
A SEMANTIC MODELLING APPROACH TO

KNOWLEDGE BASED STATISTICAL SOFTWARE

KEVIN WILLIAM LAWSON

Doctor of Philosophy

THE UNIVERSITY OF ASTON

February 1989

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the

author’s prior, written consent.

The University of Aston

A SEMANTIC MODELLING APPROACH TO

KNOWLEDGE BASED STATISTICAL SOFTWARE

Kevin William Lawson

Doctor of Philosophy

1989

Summary

The topic of the thesis is the development of knowledge based statistical software.
The shortcomings of conventional statistical packages are discussed to illustrate the
need to develop software which is able to exhibit a greater degree of statistical
expertise, thereby reducing the misuse of statistical methods by those not well versed
in the art of statistical analysis. Some of the issues involved in the development of
knowledge based software are presented and a review is given of some of the systems
that have been developed so far. The majority of these have moved away from
conventional architectures by adopting what can be termed an expert systems
approach.

The thesis then proposes an approach which is based upon the concept of semantic
modelling. By representing some of the semantic meaning of data, it is conceived that a
system could examine a request to apply a statistical technique and check if the use of
the chosen technique was semantically sound, i.e. will the results obtained be
meaningful. Current systems, in contrast, can only perform what can be considered as
syntactic checks.

The prototype system that has been implemented to explore the feasibility of such an
approach is presented, the system has been designed as an enhanced variant of a
conventional style statistical package. This involved developing a semantic data model
to represent some of the statistically relevant knowledge about data and identifying sets
of requirements that should be met for the application of the statistical techniques to be
valid. Those areas of statistics covered in the prototype are measures of association and
tests of location.

Keywords : statistical software, knowledge based software, semantic modelling.

Acknowledgements

I would like to thank my supervisor Paul Golder for his much appreciated advice

and assistance throughout the stages of this research. My thanks also go to SERC for

their financial support.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Contents

WRtrOdUCHGM tite. tes creas sees» evtsette. css. 2! !95 tose sesgteescsusesunc osetia 9)

The Development of Knowledge Based Statistical Software...

2.1 Conventional Statistical Softwareccccccsssescecesscceeeee 12

2.2 Background to Knowledge Based Statistical Software............. 14

2.3. Some Knowledge Based Statistical Software.......:.scesecse019

2,4), Conclusions sof “Revie ws.n tite: ccs. ites. c..ct cst eee 24

A Semantic Modelling Approach...

Sil Motivations. ..csccotrseibauita. ciate. rear tna eee 26

3.2 Representing Semantic Knowledge.................cceccceeeeeeeeeeeee 28

3.201; 4 Semantic Modelling 2000.0, -s1.4,-c.t).cuacenctvvess-0t- sae 28

3.2.2 Semantic Networks .

3:3 + -Statisticall=Data, Models ns. 2.17. Weak Aman ec ae 35

3:4 Research) Objectivesis ccrsssi.isscsssecsmee ene 36

Introduction to the Prototype System

The Semantic DataModsl... 12. ..ceee. oe emenv on, Siete recrcacl ele. : 42

5, low Semantic Concentss, sr. \steererscssiteacometasaecseencne ce tecsoeeed 42

D2 eS yIMbOlC) ODjECtss tcssmss.eccaererteeereise te eristes tee. eed 48

5.2.1 Entity Type Taxonomy ...

5,2-2) UMeastiemont Directory mi f.ert8 tese-usanducuus tess. 508 49

5. 20d) Dataset Directory cc. scct see ssas7s 1204s sys esse vseesacsseows 51

5.24 Conversion DirectOry -crseesse.seeseesesesere secs ee scorers 54

5.3. Semantic Data Model Manipulation Commands and Procedures. .55

Dip lee ENOL em kY DES csssesser eset tu sss stead le Wee een cae raced pa 56

Dy O-e MeASUTEMent « SCHEMes-.sscrs....05:tserd..-.saseeesverso fae 56

Sr30

5.3.4

Chapter 6

Chapter 7

Si-O meCONVOrsiON ws OChe mesie) cee ears ern er se 61

5.4 File Storage of the Semantic Data Model..............ccecceecseeeeee 62

Statistical Tests and Semantic Requirements...............ssss0seeeeeeeveee 64

G1 ebackeround to Statistical Tests....cjsercsc6s1 5434000000 escesennseee 64

6.2

6.3

6.4

6.1.1 Measures of Association....

6.1.2 Tests for Differences in Two Samples..............0000000. 66

6.1.3 Tests for Differences in K Samples....................0000 71

Semantic Requirements Overviewssssssssesececeeaeeees 74

Representation of Semantic Requirements...

Description of Semantic Requirementss.sss0eeseeeseseee a3

Grate Omopercous EUUNCS A155 cccrrceee: saesieeres tees teas 79

G42. Related Samples \.,.trcccussesestecersceccceee sess seasaccute 80

6.4.3. Number of Samples....

6.4.4 Homogeneous Properties....,...........csccesssscsesosssonee 80

GIA Meas UrSMent sn. Fecttnc vray haan tase es ate Coe 81

GIF Ore NOtMality foxes cesseoces circ eestereccececsaceciecssece 84

6.4.7 Equality of Variances ..

Grace SIZE MOL s SAMPlOS: create ey rttm er ec 86

6.4.9 Expected Frequencies in Contingency Tables.............. 87

OSH Resiine irn.10.00+ssurssacaanvsteetee ceesenssessctacctess coSaesesivecwe 87

The Operation of Validating the Use of a Statistical Test.................. 88

TJS POMGUNANCS oe, coe Oren eet ete ede stcocth teat ers Cas eeeeene avaas 88

de “he Classiot Test Level Operation’. c...<.sdcvevssveciieeescecoeees 91

7.3 Applying the Class of Test Requirements..

7.4 Reviewing the Results of the Class of Test Requirements......... 94

Vcd) Mee Lestukevel hOperationec..swreret rt c.atreticc cscs etree o7

7.0 Applying the Lest Requirements:...sts:e+seccss.ss.asssaresaeeeseys 102

7.6.1 Related Samples

7.6.2 Measurement.... - 103

U6 UMoriiality retort te er ai eee Ne a 108

26:4 “Equality of Vanances cc. .-:<cccosecscssecsse+scasts coset see 109

TeGrd bes SIZe> Of SAMPLES: -ssesertnscduissns; see eee eee 109

7.6.6 Expected Frequencies in Contingency Tables.

7.7 Explaining the Requirements of a Test00eeeeeeeeseee 112

7.8 Explaining the Rejection of a User Requested Test............... 113

7.9 Reviewing the Validation of the Selected Test...............0..... 113

Chapter'$ wi Conclitsions.05 2:..5.tasstsccauetes cnace door see tee cceecsssenesuecpestcsscoise 115

8.1 The Prototype System...

8:2: we Assessinent of Using Metadatar.+.2:.44<.-steare-ctansetecsseotysses 118

8.3 “Extensions'to the Metadata .-...7...-<90s-s8s---dsneenevessthoaastes 119

8.4 Limitations of a System Using Metadata

8.5 The Future for Knowledge Based Statistical Software........... 121

RELCIONCES 07) ae ta cass ca sea caren os snmieses sedges cae soonest ee ree ete 122

BU PCHUIR ATE XAR ples 2 teerteet hen cnet eam, Metre t arctan eticree neat nome 126

Appendix B Program Listings

Bide Main pas\issacasctessecscsosssdassss<seacee cies cuceceusinceeecesescecs 137

BiQeMocelerounines aS wrsn..sescc cer esesoeesccseeesciecsciiecceeeueo rte 144

3S CHECK -TOULNES HAS. «ers teen epee ee mene me ees euta tee ceca 179

B.4 Keyworddir.dat .. 217

Boy Classctiockdir.dat sovioss. cress oscar saecceseveacs ius-saventecseescess 218

BiGMASSOCCHECK In Oat vis..cc-..ccccesseeree ances receescot¥eceits -ekteos 218

Bei PMoccheckdindatr tia, sccsruss tes -Beeers wre feeee cet erscestesz..s8 218

B.8 Shapwilkcoeff.dat...

iS)

Sal

a2

373

3.4

4.1

$1

a2

ae

5.4

3D

5.6

2

5.8

6.1

TL

V2

TS

7.4

A.l

Figures

Stasestot a: Statistical vAnalysis..c..21.-s0ccncsec.cpsssaseesoeesstiesatssev esses 18

Example Entity-Relationship Diagram0.sccesscoseccesessessessescens 30

Entity Relation EMPLOYEE....

Relationship Relation PROJECT-WORKER:scccsecceecseesceeeeees 31

Example sR M/E entity ype Hierarchy.).cas5..tfc.svene saotacu esate 33

Main Components of the Implemented Prototype:ceeeseceeeeeeeeees 38

Use of the Entity Type Taxonomy ..

Biitity Type MN OG 6 sic. Scccssscccsconcaes ous esse naccteenccaenesheseceteressssteneasecd 48

Representation of an Entity Taxonomycsseccseeceeseeceesecaeeseneee! 49

Qualitative Measurement Nod6;<2.:...tuccc.scenssacece.snasetes ccs seeaceaseeuees se 50

Quantitative Measiiremiétit Nodey...1.5...5.aceccsses cst wassuceesueta ees saaricesceees Sl

IatASet NOG cre cc ecinecseseeeysence-e tae ete ey oe eee re 2

PSELID UES INGER cot trcrent sa cat cies only ast ct ce memento. SIRT ee oe,

Conversion Node

Semantic Requirements: Represéntationsc...:c.:ccsascsesscsssteecessecneseecseoenvee 77

Argument List Representation |<.cs.c<aase-ssacces¢evccspasasaracetscseseosareeesstees 89

Manipulation of Argument List Representation................ssseeseceeeeeseeeeeee o3

Formation of a Contingency Table..

Representation of Contingency Table Marginal Frequencies..................-+ 111

Entity Taxonomy and Datasets Used in Example................sssssscseseeeees 127

Tables

5.1 Measurement Level and Measurement Scheme Combinations

6.1 Requirements of Statistical Tests ...

7.1 State Transition Table for Argsummatys.ssscccssevessevscccenneees 104

Chapter 1

Introduction

Although the use of machinery for statistical purposes can be traced back to the

production of tables on mechanical calculators, it was not until the arrival of general

programming languages, Fortran in particular, that machinery was widely used for

statistical analysis.

Single stand-alone programs to perform a specific task can be considered as the first

generation of statistical software. These programs were usually written by statisticians

for their own personal use and involved a great deal of, often repeated, work. To write

a program required a thorough knowledge of the intricacies of the steps constituting the

chosen test or technique. A good working knowledge of a general purpose

programming language was also called for. Some programs did get published, but due

to inconsistencies in data formats there were problems in attempting to run several

programs to perform a multi-stage analysis.

Some of the problems of the above approach were to some extent alleviated by the

release of libraries of pre-compiled subroutines to perform common well defined tasks.

An analysis could then be built up using a piecemeal approach with calls to the

appropriate subroutines. This development allowed a user to program at a slightly

higher numeric level. For example, being able to call a procedure to perform a matrix

inversion rather than having to program the individual steps of a particular algorithm.

Good libraries have an advantage in that they provide a set of well designed, tested and

consistent subroutines. However, it is still necessary to write the main program to call

the subroutines and manipulate the data.

The early 1960’s saw the emergence of integrated statistical systems with their own

problem orientated command languages. These provided the flexibility of subroutine

libraries but allowed users to program at a more statistically orientated level. This

obviated the need to know a general programming language, although some early

languages were based on Fortran. Also, the batch approach to programming has

largely given way to systems able to operate in an interactive manner. This has obvious

advantages when working at the exploratory stages of an analysis.

Papers by Chambers (1980) and Nelder (1984) chronicle in more detail the

development of statistical computing, discussing computing in general and in particular

Statistical software.

The most recent research efforts into the further development of statistical software

have been concerned with the production of software able to demonstrate some degree

of statistical expertise.

In chapter 2, the need to develop software with a greater degree of statistical

expertise is examined, illustrating some of the shortcomings of the current generation

of software. A review is given of literature which has discussed issues and problems

involved in developing knowledge based software and has proposed solutions, with

the emphasis of much of the literature being placed upon the application of artificial

intelligence techniques. To conclude the chapter, a brief description is given of a

number of knowledge based systems that have been under development to date.

An alternative approach to knowledge based statistical software is proposed in

chapter 3. By representing more of the semantic meaning of data, it is suggested that

conventional style systems could be enhanced and be better able to detect the misuse of

Statistical methods. The background information to the research proposals is presented,

that is the representation of semantic knowledge - in the areas of database management

systems and artificial intelligence - and the inclusion of metadata in statistical database

management systems.

Chapter 4 provides an overview of the prototype system that has been developed to

investigate the viability of the research proposals. The implementation is presented

with reference to the main components of the system and the areas of statistics that it

supports.

A detailed description of the semantic data model is given in chapter 5. Attention is

focused on: the semantic concepts which constitute the knowledge about the data; the

10

symbolic objects that organise and structure the knowledge; the commands and

routines to manage and manipulate the objects.

Chapter 6 begins with a brief description of the specific statistical methods that are

supported by the system, identifying some of the conditions which should be met for

their correct use. The scheme adopted to represent the requirements is illustrated,

pinpointing the knowledge in the data model that can be used to validate each of them.

The operation of the system in validating the use of the statistical methods is

reported in chapter 7. Included is how the checks are performed and the feedback that

is given to the user.

Finally, the conclusions of the research are presented in chapter 8.

11

Chapter 2

The Development of Knowledge Based Statistical Software

2.1 Conventional Statistical Software

As statistical software has evolved, the knowledge required of someone to use a

computer to perform an analysis has gradually diminished. The need to understand or

even know about the low level numeric operations of a particular test or technique has

all but disappeared, with packages providing high level commands such as

regress (x, y). Command languages have become more flexible and natural, moving

away from a computer orientated approach. The fixed format numeric codes of the past

have given way to a free format English like dialogue. Hand (1985b) noted that there

had been a tendency to make statistical software as easy to use as possible, this has

mirrored the trend in other areas of applications software, e.g. word processing

packages. Indeed, there would seem little point in needlessly making something

difficult to use.

Paralleling, or more probably outstripping the developments in statistical software,

have been the advances in computer science. Hardware has become more powerful and

yet at the same time cheaper. The outcome of which is that computers are now much

more readily available.

As a result of the progress outlined above, statistical software has become much

more accessible. The ability to apply statistical techniques is no longer the preserve of

professional statisticians, researchers in all manner of domains are now able to

autonomously analyse their experimental data. A large number of these users can be

termed as being statistically naive, that is they may be experts in their own fields of

research but have only a limited knowledge and appreciation of statistics.

Statistical software provides the mechanics to perform an analysis and has done

well in performing this function (Chambers, 1981), the facilities offered by the larger

12

packages are now reasonably complete. Hand (1984) summed up existing statistical

software as containing arithmetic and algebraic expertise, systems know how to

compute a test statistic. Given data that is the correct type and of the right shape

(e.g. real vectors of the same length), the package can manipulate it to produce the

result. However, it can be said that only syntactic checks are performed, current

packages are largely unintelligent in that they do not check if the assumptions of the

test are met. It is up to the user to know if it is appropriate to apply a particular test. An

analysis only produces intelligible results if it is appropriate to the data. With current

statistical packages, the user is left to interpret the results obtained and attach meaning

to them.

As was mentioned above, many users of statistical software are not themselves

experts in the area of statistics, Hooke (1980) remarked that by making statistics more

accessible, use had been replaced by overuse and misuse. Unfortunately, incorrect use

of statistical software is not reported and users are often unaware of their mistakes and

misconceptions. A number of studies into the use of statistical methods in medical

journals (Badgley, 1961; Schor & Karten, 1966; Gore et al., 1977; Glantz, 1980;

Altman, 1982) have found that approximately 50% of published papers using

statistical methods contained inappropriate or incomplete analyses. Errors were found

to have occured throughout the stages of applying an analysis, either in the design of

an experiment, in calculating results or drawing conclusions.

Nelder (1977) opined that misuse of statistical software was bringing the subject of

Statistics into disrepute, a sentiment similarly echoed from other quarters.

Chambers (1981) advocated that software should do more than merely perform blind

computational algorithms and that statisticians had a moral obligation to provide users

with better guidance. To that end, there has been a growing interest in developing

knowledge based statistical software as a means of providing a greater degree of

support to users. It is hoped that some of the misuse can be filtered out, resulting in

more correct and appropriate analyses being performed.

13)

2.2 Background to Knowledge Based Statistical Software

An early paper to appear which advocated making statistical software more

intelligent was by Nelder (1977). He observed that current software was largely

unintelligent as no use was made of the data to check if the assumptions regarding a

statistical procedure were satisfied. To illustrate his point, regression analysis was

used to discuss checks that could be applied to protect a model from a number of

sources of distortion. In addition, it was also noted that to facilitate further checking it

would be valuable for a program to require a user to specify information external to the

actual data items themselves.

Gale (1986a) remarked that at that time techniques for implementing Nelders ideas

lacked the power to achieve the desired objectives. Since then there has been an

enormous interest in artificial intelligence (AI) research and the prospects for programs

to be able to exhibit some degree of intelligence look brighter.

Chambers (1981) was one of the first to discuss the application of AI techniques to

the development of statistical software. In particular, he considered the possibility of

expert software being able to perform some of the functions of a consultant statistician.

An earlier paper by Jones (1980) had considered the possibility of a computer

program being able to act as a statistical consultant. He noted that the attitudes and

personalities of both the client and consultant were important factors in the

collaboration of the two. To that end, he discussed some negative stereotypes of

consultants that a program would need to avoid, as well as good characteristics that

ought to be retained. Some negative stereotypes of clients were also highlighted which

a program would need to cater for.

The consultant statistican has often been the role model when considering what

knowledge based software could be used for (Hand, 1984, 1985a, 1986; Hahn,

1985). By examining some of the functions carried out by a human expert, some

potential uses have been identified. Generally speaking, the proposals for systems

have encompassed the following five tasks :-

14

(i) _ statistical answering and referral services;

(ii) _ the refinement of research objectives;

(iii) choosing appropriate statistical techniques;

(iv) correctly applying a particular technique;

(v) interpretation of results.

Hahn (1985) described software falling into the first category as requiring only

“dumb statistical intelligence”. However he saw these type of systems as providing a

useful source of information for both statisticians and non-statisticians alike,

addressing fairly general and mundane matters. As an answering service, questions

regarding statistical techniques such as their use, sources of reference and packages

providing an implementation could be dealt with. A computerised statistical index

could provide users with information regarding books, articles and available software.

By computerising such information, access to it is made much easier - with regards to

searching - and the time lag for it to become available is reduced. Hahn recognised that

it may be dubious to describe such systems as being intelligent, but felt that they

established a precedent for software to provide information regarding statistical

methodology, rather than just applying statistical methods. He noted that such systems

were feasible and were being implemented in a number of ways.

Software able to assist in refining research objectives and questions was discussed

by Hand (1986). He saw such systems as being of benefit during the design stage of

an experiment. This could involve ensuring that, at a minimal cost, results are obtained

which are both accurate and able to answer the questions of the researcher. This is an

important and cost effective exercise, although unfortunately the advice of a statistician

is sometimes not sought until after the data has been collected.

The third area where it has been envisaged that knowledge based software could

make a contribution is in the choice of an appropriate statistical technique. This could

be in the form of a fairly broad system, performing at a very high level and requiring a

great deal of expertise, for example conducting a discourse with the user and

Suggesting that regression analysis would be appropriate for the problem at hand.

15.

Altematively, if a broad technique had already been decided upon, the choice could be

at a much lower level requiring less expertise, an example of this task could be

choosing an appropriate bivariate test of location.

The division of expertise between choosing and applying a technique is somewhat

blurred. Hand (1985b) noted that if the technique chosen was regression analysis, a

considerable amount of expertise and effort would still be required to ensure that the

model developed was appropriate. However, once a test of location has been selected

the bulk of the work has been done, the effort involved in applying it correctly is

considerably less in comparison.

Knowledge based software able to interpret the results of an analysis was briefly

covered by Hand (1986) and is an area still to be looked at in any great detail.

As can be seen from the five areas discussed, knowledge based software is seen as

an opportunity to broaden the role that software can play in the area of statistics. The

type of systems suggested go beyond the scope of existing statistical packages.

Software able to adequately perform all of the functions of a human consultant are a

long way off. Jones (1980) felt that only a limited number of problems could be

tackled by a computer program, similarly Hahn (1985) thought that there were greater

chances for success if effort was concentrated on producing systems for limited

specialised tasks. General systems have not been attempted and the tasks which have

received the most attention are :-

(i) _ technique selection - choosing a technique appropriate to the problem;

(i) _ technique application - guiding a user to a correct and proper application of

an advanced statistical technique, e.g. regression analysis.

Analogies have been drawn between these aspects of statistical consultancy and

medical diagnosis, for which the expert system MYCIN (Shortliffe, 1976) has been

developed. The most striking similarity which has been identified is one of having to

make a choice from a number of alternatives arranged in an ill-structured domain.

There are however certain differences which set statistical applications apart. Firstly,

Statistical systems for data analysis should make use of two sources of information,

16

namely the user and the data. Also, medical systems can assume a user with some

knowledge of the domain, which is not true of statistical systems. Indeed,

Hand (1985a) noted that when considering the areas for which expert systems had

been applied, what was striking were not the similarities but the differences,

In addressing the problem of choice (for regression analysis this would be choosing

an appropriate model), a strategy for making this choice has to be educed and

represented. In developing statistical expert systems, statisticians have been forced to

consider in detail how they go about their own consultancy work. This aspect of

consultancy had previously received little attention, but has now become the focus of

research effort and has yielded benefits which go beyond the development of

computerised consultancy.

Consideration must also be given as to the role that intelligent software should play.

If it were possible to produce software able to automatically look at the data, carry out

the analysis and output the results, would such systems be desirable? Hand (1984)

termed this the oracle approach, both he and Hahn (1985) opined that software

assuming such total control was not desirable. One reason for this conclusion is due to

the very nature of statistics, which is a discipline that is not used in isolation. Rather,

its use is to explore and explain phenomena occuring in a ground domain, that is the

discipline it is being applied to. Intelligent statistical software is envisaged to contain

Statistical knowledge. However, as Hand (1984) noted, “effective statistical work

involves a subtle interplay between two types of knowledge, the statistical and that of

the domain of study” and preferred to talk of “the notion of expert systems for giving

Statistical advice”. It would not be practical to try and encapsulate into statistical

software the required domain knowledge. Since statistics is applied across such a

diverse range of disciplines, the work involved to elicit and represent such knowledge

would be immense. However, the user of these proposed systems will possess the

required domain knowledge and it would seem prudent to make use of this.

Because of the need for domain knowledge, the role that is generally suggested for

intelligent statistical software is that of an advisor, to guide the user to an appropriate

17

and sound analysis. When a researcher seeks the advice of a human consultant, a

dialogue takes place between the two and both parties are involved in making a

decision as to an appropriate course of action. It would seem sensible for intelligent

software to assume a similar role.

The stages of an analysis could be considered in a simplified form as in figure 2.1.

Pose Translate to Choose and Interpret Translate to
research [| statistical -}—-B} perform /—» sstatistical /—B}_ research
questions questions analysis results results

Figure 2.1 Stages of a Statistical Analysis

Throughout the above stages, a knowledge of the domain of application is required.

Initially, the statistician will talk through the problem with the researcher, often in the

language of the researcher. The purpose of this is to clarify the objectives of the

analysis, of which the client may initially only have a vague notion. The skill of the

consultant is to recognise the salient points and to formulate an analysis appropriate to

the problem. Conversely, once the results of the analysis have been obtained, the

meaning must be conveyed to the researcher in their own language. This task is an

important one, as the results of one analysis will often lead to further questions and

analyses. Chambers (1981) felt that this ability to bridge the gap between the two

fields of knowledge would be a difficult function for software to imitate.

When it comes to using statistical software, non-statisticians may be happy to sit

back and be given an answer. However, it is often the case that there is no definitive

answer, there are often conflicts which need to be resolved and depending upon their

relative importance different solutions will be adopted. For a user that has some

statistical expertise, software dictating an answer will not be appreciated. Such a user

will wish to compare their own initial ideas with the systems conclusions before

deciding on a course of action to embark upon. By involving the user in the decision

18

process, not only will the analysis be better able to answer the required questions, but

the user will have a greater understanding of what has been done and why.

The fact that statistical software is used by people with such differing levels of

Statistical expertise causes further problems in the development of intelligent systems.

Although it is convenient to discuss users as being statistically naive or experts, they

do in fact fall upon a continuum and not a dichotomy. The needs of these users will

differ, indeed the needs of a user will alter over time as expertise is gained. Those with

a weak grasp of statistics will require a system to have good explanatory facilities to

make clear the unknown, whereas those with a better knowledge will merely want to

be reminded of points which may have been forgotten.

2.3 Some Knowledge Based Statistical Software

Initial attempts at introducing statistical expertise as a means of reducing misuse

came in the form of interfaces, or front-ends, to existing statistical packages. One in

particular was BUMP (Smith er al., 1983), this was written as an interface to the

MULTIVARIANCE program which is used for univariate and multivariate analysis of

variance, covariance, regression and repeated measures analysis. Although an initial

aim was to make access to the package easier for non-statisticians (due to the fact that

an analysis is described using an awkward system of numeric codes), the possibilities

of preventing misuse and providing pedagogical facilities were also explored. The

system operated by questioning the user about their problem and was then able to

produce a complete MULTIVARIANCE program. Work on producing interfaces was

limited and the majority of research has concentrated on expert systems solutions,

although Wolstenholme & Nelder (1986) have recently been working on a front-end

to GLIM.

Gale (1985) observed that efforts to apply AI techniques to statistical software were

taking two distinct directions :-

(i) _ providing guidance for those with little training in statistics;

19

(ii) making software more productive for professionals.

Gale noted that software for experts would require more statistical knowledge to be

represented. Since the representation of statistical knowledge for machine use is still in

its infancy, he felt that more usable software would be initially developed in the former

direction. Some work aimed at the professional has been carried out which has

focussed on the study and representation of strategy (Huber, 1986; Oldford &

Peters, 1986). However, most systems have concentrated on providing guidance for

non-statisticians.

One of the most important of the early expert systems, certainly one which has

received the most attention, is REX (Gale & Pregibon,1982; Pregibon & Gale, 1984)

which was developed at Bell Laboratories. This is a Regression EXpert and aims to

safely guide a user to perform a simple linear regression analysis. The principle it

adopts is to consider a user’s request to fit a regression model and to check the

assumptions underlying the technique. A number of tests are carried out, if a problem

is detected the system attempts to find a solution which is acceptable to the user. When

there are no problems which remain unresolved, the analysis is complete and the model

has been determined. The mechanics of the analysis are performed using the S System

(Becker & Chambers, 1984) which has also been developed at Bell Laboratories. As

well as providing guidance, Gale and Pregibon also wanted the system to provide

instruction and interpretation, to educate users in regression analysis and to be able to

explain the meaning of results obtained. They felt that expert systems techniques

offered advantages over conventional programming styles in providing these facilities.

REX used a combination of production rules and frames to represent its statistical

knowledge, a detailed description of which is given in Gale (1985).

Oldford & Peters (1984) have also focussed on multiple linear regression analysis

but have tackled development using a bottom up approach. Four major subtasks within

linear regression analysis were identified, they decided to concentrate on building

prototype systems for those individual tasks before combining them into an overall

20

system. The paper discussed the first such subsystem which addressed the problems

involved in detecting and correcting collinearity.

The RX project (Blum, 1982) aimed to tackle the problem of converting a research

goal into a statistical goal. It did so by restricting the domain of application to medicine

and was able to translate a research question posed in medical terminology into a

description of a statistical study capable of answering the question. To achieve this it

was necessary for the knowledge base to represent both medical and statistical

concepts. The system was used to design studies which could examine the existence of

causal relationships in a database of longitudinal medical records. The system was then

able to add newly found information to a third portion of the knowledge base

concerned with causal relationships.

There were a number of early systems which undertook to explore the difficulties

associated with developing software capable of assisting in the selection of an

appropriate statistical technique. Notable amongst them were two by Hajek &

Ivanek (1982) and Portier & Lai (1983).

Hajek and Ivanek considered the application of AI techniques to software for

exploratory data analysis. Their aim was to develop a consultancy system to assist in

the use of the GUHA package (a brief description of which can be found in Hajek &

Havranek (1978)), which is oriented towards nominal and dichotomous data. A

subsystem GQUANT was implemented for the ASSOC procedure, to search for

associations in the data. GQUANT had 34 rules, by asking the user up to 9 questions a

choice could be made from 6 statistical tests, e.g. chi-square and Fisher exact. The

principle adopted was to view data analysis as a search, the goal of which is ill-

defined. A fully fledged system, GUHA 80, was planned but never implemented.

A system which attempted to tackle the problem of a user not understanding the

meaning of a question was produced by Portier and Lai. The STATistical PATHfinder

(STATPATH) was a menu-driven system which identified an appropriate analysis by

performing a binary tree search, the tree being represented as production rules. The

objective in asking the user questions was to narrow down the field of possibilities. If

21

the user was unable to give a yes or no answer then both lines of questioning were

followed up. One problem that exists is that once a number of questions are answered

as unknown the avenues to explore increase rapidly. Also, the system is unable to

guard against a user mistakingly thinking that they are able to give a definite answer to

a question.

Of late, those aspects of statistical work for which expert systems have been

developed has widened. Dickson & Talbot (1986) are developing a system for use on

a microcomputer to perform data validation functions. The choice of a microcomputer

application was to facilitate the use of electronic measuring devices, some data capture

procedures were described in Dickson (1984). The aim is for the system, which has

been written in BASIC, to monitor data input and to highlight possible errors to the

operator. The authors perceive validation as a dynamic process with the system being

able to learn from information recorded and the responses of the operator.

A system able to learn a strategy was the aim of an ambitious project that was

undertaken at Bell Laboratories. It was envisaged that Student (Gale & Pregibon,

1984; Gale, 1986b) would be able to learn by means of example. When Gale and

Pregibon developed REX, a number of regression analyses were performed using the

S system. The strategy was constructed by analysing the steps carried out and

questioning why certain actions were taken. Gale and Pregibon designed Student to

work in the same way, to observe a professional statistician performing an analysis

using a statistical package and to ask questions. This approach would allow a

professional statistician to develop a knowledge based system for an aspect of data

analysis without the need to know about the internal representation. The statistician

would first conduct an analysis for a technique that is new to the system. By then

adding further examples the strategy can be extended and consolidated. Another

perceived advantage of this approach is that it would allow the builder to bias the

knowledge and vocabulary towards a specific domain of application. For such a

project to succeed enormous problems would have to be overcome and some progress

22

was made. Work on the system has now ceased after four years as Gale and Pregibon

could not see it reaching a satisfactory state for at least another year.

Although the majority of knowledge based statistical software that has been under

development has been in the form of expert systems, often implemented using

production rules, work in other directions has proceeded.

Baines & Clithero (1986) are developing a user-friendly package for the design and

analysis of experiments using standard programming methods. They noted that

packages in general use were unsafe for an inexpert user because they are

predominantly concerned with computational aspects. Although there are often the

facilities to perform validity checks, a certain degree of statistical expertise is required

of the user to know what checks to perform and how to interpret the results. Baines

and Clithero sought to add some consultancy features to aid inexpert users. The

structure of the program, which was written in Fortran rather than Lisp or Prolog, was

a tree network to represent all possible outcomes. Those outcomes considered as

having exceptional combinations of circumstances were not dealt with and the user

advised to consult a statistician. The program consisted of a top level overview module

to determine which area of experimental design was appropriate for the problem. If

successful, control would be passed to a design and analysis module. At that time three

such modules were being implemented for simple comparative, factorial and response

surface experiments.

The term knowledge enhancement system has been used to describe the KENS

program (Hand, 1987), this was felt to be more appropriate than calling it an expert

system. Its function is not to guide a user in conducting an analysis but to provide

information, in this particular case about nonparametric statistical methods. The

objective was to provide a tool to allow a user with some knowledge of the domain to

explore the subject and enhance their knowledge. Hand was motivated to develop the

system for use in his role as a consultant statistician, to assist him in choosing

appropriate tests and to remind him of concepts which may have been forgotten. In

designing the system he felt that a production rule architecture would not provide for

23

the flexible type of interaction envisaged. Hand considered that they were well suited

for diagnostic problems of choosing from a number of alternatives, but less so when

the objective was not as clearly predetermined. The architecture developed was a

network representation. Nodes were used to encode portions of text (frames) and

single words or phrases (descriptors). The system consists of three graphs, which can

be regarded as semantic networks. The relationship graph links descriptors and

represents associations between them. Frames are cross referenced in the reference

graph . The concept graph links the frames with the descriptors that define them. Upon

invoking KENS the user enters a descriptor which is used to initiate a search for

relevant frames. A descriptor can be preceeded by a relation which modifies the search,

for example to look for frames which are related to antonyms of the descriptor. If

successful, the system will return a list of frames with a ranking as to their likely

relevance, the user can either look at a frame or enter a new descriptor. As well as

giving textual information, a frame may also give a further list of frames which may be

of use. Although not initially intended for the statistically naive, during the course of

development KENS has been extended and is now more suitable for such a user. A

version of KENS has been made available as a prototype system and is still under

development.

2.4 Conclusions of Review

The software described in the previous section does not constitute an exhaustive

review of the knowledge based statistical systems that have been produced. It does

however illustrate the diversity of the research and development work that has been

carried out. Two points have emerged that are of particular interest. An increasing

number of aspects of statistical work have been the subject of investigation for the

development of knowledge based systems. Secondly, there has been a diversification

of the types of systems developed, that is they are not all expert systems with a

production rule architecture.

24

There are as yet no commercially available statistical knowledge based systems,

those that have been under development have so far reached the feasibility

demonstration stage. This is a reflection of the youth of the field and significant

progress has been made towards the production of such a system.

25

Chapter 3

A Semantic Modelling Approach

3.1 Motivation

Conventional statistical packages which are currently in common use are lacking in

that they contain arithmetic and algebraic expertise but little or no statistical expertise.

This expertise is left for the user to provide, whose statistical knowledge is often

limited, leaving the software open to misuse.

Attempts aimed at producing software able to exhibit some degree of statistical

expertise have to a great extent concentrated on using expert systems techniques. This

approach seeks to encode a strategy which is able to guide a user to perform a safe and

appropriate analysis. A number of methods have been employed to represent the

strategy, including production rules and decision trees. The interface to such systems

is usually of a conversational type, which endeavours to mimic an interaction with a

human expert. In general, expert systems solutions have been developed for relatively

narrow topics which require a great depth of knowledge, with regression analysis

being a classic example.

The research into expert systems represents a shift away from statistical software

built using conventional architectures, which have evolved towards command driven

systems encompassing a wide and diverse range of statistical facilities. One of the

advantages of such systems, which has influenced development to move in this

direction, is that of flexibility. Command driven systems provide a flexible tool to

perform data analysis, whereby at any point the user is able to call from a variety of

functions. This is particularly useful when performing an exploratory type analysis,

where the purpose is to examine and to gain some insight of the data. Use will be made

of graphical displays and plots, summary statistics and tests to elucidate relations

between samples. In many cases the user will have some initial ideas to explore but

26

will not have a totally predetermined set of commands to enter. The path of such an

analysis is determined dynamically with the results of earlier commands having a

bearing on its future direction. In such cases, a suitable system would be one which is

command driven and enhanced with statistical expertise to offer some protection

against possible misuse. In considering expert software for conducting analyses, in

contrast to software for choosing appropriate statistical methods, Hand (1985a)

considered that sophisticated variants of conventional packages may be the most

suitable.

One of the problems with current statistical packages is that when a user issues a

command to perform some operation, statistical or numeric, all that the package is able

to do is check to see if the command is syntactically correct. That is to see if the correct

number of arguments of an appropriate type have been given, for example two numeric

vectors of the same length. It would be desirable if packages could be enhanced such

that they were also able to check on the semantics of the command. That is to be able to

advise on whether or not the test specified is appropriate for the data given, will the

result obtained have any sensible meaning. This would involve checking that the

conditions regarding the use of the test are not violated. The reason why current

Statistical packages are unable to offer much assistance to users in this respect is due to

the limited amount of knowledge that they have about the data. When data is entered

into a statistical package it is typically identified by its type (e.g. numeric,

alphanumeric, boolean) and stored in a suitable data structure. To be able to apply a

number of semantic checks, and hence advise on the soundness of applying a statistical

test, more must be known about the data than its type, some semantic knowledge of

what the data represents is required. Some packages, for example SPSS, have

represented other information about data such as variable and value labels, but this has

been purely for documentation and display purposes. If a system required more

semantic information to be entered about the data, possibly in a manner akin to the data

definition approach of database management systems, then a model could be

constructed to represent some of the semantic meaning of the data. When analysing a

Zi.

request to perform a statistical operation, it would then be possible for a system to

report back to the user the result of applying a number of semantic checks which had

consulted both the actual data items and also the semantic knowledge about the data.

3.2 Representing Semantic Knowledge

3.2.1 Semantic Modelling

Researchers working in the area of database management systems have also been

interested in representing more of the semantic meaning of data. It was proposed that

the use of more semantic models would make the database design stage more

systematic and that systems based on such models would be able to respond more

intelligently to user requests.

The standard database systems (implemented with relational, network or

hierarchical models) are not totally devoid of semantic information but have only a very

limited understanding of the meaning of the data. The objective has therefore been to

extend the knowledge represented in these existing data models, to add on an extra

layer. This task of representing meaning has been termed semantic modelling.

Codd (1979) recognised that the exercise of representing meaning was a never-ending

one which would only be accomplished in part, however he saw it as one worth

pursuing and felt that even small successes would be valuable.

The term semantic modelling has been used to denote the overall activity of

representing meaning. A multitude of different models have been proposed but despite

their differences they have typically adopted a similar approach to the problem,

described by Date (1986) as follows :-

(i) a set of semantic concepts are identified that can usefully represent

information about the real world;

(ii) a set of symbolic objects are designed to represent the semantic concepts;

28

(ii) integrity rules are devised for the symbolic objects to ensure that the

database is accurate and correct;

(iv) a set of operators are defined to manipulate the symbolic objects.

Date (1986) considered a data model to consist of the objects, rules and operators

but thought that some developers had concentrated almost solely on the data structures

to the detriment of the latter two aspects.

Of the many semantic models that have been developed, two which have been

particularly influential are the entity-relationship model (Chen, 1976) and the RM/T

model (Codd, 1979; Date, 1983).

The entity-relationship model was one of the first semantic data models to be

proposed. Chen sought to include the advantages of the three basic models and

designed the entity-relationship model to be a generalisation and extension of them.

Central to the entity-relationship approach is the view that the real world can be

modelled in terms of entities and relationships, these are the semantic concepts of the

model. Chen defined an entity as being “a thing that can be distinctly identified”, for

example a particular person or event. Entities can be classified into entity sets, which

do not necessarily have to be mutually disjoint, and tests for set membership can be

performed. A relationship was identified as being “an association among entities”. A

relationship set was then defined as being a mathematical relation among a number of

entities taken from one or more entity sets. As usual relationships can be one-to-one,

one-to-many or many-to-many. Information about the entities and relationships is in

the form of attribute-value pairs. An attribute is some quality or quantity which is

observed or measured as a value taken from a value set, set membership for values

would also need to be validated.

To assist in the database design stage Chen developed a diagrammatic notation, the

entity-relationship diagram, a simple example from Chen’s paper is given in

Figure 3.1. The diagram indicates that an employee works on a number of projects

and a project has a number of workers involved in it.

29

Worker eae Project
Employee wee Project

M BNO N

Entity Set Relationship Set Entity Set

Figure 3.1 Example Entity-Relationship Diagram

A database would consist of information relevant to the entities and relationships of

that part of the world being modelled. The entities and relationships would first be

identified and represented in an entity-relationship diagram, the attributes and value

sets could then be defined. The information about the concepts identified would then

be represented using entity and relationship relations. Chen proposed that an entity

relation would consist of information for a number of entities, each of the same entity

type, measured over a number of attributes. The entities would be identified by a

primary key consisting of either a single or a combination of attributes. A relationship

relation would then associate one or more entity relations. The primary key of a

relationship relation would be composed of the primary keys of the entity relations

involved. Relationship relations could also have their own independent attributes.

The entity relation for the entity type EMPLOYEE from Figure 3.1 could be

defined as in Figure 3.2.

Primary Key >}

Attribute Employee-No Name Age

Value Set Employee-No Bins es No-of-Years
Name Name

Entity
Tuples

Figure 3.2 Entity Relation EMPLOYEE

30

If the entity relation PROJECT had a primary key PROJECT-NO then the

relationship relation PROJECT-WORKER could be as shown in Figure 3.3.

<¢————— Primary Key —_____»

Entity
Relation Employee Project

Role Worker Project

Attribute Employee-No Project-No Percentage-of-Time

Value Set Employee-No Project-No Percentage

Relationship
Tuples

Figure 3.3 Relationship Relation PROJECT-WORKER

Chen’s paper was largely concerned with the modelling aspects of the entity-

relationship model and he only briefly discussed data integrity, information retrieval

and data manipulation aspects. With regard to data integrity, testing for set membership

has already been mentioned. Chen noted that some attributes could be drawn from a

subrange of a value set, for example ages of employees as a subrange of all ages, a

particular value could also be constrained by the value of another attribute, an

employees tax value will be less than their salary value. Chen expressed an opinion

that rules for retrieval, insertion, deletion and updating would be simpler and clearer

when using the entity-relationship model but did not expand on this aspect to any great

extent.

The RM/T model has been designed as an extension of the basic relational model.

The original version was proposed by Codd (1979), since then a number of

refinements have been made and the improved version has been described by

Date (1983).

31

RM/T is also founded on the assumption that the real world can be modelled in

terms of entities which can be classified into entity types. However in contrast to the

entity-relationship model, a relationship is considered as being a special kind of entity.

The constructs provided by RM/T allow a number of relationships to be represented.

In RM/T, entities and entity types are classified into one of three categories :-

(i) Characteristic

A characteristic entity performs a subordinate function to qualify or

describe a superior entity upon which it is existence-dependent. Such

entities were defined to represent the occurrence of repeating groups. For

example, a purchase order will consist of quantities of a number of items.

An entity type ORDER could be declared with a characteristic entity type

ORDERLINE. For each entity of type ORDER there will then be a number

of entities of type ORDERLINE, one for each item in the purchase order.

RM/T allows characteristic entities to have further lower level characteristic

entities to describe them.

(ii) Associative

Associative entities represent relationships between two or more entities

that are in all other respects independent. Since associations are considered

as being entities they can have characteristic entities to describe them and

may also be part of other associations.

(ii) Kernel

Entities which exist independently and are neither characteristic nor

associative are kernel entities.

All three categories of entity type can have information about them in the form of

properties, cf. attributes in the relational model.

In RM/T entity types can form type hierarchies, that is an entity type can have a

number of subtypes and may itself be a subtype of some supertype. Type hierarchies

can be formed for all three classes of entity type but a hierarchy can only contain entity

types of the same class, that is the subtype of a kernel entity type will also be a kernel

22

entity type. Codd noted that the advantage of allowing such hierarchies was that

properties of entity types could be declared at the most general level. Consider the

entity type hierarchy in Figure 3.4.

Employee

Clerical_worker

Clerk Secretary

Figure 3.4 Example RM/T Entity Type Hierarchy

Those properties declared for employees will also apply to all subtypes, however

properties specific to clerks can be declared lower down.

Information about entities is represented in E-relations and P-relations. For each

entity type an E-relation is generated, this is a unary relation which will be used to

record which entities of that type exist, the properties of those entities are recorded in

P-relations. Codd proposed that entities would be identified by system controlled

surrogates, the values of which would be hidden from the user. It is the surrogate

values that are stored in the E-relations and which identify the properties in the P-

relations. When information about an entity is entered a surrogate value is generated, it

is not only inserted into the E-relation for that entity type but also into the E-relations of

all supertypes. The properties are then entered into the appropriate P-relations.

Much of the description of the RM/T model was concerned with the modelling

aspects of representing information about entites and the relationships between them. A

number of integrity rules were described, these were developed to ensure that the

database is maintained in a consistent state. A number of high level operators to

manipulate the information to provide users with a variety of views of the database

were also outlined.

33.

From the published work of those developing semantic database models, the one

aspect which has been predominant is that of developing constructs to represent the

part of the real world being considered. The primary semantic concepts which the

many models have sought to represent, albeit using different formalisms, have been

objects, attributes and relationships among objects. Many of the papers have been ata

purely theoretical level, with models being proposed and updated. It is only recently

that database management systems based upon a semantic model have become

commercially available. The initial use that semantic models were put to was as design

tools. A schema to represent the real world would be designed using a semantic model

and then transformed to one of the standard models, often the relational model. The

entity-relationship model has emerged as the most popular although a number of

extensions have been incorporated since Chen’s initial proposals.

Those systems which have been implemented have concentrated on the data

integrity aspects and operators to manipulate the information to answer user requests.

As yet, intelligent database systems capable of making inferences from the information

in the model have yet to get beyond an initial theoretical stage.

3.2.2 Semantic Networks

Other work on representing semantic knowledge has been carried out in the field of

artificial intelligence, in particular with the development of semantic networks.

This representation was initially conceived by Quillian (1966), his intention was to

use a network consisting of nodes and links to represent the semantics of English

words. He wished to build a model of human memory based on the idea of

associations, such that human-like use of the meaning of the words could be made.

Each of Quillian’s word concepts was made up of other words, with the organisation

thus resembling that of a conventional dictionary. Since Quillian’s work, research has

continued in the use of semantic networks for representing the meaning of English text

such that inferences can be made.

34

A semantic network, in its simplest form, consists of a collection of nodes

interconnected by a set of arcs. Although originally designed to represent natural

language concepts, it has been recognised that this type of representation is general

enough to represent other forms of knowledge. Nodes can be used to represent objects

or concepts of some kind, with arcs denoting binary relations between them. One use

in particular has been for representing taxonomic hierarchies, that is hierarchically

classifying classes of objects. Semantic networks have been used to represent various

types of taxonomies, a number of which have been discussed by Brachman (1983).

Most have been based upon the foundation of set theory and have used the concept of

inheritance of properties. A hierarchical classification scheme has the opportunity to

distribute properties throughout the levels of the taxonomy offering an efficient storage

scheme. The classification of entity types in semantic database models can be regarded

as semantic networks.

3.3 Statistical Data Models

The notion of representing information about statistical data in the form of a data

model is consistent with the development of statistical database management systems.

Such systems have been necessitated by the need to handle increasingly large and

complex data sets. The data management facilities of most general statistical packages

were seen to be deficient in such circumstances and a database approach appeared to

offer a solution. Systems based on the relational model have been predominant, for

example the RAPID system which has been developed at Statistics Canada

(Hammond, 1983).

In order to effectively administer the data, both the users and the systems software

require a reasonably detailed description of the contents of the database. This

information has been in the form of metadata, that is data about data. McCarthy (1982)

described metadata as being “systematic descriptive information about data content and

organisation”. There is as yet no consensus of agreement as to what this metadata

should constitute, although there is of course endless scope.

A paper by Lundy (1984) proposed that the definition of metadata could be

approached from two directions: a functional perspective based on Proposed use; an

operational outlook founded on the type of information incorporated in database

manipulation systems. The main purposes for representing metadata have been

identified as being to enhance documentation, retrieval and display features. In storing

data with a complex structure, for example hierarchical, metadata is needed by the

system to locate data which has been requested by a user. Users will also wish to

document the source and content of a database when storing large and numerous data

sets. The presentation of tables and graphics can be greatly enhanced with the

accompaniment of additional non-essential information. McCarthy noted that metadata,

in contrast to data, would be primarily textual.

In considering the role of metadata, it has chiefly been seen as an aid to data

management. This is in accordance with its role in general database systems, although

different types of metadata specific to a statistical application have been identified.

Metadata has been used to verify the correctness of some numeric operations but its

use for statistical purposes is something that has not been considered to any great

extent.

3.4 Research Objectives

The objective of the research is to implement a prototype system as a means of

exploring the feasibility of semantic modelling as an approach to knowledge based

Statistical software. This will entail developing a model to represent some of the

semantic meaning of statistical data and devising a set of semantic checks which can be

applied to validate some of the assumptions underlying the use of statistical methods.

The checks will be intended to see if a test is suitable for the data that has been

36

specified, that is will the application of a test be sensible. It is not intended to confirm

that a test is appropriate for the hypothesis of the user.

It is possible to neither represent all of the semantic meaning about the data nor to

verify all of the requirements regarding the proper use of a test. For practical purposes

the amount of semantic knowledge that can be represented is limited, hence the checks

that can be performed are restricted by the knowledge available. The problem is that of

deciding what knowledge to represent. A system which requires a vast amount of

information about the data to be declared will not be popular with users, conversely the

level of checking must be sufficient to make the use of such a system beneficial. Also

the marginal return on increasing the amount of knowledge in the model diminishes as

more knowledge is added, once an optimal point is reached the increase in the level of

checking that can be done is low in proportion to the amount of extra knowledge

required.

It is hoped that if the approach appears to be workable, some conclusions regarding

the content of a semantic model can be drawn as a result of the work carried out.

37

Chapter 4

Introduction to the Prototype System

A prototype system has been developed using VAX Pascal to explore the feasibility

and practicability of a semantic modelling approach to knowledge based statistical

software. The system has been designed as an enhanced variant of the command

driven general purpose packages that are currently put to widespread use. The

enhancements that have been incorporated aim to reduce the amount of misuse of the

Statistical facilities provided. By representing more semantic knowledge about the data

the system is better able to validate a request to perform a statistical operation.

USER

ty

 Statistics
Validation
System

Semantic
Data
Model

Statistical
Knowledge

Figure 4.1 Main Components of Implemented Prototype

In developing the system a number of simplifications and limitations have been

made but these do not affect the underlying approach. Figure 4.1 illustrates the main

components of the implementation and their interaction. The system itself consists of

two main sections, a model management system and a statistics validation system, the

information that it operates on is the semantic data model and the statistical knowledge.

The user declares and queries the knowledge represented in the semantic data model

using commands that are processed by the routines comprising the model management

system. The semantic data model is represented by the system as a number of Pascal

data structures, these structures are extended as more semantic knowledge and data is

added to the model and searched whenever information is required. Long term storage

is achieved by maintaining a copy of the data model in the backing store. Whenever it

is necessary to add information to the data model, the model management system also

updates the copy in the backing store. When the system is invoked, the data structures

representing the semantic data model are initialised from any information in the backing

store, which for the purposes of the prototype are Pascal text files.

The statistical knowledge consists of the requirements that must be met for the

Statistical methods to be applicable. When the user issues a command to perform a

Statistical operation on a number of arguments, the statistics validation system searches

the semantic data model to examine the knowledge that has been declared about the

arguments to determine if the requirements can be satisfied. The statistical knowledge

is represented in a number of Pascal data structures, which are initialised when the

program is invoked from information in the backing store. The method devised to

represent the statistical knowledge results in a program that is not rule-based but not

wholly procedural either.

The command language that has been developed for the prototype has commands

which follow the general syntax given below.

<command name> < list of arguments >

The command name is parsed by the main program, if it is found to be valid a call is

made to the relevant procedure in the model management system or the statistics

Bo

validation system. These procedures read in the arguments of the command and either

Teport any error that has been made or perform the required actions.

There are also a number of procedures performing auxiliary functions. The

procedure gertoken is called whenever an item of input is required by the main program

or a procedure processing a command. Gettoken reads in the next lexical token and

determines if the input is a reserved keyword, an identifier, a numeric value, a special

symbol or erroneous. Appropriate values are assigned to the record variable token to

reflect the input found. Any errors that are found are reported with a call to the

reporterror procedure. A parameter is passed identifying the type of error found such

that the routine can produce a suitable error message, a character string is also passed

which may be used to further pinpoint the source of the error.

Those aspects of the system which can be thought of as forming the user interface

have only been developed to a limited extent, but they are sufficient for the purposes of

developing and testing the prototype. With regard to the model management system,

the error checking is thorough and the messages produced are adequate but there is no

help facility to give the required syntax of a command or to explain the meaning of the

terminology used. The statistics validation system does explain the results of validating

the use of a statistical operation and can also provide information about the

requirements that must be met for the operation to be appropriate. By default both sets

of information are provided, the user can however issue the command NOEXPLAIN

to indicate that only the results are required, the command EXPLAIN can be issued to

return to the default setting.

It is conceived that by adopting a semantic modelling approach to knowledge based

statistical software it would be possible to produce a general purpose statistical system

able to offer support over a wide range of statistical tests and techniques. For the

prototype version it was necessary to limit the areas of statistics that could be covered,

those areas chosen were measures of association and tests of location. The choice was

made to develop the prototype for these areas because :-

40

(i) they are commonly used, introductory statistics courses are included in a

great many degree programs and there is a tendancy for people to use what

is familiar to them;

(ii) superficially they appear simple in the literature and are easy to calculate

using a statistical package. Users may have a false impression that they

understand about the statistic and proceed to use it independently. This is

less likely to occur with those advanced techniques where it is more readily

apparent that assistance is required.

As a result, measures of association and tests of location are commonly and

unwittingly misused and therefore seemed to provide a suitable testing-ground for the

approach. The system does not actually compute the result of any measure of

association or test of location where usage has been validated, this task does not

however present any problems.

An example of the system running is given in Appendix A. The execution trace

illustrates the use of a number of the model management commands to display the

contents of a data model that has been declared, this is followed by an example of the

operation of the statistics validation system.

41

Chapter 5

The Semantic Data Model

5.1 Semantic Concepts

The first task was to identify the concepts which would be used as the basis of the

semantic knowledge to be represented in the model. The semantic models proposed for

general purpose database management applications have been founded upon the

concepts of entities, attributes and relationships. These concepts have been proposed

as a means of representing the real world in terms of objects and their properties. A

similar approach and notation has been adopted but the model has been developed to

incorporate information which can represent the statistical nature of data. These

concepts have been built onto the framework of a relational schema. Designing a

system based on a basic database model is in accord with the need to develop statistical

software with data management facilities, akin to those of database systems. Haux &

Jéckel (1986) argued that there was a need for intelligent statistical systems which

could combine, in an integrated manner, both data management and data analysis

functions. The reason for selecting the relational schema as the foundation for the

model is that it has emerged as the one most commonly used for general database

management systems and it has also been chosen by the majority of those developing

statistical databases.

In deciding what semantic knowledge to represent about the data, a starting point is

to consider :-

(i) _ what class or type of object the data is being measured for;

(ii) _ which specific instances or objects the data is pertaining to;

(iii) what property of the object is the data depicting, that is some quality or

quantity is being represented or measured, e.g. a height or an examination

result;

42

(iv) how the quality or quantity is being represented, for example an

examination result could be represented as a percentage or as a grade.

The fundamental data structure of the model has been termed a dataset. This is a

rectangular construct which consists of data measured for a number of entities,

instances of an entity type, over a number of attributes, cf. a table in the relational

model. In order to include the required semantic information it was necessary to

represent knowledge about datasets, entity types, entities and attributes.

Entities can be identified as being of a specific entity type and a hierarchical

taxonomy has been used to classify these entity types, relationships between entity

types can then be examined. Only two types of links have been implemented, generic

and nongeneric, to allow one entity type to be declared as being a specialisation of

another. The reason for including an entity type taxonomy in the data model is that it

provides an efficient method of representing knowledge that different entity types are

in fact similar. Some statistical methods will only produce meaningful results if the

data involved is measured for objects that are alike. In the semantic modelling literature

little attention has been paid to the use of entity taxonomies and the variety of

relationships that should be possible. Semantic network applications have also been

satisfied with denoting that one type is a generalisation of another. In both these areas

Root
NG non-generic link

G generic link NG NG NG

Type A Type B Type C

G G G

Type Al Type A2 Type C1

Figure 5.1 Use of the Entity Type Taxonomy

43

the purpose of the taxonomy has primarily been to allow for the inheritance of

properties rather than to represent what the objects are. The use of the two links that

have been implemented allows a number of sub-trees of ‘like’ entity types to be

constructed below the root node. Figure 5.1 illustrates that there are three distinct

types of entities, with type A having two subtypes and type C one.

The data in a dataset will be for a number of entities which are instances of an entity

type. This type will be represented in the entity taxonomy. For each dataset, it would

be desirable to be able to identify these instances. This has been achieved by following

the usual relational database convention of declaring key fields. One or a combination

of the attributes can be declared as constituting a unique key to identify the instances in

a dataset. The use of keys makes it possible to compare the instances from a number of

datasets to see if they coincide. This is an important property of the data to be able to

recognise, for some statistical methods only paired or related samples can be used

whereas with other methods independent samples should be treated in a different

manner to those which are paired or related. It is optional for a key to be declared for a

dataset and the concept of secondary keys has not been implemented.

Attributes are used to record the properties of entities, in a basic relational model

they are drawn from domains. A domain is usually defined as being a set of atomic

values from which the data is drawn. This is concerned with the type and range of

possible values and has analogies with the programming language concept of a data

type. Attributes which record the same property but using a different notation would be

specified as being drawn from different domains, for example heights in centimetres

and heights in inches. This loss of information is of little consequence in a general

purpose database system as domains are primarily conceptual, the main use of which is

for data validation purposes. For a statistical application, information about the domain

of an attribute can be more usefully represented as several items of information. In the

model that has been developed these items are concerned with ‘what’ the property is

and ‘how’ it is being denoted.

44

It is important to know what property is being Tepresented by data, comparing the

data of different attributes would be meaningless unless it was homogeneous. By

separating what the property is and how it is being denoted, it is possible for the

system to differentiate between the following three cases :-

(i) _ the property being represented is the same and it is being represented in the

same way, thus indicating homogeneous data;

(ii) the property being represented is the same but it is being represented in

different ways, it is possible to obtain homogeneous data if it can be

converted into a common method of representation;

(iii) the property being represented is different, the data cannot therefore be

made homogeneous.

The ‘what’ part, termed the attribute type, has been represented as a character

string, e.g. “height”. In considering ‘how’ the data is being represented, this is

concerned with the measurement aspects, e.g. measured using inches. Representing

this semantic knowledge has been achieved by including in the model, information

about the level of measurement and the measurement scheme used for each attribute. A

committee of the British Association for the Advancement of Science debated the

subject of measurement and identified a classification of scales of measurement, as

described by Stevens (1946). The classes are determined by both the manner in which

the data is measured and by the formal mathematical properties of the scales. The

importance of these scales is that the mathematical and statistical operations that can be

meaningfully applied to data are dependent upon their scale of measurement.

The scales - nominal, ordinal, interval and ratio - were identified as follows :-

@) a nominal scale uses symbols to denote group membership, this is the

lowest level of measurement;

(i) an ordinal scale has the additional property that the groups can be ordered

such that a greater-than relationship can be identified between them;

(ii) with an interval scale the difference between any two values can be

determined;

45

(iv) a ratio scale has the property of having a true zero such that the ratio of any

two values is independent of the unit of measurement.

These scales have been adopted for the data model. In addition it has proved useful

to distinguish as a separate category any data which is represented using rank values,

ranks are usually classified as being a type of ordinal scale. For attributes that have

nominal, ordinal, interval or ratio scale data there will in addition be information about

the unit of measurement used to record the data, this is not required for rank level data.

The distributional properties of data is also very useful information to have. It is

possible for the user to declare if they know that interval or ratio level data is drawn

from a normally distributed population. No other distributional aspects have been

implemented.

The knowledge about how the data has been recorded is completed with a

description of the measurement scheme that has been used. There are descriptions of

all the schemes that have been declared to the system in a measurement directory. The

measurement schemes can be classified as being either qualitative or quantitative. A

qualitative scheme will consist of a closed or an open set of categories, that is a finite

or an infinite set of possible values. Closed sets are either unordered or ordered and a

list of possible values is stored. For each quantitative measurement scheme the upper

and lower bound of possible values will be stored. By having knowledge of the set or

range of possible values, data validation functions can be performed as the data is

entered. For all attributes with interval and ratio level data there will be an associated

quantitative measurement scheme, in the case of rank data there will be no such

scheme. Ordinal level data could also have been measured using a quantitative scheme,

this is to allow for data such as IQ scores, or alternatively the values may have been

drawn from an ordered set of qualitative categories. All nominal data is qualitative and

could be represented as values drawn from open or closed sets.

The level of measurement and measurement scheme combinations that can be

declared for an attribute are summarised in Table 5.1.

46

Level of Measurement Measurement Scheme Restrictions

Ratio Quantitative

Interval Quantitative

Rank

Ordinal Quantitative

Ordinal Qualitative, Closed Set, Ordered

Nominal Qualitative, Closed Set

Nominal Qualitative, Open Set

Table 5.1 Measurement Level and Measurement Scheme Combinations

The last aspect of semantic knowledge that has been represented is a directory

containing information on how to convert data from one measurement scheme to

another. It is possible for data to be converted from one quantitative measurement

scheme to another, to convert quantitative data into ordered qualitative categories or to

convert one set of closed categories to another. Of the quantitative to quantitative

conversions that are possible, only linear transformations of the form y = ax+c have

been implemented, where c will be zero for all ratio scale conversions. To categorise a

quantitative set of data a range of values are mapped onto one of the categories of the

qualitative measurement scheme. When converting data from one category set to

another, each category in the source scheme is mapped onto a category in the target

measurement scheme.

Users will declare the semantic knowledge about their sets of data and a semantic

data model consisting of an entity taxonomy, a dataset directory, a measurement

directory and a conversion directory will be built. The data structures to store this

information and the routines to build the model are described in the remaining sections

of this chapter.

47

5.2 Symbolic Objects

This section describes the Pascal data structures that are used for the internal

tepresentation of the semantic data model.

5.2.1 Entity Type Taxonomy

The entity taxonomy is represented as a dynamic data structure using a node for

each entity type that is declared. An entity type will have one immediate supertype, of

which it is a specialisation of, and could subsequently have any number of immediate

subtypes. The representation was required to support operations to traverse up and

down the taxonomy in addition to the need to add a new entity type as a subtype of an

existing type.

A diagrammatic representation of the structure used to denote an entity type is given

in Figure 5.2.

Supertype

| Next entity Ent_name Super_rel | fre inciatn

Head of chain
of subtypes

Figure 5.2 Entity Type Node

Each entity type node will contain the following information :-

(i) ent_name - a character string that identifies the entity type;

(i) | super_rel - an enumerated type to indicate the relationship between the

entity type and its immediate supertype, it will take the value nongeneric or

generic;

48

(ii) superpointer - a pointer to the immediate supertype node;

(iv) subpointer - a pointer to the head of a chain of entity types which have this

entity type as their immediate supertype, this pointer will have the value

NIL if there are no subtypes;

(v) nextpointer - a pointer to the next entity type in the chain of entity types

which share a common supertype.

An example of how an entity taxonomy would be represented is given in

Figure 5.3. The root node, which is predeclared by the system, has been declared as

the supertype of three entity types (EntA, EntD and EntE), the nodes for these entity

types have been chained together. Two subtypes have been declared for EntA and one

for EntE.

Ent_root ———?>| Root lL

enta | 7], | -—>| enn |\ JO EEE |

En | / ol gl mic EntF |\

Figure 5.3 Representation of an Entity Taxonomy

5.2.2 Measurement Directory

A binary tree structure has been used to represent the measurement directory which

is indexed by the measurement name. It was decided to use this type of data structure

because it provides an efficient method of searching for a particular measurement

scheme entry. It is beneficial to have a single directory containing information about

both qualitative and quantitative measurement schemes. The use of a Pascal variant

49

record solves the problem of needing to store different information about each type of

measurement scheme.

The common part of the measurement node will represent the following

information :-

(i) measname - a character string that identifies the measurement scheme;

(i) _ leftp, rightp - pointers to build the binary tree;

(ii) meas_type - an enumerated type to indicate the type of measurement

scheme being represented, this acts as the tag field for the node and will

take the value qualmeas or quantmeas.

If the meas_type field has the value qualmeas then the measurement node will be as

shown in Figure 5.4.

Chain of
Measname | Meas_type || Cattype | Settype | Ordtype | Numofcat | > Category

\ Nodes

Left and
Right

Subtrees

Figure 5.4 Qualitative Measurement Node

The additional information that is stored for a qualitative scheme is as follows :-

(i) cattype - an enumerated type which indicates the type of the data, the user

may have represented the category labels as numeric values or as character

strings, this field will take the value identifier or numeral;

(ii) _ settype - an enumerated type which will either have the value openset or

closedset to designate a set of possible values which is infinite or finite;

(iii) ordtype - if there are a finite set of possible values, the members may be

unordered or ordered;

(iv) numofcat - in the event of a closed set this field indicates the number of

categories;

50

(v) _cathead - a pointer to the head of a chain of category nodes.

For closed sets, each permissible value is stored in a category node. For category

sets where there is an underlying order present, the values are stored in ascending

order from the head to the tail of the chain.

Measname | Meas _type || Lowerbound | Upperbound

(ALA

ry \
Left and

Right
Subtrees

Figure 5.5 Quantitative Measurement Node

If the measurement scheme being represented is quantitative, as denoted by a

meas_type value of quantmeas, the variant record will be in a form as illustrated in

Figure 5.5. The information specific to a quantitative measurement scheme is

represented as follows :-

(i) lowerbound - a real value indicating the minimum of the allowable range;

Gi) _upperbound - a real value indicating the maximum of the allowable range.

5.2.3 Dataset Directory

The dataset directory is organised as a binary tree which can be searched for

alphabetically by dataset name. This directory contains all of the information relating to

the datasets and their associated attributes. For each dataset that has been declared there

will be a node in the tree containing information pertaining to the dataset as a whole,

such a node is shown in Figure 5.6.

The information in the dataset node is as follows :-

@) — ds_name - acharacter string to identify the dataset;

(ii) _ leftp, rightp - pointers to build the binary tree;

51

Entity Type

t Chain of

\ Ds_name | Instances | 4—— Attribute
Nodes

Left Right
Subtree Subtree

Figure 5.6 Dataset Node

(ii) ent_type - a pointer to an entry in the entity type taxonomy, the entities in

the dataset will be instances of this entity type;

(iv) instances - the number of instances that have been entered for the dataset;

(v) attchain - a pointer to the head of a chain of attribute nodes.

A node will be generated for each attribute that is declared for the dataset. The

attribute nodes will be stored in the order in which they are declared. Key attributes are

declared first in their order of significance in the key. A dataset as a whole is referred

to as <dsname> whereas a specific attribute is referenced as <dsname>.<attname>,

whereupon the chain is searched for the required node. The attribute nodes are as in

Figure 5.7.

Meas

Att_name | Att role | Att_type | Datalevel | aw dist | |] mode fiesta ae
ttribute

Figure 5.7 Attribute Node

The knowledge represented in the attribute node is as follows :-

@) —_ att_name - a character string to identify the attribute;

52

Gi)

iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

att_role - an enumerated type value, if the field is set to key it signifies that

the attribute forms part of the key of the dataset, otherwise the value will be

non_key;

att_type - a character string to designate what property the attribute is

Tepresenting, e.g. height;

datalevel - denotes the level of measurement of the data which will be

nominal, ordinal, rank, interval or ratio;

att_dist - an enumerated type whose value is set to normaldist if the user

has declared a knowledge that the data is drawn from a normally

distributed population;

meas_p - a pointer to an entry in the measurement directory to indicate

which measurement scheme has been used to record the data, this field will

be NIL for any rank level data;

mode - identifies the type of the data which is stored for the attribute,

identifier signifies alphanumeric data otherwise numeral indicates numeric

data;

char_p, num_p - the data for the attribute is stored in an array which is

referenced by a pointer in the attribute node, the mode value acts as the tag

field so that the pointer is of the appropriate type, i.e. to a character or

numeric array;

next_att - a pointer to the next attribute node in the chain.

The user’s original data, as they enter it into the system, will be either alphanumeric

or numeric. All quantitative and rank data is stored as it is entered in a numeric array.

For qualitative data, the user may have represented the category labels using either

alphanumeric or numeric values. For qualitative data from closed sets, the index of the

category value in the value set is stored instead. When a category value is entered it is

necessary to search through the list of permissible values to validate set membership.

Although the index values are not stored, the category value at the head of the chain is

regarded as having the index value 1. Since categories for ordered sets are stored in

53

ascending order from head to tail, the index value preserves the underlying order. The

advantage of storing the index value is that all data likely to be used for statistical

operations is stored in numeric arrays, with only qualitative data from open sets having

alphanumeric labels being stored in character arrays. Being able to handle the data in a

consistent manner is also an advantage with regard to performing data conversions. All

of the data to be converted will be numeric and the information relating to conversions

involving qualitative measurement schemes can be stored with Tespect to the index

numbers of the categories.

To simplify the implementation of the prototype, the data has been stored in arrays

of size 50. For a practical application a storage system able to cope efficiently with

large and small sets of data would be required.

5.2.4 Conversion Directory

Each entry in the directory contains the information on how to convert data from

one measurement scheme to another. A conversion scheme is identified by its name,

from_to, which is formed by concatenating the names of the source and target

measurement schemes. The directory is organised as a binary tree which is searched

for by name, a conversion node is shown in Figure 5.8.

Qnignt_p
From_to | Typeofcony EEG: /\\

¥ \ Qntqit_p

Left and _ Next

Right Coe See © Qniqlinode
Subtrees

Qltqit_p

Next
Toindex | ——> Qltqltnode

Figure 5.8 Conversion Node

54

The tag field sypeofconv identifies the type of conversion as being gnt_qnt, qnt_qlt

or q/t_qlt. The type of the pointer to the information on how to perform the conversion

is determined by this value, it has the respective types qniqnt_p, qniqlt_p or qltqlt_p.

To represent how to convert from one quantitative measurement scheme to another

it is necessary only to store the constants from the equation

target = a * source + c.

A quantitative to qualitative conversion involves splitting the range of the

quantitative measurement scheme into a number of sub-ranges. These sub-ranges are

mapped onto the categories of the qualitative scheme in a form as shown below.

lowerbound < toindex; < upper;

upper, < toindex; < upper

uppefn < toindexy < upperbound

A chain of nodes are created which contain the upper and toindex values for each

sub-range, these nodes are stored in ascending order of quantitative sub-ranges.

Converting one qualitative measurement scheme to another involves mapping each

source category label to one in the target category scheme. This can be viewed as

below.

fromindex; = toindex;

fromindex2 = toindex;

fromindex, = toindexp

Each node in the chain contains the toindex values which relate to the fromindex

categories in the order in which they are stored in the measurement directory entry.

5.3 Semantic Data Model Manipulation Commands and Procedures

A minimal set of commands have been implemented to define, add data to and query

a data model. The system checks the syntax and semantics of user issued commands

DD

and outputs error messages as appropriate. For a commercial system the interface

would need to be substantially further developed. In particular, to assist users in

defining a knowledge base by explaining the meaning of terminology. For example, as

it stands it is necessary to declare the level of measurement of an attribute, for a novice

user who was not able to declare the level it would be desirable to be able to question

the user such that the level could be deduced.

5.3.1 Entity Types

The command ADDENT is used to add an entity type to the taxonomy.

ADDENT <newenttype> <superenttype> <relationship>

The system searches the taxonomy to ensure that the new entity type, newenttype,

has not already been declared and that the specified supertype, superenttype, has. The

only other check that is carried out is to see that a valid relationship has been given. If

no error has occured, an entity type node is generated and is then added to the

taxonomy at the head of the chain of subtypes for the superenttype node.

The entity types that have been declared in the taxonomy can be displayed using the

SHOWENTDIR command.

SHOWENTDIR <enttype>

This displays the part of the taxonomy from the enttype node downwards, to

display the whole taxonomy the entity type ROOT can be specified.

5.3.2 Measurement Schemes

The user can declare a new measurement scheme to the system by issuing the

ADDMEAS command.

ADDMEAS <measname> <meastype>

The system will initially check that the measname scheme does not already exist in

the directory and that a valid meastype value of qualmeas or quantmeas has been given.

56

If no error has been found the appropriate procedure, getqualinfo or getquantinfo, is

called to complete the process of declaring the measurement scheme.

Alternatively, if during the course of some other operation, for example declaring an

attribute, the user enters the name of a measurement scheme which is unknown to the

system, the user will have the option of adding it to the directory. Should the user wish

to do so, the appropriate procedure will be called to complete the operation.

The procedure getqualinfo questions the user to complete the information about the

qualitative measurement scheme being declared. One of the parameters, measspec,

conveys to the procedure a knowledge of what is already known of the qualitative

scheme, thus avoiding asking the user unnecessary questions. The possible values that

will be passed are :-

@) —_ ordqual - an ordered set of closed categories;

(ii) unordqual - an unordered set of closed categories;

(iii) orddich - an ordered set with two categories;

(iv) unorddich - an unordered set with two categories;

(v) dich - a closed set with two categories which may be unordered or ordered;

(vi) qual - nothing is known of the measurement scheme other than it is

qualitative.

When the user has issued the ADDMEAS command the parameter measspec will be

passed the value qual.

If the measspec parameter has the value qual then the procedure getqualinfo will ask

the user if the set of categories is open or closed, since for all other measspec values it

is known that there is a closed set. For closed sets of categories where the ordering is

unknown, the system will query the user for the required value. For all types of

qualitative scheme the user will be questioned as to whether the categories are

represented with alphanumeric or numeric labels.

For measurement schemes with a closed set of categories the procedure

getqualclasses is called. The user is prompted to enter the category labels one at a time.

For each new label, the list of category nodes of previously declared labels is searched

ot

to ensure uniqueness within the scheme before a new node is generated and added to

the tail of the list. The procedure ensures that at least two possible labels are declared

and in the case of a dichotomy the process is halted once two valid labels have been

entered, the measspec parameter is passed for this purpose.

The procedure getquantinfo obtains the lower and upper bounds of the permissible

range of values for the quantitative measurement scheme. The upperbound should be

greater than the lowerbound and the keywords min and max can be used to specify the

extents of the range of real values, these have been given artificial values.

Once the measurement scheme has been correctly declared it is inserted into the

appropriate place in the tree.

Two commands have been implemented to view the knowledge stored in the

measurement directory. The SHOWMEASDIR command displays the names of each

scheme declared in the directory, in alphabetical order, along with their meas_type

values. For more detailed information about a specific measurement scheme,

measname, the SHOWMEAS command can be used.

SHOWMEAS <measname>

For a qualitative scheme the set and datatype values are displayed, in the case of a

closed set the list of value labels is also given. The lower and upper range values are

given in the event of the measname scheme being quantitative.

5.3.3. Datasets

A new dataset is declared by issuing the ADDDS command.

ADDDS <dsname> <enttype>

The dataset directory is searched to ensure that the new dsname is unique. The

command indicates that the new dataset will record data about instances of the entity

type enttype, the taxonomy is searched to check that the specified entity type has been

declared. If no errors have occured, a dataset node is generated and added to the

dataset directory in the appropriate place.

58

The dataset directory can be queried with the SHOWDSDIR command. This displays

the name of each dataset, in alphabetical order, with their corresponding ent_type and

instances values.

5.3.4 Attributes

Once a dataset has been declared, the attributes for it can be entered using the

ADDATT command.

ADDATT <dsname>

Having verified that the dataset dsname is present in the directory, for which no

attributes have currently been declared, the system prompts the user to enter the

information about each attribute one at a time, verifying the entry for one before

prompting for the next. The information for any key attributes is initially requested and

then that for those which do not form part of the key. The information for each

attribute is in a form as shown below.

<attname> TYPE = <typename> LEVEL = <datalevel>

MEAS = <measname> NORMAL

The attname value is given first and the remaining items can be given in any order as

required. The list of currently declared attributes for the dataset is checked to ensure

that the new attribute name is unique. For each attribute that is declared, the TYPE and

LEVEL values should be given, the other items may or may not be required.

For nominal, ordinal, interval and ratio level data a measurement scheme for the

attribute must be given. The system will search the measurement directory to see if the

specified scheme has been declared. If it has, the function meastypeOK is called to see

if it conforms to the level of measurement value given for the attribute. Alternatively,

the user is asked if they wish to add the measurement scheme to the directory. If the

user does not wish to do so then they are asked to re-enter the information for the

attribute, it was decided to take this course of action for simplicities sake. Should the

user wish to declare the new measurement scheme the relevant procedure to do so is

59

called. For nominal level data the getqualinfo procedure is called with a measspec

parameter of qual. Ordinal level data however could be measured by a qualitative or

quantitative measurement scheme. The user is queried as to which and in the case of

the former the getqualinfo procedure is called with a measspec value of ordqual. For all

quantitative data, be it ordinal, interval or ratio, the getquantinfo procedure is called.

The NORMAL field is optional for interval and ratio level data.

Once it is verified that the information for the attribute is complete and correct, a

new attribute node is generated and added to the tail of the chain of attribute nodes. At

this point in time, the array to contain any future data is not generated, i.e. the char_p

or num_p pointer field is set to NIL.

For a particular dataset, the attributes that have been declared for it can be displayed

with the SHOWATT command.

SHOWATT <dsname>

The attributes are displayed in the order in which they were declared and the

information associated with each is shown.

5.3.5 Instances

Once the attributes have been declared for a dataset the actual data items can be

entered with the ADDINST command.

ADDINST <dsname>

If no instances have been declared for the dataset, the arrays to store the data are

generated, otherwise the new data is added to what has previously been entered. The

user is prompted to enter the data an instance at a time, one value for each attribute.

The data is checked to see that it conforms to what is expected, i.e. that the data type is

correct and the value is in accord with any measurement scheme specifications. In

order to check a value which represents a label from a qualitative measurement scheme

with a closed set of categories the catsearch procedure is called. For a valid label the

index number is returned, so that it can be stored in the data array, otherwise a 0 is

60

retumed signifying an eroneous label. The number of items for each attribute is

noelements and the new items are stored in array locations noelements+1.

If the instances in the dataset are identified by a key, then once a data item has been

validated and stored for each attribute, it is necessary to check the uniqueness of the

new key. For datasets whose instances are identified by a key it has been found useful

to store the instances in key order. Thus when adding a new instance to an already

sorted list, the key can be checked for uniqueness at the same time as inserting it into

its correct location. The procedure sortinstances works through the data to find the

position, newpos, where the new instance, currently stored in position noelements+1,

should be inserted. If the key is found to be a repeated value then an error message is

output, the data ignored and the value of noelements is not incremented. Otherwise the

system moves down by 1 the data items from newpos to noelements and inserts the

new data for each attribute. For simplicity it is assumed that the number of instances

does not exceed the number that can be stored in a data array.

Having dealt with the most recently entered instance, the user is prompted to enter

the next. By dealing with one instance at a time a better description of any errors made

can be given.

The instances which have been entered for a dataset can be displayed using the

SHOWINST command.

SHOWINST <dsname>

For data items which are stored as the index to a category label from a qualitative

measurement scheme, the actual label is retrieved from the entry in the measurement

directory and is displayed instead of the index.

5.3.6 Conversion Schemes

The user does not volunteer to the system how to convert from one measurement

scheme to another, as with the other components of a data model, but the system calls

the procedure gerconvinfo as and when the conversion directory does not contain an

61

entry which is required. Before proceeding, the user is asked if they know how to do

the required conversion. If it is possible, the system examines the measurement

schemes participating, frommeas and tomeas, to identify the type of conversion

involved and calls the appropriate procedure to obtain the required information.

For a qnt_qnt conversion, the user is asked for a non-zero multiplying factor and a

constant term for the equation tomeas = a*frommeas+c.

In the case of a qnt_qlt conversion the user is asked for the boundaries of the

quantitative sub-ranges, in ascending order, and is required to enter the corresponding

qualitative category label for each. The system guarantees that the entire range of the

quantitative measurement scheme is covered and that valid category labels are given.

For the last sub-range, the keyword upper can be used to signify the upper bound of

the quantitative scheme instead of the numeric value.

Information on how to perform a qlt_qlt conversion is obtained by prompting the

user with the frommeas category labels in turn and requesting the corresponding

tomeas category labels for each.

For qnt_qlt and qlt_qlt conversions, the qualitative labels entered by the user for the

tomeas scheme are validated by calling the catsearch procedure.

5.4 File Storage of the Semantic Data Model

The information entered into a data model is stored in a number of Pascal text files.

As the information is declared and added to the components of the data model the files

are generated by the system and updated. This is done such that they always reflect the

current content of the data model. When the system is invoked at the start of a run, the

information is loaded from the files into appropriate Pascal data structures.

The file entdir.dat contains an entry for each entity type, as new types are declared

their information is appended to the end of the file.

Each measurement scheme is recorded in the measdir.dat file and each conversion

scheme in the file convdir.dat. Similarly, for every dataset that is declared there is an

62

entry in the dsdir.dat file. In each case the new entries are appended to the end of their

respective files, when loaded at the start of a run the trees are exactly re-created as they

were, which is hopefully in a reasonably balanced form.

The entry in the dsdir.dat file contains the information given in the ADDDS

command. When the attributes are declared for the dataset, dsname, a file called

<dsname>.att is generated which will have an entry for each attribute.

Finally, files are created to store the actual data which is entered for the datasets, A

separate file is used for each attribute, its name is formed by concatenating the dataset

and attribute names, i.e. <dsname+attname>.dat. Once the new data has been entered,

and possibly sorted into a key order, the files to store the data are completely re-written

such that the data can be re-loaded in any key order which exists. This method would

be wasteful when adding to large sets of data, but the time taken is not noticable for the

size of sets handled in this implementation.

63

Chapter 6

Statistical Tests and Semantic Requirements

6.1 Background to Statistical Tests

Having consulted a number of statistical packages and textbooks, a selection of

measures of association and tests of location (for both 2 and k sample situations) were

chosen. In the text of the thesis, the word ‘test’ is used (for simplicity) to refer to

measures of association and tests of location. These tests were selected on the basis of

being commonly used and covering a reasonable range of problems for each area.

6.1.1 Measures of Association

(a) Pearson’s Product Moment Correlation Coefficient

This is a measure of the strength of a linear relationship between paired samples

assumed to be drawn from normally distributed populations.

It is calculated as

Te EAE NERY ee Aye where -1<r<1

V [n=x2 - (2x)?][nzy2 - (Zy)?]

The significance of the correlation can be tested using

t=r Taz with df =n-2.

(b) Spearman’s Rank Correlation Coefficient

This coefficient measures the strength of a positive or negative relationship between

the ranks of two samples. For each pair of ranks the difference (d, = X; - Y;) is taken

and the coefficient is calculated as

62d?
i. =) li TENT where -1<r,<1

If the proportion of ties is not too large the effect on rz is negligible, however for a

large number of ties (where t, is the number of observations tied for rank i) a correction

factor can be incorporated so that

Ex2 + Ly? - Xd?

2 Vax? Zy2
<=

: 2 _ n(n? - 1) xt? - 1) with = = tye and /Te = aide x

The significance of the correlation can be tested using

with df=n-2

(c) Kendall’s Rank Correlation Coefficient

Similarly to r,, this coefficient measures the amount of a positive or negative

relationship between two ranked samples, it is calculated as

2 Yajb;
Sage) where -1<t<1

0 if xj= x; 0 if yi=yj for (i= 1 ton-1,j =i+1 ton)

+1 if xj < x; +1 if yi<yj

a= { ! b= { !
-1 if xj > xj -1 if yi> yj

In the event of tied ranks (where t; is the number of ties at rank i) a corrected

formula can be used

aly Dadi Zt;(t, - 1) Z aon where T, =
n= 1) n- singe esa

The significance of t can be tested using

and similarly for Ty

t-
 Z= re _ 2(2n +5)
. where L, = 0 and o% = Tnmn- 1)

65

(d) TauCc

This coefficient is derived from Kendall’s rank correlation for situations where there

are a large number of tied ranks, details of which can be found in Kendall &

Stuart (1979). The coefficient is suitable for data arranged as an ordered rxc

contingency table and is calculated as

2m La;jib;; : ee where m = min(r,c) and-1<t,<1 n2(m - 1) 4

The 2ajbj value is computed as in (c) above.

(e) Cramer’s V

This measure of association requires an rxc contingency table to be constructed. It is

based upon the x? statistic, which can be used to test the significance of the

association. The statistic is calculated as

e

V = ~~ where m = min (1, c-1) and0<V<1

(f) Pearson’s Coefficient of Contingency

This coefficient is applicable for the same situations as Cramer’s V and is also based

on a x2? statistic calculated from an rxc contingency table.

The coefficient is calculated as

a min(t-1, c- C= fom where 0 $C $ Jat oly

6.1.2 Tests for Differences in Two Samples

(a) Normal Statistic

This can be used to compare the means of two samples of size n; and n9. For small

samples (n, < 30 or ng < 30) it is necessary to assume that the samples are drawn from

normally distributed populations with known variances % and Cis However for large

samples (n, 2 30 and nj 2 30) the central limit theorem applies and no assumptions

66

regarding the population distributions are necessary, in addition if 0, and 62 are not

known then the estimates s, and sy can be used instead.

The test statistic, which is approximately distributed as a standard normal variable,

is calculated as

X1-_X2 z=
o oF
ny” ng

(b) tTest

The t test is for comparing the means of two samples, for small samples (n; < 30

or ng < 30) it must be assumed that the parent populations are normally distributed.

There are three forms of the t test which are used in the following situations :-

(i) for independent samples with population variances that can be assumed

equal, the test statistic, which exactly follows a t distribution with

df = n; + nz - 2, is calculated as

X1- X2 ny - 1)s? + (n2 - 1)s2
t=—-——_—*_ micro Wg sete Mo Use peat Oo ceb)sy

ny +n2-2
Sp ny i np

(ii) in the case of independent samples where common population variances

cannot be assumed, a statistic which approximates to the t distribution can

be calculated, for conservatism the degrees of freedom value is rounded

down to the nearest integer

2 a Ss Ss 2 eee te [i. 2]

X1- X : n n:
ae witht’ — 5

ae 10 [2]
ar* md, big ee eee

ny- 1 n2- 1

(iii) for paired samples, the difference in the pair of values (dj = x1; - Xj) is

calculated, no consideration need be given as to whether the population

variances are equal since the test statistic uses the differences between the

paired observations.

67

The test statistic is calculated as

d a 2
= g where s? = (d)*in
~ sq/Nn n- 1

with n =n, =n) and df=n- 1.

(c) Wilcoxon Matched Pairs Signed Ranks Test

This test can be used to detect any kind of difference in two paired samples (with

the null hypothesis being that there is no difference). The absolute differences between

each matched pair are obtained and ranked in order of magnitude. The sums of the +ve

and -ve differences are then calculated, which under the null hypothesis would be

about equal. Where there is no difference in a pair of observations, i.e. d=0, the pair is

dropped and the value of n (the number of pairs) is reduced accordingly. For pairs

with the same absolute difference average ranks are assigned.

Let T equal the smaller of the two sums of ranks. For small values of n, tables are

consulted to test the significance of the T value. For larger samples (typically n > 25)

the value of T is approximately normally distributed with

n(n + 1) oe . and of = AO+VGn+ 1)

If there are tied ranks, a corrected form of of is calculated as

n(n + 1)(2n + 1) - 1/2 t(ty - 1)(tj + 1)
at e ;

i. etieihigs ea et ee

where g is the number of tied groups and t; the number of observations tied for rank j.

The significance of T is then tested using the standard normally distributed variable

T-r
or
 Z=

(d) Sign Test

This test is appropriate for establishing a contrast in two related samples and

requires only that a difference, +ve or -ve, can be found for each pair of observations.

68

Let x be the lower of the sums of +ve and -ve differences, tied observations (where

there is no difference in the pair of values) are dropped from the data and the value of n

reduced. The null hypothesis which is tested is that the median difference is zero. For

small samples (typically n < 25) the significance of x is tested by consulting

cumulative binomial tables. For larger values of n, x is approximately normally

distributed with

n vn
Bye = 3, and o, =

The significance of x is then tested using

X= Hs
Ox

The test actually assumes that the data comes from an underlying continuous

distribution, a correction term for continuity can be incorporated giving a test statistic

of

(x £0.5)-p x + 0.5 when x < n/2
a= e % use Aa - 0.5 when x > n/2

x

(e) Mann-Whitney U Test

This test is a nonparametric alternative to the t test and determines whether two

independent samples have been drawn from the same population.

Let nj = the number of cases in the smaller of the two groups,

nz = the number of cases in the larger of the two groups.

The samples are combined and ranked where

R, = the sum of the ranks assigned to the group of size nj,

R2 = the sum of the ranks assigned to the group of size no,

The value of U is taken as the smaller of the two values U’ and U” which are

calculated as

1 i
U’ = nn page) - R; and U” = nny — - Ry

69

For small samples, the significance of U is tested by consulting tables of critical

values. For larger samples

nyn2 wy = 2 and o% = nyNno(n; +n, + 1)
12

In the event of ties average ranks are assigned. If the ties are just between

observations in the same group there is no effect, however if ties occur between

groups (where t; is the number of observations tied for rank i) then a corrected form of

Oy is used.

2 N(N? - 1) - D(t3 - ti) &=[my [OAS | where N =n, +n)

The significance of U is tested using the standard normally distributed variable

5 2 Uae
Oy

(f) McNemar Test

This test is suitable for paired samples which have been represented on a

dichotomy. A contingency table can be constructed to summarise the data.

SAMPLE Y

0 1

O| A B

SAMPLE X

1 ic. D
The test ignores the observations for pairs which have the same value, ie. cells A

and D, but concentrates on those pairs where the values are different. The test

examines whether or not there is a difference in the probability of one combination of

values (0,1) against the other (1,0). The test statistic, shown below, is calculated to

compare the observed with the expected distribution of observations in cells B and C.

2 [BG C22 > [Cate + C)/2)2 (B= C)2
= (Ben ©) 2am ieam(bes Oye pcs Tee air!

70

Since the chi-squared distribution, which is continuous, is used to approximate a

discrete distribution a correction for continuity can be included so that the test statistic

is calculated as

_ (IB - Cl - 1)?
oe BTC with df=1.

(g) Fisher Exact Probability Test

This test is applicable for data from two independent samples which fall into a

dichotomy, as shown below.

CLASS

0 Hi

SAMPLE X] A B A+B

SAMPLE Y] C D C+D

A+C B+D N

The test compares the two samples to see if the data differs in the proportions with

which it falls between the two classes. Given that the marginal totals are fixed, the

probability of the observed distribution of values can be calculated as

_ (A+B)! (C+D)! (A +C)! (B+ D)!
Eos in ae ee NIE BEC Demme ane?

By also calculating the probabilities of the more extreme deviations, and summing

these probabilities, the null hypothesis can be tested. For a two-tailed test the

probabilities are doubled.

6.1.3 Tests for Differences in K Samples

(a) Randomised Block Design

A randomised block design can be used to test for differences in population means

of k related samples. It is assumed that the observations are drawn from normally

ay

distributed populations which have a common variance. The data is analysed as a two-

way ANOVA without interaction, with one factor assigned to samples (k levels) and

the other to blocks (n levels). The model is

yg=U+Bi+ +e; G=1ton,j=1tok)

(b) One-Way Analysis of Variance

A one-way ANOVA can be used to detect differences in the population means of k

independent samples, each of size n;. The analysis assumes that the populations are

approximately normal with a common variance. The one-factor model that is used is

Yg=HN+Bi+ey G=1tok,j=1 ton)

(c) Friedman Two-Way ANOVA by Ranks

The Friedman test is a nonparametric alternative to the randomised block design and

tests if k related samples are drawn from the same population. The data is considered

as being arranged in a table with

N rows - the number of observations for each sample,

Kcolumns - the number of samples.

Each row is ranked from 1 to k, with tied values being assigned average ranks. The

sum of ranks (Rj) is calculated for each column, which under the null hypothesis

would be about equal.

The test statistic is calculated as

Q= pene ER? 3N(K + 1 NK(K + 1) 2 a ‘ }

In the event of tied values average ranks are assigned, a corrected form of the test

Statistic can be calculated, where tik is the number of ties for row j with rank k.

12 x 5 NKK ey ZR > 3N(K +1)

a Tt 2(ti, - 1)
Te NK (KES 1)

72

When the number of rows and columns is not too small the statistic follows a x2

distribution with df = K - 1, otherwise a table of critical values must be consulted to

obtain the significance.

(d) Kruskal-Wallis One-Way ANOVA

The Kruskal-Wallis test is a k sample generalisation of the Mann-Whitney U test

and is useful for detecting whether k independent samples are drawn from different

populations.

The samples are combined and ranked where

nj = the number of cases in the j' sample (£nj = N),

R; = the sum of ranks for the j" sample.

The test statistic is calculated as

ER?
N(N + 1) 4 0; = - 3N+1)

In the event of tied values, where t; is the number of ties for rank i, a corrected form

of the test statistic is calculated as

k R2 12 R?

NWeD 3 a = 3(N + 1)
- Due = 1D

a N(N2- 1)

The value of H is approximately distributed as a x? distribution with df =k - 1.

(e) Cochran Q Test

This test is applicable for k related samples with dichotomised data. The test

establishes whether the proportion of responses for each category is the same for each

sample. A two-way table with n rows and k columns is constructed, consider the

categories of the dichotomy to be types A and B.

Let Gj = the total number of A responses in column j,

L; = the total number of A responses in row i.

The test statistic, which is approximately a x2 distributed variable with df =k - 1, is

calculated as

k

(k-1) E 3G F- Boy]

k sl, - $12
i=l i=l

(f) Chi-Squared Test

A chi-squared test can be used for k independent samples, measured as discrete

categories. It detects any difference in the distribution across the categories among the

samples where

=F 5 oe. with df = (k-1)(n-1)
i=l j=l ij

The size of the expected frequencies should be checked, it is common to state that it

is desirable if fewer than 20% are less than 5 and none are less than 1.

6.2 Semantic Requirements Overview

The objective of the system is to try and ensure that statistical tests are used which

are appropriate for the data concerned. Siegel (1956) noted that “associated with every

statistical test is a model and a measurement requirement; the test is valid under certain

conditions, and the model and measurement requirement specify those conditions”.

The statistical model was identified as being the nature of the population and the

manner of the sampling. The user will request that a statistical test is to be performed

on a number of samples, each specified using a format of <dsname>.<attname>, the

system then performs a number of checks which use the information in the semantic

data model and the actual data values to verify some of the model and measurement

requirements.

74

Nelder (1977) had discussed three alternatives for checking the assumptions of a

statistical test :-

(i) _ for the system to apply a number of standard checks by default;

(i) for a number of standard checks to be provided for the user to Tequest;

(ii) for a set of low level functions to be provided, a tool-kit, for the user to

program their own checks.

The needs of the inexperienced user are best met by the first alternative and this was

the method adopted. Although the checks are applied by default, the user does have

some control as the results are not all automatically accepted by default. It is extremely

difficult, if not impossible, to specify a set of hard and fast rules which could be

applied to automatically decide if the use of a test was sound. Depending upon the

particular circumstances, some of the requirements need not be exactly met, for

example the assumption that data is normally distributed. In the case of subjective

issues, the system permits a user’s wish to prevail. This provides a further argument

against adopting an authoritarian approach. The implementation aspects of this are

discussed in the next chapter.

The checks that have been implemented are performed at two levels, they validate

the following :-

(i) _ that a class of tests is applicable, e.g. measures of association;

(ii) _ that a specific test is the appropriate type of test, e.g. Pearson’s PMCC.

The initial objective was that given a number of arguments by the user, the

appropriate type of test checks would be applied, if successful the system would then

apply the checks for the particular statistical test specified. It seemed desirable that if

the type of test was applicable, but the test chosen by the user was not appropriate, for

the system to be able to recommend one that was. A natural extension to this was to

allow a user to just specify the type of test required, e.g. measure of association, if the

type of test is applicable the system would recommend a particular test to the user. The

user can therefore either enter the name of a specific test if one is known, or if not just

the name of the type of test required. The system performs the class of test checks on

7

the arguments given and forms them into groups that the type of test is applicable to. If

the user has given suitable arguments then there will be just the one group. The checks

for a particular test can then be applied to each of those groups of arguments. Allowing

the program to operate in this manner has been made easier because of the hierarchical

organisation of the semantic requirements of the tests.

In recommending a measure of association, the system will choose a test to make

the best use of the level of measurement of the data. All of the tests of location have

been grouped together and the strategy adopted in selecting one is to: make the best use

of the level of measurement; take advantage if the samples are paired or related; select a

test specifically for two samples rather than a general test for k samples. Should the

user specify a test that does not make the best use of the data the system will still allow

its use. An alternative, that has not been implemented, would be to allow the use of the

test but to point out to the user that a more powerful test may be applicable.

6.3 Representation of Semantic Requirements

The semantic requirements of the statistical tests must be represented in a manner

that permits the two modes of use envisaged, those being :-

(i) __ to look at the requirements of a user specified test to see if it is appropriate;

(ii) to recommend a test suitable for the arguments given, this involves looking

at the requirements to identify a test.

This desired objective has been achieved by using a representation as depicted in

Figure 6.1. Three arrays of pointers have been used to represent the following sets of

requirements :-

(i) _ class_checks - indexed by the name of the type of test, i.e. association and

location;

(ii) assoc_checks - indexed by the name of the measure of association;

iii) loc_checks - indexed by the name of the test of location.

76

array of

pointers

chain of
checknodes

. next —_——P — index semcheck > fares

Figure 6.1 Semantic Requirements Representation

The pointers in the arrays reference a chain of checknodes. Each checknode

contains a semcheck field - this is a keyword identifying a semantic requirement - and a

pointer to the next node in the chain. This arrangement allows a varying number of

requirements to be specified.

To verify the requirements of a type of test the index of the class_checks array is

used to locate the appropriate pointer. Each node in the chain is processed one at a time

with the keyword identifying the requirement that is to be validated. The corresponding

array of test requirements, assoc_checks or loc_checks, is then used to perform the

second stage of checking.

If the user has specified a particular test, the relevant chain of checknodes is located

using the index of test names. The requirements are considered in the order in which

they occur in the chain. If a requirement is not satisfied the test is deemed inappropriate

and any remaining requirements are ignored. If however the end of the chain is reached

then the test is accepted as being applicable.

When the system is attempting to select a test to recommend to the user, either

because only the type of test was given or if the test preferred by the user was

inappropriate, the system must consider the requirements to identify a test name. For

the assoc_checks and loc_checks arrays the indices are ordered according to the

Strategy for choosing a test. For example, a two sample test for paired interval level

77

6.1a Classes of Test

Association relatedinst

Location simenttype eqdomains

6.1b Measures of Association

Pearson intqnt normal

Spearman ranked

Kendall tanked

Tau_c ordalt

Cramers_V nomcat chifreq
Coeff_of cont nomeat __chifreq

6.1c Tests of Location

Normal_test twosample eqintqnt nige30

T_paired twosample relatedinst eqintqnt normal

Randomised_block relatedinst eqintqnt normal eqvar

T_common twosample eqintqnt normal eqvar
T_separate twosample eqintqnt normal

One_way_AOV eqintqnt normal eqvar
Wilcoxon twosample relatedinst eqordqnt

Sign_test twosample relatedinst eqordqlt

Friedman_AOV telatedinst eqordqlt

Mann_Whitney twosample eqordqlt

Kruskal_Wallis eqordqlt

McNemar_test twosample relatedinst eqdichcat

Cochran_Q relatedinst eqdichcat

Chi_squared eqnomcat chifreq

Fisher_exact twosample eqdichcat

Table 6.1 Requirements of Statistical Tests

78

data appears before a similar test that does not assume paired samples. The tests can

therefore be considered in index order, the first one for which all of the requirements

are satisfied will be the one recommended.

Table 6.1 shows the requirements that have been specified for the type of tests and

the specific tests, the meanings of which are described in section 6.4. The

requirements are ordered in the chains from left to right as they appear in the table.

They are ordered such that they can be sensibly applied, that is there is no point in

checking for normality until it is known that the data is quantitative.

The requirements for the three arrays are stored in the files class_checks.dat,

assoc_checks.dat and loc_checks.dat, the information is read into the Pascal data

structures when the program in invoked.

6.4 Description of Semantic Requirements

The requirements keywords that can be specified are described in the following

sections, some of which study each sample in isolation to see if a condition is satisfied

whereas others will consider the group of samples as a whole to examine the existence

of a required common characteristic.

6.4.1 Homogeneous Entities

It may be required that for a sensible application of a test the data should be

measured for similar types of objects. That is the datasets of the attributes that are

involved should be measuring data for entities that are of a similar type, this

requirement is identified by the keyword simenttype. It can be validated by searching

the entity type taxonomy. From the entity types referenced in the dataset nodes it is

possible to work up the entity type nodes in the taxonomy, whilst the links are

denoting a generic relationship, to find the most generic entity types for each of the

79

datasets. The requirement is satisfied if the most generic nodes identified in the

taxonomy for each of the datasets are the same.

6.4.2 Related Samples

A number of the tests are intended for use with paired or related samples, specified

with the keyword relatedinst. That is the instances of the datasets for each of the

attributes that have been given should somehow match up. For samples that are

attributes from the same dataset no further effort is required. However if the datasets

for the attributes are different then each dataset must have a key field where the values

of the attributes comprising the key coincide. Since the instances of a dataset are stored

in key order it is simple to see if two datasets have the same set of key values.

6.4.3 Number of Samples

Some tests are restricted to being used specifically in a nvosample situation whereas

there are others that are more general and are applicable for k samples (ksample),

where k > 2.

6.4.4 Homogeneous Properties

The objective of performing a test of location is often to decide whether or not a

number of samples could have been drawn from the same or similar populations. This

is achieved by examining the distribution of the sample values by means of some

parametric or nonparametric technique. For this to be a meaningful operation the data

under consideration should be comparable, that is like should be compared with like.

In this situation the requirement eqgdomains is specified. The att_type field of an

attribute node denotes what property is being represented. For a comparison of data

80

values to be appropriate this field should have the same value for each of the attributes,

in this way the system can ensure that heights are not compared with weights.

As well as the att_type value the method of recording the data must also be taken

into consideration, this aspect of homogeneity is covered in the next section.

6.4.5 Measurement

It is important to take account of the measurement of the data in deciding the

soundness of applying a statistical test, since all tests assume something of the data.

The measurement requirements are concemed with both the level of measurement and

the measurement scheme used to record the data.

The vast majority of textbooks on statistical techniques use the level of measurement

as the basis for deciding upon the type of data for which a particular test is applicable.

It is in fact common for such textbooks to use the assumed level of measurement of the

data as a means of classifying the tests. An alternative approach that has been adopted

by some, notably Marascuilo & McSweeney (1977), is to concentrate on stipulating

these measurement conditions with respect to the distributional properties of the data.

Statistical data is identified as being one of two types :-

Gi) qualitative - which is subdivided into ordered and unordered data;

Gi) quantitative - which has the subclasses discrete and continuous.

The requirement for the correct application of a test concerned with the measurement

aspect of the data can then be specified with respect to the four classes of data

identified.

For the most part the level of measurement is used as the foundation upon which the

various semantic measurement requirements are specified.

With regards to parametric statistical tests, some require the data to have a ratio level

of measurement but for most of them data which is at least interval will suffice.

Amongst the most powerful of the nonparametric tests are those which are based on

ranking the data. Such tests can be used for interval and ratio level data where all of the

81

conditions for the use of a parametric test are not satisfied, for example if it cannot be

assumed that the data is drawn from a normally distributed population. Alternatively, it

is generally accepted that most rank tests are applicable to ordinal level data, with

corrected formulae being used in the event of tied ranks. Earlier publications suggested

that the data should have an underlying continuous distribution but more recently it has

been felt that this assumption is unnecessarily restrictive. Conover (1980) advocated

that most rank tests were suitable as long as the sample values can take more than one

possible value, i.e. P(X =x) <1 for each x, the theory underlying this belief

appears in Conover (1973). This standpoint has been adopted and the system will

allow most rank tests to be used with ordinal level data.

One test where there appears to be less of a consesus of agreement is the Wilcoxon

Matched Pairs Signed Ranks test, this ranks the absolute differences of each pair of

values. Siegel (1956) considers that the differences should be at least ordinal, a

footnote indicates that this really requires the data to lie at least between an ordinal and

interval scale. Lehmann (1975) does not mention the level of measurement but states

that it is desirable to avoid ties whereas Marascuilo & McSweeney (1977) classify the

test as being suitable for quantitative data. Yet another alternative is given by

Conover (1980) who regards the test as being for interval level data. It was decided

that for this test the requirement would be for the data to be quantitative, which could

be ratio, interval or ordinal. Most of the sources of reference given seem to regard the

number of ties to be the crucial point and requiring quantitative data will often keep the

number of ties down, although this cannot of course be guaranteed. An alternative

course of action would be to also allow ordered qualitative data where the number of

ties is not too many. Since it was not possible to find an agreed quantified value for

‘not too many’ this idea was discarded.

Rank tests have been discussed in relation to ratio, interval and ordinal level data.

For tests which rank the samples individually, rather than in some collective way, a

further more relaxed requirement allows attributes with a daralevel value of ratio,

interval, ordinal or rank to be used.

82

Other nonparametric tests, often based on contingency tables, require only that the

data can be grouped into ordered or unordered categories. Some tests are more specific

and it is necessary for the categories to be a dichotomy.

For tests based upon the assumption of homogeneous properties an additional

measurement requirement is that the measurement scheme used for each sample should

be the same. The measurement level and measurement scheme requirements are

considered together and given as a single keyword, there is one specified for each test

and their requirements are summarised as follows :-

@) eqratqnt - ratio level data that can be represented with the same

measurement scheme;

Gi) ratgnt - ratio level data;

(iii) eqineqnt - interval or ratio level data that can be represented with the same

measurement scheme;

(iv) intgnt - interval or ratio level data;

(v) _ ranked - ordinal, rank, interval or ratio level data;

(vi) eqordgnt - ordinal, interval or ratio level data that can be represented with

the same quantitative measurement scheme;

(vii) egordglt - ordinal, interval or ratio level data that can be represented with

the same measurement scheme;

(viii) ordqlt - ordinal, interval or ratio level data;

(ix) eqnomcat - data that can be represented with the same qualitative

measurement scheme;

(x) nomcat - data that can be represented with a qualitative measurement

scheme;

(xi) eqdichcat - data that can be represented with the same dichotomous

qualitative measurement scheme.

The system will initially check the attribute node for each argument to see that the

level of measurement values satisfy the requirement. If these are suitable the system

may then need to examine the measurement schemes to see if the data is in an

83

appropriate form for the test. To obtain the form desired it may be necessary to convert

the data for some or all of the attributes involved to another measurement scheme. The

need to perform a data conversion will be due to one or a combination of the following

reasons :-

@ to get all of the data recorded using the same measurement scheme;

(ii) to categorise quantitative data;

ii) to form the data into a dichotomy.

6.4.6 Normality

A number of the statistical tests assume that the samples are drawn from normally

distributed populations, an assumption specified using the keyword normal. The

requirement is satisfied for a sample if the atr_dist field of the attribute node has the

value normaldist or the number of instances is 30 or more, since in the latter case the

central limit theorem applies. Otherwise a test is applied to determine the likelihood of

normality, although such tests cannot guarantee complete accuracy they can act as a

guide. The test chosen was the one presented by Shapiro & Wilk (1965) which is

applicable on a single sample, there may be a more recent test which has more

desirable characteristics and if so it would be simple to do a substitution.

The test is applied to a random sample of size n, x1,X9,...,X,, which is ordered

such that y; Sy2 S$... Sy,.

The values

k

WS 2 Bais Yoiet -yj)) where k=nDIV2 -

n i

and S2 = Zo- y)2
fe

are computed using the tabulated values of a, j,1.

84

The test statistic is then calculated as

and the significance evaluated using tables of critical values of W.

The file shapwilkcoeff.dat contains the values of @y.i41 in ascending order of i from

3 to 29 followed by the 5% critical values of W for the corresponding values of n.

These values are read from the file into Pascal arrays which are then used by the

routine.

6.4.7 Equality of Variances

A requirement that is specified for some tests is that the samples should be drawn

from populations having equal variances, denoted by the requirement keyword eqvar.

In a two sample situation the F test is used with the test statistic computed as

a i—
t

F=

sul

To test the significance of the statistic, use is made of a NAG library routine to

return the probability associated with the calculated F value.

For the more general k sample situation a test presented by Bartlett (1937) is used.

This examines the equality of k normally distributed samples, with the i!" sample

having n; elements and Yn; = N. The sample variances (s?) are calculated with each

having 9; = nj- 1 degrees of freedom.

The average of the estimated variances is calculated as

Ds?
©

 s2= where ® = 50;

It is then possible to compute

k

M = ©in(s2) - Yo; 1n(s?) and
i=l

85

with the the test statistic being

M
1+A

As noted, this statistic assumes that the samples are normally distributed, if this

assumption cannot be made a modification according to Box (1953) is used with the

test statistic

 where =, -3

1+8

An estimate given by Anscombe (1960) is used for

ee N* [= Ze x|

>" v(v+2) (14(N-Dp4} - 3NL v (ez? ~ ON

where v=N-k, oo and ey=x;- x
v(N - 1) ae

Both Box’s and Bartlett’s test statistics are distributed as y? variables with k-1

degrees of freedom, a call to a NAG library routine returns the probability associated

with the computed statistic.

As with testing for normality, different or more extensive statistics may be more

appropriate to compare the equality of variances and the implementation could be easily

changed to accommodate them.

6.4.8 Size of Samples

The normal test is often recommended for comparing the means of two large

independent samples. For large samples, where n, = 30 is commonly taken as being

large, the central limit theorem means that no assumptions regarding the population

distributions need be made and in addition the population variances need not be known

since the sample estimates can be used instead. It is usual for the t test to be

recommended in the case of small samples. To accommodate this convention the

86

requirement nige30 is specified for the normal test. Each sample is checked to see that

30 or more instances have been declared for the datasets of the attributes involved.

6.4.9 Expected Frequencies in Contingency Tables

A number of tests for categorised data involve the calculation of the x2 statistic from

a contingency table. The existence of small values of expected frequencies can result in

a large distortion occuring in the test statistic. Textbooks recommend the pooling of

categories to avoid these undesirable small frequencies. The definition of small is not

however consistent. Some recommend that no expected frequencies should be less

than 5 whereas others consider that none less than 1 is more reasonable. A common

condition that is given is that none should be less than 1 and only 20% less then 5.

This last alternative has been adopted and is specified with the chifreq keyword.

6.5 Résumé

In identifying a set of requirements that can be specified for a type of test or a

Specific test to be applicable, use has been made of all of the semantic knowledge that

is represented in the data model. The keywords simenttype, relatedinst, eqdomains,

eqratqnt, ratqnt, eqintqnt, intqnt, ranked, eqordqnt, eqordqlt, ordqlt, eqnomcat,

nomeat and eqdichcat are concerned with the knowledge about objects, instances,

properties and measurement. In addition, there are others which can be regarded as

being more involved with numeric issues and the actual data, those being normal,

eqvar, chifreq, twosample, ksample and nige30.

87

Chapter 7

The Operation of Validating the Use of a Statistical Test

7.1 Preliminaries

A request to perform a statistical test can be made by entering either the name of a

class of tests or the name of a specific test. This request is accompanied by the list of

arguments that the test is to be applied to, that is

either <testclass> <dsname>.<attname> <dsname>.<attname> ...

or <testname> <dsname>.<attname> <dsname>.<attname> ...

The function of the main program is to read in the name of a command entered by

the user and to call the relevant procedure, which will then read in any arguments and

process the command. For a request to perform a statistical test the procedure

Procstatreq is called, the actual parameters passed to it are dependent upon the

command entered, the name of the command is parsed and identified by the variable

token.ttype. The values of the parameters passed to procstatreq are determined by the

following section of code from the main program.

CASE token.ttype OF

association : procstatreq(association, nulltest, twosample) ;
location : procstatreq(location, nulltest, ksample);

pearson. .coeff_of_cont

procstatreq(association, token.ttype, twosample) ;

normal test..fisher_exact

procstatreq(location, token.ttype, ksample) ;

END;

The first parameter of the procedure procstatreq identifies the type of test required,

this information is inferred if the name of a specific test is entered. The second

88

parameter denotes whether the user has requested any specific test, a value of nulltest

indicates that only the desired type of test name was given. The final parameter

signifies the number of arguments that can be given for the type of test. This

requirement is given as a parameter rather than as a semantic requirement in the

class_checks array since it serves a number of functions. It is used to check both the

syntax and the semantics of the original command as it is entered and is used again

once the class of test checks have been performed. These operations are explained in

later sections of the chapter.

The first task of the procedure procstatreq is to read in the arguments that the user

has supplied. As was briefly mentioned in section 6.2, the objective of performing the

checks at the type of test level is to form these arguments into groups such that a test of

the required type can be applied to each group. The information about the arguments

must be represented in a form that allows the organisation of the groups to be depicted.

A representation as shown in Figure 7.1 has been used to facilitate this need.

Dataset Attribute
node node

44
TT

Listheadhead ———p> L No_items | —-~—> Pete > Pah ee

Next listheadnode Data Measurement
in chain array node

Figure 7.1 Argument List Representation

The variable listheadhead points to the head of a chain of listheadnodes, there is one

such node for each list (or group) of arguments. The information about an argument in

a list is represented in an itemnode, for each listheadnode there will be a chain of

itemnodes, one for each argument in the list.

A listheadnode contains the following fields :-

(i) nexthead - a pointer to the next listheadnode in the chain;

89

Gi) no_items - an integer recording the number of nodes in the chain of

itemnodes, i.e. the number of arguments in the list;

(iii) itemhead - a pointer to the head of the chain of itemnodes.

The fields of an itemnode represent the information about an argument as follows :-

@) __ dsinfo - a pointer to the dataset node of the argument;

Gi) _ attinfo - a pointer to the attribute node of the argument;

Gii) convdata - this field is a pointer to a data array and will initially have the

value NIL, if it is necessary to convert the original data (referenced bya

pointer in the attribute node) to satisfy a requirement, an array referenced

by this pointer will be generated to contain the converted data;

(iv) measinfo - a pointer to an entry in the measurement directory identifying

the measurement scheme of the converted data, this pointer will have the

value NIL until a conversion is made;

(v) nextitem - a pointer to the next itemnode in the chain.

To satisfy a particular measurement requirement it may be necessary to convert the

data for some or all of the arguments to a different measurement scheme. This requires

an extra set of data to be generated, since the original copy must be left as it is. By

using a field in the itemnode to reference the converted data, the system can easily

check which arguments required conversions to be made. In addition, since the

generated data is only required for the current command, it can easily be disposed of

once the system has completed processing the steps of the command. If a test were to

be applied, any converted data referenced in the itemnode would be used instead of the

original data located via the attribute node.

When the procedure procstatreq is invoked a listheadnode is generated and

initialised, to begin with there will be just one list of arguments. As the information

about each argument is read in and validated, an itemnode is generated and added to the

chain, the no_items field in the listheadnode is also incremented. For an argument to be

valid at least 3 instances must have been declared for the dataset, i.e. the attribute will

have 3 or more items of data.

90

Once the end of the list of arguments has been reached, the system uses the

no_items value in the listheadnode to check that the number of arguments entered is

valid for the type of test required. In the event of an error occuring, either in validating

a particular argument or checking the number of arguments, an error message is output

and the command aborted. In this situation the listheadnode and any itemnodes that

have been generated are disposed of. If however the arguments of the command have

been parsed and no error has resulted, the first stage of applying the semantic

requirements, at the class of test level, is initiated.

7.2 The Class of Test Level Operation

The actions performed at the class of test level are divided into two stages :-

(i) applying the semantic requirements and if necessary splitting the arguments

into groups;

(ii) reviewing the resultant organisation of the arguments to see if the system

can proceed to the test level stage and if needed reporting the outcome back

to the user.

The controlling procedure procstatreq calls the procedures checkclassreq and

reviewclasschecks for the former and latter tasks respectively.

7.3 Applying the Class of Test Requirements

The procedure checkclassreq is called from procstatreq as

checkclassreq(class_checks[testclass])

The actual parameter is a pointer to the head of the chain of checknodes identifying

the requirements of the class of tests required. The overall operation of the procedure

can be seen as

for each semantic requirement

consider each group in turn and divide into any subgroups

ST

For example, in the case of a test of location there are two semantic requirements

that must be processed, the above operation will therefore be as follows :-

(i) _ the original single list of arguments is considered and formed into groups

of those having a similar entity type;

(ii) each of the groups formed after (i) are considered independently and those

arguments measuring the same quality or quantity are formed into

subgroups.

After processing the second semantic requirement each listheadnode will reference a

chain of itemnodes, each denoting arguments having data measured for similar entity

types and measuring the same quality or quantity.

This exercise may involve manipulating the argument list representation to remove

an itemnode from one list and either adding it to another existing list or creating a new

one. An example of how this manipulation is achieved is illustrated in Figure 7.2. Part

of an argument list representation is shown in Figure 7.2A, one or more semantic

checks have been applied and the arguments have been split into a number of groups.

A semantic requirement is about to be applied to the group of arguments in list_1, the

current list of interest being identified by the pointer variable listtocheck. The pointer

lastlisthead will be used to indicate the last listheadnode that has been created for

itemnodes that are currently in listtocheck. Lastlisthead is therefore initially set to

listtocheck since no extra listheadnodes have yet been created. The system decides if an

item is appropriate for the list it is currently in by comparing it with the item at the head

of the list of itemnodes. This comparison is done according to the criteria of the

semantic requirement. If the criteria is not met then the itemnode must be removed

from the list. It can then be compared with those items at the head of any lists up to and

including that identified by lastlisthead and added to a list if appropriate. If it is not

compatible with any of these then a new listheadnode is created for it, this node is

placed after the one referenced by the pointer lastlisthead and the pointer is then

updated. For the situation depicted in Figure 7.2A, itemB is compared with itemA and

the requirement is for example not met. Since there are no other lists that itemB can be

92

added to a new listheadnode, list_la, is created and the pointer lastlisthead advanced.

The new state of that part of the argument list representation is shown in Figure 7.2B.

ItemC will then be compared with itemA to ascertain as to whether it should Stay in

 Listtocheck —_p»
ees > List 1 Item A >| Item B +> |Item C

v

Nextlisthead —> List2 | —q——> Figure A

v

Listtocheck —> List 1 >| Item A >| Item C

wy

Lastlisthead —> List la apie Item B

y:

Nextlisthead —> List2 | ——> 4
Figure B

Figure 7.2 Manipulation of Argument List Representation

list_1, if not it would be compared with itemB and possibly added to list_la or may

require a new listheadnode to be created. Once the itemnode at the tail of listtocheck

has been processed, those arguments represented in lists up to and including that

identified by lastlisthead will have been grouped according to the requirements up to

the current one being applied. The listheadnode referenced by the pointer nextlisthead

then becomes the next list to check.

93

Having applied all of the semantic requirements for the class of test, the system will

then report back any changes in the organisation of the argument list representation to

the user, as described in the next section.

7.4 Reviewing the Results of the Class of Test Requirements

The procedure reviewclasschecks is called from procstatreq as

reviewclasschecks(testclass, typeoftestargs)

The actual parameters that are passed enable the system to identify :-

(i) _ the class of tests required, and hence the semantic requirements that have

been applied to the argument list from the class_checks array;

(ii) the number of arguments that must be represented in each list for it to be

possible to apply a test, i.e. twosample or ksample.

Having applied the class of test level semantic requirements to the initial single list

of arguments, the first task of the procedure is to determine if the resulting groups of

arguments, identified by the existence of a listheadnode in the chain referenced by the

pointer variable listheadhead, contain sufficient members for it to be feasible to

perform a test. The no_items field of each listheadnode is inspected to see if it

conforms to the range required by the typeoftestargs parameter. Those listheadnodes

containing sufficient itemnodes for a test to be applied are chained together and

referenced by the pointer variable validlists. Conversely, the pointer variable

invalidlists identifies a chain of any listheadnodes representing groups with too few

members.

Once all of the listheadnodes have been assigned to either validlists or invalidlists,

the action of the procedure will be dependent upon which of the three possible

Situations has occured, those being that :-

(i) _ the validlists chain is empty.

No test can be applied since none of the groups formed as a result of

applying the class of test requirements contained enough arguments, the user

94

Gi)

is informed that the arguments are such that no test of the desired class is

applicable.

there is at least one listheadnode in the invalidlists chain or one or more

listheadnodes in the validlists chain.

That is, after the class of test level of checking it has been found that it is

not possible to perform a single test on all of the arguments.

If the invalidlists pointer is not NIL then the arguments represented by the

chain of listheadnodes are displayed and the user told that a test of the class

specified cannot be applied to any of those arguments.

The system then informs the user of those arguments that can be used.

That is, if validlists contains one listheadnode then a single test can be

applied whereas if there is more than one listheadnode in the chain a test can

be applied to each of the groups of arguments.

For example, if seven arguments were entered the groups could be ina

form that results in the following output.

Cannot apply a test of location to the following argument (s)

<dsname>.<attname>

<dsname>.<attname>

Can apply a test of location to each of the following groups

<dsname>.<attname>

<dsname>.<attname>

<dsname>.<attname>

<dsname>.<attname>

<dsname>.<attname>

The user is then asked if they wish the system to continue and attempt to

apply a test to those arguments where possible. If the user decides that there

is no benefit in continuing, either because of the arguments that cannot be

used or due to the grouping of the arguments, the listheadnodes and

95

itemnodes referenced by the pointer validlists are disposed of and the pointer

is set to NIL.

(iii) there is one listheadnode in the validlists chain and the invalidlists chain is

empty.

In this situation there is nothing to report back to the user. The arguments

originally given are still in a single list and will be processed at the next stage

as initially requested by the user.

In situations (i) and (ii) above, it will have been found that it is not possible to

proceed in a manner as the user had originally wished. This would tend to suggest that

the user was unfamiliar with the requirements to apply a test of the class requested. If

the EXPLAIN facility is switched on, this is the default when the system is invoked,

the requirements of the class of test involved are explained. The list of the requirements

that have been applied are found in the class_checks array at the index position

indicated by the testclass parameter. The procedure expclassreqs receives as a

parameter a pointer to the first checknode in the chain, each of the checknodes are

considered and a brief canned textual explanation appropriate to the semcheck keyword

is then produced as shown below. The string passed to the parameter testclassstr is

appropriate for the class of test involved and is either “measure of association” or “test

of location”.

WRITELN;

WRITELN('The requirement(s) for a ', testclassstr,

"are as follows :-');

WRITELN;

WHILE ptocheck <> NIL

DO WITH ptocheck * DO BEGIN

CASE semcheck OF

eqdomains

WRITELN(' Each sample should be measuring the ',

"same quality or quantity.');

relatedinst :

WRITELN(' The instances of each sample should be related.');

simenttype :

WRITELN(' Each sample should be measured for ',

96

"the same type of entity.')

END;

ptocheck := nextcheck

END

At the end of the procedure reviewclasschecks, any listheadnodes and itemnodes

referenced by the pointer invalidlists can be disposed of since they are of no further

use. The validlists chain of listheadnodes are then assigned back to the listheadhead

pointer. This pointer will be NIL if the system found that it would not be possible to

apply a test to any group of arguments or if the user decided not to continue to try and

apply a test with the arguments organised in the modified form. Otherwise the system

will attempt to validate the use of a test for each of the groups of arguments represented

by a listheadnode.

7.5 The Test Level Operation

The controlling procedure procstatreq inspects the pointer listheadhead and if it does

not have the value NIL the procedure checktestreq is called, as below, to perform the

test level operations.

CASE testclass OF

association : checktestreq(testclass, assoc_checks, testname) ;
location : checktestreq(testclass, loc_checks, testname)

END;

The formal parameters of the procedure checktestreq are as follows :-

(i) __testclass - this parameter has the value association or location to denote the

class of test involved.

(ii) _ testchecks - an array of pointers referencing the semantic requirements of

the tests of the class required, the array assoc_checks or loc_checks is

passed as the actual parameter. The index of the testchecks array will be

identical to that of the array being passed as the actual parameter. The

97

conformant array parameters firsttest and lasttest can be used to identify

the lower and upper bounds respectively of the testchecks array. These

array bounds are used if it is required of the system to recommend a

suitable test.

(iii) usertest - the value of this parameter is the name of the test that the user

wishes to use, it has the value nulltest if no specific test was requested.

The objective of the procedure is to use the semantic requirements represented by

the array testchecks to validate the use of a statistical test for each group of arguments.

The overall operation of the procedure is given in the outline algorithm below.

WHILE another listheadnode to process
DO BEGIN

IF more than one group of arguments

THEN display arguments currently being considered

state := searching { for a test }

IF user has requested a specific test

THEN BEGIN

validate use of the test --A
IF test is suitable

THEN state := testfound

ELSE BEGIN

iF the explain facility is switched on

THEN BEGIN
list requirements of test ---B
explain which requirement could not be met --C

END
ELSE just inform user that test cannot be applied

does user wish to search for a test

IF NO THEN state := searchfailed

END
END

IF state = searching

THEN first test to consider has index firsttest

WHILE state = searching

DO BEGIN { consider current test }

validate use of the test --A
IF test is suitable

THEN BEGIN

inform user of name of recommended test

98

IF the explain facility is switched on
THEN list requirements of test -—-B

does user wish to apply recommended test
IF yes

THEN state := testfound
ELSE state := searchfailed

END
ELSE IF test just considered had index lasttest
THEN BEGIN

state := searchfailed

inform user that search has been unsuccessful

END
ELSE test to consider has the next index value in the array

END
IF state = testfound

THEN review any data conversions etc --D
END

Those parts of the algorithm identified by the labels A, B, C and D are explained in

more detail in later sections of this chapter, a knowledge of their inner workings is not

required at this stage of the test level description.

The procedure examines each listheadnode in turn and the arguments in the group

about to be considered are displayed if there is more than one listheadnode in the chain,

To record the current situation of the test level operation, regarding the arguments in

the listheadnode under consideration, the variable stare is used. If the system has yet to

endorse the use of a test the current situation is searching, the initial value. Eventually

either a test will be deemed appropriate, denoted by the value testfound, or the search

for an acceptable applicable test will have failed, indicated by state having the value

searchfailed.

If the user has requested a specific test to be used, i.e. the usertest parameter was

not passed a value of nulltest, the system will first see if that test is appropriate. The

procedure validatetest is called to check whether a particular test can be applied to a

group of arguments (see section 7.6). If the data is suitable for the test, the state

variable is updated to testfound. Otherwise the system informs the user that their

preferred test is not suitable. If the EXPLAIN facility is set to on, the user is told of the

00

requirements of the test (section 7.7) and given a reason as to why the one that failed

could not be met (section 7.8), alternatively a simple message is output to the screen.

The user will then be queried as to whether they wish the system to try and recommend

an appropriate test. If the answer is no, the state variable is set to searchfailed (i.e. no

test has been accepted for the data), otherwise state will still have the value searching.

The system will search for a test to recommend to the user either if the user’s

preferred test was unsuitable for the data or if no specific test was requested. As was

mentioned earlier in section 6.3, the system will consider each test in the array

testchecks according to their index order, the first index of the array is denoted by the

conformant array parameter firsttest. The system will consider the tests in turn until

either one is found to be acceptable or the end of the list is reached, identified by the

index value lasttest. The current test under consideration is validated using the

validatetest procedure.

If the test is found to be applicable the user is informed of the system’s choice, a list

of the requirements of the test is also given if the EXPLAIN facility is set to on. The

system will then ask the user if they wish to accept the recommendation. If they do the

process has been successful and the state variable is set to testfound, otherwise it is

assigned the value searchfailed. This latter course of action is taken, to halt the search

process once a recommended test has been rejected by the user, since it was decided

that the system would only recommend one test. The alternative would be to continue

through the list recommending other tests for which the requirements are met. The

system will endorse the use of a user requested test that does not make the best use of

the data, it may be that the user has a good reason for doing so. However, it was felt

that if a user did not wish to accept a suggested test for some particular reason, and

was not able to enter the name of an acceptable test, they would be best served by

Seeking the advice of a statistician to discuss the problem to be overcome. The

existence of such problems that cannot be solved by the use of a predetermined

Strategy serves to highlight the fact that computer programs, no matter how good they

are, will never replace human experts.

100

If the requirements of the test under consideration could not be met, the test with the

subsequent index value would be the next candidate. If however the end of the list has

been reached, i.e. the index value of the current test is the same as lasttest, the state

variable is set to searchfailed and the user is informed that the data could not be

manipulated into a form for a test to be applicable.

Having completed the above process for a group of arguments, successfully

validating the use of a test may have involved transforming the data in some way to

obtain a form suitable for the test requirements. If a suitable test has been found the

system will report back to the user a summary of any transformations that have been

applied to the data (section 7.9).

As is evident from the outline of the strategy adopted for the procedure

checktestreq, if the system has to recommend to the user a test that is appropriate for

the data it may be necessary to check the requirements of a number of tests before it

may be possible to make a recommendation. To avoid the need to repeat the application

of the same semantic check a number of times, the results of any checks that are

applied to the current group of arguments are stored in a number of variables. When

validating the use of a test the values of these variables can be examined, with it only

being necessary to consult the information in the semantic data model to apply the

check if the result is not already known. The variables are initialised in the checktestreq

procedure each time a different listheadnode is considered, the procedures actually

performing the semantic checks then update the variables as appropriate. Although

primarily beneficial when validating the use of a test, these variables have also proved

to be useful in the event of it being necessary to explain to the user why their requested

test was inappropriate. The use of the variables is explained further in sections 7.6, 7.8

and 7.9.

101

7.6 Applying the Test Requirements

The procedure validatetest is called each time the controlling procedure checktestreq

needs to validate the requirements of a particular test. The formal parameters of the

procedure validatetest are as follows :-

(i) _candtest - the test that the procedure is to validate;

Gi) _ ptocheck - a pointer to the head of the chain of checknodes identifying the

requirements of the test being considered;

(ii) ptolisthead - a pointer to the listheadnode identifying the arguments that the

test is to be validated for;

(iv) ptofailedcheck - the checknode of a requirement that cannot be met is

referenced by this pointer, if all of the requirements are met and the end of

the chain is reached the parameter will return with a value of NIL,

signifying that the test is suitable.

As was Stated in section 6.3, the checknodes will be considered in turn until either a

requirement cannot be met or the end of the chain is reached. Whereas the objective at

the class of test level was to group the arguments such that the requirements were met

for each resultant group, at this level the system wishes to determine if the

requirements are met for the arguments in the group identified by the current

listheadnode.

As has already been noted, the program records the results of the semantic

requirements performed on the current group being considered. The application of the

semantic requirements and the manipulation of the data and the results variables is

described in the following sections 7.6.1 to 7.6.6.

7.6.1 Related Samples

The procedure checkrelargs is called if the argsrel variable still has its initial value of

relunknown. It determines as to whether the instances of the arguments in the group

102

can be regarded as being related and will result in the argsrel variable being set to

related or unrelated as appropriate. The requirement relatedinst is ratified if the argsrel

variable has the value related.

7.6.2 Measurement

The measurement requirement of a test specifies the level of measurement demanded

of the data and also any addition restriction that is placed upon the measurement

schemes of the arguments involved. To validate such a requirement the level aspect

will first be investigated before considering any constraint placed upon the

measurement schemes used to record the data.

The variable argsummary is used to summarise the levels of measurement of the

arguments in the ptolisthead group being considered, those levels distinguished are

ratio, interval, rank, ordinal with a quantitative measurement scheme, ordinal with a

qualitative measurement scheme, nominal with a closed set of categories and

nominal with an open set of categories. The values that argsummary can take, to

reflect the combination of levels, are as follows :-

@) __ startstate - the initial value;

(i) allrat - all ratio;

ii) intrat - ratio or interval;

(iv) allqnt - ratio, interval or ordinal (quant);

(v) rankgnt - ratio, interval, rank or ordinal (quant);

(vi) rankalt - ratio, interval, rank, ordinal (quant) or ordinal (qual);

(vii) ordqnt - ratio, interval, ordinal (quant) or ordinal (qual);

(viii) allord - all ordinal (qual);

(ix) nomgnt - ratio, interval, ordinal (quant), ordinal (qual) or nominal (closed);

(x) _ allqlt - ordinal (qual) or nominal (closed);

103

SIEISPIPAOU
IKISPI[EAOU

A}LISPIPAOU
}EISPIRAOU

R
I
S
P
I
P
A
O
U

ayRISpifeAou
ayeyspryeaou |

aye)sprpeaou

a}eISpIyPAou
ybye

ybye
qubuou

—9}esprjeAou
jubuwiou

qubwiouw
ybye

a)e)splyeaou
qubwouw

jubwou
jubuiou

—aye)sprfeAou
jubuiou

juburou
jubwou

airyspryeaou
ybyre

pioye
qubpio

qybyuer
jubpio.

jubpio
pole

a}PISpIyeAoU
qubwou

qubpio
jubpio.

qybyurs
qubpio

qubpio
jubpio

O)eISpl|RAOU
—a}e}SpreAou

qbyues
ybyuer

ybyuerr
ybyuer

qybyuez
qbyuer

S}ISPIEAOU
—-}RISpIfeAOU

ybyuex
qubyues

qjubyurs
jubyuer

qubyuer
qubyuez

ayPISpI|PAou
qubuiou

qubpio
qubye

jubyuer
qubye

jubye
qubyye

a}eISpIyPAoU
qubwou

qubpio
qubye

qubyurs
qyenur

equi
yenur

aye }spryeaou
qubwiou

qubpio.
qubye

jubyuer
ye.gut

j
e
e

qeqye

a1eIsplyPaou
ybye

pioyye
qubye

qubyues
TenUI

w
e
P

ayeysyes

(uado)
(pasojo)

(jenb)
Quenb)

Lec
Od

Jeurwou
[eurpso

Teurpio
uel

yeasoqur
onel

Table 7.1 State Transition Table for Argsummary

104

(xi) novalidstate - the levels of measurement of the arguments are such that

none of the tests can be applied, that is either there is a combination of rank

and nominal level data or an argument has nominal (closed) data.

The initial value of startstate is assigned to argsummary in the checktestreq

procedure when a new group is about to be processed. To compute the appropriate

value of argsummary the attribute node of each argument is examined in turn to

determine its level. The value of argsummary is then updated to reflect the data of those

arguments considered thus far. The state transition table for the argsummary variable is

shown in Table 7.1. The updated value of argsummary (given in the main body of the

table) is dependent upon its current value (in the left hand margin) and the argument

being considered (as shown in the top margin). For example, if the value of

argsummary was currently allord and the next argument had a level of ordinal (quant),

the value would be updated to ordqnt.

The value of the argsummary variable enables the system to determine if the level of

measurement values are suitable for the test concerned. The reason for having a richer

set of possible values than is necessary to accomplish this task is that the extra

information can be used when considering any measurement scheme requirement.

The system may also have to examine the measurement schemes used to record the

data before it can establish whether the measurement requirement can be met. The

results of inspecting the schemes used and any attempts to convert the data into an

appropriate form are recorded using the following variables :-

(i) qntdata - the result of examining the arguments for a test requiring

quantitative data;

(ii) qltdata - the result of examining the arguments for a test requiring

qualitative data;

(ii) dichdata - the result of examining the arguments for a test requiring

dichotomous data.

105

Each variable will take one of the following values, indicating that :-

@)

Gi)

ii)

(iv)

dataunknown - the measurement schemes have not yet been examined fora

level associated with the variable;

origOK - the original data is suitable for the requirement;

convOK - after performing some conversions the data is in an appropriate

form, that is converted data has been generated for at least one of the

arguments;

cannotconvy - the data cannot be converted into an appropriate form for the

level associated with the variable.

It was found to be advantageous to use three variables to record the results of

examining the measurement schemes of the arguments as it provides a simple and

complete means of recording what checks and conversions have been made.

To check whether the data of the arguments has been measured using, or can be

converted to, the same measurement scheme the procedure checksamemeas is called.

This procedure is used for the purpose of validating the Tequirements eqratqnt,

eqintqnt, eqordqnt, eqordqlt, eqnomcat and eqdichcat, it has the following formal

parameters :-

@)

Gi)

Gui)

ptolisthead - a pointer to the listheadnode under consideration.

measspec - the type of the measurement scheme that must be common to

each argument, the value quant will be passed for the requirements

eqratqnt, eqintqnt and eqordqnt; quant or ordqual for eqordqlt; ordqual or

unordqual for eqnomcat; orddich or unorddich for eqdichcat. For the last

three requirements the value passed will be dependent upon the

argsummary value.

stateofdata - the result is returned via this parameter, the actual parameter

will be qntdata, qltdata or dichdata which will initially have the value

dataunknown.

If the arguments have not been measured with the same measurement scheme, one

which is of an appropriate type, the user is prompted to enter the name of the

106

measurement scheme to use, or NONE if it is not possible to convert all of the

arguments to the same scheme. The user can enter the command SHOWARGMEAS to

display the original measurement schemes used for the arguments and

SHOWCANDMEAS to display those entries in the measurement directory that are of the

type required. If the measurement scheme entered does not exist in the directory and

the user wishes to declare it the appropriate procedure will be called to do So,

otherwise the system will check that the chosen scheme is of the appropriate type. Each

argument that has not been measured using the required scheme is then checked to see

that the conversion is possible, which may necessitate the addition of entries to the

conversion directory. If all of the conversions are possible the system would then

generate the converted data as required. Upon leaving the procedure, the stateofdata

parameter will have been set to origOK, convOK or cannotconv.

The system may also have to examine the measurement schemes of the arguments to

validate the requirement nomcat, which requires that each argument be measured using

a qualitative measurement scheme. If the argsummary value is allord or allqlt the

requirement can be validated without any further work, if however some or all of the

arguments are quantitative then the procedure categorisegnt is called. The variable

qltdata is passed as a parameter so that the result of trying to categorise the data can be

returned. Each argument is examined and the user is prompted to enter the name of a

qualitative measurement scheme for each of those that are quantitative, this may

involve the addition of measurement and conversion schemes to the corresponding

directories. If the data of an argument could not be converted into an appropriate form

the result would be for the variable qltdata to return with the value cannotconvy,

otherwise it would have the value convOK with converted data having been generated

where required.

The system is able to affirm the measurement requirement of a test using the

argsummary variable and where relevant the variables qntdata, qltdata and dichdata.

This is illustrated in the following section of code which is for the requirement

eqnomcat.

107

eqnomcat

BEGIN

If (argsummary IN [allrat..allant, ordgqnt..allord])

AND (qltdata = dataunknown)

THEN BEGIN

checksamemeas (ptolisthead, ordqual, qltdata);

IF qitdata = cannotconv THEN dichdata = cannotconv

END

ELSE IF (argsummary = allqlt) AND (qltdata = dataunknown)

THEN BEGIN

checksamemeas(ptolisthead, unordqual, qltdata);

IF qitdata = cannotconv THEN dichdata := cannotconv

END;

testOK := qltdata IN [origOK, convOK]

END;

7.6.3, Normality

The procedure checknormalargs checks the normality of the arguments in the group

being considered, with the result being recorded using the variable argsnormal. For a

number of statistical tests that assume normally distributed data, it is well known that

under certain conditions sensible results can still be obtained with non-normal data, for

example if the data is symmetrical. For this reason the user is allowed to insist on

applying a test even if the system applied check for normality fails. The procedure

works through the list of arguments and checks each for normality, if the check on an

argument fails the user is informed and asked whether or not they wish to assume

normality. In addition to giving a yes or no answer there is the alternative of accepting

a default option, in which case the system errs on the side of caution and normality is

not assumed. If an extra set of converted data has been generated for an argument the

normality check is applied to that data, otherwise the original data referenced in the

attribute node is used

If each argument passes the normal check the variable argsnormal will be assigned

the value normalOK, if one or more arguments are assumed to be normal the value is

108

assnormal, otherwise the value retumed from the procedure checknormalargs will be

nonnormal. The normality requirement is satisfied by either of the first two values.

7.6.4 Equality of Variances

As with the requirement that the data should be normally distributed, tests which

assume that the variances of the samples involved are approximately equal can

sometimes be applied when this is not the case, without unduly effecting the result.

The user has the option of assuming that the variances of the samples are equal if the

result of applying the relevant test of equal variances is significant, again the user can

accept a system default (this does not assume equality). In calculating the variance of a

sample a generated set of converted data is used instead of the original version.

The variable argvar records the result of checking the equality of the sample

variances. The values that it can take once the check has been performed are eqvarOK,

the check could find no significant difference, asseqvar, the user wishes to assume that

the variances are equal, and uneqvar, in which case the requirement will not be

satisfied.

7.6.5 Size of Samples

The variable nwminst records the result of validating the requirement nige30. If the

requirement is satisfied it will have the value instOK, otherwise the value assigned will

be insttoolow.

7.6.6 Expected Frequencies in Contingency Tables

To validate the calculation of a chi-squared statistic on data to be arranged in a

contingency table, it is necessary to examine the expected frequencies for each of the

cells to ensure that they conform to the criteria given in section 6.4.9. The chi-squared

109

Statistic is used as a k-sample test of location and also forms the basis for two of the

two-sample measures of association. The manner in which the contingency table

would be formed is dependent upon whether it was being constructed for a measure of

association or a test of location, as is illustrated in Figure 7.3.

Sample B measurement

scheme with n categories n Samples

<< ——__§___ > <—______ >

Sample A Common
measurement measurement
scheme with scheme with
T Categories T categories

Measure of Association Test of Location

Figure 7.3 Formation of a Contingency Table

The approach adopted by the system in performing the above mentioned validation

is to compute the marginal totals of the table, from which the expected frequencies can

be calculated. If the frequencies are too small the user is questioned as to whether any

of the categories can be combined, in the case of a measure of association there may be

two measurement schemes involved, for a test of location the samples are not

combined. The process will continue until either the frequencies are acceptable or it is

not possible to combine any more categories. Although the marginal totals have to be

compiled differently depending upon the type of test involved, the process of

validating the expected frequencies can be performed in a consistent manner.

To ratify the frequency requirement, the system computes and records the marginal

frequency totals for the rows and columns of the virtual table, in addition to the

information concerning which categories contribute to which total. The system is able

to manipulate the categories, with the assistance of the user, to try and obtain marginal

totals that produce acceptable expected frequencies. The contingency table information

110

is represented in a form as shown in Figure 7.4, with the pointers controw and

contcolumn referencing the row and column information respectively.

Measurement Node

‘

Conrow ——> I numdivisions | ——®| members | freq | ——> nies

Contcolumn —— I numdivisions | ——>| members| freq | ——>

Groupnode

Measurement Node

f

Next

Groupnode

Figure 7.4 Representation of Contingency Table Marginal Frequencies

The controw and contcolumn pointers reference groupinfo nodes which in turn

point to a chain of groupnode nodes. The fields of a groupinfo node are as follows :-

@

Gi)

ii)

measused - a pointer to the measurement scheme used to divide the

dimension of the table, for the column of a test of location this pointer will

be NIL since the marginal totals are formed for the number of items in each

sample;

numdivisions - the number of marginal totals for the row or column;

grouphead - a pointer to the head of the chain of groupnodes.

There will be one groupnode for each marginal total of the dimension of the table

being represented by the groupinfo node, with each node containing the following

information :-

@

Gi)

(ui)

members - if the dimension of the table has been divided according to

measurement scheme categories, this field will identify the set of index

numbers of the categories that contribute to the marginal total;

freq - an integer denoting the marginal total;

nextnode - a pointer to the next groupnode in the chain.

111

An integer variable, conttoral, is used to record the total frequency for the

contingency table, i.e. the sum of the row and column marginal totals.

The expected frequencies can be calculated using the freq fields and the conttotal

value. If the expected frequencies are too small the system searches for the set of

categories with the smallest marginal total, provided that there are more than two

divisions, and will ask the user if it can be combined with another, in the case of

ordered categories this would be restricted to one that was adjacent. If the divisions can

be combined the members and freq fields of the two nodes are added together and the

redundant node is removed from the chain, the numdivisions field is also decremented.

In the case of a measure of association where the same measurement scheme has been

used for both arguments, it is necessary to adjust both the controw and contcolumn

tepresentations.

If combining the categories proved to be successful, the data would then be

converted to reflect the grouping of the categories. If converted data had previously

been generated for an argument, to satisfy a measurement requirement, it would be

overwritten, otherwise an array would be generated to store it. In either case the

measinfo pointer in the itemnode would not be changed.

The systems attempt at validating the chifreq requirement is recorded using the

variable argfreq, this will take the value freqOK if successful and freqtoolow

otherwise.

7.7 Explaining the Requirements of a Test

As at the class of test level, the system is able to produce portions of canned text to

explain to the user the requirements for the use of a particular test. The procedure

showtestreq is passed in the form of parameters the name of the test involved and also

a pointer to the head of the chain of checknodes identifying the requirements of the

test. The procedure works through the chain producing text appropriate for the

semcheck keyword of each node. The procedure is used when the use of a user

112

suggested test has not been validated or when the system is recommending a test to the

user.

7.8 Explaining the Rejection of a User Requested Test

If the procedure validatetest determines that a particular test is unsuitable to be

applied to a group of arguments, a pointer is returned which identifies the requirement

that could not be met (the pointer has a value of NIL if the use of the test is endorsed).

The procedure expfailedcheck is passed this pointer as a parameter and is able to

explain to the user why their requested test could not be applied to the data. The

semcheck keyword is used to produce a textual message relevant to the failed

requirement. In the case of that being a measurement requirement, the system inspects

the appropriate variable - qntdata, qltdata or dichdata - to determine whether the

requirement was not met because the data could not be converted into an appropriate

form or because the level of measurement values were unsatisfactory.

7.9 Reviewing the Validation of the Selected Test

Having selected a test for a group of arguments, the system reviews the results of

any decisions made or actions performed during the process of validating the

requirements of the test. The procedure reviewtestchecks works through the

requirements of the selected test, it examines the associated variables recording the

results of the procedures called to validate the requirements to decide if there is

anything to report.

If the user has chosen to assume that a requirement is met, a message is output to

warn that care should be taken when interpreting the results of the test. The

assumptions that may have been made are that :-

(i) __ the data is normally distributed, i.e. argsnormal has a value of assnormal;

113

(ii) _ the variances of the samples are equal, signified by argvar having the value

asseqvar.

If the EXPLAIN facility is set to on the system will also highlight any data

conversions that have been made and why they were necessary. From the

measurement requirement keyword and the corresponding result variable (qntdata,

qltdata or dichdata), the system can deduce if the original measurement schemes of the

arguments were unsuitable. A message is output to explain why the conversions were

required, i.e. to obtain a common measurement scheme or to categorise quantitative

data, in addition to a list of those arguments where converted data was generated

(including the names of the measurement schemes of the original and converted data).

To satisfy the chifreq requirement some of the categories of the measurement

scheme(s) involved may been combined. From the row and column tepresentations of

the contingency table information the system can list any groups of categories that have

been formed.

114

Chapter 8

Conclusions

Having conducted the research, a number of conclusions can be drawn about the

merit of using metadata in the development of knowledge based statistical software,

further work that could be undertaken to more fully investigate the approach and some

of its limitations. Some conclusions can also be made regarding the future for

knowledge based statistical software in general.

8.1 The Prototype System

The objective of implementing a prototype system was to identify elements of

metadata, in the form of semantic knowledge, such that a system could refer to the

information to validate the use of a number of measures of association and tests of

location. Having designed and implemented the prototype, it appears that by adopting

such an approach it would be possible to enhance conventional style packages to

provide a greater degree of statistical support and in doing so reduce the amount of

misuse of statistical methods. Further research into the approach would therefore be

worthwhile.

The prototype system allows the user to control the direction of the analysis, but

monitors the commands issued to try and ensure that the data is appropriate and the

results obtained will be meaningful. The checks that are performed, which see if the

requirements for the correct use of a test are met, will result in one of the following :-

@) the system cannot validate a requirement and informs the user that the test

is not appropriate and cannot be applied, for example a request to apply a

test requiring at least interval level data when some of the data is nominal;

(ii) _ the system cannot validate a requirement and asks the user if they wish to

continue, for example in the case of the normality assumption;

115

(iii) the system validates the requirements and allows the test to be applied.

By including these alternatives the system has achieved the objective of preventing

blatant misuse, yet giving a user the opportunity to make use of their knowledge of the

situation to decide on subjective issues.

There remain a number of aspects of the prototype which could be further

enhanced, a few areas of development are discussed below. Some of these features

could not be incorporated into the prototype due to the time constraint placed upon the

research whilst others are ideas that have come to light during the course of the

implementation.

For the measures of association and tests of location that have been included, there

may be other requirements that ought to be validated before their use is approved. The

prototype system has predominantly been concerned with semantic issues, these may

need to be more thorough, but the more numeric checks concerned with the actual data

items have not been extensively covered. To take the paired samples t test as an

example, Preece (1982) discussed the following topics which he thought should be

considered before applying the test: outliers; homogeneity of the source of the data;

trends; transformations; degree of precision of the data recording. It is fairly simple to

add extra requirements, and the code to validate them, to the system. For some of the

assumptions and requirements underlying the correct use of a test it may not be realistic

for a system to attempt to check that they are met. It may be better to just remind the

user of them, e.g. the independence of sample values, in the form of a checklist and

having provided the information to leave it to the user to continue if they feel that none

have been violated.

For those issues which are subjective, where the user should be given the option of

continuing the process of validating the use of a test even though the system is unable

to verify that a particular requirement is met, more information should be given to

assist the user in making the decision. In the case of the normality assumption, textual

information could be given to explain under which conditions normality is not too

crucial, in addition to a plot of the data and the skewness and kurtosis coefficients.

116

The semantic knowledge about the data could also be used to enhance the

explanation of the results obtained following the application of a statistical test or

technique. Part of this could be to try and produce an explanation more oriented

towards the ground domain of the user, the semantic knowledge encodes domain

specific terminology and information to support this. If the user is able to understand

the meaning underlying the result of the analysis, they will be able to determine if their

initial hypothesis has been tested, it was noted in section 3.4 that the system does not

attempt this task. Further research could extend the system to check that an analysis

will be in accord with the aims of the user, e.g. does it matter that Pearson’s PMCC

can only detect a linear relationship.

Other enhancements that could be made to the prototype are more concerned with

developing a ‘proper’ implementation, as would be required for a commercial system.

The data definition stage of declaring the required semantic knowledge about the

data would need enhancing to provide the user with more assistance. For example, to

use the prototype it is necessary to know what the level of measurement is for an

attribute. The assistance that is given should be designed to be pedagogical.

The usual set of data manipulation functions should also be integrated. These would

include editing and data selection functions, at present the data can only be specified

using the dsname.attname format.

The data management aspect of statistical software was not considered at all in the

prototype version. A commercial system would need to be able to handle large sets of

data, missing data and possibly provide more data structures to facilitate the processing

of more varied and complex data formats. The use of a database management system

could be explored, one feature of this development would be to decide which part of

the data model, if any, should be loaded into programming language data structures

and what information should be read from the database each time it was needed.

To produce a system with a practical use it would of course be necessary to extend

the areas of statistics covered. It would have to be further substantiated that statistical

software based on a semantic modelling approach could be developed to provide

117

support to the range of statistical facilities required of a general purpose statistical

package.

8.2 Assessment of Using Metadata

The majority of the research that has been undertaken in the area of knowledge

based statistical software has been to develop systems based upon a consultation with a

professional statistician. In order to ascertain whether or not a recommendation can be

made, such systems engage in a discourse with the user. The user is questioned for

information as and when it is required, building up a picture of the data a fragment at a

time. By way of contrast, the research has considered an approach whereby a model of

the data is declared, which contains the knowledge of the data that may be required.

An advantage of having a single data definition stage to make known the metadata is

that it allows the data model to be declared for the users by local experts, those with a

knowledge of both the domain of application and statistics. When using the system to

perform a statistical analysis, a statistically naive user would be spared any questions

regarding the statistical nature of the data, for example the level of measurement. The

system would be able to validate any data that the users may have enter and also verify

that requests to apply statistical techniques are appropriate. A separate data definition

stage would also seem particularly suited to situations where repeated trials or surveys

are involved. The metadata content will typically remain unaltered, to a great extent,

and can act as a template for the structure of any new data. In the case of large sets of

data, the metadata model would also serve as a good source of documentation.

A further advantage of defining the metadata beforehand is that the system has

access to some domain specific terminology and knowledge. The need to combine

statistical and ground domain knowledge was identified as being one of the major

problems in developing knowledge based statistical software.

118

8.3 Extensions to the Metadata

The semantic knowledge that has been represented in the data model of the

prototype seems to have a general utility and would be commonly used to validate the

requirements of a range of statistical methods. Further work could investigate in what

way the metadata content of the model could be usefully extended.

A number of possible areas of metadata that could be incorporated are :-

(i) At the data level.

The levels of measurement identified could be extended to include

counts as a separate category, they can be regarded as being more

specialised than ratio level data.

(ii) At the attribute level.

Functional relationships that can be identified between attributes could

be represented. One attribute could be related to, or computed from, one or

more other attributes.

(iii) Att the dataset level.

It may prove to be profitable to include metadata about the source of the

data or any sampling procedures that have been used. For example, the

entity instances of a particular entity type can be regarded as a set, with the

specific entities of a dataset being a subset. A subset may have been

selected because of the value or values of one or more of the properties of

the entities, e.g. a sample of salesmen aged over 40.

The investigation to determine what extra metadata ought to be added to the data

model could be aided by focussing on a number of application areas. This could result

in :-

(i) the identification of further items of generally useful metadata;

Gi) the recognition that different application areas have different metadata

needs and models tailored to the application would be more suitable.

119

The initial aim was to work towards the development of a general purpose data

model, however this will not be possible if the metadata has to be biased because of the

nature of the data involved or due to the favoured statistical techniques that are

employed.

As has been argued earlier in the thesis, it would not be practical to continue adding

further to the data model ad infinitum, the problem is deciding what extra knowledge

should be added and where to draw the line.

8.4 Limitations of a System Using Metadata

As the metadata content of a data model is extended, the likelihood of requiring the

declaration of information that is not subsequently used also increases. This problem

does not occur if the information is acquired by the system incrementally. A solution

would be to have a core section of the metadata that must be given prior to entering the

actual data, leaving it optional to declare the remainder. If the system required a piece

of information that was marked as unknown, the user would be asked to supply the

relevant metadata such that it could be added to the model.

A problem would occur if the time taken to search the metadata and validate the

requirements had adverse effects on the response time of the system. With the

prototype there is no noticeable degradation, indicating that there is room for further

processing to be carried out.

The motivation for adopting an approach that could enhance conventional style

command driven packages was to provide a flexible tool to do general data analysis. A

system performing such a function would seem to be able to use metadata to try and

ensure that the statistical methods are not misused. For areas such as experimental

design or the application of advanced statistical techniques (e.g. regression or time

series analysis), a metadata approach may have to be supplemented with other

knowledge.

120

8.5 The Future for Knowledge Based Statistical Software

Much of the research that has been carried out in the area of knowledge based

statistical software has concentrated on the development of what the artificial

intelligence community have termed expert systems. These systems have generally

sought to encode a strategy to guide a user to perform a particular task by taking the

role of a consultant statistician, such software seems particularly suited to these tasks.

Although as yet none have become commercially available, the prevailing feeling at the

Compstat 88 conference (which is one of the most prestigious conferences devoted to

computational statistics) was that some systems would appear on the market within 12

months.

Although useful expert systems will become available in the near future, work

should continue to develop other forms of knowledge based statistical software. Expert

systems should not be seen as the solution, but as one of a number of methods by

which software is able to provide statistical support and guidance. Research should

continue to develop systems based on other architectures, to provide other forms of

assistance by adopting other roles.

At Compstat 88, it was noticeable that there was a tendency to avoid the expression

expert systems and to use instead the term consultancy systems. Nelder (1988)

reported a realisation that systems would not be capable of being authoritarian and

should instead be libertarian. Although software will almost certainly never achieve the

level of expertise of a human statistician, it is possible to improve significantly on the

packages that are currently being used, many of which have their roots in the 1960’s.

References

Altman, D.G. (1982), “Statistics in Medical Journals”, Statistics in Medicine 1,
pp. 59-71.

Anscombe, F.J. (1960), “Examination of Residuals”, Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, pp. 1-36.

Badgley, R.F. (1961), “An assessment of Research Methods Reported in 103
Scientific Articles from Two Canadian Medical Journals”, Canadian Medical
Association Journal 85, pp. 246-250.

Baines, A. & Clithero, D.T. (1986), “Interactive User-Friendly Package for Design
and Analysis of Experiments”, COMPSTAT 86 (7th Symposium, Rome, Italy),
Physica-Verlag, pp. 320-325.

Bartlett, M.S. (1937), “Properties of Sufficiency and Statistical Tests”, Proceedings of
the Royal Society Series A 160, pp. 268-282.

Becker, R.A. & Chambers, J.M. (1984), S: An Interactive Environment for Data
Analysis and Graphics, Wadsworth Advanced Book Program.

Blum, R.L. (1982), Discovery and Representation of Causal Relationships from a
Large Time-Orientated Clinical Database: The RX Project, Springer-Verlag.

Box, G.E.P. (1953), “Non-Normality and Tests on Variances”, Biometrika 40,
pp. 318-335.

Brachman, R.J. (1983), “What IS-A Is and Isn’t: An Analysis of Taxonomic Links in
Semantic Networks”, Computer 16(10), pp. 30-36.

Chambers, J.M. (1980), “Statistical Computing: History and Trends”, The American
Statistician 34(4), pp. 238-243.

Chambers, J.M. (1981), “Some thoughts on Expert Software”, Computer Science and
Statistics: Proceedings of the 13th Symposium on the Interface, Springer-Verlag,
pp. 36-40.

Chen, P.P.S. (1976), “The Entity-Relationship Model - Toward a Unified View of
Data”, ACM Transactions on Database Systems 1(1), pp. 9-36.

Codd, E.F. (1979), “Extending the Database Relational Model to Capture More
Meaning”, ACM Transactions on Database Systems 4(4), pp.397-434.

Conover, W.J. (1973), “Rank Tests for One Sample, Two Samples, and K Samples
Without the Assumption of a Continuous Distribution Function”, The Annals of
Statistics 1(6), pp. 1105-1125.

Conover, W.J. (1980), Practical Nonparametric Statistics (2nd Edition), Wiley.

Date, C.J. (1983), “The Extended Relational Model RM/T”, in An Introduction to
Database Systems: Volume II, Addison-Wesley, pp. 241-289.

Date, C.J. (1986), “Semantic Modelling”, in An Introduction to Database Systems:
Volume I (4th Edition), Addison-Wesley, pp.609-623.

Dickson, J.M. (1984), “Data Capture and Validation Using Portable Terminals”,
COMPSTAT 84 (6th Symposium, Prague, Czechoslovakia), Physica-Verlag,
pp. 473-478.

Dickson, J.M. & Talbot, M. (1986), “Statistical Data Validation and Expert Systems”,
COMPSTAT 86 (7th Symposium, Rome, Italy), Physica-Verlag, pp. 283-288.

Gale, W.A. (1985), “Knowledge Representation in Data Analysis”, Proceedings of
the Fourth International Symposium on Data Analysis and Informatics
(Versailles, France), North-Holland, pp. 703-719.

Gale, W.A. (1986a), “Overview of Artificial Intelligence and Statistics”, in Gale,
W.A. (ed), Artificial Intelligence and Statistics, Addison-Wesley, pp. 1-16.

Gale, W.A. (1986b), “Student Phase 1 - A Report on Work in Progress”, in Gale,
W.A. (ed), Artificial Intelligence and Statistics, Addison-Wesley, pp. 239-265.

Gale, W.A. & Pregibon, D. (1982), “An Expert System for Regression Analysis”,
Computer Science and Statistics: Proceedings of the 14th Symposium on the
Interface (New York, USA, July 1982), Springer-Verlag, pp. 110-117.

Gale, W.A. & Pregibon, D. (1984), “Constructing an Expert System for Data
Analysis by Working Examples”, COMPSTAT 84 (6th Symposium, Prague,
Czechoslovakia), Physica-Verlag, pp. 227-236.

Glantz, S.A. (1961), “Biostatistics: How to Detect, Correct and Prevent Errors in the
Medical Literature”, Circulation 61(1), pp. 1-7.

Gore, S.M., Jones, I.G. & Rytter, E.C. (1977), “Misuse of Statistical Methods:
Critical Assessment of Articles in BMJ from January to March 1976”, British
Medical Journal 1, pp. 85-87.

Hahn, G.J. (1985), “More Intelligent Statistical Software and Statistical Expert
Systems: Future Directions”, The American Statistician 39(1), pp. 1-16.

Hajek, P. & Havranek, T. (1978), “The GUHA Method - Its Aims and Techniques”,
International Journal of Man-Machine Studies 10, pp. 3-22.

Hajek, P. & Ivanek, J. (1982), “Artificial Intelligence and Data Analysis”,
COMPSTAT 82 (Sth Symposium, Toulouse, France), Physica-Verlag, pp. 54-
60.

Hammond, R.G. (1983), “RAPID: A Statistical Database Management System”,
Computer Science and Statistics: Proceedings of the 15th Symposium on the
Interface (Texas, USA, March 1983), North-Holland, pp. 31-34.

Hand, D.J. (1984), “Statistical Expert Systems: Design”, The Statistician 33, pp.351-
369.

Hand, D.J. (1985a), “Statistical Expert Systems: Necessary Attributes”, Journal of
Applied Statistics 12(1), pp.19-27.

Hand, D.J. (1985b), “Choice of Statistical Technique”, Bulletin of the International
Statistical Institute (Proceedings of the 45th Session, Vol. 3, Amsterdam,
August 1985), pp. 21.1-1 to 21.1-16.

123

Hand, D.J. (1986), “Expert Systems in Statistics”, The Knowledge Engineering
Review 1(3), pp. 2-10.

Hand, D.J. (1987), “A Statistical Knowledge Enhancement System”, Journal of the
Royal Statistical Society Series A 150(4), pp. 334-345.

Haux, R. & Jéckel, K.H. (1986), “Database Management and Statistical Data
Analysis: The Need for Integration and for Becoming More Intelligent”,
COMPSTAT 86 (7th Symposium, Rome, Italy), Physica-Verlag, pp. 407-414.

Hooke, R. (1980), “Getting People to Use Statistics Properly”, The American
Statistician 34(1), pp. 39-42.

Huber, P.J. (1986), “Environments for Supporting Statistical Strategy”, in Gale,
W.A. (ed), Artificial Intelligence and Statistics, Addison-Wesley, pp. 285-294.

Jones, B. (1980), “The Computer as a Statistical Consultant”, Bulletin in Applied
Statistics 7(2), pp. 168-195.

Kendall, M. & Stuart, A. (1979), The Advanced Theory of Statistics Volume 2:
Inference and Relationship (4th Edition), Charles Griffin & Co.

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based On Ranks,
Holden-Day.

Lundy, R.T. (1984), “Metadata Management”, Database Engineering, 7(1), pp. 43-
48.

Marascuilo, L.A. & McSweeney, M. (1977), Nonparametric and Distribution-Free
Methods for the Social Sciences, Brooks/Cole.

McCarthy, J.L. (1982), “Metadata Management for Large Statistical Databases”,
Proceedings of 8th International Conference on Very Large Databases (Mexico),
pp. 234-243.

Nelder, J.A. (1977), “Intelligent Programs, The Next Stage in Statistical Computing”,
in Barra, J.R. (ed), Recent Developments in Statistics, North-Holland, pp.79-
86.

Nelder, J.A. (1984), “Present Position and Potential Developments: Some Personal
Views, Statistical Computing”, Journal of the Royal Statistical Society Series A
147(2), pp. 151-160.

Nelder, J.A. (1988), “How Should the Statistical Expert System and its User See
Each Other ?”, COMPSTAT 88 (8th Symposium, Copenhagen, Denmark),
Physica-Verlag, pp. 107-116.

Oldford, R.W. & Peters, S.C. (1984), “Building a Statistical Knowledge Based
System with Mini-Mycin”, Proceedings of the ASA: Statistical Computing
Section, pp. 85-90.

Oldford, R.W. & Peters, S.C. (1986), “Implementation and Study of Statistical
Strategy”, in Gale, W.A. (ed), Artificial Intelligence and Statistics, Addison-
Wesley, pp. 335-353.

Portier, K.M. & Lai, P. (1983), “A Statistical Expert System for Analysis
Determination”, Proceedings of the ASA: Statistical Computing Section, pp.
309-311.

Preece, D.A. (1982), “t is for Trouble (and Textbooks): A Critique of Some Examples
of the Paired-Samples t-test”, The Statistician 31(2), pp.169-195.

Pregibon, D. & Gale, W.A. (1984), “REX: An Expert System for Regression
Analysis”, COMPSTAT 84 (6th Symposium, Prague, Czechoslovakia),
Physica-Verlag, pp. 242-248.

Quillian, M.R. (1966), “Semantic Memory”, Report AFCRL-66-189, Bolt Beranek
and Newman, Cambridge, Massachusetts, USA.

Schor, S. & Karten, I. (1966), “Statistical Evaluation of Medical Journal
Manuscripts”, Journal of the American Medical Association 195(13), pp. 1123-
1128.

Shapiro, S.S. & Wilk, M.B. (1965), “An Analysis of Variance for Normality
(Complete Samples)”, Biometrika 52, pp. 591-611.

Siegel, S. (1956), Nonparametric Statistics for the Behavioral Sciences, McGraw-
Hill.

Shortliffe, E.H. (1976), Computer-based Medical Consultations: MYCIN, Elsevier
Scientific.

Smith, A.M.R., Lee, L.S. & Hand, D.J. (1983), “Interactive User-friendly Interfaces
to Statistical Packages”, The Computer Journal 26(3), pp. 199-204.

Stevens, S.S. (1946), “On the Theory of Scales of Measurement”, Science,
103(2684), pp. 677-680.

Wolstenholme, D.E. & Nelder, J.A. (1986), “A Front End for GLIM”, in Haux, R.
(ed), Expert Systems in Statistics, Gustav Fischer, pp. 155-177.

Appendix A

Example

The text of the thesis describes the knowledge that is represented in the data model,

the requirements that can be specified for a type of test or a particular test to be valid

and how the system uses the semantic knowledge and the data to validate the various

requirements. The system has been tested to ensure that it runs as specified and this

example is given merely for completeness.

Figure A.1 illustrates the entity taxonomy that has been declared in the example data

model, showing the organisation of the entity types and the relationships between

them. The three data sets that have been declared (sec_info, clerk_info and eng_info)

are also displayed together with their respective attributes, more of the content of the

example data model is given in the trace of the program running.

Finally, the trace gives the outcome of a request to perform a statistical test.

Areyes
qor

owen
Areyes

opRIp
OueN,

mA
Areyes

o
u
r
,

oyur
8ugq

oyu
919)

oyur-o0g
~

7
a

=

7
p
e
e

Z
aoe

ID
Areia1g

~
ee

o
s

S
S

spoursuq
Joensiumnupy

aoseuryy

°.
9

9

quounsedaq,
s
o
k
o

ON
ON

100y

Figure A.1 Entity Taxonomy and Datasets Used in Example

7

ST

ot

ct

s
e
o
u
r
q
s
u
t

e
d
é
q

A
q
r
q
u
g

OTwgNaS
OTuaNao

OTugNao
oTuaNao

orwaNaa
OTYINAONON
DTYINSONON

oIldav
LON

e
d
f
q

z
e
d
n
s

03
u
o
t

IelTeYy

A
U
M
W
L
A
A
O
I
S

U
A
A
N
I
O
N
G

OdNI
Oas

OaNI
ON

OJNI
WagTO

qes
eqeqg

I
T
p
s
p
m
o
y
s

<

U
A
O
W
N
W
W

A
W
W
L
A
W
O
A
S

w
a
g
T
O

Y
O
L
V
E
L
S
I
N
I
N
G
Y

Y
W
a
A
N
I
O
N
G

S
a
A
O
T
A
N
S

I
N
A
W
L
Y
Y
d
a
d

L
O
O

edk3
A
T
U

o
o
r

a
T
p
j
u
e
m
o
y
s

<

utTewuni
¢

128

H
I
N
O
W

Y
a
d

S
a
N
n
o
d

OWYN
ON

SNI
L
Y
N

s
e
o

UWA
Usd

SaNnod
BdkL

ONG

SWWN

ON
SNI

LYN

seep

UWA
Yad

SaNNod
gqwuo

O
1
W
a
T
o

SHUN
ON

SNI
LYN

sean

O
l
L
v
a

‘
I
W
N
I
W
O
N

‘
I
Y
N
I
W
O
N

Tenet

O
l
L
w
a

‘
I
V
N
I
W
O
N

‘
I
V
N
I
W
O
N

‘
I
Y
N
I
N
O
N

qTeaeT

O
l
L
v
a

‘
I
Y
N
I
G
H
O

‘
I
V
N
I
W
O
N

‘
I
V
N
I
W
O
N

TeaaeT

Ravis

SWWN
awa

qI a
w
a

edAq
3A4v

xaWIys

3dAL
aor

aWWN
dWa

aI
awa

edk3
33¥

RaWIys
gavo

SWWN
awa

aI
awa

edkq
34qv

kaw
NON

KAWIVS

gy
NON

SWYN
kay

aI

eTor
33¥

oureu
334¥

OjuyT
o
e
s

4
Q
e
M
o
y
s

<

kay
N
O
N

XAVIVS

kay
N
O
N

aor

kay
NON

anWN
kaw

ar

eTor
33¥

oweu
33¥

ojyut
B
u
e

z
Q
e
m
o
y
s

<

gy
N
O
N

AAWIVS

a
y

N
O
N

aawuo

kaw
NON

SWYN
kaw

ar

eTor
34¥

oureu
23¥

OJUT
A
I
S
T
O

y
q
e
M
o
y
s

<

9

b OIWgTO
€ O1WgsTO

@ orug1o
T o
r
u
g
o

-?
ere

s
e
n
t
e
a

A
z
o
b
a
j
e
o

p
r
t
e
a

p
e
z
e
p
i
o

eze
s
e
t
T
i
o
b
e
z
e
D

§
6
/
e
a
T

J
e
A
T
T
e
N
b

=
o
d
é
q

s
e
o
w

epezb
O
T
T
S
T
O

s
e
o
u
m
o
y
s

<

U
A
I
G
I
I
N
A
G
I

=
8
d
X
z

e
q
e
q

‘
u
e
d
o

=
edAqy

jeg
‘
e
a
t
q
e
q
T
T
e
n
b

=
a
d
A
q

s
e
o
y

ou
s
u
y

j
e
u

s
e
o
u
m
o
y
s

<

S
V
A
W
L
N
Y
N
O

U
W
a
X

Yad SaNnoa
SWWLNYNO

H
I
N
O
W

Yad
saNnoa

S
¥
E
W
T
W
N
O

S
V
a
W
T
W
N
O

S
V
a
W
T
W
O
O

S
V
E
W
I
Y
N
O

a
d
k
q

s
e
o
w

ON SNI
Z¥N
SWYN

d
k

ONT
a
q
w
a
o

Orwa1o

eueu
seoq

I
T
p
s
e
e
u
m
o
y
s

<

130

pe
e
t
e
r

jou
ere

S
j
u
s
e
u
n
b
i
e

sy}
e
s
n
e
o
e
q

e
T
q
e
j
d
e
c
o
r

Jou
sem

4
s
0
q

p
e
q
s
e
n
b
e
z

e
y

T
e
n
b
e

eq
p
r
n
o
y
s

e
t
d
w
e
s

y
o
r
e

jo
s
o
u
e
t
T
i
e
a

oyL

p
e
q
n
q
t
z
y
s
t
p

A
T
T
e
u
x
o
u

eq
p
r
n
o
y
s

e
t
d
w
e
s

y
o
r
e

ut
e
j
e
p

oyL

Ssueyos
J
u
e
u
l
e
i
n
s
e
o
w

sues
ey}

b
u
t
s
n

e
t
e
o
s

T
e
a
r
e
q
u
T

ue
j
s
e
8
T

Je
uO

p
o
I
n
s
e
e
w

eq
p
T
N
o
y
s

e
j
e
p

s
y

pe
jeter

eq
p
r
n
o
y
s

e
t
d
u
e
s

y
o
r
e

Jo
s
s
o
u
e
q
s
u
t

oy,

=!
SMOTTOJ

se
OTe

YOOTE
GASIWNOGNWY

103
squowertnbez

sy,

AzeyTes*ojyut
y
x
e
T
O

+

:
A
z
e
t
e
s
‘
o
j
u
y

B
u
e

A
z
e
y
T
e
s
-
o
j
u
y

o
e
s

yOoTq

p
e
s
t
w
o
p
u
e
z

<

131

xeul
=

p
u
n
o
q

r
e
d
d
y

00°0
=

p
u
n
o
q

29mM07T

e
a
A
T
I
e
I
T
I
u
e
N
b

=
a
d
A
q

s
e
o
y

a
e
e
X

r
e
d

s
p
u
n
o
d

s
e
o
u
m
o
y
s

<

‘
T
W
O
T
M
L
O
S
T
S

‘
I
W
O
I
N
V
H
O
G
W

-:
are

s
e
n
t
e
a

A
z
o
b
e

e
o

p
r
e
a

p
e
z
e
p
z
o
u
n

eze
s
e
t
z
o
b
e
j
e
p

‘eat
z
e
q
T
T
e
n
b

=
e
d
A
q

s
e
a
y

ed&q
B
u
e

s
e
o
w
m
o
y
s

<

T
e
n
b
e

eq
p
r
n
o
y
s

eTdures
y
o
r
e

Jo
s
o
u
e
t
z
e
a

ayy

p
e
g
n
g
t
z
y
s
t
p

A
T
T
e
w
r
o
u

eq
p
t
n
o
y
s

etdues
yors

ut
eqep

ays,

suayos
J
u
s
u
e
I
n
s
e
e
u

ewes
ey}

Hutsn
steos

T
e
a
r
e
q
u
t

ue
3seeT

Je
uo

p
e
i
n
s
e
e
w

aq
p
r
n
o
y
s

ejep
eg,

-:
S
M
O
T
T
O
J

SB
eTe

AOW
A
V
M

A
N
O

O
J

s
q
u
e
w
e
r
t
n
b
e
z

sys

AOW
A
M

SNO

ST
uoTJedOT

JO
4seq

pepudsumosey

s
e

:
(3 [

n
e
z
e
p
/
o
u
/
s
e
A
)

p
e
q
n
q
r
a
q
s
t
p

A
T
T
e
w
r
o
u

st

K
U
W
I
V
S

‘OANI

O
N
T

UT
e
Q
e
p

oyQ
J
e
y

e
u
m
s
s
e

03
U
s
T
M

no&
og

0
:

Q
u
e
q
j
s
u
o
o

z
e
q
u
q

Zt
?

r
o
R
O
e
Z

H
u
t
A
t
d
r
y
z
t
n
u

2z934uq

sok
:

o
u
/
s
e
k

z
0
m
s
u
y

UWEX
U
d

SGNNOd

03
H
I
N
O
W

Yad
SANNOd

Woy
ATeauCo

03
eTqTssod

yy
sz

a
z
e
e
X

r
e
d

s
p
u
n
o
d

:
(
g
N
O
N

20)
esn

03
ouweyos

J
u
e
w
o
r
n
s
e
o
”

z
e
q
u
g

WEA
U
d

SaNnod
AUWIWS*O4NT

WuaTO
UWaX

Usd
SaNNod

AUWIWS
‘OINI

ONG
HLNOW

U
d

SaNnod

KYVIVSO4NI
04S

s
e
p
o
w
b
r
e
m
o
y
s

:
(
3
N
O
N

20)
esn

07
s
w
e
y
o
s

J
u
o
w
e
r
n
s
e
e
w

r8eqUq

e
u
e
y
o
s

J
u
s
w
l
e
i
n
s
e
e
w

eat
j
e
A
T
I
u
e
N
b

e
u
e
s

8432
Y
R
T
M

p
e
r
n
s
e
o
u
l

eq
07

s
p
e
e
u

q
u
o
u
m
b
r
e

yorg

s
e

:
(ou/sek)

uot}eOOT
Jo

4sez
e

TOJ
YyOTeas

03
YSTM

NOK
og

132

w
e
r
b
o
r
d

w
o
r

BHut4txg

atnb
<

AOW A¥M
SNO

Ajdde
03

o01d
{Teo

peajnqtz3stp
ATTewxou

st
ejep

eyi
J
e
y
}

s
e
u
m
s
s
e

s
e
}

SY}
e
O
U
T
S

Ssq[NseZT
9YA

H
u
t
j
e
r
d
z
e
q
u
T

u
e
y
m

u
e
x
e
}

eq
p
t
n
o
y
s

e
r
e
d

‘
/
H
u
t
u
r
e
y

UWAX
U
d

S
G
N
N
O
d

02
H
L
N
O
W

U
F
d

SANNOd

w
o
z

peqTeauCo
R
U
V
I
V
S
*
O
A
N
I

OaS
e
u
e
y
o
s

J
u
e
w
e
I
N
s
e
s
u
w
l

s
u
e
s

e
y

O
F

p
e
q
T
e
A
U
O
C
D

u
s
e
q

s
e
y

e
j
e
p

e
u
L

seA
:

(
o
u
/
s
e
d
)

4
s
e
3

s
t
y
q

A
T
d
d
e

03
y
s
t
m

nok
og

133

Appendix B

Program Listings

Given on the following two pages is the organisation of the procedures which

constitute the program code, grouped according to the relevant section of the system.

The remainder of the appendix lists the files which comprise the total implementation,

the files and contents being :-

(i) _ main.pas - the majority of the type declarations, the auxiliary routines and

the main program;

(ii) _model_routines.pas - the model management system;

(iti) check_routines.pas - the statistics validation system;

(iv) keyworddir.dat - a list of the character strings and corresponding

enumeration type values for the reserved words of the command language;

(v) _ classcheckdir.dat - the classes of tests requirements;

(vi) assoccheckdir.dat - the measures of association requirements;

(vii) loccheckdir.dat - the tests of location requirements;

(viii) shapwilkcoeff.dat - the coefficients for the Shapiro-Wilk test of normality.

134

AUXILIARY

MODEL

MANAGEMENT

r— Entity

Taxonomy

[— Dataset

Directory

t— Measurement

Directory

-— Conversion

Directory

[— Attributes

/— Instances —— Backing

Store

skipwhitespace, skipblankchar,

gettoken, reporterror, setup

etypesearch, addetype, etypeaddition,

displayentdir

dstypesearch, adddstype, dstypeaddition,

displaydsdir

meassearch, addmeasscheme, catsearch,

newcatnode, getqualclasses, getqualinfo,

getquantinfo, measaddition, meastypeOK,

displaymeas, displaymeasdir,

displaycandmeas, wantstodecmeas

convsearch, addconvscheme,

gengntqltnode, genqltqltnode,

getconvinfo, performcony

atttypesearch, addattnode,

atttypeaddition, displayatt

instaddition, charcatvalue,

numcatvalue, displayinst

loadkeywords, loadsemchecks,

loadmeasdir, loadconvdir, loadenttree,

loadattlist, loaddstree, loadknowbase,

saveetype, savedstype, saveattlist,

savedata, savemeasscheme,

saveconvscheme

135

STATISTICS

VALIDATION

r— Checks

t— Data

Conversion

[— Test Level

[— Type of

Test Level "— Preliminary

and Control

checkeqdom, checkenttype, checkrelinsts,

checkrelargs, checknumargs,

checknormalargs, Ftest, Bartlett, Box,

checkeqvar, checknige30, addcontnode,

setupcontnodes, setcontfreqs,

formassoccont, formloccont, efreqOK,

findminfreq, combgroups,

trytocombgroups, regroupdata,

combassoccat, combloccat, checkchifreq,

performsummary

convertdata, checksamemeas,

disposegenalt, catogoriseqnt,

dichqltdata

validatetest, showtestreq, expfailedcheck,

displaycombceats, displayconvargs,

teviewtestchecks, disposecontinfo,

checktestreq

Temoveitem, createlist, addtolist,

disposeoflist, checkclassreq,

expclassreqs, reviewclasschecks

genitemnode, procstatreq

136

B.1 Main.pas

PROGRAM MAIN (INPUT, OUTPUT, keyworddir, checkdir, entdir,

CONST wordlength

TYPE

dsdir, attdir, datafile, measdir, convdir,
shapwilkcoefé£) ;

doublelengt
nullname = Wa
messagelength = 30;
keywordmax = 100;
datalength = 50;
prompt = '> ';
contprompt =
contchar = ':
underscore =
minreal = -157;
Maxreal = 1E7;

->

0

word = PACKED ARRAY [1..wordlength] OF CHAR;

doubleword = PACKED ARRAY [1..doublelength] OF CHAR;
numarray = ARRAY [1..datalength] OF REAL;
chararray = ARRAY [1..datalength] OF word;

textmessage = VARYING [messagelength] OF CHAR;
errortype = (continue, attdup, attexist, attmiss, dsexists,

dsmiss, entexists, entmiss, eqexp, identexp, insuffinst,
invarg, invinfo, invlevel, invmeas, invmeastyp,
invnumarg, invrel, invval, measexists, measmiss, noatts,
noinsts, nolevel, nomeas, notype, numexp) ;

validtokens = (addatt, addds, addent, addinst, addmeas,
showargmeas, showatt, showcandmeas, showdsdir, showentdir,
showinst, showmeas, showmeasdir, exptok, noexptok, quit,
association, location,
pearson, spearman, kendall, tau_c, cramers_v, coeff_of cont,
normal test, t_paired, randomised block, t_common,
t_separate, one_way aov, wilcoxon, sign_test, friedman_aov,
mann_whitney, kruskal_wallis, mcnemar_test, cochran_q,
chi_squared, fisher_exact, nulltest,
nongentok, gentok, opentok, closedtok,

yestok, notok, deftok,

typetok, leveltok, meastok, normtok,

qualmeas, quantmeas, chartok, numtok,
nomtok, ordtok, ranktok, inttok, rattok,
endofline, assign, dot, identifier, numeral, endofinfo,
min, max, upper, nonetok, errtoken) ;

statcomms = association..fisher_exact;
valid_tests = pearson..nulltest;
classtype = association..location;
assoctype = pearson..coeff_of_ cont;
loctype = normal_test..fisher_exact;
validreqs = (twosample, ksample, eqdomains, relatedinst,

simenttype, normal, eqvar, nige30, chifreq,
eqratqnt, ratqnt, eqintqnt, intqnt, ranked, eqordqnt,
egordqlt, ordqlt, eqnomcat, nomcat, eqdichcat);

testtype = twosample..ksample;

taxon_relation = (not_applic, nongeneric, generic);
role_type = (key, non_key);

data_levels (none, rank, nominal, ordinal, interval, ratio);
meas_level = qualmeas..quantmeas;
qualsettype = (setunknown, openset, closedset) ;

137

qualordtype = (ordunknown, unordered, ordered) ;
datatype = identifier..numeral;
sortofmeas = (quant, ordqual, unordqual, qual, orddich,

unorddich, dich);

convtype = (qnt_qnt, qnt_qlt, qlt_qlt);
enodepointer = “ e node;

dsnodepointer = ~ ds_ node;
attnodepointer = * att_node;
numpointer = * numarray;
charpointer = * chararray;

measpointer = “ meas_node;
catnodepointer = “* cat_node;
qntqntpointer = * qntqntnode;
qntqltpointer = * qntqltnode;
qltqltpointer = * qlitqltnode;

checkpointer = * checknode;
convpointer * conv_node;
keywordentry = RECORD

keystr : word;
keytoken : validtokens

END;

e@_ node = RECORD

ent_name : word;
super _rel : taxon_relation;
superpointer,
subpointer,

nextpointer : enodepointer
END;

ds_node = RECORD
ds_name : word;
leftp,
rightp dsnodepointer;
ent_type enodepointer;
instances INTEGER;
attchain : attnodepointer

END;

att_node = RECORD
att_name : word;
next_att attnodepointer;

att_role role type;

att_type : word;
datalevel : data_levels;
att_dist (normaldist, distunknown) ;

meas_p : measpointer;
CASE mode : datatype OF

identifier : (char_p : charpointer);
numeral : (num_p : numpointer)

END;

meas_node = RECORD
measname : word;
leftp,
rightp : measpointer;

CASE meas_type : meas_level OF
qualmeas :

(cattype : datatype;

settype : qualsettype;

ordtype : qualordtype;
numofcat : INTEGER;
cathead : catnodepointer) ;

quantmeas :

(lowerbound,

upperbound : REAL)
END;

138

VAR

cat_node = RECORD
next : catnodepointer;
CASE cattype : datatype OF

identifier : (charvalue : word);
numeral : (numvalue : REAL)

END;

conv_node = RECORD

from_to : doubleword;

left_p,
right_p : convpointer;
CASE typeofconv : convtype OF

qnt_aqnt : (qntqnt_p : qntqntpointer) ;
gnt_qlt : (qntqlt_p : qntqltpointer) ;

qit_qlt : (qltqlt_p qltqltpointer)
END;

tqntnode = RECORD

a,
c : REAL

END;

qntqltnode = RECORD

upper : REAL;
index : INTEGER;
next : qntqltpointer

END;

qltqltnode = RECORD
toindex : INTEGER;
next : qltqltpointer

END;

checknode = RECORD
semcheck validreqs;
nextcheck : checkpointer

END;

tokeninfo = RECORD
CASE ttype : validtokens OF
identifier : (tchars : word);
numeral : (tnum : REAL);
OTHERWISE QO

END;

keywordtable : ARRAY [1..keywordmax] OF keywordentry;
numofkeywords : INTEGER;
ent_root : enodepointer;
ds_root : dsnodepointer;
meas_root : measpointer;

conv_root : convpointer;
class_checks : ARRAY [classtype] OF checkpointer;

assoc_checks : ARRAY [assoctype] OF checkpointer;
loc_checks : ARRAY [loctype] OF checkpointer;

lowercase, uppercase, digits, letters,
wordchars, numberstart : SET OF CHAR;
token : tokeninfo;
explain : BOOLEAN;

PROCEDURE skipwhitespace;

BEGIN

WHILE (INPUT ~ = ' ') OR (INPUT* = contchar)

DO BEGIN

IF EOLN(INPUT) THEN WRITE (prompt) ;

GET (INPUT)
END

END; { proc skipwhitespace }

139

PROCEDURE skipblankchar;

BEGIN

WHILE ((INPUT * = ' ') OR (INPUT * = contchar))

AND (NOT EOLN (INPUT))

DO IF INPUT * = contchar
THEN BEGIN

WRITE (contprompt) ;

READLN

END

ELSE GET (INPUT)

END; { proc skipblankchar }

FUNCTION strlen (

VAR string : PACKED ARRAY [lower..upper : INTEGER] OF CHAR)

INTEGER;

VAR index : INTEGER;

BEGIN

strlen := 0;
FOR index := lower TO upper

DO IF string[index] <> ' ' THEN strlen := index
END; { funct strlen }

PROCEDURE gettoken;

PROCEDURE checkkeywords;

VAR index : INTEGER;

BEGIN

index := 1;

WHILE (token.ttype = identifier) AND (index <= numofkeywords)
DO WITH keywordtable[index] DO BEGIN

IF token.tchars = keystr

THEN token.ttype := keytoken;
index := index + 1

END;
IF token.ttype = min
THEN BEGIN

token.ttype numeral;
token.tnum minreal

END

ELSE IF token.ttype = max

THEN BEGIN

token.ttype := numeral;
token.tnum := maxreal

END

END; { proc checkkeywords }

PROCEDURE readword;

{ reads a string of text into token.tchars,
valid characters are letters, digits and underscore with
letters being converted to uppercase, if the string

is longer than wordlength the remaining characters
are passed over and ignored }

140

VAR ch : CHAR;

i,
strlength : INTEGER;

BEGIN

token.ttype := identifier;

token.tchars := nullname;
strlength := 0;
Ch) c= INPUT, OF
WHILE (ch IN wordchars) AND (strlength < wordlength)
DO BEGIN

strlength := strlength + 1;

IF ch IN lowercase

THEN token.tchars[strlength] := CHR(ORD(ch) - 32)
ELSE token.tchars[strlength]

GET (INPUT) ;

ch := INPUT ~
END;

WHILE INPUT ~ IN wordchars DO GET(INPUT);

checkkeywords

END; { proc readword }

PROCEDURE readnumber;

{ reads in a numeric value a character at a time,

where the sign is optional, and assigns the numeric
value to token.tnum }

VAR sign : (negative, positive);
digit,

fractdiv : INTEGER;

BEGIN

token.ttype := numeral;
sign := positive;

 token.tnum := 0;
SERINE UO = ON oie?) OSE)

THEN BEGIN

EB ENEUT: Aeent = 7

THEN sign := negative;

GET (INPUT)

END;
IF NOT (INPUT * IN digits)
THEN token.ttype := errtoken
ELSE BEGIN

WHILE INPUT “ IN digits

DO BEGIN

digit := ORD(INPUT ~) - ORD('0');

token.tnum := token.tnum*10 + digit;
GET (INPUT)

END;

TE ENPUL SS =P

THEN BEGIN

GET (INPUT) ;

fractdiv := 10;
WHILE INPUT “* IN digits

DO BEGIN

digit := ORD(INPUT *) - ORD('0');
token.tnum := token.tnum + digit/fractdiv;
GET (INPUT) ;

fractdiv := fractdiv * 10
END

END;

141

IF sign = negative

THEN token.tnum := token.tnum * (-1);
END

END; { proc

BEGIN { gettok
skipblankchar
IF INPUT * IN
ELSE IF INPUT
ELSE IF EOLN(
ELSE IF INPUT
THEN BEGIN

token.ttype

GET (INPUT)

END

ELSE IF INPUT
THEN BEGIN

token.ttype

GET (INPUT)

END

ELSE IF INPUT

THEN BEGIN

token.ttype
GET (INPUT)

END

ELSE token.tt:
END; { proc ge

PROCEDURE repo.

errorstate :
errorarg : t

PROCEDURE tr.

{ to remove

BEGIN

WHILE (erro.
AND (

readnumber }

en }

letters THEN readword
* IN numberstart THEN readnumber

INPUT) THEN token.ttype := endofline

= assign;

A= tg!

:= endofinfo;

2= dot;

ype := errtoken

ttoken }

xterror (
errortype;

extmessage);

imarg;

trailing spaces from errorarg }

rarg.length > 1)

errorarg[errorarg.length] = ' ')
DO errorarg.length := errorarg.length - 1

END; { proc

BEGIN { report:
trimarg;

trimarg }

error }

CASE errorstate of

attexist :

attdup $

attmiss 3

dsexists :

dsmiss :

entexists :

entmiss :

eqexp
identexp

insuffinst

WRITELN('Error, attributes have already been ',
"declared for ',errorarg) ;

WRITELN('Error, attribute name ',errorarg,
"has been duplicated');

WRITELN('Error, attribute ',errorarg,
" does not exist');

WRITELN('Error, data set ',errorarg,
" already exists');

WRITELN('Error, data set ',errorarg,
‘ does not exist');

WRITELN('Error, entity type ',errorarg,
" already exists');

WRITELN('Error, entity type ',errorarg,
' does not exist');

WRITELN('Error, = expected after ',errorarg);
WRITELN('Error, identifier expected for ',errorarg);
WRITELN('Error, insufficient instances (<3) ',

142

invarg
invinfo

invlevel
invmeas
invmeastyp

invnumarg

invrel
invval

measexists
measmiss

noatts

noinsts

nolevel
nomeas
notype
numexp

END
END; { proc

"have been declared for ',errorarg);
: WRITELN('Error, invalid argument found');
WRITELN('Error, token found is not an ',

‘appropriate keyword');
WRITELN('Error, invalid level of measurement given');
WRITELN('Error, measurement specified is unsuitable’) ; : WRITELN('Error, meas type of QUAL or QUANT must ',

"be specified');
: WRITELN('Error, number of arguments expected = ',

errorarg) ;
: WRITELN('Error, invalid relationship specified') ;
: WRITELN('Error, an invalid data value has been ',

"entered for ',errorarg) ;

: WRITELN('Error, measurement scheme already exists');
: WRITELN('Error, measurement scheme ',errorarg,

* does not exist");
: WRITELN('No attributes have been declared for ',

errorarg) ;
: WRITELN('No instances have been declared for ',

errorarg);
: WRITELN('Error, no LEVEL value declared');

: WRITELN('Error, no MEAS value declared’);
: WRITELN('Error, no TYPE value declared');
: WRITELN('Error, numeric value expected for ',errorarg)

reporterror }

SINCLUDE 'MODEL_ROUTINES.PAS/NOLIST'

SINCLUDE 'CHECK_ROUTINES.PAS/NOLIST'

PROCEDURE se:

{ initialise

BEGIN

lowercase :
uppercase
tetters 7=
digits := [

tup;

knowledge base }

| CU West ia fi

[Be ere Aha FS

lowercase + uppercase;

COMI Toep;
wordchars := letters + digits + [underscore];

numberstart := ['0'..' eae

explain := TRUE;
loadknowbase

END; { proc setup }

BEGIN { main program }
setup;
REPEAT

WRITELN;

WRITE (prompt) ;
skipwhitespace;

gettoken;
CASE token.ttype OF
addatt : atttypeaddition;
addds dstypeaddition;
addent etypeaddition;
addinst instaddition;
addmeas measaddition;
showatt displayatt;
showdsdir displaydsdir;

143

showentdir : displayentdir;
showinst : displayinst;
showmeas displaymeas;
showmeasdir displaymeasdir;
exptok explain := TRUE;

noexptok explain := FALSE;
association : procstatreq(association, nulltest, twosample) ;
location : procstatreq(location, nulltest, ksample) ;
pearson..coeff_of_cont :

procstatreq(association, token.ttype, twosample) ;
normal_test..fisher_exact :

procstatreq(location, token.ttype, ksample) ;
quit : WRITELN('Exiting from program') ;
OTHERWISE WRITELN('Error, invalid command")

END;

READLN;

UNTIL token.ttype = quit
END. { prog main }

B.2 Model_routines.pas

{ file model_routines.pas }

CONST dir = '[LAWSONKW.PROJECT] ';

attspec = '.ATT';

TYPE filename = VARYING [doublelength] OF CHAR;

VAR keyworddir,
checkdir,

entdir,
dsdir,
attdir,
datafile,
measdir,
convdir : TEXT;

PROCEDURE saveetype (
VAR ename,

supername
VAR super_rel

: word;

: taxon_relation); FORWARD;

PROCEDURE savedstype (
VAR newname,

newtype : word); FORWARD;

PROCEDURE saveattlist (
VAR dsname : word;

atthead : attnodepointer); FORWARD;

PROCEDURE savedata (

VAR ptods : dsnodepointer); FORWARD;

PROCEDURE savemeasscheme (
VAR ptomeas : measpointer); FORWARD;

PROCEDURE saveconvscheme (

VAR ptoconv : convpointer); FORWARD;

144

{*e*k#eeeKX Pascal structure routines *********e*x)

PROCEDURE etypesearch (

VAR currentnodep : enodepointer;
VAR req_ent : word;

VAR reqnodep : enodepointer);

{ search recursively for entity type req ent,
reqnodep is set to point to it if found and
set to NIL otherwise }

BEGIN

IF currentnodep = NIL
THEN reqnodep := NIL
ELSE WITH currentnodep ~ DO

IF ent_name = req ent
THEN reqnodep := currentnodep
ELSE BEGIN

etypesearch(subpointer, req_ent, reqnodep) ;
IF reqnodep = NIL

THEN etypesearch(nextpointer, req_ent, reqnodep)
END

END; { proc etypesearch }

PROCEDURE addetype (

VAR super_p : enodepointer;
VAR new_type : word;

VAR link_type : taxon_relation);

{ add new entity type new_type to the sub-types
of super_p with relationship link_type }

VAR temp_p : enodepointer;

BEGIN

NEW (temp_p);
WITH temp_p *
DO BEGIN

ent_name := new_type;
super_rel := link type;
superpointer := super_p;
subpointer NIL;
nextpointer := super_p ~.subpointer

END;
super_p “.subpointer := temp_p

END; { proc addetype }

PROCEDURE etypeaddition;

{ input arguments for ADDENT command and check valid,

if OK, call procedures to add the new type to the taxonomy
and to the entity directory file }

LABEL endofproc;

VAR new_ent,

super_ent : word;

ent_p : enodepointer;
taxon_link : taxon_relation;

145

PROCEDURE dealwitherror (

errorstate : errortype;
errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg);

GOTO endofproc
END;

BEGIN

gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'new entity type');

new_ent := token.tchars;
etypesearch(ent_root, new_ent, ent_p);
IF ent_p <> NIL
THEN dealwitherror(entexists, new_ent);

gettoken;

IF token.ttype <> identifier
THEN dealwitherror(identexp, ‘super entity type');

super_ent := token.tchars;
etypesearch(ent_root, super_ent, ent_p);

IF ent_p = NIL

THEN dealwitherror(entmiss, super ent);

gettoken;
CASE token.ttype OF
nongentok : taxon_link := nongeneric;
gentok 3; taxon_link := generic;

OTHERWISE dealwitherror(invrel, nullname)
END;

WRITELN;

addetype(ent_p, new_ent, taxon_link);
Saveetype(new_ent, super_ent, taxon_link);
endofproc:

END; { proc etypeaddition }

PROCEDURE displayentdir;

{ input argument for the SHOWENTDIR command,
if OK, call the display procedure to recursively print
out the entity taxonomy below the given argument }

LABEL endofproc;

VAR entname : word;
reqp : enodepointer;

PROCEDURE dealwitherror (
errorstate : errortype;

errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg) ;

GOTO endofproc

END;

PROCEDURE display (
VAR currentnodep : enodepointer;

margin : integer);

BEGIN

WITH currentnodep *
DO BEGIN

146

WRITELN(ent_name:margin, super_rel:50-margin) ;
IF subpointer <> NIL
THEN display(subpointer, margin+2);

IF nextpointer <> NIL
THEN display(nextpointer, margin)

END

END; { display }

BEGIN { displayentdir }
gettoken;

IF token.ttype <> identifier
THEN dealwitherror(identexp, ‘entity type');

entname := token.tchars;
etypesearch(ent_root, entname, reqp);
IF reqp = NIL

THEN dealwitherror(entmiss, entname) ;
WRITELN; WRITELN;

WRITELN('Entity type', 'Relation to super type':39);
WRITELN;

WITH regp *
DO BEGIN

WRITELN(ent_name:wordlength, super_rel:50-wordlength) ;

IF subpointer <> NIL
THEN display(subpointer, wordlength+2)

END;
endofproc:

END; { proc displayentdir }

PROCEDURE dstypesearch (
VAR ptocurrent : dsnodepointer;
VAR reqds : word;
VAR ptoreqds : dsnodepointer);

{ search recursively for data set reqds,
ptoreqds is set to point to it if found
and set to NIL otherwise }

BEGIN

IF ptocurrent = NIL

THEN ptoreqds := NIL
ELSE WITH ptocurrent ~ DO
IF reqds = ds_name
THEN ptoreqds := ptocurrent
ELSE IF reqds < ds_name

THEN dstypesearch(leftp, reqds, ptoreqds)

ELSE dstypesearch(rightp, reqds, ptoreqds)
END; { proc dstypesearch }

PROCEDURE adddstype (

VAR ptocurrent,

newnode : dsnodepointer);

{ add the new data set newnode to the alphabetically
ordered binary tree of data sets }

BEGIN

IF ptocurrent = NIL
THEN ptocurrent := newnode
ELSE IF newnode *.ds_name < ptocurrent *.ds_name
THEN adddstype(ptocurrent *.leftp, newnode)

ELSE adddstype(ptocurrent *.rightp, newnode)

147

END; { proc adddstype }

PROCEDURE dstypeaddition;

{ input arguments for the ADDDS command,

if OK, generate a ds_node and call procedures to

add it to the data set tree and directory file }

LABEL endofproc;

VAR newname, newtype : word;

ptods : dsnodepointer;

PROCEDURE dealwitherror (

errorstate : errortype;
errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg) ;

GOTO endofproc

END;

BEGIN

gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp, 'new data set name');

newname := token.tchars;
dstypesearch(ds_ root, newname, ptods) ;

IF ptods <> NIL THEN dealwitherror(dsexists, newname) ;
gettoken;
IF token.ttype <> identifier

THEN dealwitherror(identexp, ‘entity type of dataset');
newtype := token.tchars;

NEW (ptods) ;

WITH ptods *
DO BEGIN

ds_name := newname;
leftp := NIL;
rightp := NIL;
instances 0;
attchain := NIL;
etypesearch(ent_root, newtype, ent_type)

END;

IF ptods *.ent_type = NIL
THEN BEGIN

DISPOSE (ptods) ;
dealwitherror(entmiss, newtype)

END;

WRITELN;

adddstype(ds_root, ptods);
savedstype (newname, newtype) ;
endofproc:

END; { proc dstypeaddition }

PROCEDURE displaydsdir;

{ for SHOWDSDIR command, call procedure display to recursively

print the data set tree in alphabetical order}

PROCEDURE display (
VAR currentnode : ds_node);

148

BEGIN

WITH currentnode
DO BEGIN

IF leftp <> NIL
THEN display(leftp *);

WRITELN(ds_name, ent_type “.ent_name:18, instances:7);
IF rightp <> NIL

THEN display(rightp ~)
END

END; { proc display }

BEGIN { displaydsdir }
IF ds_root = NIL
THEN WRITELN('No data sets declared')
ELSE BEGIN
WRITELN; WRITELN;

WRITELN('Data set', ‘Entity type':21, 'Instances':16);
WRITELN;

display(ds_root ~)
END

END; { proc displaydsdir }

PROCEDURE meassearch (

VAR ptocurrent : measpointer;
VAR reqmeas : word;

VAR ptoreqmeas : measpointer);

{ recursively search for scheme reqmeas, set ptoreqmeas
to point to it if found otherwise set to NIL }

BEGIN

IF ptocurrent = NIL

THEN ptoreqmeas := NIL

ELSE WITH ptocurrent * DO
IF reqmeas = measname

THEN ptoreqmeas := ptocurrent

ELSE IF reqmeas < measname

THEN meassearch(leftp, reqmeas, ptoreqmeas)
ELSE meassearch(rightp, reqmeas, ptoreqmeas)

END; { proc meassearch }

PROCEDURE addmeasscheme (
VAR ptomeas,

newmeas : measpointer);

{ add newmeas to appropriate place in alphabetically
ordered binary tree of measurement schemes }

BEGIN

IF ptomeas = NIL

THEN ptomeas := newmeas

ELSE IF newmeas “.measname < ptomeas ~.measname
THEN addmeasscheme(ptomeas “.leftp, newmeas)
ELSE addmeasscheme(ptomeas *.rightp, newmeas)

END; { proc addmeasscheme }

PROCEDURE catsearch (
VAR cathead : catnodepointer;
VAR token : tokeninfo;

VAR catpos : INTEGER);

149

{ search for category value reqcharcat/reqnumcat

and return index position via catpos which is set
to 0 if the value is not found }

VAR ptocat : catnodepointer;

index : INTEGER;

BEGIN

index 0;
catpos 0;
ptocat := cathead;
WHILE (ptocat <> NIL) AND (catpos = 0)

DO BEGIN

index := index + 1;

CASE ptocat “.cattype OF

identifier :
IF token.tchars = ptocat *.charvalue
THEN catpos := index

ELSE ptocat Pptocat *.next;

numeral :

IF token.tnum ptocat *.numvalue

THEN catpos index
ELSE ptocat := ptocat *.next

END

END

END; { proc catsearch }

PROCEDURE newcatnode (
VAR cathead,

current : catnodepointer);

{ generate new cat_node, place at end of list headed

by cathead and set current to point to it }

BEGIN

IF cathead = NIL
THEN BEGIN

NEW (cathead) ;
current := cathead

END

ELSE BEGIN

NEW(current “*.next);
current := current *.next

END;

current “.next := NIL

END; { proc newcatnode }

PROCEDURE getqualclasses (
VAR ptomeas : measpointer;

measspec : sortofmeas);

{ input category values for qualitative scheme and call
procedure newcatnode in building chain of value nodes }

VAR typeofdata : datatype;
indexnum,
catindex : INTEGER;
ptocat : catnodepointer;
morecats : BOOLEAN;

150

BEGIN

WRITE('Enter values one per line, ');
IF ptomeas *.ordtype = ordered

THEN WRITE('in ascending order, ');
WRITELN('terminating list with $');
typeofdata := ptomeas ~.cattype;

indexnum := 1;
morecats := TRUE;
WHILE morecats
DO BEGIN

REPEAT

READLN;

WRITE('Enter category ',indexnum:3,' : ');
gettoken;

UNTIL token.ttype IN [typeofdata, endofinfo];
WRITELN;

IF token.ttype = typeofdata
THEN BEGIN

catsearch(ptomeas “.cathead, token, catindex) ;

IF catindex <> 0

THEN WRITELN('This category value has already been entered')
ELSE BEGIN

newcatnode(ptomeas “.cathead, ptocat);

ptocat “.cattype typeofdata;
CASE typeofdata OF
identifier : ptocat *.charvalue := token.tchars;
numeral : ptocat *.numvalue := token.tnum

END;

IF (indexnum = 2) AND (measspec IN [orddich, unorddich])
THEN morecats := FALSE;

indexnum := indexnum + 1
END

END

ELSE BEGIN

Morecats := indexnum <= 2;
IF morecats
THEN BEGIN

WRITELN('At least 2 categories must be declared');
IF ptomeas “.cathead <> NIL
THEN BEGIN

DISPOSE (ptomeas *.cathead) ;
ptomeas “.cathead := NIL

END;
indexnum := 1

END
END

END;

ptomeas *. numofcat := indexnum - 1
END; { proc getqualclasses }

PROCEDURE getqualinfo (
VAR newname : word;

measspec : sortofmeas;

VAR ptomeas : measpointer);

{ get info about new qualitative meas newname which is of
type measspec, if a closed set call proc getqualclasses }

BEGIN

NEW (ptomeas) ;
WITH ptomeas ~
DO BEGIN

151

measname := newname;

leftp := NIL;

rightp := NIL;
meas_type := qualmeas;

numofcat 0;
cathead := NIL;

IF measspec = qual

THEN BEGIN
REPEAT

READLN;

WRITE('Is the set of values open/closed : ');
gettoken;

UNTIL token.ttype IN [opentok, closedtok];
WRITELN;
IF token.ttype = opentok

THEN settype := openset

ELSE settype := closedset

END

ELSE settype := closedset;
IF settype = openset
THEN ordtype := unordered

ELSE IF measspec IN [(unordqual, unorddich]
THEN ordtype := unordered

ELSE IF measspec IN [ordqual, orddich]
THEN ordtype := ordered

ELSE BEGIN

REPEAT
READLN;

WRITE('Are the values ordered yes/no : ');
gettoken;

UNTIL token.ttype IN [yestok, notok];

WRITELN;

IF token.ttype = notok
THEN ordtype unordered
ELSE ordtype := ordered

END;
REPEAT
READLN;

WRITE('Are the data items of type character/numeric : ');
gettoken;

UNTIL token.ttype IN [chartok, numtok];
WRITELN;

IF token.ttype = chartok

THEN cattype := identifier

ELSE cattype := numeral;
IF settype = closedset

THEN getqualclasses(ptomeas, measspec)
END;

addmeasscheme(meas_root, ptomeas) ;

Savemeasscheme (ptomeas)
END; { proc getqualinfo }

PROCEDURE getquantinfo (
VAR newname : word;
VAR ptomeas : measpointer);

{ get info about quantitative scheme }

BEGIN

NEW (ptomeas) ;
WITH ptomeas *

DO BEGIN

152)

measname := newname;
leftp := NIL;

rightp := NIL;
meas_type := quantmeas;

REPEAT

READLN;

WRITE('Enter the lower bound of the meas scheme : ');
gettoken;

UNTIL (token.ttype = numeral) AND (token.tnum < maxreal) ;
WRITELN;

lowerbound := token.tnum;
REPEAT

READLN;

WRITE('Enter the upper bound of the meas scheme : ');

gettoken;

UNTIL (token.ttype = numeral) AND (token.tnum > lowerbound) ;

WRITELN;

upperbound := token.tnum

END;

addmeasscheme(meas_root, ptomeas) ;
Savemeasscheme (ptomeas)

END; { proc getquantinfo }

PROCEDURE measaddition;

{ input arguments for ADDMEAS command and check valid,
if OK, generate new meas_node, get info and add new scheme
to measurement tree and directory file }

LABEL endofproc;
VAR newmeas : word;

ptomeas : measpointer;

PROCEDURE dealwitherror (

errorstate : errortype;

errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg) ;
GOTO endofproc

END;

BEGIN

gettoken;
IF token.ttype <> identifier

THEN dealwitherror(identexp, 'new measurement name');

newmeas := token.tchars;

meassearch(meas_root, newmeas, ptomeas) ;

IF ptomeas <> NIL

THEN dealwitherror(measexists, newmeas) ;
gettoken;
CASE token.ttype OF

qualmeas getqualinfo(newmeas, qual, ptomeas);
quantmeas : getquantinfo(newmeas, ptomeas) ;
OTHERWISE dealwitherror(invmeastyp, nullname)

END;
endofproc:

END; { proc measaddition }

FUNCTION meastypeOK (
VAR ptomeas : measpointer;

153

measspec : sortofmeas) : BOOLEAN;

{ see if meas pointed at by ptomeas conforms to measspec }

BEGIN

WITH ptomeas * DO

CASE measspec OF
quant : meastypeOK := meas_type = quantmeas;

ordqual : meastypeOK := (meas_type = qualmeas) AND

(ordtype = ordered) ;
unordqual : meastypeOK := (meas_type = qualmeas) AND

(ordtype = unordered) ;
meas_type = qualmeas;

(meas_type = qualmeas) AND

(ordtype = ordered) AND (numofcat = 2);
unorddich : meastypeOK := (meas_type = qualmeas) AND

(ordtype = unordered) AND

(numofcat = 2);
dich : meastypeOK := (meas_type = qualmeas) AND

(numofcat = 2)

qual 2? MeastypeOK

orddich : meastypeOK

END

END; { funct meastypeOK }

PROCEDURE displaymeas;

{ input argument for SHOWMEAS command and check valid,
if OK, output info about required measurement scheme }

LABEL endofproc;

VAR dispmeas : word;

ptomeas : measpointer;
Pptocat : catnodepointer;

PROCEDURE dealwitherror (
errorstate : errortype;

errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg) ;

GOTO endofproc
END;

BEGIN

gettoken;
IF token.ttype <> identifier

THEN dealwitherror(identexp, 'measurement name');
dispmeas := token.tchars;
meassearch(meas_root, dispmeas, ptomeas) ;
IF ptomeas = NIL
THEN dealwitherror(measmiss, dispmeas) ;

WRITELN; WRITELN;

WITH ptomeas *
DO BEGIN

CASE meas_type OF
qualmeas :

BEGIN

WRITE(' Meas type = qualitative,');
IF settype = openset

THEN WRITELN(' Set type = open, Data type =',cattype:11)

ELSE BEGIN

IF ordtype = unordered

THEN WRITELN(' Categories are unordered')

154

ELSE WRITELN(' Categories are ordered');
WRITELN;

WRITELN(' Valid category values are :-');
ptocat := cathead;

WHILE ptocat <> NIL
DO WITH ptocat * DO BEGIN

CASE cattype OF
identifier : WRITELN(charvalue:20);
numeral : WRITELN (numvalue:12:2)

END;

ptocat := next
END

END

END;

quantmeas :
BEGIN

WRITELN(' Meas type = quantitative');
WRITE(' Lower bound =');
IF lowerbound = minreal

THEN WRITELN('min': 4)
ELSE WRITELN(lowerbound:12:2) ;

WRITE(' Upper bound =');
IF upperbound = maxreal
THEN WRITELN('max': 4)
ELSE WRITELN (upperbound:12:2)

END
END

END;

endofproc:
END; { proc displaymeas }

PROCEDURE displaymeasdir;

{ for SHOWMEASDIR command, call procedure display to recursively
print the measurement schemes in alphabetical order }

PROCEDURE display (
VAR currentmeas : meas_node);

BEGIN

WITH currentmeas
DO BEGIN

IF leftp <> NIL THEN display(leftp *);
WRITELN(measname, meas_type:11);
IF rightp <> NIL THEN display(rightp ~)

END

END; { proc display }

BEGIN { displaymeasdir }
IF meas_root = NIL

THEN WRITELN('No measurement schemes defined')
ELSE BEGIN

WRITELN; WRITELN;

WRITELN('Meas name', 'Meas type':18);

WRITELN;
display (meas_root ~)

END

END; { proc displaymeasdir }

PROCEDURE displaycandmeas (
measspec : sortofmeas);

155

{ display those meas schemes which are of type measspec }

VAR index : INTEGER;

PROCEDURE display (

VAR ptomeas : measpointer);

BEGIN

IF ptomeas *.leftp <> NIL

THEN display (ptomeas*. leftp);

IF meastypeOK(ptomeas, measspec)
THEN BEGIN

IF (index MOD 3 = 0) AND (index <> 0)
THEN WRITELN;

index := index + 1;
WRITE (ptomeas *.measname:18)

END;

IF ptomeas*. rightp <> NIL

THEN display(ptomeas ~.rightp)
END; { proc display }

BEGIN { displaycandmeas }

index := 0;
display (meas_root);
WRITELN;

IF index = 0

THEN WRITELN('No candidate measurement schemes declared')
END; { proc displaycandmeas }

FUNCTION wantstodecmeas : BOOLEAN;

BEGIN

WRITELN('This meas scheme is new to the system');
REPEAT

READLN;

WRITE('Do you wish to declare it (yes/no) : ');
gettoken;

UNTIL token.ttype IN [yestok, notok];
WRITELN;

wantstodecmeas := token.ttype = yestok

END; { funct wantstodecmeas }

PROCEDURE convsearch (
VAR ptocurrent : convpointer;

reqconv : doubleword;
VAR ptoreqconv : convpointer);

{ search for reqconv in conversion directory,
set ptoreqconv to point to it if found otherwise to NIL }

BEGIN

IF ptocurrent = NIL

THEN ptoreqconv := NIL

ELSE WITH ptocurrent * DO

IF reqconv = from_to

THEN ptoreqconv ptocurrent

ELSE IF reqconv < from_to

THEN convsearch(left_p, reqconv, ptoreqconv)
ELSE convsearch(right_p, reqconv, ptoreqconv)

END; { proc convsearch }

156

PROCEDURE addconvscheme (

VAR ptocurrent,
newconv : convpointer);

{ add newconv to the appropriate place in alphabetically
ordered binary tree of conversion schemes }

BEGIN

IF ptocurrent = NIL

THEN ptocurrent := newconv

ELSE IF newconv *.from_to < ptocurrent *.from_to

THEN addconvscheme(ptocurrent “~.left_p, newconv)
ELSE addconvscheme(ptocurrent “.right_p, newconv)

END; { proc addconvscheme }

PROCEDURE genqntqltnode (
VAR head,

current : qntqltpointer);

{ add new qntqltnode to list headed by head and
set current to point to it }

BEGIN

IF head = NIL
THEN BEGIN

NEW (head) ;
current := head

END

ELSE BEGIN

NEW(current “.next) ;
current := current “.next

END;
current “.next := NIL

END; { proc genqntqltnode }

PROCEDURE genqltqltnode (
VAR head,

current : qltqltpointer);

{ add new qltqltnode to list headed by head and
set current to point to it }

BEGIN

IF head = NIL
THEN BEGIN

NEW (head) ;
current := head

END

ELSE BEGIN

NEW(current *.next);
current := current *.next

END;

current “.next := NIL
END; { proc genqltqltnode }

PROCEDURE getconvinfo (
VAR frommeas,

tomeas : measpointer;

157

VAR ptoconv : convpointer);

get info about converting frommeas to tomeas
and add to conversion tree and directory file }

PROCEDURE getqntqntinfo (
VAR ptoconv : convpointer);

{ prompt for and input info on how to do quant/quant conversion }

BEGIN
WITH ptoconv
DO BEGIN
typeofconv := qnt_qnt;

NEW (qntqnt_p);
WITH qntqnt_p ~

DO BEGIN

REPEAT
READLN;

WRITE('Enter multiplying factor : ');
gettoken;

UNTIL (token.ttype = numeral) AND (token.tnum <> 0);

WRITELN;
a := token.tnum;
REPEAT

READLN;
WRITE('Enter constant : ');
gettoken;

UNTIL token.ttype = numeral;
WRITELN;
¢ := token.tnum

END

END

END; { proc getqntqntinfo }

PROCEDURE getqntqltinfo (
VAR ptoconv : convpointer);

{ prompt for and input info on how to do quant/qual conversion }

VAR ptogntqlt : qntqltpointer;
lower : REAL;

indexnum : INTEGER;

BEGIN

WITH ptoconv *
DO BEGIN

typeofconv qnt_qlt;
qntqlt_p := NIL;
lower := frommeas “.lowerbound;
REPEAT

genqntqltnode(qntqlt_p, ptoqntqlt) ;

REPEAT

READLN;

WRITE('For the range");
IF lower = minreal
THEN WRITE('min')

ELSE WRITE (lower:12:2);

WETS EO 9s 0°)
gettoken;

IF token.ttype = upper
THEN BEGIN
token.ttype := numeral;

158

token.tnum := frommeas “*.upperbound

END;

UNTIL (token.ttype = numeral) AND (token.tnum > lower)

AND (token.tnum <= frommeas *.upperbound) ;
WRITELN;
ptogqntqlt *.upper := token.tnum;

REPEAT

READLN;

WRITE('The value is : ');
gettoken;

indexnum := 0;
IF token.ttype = tomeas “*.cattype

THEN catsearch(tomeas “.cathead, token, indexnum) ;
UNTIL indexnum <> 0;
WRITELN;

ptoqntqlt *.index := indexnum;
lower := ptogntqlt “.upper

UNTIL ptoqntqlt *.upper = frommeas “.upperbound

END

END; { proc getqntqltinfo }

PROCEDURE getqltqltinfo (
VAR ptoconv : convpointer);

{ prompt for and input info on how to do qual/qual conversion }

VAR ptogltqlt : qltqltpointer;
ptocat : catnodepointer;

toindexnum : INTEGER;.

BEGIN

WITH ptoconyv *
DO BEGIN

typeofconv := qlt_qlt;
qitqlt_p := NIL;

ptocat := frommeas *.cathead;
WHILE ptocat <> NIL

DO BEGIN

genqltqltnode(qltqlt_p, ptoqltqlt);
REPEAT

READLN;
WRITE ('The value ');

CASE ptocat “.cattype OF

identifier : WRITE(ptocat *.charvalue) ;

numeral : WRITE(ptocat *.numvalue:12:2)
END;
WRITE(' converts to : ');
gettoken;

toindexnum := 0;
IF token.ttype = ptocat “.cattype
THEN catsearch(tomeas *.cathead, token, toindexnum) ;

UNTIL toindexnum <> 0;
WRITELN;

ptogltqlt *.toindex := toindexnum;
ptocat := ptocat *.next

END
END

END; { proc getqltqltinfo }

BEGIN { getconvinfo }
REPEAT

READLN;

WRITELN('Is it possible to convert from ', frommeas “.measname) ;

159

WRITELN('to ':31,tomeas “.measname) ;
WRITE('Answer yes/no : ');
gettoken;

UNTIL token.ttype IN [yestok, notok];
WRITELN;

IF token.ttype = yestok
THEN BEGIN

NEW (ptoconv) ;

WITH ptoconv *
DO BEGIN

from_to frommeas ~.measname + tomeas ~.measname;
Tettip NIL;
right_p := NIL;
IF frommeas “.meas_type = quantmeas

THEN BEGIN

IF tomeas “.meas_type = quantmeas

THEN getqntqntinfo(ptoconv)
ELSE getqntqltinfo (ptoconv)

END

ELSE getqltqltinfo (ptoconv)
END;

addconvscheme(conv_root, ptoconv) ;
sSaveconvscheme (ptoconv)

END

END; { proc getconvinfo }

PROCEDURE performconv (

VAR ptoconv : convpointer;
VAR fromds,

tods : numarray;
VAR noitems : INTEGER);

{ convert the data in fromds using ptoconv to tods }

VAR i : INTEGER;

ptoqntqlt : qntqltpointer;
ptoqitqlt : qltqltpointer;
index : REAL;

BEGIN
CASE ptoconv *.typeofconv OF

qnt_qnt :

WITH ptoconv “.qntqnt_p *

DO FOR i 1 TO noitems
DO tods[{i] := a * fromds[i] + c;

qnt_qlt :

FOR i 1 TO noitems
DO BEGIN

ptogntqlt := ptoconv *.qntqlt_p;
WHILE fromds[i] > ptoqntqlt *.upper

DO ptogntqlt := ptogntqlt *.next;
tods[i] := ptogqntqlt *.index

END;

qlt_qlt :

FOR i := 1 TO noitems
DO BEGIN

ptogltqlt := ptoconv *.qltqlt_p;
index := 1;
WHILE index <> fromds[i]

DO BEGIN

Ptoqltqlt := ptoqltqlt *.next;
index := index + 1

160

END;

tods[i] := ptoqltqlt *.toindex
END

END

END; { proc performconv }

PROCEDURE atttypesearch (
VAR atthead : attnodepointer;
VAR reqatt : word;

VAR ptoreqatt : attnodepointer);

{ search for reqatt in the list headed by atthead,
set ptoreqatt to point to it if found otherwise set to NIL }

VAR found ; BOOLEAN;

BEGIN

ptoregatt := atthead;
found := FALSE;
WHILE (ptoreqatt <> NIL) AND NOT found

DO IF ptoreqatt “.att_name = reqatt
THEN found := TRUE

ELSE ptoreqatt := ptoreqatt “.next_att

END; { proc atttypesearch }

PROCEDURE addattnode (
VAR headatt,

lastatt,

newatt : attnodepointer);

{ add newatt to list headed by headatt and set
lastatt to point to it }

BEGIN

IF headatt = NIL

THEN headatt := newatt

ELSE lastatt *.next_att := newatt;
lastatt := newatt;
lastatt “.next_att := NIL

END; { addattnode }

PROCEDURE atttypeaddition;

{ prompt user for info required for ADDATT command,
if all OK build list of newly declared attributes }

LABEL endofattinfo, endofproc;
VAR dsname,

newtype,

newmeas : word;
newlevel : data_levels;
normalatt : BOOLEAN;

ptods : dsnodepointer;

ptoatt,
lastatt,

newatt : attnodepointer;
ptomeas : measpointer;
state : (readkey, readother, allread);
attprompt : VARYING [10] OF CHAR;
attnum : INTEGER;

161

measOK : BOOLEAN;

PROCEDURE dealwitherror (
errorstate : errortype;
errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg);
GOTO endofproc

END; { proc dealwitherror }

PROCEDURE infoerror (

errorstate : errortype;

errorarg : textmessage);

BEGIN

DISPOSE (newatt) ;

reporterror(errorstate, errorarg)
END; { proc infoerror }

BEGIN { atttypeaddition }
gettoken;
IF token.ttype <> identifier
THEN dealwitherror(identexp,

dsname := token.tchars;

dstypesearch(ds_root, dsname, ptods);
IF ptods = NIL
THEN dealwitherror(dsmiss, dsname) ;

IF ptods *.attchain <> NIL

THEN dealwitherror(attexist, dsname) ;

"data set name');

WRITELN('Enter key attributes, one per line, ',
"terminate list with $');

state := readkey;
attprompt ‘Key';
attnum
REPEAT

READLN;

WRITE (attprompt,attnum:3,' > ')

gettoken;
CASE token.ttype OF

endofinfo :
BEGIN

state := SUCC(state);
IF state = readother
THEN BEGIN

WRITELN('Enter other attributes,
attprompt := 'Att'

END

END;
identifier :
BEGIN

NEW (newatt) ;
WITH newatt *
DO BEGIN

terminate list with $');

atttypesearch(ptods *.attchain, token.tchars, ptoatt);
IF ptoatt <> NIL

THEN BEGIN

infoerror(attdup, token.tchars) ;
GOTO endofattinfo

END;
att_name := token.tchars;

newtype :
newlevel

162

newmeas := nullname;
normalatt := FALSE;

gettoken;

WHILE token.ttype <> endofline

DO BEGIN { read in info about attribute }
CASE token.ttype OF
typetok :

BEGIN

gettoken;

IF token.ttype <> assign
THEN BEGIN

infoerror(eqexp, 'TYPE');
GOTO endofattinfo

END;

gettoken;
IF token.ttype <> identifier
THEN BEGIN

infoerror(identexp, 'type argument');
GOTO endofattinfo

END;

newtype
END;

leveltok :
BEGIN

gettoken;

IF token.ttype <> assign
THEN BEGIN

infoerror(eqexp, 'LEVEL');

GOTO endofattinfo

token.tchars

END;
gettoken;

CASE token.ttype OF

nomtok : newlevel nominal;
ordtok : newlevel ordinal;
ranktok : newlevel rank;
inttok : newlevel interval;
rattok : newlevel ratio;

OTHERWISE BEGIN

infoerror(invlevel, nuliname) ;
GOTO endofattinfo

END

END

END;

meastok :
BEGIN

gettoken;
IF token.ttype <> assign
THEN BEGIN

infoerror(eqexp, 'MEAS');
GOTO endofattinfo

END;
gettoken;
IF token.ttype <> identifier
THEN BEGIN

infoerror(identexp, 'meas argument') ;
GOTO endofattinfo

END;

newmeas := token.tchars
END;

normtok : normalatt := TRUE;
OTHERWISE BEGIN

infoerror(invinfo, nullname) ;
GOTO endofattinfo

163

END
END;
gettoken

END;

{ verify info entered about attribute }
IF state = readkey
THEN att_role := key
ELSE att_role := non_key;

IF newtype = nullname

THEN BEGIN

infoerror(notype, nullname) ;
GOTO endofattinfo

END;
att_type := newtype;

CASE newlevel OF

mone :

BEGIN

infoerror(nolevel, nullname) ;
GOTO endofattinfo

END;

rank :
BEGIN

datalevel := newlevel;
att_dist distunknown;
meas_p NIL;
mode numeral;
num_p := NIL

END;
OTHERWISE

BEGIN

IF newmeas = nullname
THEN BEGIN

infoerror(nomeas, nullname) ;
GOTO endofattinfo

END;
meassearch(meas_root, newmeas, ptomeas) ;

IF ptomeas = NIL
THEN BEGIN

IF wantstodecmeas
THEN CASE newlevel OF

nominal : getqualinfo(newmeas, qual, ptomeas) ;
ordinal :
BEGIN

REPEAT

READLN;

WRITE('Is this measurement scheme qual/quant : ');
gettoken;

UNTIL token.ttype IN [qualmeas, quantmeas];
IF token.ttype = qualmeas
THEN getqualinfo(newmeas, ordqual, ptomeas)

ELSE getquantinfo(newmeas, ptomeas)

END;

interval, ratio : getquantinfo(newmeas, ptomeas)
END

ELSE GOTO endofattinfo

END

ELSE BEGIN

CASE newlevel OF
nominal : measOK = meastypeOK(ptomeas, qual);
ordinal : measOK := meastypeOK(ptomeas, quant) OR

meastypeOK(ptomeas, ordqual) ;
interval, ratio : measOK := meastypeOK(ptomeas, quant)

END;

164

IF NOT measOK

THEN BEGIN

infoerror(invmeas, nullname) ;
GOTO endofattinfo

END;

END;

datalevel := newlevel;
IF (newlevel IN [interval, ratio]) AND normalatt
THEN att_dist := normaldist
ELSE att_dist := distunknown;

meas_p := ptomeas;
IF (ptomeas *.settype = openset)

AND (ptomeas “.cattype = identifier)
THEN BEGIN

mode := identifier;
char_p := NIL

END

ELSE BEGIN

mode := numeral;
num_p := NIL

END

END

END

END;
addattnode(ptods *.attchain, lastatt, newatt);
attnum := attnum + 1;
endofattinfo :

END;
endofline : ;
OTHERWISE WRITELN('Error, invalid symbol found')

END;

UNTIL state = allread;
WRITELN;

Saveattlist(ptods *.ds_name, ptods *.attchain);

endofproc:
END; { proc atttypeaddition }

PROCEDURE displayatt;

{ read argument for SHOWATT command, if OK list the
attributes declared for the required data set }

LABEL endofproc;

VAR dsname : word;
ptods : dsnodepointer;
ptoatt : attnodepointer;

PROCEDURE dealwitherror (
errorstate : errortype;

errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg) ;

GOTO endofproc
END;

BEGIN

gettoken;

IF token.ttype <> identifier
THEN dealwitherror(identexp, 'data set name');

dsname := token.tchars;
dstypesearch(ds_root, dsname, ptods);

165

IF ptods = NIL

THEN dealwitherror(dsmiss, dsname) ;
IF ptods *.attchain = NIL
THEN dealwitherror(noatts, dsname) ;

WRITELN; WRITELN;

WRITELN('Att name', 'Att role':18,'Att type':10, 'Level':18,

"Meas':14);

WRITELN;

ptoatt := ptods *.attchain;
WHILE ptoatt <> NIL

DO WITH ptoatt * DO BEGIN

WRITE (att_name, att_role:10,att_type:18,datalevel:10);

IF att_dist = normaldist
THEN WRITE ('NORMAL':8)

ELSE WRITE(' ':8);

IF meas_p <> NIL

THEN WRITE(meas_p *.measname:18) ;

WRITELN;

Ptoatt := next_att
END;

endofproc:

END; { proc displayatt }

PROCEDURE instaddition;

{ input argument for ADDINST command and check valid,

prompt user for data an instance at a time and validate }

LABEL endofproc;

VAR dsname : word;
ptods : dsnodepointer;
noelements : INTEGER;
erroroccured : BOOLEAN;
ptoatt : attnodepointer;

PROCEDURE dealwitherror (
errorstate : errortype;

errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg);

GOTO endofproc

END; { proc dealwitherror }

PROCEDURE getlineofdata;

{ input an item of data for primary version of each attribute }

LABEL endofdatainput;
VAR index : INTEGER;

PROCEDURE dataerror (

errorstate : errortype;

errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg);

erroroccured := TRUE;
GOTO endofdatainput

END; { proc dataerror }

BEGIN { getlineofdata }

166

ptoatt := ptods *.attchain;
REPEAT
WITH ptoatt * DO BEGIN

IF datalevel = rank
THEN BEGIN

IF token.ttype <> numeral
THEN dataerror(invval, ptoatt “.att_name);

IF token.tnum <= 0

THEN dataerror(invval, ptoatt *.att_name) ;
num_p “[noelements + 1] token.tnum

END
ELSE CASE meas_p ~.meas_type OF
qualmeas :

BEGIN

IF token.ttype <> meas_p *.cattype

THEN dataerror(invval, ptoatt *.att_name);
IF meas_p “~.settype = closedset
THEN BEGIN

catsearch(meas_p “.cathead, token, index);
IF index = 0
THEN dataerror(invval, ptoatt *.att_name)
ELSE token.tnum := index

END;

CASE mode OF
identifier : char_p “[noelements+1] := token.tchars;
numeral : num_p *[noelements+1] := token.tnum

END

END;

quantmeas :
BEGIN

IF token.ttype <> numeral
THEN dataerror(invval, ptoatt *.att_name);

IF (token.tnum < meas _p *.lowerbound)
OR (token.tnum > meas_p *.upperbound)

THEN dataerror(invval, ptoatt *.att_name);
num_p “[noelements + 1] := token.tnum

END

END;

ptoatt := next_att;

gettoken;
END;

UNTIL ptoatt = NIL;

endofdatainput :
END; { proc getlineofdata }

PROCEDURE sortinstances;

{ sort instances into key order }

VAR i,

newpos : INTEGER;
state : (equal, cont, found);

tempword : word;
tempnum : REAL;

BEGIN
newpos := 1;

state := cont;
WHILE (newpos <= noelements) AND (state = cont)
DO BEGIN

ptoatt := ptods *.attchain;
state := equal;

WHILE (ptoatt <> NIL) AND (state = equal)

167

DO IF ptoatt “.att_role <> key

THEN ptoatt := NIL

ELSE WITH ptoatt * DO BEGIN

CASE mode OF
identifier :
IF char_p “[noelements + 1] < char_p “[newpos]

THEN state := found

ELSE IF char_p “[noelements + 1] > char_p *[newpos]
THEN BEGIN

state := cont;
newpos newpos + 1

END;
numeral :

IF num_p “[noelements + 1] < num_p ~*[newpos]
THEN state := found

ELSE IF num_p “{noelements + 1] > num_p *[newpos]
THEN BEGIN

State := cont;

newpos := newpos + 1

END

END;

IF state = equal THEN ptoatt := next_att

END

END;
IF state = equal

THEN BEGIN

WRITELN('Error, key value is not unique');
erroroccured := TRUE

END

ELSE BEGIN { shuffle down elements }
ptoatt := ptods *.attchain;
WHILE ptoatt <> NIL

DO WITH ptoatt * DO BEGIN

CASE mode OF

identifier :
BEGIN

tempword := char_p “[noelements + 1];
FOR i := (noelements + 1) DOWNTO newpos
DO char_p “[i+l] := char_p *[i];

char_p “[newpos] := tempword
END;

numeral :
BEGIN

tempnum num_p “[noelements + 1];

FOR i := (noelements + 1) DOWNTO newpos
DO num_p “[i+1] := num_p “*[i];

num_p “*[(newpos]
END

END;

ptoatt := next_att
END

END

END; { proc sortinstances }

BEGIN { instaddition }
gettoken;

IF token.ttype <> identifier

THEN dealwitherror(identexp, 'data set name');
dsname := token.tchars;
dstypesearch(ds_root, dsname, ptods);
IF ptods = NIL
THEN dealwitherror(dsmiss, dsname) ;

WITH ptods ~

168

DO BEGIN

IF attchain = NIL

THEN dealwitherror(noatts, dsname) ;
IF instances = 0 { need to gen data arrays }

THEN BEGIN

ptoatt := attchain;
WHILE ptoatt <> NIL

DO WITH ptoatt * DO BEGIN

CASE mode OF

identifier : NEW(char_p);
numeral : NEW(num_p)

END;

ptoatt := next_att
END

END;

noelements := instances;

WRITELN('Enter instances one per line, terminate with $');
REPEAT
READLN;
WRITE('DATA> ');

gettoken;
CASE token.ttype OF

endofinfo, endofline : ;
OTHERWISE

BEGIN

erroroccured := FALSE;

getlineofdata;
IF NOT erroroccured AND (attchain *.att_role = key)

THEN sortinstances;
IF NOT erroroccured THEN noelements := noelements + 1

END

END;

UNTIL token.ttype = endofinfo;
WRITELN;
IF instances <> noelements
THEN BEGIN

instances := noelements;
savedata (ptods)

END
END;

endofproc :
END; { proc instaddition }

FUNCTION charcatvalue (
VAR ptomeas : measpointer;

reqindex : REAL) : WORD;

{ find character category at position reqindex }

VAR index : INTEGER;

ptocat : catnodepointer;

BEGIN

index := 1;
ptocat := ptomeas “*.cathead;
WHILE index < reqindex
DO BEGIN

ptocat
index

END;

charcatvalue := ptocat *.charvalue
END; { funct charcatvalue }

ptocat “*.next;

index + 1

169

FUNCTION numcatvalue (

VAR ptomeas : measpointer;

reqindex : REAL) : REAL;

{ find numeric category at position reqindex }

VAR index : INTEGER;

ptocat : catnodepointer;

BEGIN

index := 1;
ptocat := ptomeas *.cathead;

WHILE index < reqindex

DO BEGIN

ptocat ptocat *.next;

index := index + 1
END;

numcatvalue := ptocat *.numvalue
END; { funct numcatvalue }

PROCEDURE displayinst;

{ input argument for SHOWINST command and check that
instances have been declared, display each instance
for each attribute }

LABEL endofproc;

VAR dsname : word;
i: INTEGER;

ptods : dsnodepointer;

ptoatt : attnodepointer;

PROCEDURE dealwitherror (
errorstate : errortype;

errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg);

GOTO endofproc
END;

BEGIN

gettoken;

IF token.ttype <> identifier

THEN dealwitherror(identexp, ‘data set name');
dsname := token.tchars;

dstypesearch(ds_root, dsname, ptods);
IF ptods = NIL

THEN dealwitherror(dsmiss, dsname) ;
WITH ptods *

DO BEGIN

IF attchain = NIL

THEN dealwitherror(noatts, dsname) ;
IF instances = 0
THEN dealwitherror(noinsts, dsname) ;

WRITELN; WRITELN;

FOR i := 1 T0 instances
DO BEGIN

ptoatt := attchain;
WHILE ptoatt <> NIL

170

DO WITH ptoatt * DO BEGIN

IF datalevel = rank

THEN WRITE(num_p *[i]:12:2)
ELSE CASE meas_p *.meas_type OF
qualmeas :
CASE mode OF

identifier : WRITE(char_p “[i] :18);
numeral :
IF meas_p “.settype = openset

THEN WRITE(num_p “[i] :9:2)
ELSE CASE meas_p *.cattype OF

identifier :

WRITE (charcatvalue(meas_p, num_p “*[i]):18);
numeral :
WRITE (numcatvalue(meas_p, num_p “[i]) :9:2)

END

END;
quantmeas : WRITE(num_p *[i] :12:2)

END;
ptoatt := next_att

END;
WRITELN

END
END;

endofproc:

END; { proc displayinst }

{[A#ARHARKREK FLVG) routines: **eeeRKREE]

PROCEDURE loadkeywords;

BEGIN
OPEN (keyworddir, dir + 'KEYWORDDIR', HISTORY := OLD);

RESET (keyworddir) ;
numofkeywords := 0;
WHILE NOT EOF (keyworddir)

DO BEGIN

numofkeywords := numofkeywords + 1;
WITH keywordtable [numofkeywords]
DO READLN(keyworddir, keystr, keytoken)

END;

CLOSE (keyworddir)

END; { proc loadkeywords }

PROCEDURE loadsemchecks;

PROCEDURE genchecknode (
VAR head,

current : checkpointer);

BEGIN
IF head = NIL
THEN BEGIN
NEW (head) ;

current := head
END
ELSE BEGIN

NEW(current *.nextcheck) ;
current := current *.nextcheck

END;

171

current *.nextcheck := NIL
END; { proc genchecknode }

PROCEDURE loadcheckset (

VAR checkarray : ARRAY[lower..upper:statcomms] OF checkpointer;

checkfile : filename);

VAR current : checkpointer;

index : statcomms;

BEGIN

OPEN(checkdir, checkfile, HISTORY := OLD);

RESET (checkdir) ;
WHILE NOT EOF (checkdir)

DO BEGIN

READ (checkdir, index) ;
checkarray[index] := NIL;
WHILE NOT EOLN(checkdir)

DO BEGIN

genchecknode (checkarray[index], current);
READ (checkdir, current *.semcheck)
END;

READLN (checkdir)
END;

CLOSE (checkdir)

END; { proc loadcheckset }

BEGIN { loadsemchecks }

loadcheckset (class_checks, dir + 'CLASSCHECKDIR') ;
loadcheckset (assoc_checks, dir + 'ASSOCCHECKDIR');
loadcheckset (loc_checks, dir + 'LOCCHECKDIR')

END; { proc loadsemchecks }

PROCEDURE loadmeasdir;

VAR ptomeas : measpointer;

ptocat : catnodepointer;
i: INTEGER;

BEGIN

meas_root := NIL;
OPEN(measdir, 'MEASDIR', HISTORY := OLD, ERROR := CONTINUE);

IF STATUS (measdir) = 0
THEN BEGIN

RESET (measdir) ;
WHILE NOT EOF (measdir)
DO BEGIN

NEW (ptomeas) ;
WITH ptomeas “*
DO BEGIN

READ (measdir, measname, meas_type);
leftp := NIL;
rightp NIL;
CASE meas_type OF
qualmeas :

BEGIN

READLN(measdir, cattype, settype, ordtype, numofcat) ;
cathead := NIL;
FOR i := 1 TO numofcat
DO BEGIN

newcatnode(cathead, ptocat) ;
ptocat “.cattype := cattype;

£72

CASE cattype OF
identifier : READLN(measdir, ptocat ~.charvalue) ;
numeral : READLN(measdir, ptocat *.numvalue)

END

END

END;

quantmeas : READLN(measdir, lowerbound, upperbound)
END

END;

addmeasscheme(meas_root, ptomeas)

END;

CLOSE (measdir)
END

END; { proc loadmeasdir }

PROCEDURE loadconvdir;

VAR ptoconv : convpointer;

Ptogntqlt : qntqltpointer;

ptogltqlt : qltqltpointer;

BEGIN

conv_root := NIL;
OPEN(convdir, 'CONVDIR', HISTORY := OLD, ERROR := CONTINUE);
IF STATUS(convdir) = 0

THEN BEGIN

RESET (convdir) ;
WHILE NOT EOF (convdir)

DO BEGIN

NEW (ptoconv) ;
WITH ptoconv *
DO BEGIN

READLN(convdir, from_to, typeofconv) ;
left_p := NIL;
right_p := NIL;
CASE typeofconv OF

qnt_qnt :

BEGIN

NEW(qntqnt_p) ;
WITH qntqnt_p * DO READLN(convdir, a, c)

END;

qnt_qlt :
BEGIN
qntqlt_p := NIL;

WHILE convdir * <> '$'
DO BEGIN

gengqntgqltnode(qntqlt_p, ptoqntqlt);
WITH ptogntqlt * DO READLN(convdir, upper, index)

END;
READLN (convdir)
END;

Git aio:

BEGIN

qltqlt_p := NIL;
WHILE convdir * <> 'S'
DO BEGIN

genqltqltnode(qltqlt_p, ptoqltqlt);
WITH ptoqltqlt * DO READLN(convdir, toindex)

END;
READLN (convdir)

END
END;

173

addconvscheme(conv_root, ptoconv)
END

END;

CLOSE (convdir)
END

END; { proc loadconvdir }

PROCEDURE loadenttree;

VAR ent_name, super_ent : word;
super_rel ; taxon_relation;
ptosuper : enodepointer;

BEGIN

NEW(ent_root);
WITH ent_root ~
DO BEGIN

ent_name := 'ROOT G
super_rel := not_applic;

superpointer := NIL;
nextpointer NIL;
subpointer := NIL

END;

OPEN(entdir, 'ENTDIR', HISTORY := OLD, ERROR := CONTINUE);

IF STATUS(entdir) = 0

THEN BEGIN
RESET (entdir) ;
WHILE NOT EOF (entdir)
DO BEGIN .

READLN(entdir, ent_name, super_ent, super_rel);
etypesearch(ent_root, super_ent, ptosuper);

addetype(ptosuper, ent_name, super_rel)
END;

CLOSE (entdir)

END

END; { proc loadenttree }

PROCEDURE loadattlist (

VAR dsname : word;
VAR atthead : attnodepointer;
VAR noelements : INTEGER);

VAR attfile : filename;
lastatt, currentatt : attnodepointer;

measname : word;
ch : char;

PROCEDURE loadchardata (

VAR char_p : charpointer;

datafilename : filename);

BEGIN

OPEN (datafile, datafilename,

HISTORY := OLD, ERROR := CONTINUE);

IF STATUS (datafile) = 0

THEN BEGIN

RESET (datafile) ;
noelements := 0;
NEW(char_p);
WHILE NOT EOF (datafile)
DO BEGIN

174

noelements := noelements + 1;
READLN(datafile, char_p ~[{noelements])

END;

CLOSE (datafile)
END

ELSE char_p := NIL
END; { proc loadchardata }

PROCEDURE loadnumdata (
VAR num_p : numpointer;

datafilename : filename);

BEGIN

OPEN (datafile, datafilename,

HISTORY := OLD, ERROR := CONTINUE);

IF STATUS (datafile) = 0

THEN BEGIN

RESET (datafile) ;

noelements := 0;
NEW(num_p) ;
WHILE NOT EOF (datafile)

DO BEGIN

noelements := noelements + 1;
READLN(datafile, num_p “~[{noelements])

END;

CLOSE (datafile)
END

ELSE num_p := NIL
END; { proc loadnumdata }

BEGIN { loadattlist }
attfile := dsname + attspec;
OPEN(attdir, attfile, HISTORY := OLD, ERROR := CONTINUE);

IF STATUS (attdir) = 0

THEN BEGIN

RESET (attdir) ;
WHILE NOT EOF (attdir)
DO BEGIN

new(currentatt) ;
WITH currentatt “
DO BEGIN

READ(attdir, att_name, att_role, ch, att_type,
datalevel, att_dist, mode);

IF datalevel = rank
THEN meas_p := NIL
ELSE BEGIN

READ(attdir, ch, measname) ;
meassearch(meas_root, measname, meas_p)

END;
CASE mode OF
identifier : loadchardata(char_p, dsname + att_name) ;
numeral : loadnumdata(num_p, dsname + att_name)

END;
READIN (attdir) ;
addattnode(atthead, lastatt, currentatt)

END
END;

CLOSE (attdir)
END

END; { proc loadattlist }

PROCEDURE loaddstree;

175

VAR ds_type : word;
newds : dsnodepointer;

BEGIN
ds_root := NIL;

OPEN(dsdir, 'DSDIR', HISTORY := OLD, ERROR

IF STATUS (dsdir) = 0
THEN BEGIN
RESET (dsdir) ;

WHILE NOT EOF (dsdir)

DO BEGIN
NEW (newds) 7
WITH newds ~
DO BEGIN

READLN(dsdir, ds_name, ds_type);

:= CONTINUE) ;

etypesearch(ent_root, ds_type, ent_type);
leftp := NIL;
rightp := NIL;
instances := 0;
attchain := NIL;

loadattlist (ds_name, attchain, instances)
END;

adddstype(ds_root, newds)
END;

CLOSE (dsdir)
END

END; { proc loaddstree }

PROCEDURE loadknowbase;

BEGIN

loadkeywords;

loadsemchecks;
loadmeasdir;
loadconvdir;
loadenttree;
loaddstree

END; { proc loadknowbase }

PROCEDURE saveetype {
VAR ename,

supername : word;
VAR super_rel : taxon_relation };

BEGIN

OPEN(entdir, 'ENTDIR', HISTORY := UNKNOWN);

EXTEND (entdir) ;
WRITELN(entdir, ename, supername, super_rel:11);
CLOSE (entdir)

END; { proc saveetype }

PROCEDURE savedstype {

VAR newname,

newtype : word };

BEGIN

OPEN(dsdir, 'DSDIR', HISTORY := UNKNOWN) ;

EXTEND (dsdir) ;

WRITELN(dsdir, newname, newtype) ;

176

CLOSE (dsdir)

END; { proc savedstype }

PROCEDURE saveattlist {

VAR dsname : word;
atthead : attnodepointer };

VAR attfile : filename;

BEGIN

attfile := dsname + attspec;
OPEN(attdir, attfile, HISTORY

REWRITE (attdir) ;

WHILE atthead <> NIL

DO WITH atthead * DO BEGIN

WRITE(attdir, att_name, att_role, att_type:17,
datalevel, att_dist:12, mode:11);

IF meas_p <> NIL

THEN WRITE(attdir, meas_p *.measname:17) ;
WRITELN (attdir) ;

atthead := atthead “.next_att

NEW) ;

END;

CLOSE (attdir)

END; { proc saveattlist }

PROCEDURE savedata {
VAR ptods : dsnodepointer };

VAR datafilename : filename;
ptoatt : attnodepointer;
i: INTEGER;

BEGIN

WITH ptods *

DO BEGIN

ptoatt := attchain;
WHILE ptoatt <> NIL

DO WITH ptoatt * DO BEGIN

datafilename := ds_name + att_name;
OPEN (datafile, datafilename, HISTORY := UNKNOWN) ;
REWRITE (datafile) ;
CASE mode OF
identifier :
FOR i := 1 TO instances
DO WRITELN(datafile, char_p “[i]);

numeral :

FOR i := 1 TO instances
DO WRITELN(datafile, num_p *[i])

END;

ptoatt := next_att;
CLOSE (datafile)

END

END

END; { proc savedata }

PROCEDURE savemeasscheme {
VAR ptomeas : measpointer };

VAR ptocat : catnodepointer;

i: INTEGER;

177

BEGIN

OPEN(measdir, 'MEASDIR', HISTORY := UNKNOWN) ;

EXTEND (measdir) ;
WITH ptomeas *
DO BEGIN

WRITE (measdir, measname, meas_type:10);
CASE meas_type OF
qualmeas :

BEGIN

WRITELN(measdir, cattype:11, settype:10, ordtype:10,

numofcat: 4);
ptocat := cathead;

FOR i := 1 TO numofcat
DO BEGIN
CASE cattype OF
identifier : WRITELN(measdir, ptocat *.charvalue) ;
numeral : WRITELN(measdir, ptocat *.numvalue)

END;

ptocat := ptocat *.next
END

END;

quantmeas : WRITELN(measdir, lowerbound, upperbound)

END

END;

CLOSE (measdir)
END; { proc savemeasscheme }

PROCEDURE saveconvscheme {

VAR ptoconv : convpointer };

VAR ptogqntqlt : qntqltpointer;

ptogqltqlt : qlitqltpointer;

BEGIN

OPEN(convdir, 'CONVDIR', HISTORY := UNKNOWN) ;

EXTEND (convdir) ;

WITH ptoconyv ~*

DO BEGIN
WRITELN(convdir, from_to, typeofconv:8);
CASE typeofconv OF
qnt_gqnt :

WITH qntqnt_p * DO WRITELN(convdir, a, c);

qnt iqit :
BEGIN

ptoqntqlt := qntqlt_p;

WHILE ptoqntqlt <> NIL
DO WITH ptogntqlt * DO BEGIN
WRITELN(convdir, upper, index:3);

ptoqntqlt := next
END;

WRITELN(convdir, '$')
END;

qit git :
BEGIN
Ptogltqlt := qltqlt_p;

WHILE ptoqltqlt <> NIL
DO WITH ptoqltqlt * DO BEGIN
WRITELN(convdir, toindex:3);
ptoqltqlt := next

END;

178

WRITELN(convdir, '$')

END

END

END;

CLOSE (convdir)
END; { proc saveconvscheme }

{ file model_routines.pas }

B.3. Check_routines.pas

{ file check_routines.pas }

TYPE listheadpointer = * listheadnode;
itempointer “ itemnode;
listheadnode RECORD
nexthead : listheadpointer;

no_items : INTEGER;

itemhead : itempointer
END;
itemnode = RECORD
dsinfo : dsnodepointer;
attinfo : attnodepointer;
convdata : numpointer;
measinfo : measpointer;
nextitem : itempointer

END;
gpinfopointer = * groupinfo;
gpnodepointer = “ groupnode;
groupinfo = RECORD
measused : measpointer;
numdivisions : INTEGER;
grouphead : gpnodepointer

END;
groupnode = RECORD

members : SET OF 1..100;
freq : INTEGER;
nextnode : gpnodepointer

END;

summarystate = (startstate, allrat, intrat, allqnt, rankqnt,
rankqlt, ordqnt, allord, nomqnt, allqlt, novalidstate);

xelstate = (relunknown, related, unrelated);
normalstate = (normunknown, normalOK, assnormal, nonnormal) ;
varstate = (varunknown, eqvarOK, asseqvar, uneqvar) ;

inststate = (instunknown, instOK, insttoolow);
freqstate = (frequnknown, freqOK, freqtoolow);

datastate = (dataunknown, origOK, convOK, cannotconv);

VAR listheadhead : listheadpointer;

argsummary : summarystate;
argsrel : relstate;
argsnormal : normalstate;
argvar : varstate;

numinst : inststate;
argfreq : freqstate;
controw,
contcolumn : gpinfopointer;

conttotal : INTEGER;

179

dichdata,
qitdata,
qntdata : datastate;
shapwilkcoeff : TEXT;

FUNCTION gOlbbf (

VAR il,

i2 : INTEGER;
VAR a : REAL;
VAR ifail : INTEGER) : REAL; EXTERN;

{ NAG library routine to return F dist probability }

FUNCTION g0lbcf (
VAR x : REAL;

VAR n,

ifail : INTEGER) : REAL; EXTERN;

{ NAG library routine to return Chi square probability }

PROCEDURE displayarg (

VAR ptoitem : itempointer);

BEGIN

WITH ptoitem *

DO WRITE(dsinfo *.ds_name:strlen(dsinfo *.ds_name), '.',

attinfo *.att_name:strlen(attinfo ~.att_name))
END; { proc displayarg }

PROCEDURE displayarglist (

VAR ptolisthead : listheadpointer);

{ display each argument name in the list headed by ptolisthead }

VAR ptoitem : itempointer;

BEGIN

ptoitem := ptolisthead *.itemhead;
WHILE ptoitem <> NIL

DO BEGIN

displayarg(ptoitem) ;
WRITELN;

ptoitem := ptoitem *.nextitem
END

END; { proc displayarglist }

PROCEDURE displayargmeas (

VAR ptolisthead : listheadpointer);

{ display each argument name and the meas used
for each item in the list headed by list head }

VAR ptoitem : itempointer;
arglen : INTEGER;

BEGIN

ptoitem := ptolisthead *.itemhead;
WHILE ptoitem <> NIL
DO WITH ptoitem ~ DO BEGIN

displayarg(ptoitem) ;

180

arglen := strlen(dsinfo*.ds_name) + strlen (attinfo*.att_name) ;

WRITELN(attinfo “.meas_p ~.measname:51-arglen) ;
ptoitem := nextitem

END
END; { proc displayargmeas }

{AAS *ARAN EX ‘Semantic check routines ****<***+s%)

PROCEDURE checkeqdom (
VAR iteml,

item2 : itempointer;
VAR checkOK : BOOLEAN);

{ class level check to see if iteml and item2 have
the same att_type values, assign result to checkOK }

BEGIN

checkOK := iteml *.attinfo *.att_type
= item2 “.attinfo *.att_type

END; { proc checkeqdom }

PROCEDURE checkenttype (

VAR item1,
item2 : itempointer;

VAR checkOK : BOOLEAN);

{ see if iteml and item2 are of similar entity
types, assign result to checkOK }

FUNCTION mostgenent (
ptoent : enodepointer) : word;

BEGIN

WHILE (ptoent *.super_rel = generic)
AND (ptoent *.ent_name <> 'ROOT')

DO ptoent := ptoent *.superpointer;
mostgenent := ptoent “.ent_name

END; { funct mostgenent }

BEGIN { checkenttype }

IF iteml “.dsinfo = item2 *.dsinfo
THEN checkOK := TRUE

ELSE checkOK := mostgenent (iteml *.dsinfo *.ent_type)
= mostgenent (item2 ~.dsinfo *.ent_type)

END; { proc checkenttype }

PROCEDURE checkrelinsts (
VAR dsl,

ds2 : dsnodepointer;
VAR checkOK : BOOLEAN);

{ see if instances in dsl and ds2 are the same,
assign result to checkOK }

TYPE statustype = (nilatt, otheratt, keyatt);
statetype = (checking, diffkey, samekey);

VAR attl, att2 : attnodepointer;
keystate : statetype;

attlstatus, att2status : statustype;

181

FUNCTION attstatus (
VAR ptoatt : attnodepointer

BEGIN

IF ptoatt = NIL

THEN attstatus := nilatt
ELSE IF ptoatt “.att_role =
THEN attstatus := otheratt
ELSE attstatus := keyatt

END; { funct attstatus }

PROCEDURE comparechar (

VAR setl,

set2 charpointer;

VAR instances : INTEGER;

VAR state : statetype);

VAR index : INTEGER;

BEGIN

index := 1;
WHILE (state = checking) AND

DO IF setl “[index] <> set2
THEN state := diffkey
ELSE index := index + 1

END; { proc comparechar }

PROCEDURE comparenum (
VAR setl,

set2 : numpointer;
VAR instances : INTEGER;

VAR state : statetype);

VAR index : INTEGER;

BEGIN

index := 1;
WHILE (state = checking) AND
DO IF setl *{index] <> set2

THEN state := diffkey
ELSE index := index + 1

END; { proc comparenum }

BEGIN { checkrelinsts }
IF dsl = ds2
THEN checkOK TRUE

) : statustype;

non_key

(index <= instances)
“[index]

(index <= instances)
“ [index]

ELSE IF dsl *.instances <> ds2 *.instances
THEN checkOK := FALSE

ELSE BEGIN

attl := dsl “*.attchain;
att2 := ds2 “.attchain;
IF (attl “.att_role <> key)
THEN checkOK := FALSE

ELSE BEGIN

keystate := checking;
WHILE keystate = checking

keyatt) AND (att2status =

OR (att2 *.att_role <> key)

keyatt)

DO BEGIN

attlstatus := attstatus(att1);
att2status := attstatus(att2);
IF (attlstatus =
THEN BEGIN

IF attl “.att_type <> att2 “.att_type

182

THEN keystate := diffkey
ELSE BEGIN

IF attl *.meas_p <> att2 *.meas_p
THEN keystate := diffkey
ELSE BEGIN

CASE attl “~.mode OF
identifier :

comparechar(attl “.char_p, att2 *.char_p,
dsl *.instances, keystate);

numeral :

comparenum(attl “.num_p, att2 *.num_p,
dsl “.instances, keystate)

END;

IF keystate = checking
THEN BEGIN

attl := attl “.next_att;
att2 := att2 *.next_att

END

ELSE IF (attlstatus <> keyatt) AND (att2status <> keyatt)
THEN keystate samekey

ELSE keystate := diffkey

END;
checkOK := keystate = samekey

END
END

END; { proc checkrelinsts }

PROCEDURE checkrelargs (
VAR ptolisthead : listheadpointer) ;

VAR firstitem,
currentitem : itempointer;
checkOK : BOOLEAN;

BEGIN

argsrel := related;
firstitem := ptolisthead *.itemhead;
currentitem := firstitem *.nextitem;
WHILE (currentitem <> NIL) AND (argsrel = related)
DO BEGIN

checkrelinsts(firstitem “.dsinfo, currentitem ~.dsinfo, checkOK);
IF NOT checkOK
THEN argsrel := unrelated
ELSE currentitem := currentitem *.nextitem

END

END; { proc checkrelargs }

PROCEDURE checknumargs (

typeoftestargs : testtype;
VAR numargs : INTEGER;

VAR checkOK : BOOLEAN);

BEGIN

CASE typeoftestargs OF

twosample : checkOK
ksample : checkOK :

END

END; { proc checknumargs }

numargs = 2;
numargs >= 2

183

PROCEDURE checknormalargs (

VAR ptolisthead : listheadpointer) ;

VAR i, j : INTEGER;
ia’) ARRAY [3.-29, 12-15] OF (REAL?
eritw : ARRAY [3..29] OF REAL;

ptoitem : itempointer;
checkOK : BOOLEAN;

PROCEDURE shapwilk (

y : numarray;
VAR n : INTEGER;

VAR checkOK : BOOLEAN);

VAR k, i, minindex : INTEGER;
temp,
ysum,
ysqrsum,
Ssqr,

b,
w : REAL;

BEGIN

checkOK := TRUE;
FOR k := 1 TO n-1

DO BEGIN

minindex := k;
FOR i := k+l TO n

DO IF y[i] < y{minindex]
THEN minindex := i;

IF minindex <> k

THEN BEGIN

temp := y[k];
vik] y [minindex] ;
y(minindex] := temp

END

END;

ysum := 0;
ysqrsum := 0;

FOR i :=1T70n

DO BEGIN

ysum := ysum + y[i];
ysqrsum := ysqrsum + y[i] * y[i]

END;

Ssqr := ysqrsum - ysum * ysum / n;
b= 0
FOR i := 1 T0n DIV 2

DO b := b+ a(n, i] * (y(n-it1] - y[i]);
w := b*b / Ssqr;
checkOK := w >= critw[n]

END; { proc shapwilk }

BEGIN { checknormalargs }
OPEN (shapwilkcoeff, dir + 'SHAPWILKCOEFF.DAT', HISTORY := OLD);

RESET (shapwilkcoeff) ;
FOR i := 3 TO 29

DO FOR j := 1 T0 (itl) DIV 2
DO READ(shapwilkcoeff, a[li,j]):

{ ali,j] contains coefficient a(n-i+l) for j=n }
FOR i := 3 TO 29

DO READ (shapwilkcoeff, critw[i]);

CLOSE (shapwilkcoeff) ;

argsnormal := normalOK;

184

ptoitem := ptolisthead *.itemhead;

WHILE (ptoitem <> NIL) AND (argsnormal <> nonnormal)
DO WITH ptoitem ~*~ DO BEGIN

IF (attinfo *.att_dist <> normaldist)
AND (dsinfo ~.instances < 30)

THEN BEGIN
shapwilk(attinfo *.num_p *, dsinfo *.instances, checkOK) ;
IF NOT checkOK
THEN BEGIN
WRITELN;
REPEAT
READLN;
WRITE('Do you wish to assume that the data in ');
displayarg(ptoitem) ;

WRITELN;

WRITE(' is normally distributed (yes/no/default) : ');
gettoken;

UNTIL token.ttype IN [yestok, notok, deftok];
WRITELN;

CASE token.ttype OF

yestok : argsnormal := assnormal;

notok, deftok : argsnormal nonnormal
END

END
END;

ptoitem := nextitem
END

END; { proc checknormalargs }

PROCEDURE Ftest (

VAR ptolisthead : listheadpointer;
VAR checkOK : BOOLEAN);

VAR ptoitem : itempointer;
vl, v2, icode : INTEGER;
sl, s2, F, critF : REAL;

PROCEDURE calcssqr (
VAR ssqr : REAL;

VAR df : INTEGER);

VAR i : INTEGER;

x, xsqr : REAL;

ptodata : numpointer;

BEGIN

IF ptoitem *.convdata <> NIL
THEN ptodata := ptoitem “*.convdata
ELSE ptodata := ptoitem *.attinfo ~.num_p;

x := 0;
= 0;
ptoitem *.dsinfo *.instances - 1;

FOR i := 1 TO df+1

DO BEGIN

x s= x + ptodata *[i);

xsqr := xsqr + SQR(ptodata *[i])
END;

ssqr := xsqr/df - SQR(x) /((d£+1) *df)
END; { proc calessqr }

BEGIN { Ftest }

ptoitem := ptolisthead *.itemhead;

185

calessqr(sl, vl);
ptoitem := ptoitem *.nextitem;

calcessqr(s2, v2);

icode := 0;
IF 51. > 52
THEN BEGIN

s1/s2;
eritF := g0lbbf(vl, v2, F, icode)

END

ELSE BEGIN

F := s2/si;
eritF := g0lbbf(v2, vl, F, icode)

END;

checkOK := critF >= 0.05

END; { proc Ftest }

PROCEDURE Bartlett (

VAR ptolisthead : listheadpointer;
VAR checkOK : BOOLEAN);

VAR ptoitem : itempointer;
ptodata : numpointer;

i, k, ni, phi, df, icode : INTEGER;
ssqrphi, invphi, philnssqr, x, xsqr, ssqr, avssqr,
A, M, teststat, critchi : REAL;

BEGIN
k := ptolisthead *.no_items;
ssqrphi := 0;
phi s= 0;
invphi := 0;
philnssqr := 0;

ptoitem := ptolisthead *.itemhead;
WHILE ptoitem <> NIL
DO BEGIN

ni := ptoitem *.dsinfo *.instances;
IF ptoitem *.convdata <> NIL
THEN ptodata := ptoitem *.convdata

ELSE ptodata := ptoitem *.attinfo *.num_p;
= 07

xsqr := 0;
FOR i := 1 TO ni

DO BEGIN

x := x + ptodata *[i];
xsqr := xsqr + SQR(ptodata “*[i])

END;
ssqr := xsqr/(ni-1) - SQR(x)/(ni*(ni-1));
ssqrphi := ssqrphi + ssqr*(ni-1);
phi phi + ni - 1;

invphi := invphi + 1/(ni-1);
philnssqr := philnssqr + (ni-1)*LN(ssqr) ;
ptoitem := ptoitem *.nextitem

END;
avssqr := ssqrphi / phi;
M := phi*LN(avssqr) - philnssqr;
A := (invphi - 1/phi) / (3*(k-1));
teststat :=M / (1+A);
df := k-1;
icode := 0;
eritchi := gQlbcf(teststat, df, icode);
checkOK := critchi >= 0.05

END; { proc Bartlett }

186

PROCEDURE Box (

VAR ptolisthead : listheadpointer;
VAR checkOK : BOOLEAN);

VAR ptoitem : itempointer;

ptodata : numpointer;
k, phi, N, ni, i, v, df, icode : INTEGER;

ssqrphi, philnssqr, esqr, equad, x, xsqr, xcub, xquad,
xi, ssqr, avssqr, M, rhosqr, gamma2, teststat : REAL;
eritchi : REAL;

BEGIN

k := ptolisthead *.no_items;
ssqrphi := 0;
phi := 07
philnssqr := 0;
No s= 07

esqr 0;

equad := 0;
ptoitem := ptolisthead *.itemhead;
WHILE ptoitem <> NIL
DO BEGIN
ni ptoitem *.dsinfo *.instances;
IF ptoitem *.convdata <> NIL
THEN ptodata ptoitem *.convdata

ELSE ptodata ptoitem “.attinfo *.num_p;
x 3= 0;
xsqr :
xcub ;
xquad := 0;
FOR. 2 = 01

DO BEGIN

i ptodata *[i];

xsqr := xsqr + SOR(xi);
xcub := xcub + xi*SQR(xi);

xquad xquad + SQR(SQR(xi))
END;

ssqr := xsqr/(ni-1) - SQR(x)/(ni*(ni-1));
ssqrphi := ssqrphi + ssqr*(ni-1);

phi := phi + ni - 1;
philnssgr := philnssqr + (ni-1)*LN(ssqr) ;
N c= N + ni?

esqr + xsqr - SQR(x)/ni;
equad + xquad - 4*xcub*x/ni + 6*xsqr*SQR(x) /SQR(ni)
— 3*SQR(SQR(x))/ (ni*SQR(ni));

ptoitem := ptoitem *.nextitem
END;

avssqr := ssqrphi / phi;
:= phi*LN(avssqr) - philnssqr;

N- k;

rhosqr := k / (v*(N-1));
gamma2 := N*SQR(N) * (((v+2)*equad) /(v*SQR(esqr))-3/N) /

(v* (v+2) * (1+ (N-1) *SQR(rhosqr))-3*N) ;

teststat := M / (1 + gamma2/2);
df re k= Le

icode := 0;
eritchi gOlbcf(teststat, df, icode);
checkOK critchi >= 0.05

END; { proc Box }

187

PROCEDURE checkeqvar (

VAR ptolisthead : listheadpointer);

VAR checkOK : BOOLEAN;

BEGIN
IF ptolisthead ~.no_items = 2
THEN Ftest (ptolisthead, checkOK)

ELSE IF argsnormal = normalOK

THEN Bartlett (ptolisthead, checkOK)

ELSE Box(ptolisthead, checkOK) ;

IF checkOK
THEN argvar := eqvarOK
ELSE BEGIN

WRITELN;

REPEAT
READLN;
WRITELN('Do you wish to assume that the sample");
WRITE(' variances are equal (yes/no/default) :
gettoken;

UNTIL token.ttype IN [yestok, notok, deftok];

WRITELN;

CASE token.ttype OF

yestok 3: argvar := asseqvar;

notok, deftok : argvar := uneqvar

END

END

END; { proc checkeqvar }

PROCEDURE checknige30 (

VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer;

BEGIN

numinst instOK;
ptoitem := ptolisthead *.itemhead;
WHILE (ptoitem <> NIL) AND (numinst = instOK)
DO WITH ptoitem *

DO IF dsinfo *.instances < 30
THEN numinst := insttoolow
ELSE ptoitem nextitem

END; { proc checknige30 }

PROCEDURE addcontnode (
VAR infohead : gpinfopointer;

VAR ptogroup : gpnodepointer);

BEGIN

IF infohead “.grouphead = NIL
THEN BEGIN

NEW(infohead ~.grouphead) ;
ptogroup := infohead *.grouphead

END

ELSE BEGIN

NEW(ptogroup ~.nextnode) ;
ptogroup := ptogroup *.nextnode

END;

ptogroup “.nextnode := NIL
END; { proc addcontnode }

188

PROCEDURE setupcontnodes (

VAR infohead : gpinfopointer;

VAR ptoitem : itempointer);

VAR ptogroup : gpnodepointer;
i: INTEGER;

BEGIN

NEW (infohead) ;
IF ptoitem *.measinfo <> NIL
THEN infohead *.measused
ELSE infohead ~.measused

ptoitem *.measinfo
ptoitem *.attinfo *.meas_p;

infohead “.numdivisions := infohead *.measused *.numofcat;
infohead *.grouphead := NIL;
FOR i := 1 TO infohead *.numdivisions
DO BEGIN

addcontnode(infohead, ptogroup) ;
WITH ptogroup *

DO BEGIN

members :
freq := 0

nextnode := NIL
END

END

END; { proc setupcontnodes }

= (il;

PROCEDURE setcontfreqs (

VAR infohead : gpinfopointer;
VAR ptoitem : itempointer);

VAR ptodata : numpointer;
ptogroup : gpnodepointer;
instances,
i, 3 : INTEGER;

BEGIN

IF ptoitem *.convdata <> NIL

THEN ptodata := ptoitem *.convdata
ELSE ptodata := ptoitem *.attinfo *.num_p;

instances := ptoitem *.dsinfo *.instances;
FOR i := 1 TO instances
DO BEGIN

ptogroup := infohead *.grouphead;
FOR j := 1 TO TRUNC(ptodata “*[i]) - 1

DO ptogroup := ptogroup *.nextnode;
Ptogroup *.freq := ptogroup *.freq + 1

END

END; { proc setcontfreqs }

PROCEDURE formassoccont (

VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer;

BEGIN

ptoitem := ptolisthead *.itemhead;
setupcontnodes(controw, ptoitem) ;
setcontfreqs(controw, ptoitem) ;

ptoitem := ptoitem *.nextitem;

189

setupcontnodes(contcolumn, ptoitem) ;
setcontfreqs(contcolumn, ptoitem);

conttotal := ptoitem *.dsinfo “.instances
END; { proc formassoccont }

PROCEDURE formloccont (
VAR ptolisthead : listheadpointer);

VAR ptorownode,

ptocolumnnode : gpnodepointer;
ptoitem : itempointer;

BEGIN

ptoitem := ptolisthead *.itemhead;
{ set up a row node for each meas category }
setupcontnodes(controw, ptoitem) ;
NEW (contcolumn) ;
contcolumn “.measused NIL;

contcolumn “.numdivisions := ptolisthead *.no_ items;

contcolumn “.grouphead := NIL;
WHILE ptoitem <> NIL

DO BEGIN

{ add new column node for current arg and update

the required row frequencies with its data }
addcontnode(contcolumn, ptocolumnnode) ;
setcontfreqs(controw, ptoitem);
ptocolumnnode *.freq := ptoitem *.dsinfo *.instances;
conttotal := conttotal + ptocolumnnode *.freq;
ptoitem := ptoitem *.nextitem

END

END; { proc formloccont }

FUNCTION efreqOK : BOOLEAN;

VAR belowS,

belowl,
totalcells : INTEGER;
expfreq : REAL;
ptorownode,

ptocolumnnode : gpnodepointer;

BEGIN

belowS
belowl :=

ptorownode := controw “.grouphead;
WHILE ptorownode <> NIL

DO BEGIN

ptocolumnnode := contcolumn *.grouphead;
WHILE ptocolumnnode <> NIL
DO BEGIN

expfreq := ptorownode *.freq * ptocolumnnode *.freq
/ conttotal;

IF expfreq < 5 THEN below5 := below5 + 1;
IF expfreq < 1 THEN belowl := belowl + 1;
Ptocolumnnode := ptocolumnnode *.nextnode

END;

Pptorownode := ptorownode *.nextnode

END;

totalcells := controw “.numdivisions * contcolumn “.numdivisions;
efreqOK := (belowS/totalcells < 0.2) AND (belowl = 0)

END; { funct efreqOK }

0
0

190

PROCEDURE findminfreq (

VAR infohead,

mininfo : gpinfopointer;
VAR minfreq,

minindex : INTEGER);

VAR ptogroup : gpnodepointer;
index : INTEGER;

BEGIN

IF (infohead *.measused <> NIL) AND (infohead *.numdivisions > 2)
THEN BEGIN

ptogroup := infohead ~.grouphead;
index := 1;
WHILE ptogroup <> NIL

DO WITH ptogroup * DO BEGIN

IF ((freq = minfreq) AND

(infohead *.numdivisions > mininfo *.numdivisions))
OR (freq < minfreq)

THEN BEGIN

mininfo := infohead;
minfreq freq;
minindex := index

END;

ptogroup := nextnode;
index := index + 1

END

END

END; { proc findminfreq }

PROCEDURE combgroups (

VAR infohead : gpinfopointer;
VAR toindex,

fromindex : INTEGER);

VAR ptogroup1,

ptogroup2,

ptogroup3 : gpnodepointer;
i: INTEGER;

BEGIN

ptogroupl := infohead *.grouphead;
FOR i := 2 TO toindex
DO ptogroupl := ptogroupl *.nextnode;

ptogroup2 := ptogroupl;
FOR i := toindex+l TO fromindex-1
DO ptogroup2 := ptogroup2 *.nextnode;

ptogroup3 := ptogroup2 “*.nextnode;
{ ptogroupl points to group at toindex,
ptogroup2 points to group before fromindex,
ptogroup3 points to group at fromindex }

infohead *.numdivisions := infohead *.numdivisions - 1;
WITH ptogroupl ~*
DO BEGIN

members := members + ptogroup3 *.members;
freq := freq + ptogroup3 *.freq

END;

ptogroup2 *.nextnode := ptogroup3 *.nextnode;
DISPOSE (ptogroup3)

END; { proc combgroups }

191

PROCEDURE trytocombgroups (
VAR datacomb : BOOLEAN);

VAR minfreq, i, j, numcat,

numonline,
minindex,

toindex : INTEGER;

mininfo : gpinfopointer;
Ptogroup gpnodepointer;
ptomeas : measpointer;

BEGIN
minfreq := MAXINT;

findminfreq(controw, mininfo, minfreq, minindex) ;
findminfreq(contcolumn, mininfo, minfreq, minindex) ;
IF minfreq = maxint
THEN argfreq freqtoolow { no possibility of combining groups }
ELSE BEGIN

ptomeas := mininfo *.measused;
IF NOT datacomb
THEN BEGIN

WRITELN;

WRITELN('Frequencies are low, need to combine categories');
WRITELN('for a qualitative test to be used')

END;
WRITELN;

WRITELN('Categories in ',
ptomeas “.measname:strlen(ptomeas “.measname),

' have currently been grouped as follows :-');
WRITELN('Group Members', 'Freq':49);

a cel

ptogroup := mininfo *.grouphead;
numcat := ptomeas *.numofcat;

WHILE ptogroup <> NIL

DO WITH ptogroup * DO BEGIN

WRITE (i:4,' ');

numonline := 0;
FOR j := 1 TO numcat
DO IF j IN members
THEN BEGIN

IF numonline = 3
THEN BEGIN

WRITELN;

WRITE (' ny:

numonline := 0
END;

CASE ptomeas “.cattype OF

identifier : WRITE(charcatvalue(ptomeas, 4) :18);
numeral : WRITE (numcatvalue (ptomeas, 3) :9:2)

END;
numonline := numonline + 1

END;

WRITELN (freq:58-numonline*18) ;

A Ra stor;
ptogroup := nextnode

END;

WRITE ('Need to combine those in group',minindex:3) ;
IF ptomeas “.ordtype = unordered
THEN WRITELN(' with another group')

ELSE WRITELN(' with an adjacent group');
toindex := 0;

192

REPEAT

READLN;
WRITE('Enter group number to combine with (or NONE) : ');
gettoken;
CASE token.ttype OF

nonetok :
BEGIN

{ user indicates that categories can be combined no more }

argfreq freqtoolow;
dichdata cannotconv

END;
numeral :
BEGIN

IF (TRUNC(token.tnum) <> minindex) AND

(TRUNC (token.tnum) IN [1..mininfo *.numdivisions])
THEN BEGIN

toindex := TRUNC(token.tnum) ;
IF ptomeas “.ordtype = ordered
THEN IF NOT (toindex IN [minindex-1, minindex+1])

THEN toindex := 0
END;

IF toindex = 0
THEN WRITELN('Error, invalid group number entered')

END;

THERWISE WRITELN('Error, invalid command')

END;

UNTIL (token.ttype = nonetok) OR (toindex <> 0);
WRITELN;

IF argfreq <> freqtoolow
THEN BEGIN

datacomb := TRUE;
IF minindex < toindex
THEN BEGIN

i := minindex;
minindex toindex;
toindex i

END;

IF controw *.measused = ptomeas

THEN combgroups(controw, toindex, minindex) ;
IF contcolumn “.measused = ptomeas

THEN combgroups(contcolumn, toindex, minindex)
END

END

END; { proc trytocombgroups }

PROCEDURE regroupdata (
VAR ptoitem : itempointer;
VAR infohead : gpinfopointer);

PROCEDURE regroup (
VAR fromds,

tods : numpointer;
VAR noitems : INTEGER);

VAR i,

index : INTEGER;

ptogroup : gpnodepointer;

BEGIN

FOR i := 1 TO noitems
DO BEGIN

193

ptogroup := infohead *.grouphead;
index := 1;

WHILE NOT(TRUNC(fromds *[i]) IN ptogroup *.members)

DO BEGIN

ptogroup ptogroup “*.nextnode;

index := index + 1
END;

tods “[i] := index
END

END; { proc regroup }

BEGIN { regroupdata }

WITH ptoitem *
DO BEGIN

IF convdata = NIL

THEN BEGIN

NEW (convdata) ;
regroup(attinfo “.num_p, convdata, dsinfo *.instances)

END

ELSE regroup(convdata, convdata, dsinfo
END

END; { proc regroupdata }

- instances)

PROCEDURE combassoccat (

VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer;

BEGIN

ptoitem := ptolisthead *.itemhead;
IF controw “.numdivisions <> controw *.measused *.numofcat
THEN regroupdata(ptoitem, controw) ;

ptoitem := ptoitem *.nextitem;
IF contcolumn *.numdivisions <> contcolumn ~.measused *.numofcat
THEN regroupdata(ptoitem, contcolumn)

END; { proc combassoccat }

PROCEDURE combloccat (

VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer;

BEGIN

ptoitem := ptolisthead *.itemhead;
WHILE ptoitem <> NIL
DO BEGIN

regroupdata(ptoitem, controw);

ptoitem := ptoitem *.nextitem
END

END; { proc combloccat }

PROCEDURE checkchifreq (
VAR ptolisthead : listheadpointer;

testclass : classtype);

VAR datacomb : BOOLEAN;

BEGIN

{ form contingency table }
IF testclass = association

194

THEN formassoccont (ptolisthead)
ELSE formloccont (ptolisthead) ;

datacomb := FALSE;
REPEAT

IF efreqOK

THEN argfreq freqOK

ELSE trytocombgroups (datacomb) ;
UNTIL argfreq <> frequnknown;
IF (argfreq = freqOK) AND datacomb
THEN IF testclass = association

THEN combassoccat (ptolisthead)
ELSE combloccat (ptolisthead)

END; { proc checkchifreq }

PROCEDURE performsummary (

VAR ptolisthead : listheadpointer);

{ summarise data levels of arguments
in list headed by ptolisthead }

VAR ptoitem : itempointer;

ptoatt : attnodepointer;

BEGIN

ptoitem := ptolisthead *.itemhead;

WHILE (ptoitem <> NIL) AND (argsummary <> novalidstate)
DO BEGIN

ptoatt := ptoitem *.attinfo;
IF ptoatt *.datalevel = ratio
THEN CASE argsummary OF

Startstate : argsummary := allrat;

allord : argsummary := ordqnt;

allqlt : argsummary := nomqnt;
OTHERWISE

END

ELSE IF ptoatt *.datalevel = interval

THEN CASE argsummary OF

startstate, allrat : argsummary := intrat;
allord : argsummary := ordqnt;
allqlt : argsummary := nomqnt;
OTHERWISE

END

ELSE IF ptoatt *.datalevel = rank

THEN CASE argsummary OF

startstate..allqnt : argsummary := rankqnt;
ordqnt, allord 3: argsummary := rankqlt;
nomqnt, allqlt : argsummary := novalidstate;
OTHERWISE

END

ELSE IF ptoatt *.meas_p *.meas_type = quantmeas

{ ordinal quantitative }
THEN CASE argsummary OF

startstate..intrat : argsummary := allqnt;
allord : argsummary := ordqnt;
allqlt 2? argsummary := nomqnt;

OTHERWISE

END
ELSE IF ptoatt *~.meas_p *.ordtype = ordered

{ ordinal qualitative }
THEN CASE argsummary OF

startstate : argsummary := allord;
allrat..allqnt argsummary := ordqnt;

195

rankqnt : argsummary

OTHERWISE

END

ELSE IF ptoatt “.meas_p “.settype = closedset

{ nominal closed set }
THEN CASE argsummary OF

rankqlt;

startstate, allord : argsummary := allqlt;

allrat..allqnt, ordqnt : argsummary nomqnt;
rankqnt, rankqlt : argsummary := novalidstate;
OTHERWISE

END

ELSE { nominal open set } argsummary := novalidstate;
ptoitem ptoitem *.nextitem

END

END; { proc performsummary }

{*****x**** converting data for test routines **********}

PROCEDURE convertdata (

ptoitem : itempointer;
VAR ptoreqmeas : measpointer;
VAR stateofdata : datastate);

{ check that arg in ptoitem is measured using reqmeas,
if not see if the data can be converted,
set stateofdata to cannotconv if conversion not possible }

VAR argmeas : word;

convreq : BOOLEAN;

ptoconv : convpointer;
i: INTEGER;

BEGIN

argmeas := ptoitem “.attinfo *~.meas_p ~.measname;
convreq := argmeas <> ptoreqmeas “.measname;
IF convreq

THEN BEGIN

convsearch(conv_root, ptoitem*.attinfo*.meas_p*.measname
+ ptoreqmeas*.measname, ptoconv) ;

IF ptoconv = NIL
THEN getconvinfo(ptoitem*.attinfo*.meas_p, ptoreqmeas, ptoconv);

IF ptoconv = NIL

THEN stateofdata := cannotconv
END;

IF (stateofdata <> cannotconv) AND (ptoitem *.nextitem <> NIL)
THEN convertdata(ptoitem “.nextitem, ptoreqmeas, stateofdata);

IF stateofdata <> cannotconv THEN
IF convreq

THEN BEGIN

IF ptoitem *.convdata = NIL
THEN NEW(ptoitem *.convdata) ;

ptoitem “.measinfo := ptoreqmeas;

performconv(ptoconv, ptoitem *. attinfo “.num_p “*,

ptoitem *.convdata *, ptoitem *.dsinfo *.instances)

END
END; { proc convertdata }

PROCEDURE checksamemeas (
VAR ptolisthead : listheadpointer;

measspec : sortofmeas;

196

VAR stateofdata : datastate);

{ see if all data measured using same suitable meas scheme,
if not ask for scheme to use and check conversions possible,
set stateofdata to appropriate value }

VAR ptoitem : itempointer;

ptomeas : measpointer;
meastouse : word;

PROCEDURE checkconv;

BEGIN

Stateofdata := convOK;
convertdata(ptolisthead *.itemhead, ptomeas, stateofdata);
IF stateofdata = cannotconv
THEN stateofdata := dataunknown

END; { proc checkconv }

BEGIN { checksamemeas }
ptoitem := ptolisthead *.itemhead;

ptomeas := ptoitem *.attinfo *.meas_p;
REPEAT
ptoitem := ptoitem *.nextitem;
IF ptomeas <> ptoitem ~.attinfo “.meas_p
THEN ptomeas := NIL;

UNTIL (ptoitem “.nextitem = NIL) OR (ptomeas = NIL);
IF ptomeas <> NIL
THEN IF meastypeOK(ptomeas, measspec)
THEN stateofdata := origOK;

IF stateofdata = dataunknown
THEN BEGIN

WRITELN;

WRITELN('Each argument needs to be measured with the same');
CASE measspec OF
quant :

WRITELN(' quantitative measurement scheme') ;
ordqual :

WRITELN(' ordered qualitative measurement scheme') ;
unordqual :

WRITELN(' unordered qualitative measurement scheme’) ;
orddich 3

WRITELN(' ordered dichotomous measurement scheme') ;
unorddich :

WRITELN(' unordered dichotomous measurement scheme')
END; :
REPEAT

READLN;

WRITE('Enter measurement scheme to use (or NONE) : ');
gettoken;

WRITELN;

CASE token.ttype OF
nonetok : stateofdata := cannotconv;
showargmeas : displayargmeas(ptolisthead) ;
showcandmeas : displaycandmeas (measspec) ;

identifier :
BEGIN
meastouse := token.tchars;
meassearch(meas_root, meastouse, ptomeas) ;

IF ptomeas = NIL

THEN BEGIN

IF wantstodecmeas
THEN BEGIN

197

IF measspec = quant

THEN getquantinfo(meastouse, ptomeas)
ELSE getqualinfo(meastouse, measspec, ptomeas);

checkconv
END

END

ELSE IF ptomeas <> NIL

THEN IF meastypeOK(ptomeas, measspec)

THEN checkconv
ELSE WRITELN('Error, measurement scheme entered is',

" not of an appropriate type')
END;

OTHERWISE WRITELN('Error, invalid command')

END;

UNTIL stateofdata <> dataunknown
END

END; { proc checksamemeas }

PROCEDURE disposegenqlt (

VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer;

BEGIN

ptoitem := ptolisthead *.itemhead;
WHILE ptoitem <> NIL
DO WITH ptoitem * DO BEGIN
IF measinfo <> NIL

THEN IF measinfo *.meas_type = qualmeas

THEN BEGIN

DISPOSE (convdata) ;
convdata := NIL;
measinfo := NIL

END;
ptoitem := nextitem

END;
qitdata := dataunknown

END; { proc disposegenqlt }

PROCEDURE categoriseqnt (
VAR ptoitem : itempointer;

VAR stateofdata : datastate);

{ for nomcat, work through args any for any which are quant
find out if the data can be categorised and how }

VAR ptoargmeas,

ptoreqmeas : measpointer;
ptoconv : convpointer;
meastouse : word;

PROCEDURE checkconv;

BEGIN

convsearch(conv_root, ptoargmeas ~.measname +

ptoreqmeas *.measname, ptoconv) ;
IF ptoconv = NIL

THEN getconvinfo(ptoargmeas, ptoreqmeas, ptoconv);
IF ptoconv = NIL
THEN stateofdata := dataunknown
ELSE stateofdata := convOK

198

END; { proc checkconv }

BEGIN { categoriseqnt }

ptoargmeas := ptoitem *.attinfo *.meas_p;
ptoconv NIL;
IF ptoargmeas “.meas type = quantmeas
THEN BEGIN

WRITELN;

WRITE (‘Attribute ');

displayarg(ptoitem) ;
WRITELN(' is measured in ', ptoargmeas *.measname) ;
WRITELN('and needs to be converted to an ordered’,

* qualitative scheme') ;

REPEAT

READLN;

WRITE('Enter measurement scheme to use (or NONE) : ');
gettoken;

CASE token.ttype OF

nonetok : stateofdata := cannotconv;

Showcandmeas : displaycandmeas (ordqual) ;
identifier :
BEGIN
meastouse := token.tchars;
meassearch(meas_root, meastouse, ptoreqmeas) ;

IF ptoreqmeas = NIL

THEN BEGIN

IF wantstodecmeas
THEN BEGIN

getqualinfo(meastouse, ordqual, ptoreqmeas) ;
checkconv

END

END

ELSE IF ptoreqmeas <> NIL

THEN IF meastypeOK(ptoreqmeas, ordqual)
THEN checkconv
ELSE WRITELN('Error, measurement scheme entered',

" is not of an appropriate type')
END;

OTHERWISE WRITELN('Error, invalid command')

END;

UNTIL stateofdata <> dataunknown;
WRITELN

END;

IF (stateofdata <> cannotconv) AND (ptoitem *.nextitem <> NIL)
THEN categoriseqnt (ptoitem *.nextitem, stateofdata);

IF (ptoconv <> NIL) AND (stateofdata <> cannotconv)
THEN BEGIN

NEW(ptoitem *.convdata) ;
ptoitem *.measinfo := ptoreqmeas;

performconv(ptoconv, ptoitem *.attinfo “,num_p “,

ptoitem *.convdata ~, ptoitem *.dsinfo *.instances)
END

END; { proc categoriseqnt }

PROCEDURE dichqltdata (

VAR ptolisthead : listheadpointer);

VAR ptomeas : measpointer;

BEGIN

WITH ptolisthead *.itemhead *
DO IF measinfo <> NIL

199

THEN ptomeas := measinfo

ELSE ptomeas := attinfo ~.meas_p;
IF meastypeOK(ptomeas, dich)
THEN dichdata qltdata
ELSE BEGIN

combloccat (ptolisthead) ;
dichdata := convOK

END

END; { proc dichaltdata }

{***x*eeee* test level routines ****x*x**e}

PROCEDURE validatetest (

VAR candtest : valid tests;
ptocheck : checkpointer;

VAR ptolisthead : listheadpointer;
VAR ptofailcheck : checkpointer);

apply checks headed by ptocheck to arguments in list
ptolisthead and set ptofailcheck to any checknode
where a requirement cannot be met }

VAR testOK : BOOLEAN;

BEGIN

testOK := TRUE;
WHILE (ptocheck <> NIL) AND testOK

DO BEGIN

CASE ptocheck “.semcheck OF
twosample :

checknumargs (twosample, ptolisthead *.no_items, testOK);
relatedinst :
BEGIN

IF argsrel = relunknown

THEN checkrelargs (ptolisthead) ;
testOK := argsrel = related

END;

normal :

BEGIN

IF argsnormal = normunknown

THEN checknormalargs (ptolisthead) ;
testOK := argsnormal IN [normalOK, assnormal]

END;
eqvar :
BEGIN
IF argvar = varunknown

THEN checkeqvar (ptolisthead) ;
testOK := argvar IN [eqvarOK, asseqvar]

END;

nige30 :
BEGIN

IF numinst = instunknown
THEN checknige30 (ptolisthead) ;

testOK := numinst = instOK
END;

chifreq :

BEGIN

IF argfreq = frequnknown
THEN BEGIN

IF candtest IN [pearson..coeff_of_cont]
THEN checkchifreq(ptolisthead, association)

200

ELSE checkchifreq(ptolisthead, location)
END;

testOK := argfreq = freqOK

END;

eqratqnt..eqdichcat
BEGIN

IF argsummary = startstate
THEN performsummary (ptolisthead) ;

CASE ptocheck “~.semcheck OF
egratqnt

IF argsummary = allrat
THEN BEGIN

IF qntdata = dataunknown

THEN checksamemeas(ptolisthead, quant, qntdata);
IF qntdata = cannotconv
THEN testOK := FALSE

ELSE IF qltdata = convOK
THEN disposegenqlt (ptolisthead)

END

ELSE testOK := FALSE;

ratqnt :

IF argsummary <> allrat
THEN testOK := FALSE

ELSE IF qltdata = convOK

THEN disposegenqlt (ptolisthead) ;
eqintqnt :

IF argsummary IN [allrat, intrat]
THEN BEGIN

IF qntdata = dataunknown

THEN checksamemeas(ptolisthead, quant, qntdata);
IF qntdata = cannotconv
THEN testOK := FALSE

ELSE IF qltdata = convOK

THEN disposegenqlt (ptolisthead)
END

ELSE testOK := FALSE;

intqnt :

IF NOT (argsummary IN [allrat, intrat])
THEN testOK := FALSE

ELSE IF qltdata = convOK

THEN disposegenqlt (ptolisthead) ;
ranked :

IF NOT (argsummary IN [allrat..rankqnt])
THEN testOK := FALSE;

eqordqnt :

IF argsummary IN [allrat..allqnt]
THEN BEGIN

IF qntdata = dataunknown
THEN checksamemeas(ptolisthead, quant, qntdata);

IF qntdata = cannotconv

THEN testOK := FALSE

ELSE IF qltdata = convOK

THEN disposegenqlt (ptolisthead)
END

ELSE testOK := FALSE;

egordqlt :
IF argsummary IN [allrat..allqnt, ordqnt, allord]
THEN BEGIN

IF (argsummary IN [allrat..allqnt])

AND (qntdata = dataunknown)
THEN BEGIN

checksamemeas(ptolisthead, quant, qntdata);
IF (qntdata <> cannotconv) AND (qltdata = convOK)

201

THEN disposegenqlt (ptolisthead)
END;

IF NOT (qntdata IN [origOK, convOK])
AND (qltdata = dataunknown)

THEN BEGIN

checksamemeas (ptolisthead, ordqual, qltdata);
IF qltdata = cannotconv THEN dichdata := cannotconv

END;

testOK := (qntdata IN [origOK, convOK]) OR

(qltdata IN [origOK, convOK])
END

ELSE testOK := FALSE;

ordqlt

IF NOT (argsummary IN [allrat..allord])
THEN testOK := FALSE

ELSE IF qltdata = convOK

THEN disposegenqlt (ptolisthead) ;
eqnomcat :
BEGIN

IF (argsummary IN [allrat..allqnt, ordqnt..allord])
AND (qltdata = dataunknown)

THEN BEGIN

checksamemeas (ptolisthead, ordqual, qltdata);
IF qltdata = cannotconv THEN dichdata := cannotconv

END

ELSE IF (argsummary = allqlt) AND (qltdata = dataunknown)
THEN BEGIN

checksamemeas (ptolisthead, unordqual, qltdata);
IF qltdata = cannotconv THEN dichdata := cannotconv

END;

testOK := qltdata IN [origOK, convOK]

END;

nomcat :

IF (argsummary IN [rankqnt, rankqlt, novalidstate])
OR (qltdata = cannotconv)

THEN testOK := FALSE

ELSE IF (argsummary IN [allrat..allqnt, ordqnt, nomqnt])
AND (qlitdata = dataunknown)

THEN BEGIN

categoriseqnt (ptolisthead *.itemhead, qltdata) ;
IF qltdata = cannotconv

THEN BEGIN

testOK := FALSE;

dichdata cannotconv
END

END;

eqdichcat :
BEGIN

IF NOT (argsummary IN [rankqnt, rankqlt, novalidstate])
AND (dichdata = dataunknown)

THEN BEGIN

IF qltdata IN [origOK, convOK]
THEN dichqltdata (ptolisthead)
ELSE IF (argsummary IN [allrat..allqnt, ordqnt..allord])
THEN BEGIN

checksamemeas (ptolisthead, orddich, dichdata) ;
IF dichdata = cannotconv
THEN qltdata := cannotconv

END

ELSE checksamemeas (ptolisthead, unorddich, dichdata)
END;

testOK := dichdata IN [origOK, convOK]
END

202

END

END

END;

IF testOK THEN ptocheck := ptocheck *.nextcheck
END;

IF testOK

THEN ptofailcheck
ELSE ptofailcheck := ptocheck

END; { proc validatetest }

PROCEDURE showtestreq (

VAR testtoapply : valid tests;
ptocheck : checkpointer);

BEGIN

WRITELN;

WRITELN('The requirements for ',testtoapply:16,
‘are as follows :-');

WRITELN;

WHILE ptocheck <> NIL
DO WITH ptocheck ~ DO BEGIN

CASE semcheck OF
twosample :

WRITELN(' The test is used in a two sample situation');
relatedinst :
WRITELN(' The instances of each sample should be related');

normal :
WRITELN(' The data in each sample should be normally',

' distributed') ;
eqvar :
WRITELN(' The variance of each sample should be equal');

nige30 :
WRITELN(' Each sample should be measured for at least 30',

' instances");
chifreq :
BEGIN

WRITELN(' The frequencies for each of the measurement');
WRITELN(' scheme categories should not be too small')

END;

eqdichcat :
WRITELN(' The data should be formed into a dichotomy',

' in the same way');
nomcat :
BEGIN

WRITELN(' The data should be measured using closed');
WRITELN(' qualitative measurement schemes')
END;

eqnomeat :
BEGIN

WRITELN(' The data should be measured using the same');
WRITELN(' closed qualitative measurement scheme')
END;

ordqlt :
WRITELN(' The data should be measured on at least an',

" ordinal scale');
eqordqlt :

BEGIN

WRITELN(' The data should be measured on at least an');
WRITELN (' ordinal scale using the same measurement scheme')
END;

ranked :
WRITELN(' The data should be quantitative or rank');

203

eqordqnt :

BEGIN
WRITELN(' The data should be quantitative and measured") ;
WRITELN(' using the same measurement scheme')

END;

intqnt :

WRITELN(' The data should be measured on at least an',
' interval scale");

eqintqnt :
BEGIN

WRITELN(' The data should be measured on at least an');
WRITELN(' interval scale using the same measurement',

" scheme')
END;

ratqnt :
WRITELN(' The data should be measured on a ratio scale');

eqratqnt :
BEGIN
WRITELN(' The data should be measured on a ratio scale');
WRITELN(' using the same measurement scheme')
END

END;

ptocheck := nextcheck

END

END; { proc showtestreq }

PROCEDURE expfailedcheck (
VAR semcheck : validreqs);

BEGIN
WRITELN;

WRITE('The requested test was not acceptable because ');
CASE semcheck OF
twosample :
BEGIN

WRITELN('more than two');
WRITELN(' arguments have been given')

END;
relatedinst :
BEGIN

WRITELN('the arguments') ;
WRITELN(' are not related')

END;

normal :
BEGIN

WRITELN('normality');
WRITELN(' cannot be assumed for each sample')

END;

eqvar :

BEGIN

WRITELN('equality of');
WRITELN(' variances cannot be assumed')

END;

nige30 :
BEGIN
WRITELN('each argument ') ;

WRITELN(' does not have 30 or more instances')
END;

chifreq :
BEGIN

WRITELN('the frequencies') ;
WRITELN(' of the measurement scheme categories are too small')

204

END;

eqdichcat :
IF dichdata = cannotconv
THEN BEGIN
WRITELN;

WRITELN('
END

ELSE BEGIN

WRITELN;
WRITELN('

END;
momeat, eqnomcat :

IF qltdata = cannotconv
THEN BEGIN

WRITELN;

WRITELN('

END

ELSE BEGIN

WRITELN;

WRITELN(*

END;

ordqlt, ranked, intqnt, ratqnt :
BEGIN

WRITELN;

WRITELN('

END;

egordqlt :

IF qltdata = cannotconv
THEN BEGIN

WRITELN;
WRITELN('

END

ELSE BEGIN

WRITELN;

WRITELN('

END;
eqordgqnt, eqintqnt, eqratqnt :
IF qntdata = cannotconv
THEN BEGIN

WRITELN;

WRITELN('
END

ELSE BEGIN

WRITELN;

WRITELN('

END

END

END; { proc expfailedcheck }

the data cannot be converted into a suitable form')

the level of measurement of the data is unsuitable')

the quantitative data cannot be categorised')

the level of measurement of the data is unsuitable')

the level of measurement of the data is unsuitable')

the data cannot be converted into a suitable form')

the level of measurement of the data is unsuitable')

the data cannot be converted into a suitable form')

the level of measurement of the data is unsuitable')

PROCEDURE displaycombcats;

PROCEDURE showgroups (

VAR infohead : gpinfopointer);

VAR i, j, numonline : INTEGER;
ptogroup : gpnodepointer;

BEGIN

WITH infohead *
DO BEGIN

' WRITELN('Categories in ',
measused *.measname:strlen(measused *.measname),

205

" have been grouped as follows :-');
Lee el

ptogroup grouphead;
WHILE ptogroup <> NIL
DO WITH ptogroup * DO BEGIN

WRITE (* Coe

numonline := 0;
FOR j 1 TO measused “.numofcat
DO IF j IN members
THEN BEGIN

IF numonline = 3
THEN BEGIN

WRITELN;

WRITE (' wie,

numonline := 0
END;

CASE measused “.cattype OF

identifier : WRITE(charcatvalue(measused, j):18);

numeral : WRITE (numcatvalue(measused, j):
END;

numonline := numonline + 1
END;

WRITELN(') ');

Lore i + 1;
ptogroup := nextnode

END

END;

WRITELN

END; { proc showgroups }

BEGIN { displaycombcats }

IF controw “.numdivisions <> controw *.measused *.numofcat
THEN showgroups (controw) ;

IF contcolumn *.measused <> NIL

THEN IF (contcolumn “.measused <> controw ~.measused) AND
(contcolumn *.numdivisions <>
contcolumn “.measused *.numofcat)

THEN showgroups (contcolumn)

END; { proc displaycombcats }

PROCEDURE displayconvargs (

VAR ptolisthead : listheadpointer);

VAR ptoitem : itempointer;

BEGIN

ptoitem := ptolisthead *.itemhead;
WHILE ptoitem <> NIL

DO WITH ptoitem * DO BEGIN

IF measinfo <> NIL
THEN BEGIN

displayarg(ptoitem) ;
WRITELN(' converted from ', attinfo “,.meas_p “.measname

:strlen(attinfo ~.meas_p *.measname),
"to ', measinfo *.measname)

END;

ptoitem := nextitem
END;

WRITELN
END; { proc displayconvargs }

206

PROCEDURE reviewtestchecks (

VAR ptolisthead : listheadpointer;
ptocheck : checkpointer);

BEGIN

WHILE ptocheck <> NIL

DO WITH ptocheck ~ DO BEGIN

CASE semcheck OF

normal :
IF argsnormal = assnormal
THEN BEGIN

WRITELN('Warning, care should be taken when interpreting');
WRITELN(' the results since the test assumes that the');
WRITELN(' data is normally distributed');
WRITELN

END;

eqvar :
IF argvar = asseqvar
THEN BEGIN
WRITELN('Warning, care should be taken when interpreting');
WRITELN(' the results since the test assumes that the');
WRITELN(' sample variances are equal');
WRITELN

END;

chifreq : displaycombcats;
eqratqnt, eqintqnt, eqordqnt, eqordqlt :

IF explain AND ((qntdata = convOK) OR (qltdata = convOK))
THEN BEGIN

WRITELN('The data has been converted to the same ',
‘measurement scheme') ;

displayconvargs (ptolisthead)
END;

eqnomeat :

IF explain AND (qltdata = convOK)
THEN BEGIN

WRITELN('The data has been converted to the same ',

"qualitative measurement scheme') ;
displayconvargs (ptolisthead)

END;
nomeat :

IF explain AND (qltdata = convOK)
THEN BEGIN

WRITELN('All quantitative data has been converted ',
"to qualitative data');

displayconvargs (ptolisthead)
END;

eqdichcat :
IF explain AND (dichdata = convOK)
THEN BEGIN

IF qltdata = convOK
THEN BEGIN

WRITELN('The data has been converted to the same ',
"qualitative measurement scheme') ;

displayconvargs (ptolisthead) ;
displaycombcats

END

ELSE IF qltdata = origOK
THEN displaycombcats

ELSE BEGIN

WRITELN('The data had been converted to the same ',
‘dichotomous measurement scheme') ;

displayconvargs (ptolisthead)
END

207

END

END;

ptocheck := nextcheck

END
END; { proc reviewtestchecks }

PROCEDURE dispesecontinfo (

VAR infohead : gpinfopointer);

VAR ptogroup : gpnodepointer;

BEGIN

WHILE infohead *.grouphead <> NIL
DO BEGIN
ptogroup := infohead *.grouphead;
infohead *.grouphead := ptogroup *.nextnode;
DISPOSE (ptogroup)

END;

DISPOSE (infohead)
END; { disposecontinfo }

PROCEDURE checktestreq (
VAR testclass : classtype;
VAR testchecks : ARRAY[firsttest..lasttest:statcomms]

OF checkpointer;
VAR usertest : valid tests);

VAR testclassstr : textmessage;

ptolisthead : listheadpointer;
testtoapply : valid_tests;

state : (searching, testfound, searchfailed) ;
showargs : BOOLEAN;
ptofailcheck : checkpointer;

BEGIN
CASE testclass OF

association : testclassstr := 'measure of association
location : testclassstr := 'test of location '

END;
showargs := listheadhead *.nexthead <> NIL;
ptolisthead := listheadhead;
WHILE ptolisthead <> NIL

DO BEGIN

IF showargs

THEN BEGIN

WRITELN;

WRITELN('Considering the following arguments :
WRITELN;

displayarglist (ptolisthead)
END;

{ initialise variables for current list }
testtoapply usertest;

argsummary := startstate;

argsrel := relunknown;
argsnormal := normunknown;
argvar := varunknown;

numinst := instunknown;
argfreq := frequnknown;
controw := NIL;
contcolumn NIL;

conttotal 0;

208

qntdata := dataunknown;
qitdata dataunknown;
dichdata dataunknown;

state searching;

IF testtoapply <> nulltest
THEN BEGIN

{ see if user specified test can be applied }
validatetest (testtoapply, testchecks[testtoapply],

ptolisthead, ptofailcheck);
IF ptofailcheck = NIL
THEN state := testfound
ELSE BEGIN

IF explain

THEN BEGIN
showtestreq(testtoapply, testchecks[testtoapply]);
expfailedcheck (ptofailcheck *.semcheck)

END

ELSE BEGIN

WRITELN;

WRITELN('User specified test cannot be applied’)
END;

WRITELN;

REPEAT
READLN;

WRITE('Do you wish to search for a ',

testclassstr, '(yes/no) : ');
gettoken;

UNTIL token.ttype IN [yestok, notok];

WRITELN;

IF token.ttype = notok
THEN state := searchfailed

END

END;

IF state = searching THEN testtoapply := firsttest;
WHILE state = searching { consider next test }

DBO BEGIN

validatetest (testtoapply, testchecks (testtoapply],

ptolisthead, ptofailcheck) ;
IF ptofailcheck = NIL
THEN BEGIN

WRITELN;

WRITELN('Recommended ',testclassstr,'is ',testtoapply:16);
IF explain
THEN showtestreq(testtoapply, testchecks[testtoapply]) ;

WRITELN;

REPEAT

READLN;

WRITE('Do you wish to apply this test (yes/no) : ');
gettoken;

UNTIL token.ttype IN [yestok, notok];
WRITELN;

IF token.ttype = yestok

THEN state testfound
ELSE state := searchfailed

END

ELSE IF testtoapply = lasttest
THEN BEGIN
state := searchfailed;
WRITELN;

WRITELN('End of list reached, cannot get data into a form');
WRITELN('to apply a ',testclassstr)

END
ELSE testtoapply := SUCC(testtoapply)

209

END;

IF state = testfound
THEN BEGIN

WRITELN;

reviewtestchecks (ptolisthead, testchecks [testtoapply]) ;
WRITELN('Call proc to apply ',testtoapply)

END;

IF conttotal <> 0
THEN BEGIN

disposecontinfo(controw) ;
disposecontinfo(contcolumn)

END;

ptolisthead := ptolisthead *.nexthead
END

END; { proc checktestreq }

{****x***** type of test level routines ****x*ekeH}

PROCEDURE removeitem (
VAR itemtoremove : itempointer;

VAR ptolisthead : listheadpointer);

{ removes itemtoremove from the list
of items in ptolisthead }

VAR item : itempointer;

BEGIN

item := ptolisthead *.itemhead;
WHILE item *.nextitem <> itemtoremove
DO item := item *.nextitem;

item *.nextitem := itemtoremove *.nextitem;
itemtoremove *.nextitem := NIL;
ptolisthead *.no_items := ptolisthead ~.no_items - 1

END; { proc removeitem }

PROCEDURE createlist (

VAR itemtomove : itempointer;
VAR currentlisthead,

lastlisthead : listheadpointer);

{ creates a new list head after lastlisthead
and moves itemtomove from currentlisthead
into the new list }

VAR newlisthead : listheadpointer;

BEGIN

removeitem(itemtomove, currentlisthead) ;
NEW (newlisthead) ;
WITH newlisthead *
DO BEGIN

nexthead :=
no_items :=
itemhead :=

END;

lastlisthead *.nexthead := newlisthead;
lastlisthead := newlisthead

END; { proc createlist }

lastlisthead *.nexthead;
1;

itemtomove

210

PROCEDURE addtolist (
VAR itemtomove : itempointer;
VAR oldlisthead,

newlisthead : listheadpointer);

{ moves itemtomove from oldlisthead to newlisthead }

VAR item : itempointer;

BEGIN

removeitem(itemtomove, oldlisthead) ;
item := newlisthead *.itemhead;
WHILE item “.nextitem <> NIL

DO item := item *.nextitem;
item *.nextitem := itemtomove;
newlisthead *.no_items := newlisthead *.no_items + 1

END; { proc addtolist }

PROCEDURE disposeoflist (
VAR headoflists : listheadpointer);

{ dispose of listhead and item nodes in headoflists }

VAR ptolisthead : listheadpointer;
item : itempointer;

BEGIN

WHILE headoflists <> NIL
DO BEGIN

ptolisthead := headoflists;
headoflists := ptolisthead “.nexthead;
WHILE ptolisthead *.itemhead <> NIL
DO BEGIN

item := ptolisthead “.itemhead;

ptolisthead *.itemhead := item *.nextitem;
IF item *.convdata <> NIL

THEN DISPOSE(item ~.convdata) ;
DISPOSE (item)

END;

DISPOSE (ptolisthead)
END

END; { proc disposeoflist }

PROCEDURE checkclassreq (

currentcheck : checkpointer);

{ perform checks for class of tests on given
arguments in listheadhead }

VAR listtocheck,
nextlisthead,
lastlisthead,
reqlisthead : listheadpointer;
itemtocheck,
nextlistitem : itempointer;

state : (listnotfound, samelist, difflist, newlist);
checkOK : BOOLEAN;

BEGIN

WHILE currentcheck <> NIL

DO BEGIN

listtocheck := listheadhead;
WHILE listtocheck <> NIL

DO BEGIN
nextlisthead listtocheck *.nexthead;
lastlisthead listtocheck;

itemtocheck := listtocheck ~.itemhead ~.nextitem;
WHILE itemtocheck <> NIL

DO BEGIN

reqlisthead := listtocheck;
state := listnotfound;
nextlistitem := itemtocheck *.nextitem;
WHILE state = listnotfound
DO BEGIN

CASE currentcheck “.semcheck OF
eqdomains :
checkeqdom(reqlisthead *.itemhead, itemtocheck, checkOK) ;

relatedinst :

checkrelinsts(reqlisthead *.itemhead *.dsinfo,
itemtocheck *.dsinfo, checkOK) ;

simenttype :

checkenttype (reqlisthead *.itemhead,
itemtocheck, checkOK)

END;

IF checkoOK
THEN BEGIN

IF reqlisthead = listtocheck
THEN state samelist
ELSE state difflist

END

ELSE IF reqlisthead = lastlisthead
THEN state := newlist
ELSE reqlisthead := reqlisthead ~.nexthead

END;

IF state = newlist
THEN createlist (itemtocheck, listtocheck, lastlisthead)

ELSE IF state = difflist

THEN addtolist (itemtocheck, listtocheck, reqlisthead);

itemtocheck := nextlistitem
END;

listtocheck := nextlisthead
END;

currentcheck := currentcheck “~.nextcheck
END

END; { proc checkclassreq }

PROCEDURE expclassreqs (
VAR testclassstr : textmessage;

ptocheck : checkpointer);

BEGIN

WRITELN;

WRITELN('The requirement(s) for a ', testclassstr,

‘are as follows :-');
WRITELN;

WHILE ptocheck <> NIL

DO WITH ptocheck “* DO BEGIN

CASE semcheck OF
eqdomains :

WRITELN(' Each sample should be measuring the ',

"same quality or quantity.');
relatedinst :

WRITELN(' The instances of each sample should be related.');
simenttype :
WRITELN(' Each sample should be measured for ',

"the same type of entity.')
END;

ptocheck := nextcheck

END

END; { proc expclassreqs }

PROCEDURE reviewclasschecks (

VAR testclass : classtype;

VAR typeoftestargs : testtype);

{ explain result of performing class checks }

VAR testclassstr : textmessage;

invalidlists,
lastinvalid,
validlists,
lastvalid,

ptolisthead,

nextlisthead : listheadpointer;
nmumargsOK : BOOLEAN;

PROCEDURE addtolist (

VAR head,
last,

current : listheadpointer);

BEGIN

IF head = NIL
THEN head := current
ELSE last *,nexthead := current;

last := current;
last *.nexthead := NIL

END; { proc addtolist }

BEGIN { reviewclasschecks }
CASE testclass OF
association : testclassstr := 'measure of association ';
location : testclassstr := 'test of location '

END;
invalidlists := NIL;
validlists := NIL;
ptolisthead := listheadhead;
WHILE ptolisthead <> NIL
DO BEGIN

nextlisthead := ptolisthead *.nexthead;
checknumargs (typeoftestargs, ptolisthead “.no_items, numargsOK) ;
IF numargsOK

THEN addtolist (validlists, lastvalid, ptolisthead)
ELSE addtolist(invalidlists, lastinvalid, ptolisthead) ;

ptolisthead := nextlisthead
END;

IF validlists = NIL
THEN BEGIN

IF explain
THEN expclassreqs(testclassstr, class_checks[testclass]);

WRITELN;

WRITELN('No ', testclassstr, 'can be applied.')
END

ELSE IF (validlists “.nexthead <> NIL) OR (invalidlists <> NIL)

213

THEN BEGIN

{ more than one valid list or an invalid list,
need to explain situation to user }

IF explain
THEN expclassreqs(testclassstr, class_checks[testclass]) ;

IF invalidlists <> NIL
THEN BEGIN
WRITELN;
WRITELN('Cannot apply a ',testclassstr,

‘to the following argument (s)');

WRITELN;
ptolisthead := invalidlists;
WHILE ptolisthead <> NIL

DO BEGIN

displayarglist (ptolisthead) ;
ptolisthead := ptolisthead *.nexthead

END

END;

WRITELN;

WRITE('Can apply a ', testclassstr);
IF validlists *.nexthead = NIL
THEN WRITELN('to the remaining arguments')
ELSE WRITELN('to each of the following groups');

WRITELN;

ptolisthead := validlists;
WHILE ptolisthead <> NIL
DO BEGIN

displayarglist (ptolisthead) ;
WRITELN;
ptolisthead := ptolisthead *.nexthead

END;

REPEAT

READLN;

WRITE('Do you wish to continue (yes/no) : ');
gettoken;

UNTIL token.ttype IN [yestok, notok];
WRITELN;

IF token.ttype = notok
THEN disposeoflist (validlists)

END;
listheadhead := validlists;
disposeoflist (invalidlists)

{ will apply a testclass to each list in listheadhead
which will be NIL if no tests are to be applied }

END; { proc reviewclasschecks }

{******ee** preliminary and controlling routines ****k***x}

PROCEDURE genitemnode (
VAR head,

current : itempointer;
VAR ptods : dsnodepointer;

VAR ptoatt : attnodepointer);

{ generate itemnode for an argument of a test, add to
list headed by head and set current to point to it }

BEGIN

IF head = NIL
THEN BEGIN

NEW (head) ;

214

current := head
END

ELSE BEGIN

NEW(current “.nextitem) ;
current := current “.nextitem

END;

WITH current “~

DO BEGIN

dsinfo := ptods;
attinfo := ptoatt;
convdata NIL;
measinfo NIL;
nextitem NIL

END

END; { proc genitemnode }

PROCEDURE procstatreq (

testclass : classtype;
testname : valid tests;

typeoftestargs : testtype);

{ process a user request to perform a statistical test:
read in arguments; perform class checks; review result
of class checks; perform any tests }

LABEL endofproc;
VAR dsname,

attname : word;
ptods : dsnodepointer;
ptoatt attnodepointer;
ptoitem : itempointer;
numargsOK : BOOLEAN;

PROCEDURE dealwitherror (
errorstate : errortype;

errorarg : textmessage);

BEGIN

reporterror(errorstate, errorarg);
GOTO endofproc

END; { proc dealwitherror }

BEGIN { procstatreq }

{ initialise listheadhead }
NEW (listheadhead) ;
WITH listheadhead ~
DO BEGIN

nexthead
no_items
itemhead
{ read in arguments }
gettoken;
WHILE token.ttype <> endofline
DO BEGIN

IF token.ttype <> identifier
THEN dealwitherror(invarg, nullname) ;

dsname := token.tchars;
gettoken;

IF token.ttype <> dot
THEN dealwitherror(invarg, nullname) ;

gettoken;

215

IF token.ttype <> identifier

THEN dealwitherror(invarg, nullname) ;

attname := token.tchars;
dstypesearch(ds_root, dsname, ptods);
IF ptods = NIL
THEN dealwitherror(dsmiss, dsname) ;

IF ptods “.attchain = NIL
THEN dealwitherror(noatts, dsname) ;

atttypesearch(ptods “.attchain, attname, ptoatt);
IF ptoatt = NIL
THEN dealwitherror(attmiss, substr(dsname,1,strlen(dsname))

+ '.' + attname) ;
IF ptods *.instances < 3

THEN dealwitherror(insuffinst, dsname) ;
genitemnode(itemhead, ptoitem, ptods, ptoatt);
no_items := no_items + 1;
gettoken

END;

checknumargs(typeoftestargs, no_items, numargsOK) ;
IF NOT numargsOK
THEN IF typeoftestargs = twosample

THEN dealwitherror(invnumarg, '2')
ELSE dealwitherror(invnumarg, '2+')

END;
WRITELN;

checkclassreq(class_checks[testclass]) ;
reviewclasschecks(testclass, typeoftestargs) ;
IF listheadhead <> NIL
THEN CASE testclass OF

association : checktestreq(testclass, assoc_checks,
testname) ;

location : checktestreq(testclass, loc_checks, testname)

END;

endofproc: ;

disposeoflist (listheadhead)
END; { proc procstatreq }

{ file check_routines.pas }

216

B.4 Keyworddir.dat

ADDATT

ADDDS
ADDENT

ADDINST
ADDMEAS
SHOWARGMEAS
SHOWATT
SHOWCANDMEAS
SHOWDSDIR
SHOWENTDIR
SHOWINST
SHOWMEAS
SHOWMEASDIR
EXPLAIN
NOEXPLAIN
QUIT

ASSOCIATION
LOCATION
PEARSON
SPEARMAN
KENDALL

TAU_C
CRAMERS_V
COEFF_OF_CONT
NORMAL_TEST
T_PAIRED
RANDOMISED_BLOCK
T_COMMON
T_SEPARATE
ONE_WAY_AOV
WILCOXON
FRIEDMAN_AOV
MANN_WHITNEY
KRUSKAL_WALLIS
SIGN_TEST
MCNEMAR_TEST
COCHRAN_Q
CHI_SQUARED
FISHER_EXACT
GENERIC
NONGENERIC
OPEN
CLOSED
YES
NO
DEFAULT
TYPE
LEVEL
MEAS
NORMAL
QUAL
QUANT
NOMINAL

ORDINAL

RANK

INTERVAL
RATIO
CHARACTER
NUMERIC

addatt

addds
addent

addinst
addmeas
showargmeas

showatt
showcandmeas

showdsdir
showentdir
showinst
showmeas
showmeasdir
exptok

noexptok

quit

association
location
pearson
spearman
kendall

tau_c
cramers_v
coeff _of cont
normal_test
t_paired
randomised_block
t_common
t_separate
one_way_aov
wilcoxon
friedman_aov
mann_whitney
kruskal_wallis
sign_test

mcnemar_test
cochran_q
chi_squared
fisher_exact
gentok
nongentok
opentok

closedtok
yestok
notok
deftok
typetok
leveltok

meastok
normtok
qualmeas
quantmeas
nomtok
ordtok
ranktok
inttok
rattok
chartok
numtok

217

MIN min
MAX max

UPPER upper

NONE nonetok

B.5 Classcheckdir.dat

association relatedinst
location simenttype eqdomains

B.6 Assoccheckdir.dat

pearson intqnt normal

spearman ranked

kendall ranked
tau_c ordqlt

cramers_v nomeat chifreq
coeff _of cont nomcat chifreq

B.7 Loccheckdir.dat

normal_test twosample
t_paired twosample relatedinst
randomised_block relatedinst
t_common twosample
t_separate twosample
one_way_aov
wilcoxon twosample relatedinst
sign_test twosample relatedinst
friedman_aov relatedinst

mann_whitney twosample
kruskal_wallis
mcnemar_test twosample relatedinst
cochran_q relatedinst
chi_squared
fisher_exact twosample

B.8 Shapwilkcoeff.dat

-7071 0

-6872 .1677

-6646 .2413 0

-6431 .2806 .0875

+6233 .3031 .1401 0

218

eqintqnt
eqintgqnt
eqintgqnt
eqintqnt
egintgqnt
eqintqnt
eqordqnt

egordqlt
eqordqlt

egordqlt
egordqlt
eqdichcat
eqdichcat
eqnomeat
eqdichcat

nige30
normal
normal eqvar
normal eqvar

normal
normal eqvar

chifreq

-6052

+5888

+5739

+5601

~5475

+5359

+5251

-5150

-5056

4968

4886

+4808

4734

4643

+4590

+4542

4493
0107

~4450
+0200

+4407
+0284

+4366
-0358

- 4328
0424

+4291
0483

-767
-887
-926

+3164

3244

+3291

-3315

73625.

+3325

-3318

-3306

+3290

-3273

+3253

-3232

-3211

-3185

3156

-3126

-3098

-3069
0

3043
0094

-3018
0178

32992
+0253

+2968
-0320

-748
+892

+762
-897

~1743

°2976

2141

+2260

+2347

+2412

+2460

«2495

~252)

-2540

+2503

.2561

-2565

-2578

<2 50d.

+2563

2554

+2543

-2533

~2522
0

+2510
-0084

+2499 .
0159 0

-788
+901

0561

0947

1224

+1429

-1586

LhOr

+1802

+1878

+2939

.1988

+2027

+2059

+2085

eeuio

pels

+2139

2145

+2148

eae

nado

+2151

2150

-803
-905

0

+0399

0695

+0922

+1099

+1240

+1353

1447

-1524

+1587

+1641

+1686

-1736

-1764

-1787

+1807

.1822

+1836

-1848

-1857

1864

+818
+908

-0303

30539.

+0727

+0880

+1005

-1109

21197

31271)

+1334

-1399

-1443

+1480

21512

31939

-1563

+1584

+1601

+1616

~829
«912

0

-0240

+0433 0

+0593 .0196

0725 .0359 0

0837 .0496

+0932 .0612

-1013 .0711

-1092 .0804

+1150 .0878

+1201 .0941

+1245 .0997

1283 .1046

+1316 .1089

+1346 .1128

wid?2 1162

eeo95) 21292)

+842 .850 .859
-914 .916 .918

-0163

- 0303

+0422

+0530

-0618

+0696

0764

0823

0876

-0923

0965

-1002

866
-920

0

+0140

-0263

-0368

+0459

+0539

-0610

-0672

+0728

-0778

-0822

874

2923)

0

-0122

0228

30325

+0403

0476

+0540

-0598

-0650

+881
+924

