-

L .
. -
e .

o

..

o

T
.. .
i

e
\ .
L
v

.

i s
.
..

.
L a0
L L

yours or that of a third party) er any ot
patent, trademark, confidentiality, dat
read our Takedown Policy and cot

-

s

:

i

L

s

o

il

e

-

i e

5

o
Gt
o

An Invastwatlon into th@ Use of Knowl dge Represe:
Ma,nufa turi

Simon Anthony Sherman Beesley

Submitted for the degree of Doctor of Philc)so,phy/ ‘

This copy of the thesis has been supplied on condition that any@ne ‘wh@ const tﬂ
is understood to recognise that its copyrlg ht rests W I that
quotation from the thesis and mfarmauon denved fi

the author’s prior, written consent.

Aston University

An Investigation into the Use of Knowledge Representation in Comp
Manufacturing - -

Simon Anthony Sherman Beesley

Submitted for the degree of Doctor of Philosophy e
1088 |

In a certain automobile factory, baich-painting of the body types in coloursis
controlled by an allocation system. This tries to balance production with orders,
whilst making optimally-sized batches of colours. Sequences of cars entering
painting cannot be optimised for easy selection of colour and batch size, ‘Over- -
production’ is not allowed, in order to reduce buffer stocks of unsald vehicles,
Paint quality is degraded by random effects. .-

This thesis describes a toolkit which supports IKBS in an object-centred
formalism. The intended domain of use for the toolkit is flexible manufacturing. A
sizeable application program was developed, using the toolkit, to tesf the validify of
the IKBS approach in solving the real manufacturing problem abave, for whichan =~
existing conventional program was already being used. A detailed statistical analysly
of the operating circumstances of the Fr@gr&m was made to evaluate the likely need
for the more flexible type of program for which the toolkit was intended. -~

The IKBS program captures the many disparate and fing constrainfsin
the scheduling knowledge and emulates the behaviour of the program installed in the
factory. In the factory system, many possible, newly-discovered, heuristics would
be awkward to represent and it would be impossible to make many new extensions,

The representation scheme is capable of admitting changes to the knowledge, =
relying on the inherent encapsulating properties of object-centred programming o~ -
protect and isolate data. ' ..

The object-centred scheme is supported by an enhancement of the ‘C' -
programming language and runs under BSD 4.2 UNIX. The structuring technique,
using objects, provides a mechanism for separating control of expression of rule-
based knowledge from the knowledge itself and allowing explicit ‘contexts’, within -
which appropriate expression of knowledge can be done. Facilities are provided for
acquisition of knowledge in a consistent manner. » - -

Keywords: FMS; IKBS; message-passing; object-centred; scheduling

]

and his constant encouragement. I am grateful to Mess

'&n&S@ﬁdY and Brl
Johnson of Istel, plc, for explaining details of the existing{ffa:citéfy pa;nt; systemand

sparing time to help me understand their scheduling scheme,

s

o

.
e

v
e

o

e

i
0
e

.

o
e
;

L

Artificial Int&lhgence in the CIM contex

1.1 The significance of Al for industry
1.2 An example of a complex Flexible

Manufacturing System
Paint Scheduling
Production
Order cover it &
Body sequence in the pamt aecmen
Colour allocation ‘
The algorithm

2 7 Other constraints

1.3 Reasons for using Intelligent Knowledgﬁ -Based

HHHHHH{—‘
NNNNMM
O\ > L) P —

Systems , 15
The context of AI and paint scheduling 17
2.1 ‘Intelligent’ programming for industry 17
2.1.1 Industrial IKBS 17
2.1.2 Architectures to support real-time TKBS ‘ 3.
2.2 Al issues for paint scheduling 27
2.2.1 Representation schemes 28
2.2.2 Knowledge elicitation, extenalbﬂity and .
understandibilty of KBS 7 M
Issues addressed by the work ~— 43 -
3.1 Why not use a mathematical programmiﬁg /
solution? v 43
3.2 A representation scheme for paint Schedulmg 45
3.3 Acquisition techniques 45
3.4 Practical and analytical work Cns 49
An assessment of the scheduling algorithm . 50
4.1 An examination of the colour allocation algorithm -
and ‘optimisation’ 50
4.2 Achievement and batch sizing §3
4.3 Ideal achievement as a measure of ‘goodness’ 56
4.4 An alternative basis for ideal hehaviour 58

A statistical evaluatlon of conventmnal P
scheduling ’

5.1 Simulator

5.2 Statistical analysis /
5.2.1 Line sequence gan@rauon
5.2.2 Order cover profile mamtcnangc
5.2.3 Results of paint batching
5.2.4 Analysis of batching optimality

5.3 Statistical estimates of ‘goodness’

5.4 Experimental conditions

5.5 Measures of randomness

5.6 Statistical measures of performance

5.7 Testing the Istel algorithm

5.8 The effect of randomness on production

A knowledge-based toolkit for flexible
‘manufacturing

6.1 The ‘objective’ toolkit and object-hased
environments

6.1.1 Structure of an object-based system

6.1.2° An overview of the toolkit and its usage
1.3 Support of object-centred and knowledge- bas»d
programming by the toolkit
4 Messaging :
5 Definition of instances
6 Review of definitions
7
8
9

w

Linking of a complete system
Tracing messages
Support of knowledge-based programmmg
10 Rule tracing
11 A test harness
ototype knowledge acquisition tool -
1 A meta-description editor for defining metalevel
knowledge
6.2.2 Capturing rules
6.3 An object-centred scheme for paint scheduling

6.2 A

O\ ANV S8

1
1
1
1L
1.
1L
A
.1
pr
2

An evaluation of the knowledge-based
approach

.1 Rules (as accepted hy the knowledgé ‘acquﬁsitmn
utility)

2 A trace of a painting run :

.3 How does the Istel algorithm compare?

4 The effect of inappropriate rules

5 Extended uses of the rule-hased formalism

;63
64
65
67
73
76

133

S L 3 A i

Evaluation and summary

8.1 Results of the research

8.2 Process control knowledge :

8.3 Modifications to the toolkit and ,furtbe
8.2.1 Possible improvements to the toolkit
8.2.2 More advanced and flexible solutions to confrol

problems
References | ;VLk‘7.6
Appendices:
A1 Results of paint batching: a part example 1:&;3-\1
A2 ’Claas structures A 1§4
A2.1 Classes and their messages and enaodea methﬂds 19;4 :
A3 Messages found in methods ’ ' 204
A4 Rules e o i
A4.1 Syntax and the rule mterpretatlon effe(_tors . 209
A5 Messages found in rules s : 2'1:'1
A6 Definition of an object-centred structure and an

example 213
A6.1 Identification of components 213
A6.2 Definition of the hierarchy and inheritance 214
A6.3 Attachment of methods and the messager 216
A6.4 An object-centred paint scheduler 218
A6.4.1 Paint allocation 219
A6.4.2 Messaging and system messages 220
A6.4.3 Rule-based processing 221
A6.4.4 Control of information 222

A6.4.5 The conventional algorithm represented in the
object-centred system 223
A6.5 Definition of object meta-knowledge 224
A6.5.1 Initialisation of a meta-description 224
A6.5.2 Acquisition of new knowledge 225

A6.5.3 Other uses of meta-knowledge 226

Diagrams and tab.’léé;w |

Figure 1.1 Layout of the assembly hne in the pamtshop =
Figure 4.1 Value of batches of different sizes

35

Figure 4.2 Relative achievements for singletons

Figure 4.3 Relative achievements for batches of 40 bodms . 55
Figure 5.1 A body sequence & 71
Figure 5.2 Bias factors used to produce a distribution 72
Figure 5.3 Order cover for the first test 73
Figure 5.4 Order cover for the second test oy
Figure 5.5 Order cover for the third test 74
Figure 5.6 Order cover for the fourth test e it 778
Figure 5.7 Order cover for the fifth test 75
Figure 5.8 Order cover for the sixth test , : 76
Figure 5.9 Results of the first test 77
Figure 5.10 Results of the second test e
Figure 5.11 Results of the third test 79
Figure 5,12 Results of the fourth test - sl
Figure 5.13 Results of the fifth test 81
Figure 5.14 Results of the sixth test 82
Figure 5.15 Graph: mean batches produced(#1 to #3) 83
Figure 5.16 Graph: mean batches produced(#4 to #6) 84
Figure 5.17 Graph: mean singletons produced(#1 ta #3) 85
Figure 5.18 Graph: mean singletons produced(#4 {o #6) 5
Figure 5.19 Graph: achievement across colours (#1) 87
Figure 5.20a Graph: achievement across colours (#6) ~ 89
Figure 5.20b Graph: achievement across colours (#6) - 80
Figure 5.22a Graph: deviation of colour production 90
Figure 5.21b Graph: deviation of body production oy 90
Figure 6.1 Diagram: Hierarchy of main classes 102
Figure 7.1 Example order profile for colours o 135
Figure 7.2(part) Example order profile for bodies = 136
Figure 7.2(cont.) Example order profile for bodies ey
Figure 7.3 Example body sequence 137
Figure 7.4 Partial batching determinations 142
Figure 7.5 Crisis allocation determinations 151

Chapter 1 Artificial Intelligence in the C(omputer)

I(ntegrated) M(anufacturing) context

In manufacturing control, many processes appear to be difficult to represent
adequately by a computer model. The need to simulate real-time activities may pose
many problems. In circumstances where human judgement is required the problems
may prove intractable for a traditional, procedural style of programming. These
apparent difficulties prompted this work and form the basis for the discussion in

Chapter 3.

1.1 The significance of AI for industry

Human operators controlling a complex process may not be able to respond
sufficiently quickly to solve problems contemporaneously with the process. Several
types of control that are of interest to people wishing to use ‘intelligent’ computer
programs may be distinguished.

The first class might be scheduling programs which produce a static plan for
perhaps one or more production shifts, i.e. deciding, from a given input of demand
plus materials, what output - finished products plus their order of manufacture -
there ought to be. A classic example of this might be in a factory assembling and/or
machining parts. The output of the program is a plan of how the manufacturing cells
process the parts and in which order they act. The input to this system would be the
orders required and the ‘raw’ materials. This is a characteristic use for planning
systems in manufacture, where a once-and-for-all plan is made at discrete intervals.

The job-shop scheme, SOJA, described by le Pape (1985) is an example of a daily-

used scheduler. Although this is a rather arﬁitféﬁfj‘cétegoriéatioﬂ, 1t 'fac.i?li-tat.é‘s;
drawing the distinctions made later in this and the following chapters.

A second type of industrial requirement is the on-line control system Whe\xr‘\e;\:
the aim is to maintain some state of the plant as a whole. Oil refineries, for example,
may have to control some system that reacts to changes from a desired state and
diagnoses a difference between the observed and expected states, forming a strategy
for returning the actual state to that required. As an IKBS the approach would
typically be to plan an ideal route back to the required state. Such systems would
normally have knowledge of many types and cover as much of the plant as possible.
The REACTOR program of Nelson (1982) has such mixed knowledge used in real-
time.

A third class of applications is to control a case intermediate between the first
two. In this the intention is to control particular processes which require constant
adjustment. They may involve a small amount of planning but would usually
produce a new decision each time they responded. The reactive scheduler of Elleby
er al. (1988) uses this type of decision making. The difference between the second
and third classes - beyond that of scale - is that the second class requires each part of
the system to produce a response in line with the whole, whereas the third is
appropriate in circumstances where it co-operates with the whole’s objectives but
acts independently (as a localised controller). The system described in Section 1.2 is
of this third type. In such a case, the behaviour is to minimise the cost of the
processes that precede it in sequence.

The above categorisation divides systems in terms of how they do what they
do. Another aspect is whether they ‘close the loop’ in controlling a system, as
opposed to offering advice to a human operator. This is an important functional
difference. An error-detecting system may be in control of the means of correcting
the state or may just raise an alarm and inform observers as to the likely cause of the

problem. The system investigated here is one where direct control is needed.

10

1.2 An example of a complex Flexible Manufacturing System

This section describes a scheduling problem, for which an algorithm has
been implemented by a major car manufacturer in the U.K. - as part of a wider CIM

suite of programs written to control an automated motor assembly line.

1.2.1 Paint Scheduling

A major car manufacturer has installed a fully automated plant controlling
system in one of its assembly lines. It connects assembly line robots and sensors
with pla.nt-tracking, stock control, warehousing, order and other sub-systems. As
part of the tracking scheduling it was decided to extend computer control to the
selection of colour for car bodies being painted.
The section where paint is applied is supplied with car bodies less doors - B(ody)
I(n) W(hite) - by conveyor from the assembly section. Aftcr/ painting inspection,
bodies are removed for further stages of assembly. The BIWs form a queue (for
scheduling purposes) and pass through heat sealing, cooling and then the paint
booth, amelioration being required, in some cases, before removal. These stages are
automated and, in optimal conditions, the robots will be able to spray BIWs without
human intervention.
The BIWs are tagged as they pass through the plant and can be tracked at various
stages by the tracking scheduling sub-system which, in theory, has a record of any
car body present in the paint section. A BIW is given a unique number (ident) with
which is associated the respective code for its body type (e.g. saloon, 3-door etc.).

(See Figure 1.1)

11

X

from
assembly & C X
Paint
booth
back to assembly
<@ Rectification <

X ‘ident’ point

a-b: region where BIW shells may be re-arranged

a-c: region of conveyor with contents ‘visible’ for scheduling

Layout of assembly line in the paint shop

Figure 1.1

12

1.2.2 Production

The production of bodies is maintained on an ‘order only’ basis. Productlon 2
schedules are created and (painting) order cover determined from orders which are
collected and held centrally. (The basis for this is to reduce stocks of painted cars to
just those that have been ordered - at any time - from distributors etc.) Scheduling is
on an 18 day basis. From the total order ‘bank’ selected orders are generated for the
paint section (and the production of car bodies is maintained roughly in accordance

with them).

1.2.3 Order cover

Requirement for painting is assessed for each possible body and colour
combination. Up to 32 bodies x 32 colours might be used. A matrix of these (body x
colour) would have less than or equal to 50% occupancy - many combinations not
being used. The distribution is such that some body types are produced in many of
the colours and others in few colours. (Similarly some colours are only available for
a few types.)

Requirements for the possible body/colour combinations are assessed in
terms of the 18 day rolling schedule: from today minus 9 to today plus 8 (days), in
order to smooth out production. (This means that BIWs should be painted for real
orders not more than two weeks old.) Achievements from orders in the schedule are
calculated by summing production of painted bodies over the interval roday minus 9
to today. Updating takes place by dropping the ‘oldest’ day from the schedule and
adding the change in requirement (one day’s worth) usually on a daily basis although
the system must be able to cope with an update after as short a space as a quarter of

an hour.

1.2.4 Body sequence in the paint section
The system can map the details of perhaps 80 (but potentially more) BIWs,

from the one entering the paint section up to that at the paint booth. The 20 or so

13

BIWs at the ‘tail’ of this queue may be ‘re-positiéﬁed’ (by overhead cranes). The
system should be able to keep track of sequence changes if correctly informed by
users but will only be able to restore its map of the body population when a ‘moved’
BIW passes a tracking sensor. (The consequences of changing the sequence will not
be discussed further but they complicate measures taken to deal with colour sequence

problems.)

1.2.5 Colour allocation

The task of colour selection is to commir the n BIWs nearest the paint booth
to a particular colour for spraying. (BIWs are achieved and update the achievement
record after passing through the paint booth.) The problem of colour selection might
seem to be trivial: however the case here is that (i) BIWs do not enter ‘paint’ from
‘assembly’ in an order favouring a simple matching of order cover to a colour and
allocating the next n BIWSs to a batch; (ii) car bodies may only be painted in colours
for which order cover exists. If a decision has not been made when a BIW comes
into the paint booth, then a possible colour is found for it, together with the
following BIWs in the sequence, sufficient to make a batch of suitable size. Thus
when constraints exist to prevent the next BIW being painted in its committed

colour, another colour must be selected.

1.2.6 The algorithm

The algorithm favoured by the system designers, Istel (1985), was to find an
afchievement) p(roportion) for a batch of n bodies for each colour available and
select that colour with the lowest score. The following method was used: from the
sequence map, a batch of bodies is scanned starting from the paint booth. At least
minpb (the least preferred batch size) for the colour must be possible. Given minpb
the batch is extended one by one if the next BIW can also be painted in the colour
(i.e. order cover exists for that body/colour combination). This is done until maxpb

(the greatest preferred batch size) is reached or order cover is not available for any

14

body. When all colours have been assessed, the batch a.p. is calculated for each,
where a.p. = Requirement in colour / Achievements in colour. Achievements implies
those BIWs painted from order cover up to date plis the n BIWs in the proposed

batch - thus favouring the biggest batch size relative to (prior) least achievement.

1.2.7 Other constraints

Priority body/colour combinations (up to 9) of the form a bodies in colour b
for orders may be specified. Allocation of colour considers these, if any, first,
before the above algorithm. An attempt is made to achieve the priority in a batch,
subject to order constraints.

Colours may be made unavailable while processing a batch, leaving
‘committed’ bodies unachievable at the paint booth. Sometimes a new colour
decision is impossible so the first tactic is to try to extend the batch in the current
colour where appropriate. This is done until order cover is exhausted or the greatest
allowed batch size has been reached (whichever is sooner). Crisis re-allocation rules
come into effect (similar to the algorithm) to attempt to find a valid colour for a batch

within the existing constraints.

1.3 Reasons for using Intelligent Knowledge-Based Systems

This solution could present many drawbacks in ‘real-world’ operation, in
particular being potentially vulnerable to conditions where awkward (i. e. non-ideal)
input might occur. Another aspect which may cause difficulties is that the method
chosen is not susceptible of accommodating new (types of) constraints on
performance. Some such constraints (vide infra) have been acknowledged as likely
to exist, although not modelled in the existing program. Were it to become desirable

that the program be able to handle such new factors, it would seem to be a difficult

body. When all colours have been assessed, the batch a.p. is calculated for each,
where a.p. = Achievements in colour / Requirement in colour. Achievements implies
those BIWs painted from order cover up to date plus the n BIWs in the proposed

batch - thus favouring the biggest batch size relative to (prior) least achievement.

1.2.7 Other constraints

Priority body/colour combinations (up to 9) of the form a bodies in colour b
for orders may be specified. Allocation of colour considers these, if any, first,
before the above algorithm. An attempt is made to achieve the priority in a batch,
subject to order constraints.

Colours may be made unavailable while processing a batch, leaving
‘committed’ bodies unachievable at the paint booth. Sometimes a new colour
decision is impossible so the first tactic is to try to extend the batch in the current
colour where appropriate. This is done until order cover is exhausted or the greatest
allowed batch size has been reached (whichever is sooner). Crisis re-allocation rules
come into effect (similar to the algorithm) to attempt to find a valid colour for a batch

within the existing constraints.

1.3 Reasons for using Intelligent Knowledge-Based Systems

This solution could present many drawbacks in ‘real-world’ operation, in
particular being potentially vulnerable to conditions where awkward (i. e. non-ideal)
input might occur. Another aspect which may cause difficulties is that the method
chosen is not susceptible of accommodating new (types of) constraints on
performance. Some such constraints (vide infra) have been acknowledged as likely
to exist, although not modelled in the existing program. Were it to become desirable

that the program be able to handle such new factors, it would seem to be a difficult

15

and highly complicated task to modify the existing code to account for these. Such
considerations prompted this work.

Is it possible to produce an ‘incremental’ style of program capable of dealing
with the above model and problems? By incremental is meant an Al(rtificial)
I(ntelligence), Knowledge Based form of modular code - with ‘chunks’ of
knowledge separated out rather than embedded in the controlling logic. The work
reported here is an attempt to build such a program, which is capable of performing
the functions of the ‘procedural’ implementation and which can also be instructed to
respond to new operating conditions. There are two areas to be discussed in this
latter respect: firstly, is it possible to provide an adequate representation which is
much more robust than the original from the point of view of extensions to its
functional repertoire; secondly, how is extra knowledge to be acquired? The research
issues might have involved some level of automation of the acquisition process with
respect to allowing a non-technical user of the scheduling system to input the ‘raw’
new knowledge. (This is not intended to lead to much consideration of natural
language processing, the internal handling of knowledge is more the question in this
context.)

The system chosen for study may be limited in scope in terms of the factory.
In itself, however, it poses complicated problems and is seen as a proxy for more
general problems of applying ‘intelligent’ programming techniques in industry and
CIM in particular. One of the difficulties in adopting intelligent CIM is the common
need to alter the likely action of one or more sub-systems in an IKBS in response to
dynamic changes in system requirements. The problem dealt with here is of that
nature. A reactive scheduler, which is responsive to the local state of the factory and
can improve overall performance without requiring the participation of other sub-
systems, would be useful for more distributed control systems. The colour allocation
task, in this context, could provide a useful example of how to achieve IKBS in

industry.

16

Chapter 2 The context of AI and paint scheduling

There are two areas of research that are relevant to the work discussed here.
Firstly, in the last few years there has been considerable interest in applying
knowledge-based and, particularly, expert systems to control/planning in industry.
Secondly, there is the more ‘mainstream’ theme of representation schemes and their

implications for knowledge acquisition.

2.1 ‘Intelligent’ programming for industry

The use of computers and micro-processors in process control is quite well
established. Most process control is based on mathematically modelling the systems
controlled. An illustration of the significance of mathematical models of processes is
the proportion of papers in conferences on Computer Aided Design which describe
software for this use. The systems described are used to design industrial
controllers, etc. Of some nineteen CAD systems presented in the Third IFAC/IFIP
Symposium on CAD in Control and Engineering Systems, all discuss linear or non-
linear techniques. In the same conference of some seventy-six papers just two
present knowledge-based techniques for designing and implementing control

systems.

2.1.1 Industrial IKBS

An interesting example of the possible use of heuristics is the saw-mill
planner of Harris and Zinober (1988). Their problem was to plan the sequence of
cuts in large boards required to make sets of smaller panels. This is essentially a

constraint satisfaction problem modified by a cost function, the aim being to

17

minimise wastage of wood and time taken for the automated saw to cut it: formally
similar to the well-known travelling salesman problem. A linear solution, for
example using the Simplex algorithm, was solvable on the hardware in weeks,
whereas the time allotted was of the order of minutes. Their approach was to use a
variation of a branch-and-bound technique. The requirement was not for an
optimisation so the first ‘acceptable’ solution would not necessarily be that produced
by the full linear technique. The point at which a heuristic approach was thought to
be helpful was in further opportunistic pruning of the search space - a facet not
represented in their program. They stated their view that heuristics could be inferred
by recording and comparing the success of various actions. This work is significant
in that it shows the limitations of mathematical approaches to problems of
exponential complexity.

Some authors have described ‘knowledge-based’ controllers which claim to
model inexact (qualitative) descriptions of the system being controlled. Production
rules are seen by some as a good formalism. It is not clear that the use of production
rules, e.g. as defined by Buchanan and Shortliffe (1984), necessarily confers
‘expert’ status on a program. There is a fair literature on ‘fuzzy controllers’, see e.g.
Mamdani (1982). This paper presents a proposal to interpret natural language
descriptions of rules pertaining to the control of a process in order to formalise them
into some computer intelligible format. The concept of ‘fuzzy’ descriptions is that
attributed to the work of Zadeh (1979) as an extension of set theory. The idea of a
degree of belonging to some category is used by Mamdani to attach evaluable status
to an inexact collection of verbal terms. These modify the patterns of applicability
for rules (mentioning them in their premises) which govern the behaviour of the
controller. The degree of matching modifies the degree of assertion of the
conclusion of the rules. This might seem laudable, but there are difficulties with this
fuzzy approach. Humans are notably inconsistent in using terms like ‘rather’,
‘very’, ‘small’. Also two people may disagree on such terms - so their value is

reduced if more than one expert is consulted. The claim is that inexact descriptions

18

do work. In human terms possibly so, but what manipulations are required for
computer descriptions to work? In his paper, Schefe (1980) has a discussion of the
nebulous concept of fuzzy boundaries and the uncertain subjective nature of
linguistic interpretation.

Given that mathematical models are used for process control, are
knowledge-based systems (KBSs) being used in an industrial context? For the most
part, KBSs found are used for scheduling, i.e. for planning production at the
factory and the sectional level.

ISIS-IT (Fox er al. 1982) allows the specification of factory production
schedules, where a large number of orders compete for resources and there are very
many parts made, each of which requires several stages. The types of constraints
described vary from the general goods level, which relates to optimising the value of
the activity, to the more specific considerations of what individual objects such as
millers can do. Fox er al. (1983) have used the notion of conflicting constraints in
determining a schedule for jobs in a factory. These constraints can be relaxed
selectively at various levels of a plan and are prioritised by a rule base. Bernstein
(1987) also considers a flow-shop as a planning domain for scheduling. His SH
program is used to generate heuristics for ordering sequences of processes to attain
a management goal. The heuristic rules are made from templates of three types: a) to
construct a rule to build a schedule; b) to mutate rules to build better sequences; and
¢) to find new heuristics. SH does this by generating test data and discovering
instances of these templates to fit them.

A closer application to the paint scheduler is the control scheme of Newman
and Kempf (1985) for a robot in a manufacturing cell . The robot’s plans concern a
limited set of actions to achieve an immediate goal, but, once asserted, the actions
are defeasible and re-planning, in effect, is possible to achieve a new goal where a
previous goal has failed or only been partially attained. This is an analysis of
different constraints and regards them as having unequal importance, e.g. the

machines should be kept as busy as possible, whereas the robot does not have to be

19

so busy. They report that the productivity of the cells is significantly increased over
traditional schemes, such as ‘first-come-first-served’. It should be noted that the
failure of a plan does not cause inefficient behaviour, because the order of moves
may be changed or even undone - where no destructive change to a part has been
made.

Such an approach cannot be used in the painting example because the shells
stay painted once ‘achieved’, as far as the scheduling system is concerned, and the
conveyor cannot be sent backwards or its sequence re-arranged, which would be an
equivalent facility to the re-ordering or undoing of robot actions.

An analogue of the reactive scheduling requirement in the paint shop, in
many ways, is the control system for a laser-cutter. Foulloy ez al. (1985) present a
use of a vision system to scan the progress of a cut being made in a metal
workpiece. Continual fine adjustments must be made to the laser to produce an
acceptable result. Their KBS monitors state variables and alters their settings by
discrete applications of rules.

KBSs for process control are found in the chemical industry. The cement
kiln controller of Haspel (1985) attempts to optimise the yield for minimal heat/kiln
lining consumption using qualitative methods. Rules have been devised such as ‘If
temperature HIGH and quality X then LOWER temperature’. HIGH is a ‘fuzzy’
value but denotes a range of acceptable values for the variable ‘temperature’. The
program may reflect a fuzzy Al approach to a technical program but the complexity
of the knowledge base is rather restricted. It is not quite clear why a mathematically
accurate treatment of the ‘inexact’ descriptions would not give equally good results.
(A chemical process must obey exact thermodynamic and other laws which are well
understood). A more comprehensive approach to the management of a rotary cement
kiln is described by King and Karonis (1988). Their ‘synergistic’ system, on three
levels, maintains the plant control process at the physical level with a series of
knowledge bases for different aspects of the process, e.g. the kiln and the pressure

system, co-operating via a blackboard. At higher levels the co-ordination system

20

constantly views the state of the process and provides corrective actions to
compensate for observed deviations from desired behaviour, whilst the organisation
part defines the management knowledge regarding the output and quality of product.
These two levels are obtained from hierarchical structures for the heuristics and
appropriate deterministic information. The structure allows the separate levels to
behave as autonomous units in a functional sense.

Another example of industrial KBS is the modelling of chemical reactions to
control a process as described by d’AmbrosiQ et al. (1987). In this scheme,
knowledge sources and a blackboard are used to model possible states and then to
account for the present believed state. Using time-stamped sensory data, the model
relates cause to effect temporally. A similar approach is used by Herrod and Rickel
(1986) in controlling a lehr (for annealing glass). In their program, a model of how
glass cools (without cracking as it progresses through the oven) is used to drive a
planner to achieve adjustments of the oven’s settings (i.e. burners, dampers etc.)
which should bring the profile of the temperature curve to that for the desired effect.
The potential steps in the plans are referred to a simulator of the oven which should
allow evaluation of the benefits of the action. Rules used allow definition of
contexts of applicability.

The use of complex models, utilising multiple sources of knowledge is
exemplified by REACTOR (Nelson, 1982). This control program represents a
complex system in both exact and inexact terms: it was designed to ease the
‘cognitive load’ of nuclear power station operators. In abnormal, failure, conditions
the program attempts to establish cause (and provide correction). It does this by
assuming some deviation from a norm. This norm is provided by a very full model
of the PWR. The potential benefit is the avoidance of the typical situation in which
the operators are confused by excessive information (on error), as at Three Mile
Island. The approach is to detect such deviations from the model and investigate
possible reasons via a large knowledge base. Where gaps in knowledge exist,

backtracking is used to detect where more information is required. It has two types

21

of description: a) of the physical configuration; b) based on examples from past
aberrant situations. The output is a suggested plan to re-establish norms safely. A
similar error-detection (safety) scheme for a chemical plant has been developed by
Chester er al. (1984) and resi)onds to situations where an alarm should be given.
This maintains a view of the plant through a series of tasks, written in Fortran, C
and Franz Lisp. These control the sensors, and implement a supervisory control part
and the knowledge base, respectively. The rule-based knowledge can be used to
reason in a forward-chaining mode, driven by externally-collected data for example,
and form a set of conclusions whose summary provides a basis for decisions. In the
backward-chaining mode, the rules, combined with a model of the plant and
currently believed values of plant data variables, are used to explain the actual
values. This system also records a history of the plant’s state to allow expert
analysis of behaviour.

A system which reflects more of on-line real-time aspects of industrial
control is the plant control system of Evers et al. (1984), which tackles problems
posed by the requirement for instantaneous analysis and diagnosis. The domain of
application is an assembly line treating various aircraft components. The use of an
expert system implemented, for example, in an Al language such as Lisp would
preclude, it was thought, effective on-line response to data from sensors. The task
is to maintain optimum throughput of groups of parts moved by cranes through the
plant. Small plans for a sequence of crane operations are the units of scheduling.
Due to variations in the duration of process stages (because of crane movements)
timing suffers and so the scheduler has to adjust subsequent decisions on the basis
of recent performance. (In many ways this is the problem for the paint scheduler in
the motor-car example.) The rule base that decides the critical timing relationships is
written in LISP. The details of jobs are entered in a real-time system which is part of
the control software - responsible also for the robotic element for moving objects
within the plant. The paper is aimed at highlighting the interfacing between real-time

and expert system symbolisms. The aim is to provide a clean communications

22

mechanism between the different elements of the control system. The expert system
itself and the ‘lower-level’ mechanisms are described elsewhere (Spruell 1981 and

Smith 1983 respectively).

2.1.2 Architectures to support real-time IKBS

The standard Al environments include such languages as Lisp (e.g. Common
Lisp), Prolog, POP and OPS. Prolog is viewed as being good for declarative
representations based on a logical statement of system features and their
relationships; see Kowalski (1979) for an explanation of the benefits of this
approach when combined with a - separate - mechanism for the control of the
expression of the facts.

In the paint shop example, the knowledge is not all declarative and, when it
is, the suitability of single-level declarations of rules and facts seems in doubt. Rules
about batch sizes are distinct from those which relate to availability of colours. Other
means than declarative would probably be required for restricting invocation of many
rules at undesirable times (and the rules themselves might become more complicated
in order to avoid this.) An extension to Prolog allowing aspects of data to influence
rules would help. LAP (lline and Kanoui, 1987) extends Prolog to allow objects to
be represented, using a set of primitives, as graphical structures. Winograd (1975)
discusses the difficulties associated in representing procedural as opposed to
declarative knowledge and offers frames as a means of exploiting the use of each.

Lisp itself offers no structuring other than lists, and although Common Lisp
and relatives offer a record-like construct (defstruct) this offers little more than more
conventional languages such as C and Pascal. One of the apparent requirements for a
system comprising knowledge of different types is a convenient means of expressing
the different structures of such knowledge. If we take the type of frame structure as
elucidated by Winograd (1975) as an archetype, a suggestion that the structuring and
representation of knowledge, declared in such frames, could be simple and

powerfully expressive, might be supportable. On the face of it, a scheme that allows

23

a complex and aggregated structure to be accommodated, with the possibility of code
attachments to assist in the expression of the knowledge contained, offers a good
representation for systems with widely differing types of data. What is not so clear is
how to control the use of such diffuse knowledge. Although object-centred
languages are not always considered in the context of KBSs, it is worth exploring
the message-passing paradigm with relation to frames. For this purpose, Smalltalk-
80, as defined by Goldberg and Robson (1985) will be taken as a model of object-
oriented languages.

The use of a generalisation hierarchy is common to both frames and objects.
The common benefit is the succinct attachment of attributes to items which may
possess abilities by inheritance. One important difference is that of procedural
attachment of code. D@mons as members of a frame will be activated to establish,
perhaps the evaluation of a frame slot. The methods that an object has, though, will
not simply be implicitly invoked when a variable of the object’s class is referenced.
The paradigm of control is quite different. In the case of frames, these attachments
require, perhaps, special control paths for activation. A method that provides the
same facility for an object as a demon does for a frame is invoked deliberately as an
explicit message event. This is true for all methods. The control of object expression
via message-passing is a crucial feature of object-oriented languages and provides a
clear control mechanism for access to objects. The data structuring nature of frames
and objects may be motivated by different philosophies, but the aggregation of
specific features of data in distinct entities common to both paradigms appears to be,
in many ways, similar in effect. Object representations could therefore be of
relevance to the type of KBS where knowledge is of different types and a
complicated control mechanism for its expression and protection required.

A rule-based system written in Pascal by Wright er al. (1986) allows the
invocation of Pascal procedures by a KBS. The conventional algorithms which
control a satellite may be accessed directly by the conditional expressions in the

knowledge base. Another rule-based scheme is provided by OPS implementations,

24

some of which, like LOOPS, an object-enhanced programming language built on
Lisp by Bobrow and Stefik (1983), have been developed to allow object
representations.

More complex systems, like ART (Williams er al. 1985), are specifically
intended for multiple representations. This tool provides some special facilities to
assist more complex models of problems, e.g. viewpoints, which allow for
reasoning about alternate solutions. Some of these are special
languages/environments, e.g. ART, and others are enhancements to KBS systems,
usually written in Lisp. Some of these and special representations for industrial use
will be discussed briefly.

The method for monitoring complex real-time processes advocated by Rieger
and Stanfill (1980) bases its expressive power on a realistic causal propagation
model of the plant’s activity. Deviations from the model generate goals for a planner
to achieve to bring the state back to the norm. The srare-frames in PICON of
Hawkinson ez al. (1985) offer a similar power, but represent the status of a plant,
acting as semi-independent objects which have interactions, as well as bodies of
corrective actions. Moore (1986) gives an account of how PICON represents the
‘deep knowledge’ of a plant’s physical structure.

A more general scheme for a KBS in chemical plant monitoring or control
than those of Chester er al. (1984) or d’Ambrosio er al. (1987) is the multiple KBS
of Avouris er al. (1988). This is concerned with the complete automation of a
response to a chemical accident. It includes a knowledge-base for many diverse
types of information relating to models of chemical reactions, potential
decontamination procedures, who to involve in the emergency measures, etc. as well
as stochastic models of the likely effects of weather conditions. To link these
‘knowledge sources’, a blackboard-like structure together with a handler is added to
control updating and focus-of-attention.

LeClair (1986) suggests a scheme for integrating several expert systems that

features a central blackboard residing in an expert system on one processor, where

25

direct access in real-time is allowed to the data by other expert systems via memory-
mapping. The area of application is one of ‘sensor fusion’; specifically in the control
of heat-produced composite materials, such as graphite epoxy laminates. In this
technique the sensors collecting data on the state of the process and the control
interface are interfaced by the blackboard (and communications) processor. This
features an interesting system for interpreting the real-time data. Its sensory ‘parser’
builds an interpretation of the semantic relevance of the input data stream by
examination of a lexicon which records knowledge of the application of the given
domain. The ‘natural language’ of the parser is the ‘words’ in the lexicon. By
consulting the task knowledge of the domain as well, the significance of the data is
inferred. Where ambiguity still exists, the stream is scanned and the following input
used to clarify the meaning. Failures are then taken as indicating a deficiency in the
parser’s knowledge. Another expert has knowledge of user plans, which are reactive
to the state of the blackboard and give control tasks. The concurrency of the system
allows this analyser to view (via the blackboard) the integrations of data and their
meaning produced by the parser and it can initiate goal-driven reasoning to develop
command sequences or expectations of future events, using temporal and qualitative
means. By considering the past sequence of data patterns and domain knowledge the
detection of faults is possible using the expectations derived from that knowledge.
With this ‘kernel’ and specific knowledge for a given domain, a control application
can be built. The design of the expert co-processors is that developed by Park (1986)
for EXPERT-S.

A method for reasoning about the state of processes is advanced by
Kédmmerer and Allard (1987). It allows on-line scanning of sensory data, in that data
are sampled at regular intervals while inferencing is suspended. It then resumes after
the values are obtained. The state of the system and reasoning is held in a network of
augmented transition nodes. A table of permitted state transitions is then used to
transform the network as evidence accrues, i.e. from the collected data and

prescriptive knowledge of the process. Nodes may be generated, for example, to

26

explore an aspect in greater detail and may then lend support to the parent or resolve
the issue raised. Two mechanisms which deal with possible non-monotonicity of the
model state (ansing from perceived changes in the process) are used. The values of
conclusions that may change unexpectedly over time are allowed to be represented as
defeasible (i.e. if a change has occurred, the reasoning path may be re-traversed to
account for the now incorrect item and the value of knowledge, which is generally
less reliable as it ages, may be reduced as the state is analysed). To handle the latter
problem time-dependent facts are allowed to have their supporting evidence
reviewed. As well as this, the validity of propositions may be unknown in addition
to true/false. The output of the network is a set of conclusions about what the state is

and what to do about it.

2.2 Al issues for paint scheduling

Perhaps the central issue of using a KBS for the paint scheduling problem is
the choice of a representation scheme. Beyond that, the acquisition of knowledge
and control of its expression are important aspects for consideration.

Sloman (1985) reviews many of the problems associated with use of Al in
real-time systems. He distinguishes two separate and necessary abilities for such
systems: perception of events and response to them. He recognises this as a problem
of ‘concurrent monitoring‘. To these he adds a third activity, goal evaluation.
Difficulties with the real-time nature of data may lead to conflicts over continuing
evaluation/action in the face of new/deleted data versus the importance of complete
consistency.

In the rest of this chapter, the discussion is concerned with examples of how
different workers have approached these areas. It follows from the assumptions that

the paint scheduler must be able to represent different views of perhaps conflicting

27

constraints and that it must be able to be extended and be understandable in its
behaviour. A discussion of the basis for these presumptions and what AI design
decisions were made in view of current expertise is left until Chapter 3, where

further comment is made on the requirements of the problem examined in Chapter 1.

2.2.1 Representation schemes

XPL, a frame-based language (Barbuceanu ez al. 1987) attempts to make a
program description the program itself, incorporating semantic concepts in a
declarative structure. This structure would allow the attachment of specific abilities to
an item, a semantic construct, enabling it to be used in, and therefore sensitive to,
different contexts, i.e. states of the data. Briot and Cointe (1987) discuss object-
oriented languages as being useful for knowledge representation and suggest that
Smalltalk-80 is not consistent enough in its treatment of objects; their ObjVlisp
extends the object concept further.

A different treatment of relationships between separately identified ‘discrete’
entities in programs was put forward by Hewitt (1979). His ACTOR paradigm,
where data and code are associated into blocks which have a co-ordinated response
to messages passing in a system, might offer a method for universal control in a real-
time environment. This scheme is the basis for YAMS, of van dyke Parunak er al.
(1985), which models a factory as a hierarchy of actors and optimises message
traffic between them. There are three groups of objects: pallets, moving between
places as work is done on them; nodes, which represent work stations which
transform the contents of pallets; and links, which are means for moving pallets
between nodes. These form graphs representing the factory. At each level of
abstraction, e.g. a pallet, the item may be an aggregate of the same type. The
significance of the actor formalism is that for each actor there is a standardising
interface governing information exchange in the system. This extends to the
hardware level of machines which control processes (their functional code being

logically represented as the terminal points of the graphical network.)

28

A distributed method of organisation is offered by the more developed forms
of blackboard system, e.g. the generic blackboard, GBB, of Corkhill et al. (1986).
In this, the blackboard itself has multiple levels for knowledge sources relating to
different types of rules and allows filtering of the blackboard’s patterns for matching
to rule conditions. One potentially useful aspect for real-time processing is the
explicit representation of space and time in the blackboard, so that values for items
can be related to their existence at particular times. Velthuijsen er al. (1987)
implemented a blackboard scheme for real-time robot control. Based on the approach
of Erman er al. (1981) in Hearsay-III, they extended the system to make the
blackboard-handler sensitive to real-time requests for input/output. At each stage of
picking a knowledge source to solve part of the current problem, those ‘triggered’
and ready request activation. The list of requests is compared, after real-time events
may have changed the state of (a) blackboard(s), to find any suitable knowledge
source to activate, i.e. reject any that are now invalidated by blackboard changes.
They note problems of data consistency where one knowledge source may compete
with another to change/access blackboard elements and suggest common data-
locking techniques. An interesting feature is that knowledge source actions may
cause direct execution of code written in ‘alien’ languages, e.g. POP-11, to achieve
events in the external world. There is no discussion of how to deal with interrupts
which may arise during execution of a knowledge source and which, if responded
to, might invalidate it.

The EXPERT-5 design (Park 1986), is a practical illustration of how to
achieve a real-time KBS facility with asynchronous updating of external data (i.e.
with respect to reasoning about them). As mentioned above for LeClair (1986), the
on-line collection of data and incorporation in organised structures (on a blackboard)
is handled by an expert data collector (and communication system). This design
allows other processors to access the blackboard directly. The blackboard forms the
working memory of a ‘production system’. It uses message-passing between objects

to mediate control. These objects represent knowledge about domain items. Rules

29

are represented by blocks of FORTH code, activated as methods. This would seem
to imply that the control of the expression of rules is open to inspection, e.g. a truth
message would cause rules to evaluate themselves, but that the knowledge contained
in them is not (i.e. is hidden in code). Park states that a three CO-processor system,
with each processor running EXPERT-5, where the central one is the blackboard
plus communications channel, is capable of significantly increasing the speed of
execution of a (single-processor) real-time KBS: the tasks of accessing the
environment and responding to it are separated. He suggests that another significant
advantage of the design is the ability to group rules into suitably complex structures.
The organisation of knowledge into frames having production rules as part of
their expressive power is favoured by Aikins (1979) in CENTAUR, an
implementation of the diagnostic system, PUFF for pulmonary diseases (Kunz er
al.,1978). She uses the concept of ‘prototypes’, which associate all the significant
aspects of a condition in a structure, so that if there is a tentative possibility of
considering a disease as a hypothesis, the prototype for that disease, with all its
aggregated knowledge, is put on the list of hypotheses. Once consulted, the
prototype has its rules for establishing itself activated, and all the relevant
information for that condition is collected, if necessary, and the diagnosis can be
established. It also may suggest access to related conditions via links of association.
The control knowledge is represented in each prototype as distinct from other
knowledge, so what to do in a context can be stated explicitly (see Aikins, 1983).
The knowledge areas (KAs) and recursive transition networks (RTNs) of
Georgeff and Bonollo (1983) provide, respectively, a contextual mechanism for
rules which are still declaratively expressed, and a method for attaching explicitly
procedural knowledge. Invocation parts of KAs allow testing of known facts and
current goals to establish their validity for use. Their ‘bodies’ are special inference
procedures to process a sequence of subgoals or facts to be established. RTNs form
a state graph whose arcs are tests which, if true, are traversed with the associated

actions being done. The authors regard the KA structure as meta-level rules which

30

constrain the expression of knowledge. This may be a development of ideas put
forward earlier by Georgeff (1979) where he views a production system as a set of
triples (production name, database and interpretations) which are influenced by a
control language - i.e. providing a framework for control. For each set of triples
there is then a quadruple where a control language governs them. A similar
proposition of an appropriate way to handle procedural knowledge explicitly is put
forward by Gallanti er al. (1985), who are concerned with the control of water-borne
pollution occurring in a power generator. Monitoring of the turbine and other
components will reveal a state of damage. It is difficult to attribute blame to the
potential sources of pollution. Rule-based inference creates hypotheses of what has
happened but modes for investigation of the system are known in procedural terms.
Using a modified Petri net scheme (of ‘event graphs’) the steps required for
gathering of evidence are represented as directed graphs. The events are nodes and
the transition arcs show the conditions and actions that are attached as an arc is
traversed. So, depending on the observed values from data, a path of enquiry is built
up by traversing the network. Given a set of observations, the rules may explain the
cause of the damage. The nets are used in two ways: firstly, for the interpretation of
data (at the level of sensors and chemical knowledge); and secondly, for diagnosis of
faults and intervention, i.e. to show how to detect and deal with them. The second
network is an abstraction of the first. Two databases are used to record the actions of
the nets. The second net looks at the results of the first and posts its results in the
second database, from where the necessary data for the rules is obtained.

A different model of control in systems is advanced by Francis and Leitch
(1985). They advocate the description of a system as a set of sub-systems which
have only one input and one output and each influences the next. The interactions of
each subsystem on its neighbour are modelled as direct causal effects. They point out
that the rules for this could be obtained from observation of the plant’s process,

which would be likely to be captured accurately and quickly from the known causal

31

structure of the plant, and could give accurate explanations based on the causal
relationships between the subsystems.

A planning scheme for organising manufacturing cells in a factory is
described by Shaw and Whinston (1985a, 1985b). This has two levels of
representation. The communications between cells are represented by procedural
descriptions. Within individual cells, knowledge is described in three ways: a)
declaratively, with goals, the state of the domain and semi-complete plans; b) about
actions in the world, as production rules or operators; c¢) of strategies for planning,
1.e. how to select operators. They require incorporation of non-linear planners.
Strategies such as crizics in NOAH, the hierarchical planner of Sacerdoti (1975), are
suggested for dealing with the conflicts arising from constraint satisfaction. A table
of multiple effects would presumably be held to identify which preferences were
used and the best choices of machines assigned to tasks, followed by elimination of
incompatible operators. It is not stated how individual critics capable of refining
different problems would be defined. This hybrid scheme uses Petri nets at the inter-
cell level to capture the control aspects, which are augmented by rules fired as arcs
are traversed. The events described declaratively have their temporal interactions and
relationships modelled in the nets. They describe a notion of task-bidding, where a
model of distributed inter-cell control is mediated by one cell broadcasting that a job
is available and arbitrating between the competing cells offering to do the work.

A different model of control is suggested by James and Frederick (1985). To
cope with the complexity of control engineering, use is made of partitioned rule
bases for different areas of interest, under the control of a supervisory control rule
base, which governs the invocation of particular rule groups. Though written in
Franz Lisp with General Electric’s DELPHI inference engine, the system allows
direct calling of Fortran subroutines to supply data from sensors to allow the expert
system to evaluate rules.

The multi-agent planning of Georgeff (1983) might suggest a means of

handling complex interactions in a process control problem. The conjunction of

32

single-agent plans without destructive interactions could be useful for the type of
uses indicated by Shaw and Whinston (19835a, 1985b). They seem to assume that
distributing work through a manufacturing system allows separation of machine-
level and plant-level planning. The critics suggested would not be able to deal with
interactions at different levels of abstraction. The technique Georgeff proposes is to
look for unsafe interactions when one agent’s plan is compared with another. If
some deadlock arises then synchronisation primitives are employed to circumvent it.
This requires the STRIPS assumption (see Fikes and Nilsson, 1971), that the effect
of an action does not undo pre-conditions unless stated otherwise. In his later work
(Georgeff, 1986), he avoids this difficulty by a mechanism allowing some events to
be logically conjoined, i.e. occur simultaneously, while others may vary
independently. In this, providing that two actions, for example, do not change the
same world relation, they are allowed to be linked.

A related problem is that of constraint propagation in real-time domains.
Collinot and le Pape (1987) tackle the use of time in directing constraints. They
advocate dynamic adjustment of the amount of processing done in applying
constraint-directed reasoning. They use this to produce job-shop schedules, allowing
certain constraints, e.g. due dates, to be moved. The control rules which apply
ordering over events may be altered.

Perhaps the most interesting approach in relation to this work, in providing a
suitable environment, is that of Odette and Dress (1986) on a FORTH
implementation of Prolog and OPS-5. This environment was intended for use in
real-time control systems where code size and speed was of paramount importance.
Their view was that special purpose hardware would not be available and the
facilities of the Al languages were providable. They wrote compilers for these two
languages which were compact and, at the same time, allowed the direct invocation

of underlying FORTH routines to change the external world state, e.g. by FORTH

words in OPS-5 actions or primitives in Prolog.

33

2.2.2 Knowledge elicitation and extensibility of KBS

The practical aspect of this area of Al for this project is the expansion of a
system by acquiring new principles in a consistent manner. The idea of building an
empty system up incrementally ("boot-strapping'') would seem to be attractive but in
the case studied a large part of the system is basic and needs to be present for the
comprehension of new principles to be possible.

Davis (1977, 1979) produced TEIRESIAS as part of the MYCIN project
(Shortliffe er al., 1975) at a time when the size of the rule base was becoming hard to
cope with. It was an attempt to provide a means of expanding the repertoire of
diagnostic/therapeutic production rules for infections at a time when the MYCIN
team experienced great difficulty in adding new rules to the already substantial
knowledge base. TEIRESIAS is a knowledge acquisition assistant: an interactive
tool with interrogatory capabilities.

In its acquisition mode it has several activities:

a) it attempts to classify the new information on the basis of classification hierarchies
(schemata) that are known to the system. In case of a new object being recognised it
places it in an appropriate category or creates a new category for it according to the
known categorical hierarchy. The meta-knowledge scheme of Davis (1980a, 1980b),
where knowledge of the nature of the knowledge contained is held explicitly, allows
reasoning about what the new information may imply.

b) TEIRESIAS displayed another feature central to ‘learning’: new information once
"acquired" is systematically examined for consistency with domain facts and such
facts are used to refine new information if necessary to assimilate it. New rules are
first identified with respect to a) and then fitted in with respect to b).

c) a related function to b) is the integration of information, e.g. a rule, via the
principles above followed by possible reviewing of already accepted rules. A new
rule can be slotted in once it is in a consistent form. Alternatively, if the user declares

it to be satisfactory, it can be fitted in with other rules, if they are modified.

34

TEIRESIAS checks the consequences of a new rule thereby. These facets -
classification and consistency etc. are crucial to a useful ‘learner’.

Classification as a technique is not used by Davis alone, but TEIRESIAS
seems to require less cueing than could be imagined. In his work on more general
classification, Clancey (1985) urges the use of categorisation to order objects,
relationships etc. and represent ways of relating independent hierarchies to each
other explicitly, i.e. by heuristics, to state when and how one item may be
opportunistically "mapped" onto a different group to provide more powerful
reasoning. (This goes rather beyond the extent of classification used in
TEIRESIAS.) The re-formulable approach of TIMM (Cooper, 1984) would seem to
be irrelevant to this problem (having a fixed and static representation scheme)
although apparently able to expand a knowledge base consistently.

Workers such as Michalski and contributors have apparently produced some
successes in ‘learning’. Michalski and Chilausky (1980) use the AQ11 algorithm to
correlate disease descriptions with symptoms and environmental conditions. They
then induce heuristic rules to provide diagnostic ability in a program. The me:a-
DENDRAL system of Buchanan et al. (1976) uses structural knowledge of chemical
compounds to produce rules explaining the observed degradations of chemical
compounds in mass spectrography used by the DENDRAL system (Buchanan and
Feigenbaum, 1978).

By the use of automated ‘discovery’ in AM, Lenat (1979) tried to show that a
program examining its own knowledge could link parts of it together in new ways.
In this program, a base of ‘concepts’ of mathematics and a set of heuristics, with an
added notice-taking feature could generate potential regularities and test them for
relevance. They would then expand the knowledge. In his later work on EURISKO,
Lenat (1983) used a similar method of randomly making small mutations in the
values held in the slots of the (frame-based) generalisation hierarchy for the
knowledge. The heuristics were distributed over the frames and their slots so by

altering small portions of the hierarchy new heuristics could be created, which could

35

then be tested for beneficial improvements. The mutative mechanism was therefore
useful for acquiring new rules. The nature of the concepts and rules was described
later as being intrinsic to Lisp - as an expression of the A—calculus. Lenat and Brown
(1984) admit that the ‘discoveries’ that AM made were not surprising because Lisp
allows interpretation and examination of its own code. The ability to change
heuristics slightly and examine the results in terms of effectiveness is claimed as a
significant step by these authors, and could, indeed, be an important technique. One
difficulty with evaluating its worth is, however, the recognition of a valuable new
rule and the selection of appropriate data for the generative steps. Difficulties in the
selection of training examples for learning programs are noted by Bundy ez al.
(1985). An interesting point raised by Lenat (1983) in his review is the speculation
that natural evolution may progress by such methods. This has been the prevailing
view since Darwin. A major point of difference is that a powerful external selective
force exists in the case of evolution but would have to supplied by the author of any
program. Without prior knowledge of the likely area and form of useful heuristics
the program would be likely to produce them at a similarly slow rate to nature.

A different view of ‘learning’ is considered by Mitchell (1977). In the
candidare elimination algorithm, he proposes the partition of the rules, given a set of
training instances, into two sets: those for which the instance is positive, i.e. the rule
is applicable, and those for which it is negative. The rules applying to these
categories are regarded as a set. A distinction is made when one rule will apply to
only a subset of the other, i.e. it is more specific. As rules are found to conflict with
additional training instances they are removed. By making their conditions
‘minimally’ more/less specific as more instances are tried, the rules can be made to
account for all the examples. Eventually the set of rules is consistent. A fuller
account of how this could be used is given in the work on the LEX system (Mitchell
et al., 1981), an improved version of this technique. LEX acquires rules to control
the selection of operators in symbolic integration. Initially there are no heuristics and-

LEX will first find out how to use the terminal operators applying for cases where

36

there are no unsolved integrals. This is followed by an examination of the steps used
to do this and the generation of training instances for operator-applying heuristics.
The third step is to apply the instances to the heuristics for their refinement. Mitchell
et al. suggest the use of a problem generator to look at the current state of knowledge
and output more complex problems to obtain new heuristics. They do not state how
this 1s to be created.

A study of learning techniques by Bundy er al. (1985) notes the twofold
problem of the selection of training instances and knowledge of correct behaviour
that the newly learned principles should observe. These functions may be obvious to
the human observer but are not easy to automate. They also suggest that techniques
such as candidate elimination may be very sensitive to the order of presentation of
training examples.

A study of how best to acquire knowledge from domain experts was carried
out by Sweickert ez al. (1987). A formal interview provided the most reliable account
of rules. They also examined the use of problem situations to see what data the
expert would request, thereby inferring rules from the context of the data. A third
technique was to ask experts to rank a set of outcomes with associated (initial)
conditions with respect to their degree of relevance in a set of situations. Of these
three methods, the third was significantly inferior. The first was the best, but is not a
possible method for automation as is the second. The poor performance of the third
technique tends to indicate that automated knowledge acquisition by some variety of
rule induction might lead to poor results. (The use of this approach might be where
test data from, say, an industrial process is compared with the results of expert
control and a rule generator used to induce causal rules connecting the two - L.e.
rules from observation. If human experts find it difficult to elucidate rules, because
they take into account extra factors when adducing principles, it seems that in many
cases this approach will not work in an automated system.)

TEIRISIAS, AM and TIMM are systems to extend the knowledge they

represent. 7/MM and TEIRESIAS are particularly concerned with maintaining

consistency. In these, the knowledge gained is fixed and new knowledge must co-
exist with the original. A different representation of the knowledge is attempted by
Mark (1977). In this method the expert’s description of the domain is transformed
into a new form, re-formulating the problems to be solved. Instead of building
abstractions of expert knowledge to be manipulated, the program makes a
representation of the domain and maintains its interrelationships. Expert knowledge
is then communicated to this model which forms the expert’s view of the system and
a transformation is applied to it to produce a working KBS that solves problems
related to the real world. (The method in /MM is to produce rules as it digests the
description of the domain problem and then try to make the knowledge consistent -
i.e. incremental consistency.)

An important part of the usefulness of an IKBS is to be able to account for
the decisions it makes. One of the first expert systems, MYCIN, of Shortliffe er al.
(1975), featured an ability to show what path the reasoning had taken. Its ‘WHY’
option invoked the tracing of the rules used backwards towards the original goal, i.e
to any stage that the user requested. The explanation was given by an English
translation of the rules themselves and allowed the user to query why a particular
aspect was considered (‘HOW?’) to get more detail of the strategy involved. It also
could be used to examine the rule base itself. These methods formed the basis of
explanatory facilities in developments of the MYCIN system.

NEOMYCIN attempted to extricate the domain knowledge of bacterial
infections from the control aspects of expression of the knowledge (i.e. Davis’
metalevel knowledge). Clancey and Letsinger (1981) produced a separate and
domain-independent strategy scheme to do this which referred to the structure of the
problem space itself, that is, how and where causal knowledge about data and
hypotheses and world facts should be applied. Their ‘psychological’ model of
reasoning means that it is possible to adduce a rule to show why a particular line of
reasoning has been followed. In the context of medical diagnosis it was often

difficult to understand MYCIN’s line of pursuit of information etc. Clancey (1983)

38

considers the ways in which MYCIN can only re-iterate domain level knowledge and
is ignorant of the medical strategy on which it is based. Hasling er al. (1984) explain
how the strategic knowledge of problem solving is represented. A particular action to
investigate a line of reasoning is a task made up of several steps which can be
explained as such to the user. They also consider the problem of offering the
appropriate level of explanation to the user. In GUIDON, Clancey (1979) improved
MYCIN’s facilities to offer tutoring ability. The knowledge was re-organised so that
rules were abstracted into patterns of related context. Rules were now adduced with
reasons for their support and justifications. A record of past consuitations with the
student was kept to suggest the direction of dialogue. One way of elucidating the
path of reasoning was adding canned text, derived from an expert, to a pattern of
rules, which could then be presented as a justification for their application.

The SOPHIE system of Brown er al. (1982) was originally intended to be a
trouble-shooting program for electronic faults, using physical laws and modelling
constraint propagation to provide causal reasoning. It proved to be more useful for
teaching students how to diagnose problems in circuits by demonstrating the causal
mechanisms of its reasoning. It was also able to guess at the level of ability of the
student from the pattern of guesses of loci of faults, using a model of how learning
progresses. An interesting feature was the suggestion of useful areas of enquiry if
the student was unable to discern the nature of the problem.

BLAH (Weiner, 1980) supplies three methods of querying to furnish
explanations. A user can ask for an assertion to be substantiated given the state of the
system’s data base. Using the ‘CHOICE’ option, the system will accept two
assertions and select, with justifications, the better of the two. In its third mode,
‘EXPLAIN’, the system is more sophisticated. It models the user and itself as
having views of knowledge and deletes any information from an explanation path to
which the user already has access, i.e. in the user’s view. It knows, for example,
that if an assertion is supported by one fact known to the user and by another which

is unknown, it should find an explanation of the other justification. Weiner gives

39

examples of these features but does not state the mechanism of partitioning into user
and system views.

Swartout (1981, 1983) departs from the rule trace mechanism, and canned
text is not used in XPLAIN. System function is represented as a tree of goals,
starting from the highest of prescribing appropriate Digitalis therapy. Its intention is
to explain why the system does what it does. From a description of the domain from
an expert, an automatic program writer generates the working structure. There are
two generators for explanations, one which collects words form the knowledge base
output by the writer to make phrases, and another which is concerned with
determining what to say. In doing this, it is guided by the state of program execution
- seeking not to repeat issues that have been mentioned already - and by consulting a
list of aspects that are relevant to the consultation. (These are in turn derived by
association with domain principles originally enunciated to the writer.) The
development state of the system is recorded (indeed the manner of functioning of the
writer is by successive refinements). Neches er al. (1985) follow the method of
XPLAIN and use a causal model of the domain which records the nature of the
knowledge rather than how it should be applied in problem-solving. The range of
questions supported extends to justifications of behaviour or what a result signifies,
why some aspect was or was not considered at a particular stage, what definitions or
functions mean and the extent of knowledge on particular aspects.

Rubinoff (1983) defines multiple categories of rules, through a front-end to a
rule-based system, and, according to the category, attaches various types of
explanatory potential to the rule when used in reasoning. In addition, any concepts in
the rule are attributed importance in generating explanations according to their
position. Another feature is the ability to define a rule that generalises a group of
others, so that it can be used to explain them. The CLEAR system is in the tradition
of NEOMYCIN, because it uses a translation of rules to generate explanations.

A common feature of the attempt to reproduce an expert’s knowledge which

is adduced to assist understanding of the knowledge is a modification of

40

propositional validity by some attachment of an uncertainty. In general, these are
based on a statement that ‘if some premise is matched then assert a conclusion with
some degree of belief’. This is often based on some prior assumption that,
statistically, in a proportion of all cases where the pattern is found, the conclusion is
valid. Alternatively, a degree of membership to some category is applicable given the
pattern. This is the use of fuzzy sets (Zadeh 1979).

Perhaps the first use of uncertainty in KBSs was the certainty factors in
MYCIN (Shortliffe and Buchanan, 1984). This has been imitated in many expert
systems. It adds to a simple premise/conclusion rule an attachment of degree of
belief. This may be evidence against, as well as for, a conclusion. By propagating,
in a manner apparently influenced by Bayes’ theorem of prior probability, along a
causal chain of inference, a level of support for an eventual conclusion is arrived at,
based on positive and negative evidence. (It is noted that Shortliffe developed the
mechanism for propagation of evidence himself. The use of evidence in this way,
both for and against a hypothesis, was new to KBSs.) In practice, weeding out of
poor evidence is done by ignoring combined probabilities of less than a certain
threshold. Where a conjunction of evidence is encountered the least value of certain
is propagated. Conversely, disjunctions take the local maximum. It is questionable
whether treating low values of derived confidence as true is safe; similarly, the
combination of several pieces of weak evidence, taking the local maximum of them,
may result in the neglecting of relevant facts, where they may indeed combine to
something stronger. Cohen (1983) takes this as a failing of the scheme. Barclay-
Adams (1984) tries to show that Shortliffe’s certainty factors are equivalent to
Bayes’ Theorem, but notes that the evidence for and against a hypothesis should be
equivalent to a level of absolute certainty, e.g 1, but is often not. In response to their
perceived shortcomings in the certainty factor approach, an alternative 1s suggested
by Gordon and Shortliffe (1984), this time using the Dempster-Shafer method of

specific apportionment of belief to discrete partial elements in a hypothesis. The

41

‘frame of discernment’ allows that the evidence be explained by a set of exclusive
sets and the proportion of belief be assigned explicitly to each.

Cohen (1983) attacks all these numerical methods of belief assignment as
poorly based on realistic statistical measures - at least in the domain of medicine -
mainly on the point that prior probabilities are practically impossible to be sure of (a
requirement of the Bayes’ approach, but not of the Dempster-Shafer theory) or are
generally not known. He believes that the values assigned to certainties reflect more
on the exigencies of making the system give the desired response rather than true
statistical measures. He prefers to define two levels of belief: firstly relating to the
nature of the evidence, and, secondly, to the qualitative strength of the evidence.
Thus, the relative worth of evidence is described as well as where it comes from.
This acknowledges that the apportionment of exact values to the origin of evidence is
arelevant but impracticable requirement of the Demspter-Shafer theory. A significant
improvement could be gained by using the ‘endorsements’ on both sides of rules. In
this way an element of uncertainty is collected in applying a rule as well as making
conclusions from it. He suggests that the accumulation of endorsements as rules are
chained might cause problems in terms of space but that some heuristics might be
applicable to prune the older endorsements as the line of reasoning lengthens. He
suggests the categorisation of endorsements so that control rules could be made
differentially sensitive to the contexts accessed in the rule processing. The main
interest of his approach is to demonstrate by adequate, not quasi-statistical,
attachments the nature, origin and reliability of the evidence and reasoning. Cohen
and Greenberg (1983) suggest how this technique could be made to drive goal-
directed reasoning to determine fruitless lines of enquiry. Sullivan and Cohen (19853)

use endorsements to reason about a user’s actions in order to interpret the likely

intention.

Chapter 3 Issues addressed by the work

The object of this research is to find ways of handling the complex statements
of constraints applying in the paint shop. Some knowledge is declarative, some best
described by procedural representations. It is desirable that as little knowledge as
possible is hidden in large blocks of code, where it is hard to explain its significance.
Another aspect that presents difficulty is the possibility that new rules will be stated
at various times and these are likely to have differing contexts of applicability. This
suggests the need for I%lultiple representation schemes. These types of problems are
thought to be common to many different domains in manufacturing as a whole.

There are several aspects to forming a solution for the paint scheduling
problem. The major problem is to find a representation scheme that will allow both
declarative and procedural aspects of the knowledge to be captured. In order to be
useful the reasoning path must then be explainable. A system that can allow the
specification and use of new types of knowledge, in this case constraints, would be
an improvement over the algorithm adopted in the factory at present. It would be
more generally useful as well for systerﬁs where knowledge of improved operating
practices were to be acquired over time. To aid acquisition of new principles the

scheme used should provide some facilities to assist users to express new rules and

concepts and alter existing ones.

3.1 Why not use a mathematical programming solution?

Finding the best available solution for the paint problem is formally
equivalent to the travelling salesman problem. If the objective is to change paint

colour in order to minimise the costs associated with deviation of the production

43

profile with respect to the order cover, then the example given by Gilmore and
Lawler (1985) should be a solution. The obvious difficulty is to prescribe cost
functions associated with maintaining the colour for the next body and changing it.
These would presumably be obtained from lengthy studies of the cost contributions
in the factory from the interactions of the known constraints. The cost functions
would need to be a set of linear constraint terms. It is indeterminate whether the
costs in this case have linear interactions. One important difference between the
well-known applications of linear programming, for example, and this case is that
the program, at any instant, has only a view of a small amount of the total input that
is significant. The shift order cover is known at all times and so is the production
profile to date. If the whole sequence were known in advance then a good
optimisation could be achieved, ignoring the chance of a random paint failure. There
can be no guarantee that statistically-based projections of what the future sequence
might be, given the current input, would allow a suitable level of optimisation by a
method based on numerical calculations. This is because the use of probability
considerably complicates a linear expression of the model. Also, there is a
possibility that recognition, on a statistical basis, of what type of response should
follow a certain input, will fail if the matching is close but inappropriate.
Linearisation presents additional difficulties when constraints have multiplicative

effects on each other. This makes a model inherently non-linear.

44

3.2 A representation scheme for paint scheduling

The main problem in handling the available knowledge is that the expression of
‘constraints’ depends on context. Thus, if used as rules, a mechanism would be
needed to ensure their applicability as such rules. Some partitioning of the rule set is
mandatory in such cases. A popular approach in the literature is to use a blackboard
scheme with rules of the same ‘interest’ grouped together, where their expertise can
be brought to bear on a given type of problem. Activation of a knowledge source
could be used to cause expression of certain rules, for example those determining
batch size. A global blackboard seems undesirable because a control scheme for
blackboard and knowledge source(s) would require a complicated means of control
of rule interpretation. This control would probably have to be resident in routines
constituting a blackboard-handler or attached to knowledge sources themselves. A
number of differing rule sets and contexts for expression in knowledge sources
might increase the amount of procedural code that is obscured from sight. A
motivation in this work is the wish to make as much of the processing as possible
visible to examination. Thus, blackboard-type schemes following Erman ez al.
(1981) did not seem easily applicable, nor did the rule bases annotated with
procedural knowledge, e.g. the approach of Georgeff and Bonollo (1983) or
Gallanti er al. (1985). The logical association of concepts advocated by Aikins
(1979) does seem a better framework for organisation of data and code, but a more
structured and tightly controlled design seemed more practicable.

The use of a frame structure was considered. This would have allowed
activation mechanisms to be attached to rules (and groups of rules, by inheritance).
One disadvantage is that the nature of the slots of the frames would be open to
examination by other frames, and for reasons of control, discussed later, this is not
wanted. The characteristic structural association of context and rule suggested that

object-centred representations would be helpful. The declarative means of grouping

associated aspects of items was considered a significant benefit of object-centred

45

schemes. The making of classes sensitive to particular messages, by definition,
suggested a means of arranging for rules to be activated as groups.

With these considerations in mind, the OPS environment seems attractive, as
does Smalltalk. A problem of using these would be that they could not function in
the operating situation pertaining to most industrial applications. I am not suggesting
that they would be impossible for implementing the representations that are
required. In fact, the facilities for rule expression and the ability to define objects in
OPS-5 would provide a good environment; similarly the structuring power and
expressiveness of Smalltalk-80 could be used to good effect. The implementation of
the representation scheme discussed in Chapter 6 was influenced by the philosophy,
if not the coding methods, of practical object-centred language extensions suggested
by Cox (1986).

The encapsulation of objects to be used is seen as a way of allowing
extensions of the system to reflect additions to knowledge as they are made. This is
rather like the declaration of new predicates as pieces of code in many Al languages,
when combined with the creation of new classes to reflect new contexts. The
structure detailed in Chapter 6 shows how these aspects are catered for. Rules could
be instances of classes which are sensitive to interpretation by responding to
messages asking them to interpret themselves. This allows the definition of many
different interpreters according to the type of rule required. The apparent
disadvantage in this is offset by the considerations that the interpreters themselves
do not have to be anything but small methods, which could probably all use the
same basic syntax, and that most rule classes only use one type of, inheritable,
interpretation. The control aspects of rule expression, in this formalism, are
abstracted to the variables of the rule classes themselves, so they are observable.

Most production systems use a single, complex, interpreter which hides a lot
of control knowledge internally. The ‘working memory’ of my system will be the
class structure itself. A slight disadvantage is that the database-handling mechanisms

are not centralised, but are methods of the classes to which they belong. The control

46

mechanism strongly adheres to the object-centred paradigm. All access to instances
is via their own modes of control, using messages. This has the benefit of the flow
of control being immediately traceable, both in rule expression and in other traffic.
Rules themselves are mediated by evoking more message traffic. The conditional
and action parts are expressions which form messages on evaluation. In this way a
single representation scheme allows expression of rules, objects and control. If
desired, the access mechanisms to all objects for enquiring and setting values could
be attached to the super-object of the hierarchy, by two special methods which
access the object definition. By inheritance, then, all memory references are unified
as if the class structure were a more conventional working memory. Rule classes do
not, then, respond to updates, and the production memory is logically distinguished
from the working memory.

A benefit of this scheme is that procedural knowledge is clearly stated in
methods attached to classes. The complexity of most methods is likely to be small
and the declarative power of rules using them is greater because the methods
express their origin which is likely to be a readily understood context, already
defined. Control knowledge, e.g. of rule expression, is not necessarily put away in
some hidden procedure. In this scheme, the control rules can be expressed as such,
as and where appropriate.

Al environments available seemed to provide some of the important features
but would not have been credible as delivery systems for a working solution. The
necessary supporting software, a simulator and test-bed, would have been difficult
to write using them so C was used. It seemed feasible to provide the special object
environment also in C, so the KBS will be developed in that environment, with
UNIX, as a part of the simulation. This also avoids some of the inherent difficulties
in using mixed-language representations.

The literature provided many indications of what might prove useful for this

type of problem. The techniques resulting reflect the distillation of a suitable

environment from many parts.

47

3.3 Acquisition techniques

The use of ‘context-sensitive’ rules leads to the use of a knowledge
definition scheme which will be discussed in Chapter 6. Davis’ approach in
TEIRESIAS offered a way to use the structure of the knowledge, implicit in the
class definitions, to guide acceptance of new rules. The development of a ‘meta-
definition system’ to do this seems close in spirit to his ideas of metalevel
knowledge. It reflects my view that the nature of the knowledge in this kind of
application is hierarchical and can be made available to structural Inspection, perhaps
in the way that Clancey (1985) sees some knowledge as ‘epistemological’.

In terms of exténding a KBS, the object-centred approach seems useful in
maintaining consistency. Classes, when correctly defined, encapsulate a model of
some aspect of the world doméin that is a whole and has clear relationships with the
other models. If new information about the domain is added, which does not
contradict the existing model, it should be possible to add it by adding a new class
to represent an extra model. In this sense, the paradigm is of a set of internally
consistent models whose interactions cannot be affected by the addition of a new,
internally consistent, model. Practically, rules reflecting a new set of principles can.

be adduced by adding a new class. This will be discussed more fully in Chapter 6.

48

3.4 Practical and analytical work

An analysis of the nature of Istel’s algorithm for colour allocation is made in
Chapter 4. The significance of the principles (‘rules’) of scheduling is assessed and
is to be read as an introduction to Chapter 5, where the performance of the algorithm
in tests is recorded, with an evaluation of such performance in terms of satisfying
the criteria of flexibility, ideality of production etc. (as noted in Section 1.7)

The practical work done on the paint scheduling problem consists of four
sets of related programs forming the necessary utilities for a knowledge-based
approach. These are:

1. asimulator;

il. a statistical analyser for paint performance;

ili. an object-centred programming toolkit; and

iv. an editor for meta-descriptions of object-centred systems.

The former two have been developed to test the performance of the
knowledge-based solution with respect to the ‘conventional’ procedural approach
and are described in Chapter 5. The latter two form the basis of an object-
programming environment which has been used to develop a program to do paint
scheduling in a knowledge-baséd manner: they are described in Chapter 6.

Chapter 7 discusses the objective approach to scheduling as described in
Chapter 6 and evaluates this approach in terms of Istel’s algorithm. Chapter 8
discusses the work as a whole, with relation to flexible manufacturing as well as

providing a useful approach to reactive scheduling.

49

Chapter 4 An assessment of the scheduling

algorithm

4.1 An examination of the colour allocation algorithm and

‘optimisation’

Istel’s algorithm for colour allocation could be summarised as ‘pick the least
achieved colour with maximum permitted batch size’. In this sense, least achieved
means that colour which is, proportionately, the one with the lowest ratio of BIWs
painted to orders outstanding, in the current schedule.

Orders for the various permitted combinations of body and colour are
viewed in two ways: the achievement counts the number of BIWs successfully
painted and the requirement shows how many BIWs are still to be painted. The
intention is to keep production in the different colours balanced, so that one colour
does not dominate over the rest. In practice, the ratio of achievement to requirement

is, ideally, fifty per cent. It is also hoped that the same will be true of BIWs painted,

namely that the achievement : requirement ratio of different BIW types should also

be fifty per cent. The effect of achieving would be to maintain production in line
with overall orders. It is noted that this ratio for BIWs is not catered for explicitly in
the colour determination algorithm used by Istel. Colour allocation is done on the
basis of the ratio (achievement proportion) for colours. To determine the best colour
to paint a batch of BIWs, the achievement proportion for each colour is calculated
by including the batch size in the value for ‘achievement® (and, incidentally, not
subtracting it from the requirement, which is still the denominator). The best colour
is that with the lowest value for the achievement proportion. This is, apparently, to

allow for the change in the colour ‘achievement’ when some BIWs have been

50

ey

AT
A
R e !

T —————
Lt . 7

allow for the change in the colour ‘achievement’ when some BIWs have been
achieved when the batch has been processed. The criteria for establishing best batch
colour are, then, partly derived from rules governing what size the batch must be.

The rules for size batching are:

1. A batch should be of at least a minimum preferred size, minpb (for the
colour being considered);

ii. A batch should not be of more than a maximum preferred size, maxpb;

iii. Every BIW in the batch must have some requirement for the body/colour
combination it represents;

iv. The next batch must be of a different colour, even when keeping the
same colour would be possible and the most favoured (i.e. the achievement
proportion would still be least for a new batch of the previous colour).

If no batch can be determined by these rules, a set of default rules applies:

v. If the previous batch can be extended by allocating the next BIW to the
same colour, i.e. if it has some requirement in that colour, allocate this BIW to the
colour of the previous batch (in effect, allocate a singleton batch, without changing
colour). This rule applies only when the total number of BIWs painted in one
sequence is less than or equal to the maximum batch size, maxb;

vi. If all else fails, find the least achieved colour for the next BIW (i.e. fora
singleton batch).

There are extra rules which pertain (e.g. a colour is not considered if it has
been switched off, through deterioration). It is also possible to prioritise a number
of particular body/colour combinations so as to favour their painting. This is done
by specifying, in rank order of preference, the numbers of BIWs, in particular
colours, which should be painted as a priority. Thus, if any priorities have been
specified, the colour scheduler looks (in order of preference) to see if a batch
containing a priority body/colour combination can be scheduled. If a priority batch
is found, the scheduler disregards achievement proportions of the colours and

allocates the derived batch to the colour of the priority combination. In this way, the

51

scheduler may depart from the ideal of attempting to keep production in line with
requirements.

The algorithm attempts to reduce the amount that a particular colour has been
under-painted. It provides for the largest possible immediate reduction in
requirement for the colour, which may not produce the ideal state. It seeks,
implicitly, to minimise the harmful effects on productivity caused by the limitations
of the hardware's performance. This is done in several ways.

Colour constraints are of several kinds, of nominally two categories. First is
the non-availability of a colour due to being unable to use it, e.g. when the supply
feed becomes clogged; this is an absolute constraint. The second kind is the removal
of a colour due to imperfections in its quality which will alter the proportion of
painted bodies which are sub-standard and need recrification. These ‘failures’ in
achievement are added back to order cover if rectification is unsuccessful. Though
not represented in the reasoning, quantifiably, the behaviour of the scheduling
algorithm is modified.

The first category of constraint has a random probability of occurrence,
which 1s probably dependent on the length of time since the last clean out of the
system. Thus a larger batch will, in any case, be more likely to be subject to
interruption than a small one, and the risk of interruption will increase as the
production shift goes on.

The latter category is stated to be due to be due to variations in the quality of
paint during batches. These effects mean that optimisation is not being done on
colour or batch size alone.

There is a possibility that a body may have to be be painted, by an operator,
in a colour for which there is no order cover, because the scheduler has been unable
to make a valid batching decision. This means that lack of order cover, i.e.
requirements for the body/colour combinations on the conveyor, is a relative

consideration in determining the batch size and colour.

4.2 Achievement and batch sizing

Colour and batch size are determined together. The above ‘constraints’ are
abandoned when no ‘valid’ colour is possible in ‘crisis allocation’.

The intent of Istel’s algorithm is to maintain as closely as possible the
distribution of colour/body achievement with respect to the distribution within the
order cover. This suggests an ideal of a fixed ratio of one to the other.

Where achievement in colour i is A/ and total orders for i, Oi, the achievement

proportion (a.p.)is Ai + b _for batch sizeb. (1)
04,

The colour selected will be that i for which this value is least, if b is at least the

minimum size (minpb).

To keep achievement in line with order cover, the ideal achievement at any
time for colour, Ai , should be related to total orders O, Oi, and the total
achievement, A: a proportion of A distributed equally in colour i.

Sodi = 0i.A/1 0)

The most under achieved colour is that for which Ai - Ai, the deviation from
ideal production, is greatest. Consideration of b involves factors affecting both the
colour constraints above and implicitly makes the distribution of orders for bodies in
the various colours significant, b reflecting the bodies on the line. The use of a
second measure of ‘goodness’, the difference between ideal and actual achievement
derived from (ii) i.e. Ai - Ai, would have an effect, implicitly, also for body
distribution because it takes into account all orders (across all colours and body
types) but the first (i) does not optimise between body types. (‘Good” is implied
by the value for Ai - Ai being small). The disparity is explained in part by the
observation that batch size is biased by three ‘constraints’: minpb, maxpb and

maxb, which vary across colours.

MAXPB

@

5] MINPB

=

S

)

50

MAXB
&
batch size

Figure 4.1

Using the ‘goodness’ of a decision as a measure of its desirability the batch
size is regarded somewhat as shown in Figure 4.1, since, in the ranges between
these constraints, no explicit preference is expressed on increasing size; the
(random?) input determining what size the batch will be.

This means that between minpb and maxpb the desirability of a batch
increases with the batch size. This is because the system attempts to obtain the
largest batch it can. The dependence of ‘goodness’ of an option on increasing batch
size is ‘linear’ in this range. Possibly undesirable consequences may follow as a
result. The behaviour of the scheduler appears to be based on not discriminating
between batch sizes between minpb and maxpb. So long as BIWs have requirement
they are added to any potential batch, between these limits. The inclusion of each
extra BIW in the batch depends on the probability of that BIW having requirement.
This is probably not equal between subsequent BIWs, but the scheduler ignores any
differences, so it is reasonable to regard the automatic addition of as many BIWs as
possible to the batch as a linear increase of goodness with batch size. Consider three

colours, pink, red and blue (ignoring body order cover distributions) with the

following total initial requirements (orders) and achievements, for a potential batch

of one body (Figure 4.2).

Colour Achievement Requirement a.p. 1deal achievement
Pink 60 600 61/600 = 0.102 127x600/1260 = 60.5
Red 6 60 7/60 = 0.117 127x60/1260 ~ 6.05
Blue 60 600 61/600= 0.102 127x600/1260 = 60.5
Figure 4.2

Thus for a batch size of one, the choice is pink or blue, based on their
having the equal lowest a.p. The final deviation from balance is greater with
increasing batch sizes. To see this, suppose that 40 bodies, of any colour, could be

selected (Figure 4.3).

Colour Achievement Requirement a.p. ideal achievement
Pink 60 600 100/600 = 0.167 166x600/1260 = 79.0
Red 6 60 46/60 = 0.767 166x60/1260 = 7.90
Blue 60 600 100/600 = 0.167 166x600/1260 = 79.0
Figure 4.3

Red is never selected. There are two reasons: firstly, red has less (absolute)
requirement than the other colours; secondly, a big batch is generally selected in
preference to a small one, leaving red disadvantaged because of the relative
distribution of requirement across colours and the likelihood of not having sufficient
requirement left to afford any but the smallest potential batches. This gives rise to
the possibility of leaving a ‘pool’ of requirement for body/colour combinations
which is never achieved. The final deviations from ideal behaviour are generally

maximised because a colour is penalised heavily by having less requirement lefr than

55

an existing maxpb value for another colour. This says that maxpbred must be used
in this context to ensure, arrificially, production of red, i.e. it becomes so low as to
force other colours out. Now this is exactly what maxpb does not reflect: it should
be a measure of the desirability of batch size for a colour due to physical factors,
such as how many cars of the same colour ought to be handled in a row, e.g. for
adding trims. Indeed, the value of maxpbred would have to vary as requirements
with respect to other colours change. As requirement for red becomes small and a
red batch thus harder to select, to allow red to be scheduled, large potential batch
sizes for this colour would be ignored, by using a lower value for maxpb. The
lower batch size for red would then decrease its a.p. with respect to other colours
and might then allow it to be selected. Maxpb and batch size cannot then determine
even production unless all colours have similar availability of body types with

similar requirements and equal batching parameters.

4.3 Ideal achievement as a measure of ‘goodness’

If the above measure of deviant (non-ideal) and correctable behaviour, by
using the criterion of closeness to ideality, is intended to be used as a meaningful
index, how best then to use it, assuming that, in general, the bias towards batches
of maxpb BIWs, wherever possible, means that it is not obeyed - although the
stated aim?

In the example given, with pink and blue having equivalent order to
production ratios, if, say a batch of exactly forty bodies can be done in either
colour, several effects are possible. If, firstly maxpbpink and maxpbblue are greater
than forty, say maxpbpink = 60 and maxpbblue = 50, and pink’s a.p. is calculated
before blue’s, and if, being the same, it is preferred because pink is ordered before
blue, say, the wrong decision is likely to have been made. This is because the

values for maxpb express the convenience of having batches of a certain maximum

56

size. The algorithm is biased towards giving a batch size as close as possible to
maxpb, so, presumably, maxpb is the most desirable batch to achieve at a time. In
this case the batch is two thirds of that ‘optimum’, whereas forty blue bodies would
represent a decision of four fifths of the optimum; proportionately one fifth better to
‘ideality’, if the measure of that is maxpb.

Consider a second case. The proportions are as before; at this point they are
in the nearest to ideal state for pink, red and blue. Assume possible batches for the
colours are pink = 20, red = 3, blue = 25. A; values are approximately 69.5, 6.1,
and 71.9, respectively, so the deviations from ideal, Ai - Ai, are approximately
11.5, 2.8 and 13.1 (Ai pink = 80, Ai red = 9, Ai blue = 95). In order to relate these
to the relative distributions over production between the colours, if these differences
are divided by the achievements, a clearer view is given of the differential
behaviour: pink = 0.13, red = 0.05, blue = 0.15. This would suggest that red is the
favourite and blue the least desirable. This might well be a realistic group of batch
sizes: red = 3 is likely because few red bodies are required, implying that red is not
required over many body types, which are likely to be those less in demand.
Compare these values with a.p. values: pink = 80 / 600 = 0.13, red = 15/ 60 =
0.25 and blue = 85 / 600 = 0.14. This measure gives the same preference to pink
over blue but really discriminates against red, which may be the hardest colour to
allocate, thereby wasting an opportunity to achieve some difficult orders.

A third consideration is that the state after the decision is not considered
accurately in the above calculations and it is an inaccuracy that may be costly. This
is because the orders after the batching should have the batch size subtracted from
them. The a.p. should be Ai + b/ (Oi - b). On the same basis, the ideal
achievement should, more properly, be (Oi - b) x A/ (O - b), given that, in the
above calculations, & had already been added to the initial value for A. When values
for Oi and O are large, relative to A and Ai, the difference may be small, but when
the orders are becoming exhausted at the end of the shift the discriminatory power

of the a.p. is lessened and, indeed, the value for b (as a component of the

57

achievement quotient) becomes overly significant, and is forced to reduce. The
limitation of batch size is governed by maxpb, or is supposed to be, so the
algorithm would be ignoring maxpb values some of the time: the input would be

determining that no batches of size maxpb were actually possible, because there

would be insufficient requirement for that size of batch.

4.4 An alternative basis for ideal behaviour

The above discussion of batch sizes assumes that scheduled batch sizes are

attainable. This cannot be guaranteed. Crisis allocation is able to be invoked as

required. Since the physical minimum minpbi batch size is regarded as a constraint it
might be best to schedule this number and this number alone. On successful
completion of minpbi bodies a decision could then be taken to increase b or change
colour to some more favoured value for i. By specifically attaching utility values to
various colours according to the different criteria specified, reasoning could include

more subtle and flexible methods, choosing the value with the highest score.

Chapter 5 A statistical evaluation of conventional
paint scheduling

5.1 Simulator

The factory paintshop is represented by an incremental simulation of the
progress of unpainted body shells through the paint section. The simulator
program, SIMULA, is written in (un-enhanced) C and operated under
‘standard’ (BSD 4.2) UNIX. It functions like the control console for the paint sub-
system. It comprises a database-handler, for the order cover and production totals
for colours and body types and also the conveyor-line contents; a control panel for
modifying constraints, priorities and order updating; and, finally, the paint
allocation simulation.

From a series of menus the user has the ability to inspect and update the
contents of files which contain details of the various colours and body types defined
and also the map of the conveyor line. The purpose of the simulation is to
demonstrate how the system should work, given the database contents. The map is
updated from the end of the queue, i.e. going into the paint section from assembly;
those bodies shown in the map are in the ‘visible’ region for paint-spraying
purposes and those at the head of the queue are ready for painting.

The user can only add bodies to the queue as those at the head are
processed. Details of outstanding orders, production totals and constraints on
colours, etc. are updatable. The painting simulation can be operated In two ways.
The current line sequence is analysed with respect to the order cover profiles of
colours and body types - according to the algorithm in Istel’s functional
specification (Istel plc 1985). The user can select batch operation, in which the

program finds the optimal batch size and colour, processing that number of bodies
o

59

o oy

e

T P S R T R

e B e S

in the colour determined and updating the database accordingly,

or single-step
simulation. For single-step operation the user is presented with the optimal batch
size and colour and then indicates if the program should paint the leading body as
determined. The user can opt to over-ride that and is informed of the alternatives. If
desired an invalid colour/body type combination may be selected but will be
queried. By single-stepping through a batch the user can simulate the effect of a
sudden colour constraint, e.g. due to degradation of paint quality.

There are several co-related ‘functionalities’ represented in the above
simulator. The database-handling ‘contains’ the efforts of the tracking and other
sub-systems, with regard to orders and location of system entities. It also reflects
the action of a booth operator in changing system state (e.g. constraint posting) and
over-riding of system decisions (e.g. colour allocation) as well as the painting sub-

system itself.

5.2 Statistical analysis

A statistical simulation of the behaviour of the colour allocation algorithm is
possible using two programs, ORDER and PAINT.
The menu-driven program, ORDER, allows:

a) the generation of semi-randomised line sequences for processing;

b) the production of an order cover profile to allow the product of a) to be

processed;

¢) the processing (colour allocation) of bodies on the line by calling

PAINT;

d) analysis of the result of ¢).

PAINT is a stand-alone implementation of the allocation algorithm in

SIMULA which incorporates the ability to update the map and orders in a trial

database automatically after every batching decision. These two programs allow

60

S R AR Ao

"

T e e

pEiTE STt s s ——

SRR

batch testing of potential operating situations. It should be noted that alteration of
priority and colour availability constraints, and removal of orders is not done in the
processing. The purpose of the statistical analysis is to examine how well the

algorithm responds to a given database as a whole, in effect a simulation of ideal

operating conditions.

5.2.1 Line sequence generation

The generation of line sequences is done according to the order profile of a
given database (i.e. the relative proportion of orders for each body type/colour
combination). The degree of randomness of the sequence also depends on the
colour requirements across the different body types, in that its complement of body
types is covered by the overall orders in the profile and can always, a priori, be
processed without any bodies requiring painting without order cover (i.e. over-
painting). The distribution of body types in the sequence is biased by probabilistic
means: the first body is chosen randomly. The use of this is to see how order
profile (mirrored overall in the line sequence) relates to production as the

randomness of the sequence varies.

5.2.2 Order cover profile maintenance

A given profile can be scaled up to accommodate the volume of bodies in a
sequence. This means that, if say a sequence of 10000 bodies has been generated
and the orders total 5000, the profile can be kept relatively equivalent but orders

(and production) for the individual body type/colour combinations are scaled by an

appropriate factor up to, say, 15000.

5.2.3 Results of paint batching

The version of the paint scheduling scheme used (PAINT) records details

of each batch found (size, colour, allocation failure et c.) and outputs a file of

results.

61

OO

o

5.2.4 Analysis of batching optimality

ORDER can produce various statistical measures of how a given sequence
and profile behaved in processing. The (intra-)variation in achievements
(production) for colours, body types and body type/colour combinations are
computed and show how even production was. An evaluation of the effect of
batching parameters (e.g. maxpb) on production is made by calculating what
proportions of the batches fall into the size groups (singleton, minpb to maxpb etc.)
These measures are taken as indicating some effect of the profile on production. A
UNIX script is used to reproduce a set of sequences based on the same profile, and
therefore statistically heterogeneous, which are then processed and analysed. The
statistical data are then considered over all sequences to show the effect of a given
randomness in input on performance, under the constraint of a known order
distribution, on performance. Measures such as deviations of performance across
colours are then examinable: there should be no significant difference between
colours if the algorithm is producing ideal behaviour. This technique also shows
what degree of randomness in input (of sequences) leads to poor behaviour, e.g. a
large deviation in achievement, from the order profile, across body types. Such
undesirable effects should be shown to be due to the algorithm, i.e. across a series
of different profiles and randomness of input, when considering the performance of
any knowledge-based scheme.

A discussion of the optimisation possible using the colour allocation scheme

is contained in the following sections.

5.3 Statistical estimates of ‘goodness’

When the PAINT program is run, it produces a batching decision. The
colour and size for the batch are recorded. Any ‘failures’ are noted as singleton
batches. For each batching decision ORDER calculates the deviation from ideal
that this represents and also the proportion of batches that fall in the ‘correct’
ranges, i.e. minpb to maxpb, and in the failed ranges. The total deviations for each
run as a whole are calculated to show the overall performance of the algorithm on
that sequence. A similar statistical analysis is made of the body distribution, to see
if the colours differ in their deviations of body achievement. The aim is to see
whether there a significant deviation of production of different body types from
orders.

The program, BIAS, allows a particular distribution of body types to be
generated for the sequence file. This is done by selecting a body type and producing
a sequence of this type. The number of each type that is repeated in the sequence is
governed by a statistical distribution. This statistical distribution selects a sequence
that is always entirely achievable. It determines the number of repetitions of each
body type according to the proportion of groups that should be of particular ranges,
i.e less than minpb, minpb to maxpb, greater than maxpb to maxb and greater than
maxb.

Using scripts to call ORDER and PAINT repeatedly on different
sequences, of the same overall body distribution, generated from bias values
generated by the BIAS program - i.e. degree of randomisation - using the same
order profile a number of sequences of the same overall distribution are produced.
Analysis of the results of the individual runs is done to compare the effect of the
distribution of body types in sequences with a given order profile on the
performance of the algorithm. If this is done for a set of order profiles, with
increasing matrices of body type X colour, the effect of increasing degrees of

freedom from colour limitation can be examined. This means that if the deviation

63

from ideal behaviour is dependent on those degrees of freedom, it should decrease

as the matrix gets larger. If it is much the same for all matrices then it is evidence

that the algorithm is sensitive to randomness.

The results of a set of tests on different order profiles are given and

discussed in the rest of this chapter.

5.4 Experimental conditions

A senies of experiments was carried out to estimate the effect of randomness
in input (BIW types entering painting) on the performance of the conventional
algorithm, in terms of evenness of production across body types and colours. It
was stated in the original documentation (Istel plc 1985) that the totals (i.e for the
rolling schedules) were accounted for on an eighteen-day basis and that updating
would be at least at daily intervals. It now appears that a more general practice is to
use a ten-shift (five-day) order bank (with possibly two updates per day, each shift
starting with a revised schedule). For this reason, the simulation of the paint shop
in these experiments was done on the basis of (as close as possible to) 10000 total
BIWs to be painted and, assuming an ideal starting state, 5000 total bodies painted.
The sequence to be processed was 2000 BIWs. This, then, represents some 20% of
the initial total. This number was chosen to represent a significant proportion of
requirement in order to test the algorithm under less than marginal conditions, 1.e.
when the total change in the ratio of required to achieved is not very small. The
value of 20% of the requirement to be processed is somewhat arbitrary, but was felt
to be not so big as to produce a distortion in the algorithm’s behaviour due to lack
of requirement left, at any stage, but large enough to test it under some realistic
‘loading’. It is, in any case, the proportion of requirement represented by a whole
day’s processing (i.e. without an update half-way through). The same set of bias

values was used to generate sets of sequences (of increasing randomness) for order

profiles of increasing size. The small

est profile contained a 10 x 10 matrix of
colours and body types. This was increased by stages to the largest profile of a 24

x 24 matrix. In all cases the occupancy (= 50%) was such that few colours had

few bodies available, few colours had most available and most had approximately

half.

The results were assessed in terms of whether colours had uneven
production (with respect to their initial proportion of all requirements), whether any
such unevenness increased with randomness and whether the amount of freedom of
choice for the scheduler (as represented by the size of the matrix: the largest is close
to an order of magnitude greater than the smallest in terms of body/colour
combinations) produces a different sensitivity to randomness of input. The measure
of randomness is not a scalar quantity. (It is based on the probability of one BIW
being the same the one ahead of it in the queue.) The randomness is represented by
an increasing tendency, so the overall trend is available, but the exact statistical
relationship of one datum to another, when compared with ‘randomness’, is

uncertain.

5.5 Measures of randomness

The biasing values used to produce the sequences are shown below (Figure
5.1). The three parameters in each biasing set determine the probability of the

repetition of any body type in the sequence. This is done according to the batching

parameters for the colours, in that the values of minpb, maxpb and maxb are

averaged across all colours. If the values are 4, b and c, for example, the chance of

any body being in a group of less than (average) minpb (minpb) bodies of the same

type is a: so that the proportion of groups of less then minpb bodies of the same

type tends to a. Using the same notation for mean values as for minpb, the chance

for a group of less than minpb is then b, for groups of minpb to maxb itis c. If ¢ is
o

65

less than unity, batches of at least maxb size have the probability of 1 - ¢. This is
intended to give varying distributions for the sizes of groups of the same body type
in sequences (and is applied to all order profiles). If the value of a is large, then
most bodies will not be repeated often in a group and if @ and b are small relative to
¢, a body is likely to be repeated many times. It can be seen that the first bias set
(#1) 1s moderately random, in that most body types are biased to appear in large
groups, whereas the last (#34) should produce a very random sequence. The reason
for the use of a mean value for these grouping bounds (i.e. the colour batching
parameters) to decide how often a body should be repeated in sequence is not
immediately obvious. This strategy is based on the fact that the batching parameters
are related to the number of achieved BIWs in a batch that can be tolerated, in that
these painted bodies are stored in ‘batches’ and there is a size of ‘batch’ for
different colours that is more convenient than another. Thus the behaviour of the
paint scheduler is made dependent on factors not immediately concerned with
orders or painting criteria. (The grouping of BIWSs placed on the conveyor may be
related to the storage grouping of painted bodies in the factory.)

When making a sequence of BIWs for these experiments, the total BIWs of
each body type are constrained to be within the requirement in the order profile. To
achieve this (so that no painting ‘failures’ occur due to lack of requirement for any
BIW in all colours) the following scheme is applied. A body type is chosen
according to the proportion of total requirement that it has. If body types 1, 2and 3
have requirement in the ratio 1:2:1, for example, then type 1 is given a 25% chance
of being selected (and type 2 50%, type 3 25%, respectively). This is done by
giving a range of values to each type (e.8. 0t00.25,>0.25t0 0.75 and > 0.75). A
random number is generated (between O and 1) and the range that this value falls in

decides which type is selected. As the number of BIWs selected increases, these

ranges are adjusted so that the (body type) requirement, less the number of BIWSs
already allocated of that type, is used: the outstanding requirement decreases so the

chance of picking the body type is reduced accordingly. Having selected a body

66

R

type to allocate, a certain number of BIWs of that type will be entered into the

sequence. The number of these BIWs depends on the biasing parameters (minpb
etc.) above. A size for a group of the selected BIW type is first selected. This is
done in a similar manner to the selection of body type. For the above values a, b
and ¢, the range for a group of size less than minpb, is O to less than a, for greater
than minpb to maxpb: a to less than b, and so on. Again, a random number (in the
range O to 1) is used to select one of these. The size is initialised with the (integral)
minimum of these ranges. It is then increased towards the upper limit. For a range
of n bodies, the chances of increasing by 1..n bodies is determined by taking
another random number, in the range O to 1. The interval O to 1 is then partitioned
into n equal ranges and the range that the random number lies within is selected.
Since the range represents one of 1/n, 2/n, 3/n etc., the quotient of these shows
how many extra bodies (than minimum) should be added.

Given this method of biasing, there is no even degree of increasing
randomness from biases #1 to #34 (below). Sets of parameters produce a range of
randomness in sequences. A linear estimate has been made of the randomness of a
sequence by calculating the average size of all groups of the same repeated body
type. If the number of consecutive BIWs of the same type is decreasing, on

average, then it is taken that the randomness is increasing overall.

5.6 Statistical measures of performance

For each profile, 12 sequences of equivalent distribution were generated and
processed (for each of the 33 bias value sets). Statistics for deviations are collected
for colours, bodies and also deviation from ideal behaviour (see Chapter 4). For
both colour and body measures, the value of requirement (initial) /ess achievement

(final) divided by the initial requirement is calculated (i.e. for each individual colour

instance. and for the total bodies processed in each colour). This should show how,

67

even or unbalanced production might be across the various colours (each compared
on the same basis). This ratio (i.e. achievement proportion) is set to 50% at the start
and should remain so if the scheduling algorithm achieves its purpose. The
corresponding values for each of the 12 sequences for the same bias and profile are
added together and their averages are recorded. (This is done for colours and bodies
in colours). This is to see whether a general trend exists from one bias to another
(the effect of randomness) and also to see if the size of the matrix changes the
sensitivity to randomness (i.e. across different profiles). As indicated in Chapter 4,
the ‘ideal deviation’ may give a more accurate view of the balance in production.
This is calcualated with respect to the whole achievement and requirement rather
than just within individual colours. Thus, it should be a more sensitive test of
unbalanced production and comparisons between values for different colours
should be more significant. (This tests whether the algorithm behaves as it should,
i.e. no qualitative difference should be present between the ideal value deviations
and those calculated from a.p.) Deviation from ‘ideality’ is also estimated for the
bias type as a whole (across all colours). The total number of batches in each
sequence is recorded for each colour and the cumulated total is saved for the overall
summary. This is done also for the singleton batches found.

The sets of bias values used to produce sequences are detailed in Figure 5.1
and part of a specimen sequence file for the first profile (and moderately random
distribution) is listed in Figure 5.1.

The values stated in the tables (Figures 5.9 to 5.14 inclusive) were
generated by the program ORDER or calculated afterwards from values recorded
during the runs. The measurement used as ordinal for many of the graphs, mean
BIWs/group, is a derived value. The number of BIWs processed, i.e. 2000 in
every case, was divided by the number of groups of BIWs in the sequence. This

value was taken to be the average group size. The 12 replicates’ values for mean

BIWs/group were then averaged (o give the stated result.

68

Using the same principle, the mean batch size produced was calculated from
the number of batches resulting from each run and the results for the 12 replicate
sequences averaged to give the values stated The values given for singleton batches
were also averaged for the 12 replicate sequences for each bias set .

For the colour deviations, the reduction in the initial outstanding requirement
achieved for each colour was found and divided by the (initial) outstanding
requirement, i.e. a form of achievement proportion. The mean value of these
observations was found and subtracted from each achievement proportion in the
sequence. Each value of difference was then squared and the sum recorded. This
sum was then ‘normalised’ by dividing it by the number (minus one) of colours
used - as it is over a small sample - and taking its square root. These numbers (one
per sequence) were summed and averaged over the 12 replicates. (For ideal results,
since 2000 BIWs are painted, the initial requirement of 10000 reducing to 8000, the
expected number of BIWs painted in each colour is 20% of the initial requirement.
The deviation from this, across colours, is a good indication of how even
production was.) The values are listed under ‘colour’ (deviation).

The ‘body’ deviation is a measure of how evenly production was distributed
across different body/colour combinations. Like the colour value above, the
proportionate change in initial requirement is calulated for each individual
body/colour combination. The difference from the mean of all results is squared and
the sum of these values divided by the number of combinations (minus one). The

square roots of the resulting values for each sequence are then averaged across the

replicates and the result given under body (deviation).

69

For the results stated, assume the following definitions:

ne = number of colours in the profile;
nt = number of body/colour types in the profile;
ci = colour of the i’th colour in the profile;
ti = 1’th body/colour type in the profile;
oci = initial (outstanding) requirement of the i’th colour in the profile;
aci = number of all BIWs painted in colour ¢; (for the sequence);
otj = initial (outstanding) requirement of BIWs of type ti;
atj = number of all BIWs painted of body/colour type t (for the sequence);
pci = ‘colour achievement proportion’ (after batching) for the 1’th colour;
pti = ‘body achievement proportion’ (after batching) for the i’th body/colour type;
P = mean of the pci values;
Pt = mean of the ptj values.
i=n¢

pei = (oci - aci) / ocy, thus € = chi /ne;
i=1

i=ﬂc

: , 2
the colour deviation 1s then \/ [Z(pcl —5)" / (n¢c — 1)].
=1

i=n[

pti = (otj - ati) / otj, thus pt = Z‘ptj / nt;
1=1

i=ﬂ[

-—2
the body deviation is then \/ [Z(pti O/ (ng - 1)].
i=1

70

Distribution biases:

up to mInpb minpb to maxpb more than max
0.00 1.0 ’ * Hll.nOmdl\pb

IT11111111111111111111711
.... group of 24 ...

333333
.. group of 6

111
... group of 3 ...

666
... group of 3 ...

1111
1111111
.... group of 11 ...

888883888883888888888888388883838
... group of 29

2

oo
[N
oo

... group of 7 ...

1111111
... group of 7

333
.. group of 3 ...

J N S O O O U U O O 0 O O O U O A U A G O
.. group of 27

3333333333333
... group of 13 ...

66666666666666666666666606
.. group of 25 ...

44
44444
.. group of 7

33333333333333
.... group of 14 ...

1111111
.. group of 7

Part of a sequence generated from bias set #1

Figure 5.1

71

Item# Low Medium High
1 0.00 1.00 1.00
2 0.00 075 100
3 0.00 075 0.75
4 0.00 050 1.00
5 0.00 030 0.75
6 0.00 050 050
7 0.00 025 1.00
8 0.00 025 075
9 0.00 025 030

10 0.00 025 025
11 0.00 0.00 1.0
12 0.00 0.00 0.75
13 0.00 0.00 0.50
14 0.00 0.00 0.25
15 0.00 0.00 0.00
16 0.25 1.0 1.0
17 0.25 0.75 1.0
18 0.25 0.75 0.75
19 0.25 0.50 1.0
20 0.25 0.50 0.75
21 0.25 0.50 0.50
22 0.235 0.25 1.0
23 0.25 0.25 0.75
24 0.25 0.25 0.50
25 0.25 0.25 0.25
26 0.50 1.0 1.0
27 0.50 0.75 1.0
28 0.50 0.75 0.75
29 0.50 0.50 1.0
30 0.50 0.50 0.75
31 0.50 0.50 0.50
32 0.75 1.0 1.0
33 0.75 0.75 1.0
34 1.00 1.0 1.0

Details of bias distributions

Figure 5.2

T o T e oo

5.7 Testing the Istel algorithm

In this section, tables showing the initial conditions for order profiles are
presented. The results of tests of the painting scheduler are discussed in section 5.4.
The values given show the colour order for each of the matrices used (Figures 5.3 to
5.8, see Appendix for the respective body file profiles). The summary values
(overall) for each bias for each profile are presented in Figures 5.9 to 5.14. (The
individual results for each colour are not given, some examples are shown for the
first profile - the 10 x 10 matrix.) Following these results, a series of graphs are
included to show the effect of randomness of input on various of the above
parameters of performance. A large number of sequences were generated for each
order profile. For this reason, individual results of the processing of each sequence
are not stated. The average results of each twelve replicates per bias set are stated for
overall production (rather than for each colour, the deviation across colours being
used to assess individual colour’s effects on behaviour). The biasing scheme means
that some points have very similar ordinal values (mean group size) but are generated

by very different bias value sets, which produce similar mean values, however.

Colours allowed Max. used (Total colour items set)

32 10 50
Colour minpb maxpb maxb Required Achieved
1+ 3 50 75 125 250
2+ 5 34 53 1512 756
3+ 4 40 60 908 454
4+ 4 20 58 1256 628
S5+ 3 35 80 1160 580
6+ 3 35 60 1572 786
7+ 5 15 40 1064 532
8+ 4 35 60 900 450
9+ 3 40 55 684 342
10+ 4 47 60 694 347

Profile of order cover #1: 10 x10 matrix

Figure 5.3

73

|
|
|

Colours allowed Max. used (Total colour items set)
32 12 70

Colour minpb maxpb maxb Required Achieved

1+ 3 50 75 422 211
2+ 5 34 53 452 226
3+ 4 40 60 740 370
4+ 4 20 58 356 178
5+ 3 35 80 982 491
6+ 3 35 60 1226 613
7+ 5 15 40 886 443
8+ 4 35 60 884 431
94 3 40 55 1156 578
10+ 4 47 60 1692 846
11+ 6 40 80 1646 823
12+ 3 31 49 1620 810

Profile of order cover #2: 12 x12 matrix

Figure 5.4

Colours allowed Max. used (Total colour items set)
32 14 94

Colour minpb maxpb maxb Required Achieved

1+ 3 50 75 444 222
2+ 5 34 53 698 349
34 4 40 60 460 230
4+ 4 20 58 752 376
54 3 35 80 694 347
6+ 3 35 60 910 455
7+ 5 15 40 598 299
8+ 4 35 60 1040 520
9+ 3 40 55 762 381
10+ 4 47 60 1330 665
11+ 6 40 80 1160 580
12+ 3 3] 49 1276 638
13+ 3 37 62 766 383
14+ 4 53 80 490 245

Profile of order cover #3: 14 x14 matrix

Figure 5.5

74

Colours allowed Max. used (Total col

our items set)

32 16 124
Colour minpb maxpb maxb Required Achieved
1+ 3 50 75 420 210
2+ 5 34 53 568 284
3+ 4 40 60 440 220
4+ 4 20 58 436 218
S+ 3 35 80 718 359
6+ 3 35 60 522 261
7+ 5 15 40 960 480
8+ 4 35 60 670 335
9+ 3 40 55 966 484
10+ 4 47 60 890 445
11+ 6 40 80 918 459
12+ 3 31 49 1118 559
13+ 3 37 62 1000 500
14+ 4 53 80 410 205
15+ 5 56 69 406 203
16+ 4 34 55 424 212

Profile of order cover #4: 16 x16 matrix

Figure 5.6

Colours allowed Max. used (Total colour items set)

32 18 165
Colour minpb maxpb maxb Required Achieved
1+ 3 50 75 322 161
2+ 5 34 53 396 198
3+ 4 40 60 338 169
4+ 4 20 58 418 209
S5+ 3 35 80 596 298
6+ 3 35 60 526 263
7+ 5 13 40 588 294
8+ 4 35 60 610 305
9+ 3 40 55 666 333
10+ 4 47 60 714 357
11+ 6 40 80 912 456
12+ 3 31 49 824 412
13+ 3 37 62 760 380
14+ 4 53 80 400 200
15+ 5 56 69 356 178
16+ 4 34 55 404 202
17+ 6 50 75 784 392
18+ 3 35 54 404 202

Profile of order cover #5: 18 x18 matrix

Figure 5.7

{ﬂ@ﬂ

Colours allowed Max. use

d (Total colour items set)

130
255
163
193
283
211
280
291
280
301
352
374
287
198
145
171
284
148
264

32 20 198
Colour minpb maxpb maxb Required Achieved

1+ 3 50 75 260
2+ 5 34 53 510
3+ 4 40 60 326
4+ 4 20 58 386
S5+ 3 35 80 566
6+ 3 35 60 422
7+ 5 15 40 560
8+ 4 35 60 582
9+ 3 40 55 560
10+ 4 47 60 602
11+ 6 40 80 704
12+ 3 31 49 748
13+ 3 37 62 574
14+ 4 53 80 396
15+ 5 56 69 290
16+ 4 34 55 342
17+ 6 50 75 568
18+ 3 35 54 296
19+ 4 34 45 528
20+ 5 20 60 780

Profile of order cover #6: 20 x 20

Figure 5.8

390

matrix

5.8 The effect of randomness on production

Differences in production result from different biases. This becomes marked
as the degree of randomness of input becomes large. Graphs showing various
parameters plotted against the mean size of groups (of the same body type) in the
input sequence show an increased randomness affecting behaviour (for all order
cover profiles) There is also an effect of the increasing degree of freedom of colour
choice as the matrix becomes larger, although the overall trend is similar. Figures
5.15, 5.16, and 5.17, 5.18, respectively, show the effect of increasing randomness

on the size of averages batches produced and the number of singleton batches.

76

e A A
{W@m

Values for batches and singles are given as the total over all (12) runs, and their

averages taken for plotting graphs.

10 colours

Group size Batchsize Singletons Colour dev.

1 12.8
2 13.9
3 14.7
4 19.3
5 21.1
6 16.8
7 27.8
8 31.0
9 33.6
10 35.9
11 53.7
12 53.0
13 53.7
14 60.1
15 74.1
16 7.20
17 9.13
18 9.91
19 14.5
20 16.0
21 11.9
22 27.9
23 26.5
24 27.1
25 3.90
26 5.57
27 8.50
28 9.27
29 18.3
30 10.2
31 2.75
32 3.73
33 3.99
34 1.74

Statistics for processing order profile #1 (10 X 10 matrix)

Figure 5.9

14.6
15.7
15.6
18.2
18.3
17.5
18.7
20.3
20.3
19.0
23.5
24.0
24.0
23.8
24.7
10.4
12.0
12.4
15.3
16.3
16.1
19.2
19.8
17.4
7.46
9.26
10.7
13.4
14.3
14.0
3.94
5.63
8.00
2.81

10.8

p—
8]

(@S ROV

[—y

O 1O 00NN

— = N W W A O
WARXANNNOOWWIR,AUNDOLOARND OO

LONWROROWDO DN OWULON OO oo A

N~ \D 15 W
SO
L) W 00

S

-

SESES
oW

441

0.021
0.018
0.013
0.012
0.015
0.020
0.015
0.016
0.020
0.022
0.017
0.020
0.015
0.023
0.018
0.020
0.019
0.022
0.016
0.019
0.024
0.018
0.024
0.023
0.023
0.021
0.020
0.019
0.018
0.028
0.029
0.025
0.022
0.034

77

Body dev.

7.90

NN OO
NS RUMEN Ne olbN I (O EN Na}

DW= U LI A R 0000 AU OGO U B B Lt Oy L

VOO RAEONN =W WOWULMWSI— OO — 0
O BNV UOOVOWIN IO WN =R O00 W WONW

(9]

et

|
g
|
I
i
i
g
|
?%
é
%
%

i
|
é
ig
%
|
g
g
i
|
|
%

S

peia e s

LI ST e o S

{w

12 colours

Group size Batchsize Singletons Colour dev.

1 12.7
2 14.6
3 16.3
4 22.0
5 22.5
6 22.2
7 25.6
8 28.6
9 33.9
10 33.9
11 51.3
12 52.6
13 52.6
14 60.6
15 71.5
16 7.66
17 10.2
18 9.86
19 17.9
20 21.1
21 19.2
22 22.5
23 25.3
24 27.0
25 5.25
26 7.17
27 7.58
28 14.2
29 14.3
30 12.8
31 2.68
32 4.81
33 4.69
34 1.69

Statistics for processing order profile #2 (12 x 12 matrix)

Figure 5.10

16.9
17.7

H
00
n

NN W I

O— v —O O W

R = = = 0 0 N — N
\J &~ 0o
o

WA QUnioWRooWu b & 13t

PO O —

0 N O NS R Lo s

—_
o0 ~

—
WO N O = L) = OB L) = L) = = = L0

O U oo U 0000 00 1=) 1= WO = I O U O 00 1 W 1

O OO 0O

~J

N B Loy

—_
N &Lt n

Lo
o

WNWAd— QRO oWwWnwwk

(e}

n
o)
@D

137
116
375

—
()

o

(OS]

w

0.020
0.017
0.018
0.016
0.017
0.022
0.023
0.019
0.021
0.023
0.021
0.021
0.028
0.032
0.029
0.032
0.036
0.035
0.026
0.026
0.028
0.025
0.027
0.033
0.047
0.040
0.038
0.031
0.032
0.024
0.056
0.041
0.041
0.347

78

Body dev.

7.72
8.73
7.39
8.26
9.17
11.8
14.0
11.7
11.9
11.5
10.7
13.5
14.5
16.1
15.6
10.7
9.09
11.6
11.0
10.1
10.3
9.98
11.2
14.7
12.9
10.7
11.7

10O O 1900 o
o O 00 W W
OO

B =

2 S
e

RS

{M&%twkwm&m;%w»mw\M&m

14 colours

Group size Batchsize Singletons Colour dev. Body dev.

15.1 15.0 1.50 0.013

1 4.25
2 171 17.1 1.08 0.012 3.72
30017.1 17.1 0.667 0.011 5.59
4 19.6 19.4 0.417 0.010 6.15
5 18.9 18.9 1.42 0.010 7.92
6 20.1 20.1 1.17 0.009 5.71
7 216 21.6 0.500 0.011 6.31
8 216 21.6 1.42 0.011 6.03
9 216 21.7 2.83 0.012 8.81
10 237 23.7 1.08 0.011 6.47
11 255 25.5 2.08 0.012 9.50
12 259 25.9 1.17 0.011 8.97
13 26.0 26.0 1.17 0.010 8.34
14 26.1 26.1 1.50 0.011 9.44
15 275 27.4 0.417 0.013 11.4
16 15.0 14.9 15.8 0.038 8.16
17 17.9 17.9 7.67 0.031 7.54
18 187 18.7 6.08 0.029 6.86
19 203 20.3 6.42 0.024 6.65
20 21.8 21.8 4.25 0.022 7.69
21 235 23.6 1.83 0.019 7.26
22 242 24.2 2.17 0.019 7.50
23 25.0 25.0 1.17 0.017 7.13
24 26.0 26.0 1.08 0.016 6.48
25 11.0 11.0 52.7 0.040 9.63
26 15.6 15.6 22.9 0.037 8.86
27 16.8 16.8 18.9 0.033 8.66
28 19.8 19.8 10.9 0.027 9.27
29 21.8 21.8 5.25 0.024 6.89
30 23.1 23.0 6.08 0.020 11.2
31 6.30 6.29 151 0.050 10.5
32 116 11.6 55.8 0.038 8.87
33 16.2 16.2 243 0.038 9.43
34 1.64 3.68 307 0.050 10.3

Statistics for processing order profile #3 (14 x 14 matrix)

Figure 5.11

79

;r,t

16 colours

Group size Batch size Singletons

1 12.9
2 15.2
3 15.2
4 22.1
5 22.5
6 4.4
7 28.8
8 28.9
9 35.1
10 32.9
11 51.0
12 51.0
13 534
14 57.2
15 71.5
16 8.00
17 9.65
18 10.8
19 17.6
20 19.0
21 19.0
22 25.1
23 25.2
24 29.2
25 5.28
26 6.90
27 10.2
28 14.9
29 17.5
30 17.5
31 2.71
32 5.05
33 1.61
34 1.65

14.1
15.7
16.4
17.9
18.5
19.4
20.7
19.8
20.9

R NN — = = NN
P EWR OV WG R G
QOO AOONI-AANAVRWLNO

—_
o U
—_

20.1
20.1
22.4
6.27
12.0
13.9
3.39

11

2.33
0.333
1.00

0.917
1.42

OOt i O N o
OO o OO

—
Ot a0 oo

Pt — (D
WANNON— WA BRRDNOOODOO—~00

MAN—WEUNROOAOUNUOAO I 10O -1

o0 ~d n

o

34.8
26.2

345

Colour dev.

0.006
0.007
0.007
0.007
0.008
0.008
0.008
0.008
0.009
0.010
0.013
0.010
0.011
0.011
0.013
0.021
0.018
0.017
0.014
0.013
0.010
0.014
0.014
0.013
0.028
0.022
0.023
0.016
0.018
0.014
0.027
0.023
0.019
0.473

Body dev.

7.68
6.70
6.29
8.09

—t et —_

— O \D 00 O 0000 ~1~100

O QLoD Lt h 00k W O\ < b W
AU OWUAUh SO

SO KU WD

BOOOANNNONONRARIAU UG

L0~ W) 00 — D) L~ — 00 B L) WO 1
B O 00 B9 = 30 D O O —

[

Statistics for processing order profile #4 (16 x 16 matrix)

Figure 5.12

30

TS

i

18 colours

Group size Batch size Singletons

1 14.2
2 16.4
3 16.7
4 22.3
5 25.1
6 28.6
7 29.1
8 31.8
9 37.4
10 36.2
11 50.7
12 51.6
13 56.8
14 56.8
15 69.5
16 8.54
17 10.2
18 12.8
19 15.9
20 16.1
21 242
22 26.3
23 32.1
24 33.8
25 6.10
26 8.00
27 9.92
28 12.8
29 14.3
30 18.7
31 3.05
32 5.50
33 2.07
34 2.01

tatistics for processing order profile #5 (18 % 18 matrix)

Figure 5.13

14.1
14.7
14.7
17.9

B — = = = = O R R BB — = = = PO RO N R N N

FPODNA= OO R = WININOOWAUNW DL AWLWL— O
RO R OUOPRPOOPRWOOLOVOWNULOD

—
~] 00 W1 \O

w

~1

0.750
0.500
0.333
0.583
0.417
0.167
0.083
0.833
0.417
0.500
0.667
0.583
0.250
0.083
0.750
7.92

— I\
o
—
N QWULLHW O]

1219 900 L0 1O 19— 19 19 L) O
ONWVWNITOWVXXONNAWLAWO —

b L b

[USIEN |
=
~

()
=
W

133

Colour dev.

0.007
0.006
0.007
0.007
0.008
0.007
0.008
0.009
0.009
0.013
0.011
0.013
0.011
0.012
0.012
0.022
0.018
0.018
0.011
0.013
0.012
0.015
0.014
0.012
0.027
0.023
0.021
0.018
0.018
0.014
0.032
0.027
0.024
0.034

81

Body dev.

6.00
6.29
5.98
5.57
6.33
6.77
6.93
7.31
7.07

21

BN TNU U DN L L 00
N OPHEOPRPORXODOA—LODWLWOOOWNL
NN OO0 OWVWOXPRERNNOWOOWUNDNDO—

20 colours

Group size Batch size Singletons Colour dev. Body dev.

1 13.5 12.7 0.250 0.006 5.30
2 15.1 13.5 0.500 0.006 5.71
3 16.8 14.0 0.000 0.006 5.44
4 222 15.6 1.42 0.008 6.41
5 20.2 15.6 0.167 0.007 5.94
6 25.0 17.4 0.250 0.008 6.40
7 26.2 17.7 0.250 0.009 6.31
8 29.6 16.9 0.833 0.007 6.21
9 33.0 18.0 0.583 0.009 6.51

10 35.0 18.9 0.417 0.010 6.58

11 49.7 21.1 1.17 0.013 7.17

12 53.0 21.9 0.750 0.012 7.31

13 56.8 21.7 1.08 0.012 7.47

14 61.1 21.9 1.25 0.012 7.86

15 71.5 22.8 1.17 0.010 7.26

16 7.99 12.9 6.58 0.012 5.10

17 9.30 14.1 5.58 0.012 5.39

18 11.0 14.6 5.75 0.013 5.43

19 14.6 17.2 3.83 0.012 6.67

20 15.7 17.9 3.92 0.012 6.29

21 18.6 18.3 3.50 0.010 6.27

22 25.5 19.4 1.25 0.012 6.23

23 23.2 20.6 0.667 0.010 5.98

24 265 20.5 3.00 0.011 6.73

25 5.70 11.1 17.5 0.015 5.45

26 6.41 13.3 8.17 0.014 5.60

27 8.26 14.1 8.75 0.013 5.05

28 13.3 17.4 5.33 0.011 6.27

29 12.3 16.7 8.17 0.015 6.97

30 14.2 18.2 3.50 0.012 6.93

31 2.90 7.07 469 0.016 4.81

32 5.21 10.3 24.5 0.013 6.29

33 6.05 12.5 9.92 0.014 6.63

34 1.97 499 95.2 0.021 4.31

Statistics for processing order profile #6 (20 X 20 matrix)

Figure 5.14

SN

i

40 7

30 - +
+
QL @ +
3 . P 4 3
K= # +§ + I
S +J§'+
3] 20 + g‘i" .
= 3 +& .)
= .“'}9
g 1 +++-9 .
= +
10 5 - & #1
° + #2
4 ¢ #3
C , , . :]
C 20 40 60

Mean batch size vs. mean BIWs/group (profiles #1 to #3)

Figure 5.15

In Figures 5.15 and 5.16, the results from different order profiles are shown
together. The plot points are distinguished by the use of different symbols. The
figure preceded by the hash sign indicates which order profile is associated with

which symbol. This convention is used for the other graphs where three profiles are

compared.

As might be expected, the size of repeating groups of the same body type in
the input determines the size of batches of BIWs then painted. If a body type is
repeated many times, then, in general, the scheduling algorithm will be able to assign
a large batch to a colour. It should be remembered that the algorithm looks for the

largest possible batch for any colour (and popular colours will be favoured for large

mean BIWs/group

batches over less popular ones, see Chapter 4).

g3

80

© ° :i . ot
N 20+ o33 _'+° PULAR
) o °
5 P o% 4
- cat?
<] °§-_°°
— oa o
= + .@
S &
E 10
? 44
1o + #5
°© #6
C 1 T T T Y T . 1
C 20 40 60 80

mean BIWs/group

Mean batch size vs. mean BIWs/group (profiles #4 to #6)

Figure 5.16

In the case of the third profile, the dependence is approximately linear (and
more steep) but in general the relationship seems similar across all profiles. This
might be expected, because the bias in favour of large batches applies to all profiles.
Increasingly random input would be expected to reduce the size of average batches
painted, because the algorothm would not be able to schedule large batches. The
default option, of painting one BIW at a time - a singleton, would then be expected
to become more significant when the input is more random because of the increasing
failure to form acceptable batches (i.e. of at least minpb size for the colour). If this is
true, then it could explain the sharp fall off in batch size as the input becomes more

varied (the average size of groups of the same body type decreasing). The next

graphs (Figure 5.17 and 5.18) should illustrate this.

84

500 M
400
-+
» |
D °.
~o 300 A
=
=
S 2004
=
{+eo
T
4
100 .
s +
] -
+ . X
L] ' Tr

1
+ #2
© #3

C 20 40
mean BIWs/group

80

Mean singleton batches vs. mean BIWs/group (profiles #1 to #3)

Figure 5.17

400 A~
300 +
E
E J
2
oy
' 200 -
=
2 A
= +
100 4
+
1e
+ &

#4
#5
#6

mean BIWs/group

60

80

Mean singleton batches vs. mean BIWs/group (profiles #4 to #6)

Figure 5.18

Figures 5.17 and 5.18 indicate an apparently exponential decay relationship
between singletons produced and randomness of input. In profile #2 there is a point
at approximately 18 BIWs/group which does not fit this well, but as mentioned
before, the values for the ordinal are generated by a method which can produce
similar (mean) values from different test cases (see the comments, above, on the
generation of test sequences.)

The above graphs show randomness (as perceived by the mean size of
groups of BIWs in the sequence - randomness increasing along the ordinal toward
the origin) having an effect on the batch size which, under these circumstances,
could be significant. The intention of batching, as discussed in Chapter 4, is to
ensure that not too many bodies of the same type are in sequence after painting. It
has been suggested (Istel plc 1985) that a certain batch size is desirable, e.g. 20
bodies. Given the effect of randomness, it seems that the scheduler would produce
the desired result for a limited range of input only. If this is representative of
working conditions, the scheduler will respond to any significant deviation in sizes
of groups by producing a wide range of batch sizes of painted bodies. This would
then mean that the intention to produce a homogeneous ‘batch distribution’” would be
thwarted. Thus, the scheduling response could not exhibit the flexibility necessary to
give desired production given an input of varying randomness. One type of
flexibility that might be desirable is the tolerance of occasionally very random input

or input which is not very constant in its degree of randomness.

86

800 ~

i B vias s
i bias #17
] bias #33
_ initial achiev
600
§ . -
= -
- 400 +
E | :
S
200

1 2 3 4 5 6
colour

profile #1: variation of achievement with
body distribution across colours

Figure 5.19

Deviation from even achievement proportion occurs across colours. This is
shown in Figures 5.19, which shows order profile #1 (the 10 x 10 matrix) and
5.20a, 5.20b (profile #6, 20 x 20 matrix). Different colours can be compared with
each other - the initial achievement, 50% of requirement, is shown for all colours,
with the actual achievements for three bias distributions, representing a range of
randomness. Some colours are produced in proportions quite different from their

relative abundance in orders (requirement). The total bodies painted in the colour are

shown versus the colour.
The qualitative effect is that the algorithm does not produce even (ideal)

production across colours (e.g. colour 2 in profile #1 - Figure 5.19 - is relatively

over produced compared with others) and the effect depends somewhat on the

randomness of the input. A further effect is that the degree to which the production is

87

4y

uneven between colours (varying to a different amount with randomness) depends

on the colour.

Colour 2 of profile #1 - Figure 5.19 - is most over produced for bias #1 and
least for bias #33: for colours 6 and 8 in this test, this is the same relative order of
achievements for the biases, whereas the ordering is different for the other colours.
The results for deviations in behaviour with respect to mean body group size do not
give such clear indications as for the above cases. The absolute values of deviations
are large for all parameters compared (see Figures 5.21a to 5.23 inclusive). This is,
presumably, due to the fact that the algorithm does not discriminate between
body/colour combinations on the basis of achievement. Any balance in the relative
proportion of combinations achieved is due to the fact that the batching limits how
many bodies are allocated at a time. There is a limit to the potential for a body type to

be consistently painted in the same colour (even if it is repeated many times,

consecutively, in the sequence).

83

400 1 i bias #1
bias #17
] bias #33

=)
é Initial achiey
o 300 +
° %
- & 5
£ 5 . - , :
= 1 ¥ 4 :
[«9] ' ¢
ot : ‘
E : g
s 200 - ; : .
=3 - : :
w2 ’]
¢ A g
3] : :]
= : . g
= # :
= 100 i
o
ot

colour

profile #6: variation of achievement with body
distribution across colours (part)

Figure 5.20a

400 A

™
T :
= 2 2 :
— - ;
2 300 A ': & :
= & - 5 o 2
’ . g ;
o : g ? } 4
— ¢ 4 : : .
E 1 5 : Af
2 g ? 4 %
© 7 ’ /. g g
= ; : ’ 2 ','
£ 200 . 1 m
= 2 ’ ’ 7
j=B 1 ¥ r ,;
< 4 % # g
= 1
100 2 ,
E 2 / /
S : g
- -
:5
T ¥ T 13 . T T

13 14 15 16 17
colour

11

profile #6: variation of achievement with body
distribution across colours (rest)

Figure 5.20b %0

deviation

0.1 5

e G O &

1 2

60

0 ¢mﬁ?o-ﬂb§ ve
0 20 40
mean BIWs/group

Deviation of mean achievement for
colours vs. mean BIWs/group

Figure 5.21a

30

#2
+ #4
1 o #86

20 -

deviation
+

+

t o+ ++

F 40 + e * °

M °§+3‘o°$ o ©°
00&00 -]

Ks

80

i Y T T

60

0 . ' '
0 20 40
mean BIWs/group

Deviation of mean achievement
for bodies vs. mean BIWs/group

Figure 5.21b 50

80

The colour deviations (Figure 5.21a) reflect differences in relative production

(and therefore balance) of colours. The more uneven production is, the higher the

deviation should be. The results show that production is relatively unbalanced

(because the deviation should, ideally, be nil). The effect is apparently greater for

profiles with less choice of colours (i.e. 42 > #4 > #6). This is probably because
colours with more than usually uneven production in one colour will be more
significant among twelve than among twenty. The absolute sizes of the deviations
appear to be small. They are, however, significant in production terms.

In all experiments, a fixed total of 2000 BIWs were processed. This means
that the total achievement proportion (as calculated) is 80% of the initial outstanding
requirement expected average (i.e. (10000 — 2000) / 10000). Assuming a normal
distribution, it would be expected that 95% of the colours would have an
achievement proportion within * 2 standard deviations of the overall mean. The
overall mean, of actual production, is fixed at 20% of initial outstanding requirement
(i.e. 2000 / 10000). Taking a mean batch size of (approximately) what might be
desired in the factory (i.e. ~20) such as bias #28 for profile #3 (Figure 5.11) where
the mean group size in the input (19.8) was ‘averagely’ random, the deviation
observed was 0.027. The variation between colours could be in the range 0.173 (i.e.
0.200 — 0.027) to 0.227. This would mean, given a total of 2000 BIWs processed,
that the ‘disproportionate production’ across all colours might be * 108 bodies.
Considering the importance placed on even production (e.g. for storage, parts build
etc.) these bodies might upset the overall production schedule quite significantly.
The test represents perhaps a day’s production, so, on daily basis, some 5% of
production might well not go on as planned. For high-cost items such as cars, this
level of unscheduled production would almost certainly be significant in terms of
cost. Thus, at modest levels of randomness of input, it seems likely that the
algorithm’s behaviour might be less optimising than desired.

For body/colour production, as might be expected, the tendency to produce

small batches with random input allows fewer BIWs to be painted before the body

91

type changes. Each time a colour is selected, fewer BIW s are allocated (to it) and the

proportion of each body type produced should be better distributed across all
colours. As randomness decreases (left to right, in Figure 5.21b) the distribution is
generally less balanced and the deviation increases. The deviation is greater when
less colours are available (there being fewer body/colour combinations and more
constraint on choice). Qualitatively, comparison of the colour with body/colour
(deviation) results shows that the deviation of body/colour combinations is relatively
high, as might be expected, and implies that the algorithm does not balance
production with respect to this criterion under any degree of randomness of input.
In contrast, the colour results show that very random input vastly increases the
deviation (typically, a factor of perhaps 15 times from the least to most deviant). In
‘ordinary’ operation, very random input is not significant but must be considered
because it is a way of colour-batching unusual body/colour combinations. (The idea
is that such orders can be ‘held back’ until a large total requirement is collected, then
a sequence containing all the ones and twos of these BIW types is put on the line and
processed in one go. The input, by the terms measured in the above tests, is very
random. The results suggest that batching of such input would not be very
successful. A high proportion of singletons would be expected, with concomitant
degree of inferior paint quality.)
The overall results are that:
i. randomness produces increasingly uneven production;

ii. colours are affected differentially in the extent that effect 1. is present;

iv. the non-ideal behaviour is greatest at extremes of randomness;

v. limited flexibility with sensitivity to randomness is a feature of the algorithm.

Chapter 6

A knowledge-based toolkit for flexible
manufacturing

This chapter sets out details of the programs that were written to emulate the
algorithm examined in the previous chapter. The basis of a technique which could
allow improvement of the application program (for scheduling) along the lines
mentioned there (and in Chapter 3) is supported by the utilities described here.
Extensions to facilities available in C have been written to facilitate the definition of
data classes and their attached functions to allow a more object-based programming
style. These extensions and the applications written with them form the basis for a
knowledge-based representation scheme which is intended to be a model for solving

the difficult problems associated with ‘intelligent’ process control for CIM.

6.1 The ‘objective’ toolkit and object-based environments

The toolkit provides a means of supplying ‘conventional’ programs, written
in C, with an object-centred environment contained within them. This statement
requires some clarification.

The Smalltalk model (i.e. Smalltalk-80) is probably the most usual
interpretation of a ‘true’ object-based environment. In this paradigm, an editor
(browser), language translator and run-time system provide an integrated system for
developing, testing and running programs. Smalltalk provides a ‘virtual machine’
for the user’s code (which is interpreted at run-time), so, in a sense, all activities,
including editing of objects, are a manifestation of this virtual machine.

A rather different view of this subject is held by by such workers as Cox

(1985) and Schmucker (1986) who have extended base languages (C and Pascal,

93

respectively) with an object-based declaration system into

‘hybrids’ such as

Objective-C and Object-Pascal. In this type of environment, all object code is
compiled (rather than interpreted) and then executed at the behest of conventional
code in the base language. In this case, the job of the conventional code would be to
provide some of the facilities that the Smalltalk virtual machine does, i.e
activation/passivation of objects, and an entry point for invocation of the objects’
methods. This also allows use of ‘foreign’ (non object-based) code as required - so
it would be possible to build an application with one part in the base language and
another which had been written in the objective style. The use of the word ‘hybrid’
to describe such languages arises from their mixed (object- and non object-based)
style.

The above comments serve to highlight some differences between
implementational styles for programming with objects, rather than illustrating how
objects themselves are used. If specially created object environments like Smalltalk
are at one end of the ‘implementational spectrum’ with the hybrid languages at the
other, the work described in this Chapter (vide infra) is closer to the Smalltalk
model in the way that objects function, but has, perforce, been implemented in a
style somewhat closer the other extreme (relying on hybridisation techniques applied
to a standard C). It can be claimed, however, that the design of the enhanced C
system would allow, following further development, replacement of hybrid features
with an integrated programming and run-time system (i.e. a Smalltalk-like
environment). This contention is supported by my use of a special purpose
definitional tool for objects, as opposed to the hybrid languages' reliance on a text
editor and the declarative facilities of the compilers of the base languages to produce
definitions of objects.

The work described below uses the hybridisation techniques of having (base

language) start-up and initialisation code and then having access to objects from

ordinary code. It differs, however, in how objects are declared and handled.

Smalltalk is described as object-oriented (Goldberg and Robson 1986), as are

94

object-based languages derived from like C or Pascal. I shall not use this term to
describe the object-based system below. A more appropriate term might be ‘object-
centred’. This is because of the slight but important differences in the way objects
are declared and treated in this system. The term object-centred implies that objects
are not statically defined by a frame-like template but have, potentially, dynamic
properties. The nature of the objective paradigm will be discussed in comparison of

the toolkit developed for manufacturing applications with the above

implementational spectrum.

6.1.1 Structure of an object-based system

A summary of the main features of object-based systems might be given as
follows:
i. The constituent code and data supplying the behaviour (functionality) of the
system are logically associated, in a structural sense.
ii. The nature of this association is that code and the data it acts on are formally
segregated into separate entities whose control is specified individually. Each entity
presents an ‘interface’ to the rest of the environment, through the medium of which,
access is allowed to its functionality;
iii. Access to these entities (objects) is via specialised components, called methods,
which define and form the interface.
iv. This access is in the form of requests to the object to perform some action. Such
requests are dealt with by a global ‘postage’ service, called a messager, which
decides what the message means and which particular type of object is being
addressed. If the message is valid in this respect, the messager will attempt to find
the activity which is required, and activate the method which can effect the action
requested. In this way the requester, Or ‘consumer’, of actions does not see how
they take place: the ‘supplier’ (Cox 1985) is hidden.

v. The formal ‘encapsulation’ of data with code defines the object. Objects are

then assumed to have definite characteristics and behaviour, internally specified and

95

independent of the context of invocation, and sensitive only to invoking messages.
In this sense, an object should be re-usable as a library item, freely transportable to
a different application where it will still display the same abilities as before - a sort
of ‘context-free’ entity.

vi. An additional characteristic, generally associated with objects, is of a taxonomic
relationship between objects. Objects are represented as having a family-tree, where
adjacent nodes relate to each other as parent-child or sibling-sibling. A child inherits
the properties of its parents, i.e. methods and access to some data. All methods
defined by a parent are, by default, available to the children, unless specifically re-
defined.

vii. The taxonomic nature of the tree structure means that a child is an example of
its parent's type, but will also be a specialisation of the parent: by virtue of the new
properties it defines.

There are several other facets that are significant: in the extreme, all entities
in a system are viewed as objects (in Smalltalk-80); although the description that
defines the properties that an object has is really a template for producing objects
and their behaviour. The name ‘class’ is given in Smalltalk to designate the kind of
entity an object is. The individual members of a class (examples) are known as
‘instances’. If the template (class) is an object itself, in its own right, then it should
be an instance of some underlying class that defines classes. In this connection, the
infinite regression of ‘class is an instance of class...” is somewhat paradoxical,
because classes do not, themselves, do anything in the domain of application, they
exist as a way of producing and maintaining items (instances) that do things. This is
not, strictly, the case: classes may have their own methods and data which are
available for their maintenance and, for example, for creation and initialisation of
instances. Another formal structuring of classes and instances is the possession of a

set of variables (within instances) which are manipulated by instance methods, and

therefore private - as opposed to variables defined for a class which are shared by all

members of the class.

96

In Smalltalk, the variables are, in a sense, pointers to instances of classes.
Primitive items like Integers (with the exception of Smalllntegers) are objects
belonging to a class. In the object-centred toolkit, it was not necessary to implement
variables in this way. In practice, only primitive items like pointers and numbers
were used. It would of course be possible to make (instance) variables reference
objects of some class. The toolkit is not object-oriented, as Smalltalk is; objects
such as instance variables are type-free, an object may reference anything; indeed, it
may reference several different objects, depending on which method is referencing
them. It should be noted that Objective-C and Object-Pascal use records for class
templates with the methods (functions) as pointer fields. Methods are activated by
de-referencing the appropriate field of a record. The object-centred toolkit
determines how a method is implemented at run-time, in the messager, and the
binding of methods’ code is done, not at the compile time of the methods
themselves, but when the messager is linked. If dynamic loading were to be used,
the binding of methods could be delayed until invocation at run-time. Classes
declare methods when they are defined. All this does is enable some, as yet to be

bound, functionality to the object.

6.1.2 An overview of the toolkit and its usage

The toolkit contains a number of program source files which can be used to
support object-centred activities. The two principal tools are editors: the first being
used to construct object ‘bases’; the second being a prototype knowledge acquisition
tool which allows the definition of the nature of the components (classes, methods
etc.) and supports the acquisition of object-centred rules (as instances of rule classes
or sets). In this latter capacity, the knowledge acquisition tool accepts an English-
like statement of production rules governing relations between objects and translates
them into the form used internally (see Appendix A6). The object base editor

operates in two modes. New bases may be defined or existing ones edited.

97

When defining a new object base a new user must first decide which classes
are to be declared. The methods accessed by these classes and their (implementing,
‘effector’) functions must also be decided. On invocation, the editor will prompt the
user for a name by which the base will be accessed, if the editor command line
contains no such indication. (The editor creates a new base with this name, checking
first that the name is indeed new. This is to protect accidental over-writing of
existing bases.)

Classes are named in turn, followed by the method and effector names.
These names must be unique (within their group). The editor then prompts the user
for details of each class. The inheritance list (via ‘isa’ links) is stated. A restriction
placed is that a class may not name itself as a parent (which could allow cycles). It
may only have named classes in the list. The exact inheritance must be stated.
Naming of a parent does not mean that that parent’s parent will be examined when
tracing inheritance. The list shows exactly the order and extent for each class. A
class may be at the present limit of the hierarchy (root). If desired, there may be
more than one effective root class and multiple or incomplete inheritances are
allowed. After the inheritance list has been stated, the class’ methods are named.
Child classes are defined after the methods. If there are no such classes the editor
marks the class as a ‘leaf’.

Having defined the hierarchical position for a class, the instances are now
declared. The user must simply state how much space needs to be reserved for an
instance and how many instances should initially be allocated. The editor allows the
definition and naming of instances by the input of character strings and by special
key sequences, storage of binary values, for real numbers etc., entered as text.
With the above stages finished, the data structuring part is complete. The user is

now required to declare initial bindings of effector names. The editor (silently)

compiles a file, containing these function names, which is used to ensure that the

messager utility can access the effectors - without the need for the user to change

toolkit components which use the object base.

98

For each method declared by a class, the editor prompts the user to specify
which effector will be used. A table of these (class, method, effector) triples is
saved. The editor assists the production of an executable application program for the
object base by using the UNIX make utility. The user must place details of the
sources for the effectors in a suitable file (for make-ing) together with the messager,
startup and other required toolkit utilities. In any such program an entry point is
required. This can access the object-centred part by messaging calls on objects (via
the messager).

An already defined object base may be edited by invoking it as the argument
to the editor program. Any object may be re-defined, new methods and effectors
may be added. A new object-centred program can be made according to the new
object definitions.

The knowledge acquisition tool can be used in two ways - as for the object
editor. The purpose of the tool is to construct a (meta-)description of the object base
already defined, so as to allow definition of instances for its classes. The program
loads an object base, defined by the user, into memory. It then loads another
(toolkit-supplied) object base. This second object base contains classes that define
the syntax of rules, and skeletal classes whose instances are initialised to refer to the
classes of the user object base. Thus the (meta-)class ‘u—classes’.has an instance for
each of the user-defined classes. These instances are generated to retain details of
the user classes’ associations (with methods etc.) In a similar way the second part of
the toolkit object base reflects (categorised by its meta-classes) aspects of the
knowledge to be acquired. The (meta-)class ‘u_constants’ contains symbols that are
known to be constants for the input of rules. The user may define these and state
their internal representation for rule generation. The rule grammar already
understood may be extended to include extra symbols, such as ‘equals’ (a relational

operator) which would presumably be defined to generate the ‘=" symbol in a rule.

This allows tailoring of the knowledge tool to the users needs. An expanded version

of the user’s object base is made from these definitions and saved. It can then be

99

|
B
za
é 5

supplied to the tool as the source for knowledge acquisition. This is done by

specifying which of the ‘u_classes’ instances (i.e. the classes of the user object

base) is a rule class. Rules may then be defined for the various classes by typing in
text.

Parsing of potential rules is guided by the meta-knowledge contained in the
meta-description. This is in two forms: firstly, grammar of rules (represented in
some of the pre-defined meta-classes and their methods) gives the parser certain
expectations of the principal components (i.e. English words like ‘then’ and their
relative positions in the sentence). Knowledge about the associations of the (object
base) classes and their methods allows the parser to compare what appear to be
references to methods with the object definition. Since rules are sets of messages
which may form conditional tests or actions, certain types of words can be expected
to appear in specified positions relative to each other. The parser looks at input
strings, separating them into words, and tries to categorise them. If words are
unknown to the program, sometimes the user may be able to supply a definition.
The parser can attempt to identify a suitable categorisation and will accept a
definition for the internal representation of a word for new constants, for example.

Rules that have been accepted can be placed into their proper class in the
original object base definition by the knowledge tool. This is achieved by translating
the parsed output into an internal representation. The text used for statement of rules

can be saved in the file used by the rule trace mechanism.

6.1.3 Support of object-centred and knowledge-based programming by the toolkit
The diagram in Figure 6.1 shows the hierarchy of the classes used in the

knowledge-based paint scheduler. (The additional, generic, trace facility is not

shown, as are the, optional, additional rule classes to express all batching by rules.)

The hierarchy of the object-centred part of the program is detailed. The steps by

which such a system are assembled, are described more fully later in this Chapter.

100

In this section, the tools that support the object-centred ‘functionalities’ are

described.

The central part of the toolkit is a utility performing some of the functions
associated with the “browser’ of Smalltalk. This creates and modifies objects. The
features required for object-centred programming are built by this program. The
taxonomy of object classes is created by defining the children and parent of each
class. The topmost class (in this case - ‘task_manager’) is the immediate ancestor of
several classes. As a general rule, the methods belonging to this class, defining its
abilities, are the most general, and, inherited, may be used by many of its
descendant classes. In defining a class, the only additional features that are defined
(after the methods) are the initial size (in bytes) a class should have reserved for its
instances and the number of instances for which space, in memory, should be
reserved when loading the object hierarchy.

Here it is appropriate to give an account of how classes are dealt with at the
more concrete level of implementation in C. Quite unlike in Objective-C or Object-
Pascal, where a record structure defining the class is compiled, the class
composition is simply recorded as data in a file. Standard code for loading and
dumping class contents uses this data. This standard code (for activation/
passivation) is one of the utilities linked in any object-centred application produced
by the toolkit.

The above use of ‘data’ for holding details of classes does require some
special features. The whole class structure, including instances, is held in four files
(per application). At run-time, a global variable is used to access heap storage, via
the calloc() function (cf. new in standard Pascal), and an array of pointers (one
per class) is allocated. These pointers are then used, similarly, to allocate space for
the ‘class frames’ held in heap space. These frames, amongst other items, contain
s used to allocate an array of pointers which can

more pointers, one of which 1

reference character arrays. Instances are loaded into character arrays (really, strings)

in memory.

101

Tree Structure For Class Obiects

(ROOT)

to

0 task_manager

leaf 1 db_manager
9 body_manager
6 colour_manager

(v - X
(10 body_items) (11 body colours) (7 colour_items)

leaf

ot leaf

C 8 clr constraints)
12 prty_manager —

leaf

/ \ 4 map_manager

C 13 ptry_items) (14 ptry_subs)
leaf

leaf
leaf

15 batch_manager

~

. 17 batch inc rules
16 batch_min_rules .
leaf C 19 batch clr_batch '

C 18 batch clr_itms)
leaf
20 batch best_rule 21 batch _pny rule

leaf 22 batch_ext_rule

Figure 6.1

102

L

The base address of each instance can then be entered into these pointer arrays and

the instances are now connected with their respective class frames. Thus, with
several levels of indirection, the whole structure can be held in memory. This has
the added advantage that (even dynamic) changes to classes can be accommodated
without the penalty of re-compiling record structures that describes them. To
facilitate loading of the contents of the hierarchy, sufficient space is allocated for the
contents of all classes which are then read into memory. The above frame for the
hierarchy (the collections of pointers and arrays of pointers) is connected by
assigning appropriate values to these pointers, to indirect them into the reserved
memory. Note that the structure of these pointer frames is compiled and is a
property of the run-time toolkit. It is therefore, constant and independent of the
nature of classes defined, providing a standard way of accessing a hierarchy of
previously undefined structure. The toolkit provides a framework for the
construction of an object-centred hierarchy.

The above use of global variables for the framework is somewhat
undesirable - leading to the requirement for methods’ source files to declare them,
via #include-ing standard header files (with the C pre-processor), then relying on
the compiler and linker to organise this (i.e. as it were, by default, they become
external symbols and thus become globally available). This restricts to a small extent
the identifiers that all code may use, at the same time as accessing the object-centred
system. Such global variables would not be accepted if declared as external symbols
in other code. This also means that these system variables are in the scope of all
methods, and accessible, though it would be potentially catastrophic to the whole
data structure for an inappropriate re-assignment of any such variable. This
technique was devised to test the implementability of this type of object structure,
but could be readily transformed into a more ‘scoping-secure’ (but less ‘free’)

system. Discussion of such developments is left to Chapter 8.

103

6.1.3 Messaging

The messager - contained in one of the source files required for linking into
the object-centred application - was written in ordinary C. Message interpretation is
provided by a function. This function, however, is special in the way that it is
compiled and linked. It must be compiled for each application program, rather than
simply linked as for the source files containing the code for methods. Its job, as
mentioned above, is to interpret messages sent to objects and ensure that the correct
method is invoked. In this context, no distinction, a priori, is made between class
and instance methods and, indeed, the class definitions do not record such
distinctions. It is left to the methods themselves to do this - comment on possible
improvement in this area is contained in Chapter 8. (Here, again, as the system
‘evolved’ these differences became apparent and, in practice, most methods
developed used some kind of checking to establish the relevance of the message to
them.) This was done, originally, to simplify and speed up messaging code since it
is a natural bottle-neck of the system. The way the messager decodes the message is
to identify two (mandatory) components and, optionally, a third. The first part
shows which method, logically the name for the method, is required. In
combination with the second part, which must be the identifier of a class, the
particular method is identified.

Methods are initially defined as a potential property for a class to possess.
The actual code (‘effector’ function), which ‘implements’ a method, executes the
action implied by the method and, therefore, binds some code to the named
potential to do something defined as a property of the class. It is declared (by name)
after the whole object hierarchy is stated. (The properties of a class: instances, “isa’

links and children are defined with names of methods; the class states its interface

with its environment at definition time; implementational details of the interface are

3 y
not ‘bound’. This is a subtle difference from the use of the term ‘method’ in

Smalltalk. It should be noted that, given a definition of a class possessing methods,

the actual implementation may be changed without changing this definition.)

104

i

Methods are bound to implementations by stating which effector is to be
linked for that class. Many classes may declare a particular method, but their actual
implementations in the interface depend on the effectors adduced. The combination
of a method and a class name with an effector name completely defines a method. A
table of triples of these names is built up and saved. It is from this table that the
messager determines which method is appropriate on decoding of a message.
Effector names are ‘linked’ into the program by a technique depending, to
some extent, on the convenience, in C, of invoking the pre-processor. So far, the
above shows how effectors are notified to the system. The sole requirement for a
function to be used, if an external symbol and thus not defined in the source file

being compiled, is that it be available at link time, if it is of the (default) type

returning integer. The compiler requires further elucidation if the type returned by

the function does not resolve to integer. (Some compilers will allow sub-types of
integer to be treated as integer for this purpose.) Forward declarations provide a
way of doing this. This is important because effectors are always defined as
returning char * (i.e string). A text-processing utility collects the list of the effector
names required and enters them in a special header file. This file can then be used to
define functions to the compiler. The messager source file contains an #include
directive to the compiler to load this header file, allowing these functions to be
referenced in the messager code. This is described more fully here after discussion
of the interpretation of messages.

Identification of an appropriate effector by the messager is straightforward.
The named methods in the ‘messaging table’ are listed in order, paired with their
associated classes. If all the pairs of the method named in the message do not match

for the class name as well, the messager examines the ancestors of the addressed

class to identify a match for the class. In case of failure, a standard error message

(the string “BADMESSAGE”) with an accompanying error warning on the standard

output device, is returned to the sender of the message. Assuming that a pair

(method name/class name) is identified, the name of the effector needed will be the

105

|
|
r"'
.
.
|
%,
|
|

third member of the triple in the table for the matched method/class pair. A list of
pairs of effector names and pointers to the code body of the function is kept. The
way by which the identified code is now called is to de-reference the pointer. This is
possible because of the nature of the function pointer as a variable with a value -
which, however, must be known at link time.

In addition to the declaration of the effector names as of the appropriate type
in the header file constructed by the system, a special global variable is allocated in
this file. This variable is an array of pointers to hold the addresses of functions (i.e
pointers to function returning char *). The size of this table must be declared to the
compiler, and so another header file is #include-d in the messager source. The sole
entry of this file is a definition of a constant for the size of the reference table for
effectors. (The reason for the second header file being separate from the first is to
allow re-definition of the table, independently of re-writing the first header.) Using
this table, the list of effectors is declared, again, this time to initialise the values of
the array - the name of a function, i.e. as a pointer to it, being taken as its address.
The system, having written the header files, can now compile the messager so that it
can reference the effectors that were only described by name. Note that the effectors
themselves will be in source files, and may be separately compiled from the
messager. The reason that the effectors will be accessible, when a complete program
is assembled, is that the compiler will leave references to the effectors, in the
messager, as unsatisfied external symbols which, however, are of a known (not
default) type. The linker will be able to satisfy the function references in the
messager by linking the previously ‘anonymous’ effectors now provided in the files
for the method code.

All effectors should be provided in the source files as of type Str (defined

for pointer to char - char *). This allows effectors to return a standard type, but

does not restrict the contents of a return. Any item larger than Str may be accessed,

by convention, by saving itina static array of char and returning the array address.

This allows effectively type-free returns from effectors.

106

Assuming that three effectors are required for methods, named a, b, and ¢

the text-processing enters the following definitions in the first header say

headerl.h:

Str a();

Str b();

Str c¢(); (the parentheses indicate a function).

Three effectors are required, so the second header, e.g. header2.h, defines the

table size thus:

#define PTRTABLE 3

In the first header, the table (tab, assuming that tab is defined as being of
the type pointer to function returning Str) is declared as: tab[PTRTABLE],
followed by a list of initial values for the effector address, thus:
tab[PTRTABLE] = { a, b, ¢ };

This leaves the messager to access these definitions. This is done without re-
writing the source; the file just needs to be compiled with the definitions that the
system has just entered in the header files, headerl.h and header2.h. In the
messager source, then, the following two lines are all that are needed:

#include "headerl.h"

#include "header2.h"

On linking the values of the effector addresses are supplied to this,

initialised, table, giving run-time access to effectors to the messager via this global

variable (tab).
The messager can now call effectors by referencing the pointer in the table.
Assume that a message has been sent and the messager has found that the effector b

is defined for the method referenced. In normal circumstances the function is called

by stating its name (b) and making it part of a statement (e.g. name = b(args),

where args are the actual parameters and name a suitable variable of type Str). In

this case. of course, the messager does not know the actual effector when compiled:

it is a reference from its table to an address. It does know which table entry 1s

107

indicated, say, in general, x. Thus, tab[x] points to the correct function address. In
the case of b, this value is 1 (the second element). In C, the contents of what a
pointer references are indicated by prefixing the variable with a star (*), and in the
case of a function reference, a call by indirection is allowed by showing the
expression is a function (with parentheses) which can then be put in the place of a
‘normal’ function name. To call b, a call of (*b) () would be required (the left
hand parentheses force prior evaluation of the * and b together). In the case stated,
this would be (*(tab[1])) () (again, parentheses show association of items for
evaluation). Generally, the de-referencing statement in the messager to access any
effector, will then be of the form ‘(*(tab[x])) ()’. This can be seen to be
independent of which set of methods is used: the differences are dealt with by
editing the header files (i.e. headerl.h, header2.h) and re-compiling the
messager. Re-compiling is arranged by the system (vide infra).

Several other features of the messager are significant. The effectors return a
value, by definition (Str) and so the statement calling the effector must appear with
an assignment (strictly the compiler expects to see an ‘lvalue’ in the expression). If
the assignment is to name, in the above example, the equivalent statement would be
name = b(). A global variable (Eval) is provided for this purpose, so the
convention is to send a message that would result in Eval = b(). By use of the pre-
processor facilities, a distinctive form for the message was provided (enclosed in (*
and *)). The message itself appears in the object-centred code in a prescribed form
which can be described as ‘(* MethodName ClassName Selector String *)’. The
nature of MethodName and ClassName have been described above: they are the first

two components that allow the messager to find the method required. The

convention for SelectorString is that it is of variable of type Str, i.e. it points to an

array of characters, thus complex items can be ‘passed’ as part of the message. (The

1 * * .
pre-processor re-arranges the message form in (* and *) to:

108

‘Eval =

msg(MethodName,ClassName,SelectorString);’. ‘msg’ is the

messager function which receives SelectorString as an actual parameter and supplies
it to the effector selected: the effect is that the de-referencing call now contains
SelectorString.)

An additional standardisation is enforced by the messager. The actual call to
which the effector must respond is of the form: ‘(*(tab[x])) (AddressedClass,
RespondingClass,SelectorString);’. The SelectorString is used to identify
that an instance (method) is being addressed, for example. AddressedClass and
RespondingClass are the original target of the message and the class that supplies
the method, i.e. these are the same unless the method was inherited. (The
identification of the actual classes involved was useful to start with and its existence
is connected with the need for self and super mechanisms, as in Smalltalk. As will
be described in Chapter 8, there are, probably, better ways to achieve these ends,
and not ‘open up’ the classes by making their identities evident.) The messager
responds to the sender by returning the result of the effector call.

Classes and methods are named as they are defined; when used in messages,
they are, effectively, ‘named’ also. The form of the name is not the literal string,
however, but a reference to it. A class, for example, is thus ‘named’ from its
position in the class hierarchy (as are its instances from within the class). This may
seem unattractive - but the use of a string as an identifier designating the class would
(just as well) force binding of it into the code (declared at the compilation time of
any messages). The advantage of using this indexing technique lies in the

simplification of resolving class (and method and effector) references. It would take

longer to use literal names, because the strings would then require extra processing

to distinguish their meaning, which could slow down messaging (but see Chapter

8). This was intended to make the messager as efficient as possible, but it is noted

that the appearance of the method code could be more readable if classes etc. were

named by identifying strings. There is a difficulty in that the names of objects are

stated in a different place and are dynamic, re-nameable. (A technique that could be

109

used might be to compile reference tables of identifiers used in methods and
associate them with corresponding identifiers defined elsewhere.) The index also
provides an absolute reference to a class, method or effector (or instance, when
associated with a specific class). Being bound to an index, these references can be
resolved directly by the messager. Instances are identified in the selector string
when referenced and named from their ordinal position of declaration (in their
class). Distinction between class and instance methods relies on the method (and not
the messager) finding the relevant instance’s reference in the string argument (i.e.
passed on to the effector). It is a convention that instances are denoted by the first
resolvable item in this argument.

It is then necessary that a method sending a message should know the
identity of the class to be addressed. If the method requests that some action take
place, involving the sending class, it is normal to supply the identity of the sending
class to the method via the selector string in the message. This allows a method to
respond effectively to an ‘anonymous’ sender and, to some extent, allows classes to
be more ‘independent’ of each other. (It is fairly easy to reduce this level of
encryption; see Chapter 8. The style employed was used to implement a simple

interfacing convention.)

6.1.4 Definition of instances

A simple means was used for the declaration of instances. All that is
required is to state what amount of storage should be reserved for each instance and
how many such items are to be loaded initially. The instance is (formally)
unstructured, a priori, so it exists as though it were just space in memory. The user
can define the contents of any notionally internal structures within instances by
initialising them, as required. The program allows entry of text or binary items, or a

combination of both. That is for any numeric itemn, such as a double length real

number (double) or even a pointer field, the byte-wise values can be entered. The

instance editor buffers all characters input and, following indication that a set of

110

characters designates a non-text item, converts the string input into a suitable binary

representation, according to type. Such binary numbers are eventually saved,

‘passivated’, to use Cox’s term, into the file for instances.

6.1.5 Review of definitions

Once defined, an object hierarchy may be edited, extended or reviewed. The
means of removing a defined class is to remove all references to it, as it is
impracticable to remove it altogether (because of the addressing scheme) and simpler
to re-define it as having no properties. Thus it wil have no children and no parent.
Any former children must be edited to give them a new parent (e.g. the former
grandparent). The class ceases to play a part in the structure, whilst avoiding
complex changes to the hierarchy.

For review, the object editor presents any of the defined features, at request.
Instances containing binary items are displayed in a special format. This format is
intended to allow debugging of complex (‘low-level’) items on a byte-by-byte basis
(essential for checking correct assignment and, particularly, alignment of numerical
items). It should be remembered that a full, factory-wide, implementation of a,
possibly real-time, process for FMS, using the object-centred paradigm would be
concerned, at a low-level, with byte manipulation. (One extension, for users’

convenience, might be to allow individual setting of bit fields).

6.1.6 Linking of a complete system

So far, the definition of the data and reference of code has been alluded to,
without discussion of code composition. The code used is essentially of the base
language C. The object-centred system has not been extended to providing special

facilities for writing methods. The necessary messaging conventions are supported

by the re-writing of header files and then compilation of the messager. The system

assumes that all the code required for the effectors is available. This code is

produced in the normal way for C programs and compiled, but will, of course, be

111

linked to the object-centred application via the toolkit. Source files for effectors must

have several lines in their text to enable the object-centred capabilities. These lines
must specify (#include) necessary header files and define the effectors that are
named to the toolkit for methods. Use is made of the [UNIX utility ‘make’ to
assemble the correct executable program. This utility uses a ‘makefile’ to specify
how a program is composed. The source files detailed in it are accessed to provide
the desired output. It is assumed that the user knows how to write a makefile, which
can be done by editing a skeleton example. The dependencies of source files on
headers, stated in a makefile, cause the compilation of any source that uses a header
more recent than it - thus the messager source will be compiled, following the re-
writing of the definitions as stated above, i.e. headerl.h and header2.h. The
makefile needs to list the sources for the effectors. If these require compilation, the
utility will do this and then link the object-centred application program. The
application program must also include calls on the standard routines to initialise the
object framework and load the objects (activation), and for passivation. Start-up
code is provided in a file, as are several other utilities, which must be included in the
makefile. It is for reasons of this design that the system is described as a toolkit. It
is intended to provide flexible support for object-centred programming, rather than
create, at this stage, a totally ‘enclosed’ environment.

Calls on the object-centred system contained in the application merely need
to use a standard form of message. It is recommended that this be restricted to one
entry point for each object-centred activity required, and that the entry point should
be a method of the highest level object. The non-object code should not really access
the object-centred part other than by its methods. (In Chapter 8, a mechanism to

ensure such orderly interfacing is described.)

112

.

6.1.7 Tracing messages

To provide object programming without a mechanism for debugging would
be inefficient. Several mechanisms are available to support useful tracing of activity.
Firstly, it is possible to include a standard interrupt-handler which, if enabled,
allows the re-defintion of the Control-C ("C) character, typed from the keyboad, as
an enfry to this routine. *C (in BSD 4.2 UNIX) causes a software signal
(‘SIGINT’) to be originated in the terminal device and sent to the attached process
(i.e. the application program). SIGINT normally kills the process, but can be
trapped by the program. If the toolkit’s interrupt-handler is included in the program,
all AC characters are trapped. If tracing has not been enabled, the interupt-handler
only allows ~C to have its usual effect if the user indicates that he wants to exit from
the program - otherwise control is returned to the point where *C was detected.
Where tracing is enabled, ~C activates the tracing review mechanism. When a user
requests tracing, all the message traffic is echoed to the screen. This means that the
message and its meaning (as interpreted by the messager) are displayed; which
method is invoked, if any, and the result of the call on the effector. If this
information is not sufficient for the user to understand what is happening, "C
permits access to other facilities. A menu of possible actions is displayed. These
allow examination of the contents of the memory; to check the state of the contents
of objects, or the definitions given. It is also possible to exit from the trace (where it
was entered). Each tracing step through the messager is regarded as belonging to
particular level. The first message is at level nought, the second at one and so on.
As the depth of function calls (through the messager) unwinds as it returns, the level
decreases by one. In certain circumstances the call can be ‘unwound’ prematurely,
before the effector is accessed. The messager then returns a ‘dummy’ value for the
effector which was bypassed. The level is reduced and a ‘non-fail’ value results, as

if the effector had been invoked and returned without error. A further option 1s to

jump back to the previous level above the last call of the messager, i.e. omit the

current message and resume at the next highest level.

113

The above means of avoiding all the effects of message interpretation can be

used to arrange that the desired action of an effector, which was not called, occurs.
This is done by using the object editor in the trace review mechanism. The contents

of objects can be reviewed and then set to the required value (that the action of the

avoided effector would have set them to).

6.1.8 Support of knowledge-based programming

Two major facilities associated with knowledge-based approaches are
provided in the toolkit. Rule-based programming is often thought of as being central
to AL It is really the declarative aspects of rules and object definitions that are
catered for in the toolkit. An object definition is, in a proper sense, a declarative
means of defining a model (of the domain). If the model of the application reflects
knowledge of the domain, then the objects declare such knowledge fairly explicitly.
The procedural aspects of ‘knowledge expression’, methods in this paradigm, are
usually simple enough for them to represent easily, comprehensible, logical actions
on data. With a trace mechanism allowing the (gross) effects of a method to be
explicated, this knowledge 1s, to a great extent, very explicitly represented.

Another aspect of knowledge is that of predication of of one item on
another, e.g. ‘if a then b’. Incorporation of formal rules into the object-centred
system relies on the messaging convention. Rules, such as ‘if a then b’, are
represented as instances of a class (of rules), which can be typed as strings, at the
appropriate places in the list of the instances. In principle, rules are not supposed to
be ordered, but in this case, they clearly must be because the list of instances is
ordered by the system. It is up to the writer of rules to avoid (less ‘declarative’)
effects dependent on rule ordering. For expression of rules, two interpreters have

been provided in the toolkit. Rules must follow 2 given syntax for these interpreters.

The instances of a rule class store the rules in a compressed form (for direct

evaluation by the interpreters). A utility, vide infra, is available to assist the user 1n

writing a readable and more English-style form of the rule, which it then translates

114

into this internal form. This has the advantage of pre-digesting rules, so that their
interpretation can be made faster.

In a class of rules, all instances are expected to be rules and will be
interpreted as such. The class denotes a rule set, in effect. The ‘traditional’ form for
a rule: a set of conditions, followed by a set of actions that can be asserted if the
condition is valid, is observed. The syntax for rules does not preclude their use in a
backward-chaining mode but, in the application developed, it was found to be
appropriate to base expression on the forward-chaining basis of evaluating a
condition and then asserting the action part.

The conditions and actions of a rule are a set of expressions, the conditions
being composed of tests. The test corresponds to the sending of a message, which
would have a result value (from the effector, or on error, messager) which is taken
as its value (for a logical expression) or is compared with a constant value in the
rule. If this test is logically true then the condition (or part thereof) is true. In the
same way, actions are sets of expressions from which messages are derived. The
activation of a message may result in some change to the object image in memory
and is therefore imperative. (Conditions are not constrained to causing only non-
destructive effects in objects, however.) The test must reference a method, which it
does by stating the name of the method and addressed class and providing an
optional parameter in the form of a string. The optional parameter then becomes the
selector string for the message.

The interpreter is called on the class of rules to be evaluated. It parses rules
into their constituent parts and then sends messages to objects for their expression.
The interpreter may be instructed to operate in several ways. If, for example, it is
asked to fire rules, it will start at the first rule in the class and attempt to evaluate its
condition(s). If the conditional part evaluates to fruc, then the action part is invoked;

this will be parsed in a similar manner and any messages arising are sent. More than

one action is permitted to exert the effect of a rule. Rules may also be evaluated

115

without firing; the number of (valid) rules consulted may be restricted to one or the
whole set may be expressed.

The use of rules composed of potential messages means that they have the
same control mechanism for mediation of (rule) expression as method invocation
(i.e. messaging) in the rest of the object-centred system. An interpreter is an effector
expressing a method. To invoke rule expression, a message is sent to the rule class
(which is, then, sensitive to such interpretation). The type of rule expression
implemented in the interpreters is of a single-level. Depth-first search, for example,
is not provided in the toolkit; the interpreter just evaluates the rule (or set of rules)
once on invocation. More complicated strategies for rule evaluation could be
achieved by setting up another method to manage repeated invocations of the basic-
level interpreter expressing the individual rules. There are several points to note in
this context. All rules are of a single kind (with one possible extension) which does
not state how it is to be interpreted (apart from having a defined syntax). It is
possible to chain rules by stating (in a message) that the result of a test in one rule is
obtained by interpretation of other rules. This technique seems close in intention to
that of James and Frederick (1985). The significance of this is that in the FMS
environment, which prompted this work, the knowledge was of the kind that
establishes individual facts, that is, does not involve chaining of rules of the same
(class) type - or, establishes facts in one context that depend on rules in other
contexts. This mechanism controls relevance of rules and provides a contextual
means for their appropriate expression.

The stated syntax of the rules implies that all rules are of this simple type. In
effect, there is another type of rule which is the same, except that it contains an extra
part, prefixed to the condition(s). The prefix specifies that the rule applies to all

members of the class indicated, 1.€. ‘quantified over that class’. This allows rules to

be generalised, e.g. ones that apply to colours (as a class) are stated as “for all

colours ...”. This syntactic device allows the rule to be applied over the instances of

the class. A (slightly) different effector, invoked as a different method from the

116

usual interpreter, will then pick up the quantified class and attempt to apply such
rules once for every instance of the class (according to the mode of invocation).
This can be useful, for example, when special attention must be given to particular
instances. If ‘colours’ are referenced and the instance ‘green’ is important, a rule
sensitive to ‘green’ can be used, thus: ‘for all colours, if instance of colour is green
then”; the action of this rule can then be restricted to one instance out of the
whole class, and different rules in the same class can select for other colour
instances. By extension of this mechanism, a quantified interpretation involving
rules that specify a further level of interpretation, which is not quantified over a
class, may pick up the original class and use the implied identification to allow
appropriate expression: the quantified class is still visible to the second level of

rules. These two intepreters are provided as effectors in a toolkit ‘rule’ source file.

6.1.9 Rule tracing

Special code is included in the toolkit to allow the interpreters to record rule
expression. The mechanism for this is somewhat similar to that for message tracing.
If this is enabled, the interpreters list details of the expression of rule classses that
are sent intepreting messages. These are Outpuf to a file, for later examination. The
identity of the rule class, which instances were examined and the outcome, what
mode of interpretation and the result of the interpretation are all listed. After a run,
the user may examine the trace, step by step, in either direction (see Chapter 8).

This utility allows reasonable examination of the rules and should facilitate further

understanding of how rules interact.

6.1.10 A test harness
A program to build a test harness for objects (MAKETEST) allows the

source files for the methods of an object-centred definition to be linked with code

for a test ‘rig’. The resulting program can then load the object definition and

117

messages can be sent to any object in the hierarchy to test its action. This allows a

considerable degree of debugging of objects to take place,when coupled with the
review/reset facility of the tracing mechanism (vide supra). Suitable values can be
assigned to objects and the effect of a method can be examined. Where a faulty
method produces an error, a correction, to the inappropriate value of an item, can
sometimes be made. Such corrections can then allow the method to proceed,

causing more messages to arise, etc.

6.2 A prototype knowledge acquisition tool

The toolkit provides a utility to assist the user in defining instances of
classes (i.e. rules) for a given class hierarchy. The intention is to allow the user to
define (on top of a skeletal definition provided) all the symbols necessary for the
system to be able to recognise English-like statements of rules. It can check and then
translate them into the appropriate representation for the object-centred system.

The English syntax that is accepted for statement of the rules is somewhat
restricted in form but is recognisably English. The function of a knowledge
acquisition tool, in this context, might be said to be to capture ‘semantic relevance’
for the symbols it translates into internal tokens. Often, there may be a fairly direct
translation from one symbol to one token using some pre-defined frame of
association, giving a structure filled out with tokens. In this sort of translation there
is a direct matching of symbol to token. In the toolkit, the scheme is slightly
different; there being a difference in the nature of the knowledge capture. By

definition, the symbols stated by the user, in inputting a rule, will have semantic

relevance - because they have already been associated with a category of knowledge

(e.g. a particular class of objects, which, to the user, have a special significance) or,

by using expectations of what should be implicit from the known grammar of rules,

the system can attach a likely categorisation to strings encountered.

118

The most useful aspect of the utility is not that it can accept and translate a
suitable statement of a rule, but that it can also identify invalid rules, saying what is
wrong. It can detect that a symbol may not be wrong, but not yet known to it, and
allow the user to state what it refers to. The user may be able to mis-state a rule, e.g.
by ambiguous or slightly incorrect use of names, the system may disambiguate it

and suggest an appropriate meaning for the name.

6.2.1 A meta-description editor for defining metalevel knowledge

As with the object editor, the tool may be used to create a new definition or
modify an existing one. Since this utility captures a deeper description of objects in
order to generate items at a level bevond that of the object editor, which outputs an
example of the object framework - a class hierarchy, it is referred to as a meta-
description editor: that is, it is concerned with metalevel knowledge.

Two types of knowledge may be captured. Firstly, the user may specify
more detailed descriptions of the nature of classes, and other items. If a type has
been defined, i.e. of what nature its instances are, this can be recorded explicitly.
The types of instance variables (i.e. primitive: double, character etc., or object
reference: pointer, which would necessarily be the type accessing an object of a
non-primitive type) can be stated and named. (A kind of metalevel knowledge about
classes.) The system also constructs lists of relationships between method (names),
classes and effectors. These lists are used to check that a named method is being
correctly associated with a class, in a rule. In a manner similar to that for classes,
effectors may also be ‘meta-described’; their arguments may be typed (and named).
This knowledge is useful for understanding the system. The knowledge acquisition

tool is a prototype and is intended to assist documentation of this type of knowledge

and also capture instances (rules) for a given object-centred definition. As such, the

knowledge captured is meant to be the basis for a more sophisticated acquisition

i i . The tool would accept
strategy that allows a less constrained statement of instances. Th P

119

much more ambiguous statements and use the meta-knowledge of the domain, as
represented by the user’s definitions, to elucidate coherent knowledge. It would be
able to direct the user more accurately and could better ‘guess’ what was missing or
irrelevant in a statement. Some work was done along these lines, but discussion of
that is left to Chapter 8. Also, knowledge of what is expected in a method (i.e. what
the named action does, e.g. assigns values or evaluates items, and what items the
effector should deal with) could be used to provide semi-automatic writing of code.
The second activity of the utility is concerned with providing the means to
capture instances (rules). Capturing class meta-knowledge, for example, puts it into
a class hierarchy, as for any object definition. This means that there is a class (really
a meta-class) for descriptions of any object-centred class definition. The (meta-)
class for classes has, as its instances, the classes of an object-centred definition (the
one for which rules are to be acquired). The utility loads details of the designated
object definition into memory as instances of its own classes. It does this by
loading, initially a skeletal object definition (called ‘meta’). Meta has classes,
called u_classes, u_methods, u_effectors etc., which produce instances for each of
the classes, methods and effectors of the object definition: i.e. it models the
definition. The utility itself is in the form of an object-centred program whose
methods relate to the construction of instances. Its class hierarchy has other
members concerned with skeletal descriptions of components of instances (in this
case rules). At present, rules only are catered for. Other types of instances could be
accommodated by adding extra classes and methods to this part of the hierarchy.
The output of the utility is in the form of a meta-description hierarchy which
can be used for further definitions. The (meta-)classes for the components of arule
have instances for constants, relational operators etc. On the first call of the utility
(i.e. with no meta-description as argument) when a meta-description is initialised,
the user may add to the definitions, given in meta, other symbols {SU’iﬂgS) that
should be recognised by the system. An example might be for the ‘predicate’ string

that introduces a rule. The most obvious word might be ‘if’, for which the user

120

might add a synonym such as ‘when’ to have the same effect. When definitions are

introduced in this way, the user must state what token is to be understood as meant
by the symbol. The strings ‘returns’ and ‘equals’ might be added to the language.
The user would presumably indicate that the intended token is “=”. This is not a
simple association of one with the other. For the purpose of the syntax, “=” is a
‘relational’ operator, and only in the context of a relational expression will this
symbol be accepted for this meaning. When sufficient definitions have been
introduced, the utility saves them in the categories to which they have been
assigned. (New method names, for example, are not accepted, since a re-definition

of the existing object hierarchy described by the meta-description would be

implied.)

6.2.2 Capturing rules

When invoked with the name of a meta-description, the utility loads it and
the user can now specify rules to be translated into the internal format. (If required,
some new symbols may be defined, e.g. constants.) Firstly, the user must state
which classes (of the original definition) are to be regarded as containing rules. This
is not necessary if the utility has done this on a previous occasion. The particular
rule to be captured is then indicated. FolloWing an English statement of the rule, the
system attempts to parse it. As described in Section 6.1, the internal form of rules is
limited. The English grammar allowed is similarly restricted.

At the start, a predication symbol such as ‘if”, is required (prefixed by a
phrase for quantification, in the case of such rules). A rule starting ‘for all colours if
..." is quantified over that class. The intended class ‘colour’, in the case of the paint
scheduler, would be unknown as a symbol, so the system will not be able to match

it exactly, and looks for a near match, which will yield ‘colour_manager’. Tt will

. - c£5e e indi ¢ 7 riate
accept the string input for this class if it 13 indicated that ‘colour’ 15 an approp

synonym. When no ‘match’ can be found among the known symbols, a warning 1s

given and the user must choose the intended colour from a list. If none is

121

acceptable, the rule will be rejected. In the case of a method, also, where no match
can be made, the system informs the user that an attempt has been made to define an
new item, and suggests that the original object definition may need extension.
Should *for_all’ (or its synonyms) be missing (and the the first string not identified
as a predication symbol) the ‘class’, or whatever is matched, will be rejected,
because no quantification symbol was present and the next string was a ‘predicator’.

In this way, the system can find errors and may disambiguate references.
‘Valid’ rules that are nonsensical cannot be rejected because they are semantically
possible and syntactically correct. The system can recognise multiple conditions
(and actions), separated by conjunctions (instances of the class u_conjunctions). If a
relational operator is identified, then a constant or another expression is constrained
to follow it. These expectations allow signalling of errors, both where a symbol is
missing or of the wrong category.

Expressions are of the form <method> <class> and optional <selector>,
followed by a ‘relational’ and then another expression or ‘constant’ (vide supra for
the syntax for messages and their production from rules.) A similar approach to that
of the messager is used for checking the relevance of the method and class
references. Impossible combinations are rejected. A negated premise, such as of the
form ‘if a not the_same_as b’ or its ‘logical’ equivalent (‘if not a the _same_as B’) is
recognised. The internal representation of the rule is as the logical form (‘..not a...”)
and the first form shown is inverted by the system. ‘Not’ used conjunctively, e.g.
‘if a greater_than 2 not b greater_than 4’ which is taken to mean that the expression
is true for a > 2 and b <= 4, is understood as two relational expressions.

A more complicated re-arrangement is made for the selector string which is
to be constructed in interpretation. It would make for very awkward English to force

the selector string’s symbols to be appended to the rest of an expression (as is the

case for easy interpretation in the internal rule format). In the rule ‘for_all colours if

. ’ ¢ ire ‘colour manager’
enquire colours less_than nought then the phrase ‘enquire "colour_ g

. . 3. ¢ ra’ k methOd
: nquire’ is a known
is a clear enough message, derived from ‘colours’: ‘€nq)

122

defined by ‘colour_manager’ and ‘less_than’ is a relational. So far so good.

Unfortunately, the effector that is referenced requires more information than that.
The ‘enquire’ method is not a class method and an instance must be referred to, say
‘red’. This method also requires that a variable of the instance be accessed, say
‘colour_code’. If, in the rule, these strings were mentioned in the same order as the
messager receives the message the interpreter of the rules gives it, the intention
would be rather obscured (with loss of declarative power?) e.g. ‘for_all colours if
enquire colours red colour_code". The item ‘red’ would actually not appear
because the interpreter of this quantified rule instantiates the rule for the instances of
the class colour. The indication of the instance in the rule is by a place-holding
name, e.g. ‘current—item’, which, it may be remembered, has a special significance,
in that it identifies to the effector, ultimately, that the method is for an instance and
not the class as a whole. The following shows the syntax that is allowed: ‘for_all
colours if enquire colour code of current item of colours less_than nought then
....... . This clearly associates ‘current item’ with the class ‘colours’ (i.e.
ultimately ‘colour manager’). To the author, this seems to be more readable: the
purpose of the method is close, in the sentence, to the actual item that it accesses,
the ‘colour code’ variable. The meaning of the quantification of the rule over the
class ‘colours’ is apparent: each time the rule is instantiated the item referenced is a
particular instance of colours. Another point to note is that the strings ‘of’ are not
represented in the internal rule syntax, but are meaningful in the English statement
and assist parsing.

Where a previously undefined symbol is used, the utility will accept it as a
synonym for another symbol (as instructed by the user) or, in the case of an
apparent reference to a constant, for example, will recognise that such is expected
and ask the user what token it represents. If the user cannot supply a suitable

assignment, the system will indicate where and why there is an apparent error and

reject the rule.

If a rule is acceptable, its form, as parsed into parts (conditional, action etc.)

123

is presented and can be confirmed by the user. The English statement and the
translation are recorded. Following a session of rule acquisition, the utility can load
the original object definition’s instances and insert the new rules into their
corresponding places, if wished. The utility is able to re-define the size of (rule)
classes to accommodate the internal form of rules, if necessary. It can also write into
the file used by the rule tracing mechanism, the English statements of rules, so that
the explanation facilities use the latest text defined. Finally, the knowledge gained as

meta-descriptions is, optionally, saved; the meta-description file is updated from the

memory image of the description.)

6.3 An object-centred scheme for paint scheduling

The design techniques described above have been used to implement an
object-centred version of the paint scheduler (see Chapter 1), called START. The
knowledge base is incorporated in a modified version of the PAINT program.
START consists of the front end of PAINT, with extensions for enabling the
message and rule tracing activities, and uses the start-up code. It is, therefore, an
examplé of the architecture suggested earlier (see Chapters 1 and 2) where a
knowledge-based part resides in a conventional program. START uses database-
handling, as in PAINT, to maintain the ‘external’ view of the factory state. Where
PAINT would call Istel’s algorithm to allocate colour, each batching decision in
START is activated by sending a message to the object-centred knowledge base.
(This request, for a scheduling decision according to the current state of the
conveyor line, is mediated by a message of the form: ‘load task_manager’.)

‘load task_manager’ must have a selector string as well. If the

The message,

selector is “ALL”, viz ‘load task_manager: ALL’, the knowledge base must load an

image of the database into the objects of classes which model details of the map,

. : ¢ er’, ‘colour_manager’
colour, body and priority files (.. classes ‘map_manager, _ ger,

124

‘body_manager’,

priority_manager’ etc.). The effect of this message is two-fold:

the database image is loaded; then, the colour allocation mechanism is invoked. The

objects are initialised by a series of ‘load’ messages, .g. ‘load map_manager: ALL’

etc., sent from the method. (The loading is done by invoking another method: ‘load

database_manager: ALL’, which activates the ‘load’ methods of the objects

reflecting each of the database files.)

The ‘reverse’ of this message is ‘load task_manager: DUMP’. This allows
the object-centred image of the database to update the database files, thereby
allowing the state of the knowledge base to be saved. When the selector is of the
form ‘load task_manager: colour, batch’, a different response occurs. This form is
used on second and subsequent calls on the scheduler. (The image of the database
should already be loaded and the relevant objects initialised). The meaning is that the
‘batch’ BIWs were achieved in ‘colour’ following the previous batching decision.
As for the “ALL” selector, the ‘db_manager’ class receives a message to update the
images of files because of the batch being achieved (i.e. counting down the
appropriate requirements and increasing the achievements. ‘Update db_manager:
colour, batch’ results in the ‘db_manager’ method sending out ‘update’ messages to
the appropriate instance for the colour of the batch and objects of the
‘body_manager’ class. The map image is also updated. In principle, the updating of
database images is achieved by the same algorithm as in the PAINT program, but
access to identities of BIWs in the map, for example, is gained by requesting the
appropriate map object (the ‘old map’ instance of the map manager class) to say
what body type is situated where. All values exchanged between classes are
returned as the values of methods evoked from message-passing (vide infra).

Figure 6.1 details the various classes in the object hierarchy. For each colour

stated in the database file, there will be a corresponding instance of the class

colour manager; with variables indicating such items as total achievement and

requirement, colour code etc.) The (constant) values for batching parameters (minpb

. b ¢ >
etc.) are represented in a subclass (‘colour_items’) of ‘colour_manager:: one

125

instance for each colour. In a similar fashion, the class ‘body manager’ records
body types and class ‘priority_manager’ any priority body/colour combinations
specified. The organisation of the ‘map-manager’ class is slightly different. It has
two instances: one is for the state of the map known prior to a batching decision,
holding the code of each BIW in the map (database file) of the conveyor; the other is
used to get a new image of how the map looks following a batching decision.

The process by which the body objects count down the requirement, and
increase achievement, following an ‘update’ message, is essentially the same as that
for PAINT. The algorithm consists of identifying each BIW that has been achieved
in the map and marking down the particular body/colour totals. In the case of the
object-centred system, messages are used to do this, for example, sent to the map
requesting the identities of the various BIWs involved. The whole process is
mediated by messages and no direct alteration of values is done, except by the
objects that possess them themselves.

The requirement to restrict access to items may seem rather tedious and
inefficient, but having privacy of data is the intent of such a system. It should also
be noted that this knowledge base is meant to exist inside a real-time system and it is
quite possible to have a situation where the knowledge of ‘what is where’ is subject
to change. This is, for example, true of the BIWs nearest the sealer (which can be
re-arranged). This is not, essentially a time-dependent form of non-monotonicity (in
the sense that validity decreases with the age of the data) but one due to uncertainty
in the accuracy of knowledge. The rationale for requiring map objects to release
their information on request is to ensure that any such changes in the reliability of
information could be catered for by explicit methods for handling non-monotonicity
(as regards the view of an object from other objects). If body objects were allowed
to access the map freely, without messaging, such control would be much harder to
impose. It is not suggested that, in all cases, such an approach would deal with

potential non-monotonicity. In the case of external changes in the database (or a

series of such changes) which, for example, caused interruption of rule-based

126

decision making, it is quite possible that a certain stage of reasoning had been
reached that, after the change, was now invalid. In this case, it would be hard to
retract certain assertions because they cause permanent changes in objects. When a
rule fires, its assertions can cause an object to change a value. If the rule assertion
now has to be retracted and a different line of reasoning followed, that is one
dependency to change: it considerably more difficult to trace all the potential values
whose previous values should now be reverted to (e.g. deKleer 1983), for example,
because each item would have to be recorded as having a previous value, particular
associations etc. This approach is logically complicated by the fact that objects
would have to supply methods for value retraction. It would be unacceptable to
demand that a global mechanism be allowed access to objects ignoring messaging
conventions. The object. scheme would be helpful, however, because the
encapsulation of objects would allow specification (on an inherited/override basis)

of just how each item should be justified etc. In many cases, the number of different

fan A€ Allanée wvrAnlA

methods for data justification could be limited: lil-(‘e faplmil.{es of objects would
probably use the same method(s), so the total would be much less than linear in the
number of classes. A reason maintenance scheme would, thus, be simpler to insert
on a class-by-class basis.

In practice, such reason maintenance is not an issue for this knowledge base,
although it might make the objects directly more responsive to external changes.
Asynchronous events, such as the switching on/off of a paint colour, might affect
the validity of the partial decision so far. If, after an interrupt, the decision-making
is resumed, with appropriate tracing of dependencies and retraction of rule
assertions etc., it may well take longer to resume than to abandon it altogether and
start again, particularly if another interrupt occurs (which might interact with the
first). One interrupt might imply undoing certain changes in data which would be
relied on for undoing of the changes made necessary by the second interrupt. In

such cases, there is an indeterminate state. It cannot, necessarily, be certain that this

will not be the case, so any retraction of previous reasoning followed by resumption

127

may have removed (now) incorrect items that would be required, in their incorrect
form, for some future retractions to be possible. In the case of changes like
constraining of colours, a check could be made, at the end of a decision, to see
whether the change invalidated the colour chosen, i.e. if the selection were for
‘yellow’, then the asynchronous switching off of yellow could be noted and another
colour chosen. This means that the time spent, after resuming the decision making,
would have been wasted.

The above discussion makes reference to the encapsulation of objects and
privacy of data. This is relevant in considering how rules mediate their effects and
instances change their variables. In rule mediation, most messages are concerned
with finding the value of some object, or setting it to a new value. (Methods for this
are such as ‘enquire’ and ‘set’.) Messages invoking instance methods, by
convention, refer to the instance addressed in the selector; its first component.
Where a particular variable is referenced, it is usually the second component. The
third will refer to the value that the variable is to be set to. Another possibility is that
a different transaction is to be done on the variable, for example, inverting it
(negative to positive and vice versa).

On each invocation of the knowledge-based system, following updating of
the database image, the method invoked (‘load task_manager’) causes the tasks
which are required to select the batch etc. to be initiated. This is done by using a
task loop. In the loop, the state of ‘tasking’ is tested, and while this has not reached
a particular stage, in the body (of the loop) a message is sent to a subclass of the
responding class (task_manager) to evaluate a rule set (of task rules). Initially, the
value of the control item for the loop (the ‘task’ instance of ‘task_manager’) is

‘selecting_colour’. The termination value is ‘done’. An ‘interpret task_rules by

fire first’ message is then sent (to task_rules). The result of this is that the

‘interpret’ method of this class (the archetypal interpreter, inherited from its parent

class, task manager) is activated for its instances, which are rules, so that the first

one with a conditional part that evaluates to fru€ is fired, the others ignored.) In this

128

L
|
|
£
i
i
.

case the rules are mutually exclusive. These rules are all of the form: ‘if enquire task

of task_manager returns state then and set task of task_manager to newstate’.

In this example, “state’ is “selecting_colour’, ‘selecting_batch’ etc., i.e. any value

that ‘task’ is allowed to have; ‘newstate’ is the next state in the performance of

tasks, i.e. ‘selecting colour’ becomes ‘selecting batch’ ‘done’. When the last

part of scheduling has been done the (second) action of the task rule fired will cause
‘task’ to be set to done’, allowing the loop to end. The first actions of each of these
rules causes a part of the scheduling process to take place. In effect, three activities
are required for scheduling: firstly, selecting all those colours which could make a
minimum batch - minpb (applying the principle of excluding for colours giving
batches of less than a preferred size, e.g. because of lack of order cover in the map
sequence); secondly, finding the largest batch possible for any colour that satisfied
the first criterion (subject to the maxpb value); thirdly, selecting the ‘best’ colour,
subject to the least-achieved criterion.

The rule set for tasks is an example of control knowledge. The expression of
those rules causes a ‘cascade’ of effects which mediate scheduling. In some ways,
the control scheme resembles a blackboard - the activation of one part of the system
evoking activity in other parts - those parts activated will be rule sets, which are
objects with associated control, avnd so there is a correspondence between
blackboard and knowledge sources and this architectural feature.

In the case of the colour selection task, the message ‘quantify
batch_min_rules by fire_all’ is sent to the rule set ‘batch_min_rules’ as a result of
the task rule’s first action, which is ‘... then quantify batch_min_rules by fire_all
....". The reason that the interpreting request is introduced by ‘quantify’ and not
‘interpret’ is because this rule set (class) is one which applies to a set of items (i.e.

all the instances of a class) in this case the colours. All ‘batch_min_rules’ rules are

of the form: ‘for all colours if". The interpreter applies each of the rules, in

¢ ‘ 3 3 ¢ ’
turn, to the first instance, then the next etc., €.8. red’, ‘blue’, ‘green’, ‘yellow”.
The first rule specifies that colours with 2 negative colour code (i.e. which have

129

been switched off) are not considered, so should have a potential batch size of nil
and the colour code should be marked as off (*for_all colours if enquire colour code
of current_item of colour_manager less_than nought then set batch of current_item
of colour_manager to nil and set colour_code of current_item of colour_manager to
minus’). The second rule looks at the colour code and if it is positive sets up the
batch objects with the current colour details for the scheduling decision: ‘for all
colours if enquire colour_code of current_item of colour_manager greater than
nought then copy current_item of colour_manager to batch_manager’. These rules
show that the level of control is focused gradually. The first references are to the
colour code, held in ‘colour_manager’ instances. If a colour is valid, current details,
as updated by previous decisions and held in colour objects (images of the database
file) are copied to the ‘batch_manager’ class, which is used as a ‘temporary’ image
for partial batching decisions.

The second task rule will activate the (batches of up to maxpb) batching step:
‘if enquire task of task manager returns selecting batch then quantify
batch_inc_rules for fire first and set task of task _manager to selecting_best’. (This
will fire only when the first task has been completed.) Evaluation of
‘batch_inc_rules’ is by reference to colour objects, as for class batch_min_rules.
The first of these rules specifies looking for a priority batch (i.e. one containing at
least one priority body/colour combination in the batch of BIWs on the line). The
expression of this rule’s condition is to send an interpret message to evaluate the
priority rules of class ‘prty_rules’ for each colour instance. If this rule succeeds for
any colour (after all have been tried), the interpreter quits for this rule set, because it
was invoked to find the first successful rule. The second rule checks that, for the
colour instantiated, the minpb size of batch has been found. If this is so, the action
of the rule is to extend the batch as far as possible (i.e. up to maxpb or lack of cover
in the map). The third rule is a default one: if the previous batch can be extended

(ie. the leading BIW in the map has cover in the instance’s colour) and the previous

batch had this colour, the batch size is set to one. This rule calls for the evaluation of

130

a rule set for extending batches (*batch_ext_rules’). If this returns a successful
result, the action (set a batch size of one) can be asserted.

The expression of rules proceeds as in the above examples. A full list of
rules and details of objects and their methods are given in the Appendix (see Chapter
7 for more examples of how rule expression works). The effect of rules is to
produce permanent changes in the objects acted on. This is equivalent to updating
the working memory elements of a production system. Eventually, enough
knowledge has been accumulated to state the best decision. In this system, a set of
batch sizes has been evaluated for the colour instances (strictly, ‘copies’ of them
held in batching objects). The variables of these (batch) colour items show whether
a priority has been found. If one has been found, then only ‘prioritised’ instances
are considered. If an extension batch is found, only one colour (that of the previous
batch) will have a batch greater than nought (i.e. one). A method (of
‘batch_manager’) is required to select the best from a number of alternative. This is
an object-centred form of the algorithm used in PAINT (i.e. find the least a.p.).

It can be seen that the procedural expression of Istel's algorithm has been
partly explicated by re-statement in rules and objects. The proportion of knowledge
that is hidden (i.e. in procedural code) is much less. The methods to achieve tests
and changes are fairly simple and, of course, result in messages (which can be
traced). The naturevof statement of messages is, thus, fairly declarative. This is a
benefit over more conventional programming, where the variables, code and their
interactions are probably hard to distinguish. If the strict use of encapsulation and
independence of data in objects is adhered to, all changes in objects should be
observable.

One aspect that is interesting is to note the nature of some classes and their

instances. The task manager class has but one instance, plus access methods.

‘Task’ is really a class variable in the Smalltalk sense: ‘task_manager’ requires no

instances. The instances of the class might be represented by subclasses. This is no

particular disadvantage, however (apart from the messaging convention for

131

instances). One other way for a class to have class variables is represented by some
methods’ possession of private variables. These perform the function of class
variables because they are accessible via their method (available to all members of
the class). Their declaration is static, so they persist between invocations of their

method and can be initialised.

132

Chapter 7 An evaluation of the knowledge-based
approach

In this Chapter, a trace will be made through the decision-making process in
the paint scheduler. The activity of rules and general message traffic will be high-
lighted to illustrate how the expression of knowledge is mediated. (The rules
discussed are listed in Section 7.1.) Following this exposition, an example is given
of how inappropriate rules can cause incorrect decision-making. The use of the
description editor is illustrated in defining new rules that would expand the
knowledge base in new ways. (Further and wider modifications to the knoWledge

base are discussed in Chapter 8.)

7.1 Rules (as accepted by the knowledge acquisition utility)
Class # Name

task rules i. selecting colour:
if (enquire task_manager) returns selecting_colour
then quantify batch_min_rules by fire_all and
update task_manager to selecting_batch
ii. selecting batch:
if (enquire task_manager) returns selecting_batch
then quantify batch_inc_rules by fire_first and

update task_manager to selecting_best

133

.
&
.
j

iii. selecting best:
if (enquire task_manager) returns selecting_best
then interpret batch_best_rule by fire first and

update task_manager to done

batch min_rules i. colour off:
for_all colours
if (enquire code of current_item of colours) less_than nil
then set batch of current_item of batch clr_itms to nil and
update code of current_item of batch_clr_itms to minus
ii. copy colours:
for_all colours
if (enquire code of current_item of batch_clr_itms) not less_than nil
then copy current_item of colours to batch_clr_itms
iii. nil batch:
for_all colours
if copy current_item of body_colours to batch_clr_itms and
set cover_done_flag of batch_manager to on and
interpret form_min_rules by fire_all for current_item and
(enquire batch_size of batch_manager for current_item) less_than
(enquire batch of current_item of colour_items)

then update batch of current_item of batch_clr_itms to nil

batch_inc_rules i. priority:
for_all colours

if (interpret batch _prty_rule for current_item by fire_all) returns

priority_batch

then update priority of current_item of batch_clr_itms to on

134

1i. maximum batch:
for_all colours
if enquire batch of current_item of batch_clr_itms not less_than
(enquire minpb of current_item of colour_items)
then interpret form_inc_rules by fire_all for current_item
iii. extend batch:
for_all colours
if (interpret batch_ext_rules for current item by fire first) returns
cover_one
then update batch of current_item of batch_clr_itms to one and
valid batch_ext rules for current_item
iv. batch one:
for_all colours
if (enquire code of current_item of batch_clr_itms) not less_than one
and cover current_item of batch_clr_itms
then update current_item of batch_clr_itms to one
iv. batch fail:
for _all colours
if (enquire code of current_item of batch_clr_itms) not less_than one
then set batch_size of batch_manager to one and

update achievermnent of current_item of batch_clr_itms to minus

batch_best rule i. prioritised:
if best batch_clr_itms
then set batch_best_rule
ii. normal batch:
if valid batch_manager

then set batch_best_rule

135

| 1i1. previous colour:
E if copy batch _clr_itms
F then set batch_best_rule
iv. crisis valid:
if valid batch_clr_itms for plus
| then set batch_best_rule
v. crisis fail:
if valid batch_clr_itms for minus

then set batch_best_rule

batch_prty_rule 1. quit colour:

if (enquire batch of current_item of batch_clr_itms) returns nil
then set Eatch _prty_rule
ii. mark ap:
if (enquire batch of current_item of batch_clr_itms)
greater than or_equal_to
(enquire minpb of current_item of colour_items)
then quantify batch_clr_itms by high value for achievement for
current_item
iii. priority batch:
if (batch current_item of batch_clr_itms for plus) greater_than nil

then set batch_prty_rule

batch_ext_rules i. one only:

if (enquire batch of current_item of batch_clr_itms) greater_than one

then set batch_ext_rules

ii. colour still on:

if (enquire code of current_item of batch_clr_itms) not greater_than nil

then set batch_ext_rules

136

iii. previous colour:
if not match batch_ext_rules for current_item
then set batch_ext rules

iv. coverone :
if cover batch_ext_rules for current_item

then set batch_ext_rules

form min_rules 1. batched:
if (enquire cover_done_flag of batch_manager) is off
then set form min_rules
ii. constrained:
if (enquire code of current_item of batch_clr_itms) less_than nil
then set form min_rules
iii. limit:
if (enquire batch_size of batch_manager) equals
(enquire minpb of current_item of colour_items)
then set form_min_rules
iv. no cover
if not cover for batch_clr_itms for current_item
then set form_min_rules
V. cover
if cover for batch_clr_itms for current_item
then update batch_size of batch_manager for plus
vi. check priority:
if enquire prty_items for current_item
then set priority of current_item of batch_clr_items
vii. continue minpb:
if (enquire cover_done_flag of batch_manager) is on

then interpret form_min_rules by fire_all for current_item

137

form_inc_rules 1. batched max:
if (enquire cover_done_flag of batch_manager) is off
then set form_inc_rules
ii. no colour:
if (enquire code of current_item of batch_clr_itms) less_than nil
then set form_inc_rules
iii. limit max:
if (enquire batch _size of batch_manager) equals
(enquire maxpb of current_item of colour_items)
then set form_inc_rules
iv. no more cover
if not cover for batch_clr_itms for current_item
then set form_inc_rules
V. cover max
if cover for batch_clr_itms for current_item
then update batch_size of batch_manager for plus
vi. check prty max:
if enquire prty_items for current_item
then set priority of current_item of batch_clr_items
vii. continue maxpb:
if (enquire cover_done_flag of batch_manager) is on

then interpret form_inc_rules by fire_all for current_item

138

R e SO e

.
-
|
i
i
!
E
£
L
L

7.2 A trace of a painting run

The order profile as in Figures 7.1 and 7.2 was used as the starting point for

a paint batching test. The leading part of the sequence of Bodies In White (BIWs) is

shown in Figure 7.3.

Colours allowed Maximum used (Total colour items set)

32 12 70
Colour minpb maxpb maxb Required Achieved (Colour name)
1+ 3 50 75 419 88 white
2+ 5 34 53 249 66 midnight black
3+ 4 40 60 570 158 scarlet
4+ 4 20 58 496 135 azure
5+ 3 35 80 245 28 lemon
6+ 3 35 60 439 107 bronze
7+ 5 15 40 294 50 sea green
8+ 4 35 60 404 110 silk green
9+ 3 40 55 419 82 beige
10+ 4 47 60 336 88 sunset orange
11+ 6 40 80 493 124 silver
12+ 3 31 49 608 164 champagne

(+ signifies availability for a colour)

Colour order profile

Figure 7.1

139

Body codes allowed
12

Body Tot.req. Prty.req.
1 450

Colour Tot. req. Prty req. Achieved Priority (ach.)
34 0

Maximum used

0

10

Achieved Prty (ach.) Name
232 0 200 3 dr

2+ 103 0 1 midni
4y 76 0 50 0 gl g;lfrx:ght black
6+ 63 0 72 0 b1 bronze
8+ 97 0 40 0 b1 silk green
10+ 11 0 26 0 b1 sunset orange
2 875 0 220 0 2005 dr
Colour Tot. req. Prty req. Achieved Priority (ach.)
L+ 83 0 0 0 b2 white
§+ % 8 %g 8 b2 midnight black
+ b2 scarlet
4+ 83 0 0 0 b2 azure
S5+ 68 0 0 0 b2 lemon
6+ 59 0 9 0 b2 bronze
7+ 48 0 20 0 b2 sea green
8+ 46 0 55 0 b2 silk green
9+ 88 0 15 0 b2 beige
10+ 55 0 27 0 b2 sunset orange
11+ 22 0 44 0 b2 silver
12+ 153 0 0 0 b2 champagne
3 90 0 46 0 800 3 dr
Colour Tot. req. Prty req. Achieved Priority (ach.)
11+ 90 0 46 0 b3 silver
Figure 7.2 (part)
4 175 0 98 0 800 5 dr
Colour Tot.req. Prty req. Achieved Priority (ach.)
3+ 41 0 40 0 b4 scarlet
9+ 134 0 58 0 b4 beige
5 602 0 225 0 monterey
Colour Tot. req. Prty req. Achieved Priority (ach.)
4+ 215 0 61 0 b5 azure
12+ 387 0 164 0 b5 champagne
6 739 0 91 0 monterey estate
Colour Tot. req. Prty req. Achieved Priority (ach.)
3+ 262 0 16 0 b6 scarlet
6+ 111 0 26 0 b6 bronze
T+ 123 0 15 0 b6 sea green
11+ 243 0 34 0 b6 silver
7 712 0 113 PO' 4y (ach)direttore 3dr
Colour Tot. req. Prty req. Achieved Priority (ach. '
1+ 102q 0 35 0 b7 white
3+ 105 0 32 0 b7 scarlet
6+ 138 0 0 0 b7 bronze
8+ 127 0 11 0 b7 silk green
9+ 138 0 0 0 b7 beige
10+ 102 0 35 0 b7 sunset orange

140

8 826 0 132 0 dirett
Colour Tot. req. Prty req. Achieved Priority (ach.) Hore > dr
1+ 23 0 43 0 b8 scarlet
3+ 29 0 38 0 b8 azure
A+ 68 0 0 0 b8 lemon
o+ 114 0 23 0 b8 bronze
6+ 68 0 0 0 b8 sea green
T+ 123 0 15 0 b8 silk green
8+ 134 0 4 0 b8 beige
9+ 59 0 9 0 b8 sunset orange
11+ 138 0 0 0 b8 white
9 236 0 38 0 unterbahn 3 dr
Colour Tot. req. Prty req. Achieved Priority (ach.)
1+ 73 0 10 0 b9 white
2+ 54 0 14 0 b9 midnight black
3+ 35 0 0 0 b9 scarlet
4+ 54 0 14 0 b9 azure
10 267 0 5 0 unterbahn 5 dr
Colour Tot. req. Prty req. Achieved Priority (ach.)
1+ 68 0 0 0 b10 white
5+ 63 0 5 0 b10 lemon
10+ 68 0 0 0 b10 sunset orange
12+ 68 0 0 0 b10 champagne
Body order profile
Figure 7.2 (cont.)
Distribution biases:
up to minpb minpb to makpb more than maxpb
1.000000 1.000000 1.000000
2 6 4 6 4 4 73 7 6 6 436356665606
56 5 5 3 6 46 3566363473786 63
6 75 7 6 6 5 4 4 8 8 5 5 8 88588845
76 8 77 3558 85558853338 8 6 5
56 75 5 8 48 8 88555828 46 6 6 8 8
5 8 8 8 8 8 435555455458 8 8 6 8
8 3 83 80 68 8 95 8 8 106 886 9 9 4 7 7
8 3 8 4 555556555565 6 6 6 4 7 5
56 55555776656 6465 7 6 4 7 6
5 775 755655577556 6 7 7 6 8 17
75 6 8 8 9 6 7 7 9 106 6555 6 10 10 10 5
5 4 38 8 8 8 8 83 8 8 85 7738 g 8 10 8 8 8 10
8 8 7 8 8 9 9 9 ...
Sequence of body types on conveyor line
Figure 7.3
141

e e

Assuming that the initialising stages of processing, as described in Chapter
6, have taken place, the rule interpretation progresses as follows. Rules, as stated
earlier in this chapter in Section 7.1, are referenced here by the class and instance
names.

The state of the loop variable (‘task’) will be ‘selecting_colour’ on
initialisation. Within the loop itself, a message is sent to ‘interpret task_rules by
‘fire_first’. This causes the call_rule_set effector to be activated on the specified
instances of the class (task_rules). As discussed previously, the significance of
‘fire_first’ is that the first satisfiable rule only is fired (taking the instances of the
class in turn). All these rules are sensitive to the state of ‘task’ and, in this case, the
evaluation of the rule ‘selecting colour’ (the first tried) yields a satisfied conclusion:
‘if enquire task manager returns selecting_colour then ...’; an ‘enquire
task_manager’ message is originated by the interpreter parsing the condition and the
class replies with the value of ‘task’. The action ‘quantify batch_min_rules by
fire all ...’ is enabled and a ‘quantify’ message is sent to ‘batch_min_rules’. In both
cases of interpretation, neither class possesses the method and they inherit
‘interpret’ and ‘quantify’ from an ancestor (task_manager). The quantification
method of task_manager is implemented by the ‘call_gen rules’ effector. As
previously described, this method iterates over the members of the class specified in
the quantification part of the rules being interpreted. All of the class batch min_rules
specify application over ‘colours’. The first rule (‘colour off’) applies this
quantification to the condition ‘if enquire code of current_item of colours less_than
nil’. As is evident from Figure 7.1, no colour is unavailable and when an ‘enquire
code’ message is sent to each colour, in turn, the class responds with the colour
code, which is always greater than nought. The relation ‘less_than nil’ is false and
so the next rule in the class will be consulted for the colour. ‘Copy colours’
specifies a similar condition: ‘if enquire code of current_item of batch_clr_itms not

less than nil’, but in a negated form; sO this is true for all colours tried. The same

message results in the colour code being returned. This may seem wasteful but

142

allows ‘independence’ of rules - which, paired, as in this case, form the logical
equivalence of an if ... else sequence. For each colour, then, the action will be
applied. The message “copy current_item of colours to batch_clr_jtms’ is sent and
causes the recently updated (following a previous batching decision) detail for the
colour to be copied to the appropriate batch instance.

The third rule (‘nil batch’) has a condition with a trigger - ‘if copy
current_item of body_colours to batch_clr_itms’ which causes a message to be sent
to acquire more colour details for the batch item. The next part of the condition ‘and
interpret form_min_rules by fire all’ causes the interpretation of a set of rules for
the colour being considered and tries to form a valid minimum batch. (This itself
contains a trigger to initialise a control variable allowing expression of the rules -
<. and set cover_done_flag of batch_manager to on ..."). The final part tests the
batch size formed and compares it with the minpb value for the colour ‘... and set
batch_min_rules for current_item less_than enquire minpb of current_item of
colour_items then update batch of current_item of batch_clr_itms to nil’; the ‘set’
message in this case causes batch_clr_itms to reply the potential batch size formed
and then the sending of an ‘enquire’ message to colour_items gains the relevant
comparison value. The interpreter cOmpares these two results and sends a message
to any instance of batch_clr_itms where the comparison is true. The message
requests the instance to now update its batch size to nil. This means, when all
colours have been estimated, that the batch size is at least minpb or nought. (The
alternative to using rules for an essentially procedural determination of batch size is
a method ‘batch’ for batch clr_itms, which uses an effector, ‘form_batch’, to

i ' colours and
compare the given sequence on the conveyor with the order cover for co

bodies and find a valid batch. The rule would specify ‘batch batch_clr_itms for

: . iy) is 1 le where a method
current_item’ instead of the ‘interpret ... part. This is an examp

: : s (‘ni ’ ion implements
can recode the effect of rule expression). This rule’s (‘nil batch’) action 1mpie

‘dering, 1 is at least
the principle that the minimum batch worth considering, 1 normal cases, 1S a

.) . o diffi to arrange that a value, not
minpb BIWs. If rule interpretation 18 used, 1t 18 difficult g

143

directly related to the rule, such as potential batch size, be returned as the value of
the method (interpreter). The result of interpretation of a rule set should be logically
true or false or, perhaps the last rule evaluated. In interpreting the rules, it is a
convention, as with other parts of the object system, that a logically false result
indicates failure to evaluate a rule, not that the rule set gave a ‘true’ or ‘false’
answer, which would be meaningless where rule expression is mediated by
message-passing. If values other than fail/succeed are required, then a reference to
the last rule evaluated in the set is allowed, since this should be unequivocal in
meaning.

Expression of the batching rules (‘form_min_rules’) follows, as stated
above, by ‘set’-ting of the batch_manager instance variable (‘cover_done_flag’).
(When this flag is ‘on’, the rule set is enabled.) The first rule of this set (‘batched’)
checks that the ‘cover done flag’ is ‘on’ and if ‘off’ cuts the rule expression - ‘if
enquire cover_done_flag of batch_manager is off then set form_min_rules’. The
‘constrained’ rule, as in other rules checks that the colour is available: ‘if enquire
code of current_item of batch_clr_itms less_than nil then set form_min_rules’. In
this rule, again, the action is to cut rule expression (for the colour under
consideration.) The ‘limit’ rule checks that the current potential batch size is less
than minpb for the colour and quits if the batch has reached the limit - ‘if enquire
batch_size of batch_manager equals enquire minpb of current_item of colour_items
then set form_min_rules’. The next rule (‘no cover’) looks for a match on the colour
for the next BIW on the line (to add to the batch). If there is none, then the batch is
complete and the rule class is ‘cut’. (This is explained in more detail for the
extension of batches, vide infra.) The rule (‘cover’) has the converse condition to
the previous rule (‘if enquire batch_size of batch_manager equals enquire minpb of
current_item of colour_items then set form min_rules’) and, if a BIW can be added
to the batch, sends an update message to the batch_manager instance variable
‘batch size’; in this case, the ‘plus’ selector does not set a particular value but

requests that the current value be incremented. The ‘check priority’ rule is optional

144

but can be used to establish that the current BIW under consideration is prioritised

for the colour. It causes the same messages to be sent to the class prty_items’
instances as the method that operates in the rule set ‘prty_rules’ (‘if enquire
prty_items for current_item then set priority of current_item of batch_clr_itms’).
The final rule (‘continue minpb’) checks that the batch is not marked as complete (‘if
enquire cover_done_flag of batch_manager is on’). This is true for the first BIW for
all colours (they have cover in type #2) and so the ‘cover’ rule succeeds and the
others fail, except for the last (‘continue minpb’). The result is that a potential batch
of one is possible for all and the action of the last rule is, recursively, to call
interpretation of the set again (“if enquire cover_done_flag of batch_manager is on
then interpret form min_rules by fire all for current_item’). In the case of ‘scarlet’
the ‘cover’ finishes at the seventh BIW (type #7) but for all others the batch is
‘complete’ after the second or first BIW. Thus the third rule of the batch_min_rules
class (‘nil batch’) will be enabled for all colours, other than ‘scarlet’, and the
principle of ignoring batches smaller than minpb will be observed (setting them to
nil). Interpretation of ‘form_min_rules’ will cease at the limiting body because the
rule to continue expression will fail after the flag for completion is set. Rule
expression unwinds (back to that for ‘batch_min_rules’) instead of recurring.

Processing of the batch_min_rules class is now complete. It was invoked
from the action of the ‘selecting colour’ rule whose second action is now evaluated:
‘... and update task_manager to selecting_batch’. The effect is to request
‘task_manager’ to update ‘task’ to a new value. This value, ‘selecting_batch’, now
will enable another task rule to fire (‘selecting batch’) on the next iteration through
the task control loop.

The second task rule (‘selecting batch’) is fired and a ‘quantify by fire_first’
message is sent to ‘batch_inc_rules’. The interpreter method treats the rule set in a
similar way to ‘batch_min_rules’, except that only the first successful rule is to be

applied to each of the instances of the quantified class: again, the quantification is

. . 3 4
over colours, specifically resolving to ‘colour_manager-.

145

The first of the rules interpreted is “priority’, the condition of which is

satisfied when a body has been prioritised for the colour in question. This is
established by attempting interpretation of priority rules (class batch_prty rule). The
condition of the rule (‘priority’) causes the message ‘batch_prty rule for
current_item by fire_all’ to be sent. This means that ‘current_item’ is expanded into
a reference to the instance of the relevant colour on each evaluation of the rule. The
relational part of the rule is ‘returns priority_batch’. This relationship is true when
the interpretation of the set of rules referenced returns ‘priority batch’. That occurs
when the last rule of the new set is successfully applied: i.e. that associated with
‘priority_batch’.

Class batch_prty rule has two rules, ‘quit colour’ and ‘mark a p’, which
establish that a batch can be set (i.e. non-nil so far) and that its a.p. (achievement
proportion) can be calculated, allowing a priority batch to be identified later. The
condition of ‘quit colour’ is ‘if enquire batch of current_item of batch_clr_itms
returns nil’. This is applied to the colour that has been evaluated in the invoking rule
(and passed to the interpreter). The result of potential batch determinations to date is

shown in Figure 7.4.

Colour Possible Actual Limiting Principle
batch batch BIW
white 2 - 6 minpb = 3
midnight black 2 - 6 ~ minpb =35
scarlet 264644 2646(44) 7 minpb: 4; no cover: 7
lemon 2 - 6 minpb = 4
bronze 2 - 6 ml.“pb -3
sea green 26 - 4 minpb =3
silk green 26 - 4 minpb =5
beige 2 - 6 minpb = 4
sunset orange 2 - 6 minpb = 3
silver 26 - 4 minpb = 6
champagne 2 - 6 minpb =3

Partial batch determinations

Figure 7.4

146

:
|

For all other colours than scarlet, this condition is not satisfied and the action is not
fired. The message “set batch_prty_rule’ would be sent on successful unification for
the colour. The “set’ method for this rule class is defined somewhat differently from
other set methods. Since a rule is essentially a static item, the set has a different
meaning from that of altering something. The effect is to mark the rule as having
been fired and quit from further evaluation of the class (irrespective of how the class
was referenced). The effector ‘call_cut’ is a dummy action representing the effect of
a ‘cut’ operator in Prolog, for example.

In the case shown, this means that for scarlet only, a worthwhile batch (of at least
minpb BIWs) is possible.The next rule is evaluated to screen out small (less than
minpb sized) batches. For colours other than scarlet, it is necessary to remove them
from éonsideration.

The second rule of this set (‘mark a p’) is only applied to the ‘scarlet’
instance. The same message to find the batch size is sent (originated from the
condition, similar to the ‘quit colour’ rule: ‘if enquire baich of current_item of
batch_clr_itms greater_than_or_equal to enquire minpb of current_item of
colour_items’) but this time a comparison is made with the colour batching
parameter, by sending the ‘enquire minpb of current_item of colour_items’
message. This rule applies only to scarlet, all other colours having at least one valid
BIW but a batch size too small (less than minpb) e.g. silver, with two BIWs, failing
the test, since at least six are required. The action, for scarlet, is to send a ‘quantify
batch_clr_itms by high_value for achievement for current_item’ message. The
meaning of ‘quantify’, as applied to to a non-rule class, is, like ‘set’, different from
usual. Tt means that ‘batch_clr_itms’ should calculate an a.p. for any instance that
has a valid batch size. Any instance for which this is not true has a value set for a.p.
that makes it impossible to be selected (‘high_value’). This value will always be so

high that any a.p. calculated can never be higher, providing a default ‘don’t care’

state for the colour and any ‘valid’ a.p. is always favoured. (‘Least achieved’ being

147

L
.

most favoured.) The values for a.p.s are obtained by sending the requisite ‘enquire’
messages to colour objects, asking for their requirement and achievement values.

In the case of scarlet, then, the third rule (‘priority batch’) will give a
positive result: ‘if batch current_item of batch_clr_itms for plus greater than nil then
set batch_prty rule’. The batch’ message requests that the batch for the instance
specified should be checked for priority items. The ‘plus’ selector indicates that if a
priority does not exist within the batch, the test fails (as it will for all colours here).
The action is not fired and so the return value for the interpretation of this class is
“QK”. This means that every (rule) evaluation was able to proceed and the result
(returned after all evaluations)will not unify with the comparison looked for by the
rule that invoked the interpreter (namely ‘priority’). Where a priority is found, the
effect is to send ‘set’ batch_prty_rules and the method invoked tells the interpreter
that a cut has been made. In these circumstances, the usual value returned from the
interpreting method (“OK” or “FAIL”) is not replied and the last successful rule
applied is identified. For this rule set, that would be ‘priority_batch’ and so the
invoking rule’s condition (‘priority’) is unified. It should be noted that ‘batch for
plus’ is responded to by ‘batch_clr_itms’ by seeking a batch bigger than minpb for
priQrities is necessary (i.e. up to maxpb) and setting the batch size accordingly. This
follows the Istel algorithm.

In the above example, the ‘priority’ rule always fails. If the opposite were
true, the use of ‘fire first’ as a selector in invoking interpretation of
‘batch_inc_rules’ would mean that a priority had been found and no more rules of
this class were appropriate. The expression of this class would stop and control
return to the invoking method (interpreting the task rule ‘selecting batch’).

The second rule of ‘batch_inc_rules’ (maximum batch) is now consulted. It
causes ‘batch clr itms’ to be sent an ‘enquire’ message requesting the batch size for

the instance being unified. This value is compared with that of the message ‘enquire

1 i items’ i situation now is
minpb of current_item of colour_1tems:. As discussed above, the

that ‘scarlet’ is the only valid colour and “if enquire batch of current_item of

148

batch_clr_itms not less_than enquire minpb of current_item of colour items
less_than then quantify form_inc_rules by fire_all’ succeeds for it. This means that
the rules to form a maximum batch are applied. The rationale for ‘form_min_rules’
and ‘form_inc_rules’ is closely similar (maxpb being the limit rather than minpb). In
this case, cover for ‘scarlet’ is obtained for the sequence up to the first type 7 body
(‘direttore 3 dr’). The result of this is that all colours but ‘scarlet’ (with six BIWs)
are regarded as having a valid batch of less than minpb. The ‘fire_first’ criterion of
the interpreter invoked means that further evaluation of this set is stopped and
control now unwinds to the task rule interpretation. This follows, of course,
application of this second rule to each instance of the colour class specified (i.e.
‘azure’, ‘lemon’ ... ‘champagne’)

The third rule of the set is ‘extend_batch’, which invokes the interpretation
of ‘batch_ext_rules’ (‘interpret batch_ext_rules for current_item by fire_first’). The
target rule set attempts to establish that a previous batch is extendable by one BTW
(the leading BIW on the line). In the first of its instances (‘one only’) the
batch clr_itms class instance (for the colour being unified) is sent a message,
‘enquire batch’, and responds with the known potential batch size. (In the above
example, this rule would not have been examined - but assume for the moment that
no cover had been found for any colour; sufficient for a valid batch, so far.) The
response, when this rule is evaluated as a default to the priority or normal batching
decisions would mean that no colour had a valid batch, but this rule is intended to be
read as independent of other rules and implements the batching principle that a batch
can be extended past maxpb only when priority or normal batching fails; a ‘partial’
batch found (i.e. less than minpb) would be regarded as too small. It also means
that the rule set ‘batch_ext_rule’ has the correct effect, in being regarded as having

been applied in the right context: ‘if enquire batch of current_item of batch_clr_itms

greater than one then set batch_ext_rules’. As for priority rules, the ‘set’ message

means that a cut is applied to the rule set (on that attempted colour unificaton) and

149

the exit value for interpretation (‘one only’) is not

‘cover_one’, so the

‘extend_batch’ rule cannot succeed.

The second rule of ‘batch_ext_rules’ (‘colour still on’) checks that the colour
has not been switched off (a requirement of the extending batch principle): ‘if
enquire code of current_item of batch_clr_itms not greater than nil then set
batch_ext_rules’. Any colour that had been switched off would have a negative code
value and would be ignored (via ‘set’, the exit value of interpretation not satisfying
the invoking rule).

The third rule (“previous colour’) checks that the previously batched colour
(obtained from a method returning the value of the global variable ‘Prevcol’) unifies
with the instance being unified (‘if not match batch ext rules for current item then
set batch_ext_rules’). When this rule is applicable, the cut is applied (and this rule
interpretation has not succeeded). Only if the fourth rule (‘cover one’) succeeds is
the required value (‘cover_one’) returned when the rule interpretation is cut (‘if
match batch_ext_rules for current_item then set batch_ext_rules’). The ‘cover’
method tries to match the leading BIW on the line with a body object defined to the
colour in question and returns “OK” when there is such a body/colour combination
with outstanding requirement for at least one more BIW. If the condition is true
(“OK”™) the cut, applied in the action of the rule, ensures that the value for the
successful rule is returned (’cover one’) and the invoking rule (‘extend batch’) is
satisifed. This would mean that messages to ‘update batch of current_item of
batch_clr_itms to one’ and ‘valid batch_ext_rules for current_item’ would be sent,
causing a record of the colour and singleton batch to be saved. The ‘valid’ message
would then cause a cut to be applied to the class (‘batch_inc_rules’). This would be
true (in the absence of a valid batch) for any of the colours (the previous colour
would have been one of them) because there was outstanding requirement for body
type 2 (200 5 dr) in all colours and so one match would have taken place.

The fourth and fifth rules of ‘batch_inc_rules’ (‘batch one’ and ‘batch fail’)

try to find a singleton batch (by default). ‘Batch one’ attempts to find a colour that

150

R R

has cover for the leading BIW on the line, whereas ‘batch fail’ is more general and
tries to find the least achieved colour and schedule the leading BIW to it, even in the
absence of cover. ‘Batch one’ causes the message ‘cover current_item’ to be sent to
‘batch_clr_itms’ for any available colour: ‘enquire code of current_item of
batch_clr_itms not less_than one’. If this is true, the action is to assign a singleton
batch: ‘update current_item of batch clr itms to one’. The condition tries to
establish that the leading BIW has cover in the unifying colour. Again, this
condition seeks to make the rule applicable independently of rules applied
previously. For ‘batch fail’, the condition tries to find any colour that is not
unavailable: ‘for_all colours if enquire code of current_item of batch clr_itms not
less_than one then set batch_size of batch_manager to one’. The batch size for
available colours (if this rule were expressed in the above circumstances, except that
a ‘valid’ batch had not been found already, this would be true of all colours) is set at
one. The second action, to send an ‘update achievement of current_item of
batch clr_itms to minus’ message, shows that the a.p. should be calculated for the
instance and should be set to a negative value (as a flag that this rule has succeeded.)

At this stage, one rule of batch_inc_rules will have been applied for each
colour and interpretation unwinds to the previous rule expression, i.e. of
‘task_rules’. As for ‘selecting colour’, the ‘selecting batch’ rule has a secondary
action to ‘update’ the value of the ‘task’ instance (‘update task_manager to
selecting_best’).

The third task rule (‘selecting best’) is now enabled and its action is to
“interpret batch_best_rule by fire_first. This, as in the above cases, causes the
specified rule set to be expressed.

The class ‘batch_best_rule’ contains the following rules (not quantified):
‘prioritised’ sends a ‘best’ message to batch_clr_itms. The method invoked looks

for any batch clr_itms instance which has been marked for priority and returns

“OK” if one is found. The action part is to send a ‘set’ message to the instance

(which defines a ‘cut’ as for all rules of this set). No further work is required to

151

B S ———

select a priority, the method picks the appropriate item as the most favoured one by
sending a ‘set’ message to the ‘batch_manager’ class to inform it of the required
colour and batch size. The a.p.s marked for prioritised items are selected from in
order of priority.

In the case of the second rule (‘normal batch’: “if valid batch_manager then
set batch_best_rule’) the method invoked compares all the a.p.s set and finds the
lowest, i.e. most favoured colour. Note that ‘scarlet’ was found to be valid and an
a.p. of (6 + 135) / 496 = 0.309 would be set. No other colour could be valid and so
the values for ‘sea green’, ‘azure’ etc. would all be ‘high value’, i.e 200000.
Obviously, ‘scarlet’ is selected. The ‘set batch _best rule’ message means, as in
above cases, that the rule application is cut (and would allow detection of which rule
had been successful.)

The ‘previous colour’ rule sends ‘batch_clr_itms’ a ‘copy message’ (‘if
copy batch_clr_itms then set batch_best_rule’). The method looks for the single
colour with a batch size of one, set for the extended colour batch. If this method
succeeds, the batch_manager class receives the identity of the colour (and singleton
batch size).

The rules ‘crisis valid’ and ‘crisis fail’ send a ‘valid’ message to
‘batch_clr_itms’ with selector of ‘plus’/‘minus’ respectively (‘if valid
batch clr_itms for ...”). The method invoked then looks for a non-‘high_value’ for
‘plus’ (or a negative a.p. for ‘minus’) and finds the smallest (/greatest) value to
determine the most favoured colour. In the case of a ‘covered’” BIW (‘plus’) the
singleton batch size triggers calculation of a positive a.p. (and ‘high_value’ for nil
batches) for comparison. The action is to cut the expression.

The (first) action of ‘selecting best’ is followed by updating of the task state
(to ‘done’). The control loop of expression of the class task_rules can now be
terminated, because this variable now has the value for quitting (see Chapter 6).

The final action of the loop-containing method (‘load task_manager’,

) " fod i ‘enquire’
implemented by ‘task_allocator’) is to reveal the decision, by sending an ‘enq

152

message to the variables of class “batch_manager’, to state the colour and batch size

chosen. It then packages these values in a string and exits. The return value for the

method is then available outside the object-centred part for processing

7.3 How does the Istel algorithm compare?

Given the order cover and sequences as in Figures 7.1 to 7.3, the object-
centred solution and the original algorithm’s implementation can be compared in the
following discussion. (The implementation of Istel’s algorithm contains the
principles of paint scheduling as described in Chapter 4, Section 4.1). In tests, as
the rule base was developed, the behaviour of the KBS was found to mimic that of
the Istel algorithm implemented in the simulator. (The actual steps by which data
files are updated etc. are not identical, but for each processing stage the same
batches were produced given the same input sequence and body/colour profiles.

The colours are considered, in turn, from 1 to 12 (white to champagne). Any
that are ‘off’ are discarded (represented in the SIMULA program by a ‘c’ suffix
rather than ‘+’). In this case, none is constrained. The next principle applied is to
form the largest possible batch for each colour, by checking the sequence against the
cover profile for bodies and colours. This means that only scarlet is possible to form
a valid batch (see Figure 7.4) because all other colours either have one BIW covered
(e.g. bronze) or two (e.g. silk green), obeying the principle thaf batches of less that

minpb bodies should be ignored. Given these potential batches (nil, or six for

scarlet) the algorithm now checks for prioritisation. In this case no body/colour

combinations have been defined as priorities. The prioritisation principle 15 applied

as the batch is formed. The formation of the largest possible batch, subject to the

(e - th axpb for
maxpb limit, obeys the batch limiting principle (that no batch larger than maxp

the colour be schedﬁled unless as a default.) The next principle to be applied is that

of choosing the colour on the basis of relative achievement. The formula (batch size

153

+ achievement) / requirement is used to compare any non-nil batches. This means
that an a.p. is calculated only for scarlet and the ‘least achieved’ principle means that
this colour is selected for a batch size of six. (Again, the nil batch colours have a
high value set for their a.p., i.e. 200000).

Where default allocation is required (but not in the above example), the first -
principle is to try and extend the previous batch, where this is of smaller size than
maxb. In this situation, cover is checked for the leading BIW (i.e. code 2: 200 5 dr)
for the previous colour. Again, this would be assignable, since this body type is
available in all colours.

The other principles stated (for crisis) are somewhat informal, in that they
attempt to provide an automatic response in situations where the scheduling program
does not select a batch. The operator would normally be expected to supply a
decision. For a ‘valid cover’ decision, any colour that has cover for the leading BIW
is marked for a singleton batch and an a.p. generated: (achievement + 1) /
requirement for the respective colour, and the lowest value of these is chosen. The
last default attempt is to calculate the a.p.s for all available colours (i.e. irrespective

of cover for the leading BIW) and take the lowest a.p. for a singleton batch.

7.4 The effect of inappropriate rules

To illustrate the difference that an inappropriate rule can make to the (object-
centred) processing, assume that there is one slight change to the details as given in
Figures 7.1 to 7.3. In this case, the colour chosen (scarlet) is, say, unavailable. The
effect should be that the ‘normal’ batch rule fails for all colours and the ‘extend

batch’ strategy comes into play. In this case the next BIW on the line can be painted

in any colour and so the previous batch will be extended (unless the maxb limit has
been reached; in which case, the ‘crisis valid’ rule would be applied. The singleton

batch would be chosen on the basis of the a.p.s shown in Figure 7.5.)

154

£
.

Colour Achievement proportion (a.p.)
arctic white (88 +1)/419=0.212
midnight black (66 + 1) /249 = 0.269
scarlet (c) -

azure (135+1)/496=0.274
lemon (28 +1)/245=0.118
bronze (107 +1)/439=0.260
sea green (50+1)/294=0.173
silk green (110 + 1) /404 = 0.275
beige (82 +1)/419=0.198
sunset orange (88 +1)/336=0.265
silver (124 + 1) /493 = 0.254
champagne (164 + 1) /608 =0.271

Crisis allocation

Figure 7.5

Lemon would be selected for the leading BIW on the line. Assume, now,
that there were an incorrect rule, e.g. ‘colour off” of batch_min_rules had been mis-
stated viz: “for_all colours if enquire code of current_item of colours greater_than nil
then set batch of current_item of batch_clr_itms to nil and update code of
current_item of batch_clr_itms to minus’. The change does not affect the
interpretation of the task rules, but in ‘batch_min_rules’ all colours that are
constrained are effectively disregarded and the (vital) setting of the batch_clr_itms
instance variable for ‘code’ for scarlet is left as it was (previously available). The
other colours are all marked as ‘off’. This now means that ‘scarlet’ is now selected
for a batch of six BIWSs, just as before. No other type of allocation (than ‘normal’)
would be possible, in any case, because the colours had all been marked as
unavailable. If all colours were ‘off’, in this case, the rules would act ‘correctly’ and

state that no colour were possible (the availability test being applied several times

during rule expression).

155

7.5 Extended uses of the rule-based formalism

The original paint scheduler has been shown to be potentially lacking in
flexibility in response (where, for example, the input is random or very non-
random, see Chapter 5). It may be useful to express other constraints. A good
example is a drop in paint quality for a few BIWs painted in a new colour, i.e.
where the old colour masks the new, e.g. yellow after green or white after black.
This would be expressed as an increase in rectification (not represented in the
program) but effectively meaning that the efficiency of the a.p. as a criterion drops.
This is because the smaller a batch is in the new colour, in these cases, the more it is
subject to a high degree of decreased quality and, although its a.p. is lowered
(favouring its selection) it should actually be a relatively less favourable decision.
This is particularly hard in terms of some cost/benefit determination (such as a.p.)
because external knowledge of the proportional decrease in quality is not available to
the scheduler. Some other mechanism would need to be found, or an independent
modification of the a.p., following determination, should be done to bias the
decision away from the undesirable colour.

Extension of the objects and rules to accommodate such new knowledge
would, preferably, not involve a major re-structuring. This can be done, but this is
not always possible (see Chapter 8). The following example is given to show that a
major strategic change can be effected within the existing framework.

The first step is to define a new rule class (‘alter a_p_rule’) using the object
editor. This states how a.p.s can be adjusted. It requires a sub-class
(‘a_p_coefficient’) which has instances for each of the colours defined (e.g. for
‘colour_manager’). For each of these instances, if a combination of old/new colours
to be avoided is required, then for each of the new colours a set of sensitivities to

old colours is defined. A coefficient to moderate the a.p. by is then stated (e.g. for

multiplying the existing value by) for each combination. A ‘valid’ method is defined

for the class, with a corresponding implementation by an effector (‘moderate_a_p’).

156

The code for the method works in a similar way to other ones in that it expects the
instance required to be supplied. Say that ‘azure’ is being checked and no
combinations for this colour with a previous colour are constrained. The method
will find no combination and report a “FAIL”. If a sensitivity is listed, it checks the
previous colour (‘Prevcol’) for a match. If one is found, the coefficient is evaluated
and the corresponding instance of ‘batch_clr_itms’ is sent a message ‘enquire’-ing
the value of a.p. determined. The a.p. derived is then transformed by the coefficient
and the value is returned to the batch clr_itms instance (‘set’) to update the effective
a.p. The preferred way of doing transactions is to define an ‘enquire’ method to
allow a rule to find out if a combination has been specified.

The definition of ‘alter a_p rule’ is as a rule set. In this case, one instance is
required. This can be defined using the object editor (or the meta-description editor).
Having defined a ‘set’ for the class, the rule ‘if enquire alter_a_p_rule for
current_item then set alter_a_p_rule for current_item’ can be adduced.

The second part of the re-definition is to change two task_rules slightly and
introduce a new rule: ‘selecting batch’ should now update the task state to a new
value (‘change a p’) and the new rule should mimic its siblings, in calling for
interpretation of a (new) rule class: ‘if enquire task_manager returns change a p
then quantify alter_a_p_rule by fire_all and update task_manager to selecting_best’.
Now, batches formed can be moderated by considering the desirability of allowing a
new batch in a colour sensitive to that of the old batch.

This is a quick way of implementing a moderation in an independent instance
(of batch clr itms) without changing the existing objects to a large extent.
(‘Alter_a_p rule’ would probably be best defined as a subset of the topmost class -
task_manager.) The rule stated should be used in ‘fire_all’ mode because, in

practice, more rules than one would probably be adduced to provide a more detailed

type of moderation.

157

|

Chapter 8 Discussion and summary

This final chapter is concerned with evaluation of the work and possible
directions for future research. The initial project was to construct a representational
scheme capable of supporting expression of the rather complex and disparate
knowledge available of a particular control process. The result was a set of
programs and a technique for structuring knowledge representation. The work will
be discussed in this light. The scope of the research covered many areas of interest
in Artificial Intelligence, although essentially an issue of knowledge representation.

Many aspects arising would be starting points for whole lines of new research.

8.1 Results of the research

There are two main parts to the work. The first is an ex‘amination of an
existing solution to a real manufacturing problem. The second presents an
alternative approach to this problem, and, in the light of other work, as discussed in
Chapter 2 and Section 8.2 below, may indicate a new way of handling such issues.

Istel’s solution to the problem of the flexible paint-spraying requirement was
assessed in Chapter 4 and the programs written to support the analysis suggested in

Chapter 5. The theoretical analysis suggested that the algorithm might be based on

an inappropriate assumption: that ideal behaviour results from the use of

achievement proportions as a criterion in selecting a colour.
A simulation of the traffic on the conveyor line through the painting booth
was created. This was able to record the changes in the state of the line and

implemented the colour allocation algorithm as stated (Istel plc 1985). The control

158

e T

console of the factory was simulated, allowing the maintenance of a database of
order requirements and control over the status of system variables. An analysis of
the effect of possible types of input to the paint booth was carried out using a suite
of programs (controlled by Unix scripts). The simulation was of a range of body
sequences entering the paint booth, where the degree of randomness of different
sequences was varied. The results of processing such sequences were recorded for
a set of order banks of a range of degrees of freedom (of permissible body/colour
combinations).

The results of the tests on processing different sequences were compared to
evaluate the likely performance of Istel’s algorithm under conditions of flexible
response. The analysis suggested that the algorithm might give acceptable
performance under limited types of input, but in general did not behave ideally, as
mentioned in Istel’s specifications. In particular, a sensitivity to some forms of input
was significant, producing a (presumably) unacceptable level of singleton batches
(i.e. failures of the scheduling algorithm).

This part of the work shows that the algorithm may not behave as it would
be expected to under all conditions for use and its flexibility may be less than
desired.

The second part of the work investigated the possible uses of Al techniques
to capture the disparate knowledge available for paint scheduling. The architecture
devised to handle the problem uses an object-centred scheme for a knowledge-based
system which can fit inside an application and be invoked from it. A toolkit to
facilitate knowledge representation was constructed, which supports the definition
and modification of an object system. A utility to aid the definition of properly

constituted rules was written and can assist a user towards stating the appropriate

relationships between objects in the domain o form logical rules of behaviour of

those objects. The form of rules accepted complies with the syntax and semantics of

rule interpreters provided by the tooolkit. Using the formalism supported by the

toolkit, the given knowledge for scheduling was captured in an knowledge-based

159

system which was able to perform the paint scheduling task. The toolkit supports
the tracing of activity within the knowledge base. The object-centred system
appeared to be extensible, allowing new knowledge of scheduling to be added. This
could provide a significant advantage of the formalism over the original
conventional scheduler in long-term factory use.

The work on representation of knowledge shows that a solution to a reactive
scheduling problem, such as that of paint allocation, can be found using Al
techniques. The formalism derived to handle such fragmented, and sometimes
strategically contradictory, knowledge appears somewhat unusual (when compared
with more ‘traditional’ knowledge-based systems). There are several reasons why
the approach taken was different from the more conventional approach (e.g. using
an Al shell. The potential need to change allocation strategies, as more operating
realities become apparent, encouraged the encapsulation of knowledge in discrete
units. (This could assist the removal of ‘some and addition of other new units,
without drastic changes in the control structure of the program.) Object-centred
schemes offer advantages in this direction. The need to capture and manipulate
knowledge relating to changes in the state of the system means that much
knowledge is eésentially procedural. The way objects and messaging in this
formalism are used means that the ‘core’ (i.e. mediating expression of knowledge)
procedures to change states (or views of what is being done) need not seem
complex because they are mediated by traceable and inherently comprehensible
messages. The intention was to allow a context to be defined which would then
contro] the expression of the (other) knowledge associated with it. The toolkit was
written in a widely-used language and it was not necessary to use a specialised Al
environment for the development and running of the scheduler.

The domain of reactive scheduling, where a complex behavioural effect (e.g.
even production of cars) is controlled at one process stage (e.g. painting) is
significantly different from other types of industrial scheduling (e.g- planning for

shift production at one time per shift). The reactive scheduler must be ‘aware’ of

160

states outside its immediate location . An ‘isolated’ (non-reactive) scheduler could,
for example, have a fixed list of requirements, supplied from another part of the
overall process, and act on the basis of those. The list would specify, in this case,
the batches to be painted and in which order. All it would do would be to examine
the number of items that had passed it since the list arrived and change the colour as
each batch ended. If the colour became unavailable, it could do nothing, except
sound an alarm, for example. To do more, sensibly, knowledge of what is best for
other parts of the process must be recognised by the scheduler. In this way, the
paint scheduler discussed in this thesis is rather different type of knowledge-based
system from controllers such as PIDs which close a control loop using stored
knowledge. For such PIDs, the knowledge is only of variables in their immediate
domain. The cement-kiln controller of Haspel (1985) seems similar in this respect to
such PIDs. (Feedback is an important determinator for later behaviour.) The
opposite end of the ‘scheduling’ spectrum is represented by planners, e.g; that
described by Fox et al. (1982). Here, the scheduling is done, a priori, to optimise
activity happening later. The use of Al techniques is well established in this area.
The novelty of this paint scheduler derives partly from this use of Al in
CIM. The way this object-centred scheme -embodies knowledge-based systems
techniques seems different frorﬁ how other knowledge-based systems for FMS (and
industry generally) allow the use of objects. (Rules are true objects, having no
prescribed, large, interpreter, whose expression is mediated solely by message-
passing. Definition of new procedures Or predicates, in most systems, puts the
knowledge embodied in such code outside the framework for representation. This
means that the understandability of the new knowledge is that of code. In the tool-
kit the behaviour of such a new item - as an invoked method - could be traced and
would probably consist, largely, of messages, which have meaningful contents.)

Another important aspect of this work is the attempt to evaluate the worth of

' i i i i i implement a
using a particular technique. It may be an interesting exercise to 1mp

knowledge-based system, but part of the knowledge engineering process should be

161

to evaluate the characteristics of a problem so that the relevance of any technique
used can be assessed. This was the motivation for the analysis and testing of Istel’s
algorithm, which was an empirical piece of work. In this case, the results supported
the initial contentions and point to possible alternatives to the original solution which

could give improved performance (over the Istel algorithm).

8.2 Process control knowledge and its representation

The main problem with the knowledge available from Istel’s documentation
seems to be commonly expressed in the Al literature; namely, that it is incomplete,
inaccurate and often inconsistent. Feigenbaum (1979) mentions these difficulties in
the context of ‘knowledge engineering’. The problem studied is typical in these
respects. The statement of the scheduling approach is certainly incomplete. There
seems to be indication in the documentation that the operating circumstances may
not really be quite as stated. There are inconsistencies in the principles of scheduling
as stated. The following paragraphs seek to clarify these remarks.

A justification for the statement that the knowledge is incomplete is that the
responsiveness of the algorithm (Istel plc 1985) is to many thiﬁgs that are not
explicitly represented. One example is the batching parameterisation. The intention
is clearly to bias things so that batches are generally of a certain size. This is not
actually what is explicitly represented (in the algorithm). No cost/benefit is attached
to making a batch of one particular size, as against another in the same colour. If a
batch of n BIWs is highly desired, then batches of sizes n + 1 and n - I should be
less desirable. This is not stated - any effect eventually producing such a state of

affairs is a side effect of the batching process, nota clear choice. The minpb/maxpb

‘desired’ range of batch sizes just biases the batch in favour of maxpb. It is the

comparison of achievement proportion that decides which colour, and therefore

162

what batch size, is chosen. The relative importance of batch size and colour choice
are thus commingled. This point is taken up again later.

The comment about inaccuracy stems from the above. If the minpb/maxpb
values, for example, are principally colour parameters, to guarantee the correct size
for batches due to colour constraints, for quality etc., then they should not be set so
as to produce batches of a particular size if these values do not reflect colour
constraints. It has been suggested that one use of maxpb is to ensure that, say, an
average batch size of twenty BIWs is scheduled. (It is likely that the best batch size,
from the point of view of paint quality, is much greater.) Other inaccuracies are
introduced by the use of a.p.s, as discussed in Chapter 4. It is clearly a bad thing to
stop a less popular colour being painted, for reasons of small demand, when it is at
least as under—painted as a more popular colour, sihply because a small batch, in the
less popular colour, would be required on the basis of having to have a small
(favourable) a.p. to be selected. This happens because when two colours, a
relatively rarely ordered one and a popular one, are alternatives, then unless the
former has a small size of maxpb compared with the latter, where a large batch of
either could be allocated, the latter will tend to be selected because it is much less
achieved, even when the ratibo of achievement:requirement for both is similar - the
batch size is then the dominant factor. The calculation of (batch + achievement) /
requirement favours the colour whose absolute value for requirement is larger. The
result of this situation can be a ‘reflux’ state where some body types in some
colours never get painted - being ‘difficult’ to achieve.

The ‘inconsistency’ is highlighted by such considerations. If the program is
to be flexible and ensure even, i.e. proportionate, production across colours, then

‘priority’ rules go right across notions of flexibility; a flexible algorithm should not

require a prioritisation capability, which, indeed, reduces the degree of flexible

response. Other inconsistencies lie in the way in which one strategy 18 applied, e.g.

painting ‘properly-sized’ batches of the most favoured colour, followed by another,

i.e. crisis allocation, should the first fail. The apparent intention 18 to find the ‘best

163

decision within the limits of the resolution pertaining. Many criteria obtain, e.g.
batch size, paint quality, production balancing, or order profile, but they are not
combined explicitly with some attributable cost/benefit function.

Given these difficulties then, one purpose of the research was to find a
mechanism for representing the knowledge, even if somewhat incoherent in
statement, as in this case. This was deemed necessary for a general approach to
handling such manufacturing problems, for which this case is seen as a good
example in the rather under-examined but significant area of flexible reactive process
control. The issues of flexible response and ‘adjustment’ of knowledge to reflect
new insights, without requiring major restructuring, were central for any scheme
adopted. As was discussed in the early chapters of this account, there is a special
need in representing knowledge for this type of domain and this concern has been
reflected in the research: in a manufacturing environment, the knowledge is typically
of changes in the state of the system, which are inherently action-based and non-
defeasible (non-reversible) in a logical sense. The changes cannot be retracted once
made. Thus, the component parts of a knowledge base must be sensitive to context
and must also be allowed to be modified permanently. This means that the search
for a solution is increasingly constrained and does not backtrack. This led to the use
of forward reasoning and forward expressién (data-driven rather than goal-driven)
of rules. Another aspect of the knowledge is that it is ‘bitty’: a set of ‘independent’
laws of scheduling, which do not “fit’ into each other, has been adduced.
Somehow, there must be a connection between them. This led to two distinct

features in the architecture - autonomous items responsible for their own

maintenance, as ‘objects’; and rules, stating some effect which is achieved, which

cannot easily be chained in a logical progression by the implicit action of an

interpreter. The object-centred scheme and the expression of rules, mediated by

message-passing, developed naturally from these constraints.

An important feature of the object-centred design is the simplicity of the

programming paradigm. Once the differences between it and more conventional

164

programming styles are appreciated, it is simpler way of structuring data and writing
code. The toolkit is not intended for use by a novice, since, currently, some writing
of C code is required. A more competent, but still relatively inexperienced
programmer should be able to write, test and debug applications easily. Any
complexity involved in methods is more in the design of their objects and they,
themselves, do not need to be intricate.

It was felt that a central requirement was for a simple and uniform
representation, that would still allow extension. The use of methods and message-
passing to mediate rule expression is a simple feature. It is, however, flexible. All
rules used (which do reflect a wide range of knowledge types: control, declarative
etc.) have been accommodated within the same syntactic framework. (It is easy to

‘invent new styles for knowledge representation, where appropriate, without
disrupting the existing scheme - new classes may simply define new methods for a
different form of expression.) Conditions and actions are solely expressed by
message-passing between known objects. The object structure really should reflect
some model that the designer has envisaged and, therefore, should be amenable to
comprehension, hopefully to all who examine it. The rules generally state
relationships and could be described as very declarative. The main achievement of
the system is in expressing procedural knowledge in an accessible manner. No
special means is required to state such metalevel knowledge as control rules. These
will, normally, be part of an class concerned with control of some group of objects
and should not need any special features to be recognised as such. Simple methods
probably have a a suitable ‘grain—size’ for procedural knowledge to be ‘explicitly’
understood. If rules express relations between objects of a declared nature, via those
methods, then the procedural knowledge has been explicated. Procedural
knowledge does not then have to reside in complex predicates manipulated by rules.
This criterion, of explication, has been successfully addressed to a considerable

degree.

165

Given the uniform and prescriptive nature of rules, and objects in general, a
limited range of modes of expression have been used to implement the
representation of manufacturing knowledge. Does this mean that the range of
expressivity is limited to these? This question can be clarified a little by considering
what the user is forced to do. The object editor only requires a framework for
message-passing and inheritance to be stated - with the minimum storage to be
reserved on initialisation. The user is at liberty to express certain parts of the
application in a manner quite outside the object-centred paradigm. The extent to
which rules express the knowledge is determined by the user: an example of this is
the formation of a batch. It is quite possible to use a rule-based representation for
this or to use a single method (i.e. totally procedural). The user can add new means
of expression as desired. The flexibility of the system allows extra parts to be added
in a much less restricted manner (in the sense of avoidance of harmful interactions).
If the underlying classes have been defined appropriately then new knowledge that
does not fit into the existing hierarchy can probably be assimilated into new classes.

There is an extra dimension to this in terms of ‘engineering’ a solution. The
scheme makes for top-down design (due to its hierarchical structure) and there is a
fair chance that models of a solution to a problem, represented in objects, are made
to behave in a manner that mirrors the designer’s view of their world relationships.
Where inconsistencies appear, after definition of the structure, it is likely that either
the model has been incorrectly transcribed into the application or the model itself is
faulty. If the former case is true, then the tracing facilities for inter-object
transactions, inherent in the architecture, may help to expedite resolution of the
problem. When a model is incorrect, the likelihood is that certain objects will appear
to behave at variance with their supposed activity, because the ‘model’ does not
account for the required behaviour. The tight definition of objects as encapsulated

items means that the potential for unexpected interactions, on addition of new 1items,

is limited and, hopefully, less difficulty arises in understanding them when they do

occur.

166

In terms of explication of knowledge, the metalevel description process to
assist definition of rules is helpful. It forces a user to concentrate on exactly what
objects mean in the representation in relation to each other. The way knowledge is
stated, can to some extent be checked for consistency. If a rule should be correct but
is rejected, for reasons other than that of unknown referents, there is evidence that

the model underlying it is faulty.

8.3 Modifications to the toolkit and further work

There are two possible directions for future research and work on this
implementation of an object-centred architecture. The first concerns general
improvements to the programs constituting the toolkit; the second is to use the
architecture in better ways to improve its expressiveness. It would be convenient to
produce a ‘similar’ problem from the same (wide) domain of the application studied
here and show that the toolkit could be used to produce an intelligent control system
for it. This, however, does not give any but the most superficial evidence that the
technique is effective in general. Rather than attempt to use a doubtful ‘proof by
analogy’ a discussion is included to demonstrate the potential flexibility of the
approach in handling the same problem in a very different way: namely trying to

represent constraints as cost/benefit parameters (i.e. relative rather than absolute),

called here ‘utilities’.

8.3.1 Possible improvements to the toolkit
There are several areas where the toolkit could easily be strengthened and

made more ‘user-friendly’. These were omitted, not because they were time-

consuming, but more because they would not assist demonstration of the feasibility

of the scheme and because the toolkit was not intended to be in the required form for

marketing, at this stage.

167

Perhaps the most obvious improvement is to allow references to system
objects by name and not by some slightly obscure symbol, e.g. an index. As was
stated, this had more to do with a quick implementation and testing of the speed of
messaging than any other consideration. It would be better to allow the user to use
the same names for classes etc. as are defined for the object editor. In association
with this a small text-checking utility could be written to analyse the method source
files and extract the messages from them to compare with known strings. This could
be done as each method is defined for a class but would then require that the code be
written prior to the definition of the class. If this were done, a companion utility
could be added to amend identifiers, altered in the definition, in the accompanying
methods.

Having said that it is a simple matter to do the above, some changes would
have to be made in the messager. If, instead of a series of indexes and strings, the
message consisted of one string stating the class, method and rest of the selector,
the messager would have to do a little more work. The syntax would still be
“method, class,”, preferably separated by a comma or, for Smalltalk
enthusiasts, perhaps, a colon. The messager would then have to look up the names
found against a table of class indexes so as to get the necessary access. This is
probably best done by some type of hash table of names, particularly if large
numbers of identifiers are to be used. (This was not done for the similar purpose of
understanding names in rule acquisition, simply to make the process easier, since
this was evidently desirable in any subsequent re-organisation of messaging along
these lines.) This leads to more difficult decryption of messages when class names
are part of the tail of the selector. since names of different objects are not

constrained to be unique when of a different ‘type’ (i.e. methods must have unique

names, but a class and method may have the same name and instances of different

classes may share a name). One way of doing this might be to insist that some

special identifier be added to a class name when it appears in the selector tail so as to

: : n constant or
distinguish it from a possible instance of the same name (or eve

168

variable). A better way of allowing this might be to adopt the mechanisms detailed
in the next paragraph. These are concerned with making the objects more
independent and secure. The remarks above apply also to removing the need for
methods to resolve a class from an instance method. If the messager is allowed to
evaluate the message to the point of resolving these two, then a standard form of
selector can be created, for transmission to the supplying method, that leaves the
method without the job of parsing this distinction.

On the issue of security and making the objects more self-contained from the
viewpoint of external items, several changes could be made. At present, the object
framework is a global structure, whereas it only need be visible directly to the
messager. The definitions to establish it could be put together in the messager
source file and not in scope elsewhere. Such aspects as a class needing to know its
identity within the hierarchy or that of its parent could be changed. The definition of
access functions (and globally available) linked into the program could make the
system more tightly controlled. An examples of this is the searching by a class of its
children. It does not know its identity. Its methods are informed of its code, by the
messager, and when it wishes to make a reference to itself it calls a self() function
(exported by the messager source) which returns its name, which can then be used
in messages. To access its descendants it can call child(), with an argument to
specify which one it wants. A super() mechanism would allow access in a similar
manner to a parent. In this way, the code would not have to specify absolute names
of objects that should not really be known to the class. To allow one class to identity
itself to another, a mechanism used in Smalltalk could be helpful. The context of a
method’s invocation could be accessed by a method receiving a message (from

another method), e.g. one class requesting another to carry out some action

involving it could be enabled by the receiving class using a function, context(), to

find out the sender of the message, so that it could then send appropriate messages.

In all these cases it is the messager that knows the real identities and relationships

involved and the code does not have to reflect this directly. One very important

169

aspect is the possible improvement in legibility of methods afforded by these
changes.

The nature of class variables is somewhat indistinct in this scheme. To make
for more evident objects of this type, it would be possible to define, for the class
‘pool’, objects in a similar way to that for instances. With the above mechanisms for
streamlining messaging, access to class variables would be easy and definition of
class methods could be done at the same time for instances. Notwithstanding this,
the view taken in this work is that class methods and variables are not a desirable
feature, because a class is principally a template for instances and should do nothing
except define its members. Creation of new instances is generally a feature of class
methods, but often these are special methods. In this work it has been possible to
avoid the separate definition of such objects and seems to make the system more
comprehensible.

The facilities for rule tracing are somewhat restricted in nature. One
improvement might be to make the rule trace interactive like the method tracing. That
would allow explanation facilities to be used while the process ran. One feature that
might be helpful would be to allow the user to request details of rules that did not
fire or only rules that were fired. Another possibility would be to allow the trace
mechanism to show which rules were consulted (for quantified rules applied to
particular classes) or to trace the changes in certain variables as a result of rule
activity. This latter extension would require a rather complicated approach to object
tracing. It would probably be possible to establish a record for a variable or group
of variables. This record would keep a history of states, which could then be
consulted. The tracing potential is supplied by an added class (‘trace_manager’)
which fits into the object hierarchy so it would be in ‘contact’ with the objects in
question.

The issue of rule acquisition is important for this scheme. Some additional

work has been done on freeing the syntax accepted. The intention was to allow

slightly incorrect statements Or less detailed rules to be accepted and interpreted into

170

suitable rules. This of its nature is a subject beyond the scope of this work and more
within natural language processing. The results that were obtained showed that the
hierarchical nature of the system directed acceptance of rules, thereby reducing the
potential ambiguity in understanding input.

An example of the sort of free syntax that could be handled was this type of
statement: ‘if colour not available then set colour off". To allow this to be
understood the string ‘off” had to be defined and related to a particular variable,
using the meta description system to define such associations. ‘Colour’ would be
tentatively associated with ‘colour manager’ and a search of its instance variables
revealed that ’code’ matched with the associations of the constant ‘off’. Similarly
‘available’ was related to ‘code’ and the meaning could be inferred. The translation
was into the internal form of the rule. This rule was felt to be of less value and
meaningfulness than the more correct ‘if enquire code of colour_manager returns
...>, so this work was left incomplete. It would seem to belong with a more
comprehensive tool which assisted the writing of methods given the exact

relationships of objects and necessary items for methods to recognise.

8.3.2 More advanced and flexible solutions to control problems

One of the difficulties associated with the existing solution to the scheduling
problem is the rigid way in which the constraints were stated. This meant that the
rules and structure of the solution were somewhat convoluted. In this part, the limits

to extensiblity of this solution will be discussed. An alternative scheme will then be

discussed which seems more flexible and should be able to reflect knowledge

gained in a more direct manner.

What sort of new principles, then, could not be expressed in the existing

structure without major re-organisation? A realistic example might be the sensitvity

of production to what part of the week it is at any time. It seems possible that certain

types of cars should be produced more on one day than another. Some rules that

171

could be expressed are such as: ‘if it’'s Monday morning then don’t paint yellow’, or
4if it’s after 3.30 on Thursday then paint 25% less red’. The expression of these
might be via a method that could enter the time in a variable of a class, for the
purposes of comparison, using system rules like ‘if enquire time of dates less_than
monday_pm then set code of yellow of colour_manager to minus’ and ‘if enquire
time of Thursday of days greater_than 3.30 then update coefficient of red of
modify a p to 0.25 by minus’, respectively. The first rule sets the colour yellow to
be unavailable, and could be inserted in a new class (like the coefficient modification
example given in Chapter 7) to be evaluated as a task. The second example refers to
the modification of achievement proportion as suggested in Chapter 7 for
constraining bad sequences of colours, acting in the same way, but belonging to a
different class. The first rule just updates the colour status in a similar way to the
‘colour off” rule of the class batch_min_rules.

These examples of rules that can be assimilated look quite new in scope.
They do add new flexibility to the system. T his is not, however, as flexible as it
seems. There is one aspect that the system, as a whole, neglects: because such
knowledge has not been included. The deficiency is in the sensitivity to body order
profile. A much more useful type of rule is one that selects for particular bodies and
possibly colours as well: ‘if it’s Friday then don’t paint yellow for monterey and
don’t paint 800 3 dr’. This type of rule is very hard to implement, but a reasonable
one. It is difficult because the whole allocation process look primarily at colours and
secondly at body types. One way to to express it would be to do the batching twice,
the first time selecting those batches which break these new constraints and
switching the appropriate colours off before applying the usual batching rules. This

however means writing rules which constrain colours, but refer to batching

decisions about including a BIW or not. Logically, 2 ‘correct” translation of this

new knowledge into rules acting in context, i.e. at the time of increasing the batch to

include a particular BIW, should mean new rules, in form_min_rules and

form inc_rules, being written or n€w classes for them being consulted by these

172

batching rules. It is hard to do this without making the new rules reference a new set
of constraints (prohibited combinations etc.) which are not relevant to the existing
rules. The result is a mess in terms of object style, since these new rules have to be
expressed, or not, depending on yet another constraint - time, in probably a new
class of objects. This is not a shortcoming of the object system, and the fact that

these sorts of constraints can be expressed shows the innate strength and flexibility

of the scheme. It highlights instead the limitations of using constraints to express -

relative preferences, which is, after all, what the a.p. is supposed to do. Note that in
some of these examples given, the a.p. is not modified, rather some possibilities are
simply excluded.

To explore the flexibility of my approach to handling complex decisions ina
reactive manner in manufacturing, a different formulation of the problem can be
made in terms of the direct attribution of the worth of an overall decision to
contributory partial decisions. The full implementational details of how this use of
‘utilities’ would be made will not be given. Indications of the major aspects of using
this technique will be discussed.

What I am suggesting is a series of aspects that might be considered in
making a decision. These might be such factors as the likely degradation of paint
quality with batch size, poor sequences of colour, recognition of orders that have
been pending for a long time in the rolling schedule. These are all different in how
they affect the colour and batch size chosen but should be related directly to each
other in combining to influence a decision.

In the case of the conveyor, a possible scheme might be to consider the

stations on the line, starting from that at the paint booth identification point. The

algorithm appropriate is to build a batch, as before, one BIW at a time, but viewing

the stations as having a set of attributes, e.g. the BIW present, possible colours to

be assigned to the BIW at the station. The manner in which colour attributes are

assigned depends on the propagation of evidence for and against colour from one

station to the next. I am advocating a set of criteria which allow the colour to be

173

judged, e.g. non-availability would constitute very strong evidence against
assigning a potential to the BIW to take the colour, and would be propagated from
that point on. Instead of looking at a time for a colour batch, all colours would be
considered as having a cost and a benefit for the BIW being considered. Thus all
relevant evidence could be adduced as each component of the decision is made, and
preferring one colour over another for a particular body type could be done
explicitly. Context-sensitive control rules that modified evidence accumulated for
colours could be applied at the point where they would be most relevant. It is not
clear what rules stating references might be, but it seems likely that some numerical
attachments for evidence would be made as each criterion came into play. The
advantage is that explanations of components of decision would be available, since
successful rules modify the evidence collected, and direct comparison could be
made between evidence for different candidate decisions to see why one comes out
more strongly supported than another. I envisage that no direct addition of values,
plus and minus, as for confidence factors (Shortliffe 1984) would be made, but
rather that similar evidence for different candidates would be adduced and the
numerically stronger value would dominate. This leads to the difficult question of
combinations of different types of evidence (see the discussion in Cohen 1985 for
the obvious problems involved). It is likely that experience of the use of the
automatic paint booth would enable rules to be stated to discriminate between more
and less important evidence, thus using a combining system to distinguish similar
alternatives. The advantage of the object-centred structure is that it facilitates
association of like items in a mutually-controlled unit. This allows the user to add on
bits of knowledge in a coherent mannet.

It might be difficult for operators etc. to state the relevant values to bias

decisions accurately. The possibility of generating these by examination of recorded

i i 1 lues for
examples exists. If a particular control scheme is decided upon and the value

utilities are unknown, then it would be possible to start with a situation where no

preference was stated, except that absolute constraints had the same effect as

174

described above in making certain decisions invalid. The system would be tried on
various known cases and the batching decisions made on the basis of the overall
calculation that the model is set up to use. The result of the decisions could then be
compared with the ideal that the model is supposed to produce. The utilities in each
category could then be modified slightly so as to discriminate more between
alternative colour and batch size decisions. If the changes produce a change toward
petter overall performance then they should be fixed. If they fail to produce a
favourable result, then they should be undone and another set of changes tried. By
repetition of these changes, possibly more suitable values for utilities could be
arrived at. Since there are likely to be more than a few categories of utilities, it might
be best to start with those that make the largest contribution to a decision and
progress towards the more ‘finely-tuning’ ones later. If this trial and error were not
to stabilise the values, or if it were, but they then could not be used for other
examples, something important would be missing from the model; alternatively the
model would be faulty.

The above example of how to produce flexibility depends on the correct
modelling of the problem. The architecture described in this thesis is capable of
representing many different types of knowledge and seems inherently quite
extensible. It is simple to use and capable of capturing and handling the various
contexts essential for a knowledge-based approach to writing applications for

control in manufacturing.

175

Abbreviations

ACM

Al

BCS

Coll

Conf

IEE

IEEE

IFAC

IJCAI

Int

NCAI

Proc

SIGART

Aikins J.S., 1979

‘Prototypes and production rules:

representation for hypoth

Association for Computing Machinery

Artificial Intelligence

Brinish Computer Society

Colloquium

Conference

Institute of Electrical Engineers

Institute of Electrical and Electronic Engineers
International Federation for Automation and Control
International Joint Conference on Artificial Intelligence
International

Journal

National Conference on Artificial Intelligence

Proceedings

Special Interest Group of the ACM on Al

an approach to knowledge

esis formation’, Proc of the Sixth IJCAI, 1-3.

176

Aikins J.S., 1983

‘Prototypical knowledge for expert systems’, Artificial Intelligence 20
163-210.

Avouris N.M., van Liederkerke M.H. and Argentesi, F. (1988)

3 : 3 .
An intelligent system for management of chemical emergencies’, First

European Conf on Information Technology for Organisational Systems

990-6, May, Athens, Greece.

Barbuceanu M., 1987
‘Integrating declarative knowledge programming styles and tools in a
structured object Al environment’, Proc of the Tenth IJCAI, 563-8

Milano, Italy.

Barclay-Adams J., 1984
‘Probabilistic reasoning and certainty factors’, in Buchanan B.G and

Shortliffe E.H. (eds.), Rule-Based Expert Systems: The MYCIN

Experiments of the Stanford Heuristic Programming Project..

Bernstein M., 1987

‘Finding heuristics for flowshop scheduling’, in SIGART Newsletter 99,

32-3, January.

Bobrow D.G. and Stefik M., 1983
The LOOPS Reference Manual, Xerox Palo Alto Research Center, CA

USA.

177

Briot J-P. and Cointe P., 1987

‘A uniform model for object-oriented languages using the class

abstraction’, Proc of the Tenth [JCAI, 40-3, Milano, Italy.

Brown J.S., Burton R.R. and deKleer J., 1982

‘Pedagogical, natural language and knowledge engineering techniques in
SOPHIE I, II and IIl’, in Sleeman D. and Brown J.S. (eds.), Intelligent

Tutoring Systems, Academic Press, London, UK.

Buchanan B.G. and Feigenbaum E.A., 1978
‘DENDRAL and meta-DENDRAL: their applications dimensions’
Artificial Intelligence 11, 5-24.

Buchanan B.G and Shortliffe, E.H., 1984
Rule-Based Expert Systems: The MYCIN Experiments of the Stanford

Heuristic Programming Project, Addison-Wesley, London, UK.

Buchanan B.G., Smith D.M., White D.C., Gritter R.J., Feigenbaum E.A.,

Lederburg J. and Djerassi C., 1976

‘Applications of Artificial Intelligence for chemical inference 22.Automatic
rule formation for Mass Spectroscopy by means of the meta-DENDRAL

program’,J American Chemical Sociery 88, 6168-78.

Bundy A., Silver B. and Plummer D., 1986
‘An analytical comparison of some rule-learning programs’, Artificial

Intelligence 27, 137-81.

178

Chester D., Lamb L. and Dhurjati P., 1984

‘Rule-based computer alarm analysis in chemical process plants’, Proc o f the

Seventh Annual Conf on Computer Technology, MICRO-DELCON
122-9.

Clancey W.J., 1979

‘Tutoring rules for guiding a method dialogue’, Int J of Man-Machine

Studies 79, 25-49.

Clancey W.J., 1983
‘The epistemology of a rule-based expert system - a framework for

explanation’, Artificial Intelligence 20, 215-51.

Clancey W.J., 1985

‘Heuristic classification’, Artificial Intelligence 27, 289-305.

Clancey W.J. and Letsinger R., 1981
‘NEOMYCIN: reconfiguring a rule-based expert system for application to

teaching’, Proc of the Seventh IJCAI, 829-36.

Cohen P.R., 1983

‘Heuristic reasoning about uncertainty: an artificial intelligence approach’,

PhD Thesis, Stanford University, CA, USA.

Cohen P.R. and Greenberg M.R., 1983

‘A theory of heuristic reasoning about uncertainty’, Artificial Intelligence

Magazine, 17-24, Summer.

179

Collinot A. and le Pape C., 1987

‘Controlling constraint propagation’, Proc of the Tenth IJCAI, 1032—4
Milano, Italy.

Cooper D.W., 1984

‘TIMM: The Intelligent Machine Model’, Proc of the IEEE Aerospace and
Electronics Conf, NAECON, Dayton, Oh, USA.

Corkhill D.D., Gallagher K.Q. and Murray K.E., 1986
‘GBB: a generic blackboard development system’, Proc of the Fifth NCAI,
1008-14, Philadelphia, PA, USA.

Cox B.J.,, 1986
Object-Orientated Programming: An Evolutionary Approach, Addison-

Wesley.

Davis R., 1977
‘Meta-level knowledge: overview and applications’ Proc of the Fifth IJCAI

1-3.

Davis R., 1979

‘Interactive transfer of expertise: acquisition of new inference rules’, Artificial

Intelligence 12,121-57.

Davis R., 1980(a)

“Meta-rules: reasoning about control’, Artificial Intelligence 15, 177-222.

Davis R., 1980(b)

‘Meta-rules: reasoning about rules’, Artificial Intelligence 15, 223-3.

180

Elleby P., Fargher H.E. and Addis T.R., 1988

‘Reactive constraint-based scheduling’, Proc of the IEE Coll on Artificial

Intelligence in Planning for Production Control, May, London, UK.

Erman L.D, London P.E. and Fickas S.F., 1981

‘The design and an example use of Hearsay-IIl ’, Proc of the Seventh 1JCAI,
409-15.

Evers D.C., Smith D.M. and Staros C.J., 1984
‘Interfacing an intelligent decision maker to a real-time control system’,
Proc of SPIE, International Society of Optical Engineering, 485
Applications of Artificial Intelligence, 60-4, Bellingham, WA, USA.

Fikes R.E. and Nilsson N.J., 1971
‘STRIPS: a new approach to the application of theorem proving to

problem solving’, Artificial Intelligence 2, 189-208.

Fox M.S., Allen B. and Strohm G. 1982

‘Job-shop scheduling An investigation into constraint-directed reasoning’

Proc of the First NCAI 155-8.

Fox M.S., Lowenfeld S. and Kleinosky P., 1983
‘Techniques for sensor-based diagnosis’, Proc of the Eighth [JCAI

158-63

Francis J.C. and Leitch RR., 1985
‘Intelligent knowledge-based process control’, Proc of the IEE Int Conf on

Control, 483-8, Cambridge, UK.

181

Gallanti M., Guida G., Spampinato L. and Stefanini A., 1985
‘Representing procedural knowledge in expert systems: an application to

process control’, Proc of the Ninth IJCAI, 345-52, Los Angeles, CA
USA.

Georgeff M.P., 1979

‘A framework for control in production systems’, Proc of the Sixth

IJCAI, 328-34.

Georgeff M.P., 1983

‘Communication and interaction in multi-agent planning’, Proc of the

Second NCAI, 125-9.

Georgeff M.P., 1986
‘The representation of events in multi-agent planning’, Proc of the Fifth

NCAI, 70-5, Philadelphia, PA, USA.

Georgeff M.P. and Bonollo U., 1983
‘Procedural expert systems’, Proc of the Eighth IJCAI, 151-7, Karlsrithe
FRG.

Gilmore P.C., Lawler E.L. and Shmoys D.B., 1985
‘Well-solved special cases’, in Lawler E.L., Lenstra J.K., Rinooy Kan

A.H.G. and Shmoys D.B. (eds.), The TRAVELLING SALESMAN

PROBLEM, Wiley and Sons, Chichester, UK.

Goldberg A. and Robson D., 1985
Smallialk-50. The Language and its Implementation, Addison-Wesiey,

Menlo Park, CA, USA.

182

Gordon J. and Shortliffe E.H., 1984
‘The Dempster-Shafer theory of evidence’, in Buchanan B.G., and

Shortliffe, E.H. (eds.), Rule-Based Expert Systems: The MYCIN

Experiments of the Stanford Heuristic Programming Project..

Harris R. and Zinober A.S.I., 1988
‘Practical microcomputer solutions of the cutting stock problem’, Proc of the

IEE Coll on Artificial Intelligence in Planning for Production Control

May, London, UK.

Hasling D.W., Clancey W.J. and Rennels G., 1984
‘Strategic explanations for a diagnostic consultation system’, Inz J of

Man-Machine Studies 20, 3-19.

Haspel D.W. and Taunton J.C., 1985
‘Application of rule-based control in the cement industry’, Alvey Report

Expert Systems Group, 16-24.

Herrod R.A. and Rickel J., 1986
‘Knowledge-based simulation of a glass-annealing process: an Al

application in the glass industry’, Proc of the Fifth NCAI, 800-4

Philadelphia, PA, USA.

Hewitt C., 1979

_ , . :
‘Control structure as patterns of passing messages’, in Winston P.H. and

Brown R.H. (eds.), Artificial Intelligence: An MIT Perspective, The MIT

Press, Cambridge, MA, USA.

183

Tline H. and Kanoui H., 1987

‘Extending logic programming to object programming: the system LAP’

Proc of the Tenth [JCAI, 34-9, Milano, Italy.

Istel plc, 1985 **

Technical Specification for the Paint Scheduling Sub-system, Istel plc,

Redditch, UK.

James J.R., Taylor J.H. and Frederick D.K., 1985
‘An expert system architecture for coping with complexity in computer-
aided control engineering’, Proc of the IFAC, Computer Aided Design for

Control Engineering, Kgbenhavn, Denmark.

Kimmerer W.F. and Allard, J.R., 1987
‘An automated reasoning technique for providing moment-by-moment
advice concerning the operation of a process’, Proc of the Sixth NCAI

809-13, Seattle, WA, USA.

King R.E. and Karonis F.C, 1988

‘Synergistic multi-level expert systems in computer integrated

manufacturing’, First European Conf on Information Technology for

Organisational Systems, 1012-4, May, Athens, Greece.

Kunz J.C., Fallat R., McClung D., Osborn J., Votteri B., Nii H.P., Aikins I.S,,

Fagan L. and Feigenbaum E.A., 1978
‘A physiological rule based system for interpreting pulmonary function test
results’, Working Paper HPP-79-19, Heuristic Programming Project,

Department of Computer Science, Stanford University, CA, USA.

184

Kowalski R.A., 1979

‘Algorithm = Logic + Control’, Communications of the ACM 22
424-35.

LeClair S.R., 1986

‘The application of artificial intelligence technology to process control’

Proc of the 1986 Rochester Forth Conf, 125-33, Rochester, NY, USA.

Lenat D.B., 1979
‘On automated scientific theory formation: a case study using the AM
program’, in Hayes J.E. (ed.), Machine Intelligence 10, Ellis Horwood
UK.

Lenat D.B., 1983
‘EURISKO: a program that learns new heuristics and domain concepts’

Artificial Intelligence 21, 61-98.

Lenat D.B. and Brown J.S., 1984
‘Why AM and EURISKO appear to work’, Artificial Intelligence 25
269-94.

le Pape C., 1985
‘SOJA: a daily workshop scheduling system’, Proc of the Fifth

Technology Conf of the BCS Specialist Group on Expert Systems,

195-211.

185

Mamdani E.H., 1982

‘Rule-based methods for designing industrial process controllers’, Proc of the

IEE Colloquium on applications of knowledge-based or expert

systems , London, UK.

Mark W.S., 1977

‘The reformulation approach to building expert systems’, Proc of the Fifth
IJCAI, 329-35.

Michalski R.S. and Chilausky R.L., 1980
‘Knowledge acquisition by encoding expert rules versus computer

induction from examples: a case study involving soybean pathology’, Int J of

Man-Machine Studies 12, 65-87.

Mitchell T.M., 1977
“Version space; a candidate elimination approach to rule learning’, Proc of the

Fifth [JCAI, 305-10.

Mitchell T.M., Utgoff P.E., Nudel B. and Banerji R., 1981
‘Learning problem-solving heuristics through practice’, Proc of the

Seventh IJCAI, 127-34.

Neches R., Swartout W.R. and Moore J., 1985
‘Explainable (and maintainable) expert systems’, Proc of the Ninth IJCAI

382-9.

Nelson W., 1982
‘REACTOR: an expert system for diagnosis and treatment of nuclear

reactor accidents’, Proc of the First NCAI, 296-301.

186

Newman P.A. and Kempf K.G., 1985

‘Opportunistic scheduling for robotic machine tending’, Second Conf on

Artificial Intelligence Applications, IEEE Computer Society, 168-73
Miami Beach, FL, USA.

Odette L.L. and Dress W.B., 1987

‘Engineering intelligence into real-time applications’, Expert Systems 4

228-39.

Park J., 1986
“Toward the development of a real-time expert system’, Proc of the 1986

Rochester Forth Conf, 133-43, Rochester, NY, USA.

Rieger C. and Stanfill C., 1980
‘Real-time causal monitors for complex physical sites’, Proc of the First

NCAI, 215-7.

Rubinoff R., 1985
‘Explaining concepts in expert systems: the CLEAR system’, Second

Conf on Artificial Intelligence Applications, IEEE Computer Society

416-21, Miami Beach, FL, USA.

Sacerdoti E., 1975
‘The non"linear nature Of plans’, Proc Ofthe Fourth IJCAI, 206‘14

Schefe P., 1980
“The Fuzzy Set Fallacy’ , Proc of the AISB Confon AL

187

schmucker K.J., 1986

An introduction to object oriented Pascal, Heydon

Shaw M.J. and Whinston A.B., 1985(a)

‘Automatic planning and flexible scheduling: a knowledge-based
approach’, IEEE Int Conf on Robotics and Automation, 890-4, St. Louis
MS, USA.

Shaw M.J. and Whinston A.B., 1985(b)
“Task bidding and distributed planning in flexible manufacturing’, Second

Conf on Artificial Intelligence Applications, IEEE Computer Society,
184-9, Miami Beach, FL, USA.

Shortliffe E.H. and Buchanan B.G., 1984
‘A model of inexact reasoning in medicine’, in Buchanan B.G and
Shortliffe E.H. (eds.), Rule-Based Expert Systems: The MYCIN

Experiments of the Stanford Heuristic Programming Project.

Shortliffe E.H., Davis R., Axline S.G., Buchanan B.G., Green C.C. and Cohen S.N.,
1975
‘Computer-based consultations in explanation and rule acquisition capabilities

of the MYCIN system’, Computers and Bio-medical Research 8, 303-20.

Sloman A., 1985

‘Real-time multiple-motive expert systems’, Proc of the Fifth

Technology Conf of the BCS Specialist Group on Expert Systems,

213-24.

188

gmith D.M., 1983

‘Industrial applications of artificial intelligence’, TI-MIX National

Symposium.

Spruell J.A., 1981

‘Computer system for automatic paint and process control’, TI-MIX

National Symposium.

Sullivan M. and Cohen P.R., 1985
‘An endorsement-based plan recognition system’, Proc of the Ninth

IJCAI, Los Angeles, CA, USA, 475-9.

Swartout W.R., 1981
“Explaining and justifying expert consulting programs’, Proc of the

Seventh IJCAI, 815-23.

Swartout W.R., 1983
‘XPLAIN: a system for creating and explaining expert consulting programs’

Artificial Intelligence 21, 285-325.

Sweickert R., Burton A.M., Taylor N.K., Corlett E.N., Shadbolt N.R. and

Hedgecock A.P., 1987

‘Comparing knowledge elicitation techniques: a case€ study’, Artificial

Intelligence Review 1,245-63.

van dyke Parunak H. and Irish B.W., 1985

‘Fractal actors for distributed manufacturing control’, Second Conf on

Artificial Intelligence Applications, JEEE Computer Society, 653-60

Miami Beach, FL, USA.

189

vVelthuijsen H., Lippolt B.J. and Vonk J.C., 1987

‘A parallel blackboard system for robot control’, Proc of the Tenth IJCAI
1157-9, Milano, Italy.

Weiner J.L., 1930
‘BLAH, a system which explains its reasoning’, Artificial Intelligence 15

19-48.

Williams C., Allen B.P., Haley P.V. and Wright, JM., 1985
‘ART: the automated reasoning tool’, Proc of the First Annual Artificial
Intelligence and Advanced Computer Technology Conf, 77-82, Long Beach,
CA, USA.

Winograd T., 1975
‘Frame representations and the declarative/procedural controversy’, in Bobrow

D. and Collins A. (eds.), Representation and Understanding, Academic Press,

New York, NY, USA.

Wright M.L., Green M.W., Fiegl G. and Cross P.F., 1986

‘An expert system for real-time control’, IEEE Software 3, 16-24.

Zadeh L.A., 1979
‘Approximate reasoning based on fuzzy logic’, Proc of the Sixth 1JCAI

1004-10.

%% for reasons of confidentiality the full title of this document has been withheld

190

Appendix Al Results of paint batching: a part example

Example results of the first bias set of order profile #4 (16 x 16 matrix)

Results of replicate 1
135 batches: 0 singleton, 0 bodies NFP, 0 BIW bodies
Batch failure rate: 0.00

Colour batch details

Colour Singles Desired size Large batches Total bodies Deviation from ideal
7

1 0 0 92 - 0.146
2 0 7 0 112 0.131
3 0 7 0 77 0.117
4 0 6 0 92 0.141
5 0 11 0 139 0.129
6 0 8 0 &3 0.106
7 0 11 0 153 0.106
8 0 12 0 118 0.117
9 0 8 0 144 0.100
10 0 8 0 167 0.125
11 0 9 0 181 0.131
12 0 9 0 235 0.140
13 0 12 0 176 0.117

191

Results of replicate 2

139 batches: 12 singleton, 0 bodies NFP, 0 BIW bodies

Batch failure rate: 8.63

Colour batch details

Colour Singles Desire7d size Large batches Total bodies Deviation from ideal

! 0 0 87 0.138
2 7 9 0 104 0.122
3 0 6 0 67 0.101
4 1 7 0 87 0.133
5 Q 10 0 131 0.122
6 0 8 0 89 0.114
7 2 13 0 175 0.121
8 0 6 0 111 0.110
9 0 10 0 165 0.114
10 0 7 0 175 0.131
11 0 8 0 172 0.125
12 0 8 0 195 0.116
13 0 9 0 178 0.119
14 0 5 0 66 0.107
15 2 7 0 99 0.162
16 0 7 0 99 0.156

Results of replicate 3

132 batches: 0 singleton, 0 bodies NFP, 0 BIW bodies

Batch failure rate: 0.00

Colour batch details

Colour Singles Desired size Large batches Total6bsodies Deviation from ideal

0 0.103
% 8 S 0 120 0.141
3 0 5 0 84 0.127
4 0 7 0 84 0.128
3 0 12 0 124 0.115
7 0 12 0 171 0.119
8 0 6 0 130 0.129
9 0 7 0 155 0.107
10 0 12 0 172 0.123
11 0 10 0 168 0.12
12 0 8 0 229 0.133S
13 0 9 0 178 0-152
14 0 6 0 & 012
15 0 5 0 n 0128

192

Results of replicate 4

142 batches: 0 singleton, 0 bodies NFP, 0 BIW bodies
Batch failure rate: 0.00

Colour batch details

Colour Singles Desireld size Large batches Total bodies Deviation from ideal

1 0 : 0 86 0.136
2 0 8 0 112 0.131
3 0 8 0 76 0.115
4 0 5 0 79 0.121
5 0 9 0 136 0.126
6 0 7 0 93 0.119
7 0 12 0 165 0.115
8 0 8 0 118 0.117
9 0 9 0 173 0.120
10 0 10 0 152 0.114
11 0 9 0 148 0.107
12 0 10 0 232 ©0.138
13 0 12 0 172 0.115
14 0 4 0 82 0.133
15 0 9 0 92 0.151
16 0 11 0 84 0.132

193

Appendix A2 Class structures

A symbolic representation of the class structure is obtained from the listing facility

of the editor and included below.

In the ascending (parental) direction the inheritance is shown. The lists of requests for the
class are given next (in nominal order of code). The third item is the list of child classes.
In the listing the names LEAF and ROOT signify lower and upper boundaries for the
hierarchy. ROOT is a nominal proto-ancestor of all classes. No defined class is higher up
than a child of ROOT. LEAF marks the fact that a class has no children. A structure may
be defined which is then found to be deficient. New children may be added to classes and
new parents defined, allowing portions of the structure to be kept. The action table of
requests must then be re—defined. Class properties of requests, instances may be re-

defined.

A2.1 Classes and their messages and encoded methods

Code Class

[0]1 task_manager

Entry point for colour allocation. Two management activities control updating of

i i : task
knowledge base image of database files and colour allocation process. One instance: 7a3

194

agerldum, a state reC()rd for the use Of taSkl'Ilg “”eS S]]bc a ’2
SSes: task 7ules the Ob-
9 JeCt

class declaring the tasks recognised in colour allocatio
n;
(3] task_rt, a class provided for future real-time aspects

The request [0] load on [0] (=> [2]zask_allocator()) is the entry point for colour
selection (i.e. from paint_batch()). It causes external changes to be marked on th
knowledge base image (of the database). [0] sends itself an enquire (:
[3]task_stat_read()) message to query the task agendum about the tasking state. It also
sends update (=> [4]task_allocator()) to itself to change the record of task state (in the

agendum). Various messages to other (sub) classes originate from [0]

[1] db _manager

Parent and control class of the database classes (i.e. map, colour, body and
priority). It is used as a routing point to ensure that changes are made consistently across

all the database images. This class has no instances currently.
Subclasses: [4] map_manager, the control point for the map file image;
[6] colour_manager, the control point for the colour file image;

[9] body_manager, the control point for the body file image.

load (=> [5]db_mngr_load()) causes initialisation of the knowledge base image

of the database from its various files (with the message ALL - this method is used also,

aving of the current image state). Messages to achieve

with a DUMP message, to signal s

195

this are sent to the subclasses. update is recognised (=> [6]db mngr update()) and

controls the updating of these classes in a similar fashion.

[2] task_rules

The three instances of this class determine the colour and batch selection activities.

interpret is accepted and invokes an interpreter (=> [O]call_rule_sex()) to examine them in

turn (vide infra).

(3] task rt

This is a place-holder for real-time aspects of the tasking activity.

(4] map manager

Has two instances for map file contents. The first is used as the scheduling map,

whilst the second is used as a buffer for new (incoming bodies) to re-populate the map.

The ‘visible’ region of the paint line is thus the first instance’s contents.

Subclasses: [5] map_rt;

[15] batch_manager, the control point for the batching classes.

196

load (=>{7] map_mngr_load()) initiates (/saves) the class and update (=> [8]
map_mngr_update()) allows an interface with the database map file sequence (actually the
batch sequence file - the map is used by external routines). enquire (=> [26] enq map())
reports the body code at a given position in the queue: if the message arrives at t;is class

through inheritance (the target was a descendant of [4]) the meaning is taken as compare a

specified body code for a match at the given position.

(5] map rt

A place-holder for real-time aspects of map handling.

[6] colour manager

Holds the image of the database file for colours. An instance is held of each colour
defined, representing: colour code (as in the file, an integer with a negative value indicates
a constraint, i.e. non-availability); the current batch size found so far in this invocation of
colour selection; the number of permissible body/colour combinations for the colour; the

last item is a floating point number to allow the achievement to be calculated.
Subclasses: [7] colour_items

[8] clr_constrainis.

load (=> [9]colour_mngr load()) is received from [1] and causes the loading (or

dumping, according to the exact message) Of details from the colour file. update (=

197

[10]clr_obj_update()) is accepted also from [1] and the message contains details of what
colour is to be counted down and by how much. This class writes directly on its

subclasses [7,8] in loading and updating because the details entered change at the same

time as those of the parent.

[7] colour_items

As above an instance exists for each colour. This class is used to hold batching
parameters and production details: code; MINPB; MAXPB; MAXB; requirement and

achievement values are recorded.

(8] clr _constraints

A place-holder for future attachments to colours.

[91 body manager

This is the equivalent, for body details, of [6]. 1t is the control point for the

priority file image and the parent for its controller ([12]). It has an instance for each of the

defined body types which record the code.

198

Subclasses: [10] body _items;
[11] body_colours.

Control of the body file image is exerted by receipt of load messages (=> [11]

body_manager_load()) from [1].

As for [6] the parent writes details on its child classes to keep their information up
to date. update also from [1] (=>[11] body _manager_load()) uses the same effector but

the form of the message is different and for update specifies the details to update.

[10] body_items
Has no subclasses and no requests of its own.

[9] manipulates it and it has an instance for each body type: code; total and priority

requirements; total and priority achievements and the number of colour combinations for

the code are detailed. A list of those colour codes follows these details.

[11]1 body colours

As with [10], class[9] maintains this class. As [10] is loaded, the equivalent
body/colour combination details are recorded in a list of nstances. The external variable,

e. the sum of the possible combinations. Each instance

Tcol, is the number of instances, 1

199

has details of colour and body codes; total and priority requirements and total and priority

achievements.

No requests are handled by this class.

[12] prty_manager
This class contains two subclasses: [13] prty_items;
(14] prty subs.

It, with its subclasses, forms the knowledge base image of the priority file in the

database. It recognises load (=> [13] prty_mngr_load()) and update (=> [14]

prty_mngr_upd()) arising from [9] which control the initialisation and upkeep of priority

items.

[13] prty_items

The instances of this class represent the defined priority combinations. Details

held are colour and body codes; requirement and achievement for the combination.

(14] prety subs

A place-holder for future developments.

200

[15] batch_manager

Holds transient items for batching. Its instances are used to control batching. At
any time their contents reflect items under current consideration. One is for the colour.
The next shows the body type. A third marks the present position in the map of the body
of interest. The fourth is used to indicate what type of batching is used (i.e. priority, crisis

etc.).
Some subclasses are rule sets: [16] batch_min_rules;
[17] batch_inc_rules;
[20] batch_best_rule;
the others are batching details: [18] batch_clr_izms;
[19] batch_clr_batch.

load (=> [15] batch_mngr_load()) from [4] controls the initialisation of the class
for batching decisions. enquire (=> [30] enquire_cover()) checks that cover exists for
the current colour/body possibility. best (=> [31] pick_batch()), selecting the optimal

batching decision, and set (=> [25] batch_class_set()), causing the expansion of MINPB

batches arising from rule interpretation.

201

[16] batch_min_rules

A rule class which can be interpreted, which allows specification of the
appropriate class for which the rules apply. On receipt of the appropriate message
o

quantify (=>[1] call_gen_rules()) its instances are evaluated.

[17] batch_inc_rules

As for [16].

(181 batch clr_imms

There are no subclasses of this class. Its instances are controlled by its parent,

[15]. They contain details of colour items copied from the colour classes allowing, on

each colour selection run, a temporary version of colour items which may be adjusted as

the decision is made. Colour class items are changed on updating and are ‘read-only’ for

allocation purposes.
[19] barch_clr_batch
tching items.

As for [18], with instances reflecting other ba

[20] barch best_rule: this and the other classes are for rules.

202

[21] batch_prty_rule

Rules of this class respond to the interpret message (=> [0] call_rule set()) and

the instances are interpreted without general application over another class.
[22] batch_ext_rule
As for [21].
[23] batch_best_rule
As for [21].
[24] form_min_rules

This and the next class specify optional rules to replace batching methods.

Interpretation is as for [16].
[25] form_inc_rules

As for [16].

203

Appendix A3 Messages found in methods
Source Request Class Effector Argument
external - 0. load task_manager task_allocator (various)
(0) call_rule_set none
(1) call gen_rules none
(2) task_allocator
1. load db_manager db_mngr load {ALLDUMP}
2 update db_manager db_mngr update “class”,“batch”
3 enquire [src] task_manager task stat read {01112}
4. interpret task_rules call_rule_set “fire first” _
1
5 valid batch manager batch_result “NOARG”
(3) task_stat_read none
(4) task_stat upd none
(5) db_mngr load
6. load map_manager map_mngr_load “ALL”
load colour_manager colour_mngr_load “ALL”
8. load body manager bdy mngr load “ALL”
9. load prty_manager prty_mngr_load “ALL”
(6)db_mngr update
10. update colour_manager clr_obj_update “colour”,“batch”
11. update body manager bdy_mngr_load «colour”,“body”,
“item”
mngr update “patch”
12. update map_manager map_mngr_|
204

(7) map_mngr_load

12. valid

(8) map_mngr_update

(9) clr_mngr_load

13. valid

14. load

(10) clr_obj_update

(11) bdy_mngr load

15. valid
16. update
17. update

(12) bdy clr_update
(13) prty_mngr load
(14) prty_mngr_upd

18. valid

(15) batch_mngr_load

(16) set_batch_itms

(17) batch_minpb

19. enquire

[self]

none

[self]

batch_clr_itms

none

[self]
prty_manager

body_colours

none

noné

[self]

none

none

batch_clr_itms

205

Obj filc_open “Self,AL 2

objfile_open “self ALL”

set_batch_bco

objfile_open “self, ALL”
prty_mngr upd “colour”,“body”,

“batch”

bdy clr_update “colour”,“body”,

“batch”
objfile_open “self,ALL”
enq_batch_details “colour,0”

20. enquire

21. enquire
22. valid
23. enquire
24. set

25. update

(18) bdy_itms_cpy
(19) bdy_clr_cpy
(20) enq_batch_detail

(21) quant_batch_itm

26. enquire

27. enquire

(22) enq_bdy_clr

(23) update cover

(24) form_batch

28. cover

29. enquire
30. enquire
31. enquire
32. enquire

batch_clr_itms
colour_items
[self]

[self]
batch_clr_batch

batch_clr_itms

none

noneé

none

colour_items

colour_items

none

none

[self]
prty_itms
batch clr_itms

colour_items

colour_items

206

enq_batch_details

eng_clr_const
€nq_map

enquire _cover
update cover

set_batch_itms

enq_clr const

enq_clr_const

enq_map
enq prty_one
enquire_cOover

enq_clr_const

enq_clr_const

“colour,1”

¢ »
colour, 1

“map,posn.”

“NOARG”

“colour,body”

“colour,batch”

“current_item”,

113 : b bl
requirement

“current_item”,

“achievement”

“colour,body”

“colour,body”

“current_item”,
“mirlpb”
“current_item”,

umapr”

33. set

(25) batch_class_set
(26) enq_map

(27) batch_cb_update
(28) enqg_clr_const

(29) set_batch_bco
34. copy
(30) enquire_cox}er

(31) pick_batch

35. enquire
“requirement”
36. enquire
37. set
(32) call cut

(33) batch_result

(34) set_batch_cut

38. set

[self]

none
none
none

nonec

[self]

none

noneg

colour_items

colour_items

batch _manager

none

none

batch _manager

207

set_batch_itms

“colour”,

“proportion”’“value”

body clr cpy

enq_clr_const

enq _clr_const

batch_class_set

batch_class_set

“destination”,

“current_item”

“current_item”,

“current_item”,
“achievement”

“colour,value”

“cover,priority”

(35) enq_batch_one
39. cover

40. enquire

(36) enq_prty_itm

41. enquire
42. enquire
43. enquire
44. enquire

(37) enq_batch_inst
(38) enq_prty_one
(39) objfile_open
(40) enq_bdy _item
(41) match_old clr

(42) cover leading

[self]

batch clr itms

batch_manager

batch clr_itms

map_manager

map manager

none
none
none |
noneé
none

none

208

€nq_map “position,1”

enq_batch_detail

enq_batch_one

enq btch detail “current item”,

“colour”
enq_map “0”
enq_map “1”7

e

Appendix A4 Rules

A4.1 Syntax and the rule interpretation effectors

Two rule interpreters, which use the same syntax, are included in the o-c
program. The rules they examine are in an encrypted form.

The message [5] quantify results in the interpretation of rules which are in
the same form as those which [3] inzerpret examines but contain a prefix showing
the range of quantification (a class).

Rules are in the form of a conditional part followed by an action statement
(or statements). The effectors used (call _gen rules() and call_rule_ser(),
respectively) may be used in one of four ways: evaluate one or all conditional parts
of rules, fire one or all rules. The rules are always grouped in a rule set which
constitutes a class, and therefore associated with a context.

Conditions are made up of one or more mMessage expressions which evaluate
to a boolean result. Conjunctions and/or disjunctions are allowed. The expressions
may be a simple boolean proposition or be comparison between two expressions.
An expression is either a constant or a request whose return value is taken as the
value for the expression.

Actions are, similarly, made up of one or more message expressions,
conjoined by ‘and’. If the conditional part evaluates to true the rules will be fired, as

appropriate, by calling the action part. The requests in the expressions are made and

their return value is taken as the value of the interpretation. Expressions are fired

and while their return is not a FAIL value the list in the action part is evaluated. If

FIRE ALL is the mode of usage the interpreter fires all actions whose conditions
ated
succeed. If none fail the interpreter returns the value of the last evalu

expression.

209

The key parts of a rule are thus: Irequest ... T actioﬁ, where I(f) introduces
the conditional part and T(hen) the action. Rules must contain lower case letters and
digits only, plus the relational and equality operators and the decimal point. Upper
case letters are taken as being reserved characters and are inserted by the rule editor.
The upper case letters used for separating expressions are, in addition to Iand T, O
for ‘inclusive or’, A for ‘and’, N for ‘not’. These are logical operators considered
as conjoining or disjoining expressions. A is used to separate statements in the
action part. N is used as a prefix to the expression to mean that its value should be
logically negated. Expressions involving A are evaluated while their combination is
valid, i.e as soon as a condition has failed on the left hand side of an A then it is
taken as false. If the left hand side of an O is true then all other expressions disjoint
to that one by O are ignored (until T or A is reached). N is taken as ‘and ... not’ so
will be ignored where an expression without would be ignored.

Message expressions are of the form: <request code number>, <class code
number>, <message string>, introduced by the letters R, C and P respectively. The
string part, P.... is optional. The parsing of conditiéns (and actions) recognises the

expressions and each is sent in turn. A single expression is false if it returns “0”. If

the expression is followed by the equality or relational operators its value is stored

and compared with that of the expression to the right of the operator(s) which may
be a numerical or string constant. Less than,‘<’, less than or equal to, ‘<=, equals,
‘=’ | greater than or equal to,">=", and greater than,’>" are recognised orderings.
The meaning of the equality operator is taken as numerical unless both sides of the

equation are strings, in which case the relation is true if the result of stremp() taking

the expressions as arguments is false.

These methods are properties of task_manager (archetypes for rule

interpretation). If the interpreter method succeeds, a result of “OK” is returned. This

accords with the recommended usage for 0-C code.

210

,
.
:
il
i

Appendix AS

Rule Source

task_rules (2)

@) 1.
2.

3

(ﬁ) nl
4.

"3

(iil) "1
5.

"3

batch min_rules (16)
1) 6.
7.

"7
(i1) 8.
9.

(ii1) "3
10.
(iv) 11.
12.

batch inc_rules (18)
1) 13.
14.

(if) "8
"12

15.

16.

(iii) 17.
18.

(iv) "8
19.

"7

(v) "8
"8

20.

Messages found in rules

Request

enquire
quantify
update

quantify

interpret

enquire
set

enquire
copy

copy
batch

enquire

interpret
set

enquire
batch
interpret
valid

valid

set

Class

task _manager
batch_min_rules
task manager

batch_min-rules

batch best rule

colour manager
batch-clr-itms

batch_clr_itms
body_items

body_colours

batch-manager
colour_items

batch_prty_rules
task manager

batch_manager
batch_ clr_itms
batch ext rules
batch ext “rules

batch_clr_itms

batch_manager

211

Effector Argument
task_stat _read “colour”
call gen 1 “rules “fire all”
task stat read “batch”
call gen rules “fire_all”
call rule-set “fire_first”
enq _clr_const “code”
batch_set itms “batch”

“colour-"
enq batch details “colour”
batch_cpy _clr “class”
set_batch_bco “class”
batch minpb “current_item”
enq_clr_const “minpb”

call rule_set “fire_all”
call_cut
“batch”

“minpb?9
enq_batch_inst “batch”
form_batch “batch”
call_rule_set “current_item”

set_batch_cut “current_item”
“current item”

batch_enq one “current item”
“batch,one’
“current_item, colour”
“current_item, ach1evement

batch_class_set “batch,one”

batch_best_rule (20)

() 15
24.
(i) '15
25.
batch_prty_rules (21)
() '8
"7
(ii) 21.
22.
(iii) 23.
1" 8
batch_ext_rules (22)
() "8
26.
(i1) 15
T 8
" 8

set

best

enquire
quantify

batch

set

batch_best rule

batch-manager

batch_prty rules
batch_clr_itms

batch_clr_itms

batch_ext rules

212

call cut

pick_batch

“current_item,nil”
“current_item,nil,minus”
form_batch “current item,nil”

quant batch_itms
“current_item,nil,priority”
enq prty_one “current item”
“priority,one”

“current_item,nil,one”

call cut
“current_item”
“batch,one”
“colour,current_item”

Please note

1S

page <Z1=

missing from

this thesis

and no copy

can be obtained.

must be and how many are to be defined initially. For éach of these items the
indicated number of examples is now entered. If an instance file exists for the
description the user is warned. The final item in any category is indicated by typing
an asterisk.

Each example is accepted as a character (alphanumeric) string with some
special codes. Upper case A(nd), I(f), N(ot), O(r) and T(hen) are assumed to
indicate logical elements of a (n English-like) rule. The asterisk is taken to introduce
a numeric field. The field must be terminated by a character defining its type; h/s for
shorts (unsigned/signed), u/i for (unsigned/signed) integers, p/l for
(unsigned/signed) longs, f for float and d for double. If the field is incorrectly
formed the user is warned. The appropriate bytes are put in the instance file the
numbers being held in numerical not ASCII form. The tally of characters left for the
instance is reduced accordingly and the number is displayed (in ASCII fofm)
terminated by a tilde.The float value 3.01 would appear on the screen as “*3.01~".
The user can now have the names of object classes displayed with their associated
orderings. The date of creation, name of author (up to 15 characters) and comments
(up to 39 characters) are saved. Each object class is allowed a chronicle for updates
etc. but at creation these are assumed to be valid for all classes, thus one record only
is held. The record allows the creationvdate and date of last change to be recorded.

These are held as 8 character fields in the form dd.mm.yy obtained from the UNIX

utilities which read the real-time clock.

A6.2 Definition of the hierarchy and inheritance

e definition of the object hiorarchy is now stated in order of the names

. . . messages
classes in terms of the three essential attributes: sub-classes subsumed, g

) s ; f th
responded to (methods) and super-classes (all identified by the ranking order O the

ine i ne that the
subsumed class or action, 0 to number of classes - I). No checlang 18 do

214

assignments are sensible (e.g. not self-referencing) but all codes must exist. Ed
. Edges

of the structure are identified by typing an asterisk. For the sub-class' attribute this

means the item is a leaf, stored as -2, and for super-classes a roor. -J. Th
, -1. These

attributes are held as lists, the sizes of which are declared before the contents are
itemised. The lists for sub- and super- classes form a tree structure. For sub-classes
the list represents all those objects which are immediate descendants. In the case of a
superclass the head of the list is the object's parent,the next item the grandparent and
so on unto the tail which is the root. It is not enforced that there be a single 'tree’
since the messager can deal with multiple structures. This is done so that parts of the
program that are outside the knowledge base, for example, may also use the class
structure. Inheritance of properties is obtained by method references. If a referenced
class does not, itself, have the required method the messager will supply the
method/effector if it can find response to the message listed for an ancestor class.
Although there is a redundancy of information, each object tracing its entire descent,
the messager's tracing of inheritance is simplified.

Several actions are now taken to splitr up the description file into more
manageable files and complete the definition of the object structure.
The files necessary for re-compilation of the system (in order to allow the messager
to reference the effector functions) are edited. The header file, DEFTAB.H, is
produced from a standard file, DEFTAB.OLD.H, by replacing the defined size of
the message table (1) with the number of effector functions defined (ASCII form).
The file specifying the table itself is set up from METHODS.OLD.H. This file,
METHODS.H, has the type definitions for each effector (the names of the
functions defined) followed by an initialised definition of the table itself. The table is
functions so that each

an array of the size detailed in DEFTAB.H of references to

effector can be accessed eventually by a subscript rather than its name.

215

A6.3 Attachment of methods and the messager

The connection of message responses with effectors is done next. A file is
constructed for this with the name of the definition file suffixed by ‘.act’. For each
action that the user has attached to a class the intended effector is stated. Triples of
the codes are recorded on the file. Where more than one triple is present for an
action the action code is replaced by the number of entries. (The size, in bytes,
required for the table and the number of entries are recorded at the start of the file,
the triples following. The same indexing information is also held in the initial
definition file.)

The class structure information is abstracted from the definition file and used
to create a class file (definition file name with suffix ‘.clss’). The structure of the
new file differs from the definition, the comments being re-ordered by class rather
than similar fields all together (vide supra). Some indexing information is copied to
the start of the file.

The final re-organisation is to abstract the identifiers named by the user into
a file for names (definition file + suffix ¢ nam’). The names of (all) classes,
followed by methods and effectors are copied to this file.

Once the definition is done the program exits by calling the make utility to construct
the required executable system. The defined effectors are assumed to be declared in
the files comprising the specification for make; as is the messaging function.

The messager works by standard C conventions in that it requires an

archetypal argument list. The arguments are, the code of the action desired, the code

i ion made
of the object class and a pointer to allow access to further informatio

available by the caller.

i mber of
The first time the messager is called it forms an array showing the nu

i in the action,
messaging triples that precede the first entry for each action code (1

o i action code
object, effector table saved as above). This 18 done by looking up the

ra. The messager does not initialise an

field for the first entry of each code, vide sup

216

R e
e e s e

image of this action table in memory, this being done as part of the start-
procedure for the system. As mentioned above, the action table references all
object/action attachments so the desired action can be located in one of two ways.
Firstly, the action code will have a number of triples listed for it. If the object class
named as target appears on the list the relevant effector function has been found.
Should this fail the second attempt is to locate one of the object classes in the list on
the list of superclasses of the target object. This gives the desired result because an
effector located in this way belongs to the triple containing the object class nearest in
the object hierarchy to the target class. The superclass list states the inheritance of
the target in order of most recent ancestor first so looking in turn for a match on this
list with the list of triples causes the most recently defined effector to potentiate the
method. If an action cannot be effected the messager prints a warning and returns a
standard string to the caller. If successful the messager calls the effector giving it the
pointer as the argument.

Argument passing conventions are limited by C so that argument lists of caller and
called should match. It is possible to use the varargs system to write functions that
can accept varying argument lists but this is inherently non-portable. It is possible
with the above convention to provide sufficient messaging ability so varargs and

other extensions have been avoided.

217

up "

A6.4 An object-centred paint scheduler

By using the edir utility the class structure, methods, and their effector
function names, and class instances are declared, as above. The messaging table (of
action requests - request and class - bound to their effectors) is fixed. The four files
produced for each knowledge base definition are loaded, dumped and displayed by
code from source file ‘startup.c’. All knowledge bases must include this code as
well as that from ‘msg.c’ which contains the messager. In addition, various
header files (°.h’) must be included for linking of the final system.

A tracing facility is contained in ‘msg.c” which is activated by a global
variable Trace, assigned externally.

Quit interrupts (e.g. *C) are trapped by a signal-handler which is installed at
the first call on the messager. If tracing is installed, on such an interrupt the usef is
notified of the latest messaging call and can then a) select viewing of the knowledge
base, i.e instances, via startup code; b) edit class instances, using code from the
editor; ¢) quit tracing at the current level (i.e level of messaging); or d) abandon the
program. When tracing is ‘off’ the user may quit or chose to continue.

The level of tracing is marked by the messager: each call creates a ’lower*
level (i.e one lower) and each unwinding raises the level by one. If the current level
of tracing is ‘quit’ from the messager breaks from executing the message and
returns a value of “OK”. Thus the call is obviated and execution should be allowed
to continue. “OK” is a pre-defined non-fail status value for the object-centred
system and the recommended value for satisfactory messages which do not have to
return a special value. Return of “BADMESSAGE” indicates that the messager has
not been able to process the message. User code can use this to trap invalid
requests.

A message-passing test harness in ‘harness.c’ can be used to check
individual messaging calls. This file provides an entry-point for code (i.e. main())

and storage for necessary global variables (e.g. those used in msg.c, startup.c).

218

To make a test harness program the utility maketest accepts the names of the source

files (less the ‘.c’ suffix) containing the required code (i.e. for methods) and links
them (compiled ‘.0’ images) with the harness, startup and messaging code. The
knowledge base to be tested is then given to the test program produced and the user
can send messages to the classes desired and see their effect. The format is as in a
proper program: the user specifies the code number or name of the request, that of
the class and a string to be passed in the message. Trace is set for tests and so
interrupts will allow examination of the knowledge base as in a real program. The
exit value of the messager and each effector function is available also for inspection.

This is intended for incremental testing of messaging relationships.

A6.4.1 Paint allocation

The object-centred version of the colour selection program contains a
modified version of PAINT which loads the database and then runs the knowledge
base start-up sequence. Bodies and colours are then processed from the usual files
using a call on the object-centred sub-system to produce appropriate allocation
decisions. The object-centred system may read the database files once iny when
initiated and maintains an image of the database by updating changes notified to it in
successive messages sent to it. An exception to this is that the map sequence file is
read to re-populate the knowledge base image of the assembly line each time a
colour decision is required. This means that if an external change occurs, e.g.
updating of order cover, the knowledge base will be re-initialised and will not need

to read database files often.

219

A6.4.2 Messaging and system messages

The entry-point to the object-centred system is by a standard request to the
messager i.e (load task_manager). Messages are of the form [val = msg(a,b,c),
where lval is a string and msg the messaging function which returns it as the value
of the message. a and b, respectively indicate the request and class of the message, ¢
specifies the content of the message itself (as a string). The content of the string
shows the method, in the above example, (whose effector is task_allocator) of
task_manager the receiving class, whether the knowledge base is to be loaded
(“ALL”), dumped (“DUMP”) and/or a colour decision is required. This is done by ¢
being composed of a list of items separated by full-stops, e.g. “0.0.0”, i.e. three
noughts. In this case the first nought indicates that the database image is to be
loaded before a decision is made. The following two show that no change in that
image i.s needed because the previous (i.e. non-existent) batch of nominally colour O
~ was of size 0. In the case where a previous decision had been made these two items
would show the colour that had been actually been used for the the previous batch
and the size of that batch. (This may not accord with the previous allocation
decision.) This is because the database image is updated when the allocation system
is called (again) and not immediately after the decision. The knowledge base does
not keep track of external events for itself but uses the information supplied on each
invocation to maintain the integrity of its data. As mentioned above this is important
if access to the database is to be restricted, i.e if the database-handling is done by an
asynchronous task, e.g. a console control program.

As mentioned above the rask_manager/task _allocator method allows
invocation of the object-centred system. As a result of the load the sub-classes of the
target class receive messages to load their database file image. The db_manager
class is the controller for the database images and distributes messages to the map
(map_manager), colour (colour_manager), and body (body manager) classes to
load their images of respective database files. The priority file image (prty_manager)

is a property of the body class. As above the message to the object-centred part

220

states the effect of processing its last decision. From this information which

db_manager receives from task_manager it routes updating details to its subclasses.
The map_manager receives an update message and reads the appropriate sequence
of bodies from the sequence file to replace those processed in the previous batch,
advancing the map. The effector used is map_mngr update(). The current sequence
file position is kept by this function. For the colour manager the update message
(=> update_clr_obj()) causes the specified colour item to decrement its count of
required bodies and increment its ‘achievement’ (by the specified batch size). In a
similar manner body manager updates its data and sends the appropriate update
requests to its classes (which include the priority file image - prry_manager and its
subclasses).

In this way control filters down through the object hierarchy. In these
actions failure can be detected in the returﬁ value of the message (usually “FAIL”).
If this happens or the colour selection gives an invalid result the value of
FAILALLOC (“0.0.0”) is returned through the messager to the invoking code. A
successful call would be of the form “P.Q” where P is the integer colour code and Q

the suggested batch allocation.

A6.4.3 Rule-based processing

The above discussion outlines a scheme by which a series of requests with
messaging causes a cascade of effects. The various tasks required for colour
selection are done in a similar way.

Following database image updating the task_manager/task_allocator method
(load) has a loop which exits when the colour task is done. Inside this loop various
sets of rules are evaluated causing colour selection to take place. The control point
for this loop is the task agendum instance of task_manager. While this is not in the
DONE state the loop continues. The enquire method of the task_manager class (=>
task_stat_read()) allows examination of this agendum. An interpret request is sent

to the rask rules subclass and this causes its instances to be interpreted as rules.

221

These rules will succeed on the appropriate state of the rask agendum instance. Their

actions are, respectively, to cause colour selection, batch selection and best batch
selection. The message to interpret the rules contains the mode of evaluation, in this
case “fire first rule with valid conditions”. This interpreter (=> call rule set)
examines each of the known instances of a class in turn. In each case further rules
are evaluated. The action statements of the rules cause changes in the state of the
knowledge base and so processing converges on a result for colour selection.

The partitioning of the task's execution into task rules would allow an
arbitrary set of such rules to be used if needed, i.e if the selection were to be made
more complex. The three rules represent criteria used in the original conventional
program, but are encrypted in the algorithm. The intention of this expression was to
declare these ‘principles’ explicitly. The contexts for relevance of these ‘facts’ are
stated together with the facts themselves. In practice the ordering of the rules uséd is
not necessary to their validity. Efficiency prompts their declaration in the order
given. Were other rules adduced to represent a more complex set of tasks these
original rules should still be valid were the nature of the overall task to remain the
same. Their meaning is not impaired if the action side's requests become
implemented in a different way. The subject of rule interpretation is discussed

further (vide infra).

A6.4.4 Control of information

Access to data in classes is usually limited to the methods of the class (or
those of an ancestor). Thus requests made are often of the form ‘what is the value of
instance x’ and the answer is returned. Thus a class does not have to allow other
classes to read its data. This is true of updating or re-setting of values also. An
example is map_manager: Its first instance is the current ‘visible’ part of the map
file. One form of enguire request causes it to supply the code of a body type at a

specified position in the map.

222

6.4.5 The conventional algorithm represented in the object-centred system

The conventional algorithm checks first for batches containing a priority
body/colour combination. Batches must be of MINPB size at least. The first rule for
selection is stated in the documentation as being to select at least MINPB-sized
batches. The object-centred system follows this direction in its first task rule. What
is not stated unequivocally in the documentation is that, having looked first for a
priority batch, the work done to find one, in the several colours, is not wasted
should the search fail and the selection process go on to look for a least achieved
colour. It is not clear how this would be done. (Particularly as the size batching
rules are different for these two directives.) The solution chosen to resolve this is to
find a MINPB batch in as many colours as possible and then (task rule two) to find
the largest batch looking also for priorities.

The rules of selection applying to crisis allocation are also included in the
rule set referenced in task rule two. Task rule three succeeds when the task agendum
is in the state, batch done. It references a rule set to pick the best batch. In these rule
applications the batching details and batching state are held in instances of the batch
class (batch_manager). The final selection of batch depends on the values in these
instances. Either a valid batch is found (which may be priority) or a single body is
indicated as allocated (by the rules of crisis allocation of the Istel algérithm). Note
that the colour and batch details are returned to the invoking code for the object-
centred system as described; failure of the tasks results in the exit value
FAILALLOC. As with the task rules the various rules examined are only ordered

for convenience, their validity is not dependent on order of examination.

223

A6.5 Definition of object meta-knowledge

The purpose of defining meta-knowledge of the knowledge contained in an
object hierarchy is to assist in acquiring instances of the classes already defined and
other aspects of the object-centred structure. A program, METACODE, allows
further information to be codified, pertaining to an object structure.

Just as EDITEX allows two modes of use, METACODE can be used to
create a meta-description from a given object definition, when invoked with no
argument, or, when a name is given, to edit an existing one. The output of the
program is a set of files corresponding to the object definition, named for the object
files with a suffix ‘u_’. The initialisation of meta-descriptions is, effectively, an
amalgamation of the given object definition with another object definition, which

describes special aspects for modelling meta-knowledge.

A6.5.1 Initialisation of a meta-description

The current version of the program uses a definition called ‘meta’. This has
classes to represent constant items, relational symbols and grammatical forms. The
grammatical forms and their methods state the syntax for rules (according to the
standard methods in the source file ‘rules.c’. The constants and other symbols are
stated with the internal representations they should have, e.g. selecting_colour has
the internal value 0. In initialisation the classes, methods and effectors are extracted
from the object definition and recorded in the meta-description. At the same time,
the user can indicate what the instance variables mean by assigning identifiers to
them and stating what size and type of item represent. A concordance of methods to
classes is extracted so that the program can later detect possible messages that
classes could receive. The arguments of effectors can also be described in this way.

This is a form of metalevel knowledge, since it can be used to guide acquisition of

224

new knowledge. The information from ‘meta’ and these details are combined to

form the initialised meta-description corresponding to the object definition.

A6.5.2 Acquisition of new knowledge

Having initialised a meta-description, the user can invoke METACODE
with the meta-description as argument. This allows access to two forms of
modification of the meta-description. Further additions to structural knowledge, e.g.
new constants may be defined, or an acquisition system can be used. At this stage,
the ‘forms’ of knowledge included in ‘meta’ are for instances of classes,
specifically rules (as the most complex abstraction used in the object system). The
methods included allow an external form of the rule to be stated and an attempt to
translate it into the internal representation required is made.

The user, currently, must state which classes are to be considered as rule
sets, unless the meta-description has already defined this facet. It might be possible
to categorise these automatically by assuming that instances containing only
printable characters are rules, but this is not a particularly useful distinction. The
system then decides the total number of rules by examining the object definition
inherited in the meta-description. The user can state an external form for the rule.
This is the form adduced for explanations using rule tracing. The form of rules is
prescriptive and uniform and rules must have a ‘predicate’ part, which is a symbol
like ‘if’, optionally preceded by a quantifier (a phrase declaring the class for which
the rule applies over all its instances, consisting of some symbol like “for_all
colour_manager”). This must be followed by a phrase constituting a conditional
part; a ‘dependent’, such as ‘then’, and an action part. The conditional and action
parts consist of one or more expressions which resolve to a message. The individual
conditional expressions may be boolean or have a relational symbol followed by a
message expression or constant. In the case of an action the expression is simply
imperative. The internal form of a message must contain a request name and a class.

The parsing methods then, using the object structure and messaging to record the

225

components of phrases in classes relating to the grammatical parts, check the

completeness and consistency of the rule. The message selectors are specified in the
expressions by such forms as ‘set code of red of colour-manager to value’: i.e. the
colour instance red’s variable code should be set to value.

If parts are missing or inappropriate, the parser informs the user, who can
supply values for new symbols such as relational names. A valid rule can be saved
in the meta-description and, if desired, the original object definition can have the

new rule inserted in it.

A6.5.3 Other uses of meta-knowledge

Some of the knowledge, e.g. of effectors, is not used in this version of
METACODE. It could be used to allow more flexible acquisition strategies. Also,
the inclusion of other skeletal forms for meta-knowledge in ‘meta’ could generate

other types of instances. This is discussed in Chapter 8.

226

