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The satellite ERS-1 was launched in July 1991 in a period of high solar activ-
ity. Sparse laser tracking and the failure of the experimental microwave system
(PRARE) compounded the orbital errors which resulted from mismodelling of
atmospheric density and hence surface forces.

Three attempts are presented here to try and refine the coarse laser orbits of
FERS-1, made prior to the availability of the full altimetric dataset. The results
of the first attempt indicate that by geometrically modelling the satellite shape
some improvement in orbital precision may be made for any satellite; especially
one where no area tables already exist. The second and third refinement altempls
are based on the introduction of data from some second satellite; in these examples
SPOT-2 and TOPEX /Poseidon are employed.

With SPOT-2 the method makes use of the orbital similarities ta prodice
along-track corrections for the more fully tracked SPOT-2. Transferring these cor-
rections to BRS-1 produces improvements in the precise orbits thus determined,
With TOPEX /Poseidon the greater altitude results in a mare precise orhil (grav-
ity field and atmospheric errors are of less importance). Thus, hy compnling
height differences at crossover points of the TOPEX/Poseidon and KR5-1 ground
tracks the poorer orbit of ERS-1 may be improved by the addition of derived
radial corrections.

In the positive light of all three results several potential modifications are
suggested and some further avenues of investigation indicated.

Keywords:

e skin-surface forces,

o along-track acceleration corrections,
e dual-crossovers,
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¢ TOPEX/Poseidon.
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Chapter 1

Introduction

Data generated by earth satellites is very diverse, being concerned both with the
physical environment of the satellite, and with returning information about the
earth around which the satellites orbit. Thus, topics covered mclude atmospheric
studies, the measurement of the earth’s magnetic field, topographical images, alti-
metric information for use in mapping, oceanic studies and other geodetic projects.
There is a certain teleological element to much of this though, since in order to
fully utilise this information, a precise determination of the satellite’s position
is required. Therefore, as the knowledge of the earth’s shape and structure, as
evinced by the gravity field, increases so does the accuracy with which the orbit
may be computed. Similarly, as the orbital accuracy increases, so does that of the
physical constants (for instance the gravity field coefficients).

In addition to the accuracy of the physical constants, the quality of any precise
orbit determination rests upon the accuracy of the model used to plot the course
of the satellite; by far the most common approach being to fit the model to the
observation data by means of some weighted linear least squares minimisation
technique. Currently, this model is relatively weakest in the areas of atmospheric
density and satellite-atmospheric reactions [Renard, 1990]. This is largely due
to the difficulty in either accurately measuring atmospheric density and particle-
surface interactions at the satellite, or correctly simulating the conditions attained
at these locations within the laboratory situation. This weakness is relative since
it is only recently [Klinkrad et al, 1990] that the gravitational component has
been recovered accurately enough so that errors in it are now lower than the

magnitudes of lesser forces, such as drag and solar radiation pressure. However,




now that such accuracy is attainable in the gravity field, it becomes necessary
to either improve on atmospheric models or to somehow circumvent the need for
such improvements.

The aim of this thesis is to address these relative weaknesses by considering
the specific case of the satellite ERS-1. ERS-1 orbits suffer particularly both from
deficiencies in the thermospheric models currently used to determine atmospheric
density and from a general sparsity of and geographical bias in the tracking data.
In this thesis, three distinct but potentially combinable methods are considered, in
order to see if they offer ways of refining the initially poor ERS-1 long-arcs orbits.
In the first of these, the simple drag model currently used is modified to take
account of surface-interaction coefficients in a more complex momentum-exchange
based model. In contrast to this, both the second and third approaches differ from
the first in that they do not directly improve the orbital determination model, but
rather suggest ways of introducing information from some second satellite into
the orbital procedure. In each case the second satellite is more densely tracked
than ERS-1 and possesses other differences which make it suitable for the chosen
method. Thus, the second method uses height differences with TOPEX/Poseidon
which, at an altitude of some 1335 ki, is far less affected by the atmosphere;
avoiding the inherent weakness in thermospheric models. In contrast, the third
method employs the SPOT-2 satellite, which is in a similar orbit to ERS-1 but
does not suffer from the sparse and geographically biased tracking which troubles
ERS-1.

In order to allow these methods to be developed, the main body of the thesis
begins in Chapter 2 with a description of the orbit determination model employed
at ASTON. It must be recognised that this model is continually undergoing minor
alterations, as subroutines are updated and the modifications required by each new
satellites are included. However, the overall technique does not change and the
model employed remains basically the same.

Having elaborated upon the existing model, the first refinement method is
described and tested in Chapters 3 and 4 respectively. The former contains the
theory which elaborates the necessary equations for the forces due to both atmo-
spheric resistance and direct solar pressure. Further, it includes a full description

of the method of determining satellite area tables which may be used to com-
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pute the surface areas required by these equations. This theory is then used to
produce the GUESS software which is used for generating the tables required by
the amended orbital determination routine. Chapter 4 begins by applying this
software to ERS-1 and then continues with a description of the modifications to
the orbital package necessary to employ the GUESS tables. The latter hall of
the chapter then considers several long-arc orbits, comparing the results obtained
between the original and modified approaches.

The second refinement technique is described in Chapter 5, along with the
results of its application to ERS-1 and TOPEX/Poseidon. However, since the
latter satellite had not been launched at the time of the study, simulated data
is employed throughout. Two orbital ephemeris are determined, one for ERS-1
and one for TOPEX/Poseidon, from which the height differences are computed at
points where the two ground-tracks intersect. Two such simulated sets are used
— one representing the observation data (which would be derived from actual
altimeter measurements) and the other the calculated values (as obtained from the
orbital model). The differences between these are then considered as a measure
of the radial error in the two orbits. Whence, by writing the radial error as a
harmonic expansion, it is possible to solve for the harmonic coefficients. These
in turn allow for correction terms to be determined for both satellites at specific
times. By adding such terms to the orbit of the relevant satellite, a refined or
corrected orbit may be obtained. Where, as in this case, the orbit of the additional
satellite 1s much superior to that of ERS-1, it is hoped that the orbital accuracy
of the worse orbit may be improved to the order of the better one.

The third and final method is covered in Chapter 7. However, prior to this,
Chapter 6 first describes both SPOT-2 and its tracking system, together with the
modifications required to determine orbits for this satellite. In addition, this chap-
ter contains the results of running the GUESS software to produce area tables for
SPOT-2 as well as the results of converging several orbits both with and without
these tables. Chapter 7 continues by developing the method of determining along-
track acceleration corrections from SPOT-2, following an idea of Ridgway et al.

[1990]. Then the method is tested for three long-arcs where data was available for

both ERS-1 and SPOT-2.

Having considered all three approaches and the results obtained, it is then

15




possible to suggest where further development or testing of each method may be
useful. In addition, some overall assessment of just how much each technique
can contribute to improving poor orbits may be made, at least in the case of the

satellite ERS-1.




Chapter 2

Precise Orbit Determination

2.1 Stating the problem and summarizing the

solution

The problem of precise orbit determination is to determine the path of an lsarth
satellite by modelling its motion from estimated parameters, such as initial po-
sition and velocity, and observed data, for instance solar flux and geomagnetic
indices. This chapter outlines the method employed by the SATAN-A suite of
programs, as used at Aston University (SATellite ANalysis at Aston), so that
subsequent developments may be related to it.

First, the force model is outlined, by considering the major forces acting upon
an Farth satellite. Secondly, the correction process is explained, by which an
improved set of model parameters is obtained. This process employs a linear
least squares differentiated correction technique which minimises the residuals to
the tracking data in the correction program ORBCORR of the SATAN-A suite.
Finally, the prediction routine is described. This is contained in the program
ORBPRED which integrates ahead using a Gauss-Jackson numerical integrator
to compute ephemeris and partial derivatives over the span of the arc being deter-
mined. Here, arc means the satellite path over some period of time, with long-are
usually denoting an orbit of several days in length.

[t is important to emphasize that the prediction-correction process deseribed
is an iterative one and that the aim is to imprave on rather than fully determine

the many model parameters involved. Thus the whaole of this thesis is anly parl of




a continuing and evolving process, and not a finished or completed idea in itself.

2.2 The force model

The force model I, used by the prediction program, has six components. Three
of these are gravitational in origin: the attraction of the Barth (['g), variations
in this due to solid and ocean tides (/7 p¢) and attractions of other bodies in the
solar system (Fpg). The other three (known as skin forces [Klinkrad el al, 1990],
arising as they do from surface-particle interactions) are atmospheric resistance
(drag and lift, ), divect solar radiation pressure ([75) and Farth-reflected infra-

red and albedo forces (I7415r). These are modelled as follows.

2.2.1 The earth’s gravitational potential

By far the greatest force acting on a low Farth salellite arises [rom the attraction
due to the Farth’s mass. 1t is known that any two paint masses 1 and M exert,

a mutually attracting force of magnitude

-

_ GmM

32

where 7 is the distance between the masses and G is the universal gravitational
constant. From this, using Newton’s second law, it may be deduced that the mass
m experiences an acceleration of magnitude

G/A

2

a4 =
P

due to the attracting force exerted by the mass M. [qually, the acceleration

vector may be written as a potential @ = VV where

am

7

V

Further, it may be shown that this potential satisfies Laplace’s equation — namely
that V? = 0 — and hence is harmonic.
Now for a non-particular mass, such as that of the Earth, the potential may

be expanded as a triple integral

V= / / / P 2) .
eJydz (2, y, 2) iy d (dl)
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where p(z,y, z) is the density at the point (z,y,z) within the Earth’s mass, a dis-
tance r(,y, z) from the external attracted mass m. Since dM = plx,y, z)de dydz
is also a point mass, the total potential of Equation 2.1 also satisfies Laplace’s
equation.

Because of the physical significance, it is more usual to work in a spherical co-
ordinate system rather than a Cartesian one. In such a system, Laplace’s equation
may be written

a [ ,0V 0 oV % .
v - N I A) §
(/)()(/> 4 cos? ¢ OA? =0 (2:2)

or\' or oS (/‘);)_(E

where ¢ and A are latitude and longitude respectively in a geocentric Barth-fixed
coordinate system and 7 is the separation of the attracted point mass m from the
Farth’s centre (the origin of the system).
A solution to Bquation 2.2 is obtained by assuming that it takes the separahle
form
V = ROYPHAN)
and solving the resulting differential equations independently for R(r), ®(h) and

A(A). Such a process vesults in the following expression for the potential V

V =

(Z > ( > P (sin @) (Cpan cos mA + 57, sinmA) (2.3)

{(=0 m=0
[Kaula, 1966, pp.4-6] where M, is the Earth’s mass and R, its mean radius. The
functions P, are the associated Legendre polynomials and €, and 5, are the
harmonic coefficients which collectively define a given gravity field. This is the
form of V most usually employed in expressing the gravitational force I, on an
Farth satellite,

Lo =mVV.

2.2.2 Solid earth and ocean tides

The Earth is not a rigid hody, rather it is deformed hy the atiractions of ather
masses in the solar system: notably the sun and moon. These cause mavements
in both the solid Farth and in the oceans. Such effects are called tides and these
perturb the underlying gravitational attraction as expressed hy /¢

In the SATAN-A suite, the frequency dependent portion of the salid FBarth

tides is modelled by variations in the harmonic coeflicients O, and &, while
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the frequency independent part is modelled as another potential,

GM; R® 3 . 1
[/TZ = Z - J i;—lxz (E COS‘Z S — ;)

PRI
y4
J=sun, J
moon

where s is the angle subtended by the sun/moon and satellite at the earth’s centre,
Iy the second degree Love number and 7; is the geocentric sun/moon distance
[Lambeck, 1980].

Having deformed the solid Earth, the ocean tides are then determined using
a global circulation model such as that due to Schwiderski [1978]. The full tidal
force, I'pr, is the cumulative total of these three components. Tt is worth staling
that, in addition to their contribution to the force model, lidal deformations
displace the positions of the observation stations for satellite tracking data and
hence must also be accounted for during the correction part of the iterative process.
Finally, for this subsection, we note that the SATAN-A suite currently makes no
allowance for ocean loading (the effect of the oceans’ mass on the solid earth

beneath).

2.2.3 Third body attraction

In addition to the Earth, several other bodies in the solar system are sufficiently
massive to exert a significant gravitational attraction on an Farth satellite. How-
ever, unlike the Earth, such bodies are considered only as point masses due to
the distances involved. Other satellite groups such as GSFC/NASA and Texas
University are attempting to determine a low degree harmonic expansion for the
gravitational attraction of the moon and future adaptations of the SATAN-A suite
may also see such changes, together with the inclusion of tidal perturbations, for
this and other bodies. However, at present, the accuracy of the force maodel does
not appear to wholly justify such an elaboration.

The bodies currently included as perturbing point masses are the sun and moon
and the four planets: Venus, Mars, Jupiter and Saturn. Each of these is taken in
turn and, together with the satellite and the Earth, is considered in the manner of
the classic three-body problem [Brouwer and Clemence, 1961, pp.249-251]. The
force of such a body on the satellite may be computed as follows.

Let @, z, and z; be the position vectors of satellite, Rarth and third hady

respectively in some inertial reference frame (see Section 2.4 helow), as iilustrated
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in Figure 2.1, so that Newton’s laws of motion may be applied. Then the resultant

earth

2 {hird boc ly

satellite

Figure 2.1: The three body system.

satellite acceleration due to all forces arising from point mass atiractions in this

systein 18

_): — GI (MF(.LE ~I) _1_ M](_EJ - 3:)) (24)

2. — x| |lz; — x|
where M; is the mass of the third body, all other variables being already defined.
This acceleration is converted to the geocentric frame by considering the geocentric

satellite position vector, z — z, so that the acceleration in this frame is  — IZ,.

Given an expression for Z, similar to Equation 2.4 the desired acceleration becomes

i = G, +n)( ) (z; —z.) = (z — z.) (:_rf;rm))

- ‘_ - TP |(-':J _Qe) - (:‘1 - ie)lg !J‘_J - ze[a

the first part of which is already accounted by the Cyo term in the harmonic

T -

v am,

expansion of the gravitational potential (Equation 2.3). Thus the required third

body force is

F/B-GZM (l((ﬂ“ —z)—(z-z) (g — ) )

z;—x) = (z—-z) |z )P

where the sum over j is taken over the six bodies listed above.

2.2.4 Atmospheric drag and lift

All Earth satellites moving within the atmosphere experience a force due o the
surface impingement of charged and uncharged particles. This force ia predami-

nantly retarding (drag), acting contrary to the velacity of the satellite relative (o




the atmosphere (v,). However, there is also a component perpendicular to this
(lift) which produces effects in the radial and across track divections.

Before this study, the SATAN-A suite of programs had assumed that the lift
force was negligible, modelling the drag force as a function of atmospheric density

(p) and effective area of the satellite perpendicular to the direction of travel (Ap):

|
Iy= _;{JCDAD'UTQ,.

—_
S
i

—

where v, = |v,| and Cp is a drag (or ballistic) coeflicient which varies with the

[Cook,

surface characteristics of the satellite and the atmosphere’s constituents
1965]. The minus sign indicates that the force opposes the divection of Lravel.
Because of the lack of detailed knowledge of the atmosphere [Ries, 1992] it
is usual to solve for C'p either as a linear function of time (drag and drag-rate)
or a number of parameters forming a step unction over time (as illustrated in
Figure 2.2). A third method, solving for the points of a “saw-tooth” lunetion, is
developed and detailed later in this chapter (see Section 2.5). Much of this (hesis
is centred around ways of avoiding or avercoming this deficiency in knowledge
about the atmosphere, such as using a different force model for drag (see Chap-
ters 3 and 4) or transferring information from a second satellite (as attempted in

Chapters 5 to 7).

2.2.5 Direct solar radiation pressure

The flux emitted by the sun, diminishing (in accordance with the inverse square
law) with increasing distance from its source, gives rise to two skin forces. The
first of these is due to the flux which arrives at the satellite directly from the sun,
known as direct solar radiation pressure.

In addition to the distance factor, this force depends on the relative positions
of the satellite with respect to the Earth’s shadow, and the surface area and
shape as viewed from the sun. To allow for the Barth’s shadow, a variahle »
(the shadow factor) is used, ranging from zerc in the Farth’s umbra to one in fifll
sunlight. The intervening penumbral region is computed for a spherical Barth of
some mean polar radivs. In this area the shadow factar varies smoothly hetwesn

the two extremes.

[
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Given these considerations, the direct solar radiation pressure is modelled as

Fp=-vPCrApe, (2.6)

where P is the solar flux per unit area at the satellite, Ap is the effective satellite
surface area perpendicular to some unit satellite-to-sun vector e, and Cy is Lthe
radiation coeflicient, allowing for the interactions between photons and satellite

=

surface [Aksnes, 1976]. Again, as with the drag force of Equation 2.5, the minus

sign indicates that the force acts in an opposite direction to the vector g,

2.2.6 Farth reflected albedo and infra-red forces

The sixth and final force, modelled in the prediction program (and the secand of
the two forces arising from solar flux) arises from the energy re-emitted (infra-red)
or reflected (albedo) by the Farth.

The infra-red component is always present — even for a satellite in the nmbra
of the Farth — but the albedo force comes only from those regions of the BRarth
which are visible from both sun and satellite al the same instant. [Bffectively
(for a spherical Earth), this implies regions of the Barth visible from the satellite
when the satellite is also visible from the sun. As with the direct solar radiation
pressure force, F'p, a shadow function smooths the albedo contribution in an
idealised penumbral region.

In order to model these forces, the surface of the Earth visible from the satel-
lite 1s divided into a number of areas which are equal when projected into a
plane perpendicular to the geocentric satellite position vector along a line par-
allel to this vector. There are thirteen such areas in the current version of the
SATAN-A package.

If the area of any one such is denoted dA; then the force arising from this
region is

cos nf/h,) dA;

dF; = = (1CRP cos 0 + Pri)

where O and P are as above (Section 2.2.5, Equalion 2.6), v is the alheda aof
the surface element i — incorporating the shadow factar v — and Py is the
emitted infra-red radiation, interpolated {rom tables [Vonder Haar and Suomi,

1971]. Further, 8 is the angle hetween the surface normal and the gencentiic

position of the sun, o that hetween the same normal and the satellite geocentrie
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position vector, Ar the area of the satellite perpendicular to a satellite-to-earth
unit vector e; and d the distance between satellite and earth surface-element.
The sum of these elemental forces provides the total force due to indirect solar
radiation,

13

Lapip = Zﬂz

=1

completing the force model as currently used by the prediction program.

2.3 Least squares minimisation

As has been indicated, the precise orbit determination routine, as embodied by Lhe
SATAN-A package, works by iterating a prediction-correction process. In order
to see the values that the predicting program must produce, it is lirst necessary
to consider what the correcting program requires,

The correction program ORBCORR, developed from ane written hy Andrew
Sinclair and Graham Appleby of the Royal Greenwich Ohservatory (RGO) [Sin-
clair and Appleby, 1986], centres around a least squares minimisation by which
the force model parameters of the previous section can he modilied to produee an
orbital ephemeris more closely matching the observed data. The basic concept is
the minimisation of the weighted square residuals,

Z w; (()1 - Cl‘)Z (27)
-
where w; are the weights and C; are the computed values corresponding to the
observations O; at times ¢;. Thus, the sum is taken over all observations, 1.

We suppose that an orbit may be modelled using a set of true parameters
P* = {pr:p. € P}. In practice these values are not precisely known, hut are
related to an equivalent set of best approximations, P say, where 2 = PY+ AP
Given such a relationship, it may be possible to determine a solution set closer to
the true values than Y, provided AP can he calenlated sufficiently accurately.

Let, C = C; (£7), since the computed values are ideally produced from the
true parameters. Then Bquation 2.7 may he minimised in the usual way hy
differentiating with respect to each model parameter and setting all the resulting
equations identically to zero:

. , BN e L T . N
1 ; (); — (—"i ],J* — = /11, € ,Ji Vpoe
}ﬂw( (7)) i, 0 Vi e [ (4.8)
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The partial derivatives are computed with respect to the variables pp € P, of

which P* and P° are subsets evaluated at fixed values of the py’s. Both 7 (£F)

and —.7-59—(} (£*) must be expanded in terms of P and AP, since P* is not known
Apy — —

and we wish to determine AP, Such an expansion may be achieved using Taylor’s

series, thus:

W) = G20+ AP
o
= i (P°) + d‘z}%—l AP+ O (AP?)

DO PY) oC; (2 +AP)

Opj. Oy

o (B o fdoi(P) s
i, i Dy qP AP O (A(;f)

where terms in AP? and above are multi-dimensional matiices. Linearising the
problem, to avoid dealing with such matrices, results in the [ollowing expressions
Y py v ( po\
Co(l) = G (2%) + AL

gc,(Pry  OC: (£°)

: ~ 2.9
Opy Opye (2.9)

This linearisation also means that a solution to AP may not lead to an exact

value of P and is therefore the reason for the iteration of the two programs
which ideally produces diminishing corrections, AP, so converging on a value as
close to P* as is possible.

By substituting Equation 2.9 into Equation 2.8, neglecting the higher order
terms and assuming equality, we obtain

dC:: ( _fgﬂ)

Zwl— O, — (ﬁ“) Sl 2} ﬂ@

Iy,

AP = () Vp, € P

which must be solved if AP is to be calculated. This system of equations may he

expressed more succinctly in matrix form,

where N = (1) is composed of elements

e () e ()
ik = zﬁ (9}33‘ f)’]));

1

P
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and each element (row) of the column vector b is defined to be

oc; (P°)

by = Ewi (O,' — <£O>> "(—)P“—“_
. i

1

Thus, each b, is a sum of the products of the weighted residuals, w; (O; — (%) and

the partial derivatives 57 C; (ﬂ )
ap,

These equations are known as the normal equations and, by construction,
N is a symmetric positive definite matrix [Sernesi, 1993, p.236] and is therefore
invertible — provided that the model is not over-parameterised; that is there are
no linear dependencies in the row space of N [Chatfield and Collins, 1986, p.16].
So a set of parameter corrections may be determined {rom

AP =N")

and these being added onto the prior set 2, a new hest estimate is produced, {rom
which the whole process may be repeated, heginning again with the prediction

program

i T 503 . . & 7 {} ) [
In order to produce the values of (; (jj') and ;:T‘,f(’i’i ([’ ) e correction ronbine

uses values of w(4), £(4) and, z /7( ) for each ohservation time . Thas, Lhese
variables are the required output of the correction routine. Here x(l;) 1s the
satellite position, Z(t;) its velocity and %1(/,) the partial derivatives of z(t;)
with respect to all the model parameters for which a solution is to be sought. It is
emphasized that the partial derivatives calculated in the prediction stage are for
the force model parameters only. Further, it is possible (and desirable in terms of
saved processing time) not to produce partial derivatives of those parameters for
which a solution is not required.

The correction program determines the required terms for the least squares
minimisation, C; (_f_)()) and 5—C; (/’”)s as follows. Taking each data type sepa-
rately, first O, is obtained by rea,ding the data and, where necessary, adding on
any corrections. The aim is to produce a value which corresponds (in the man-
ner in which it has been obtained) to its computed equivalent. For example, an
observed laser range will be affected by the troposphere. However, the caleulated
range will not show this effect, so the observed range is corrected ta remave Lhe
effect by adding a value stared in the same observation vecord in the data files.
These correction values are computed from models, from metearalogical data, or

measured directly by satellite or station at the ohservation time.
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The calculated value is evaluated from the satellite ephemeris: position and
velocity vectors. In the case of laser data, altimetry and crossovers, the partial
derivatives of the calculated value, required to form the normal equations, are
computed from

= = = el : e 2.10
Opi dx Op,  Ox JIpy, + Ay Opy. T Dz Opy ( )

the values of i (71 beinﬂ; (fif‘ltﬁ}'ﬂ]il](%(l from th(". values of ()z Their (7(')'[]]}NH;H.‘:iOH 1‘1
dx <
Bl

dependent upon the data type. Thus, for example, il the data type is laser range

data, then the value of C; is a range measurement, p say. This may be written
2 N2 (a2 2
pt = (=) (v =)+ (2= =)
where & = (&, ¥, z) and 2, = (@, ys, 2) are the satellite position vector and sta-

tion coordinate vector respectively. Then the partial derivatives of this calenlated

range are of the form

A _dp _ [y 00 _ 180 _am
de dw 2p Jp(i)"?f ; 2p O - f

with similar results for y and z:

respectively; thus determining ==C;. Combining this value, using Iquation 2.10,

Bl
al

with the partial derivatives ﬁg, output by the ORBPRIED program, provides the
full required partial derivative. Both the computation of 7%,(_71- and the combination
of this with the partial derivatives from the ORBPRED routine are carried out
within the ORBCORR program. In contrast, where the parameter p, is nol one
of those in the force model of Section 2.2, the entire partial derivative is computed
within the ORBCORR program: for example, where a sclution is sought to one
or more laser station coordinates, or to the pole position. Having produced the
required components for the matrix N and vector b, the matrix inversion process
— currently a technique due to Choleski is employed [Burden and Faires, 1989,

p.370] — produces the correction vector as described above.

2.4 Integrating the force model

he computation of the satellite ephemeris, z(1;) and E(4), and partial derivatives,

o

aprkti), required by the correction program, ORBCORR of Section 2.3, & carried




out in ORBPRED, using some prior set of model parameters, PP, and the force
model F of Section 2.2.

The prior set of parameters consists of an initial state vector (z(0), £(0)), drag
and radiation coefficients (Cp., Cr) gravity field coeflicients (C,, Si) and all
other model variables. In practice it is not usual to solve for the harmonic coef-
ficients (), and S),, over a single arc since solutions to these generally require
more data to be meaningful. Thus, these coeflicients are more often taken to
be known fixed values. In addition to the prior parameter set (1) the predic-
tion program requires various auxiliary data such as planetary positions (for the
third body force, 'y g), solar flux and geomagnetic data (for atmospheric density
models) and fluctuations in time and polar positions (for converting to an inertial
reference frame). Further, it requires that the user specify which of various madels
should be used (for tides, density ete.) and exactly what output (ground-tracks,
projected state vectors ete.) is desired. Finally, as its main input, the predie-
tion program takes a file of dates at which the ephemeris and ])fi.i“f,ia.l derivatives
are to be computed. These dates must all be in chranolagical order in the same
time-scale.

In order to employ the force model in a Newtonian fashion, all computations

must be carried out in an inertial frame of reference. That is a coordinate system

fixed in both time and space, and uniformly varying coordinates for position and
time. In order to facilitate this, various timescales are next considered and a

uniformly continuous one is chosen. Following this, the spatial frame of reference
that will be used is also defined.

Within the observation data, allowance is made for several timescales ta he
used, but all are variations of universal time (UT) and international atomic time
(TAT). The former is measured from Greenwich mean sidereal time (GMST) and
hence is based upon diurnal stellar motions [Astronomical Almanac, 1987). Con
sequently it is not uniformly continuous due to variations in the Barth’s rotation
rate and axial position. Conversely, TAl is measured in multiples of the atomie
51 (Systeme Internationale) second from a base date an January the 1%V in 1972,
hence is uniformly continuous

UT is further subdivided into UT0, based on lacation and UTT which s

heen corrected for polar-meridian mations and therefore is ahserver independeont,
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though still non-uniform. There is also UTC which differs from UT by at most
0.9 seconds SI and is an integer number of seconds SI different from TAIL This
relationship is maintained by introducing leap seconds (finite discontinuities) in
UTC, usually at the end of December and or June [Astronomical Almanac, 1987},
To produce a uniformly varying timescale with the minimum adjustment, all ob-
servation times are corrected to what is termed ATC. This differs from TAT by a
fixed number of seconds SI and is equal to UTC at the start time of the long arc
being determined.

The inertial reference frame currently in widespread use among the precise
orbit determination community is J2000 which is defined as follows. The Z-axis
is the mean IBarth pole, normal to the equatorial plane while the X-axis points Lo
the vernal equinox (ﬁi‘sl, point in Aries). The time al which these axes are lixed
is Julian Date (JD) 2451545.0 which is noon on the % January 2000 A.D. All
ntegration within the prediction program takes place in this system, though twa
other systems are also used in the computalion process. These are the Earlh fixed
system (with coordinates: latitude, Tongitude and radial distance) and the frame-
of-date system (as for J2000, but fixed al the time ol observation/camputation,
rather than in 2000 A.D.). Clearly the latter one is also inertial for any given
date, but is different for each date considered.

Rotation between these systems is effected by matrix multiplication where the
matrices are determined each time the observation (or computation) date alters.
Briefly, movement between the inertial frames is due to precession and nutation
— the time varying effects of the sun and moon which cause irregularities in the
Earth’s rotation and polar position. On the other hand, movement hetween the
arth-fixed and frame-of-date systems arises from the time of day involved and
also from variations in polar motion.

Having decided upon an inertial reference frame and devised a way in which
to convert to and from it, it is possible to employ Newton’s laws to integrate the
force model

E=Fa(t),&(0), 2, 1)

thus obtaining the satellite velocity,

L Lot N
_f;(/) - E(i(“’)s:’i("")v_i_l_a ") d“’f

T Jig

Do
o




and position,
t
s(t) = [ i(s)ds.
Jta

The partial derivatives are found similarly:

M:/[t i/> 0 Fla(u),&(u), Pyu)du | ds.

Opy. o\ Jig Opr—

In practice, since I7 is not defined analytically but only at a series of points, a
numerical integration technique is used. That currently employed is an eighth
order Gauss-Jackson integrator which predicts one step ahead from the previous
eight steps. In order to start this off at the beginning of the are the first eight

steps must be produced in some other manner. To this end a procedire based
upon difference approximations is used, iterating until the values converge. The
prediction program works by integrating every ‘0’ seconds (where ‘07 takes a value

determined by the user). After each new point has heen found, the observation

dates are considered and the values ol &(4;), 2(4;) anc Q;AJ_([t) are interpalated
at such dates as fall in the central interval of the current eight points. When all

dates and all steps have been considered the prograni terminales,

2.5 Saw-tooth drag modifications

Before proceeding with the main body of the thesis which focuses on three at-
tempts to 1mprove long-arc orbit determination, the basic suite described above
underwent two major modifications. The first of these, already mentioned in Sec-
tion 2.2.4 above, is the implementation of a saw-tooth option for the drag scale
factors, C'p,. It is important to note that throughout this thesis “saw-tooth” refers
Lo the pattern of drag scale factors here described and nol to the discontinuous
waveform referred to as saw-tooth by physicists, engineers, applied mathemati-
cians and their ilk.

As has already been indicated in Section 2.2.4, there were two existing ap-
proaches to solving for drag scale factors in the SATAN-A suite at the start of
this study. A comparison of the two, carried out by Rothwell [1989], indicated
that although solving for just two parameters, namely an initial valne and a rabe
of change, pravided a continuous Cp, a solution invelving multiple factors in ihe

form of a step function (see Figure 2.2) pravided hetter orhits. Here hetler IMEATH
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Figure 2.2: An example of the step function for drag scale factars aver the period
£ I ] £

MJD 48687 ta MJD 48692.

being possessed of a lower RMS value without being distorted towards any par-
ticular geographical region. The RMS, or Root Mean Square, is defined as the
square root of the mean of the squared differences between observed data and

calculated equivalents:

n

w () — ()2
Zwigw,((), )

and is a statistical measure of how well the model fits the data (the sample variance
estimate). A lower RMS is generally associated with a better fit — this does
not always imply a better model. Initial studies which employed multiple drag
scale factors in the step function form, for instance Seasat studies [Rothwell,
1989], solved for Cp values on a daily basis. However, by 1992 the frequency had
increased to as many as eight a day, for instance for the French satellite SPOT-2
[Nouél et al, 1991]. Such a practice leads Lo increasing correlations hetweern
solution parameters, calling into question the quality, or indeed reality, of the
solution. Indeed, where correlations reach a value of ane, linear dependencies
between solution parameters may exist: potentially making the matrix N non-

invertible [Chatfield and Collins, 1986]. Thus, it is nat generally sufficient 1o yse

L)
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the RMS alone as a measure of the absolute quality of the solution, though it may

be able to give indications of a relative improvement.

Early during the work for this thesis, several attempts were made to solve
for continuous drag scale factors in the form of a simple polynomial function,
or as some sinusoidally varying curve. Such attempts proved unsuccessful, since
the resultant RMS values were no better than those obtained using a daily step

function, even when the order of the polynomial was greater than the length of
the arc in days. This failure was traced to the prevalence of negative scale factors
al both ends of the most of the long-arcs tested. The physical significance of these
negative values is that the atmosphere is actually accelerating the satellite in its
direction of motion; clearly an unrealistic event. It was found that the problem

arose because ol the lack of constraints on the curve al either end of the long-are,

there being no data outside the arc to fix the drag scale {actors.

With the need to improve drag modelling, via concepts embaodied later in
this thesis (see Chapters 3 and 7), it became essential to prodiee some farm of
continuous (though not necessarily smooth) model for Cp. The obvious methad,
given the fatlure of an explicitly continuous analytic form, was to use several scale
factors and rates of change which were connected to each other. This resulted in
the saw-tooth regime illustrated in Iigure 2.3. In contrast to the previous failures,
this attempt to model the drag scale factors with a continuous function was found
to work af least as well as the step function approach. The SATAN-A suite was

therefore modified as follows.

First, the initial solution set, P°, was altered by removing all references to a
drag-rate. Then an additional drag scale factor was included at the start epach,
lo = 0, and the ORBPRED and ORBCORR programs were amended to read
this modified parameter set. A major distinction between step and saw-toath
approaches is the difference in which the programs interpret the time values asso-
ciated with each scale factor. Tn the former, the associated time value dictates the
end of the period of validity of the scale factor (the Leginning heing given hy the
expiration of the previous such factor). Conversely, with the saw-tooth technique,
the associated time value is actually the time at which the fixed value pertaing,

since between any two successive associated Lime values, 1; and Lipr say, the drag
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Figure 2.3: The saw-tooth approach to computing drag scale factors over the

period MJD 48464.8 to MJD 48470.8.

scale factor Cp(t) is given by

t— 1 . . .
CD(t) = CD, + <—'-> (C’DHL: — C/D') Vice {t,', If,‘+]). (ZH)
Livy — ti
The necessary partial derivatives, a(?'D—F> are computed [rom Equation 2.11 within

the arbital prediction program, just as was effected before this alteration. How-
ever, for each computation time ¢ there are now fwo partial derivatives, made
with respect to each of the two Cp, values on either side of this time. Since the
only occurrence of C'p within the force /7 acting on the satellite is in the compo-
nent due to atmospheric resistance, ', the required derivatives are obtained by

differentiating Equation 2.5 where ('p is defined by Equation 2.11. Thus,

oF I (i —
ac, — af (ET:7,> Apvrv,
and
or ! L1
9o, " Y (Z{] = t,~> Apvru,

are the required partial derivatives with respect to the two drag scale factors. The

only other changes required by ORRPRED and ORBCORR involved ensuring
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that the indices of these scale factors and their associated time values matched

and that references to them allowed for the removal of the drag-rate parameter.

2.6 Station coordinates

The second major change made to the SATAN-A suite of programs involved the
station coordinates used to determine laser range measurements within the orbital
correction program (ORBCORR). This alteration was necessitated by the increas-
ing accuracy in the predicted orbits. Prior to this study, a single file of station
coordinates had been used for periods of hall a year or more, as for instance in
the case of Seasat [Rothwell, 1989]. However, solutions to stalion coordinales are
sought at regular intervals by various groups (sich as the RGO, NASA ele.) nsing
data sets which include information from higher altitude satellites such as Lageas
(orbiting atb an altitude of more than 6000 ki) which are negligibly affected hy
atmospheric resistance.

Station coordinate solutions are made up ol twa vectors, namely the earth-
fixed location of the monument (or marker) position and a correction for the
displacement between this and the actual point of the laser beam’s beginning (or
radar antenna location for DORIS doppler data). The latter may be measured
locally and values are computed regularly, stored centrally for all types of stations
(not just laser sites) and made available to users around the globe. These values
are then included in the periodic solutions made from observation data, so that
monument solutions may be calculated. The monument solutions will vary due to
[farth deformations and crustal motion. The former are allowed for by computing
the effect of Earth tides due to sun and moon in both the prediction and correction
programs. Crustal motion was hitherto not allowed for, so that arcs heginning
at different epochs were converged with respect to a single fixed set of station
coordinates. 1t is this shortcoming that this modification seeks to address.

[t may be possible that levels of accuracy attained in orhital predictions may
eventually necessitate station coordinates heing computed within the prediction
and correction programs themselves, However, comparing the magnitudes af eip-
rent accuracies in orbit predictions with those of actual crustal motions siggesis

that it is satisfactory to praduce a set of stalion coordinates carrect Lo an apprax-
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imate central date of whichever long-arc is being converged. This should mean
that the errors with respect to the station coordinates are at a minimum at this
central point and increase towards either end of the arc.

Thus, a program was written which took a set of monument solutions pertinent
to the given period (i.e lying before and as close as possible to the start epoch
of a given arc), the correction vector file and a file of station velocities (again
produced by groups such as NASA and RGO and collated centrally). This enables
the station positions to be computed from the relevant monument-correction pair
and then adjusted to a value at the central date of the are, by including a veloeity

term under the assumption that
x(t) = 2(0) 4w

(where v is the stored velocity vector). Further, since this routine is run before
the orbit prediction and correction programs, no maodifications to Lhe latter were

required.
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Chapter 3

Surface Force Modelling

3.1 FErrors in modelled surface-forces

In long-arc precise orbit determination for low Earth satellites, such as [ERS-1,
large errors may occur as a result of mismodelling of hoth the direct solar radiation
pressure and aerodynamic resistance forces. [t has been suggesied by, among
others, Klinkrad ef al. [1990] that any improvements in the gravity field will he
severely restricted in terms of their usefulness — assuming that the determination
of such improvements is not directly impeded — until a similar level of accuracy is
attained in these and other non-gravitational forces. It is further recognised that
despite the sophistication of recent thermospheric models, such as MSIS83 [Hedin,
1983], MSIS86 [Hedin, 1987] and DTM [Barlier et al., 1977], which consider the
number densities of individual atmospheric constituents, little overall progress
appears to have been made in modelling the neutral air density [Renard 1990;
Ridgway et al., 1990; Ries, 1992]. Indeed the simpler Jacchia 71 model [Jacchia,
1972], based primarily on satellite drag data, is considered to be the equal of the
more sophisticated MSIS83 model in most orbit determinations.

Since thermospheric models may produce atmospheric densities which are in
error by as much as 50% to 100%, it is not possible to circumvent this weakness
in these skin forces [Klinkrad et al, 1990] totally. However, the area component
of these and other skin forces may be improved by considering particle-sirface
interactions for the respective incident fluxes [Herrero, 1985; Marshall ef al., 1061,
Maore and Sowter, 1891]. This chapter will focus an the two skin-forces which

are of greatest magnitude, namely aerodynamic resistance (combining hoth the
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drag and lift forces of Section 2.2.4) and direct solar radiation pressure [Klinkrad
et al., 1990, p.2].

Frrors in the aerodynamic resistance force arise from uncertainties in the at-
mospheric density, the area perpendicular to the relative velocity of the satellite
(p and Ap respectively in Equation 2.5 of Section 2.2.4) and the characteristic
behaviour of the atmospheric particles incident on the satellite’s surfaces. Most,
methods currently used to circumvent such uncertainties work by introducing ad-
ditional solution parameters into the force model of Chapter 2. For example,
multiple drag coefficients, Cp, over specified time intervals improve the orbital fit
by reducing the sum of squares of the residuals. However, employed in excessive
numbers, such parameters lose any physical significance by absorbing errors in
density, effective area, and other along-track forces (such as gravity field effects
and solar-radiation pressure) [Rothwell, 1989]. Similarly, errors in the force due
to direct solar radiation pressure arise predominantly from inaccuracies in hoth
the visible area perpendicular to the sun-satellite vector and in the reflectivity
conditions which translate into uncertainties in the product CgAg.

An attempt is made here to model surface areas, and hence skin forces, so that
the derived scale factors Cp will be multiplicative constants for air density alone.
This will only be perfectly achieved if the surface area and interaction coefficients
can be modelled exactly. However, it may be approximated if the areas can be
determined sufficiently accurately. The approach adopted here considers individ-
ual flux units and computes forces from the corresponding differences between
incident and post-impact momentum where the surface interactions are described
along probabilistic lines. The aim is to develop a series of force or area tables
which may then be accessed from the prediction program (which will interpolate
betwen tabulated values), rather than computing the forces directly at every step
of the numerical integration process.

In this chapter the relevant momentum-exchange equations which are to re-
place the previous equations of Section 2.2 are elaborated. Then the theory re-
quired to determine the surface areas for use in these equations is described. -
nally, a brief test of the resulting software is made; further validation of the area
tables and momentum exchange equations being made using several lang-arcs of

the satellites ERS-1 and SPOT-2 in the Chapters 4 and 6 respectively.
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3.2 Surface forces considered in terms of the mo-
mentum exchanged

Satellite skin forces, such as direct solar radiation pressure and atmospheric resis-
tance, may be computed by relating the force to the opposing change in momen-
tum effected by that force. Thus, considering the total force on the satellite as a

result of the sum of momentum changes in all incident flux units, we have

= Z (1w — mau)

incident

flux units
where u and v are the incident and post-impact flux velocities respectively, mea-
sured relative to the satellite; and 0 is the mass of one unit of flux. Assuming
that the flux forms a parallel beam which is not allected by reflected nnits and
that only the first impact of each flux unit need be considered; then the number
ol incident units is proportional to the visible surlace area, A4, and the previons

equation becomes

=k Z A (mu — mp)

visible

suifaces
where the constant of proportionality, £, relates the force to the density of the
incident flow. Given these assumptions, each of the two main skin forces may be

considered in turn.

3.2.1 Direct solar radiation pressure

For any Earth satellite, the assumption that direct solar radiation forms a parallel
flux is immediately jl.lsi;iﬁed by the distance between sun and satellite. The other
main assumption, that only the first impact need be considered, is imposed on the
grounds that inaccuracies in the geometric model of the satellite and uncertainties
in the surface-particle interactions outweigh any potential increase in accuracy
arising from the inclusion of multiple impacts. This justification is employed for
both direct solar radiation pressure and aerodynamic resistance forces.
Now, let Ly be the flux at the Earth’s surface, then the flux emitted fram

the sun is roughly Fod?, | reversing the inverse square law; dy. heing the mean

sun-earth distance. Whence, the flux incident an the satellite is

]4(3(]
11‘3
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where d,, is the sun-satellite distance. This equation is a measure of the absolute
energy of the incident photons, whence the magnitude of the incident momenium

per unit area may be written (for speed of light ¢},

72
Eod:,

d:c’
Now, radiation striking a satellite surface may be absorbed, reflected or transmit-
ted with probabilities a, r and ¢ respectively. Reflection and transmission may
be further separated into specular and diffuse cases providing probabilities 7y, 1,,
rq and 4. These probabilities measure the proportions of flux reacting in a given
way and satisfy

a+7rst+rgtts g =1 (3.1)

where the values of these coeflicients are specific to a given surface, or part surface,
of a satellite.
Next, suppose that the flux has incident direction d, subtending an angle

i

with a given surface normal n, as illustrated in Figure 3.1. Then the total incident

surface normal

|3

post-impact direction incident direction

surface

a, n and d unit vectors
Figure 3.1: Incident and post-impact solar flux on a plane surface.

momentum per unit area is




and the post-impact value may be computed by taking each surface-reaction in
turn.

For absorption the post-impact velocity is zero, whilst for direct transmis-
sion the velocity is unaltered. For the proportion rg, the tangential component
of momentum is unchanged while the normal component is reversed and, from
Figure 3.1, 8, = 6;. Thus, comparing normal and tangential components for this

proportion, the post-impact direction, a, satislies

a-n = —d-n

and a—(a-n)n = d—(d-n)n

whence

o = d=2(d-n)n
= d+ (2cost;)n

nd the post-impact momentum arising (rom the specularly rellected proportion

]()4/
—2Ep, (d+ 2costin).
lﬁsc
FFor the proportion 74, a completely diffuse reaction is assumed, in the sense that
the reflected photons are distributed with a conical beam, centred on the surface
normal, of hall angle /2. The resultant tangential component ol post-impact mo-

mentum is zero by symmetry, while the normal component is given by [Schamberg,

1959, pp.64-67],

]_'70(]3{ 2’/‘(1/
Finally, for diffusely transmitted solar flux the same assumptions are made as
for the diffusely reflected proportion. Thus, since the post-impact direction is
opposite to that of this last case, the same result ohtains but with v, replaced by
—14.

Differencing the sum of these post-impact momenta {ram the incident value,
yields a total flux momentum change per unit area of a given satellite surface. Ta
obtain the momentum change over the whole surface, this expression is simply
multiplied by the visible plane area perpendicular to the incident flow, Ay cos ;.

Thus, by the arguments at the beginning of Section 1.2, the farce an a given
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surface of a satellite, due to direct solar radiation pressure, can be written as

Eod®. - T4 — 1
Ep= 25 Ascos, (0-t-r)d-2 (7‘5 cos 0; + <————“‘ . “)) y_) (32

3.2.2 Free molecular aerodynamics

Analogously to direct solar radiation pressure, derivation of the aerodynamic force
on a satellite may be made from consideration of the incident and post-impact
momenta of the atmospheric flux particles. Consider a single uncharged particle
moving with an average velocity u relative to the satellite. Let this velocity
subtend an angle 8; with some given surface normal, n. Further, assume a post-
impact velocity v subtending an angle 0, with the same normal, as in Figure 3.2,

The resulting force on the satellite, due to this single incident particle, may he
) g | ; )

n, normal t, Langent

plane surface

n and { unit vectors
Figure 3.2: Force from a single acrodynamic particle on a flat plate.

written in terms of its normal and tangential components of momentum (p and
7), or equivalently (in the manner of Section 3.2), in terms of momentum change

where the particle has a mass m, thus:

i

—pn+ 7l

= — (mp— muy). (1.3)
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The values of the momentum components may then be found from scalar products,

p = (mu—mu)-n = m(vcosh +ucosb) = p+pi

7 = —(mp—mu)-t = m(usinb;—vsind,) = T -7

where the subscripts ; and , denote incident and reflected (or post-impact) re-
spectively.

To compute the incident monientum on a given surface, it is first necessary
to find the number of particles striking a unit surface in a unit time. With u
defined as above, let w be the velocity vector of a particular particle, relative Lo
the satellite. Then the number of particles, dN, moving al velocities between w
and w + dw is given by

dN = f(w) dwgdw,dw, (1.4)

for w in some Cartesian coordinate system with components wg, w, and w,. The

function, f{w), given by Schidlovskiy [1967] for conditions of free-malecular flow,

WRTN ™2 [ —|w— uf? L
f(gu_) =T (7) eXp (*‘Q‘ﬁ*]}g‘“) (‘LJ)

where n is the number density of the rarefied gas (in this case the atmosphere),

is

R the specific gas constant, T the absolute temperature and M the gas’s mean

molecular mass.

, normal
flat plate

n and { unit vecitors

i, tangent

Figure 3.3: The incident velocity u and the Cartesian system for the particular

velocity w.

e
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Let the Cartesian system for w be chosen so that the vector u lies in the XY-
plane (as in Figure 3.3) making an angle 8; with the surface normal n (which lies

along the negative X-axis). Then Equation 3.5 becomes

o RTN ~3/? — (wy — ucos Hi)2 — (wy + usin 01‘)2 — w? o
) exp —— (3.6)
M 2RT /M

flw) =n
where u = |u|. From Equations 3.4 and 3.6 it follows that the number of particles
striking a unit area i unit time 1s

/ w, f () dw
wiwg >0

where the restriction on the integral arises from the fact that w, must be positive
in order for the particle to collide with the surface at all. Hence the mcident
momentum may be expressed in terms of the normal and tangential momentum

coefficients, by

I / Wy (Mmw,) f(w) dw
twy >0

ro= () f(@) de
wiwz >0
Evaluating these integrals yields the following [Schaaf and Chambré, 1958, p.701]

pRT 11 (scosb;)
D, =
! M L

(3.7)
pRT X (scosb;)

T, = s5sin 6;

M VT

where the aerodynamic speed ratio, s, is given by

u
J2RT /M

and the functions Il and X are defined by

S =

X(z) = e + /(1 + erf(z))

with the error function

erf(z) =
Just as for direct solar radiation pressure, the proportional coefficients of Equa-
tion 3.1, describing the surface-particle reaction, are used to produce the post-

impact momenta from the incident values of Equation 3.7.
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Taking each proportion in turn, as before, it can be seen that the fraction of
incident particles which is absorbed has a zero post-impact momentum, all its
incident momentum being transferred into an equivalent negative momentum of
the satellite. Conversely, the post-impact momentum of those fractions which
undergo specular reflection or direct transmission give post-impact momentum

coefficients

pr = —rapi
T = TsT
and
Pr = l’sPi
T = 1T

respectively.

Considering the proportion ry which s diffusely reflected, it is again assumed
that this forms a conical beam of half-angle 7/2 centred on the surface normal.
So, as for direct solar radiation pressure, the post-impact tangential component
will be zero (1, = 0). However, the speed of the reflected particles still has to be
determined (whereas photons are assumed to have the same incident and post-
impact speed, namely that of light). 1t is assumed that this speed lies between a

minimum arising as a consequence of the surface temperature (1), i.e.

and the incident value. The actual post-impact momentum of this fraction of the
incident particles may then be obtained by varying the proportions which travel
at each of these two limiting speeds.

Next, suppose a proportion o is reflected at the speed imbued by the sur-

face temperature, then the post-impact momentum of the whole of this diffusely

reflected proportion is

pRT [ory |T 29; . )
pr= T | SE A X (scos )| + ’; (1 —0o)ra. (3.8)

A similar result is obtained for the diffusely transmitted proportion, by simply
replacing 74 in Equation 3.8 with —i,, (exactly as was effected in the case of

direct solar radiation pressure in Section 3.2.1).
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Finally, the values of p and 7 required by Equation 3.3 may now be determined
by combining their respective components from all these gas-surface interaction

modes. Thus, the total normal and tangential components of the aerodynamic

force may be written

pRT ‘ 2 . . M
. [t 5 = o)l — )| — =
o\ry “"t T‘ ‘a4
( > 1) %_\(s cos 0;)
(3.9)
> X (scosb;) .

Whence, from Equation 3.3, the total force on a given surface having visible

effective area Ag cos 8; 1s simply

Iy = Ascost; (—pn + i) (3.10)

with p and 7 defined by the previous equation (3.9).

3.3 The GUESS area-table software

In order to utilise Equations 3.2 and 3.10 in place of the existing equations of
the SATAN-A suite (namely 2.6 and 2.5), their constituent variables must be
estimated, evaluated, or known. In practice, the surface interaction coefficients
(Equation 3.1) fall into the first category with values being a combination of

estimate and theory for a region of space where there is little empirical evidence

[Ries, 1992]. Other values are well known (Fg, ¢ and M), measurable (R and
T, hence s) or modelled (p). For full evaluation of these two equations, the only
other variables required are Ag, 0; and d. The aim here is to produce values of

As, tabulated by d, where d is defined by two angles. In the case of acrodynamic

resistance, it will also prove necessary to consider an additional angle, giving the
rotation of the solar array. A suite of programs, GUESS (Geometry-Utilising
Estimation of Satellite Surfaces) has been developed to produce just such a set of
tables. In addition modifications have been made to the existing SATAN-A suite
to utilise the derived tables in the orbit prediction process.

The GUESS software works from a user-defined geometric model comprising

a discretization of the satellite into planar triangular or quadrilateral elements.
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Each element consists of a surface normal, a given area, the appropriate number
of vertices and the necessary surface interaction coefficients (Equation 3.1). In
addition, the geometric input file contains the satellite’s mass, locations of centre-
of-mass and instrumentation (such as the laser retroreflector array) and solar
panel axis of rotation (given as a point and a direction). The solar array itself is
then stored in any arbitrary position from which the software computes its true
location and orientation.

An advantage of this discretization is that it allows for unrestricted complex-
ity in the geometric model, the only practical restraint being available processing
time. Conversely, despite the fact that errors will undoubtedly increase as the
model increasingly deviates from reality, a more accurate shape incurs correspond-
ingly larger uncertainties in the less well known surface interaction coefficients.
(since a greater number of these will require estimation). Further, the above as-
sumptions of parallel flux and single impact give rise to errors in the modelled
forces. Thus, increasing the model accuracy is only valuable where it results in an
improvement in the computed force which outweighs the errors imposed by these

other himitations.

The satellite model used by GUESS i1s constructed in a system fixed in the

4 0Zs

satellite

Y nadir direction

O

earth

OXs

satellite’velocity

Figure 3.4: The satellite-fixed coordinate system.

satellite (OXsYsZs). Any system would be acceptable in theory but in practice
(to minimise the necessary modifications of the existing software) the following
one was chosen. The OZs-axis lies in the nadir pointing direction, which in the

case of most altimetric satellites will be normal to the satellite surface which most
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closely faces the Earth. Then, the OXs-axis is the vector (or cross) product of
the OZs-axis and the satellite velocity vector. The product is taken in such a way
as to cause the OYs-axis to oppose as closely as possible the satellite’s direction
of travel (velocity vector). The three axes thus obtained form the right-handed
system 1llustrated in Figure 3.4.

The next section describes what goes on in the GUESS package, in particular
detailing how the geometric file is used to compute the visible areas for each

surface element of the geometric model of the satellite over a range of angles.

3.4 Ewvaluation of the area tables: theory

The program begins by rotating the whole model into a coordinate system based

on the solar array axis of rotation which is defined (OX4Y4Z4) as follows,

QZ.A = 4
0OXg ifOYgq|la
OX, = ‘ (3.11)
OY ¢ x a otherwise
oYy, = 0Z,x0X,
where @ is the direction vector of this axis and the origin of the new system is

given by some point on this axis, p say, (given as a position vector in the satellite
fixed system within the geometric input file).
The normals, n, and vertices, v, in the geometric input file are rotated to this

new system using the relationships,

ng = (ng-0X4)O0X 4+ (ng - OY ) OY 4+ (ng-OZ4)0Z 4

N

Vy = ((P_S —-p) 'Q./X.A) OX 4+ ((Qs -p) 'Q.Y,A) OY 4+ ((1)_,5' —p) (LZ_,O OZ 4.

This procedure simplifies the rest of the program as, in this new system, the sun
position need only be defined by one angle: namely that by which the solar panels
must be rotated about the OZ4-axis to move them from their stored position to
a sun-pointing one.

Since the incident flux vector still requires two angles to be fully defined, this

means that the tables will be in at most three angles (one for the sun rotation

47




vector and two for the incident flux vector). Indeed, for direct solar radiation
pressure only two angles will be necessary, since one of these is also the required

angle of rotation for the solar array (see Figure 3.5). The solar array is rotated

OZ4

incident flux vector '

Figure 3.5: The angles defining both the sun position (@, ) and the incident flux

vector (,8).

through an angle 8 where

nh. o
§ = a — arctan | —5* |, (3.12)

a being defined in Figure 3.5 and

nh =nh,0X, + 0} OV 4 + 1,024

the normal of the sun-facing side of the solar panels in its stored position in the
axial system (defined by Equation 3.11). Equation 3.12 simply states that the
rotation angle is the difference between the sun angle o and the fixed angle of the
relevant surface normal, measured in a plane perpendicular to the rotation axis.
The model now lies in the OX 4Y4Z4 system, correctly orientated with respect
to the sun. The next step in the GUESS programs is to project this geometry
into a plane perpendicular to the incident flux vector (defined by angles v and &
of Figure 3.5). The projection is carried out by considering the incident unit flux
vector to be the OZy-axis of a third coordinate system, OXy Yy Zy, with
0X 4 ifOY, || 0Zy

OY 4 x0OZ, otherwise

OXV -
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oYy, = 0zZy x0Xy

defining the other two axes, in a manner analogous to the previous coordinate
change. However, as the normals and vertices are now all position vectors, i.e.
given from the same origin, they may be easily converted to this new system using

the single relationship
zy = (24 0Xy)OXy + (24 OYy)OYy +(24-0Zy)0Zy

where z__ .. represents either a normal or a vertex (iysiem=v OF 4 for projected and
axial systems respectively). The origin remains unchanged as any plane perpen-
dicular to the incident flux vector is appropriate.

At this point, the projected surface elements consist of groups of vertices ly-
ing in the OXyOYy-plane of the OXy Yy Zy system, with the OZy coordinate
representing the “height” of the vertex above this plane. In consequence, each
projected surface element may be entirely and closely enveloped by a rectangular
box lying in the same plane and having sides parallel to the OXv and OYy axes.

In addition, all such boxes may be entirely and closely contained within a single

larger rectangle as illustrated in Figure 3.6. The visible area is then calculated by

OYvy A

AV N
VARED=

N
N

N

-
OV OXV

Figure 3.6: Enclosing the projected surface elements in boxes within the projective

OXvOYy-plane.

sub-dividing the larger box into a square-grid of pre-determined mesh size. Each
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square in the grid is centred on some point, ¢ = (¢z, q,) say, which may be asso-
ciated with an incident flux particle travelling on a path parallel to the OZy -axis
and passing through this point. Taking each such point in turn the program tests
whether or not it lies within none, one, or more than one of the projected surfaces
by considering a number of conditions. Each condition must be met before the
next is tested. Failure at any stage means that point does not lie within this
projected surface, hence that the particle associated with this point does not hit
this element. In this event, take the next surface element or, when all have been

considered, the next grid point.

Thus, for any point and any surface element, the program first determies
whether or not the point lies within the relevant small enveloping rectangle of
that element (see Figure 3.6). This is effected by comparing the values of ¢, and
gy with the edges of the rectangle. Secondly, the program deduces whether or
not the point lies inside the wedge defined by two adjacent edges of the projected
surface element (see Figure 3.7). Here the projected vertices have been labelled

u, v, w and z (in an anti-clockwise manner). If the point lies in the wedge then

enveloping rectangle

Figure 3.7: The wedge associated with a projected surface element and the angles

8, ¢, ¥ and QL.
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the angles 8, ¢ and ¥ of Figure 3.7 satisfy 8 + ¢ = 1, hence

arccos <<Q — :‘i) : (L — Q>> = arccos <(g _ 1{) ‘ (Q _ LL))

v — ullz — ul lg — ullv —
+ arccos (Q N C Q)

which actually implies that the point lies in the X-shaped region limited by the

extended edges v — u and z — u (forming two wedges joined at the point u). How-
ever, because of the way in which the enveloping box is chosen, the point cannot
lie in the smaller wedge (on the side of u opposite to the projected surface ele-
ment) since the spacing between u and the edge of the enveloping rectangle is less
than half the grid spacing. Thus, this condition is equivalent to saying that the
point does indeed lie in the wedge of Figure 3.7.

Thirdly, the program determines which three vertices form the smaller wedge
in which the point lies (only necessary for quadrilateral surface elements). Again,
referring to Figure 3.7, it may be seen that the point lies in the wedge formed by
the vertices u, v and w if 8 < Q and in that formed by u, w and z otherwise.

In either event, the three vertices are re-labelled u, v and w so that Figure 3.8

pertains. Referring to this figure, the point of ntersection of a line through u and

(S

3=

v+ Aw —v) A€ 0,1]

Figure 3.8: The vector equation for a point on the edge of a triangle.

g with the edge of the triangle v — w is such that
u+p(g—u) =v+ AMw—2) (3.13)

for real numbers g and A with A € [0,1].
Now, the point g lies within the triangle formed by these three vertices (hence

within the projected surface element) if and only if 4 > 1. Whence, by writing




Equation 3.13 as a pair of simultaneous equations in g and A and substituting in

for A so that

_ (M’L - y—@)(gy - Qy) - (7—1’3/ - Qg/)(ga: - wa:)
(u:zr - QJ)(QU - i)y> - (uy - Q?/)(Qz: - ﬁl;)

© may be evaluated, thus indicating whether or not the point lies inside the

9

projected surface element.

The argument so far will determine which surface elements the path of an
mcident flux particle will intersect but not which of those it will actually strike —
clearly 1t will only strike one. Where a point lies inside more than one projected
surface element, the program considers the OZ, components of the elements in
question. Let ny be normal to a surface element in the OXy Yy Zy system and

let vy, be any of 1ts vertices, then
Dy = 77’V:1:O_XV + ??rVyﬂv + 77'V,70_Z\/
and the equation for the plane in this system in which the surface element lies is
ny.T +nvyy +nv.z =ny - vy.

Hence,

Y — (EV Vy — Nvg(e — nVy([y)
ny:

gives the “height” of the point of intersection of the particle’s path and the surface
element above the projective plane. For a particle associated with the point ¢ in
the manner described above, the incident surface element is that with the greatest
z-value of all those surface elements intersected by the particle’s path.
The number of intersections (N ) and of hits (N, ) are summed over all points
g for each surface element. Then, for any given element, the visible projected area
(A, ,.) perpendicular to the incident flux may be given as a proportion of the
total projected area
Ay pj & —,-J~A] cos b; ; (3.14)
for surface element ; where the actual surface area is A; and 0, ; is the incidence
angle at this surface. Noting that A, ; is the Ag cosl; of Equations 3.2 and 3.10,

Equation 3.14 may be written as

with the level of approximation governed by the accuracy of the model and area

estimation procedure (i.e. Ny and Ny ).

52




3.5 Further developments

The previous section described in some detail how the visible areas are determined
for use in the skin force equations (3.2 and 3.10). However, consideration of the
former equation indicates that further computation may be made prior to the
orbital determination procedure (thereby reducing the number of required calcu-
lations within the adapted programs). Indeed, Equation 3.2 may be decomposed

mto two parts, namely

1
Ag cos 0; <[l — ity —1s]d—2 [7‘3 cos 0; + <l;-@>} ﬂ,> (3.15)

and
72
Eyd?,

2 .0
d?.c

the first of which depends only upon the geometry of the satellite model and the
angles of incidence. Hence, Equation 3.15 may be evaluated regardless of specific
values of planetary and satellite ephemeris, and atmospheric conditions. Since the
alm is to tabulate over a range of angles, then interpolate between the tabulated
values within the prediction process, storing values of Isquation 3.15 rather than
the simple areas will greatly reduce both storage size and computation time. The
storage will be reduced because, for each pair of angles, instead of an area for
each surface element of the model only one vector is required. Unfortunately, no
similar decomposition is possible for Equation 3.10 because of the atmospheric
components which are time and space related.

The surface-interaction coefficients (15, 7, tq, 7¢, @) also have to be estimated
in some way, as does the momentum exchange coefficient o. Since these values
are typically satellite dependent, details of their estimation for ERS-1 will be
included in the next chapter (Chapter 4) and for SPOT-2 in Chapter 6, where
the respective orbits and results are discussed. However, the following method for
choosing values for the aerodynamic resistance coefficients may be applicable in
general.

Consider the normal and tangential momentum exchange coefficients given by

Sowter [1989, p.10]

Pi — Pr
o, = ——
Pi— Puw

B




T
where p,, is the theoretical normal momentum arising from the incident surface

temperature T, all the other variables being previously defined (with indices as

above). Then, comparing Sowter’s [1989, p.11] equations for p and 7 with those of
Equation 3.9 above, 1t is possible to obtain a system of simultaneous equations in
the coefficients of Equation 3.1 and the momentum exchange coeflicients o,, and

o.. Indeed, there are in fact two distinct equations for o,, alone:

o = 1 —ty—r
O, = l+ts—?'s—§(l—O’)(’l‘d—-'f,(g)
o, = o(rq—1tq). (3.16)

Now, experimental work (such as that cited by Schaal and Chambré [1958, p.695]

and, more recently, that done on the ANS-1 satellite, [Moore and Sowter, 1991])
indicates that in certain instances, o; may be expected to take a value close to one.
Also, by considering the thermal accommodation coefficient used by Smoluchowsk:
in 1898 and again by Knudsen in 1911 [Schaaf and Chambré, 1958, p.695], it is
possible to infer that o, similarly lies close to unity. Further, for satellites such as
ERS-1, SPOT-2 etc. the proportion of the transmitted aecrodynamic flux is zero.
Thus,

t=1y+1t;, =0
which in turn implies that both 74 and 1, are equal to zero. Hence, using the
simultaneous Equations 3.16,

re =0

in order that o, attaln a value of unity. Therefore, either 1 — o =0 or ry, = 0.
Clearly,

7‘4750

since otherwise o, would also be zero. Thus,

Ty = |
o = 1
a = 0




fully defining the aerodynamic interaction coefficients for use throughout the rest
of this simulation. There is no similar approach for direct solar radiation since
more is known about light-surface interactions and there is more variety in the
way photons react with different satellite surfaces. Effectively, because more is

known, the models used are more involved.

3.6 Verification of the GUESS software

The GUESS software was tested on a number of plane and solid objects to ensure
that the areas produced matched those theoretically expected (given simple geo-
metric considerations). For all shapes tested (plane rectangle and triangle, cuboid
and trapezoid) the results were exactly as theoretically predicted. That is to say,
the software produces true areas for convex solids. The only limitation is that the
grid spacing needs to be smaller than the smallest face of the solid — so that at
least some pomts fall inside each visible surface element. However, it is recognized
and should be emphasized that such accuracy is unlikely to be attained with very
or where there is complicated overlapping.

complex shapes,




Chapter 4

ERS-1 orbits

4.1 The ERS-1 satellite

The first European remote-sensing satellite, ERS-1, was launched on the 16t of
July 1991 into a near circular orbit of inclination 98.5°. Of the on board instru-
mentation, a single frequency radar altimeter provides continuous monitoring of
the ocean surface between latitudes 81.5° N and 81.5° 5. To enable orbit deter-
minations, the satellite was also equipped with a retro-reflector array for precise
ranging from the network of laser stations (illustrated in Figure 4.1). The altime-
ter data can also be used as tracking data, either directly as height measurements
or elaborated to form crossover differences. In addition, [ERS-1 carries a synthetic
aperture radar antenna (SAR), two sun acquisition sensors, three (fore, mid and
aft) wind scatterometer antennae (WSA) and the solar array — which provides
electrical power to the satellite. The ERS-1 satellite is illustrated in Figure 4.2.
For optimal usage of the altimetric data, precise positioning of the satellite is
necessary to an accuracy commensurate with that of the altimeter, particularly
in the radial direction; namely 5 cm or less. However, such a goal is currently
unrealistic since ERS-1 suffers from the problems described in the last chapter,
in that surface forces are often in error by more than the gravitational ones. Fur-
ther, for ERS-1, these errors are compounded by the high solar activity currently
experienced in the early 1990, the low altitude of around 780 ki and the high
surface-to-mass ratio of the satellite. In order to try and alleviate these difficulties,

the method of Chapter 3 has been applied to this satellite.
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Figure 4.1: The network of laser stations ranging to ERS-1.
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4.2 A geometric model of ERS-1

To apply the method of Chapter 3, it is first necessary to model the satellite and
its surface characteristics, also estimating the variables required for the evaluation
of Equations 3.10 and 3.2. Beginning with the area aspect of this problem, the
satellite structure has been reduced to a composite of planar quadrilateral elements
in accordance with the requirements of the GUESS software of Chapter 3. These
surface elements have been chosen to simplify the model as far as is realistically
possible, while retaining the basic shape, dimensions and surface characteristics of
the satellite itself. The minimum extent of this simplification was further governed
by the available processing time.

Essentially, the model adopted for ERS-1 comprises a trapezoidal box sur-
mounted by a number of planes, as illustrated in Figure 4.3. Thus, the box
approximates the satellite module and payload and the planes the WSA, SAR
and solar array. With the exception of the single sloping face, each of the surface
elements of the box lies perpendicular to one of the axes of satellite-fixed coor-
dinate system of Figure 3.4 (Section 3.3). Further, all six box surface elements
are estimated so that, viewed along the relevant perpendicular axis, the modelled
cross-sectional area equals the true value (i.e. of the actual satellite).

The SAR and three WSA antennae are each represented by two surface ele-
ments, of equal area, placed back-to-back. The only difference between the two
elements of such a pair lies n the opposing directions of the outward pointing nor-
mal vectors. The solar array 1s made up of four such surface elements, forming two
perpendicularly intersecting planes (each plane comprising a back-to-back pair of
surface elements as for the WSA and SAR). One of these two planes represents
the solar panel surface (and its back) and the other (far smaller) the thickness
of the central portion which attaches the array to the satellite module, as viewed
along the line of the solar panels. Hence, the minimum end-on area possessed by
the true solar array is also reflected in the geometric model.

Each of the model’s surface elements is stored in a record within the geometric
input file (required by the GUESS software) as four vertices, a full plane area
and an outward-pointing normal vector in the satellite-fixed system of Chapter 3.

Since the solar array rotates, the vertices and normals of this portion of the model
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Figure 4.3: The ERS-1 model and satellite-fixed coordinate system.




will vary. However, for compatability with the GUESS software the solar panel
face 1s nominally fixed in any attainable position (for instance aligned as closely
as possible to one of the system’s axes). This fixes the four vertices and normal
for this element. The vertices and normals of the other three elements may then
be computed relative to the stored position of the fixed solar panel element. Thus,
the geometry of the whole array is internally consistent. From this stored position,
the true position may be attained by rotating the whole array about the axis of
rotation.

For ERS-1, the solar array rotates about a single axis lying parallel to the
O Xs-axis of the satellite-fixed system, OXsYsZs, (illustrated in Figure 4.3) and
passing through a point, O4 say, on the positive O Zs-axis. Thus, the relationship
between the satellite-fixed and axial systems of Chapter 3 is as illustrated in

Figure 4.4. Though the axis of rotation of the solar array, hence OZ 4, is parallel

0Zs
OYa

OYs

Voz,
OXa

OXs

Figure 4.4: Satellite-fixed and axial systems for ERS-1.

to OX ¢ for ERS-1, such a relationship is not necessary to the GUESS software
which may be employed for a solar array axis of rotation pointing in any direction
and lying through any point in the satellite fixed system, OXsYsZs.

In addition to the model’s geometry, the input file for the GUESS software
must include the satellite’s identity, mass and the location (in the satellite fixed

system) of the satellite’s centre of mass, laser retro-reflector array, altimeter and
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any other instrumentation used for tracking data — and therefore necessary to
the programs in the SATAN-A suite. The values of these have been extracted
from ERS-1 documentation [Pieper, 1988 and Renard, 1990]. Furthermore, the

GUESS software requires the coefficients a, ts, tq, 15, 4 and o of Equations 3.1

and 3.8 which describe the behaviour of incident flux particles at the satellite’s

surface. These are derived as follows, drawing largely on values given in the same

documentation as above.

For the atmospheric resistance force of Equation 3.10 these coefficients are
determined just once and are the same for all model surface elements. The method
of determination has already been described in Section 3.5 above. However, for
direct and reflected solar radiation pressure, the necessary coefficients, namely a,
tsy ta, s, and 7y must be computed independently for each surface element of the
model. Further, values are required for both direct and earth-reflected light and
that fraction of the solar flux re-emitted by the earth as infra-red radiation. Since,

as stated by Equation 3.1, these coefficients sum to unity, it is only necessary to

specify four of the five variables within the input file. The values of the four chosen

coefficients (rq4 is omitted), are evaluated for each surface element of the geometric
model from the same documentation as the satellite mass etc. above. However,
since each model element may relate to more than one region on the satellite’s
surface, an average of the coefficients of the relevant contributing regions is made,
weighting each stored coefficient by the proportion of the contributing region’s
area to that of the surface-element being considered.

As well as the area, vertices, normal and interaction coefficients, each record in
the geometric input file is required to contain values of two extreme temperatures
so that a surface temperature Ts may be computed from the formula

Ts="Ts

i

+ v,

where v is a shadow factor describing the position of the satellite with respect to

defining the temperature when fully in shadow and 7

'S max

the earth’s shadow (T, ..
that in full sunlight). For each surface g, the values of the minimum and maximum
are obtained in a similar manner to the solar radiation pressure coefficients (i.e.

as a weighted average) from the same documentation as before.
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4.3 Area tables for ERS-1

Having produced the geometric input file as described above, the GUESS software
was used to determine tables for both the direct solar radiation pressure and
aerodynamic resistance forces acting on ERS-1. In addition to the data held in
the geometric file, the GUESS software requires a grid size to be defined and some
linuts on the possible angles describing the incident flux direction; the choice
of which is further explained below. The erid size adopted for shooting flux
particles/rays at the projected satellite model’s surface elements was 50 mm by
50 mm. This had been found to produce accurate results for the test objects, was
sufficiently small that the WSA would register accurately and yet was also large
enough so that the computation time was less than the available maximum.

In addition, it was necessary to justify the assumptions made in the GUESS
software for ERS-1, namely that the incident atmospheric flux is parallel and
that only the first impact of each particle need be considered. Now, for satellites
orbiting at heights of around 700km to 900km, such as ERS-1, it may be assumed
that the ratio of satellite to atmospheric velocity, together with the rarefaction
of the atmosphere, are concomitant with a state of free molecular flow [Schaal
and Chambré, 1958]. In such a state, the gas acts as a group of independent

particles, where the reflected particles do not impede the incident stream. Thus,
this incident stream may be taken to have a parallel average velocity. Further,
for ERS-1, the single impact approximation is made on the basis of results from
studies carried out by MATRA [Renard, 1990]. These indicate that computing the
forces as a result of single impacts gives a degradation in accuracy of about 5% over
a multiple impact model. However, the computation time is more than halved by
such an approximation. Thus, given the imited accuracy of the geometric model
of the satellite, it was decided that any potential increase in accuracy derived {rom
multiple impacts was outweighed by the decrease in computation time associated
with the single impact assumption.

For direct solar radiation pressure, the sun-to-satellite vector (which defines
the sun’s position required to rotate the solar array to its correct orientation)
is also the incident flux vector. Thus, for each surface element of the geometric

model, the visible areas were tabulated in just two angles, namely o and £ of
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Figure 3.5, over a 5° x 5° grid covering the unit sphere centred on the satellite.
It 1s emphasized that these angles are measured in the azial system of Chapter 3
and not the satellite-fixed system.

The areas thus produced were then employed (along with the normal vectors
and interaction coefficients) in Equation 3.15 of Chapter 3 to produce a quasi-
force for each surface element of the model. For each pair of angles («, /) the
resultant values were summed over all surface elements so that, rather than having
eighteen entries (one for each surface element of the model) there were just three
— describing a quasi-force vector in the axial system. This can then be easily
converted into the direct solar radiation pressure force vector (within the orbit
prediction program) using the scale factor

d?.c
of Section 3.5.

The visible areas (produced above) were also employed to compute the effective
total area perpendicular to the incident flux direction over a more widely spaced
grid (22.5° x 15°). The values of this total area, see Table 4.1, illustrate the
variation experienced over the range of incident flux angles. Table 4.1 also confirms
the variations in total area that are to be expected of ERS-1. First, the total area
18 greatest for small values of #, which is where the solar panels (inclined at an
angle of about 20° to the OZ4-axis) contribute most; up to a maximum of 28
square metres. Further, at such angles the body area is almost 8 square metres,
as opposed to the end-on (along the OZ4-axis) area of just 4 square metres — or
even less. Secondly, there is a corresponding minimum in total area for large values
of /3, for precisely the opposite reasons. Indeed, the lowest areas (in the table) are
obtained for # = —75° because at this point, the incident vector is almost edge-on
to the solar panels — for all values of «. In addition, since the SAR is also inclined
at a similar angle, neither it nor the solar panels contribute markedly to the total
area, which is largely composed of the body component (at a similar low due to
its being viewed almost along its length). Thirdly, the variation with o for any
given f3 is mostly due to the differing contribution of the SAR. This varies from
a maximum of 10 square metres, at values of o which lie along the SAR surface

normal to a minimum of zero, when o = +£90° and the SAR is edge-on to the
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g -90° -75° -60° -45° -30° -15°  0° 15° 30° 45° 60° 75° 90°

Y

0.0° | 13.6 12.1 20.5 31.5 39.3 44.1 46.7 46.9 43.7 37.5 29.4 21.4 13.7
22.5° | 13.8 12.0 21.0 32.3 40.4
7

N
(&2
[

47.9 48.1 44.8 38.4 30.2 21.9 13.7
45.0° | 14.1 11.6 20.1 30.7 38.8 43.5 46.0 46.2 43.1 37.4 29.7 21.9 14.1
67.5° | 14.2 10.5 17.7 27.0 34.1 39.3 41.4 41.8 39.5 350 29.3 21.7 14.2

90.0° | 14.3 9.2 154 23.0 29.2 33.3 34.7 37.6 37.6 34.6 28.7

s
N
—
.
—
S
[

112.5° | 14.2 9.2 15.7 23.2 31.1 37.5 41.4 43.6 42.5 38.2 30.3 22.0 14.2
135.0° | 14.3 8.9 15.3 25.6 34.7 41.9 46.0 47.8 47.0 41.6 31.8 22.2 14.3
157.5° | 14.0 8.4 15.8 26.6 36.4 43.8 47.9 49.6 48.7 42.8 33.6 21.8 13.9
180.0° | 14.9 7.7 15.0 25.8 35.4 42.6 46.7 48.4 47.6 42.0 33.3 22.9 14.9
202.5° | 14.0 8.4 15.8 26.6 36.4 43.8 47.9 49.6 48.7 42.8 33.6 21.8 14.0
225.0° | 14.3 8.9 153 25.6 34.7 41.9 46.0 47.8 47.0 41.6 31.8 22.2 14.3
247.5° | 14.2 9.2 15.7 23.2 31.1 37.5 41.4 43.6 42.5 38.2 30.3 22.0 14.2
270.0° | 14.3 9.2 15.4 23.0 29.2 33.3 34.7 37.6 37.6 34.6 28.5 21.4 14.3
292.5° | 14.2 10.5 17.7 27.0 34.1 39.3 41.4 41.9 39.5 35.0 29.3 21.7 14.2
315.0° | 14.1 11.6 20.1 30.7 38.8 43.5 46.0 46.2 43.1 37.4 29.7 21.9 14.1
337.5° | 13.8 12.0 21.0 32.3 40.4 45.3 47.9 48.1 44.8 384 30.2 22.0 13.7

R
~J
I
[N
o)
e
(S
o

360.0° | 13.6 12.1 20.5 31.5 39.3 44.1 46.7 46.9 43.7 : 13.7

Table 4.1: Cross sectional area for ERS-1 (in square metres) as viewed from the

sun.

incident vector. Finally, it may be noted that the three WSA contribute almost
negligible amounts to the cross-sectional area at all incident angles.

In addition to these general variations it is of interest to note the variation in
area with varying o when g = £90°. Each of these angles represent a theoretical
sun lying along the rotation axis of the solar array. In such a position, the array
cannot meaningfully rotate because the sun vector has no component outside the
array axis with which to define a rotation angle. However, because of asymmetries
in the model, rotating the solar array does in fact give different total areas which,
as can be seen, vary by as much as 0.83 square metres (about 8% of the total
effective area for these values of 4). Since the tables generated by the GUESS

software (not these illustralive tables) were to be used for interpolation, it was
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deemed better to rotate the array, so that the singularity represented by 8 = +90°
could be approached from different directions, and the varying areas thus obtained
for the varying values of o enable meaningful interpolations to be made about
these singularities. Also of interest, though not visible in Table 4.1, is the fact
that for the same values of «, the areas obtained for B = +90° and S = —90° are
only the same, in general, to two decimal places. This gives some measure of error
arising from round off within the computational process — probably as a result
of the overlapping mechanism — since for a fixed «, the total areas obtained from
B = £90° should be identical.

For the aerodynamic resistance force, the visible area tables for the model’s
surface elements were derived in much the same way. However, for these tables,
there were three angles required rather than two. Two of these, (v and § of
Figure 3.5) defined the incident flux vector. The third, & — one of the sun
position angles — was sufficient to determine the necessary rotation angle of the
solar array. The fact that just one angle suffices to correctly rotate the solar array
to a sun-pointing position is a direct result of the seemingly involved approach of

Chapter 3 using an axial coordinate system as well as a satellite-fixed one.

OX4 OY4

\ 4 0OZa

Figure 4.5: Region of interest for the aerodynamic flux incident on ERS-1.

For ERS-1, it was found that the angles v and é never deviated from either

the OX, — OYy4-plane or the OY4 — OZa-plane by more than 5°. Equivalently,

the incident flux vector (defined by these angles) was found to be always within
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£5° of the —OYjs-axis (i.e. the —OVj-axis — see Figure 4.4). This relationship is

equivalent to the statement that the relative velocity of the satellite with respect

to an atmosphere rotating with the earth (assumptions made in the atmospheric

model of the orbital prediction program) never deviates from its absolute velocity

vector (both vectors lying in the same reference frame) by more than about 5°.

This restriction, illustrated in Figure 4.5, was determined empirically by studying

three months of laser tracking data for ERS-1 (from August to October 1991,

inclusive) and confirms the pre-launch results of van der Wenden [1985].

6= —5° 6 =10° 6= +5°

v 265°  270°  275° | 265°  270°  275° | 265°  270°  275°
o

0.0°| 12.45 9.65 11.73 | 11.83 891 11.83 | L11.73  9.66 12.47
22.5° | 22,58 19.29 1883 | 22.056 17.94 17.65 | 21.79 17.87 16.81
45.0° | 30.85 28.10 28.13 | 30.33 26.78 26.97 | 30.04 26.66 26.07
67.5° | 35.94  33.99 34.76 | 35.44 32.68 33.62 | 35.12  32.64  32.71
90.0° | 37.09 36.05 37.71| 36.59 34.74 36.59 | 36.26 34.59  35.66
112.5° | 34.13 33.99 36.56 | 33.62 32.68 35.44 | 33.32 3253 3449
135.0° | 27.51 28.10 31.47 | 26.97 26.78 30.33 | 26.70 26.66 29.43
157.5° | 18.21 19.29 23.21 | 17.65 17.94 22.04 | 17.43 1787 21.18
180.0° | 11.11 9.65 13.07 | 11.83 891 11.83 ] 13.08 9.66 11.13
202.5° | 21.17  17.89 17.43 | 22.04 1794 17.65 | 23.21 19.28 18.22
225.0° | 29.40 26.66 26.70 | 30.33 26.78 26.97 | 31.48 28.10 27.51
247.5° | 34.49 3254 33.31 | 3544 32.68 33.63 | 36.57 33.99 34.13
270.0° | 35.64 34.60 36.26 | 36.59 34.74 36.59 | 37.72  36.05 37.11
202.5° | 32.68 32.54 3512 | 33.62 32.68 3544 | 34.76 33.99 35.96
315.0° | 26.08 26.66 30.02| 26.97 26.78 30.33 | 28.13  28.10  30.85
337.5° | 16.81 17.89 21.79| 17.66 17.94 22.04 | 18.83 19.28 22.59
360.0° | 12.45 965 11.73 ] 11.83 891 11.83 | 11.73  9.66 1247

Table 4.2: Cross sectional area for ERS-1 (in square metres) as viewed along the

incident aerodynamic flux vector.

Analogously to solar radiation pressure, a file contaming the visible areas

for each surface element of the satellite’s geometric model was produced over
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a 5% x 5% x 5% grid in the three angles («, v and 0). However, as was discussed in
Section 3.5, no further elaboration was possible and this file was used as input for
the orbital prediction routine. Again similarly to solar radiation pressure, these
areas were also used to produce a table of total effective cross-sectional areas over
a reduced grid of 22.5° x 5° x 5°, the contents of which are shown in Table 4.2.

Considering this table, it can be seen that (as was the case with Table 4.1, for
direct solar radiation pressure) the effective total cross-sectional areas produced
exhibit variations in a manner that might be expected for ERS-1. Because of the
limited variation in angles v and &, the main constant contribution to the cross-
sectional area is due to the body and measures approximately 8 square metres.
The SAR contributes almost nothing, since the incident flux vector lies almost
parallel to 1t for all angles considered. Similarly, the WSA component of the
cross-sectional area is also negligible. Thus, the greatest part of the variation
evidenced m Table 4.2 arises as a result of the rotation of the solar array and
hence registers as a variation with angle a. Here, as expected, the maximum area
is obtained when the solar panel lies perpendicular to the flux (at a values of 90°
and 270°) and minima occur when the two are parallel (« equals 0° or 180°).

It must be emphasized that both Table 4.1 and 4.2 are for illustrative pur-
poses only, neither of them being employed in the orbital determination process.
However, these tables do allow some confirmation of the credibility of the results

of the GUESS software for ERS-1.

4.4 Precise orbit determinations for ERS-1 us-

ing GUESS tables

Before these tables could be used for precise orbit determination of the ERS-1
satellite, the SATAN-A suite had to be extensively modified. However, despite
the extent of the necessary changes, the actual implementation was reasonably
straightforward and may be summarized as follows.

First, the format of the observation data needed altering, smce from 1989
most laser tracking data was in the MERIT II format, rather than MERIT I

previously used. Secondly, subroutines to read in both sets of tables as well
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as the satellite’s geometric model file were written, storing the area/vector data
in arrays for later use. Thirdly, a second atmospheric resistance subroutine was
written, mitially to be run as an option (instead of using the existing drag routine).
Fourthly, the existing solar radiation subroutine was modified to take the stored
data where this option was chosen. Further, this same routine was modified in the
reflected radiation section where satellite areas were incorporated into the thirteen
element model (see Section 2.2.6). Finally, we note that the partial derivatives
are effectively the same, namely of the form

oF 0Fp
9Cp 9Cp

OF  OF,
oCR dCk

so that no changes to the correction program are required. Having amended the
orbit determination package, it was tested on over three months of laser tracking
data from the launch date in late July until early November 1991, comprising over
twenty distinct long-arcs, each typically six days m length.

Each long-arc was determined using the 50 x 50 GEM-T3A gravity field and
associated tidal models within the J2000 inertial reference system. GEM-T3A was
derived from the GEM-T3 normal equations [Lerch et al., 1992] with additional
DORIS tracking data from the French satellite SPOT2 (see Chapter 6 for more
information on SPOT2 and DORIS). The atmospheric density was modelled using
the MSIS83 model due to Hedin [1983] and combined with saw-tooth drag scale
factors to produce the aerodynamic resistance force. The station monument so-
lutions were derived from three months of Lageos data (August 1991 to October
1991) by the Royal Greenwich Observatory. These, together with the relevant
corrections from the eccentricity vector file were used to compute the station co-
ordinates relevant to the given arcs. Each arc also estimated a number of drag
scale factors, C'p, and a single solar reflectivity coefficient, Cp.

It was found that the saw-tooth approach was less robust than the old step
function. This was because it was far more sensitive to the relative locations of
data and nodal points. Indeed, totally unrealistic scale factors were obtainable,
especially in sparsely tracked orbits, simply by locating the nodal points so that

the slope joining two successive Cp values ran at an extreme angle through the
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intervening clumps of data. Thus, the scale factors were chosen to ensure that
the period between_ any two nodes always contained some laser data and further,
that not all the laser data lay predominantly closer to one node than the other.
In addition, the number of scale factors was limited so as to keep the correlations

between solution parameters as low as possible. This led to a mix of daily and

half-daily values (for the time between nodes), with an occasional quarter-daily
period where such was deemed necessary (and realistic) to converge the orbit.

For each arc, the orbit was converged both with and without the GUESS
tables. Where such tables were used, the aerodynamic resistance and direct solar
radiation pressure forces were computed using Equations 3.10 and 3.2 respectively.
Where these tables were not used, constant values for Ap and Agr were used 11
conjunction with the original Equations 2.5 and 2.6 of Chapter 2.

Before attempting any detailed analysis of the results, a simple check was

carried out on each orbit with the GUESS tables in use. This check consisted
of printing out the total area which lay perpendicular to the direction of travel
at any time. An example of this for just one long-arc is illustrated in Figure 4.6

which clearly shows the expected two-cycle per earth-revolution variation that is

40
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time after MJD 48628 (days)

Figure 4.6: An example of the variation in the effective cross-sectional area of

ERS-1 over part of the long-arc from MJD 48628 to MJD 48633.
a result of the solar panel rotation. As such it confirms the pattern already seen
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in the illustrative Table 4.2 and further suggests that the model solar array 1s

effectively mimicking reality.

A further elaboration of the solution process enabled the results to indicate

the existence of any geographical bias that occurred in the converged orbits. This

elaboration consisted on simply considering the tracking data both as a single

Arc Dates N(Cp) Data used: stations/passes/observations
(MJD) total area A area B area O
48459.80 - 48463.60 5 8/19/277 | 6/17/259 2/2/18 0/0/0
48464.80 - 48470.80 10 13/48/678 | 8/36/541 | 3/7/100 2/5/37
48468.80 — 48474.80 10 14/48/663 | 9/39/550 3/7/93 2/2/20
48474.80 — 48481.60 | 12 | 16/49/570 | 9/32/355 | 5/12/158 2/5/57
48481.50 - 48486.90 9 17/51/678 | 11/38/502 4/8/99 2/5/71
48486.90 - 48492.90 16 15/54/660 | 10/38/505 | 4/11/94 1/5/61
48492.90 — 48498.90 | 13 | 15/55/723 | 9/42/524 | 4/9/130 2/4/69
48496.80 — 48502.80 | 11 | 12/54/742 | 9/45/607 |  2/5/64 1/4/71
48500.80 — 48506.80 | 11 | 14/61/855 | 9/48/722 | 4/10/95 1/3/38
48506.88 - 48512.80 7 12/34/448 | 7/19/240 | 3/12/155 2/3/53
48512.80 - 48518.80 10 16/50/701 | 9/30/452 | 5/14/153 2/6/96
48515.30 - 48521.30 10 16/60/760 | 9/34/430 | 5/18/209 2/8/121
48522.60 — 48525.60 5 10/24/363 | 6/12/211 3/9/90 1/3/62
48525.50 ~ 48532.00 7 12/34/512 | 7/21/367 | 4/11/131 1/2/14
48532.00 - 48538.00 11 12/42/542 | 7/26/270 | 4/14/236 1/2/36
48537.80 — 48543.80 | 11 | 11/37/434 | 6/25/277 | 4/11/145 1/1/12
48543.80 — 48549.80 8 10/23/277 | 5/15/168 4/5/55 1/3/54
48546.80 — 48552.90 9 6/21/260 | 3/15/159 2/3/35 1/3/66
48553.40 ~ 48560.30 | 9 9/21/316 | 5/13/179 | 3/7/113 1/1/24
48560.37 — 48566.80 8 8/15/201 4/6/67 3/6/7T 1/3/57
48566.80 - 48573.80 7 6/13/146 3/8/91 2/4/30 1/1/25

Table 4.3: Solution details for converged ERS-1 long-arcs, July to October inclu-

sive, 1991.

set and as arising from three mutually exclusive geographical regions. For this

analysis the chosen regions were (A) Europe and the Mediterranean, (B) the USA
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and the north Pacific and (C) the southern hemisphere. All these stations are
clearly illustrated in the SLR network map (see Figure 4.1). The main reason for
this subdivision into distinct regions is that where all or most of the tracking data
for a given arc lies within one region, the orbital solution is often pulled so as to
minimise the residuals over this region — at the expense of accuracy elsewhere.
By considering the relative RMS values for different arcas and relating these to the
overall RMS value, it should be possible to monitor such bias, should any arise. In
addition, by watching for this eventuality, it may prove possible (for instance by
judicious choice of nodal points for the drag scale factors) to constrain or decrease
any such geographical bias.

The solution details for each long-arc determined are presented in Table 4.3.
This table contains the dates of the start and end of each arc, the number of nodal
Cp values solved for, and the data accepted in the solution (some observations
are necessarily rejected in the convergence process — the numbers given refer to
the final data values accepted by the process). The accepted data are tabulated,
both for the whole dataset and for each geographical region, as the number of
contributing SLR tracking stations, the number of passes tracked and the number
of normal points provided. These normal points are derived and provided by
the RGO from the full dataset (which would be to large to use without such
preprocessing). A pass of SLR data is simply a series of normal points from a
single station’s observations, the latter arising from a single “overhead” pass of
the satellite.

Having converged the long-arcs, a comparison of the RMS obtained for each arc
from the two approaches was made, the results of which are tabulated in Table 4.4.
It is clear from this table, that in all but two of the twenty-one converged long-
arcs the use of GUESS tables has reduced the RMS of fit. Further, for these
two exceptions, the differences between the results obtained with and without
GUESS tables are very small. Thus, it would seem that the use of GUESS tables
really does result in a better orbital prediction model than simply using a constant
area-to-mass ratio for the ERS-1 satellite.

Looking at the results for the three geographical regions, it appears in general
that the orbits where GUESS tables have been used show less variation in RMS

between each region than the equivalent solutions without GUESS tables. The
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obvious exception to this is the arc from MJD 48525.5 to MJD 48532.0 where

region C attains a vastly different RMS value both from the other regions and

Arc Dates
(MJD)

RMS of fit (cm), total (A,B,C)

with GUESS tables

without GUESS tables

48459.80 - 48463.60
48464.80 - 48470.80
48468.80 — 48474.80
43474.80 - 43481.60
48481.50 ~ 43486.90
48486.90 — 48492.90
48492.90 - 48498.90
48496.80 — 48502.80
48500.80 — 48506.80
48506.88 — 48512.80
48512.80 - 48518.80
48515.30 - 48521.30
48522.60 - 48525.60
48525.50 - 48532.00
48532.00 - 48538.00
48537.80 - 48543.80
48543.80 — 48549.80
48546.80 — 48552.90
48553.40 - 48560.30
48560.37 - 48566.80
48566.80 — 48573.80

26.50 (24.7, 45.3, —
27.68
26.09
28.36
28.29

32.9, 28.6, 35.8
34.5,40.7, 33.6
47.85 4.6, 38.3, 32.7

6
49.1, 74.7, 53.5
17.7, 62.6, 19.2

61.29
32.61

—~~

C

25.05 93.3 —)
6.99 (4 )
34.55 (307, 48.7, 51.5)
0.40 (329, 47.2, 58.5)
3771 (265, 47.8, 70.8

2. 38.1, 50.9

~

55.63  (44.9, 76.3, 88.7
53.67 (6.2, 46.8, 99.3
60.98  (40.4, 68.0, 144.1

(34.1, 62.4, 79.8

(47.1, 80.7, 83.
3124 (26.5, 39.8, 35.9

(23.6, 36.2, 67.

(25.2, 43.3, 27.8
69.16  (65.2, 67.6, 101.0
36.41  (40.2, 25.7, 51.4
75.30 (78.1, 64.4, 76.8
96.59  (105.2, 79.0, 82.3
169.23 (165.1, 163.1, 220.3
191,88 (94.8, 124.8, 144.1
33.51  (20.4, 62.7, 18.4

mean

o

35.10

(47
(
(
(5
87.35  (87.2,85.9, 94.6
(
(
(3
16.70 (16

46.93  (49.4, 60.7, 79.4

)
)
)
)
)
5)
)
0)
)
69.63  (67.5, 69.1, 114.4)
)
)
)
)
)
)
)
)
21.24  (35.2, 32.7, 47.8)

Table 4.4: The Root Mean Square of fit (in centimetres) for the converged ERS-1

long-arcs by solution method and geographical location.

between the two solutions.

This is easily explained by considering Table 4.3

which shows that for this arc there is only one contributing station in this region

providing just two passes of data. Thus, the solution is largely determined by the
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other laser tracking stations in both cases — which is why the RMS is so different

between regions. The vast difference between the value of 0.1 cm where GUESS

tables are used and 114.4 cm is merely due to chance, since this station does little

to affect the solution, so is an exception in each case.

Secondly, in most cases, the European/Mediterranean group seems to have

the smallest RMS of the three regions. This implies that the resulting orbit is

Arc Dates
(MJD)

Value of coefficient Cg

with GUESS tables

without GUESS tables

48459.80 — 48463.60
48464.80 — 48470.80
48468.80 ~ 48474.80
48474.80 - 48481.60
48481.50 ~ 48486.90
48486.90 - 48492.90
48492.90 — 48498.90
48496.80 - 48502.80
48500.80 - 48506.80
48506.88 - 48512.80
48512.80 - 48518.80
48515.30 — 48521.30
48522.60 - 48525.60
48525.50 - 48532.00
48532.00 - 48538.00
48537.80 - 48543.30
48543.80 — 48549.80
48546.80 — 48552.90
48553.40 - 48560.30
48560.37 — 48566.80
48566.80 — 48573.80

1.01
1.03
1.00
1.04
1.04
1.05
1.02
1.02
1.02
1.04
1.06
1.05
0.99
1.06
1.08
1.06
1.06
1.06
1.39
1.17
1.48

l -<5(S

1.69
1.64
1.61
1.60
1.64
1.71
1.64
1.66
1.69
1.69
1.74
1.64
1.65
2.51
1.76
2.67

Table 4.5: The value of the solar radiation coefficient, C'r, solved for both with

and without GUESS generated tables.

probably biased towards this area, at least to some extent — an observation which

T4




is further corroborated by the relevant means and standard deviations. However,
the differences between this and the second group (USA and north Pacific) are
small and in several cases where GUESS tables have been used the situation is in
fact reversed. Further, there is no correlation between these occurrences and those
instances where the second group contributes a larger proportion of the accepted
tracking data (see Table 4.3). So it is unlikely that the variations in RMS between
these two groups can be attributed to the orbit being pulled over a region. Rather,
it is probable that they simply reflect the differing fit of the data between these
two areas.

In addition to the RMS of fit, the solution factors C'p for drag and Cp the
solar reflectivity coefficient, were also considered. Table 4.5 illustrates the solution
values of the variable Cr for the twenty-one long-arcs, both with and without
GUESS area tables. It is immediately clear that the value of Cr is significantly
diminished in all arcs where GUESS tables have been used. Further, in all but the
last three long-arcs considered the value of Cr where such tables have been used
is very close to 1 — indicating that the modelled radiation forces are potentially
closer to the true value, since they require little or no scaling. All three exceptions
fall in the period when the quantity of tracking data for ERS5-1 was diminishing,
towards the end of 1991. This is illustrated further by the relevant values in
Table 4.3. Considering further the RMS of fit of these three arcs (Table 4.4), it
is clear that the converged orbits are not as well defined as those lying earlier in
1991.

As a final consideration, the values of the solution drag scale factors, C'p were
plotted for each arc, so that the differences arising from the use of GUISSS area
tables could be seen. A selection of the twenty-one graphs thus obtained is shown
in Figure 4.7. The only consistent factor in all these graphs, is that the C'p values
obtained in those arcs where GUESS tables have been used are lower than those
where they have not. A few arcs do not display this general trend, but only at
the ends of the relevant long-arc period.

It would thus seem, from the evidence of these twenty-one converged long arcs,
that the use of GUESS area tables may diminish the RMS of fit of the residuals to
the data and may also result in solar reflectivity coefficient, C'r, that is consistently

close to one. In addition, the drag scale factors, Cp, attained are also lower
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than the corresponding values where the GUESS generated tables have not been
employed. From these results, it is suggested that, for ERS-1, GUESS tables may
produce 1mproved orbits in terms of the general fit of the data, the consistency
of the scale factor C'r and the diminished Cp values. However, given the similar
variations obtained by these drag scale factors, comparing arcs converged with
and without GUESS tables, it is not clear to what extent the tables have removed
error in the surface areas. Nor is it clear that the remaining scaling factors absorb

errors due solely to mismodelling of the atmospheric density.
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Chapter 5

Long-Arc Refinement using

Dual-Crossover Data

5.1 Non-dynamic long-arc refinement

It has been seen, in Chapter 2, how precise orbit determination is effected at
Aston. It has also been shown, in Chapter 4, how some improvement may be
achieved in the determination of long-arc orbits for ERS-1 by using a dynamic
force model based upon momentum changes. In this chapter, an alternative, non-
dynamic, method for improving ERS-1 orbits will be considered. This approach
derives the radial heights empirically, rather than from the dynamic equations of
motion upon which the force model of Chapter 2 is based. For this reason the
technique has been termed non-dynamic.

The aim of this chapter is to simulate the refinement of the ERS-1 orbits by
using height residuals from a second satellite, namely TOPEX/Poseidon. These
residuals are then used to solve for coefficients in an analytic expression for radial

orbit error, so that corrections may then be added back into the long arc orbits.

5.2 Altimetry and dual-crossovers

For ERS-1 the principal tracking data types are laser-ranging and radar-altimetry.
In contrast to the range recovered from laser data, altimetry provides a normal
height between the satellite radar antenna and some closest point on the earth’s

surface. Since steep slopes can be the cause of non-normal measurements, as the
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beam width at the earth’s surface may be measured in square kilometres, this
data type 1s more accurate over level surfaces, such as the sea and, until recently
its use as a measurement was restricted to such areas. However, it is also now
used to discover topographical and other information about certain areas of ice
sheets, flat land and inland water, see for instance Rapley et al., [1992]. The major
advantage of altimetry over laser-range data is its greater geographical density,
which arises from its not being constrained to fixed sites on land masses, while its
main weakness arises from this same lack of precision in the point on the earth’s
surface at which the measurement is made.

To partially circumvent this problem of geographically related error, it is pos-
sible to difference pairs of altimeter measurements which occur over the same
ground point. This is achieved by differencing the altimeter measurements at the
intersection of an ascending and a descending ground-track. Each such difference
is called a (single-) crossover and does not suffer from geoid error which, being
constant at a given point, cancels out. Indeed, all such time-independent geo-
graphically related error terms cancel, leaving only time-varying errors [Sandwell
et al., 1986]. This cancellation also extends to those solution parameters which
are similarly geographically related. Thus, such parameters cannot be determinecd
from this data source alone but require some additional constraints for solution.
The relevant deficiencies are elaborated upon in Section 5.6 below.

Dual-crossovers extend the concept of the single-crossover to points where
the altimeter measurement of two satellites are differenced. Thus, the ascending
ground-track belongs to one satellite and the descending one to another. One ben-
efit of dual-crossovers is that several parameters which were insoluble (Section 5.6)
using solely single-crossover data become soluble with dual-crossover data. [ur-
ther, these dual-crossovers may enable the accuracy of the more poorly determined
orbits of one satellite to be improved relative to the more accurate ones of the
other. In the case of ERS-1 and TOPEX/Poseidon, the latter orbits the earth at
a much higher altitude and is therefore not subject to the same atmospheric or
gravitational problems as ERS-1. Thus, it is hoped that TOPEX/Poseidon will
provide more accurate orbits by which those of ERS-1 may be refined.

Several authors have discussed dual-crossovers including Born et al. [1986]

who examined improvement in the radial ephemeris of the planned U.S. Navy
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satellite N-ROSS, whilst Shum et al. [1990] outlined a procedure for refining ERS-1
orbits using TOPEX/Poseidon. However, both these studies were undertaken
prior to the launch dates of the satellites involved, when the exact period of
simultaneous operation and orbital characteristics were still unknown. With both

ERS-1 and TOPEX/Poseidon operational, it became opportune to examine the

dual-crossover technique as pertinent to the repeat cycles of their orbits.

5.3 Simulating the crossover data

For the purposes of this study simulated data were used, since at the time of
writing no TOPEX/Poseidon and ERS-1 altimetry data were available for the
same period. For each satellite the method of simulation was first to estimate a
start vector, comprising position and velocity at some epoch, from known observed
orbital elements. These were then used to produce true and perturbed ephemerides
m the following manner.

For ERS-1 the true ephemeris were produced by iterating the usual parameter
set (the method is described in Chapter 2) using the MS1583 atmospheric density
model [Hedin, 1983], half-daily drag coefficients, the area tables derived in Chap-
ter 3 and the GEM-T3 gravity field which is complete to degree and order fifty
[Lerch et al., 1992]. Ocean tides were modelled using the GEM-T2 tide model and
all other forces and models are as outlined in Section 2.2. The ephemeris were
calculated at thirty second intervals over the six days from MJD 48500 to MJD
48506, during which time ERS-1 was treated as if in its thirty-five day repeat
mode. 1t is to be stressed that this assumption was made solely for the purposes
of this simulation and that it does invalidate any results. In this mode the satellite
makes 501 complete earth orbits in the time the earth takes to make 35 complete
revolutions. In addition, the inclination was assumed to have an actual value of
98.53 degrees and the right ascension at MJD 48500 was taken to be 247.07002
degrees.

In comparison, the satellite TOPEX /Poseidon has an altitude of around 1335
km, thus, for simplicity, atmospheric drag was eliminated. Otherwise the true
ephemeris were derived using exactly the same conditions as for ERS-1 except for

a constant value for the surface area (required to compute the solar radiation pres-
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sure). The ephemeris were again computed every thirty seconds, but over the ten
days from MJD 48498 to MJD 48508. This period just exceeds the 9.91553 days
(approximately) required for TOPEX/Poseidon to make one complete ground-
track, comprising 127 revolutions, during which time the earth revolves 10 times.
The values of inclination and right ascension at MJD 48498 were fixed at 66.039
degrees and 99.92398 degrees respectively.

These two sets of true ephemeris were used to produce two sets of simulated
laser data using coordinates of the ten actual laser-ranging stations which observed
ERS-1 during the simulation period in September 1991. The procedure assumes
(1) a given number of passes for each station, (ii) full visibility throughout each
station’s range and (iii) that the laser observations also occur at thirty second
intervals — like the true ephemeris. Given these assumptions, preliminary points
were generated for each satellite using the true ephemerides. These preliminary
points were then used as input for the prediction-correction routine of Chapter 2
and were subsequently adjusted by adding on the residuals thus obtained. For
TOPEX /Poseidon the number of laser points was left unrestricted under the above
assumptions. However, for ERS-1 they were limited to a set where the numbers
of passes and observations for each station matched those actually obtained over
the simulation period (as illustrated in Table 5.1).

A second set of ephemeris was then derived using these laser points as input
observations. The gravity field was altered to the PGS4591 model field (based on
the GEM-T3 normal equations plus some DORIS Doppler tracking of the SPOT-2
satellite), also complete to degree and order fifty, though it was restricted to terms
of degree and order of thirty or less for the satellite TOPEX/Poseidon. Such a
restriction was made necessary by the fact that the two gravity fields are almost
identical for satellites at the inclination of TOPEX/Poseidon. Thus, in order
to produce a sufficiently different set of perturbed ephemeris some alteration or
limitation of PGS4591 was required. In addition, for ERS-1 the atmospheric
density model was altered to the Jacchia 71 model [Jacchia, 1972}, though half-
daily drag coefficients and the same GUESS generated area tables were used.

These new models were converged against the simulated laser-range data from
the true ephemeris using the orbital determination package. This produced two

new state vectors, each comprising satellite position and velocity, at MJD 48500
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Station ID number Number of Passes Number of Observations
1953 3 o7
1884 5 75
7831 4 51
7542 9 156
1181 7 123
7839 9 164
7835 1 4
7090 3 38
7840 10 112
1863 4 20
7105 | 11
7110 2 18
7939 ! 13
7810 2 24
7210 2 12
7046 1 7
total 64 855

Table 5.1: Numbers of laser-range passes and observations for ERS-1 between

MJD 48500 and MJD 48506.

for ERS-1 and MJD 48498 for TOPEX/Poseidon. From these vectors two sets
of perturbed ephemeris were evaluated and, for each satellite, the true and per-
turbed ephemerides were then compared in the radial, along-track an d cross-track
directions (as illustrated in Figures 5.1 and 5.2).  The ephemeris comparison
resulted in radial root-mean-square differences of the order of 58 c¢m for ER5-1
and 13 cm for TOPEX /Poseidon which are comparable with early results achieved
for ERS-1 and with expected values for TOPEX/Poseidon. However, for ERS-1,
later developments have shown some nmprovement (see Chapter 4).

Using the t{rue and perturbed ephemerides, single and dual-crossovers were
then derived as follows. First, from each ephemeris file approximate equator
crossings were found. These points were then used to produce first estimates

of the actual crossover locations. These, in turn, were employed as the starting
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11 cross-track (RMS = 15 cm)

48498 time (MJD) 48508

Figure 5.1: A comparison of simulated true and perturbed ephemerides for the

satellite TOPEX/Poseidon.
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2 = radial (RMS = 58 c¢m)

19 along-track (RMS = 305 cm)

3 1 cross-track (RMS = 97 cm)

48500 time (MJD) 48506

Figure 5.2: A comparison of simulated true and perturbed ephemerides for the

satellite ERS-1.
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values for iterative schemes which interpolate within the ephemeris to produce
more accurate crossover points consisting of a radial difference, two times and the
latitude and longitude of the point in the earth fixed reference frame. The actual
details of this process vary from single to dual-crossovers as follows.

For both types of crossovers, the equator crossings are determined by lin-
ear interpolation between pairs of successive ephemeris points which straddle the
equator. These may be easily picked up since an equator crossing results in a
change in the sign of the Z-coordinate in the earth-fixed system. From here the
methods differ somewhat.

For single-crossovers, taking each hemisphere and every pair of ground-tracks
in that hemisphere in turn, a first approximation of the crossover longitude is

given by
MAXF A+ A
4

where the )\; denote the longitudes of the equator crossing points. From this
first approximation, a more precise crossover location is made by iterating within
the ephemeris until latitude and longitude match, as follows. Let (4,A) be the
desired latitude-longitude pair at the crossover point. Further, let (¢(4;),A(1;)) and
(6(t;),A(t;)) be the best available approximations at times ¢; and £; respectively.
Then

i Ay d0(t)
¢ o~ o)+ Ali—p
~ (/)('/23')+N3%2

with similar expressions for A [Rowlands, 1981]. By writing this in matrix nota-

tion,

dolt) i) At ) _ d(t;) — B(L)

A A ARAY At;) = A(t:)
we may solve for refinements Af; and At; to t; and t; respectively. This procedure
is iterated to convergence, using values of ¢, ‘-(11'7/’ etc. derived by interpolating within

the satellite ephemeris.

Next the normal height was calculated at this point for each of the true and
perturbed ephemerides. These four values were then combined to produce one
simulated single-crossover difference. The single-crossover differences were then

stored for each satellite, along with the two crossover times and both the latitude
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and longitude. These data subsequently became input for the adopted orbital
refinement procedure. The differences between the crossover times found for the
true and perturbed orbits were negligible in all computed crossovers.

The initial estimates for dual-crossover locations are made using a geomet-
ric method where each of four cases is considered in turn (Northern/Southern
hemisphere, descending/ascending ERS-1 arc). The first case will be explained in
detail below and the general form of all the relevant equations (thus covering the
other three cases) will then be given in Equation 5.1.

At a time tI the ground-track of the satellite TOPEX /Poseidon intersects the
equator at longitude AT in an ascending manner. It passes through the crossover
point at a time At later by which time the earth has revolved about its axis by
an angle AtTw; w being the rotation rate of the earth. Therefore, the great circle
formed by the orbital plane of this satellite intersects the equator at longitude
AT — AtTo, making an angle ¢ (the inclination angle of TOPEX /Poseidon) with
the same. The angle of arc of this great circle, between equator and dual-crossover
point, is UT.

Similarly, at time t& — At the ground-track of ERS-1 passes through the dual-
crossover point, descending to intersect the equator at longitude AE a time At

later. By this time the earth has again rotated through an angle AtFo so that

(¢, A) — dual crossover point

equator

A 4 AtEG
Figure 5.3: Geometric estimation of a dual-crossover point (Northern hemisphere,
ERS-1 descending arc).

the great circle formed by the orbital plane of ERS-1 through the crossover point
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intersects the equator at longitude /\f + AtES with an angle i (the corresponding
inclination of ERS-1). The angle of arc between dual-crossover point and equator
is U¥ (see Figure 5.3). Using trigonometric relationships on spherical triangles the
times At® and AtT may be computed to give first estimates of the dual-crossover
times 7 + AtT and tF — AtE as follows.

Let the initial values of Atf and At be zero and define A to be the angle be-
tween the points where the relevant great-circles of ERS-1 and TOPEX/Poseidon

intersect with the equator. Then, considering Figure 5.3, the angle A is given by

A = (A4 AR - (0T - ATw)

= Af — AL F@(A 4+ AT

and UF and U7 are fully determined by
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