.measused <> controw ”~.measused) AND
(contcolumn ~.numdivisions <>
contcolumn *.measused ~.numofcat)
THEN showgroups (contcolumn)
END; { proc displaycombcats }

PROCEDURE displayconvargs (
VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer;

BEGIN
ptoitem := ptolisthead “.itemhead;
WHILE ptoitem <> NIL
DO WITH ptoitem ~ DO BEGIN
IF measinfo <> NIL

THEN BEGIN
displayarg(ptoitem) ;
WRITELN (' converted from ', attinfo “.meas_p ".measname

:strlen(attinfo ~.meas_p ".measname),
' to ', measinfo “.measname)

END;
ptoitem := nextitem
END;
WRITELN
END; { proc displayconvargs }

206

PRCCEDURE reviewtestchecks (
VAR ptolisthead : listheadpointer;
ptocheck : checkpointer);

BEGIN

WHILE ptocheck <> NIL
DO WITH ptocheck *~ DO BEGIN
CASE semcheck OF

normal :
IF argsnormal = assnormal
THEN BEGIN
WRITELN('Warning, care should be taken when interpreting');
WRITELN(' the results since the test assumes that the');
WRITELN(' data is normally distributed’);
WRITELN
END;
eqvar :
IF argvar = assegvar
THEN BEGIN
WRITELN('Warning, care should be taken when interpreting');
WRITELN(' the results since the test assumes that the');
WRITELN(' sample variances are equal');
WRITELN
END;

chifreq : displaycombcats;
eqratgnt, egintgnt, eqgordgnt, egordqlt :
IF explain AND ((gntdata = convOK) OR (gltdata = convOK))
THEN BEGIN
WRITELN('The data has been converted to the same ‘',
'measurement scheme');
displayconvargs (ptolisthead)
END;
eqgnomcat :
IF explain AND (gltdata = convOK)
THEN BEGIN
WRITELN('The data has been converted to the same ‘',
'qualitative measurement scheme');
displayconvargs (ptolisthead)
END;
nomcat :
IF explain AND (gltdata = convOK)
THEN BEGIN
WRITELN('All quantitative data has been converted ',
'to qualitative data');
displayconvargs (ptolisthead)
END;
egdichcat :
IF explain AND (dichdata = convCK)
THEN BEGIN
IF gltdata = convOK
THEN BEGIN
WRITELN('The data has been converted to the same ',
'qualitative measurement scheme');
displayconvargs (ptolisthead) ;
displaycombcats
END
ELSE IF gltdata = origOK
THEN displaycombcats
ELSE BEGIN
WRITELN ('The data had been converted to the same ',
'dichotomous measurement scheme');
displayconvargs (ptolisthead)
END

207

END

END;
ptocheck := nextcheck
END
END; { proc reviewtestchecks }

PROCEDURE dispcsecontinfo (
VAR infohead : gpinfopointer);

VAR ptogroup : gpnodepointer;

BEGIN
WHILE infohead “~.grouphead <> NIL
DO BEGIN
ptogroup := infohead *.grouphead;
infohead “.grouphead := ptogroup ~.nextnode;
DISPOSE (ptogroup)
END;
DISPOSE (infohead)
END; { disposecontinfo }

PROCEDURE checktestreq (
VAR testclass : classtype;
VAR testchecks : ARRAY([firsttest..lasttest:statcomms]
OF checkpointer;
VAR usertest : valid tests);

VAR testclassstr : textmessage;
ptolisthead : listheadpointer;
testtoapply : valid tests;
state : (searching, testfound, searchfailed);
showargs : BOOLEAN;
ptofailcheck : checkpointer;

BEGIN

CASE testclass OF
association : testclassstr := 'measure of association ';
location ¢ testclassstr := 'test of location '

END;
showargs := listheadhead ”.nexthead <> NIL;

ptolisthead := listheadhead;
WHILE ptolisthead <> NIL
DO BEGIN
IF showargs
THEN BEGIN
WRITELN;
WRITELN('Considering the following arguments :-');
WRITELN;
displayarglist (ptolisthead)
END;
{ initialise variables for current list }
testtoapply := usertest;
argsummary := startstate;
argsrel := relunknown;
argsnormal := normunknown;
argvar := wvarunknown;
numinst := instunknown;
argfreq := frequnknown;

controw := NIL;
contcolumn := NIL;
conttotal := 0;

gntdata := dataunknown;

gltdata := dataunknown;
dichdata := dataunknown;
state := searching;

IF testtoapply <> nulltest
THEN BEGIN
{ see if user specified test can be applied }
validatetest (testtoapply, testchecks[testtoapply],
ptolisthead, ptofailcheck);
IF ptofailcheck = NIL
THEN state := testfound
ELSE BEGIN
IF explain
THEN BEGIN
showtestreq(testtoapply, testchecks[testtoapply]):
expfailedcheck (ptofailcheck *.semcheck)
END
ELSE BEGIN
WRITELN;
WRITELN('User specified test cannot be applied!')
END;
WRITELN;
REPEAT
READLN;
WRITE ('Do you wish to search for a ',
testclassstr, '(yes/no) : *');
gettoken;
UNTIL token.ttype IN [yestok, notok]:;
WRITELN;
IF token.ttype = notok
THEN state := searchfailed

END
END;
IF state = searching THEN testtoapply := firsttest;
WHILE state = searching { consider next test }
DO BEGIN

validatetest (testtoapply, testchecks[testtoapply],
ptolisthead, ptofailcheck);
IF ptofailcheck = NIL
THEN BEGIN
WRITELN;
WRITELN('Recommended ',testclassstr,'is ',testtoapply:16);
IF explain
THEN showtestreq(testtoapply, testchecks[testtoapply]):;
WRITELN;
REPEAT
READLN;
WRITE('Do you wish to apply this test (yes/no) : ');
gettoken;
UNTIL token.ttype IN [yestok, notok];
WRITELN;
IF token.ttype = yestok
THEN state := testfound
ELSE state := searchfailed

END
ELSE IF testtoapply = lasttest
THEN BEGIN
state := searchfailed;
WRITELN;

WRITELN('End of list reached, cannot get data into a form');
WRITELN('to apply a ',testclassstr)

END

ELSE testtoapply := SUCC(testtoapply)

209

END ;
IF state = testfound
THEN BEGIN
WRITELN;
reviewtestchecks (ptolisthead, testchecks[testtoapply]);
WRITELN('Call proc to apply ',testtoapply)
END;
IF conttotal <> 0
THEN BEGIN
disposecontinfo (controw) ;
disposecontinfo (contcolumn)

END;
ptolisthead := ptolisthead “.nexthead
END
END; { proc checktestreq }

{***xxxxxxx* type of test level routines ****x**x*xxxx}

PROCEDURE removeitem (
VAR itemtoremove : itempointer;
VAR ptolisthead : listheadpointer):;

{ removes itemtoremove from the list
of items in ptolisthead }

VAR item : itempointer:;

BEGIN

item := ptolisthead *~.itemhead;

WHILE item “.nextitem <> itemtoremove

DO item := item ~.nextitem;

item “~.nextitem := itemtoremove “~.nextitem;
itemtoremove ~.nextitem := NIL;

ptolisthead ".no_items := ptolisthead “.no_items - 1
END; { proc removeitem }

PROCEDURE createlist (
VAR itemtomove : itempointer;
VAR currentlisthead,
lastlisthead : listheadpointer):

{ creates a new list head after lastlisthead
and moves itemtomove from currentlisthead
into the new list }

VAR newlisthead : listheadpointer;

BEGIN

removeitem(itemtomove, currentlisthead);
NEW(newlisthead) ;

WITH newlisthead *

DO BEGIN

nexthead := lastlisthead ”.nexthead;
ne_items := 1;

itemhead := itemtomove
END;

lastlisthead ~.nexthead := newlisthead;
lastlisthead := newlisthead
END; { proc createlist }

210

PRCCEDURE addtolist (
VAR itemtomove : itempointer;
VAR oldlisthead,
newlisthead : listheadpointer);

{ moves itemtomove from oldlisthead to newlisthead }
VAR item : itempointer;

BEGIN

removeitem(itemtomove, oldlisthead) ;

item := newlisthead *.itemhead;

WHILE item “.nextitem <> NIL

DO item := item "“.nextitem;

item ”.nextitem := itemtomove;

newlisthead “~.no_items := newlisthead ”~.no_items + 1
END; { proc addtolist }

PROCEDURE disposeoflist (
VAR headoflists : listheadpointer);

{ dispose of listhead and item nodes in headoflists }

VAR ptolisthead : listheadpointerx;
item : itempointer;

BEGIN
WHILE headoflists <> NIL
DO BEGIN
ptolisthead := headoflists;
headoflists := ptolisthead ~.nexthead;
WHILE ptolisthead ~.itemhead <> NIL
DO BEGIN
item := ptolisthead “~.itemhead;
ptolisthead "~.itemhead := item “.nextitem;
IF item “~.convdata <> NIL
THEN DISPOSE (item “.convdata);
DISPOSE (item)
END;
DISPOSE (ptolisthead)
END
END; { proc disposeoflist }

PROCEDURE checkclassreq (
currentcheck : checkpointer);

{ perform checks for class of tests on given
arguments in listheadhead }

VAR listtocheck,

nextlisthead,

lastlisthead,

reglisthead : listheadpointer;

itemtocheck,

nextlistitem : itempointer;

state : (listnotfound, samelist, difflist, newlist);

checkOK : BOOLEAN;

BEGIN
WHILE currentcheck <> NIL

DO BEGIN
listtocheck := listheadhead;
WHILE listtocheck <> NIL
DO BEGIN
nextlisthead := listtocheck *.nexthead;
lastlisthead := listtocheck;
itemtocheck := listtocheck "~.itemhead ~.nextitem;
WHILE itemtocheck <> NIL

DO BEGIN
reglisthead := listtocheck;
state := listnotfound;
nextlistitem := itemtocheck “.nextitem;
WHILE state = listnotfound
DO BEGIN
CASE currentcheck *.semcheck OF
egdomains .
checkegdom(reglisthead ~.itemhead, itemtocheck, checkOK) ;
relatedinst :

checkrelinsts (reglisthead “.itemhead ~.dsinfo,
itemtocheck ~.dsinfo, checkOK);

simenttype :

checkenttype (reglisthead ~.itemhead,
itemtocheck, checkOK)

END;
IF checkOK
THEN BEGIN
IF reglisthead = listtocheck
THEN state := samelist
ELSE state := difflist
END

ELSE IF reglisthead = lastlisthead
THEN state := newlist
ELSE reglisthead := reglisthead ”~.nexthead
END;
IF state = newlist
THEN createlist (itemtocheck, listtocheck, lastlisthead)
ELSE IF state = difflist
THEN addtolist (itemtocheck, listtocheck, reqglisthead);

itemtocheck := nextlistitem
END;
listtocheck := nextlisthead
END;
currentcheck := currentcheck “.nextcheck
END

END; { proc checkclassreq }

PROCEDURE expclassregs (
VAR testclassstr : textmessage;
ptocheck : checkpointer);

BEGIN
WRITELN;
WRITELN('The requirement(s) for a ', testclassstr,
'are as follows :-');
WRITELN;
WHILE ptocheck <> NIL
DO WITH ptocheck * DO BEGIN
CASE semcheck CF
egdomains :
WRITELN(' Each sample should be measuring the ',
'same quality or quantity.'):
relatedinst :

WRITELN(' The instances of each sample should be related.'):;

simenttype

WRITELN(' Each sample should be measured for ',
'the same type of entity.')

END ;
ptocheck := nextcheck
END
END; { proc expclassreqgs }

PROCEDURE reviewclasschecks (
VAR testclass : classtype:
VAR typeoftestargs : testtype):;

{ explain result of performing class checks }

VAR testclassstr : textmessage;
invalidlists,
lastinvalid,
validlists,
lastvalid,
ptolisthead,
nextlisthead : listheadpointer;
numargsOK : BOOLEAN;

PROCEDURE addtolist (¢
VAR head,
last,
current : listheadpointer);

BEGIN
IF head = NIL
THEN head := current
ELSE last *.nexthead := current;
last := current;
last ~.nexthead := NIL
END; { proc addtolist }

BEGIN { reviewclasschecks }
CASE testclass OF
association : testclassstr :
location : testclassstr := 'test of location
END;
invalidlists := NIL;
validlists := NIL;
ptolisthead := listheadhead;
WHILE ptolisthead <> NIL
DO BEGIN
nextlisthead := ptolisthead ~.nexthead;
checknumargs (typeoftestargs, ptolisthead ~.no_items, numargsOK) ;
IF numargsOK
THEN addtolist (validlists, lastvalid, ptolisthead)
ELSE addtolist (invalidlists, lastinvalid, ptolisthead);
ptolisthead := nextlisthead
END;
IF wvalidlists = NIL
THEN BEGIN
IF explain
THEN expclassregs (testclassstr, class_checks[testclass]);
WRITELN;
WRITELN('No ', testclassstr, 'can be applied.')

END
ELSE IF (validlists ~.nexthead <> NIL) OR (invalidlists <> NIL)

= 'measure of association ';
L}

213

THEN BEGIN
{ more than one valid list or an invalid list,
need to explain situation to user }
IF explain
THEN expclassregs(testclassstr, class_checks[testclass]);
IF invalidlists <> NIL
THEN BEGIN
WRITELN;
WRITELN('Cannot apply a ',testclassstr,
'to the following argument(s)'):
WRITELN;
ptolisthead := invalidlists;
WHILE ptolisthead <> NIL

DO BEGIN
displayarglist (ptolisthead) ;
ptolisthead := ptolisthead ~.nexthead
END
END;
WRITELN;
WRITE('Can apply a ', testclassstr);

IF validlists ”~.nexthead = NIL

THEN WRITELN('to the remaining arguments')

ELSE WRITELN('to each of the following groups');
WRITELN;

ptolisthead := validlists;
WHILE ptolisthead <> NIL
DO BEGIN
displayarglist (ptolisthead) ;
WRITELN;
ptolisthead := ptolisthead “.nexthead
END;
REPEAT
READLN;
WRITE ('Do you wish to continue (yes/no) : ');
gettoken;
UNTIL token.ttype IN [yestok, notok]:
WRITELN;

IF token.ttype = notok
THEN disposeoflist(validlists)
END;
listheadhead := validlists;
disposeoflist (invalidlists)
{ will apply a testclass to each list in listheadhead
which will be NIL if no tests are tc be applied }
END; { proc reviewclasschecks }

{kx*xx*xx%xx*x preliminary and controlling routines ***k*xkxkx*}

PROCEDURE genitemncde (
VAR head,
current : itempointer;
VAR ptods : dsnodepointer;
VAR ptoatt : attnodepointer);

{ generate itemnode for an argument of a test, add to
list headed by head and set current to point to it }

BEGIN
IF head = NIL
THEN BEGIN
NEW (head) ;

214

current := head
END
ELSE BEGIN

NEW (current " .nextitem);
current := current “~.nextitem

END;
WITH current °

DO BEGIN

dsinfo := ptods;
attinfo := ptoatt;
convdata := NIL;
measinfo := NIL;
nextitem := NIL

END

END; { proc genitemnode }

PROCEDURE procstatreq (
testclass : classtype;
testname : valid_tests;
typeoftestargs : testtype);

{ process a user request to perform a statistical test:
read in arguments; perform class checks; review result
of class checks; perform any tests }

LABEL endofproc;

VAR dsname,
attname : word;
ptods : dsnodepointer;
ptoatt : attnodepointer;
ptoitem : itempointer;
numargsOK : BOOLEAN;

PROCEDURE dealwitherror (
errorstate : errortype;
errorarg : textmessage);

BEGIN
reporterror (errorstate, errorarg);
GOTO endofproc

END; { proc dealwitherror }

BEGIN { procstatreq }
{ initialise listheadhead }
NEW (listheadhead) ;
WITH listheadhead *
DO BEGIN
nexthead := NIL;
no_items := 0;
itemhead := NIL;
{ read in arguments }
gettoken;
WHILE token.ttype <> endofline
DO BEGIN
IF token.ttype <> identifier
THEN dealwitherror(invarg, nullname) ;
dsname := token.tchars;
gettoken;
IF token.ttype <> dot
THEN dealwitherror (invarg, nullname) ;
gettoken;

215

IF token.ttype <> identifier
THEN dealwitherror(invarg, nullname) ;
attname := token.tchars;
dstypesearch (ds_root, dsname, ptods);
IF ptods = NIL
THEN dealwitherror(dsmiss, dsname);
IF ptods ".attchain = NIL
THEN dealwitherror(noatts, dsname);
atttypesearch (ptods “~.attchain, attname, ptoatt):
IF ptoatt = NIL
THEN dealwitherror(attmiss, substr(dsname,l,strlen(dsname))
+ '.' + attname);
IF ptods “~.instances < 3
THEN dealwitherror(insuffinst, dsname);
genitemnode (itemhead, ptoitem, ptods, ptoatt):;
no_items := no_items + 1;
gettoken
END;
checknumargs (typeoftestargs, no_items, numargsoOK) ;
IF NOT numargsCK
THEN IF typeoftestargs = twosample
THEN dealwitherror (invnumarg, '2')
ELSE dealwitherror (invnumarg, '2+')
END;
WRITELN;
checkclassreg(class checks[testclass]);
reviewclasschecks (testclass, typeoftestargs);
IF listheadhead <> NIL
THEN CASE testclass OF
association : checktestreg(testclass, assoc_checks,

testname) ;
lecation : checktestreqg(testclass, loc_checks, testname)
END;
endofproc: :
disposeoflist (listheadhead)
END; { proc procstatreq }

{ file check_routines.pas }

216

B.4 Keyworddir.dat

ADDATT
ADDDS

ADDENT
ADDINST
ADDMEAS
SHOWARGMEAS
SHOWATT
SHOWCANDMEAS
SHOWDSDIR
SHOWENTDIR
SHOWINST
SHOWMEAS
SHOWMEASDIR
EXPLAIN
NOEXPLAIN
QUIT
ASSOCIATION
LOCATION
PEARSON
SPEARMAN
KENDALL
TAU_C
CRAMERS_V
COEFF_OF CONT
NORMAL_TEST
T_PAIRED
RANDOMISED_BLOCK
T_COMMON
T_SEPARATE
ONE_WAY_AOV
WILCOXON
FRIEDMAN_AOV
MANN_WHITNEY
KRUSKAL_WALLIS
SIGN_TEST
MCNEMAR TEST
COCHRAN_Q
CHI_SQUARED
FISHER_EXACT
GENERIC
NONGENERIC
OPEN

CLOSED

YES

NO

DEFAULT

TYPE

LEVEL

MEAS

NORMAL

QUAL

QUANT
NOMINAL
ORDINAL

RANK
INTERVAL
RATIO
CHARACTER
NUMERIC

addatt

addds

addent
addinst
addmeas
showargmeas
showatt
showcandmeas
showdsdir
showentdir
showinst
showmeas
showmeasdir
exptok
noexptok
quit
association
location
pearson
spearman
kendall
tau c
cramers_v
coeff of cont
normal test
t_paired
randomised block
t_common
t_separate
one_way_aov
wilcoxon
friedman_aov
mann_whitney
kruskal wallis
sign_test
mcnemar_test
cochran g
chi_squared
fisher_exact
gentok
nongentok
opentok
closedtok
vestok

notok
deftok
typetok
leveltok
meastok
normtok
qualmeas
guantmeas
nomtok
ordtok
ranktok
inttok
rattok
chartok
numtok

217

MIN
MAX
UPPER
NONE

min
max

upper
nonetock

B.5 Classcheckdir.dat

association

location

B.6 Assoccheckdir.dat

pearson
spearman
kendall
tau_p
cramers_v

coeff of cont

B.7 Loccheckdir.dat

normal_ test

t_paired

randomised block

t. common

t_separate
one_way_aov

wilcoxon
sign test

friedman_aov
mann_whitney
kruskal wallis
mcnemar test

cochran g

chi_ squared
fisher_ exact

B.8 Shapwilkcoeff.dat

w707 0

.6872

.6646

.6431

.6233

.1677

.2413 0

.2806

.3031

.1401 0

relatedinst
simenttype eqdomains
intgnt normal
ranked
ranked
ordglt
nomcat chifreq
noemcat chifreq
twosample
twosample relatedinst
relatedinst
twosample
twosample
twosample relatedinst
twosample relatedinst
relatedinst
twosample
twosample relatedinst
relatedinst
twosample

218

egintgnt
egintgnt
egintgnt
egintgnt
egintgnt
egintgnt
eqordgnt
egordglt
egordglt
egordglt
egordglt
egdichcat
egdichcat
egnomcat
eqgdichcat

normal
normal
normal
normal
normal

chifreq

nige30

eqvar
egvar

eqvar

.6052

.5888

D739

.5601

.5475

.5359

<5251

.5150

.5056

.4968

.4886

.4808

.4734

.4643

.4590

.4542

.4493

.0107

.4450
.0200

.4407
.0284

.4366
.0358

.4328
.0424

.4291
.0483

60
.887
.926

.3164
.3244
- 3291
. 3315
- 3325
" D080
.3318
.3306
. 3290
o AT
.3253
.3232
3211
.3185
.3156

.3126

.3098

.3069

0

.3043
.0094

.3018
.0178

.2992
.0253

.2968
.0320

.1743
- 1976
.2141
.2260
.2347
.2412
.2460
.2495
.2521
.2540
229553
.2561
.2565
2508
J2511

.2563

.2554

.2543

s 2033

«2522
0

.2510
.0084

.2499
.0159 0

.748 .762 .788
.892 .897 .901

.0561
.0947 0
.1224 .0399
.1429 .0695
<1888 .0922
.1707 .1099
.1802 .1240
+1878 .1353
.1939 _1447
.1988 .1524
sz s T58 T
.2059 .l641
.2085 .1686
all® 1736
L2131 L1764
2139 (1787
.2145 .1807
.2148 .1822
w2151 . 1836
.2152 .18438
2151 .1857
2150 .1864
.803 .818
.905 .908

.0303
- 0538
0727
.0880
.1005
.1109
.1197
-1271
.1334
.1399
.1443

.1480

+1512

. 2539

.1563

.1584

.1601

=1616

.0240

.0433

.0593

p025

.0837

.0932

- 2013

.1092

1150

.1201

.1245

.1283

.1316

.1346

.1372

« 1395

0

.0196

.0359 0

.0496 .0163

.0612 .0303

<0741 .0422

.0804 .0530

.0878 .0618

.0941 .0696

-0997 L0764

1046 0823

.1089 .0876

.1128 .0923

.1162 .0965

L1192 SHOD2

.829 .842 .850 .859

.911 .914 .916 .918

.866
.920

0

.0140
.0263
.0368

.0459

.03389

.0610

.0672

.0728

.0778

.0822

.874
. 923

0

.0122

.0228

.0321

.0403

.0476

.0540

.0598

.0650

.881
.924

