Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

e ,(wm,/, o .
v‘a,,o,rw’,\ G m\‘?ﬁﬁt/\/\’\\"\,‘ - \mw o o

\ . . . v
"riuqrw\'J/;'\”/”’; . ,w e o RNER : "’ @ ' !
o L : il (4 0] VRS d
L \ AR L ni m 2 D
- .
\ . -
.

r,\\u\»,wr 2 i \/~, i - }“ : e
. 4 - v s w
G o s / 2 o

o Cw o

i e i : L ’ B .w:\\, - O,\,\wuy,”’za,: L

@ 5 \ O

. G ,’\,7 -
-

rY\\\\V/ o
. . -
mw,\'()','w . ?\(»:'/u' . ~‘rf4”’~"/%“”’ -
L ,o)‘,-,\,p,/r; o ,w,'r\, ; o . ' i . (\,\\3,,\\ W 9\ .
o . o . rr'wW”'
L x QQ\\“'N - .

i l\f»’ l‘/

,,,,,(w,w,w - G _' ’h \\(\r,'m)’

L r,, . i \ .
o ,\,,\,;‘”M o i \\’r ‘r\‘fr,,
mVV)Hl//m i i

e
\"/’\'o?'r /'w:

Summary

Linear Programmlng (LP) is a powerful decision making tool extensively used in
various economic and engineering activities. In the early stages the success of LP was
mainly due to the efficiency of the simplex method. After the -appearance of Karmarkar's

_ paper, the focus of most research was e nt methods
The present work is ¢

 latest techniques in th freld tak

\ 1mplementatrons on different classes of

‘ The preeond ned co gate g

'Vrewmg the latest decomposmon techmques

and su rgestlons have been included to a ents when solvmg problems with

&)
these methods. Fmally, experrmental resu
compared with an interior point method.

The efficient implementation of t ds considered in this study
, requrres the solution of quadratic subp _work on algorithms for
~ convex quadratic was performed [ms are discussed and
implemented taking sparsity into acco nce of these algorithms on

randomly generated separable and no

Key Words Dec ,mp)sitio 1, I kerror Pomt Methods Least Squares, Linear

Programmmg, Quadratlc

em ted. Sparsity is again a consideration .

Chen L G s T e 5 L
e i . G o . o e
i B G s S P
.
! i : e e s 2 Gnre G

: : . o e . o

I wish toexpress my thanks to the followiﬁg people: =

Mr. George R. Lindfield, my supervisor, for his support, guidance, and availability
whenever needed;

all members of staff of the Department of Computer Science & Applied Mathematics, and
Information Systems, especially Neil Toyer and Mary Finean, for their technical help and
advice,

all my fellow research students, especially Amrit Hothi for his stimulating ideas and lively
debates.

Finally, I would like to thank my parents and all my friends for their understanding and
support

Page

Title Page 1
Summary 2
Dedication 3
Acknowledgements 4
List of Contents 5
List of Figures WA 9
List of Tables : 10
Chapter 1: Introduction 11
1.1 A Brief History . 11
1.2 Algorithm and Problem Complexity 12
1.3 LP Problem Statement and Notation 14
1.4 Algorithms for Solving LP Problems 16
1.5 The Simplex Method 17
1.6 Interior Point Algorithms 18
- 1.7 The Projective Algorithm of Karmarkar 19

1.8 Using Barrier and Penalty Functions for Solving LP
Problems 22
1.9 Recent Developments in Interior Point Algorithms 26
1.10 Research Needs and Objectives ’ 28
Chapter 2: Computation of the Projected Gradient 30
2.1 Introduction 30
2.2 The Linear Least Squares Problem 30
2.2.1. LSQ Problem and Normal Equations 31
2.2.2 Data Characteristics and Algorithm Performance 32
2.2.3 Numerical Stability and Condition Number 32
- 2.2.4 Scaling and Preconditioning =~~~ 33
2.2.5 Sparsity 34
2.2.6 Solving the Least Square Problem .36
2.2.6.1 Direct Methods 36
2.2.6.2 Iterative Methods 38

Chapter 3: Conjugate Gradient Methods and Precoﬁdzitionini-ng

3.1 Introduction
3.2 Conjugate Directions
3.3 The Conjugate Gradient Method
3.4 The Conjugate Gradient Algorithm
3.5 Preconditioned Conjugate Gradient Algorithm
3.6 Variants of the Conjugate Gradient Method
3.7 Preconditioning :
3.7.1 Scaling by the Diagonal of A
3.7.2 Incomplete LLT (Cholesky) Factorization for Positive
Definite Matrices
3.7.3 Other Preconditioners
3.8 Computational Experience
3.8.1 Dense and Sparse Matrices
3.8.2 Preconditioners and Sparsity
3.8.3 Preconditioners and Condition Numbers

3.9 Conclusions

Chapter 4: Interior Point Methods for Linear Programming

4.1 Introduction

4.2 A Dual Variant of the Karmarkar Algorithm

4.3 An Affine Scaling Algorithm and the Big-M Method
4.4 An Infeasible Dual Affine Scaling Approach

4.5 The Predictor Corrector Method

4.6 Computational Experience

4.7 Conclusions

Chapter 5: Convex Quadratic Programming

5.1 Introduction

5.2 Methods for Solving Quadratic Programs
5.2.1 Finite Methods
5.2.2 Tterative Methods

5.3 QP Problem Statement and Notation

5.4 Duality

5.5 Separable Quadratic Programming Problems

5.6 Sparsity and Ill-Conditioning

44

44
45
45
46
47
49
51
51

52
53
54
55
56
57
58

60

60
61
63
64
65
67
81

83

83
84
84
85
85
86
87
88

5.7 Model Algorithm
5.8 Three Different Approaches to Quadratic Programming
5.8:1 The Algorithm of T.J. Carpenter and D.F. Shanno
5.8.2 Goldfarb and Lui O(n3L) Primal Interior Point Algorithm
5.8.2:1 The Role of the Barrier Parameter
5.8.3. The Unified Dual Ascent Algorithm
5.8.3.1 Implementation Issues
5.9 Computational Experience
5.9.1 Tests on Random Generated Separable QP Problems
5.9.2 Tests on Random Generated Non-Separable QP Problems
5.9.3 Additional Runs
5.9.3.1 Conjugate Gradient Method
5.9.3.2 Goldfarb and Lui Method
5.10 Predictor Corrector Method and Quadratic Programming
5.11 Summary

Chapter 6: Interior Point Algorithms and Decomposition of

Linear Programs

6.1 Introduction
6.2 Structured LP Problems
6.3 Advantages of Decomposition
6.4 New Approaches to Decomposition
6.4.1 A Decomposition Method Based on Augmented Lagrangian
6.4.2 A Decomposition Algorithm Based on Proximal Point
Techniques
6.4.3 A Decomposition Approach Based on Smoothed Exact-
Penalty Functions
6.4.3.1 Theoretical Issues
6.4.3.2 Implementation Issues
6.5 Linearization via Simplicial Decomposition
6.6 An Improved Linear-Quadratic Penalty Function
6.7 Computational Experience

6.8 Conclusions
Chapter 7: Conclusions and Further Development

References

89
90
90
93
96
97
100
101
101
107
112
112
113
117
119

120

120
121
123
125
126

132

135
136
138
140
142
143
148

150

154

Appendix A:

Appendix B:
Appendix C:

Appendix D:
Appendix E:
Appendix F:
Appendix G:

Cholesky Decomposition

Inco'mplete Cholesky Preconditioners

The Variant of the Dual Projective of Karmarkar and
Ramakrishnan

Interior Point Methods MATLAB Codes

Quadratic Programming Algorithms MATLAB Codes
Decomposition Algorithms MATLAB Codes
Problem Generators MATLAB Codes

168
169

171
174
189
204
217

List of Figures

Figure

Figure 1.1 A Geometric Illustration of Interior and Exterior Methods

Figure 1.2 An Iteration of the Algorithm

Figure 1.3 Penalty Functions

Figure 1.4 Barrier Functions

Figure 4.1 Alteration of the Objective Function

Figure 4.2 Relative Performance for Hilbert Problems

Figure 4.3 Change of the Objective Function for Hilbert Problems

Figure 4.4 Relative Performance for Klee-Minty Problems

Figure 4.5 Change of the Objective Function for Klee-Minty Problems

Figure 4.6 Relative Performance for Linear Ordering Problems

H@m470m@eﬁﬁmOMmmmﬁmdeMmeﬂkwmngMmm

Figure 4.8 Relative Performance for Random Generated Problems

Figure 5.1 Graphical Representation of Model Method

Figure 5.2 Change of the Objective Function Against the Number of Iterations

Figure 5.3 Change of the Objective Function Against CPU Time

Figure 5.4 Change of the Objective Function Against Floating Point Operations

Figure 5.5 Change of the Objective Function Against the Number of Iterations

Figure 5.6 Change of the Objective Function Against CPU Time

Figure 5.7 Change of the Objective Function Against Floating Point Operations

Figure 6.1 General Block Diagonal LP Problem

Figure 6.2 Diagram of a 2-Block LP Problem

H@m63ASmmkRm@mwGmuwﬂﬁm%mwMHmM%Ummmw
Distributed in [0, 100]

Page

17
21
23
24
69
70
74
74
77
78
80
80
90
105
105
106
115
116
116
122

123

145

List of Tables

Table

Table 3.1 Comparative Results For Sparse and Dense Problems

Table 3.2 Comparative Results for a Matrix of Size 50

Table 3.3 Comparative Results for a Matrix of Size 100

Table 3.4 Comparative Results for Matrices of Different Condition Number

Table 4.1 Performance of the Karmarkar Algorithm on Hilbert-Type Problems

Table 4.2 Hilbert-Type Problems Results

Table 4.3 Klee-Minty Problems Results

Table 4.4 Linear Ordering Problems Statistics

Table 4.5 Linear Ordering Problems Results

Table 4.6 Random Generated Problems Results

Table 5.1 Separable Dense Problems Results

Table 5.2 Separable Sparse Problems Results

Table 5.3 Non-Separable Dense Problems Results

Table 5.4 Non-Separable Sparse Problems Results

Table 5.5 Non-Separable Sparse Problems Results

Table 5.6 Non-Separable Sparse Problems Results

Table 5.7 Small Non-Separable Sparse Problems Results

Table 5.8 Results of Three Variants of the GL Method for Separable Problems

Table 5.9 Results of Three Variants of the GL Method for Non-Separable
Problems

Table 6.1 Comparative Results of Decomposition Approaches

Table 6.2 Comparative Sequential and Simulated Parallel CPU Time Results

10

Page

55
56
57
58
71
71
75
76
78
79
102
104
108
109
110
111
112

114

114
146
146

Chapter 1

Introduction

1.1 A Brief History

The requirement for methods of linear optimization arises from the necessity to
analyse mathematical models describing the theory of systems, processes, equipment, and
devices which occur in practice.

During the last 30 years the techniques of linear optimization have emerged as an
important subject for study and research. The increasingly widespread application of
optimization has been stimulated by the availability of digital computers and the necessity of
using them in the investigation of large systems.

Linear Programming (LP) was established in 1947 with the design of the simplex
method of G.B.Dantzig for solving optimum planning problems. A period of rapid
developments and exciting discoveries in this new field followed and continue today. As

noted in Salhi, (1987):

"In the post-war era, LP has provided a good framework for the analysis of classical,
economic theories such as the Walras Mathematical Model of Economy and Leontief
Input-Output Model. It has also been successfully used to bring together different
fields of pure mathematics, such as convex set theory, combinatorics, and two-

person game theory."

From the beginning, the simplex method was effective on almost any type of LP

problem and over the years the algorithm has been further polished and new variants of it

11

have been developed. In 1972 the simplex method was shown to run in exponential time for
an artificial class of LP problems, [Klee & Minty, (1972)].

In 1979 the first polynomial time algorithm was announced, [Khachyan, (1979)]. In
spite of the better complexity of this method (complexity will be discussed in the following
section), the algorithm did not prove itself as well as the simplex method in practice.
Computationally, in broad terms, there were two major difficulties with the method. The
number of iterations tends to be very large, and the computation associated with each
iteration is much more costly than a simplex iteration, [Dodani & Babu, (1990)].

In 1984 interest in linear programming was intensified by the publication of an
interior point method that was not only polynomial in complexity but was also claimed by its
inventor to be faster than the simplex method, [Karmarkar, (1984a); (1984b)]. The existence
of problems for which the simplex method runs in exponential time and the appearance of
polynomial time algorithms encouraged the debate over the efficiency of the simplex and a
crucial question arose: Is LP in the P-class or NP-class?

Before going any further, it is important to define some terminology borrowed from
complexity theory; the definition may help to see how this theory contributes to

understanding algorithms and evaluating their performance.

1.2 Algorithm and Problem Complexity

Usually, for a given problem, a range of algorithms may be used to solve it. As a
random choice may not be suitable, it is useful to have some criteria for identifying a specific
algorithm. These criteria are the amount of CPU time and the storage required to run a code
of the algorithm on a computer, [Lovész, (1984)].

One of the main concerns of complexity theory is to find, for a given algorithm, a
bound on its running time, i.e., its time complexity function, and a bound on the space
requirement, i.e., its space complexity function. Time is usually the only factor considered.

However, the theory can be extended to include storage. In finding these bounds, the

12

problem's difficulty can also be investigated. This allows us to separate problems into
different complexity classes. Hence, algorithm complexity and problem complexity are
interrelated, although a distinction between them should be made. Algorithm complexity is
the cost of a particular algorithm while problem complexity is the minimal cost over all
possible algorithms, [Traub & Wozniakowski, (1982)].

Two complexity classes; the P-class and the NP-class, were already mentioned . The
P-class, probably the most studied, contains problems for which a polynomial time
algorithm has been found on deterministic computers (like the ones used in the real world).
A polynomial time algorithm is one with running time bound, (worst case complexity),
which is a polynomial function of the length of the problem data (e.g.., 2n, n3+n, etc.) or
behaves like one (e.g.., logn, nlogn, n®logn, etc.), [Garey & Johnson, (1979); Kronsjo,
(1985)]. For example, the algorithm of Gaussian eliminations for the solution of a system of
linear equations is an O(n3) algorithm.

The NP-class contains problems for which a polynomial time algorithm can be found
only on a non-deterministic computer. Non-deterministic computers are pure mathematical
inventions. On real life computers only exponential time algorithms can be found for them.
These algorithms have time bounds which are exponential functions or behave similarly,
(e.g.., en+n, 20, etc.). An example of a problem in this class is the travelling-salesman
problem whose time bound is O(n!). The hardest problems in the NP-class form the NP-
Complete class. Intuitively, problems in the NP-class are of the form ‘determine whether a
solution exists’. Their complementary problems are of the form ‘establish that there are no
solutions’ and constitute the CO-NP-class, [Kronsjo, (1985)].

As early as 1953, Von Neumann made the distinction between polynomial and
exponential time algorithms. However, it was not until 1965 that the class of problems
solvable by polynomial algorithms was identified, [Cook, (1983)]. This was due to
Edmonds, (1965), who was the first to express the thought that exponential time
computability approximately indicates how difficult a problem is. Consequently, he
introduced the notion of “easy” and “hard” problems as well as “good” and “bad”

algorithms.

13

In practical terms, this idea of classifying problems and algorithms is not totally
justified. Indeed, many reliable and practical algorithms, such as the simplex method, are
known to run in exponential time for some special cases, and many good algorithms in
theory, such as the ellipsoid method, are inefficient in practice. It is in this respect that the
average run time (average complexity) is relevant to understanding the behaviour of
algorithms. However, average time bounds are more difficult to derive, as a priori
probability distributions on the data must be postulated, [Lovdsz, (1984)].

Until the 1980s, the LP problem was believed to be in the NP-complete group. It
was thought that the discovery of a polynomial time algorithm for LP would bring an answer
to the outstanding question of whether P=NP. As will be seen in the following sections,
such an algorithm has been discovered which shows that LP is in the P-class. However, a
closer study of the problem’s properties revealed that linear programming has the properties
of the NP, as well as the CO-NP groups. Because there is strong evidence that NP=CO-NP,
LP can only belong in one of these groups. Further studies supported the argument that LP

is not a member of the NP-class, [Garey & Johnson, (1979); Kronsjo, (1985)].

1.3 LP Problem Statement and Notation

The general linear programming problem and equivalent forms will be stated before

going into details of the present work. The notation will be consistently followed in

subsequent chapters. Other forms and symbols will be defined when introduced.

The General Form

The general problem of linear programming is the search for the optimum (maximum

or minimum) of a linear function of variables subject to linear relations (equalities or

inequalities) called constraints. Some constraints are specific to some or all variables, for

14

example, the non-negativity constraints (Xj 2 0). Some or all variables can be arbitrary. It 1s,
however, very common to impose a priori., the condition of non-negativity, on all variables
in all economic problems.
According to the above definition, the algebraic formulation of the general LP
problem, [Simonnard, (1966)], is as follows:
n
min (or max) z= .CiX;
subject to 2 ajjX; >b; i=1, ..., p,

n
Y.aijXj = bj 1=pt+l, ..., m,,

=1
XjZO i=1,.,0p
Xj arbitrary j =q+l, ..., n,

where ajj, bi, Cj, X; andze R, fori=1, .., m, andj=1, ..., n.

Henceforth this will be referred to as GLP.

Equivalent Formulations

The general LP problem can be put under more compact and easy to handle forms.

These forms are equivalent.

The Canonical Form :

Min ¢Tx ce RN
st. Ax>b Ae RN pe R
x=20 x e Rn

The Standard Form :

Min ¢Tx ce R
st. Ax=b AeRMN phe RD
x=20 x e R

15

The Mixed Form :

Min ¢Tx ceRn

s.t. Ayx 2 by A€ RMPXM b, e RMI
A,x = b, A, e RM2XM b, € R™M2
x>0 x e R0

To transform the general LP problem to any of these equivalent forms, elementary operations

are used, such as:

* min f(x) = —max[-f(x)]
% if x is arbitrary then x = x* — x7, where x* = max[0, x] and X" = max [0, —x],
* {alx =b,ae RMxe R"}= {aTx > b and alx < -b),

*aTx > b may be replaced by alx — X = b, x 2 0, x 18 called a slack variable.

1.4 Algorithms for Solving LP Problems

In general, two strategies for the solution of LP problems can be identified.
. An algorithm that traverses the boundary of the feasible region to locate the optimum
extreme point ; these are called exterior methods.
. An algorithm that moves through the interior of the feasible region to arrive at the
optimum extreme point; these are called interior methods.
Figure 1.1 illustrates how optimal solutions are approached by the two methods. In Figure
1.1 the progress of the interior method is shown by circles while that of the exterior method
is shown by dots.

These approaches will now be described in more detail.

16

& &

Figure 1.1 A Geometric Illustration of Interior

and Exterior Methods.

1.5 The Simplex Method

The well-established, simplex algorithm, developed by Dantzig in the late 1940s, is
an exterior method. After computing an initial, feasible solution (i.e., an extreme point), the
simplex algorithm moves along the boundary from one extreme point to the next, always
ensuring that the extreme point visited moves closer to the optimum solution. This is done by
changing one of the vectors of the current basis with a non-basic vector, which becomes
basic after pivoting. Thus, algebraically, moving from a vertex to an adjacent one
corresponds to changing the current basis with an adjacent one. In a mxn LP problem,
where m < n, a vertex is determined by m linearly independent tight constraints.

Two phases are generally required by the simplex method. In the first, the feasibility
(or otherwise) of the problem is established and the vertex of the domain of the LP problem
is found, if one exists. A monotone path of feasible points, in accordance with the objective
function of the problem, is generated in the second phase of the algorithm. The path stops at
a vertex when no improvement in the objective function value is possible, or else at an

unbounded edge (in which case, the problem is unbounded).

17

There are many variants of the simplex and they-can differ a great deal. The way the
feasible starting point is obtained can be done in many different ways. The pivoting criteria,
i.e., the criteria for choosing the entering variables into the basis, can also be totally different
from one variant to another. However, they all generate a monotone path which ends at an

optimal solution to the LP problem, if such an optimal solution exists.

1.6 Interior Point Algorithms

As shown throughout the preceding sections, the simplex method, being the main
representative of exterior point methods, obtains the optimum solution by moving
“cautiously” along edges of the solution space that connect adjacent corners or extreme
points. This is because the optimum of a linear programming problem is always associated
with an extreme or corner point of the solution space. In essence, the simplex method
translates the geometric definition of the extreme point into an algebraic definition. Although
in practice the simplex method has served well in solving very large problems, the
computational basis of the technique, theoretically, can result in an exponential growth in the
number of iterations needed to reach the optimum solution.

Attempts to produce a computationally efficient procedure that “cuts” across the
interior of the solution space, rather than moving along the edges, were unsuccessful until
1984, when N. Karmarkar produced a polynomial-time algorithm. The effectiveness of the
algorithm appears to be in the solution of extremely large and difficult linear programming
problems, [Karmarkar & Ramakrishnan, (1991)]. Karmarkar’s algorithm and any other
methods that approach the optimum solution of the LP problem through the interior of the
solution space are called interior-point methods.

Interior point methods for mathematical programming problems were introduced by
Frisch (1955) and were developed as a tool for non-linear programming by Fiacco and
McCormick (1968). While Fiacco and McCormick noted that their proposed methods could

be applied in full measure to linear programming, neither they nor any other researchers at

18

the time seriously proposed that interior point methods would provide a viable alternative to
the simplex method for actually solving linear programming problems, [Lustig, et al.,

(1994)].

1.7 The Projective Algorithm of Karmarkar

The algorithm of Karmarkar, [Karmarkar, (1984a); (1984b)], came as a result of the
search for a method which has polynomial complexity like the ellipsoid method of Khachyan
and the simplicial methods but is practical like the simplex. It is related to classical, interior
point methods, but presents original features, such as the use of projective geometry and a
logarithmic potential function to measure convergence.

Going in the direction of the gradient is the classical approach when interior point
methods are considered for linear programming. However, this yields a substantial
improvement in the objective function only if the current feasible point is at the centre of the
polytope, i.e., sufficiently distant from all its boundaries. Consequently, for an iterative
process to work with these ideas, it must alternate between centring the feasible point and
taking a step in the gradient direction.

Classical interior methods of the Brown-Koopmans type have difficulties near the
boundaries, precisely because they lack the centring step. The difficulties, usually, result in
the loss of feasibility and slow convergence. On the other hand, Karmarkar’s algorithm
avoids the difficulties of the classical methods and successfully combines these two steps.

The initial paper of Karmarkar, [Karmarkar, (1984a); (1984b)], required the linear

program to be expressed in the special homogeneous form

s. t. Ax =0 (1.1)
1

19

and that the value of the objective function at the optimum point be equal to zero, i.e. cTx*
= 0, where x* is the optimal solution vector of (1.1).
The algorithm begins with an initial feasible estimate x0 to the solution of (1.1) and

moves to a new estimate x! via the use of projective transformations. If we define

Xo-Ix

Xop = di 0) and =
0 iag(x?) and T(x) eTX o 1x

where T(x) is the required projective transformation, then the point corresponding to x0 in

1
the transformed space 1s e Let vector d be

5 = —y[I - BT(BB)-1B1Xc (1.2)
. AXy . .
where ¥ is a scalar step parameter and B = oT | A new point x' in the transformed space

(x'-space) is defined by

X' =>e+ 0.

=3

The corresponding point x! in the original space (x-space) is obtained by the inverse
projective transformation T-1(x") defined by

Xox'

1-T171I(x") =
X (x) eTXpx'

It is shown that by appropriately choosing 7y in (1.2), the algorithm converges to
some point X with ¢T% < 2-L¢Tx0 in O(nL) iterations, where L is the length of the input
data, [Karmarkar, (1984a); (1984b)].

In order to prove the polynomial complexity of the projective method, the potential
Jogarithmic function was introduced by Karmarkar.

n
p(x) = IncTx — ¥x;.
=1
This function is proved to be reduced by, at least, a constant amount in each iteration for a

proper choice of yin (1.2), [Karmarkar, (1984a); (1984b)].

20

As one can see from the above description, the centring process of the algorithm is
performed by rescaling the feasible region at each iteration using a projective transformation.
This results in approximating the optimization problem with a minimization over a sphere of
known centre and radius [% e, Y]. The minimization over a sphere is then solved by taking a
step to its boundary along the projected gradient direction. The rescaling process combined
with the step along the negative projected gradient is then repeated until optimality is
achieved or the problem is recognized to be unbounded or infeasible. A sketch of the

optimization process is as follows (Figure 1.2).

x-space x'-space

Figure 1.2 An Iteration of the Algorithm.

Although dual solutions were not generated in the original paper of Karmarkar, many
researchers soon realized that the computation of the projected gradient in the main step of
the algorithm provided values, in certain instances, [Fieldhouse & Tromans, (1985); Lustig,
(1985)], which converge to the dual optimum solution, [Gay, (1987); Todd & Burrell,
(1986); Ye & Kojima, (1987)].

The basic concept of duality is that every linear programming problem (called the
primal) has an associated problem (called the dual). A solution to the dual is provided
whenever a solution to the original primal problem is found. Thus, whenever a linear

programming problem is solved, it actually provides the solution to two problems. The

21

primal-dual relationship is important in many respects. It is extensively used in the design of
many variants of the simplex and, also, in the proof of theoretical results. In most
implementations of interior-point algorithms, the duality gap, the difference between the
value of the primal and the dual objective function, is used as a convergence criterion. Most
large-scale implementations of algorithms based on the barrier-transformed problem
associated with the primal LP, such as OBI, [Lustig, et al., (1991)] and ALPO, [Vanderbei,

(1990)], reduce the barrier-penalty parameter as a function of the duality gap.

1.8 Using Barrier and Penalty Functions for Solving LP Problems

An important aspect of the Karmarkar algorithm is that of maintaining feasibility after
each step and insuring reduction in the objective value monitored by the use of a logarithmic
potential function. The idea is reminiscent of the barrier and penalty functions approach in
non-linear programming due to Frish, (1955) and championed by Fiacco and McCormick,
(1968).

Penalty function methods are characterized by their use of infeasible points. They are
defined to ensure that iterates converge to a solution which is feasible. The squared
Euclidean norm, usually attributed to Courant, (1943), leads to the well known quadratic

penalty function:

D(x, o) = f(x) + %cc(x)Tc(x)

= 100 + 5 Slle(I2

where the non-negative scalar ¢ is the penalty parameter. This was the earlier penalty

function which provides points subject to ¢(x) = 0. The penalty is formed from a sum of

squares of constraint violations while the ¢ determines the magnitude of the penalty.

22

¢(x,0')‘
o =100
o=10
o=1
f=x x¥=1
x(10) x(100) ¥

x(1)
Figure 1.3 Penalty Functions

The above shows some graphs of ¢(x, o) for the problem:

Min x
sit. x—-1=0

for which P =x + % o(x - 1)?

If the solution x* = 1 is compared with the points which minimize ¢(x, ©), it is clear that x*
is a limit point of the penalty function as ¢ — . Hence, this suggests a technique of solving
a sequence of minimization problems. It can be shown that x(ok) — x* and that linear
convergence is reached with one decimal place being obtained at each iteration. This
behaviour can be justified for all problems.

Penalty functions, as well as barrier functions, suffer from a number of problems.
Both are susceptible to ill-conditioning of the problem as the solution is approached. In
addition, the convergence of penalty functions is dependent on the penalty parameter being
sufficiently small, but it is difficult to determine the best choice from the information
available.

In contrast to the penalty function methods, barrier functions are characterized by
their ability to preserve strict constraint feasibility at all times by using a barrier term which is

infinite on constraint boundaries. The barrier function creates a sequence of modified

23

functions whose successive, unconstrained minimizers should converge, in the limit, to the
solution of the constrained problem. The barrier function modifies the objective function in
such a way that successive iterates are kept 'inside' the feasible region. This is achieved by
creating a 'barrier’ at the boundary of the feasible region. The most popular barrier functions

are the logarithmic barrier function, usually attributed to Frisch, (1955):

Min B(x, 1) = f(x) - r Zmln(ci(x))
i=1

and the inverse barrier function, [Carroll, (1961)]:

m
Min B(x, r) = f(x) + r 2 Eﬁ’

i=1

1, the barrier parameter, is the positive weight in both functions.

Function B(x, r) will never cross the barrier because as ¢j(x) — 0 the second term of the

barrier functions tends to infinity.
As with o in the penalty function method, r is used to control the barrier function
iteration. In this case, however, X — 0 ensuring that the barrier term becomes negligible

except close to the boundary. Vector x(r%) is defined as the minimizer of B(x, 1).

¢(x90)“
5'“ =
r=o1 \ 1
4-] r=0.01
3__
2.“
1+ f=x
x"l‘)16(0'1) !x(l)
T i I >
0 1 2 3 X

x(0.01)

Figure 1.4 Barrier Functions

24

Figure 1.4 shows typical graphs for a sequence of values of rk._ Tt can be seen that x(rk) —
x* as rKk — 0, which can be established in a similar way to penalty function convergence.

Unfortunately, in addition to the problems due to ill-conditioning mentioned in the
penalty functions case, other difficulties often arise. The barrier function is undefined for
infeasible points, which can lead to line search being inefficient. Also, an initial feasible
point is required, which is a non trivial problem in itself.

Gill, et al., (1985) suggested using the barrier function approach to LP and
developed a class of projected Newton algorithms in which Karmarkar’s algorithm can be
shown to be a particular case, [Fletcher, (1986)]. LP problems are handled by being
transformed into a non-linear programming problem of the form:

BAP: Min ®(x) = cTx - uZlogxi

s.t. Ax = b, I

i > 0, W is the barrier parameter.

The algorithm proceeds from a feasible point x > 0 following the Newton direction
d= Vz(D(X))'lV(I)(X) projected onto Ker(A) to get a feasible point y (i.e. Ay = b). More
explicitly, the Newton search direction d is obtained as the solution of the quadratic
programming problem which is the minimization of a quadratic approximation of ®(x)
under feasibility constraints. This amounts to the problem:

BQP: Min V@(x)d + lidTvzdb(x)d
s.t. Ad=0

where VP (x) = ¢ - uD'le is the gradient of ®(x), V2d(x) = uD'Z the Hessian, and D
= diag(x |, X, ..., X), X being a feasible point to problem BAP.

The solution of BQP gives d = x - i D2(c — ATL), where M\ is the solution to the
normal equations AD2AT) = AD?c, and the barrier parameter is chosen as | = xID(c -
ATK), [Fletcher, (1986)]. Vector d is a descent direction as the Hessian is positive definite
when x > 0. Thus, a step of length o along d results in point y = x + o.d such that,
®(y)<P(x). Hence, an alternative process can be constructed. Gill, et al., (1985) showed

that the projected Newton barrier method, for some parameter |1, generates a path parallel to

25

that followed by the projective algorithm. For pt = 0 the barrier method is similar to the linear
rescaling algorithm of Vanderbei, et al., (1986).

It has often been noted in the literature that the barrier parameter [L serves as a
centring parameter, pulling the primal variables and dual slacks away from zero. Algorithms
for choosing an initial p® and reducing L at each step in order to assure polynomial
convergence of barrier methods were developed first for primal algorithms by Gonzaga,
(1987), and applied to the primal-dual algorithm by Monteiro and Adler (1989). Since these
algorithms reduce L by a very small multiple at each step, they are hopelessly slow in
practice.

In McShane, et. al., (1989), W is chosen by a formula based on the duality gap and
whether feasibility is obtained or not. Simply stated, [serves principally as a feasibility
parameter. Conceptually, the idea is that as |1 is allowed to increase, the search vector points
away from the boundary of the feasible region into the interior, and thus allows for greater

step-lengths o before the nonnegativity constraints restrict the step.

7

1.9 Recent Developments in Interior Point Algorithms

The practical use of the original Karmarkar algorithm is made difficult by the
assumptions required but, also, by the need for accurate computation and the use of a
constant step-length throughout the algorithm. In later years, strategies which relax these
assumptions were developed. Linear transformations, [Kortanek & Shi, (1987); Vanderbei,
et al., (1986)], in other words different scaling, were also investigated. More classical
interior point methods, such as Newton methods, [De Ghellinck & Vial, (1986)], and barrier
methods, [Gill, et al., (1985)], which were originally intended for non-linear optimization
were also developed. Finally, procedures for improving the rate of convergence of interior
point methods (projective and affine scaling algorithms) for linear programming were
proposed, [Kovacevic-Vujcic, (1991)]. For a very good survey of search directions used in

interior point methods the reader is referred to Hertog and Ross, (1991).

26

A scaled potential algorithm was proposed by Anstreicher, (1989). An affine
potential reduction algorithm that simultaneously seeks feasibility and optimality and that is
closely related to that of Anstreicher was described by Todd, (1993). The new features of
this algorithm are that a two-dimensional programming problem is used to derive better
lower bounds and that the direction-finding subproblems used treat phase I and phase II of
the algorithm more symmetrically. The above projective methods that combine phase I and
phase II are among the methods discussed in the comparative paper of Todd and Wang,
(1993). The super-linear and quadratic convergence theory of the duality gap sequence of
these primal-dual interior-point methods is analysed and proved in Zhang and Tapia (1992).

An infeasible dual affine scaling method, which can be viewed as a dynamic "big-M"
method, was proposed by Andersen, [Andersen, (1993)]. In contrast to the "big-M"
method, this algorithm always finds a feasible point. This method, as well as the affine
scaling algorithm of Barnes, [Barnes, (1986)], and a variant of the dual projective algorithm,
[Karmarkar & Ramakrishnan, (1991)], will be described in detail in Chapter 4.

A primal-dual interior point algorithm for linear programming was introduced by
Megiddo, (1986), who used logarithmic barrier methods to solve the primal and dual
problems simultaneously. His method was first developed as an algorithm by Kojima,
Mizuno, and Yoshise in 1989. The basic primal-dual logarithmic barrier method has been
fully documented in McShane, et. al., (1989) and Choi, et. al., (1990). The algorithm
eliminates the inequality constraints by incorporating them in the objective function, using
the barrier approach. The search directions for both the next primal and dual iterates are
produced using Newton’s method applied on a system of linear equations. This system 1s the
first order necessary conditions for the Lagrangian of the logarithmic barrier function. A
detailed description of one of the latest implementations of the algorithm can be found in
Lustig, et. al., (1991).

The theoretical efficiency of solving a standard-form LP by solving a sequence of
shifted-barrier problems was examined in Freund, (1991). The advantage of using the
shifted-barrier approach is that a starting feasible solution is unnecessary and there is no need

for a phase-I-phase-1I approach to solving the linear program, either directly or through the

27

addition of an artificial variable. Furthermore, the algorithm can be initiated with a "warm
start", i.e., an initial guess of a primal solution that need not be feasible.

In Hertog, et al., (1992), the classical logarithmic barrier functions are combined
with the use of the Newton method. Line searches are performed along the Newton direction
with respect to the strictly convex logarithmic barrier function if the current estimate of the
solution is far away from the central trajectory. If the current point is sufficiently close to this
path, with respect to a certain metric, the barrier parameter is reduced.

For a survey of the most significant developments in the field of interior point

methods the reader is referred to Lustig, et al., (1994) and Todd, (1994).

1.10 Research Needs and Objectives

Much of the work done in LP over the past thirty years has been concerned with
improving existing simplex variants and developing new ones. It is only in the last decade
that polynomial time algorithms became a topic of wide interest. This interest stems from LP
being widely used on its own and as a building block in many optimization problems, such
as structured problems with decomposable constraint set.

The overall objective of the present research is to investigate some aspects of the
latest interior point methods, [Andersen, (1993); Barnes, (1986); Karmarkar &
Ramakrishnan, (1991)], such as the preponderance of least square techniques in their
efficient implementation and the use of preconditioners. Advanced preconditioning
techniques were, therefore, called upon to cut down the number of iteration steps required to
obtain a good approximation to the solution of the least square problem. A comparative study
of these preconditioners based on extensive experiments of randomly generated problems
was carried out and some conclusions about them were drawn. Sparsity is undoubtedly the
important issue in any efficient implementation of these algorithms. To study the influence of

sparsity over the performance of interior point algorithms the sparse option provided in

28

MATLAB was used. Experiments were carried out on randomly as well as on non-randomly
generated LP problems for different levels of density of the constraint matrix.

Structured LP problems constitute an important class to which much work has been
devoted in the frame of the simplex method leading to the design of elegant decomposition
algorithms such as the Dantzig-Wolf algorithm, Rosen’s partitioning algorithm, and others.
However, these algorithms never outclassed interior point or simplex methods. Thus, it
became necessary to consider the applicability of interior-point algorithms in conjunction
with some new decomposition principles.

In order to implement some of the latest decomposition algorithms, it became clear
there was a need to implement efficient quadratic programming solvers. Three algorithms,
based on different principles each, were implemented and tested on a wide range of
problems. For these tests randomly generated problems and problems obtained from text
books were used. The influence of sparsity for both the constraint matrix and the cost vector

over the performance of these three algorithms was also studied.

29

Chapter 2

Computation of the Projected Gradient

2.1 Introduction

After describing the latest work in the field of interior point methods, there remains
one major problem to face for their efficient implementation, namely the computation of the
search direction p. The present chapter, therefore, looks at the least squares (LSQ) problem
and finds out what is available that can be used in the implementation of these algorithms.

Very few implementations discussed in Chapter 1 do not involve solving a LSQ
problem when computing the projection matrix in the main step of the algorithm. It has been
argued, [Tomlin, (1985)], that the efficiency of the projective algorithm is limited by the
technology for solving LSQ problems. Efficient solution of the LSQ problem is, also,
relevant to the implementation of other interior-point algorithms considered in Chapter 4 and
to decomposition techniques considered in Chapter 6. Based on these arguments, it was
necessary to review some important results considering the LSQ problems and investigate

some techniques for improving their performance.
2.2 The Linear Least Squares Problem

The method of least squares is widely used in different fields of pure and
experimental science that require the solution of a system of linear equations. Areas in which

least squares arise include geodesy, photogrammetry, image enhancement, structural

analysis, data smoothing, and mathematical programming. In numerical analysis, least

30

squares is used as an "extension” to the well-known Gaussian Elimination for non-square
systems of linear equations.

The use of LSQ is credited to Gauss but there are references to it that go back a
thousand years ago, [Longley, (1984)]. Methods for LSQ problems predate computers,
although the development of efficient algorithms with sparsity and numerical stability

considerations are recent and are strongly linked to the availability of digital computers.

2.2.1 LSQ Problem and Normal Equations

The LSQ problem is to minimize the norm of the residual r = b — Ax of a system of

linear equations

Ax = b. (2.2.1)

Although any norm may be used, it is generally the Euclidean norm which is considered.

The LSQ problem is formulated as follows:

min_lIb — AxIi2 (2.2.2)

There is a strong relation between the LSQ problem and the normal equations. They are
naturally derived as follows.

The residual vector r must be orthogonal to the column space of A (or space of AT,
This condition is expressed as ATr = 0 or AT(b — Ax) = 0, which leads to the normal

equations ATAx = ATb. The cross-product ATA is a positive definite matrix.

31

2.2.2 Data Characteristics and Algorithm Performance

Many techniques are available to solve the LSQ problem. A successful method for
solving the LSQ problem should take into account the special characteristics these problems
may have.

The ill-conditioning of the matrix A is one of the crucial characteristics of a LSQ
problem because large-scale and ill-conditioned problems are difficult and expensive to
solve. Continuous research on that subject concludes that scaling and preconditioning of the
data are the most powerful methods for the solution of these problems. Despite the fact that
there is no standard way for scaling or preconditioning, methods achieve numerical stability
when these techniques are successfully used.

Sparsity is another characteristic that makes techniques for LSQ differ in their
numerical properties and execution time. When sparse matrices are considered special
preconditioners which preserve the sparsity of the original matrix are recommended.
Numerous heuristics based usually on reordering are available for the exploitation of
sparsity. In subsequent chapters, the relevance of sparsity considerations for the

implementation of interior point algorithms will be underlined.

2.2.3 Numerical Stability and Condition Number

Errors always occur as a result of an operation performed during computation with
finite precision. In subsequent calculations this error is usually increased and there are cases
in which errors grow so large that the computed result is totally inaccurate. A procedure
leading to such results is labelled numerically unstable. However, some problems are
inherently unstable or ill-conditioned, which may cause most of the procedures on such
problems to perform badly regardless of the precautions taken, [Krons;jo, (1987)].

To measure the instability of a solution and ill-conditioning of the corresponding

system of linear equations Ax = b , where A is square and non-singular, the term condition

32

number of the matrix A, k(A), is used. The condition number of a matrix is given by the
expression lIAILIA-LlI, where II-Il denotes the norm. As IITll = 1, for every subordinate norm,
and I = AA-1then 1 = T < HAILIA-TI = k(A). Thus k(A) = 1 for any matrix.

The condition number is a precise measure of linear system sensitivity and indicates
the maximum effect of perturbations in A and b on the exact solution of Ax = b. If k(A) is
"large", the exact solution may be substantially altered by even small changes in the data.
This is because the relative error in X can be k(A) times the relative error in A and b. A is
often said to be ill-conditioned or well-conditioned when k(A) is "large" or "small"
respectively.

The condition number of a matrix can be obtained in MATLAB with the function
COND. This function uses the singular value decomposition algorithm and defines the
condition number as the ratio between the largest and the smallest of the singular values of
the matrix, [Lindfield & Penny, (1995)].

In the chapter that follows the effect of the condition number on the convergence of
the conjugate gradient method is studied. This is achieved with the use of the SPRANDSYM
procedure of MATLAB that generates symmetric sparse matrices of random entries and

given condition number.

2.2.4 Scaling and Preconditioning

The manipulation of a matrix in such a way that all entries are about 1 is called
scaling. Scaling is not always feasible and there is no automatic way that satisfactorily scales
any matrix. Scaling is usually done by multiplying the rows or columns of a matrix by a
constant and aims to make the variables of the scaled problem have the same magnitude and
order unity in the solution region. When scaling 1s used the scaling factors must be stored
and be used to restore the original scaling before the final results are obtained.

By preconditioning of the system Ax = b one means the multiplication of both the

sides of the equation by a suitable matrix Pre that will create an equivalent system A'y =

33

b', where A' = Pre*A and b' = Pre*b. Matrix Pre is chosen in such a way that the new
system is easier to solve than the original one. Preconditioning can be viewed as a way of
scaling which improves the condition of a matrix and a technique to accelerate convergence.
Among the techniques for LSQ, the iterative ones are the most dependent on
preconditioning, [Gill, et al., (1981)]. The use of several preconditioners with one of the
most popular method for solving the LSQ problem, namely the conjugate gradient method,

will be discussed in the next chapter.

2.2.5 Sparsity

Sparsity is often an important characteristic of large-scale matrices. A big percentage
of the entries of a sparse matrix are zero. Sparse matrixes arise in many problems of science
and engineering. Although it is difficult to exactly define a sparse matrix, a matrix is called
sparse when it is profitable to exploit its zeros, [George & Liu, (1981)]. Exploiting the zero
elements of a matrix is justified if sparsity is of such an extent that this feature can be
practically utilized to reduce the computational time and storage facilities required for
operations used on such matrices, [Lindfield & Penny, (1995)]

By exploiting the sparsity of a matrix one reduces the storage requirements of
procedures for matrix computations. The actual technical details involving memory locations
can be found in Tewarson, (1973) and De Buchet, (1971). Matrix operations involving
sparse matrices are also less CPU time consuming. This is justified by the redundancy of the
following operations.

If a is non-zero, then: 0.a=0,0+a=2a,0/a=0,0.0=0,0+0=0.

In operations involving sparse matrices the above calculations are not performed as the
results are known in advance. The big percentage of zero entries in a sparse matrix allows
savings in storage space since only the non-zero entries are required in forming the product

of A with an arbitrary vector or matrix of appropriate dimension. In other words, the non-

34

zero elements of a sparse matrix A are not stored explicitly but they are reproduced every
time the matrix is used.

Using sparse data structure a matrix is represented in space proportional to the
number of non-zeros entries only instead of the total number of the elements of the matrix.
Sparse data structure effects also in matrix operations to compute results in time proportional
to the number of arithmetic operations on non-zeros, [Gilbert, et al., (1992)]

One of the main problems in solving sparse systems is that when the matrix is
factored, it suffers fill-in, i.e., non-zeros are created as a consequence of the factorization.
Thus, sparsity tends to be destroyed. In the case of normal equations, for example, the
Cholesky factor L has more non-zeros than the lower part of ATA. However, it has been
observed that a judicious reordering of the matrix rows and columns can dramatically reduce
fill-in. Such a reordering is practically embodied in a permutation matrix, which is defined as
follows.

A permutation matrix P is a square matrix whose columns are some permutation of
those of the identity matrix. Matrix P is orthogonal, i.c., P-1 = PT and PTP = 1.

To preserve the desirable characteristic of symmetry in a matrix only data reorderings
of the form PAPT are considered. Row permutations (A ¢~ PA) or column permutations
(A < AP) alone destroy symmetry. A permutation update of the form (A < APA) is
called a symmetric permutation of A. Symmetric permutations do not move off-diagonal
elements to the diagonal, [Golub & Van Loan, (1983)].

The software used for the implementation of all the algorithms described in the
following chapters, MATLAB ver. 4.2, allows computations with matrices in both dense
and sparse formats. Dense matrices are the default option. Sparse matrices are declared with
the use of the SPARSE function. Special sparse matrices like the identity matrix and matrices
of given density can also be generated in MATLAB. Using the SPARSE option of
MATLAB, the effect that sparse matrices have on the execution time of algorithms for linear

and quadratic programming was studied in the following chapters.

35

Sparse matrix technology was founded by Ralph Willoughby of 1.B.M. in the
1960's, [Duff, (1986)]. Since then, it has dominated the design of efficient software in

numerical computations of large systems.

2.2.6 Solving the Least Square Problem

As mentioned earlier, there are many techniques for solving LSQ problems. The
choice of a technique may be determined by two main criteria: numerical stability and
sparsity exploitation (i.e., cost). Unfortunately, no single technique completely fulfils these
criteria, as problems differ widely in the condition of their data and their sizes. For small
scale problems, even when they are ill-conditioned, most techniques can be successfully
applied. However, when the problems are large, the choice of a suitable technique becomes
crucial.

Techniques for LSQ problems may be divided into two main categories:

- Direct

- [terative

2.2.6.1 Direct Methods

a) Cholesky Factorization Technique

The Cholesky method is a technique to solve the system Ax = b, where A is a
symmetric positive definite (SPD) matrix. A triangular factorization of A is obtained such
that A = LTL, where L is a lower triangular matrix (see Appendix A for computation details
of L). Because of the symmetric positive definite characteristic of A, the above factorization
exists and moreover is stable to compute, [Golub & Van Loan, (1983)]. The system at hand

may be written as:

36

LTLx = b.
Put ILx =y,
and solve LTy =b

by a forward substitution. Then solve LLx =y by a backward substitution to obtain X.
The algorithmic form of the Cholesky method applied to Ax = b, with ordering

brought into consideration, is given below, [Heath, (1984)].
Algorithm 2.0

Step 1. Find a permutation matrix P.

Step 2. Factorize PTATAP to find a sparse Cholesky factor L.
Step 3. Solve LTz = PTATh.

Step 4. Solve Ly = z.

Step 5. Restore original order: x = Py.

Speed is the main advantage of the Cholesky method, [Saunders, (1994)]. On the
other hand, forming the cross-product ATA destroys the sparsity of the original problem and
produces a matrix which condition number 1s the square of that of A. The latter is crucial for
problems in which A 1s already poorly conditioned. Accurate solution to such LSQ problems

may be difficult to achieve, if not impossible.

b) Orthogonal Methods

An orthogonal matrix Q is one which satisfies the relation QTQ = I. Using
orthogonal matrices the Cholesky factor R of a matrix A can be computed avoiding the
explicit formation of the cross-product ATA. Matrices A and b are reduced into the

following forms:

Qa =[] anaob=[5]. (2.2.3)

where ¢ is of order n, and d of order (m—n) and R is triangular (nxn)-matrix.

37

Based on the property of Q, it can be written

ATA = ATIA = ATQTQA = [RT 0][§] = RTR.

This shows that R is the Cholesky factor of ATA.

Three main methods are available for computing the reductions (2.2.3):

- Gram-Schmidt Orthogonalization, [Longley, (1984)]

- Givens Rotations, [Golub & Van Loan, (1983)]

- Householder Reflections, [Kronsjo, (1987)]
The main disadvantage of these three methods is that they do not preserve sparsity. In other
words, even if A and R are sparse, it is unlikely that the orthogonal matrix Q will be

particularly sparse.

2.2.6.2 Iterative Methods

In many situations iterative methods may be preferred over direct methods for one or
more reasons. Iterative methods may be good alternatives to direct methods for some large-
scale sparse LSQ problems. One of their advantages (and that of all iterative processes for
any class of problems, like the projective algorithm itself) is the possibility of stopping the
iterative process when an approximate solution to the problem at hand is reached. This,
obviously, is not possible with direct methods. Another advantage is also the difficulty of
obtaining an accurate solution with direct methods for some problems. In this respect,
iterative methods are more suitable, as accuracy may be monitored. Finally, iterative methods
usually need less memory requirements and are in general easier to program and to adapt to
different types of problems, [Van der Vorst & Dekker, (1988)].

Consider the system of N linear equations (2.2.1), where b is a known vector, x is
the unknown solution, and A 1s a (usually sparse) N X N matrix. An iterative method

generates, given an initial approximation x(0) to x, a sequence x(1), x(2),..., which will

38

hopefully converge to the solution x. It can be assumed that x(0) is the zero-vector. This is

not a restriction, as (2.2.1) could be rewritten as
A(x-x0)=p- Ax(0) (2.2.4)

and instead of (2.2.1) the solution of (2.2.4) might be considered.

A simple iterative technique consists of a Richardson-iteration , Varga, (1962)
x(n+D) = (T - A) x(n) 4 b, (2.2.5)

from which it is easily seen that x(n+1) is a linear combination of the vectors: b, Ab,...,

A"b

Definition 2.1 The space spanned by the vectors b, Ab,..., A?b is called the Krylov
subspace K(n+D(A;b).

Most iterative methods have in common that they select as iterates vectors from the
Krylov space K(M(A;b) for n = 1, 2, ..., but they differ in the choice of the selection
criteria. For example, one could choose the vector x(n+1) ¢ K(n+1)(A:b) such that the

residual
r(n+l) = p = Ax(n+1)

is minimized in Euclidean norm. The drawback is, however, that the computation of the
residual requires an additional matrix-vector multiplication. For some special class of

systems, this drawback can be circumvented by minimizing in a different norm.

a) Conjugate Gradient Methods

Conjugate gradient methods are popular because of their robustness and stability for
large problems. They are called upon to replace direct methods, when these are not viable
because of the size or density of the problems matrices. Conjugate gradient methods refer to

a wide class of optimization algorithms which generate search directions without storing a

39

matrix, [Gill, et al., (1984)]. There are two types of conjugate gradient methods: the linear
and the non-linear methods. For the purpose of this research, linear conjugate gradient
methods were considered.

Originally, conjugate gradient methods were designed to solve, iteratively, positive
definite systems of linear equations. The iterative process uses the relation x(k+1) = x(k) 4

0P, Where o 1s a non-negative scalar called step-length, and py a vector direction of
search . The vector py is obtained as follows:
If the positive definite system to be solved is Qx = —c, the direction of search can be

computed as py,p = —(Qx&+D + ¢) + By py, with

_g,,,Qpk

By = k2
kapk

where gy = Qx(&) + ¢. The step-length oy is evaluated with the formula

81 1Pk
Ok == —p
kapk

In general, if one supposes that A is positive definite then its inverse A-1is also
positive definite. The minimization of the residual in the norm Il-llz-1, where IIxlio =V (Ax,X),

leads to the conjugate gradient, [Golub & Van Loan, (1983)], i.e. the iterate x(n+1D satisfies
I b — Ax(n+D) [[4-1< |l b — Ay lo-1, V y e KKk+D) (A;b),
or equivalently,

I x+D) _xfla<lly =xllg, Vye KE+D (A;b).

The rate of convergence of the conjugate gradient method i1s known to be dependent on the

distribution of the eigenvalues of the matrix A. Let A, and A,,;, be the largest and

smallest eigenvalue of the positive definite matrix A. Then, one would have ,approximately,

k
e 1= (12 28 A /ey) O 1

40

When the smallest (largest) eigenvalue lies isolated, the rate of convergence improves during
the iteration process, [Van der Sluis & Van der Vorst, (1986)]. The condition number
Cond(A) of A, which equals Ay / Amin, should, in general, be small in order to obtain
fast convergence. However, in many applications, e.g., the discretized Poisson equation, A
has a very large condition number. Consequently, it is important to modify equation (2.2.4),

multiplying with a suitable preconditioner Q-1, and solve the equation
Q-1Ax = Qb

instead. The condition number of Q-1A may be considerably less than A, / Amins

resulting in a significantly decreased number of iteration steps, at the cost of some additional
overhead in constructing and multiplying with Q-1. Later in this chapter a survey of several
preconditioners is given which may be of value for the equations that require solving.

The conjugate gradient method is not suitable for non-symmetric problems,

therefore, alternative methods that may be used in this case will be discussed next.

b) Solving the Normal Equations
One way to get around the difficulties caused by the unsymmetry of A consists in

first deriving the normal equation from (2.2.1)
ATAx = ATp (2.2.6)

and then solving this positive definite system using the conjugate gradient method.
However, the condition number of ATA is the square of the condition number of A, so one
might expect slow convergence and, in particular for ill-conditioned systems, round-off
errors may contaminate the result. The latter disadvantage is avoided in the LSQR method,

which is equivalent to (2.2.6) in exact arithmetic.
¢) LSQR Algorithm of Paige & Saunders

LSQR algorithm was designed to solve non-symmetrical systems of linear equations,

LSQ problems, and damped LSQ problems of the form:

41

minxl@) X - (3)’2 (2.2.7)

where A is a scalar. The algorithm was intended to solve large and sparse problems. It is
based on the algorithm of Golub and Kahan, cited by Paige and Saunders, (1982), to reduce
matrix A to a lower diagonal form. However, this algorithm is itself a variant of the Lanczos
process (or tridiagonalization) for symmetric matrices. The solution to (2.2.7) satisfies the

symmetric system
I A r b
AT 71 u:m’ (2.2.8)

where r = b — Ax. Note that (2.2.8) is a symmetric system. Hence, application of the

Lanczos process is possible and leads to the forms

T 1 Bk [tkﬂ]:[glel}
BT AT L Yk 0o
‘Fk}_{Uku 0]_[tk+1:|
x 7L 0V Yk I

where By is (k+1)xk and lower bidiagonal and yy is the solution of the damped least square

problem

HESH

Orthogonal transformations may then be used to reliably solve it.

2

The algorithm LSQR is analytically equivalent to conjugate gradient methods. It
generates a sequence of approximations {xk} such that the residual norm llrgllis
monotonically reduced. Paige and Saunders, (1982) claim that it is numerically more reliable
than the standard conjugate gradient methods, in various circumstances. The costs of the
method per iteration are nevertheless increased by a factor of two in comparison with an
iteration for (2.2.1), as two matrix-vector multiplications are now necessary.

Another disadvantage of the last two described methods can be that a preconditioning

for (2.2.6) and (2.2.7) could be more cumbersome than the one for (2.2.1) as these systems

42

are less sparse, especially in the case of (2.2.6). However, the methods are guaranteed to
converge anyhow (even in a finite number of iterations, neglecting round-off), so they might

be of value in situations where other methods that are cheaper per iteration step fail.

43

Chapter 3

Conjugate Gradient Methods and Preconditionining

3.1 Introduction

The computationally intensive step of most interior point algorithms is the solution of

a system of linear equations
Ax =b (3.1)

In the above system A is usually a symmetric and positive definite matrix of the form
ED2ET. Although implementations of direct methods, such as QR factorization of DET and
Cholesky factorization of ED2ET, can give good speed-ups on many real-world problems,
very large speed-up factors on very large problems require a specialized implementation of
the preconditioned conjugate gradient method, [Karmarkar & Ramakrishnan, (1991);
Ponnambalam, et al., (1992)].

In general, conjugate direction methods can be regarded as being intermediate
between the method of steepest descent and Newton’s method. They are motivated by the
desire to accelerate the typically slow convergence associated with steepest descent while
avoiding the information requirements associated with the evaluation, storage, and inversion
of the Hessian (or at least solution of a corresponding system of equations) as required by
Newton’s method.

In this chapter preconditioning techniques will be examined as a way to accelerate the
performance of the conjugate gradient algorithm for the solution of systems of linear

equations .

44

3.2 Conjugate Directions

Definition. Given a symmetric matrix A, two vectors dy and dy are said to be A-
orthogonal, or conjugate, with respect to A, if dedz =0.
In the applications considered for this research the matrix A will be positive definite, but this
is not inherent in the basic definition. Thus, if A =0, any two vectors are conjugate, while

if A =1, conjugacy is equivalent to the usual notion of orthogonality. A finite set of vectors

dg, d1,..., di is said to be a A-orthogonal set if d Adj = 0 for all i #J.

Proposition. If A is positive definite and the set of non-zero vectors dg, dy,..., dk

are A-orthogonal, then these vectors are linearly independent.

Proof. Suppose there are constants o, 1 = 0, 1, 2,..., k such that opdg+ ... +oxdk = 0.
Multiplying by A and taking the scalar product with d; yields OLidrirAdi = 0. Or, since

d; Ad;> O in view of the positive definiteness of A, the result is ¢ = 0.

3.3 The Conjugate Gradient Method

The conjugate gradient method (CGM) is obtained by selecting the successive
direction vector as a vector conjugate to the preceding vector for each step of the method.
Thus, the directions are not specified beforehand, but rather are determined sequentially at
each step of the iteration. At step k one evaluates the current negative gradient vector and
adds to it a linear combination of the previous direction vector to obtain a new conjugate
direction vector along which to move. There are two primary advantages to this method of
direction selection.

First, until the solution is reached, the gradient is always non-zero and linearly

independent of all previous direction vectors. Indeed, the gradient is orthogonal to the

45

SRR

subspace generated by the directions dg, dy,..., dx.1. When the solution is reached the
gradient vanishes and the process terminates.

Second, an important advantage of the conjugate gradient method is the especially
simple formula that is used to determine the new direction vector.

Finally, the conjugate gradient algorithm, when applied to a positive definite
quadratic problem, is guaranteed to converge in n or less steps. Since optimizing such a
problem is equivalent in solving a system of equations one can expect the same convergence

for the system Ax = b, if A is not ill-conditioned.

3.4 The Conjugate Gradient Algorithm

The conjugate gradient algorithm as an optimization process can be described as

follows:

Step 0. Set (a) xg=0; (b) rg=b; (c) k=0
Step 1.While ri # 0

(a) k =k +1

(b) if k = 1 then
P1 =19

else

Bx = rl o /e or
k=T Tk-1/ 1) 5Tk-2
Pk = Ik-1 + BkPk-1

1l

end

T T
()ag =1, _{ Ik.1/P APk
(d) Xk = Xk-1 + OkPk

(e) rk = rg.1 — CkApg
end, Step 2. x = xg

Each succeeding step moves in a direction that is a linear combination of the current
gradient and the preceding direction vector. The attractive feature of the algorithm is the
simple formulae used for updating the direction vector. The conjugate gradient method
requires only matrix-vector products to obtain the solution of a linear system of equations

whose matrix is symmetric and positive definite.

46

3.5 Preconditioned Conjugate Gradient Algorithm

It has been proved, [Golub & Van Loan, (1983)], that the conjugate gradient method
performs well on a system of linear equations Ax = b when A is near the identity, either in
the sense of a low rank perturbation or in the sense of norm. These properties can be
expressed as A =1 + B, rank(B) = s or norm(A —1I) < t, , where s and t are small
numbers. In this section, it i1s shown how to precondition a linear system so that the matrix
of coefficients assumes one of the above "nice" forms.

Since C-1AC-1Cx = C-1b, i.e. Ax=b = Ax=b, applying the algorithm to the
system Ax = b, where A = C-1AC-1, x = Cx, b = C-1b and C is symmetric positive
definite, as described in Golub and Van Loan, (1983), the following iteration is obtained.

Step 0. Set (a) k=0; (b)Xg =0; (c) rg = b
Step 1.While r # 0

(a)k=k+1
b)if k=1

p1 =T
else

T - -T -
Bk =1, _{Tk-1/ 1) 5Tk-2

Pk = Tk-1 + PkPk-1
end

(©) ok = Fy_(Tk1 / ppCTAC Ty

(d) Xk = Xk-1 + OkPKk
(e) Fx = ri.p — 0kC-TAC-1py
end, Step 2. X = Xk

In view of the remarks in § 2.2.6.2, C should be chosen so that A is well conditioned or a
matrix with clustered eigenvalues. The latter means that all eigenvalues lie in a small range
and the quotient of the maximum and the minimum eigenvalue 1s small, approaching one. In
the above algorithm Xy should be regarded as an approximation to X and ry is the residual in
the transformed coordinates, i.e., rx = b — Axy. Of course, once X is determined, then x is
obtained via the equation x = C-1x. However, it is possible to avoid explicit reference to the

matrix C-1 by defining px = CpK, Xk = Cxk and rx = C-lrk. To demonstrate, these

47

three definitions are substituted into the above algorithm. Recalling that b = C-1b and x =

Cx, the following is obtained

Step 0. Set (a) k = 0; (b) Cx; (c) Clry = C1b
Step 1.While CIr) # 0

(A)k=k+1
(byifk=1

Cp, =C'1r0
else

B =(CIr prctr /(e Tty

Cpy = Clry; +BCpy 4
end

(c) ay = (Clry T Ir) 7 (CppTCclactcpy)

(e) C-ll’k = C-lrk_l —ak(C-IAC-l)Cpk
end
Step 2. Cx = Cx;

Defining preconditioner M as M = C2 (also positive definite) and allowing zy to be the
solution of the system Mzy = rk, the above algorithm simplifies to Algorithm 3.1. Note that

Czk = C-Iry.

Algorithm 3.1 [Preconditioned Conjugate Gradients] Given a symmetric positive
definite, A € R™" and b € R", the following algorithm solves the linear system Ax = b
using the method of conjugate gradient with preconditioner M = C2 ¢ R

Step 0. Set (a) k = 0; (b) xy=0; (c)ry=b
Step 1.While ry # 0
(a) Solve Mz, =1y
b k=k+1
(c)ifk=1
P1=7%
else
T . T
By =121/ TaZi-2

Pk = 2.1 + ByPyx.1
end

T T
(d) oy =71y _1Zk.q /pkApk
(e) Xk = Xy.q + 0Py

() Ty = Iyq — O APy
end, Step 2.x = X}

48

where z,_1s the solution of the system Mz =r,.

A number of important observations should be made about this procedure:

e It can be shown that the residuals and search directions satisfy

o
J
T, ~- - .

p; (C TACDHp. =0 i#]j

M1 =0 P#]

e The denominators rg_zzk_2 = ZE_ZMZk_Z never vanish because M is positive definite.

* Although the transformed C figured heavily in the derivation of the algorithm, its action
is only felt through the preconditioner M = C2. The latter equation gives the indication
to keep C2 as "simple" as possible.

e For PCCGM to be an effective, sparse matrix technique, linear systems of the form Mz

= r must be easily solved and convergence must be rapid.

3.6 Variants of the Conjugate Gradient Method

Several implementations of the CGM are available as part of mathematical software
packages. Some of these implementations, such as LSQR, CGLS, LSCG, LSLQ, RRLS,
GRAIG, and RRLSQR, are described in Paige and Saunders, (1982). In the initial
description of the CGM the expression used for the computation of the step-size parameter
Bk was

ry Pk

By =

T .
Pr.1 Pk-1

One of the well known variants of CGM is that proposed by Fletcher-Reeves in

which By is computed as

49

T

I I‘k
k
By = - (Fletcher-Reeves)
k-1 Tk-1

The previous descriptions of the conjugate gradient algorithm are based on that formula. The
implementation of the CGM used to obtain the results reported in this chapter uses the same
formula even though, in our experience, only modest performance differences were
observed between the three variants.

Another important method is the Polak-Ribiera method, where

ry - Tr
By = (Polak-Ribiera)

T
Tk-1Tk-1

is used to determine f3.

Other variants of the CGM are the partial and the asymmetric version . In the partial
CGM, the conjugate gradient procedure is carried out for m + 1 < n steps (n is the number of
variables in the system of equations considered) and then, rather than continuing, the process
is restarted from the current point and m + 1, conjugate gradient steps are taken. The
asymmetric version is slightly more efficient than the symmetric one since it avoids m square
root operations.

In general, the conjugate gradient method is an efficient and fast solver for large
sparse systems of equations, if the condition number of the system solved is small. The
algorithm, for example, converges extremely quickly if A is of the form M — N, where
MTM =1 and N has low rank. If the system is ill-conditioned the number of iterations in
CGM will be too large and often convergence will not occur. In CGM, the CPU time
required is in the order of CGM iterations multiplied by O(n2). In order to overcome the ill-
conditioning and to reduce the number of CGM iterations and CPU time, the preconditioned
conjugate gradient method (PCCGM) 1s used, [Ponnambalam, et al., (1992)].

The choice of a good preconditioner can have a dramatic effect upon the rate of

convergence. Some of the possibilities will be discussed in the next section.

50

3.7 Preconditioning

In this section, the use of preconditioning is examined in terms of the reduction of the
number of iteration steps required to obtain a good approximation to the solution x of
equation Ax = b. The best preconditioner is given by the inverse of A. Then the solution is
attained in one iteration step. The amount of work to construct the inverse, however, could
be excessively high in practical circumstances. Consequently, preconditioning must be
regarded as the optimum between the cost of constructing and manipulating the
preconditioner and the acceleration of the iteration process. The three preconditioning
methods used in the tests of this chapter have proven valuable in the last decade. The first
method generates matrices which, when used as preconditioners before the conjugate
gradient algorithm is called to compute projections, keep the positive definite property of
matrix A. On the other hand, the last two methods are used in the actual process of the

conjugate gradient algorithm.

3.7.1 Scaling by the Diagonal of A

The simplest form of preconditioning is the scaling of the rows and columns of
matrix A, with e.g. the intention of obtaining a unit diagonal , rows, or columns of equal
norm, or, in special cases, a symmetric system. The scaling by the diagonal of A is in some
respects optimal, since it approximately minimizes the condition number of DA among all
diagonal scalings, [Van der Sluis, (1969)]. Scaling by the diagonal of A also has the
advantage of reducing the number of multiplications within an iteration step, [Meyerink &

Van der Vorst, (1977)].

51

3.7.2 Incomplete LLT (Cholesky) Factorization for Positive

Definite Matrices

A method for the solution of Ax =b is obtained using the Cholesky decomposition
A = LDL"

where L is a lower triangular matrix with unit diagonal elements. If A is a large sparse
matrix, this decomposition has a drawback, because, in general, L. does not reflect the
sparsity of A, unless the minimum degree ordering procedure is used. The use of the
minimum degree ordering procedure is proved to reduce not only "fill-in" but also the CPU
time and the number of floating point operations required for computations with sparse
matrices, [Lindfield & Penny, (1995)]. It is observed, however, that the entries of L
corresponding to the zero values of A are usually small. Hence, putting these entries equal to

zero may yield a reasonable approximation of A,
A + R =LDLT,

where |IRIl is hopefully small compared to llAll and L' is a matrix with near zero entries set
to zero.

In the incomplete factorization methods, elements of L are replaced by zero during
the factorization process (see Appendix B for computation details of L.). There is a choice,
then, to allow for some fill-in. For example, if A is a sparse structured band matrix
originating from the discretized Poisson equation, one could allow for the fill-in of s extra
diagonals in L, leading to the IC(s) method, [Meyerink & Van der Vorst, (1977); Meyerink
& Van der Vorst, (1981)]. Of course, IC(s) with s > 0 will yield a better approximation of A
than IC(0) at the cost of increased storage and computation time. Meyerink and Van der
Vorst proved these factorization processes do not break down in quite general circumstances.
The main advantage of using incomplete Cholesky factors for preconditioning is that these
factors preserve the sparsity structure of the original constraint matrix. This is very crucial

when the constraint matrix is large but relatively sparse. Such matrices arise often in large-

52

scale linear programming and, particularly, in implementations of interior point algorithms
for large multicommodity network flow problems, [Setiono, (1990)]. In the following
sections, the experimental results from the implementation of two different variants of
incomplete Cholesky factors, [Golub & Van Loan (1983); Setiono, (1990)], will be
reported.

The difference between the two variants lies only in the way the incomplete Cholesky
factor 1s defined. In the Van Loan variant the diagonal elements of the factorization matrix are
simply the square root of the diagonal elements ot A. Setiono defines the same elements by

the formula

il
2 .
L = Ly - ZL(ik) , i=1,2,.,n

The above definition affects all the entries of the incomplete Cholesky factor because, in the
computation process, the off-diagonal elements are obtained as a function of the diagonal

entries of the matrix.

3.7.3 Other Preconditioners

When one is willing to spend more computational effort in the construction of the
preconditioner, other methods can also be considered. For example, incomplete block
factorization, [Axelsson & Lindskog, (1986); Concus, et al., (1985)], line relaxation
methods, and alternating direction methods, [Varga, (1962)]. In these methods, a (simple)
implicit system must be solved in each iteration step. |

The last preconditioner for the CG method mentioned in this section is that of scaling
the rows and columns of matrix A by a diagonal matrix with entries formed from the two-
norm of the rows of A, [Kortanek, (1993)]. The preconditioner was implemented by
Kortanek in FORTRAN code and run under the vector super computer CRAY, solving LP

problems by the primal affine scaling algorithm. This preconditioning method combined with

53

a conjugate gradient-based implementation was reported to give good results for ill-
conditioned problems which had up to 7700 equations and as many as 9000 variables.
However, in the limited experiments performed for this study Kortanek preconditioner did

not seem to pay for itself compared to the diagonal preconditioner.

3.8 Computational Experience

This section will report some numerical results on the performance of the
preconditioned conjugate gradient method on a set of randomly generated problems. Both
simple (diagonal) and more complicated preconditioners (incomplete Cholesky) were
implemented and tested in the experiments performed for this chapter, so one has a clear
comparison of the performance of the PCCGM regarding CPU time, floating point
operations, number of iterations, and solution accuracy. The tests were carried out in
MATLAB ver. 4.2 on a networked SUN SPARC workstation.

For purposes of comparison, the number of floating point operations recorded was
obtained by the function FLOPS of MATLAB. A disadvantage exists in the use of FLOPS as
a performance criterion; this function, which totals the number of floating point operations
performed, does not distinguish between the type of operations performed. Therefore, an
algorithm that has more additions and subtractions than multiplications and divisions will
perform quicker than a method where the latter operations are prevalent.

To record the execution time for each preconditioner, the time functions ETIME,
CPUTIME, and TIC-TOC were used. These functions, as with all computer timing
functions, are not accurate. The results obtained can differ from one run of the same problem
to the next and may not settle until a third or fourth run of the problem has been executed.
Another thing affecting the accuracy of the timing results is the networked computer. As all
the methods were tested on a networked computer, processing speed varied and was
dependent on the workload on the network at those given times. For these reasons, the

number of floating point operations have been provided instead of the timing results.

54

3.8.1 Dense and Sparse Matrices

When a matrix has only a few non-zero entries, then it is convenient to declare that
matrix as a sparse one. Declaring and treating a matrix as sparse results in the matrix not
being stored as a whole, but being built from the non-zero elements and their indexes every
time it 1s used. Additionally, no operations with the zero entries of the matrix are then
performed. MATLAB has such an option as a built-in function (SPARSE) which converts
full matrices to sparse or generates sparse matrices using various arguments. To observe the
effect of sparsity on the conjugate gradient method and on different preconditioners
experiments were performed with both the SPARSE option on and off for three levels of
density and five condition numbers for the A matrix. The chosen densities were 12%, 20%,
and 50%. In the following table, some of the results for density equal to 20% and condition

number equal to 100 are presented.

Size Storage Setiono Van Loan Diagonal No
No Variables| Dense/Sparse | Iter/Flops Iter/Flops Iter/Flops Iter/Flops
10 Sparse 1/0.62E3 | 5/1.78E3 | 9/3.19E3 | 10/3.30E3
10 Dense 1/3.79E3 | 3/5.45E3 | 10/16.5E3 | 10/6.12E3
30 Sparse 9/3.12E4 | 12/2.93E4 | 30/4.32E4 | 29/4.05E4
30 Dense 46/89E4 12/23E4 30/39E4 29/12E4
80 Sparse 37/1.60E6 | 28/1.03E6 | 52/0.35E6 | 40/0.26E6
80 Dense | 128/30.8E6| 24/6.1E6 | 49/6.4E6 | 43/1.1E6
100 Sparse 59/5.05E6 | 29/2.23E6 | 65/0.66E6 | 42/0.42E6
100 Dense 173/76.4E6| 27/12.7TE6 | 61/1.2E6 | 44/1.8E6

Table 3.1 Comparative Results For Sparse and Dense Problems

As one can conclude studying the results recorded in Table 3.1, working with sparse
matrices gives savings from 85% to 328% when no preconditioner is used. The savings for
the Setiono variant, the diagonal, and the Van Loan variant preconditioners are from 511% to

1400%, 417% to 1728%, and 206% to 684%, respectively. Savings on floating point

55

operations performed depend, as expected, on the level of sparsity and the size of the matrix.
The larger and more sparse the matrix is, the greater the savings. One can expect the same
savings on the CPU-time required by each preconditioning technique. The timing results
achieved, even though not so valuable in terms of accuracy for the reasons mentioned earlier,
confirm this. All sparse matrices used in the experiments were generated by the
SPRANDSYM function of MATLAB which generates sparse, symmetric, positive definite
matrices. The density and condition number of these matrices can be specified by the user.
To make sure a fair comparison between the two storage strategies was established, the same
matrices were used for the tests with the sparse option off. The full-storage matrices are

obtained from the sparse ones by converting them using the FULL function of MATLAB.

3.8.2 Preconditioners and Sparsity

To study the effect of sparsity on the chosen preconditioning techniques, it was
necessary to test them on matrices with different levels of density. All matrices are sparse
and are generated as in the previous section. Tables 3.2 and 3.3 pertain to matrices with

condition number equal to 100 and size 50 and 100, respectively.

Density| Setiono Van Loan Diagonal No
Iter/Flops Iter/Flops Iter/Flops Iter/Flops
12% | 6/4.17E4 | 20/8.75E4|33/7.82E4 | 35/8.06E4
20% |53/6.24E5| 19/1.84E5|35/1.12E5| 34/1.05E5
50% |139/5.35E6| 37/2.38E5|37/2.38E5|34/2.11ES

Table 3.2 Comparative Results for a Matrix of Size 50

56

Density Setiono Van Loan Diagonal No
Iter/Flops Iter/Flops Iter/Flops Iter/Flops
12% | 38/1.55E6 |25/8.73E5| 56/3.96E5 |42/2.91E5
20% | 63/46.87ES5 [33/21.56E5| 57/5.80E5 | 40/3.98E5
50% |143/37.89E6|35/8.70E6| 61/1.33E6|43/0.91E6

Table 3.3 Comparative Results for a Matrix of Size 100

From the experience gathered and from studying the results in the above two tables,

the following observations are apparent

* For very sparse systems (12%), the technique based on the Setiono variant of the
incomplete Cholesky preconditioner stands out as the clear winner. The results are very
accurate and the error is less than 10-9.

e For less sparse matrices, the Van Loan variant preconditioning method outperforms the
Setiono, again providing very accurate results.

e The preconditioner technique based on the diagonal of the matrix 1s cheaper, but along
with the standard conjugate gradient method, gives less accurate results. The error

pertaining to the last two columns in the tables is 10-4.

3.8.3 Preconditioners and Condition Numbers

Ill-conditioned problems are hard to solve. Preconditioning techniques alter the
condition number of a matrix in order to first solve the problem and, then, to reduce the
number of iterations required by the algorithm. Tests were performed to study the behaviour
of the preconditioners on sparse matrices with different condition numbers. Table 3.4

pertains to matrix of size 30 and density 12%.

57

Condition No| Setiono Van Loan Diagonal No
Iter/Flops Iter/Flops Iter/Flops Iter/Flops
10E2 4/0.1ES |11/0.16E5|25/0.29E5|29/0.33ES5
10ES 3/0.08ES | 12/0.18E5 | 72/0.84E5 | 50/0.58E5
10E8 3/0.07ES5 | 16/0.21E5 ok ok
10E11 19/0.38E5121/0.30E5 ok ok
10E14 31/0.64E5|20/0.29E5 ok ok

Table 3.4 Comparative Results for Matrices of Different

Condition Number

As can be seen in Table 3.4, the standard (unpreconditioned) conjugate gradient method,
along with the diagonal preconditioner, fails to obtain an accurate solution when the matrices
have a condition number greater than 10°. Even for smaller condition numbers, more
sophisticated preconditioners (variants of the incomplete Cholesky factorization) need less
iterations, less floating point operations, and, according to the test results, give more
accurate solutions. In tests with matrices of bigger sizes (50, 80, 100) the Van Loan variant
technique was found to outperform the Setiono version. The latter needs more than 1000

iterations to converge for matrices with condition number 10> or greater.

3.9 Conclusions

In this chapter three different preconditioners were considered which were used in
the implementation of the conjugate gradient method. The variants were tested, on randomly
generated systems of linear equations, taking sparsity into account.

From the numerical results presented in this chapter and the experience garnered,
some interesting aspects of the preconditioning techniques tested can be highlighted.

» Both the Setiono and the Van Loan techniques give very accurate results but they are

expensive in CPU time and floating point operations.

58

For ill-conditioned problems with a condition number greater than 10, only the Setiono
and the Van Loan techniques converge to accurate solutions.

When sparse matrices are considered with density less than 15%, the Setiono variant is
very attractive. The factorization pays for itself and the number of flops is usually less
than any other variant.

If the matrices are ill-conditioned and denser, the Van Loan technique performs better
than the Setiono variant.

The diagonal preconditioner demands the least CPU time but, appears to perform very
poorly as far as accuracy 1s concerned.

As the results of the tests show, preconditioners can, at times, reduce the iteration count
significantly and reduce the execution time less frequently.

The use of preconditioners is justified only in sparse problems or in systems where the

standard conjugate gradient method fails due to ill-conditioning.

59

Chapter 4

Interior Point Methods for Linear Programming

4.1 Introduction

After ten years of development in both interior point and simplex methods, the
mathematical community is now at a point at which both approaches can handle problems
that seemed intractable before. Interior point methods seem to be superior to simplex
algorithms for many large-scale, sparse, linear programming problems, [Todd, (1994)]. For
a good survey of the significant developments in the field of interior point methods for linear
programming the reader is referred to Lustig, et al., (1994).

The present chapter is concerned with studying recent interior point methods which
introduce considerable new developments in the field of linear programming. The
performance of this selection of algorithms on a range of sparse and ill-conditioned problems
is also analysed.

The described algorithms are based on interior point methods but new ideas are
introduced to improve their performance. The new mathematical technique of the reciprocals,
[Karmarkar & Ramakrishnan, (1991)], is combined with the basic idea of the projective
algorithm of Karmarkar, [Karmarkar, (1984)]. The primal-dual logarithmic barrier method,
[Kojima, et al., (1989); Megiddo, (1989)], was developed into the predictor corrector
algorithm, [Mehrotra, (1992)]. Finally, the affine scaling algorithm, [Adler, et al., (1989);
Barnes, (1986); Vanderbei, et al., (1986)], was modified to solve problems without interior

points, [Andersen, (1993)].

60

4.2 A Dual Variant of the Karmarkar Algorithm

The first of the algorithms described in this chapter is a variant of the projective
algorithm, [Karmarkar, (1984)], applied to the dual of the LP. Asymptotically, the variant
becomes identical to the Karmarkar dual projective algorithm, [Karmarkar & Ramakrishnan,
(1991)]. The direction finding step of the variant of the dual projective algorithm consists of
two major steps.

Step 1. Perform an affine scaling transformation and take the projected steepest
ascent step.

Step 2. Apply the reciprocal estimates to obtain a primal estimate for the current dual
iterate, and take a step in the dual space to improve the primal estimate.

The effect of Step 2 is to move the iterate closer to the central trajectory. The central
trajectory is defined as a locus of points where the gradient of the objective function and the
gradient of the logarithmic potential function, F(s) = iln(si), where s; are slack variables in

i=1
the dual, are parallel to each other, [Bayer, (1989)]. The theory of the reciprocal estimates
states that, on the central trajectory, the reciprocals of the slack variables are, up to a scaling
constant, feasible primal estimates. Thus, improving the primal estimates has the effect of
moving the iterates closer to the central trajectory. Barnes, et al., (1988) adopted a strategy
of repeated centring combined with affine scaling, and proved the convergence of such a
method.

The algorithm consists of two phases. In Phase 1, the dual phase, the dual of the LP
problem is solved. In Phase 2, a primal solution is obtained, starting with the estimate from
the converged dual solution. At the end of the execution of both phases, a primal-dual pair
with a small relative duality gap is obtained.

The reciprocal estimate method used in the algorithm is a new mathematical technique
for estimating the primal variables, [Adler, (1989)]. Consider the LP problem is given in
standard equality form without upper bounds. Let (y*,s*) be a point on the central

trajectory in the dual polytope. The level set of the dual objective function containing y* is

61

defined by bTy = bTy*, On this central trajectory, the optimality condition for the potential

function states that Ag* is parallel to b; i.e.,

Ag* = kb
where,
" 1
BT = g

This implies that the reciprocals of slacks are, up to a scale constant factor k, feasible
solutions to the primal problem.

A similar derivation to the above applies to the primal problem with upper bounds.
Although one is not necessarily on the central trajectory at the termination of the dual
algorithm, the vector of reciprocals of slacks can still be used as a good starting point for the
primal feasibility algorithm, since one can scale this vector by a scalar, o, to account for not
being exactly on the central trajectory. Consider now that there is a strictly interior dual
feasible solution at hand. This is true after the dual phase of Algorithm A terminates. At this
point the reciprocal estimate algorithm, Algorithm B, can be called to estimate the primal
variables. A detailed description of both Algorithms A and B can be found in Appendix C.

Algorithm B consists of two phases. In the first phase, an initial primal solution, x0,
is evaluated using the reciprocal estimates. In the second phase, this solution is made feasible
using an iterative refinement algorithm. The initial estimate of vector x is composed as a
linear combination of two vectors X and ox', where x' is the vector of reciprocal of slacks.
Vector X is composed from the lower and upper bounds of the problem depending on the
values of the slack variables of the dual problem. The linear combination X + ox', where ©
is chosen so as to make xY¥ as close to b as possible, determines whether the primal estimate
for variable x; should be G/s1j or u—G/szj, where u is an upper bound of the solution
vector. This decision is based on which of the reciprocal is smaller. To ensure that x9
satisfies the bounds 0 < x < u an upper bound of ¢ is given, which is then appropriately
adjusted.

After Algorithm B terminates, it provides a pair of dual feasible and primal feasible
solutions. For this pair of solutions, the relative duality gap is smaller than a prescribed small

number €.

62

A key feature of the algorithm is that a preconditioned conjugate gradient method is
used although Karmarkar and Ramakrishnan do not provide any precise form of the

preconditioner used in their experiments in their paper.

4.3 An Affine Scaling Algorithm and the Big-M Method

As mentioned in Chapter 1, the affine scaling algorithm was originally proposed by
Dikin as early as in 1967 and later rediscovered by Vanderbeli, et al., (1986).
Barnes, (1986) considered the LP problem in its standard form and its dual. Given

a feasible point y to the primal and a scalar 0 < ® < 1, Barnes showed that the ellipsoid

n
> (xi-y2yi2 <
i1

lies in the positive orthant. Solving the problem

Min c¢Tx

s.t. Ax=Db

n

> (xi—ypHyi2 <o
=1

x 20

leads to a point x such that ¢Tx < ¢Ty. An iterative process is then constructed as follows.

If x(0) >0 and Ax(®) = b, then after iteration k where x() is calculated, set D =

diag(x}k)),j =1, ..., n and find x(&+1 > 0 from the relation

Dy (c - AThy)
IDk(e = ATRI

K (k+1) = x(K) _ o

where A = (ADJAT)TAD ¢ is a dual feasible solution.

As described above, the algorithm must start with an interior feasible point. In order
to satisfy that requirement one must add a new column ay4j to the constraint matrix A and

n
an extra corresponding variable x4 to x. If it is defined ap41 = b — Yaj the constraints
i=1

63

n+1
Ax = Yaixj=b, x > 0 are satisfied by the vector x = (1, 1, ..., 1)T € En+!_If one then
i=1
adds a large positive component ¢4 corresponding to X4 to ¢, the optimum solution to
the constructed problem will have x4 = 0 and the variables (x1, x2,..., Xp) will then form
the solution to the original problem. To ensure convergence to the optimal solution of the

original problem, ¢4 must be equal to a sufficiently large number M so that x1+! — 0,

hence the name big-M.

4.4 An Infeasible Dual Affine Scaling Approach

Another algorithm based on affine scaling will be described in this section. The
method can be viewed as dynamic a "big-M" method but it actually never calculates the "big-
M", [Andersen, (1993)]. The main advantage of the algorithm is that in contrast to the "big-
M" method, this approach always finds a feasible point, even for problems without interior
points.

The proposed dual for a LP in standard form 1s

Max (bTy - My,,)

5.t [AOT :ﬂ 21+, 1=16] (4.4.1)

where y,; measures the infeasibility of the current dual point, hence the name infeasible dual
method. If y, = O then y is feasible and the algorithm is equivalent to the big-M method. The

corresponding primal problem to problem (4.4.1) 1s

Min ¢Tx
5.t. [_/:T _OIMX:H] -] (4.4.2)

x20,xp4120

For this problem —eTx — X441 = -M or, since xp41 =0, M > eTx. The algorithm for the

above pair of primal-dual formulation is as follows:

64

Step 0. Setk =0
Step 1. While optimality_criterion = False

(a) sk = ¢ - ATyk 4 y];re;

(b) Ayar = -C(y")%

() Ay = (ASPAT) 1(b + Ay, AS;7e);

(d) xk = S;{Z(AAy — Ayare);

(e) As = —(ATAy - Ayyee);

(f) if (As =2 0 and As # 0) return unbounded; end
g) o= min{—s!‘/Asi | Asi < 0,1=1,..., n};

(h) yk+1 = yk + doAy;

@y =yE + hodyars

¢ if yS <0sety =0

kK k=k+1;
end

where Sk = diag(si, $2, ..., sp) and 0 < A < 1. The key property of the algorithm is that
k

X
n+l

= C > 0 is kept fixed, instead of M. In each iteration M is set dynamically in such a way
that M > eTx is satisfied.
The direction for this algorithm is given by the equations
- 24 Ty-1 “2AT)-1A 872

Ay = (AS."A1)1b + Ay, (AS,"AT)1AS, e

Ayar = (M + eTSZATAY)/(57, | 4TS %)
and is a linear combination of the feasibility direction (AS{(ZA T)'IASl'(Ze and the steepest
ascent direction for the problem without the artificial variable y,;. The algorithm avoids
possible numeric instability that may be caused by a large M by setting Ay, before the

calculation of Ay.

4.5 The Predictor Corrector Method

The last of the interior point methods described in the present chapter can be viewed

as a relaxation of the well-known primal-dual method, [Lustig, (1991)]. A minor variant of

65

the algorithm as described in this section is the current algorithm implemented in OB 1, one
of the most sophisticated implementations of interior point methods, [Todd, (1994)].
Consider a linear program in standard form and its dual. The predictor corrector
method can be derived directly by applying the logarithmic barrier method to the dual of the
problem
n
Max bTy +u Ylnz;
s.t. ATy + zjz_lc,
where z are slack variables and 1 > 0.
The Lagrangian of this problem is
Lx,y,z n) =bTy +u i}nzj' -xT(ATy 4+ z - ¢). (4.5.1)
j=
The first order optimality conditions for (4.5.1) are
XZe = le
Ax = b (4.5.2)
ATy +z=¢
where X and Z are diagonal matrices whose diagonal elements are the variables xj and z;
respectively. By substituting x +AX, y + Ay, and z + Az in (4.5.2), it 1s desirable that the

new estimates satisfy

(X + AX)(Z + AZ)e = e,
Ax + Ax) = b, (4.5.3)
AT(y + Ay) +z + Az = c.

Collecting terms gives the system

XAz + ZAx = pe — XZe — AXAZe, (4.5.4a)
AAx = b - Ax, (4.5.4b)
ATAy + Az =c - ATy — 2. (4.5.4c¢)

One can notice that (4.5.4) is similar to (4.5.2) with the exception of the non-linear term
AXAZe in (4.5.4). Mehrotra, (1992) proposed first solving, for current values of x and z,

the affine system (4.5.5), which is linear for Ax', Ay', Az,

66

XAz' + ZAXx' = -XZe,
AAX' = b - Ax, (4.5.5)
ATAY + Az' = ¢ - AT -z,

for Ax', Ay', Az' and then substituting the vectors Ax' and Az' found by solving (4.5.5)
for the AXAZe term in the right-hand side of (4.5.4), which is then solved for Ax, Ay, Az.

The updating of the solution is then carried out by the formulae

]

X + Ax
y + Ay
Z=17+ Az

If one continues to substitute at each step the Ax and Az terms found by solving
(4.5.4) back into the right-hand side of the (4.5.4a), the algorithm will use multiple
corrections. Assuming the goal for using multiple corrections is to achieve the maximum
reduction in complementarity, the optimal number of corrections for the NETLIB standard
test problem afiro is four. Although multiple corrections often produce lower
complementarity, each correction requires a new solution to (4.5.4). Multiple corrections
have been extensively studied by Carpenter and Shanno, (1993). This study concludes that

the most efficient number of corrections for a general algorithm is one.

4.6 Computational Experience

The relative performance of the described algorithms is studied in this section. Linear
programming problems come in a variety of sparsity levels. Three classes of non-random
test problems with different level of sparsity were chosen so that one can clearly compare
their performance on fully dense (Hilbert-type), relatively sparse (Klee-Minty), and very
sparse (Linear Ordering) problems.

The problems chosen are, in general, difficult to solve. Hilbert-type problems are by
far the most difficult since they became highly ill-conditioned as their size grow. Linear

ordering problems are related to the optimal triangulation problem which belongs in the NP-

67

class, [Garey & Johnson, (1979)]. Finally, the Klee-Minty problem is solved by the simplex
method in exponential time.

Experiments with random generated problems were also performed. All matrices in
the test problems were declared as sparse using the SPARSE function of MATLAB.

All computational experiments were performed on a SPARC networked workstation.
The same functions mentioned in Chapter 3 were used for recording CPU time and floating
point operations.

For all implemented algorithms the termination criterion is the absolute value of the
duality gap between the primal and the dual objective function. All the runs were made with
this parameter set to 5x10-7.

When only the dual phase of the Karmarkar algorithm is used, the termination
criterion is set to be the relative improvement in the dual objective function. This parameter
was also set to 5x10-7.

Even if an implementation of the predictor corrector method using multiple
corrections may result, in certain types of problems, in a greater reduction of
complementarity in our implementation, only one correction is used because of our intention

to solve different problems without tuning each algorithm for every type of problem.

Hilbert-Type LP Problems

These are LP problems whose constraints matrix is based on the Hilbert matrix. The
condition number of the Hilbert matrix is dramatically increased by its size.
The problems are of the form
min ¢Tx

s.t. Ax =2 b,
x 2 0,

where x € R", A € R™", ¢ e R* and b € R™. Matrix A has entries [ajj] = [1/(i+))], fori=

1,2,...,nandj=1,2,.. n The RHS is given by

68

P 1=1,2, .., n

1=1,2,...,n.

The primal optimum solution to these problems is x* = (1, 1, ..., 1)T. Problems with n =

10, 20, 30, 40, 50 and 100 were solved and the results are recorded in Table 4.3.

The values seen on the graph of Figure 4.1 are recorded values of the objective

function which are out of the range of the graph.

50

90 ~
Hilbert-Type Problem (n=50)
E 80
©
E —+— Barnes Algorithm
—&—— Infeasible Algorithm
o
2 ———g—— Predictor corrector Algorithm
o g Karmarkar Dual Algorithm
£ 70 4
(@] ,.u,_.ww@w,,w.,,,mzéj@..wm,.u,,wv, ’ ‘ Oty
60 T T T T 1
0] 10 20 30 40
Iterations

Figure 4.1 Change of the Objective Function

for Hilbert Problems

69

Figure 4.1 is a graphical representation of the convergence of the implemented
algorithms for a Hilbert-Type problem. The curve for the Karmarkar algorithm is built on the
results obtained by applying the dual only phase of the described algorithm on the dual of the
chosen problem. Table 4.1 records the results obtained by applying only the first phase of
the algorithm to the dual of the problem and those that pertain to the solution of the original
problem by applying both the dual and the primal phase.

As one can conclude from the results in Table 4.1, in all problems except for n=50, a
slight improvement can be made in floating point operations by using only the first phase of
the algorithm on the dual of the problem. The main advantage of this approach is that the
second phase of the algorithm is avoided since it tends to become unstable in ill-conditioned
problems. It must also be mentioned that the results found by solving the original problem

are less accurate than these found by solving the dual.

Hilbert Problems

4.00e+8 1
® 2
c
2
L 3.00e+8
[+}]
Q
(@]
_§ ——— Predictor Corrector Algorithm
o .
O o00e+8d ¢ Karmarkar Dual Algorithm
> —o— Infeasible Algorithm
'.g —i— Barnes Algorithm
°
[T
1.00e+8
0.00e+0 s !
0 20 100 120

Problem Size

Figure 4.2 Relative Performance for Hilbert Problems

70

Size| Karmarkar Dual Phase Karmarkar Primal Dual Algorithm
Iter CPU(s) Flops(10E6)| Iter_ d CPU_d| Iter_p CPU_p| CPU(s) Flops(10E6)

10 | 33 5.35 0.56 145 27.66 26 4.84 32.51 3.08

20 | 31 10.92 2.62 90 32.27 26 826 4054 11.45
30 | 49 30.03 1259 | 34 21.64 26 572 27.37 13.33
40 | 32 245 16.69 | 26 2327 26 7.65 3092 23.19
50% | 43 47.66 40.87 |22 23775 26 993 33.68 348
100} 51 27471 362.84 | 38 244.1 26 66.66 310.84 383.42

Table 4.1 Performance of the Karmarkar Algorithm on

Hilbert-Type Problems

Problem Barnes Infeasible Predict Corrector| Karmarkar Dual
Size Algorithm Algorithm Algorithm Variant

Variab |ITERS CPU(s)|ITERS CPU(s){ ITERS CPU(s)|ITERS CPU(s)
20 9 0.41 16 0.39 6 057 33 492
40 9 1.04 1 17 0.89 7 1.81 31 9.145
60 12 2.03 19 1.87 7 338 49 2454
80 11 3.81 22 3.82 8 6.96 | 32 2421
100 12 6.12| 28 7.62 7 10.491 43 45.37

Table 4.2 Hilbert-Type Problems Results

In Table 4.2, the CPU time in seconds, required by each algorithm to solve the
problem to the prescribed accuracy can by found.

From the results of that table the following observations are apparent

(i) Karmarkar's algorithm stands out as the most time consuming method, even when

only the dual phase is used.

(i1) For small size problems (n = 10), the infeasible algorithm is slightly better than

the Barnes algorithm, followed by the predictor corrector method.

71

(i11) For larger problems, the relative attractiveness of the infeasible algorithm tends
to decrease rather rapidly. For n = 40 and 50, the infeasible method is outperformed
by the Barnes algorithm.

(iv) For very large problems (n = 100), even the predictor corrector method performs

better than the infeasible method.

From Figure 4.2, one can see that CPU times do not correspond to the number of floating
point operations.

(i) Karmarkar's algorithm requires the most floating point operations. On the other

hand, Barnes method is the most economical.

(ii) For small and medium size problems (n = 10, 20, 30, 40) less floating point

operations are required by the infeasible than the predictor corrector algorithm.

(ii1) For larger problems (n = 50 and 100), the predictor corrector algorithm

outperforms the infeasible method.

The disagreement between CPU time and floating point operations is due to the way the
floating point counter procedure (FLOPS) is implemented in MATLAB. FLOPS counts all
arithmetic operations on real numbers as one floating point operation each, even though
multiplications and divisions are more expensive than additions and subtractions. Taking that
into account, one can understand how an algorithm that uses more multiplications and
divisions than additions and subtractions consumes more CPU time, even if the same
number of floating point operations is used.

From Table 4.2 and Figure 4.2, one can see that there is a big difference between the
number of iterations required by each algorithm and the initial approximation of the solution
that each method calculates. In general, less iterations are required by the predictor method,
followed by the Barnes algorithm, the infeasible method, and, finally, the Karmarkar's dual
algorithm. The best prediction to the solution vector is made by the Karmarkar algorithm,
despite the poor convergence because of the small steps taken in each iteration. Conversely,
the predictor corrector method converges in less than ten iterations even though the initial

prediction is far and away the optimal.

72

Klee-Minty Problems

The class of problems originally proposed by Klee and Minty, (1972) is well known
as linear programming problems with n variables for which the simplex method with various
pivot rules takes an exponential in n number of pivots to reach the optimum. The following
form credited to Avis and Chvatal, (1978) was considered in the experiments performed for

this research, as well as in the work of Avis and Chvatal, (1978). Take the problem

n
max Zu”‘JXJ,

=1
-1
s.t. 2 R+ X < 1, 1=1, 2, ..., n,
=1
Xj 2 0, j=1,2,..,n,

where 0 < 1 < 0.5. The optimum solution of this problem is x; =0, (j = 1, 2, ..., n—1) and
xn = 1. Experiments for the cases with i = 0.4 and n = 10, 20, 30, 40, 50, and 100 were
performed . The results are shown in Table 4.3. Figures 4.3 and 4.4 depict the convergence
of the algorithms for one of the problems (n = 50) and the relative performance of the
methods for problems of different size, respectively.

It was observed that, for this class of relatively sparse problems (density 50-60%),
the infeasible approach stands out as the clear winner followed by the Barnes algorithm. The
predictor corrector method performs better than the Karmarkar dual variant and only for
really large problems (n = 100) does the latter shows its positive features.

Comparing the number of floating point operations, it can be seen that the Barnes
algorithm uses slightly fewer operations but that is explainable by the reasons presented in
the previous section.

Excluding the Karmarkar's algorithm, almost the same number of iterations was
required for the remaining three methods to converge. This 1s a good indication of how
expensive each iteration is in these three different approaches, in respect to both CPU time

and the number of floating point operations.

73

Function

Objective

Floating Point Operations

\ Klee-Minty Problem (n=50)

3.79

B i s s a &

—a— Barnes Algorithm
——e—— Infeasible Algorithm

~—ig—— Predictor Corretor Algorithm

et Karmarkar Dual Algorithm
-2 T T 1
0 10 20 30
Iterations
Figure 4.3 Change of the Objective Function
for Klee-Minty Problems
2.00e+8

Klee-Minty Problems /‘

-——ai— Predictor Corrector Algorithm
e Karmarkar Dual Algorithm

—&— Infeasible Algorithm //
1.00e+8 1 ~——m— Barnes Algorithm

M
0.00e+0 e T T : }
20 40 60 80 100

0

Problem Size

Figure 4.4 Relative Performance for Klee-Minty Problems

74

Studying Figure 4.3, the conclusion 1s reached that, as with the Hilbert-Type
problems, the best and worst initial prediction for the solution vector is made by the

Karmarkar algorithm and the predictor corrector method respectively.

Problem Barnes Infeasible Predict Corrector| Karmarkar Dual
Size Algorithm Algorithm Algorithm Variant

Variab|ITERS CPU(s)|ITERS CPU(s)|ITERS CPU(s)|ITERS CPU(s)
20 13 0.58 12029 | 11 1.36 | 54 4.06
40 14 1.23 15 0.69 13446 | 70 10.28
60 14 2.13 15 1.23 13945 39 6.13
80 14 3.68 15 209 13 1857 59 18.84
100 14 490 15 3.16 | 13 30.11| 52 19.63

Table 4.3 Klee-Minty Problems Results

Linear Ordering Problems

The linear ordering problem can be stated as follows: for a square matrix A of size n
whose coefficients are real numbers find the simultaneous permutation of rows and columns
of A with the maximum sum of strictly upper triangular coefficients of the permuted matrix.
The linear ordering problem is related to the optimal triangulation problem, Grétschel, et al.,
(1984). The optimal triangulation problem is NP-hard, [Garey & Johnson, (1979)].
Modelling the linear ordering problem as an integer linear program produces a problem with
a large column to row ratio. In the experiments performed for this research, the following

form, due to Karmarkar and Ramakrishnan, (1991), was considered.

Max Zainij
1<1,)<n
S.t. xij+xj'i=1, 1#],1€1<n,1<)<n,
Xij + Xjk + Xki <2, 1<i<j<k<n,
Xji + Xik + Xkj < 2, 1<i<j<k<n,
Xij 1sQorl, 1#j,1€1<n, 1 <j<n.

75

The problem as defined above has n(n — 1) variables and n(n - 1) + % n(n - 1)(n - 2)

constraints. The statistics for the solved problems of this class are recorded in Table 4.4.

Problem Original Standard Form

Form

Rows Cols |[Rows Cols [Nonzeros Density
Lnordl (n=3)| 6 8 6 14 29 22.65 %
Lnord2 (n=4)} 12 20 | 12 32 74 10.57 %
Lnord3 (n=5)] 20 40 | 20 60 150 586 %
Lnord4 (n=6)| 30 70 | 30 100 265 3.60 %
Lnord5 (n=7){ 42 112 | 42 154 427 238 %
Lnord6 (n=8)| 56 168 | 56 224 644 1.65 %
Lnord7 (n=9)| 72 240 | 72 312 924 120 %

Table 4.4 Linear Ordering Problems Statistics

From the experience gathered on this class of problems, where density decreases
with the size of the problem, the following conclusions can be drawn

(1) The infeasible method is the best performing algorithm among the methods tested.
(i1) The efficiency of the Karmarkar variant increases with the sparsity of the solved
problem. For the most sparse of the problems tested, this algorithm is outperformed
only by the infeasible method.

(iii) For very sparse problems (density less than 5%), the predictor corrector method
has a very poor performance.

(iv) All implemented methods use the same number of iterations to converge,

regardless of the size of the problem.

The demand on floating point operations by the tested algorithms depends on the

sparsity of the problems solved, as one can see from Figure 4.6.

76

Linear Ordering Problem (n=6)

20
O -

o
2
2 -20 —&—— Barnes Algorithm
3
w ——e—— [nfeasible Algorithm
o g Predictor Corrector Algorithm
s -40 7 g Karmarkar Dual Algorithm
Q
=
o]

-60 - \.,.W,,Nmew-w»ms;:w““““%’““’“““"X“A“W"’”'”@

M-'si_‘,;}»--'-»w““"’{;?” St
-80 T T 1
0 10 20 30

Iterations

Figure 4.5 Change of the Objective Function

for Linear Ordering Problems

(1) The predictor corrector method 1s the most demanding among the tested

algorithms (Figure 4.6).

(i1) The infeasible method seems to be the clear winner for this set of sparse test

problems (Table 4.5).

(ii) For problems with density less than 3%, the Barnes method is outperformed by

the Karmarkar dual variant, even though the algorithm was applied on the original

problem using both primal and dual phases (Table 4.5, Figure 4.6).

The convergence of the algorithms for a relatively sparse LP (density 3.60%) of this
class of test problems is graphically presented in Figure 4.5. The predictor corrector method
converges faster than all the rest algorithms, followed by the Barnes method. Again the
Karmarkar algorithm requires many more iterations to converge to the prescribed accuracy.

The best initial prediction of vector x was that of the infeasible method.

77

Floating Point Operations

3.00e+8 7 Linear Ordering Problems
2.00e+8 -
—&—— Barnes Algorithm
—&— Infeasible Algorithm
——— Predictor Corrector Algorithm
100e+8 ~gee—— Karmarkar Dual Algorithm
0.00e+0 2
2 4
Problem Size
Figure 4.6 Relative Performance for Linear
Ordering Problems
Problem Barnes Infeasible |Predictor Corrector| Karmarkar Dual
Size Algorithm Algorithm Algorithm Variant
Variab] ITERS CPU(s) | ITERS CPU(s) | ITERS CPU(s) | ITERS CPU(s)
14 13 0.4 12 0.23 8 0.68 47 3.54
32 13 1.08 14 0.48 7 1.47 41 4.79
66 14 2.62 15 0.87 9 6.15 41 9.15
100 13 5.59 16 1.86 8 17.20 49 16.69
154 14 15.60 17 3.63 9 32.73 46 277.92
224 15 35.87 15 6.74 9 70.42 49 51.42
312 15 77.29 17 16.29 9 185.88| 47 71.90

Table 4.5 Linear Ordering Problems Results

78

Random Generated Problems

The last class of test problems includes random generated linear programming
problems. Both the cost vector (¢) and the constraint matrix (A) are fully dense and were
randomly generated in the range [0, 10] using the RAND function of MATLAB. To ensure

that the problem had at least one feasible solution, the right-hand side was generated as

b(i) = 2AG).
J:

1=1, .., n.

Problems generated this way have at least one feasible solution, namely the unity vector. The
results obtained from this set of test problems are recorded in Table 4.6. The graphical
representation of the convergence of the algorithms for a random generated problem with
100 variables can be seen in Figure 4.7. Figure 4.8 depicts the number of floating point

operations required by each method against the size of the problems solved.

Problem Barnes Infeasible Predict Corrector | Karmarkar Dual
Size Algorithm Algorithm Algorithm Variant

Variab |ITERS CPU($)[ITERS CPU(s)|ITERS CPU(s)|ITERS CPU(s)
20 2 0.19 | 23 1.09 3 0.49 | 133* 36.60
40 2 0.62 | 22 3.77 3 1.68 | 63* 48.475
60 2 1.51 22 9.94 3 4.55 1 69* 122.69
80 2 310 | 19 17.56] 3 8.14 | 86% 275.50
100 2 6.16 | 22 3434| 3 14.431 56* 259.45

Table 4.6 Random Generated Problems Results

The asterisks in Table 4.6 indicates that the results obtained are not optimal.

79

Objective Function

Floating Point Operations

600 -

Random Generated Problem (n=100)

500 4
¥ &Y X T £ R X
—&—— Barnes Algorithm
——— [nfeasible Algorithm
g Predictor Corrector Algorithm
e Karmarkar Dual Algorithm
400 T T 1
0 10 20 30
literations
Figure 4.7 Change of the Objective Function
5.00e+8 T
Random Generated Problems _.-#
e
o
4.00e+8 - /f’/
/
/
3.00e+8 A .
-1 Barnes Algorithm /
——&—— Infeasible Algorithm ,//
—g~—— Predictor Corrector Alg{)rithm
2.00e+8 - O Karmarkar Dual Algoﬁthm
/
1.00e+8
MM,,,,M'
/{f,,,,/”
0.00e+0 e G 1
0 20 40 60 80 100 120

Probiem Size

Figure 4.8 Relative Performance for Random

Generated Problems

80

From Table 4.6 and Figures 4.7 and 4.8 the following observations are apparent

(1) The solution vector generated by the Karmarkar algorithm is the less accurate and,
as one can see from Figure 4.7, the value of the objective function corresponding to
that vector hardly agrees with the value obtained by the rest of the methods.

(i1) The Barnes method outperforms all the other tested algorithms even if, as seen in
Figure 4.8, its initial prediction for the solution of the problem is the worst.

(i11) Again the most demanding among the tested methods, both in CPU time and
number of floating point operations, is the Karmarkar algorithm.

(iv) The performance of the infeasible method is surprisingly poor for this class of
test problems. That maybe is due to the fact that all the randomly generated test

problems solved were fully dense.

4.7 Conclusions

As mentioned in Marsten, et al., (1990), "Interior point methods are the right way to
solve large linear programs. They are also much easier to derive, motivate, and understand
than they at first appeared”.

In this chapter four different approaches based on interior point methods were
described. Additionally, implementations of these algorithms were used for the solution of
four classes of linear programming problems.

Throughout the experiments of the previous section, it was confirmed that interior
point algorithms preserve their attractive features on various types of problems. These
features are their low iteration count (logarithmic in the size of the problem) and their
acceptance and use of the duality aspects of linear programming.

From the results recorded in Tables 4.2, 4.3 and 4.5 one can conclude that, among
the tested algorithms, the cheapest iterations are those belonging to the infeasible method,
followed by the Barnes algorithm, the Karmarkar variant, and, finally, the predictor

corrector method. For very sparse problems, the iterations in the Karmarkar dual algorithm

81

ST A

become cheaper and the whole method becomes more attractive for the solution of large-scale
problems. Table 4.6 shows that these observations are also valid for randomly generated
problems except that now the iterations of the predictor corrector method are cheaper than
these of the Karmarkar dual algorithm.

In general, the infeasible method seems to perform better than the other algorithms on
most of the non-random generated problems. This is especially the case for the class of
sparse problems tested where very large savings were recorded. For these problems, the
infeasible algorithm required only 20% of the CPU time used by the fastest of the alternative
methods. For random generated problems the Barnes algorithm stands out as the clear
winner.

The small number of iterations required for the convergence of the predictor corrector
method and its stability as a process indicate that the algorithm is promising but that further

research is necessary for all its interesting features to be fully understood.

82

Chapter 5

Convex Quadratic Programming

5.1 Introduction

Quadratic programming (QP) is the name given to the problem of optimizing a quadratic
objective function subject to linear constraints. Thus, the only difference between QP
problems and a linear programming problem is that some of the terms in the objective
function involve the square of a variable or the product of two variables, i.e., terms of the
form ij and xjxk, (j#k), [Hellier & Lieberman, (1986)]. Although QP could be both
convex and non-convex, in this study only the convex case will be examined since only
minimization problems are considered. Convex quadratic programming is an important topic
in mathematical programming and it is central to many algorithms for solving non-linear
programming problems. Applications of convex QP appear in diverse areas of engineering,
mathematical, physical, social, and management sciences, [Lin & Pang, (1987)]. In the last
few years quadratic programming also appears as part of decomposition algorithms for linear
programming. Based on this information, one must have a good quadratic solver in hand to
ensure the efficient implementation of the decomposition algorithms. Currently there is no
universal "best” method for the solution of the diverse range of QP problems and hence
many methods have been suggested for the solution of different types of quadratic
programming problems. This chapter concentrates on medium and large-scale convex
quadratic programming problems. After a survey of recent literature published in this area of
algorithms was conducted, three methods that looked promising were selected. The
evaluation and some results on small problems for the first two algorithms considered can be

found in Burrett, (1994). In the implementation of the algorithms studied in this chapter, the

83

same optimality criterion as that in Burrett was used but parameters were adjusted in a
different way to improve performance. In the conjugate gradient approach, for example, the
penalty parameter is scaled by a different factor. To prevent this parameter from taking
unreasonably small values, a lower bound is also set. Sparsity was also taken into account.
A detailed study of the influence of sparsity and ill-conditioning on the performance of these
algorithms for quadratic programming was made. These methods were then compared and
their relative performances evaluated to determine which, if any, was the better method, and
show situations where one algorithm out-performed the other. These investigations also

served to evaluate the overall effectiveness of each algorithm.

5.2 Methods for Solving Quadratic Programs

Over the years, a large number of methods have been developed for solving convex
quadratic programs. These methods can be divided into two categories: Finite Methods and

Iterative Methods.

5.2.1 Finite Methods

For the solution of a program by finite methods some kind of pivoting procedure is
used and termination of the process is guaranteed in finite time. Although effective for small-
to-medium sized problems, finite methods tend to become less efficient and uneconomical as
the problem size increases. This is due to two reasons. The first 1s the numerical difficulties
which often occur as a result of the rapidly accumulated round-off errors. The other reason is
the severe limit on the size of the problems that could be solved by these methods because of
the huge computer storage required, [Lin & Pang, (1987)]. The latter is due to the fact that
most finite methods operate on a certain linear complementarity problem which is derived

from the optimality conditions of the program and its size is greater than that of the original

84

problem. In fact the number of variables in the complementarity problem is equal to m+n,
where n 1s the number of variables in the quadratic problem and m is the number of the
constraints. Finite methods are often not directly applicable to a given problem due to the
changes necessary to transform the problem to the required form (refer to Pang, (1983) for a

survey of finite methods for solving general convex quadratic programs).

5.2.2 Iterative Methods

Iterative methods are immune from these two handicaps because they

(1) are self-correcting and

(i1) operate on the input data only.
As a result, they are capable of preserving any data sparsity and, thus, are particularly
attractive for solving large-scale sparse problems, [Lin & Pang, (1987)]. These methods

generate an infinite sequence which converges to a limit point that solves the program.

5.3 QP Problem Statement and Notation

As in the linear case, there are three general formulations of the quadratic problem,

The Canonical Form :

Min (or Max) q(x) = 1szQx + ¢Tx

st. Ax 2 b A € RmXn h e RM
x =0 x € RD
The Standard Form :
(QP) Min (or Max) q(x) = %XTQX + ¢Tx
s.t. Ax = b A € RmXn b e RM
x>0 x € R?

85

The Mixed Form :

Min (or Max) q(x) = 1§xTQx + cTx

s.t. A1x > by A1 e RmiXn by e RMj
Asx = by Ay € RMyXn hy ¢ RM2
x=20 x € Rn

where Q is symmetric, ¢ € R", q(x) denotes the quadratic objective function and T stands
for transposition. The matrix Q 1s assumed to be negative definite if the problem is
maximization, and positive definite if the problem 1s minimization. This means that q(x) 1s
strictly convex in x for minimization and strictly concave for maximization. The linearity of

the constraints guarantees a convex solution space, [Taha, (1992)].

5.4 Duality

The aim of duality is to provide an alternative formulation of a mathematical
programming problem which is more convenient, computationally, or has some theoretical
significance.

As in the linear case, the primal and the dual problems are related such that the
Lagrange multipliers of the primal problem are part of the solution of the dual, and the
Lagrange multipliers of the dual are contained in the solution of the primal.

If the original (primal) quadratic program is given in its canonical form

Min q(x) = %XTQX + cTx

s.t. Ax 2 b
x>0, x e RD

then the corresponding dual problem is

—

Max ¥(y, w) = bTy -

s.t. ATy = Qw + ¢
y=>0,y, we RP

5 wTQw

86

5.5 Separable Quadratic Programming Problems

General, separable programming assumes that the objective function of an
optimization problem is concave for a maximization problem (convex for a minimization),
that each of the constraint functions is convex, and that all these functions are separable
functions, [Hellier & Lieberman, (1986)]. A function f(x1, X2, ..., Xy) is separable if it can
be expressed as the sum of n single-variable functions fi(xy), f2(x2), ..., f(xy), [Taha,

(1992)], that is,
f(x1, X2, ooy Xp) = f1(X7) + f2(Xx2) + ...+ f(Xp).

An example is the following quadratic function

h(xy, x2, ..., Xp) = a]x? + azxg + ...+ anxﬁ ,
where the aj are constants and all linear functions are separable. On the other hand, the
function

2 2
+ aX (X2 +a3x, + ... + anxn

h(X1, X2, .., Xn) = 21X 5

1

1s not separable.

In the special case of quadratic programming, the constraint functions satisfy both
restrictions. The quadratic objective function is said to be separable if there are no cross-
product terms of the form xjxg, (j#k). The objective function in a separable quadratic

problem can be expressed as a sum of quadratic functions fj(x;j) of individual variables

a() = 2hx)
J:

where each function fj(x;) is of the form

2
fj(Xj) = (‘ij + ij +7,

where o, B and Y are constants.

87

5.6 Sparsity and Ill-Conditioning

As in the linear case, sparsity exploitation is aimed at reducing the CPU time and
storage requirements of procedures for matrix computation. In the quadratic case the main
interest lies in the sparsity of the matrices Q and A. From the intensive tests carried out with
different levels of density of these matrices, a huge savings was found in floating point
operations and CPU time when the SPARSE option of MATLAB to declare matrix Q was
used. Savings over the above criteria were also observed for matrix A in all algorithms and,
especially, when the level of density was less than 10%.

Separable problems, i.e., problems with no cross-products, can be seen as the most
sparse, as far as the matrix Q is considered, since they have non-zero entries only along the
main diagonal.

To measure the ill-conditioning of the problems tested programs were implemented
with different condition numbers for the matrices Q and A. The condition number of both
these matrices is of significant interest in this study because of the nature of the implemented
algorithms. All interior point methods involve the inverse (AAT)-1 of the matrix AAT in
their solution process. Ill-conditioning critically affects the performance of interior point
methods.

It is, therefore, essential that, for the algorithms considered in this chapter, the
solution at any stage of the process be well conditioned, or, if this is not possible, at least as
well conditioned as the original problem. Thus, one must try to ensure that the effect of 1ll-
conditioning in the solution to a given problem is avoided or at least reduced as far as

possible.

88

5.7 Model Algorithm

As stated earlier, the most effective algorithms for solving quadratic programs
generate a sequence of feasible iterates. These algorithms are both practical and efficient due
to their ability to develop simple characterisations of all feasible points.

Most strategies for solving a quadratic program begin with a feasible point and then
seek for a feasible search direction. The algorithm then moves along this direction until either
the objective function passes through a minimum or a new constraint is encountered. The
process 1s then repeated from this new point. The following outlines a model algorithm for
solving quadratic program in standard form.

Let x be the current estimate of x*. Given a feasible starting point xg, set k = 0 and

repeat the following steps.

Step 1. Test convergence.

If the convergence conditions are satisfied at X, the algorithm terminates with x as

the solution.
Step 2. Compute a feasible search direction.
Compute a non-zero vector py, the direction of search.
Step 3. Compute a step-length.
Compute a positive scalar o, the step-length, for which it holds that
F(xy+0o pr)<F(xy) or similar condition.
Step 4. Update the estimate of the minimum.

Set X471 = Xk + 0Pk, kK =k + | and go to Step 1.

Figure 5.1 shows a pictorial representation of this process.

&9

Figure 5.1 Graphical Representation of Model Method

5.8 Three Different Approaches to Quadratic Programming

In this section three different approaches for the solution of a minimization convex
quadratic problem which is presented in standard form will be reviewed. One of the
described methods, the unified dual ascent algorithm, handles upper bounds explicitly. This
algorithm is reported to give good comparative results on separable quadratic programs. The
other two methods can also handle upper bounds subject to the addition of an extra constraint
and an artificial variable for each bounded variable.

For the algorithms described in the following sections it is assumed that the problem

is feasible and the quadratic coefficient matrix Q is positive definite.

5.8.1 The Algorithm of T.J. Carpenter and D.F. Shanno

In Chapters 3 and 4 it was explained how conjugate gradient methods work and it
was shown how that powerful tool is used in linear programming. The conjugate direction

methods are notable by their key property: that they minimize a positive definite quadratic

50

function in n or less steps. Conjugate gradient methods are particularly suited to large-scale
problems because they generate directions of search without storing a matrix. Therefore, this
class of algorithm is necessary in situations where matrix factorization type methods are not
viable due to the size or density of the relevant matrices.

In the current section a quadratic programming algorithm based on the same
principles will be described. The method is a doubly iterative algorithm for problems in
standard form, described in detail in Carpenter and Shanno, (1993), that works in the null
space of A. The search directions are obtained with the use of a conjugate projected
procedure. The main advantage of this approach is that Q appears in a conjugate direction
routine rather than in a matrix factorization. This method considers the primal quadratic

program QP and its associated barrier transformation

n
Min F(x) = 5xTQx + ¢Tx - i Yln(x;)
j=1
st. Ax = b
x =20

Henceforth this will be referred to as BP.

To solve QP by the logarithmic barrier function method one approximately solves a
sequence of problems BP where the positive parameter |y is decreased as k is increased so
that pg — 0 as k — oo. To approximately solve BP(uy), one can use any appropriate
algorithm for the solution of such problems, starting from the approximate optimal solution

xk of the previous problem BP(uk.p). If py is close to pk-j and x¥ is close to Xlo(pt’ the

optimal solution of BP(u.-1), then xok;tl, should not be too distant from xk. Hence, it should

not be too difficult to compute a good approximation xk+1 (o X:;:tl starting from xK The

next point xk+1 is then computed from xK by taking a single Newton step AxK, so xk+1 =

xk + AxK. To obtain AxK, one must solve the equality constrained quadratic program

Min lzAxTQkAx + qOTAx
s.t. AAx =0,

91

where Qi =Q +].LkX_kz and gk = Qxk + ¢ - ukX_kle. The objective function of this
quadratic program is the second order Taylor series expansion of the objective function of
BP about the feasible point xK. Henceforth this will be referred to as QP(uk,Qx)-

Note that the sufficient condition for the Newton step Ax* = —[V2QP (i, Q) (xK)]"!
VQP (1, Qi) (xK) to be optimal in QP(uk,Qx) is that the gradient of QP(uy,Qy) is equal to
zero and the projection of the gradient in this space is zero as well. This algorithm uses the

projection matrix
P=1-AT(AAT)-1A,
for which optimality requirements are described as
P(QiAx* + qk)) =0 (5.8.1)

The solution of problem (5.8.1) is obtained using a conjugate direction procedure. The
conjugate projected gradient method can therefore be viewed as a conjugate direction
procedure applied directly to problem (5.8.1).

The proposed algorithm remains viable even when Qy is large or dense because it
applies a conjugate direction procedure to solve QP(uk,Qk). However, the matrix that
appears in this system is not necessarily symmetric or positive definite; therefore, it is not
immediately apparent that a conjugate direction method is applicable. In Carpenter and
Shanno, (1993) it is proved that the proposed method is in fact a conjugate direction routine
that converges in, at most, n—m iterations. The conjugate projected gradient method is
developed by applying the standard conjugate gradient method to solve an unconstrained
quadratic program that is equivalent to QP(uk,Qy). For more details about that refer to
Carpenter and Shanno, (1993).

The algorithm can be described step by step as follows:

92

While VE(xk) # 0

Step 0. Start at Axg = 0 and define (a) q¢ = q and (b) d¢g = -Pqo. (¢) Set i = 0.
Step 1. While Pqg; # 0

d;FQi
(a) Compute y; = — .
d. Qkd;

(b) Let Axj+1 = AXj + Vi dj.

-

d. Qkqi+1

(c) Set gis1 = QrAXjs1+ @i and P = ——

d. Hd;

(d) Obtain a new direction dj+1 = -Pqi+1 + Bid;.
(e) Update counter 1=1 +1.
end

Step 2. Assign Ax = Ax; and stop.

(a) Set xk+1 = xk 4 Ax
(byk=k+1
end

For the algorithm stated above it is assumed that at the initial point x¢, Axp = 0. In practice,

when Qg € R™" any Axg € R" may be selected.

5.8.2 Goldfarb and Lui O(n3L) Primal Interior Point Algorithm

As described in Goldfarb and Lui, (1991), this is an interior point method for convex
programming which is based upon a logarithmic barrier function approach.

The algorithm generates a sequence of problems, each of which is approximately
solved by taking a single Newton step. In Goldfarb and Lui, (1991) it is also shown that the
method requires O(vnL) iterations and O(n3-2L) arithmetic operations. By using modified
Newton steps the number of arithmetic operations required by the algorithm can be reduced
to O(n3L). To maintain primal and dual feasibility scaling the current primal solution is
employed.

The initial steps of this algorithm are identical to that of the approach described in the
previous section. Each step of the algorithm is determined by applying Newton's method

directly to the barrier function minimization problem instead of to a non-linear system of

93

equations that is equivalent to the Karush-Kuhn-Tucker optimality conditions for a
minimization problem corresponding to the current value of the logarithmic barrier
parameter. Starting at a suitable interior point and then taking suitably small steps, the
Newton barrier function generates dual as well as primal feasible solutions. The duality gap
corresponding to these solutions is driven to zero at a fixed rate of 1 — 6/x/n, where o is a
given, positive constant.

This method again considers the primal quadratic program QP and its associated
barrier transformation BP referred to in the previous section. If one assumes that

(1) QP has a strictly positive feasible solution;

(i1) the set of optimal solutions of QP is non-empty and bounded;
then each problem BP has a optimal solution x([t) and it can be shown that x(lt) — x*, the
optimal solution of QP, as p — 0.

The algorithm actually uses a "modified" Newton method for approximately solving

BP. Specifically, it determines the step AxK by solving QP(11k,Q'k), where
\ -2
Qk=Q+¢&Z,

zK is close to xK, gy is close to [k, zK > 0, and £k > 0 so that Q'k is positive definite. If
AxK is the optimal solution to QP(ik,Q'k), then a vector yk+1 € Rm, of Lagrange

multipliers exists that
Q'kAxk + gk — ATyk+1 = @
Under the assumption that rank(A) = m, AxK can be written explicitly as
Axk = Q' /(ATyk+1 - gk),
where
yk+1 - (AQ"klAT)']AQ'“quk‘
Using the "modified" Newton method, i.e., by not changing € and all components

in xK in the definition of Q from one iteration to the next, it is proved to reduce the amount

94

of computation needed on the average at each iteration by a factor of O(v/n) without
increasing the order of the number of iterations required by the algorithm, [Goldfarb & Lui,
(1991)]. The idea of using "modified" projections to reduce the work per projection over all
iterations was first introduced by Karmarkar, (1984) and it is based on allowing L to
change at most O(L) times during the course of O nL) iterations, where n is the number of
variables and L is the input length of the quadratic program. That means that Q' differs
from Qg by, at most, O(n) diagonal elements.

To begin the algorithm, one needs to transform the QP problem into a quadratic
program that satisfies assumptions (i), (i1), and has x¢ = e (e 1s equal to a suitable length
vector of ones) as a feasible point, where x¢ satisfies xgATy = e, for some y € RM. The
proposed approach is one that has been suggested by numerous authors for transforming
linear programs into a form suitable for interior point algorithms. It consists of introducing
two new variables and associate large positive constants as penalty parameters to them.

If the penalty parameters are large enough and if QP has optimal solution then the
transformed problem will have optimal solutions x* with x*,_| = 0 and an optimal solution
of QP can be obtained by using the first n—2 components of x*. If QP is infeasible x*_;

will be positive. A step by step description of the algorithm is as follows

Step 0. Let (a) xg > 0 be a given feasible point for a quadratic problem in standard
form and let (b) pp> 0, T> 0,6 >0 and y= 0 be given constants. (¢) Set k = 0.
Step 1. Choose (a) zK and (b) g that satisfy
!x!(- zlfl
1 1
Z.
i
and
Ik — €kl <y
€k

Step 2. (a) Compute Ax, the solution of QP(uy Q'y), where

Qk=0Q+ eka, as described above,

95

set

(b) xk+1 = xk + Axk,

and (c) compute the duality gap (xkK+1)Tsk+1 where sk+t = Qxk+1 4+ ¢ - ATyk+1 3pd
yk+1is the optimal vector of Lagrange multipliers for QP(ug Q'k).
Step 3. If (xk+1)Tsk+1 < 1 then, STOP; else, (a) set hgy; = (1 — o/A/n)ug and (b) k

=k+1 and go to Step 1.

In Step 1 the components of vector zX are chosen to be close enough, to a tolerance
Y, to these of vector xk and gy close to L. That allows €k to be set to g, at most, once
every yWno iterations and the algorithm to use "modified” Newton steps which reduce the
number of arithmetic operations required by a factor of O(L).

Parameters y and ¢ are selected to satisfy the inequalities

—v\3 1—
0<d< 1Yj+ i 1,

1+y (1+y)2m
M (12 2
—(IIY) 6+1}6-(—];’Y) (1+43)8
ot
1+(1—\() o

1+y Vn

5.8.2.1 The Role of the Barrier Parameter

When logarithmic barrier functions are used in interior point methods, [Lustig, et al.,
(1991); Monteino & Adler, (1989)], a close relation exists between the step-length and the
barrier parameter [L. Algorithms for choosing an initial L9 and reducing [at each step in
order to assure polynomial convergence of barrier methods were developed first for primal
algorithms by Gonzaga, (1987). Since these algorithms reduce L by a very small multiple at

each step by a formula similar to

96

0.1
K+l o k(g 22
: “(Vn

they are hopelessly slow in practice.
An alternative is to choose [by the algorithm of McShane, et al., (1989), namely,

for a pair of feasible primal and dual vectors x and y,
1= (cTx - bTy)/n2 .

The above formula allows great decreases in the value of the barrier parameter when the
current estimate of the solution vector is far from the optimal solution (big duality gap) and
small changes when the optimal solution is approached (small duality gap). As an alternative
to the argued algorithm this approach was used to reduce the barrier parameter in the
experiments performed in this research and seems to work well. However, the problems
considered in this chapter are quadratic so the objective functions used in the above formula

were extrapolated to the quadratic case.

5.8.3 The Unified Dual Ascent Algorithm

To complete this study a totally different approach to convex quadratic programming
will be described in this section. As described in Lin and Pang, (1987) this algorithm solves
the primal program by generating a sequence of dual vectors {yK}, which induces the
sequence of primal vectors {x(y¥)}, through the maximization of the dual Lagrangian

function

d(y) = minyzo ¢Tx + 1§XTQx + yT(b - Ax),

which is unrestricted over y.
The generation of yK is as follows. The initial y¥ is arbitrary. In general, given yk,

choose a search direction 8K. Define yk+1 = yk + 6kgk where 6 is such that

97

d(yk+1) = maxg d(yk + 63K).
Since

d(yk + 08k) = minysg f(x) +)T - Ax) + 6(5k)T (b - Ax),
where

f(x) =¢eTx + 1§XTQX,
it follows that the search for 6k can be found by solving the subprogram

(SQP) Min f(x) + yX)T(b - Ax)
s.t. (38T -Ax)=0andx=>0

and by letting 6k be an optimal Lagrange multiplier of the constraint (8%)T(b — Ax) = 0.
Note that SQP is a single constraint problem. The subprogram SQP is clearly feasible (and,
thus, solvable). This follows from the assumption which was accepted earlier that the initial
quadratic problem is feasible. Indeed, the unique minimizer of SQP is the vector x(yk+1).

The constraint (8%)T(b — Ax) = 0 in SQP represents an aggregation of the
constraints Ax = b. Thus, one may interpret the above dual ascent method as solving a
sequence of simplified subproblems, each of which has the same objective function as QP
but modified by the Lagrangian term involving the complicating constraints aggregated into a
single one by a certain vector, oK.

Observe that x(yk) is obtained as a by-product of the method and no extra effort is
required for its computation.

There are many choices for the aggregation vector 8K. Two large families of such
choices are (i) Gradient-type ascent, in which 8k = HK(b — Ax(yk)) where HK is some
symmetric matrix and (ii) Periodic basic ascent. Note that if it is supposed that QP is
feasible, then the dual function d(y) is continuously differentiable and Vd(yK) = b —
Ax(yK). Gradient-type methods include the steepest ascent method which has H equal to
the identity matrix, many quasi-Newton methods, as well as the conjugate gradient method
with restart that has

I if k=0 (mod N)

k = \% ky - Vd(vk-Ih)T
H [4 sk-1 V4O (y*-1)
Vd(yk-H)Tvd(yk-1)

otherwise

98

where N is some positive integer not exceeding the number of equations m. Under the last
definition, the vector 8K is given by
Vd(yk) if k = 0 (mod N)

Vd(y®")T(Vd(yk) - Vd(yk-1))
Vd(yk-1HTvd(yk-1)

k

Vd(yk) + dk-1 otherwise

which is the Polak-Ribiera-Polyak conjugate gradient formula, [Avriel, (1976)]. The integer
N denotes the number of iterations after which the method is restarted with the steepest
ascent direction.

The maximization problems generated by the algorithm are bounded quadratic
optimization problems with one linear constraint. The solution of these problems can be
obtained by any algorithm for quadratic programming. However, for the algorithm to be
efficient a fast solver of this special problem is required. The best theoretical bound, for a
general quadratic algorithm, obtained to date is that of O(n3L) arithmetic operations,
[Carpenter & Shanno, (1993)]. However, the special form of the subproblems allows the
use of specialized algorithms. A survey of literature related to these specialized algorithms
was conducted and provided two promising algorithms in its conclusion. The first was an
algorithm of complexity O(nlogn), [Helgason, et al., (1980)]. The main disadvantage of this
method is that it requires the right hand side of the single constraint to be equal to 1. Even
though any problem can be transformed in that form, scaling is required. The second method
is of complexity O(n) and is immune from the above requirement, [Brucker, (1984)]. The
algorithm is based on a parametric approach combined with well-known ideas for
constructing efficient algorithms.

The main idea of the algorithm lies in the construction of a parametric problem with
only lower and upper bounds on the variables. The optimum value of that problem is initially
bracketed in the interval between the minimum and the maximum of the critical parameters of
the parametric problem. The critical parameters are defined as the point between which the
structure of the solution of the parametric problem does not change. At every iteration of the

algorithm the set of the critical parameters reduces at least by half. Once the optimum value

99

of the parametric problem is found the solution of the single constraint problem is obtained
by back substitution.

The unified dual ascent algorithm is particularly attractive for problems with
separable objective function. If the objective is non-separable, then a transformation is used
to convert it to a separable form. The transformation depends on two factors: knowledge of
the smallest eigenvalue p of Q (or at least a lower bound) and the factorization G of the
matrix Q — I, where 0 < (L < p. When both (and the factorization are computed, then Q
can be written as Q = uI + GTG and as described in Lin and Pang, (1987), obviously, QP
is equivalent to
(QPS) Min ¢Tx + %uxTx + lEyTy

s.t. Ax =b, Gx =y, x =2 0.

The latter program has a strictly convex separable objective and can be solved with the
algorithm described. In the implementation of this research the factorization was done by the

CHOL procedure of MATLAB, which produces the Cholesky factor of a square matrix.

5.8.3.1 Implementation Issues

The difficulties in the implementation of the unified dual ascent method lie in the
coding of the algorithm used for the solution of the single constraint quadratic problem. This
is a difficult algorithm to implement efficiently and required the development of set
manipulation functions which are not directly available in the MATLAB environment. These
operations are necessary because in each iteration of the algorithm the difference between
sets of numbers is computed, i.e., the common elements of two sets are eliminated. The sets
considered are the set of variables whose value remains unspecified and the set of variables
for which the optimal value is obtained in the current iteration. A procedure SETSUB which
has two sets as input arguments and output their difference was implemented in MATLAB to

deal with this problem.

100

Another interesting point in the implementation of the unified dual ascent method is
that 8% the optimal Lagrange multiplier of the constraint in the single constraint quadratic
problem, is obtained as a by-product of the algorithm with no expense.

As mentioned in the previous section, a transformation is proposed for the solution
of non-separable problems. The smallest of the eigenvalues required in that transformation
can be obtained using the procedure EIG of MATLAB. An iterative process can also be used
for the same purpose as described in Lindfield and Penny, (1995). Both approaches are
efficient for small matrices but as the size of the matrix is increased, they become more
expensive. However, experimental results showed that the unified dual ascent algorithm

does not perform well on the transformed problems.

5.9 Computational Experience

In the last section three iterative methods for solving convex quadratic programs were
described. From a practical point of view, it is important to know how these methods
perform and compare to one another. In this section the numerical results of extensive
computer experiments using these methods will be reported. Data of the test problems were
randomly generated and all the computations were performed on a networked SUN SPARC
workstation. The computer codes were written in MATLAB, ver.4.2 double precision. Two
sets of experiments were performed; one consisted of problems with separable objective

functions and the other with non-separable functions.

5.9.1 Tests on Random Generated Separable QP Problems
In the first set of experiments, a separable, strictly convex, quadratic problem of the

form QP with Q a positive diagonal matrix was considered. In this set of experiments, Q

was generated by the EYE procedure of MATLAB. EYE generates identity matrices of a

101

given size. Sparse identity matrices were generated by the SPEYE function. To ensure that
the system Ax = b was feasible, the RHS vector b was generated as Ax°, where x° is a
vector of ones. To determine if the solution found was close enough to the optimal one the

duality gap was used. The following termination criterion was used in all three methods:
abs((pv — dv)/pv) <0.0005,

where pv is the value of the primal objective function and dv is the value of the dual. The
number m of the rows in matrix A was chosen to be n/2, where n 1s the dimension of the x-
vector. Five values of n where chosen: 10,20,30,50, and 100. Matrix A has no specific
structure and the non-zero entries are not necessarily 1. It has been found that the GL method
is very sensitive to the parameters v, 9, and 6. The method was run with different values of
these parameters and the best values were chosen. The values compared were the suggested
ones (y=0.1,6=0.1,5=0.023, and Y= 0, 8 = 0.5, 6 = 0.1666) and one that was found
to perform better on most of the problems (y =0, 6 = 0.5, ¢ = 1.5). The results are
summarized in Table 5.1. The column for the GL method in that table gives the results
pertaining to these new values for the above parameters and without using the initial
transformation suggested in Goldfarb and Lui, (1991), which ensures that a vector of ones is
an initial feasible solution to the problem. The algorithm can be used without this
initialization step since the test problems are composed in such a way that the latest

requirement is already satisfied.

CG GL UDA
Size Flops Flops/n3 | Flops Flops/n3| Flops Flops/n3
5x 10 0.305E6 305| 0.147E6 147 0.028E6 28
10x20 | 1.720E6 215] 1.644E6 205 0.226E6 28
15x30| 2.706E6 100| 6.198E6 229, 0.757E6 28
25x 50| 14.100E6 112| 38.686E6 309 3.570E6 28
50 x 100| 168.560E6 168| 454.846E6 454] 24.293E6 24

Table 5.1 Separable Dense Problems Results

102

From the results in Table 5.1 the following observations are apparent

* The unified dual ascent algorithm stands out as the clear winner for this set of test
problems.

* For problems with n > 10, the conjugate gradient method out-performs the GL method
and, as the size of the problems increases, it tends to be most preferable.

* The GL method takes more iterations to converge but its iterations are cheaper than those
of the conjugate gradient.

e In the conjugate gradient method, the number of flops depends on the sparsity of matrix
A. On the other hand, the GL method does not seems to depend on this factor.

« All algorithms seems to keep the cost of each iteration constant, independent of the size
of the problem.

Next, the same set of test problems was run with the option SPARSE. All matrices
were declared as sparse, which means that the zero elements of a matrix were not stored and
computations with them were not performed. This is due to that fact that a big savings was
expected both in time and floating point operations, especially for very sparse problems. For
each problem different values of the density of matrix A were tested (3%, 8%, 14%, 50%).
The results for these runs are summarized in Table 5.2. Graphical representation of the
convergence for all algorithms for a sparse problem with 20 variables against the number of
iterations, the CPU time and the number of floating point operations are presented in Figures
5.2 through 5.4.

One can conclude from the results in Table 5.2 that:

e For very sparse problems (density 3%) the GL method stands out as the clear winner
regardless of the size of the problem.

e For very dense problems (density 50%) the UDA method performs better than the other
two algorithms.

e For medium size problems (n = 20, 30) and densities 8% and 14% the UDA method has
a very poor performance. On the other hand the GL method needs only half the number
of floating point operations required by the CG method which has the second best

performance for these problems.

103

e For large problems (n = 50, 100) and densities 8 and 14% the UDA method has the best
performance among the tested algorithms followed by the GL and the CG algorithms.
The good performance of the UDA method on large and dense problems could be due to the
way it handles problems, i.e., solving a sequence of single constraint subproblems, which is
cheap as far as floating point operations are concerned. The efficiency of the GL. method on
very sparse problems is expected because the main computational step, the solution of a
system of simultaneous equations, is done by the built-in function of MATLAB, which was

proved to be very efficient for sparse matrices.

Size CG_S GL_S UDA_S
Dens| Flops Flops/n3| Flops Flops/n3| Flops Flops/n3
5%10
3% | 0.481E6 48 0.010E6 10 | 0.012E6 | 12
8% | 0.379E6 38 0.010E6 10 | 0.011E6 | 12
14%| 0.801E6 80 0.033E6 34 | 0.029E6 | 29
50%| 0.124E6 125 | 0.025E6 25 | 0.023E6 | 23
10x20
3% | 0.511E6 15 0.040E6 5 0.099E6 | 12
8% | 0.738E6 9 0.041E6 : 0.134E6 | 17
14%| 0.192E6 24 0.084E6 10 | 0.196E6 | 24
50%| 0.628E6 78 0.292E6 36 | 0.271E6 | 34
15x30
3% | 0.143E6 5 0.077E6 2 0.393E6 | 14
8% | 0.261E6 9 0.114E6 4 0.549E6 | 20
14%| 0.647E6 23 0.315E6 Il | 0.671E6 | 25
50% | 0.890E6 32 1.174E6 43 | 0.790E6 | 29
25%50
3% | 0.399E6 3 0.174E6 I 1.283E6 | 10
8% | 4.168E6 33 1.837E6 14 | 1.373E6 | 11
14%| 5.935E6 47 3.959E6 3] 1.527E6 | 12
50% | 6.254E6 50 6.663E6 53 | 3.570E6 | 28
50x100
3% | 36.304E6 36 5.529E6 5 6.008E6 6
8% | 41.699E6 41 37.227E6 37 | 7.253E6 7
14%| 47.781E6 47 | 57.622E6 57 |10.946E6| 10
50%| 65.174E6 65 | 76.325E6 76 |12.338E6| 12

Table 5.2 Separable Sparse Problems Results

104

Objective Function

400

Objective Function Against lterations
300
200 -
——&—— Objective_UDA
100 - —— Objective_‘GL
Objective_CG
o=
£} {2
-100 4
-200 T T T 1
0 20 40 60

Objective Function

Iterations

Figure 5.2 Change of the Objective Function

400 -

300 4

200 4

100 4

-100 A

Against the Number of [terations

Objective Function Against CPU Time

~——t— Objective_UDA
———g—— Objective_GL

gz QObjective_CG

-200

T T T

1 2 3
CPU Time (sec)

Figure 5.3 Change of the Objective Function

Against CPU Time

105

80

400 1 Objective Function Against Flops

300

200

—a— Objective_UDA
—— Objective_GL

100 o v Objective_CG

Objective Function

0 <

-100

-200 T T 1
0.00e+0 1.00e+6 2.00e+6

Floating Point Operations

Figure 5.4 Change of the Objective Function

Against Floating Point Operations

5.9.2 Tests on Random Generated Non-Separable QP Problems

The second set of experiments was considered non-separable convex quadratic
program of the form QP with Q a symmetric matrix generated by the procedure
SPRANDSYM of MATLAB and the RHS vector b generated in the same way as in the
separable case. SPRANDSYM generates square positive definite matrices of a given size,
density, and condition number. For the results recorded in the following tables the density
was set to 60% and the condition number to 100. The termination criterion used is the same
as in the last section. The results reported for the GL method pertain to the same values for
parameters Y and © as in the separable case. As in the last section, no initialization step was

used.

106

No results are reported for the unified dual ascent algorithm in Tables 5.3, 5.4, 5.5,
and 5.6 because of the way that method treats non-separable problems. As described in §
5.8.3, non-separable problems must be transformed into a separable form before they are
solved by this method. That approach yields separable quadratic problems twice the size of
the original non-separable one, so a fair comparison is not applicable. As mentioned in Lin
and Pang, (1987) the equivalence between QP and QPS is valid even if d = 0. For § = 0,
the objective in QPS is not strictly convex, however. This lack of strict convexity could
invalidate the convergence results of the iterative method for solving QPS. For comparison
reasons, the time, the number of flops and iterations required for the solution of small size
quadratic problems by all three methods, including the unified dual ascent algorithm are
reported in Table 5.7. Note that the results under the column UDA pertain to the performance
of the algorithm applied directly to the non-separable problem without transformation (0 =
0). The results recorded in Table 5.7 are for problems with five variables and three different
densities of the matrix. The density of the constraint matrix was set to 14%. Table 5.7
shows that, even though convergence of the UDA algorithm can't be guaranteed for 6 = 0,
this approach is very efficient for small size problems. However, numerical experience on
larger problems indicates that convergence, if achieved, is slow and the method often fails to
obtain an optimal solution.

From the results in Table 5.3, conclusions similar to the ones in the previous section
can be drawn. The behaviour of the algorithms is the same except for the fact that now the
conjugate gradient method is faster, even for the small problems with density of 50% or
100%.

From the experience gathered on these two sets of problems the following observations are

apparent

e As expected, solving non-separable problems is more expensive than solving separable
ones. The reason for this is that the matrix Q is denser compared to the separable case.

e There seems to be no relationship between the number of outer iterations in the conjugate

gradient method and whether the problem solved is separable or not.

107

Size CG GL RATIO
Flops Flops/n3| Flops Flops/n3|GL/CG
5x10 | 0.152E6 152.736| 0.217E6 217.569| 1.427
10x20| 1.092E6 136.550| 2.559E6 319.926|2.345
15x30| 4.434E6 164.224| 10.926E6 404.696 | 2.463
25x50| 26.676E6 213.415| 67.577TE6 540.619|2.535
50x100{ 313.116E6 313.116] 809.903E6 809.903 | 2.584

Table 5.3 Non-Separable Dense Problems Results

e For inner iterations, however, one notices that non-separable problems are more
demanding than separable ones. For separable problems, the number of iterations is
usually much smaller than the number required for solving the corresponding non-
separable problem.

* The GL method usually takes more iterations to converge than the conjugate gradient
method and the number of iterations is proportionate to the size of the problem (the
number of the variables).

As in the previous section, the results for the sparse non-separable problems are
summarized in Tables 5.4, 5.5, and 5.6. They pertain to densities of 60%, 30%, and 12% of
the Q matrix, respectively.

Studying the results in Tables 5.4 through 5.6 provides the following conclusions

e For problems where the Q matrix is sparse (12% density), GL_S outperforms CG_S for
all densities of the constraint matrix A.

e For problems with denser Q matrices, GL_S is faster than CG_S only for small
problems (n = 10).

« For bigger problems, CG_S performs better than GL_S. The savings in the number of
floating point operations is around 50% except for problems with very sparse constraint

matrices A (3% density), where it increases rather rapidly.

108

Size CG_S GL_S RATIO
Dens| Flops Flops/n3| Flops Flops/n3|aLsicas
5%10
3% | 0.073E6 73.3 | 0.077E6 77.9 | 1.062
8% | 0.093E6 93.6 | 0.079E6 79.6 |0.850
14%| 0.109E6 109.7 | 0.090E6 90.3 |0.823
50%| 0.122E6 122.5 | 0.092E6 92.8 |0.758
10x20
3% | 0416E6 52.1 | 0.790E6 98.8 | 1.898
8% | 0.425E6 53.1 | 0.900E6 112.5 |2.304
14%| 0.893E6 111.7 | 0.904E6 113.0 | 1.011
50%| 1.226E6 153.3 | 1.076E6 134.6 |0.877
15%30
3% | 1.075E6 39.8 | 3.741E6 138.5 |3.478
8% | 1.506E6 55.8 | 3.462E6 1282 |2.297
14%| 2.477E6 91.7 | 3.938E6 1458 | 1.589
50%| 2.818E6 104.3 | 4.100E6 151,8 | 1.455
25x50
3% | 5.549E6 44.4 | 21.170E6 169.3 |3.814
8% | 12.679E6 101.4 | 21.415E6 171.3 | 1.688
14%| 13.997E6 111.9 | 20.916E6 167.3 | 1.494
50%| 30.032E6 240.2 | 28.172E6 2253 |0.938
50x100
3% | 114.814E6 114.8 | 267.937E6 267.9 |2.333
8% | 173.122E6 173.1 | 262.071E6 262.1 | 1.513
14% | 190.810E6 190.8 | 291.393E6 291.3 | 1.527
50%|198.178E6 198.1 |334.437E6 334.4 | 1.687

Table 5.4 Non-Separable Sparse Problems Results

109

Size CG_S GL_S RATIO
Dens Flops Flops/n3 Flops Flops/n3 |GLS/CGS
5%10
3% 80,905 80.9 52,382 52.3 10.647
8% 89,164 89.1 44,645 446 |0.500
14% | 108,487 108.4 53,299 53.2 10.491
50% | 112,797 112.7 55,032 55.03 |0.487
10x20
3% | 227,501 28.4 569,049 71.2 | 2.501
8% | 243,741 30.4 615,448 76.9 |2.525
14% | 364,267 45.5 561,423 70.1 1.541
50% | 691,988 86.4 726,988 90.8 1.050
15%30
3% | 765,407 28.3 2,166,345 80.2 12.830
8% | 1,088,520 40.3 2,103,402 77.9 1.932
14% | 1,606,771 59.5 1,904,938 70.5 1.185
50% | 2,538,863 94.03 | 2,867,476 106.2 | 1.129
25%x50
3% | 2,952,416 23.6 |13,153,194 105.2 | 4.455
8% 110,370,835 82.9 15,012,103 120.09 | 1.447
14%111,037,823 88.3 17,421,585 139.3 | 1.578
50% 113,702,326 109.6 19,148,963 153.1 | 1.397
50x100
3% 173,060,309 73.06 193,354,875 193.3 |2.646
8% (120,566,441 120.5 201,928,879 201.9 | 1.674
14% 1135,059,858 135.05 209,699,900 209.6 | 1.552
50% 148,270,614 148.2 (226,883,290 226.8 | 1.530

Table 5.5 Non-Separable Sparse Problems Results

The convergence for a sparse non-separable problem with 20 variables is depicted in Figures

5.5 through 5.7.

110

Size CG_S GL_S RATIO
Dens FIOPS Flops/n3 FlOpS Flops/n3 GLS/CGS
5%x10

3% 33,947 33.9 18,282 18.2 10.538
8% 36,726 36.7 18,710 18.7 0.509
14% 60,349 60.3 15,210 15.2 10.252
50% | 170,677 170.6 37,894 37.8 10.222

10x20
3% 357,495 44.6 183,674 22.9 10513
8% 371,678 46.4 210,503 26.3 0.566
14% | 635,728 79.4 266,525 33.3 10419
50% | 970,360 121.2 404,377 50.5 0.416

15%30
3% | 628,520 23.2 670,530 24.8 | 1.066
8% | 703,689 26.06 700,112 259 10.994
14%1| 1,975,105 73.1 1,169,405 43.3 [0.592
50% | 2,396,663 88.7 1,718,459 63.6 |0.717

25%x50
3% | 2,431,604 19.4 4,116,146 32.9 1.692
8% | 6,446,591 51.5 7,472,158 59.7 1.159
14% | 9,981,754 79.8 8,527,539 68.2 [0.854
50% 114,404,571 115.2 }10,113,238 80.9 |0.702

50x 100
3% (69,345,961 69.3 133,191,153 133.1 | 1.920
8% 136,135,270 136.1 (134,465,393 134.4 | 0.987
14% (138,701,812 138.7 {148,830,916 148.8 | 1.073
50% 189,749,949 189.7 169,956,673 169.9 | 0.895

Table 5.6 Non-Separable Sparse Problems Results

Studying the results of Table 5.7 one can see that the number of floating point
operations required by the UDA algorithm is very small compared to those of the CG and the
GL method. However, as far as CPU time is concerned, the UDA method has the worst

performance among the tested algorithms.

111

UDA CG GL

Density | Time Iter Flops| Time Iter Flops | Time Iter Flops
60% |2.859 16 25,261| 0.535 16 229,772| 0.399 24 214,049
30% [2.742 16 22,849 0.359 11 153,454| 0.389 24 213,774
12% [2.196 11 16,897] 0.621 19 272,998| 0.406 24 213,654

Table 5.7 Small Non-Separable Sparse Problems Results

5.9.3 Additional Runs

To test the performance of some variants of the first two described algorithms, some

additional experiments were performed .

5.9.3.1 Conjugate Gradient Method

An inexact variant of the conjugate gradient method was run to see the effect of
truncating on both the number of inner and outer iterations. This variant differs from the
original conjugate gradient method in relation to the stopping criterion of both the inner and
outer circle. The tolerance parameter € in this variant was dynamically adjusted according to

the value of the barrier parameter [t. The following expression for € was used

gk = max(AV pk,10°7),

where A is a positive number smaller than 1. To prevent the tolerance parameter from
becoming unreasonably small, € was bound below by 10-7. For A = 0 one gets the original

conjugate gradient method. For larger values of A, a looser tolerance value is generated. The

value of € decreases as the method progresses, forcing greater accuracy. The method was

112

tested for different values of A (0.001, 0.01, and 0.1). The reported results for the truncated
variant pertain to A = 0.1. The methods were run for n = 10, 20, 30, and 50 and m varied
from 0.5n to n by a step-size of 2. Every problem was tested 10 times for both separable and
non-separable problems. The value of the objective function was calculated for both variants
and it was found that they have the same value at least until the second decimal digit.
From the above tests the following observations are noted
e For problems with n — m = I, both methods are equal in regards to the number of inner
and outer iterations.
» For problems with m > {n, where { € [0.6, 0.8], the truncated method converges in less
iterations of the inner loop. As the size of the problem increases, { becomes bigger and
the relative attractiveness of the truncated method tends to decrease rather rapidly.

« For problems with m < {n, the truncated method performs worse than the exact variant.

5.9.3.2 Goldfarb and Lui Method

The GL method was run with three different pairs of values for the parameters y and
o, both on separable and non-separable problems. The results can be found in Tables 5.8
and 5.9. Note that all variants were tested without the initialization step. The size and the
density of the problems match those in Tables 5.1 and 5.3. For all the tested problems, the
third variant stands out to be the clear winner. Taking into account the number of iterations,
it becomes clear from these results that the third variant 1s more than 10 times faster than the
first one and more than 70 times faster than the second. The cost per iteration was calculated
in each case. As in all three variants, the cost is comparable and one can expect the same
acceleration between the three variants for the running time and the total number of flops.
The latter can be confirmed from the experimental results in Tables 5.8 and 5.9. All these
conclusions are valid for both separable and non-separable problems. As in the previous
section, the values of the objective function, corresponding to the solutions found by the

three variants, agree until the second decimal digit, minimally.

113

Size y=0, 6=0.5, 0=0.166 jy=0.1, 8=0.1,0=0.023] y=0, =0.5, 6=1.5

Density] Iter Flops(10E6) | Iter Flops(10E6) | Iter Flops(10E6)
5%10

100%| 274 1.615 12026 11.956 24 0.141
10x20

100%| 409 16.186 |3002 118.805 39 1.543
15%30

100%| 515 64.705 |3775 474.295 51 6.407
25%x50

100%| 689 380.798 |5032 2,781.1 70 38.687

Table 5.8 Results of Three Variants of the GL Method for

Separable Problems

Size v=0, 8=0.5, 6=0.166 [y=0.1, 6=0.1,6=0.023] vy=0, 6=0.5, o=1.5

Density] Iter Flops(10E6) | Tter Flops(10E6) [Iter Flops(10E6)
5x10

100%| 274 2.487 (2026 18.395 24 0.217
10x20

100%| 409 26.857 12026 197.129 | 24 2.561
15%30

100%| 515 110.374 3775 809.070 [51 10.930
25x50

100%| 689 665.223 15032 4,858.4 70 67.584

Table 5.9 Results of Three Variants of the GL Method for

Non-Separable Problems

114

In Goldfarb and Lui, (1991), it was proven that parameters v, 9, and ¢ are selected in a way
that ensures the algorithm will drive the duality gap to zero by a fixed rate of 1 — 6/\/n, as the
barrier parameter { is reduced by the same multiple at each iteration. The value for ¢ used in
the experiments performed for this research causes the barrier parameter and the value of the
objective function to be reduced by a smaller rate. On the other hand, the number of

iterations required for the algorithm to converge is reduced dramatically.

100 — Objective Function Against Iterations

—— QObjective_UDA
—g— Objective_GL
——g— QObjective_CG

Objective Function

-100
4 141 1>]
'200 T T T 1
0 20 40 60 80
Ilterations

Figure 5.5 Change of the Objective Function

Against the Number of Iterations

In Figures 5.3 and 5.6 the CPU time graphically represented 1s limited to the first 4 and 10

seconds respectively even though the convergence of the UDA method is not completed.

This is done in view to show in detail the convergence process of the other two algorithms.

115

100 ~

Objective Function Against CPU Time

0 i\’
——ft—— Objective_UDA
———¢—— Objective_GL

g Objective_CG

. Objective Function

-200 T T T
0 2 4 6 8 10

CPU Time (sec)

Figure 5.6 Change of the Objective Function
Against CPU Time
100 9 Objective Function Against Flops
c 0
2
2 g Objective_UDA
2 et Objective_GL
® =~ bjective_CG
2
Q
2
o
-100 4,
:‘
-200 Y T 1
0.00e+0 1.00e+6 2.00e+6 3.00e+6
Floating Point Operations
Figure 5.7 Change of the Objective Function

Against Floating Point Operations

116

5.10 Predictor Corrector Method and Quadratic Programming

In the previous chapter the use of the predictor corrector method for solving linear
programming problems was described. The present section is concerned with investigating
the possible use of this technique as a centring scheme in the design of an algorithm for
quadratic programming.

Consider the minimization quadratic programming problem in its standard form. The
dual of this problem after introducing a vector of surplus variables is of the form:

max bTy - %VTQV
st. Qv+ c¢c-ATy-z=0
220
The inequality constraint can be replaced by a logarithmic barrier term in the objective

function and the problem is revised to

. | n
max bTy — EVTQV + u.z In(z;)
i=1
s.t. Qv + ¢ — ATy —z = 0.

The corresponding Lagrangian to the above optimization problem is

n
L(x, v, y, z, u) = bTy - IivTQv + },Lzln(zj)— xT(Qv + ¢ - ATy — 2)
i=1

The first order conditions for the Lagrangian are

JdL(X,V,y,Z,) = XZe = |le

oz ,
8L(X,V7y7z’u) =Ax = b

dy ’
GL(X,V,y,Z,“—) = ATy + 2z - Qv=_c¢

ox ’
aL(X,Vava“) = Qv = XTQ

ov

117

where X, Z and e are defined as in the previous chapter. At the optimum stage, v = x. The
last of the conditions is automatically satisfied at this point and v can be replaced with x in
the third condition. Applying Mehrotra’s predictor-corrector method to this set of conditions

yields solving the affine system

XAZ + ZAR = pe - XZe
AAR =b - Ax
ATAY A2 + QAR =2+ ATy - Qx - ¢

Note that, as in the linear case, the system is relaxed from cross products terms. The solution
AR, A% of this system can be used for the computation of primal and dual directions.
Based on the above procedure for generating both the primal and dual search

directions one can outline an algorithm for quadratic programming problems.

Step 1. Find an initial feasible primal vector x to the problem.

Step 2. Generate z as an arbitrary vector.

Step 3. Compute a starting vector y satisfying Qx + ¢ — ATy —z = 0.
Step 4. Solve the modified system for A%, AZ and A§.

Step 5. Use this solution to generate the search directions Ax, Ay, Az.
Step 6. Update vectors X, y, z and the barrier parameter .

Step 7. Go back to step 4 until some convergence criterion is satisfied.

The main advantage of the described algorithm is that it reduces the quadratic
problem to the solution of a system of so-called normal equations.

In Vanderbei, (1994) an implementation strategy based on solving the reduced
Karush-Kuhn-Tucker (KKT) system is offered as an alternative to the predictor corrector
method. For quadratic problems, the same derivation as in the linear case can be repeated
except that the Hessian Q of the quadratic objective function is subtracted from ~ZX-! in the
upper left block of the symmetric quasi-definite matrix. Assuming Q is positive semidefinite,
it follows that this matrix is still quasi-definite and, so, any sparsity preserving the ordering
scheme can be applied to solve the system. As this suggestion was not based on any practical

results it is difficult to asses whether this would be worth further investigation.

118

5.11 Summary

In this chapter three different algorithms for convex quadratic programming were
considered. Extensive tests on randomly generated separable and non-separable problems
were carried out to study the effect of sparsity in both Q@ and the constraint matrix. The effect
of the condition number of these matrices on the performance of the tested algorithms was
also studied.

From the numerical results obtained, some conclusions about the performance of the
truncated variant of the algorithm based on conjugate gradients were highlighted. Based on
the experiments with the algorithm of Goldfarb and Lui, a new value for one of the
parameters which dramatically improves the performance of the algorithm was also
proposed.

The main purpose of this investigation of algorithms for quadratic programming is to
determine whether they can be used efficiently in decomposition techniques for large-scale,

sparse linear programming problems.

Chapter 6

Interior Point Algorithms and Decomposition of

Linear Programs

6.1 Introduction

The development of efficient optimization techniques for large structured linear
programs 1s of major significance in economic planning, engineering, and management
science. An extensive literature exists on decomposition which shows the magnitude of the
effort devoted to the subject (for an excellent review see Geoffrion, (1970)). Initially, the
idea of decomposition, as suggested by Dantzig and Wolfe, (1960), was an extension of the
use of the simplex method to solve large-scale and structured LP problems. With
implementations of this idea, large LP problems arising in the oil industry, government, etc.
were successfully solved. However, the decomposition algorithm, its variants, and many
other methods based on different ideas never outclassed the simplex method in terms of
labour involved (when these large problems can be handled by the simplex).

The relative "inefficiency" of decomposition algorithms developed in the previous
decade may be due to their tight relationship with the simplex algorithm. It is, therefore,
worthwhile to investigate decomposition in conjunction with interior point methods. By
developing specialized solution algorithms using interior point methods to take advantage of
the structure of the problems, significant gains in computational efficiency and reduction in
computer memory requirements may be achieved. Such methods are mandatory for truly
Jarge problems, which can’t otherwise be solved because of time and/or storage limitations.

Decomposition is also attractive from the point of view of parallelism or concurrency.

120

Parallel processing is expected to speed up the solution process especially for problems with
a large number of independent blocks.

Many new methods were developed, most of them based on penalty functions. Two
algorithms following this principle will be described in this chapter. The first makes use of
an augmented Lagrangian function, [Mulvey & Ruszcczynski, (1992)]. In the second,
smoothed penalty functions are used to exploit the embedded network structure of the
problem, {Zenios, et al., (1992)].

In addition, a new algorithm based on proximal point techniques appears promising
for the solution of structured problems. The main advantage of this method is that the
subproblems are totally decentralized, [Mahey & Tao, (1993)]. The term decentralized,
discussed in § 6.4.2, means that there is no master problem involved in the solution process.

Finally, the classical idea of cutting planes, first proposed by Dantzig and Wolfe, is
used in the theoretical paper of Goffin, et al., (1992). The new algorithm, which also makes
use of an "oracle" to generate cutting planes, differs from the original in that instead of
generating these planes at a point that optimizes the current LP relaxation of the associated
MinMax problem, they are generated at "central points" of the so-called sets of localization.
These sets of localizations are the polytopes given by the outer approximation of the epigraph
associated with the current LP relaxation and limited above by the best objective value
observed so far. This method is not implemented yet and no numerical results are reported.

In the following, the applicability of the interior point methods for linear and
quadratic programming of Chapters 4 and 5 coupled with the latest developments in
decomposition to structured LP problems is reviewed. The problems considered in this

chapter are of block-angular structure with coupling constraints.

6.2 Structured LP Problems

Structure is an important attribute of large-scale linear programming. Large-scale

programs almost always have distinctive structure besides convexity and linearity. The past

121

three decades have seen the identification of many classes of structured problems. There are
many types of structure. However, the most common and most important are multi-
divisional, combinatorial, dynamic, and stochastic structures. Of primal significance to this
research are the multi-divisional problems which consist of interrelated subsystems to be
optimized, [Geoffrion, (1970)]. The subsystems can be modules of an engineering system,
reservoirs in a water resource system, departments or divisions of an organization,
production units of an industry, or sectors of an economy. The interrelation between the
subsystems is represented with the so called linking constraints or variables.

The general, block-diagonal, LP problem with linking constraints and linking
variables is shown below in standard form.

n

Min ¢oTy + EciTxi
i=1

n
s.t. Doy + >Bixj = by (6.2.1)
i=1
Diy + Aixj= bj,
Y, Xj 2 0,
=1, 2, ..., n.

Figure 6.1 gives a graphical representation of a block diagonal problem.

Figure 6.1 General Block Diagonal LP Problem

The most common structure in large LP problems is the block-angular structure, (see

Figure. 6.2). In standard form, this structured LP problem is written as:

122

i=1
n
s.t. YBix; = by (6.2.2)
i=1
Aixi= by,
x; = 0,
1=1,2,..,n

The dual to the above problem is

n
Max bgTyg + zbiTyi
i=1

s.t. Blyo+ Alyi= ¢ (6.2.3)

Y0, yi unrestricted,
i=1,2, .. n

Figure 6.2 Diagram of a 2-Block LP Problem

Block-angular structured problems with coupling variables are amenable to block-

angular problems with coupling constraints and, thus, can be solved by forming their dual

first.

6.3 Advantages of Decomposition

Areas of application exist which require the solution of optimization models with tens
of thousands of variables. Even with recent developments in mathematical programming,

motivated by Karmarkar's interior point method, [Karmarkar, (1984); Marsten, et al.,

123

(1990)], or with advances in super-computing technology, [Meyer & Zenios, (1988)], such
large-scale problems defy solution with general purpose software. It is, therefore, essential
to design algorithms that exploit the structure of the problem. When the underlying structure
is pervasive in several applications, such an approach is not only very effective, but is, also,
well justified, {Zenios, et al., (1990)].

The main purpose of decomposition is to exploit the inherent parallelism of block-
angular structured problems, using the relative independence of the subproblems.

It is assumed that solving a set of linear subproblems is easy, relative to the entire
original problem. This is quite reasonable for most applications, since the subproblems are
solved independently, and may, therefore, be solved in parallel. This 1s particularly
appropriate in a MIMD computational environment. Secondly, some types of structure in the
subproblems may be exploited which could not be directly used if the original problem were
solved with the entire set of constraints. An example of this is the multicommodity flow
problem, where each constraint submatrix is a node-arc-incidence matrix. In this case, each
subproblem may be solved with a special-purpose-network code. And third, note that the
difficulty of solving most linear programs (in some sense the easiest of optimization
problems) in practice increases as a cubic function in proportion to the size of the problem.
As such it is much more efficient to solve a set of small problems than a single aggregated
problem. Based on this logic, the basic effort in the decomposition of structured LP
problems has been to devise solution methods that break the problems down into a sequence
of subproblems in lower-dimensional spaces, [Cohen, (1980); Dantzig & Wolfe, (1960);
Geoffrion, (1970); Ladson, (1970); Mulvey & Ruszczynski, (1992); Mahey & Tao, (1993);
Pinar & Zenios , (1992)].

The following outlines a model algorithm for decomposing structured linear problems.

Step 1. Eliminate the coupling constraints so the resulting equivalent problem has a

decomposable constraint matrix. Set k = 0 and repeat the following steps.

Step 2. If the objective function is decomposable, let xl'(be the current estimate of the

optimal vector x* corresponding to the i-th independent subproblem. If the objective is not

124

decomposable, then special algorithms must be used. The purpose of these algorithms is to
convert the objective to a decomposable form or at least to approximate it as such.

Step 3. Test convergence.

If the convergence conditions are satisfied at xj, the algorithm terminates with xy as the
solution.

Step 4. Compute a feasible search direction.

Compute a non-zero vector py, the direction of search.

Step 5. Compute a step-length.

Compute a positive scalar oy, the step-length, for which holds F(xj+oy py) < F(xg).

Step 6. Update the estimate of the minimum.

Set Xy4+1 = Xk + 0Pk, kK =k + I and go to Step 1.

6.4 New Approaches to Decomposition

In this section three different, recent approaches to the decomposition of structured
LP problems will be described. All algorithms handle problems in standard form, i.e., all
constraints are equalities. For the first of the algorithms described it is assumed that the
optimal solution is in the positive orthant but there are no upper bounds on the variables. The
rest of the algorithms mentioned in this chapter handle lower and upper bounds on the
variables explicitly. In what follows it is assumed that the decomposition problems are
feasible, 1.e. the solution set is not empty.

All methods make use of penalty functions to eliminate the linking constraints. These
functions are based on the violation of the coupling constraints.

The main difference among the algorithms 1s in the way they introduce separability in
the objective function after the elimination of the coupling constraints. In the algorithm of
Mulvey and Ruszczynski that 1s achieved by quadratic approximation. Zenios and Pinar use
simplicial decomposition. Finally, the algorithm of Mahey and Tao yields totally

decentralized subproblems using proximal point techniques.

125

6.4.1 A Decomposition Method Based on Augmented Lagrangian

This decomposition approach, as described in Mulvey and Ruszczynski, (1992), is
based on the use of an augmented Lagrangian method to handle the coupling constraints.
Using a separable diagonal quadratic approximation for the augmented Lagrangian,
independent quadratic subproblems are obtained. These problems can be readily solved in
parallel by any of the quadratic solvers of Chapter 5.

Another method based on augmented Lagrangians has been suggested by
Ruszczynski, (1989). It has linear subproblems identical with the Dantzig-Wolfe method,
but its master problem is quadratic with only n general upper bound-type constraints,
[Mulvey & Ruszcezynski, (1992)].

It could seem strange to solve a linear program by solving a sequence of quadratic
programs because quadratic problems are, in general, more difficult to solve. However, for
decomposable structure problems as those studied in this chapter, the use of quadratic
programming is justified because the size of the quadratic problems generated is equal to the
size of the independent subproblems or the quadratic master problem is of small size and of
special form, which is easily solved.

A step of the augmented Lagrangian method can be stated for the solution of (6.2.2)

as follows

Algorithm 6.1 Quter Loop (The Augmented Lagrangian Method)

Step 1. For fixed multipliers 7K solve the problem

Min L (x, k)

s.t. xje Xj, (6.4.1)
1=1,2, .., n,
where
n 2
n n
Lq(x,) = ZCiTXi + nT(b 0 - }:B;xij-r %r bg - YBixi (6.4.2)
i=1 i:l l"—‘l

126

r > 0 1s a penalty parameter and Xj is the feasible set for subvector x; of vector x

Xi=1{xie R : Aixi=bj, x; 20}L, i =1, 2, ..., n.

k

2y ey X l;) be the solution of (6.4.1)

Let xk = (xll(, X

n
Step 2. If Y Bjxj = by then stop (optimal solution found); otherwise, set
i=1

i=1

n
nk+l = gk 4 r (b() - EBixkij .
increase k by 1 and go to Step 1.

The main disadvantage of the algorithm as described above is that the objective
function L (x, m) of the quadratic problem (6.4.1) is non-separable, and so no
decomposition i1s obtained. The problem of separability of that function will be considered
later in this section.

For the sake of completeness the theoretical justification of the above algorithm is

presented, [Bertsekas, (1982)]. Let us denote by f(x), h(x) = 0 and X the objective
function, the coupling constraints, and the decomposable block of constraints of problem
(6.2.2) respectively.
Proposition: We can assume, without loss of generality that f(x) and h(x) are continuous
functions and that the set X is closed. If for k = 0, 1, ... vector x is a global minimum of
problem (6.4.1) where {mg} 1s bounded and O < ri < rg4j for all k, rg—oe, then every limit
point of the sequence {xy} 1s a global minimum of problem (6.2.2)

Proof: Let x* be a limit point of {xk}. By definition of xi
Ly(xk, k) € Lp(x,) V x € X (6.4.3)
Let f* denote the optimal value of the original problem. We have

f* = infye X h(x)=0 1(X) = infye X hx)=0 Lr(X, TK).

127

o SN

Hence, by taking the infimum of the right-hand side of (6.4.3) over x € X, h(x) = 0, the

following is obtained

L (XK, k) = f(xk) + m'h(xk) + %l‘kih(xk)l2 <

The sequence {m} is bounded and hence it has a limit point w*. Without loss of generality,
it may be assumed mi — ¥, By taking the limit superior in the relation above and by using

the continuity of functions f(x) and the h(x), the following is obtained
f(x*) + ©*'h(x*) + [img_,.o5up %1](Ih(xg)I? < f* (6.4.4)
Since Ih(xg)I2 = 0, rg—eo, it follows that h(xg) — 0 and

h(x*) =0, (6.4.5)

for otherwise the limit superior in the left-hand side of (6.4.4) will equal +eo. Since X is a

closed set it 1s also obtained that x* € X. Hence x* is feasible, and
f* < f(x*). (6.4.6)
Using (6.4.4), (6.4.5), and (6.4.6), the resulting formula is

£ + limyg _eosup %rk Ih(xy)I1? < f(x*) + limg_yeosup %rk h(x)I? < f*,

Hence,

limk—)oo %fk]h(Xk)[z =0 and f(x*) —_ f:k,

which proves that x* is a global minimum for problem (6.2.2). Q.E.D.

The termination criterion used in Step 2 is justified by the fact that in Step 1 of the
algorithm the independent subproblems are optimized over the corresponding part of the
coupling constraints, so if the solution found by Step 1 satisfies the whole set of coupling

constraints then this solution must be the optimal.

128

There are several advantages to the augmented Lagrangian approach over the usual
dual methods. Simplicity and stability of multiplier iterations and the possibility of starting
from arbitrary ©0 are among the most important ones. The well-known Dantzig-Wolfe
decomposition method may be viewed as a dual method based on the Lagrangian function

n
n
Ax, m) = ECiTxi + TCT(b() - zBixi}

i=1 i=1

The above function is separable into terms dependent on x;, 1 =1, 2, ...,n and can be
minimized over x; in the decomposable blocks of the structured LP independently for each 1.
However, updating 7 requires the solution of a linear master problem which has the number
or rows equal to the number of the coupling constraints and unspecified number of columns.

It is known that if (6.2.2) has a solution, then the augmented Lagrangian algorithm is
finitely convergent. However, (6.4.2) is non-separable, so problem (6.4.1) cannot be split
into n independent subproblems. There are several possible ways to overcome this difficulty,
including the use of alternating direction methods, [Fortin & Glowinski, (1983)], which
results in the easily parallelized Progressive Hedging Algorithm and the Simplicial
Decomposition Algorithm described later in this chapter.

Alternating direction methods introduce additional variables & = (€1, €2, ..., &) (0

the problem to replace the coupling constraints by a new set of conditions:
xi-&i=0,1=1,2,...,n

n
> Bii= by
=1

If one writes down the augmented Lagrangian terms corresponding to the terms X; — Ei=0
(with multipliers u), it shall be seen that in problem (6.2.2) minimization with respect to X,

after ignoring constant terms, is decomposable (for fixed €) into n subproblems

. 1
Min ciTxi - u?x; + 51 i - ;12

s.t. xje Xj

Minimization in & (for fixed x) is obvious because the corresponding problem

129

1=1

n n n
. |]
Min —ug — u(E BiEi-bg) + Q‘réluxi—&i“z + §"_§1”Biéi“b0”2)
i= i=

is unconstrained. Note that the solution obtained for & will now satisfy the coupling
constraints. It 1s, therefore, possible to derive a block-wise Gauss-Seidel method for solving
problem (6.2.2) with alternating steps made in x and &. Multiplier updates can be made after
each alternating direction iteration. Numerical experience, [Mulvey & Vladimirou, (1991);
Vladimirou, (1990)], indicates that in some cases convergence of the method can be slow.

As an alternative to that method for this algorithm, the augmented Lagrangian
function is locally approximated by a separable linear-quadratic function. Combining the
updates of the separable approximation with the quadratic solvers of Chapter 5 gives a
decomposition algorithm for large-scale, LP problems.

In the following a description of the separable approximation of the augmented
Lagrangian will be presented as well as the final algorithm and the nature of the resulting
quadratic subproblems.

It is clear that non-separability of (6.4.2) is due to the quadratic term

2
1 n
Pr(x) =51\bo - 'ZFiXi , (6.4.7)
1=
which contains cross-products
dij(xi, xj) = < Bixij, Bjx; >, 1 #]. (6.4.8)

However, supposing that x belongs to a neighbourhood of some reference point x*,

(6.4.8) is approximated locally by

0*ij(xi, xj; x¥) = <Bixj, Bjx;>+<Bixi*, Bjx;>-<Bix,, Bjx;‘> (6.4.9)

with an error of order O(Il x — x* lI2). Using the approximation (6.4.9) instead of the
quadratic term (6.4.8) in (6.4.7), after a simple transformation process, the following is

obtained

130

%2
bo - Bix; - 2 Bjxj

_ n
Op(x) =-r nTl bol2 + ¥ % r
' i=11 ..

AES

n
1 ; ;
rr by~ 3 ;Bjx;‘, EBjx;‘>}.

j#i

Thus, in the neighbourhood of x*, the problem (6.4.1) can be approximated, after ignoring

constant terms, by n subproblems

Min L™ .(x;, m; x™) = ¢;Tx; -nTBix; + 131‘ b()—Bixi—lejx;L 2
- ji
s.t. Aix; = b; (6.4.10)
x;j=> 0
1=1,2, .., n

Using the above transformation one can describe an inner iteration of the augmented

Lagrangian algorithm for solving (6.4.1) as follows.

Algorithm 6.1 Inner Loop
Step 0. Set (a) © =ik, (b) x*k:m = xk-1 and (c) m = I, where m is the counter of the
iterations in the inner loop

Step 1. For1 =1, 2, ..., n, solve the quadratic programming problem (6.4.10) with x" =

,n

x*ksm gbtaining new points xik

' k,m *k,m . _ . .
Step 2. If lBi(xi - X, NW<e,i=1,2,..,n, where ¢ > 0 is some prescribed
accuracy, then Stop;

otherwise, set

xFktlm = yx*km 4 g(xkm _ x*k.m) e (0, 1),

increase m by 1 and go to Step 1.

The quadratic subproblems (6.4.10) are convex with

Q =B;TBjand ¢ = ¢; - BiTn - rB;r(bO - EBJX*J'),
Jj#i

so any of the algorithms described in Chapter 5 can be used for their solution.

131

6.4.2 A Decomposition Algorithm Based on Proximal Point

Techniques

A particularly interesting algorithm is considered in this section. The novel element in
this technique is that the subproblems are totally decentralized. That is something which is,
in general, not possible with the classical methods for decomposition. To achieve this,
proximal point methods are used.

The Proximal Point Algorithm is based on the Moreau-Yosida regularization of a
maximal monotone operator and has been analysed by Rockafellar, (1976) in the context of
convex analysis. Proximal methods of multipliers combined with a two-metric gradient-
projection approach were successfully used for the solution of very large-scale linear
programming programs, [Wright, (1990)].

The decomposition approach described in this section, [Mahey & Tao, (1993)], 1s
based on a scaled and relaxed version of Spingarn's Partial Inverse method to minimize a
convex separable function on a subspace. The Partial Inverse method, which is a certain
constrained version of the Proximal Point algorithm, uses a transformation of the problem to
build a coupling subspace with a very simple structure.

The algorithm starts by first building copies of the multipliers u associated with the

coupling constraints and defining the problem

Max H(U) = Shi(up)
i=1

s.t. Ue E,

where h;(u;) = {min x;(¢; + u;Bj), s.t. Ajx; = b;} and E is the coupling subspace.

Algorithm 6.2 (The Decentralized Algorithm)

Step 0. (a) Initialize the coupling subspace

EE{V = (V1i, V2, «ees V) | .Z"i = 0}

132

and (b) let B be the orthogonal subspace to E, i.e.
B={U = (uy, uz, ..., up) luy=uy ... =upy}.

The elements of each vector uj are randomly generated numbers. Start with arbitrary x% and
(c)setk=1.

Step 1. Let xj%+1 be the optimal solution of the quadratic subproblems

A
Min (¢ + u:(Bi)Xi + 5 |BiXi + Vli{ — bygil?

s.t. A;x;j= bj, (6.4.11)
Xj = 0,
1=1,2, .., n,

where the scaling parameter A > 0, and bg; is the portion of bg corresponding to the

k

partition i of the coupling constraints. If the solution xk = [xk » Xos

, X k] satisfies
n

some optimality criterion, then stop. Otherwise, perform Steps 2 and 3 and proceed from

Step 1.

Step 2. Compute u'jand v'j

(a) u'y = uli(+ X(Bixli(” + vli(- boi),
(b) V'i= boi — Bix; L.

Step 3. Projection step.
(a) Uk+l = Pl’OjE(U'], u’Za ey U'p),
(b) Vk+1 = PI'OjB(V'], V‘29 cery V'n),

. 1 . . A
where ull§+1 = Projgu'jj and vikj+ = Projpv'jj is respectively equivalent to

k+1 _ ..
uij = uijj —

u'jk and virl v +
1 lJ .l

M=

L
n.
1

The use of vector v in algorithm 6.2 is reminiscent of the resource-directive
approach, [Geoffrion, (1970)]. Vector u can be seen as the price vector in a price-directive
approach applied to the decentralized system whose subproblems are of the form (6.4.11).
Algorithm 6.2 iteratively minimizes a separable function depending both on prices (u) and

resources (v). In convex programs the prices converge to a Karush-Kuhn-Tucker vector and

133

the resources to an optimal allocation of the original problem, [Spingarn, (1985)]. The
algorithm is in this sense both price- and resource-directive, though it is not primal feasible.
In Mahey and Tao's paper the projection used in Step 3 is left unclear. However, to
clarify this, the projections used in algorithm 6.2 are based on the condition that E and B
must be orthogonal. Let H denote the space of all pairs (x, v), where x € R"and v is a

mxn array of real numbers. If R is given the inner product

1 o, 1 . 1 \
<X, X'> = <X X1 <X, Xp> <Ky, X,

where <xj, x{> is a arbitrary inner product on R", the subspaces E and B are orthogonal, if

H is endowed with the inner product

l 1
<(x, v), (x', v')> = <x, x'"> + HEViJ‘ViJ’.
ij
The choice of the inner product <(x,v),(x',v')> 1s made somewhat arbitrarily,
Spingarn, (1985)]. If p;; are arbitrary positive numbers, it is equally natural to use any inner
ping Pij yp qually y
product satisfying

<(x, V), (%', V> = 32X, X)) + 2 pijvijvij-
j ij

Associated to this inner product is the subspace E'= { V = (v, ... vy) | Zpijvij = 0}.
1 ‘

Letting p; = Y.pik the projection of vectors v and u into B and E' are given by the formulae
k

viik+! = vik + Y pixuikk/pi and uijkt! = uik = Y pikuik/p;.
k k

In the implementation used for the tests performed in this chapter the values of
parameters pix were set to one, for all k =0, 1, ..., n. That results in p; = 3 .pix =n.
k

The quadratic problems generated in Step 1 of 6.2 are convex because they have Q =

5 BiT B, which is a positive definite square matrix. For the solution of these problems any

of the algorithms for convex quadratic programming described in the previous chapter could

be used.

134

6.4.3 A Decomposition Approach Based on Smoothed Exact-Penalty

Functions

The 1dea of using penalty function methods to simplify optimization problems is
probably as old as the field of non-linear programming itself. The method described in this
section was proposed by Zenios, et al., (1990) and 1s based on smoothed, exact-penalty
functions. These functions combine the best of exact-penalty functions and augmented
Lagrangians and appear to be well suited to large-scale programming.

The algorithm was first proposed to solve non-linear problems of the form

Min f(x)
s.t. E,Bixi = by (6.4.12)
Ex < b,
]<x<u
but can handle linear problems of the form (6.2.2) by modifying the penalty function as

described later in this section. The use of smoothed, exact penalty to eliminate side

constraints motivates the following algorithmic framework.

Algorithm 6.3 (The Linear-Quadratic Smoothed-Penalty Algorithm)
Step 0. (a) Find an initial feasible solution for the relaxed problem

n

Min ZCiTXi
=1

>
Vs

3

s.t. bi, (6.4.13)

=
=

0,
s 2,

. L

(b) Set k = 0 and (c) let x0 be the optimal solution of this problem. (d) If x0 satisfies the
coupling constraints within a prescribed error €°Pt , then stop. Otherwise, choose p0> 0,
£0>0 and go to Step 1.

n
Step 1. (a) Calculate the violation t; =(SBixi - b()); for all j. Using tj as a starting point
i=1

for evaluating the penalty function ¢,

135

0 ift <0,
t2
“/hel‘e¢:< - if O <t<eg,
2¢
E_ el s
\t—— 5 it t = e,

(b) solve the problem

n

S
Min ® (L g)(x) = zc?xi i Yot (6.4.14)
i=1 j=1
s.t. diag[A] Az Aplx = b,
x = 0,
1=1,2, .. n,

where s is the number of coupling constraints. Let x*K denote the optimal solution.
Step 2. If t(x™k); < eoPt, j = 1, 2, .., s, then stop (optimal solution has been obtained).
Otherwise, (a) let xk+1 = x*k_(b) update the penalty parameters | and €, (c) set k=k + 1,

and proceed from Step 1.

The efficient solution of the problem in Step 1 is discussed in section 6.5.

6.4.3.1 Theoretical issues

The convergence of the above algorithm is proved in Zenios, et al., (1990) and can

be summarized as follows.

n
Associate the multipliers A with constraints ¥ Bixj = bg, ® > 0 with constraints Ex < b,
i=1

and QY, ! > 0 with constraints I < x< u, and let g = Vf.
The first-order optimality conditions for problem (6.4.12) are then:
g(x) + ATA + EToo +6u - 9l= 0
§,Bixi = bg

i=1

136

E
1

» N

b
<

IN »

|13
®w=>0;6u>06l>0

w(Ex -b) =0
pu(x —u) =0
Blx -1 =0

Vectors x*, o*, A*, 6% satisfying the above, are unique if one assumes that strict
complementarity and second-order sufficiency hold. For the optimality conditions of

(6.4.14), if one associates Ag with constraints Zle, = bg and 6 62 >0 with
i=1

constraints I € x < u, the following 1s obtained.

S
g(x) + pL .ZIV(D(E,tj) +ATA, +6Y — 6! = 0
J:

Bixi = by
1

||M=

<

X
2 0,

=

l

1
6 20
6€(x—u)=0

i
6€(x—l) =0

jen

m:l/\

Letting A(x) = {jIO < t; <&} be the set of active constraints and V(x) = {jlt; > &} be the set

of violated constraints, the first of the optimality conditions of problem (6.4.14) reduces to

g(x¢) + B z(EJxE—dJ)E + U ZE +AThe + 6 6 =0
€ je A(xe) je V(Xt)

where X¢ denotes a solution to the optimality conditions of the penaltized problem (6.4.14).

Now let
U forj € V(xg),
E. _b.
(We)j = W jXe=bj) forj e A(xe),
€
0 otherwise.

then the above reduces to

137

g(xe) + ETog + AT + 0% - 0! = 0,

which is reminiscent of the first of the optimality conditions of problem (6.4.12). Thus a

solution x¢ to the penalty problem (6.4.14) and the multipliers ¢, Ag, 82, 6 L defined

above, satisfy the conditions for optimality of the original problem.

6.4.3.2 Implementation Issues

In Step 1 the coupling constraints are eliminated by the use of a penalty function. The
penalty 1s controlled by the parameters (L and € and the violation of the coupling constraints.

In the limit (Lim,_se [L = oo), the violation of the coupling constraints tends to 0, forcing the
S
penalty term uzq)(e,tj) in the objective function to 0 as well. At this point the solution of
j=1

the quadratic penalty program is the optimal solution of the original linear problem.
The updating of the penalty parameter @ and the accuracy parameter € in Step | is
performed with respect to the sign of the difference between the violations of the coupling

constraints calculated for the solution obtained in the current iteration and € by the rule:

If all current violations are less than €
ekl = max {€°PL, M lﬁk}
else
L+ ZJ—kk maxj e v(x" 4,
mn2¢&
where M, M2 € (0, 1], and V is the set of all coupling constraints for which the violation
calculated on respect of the current vector xX is greater than €.

The above rule can be justified as follows.

138

Case 1: If V(xK) = &, this is an indication that the magnitude of the penalty
n

parameter L was adequate in the previous iteration since e-feasibility is achieved (¥Bx; —
i=1
bg < €). In this case the infeasibility tolerance parameter € may be reduced.

Case 2: If V(xK) # @, the current point is not e-feasible, an indication that the penalty
parameter m should be increased. The increase is chosen proportionately to the degree of
infeasibility.

The algorithm, as described above, solves decomposable linear problems with
coupling constraints in inequality form. To use the algorithm for problems of the form

(6.2.2) the linear-quadratic penalty function ¢ was modified to the one given below.

(.
0 if Itl < gopt,
t2 ,
d1(e,t) = § if 0Pt < |t] < g,
2€
€ -
t - 5 ifltl>eg,

The penalty function ¢ is based on the principals of ¢ but, since the coupling constraints are
in equality form, the focus 1s now in the sign of the difference between the absolute value of
the violation of the coupling constraints and the infeasibility tolerance €.

In Step 0O of the algorithm the decomposable structure of the constraint matrix can be
exploited. The objective function is linear and therefore separable and the problem can be
decomposed into independent subproblems, which could be solved in parallel. Any of the
algorithms described in Chapter 4 could be used for the solution of the independent
subproblems. The same 1s also valid for the problems generated in Step 1 of the algorithm if
they are linear, i.e., if the violation tj of the coupling constraints is less than €°Pt or greater
than €. If the problems generated are quadratic (e°P! < Itl < g), then the objective function is,
in general, non-separable and non-convex. If the problem was convex one could still exploit
the special feature of the constraint matrix using the transformation utilized in the unified dual

ascent algorithm for non-separable quadratic programming. The matrix containing the

139

coefficients of the quadratic and mixed terms of a non-convex quadratic problem is non-
positive definite and there is no valid value for the positive parameter 9, as described in §
5.8.3. In the following section of this chapter an approach, which takes into account the
decomposable structure of the constraint matrix, for the solution of such problems will be

described.

6.5 Linearization via Simplicial Decomposition

In this section the implementation of an approach, based on simplicial
decomposition, for the solution of the quadratic non-separable subproblems generated by the
decomposition algorithm of § 6.4.3 is described.

The simplicial decomposition algorithm was first proposed in Holloway, (1974) as
an extension to the linearization technique of Frank-Wolfe. Significant enhancements were
added by Von Hohenbalken, (1977). In Hearn, et al., (1987) a memory-efficient variant of
the algorithm was developed. Mulvey, et. al., (1990) developed an inexact variant
specialized for network structures.

Simplicial decomposition iterates by solving a sequence of linear problems to
generate vertices of a polytope X, [Pinar & Zenios, (1992)]. A non-linear (quadratic) master
problem optimizes the penaltized function ®(y) on the simplex specified by the vertices
generated by the subproblems. The simplicial decomposition at the k-th iteration of the

linear-quadratic penalty decomposition algorithm is stated as follows.

Step 0. (a) Set v = 0, and (b) use z0 = xk e X = {x I diag[A1 A2, . Aplx=b, x 2
0} as the starting point. (c) Let Y = @, and (d) v = 0 denotes the set of generated vertices
and their number, respectively.

Step 1. (Linearized subproblem). (a) Compute the gradient of the penalty function O g) at

the current iterate zV¥ and (b) solve a linear program to get a vertex of the constraint set, i.e.,

solve for y* = argminyex YIV®Lgy(zV) and (c) let Y = Y U {y*}, (d) v=v+1.

140

Step 2. (Non-linear master problem). Using the set of vertices Y to represent a simplex
contained in the constraint set X, (a) find the optimizer of the penaltized objective function
Dt ¢y over this subset of X. (b) Let w* = argminye wy (D(p_f_)(Bw) where Wy, = {w; |

v
Ywi=1l,wi20Vi=1,2,.,v} and B = [ylly2l...IyY] is the basis for the simplex
i=1

generated by the set of vertices Y. The optimizer of ®(l ¢y over the simplex is given by zV+1
= Bw*.

Step 3. Let v=v + 1, and return to Step 1.

The special features of Steps 1 and 2 of the above algorithm will be commented in the
following section.

In Step 1 the algorithm solves a linear approximation to the quadratic problem.
Because of the decomposable structure of the set X the problem can be solved independently
for each block of the matrix diag[Aj1 Az .. Apl

Step | (Decomposed linear subproblems)

Foreachi=1, 2, ..., n solve
Min yiTVi® @ ¢)(z")
s.t. Ajxj = bj
yi 20
The non-linear (quadratic) master problem of Step 2 of the simplicial algorithm is of
much smaller size than the original problem generated by the decomposition algorithm since
it 1s posed as a problem over the weights w associated with the vertices. Furthermore, it has
a very simple constraint structure: non-negativity constraints and a simplex equality
constraint. The single constraint master program can be written in the form:
v
s.t. Swi=1
i=1

w > 0, 1=1,2,..,0

Pinar and Zenios, 1992 used the same simplicial decomposition approach to

overcome the difficulty of solving non-linear problems of non-separable objectives but they

141

solved the master problem with pure non-linear techniques. That approach requires the
computation of a descent direction and the performance of a line-search in each iteration.

In the case of linear programming problems, which is of interest in this chapter, the
objective function of the master problem is quadratic. As an alternative to the non-linear
techniques, it was proposed that the same algorithm for single constraint quadratic problems
as in the implementation of the unified dual ascent algorithm in Chapter 5 be used.

The advantage of this approach is that an iteration of a non-linear technique is, in
general, more expensive than that of the specialized algorithm for quadratic problems with

one constraint because no line-search is performed.

6.6 An Improved Linear-Quadratic Penalty Function

The smoothed linear-quadratic penalty function used in § 6.4.3 to eliminate the
coupling constraints can be improved by modifying both the linear and the quadratic terms of
01

The linear-quadratic penalty function proposed here is of the form:

0 if Itl < gopt,
\2
d2(g,t) = 3 (%_ - \/z‘?j if €0PL < It < g,
€
L %+ \/8—8 if 1th = g,

The above function differs from ¢ because the minimum of the quadratic term of ¢

. € £ .
1s not achieved in the point t=0butint= 7 For values of t < 2 penalties greater than these

of function ¢y are added to the objective function. In fact, penalties increases as t — O and t

£ . . . - S .
<7 If optimality i1s not achieved before t becomes less than 2 then, in general, the

decomposition algorithm will fail to converge. To prevent that happening one must ensure

that the starting value of € is small enough so that optimality is achieved before t becomes

142

€ . . . : .
less that e One way to do that is to start the decomposition algorithm with a good estimate of

the solution vector x. If x is close to the optimal solution of the problem then the maximum
value of vector t = Bx — by, which is equal to gp, will be relatively small and hopefully
close enough to €°PL In order to satisfy that restriction one must solve the relaxed from
coupling constraints problem and use the result as a starting vector instead of an arbitrary
one. It could be argued that solving this problem results in increasing the CPU time required
by the algorithm but experimental results do not support that argument. This is due to the fact
that the problem solved is separable and thus the subproblems could be solved in parallel
using any of the algorithms described in Chapter 4. Also, function ¢2 introduced in this
study converges faster than ¢1 which results in a big reduction of the iterations required by

the algorithm to converge.

6.7 Computational Experience

In this section numerical results on the performance of the described decomposition
algorithms on a set of random LP problems will be reported. For comparison purposes the
same problems were solved by an interior point method presented in Chapter 4. The method
chosen was the predictor corrector method and the CPU time and number of floating point
operations required by the algorithm can be found under the column interior point method of
Table 6.1. The tests were carried out in MATLAB, ver. 4.2 on a networked SPARC
workstation. The number of floating point operations recorded was obtained by the FLOPS
function of MATLAB. The functions CLOCK and ETIME were used to obtain the sequential
CPU time required for each implementation.

The values reported under parallel time are obtained by simulating parallelism. It is
assumed that the number of processors available is equal to the number of subproblems in
each structured problem. When the independent subproblems, linear or quadratic, are

solved, the time required for the solution of each one of them is recorded and the maximum

143

of these times is used as the parallel time required for the solution of these subproblems in
each iteration. The parallel time reported is the sum of the parallel times computed for each
iteration of the algorithm plus the time required for the algorithm to perform sequential
operations. Parallelism is simulated in the simplicial decomposition algorithm and in the
initial phase of the linear-quadratic penalty decomposition approach using the penalty
function ¢z where linear problems can be solved in parallel. In the decentralized algorithm
and the decomposition approach based on Augmented Lagrangian parallelism can be
simulated in the solution of the quadratic subproblems generated in each iteration of these
algorithms.

The test problems were based on those used by Mangasarian, (1985) and Salhi,
(1989). These problems were generated as follows. The constraint matrix A was fully dense
with random elements ajj uniformly distributed in the interval [-100, 100]. The right hand
side was chosen so that

n
2.4 if aj; > 0
j=1

b; = ,1=1,2, ..., m

n n
-1 + Q.Z]aij 1f _Z]aij <0
= =

and the cost vector

cj= 2 ajj, where J = {i | i‘dij > O},j =1,2,..,n
el j=1

In these tests the above problems constitutes blocks linked with a set of rows also
randomly generated to form the structured problems. However, vectors b and ¢ of the
structured problems comply with their above definition, taking the linking rows into account.
Point e is, therefore, primal optimal. A sample of a randomly generated, 2-block, LP
problem is given in Figure 6.3.

The convergence for this set of problems was monitored by the difference between
the current prediction of the solution vector x and a suitable (in size) unit vector. The

convergence criterion was set as follows.

144

max(abs(x — ones(size(x)))) < €OP!

c 65.7118 184.2489 259.3944 316.1557 187.3205 b:
A 21.8959 67.8865 93.4693 183.2517
4.7045 67.9296 38.3502 110.9843

51.9416 5.3462 | 57.2878
83.0965 52.970 | 136.0666
3.4572 67.1149 | 70.5721
Linking 0.7698 6.6842 68.6773 93.0436 52.6929 | 221.8678

Rows 38.3416 41.7486 58.8977 84.6167 9.1965 |232.8010

Figure 6. 3 A Sample Randomly Generated Problem with
Entries Uniformly Distributed in [0, 100]

In the test performed €°Pt was set to 0.01. Problems with 2, 4 and, 8 independent blocks
were solved. The constraint matrix of each subproblem was a fully dense matrix of size
5x10. To study the effect the number of linking constraints has on the solution process of
the described decomposition approaches two variants of each problem were solved. In the
first experiment only two linking constraints were added to the decomposable block of
constraints. In the second test the number of linking constraints was set to 20. The results
obtained from these test problems are recorded in Tables 6.1 and 6.2. The time ratio reported
in Table 6.2 shows the speed up of the solution process in a simulated parallel environment.

The simplicial decomposition algorithm used in the implementations of the linear-
quadratic penalty decomposition approach for both the penalty functions ¢1 and ¢7 requires
the solution of linear problems. Linear problems are also solved in the initialization phase of
the algorithm when the penalty function is ¢ used. For the solution of these problems the
predictor corrector algorithm of Chapter 4 was used.

For the solution of the quadratic subproblems generated in each iteration of the
decentralized algorithm and the Augmented Lagrangian method the unified dual ascent

algorithm described in Chapter 5 was used.

145

LP

Linear-Quadratic

Penalty Funct - ¢7

Linear-Quadratic

Penalty Funct - ¢

Decentralized

Algorithm

Augmented

Lagrangian

Interior Point

Method

Ite Time Flops |[lte

Time Flops |Ite Time Flops [Ite Time

Flops

Time Flops

1 1.432 28741 |4
38561 |5
41227 |5
49585 |6
124642 | 5

130077 | 6

1 1.650
1 2459
1 8.289
1 29.80
1 31.27

57.68 2627440 |3 2.400 7820 |5
90.03 3341448 |4 4.246 20396
134.4 11715957|5 13.97 34650
174.0 14518127 6 12.17 79329
367.3 52344499 6 20.32 151756
491.1 697562131 6 22.86 172555

14.18 43687
5 14.42 80515
5 53.07 255453
7 82.98 555127
S 497.7 2606878
7 586.1 5635317

0.059 1875
0.262 5843
0.425 10076
0.479 22929
0.882 58990
0.987 61101

Table 6.1 Comparative Results of Decomposition

Approaches

LP

Linear-Quadratic

Penalty Function - ¢

Linear-Quadratic

Penalty Function - ¢

Decentralized

Algorithm

Augmented

Lagrangian

Time Time Time

Sequen Parallel Ratio

Time Time Time

Sequen Parallel Ratio

Time Time Time

Sequen Parallel Ratio

Time Time Time

Sequen Parallel Ratio

2.2
2_20
4.2
4_20
8.2
8_20

1.432
1.650
2.459
8.289
29.717
31.28

1.041
1.216

1.377
1.356
1.655
1.769
1.503
1.351

1.485
4.689
19.81
23.38

1.094
1.078
1.089
1.095
1.067
1.066

2.400
4.246
13.97
12.17
20.32
22.86

1.562
1.724

57.68 52.70
90.03 83.49
123.3
159.0
344.0
460.4

1.511
2.443
6.38
5.27
4.18
4.61

134.4 2.222
174.0
367.3

491.1

2.325
4.856
5.000

1.960
2.000
3.556
2.941
5.178
6.531

14.18
14.42

7.31

7.462
53.07
82.98
497.7
586.1

14.92
28.53
96.12
89.73

From the results of Table 6.1 the following observations are apparent:

(1) The number of iterations required by all the methods is, in general, small and it
was never greater than 7 in the test problems used. For the problems with only two

coupling constraints the decomposition approach based on linear-quadratic penalty

Table 6.2 Comparative Sequential and Simulated Parallel

CPU Time Results

function ¢, requires only one iteration.

146

(11) The decentralized algorithm and the decomposition method based on the linear-
quadratic penalty function ¢ are the approaches that require the smallest number of
floating point operations. Note that the decentralized algorithm is started with an
arbitrary vector. On the other hand the use of the function ¢7 requires additional
work for the generation of a good estimate for the solution vector.

(111) Increasing the number of coupling constraints affects, in general, an increase in
both iterations and number of floating point operations.

(iv) All decomposition approaches are outperformed by the predictor corrector
algorithm which was chosen as one of the best performing representatives of interior
point methods.

(v) The time results recorded do not always coincide with the number of floating
point operations required by each algorithm. This is mainly due to the fact that all the
tests were carried out on a networked computer for which the processing speed is
affected by the current workload on the network.

(vi) The cheapest, in floating point operations, iterations are these of the decentralized
algorithm followed by those of the method based on augmented Lagrangian. The
decomposition approach using linear-quadratic penalty functions have the highest

cost per iteration.

Studying the results of Table 6.2 one can conclude that:

(i) The highest speed ups from the simulation of parallel processing in the solution
process are obtained by the decomposition approach based on augmented Lagrangian
followed by the decentralized algorithm.

(i1) As expected, the savings in CPU time required for the above two algorithms is
increased with the number of independent blocks in the constraint matrix of the
structured problem.

(iii) Only modest improvements were observed in the simulated parallel environment

for the decomposition approach based on linear-quadratic penalty functions. This is

147

due to the fact that parallelism is only involved in the solution of linear problems
which are, in general, easy to solve and cheap both in CPU time and floating point

operations.

6.8 Conclusions

It appears from the result of Table 6.1 than none of the decomposition algorithms
tested 1s comparable, in either CPU time or floating point operations, to the selected interior
point method for the tests performed. The explanation lies in the nature of the test problems.
Larger and more ill-conditioned problems need to be tested because it is in this class of
problems where the decomposition techniques are expected to show their advantages and
outperform interior point methods.

As expected parallelism did not improve the performance of the linear-quadratic
penalty algorithm. In a parallel environment considerable savings in the CPU time required
by this method can be expected only for structured problems with a large number of big
independent blocks.

The poor performance of the method of Mulvey and Ruszczynski is mainly due to the
slow convergence observed in the inner iteration of the algorithm. The number of iterations
required for the achievement of optimality in the inner iteration of the algorithm grows as the
number of independent blocks increases. Computational experience with that method shows
that convergence 1s achieved even if the inner circle is not complete. For the problems tested
the number of iterations of the inner loop was limited to 20. The truncated version performed
well and accurately for the test problems of this chapter. A way to improve the performance
of the algorithm can also be found in Step 1b of the inner loop. The update of the solution
vector performed in this step 1s based on taking a step along the direction formed on the
difference of the current and the previous iterate. An alternative approach, which could be
proved efficient, 1s to perform the updating procedure based on the direction of the gradient

of the objective function at the current point.

148

One of the best performing algorithms is based on the decentralized method. The use
of the partial inverse method, [Spingarn, (1985)], yields separable augmented Lagrangians
and there is no need for the solution of any kind of master problems.

The most demanding, both in CPU time and floating point operations, method is the
one based on the linear-quadratic penalty function ¢1. Most of the processing time required
by the algorithm 1s consumed by the simplicial-decomposition algorithm for the solution of
the non-separable quadratic master problem even though the number of iterations of the
simplicial-decomposition algorithm was limited to 20 in the tests performed.

The inexact solution of the quadratic subproblems generated in each iteration of the
implemented algorithms is an attractive feature not only for the methods considered in this
chapter but for all decomposition techniques in general. The principle of inexact solution of
the master problem first appears in Dantzig and Wolfe, (1960). The idea is that, since these
methods are self correcting, the solution obtained after a limited number of iterations can be
used as a search direction only. In the experiments carried out for this chapter, variants of
the algorithms which limit the number of iterations to 10 and 5 were also tested.
Experimental results showed that for less than 20 iterations the obtained sofution was not
good enough as a prediction of the search direction which results in increasing number of
outer loops required for the convergence of the algorithm.

Further research is required for the two most promising algorithms tested, namely the
decentralized method and the approach based on linear-quadratic functions. The use of
different projections could be considered in the implementation of the decentralized
algorithm, [Spingarn, (1985)]. Additional studies should also investigate all the features of
the linear-quadratic penalty function ¢z and explain the performance of the algorithm when
this function is used. Finally, alternative ways to the simplicial decomposition approach for
the solution of the quadratic penalty master problem could be worth investigating. For
example, separability can also be exploited when successive linear programming is used or
by combining a truncated Newton method with block-partitioning techniques, {Zenios &

Pinar, (1992)], as mentioned in Zenios, et al., (1990).

149

Chapter 7

Conclusions and Further Development

The primary focus of this research was to determine the most effective algorithm for
the solution of sparse linear programming problems. These problems may often have some
special structure.

The infeasible method has the best performance among the interior point algorithms
tested in this research.

The decentralized algorithm is the best performing decomposition algorithm for
structured problems and is based on the partial inverse method.

Interior point methods can also be applied to quadratic problems, which are usually
generated as subproblems to decomposition techniques for the solution of structured linear
programming problems. From the tested algorithms for quadratic programming the approach
based on conjugate gradients generally performs better for almost all problems.

At the beginning of this thesis the initial steps of linear programming, along with the
latest approaches in the field of interior point methods, were discussed. The algorithm of
Karmarkar was described and the principles of the penalty and barrier functions approach
were reviewed.

For the efficient implementation of the Karmarkar algorithm or any other interior
point method, advanced least square techniques are required. In this respect, this topic was
also reviewed and several methods for the solution of the least square problem were
presented. The conjugate gradient method was chosen as the most powerful tool among
these different approaches.

Preconditioning can be seen as a way to improve the condition number of a matrix

and accelerate the convergence of the conjugate gradient method. In order to improve the

150

performance of the implementation of the conjugate gradient method different
preconditioners were considered. Problems with different levels of density and condition
numbers were tested and numerical results were reported.

A variant of the projective algorithm was tested against three more interior point
methods. The tested algorithms are all based on different approaches. The comparative
numerical study of these algorithms, for which sparsity was taken into account, resulted in
some interesting conclusions. Test problems were chosen from three different and hard to
solve classes of linear programming problems. These were the Hilbert-type, the Klee-Minty
and the linear ordering problems. Tests were also carried out on randomly generated
problems. Throughout the experiments performed it was confirmed that interior point
algorithms preserve their attractive feature of low iteration count and that the level of density
has a strong effect on the performance of the different approaches considered. The
performance of the tested algorithms as discussed in Chapter 4 allows for the following
conclusions to be made. The results for the non-random generated problems of Linear
Ordering and Klee-Minty class support the conclusion that the infeasible method performs
better than the other algorithms on sparse problems. For classes of denser problems, Hilbert
type and randomly generated problems, the Barnes algorithm performs better.

The study of decomposition as a strategy for reducing the work required for the
solution of large-scale linear programming problems, constitutes one of the main objectives
of this thesis and introduces improvements to the current methods. Structured linear
programming problems form an important class of problems frequently occurring in real
applications. Large-scale programs almost always have some distinctive structure, thus the
use of interior point methods combined with decomposition techniques is not only well
justified but also worth investigating. Three different but promising of the most recent
approaches on decomposition were studied, implemented and tested, on randomly generated
problems. Improvements to some of the algorithms were suggested with significant success.
A practical implementation of the simplicial decomposition algorithm was developed and
used as a way to exploit separability in one of the decomposition techniques considered. The

experience gathered from the numerical study of these algorithms revealed some interesting

151

features of the tested methods and their components. The best performing algorithm is the
one based on the partial inverse method because it leads to totally decentralized problems.
The absence of any kind of master problem in the solution process of this approach gives a
great advantage to that algorithm because, as mentioned in Chapter 6, even if the master
problem is small, its solutions can be expensive due to ill-conditioning. As an example, the
simplicial decomposition subroutine consumes most of the CPU time required for the
solution of the problem in the linear-quadratic penalty approach.

For the efficient implementation of the decomposition methods mentioned above,
advanced convex quadratic programming algorithms are required. In view of this, a survey
of recent literature published in this area of algorithms was conducted and three methods that
looked promising were selected. The implementation of a specialized algorithm for single
constraint quadratic programs was necessary for the development of an efficient variant of
one of the methods. The implemented algorithms were tested on a wide range of problems
with matrices of different condition numbers. The effect of sparsity was also studied as
sparsity was taken into account in the implementation of the algorithms. New parameters that
dramatically improve the performance of one of the algorithms were suggested. The
comparative results of these algorithms, reported in Chapter 5, indicate that the approach
based on conjugate gradients generally performs better for almost all problems. For
problems where the matrix Q is very sparse (12%), though, this algorithm is outperformed
by the interior method of Golfarb and Lui. Finally, the unified dual ascent algorithm proved
to be a very promising approach but only for problems with separable objectives.

Among the aspects of decomposition techniques discussed in this work, the effect the
number of linking constraints has on the solution process is, without doubt, the topic that
needs to be further studied. In the tests performed it was assumed that the blocks were
weakly linked by only 2 or 20 linking constraints. It still remains to be seen how the link
affects the overall work involved in each approach and in what proportion.

Further research is also required for two of the algorithms tested in Chapter 6,
namely the decentralized method and the approach based on linear-quadratic functions. The

use of different projections and penalty functions could be considered in the implementation

152

of the decentralized algorithm and the linear-quadratic approach, respectively. Additional
studies should also investigate all the features of the linear-quadratic penalty function ¢ and
explain the performance of the algorithm when this function is used. Finally, alternatives to
the simplicial decomposition approach for the solution of the quadratic penalty master
problem could prove to be worth investigating.

Decomposition is also attractive from the point of view of parallelism or concurrency.
In Chapter 6 it is shown that favourable structure present in large LP problems may be used
to advantage and that all decomposition approaches lend themselves readily to parallel
processing. Although parallel time was simulated in the tests performed for this study it
would be interesting to see how these algorithms perform in a real parallel or concurrent
environment.

Tests on large-scale and ill-conditioned problems with a large number of independent
blocks should also be considered. It is in these problems where decomposition techniques
are expected to show their advantages against interior point methods.

The unified dual ascent algorithm discussed in Chapter 5 is also a candidate for
future investigation. The method seems very promising for separable quadratic problems but
its performance is very poor for problems with non-separable objective functions. Indeed,
the future of the algorithm would be rather bleak if it is found that the proposed
transformation, [Lin & Pang, (1987)], can't be improved and the method is unsuitable for
the solution of large real world problems. Finally, an implementation of a quadratic
programming algorithm based on the predictor corrector approach as investigated and
analysed in § 5.10, would give a clear idea of how this robust and promising algorithm
perform on problems with quadratic objective functions.

From these investigations, it appears that decomposition techniques are a serious
alternative to interior point methods for large-scale programming. However, the questions
raised here need to be answered and more research needs to be carried out before all features

of these methods are fully understood.

153

References

Adler, I., N. K. Karmarkar, M. G. C. Resende and G. Veiga (1989), “An Implementation
of Karmarkar Algorithm for Linear Programming.” Mathematical Programming, 44, pp.
297-335.

Andersen, K. D. (1993), “An Infeasible Dual Affine Scaling Method for Linear
Programming.”, Proceedings of the Scandinavian Workshop in Linear Programming,

Denmark.

Anstreicher, K. M. (1989), “A Combined Phase I-Phase II Projective Algorithm for Linear

Programming.” Mathematical Programming, 43, pp. 209-223.

Avis, D. and V. Chvatal (1978), “Notes on Bland's Pivoting Rule.” Mathematical
Programming, 8, pp. 24-34.

Avriel, M. (1976), Non-linear Programming: Analysis and Methods, Prentice-Hall,
Englewood Cliffs, NJ.

Axelsson, O. and G. Lindskog (1986), “On the Rate of Convergence of the Preconditioned
Conjugate Gradient Method.” Numerische Mathematik, 48, pp. 499-523.

Barnes, E. R. (1986), “A Variation on the Karmarkar's Algorithm for Linear Programming

Problems.” Mathematical Programming, 36(2), pp. 174—182.

Barnes, E. R., S. Chopra and D. L. Jensen (1988), "A Polynomial Time Version of the
Affine Scaling Algorithm", Technical Report, 88-101, Graduate School of Business

Administration, New York University.
Bayer, D. A. and J. C. Lagarias (1989), “The Non-Linear Geometry of Linear Programming

I, Affine and Projective Scaling Trajectories.” Transactions of the American Mathematical
Society, 314, pp. 499-526.

154

Bertsekas, D. P. (1975), “Nondifferentiable Optimization via Approximation.” Mathematical

Programming Study, 3, pp. 1-25.

Bertsekas, D. P. (1982), Constrained Optimization and Lagrange Multiplier Methods,

Academic Press, New York.

Bland, R. G. (1977), “New Finite Pivoting Rules for the Simplex Method.” Mathematics of
Operations Research, 2, pp. 103-107.

Brucker, P. (1984), “An O(n) Algorithm for Quadratic Knapsack Problems.” Operations
Research Letters, 3(3), pp. 163-166.

Burrett, C. M. (1994), "Quadratic Programming", MSc Thesis, Aston University.

Carpenter, T. J., [. L. Lustig, J. M. Mulvey and D. F. Shanno (1993), “Higher Order
Predictor-Corrector Interior Point Methods with Application to Quadratic Objectives.” SIAM
Journal of Optimization, 3, pp. 696-725.

Carpenter, T. J. and D. F. Shanno (1993), “An Interior Point Method for Quadratic
Programs Based on Conjugate Projected Gradients.” Computational Optimization and

Applications, 2, pp. 5-28.

Charnes, A., T. Song and M. Wolfe (1984), "An Explicit Solution Sequence and
Convergence of Karmarkar's Algorithm", Research Report CCS 501, 78712-1177(512),
Center of Cybernetic Studies, College of Business Administration $.202, The University of

Texas at Austin, Texas.

Carrol, C. W. (1961), “The Created Response Surface Technique for Optimising Non-linear

Restrained Systems.” Operations Research, 9, pp. 169-184.

Charnes, A., T. Song, and M. Wolfe, (1984), "An Explicit Solution Sequence and
Convergence of Karmarkar's Algorithm", Research Report CCS 501, 78712-1177(512),
Center of Cybernetic Studies, College of Business Administration $.202, The University of

Texas at Austin, Texas.

155

Choy, I. C., C. L. Monma and D. F. Shanno, (1990), “Further Developments of a Primal
Dual Interior Point Method.” ORSA Journal of Computing, 2, pp. 304-311.

Chvatal, V. (1983), Linear Programming, W.H.Freeman & Co, New York.

Cohen, G. (1978), “Optimization by Decomposition and Coordination: A Unified
Approach.” IEEE Transactions on Automatic Control, AC-23, pp. 222-232.

Cohen, G. (1980), “Auxiliary Problem Principle and Decomposition of Optimization

Problems.” Journal of Optimization Theory and Applications, 32, pp. 277-305.

Coleman, T. F. (1986), "A Chordal Preconditioner for Large-scale Optimization", Technical

Report, 14853, Computer Science Department, Cornell University, Ithaca, New York.

Concus, P., G. H. Golub and G. Meurant (1985), “Block Preconditioning for the Conjugate
Gradient Method.” SIAM J. Sci. Stat. Comput., 6, pp. 220-252.

Cook, S. (1983), “An Overview of Computational Complexity.” Communications of the
ACM, 26(6), pp. 401-408.

Courant, R. (1943), “Variational Methods for the Solution of Problems of Equilibrium and
Vibrations.” Bulletin of the American Mathematical Society, 49, pp. 1-23.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton University Press,

Princeton, NJ.

Dantzig, G. B. and P. Wolfe (1960), “Decomposition Principle for Linear Programs.”
Operations Research, 8, pp. 101-111.

De Buchet, J. (1971), "How to Take Into Account the Low Density of Matrices to Design a
Mathematical Programming Package", Large Sparse Systems of Linear Equations, J.K.Reid
(Ed.), Academic Press, New York, pp. 101-118.

Dennis, J. E., A. M. Morchedi and K. Turner (1986), "A Variable-Metric Variant of the
Karmarkar Algorithm for Linear Programming", Technical Report, 86-13, Department of

Mathematical Science, Rice University, Houston, Texas 77251.

156

TR

Dodani, M. H. and A. J. G. Babu (1990), “Karmarkar's Projective Method for Linear
Programming: a Computational Survey .” Int. J. Math. Educ. Sci. Technol., 21(2), pp.
191-212.

Duff, 1. S., AM. Erisman, J. K. Reid, (1986), Sparse Matrix Computations, Academic

Press, London.

Edmonds, J. (1965), “Paths, Trees and Flowers.” Canadian Journal of Mathematics, 17,
pp. 449-467.

Fiacco, A. N. and G. D. McCormick (1986), Non-Linear Programming: Sequential

Unconstrained Minimization Techniques, Wiley & Sons Ltd.

Fieldhouse, M. and F. M. Tromans (1985), “Convergence, Scaling and Duality in
Karmarkar's Projective Algorithm.”, Proceedings of the Symposium on Karmarkar's and

Related Algorithms for Linear Programming, Burlington House, Piccadilly, L.ondon.

Fletcher, R. and C. M. Reeves (1964), “Function Minimization by Conjugate Gradients.”
Computer Journal, 7, pp. 149-154.

Fletcher, R. (1976), “Conjugate Gradient Methods for Indefinite Systems.” Lecture Notes
Math., 506, pp. 73-89.

Fletcher, R. (1986), "Recent Developments in Linear and Quadratic Programming", NA/94,

Department of Maths Sciences, University of Dundee, Scotland.

Fortin, M. and R. Glowinski, (1983), "On Decomposition-Coordination Methods Using an

Augmented Lagrangian”, Augmented Lagrangian Methods: Applications to the Numerical

Solution of Boundary-Value Problems, M. Fortin and R. Glowinski (Ed.), Amsterdam.

Freund, R. M. (1991), “Theoretical Efficiency of a Shifted-Barrier-Function Algorithm for
Linear Programming.” Linear Algebra and its Applications, 152, pp. 19—41.

Frisch, K. R. (1955), "The Logarithmic Potential Method of Convex Programming",

University Institute of Economics, Oslo.

Garey, M. R. and D. S. Johnson (1979), Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H.Freeman & Company, San Francisco, CA.

157

Gay, D. M. (1987), “A Variant of Karmarkar's Linear Programming Algorithm for
Problems in Standard Form.” Mathematical Programming, 37(1), pp. 81-90.

Geoffrion, A. (1971), "Large-scale Linear and Non-linear Programming", Optimization
Methods for Large-Scale Systems with Applications, D. A. Wismer (Ed.), McGraw-Hill,
New York.

George, A., and J. W. Liu, (1981), Computer Solution of Large Sparse Positive Definite

Systems, Prentice-Hall, Inc., Englewood Cliffs.

Ghellinck, G. and J. Ph. Vial, (1986), “A Polynomial Newton Method for Linear

Programming.” Algorithmica, 1, pp. 425-453.

Gilbert, J. R., C. Moler and R. Schreiber, (1992), “Sparse Matrices in MATLAB: Design
and Implementation.” SIAM Journal of Matrix Analysis and Applications, 13(1), pp. 333-
356.

Gill, P. E., W. Murray, M. A. Saunders, J. A. Tomlin and M. N. Wright (1985), “On
Projected Newton Barrier Methods for Linear Programming and an Equivalence to

Karmarkar's Projected Method.” Mathematical Programming, 36(2), pp. 183-209.

Gill, P. E., W. Murray, M. A. Saunders and M. N. Wright (1981), Practical Optimization,

Academic Press.

Gill, P. E., W. Murray, M. A. Saunders and M. N. Wright (1984), “Sparse Matrix Methods
in Optimization.” SIAM J. Sci. Stat. Comp., 5(3), pp. 562-589.

Goffin, J.-L., A. Haurie, J.-P. Vial and D. 1. Zhu (1993), “Using Central Prices in
Decomposition of Linear Programs.” European Journal of Operational Research, 64, pp.

393-409.

Goffin, J. L. (1988), “Affine and Projective Transformations in Nondifferentiable

Optimization.” International Series of Numerical Mathematics, 84, pp. 80-91.

Goffin, J. L., A. Haurie and J. P. Vial (1992), “Decomposition and Nondifferentiable
Optimization With the Projective Algorithm.” Management Science, 38(2), pp. 284-302.

158

Goffin, J. L. and J. P. Vial (1990), “Cutting Planes and Column Generation Techniques
With the Projective Algorithm.”.

Goffin, J. L. and J. P. Vial (1993), “On the Computation of Weighted Analytic Centers and
Dual Ellipsoids With the Projected Algorithm.” Mathematical Programming, 60, pp. 81-92.

Goldfarb, D. and S. Lui (1991), “An O(n3L) Interior Point QP algorithm.” Mathematical
Programming, 49, pp. 325-340.

Goldfarb, D. and S. Mehrotra (1988), “A Relaxed Version of Karmarkar's Method.”
Mathematical Programming, 40(3), pp. 289-315.

Goldfarb, D. and S. Mehrotra (1988), “Relaxed Variants of Karmarkar's Algorithm for
Linear Programs with Unknown Optimal Objective Value.” Mathematical Programming,

40(2), pp. 183195,

Golub, G. and C. Van Loan (1983), Matrix Computations, John Hopkins University Press,

Baltimore.

Gonzaga, C. C. (1987), "An Algorithm for Solving Linear Programs in 0(n3L) Operations",
Technical Report, UCB/ERL 87/10, Electronic Research Lab., University of California,
Berkeley.

Grotschel, M., M. Jiinger and G. Reinelt (1984), “Optimal Triangulation of Large Real
World Input-Output Matrices.” Statistische Hefte, 25, pp. 28-42.

Hearn, D. W., S. Lawphongpanich and J. A. Ventura (1987), “Restricted Simlicial
Decomposition: Computation and Extensions.” Mathematical Programming Study, 31, pp.
99-118.

Heath, M. T. (1984), “Numerical Methods for Large Sparse Linear Least Squares
Problems.” SIAM J. Sci. Stat. Comp., 4(3), pp. 497-513.

Helgason, R., J. Kennington and H. Lall (1980), “A Polynomially Bounded Algorithm for a
Single Constrained Quadratic Program.” Mathematical Programming, 18, pp. 338-343.

Hellier, F. S. and G. J. Lieberman (1986), Introduction to Operations Research, Holden-
Day, Inc., Oakland, California.

159

Hertog, D. and C. Ross (1991), “A Survey of Search Directions in Interior Point Methods
for Linear Programming.” Mathematical Programming, 52, pp. 481-509.

Hertog, D. D., C. Roos and T. Terlaky (1992), “On the Classical Logarithmic Barrier
Function Method for a Class of Smooth Convex Programming Problems.” Journal of

Optimization Theory and Applications, 73(1), pp. 1-25.

Hestenes, M. R. and E. Stiefer (1952), “Methods of Conjugate Gradients for Solving Linear
Systems.” Journal of Research of the National Bureau of Standards (US), 49, pp. 409-436.

Holloway, C. A. (1974), “An Extension of the Frank-Wolfe Method of Feasible

Directions.” Mathematical Programming, 6, pp. 14-27.

Iri, M. and H. Imai (1986), “A Multiplicative Barrier Function Method for Linear
Programming.” Algorithmica, 1, pp. 455-482.

Kantorovich, L. N. (1939), “Mathematical Methods in the Organization and Planning of
Production.” Translated in Management Science, 6, pp. 366—422.

Karmarkar, N. (1984), “A New Polynomial-Time Algorithm for Linear Programming.”
Combinatorica, 4(4), pp. 373-395.

Karmarkar, N. (1984), “A New Polynomial-Time Algorithm for Linear Programming.”,
Proceedings of the 16th Annual ACM Symposium on Theory of Computing, Washington
D.C.

Karmarkar, N. and K. G. Ramakrishnan (1991), “Computational Results of an Interior
Point Algorithm for Large-scale Linear Programming.” Mathematical Programming, 52, pp.
555-586.

Khachyan, L. G. (1979), “A Polynomial-Time Algorithm for Linear Programming.”
Combinatorica, 4(4), pp. 191-179.

Klee, V. and G. L. Minty (1972), "How Good Is the Simplex Algorithm?", Equalities III,
O. Shisha (Ed.), Academic Press, New York.

Kojima, M., S. Mizuno and A. Yoshise (1989), "A Primal-Dual Interior Point Algorithm for
Linear Programming”, Progress in Mathematical Programming: Interior Point and Related
Methods, N. Megiddo (Ed.), Springer Verlag, New York, pp. 29-47.

160

Kortanek, K. O. (1993), “Vector-Supercomputer Experiments with the Primal-Affine
Programming Scaling Algorithm.” SIAM J. Sci. Comput., 14(2), pp. 279-294.

Kortanek, K. O. and M. Shi (1987), “Convergence Results and Numerical Experiments on a
Linear Programming Hybrid Algorithm.” European Journal of Operational Research, 32,
pp. 47-61.

Kovacevic-Vujcic, V. V. (1991), “Improving the Rate of Convergence of Interior Point

Methods for Linear Programming.” Mathematical Programming, 52, pp. 467-479.

Kronsjo, L. (1985), Computational Complexity of Sequential and Parallel Algorithms,
Wiley & Sons Ltd, Chichester.

Kronsjo, L. (1987), Algorithms: Their Complexity and Efficiency, Wiley & Sons Ltd,
Chichester.

Lasdon, L. S. (1970), Optimization Theory for Large Systems, Macmillan, Toronto.

Levin, J. A. (1965), “On an Algorithm for the Minimization of Convex Functions.” Doklady
Akademii Nauk SSSR, 160(6).

Lin, Y. Y. and J.-S. Pang (1987), “Iterative Methods for Large Convex Quadratic Problems:
A Survey.” SIAM J. Control and Optimization, 25(2), pp. 383—411.

Lindfield, G. and J. Penny, (1995), Numerical Methods Using MATLAB, Ellis Horwood,

London.

Longtey, W. J. (1984), Linear Least Squares Computations Using Orthogonalization
Methods, Marcel Dekker, Inc., New York 10016.

Loviasz, L. (1980), “The Ellipsoid Algorithm: Better or Worse than the Simplex?”
Mathematical Intelligence, 2, pp. 141-146.

Loviasz, L. (1984), “The Mathematical Notion of Complexity.”, Proceedings of the 9th
Triennial World Congress of IFAC, Budapest.

Lustig, 1. J. (1985), "A Practical Approach to Karmarkar's Algorithm", Technical Report,
SOL 85-5, Department of Operations Research, Stanford University, Stanford, CA 94305.

161

Lustig, I. J., R. E. Marsten and D. F. Shanno (1991), “Computational Experience with a
Primal-Dual Interior Point Method for Linear Programming.” Linear Algebra and its
Applications, 152, pp. 192-222.

Lustig, I. J., R. E. Marsten and D. F. Shanno (1994), “Interior Point Methods for Linear
Programming: Computational State of the Art.” ORSA Journal on Computing, 6(1), pp. 1-
14.

Mahey, P. and P. D. Tao, (1993), “Proximal Techniques for Large-Scale Linear

Programming.”, Proceedings of Scandinavian Workshop in Linear Programming, Denmark.

Mangasarian, O. L. (1985), “Iterative Solution of Linear Programs.” SIAM Journal of
Numerical Analysis, 18(4), pp. 606-614.

Marsten, R., R. Subramanian, I. Lustig and D. Shanno (1990), “Interior Point Methods for
Linear Programming: Just Call Newton, and Fiacco and McCormick!” Interfaces, 20, pp.
105-116.

McShane, K. A., C. L. Monma and D. F. Shanno (1989), “An Implementation of a Primal-
Dual Interior Point Method for Linear Programming.” ORSA J. Comput., 1, pp. 70-83.

Meggido, N. (1986), “Introduction: New Approaches to Linear Programming.”
Algorithmica, 1, pp. 387-394.

Megiddo, N. (1989), "Pathways to the Optimal Set in Linear Programming", Progress in
Mathematical Programming: Interior Point and Related Methods, N. Megiddo (Ed.),

Springer Verlag, New York, pp. 131-138.

Mehrotra, S. (1992), “On the Implementation of a Primal-Dual Interior Point Method.”
SIAM Journal on Computing, 2(4), pp. 575-601.

Meyerink, J. A. and H. A. Van der Vorst (1977), “An Iterative Solution Method for Linear
Systems of Which the Coefficient Matrix is a Symmetric M-matrix.” Math. Comp., 31, pp.
148-162.

Meyerink, J. A. and H. A. Van der Vorst (1981), “Guidelines for the Usage of Incomplete
Decompositions in Solving Sets of Linear Equations as They Occur in Practical Problems.”

J. Comp. Phys, 44, pp. 134-155.

162

Monteino, R. C. and 1. Adler (1989), “Interior Path Following Primal-Dual Algorithms. Part

I: Linear Programming.” Mathematical Programming, 44, pp. 27-42.

Mulvey, J. M., S. A. Zenios and D. P. Ahlfeld (1990), “Simplicial Decomposition for
Convex Generalized Networks.” Journal of Information and Optimization Sciences, 11, pp.
359-387.

Mulvey, J. M. and H. Vladimirou (1991), “Applying the Progressive Hedging Algorithm to
Stochastic Generalized Networks.” Ann. Operations Research, 341, pp. 399-424.

Mulvey, J. M. and A. Ruszczynski, (1992), “A Diagonal Quadratic Approximation Method

for Large-scale Linear Programs.” Operational Research Letters, 21, pp. 205-215.

Nemhauser, G. L., A. H. G. Rinnooy Kan and M. J. Todd (1989), Handbook in
Operations Research & Management Science, Volume |: Optimization, Elsevier Sciences
Publishers B.V., Amsterdam.

Paige, C. C. and M. A. Saunders (1982), “LSQR: An Algorithm for Sparse Linear
Equations and Sparse Least-Squares.” ACM Transactions on Mathematical Software, 8, pp.
43-T71.

Pang, J.-S. (1983), “Methods for Quadratic Programming: A Survey.” Computers and
Chemical Engineering, 7, pp. 583-594.

Papadimitriou, C. H. and K. Steiglitz (1982), Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ.

Pinar, M. C. and S. A. Zenios, (1992), “Parallel Decomposition of Multicommodity
Network Flows Using a Linear-Quadratic Penalty Algorithm.” ORSA Journal on

Computing, 4(3), pp. 235-249.
Ponnambalam, K., V. H. Quintana and A. Vannelli (1992), “A Fast Algorithm for Power

System Optimization Problem Using an Interior Point Method.” Transactions of Power
Systems, 7(2), pp. 892-899.

163

Rockafellar, R. T. (1976), “Monotone Operations and the Proximal Point Algorithm.” SIAM

Journal of Control and Optimization, 14(5), pp. 877-898.

Rosen, J. B. (1964), “Primal Partition Programming for Block Diagonal Matrices.”
Numerische Mathematik, 6, pp. 250-260.

Ruszczynski, A. (1989), “Au Augmented Lagrangian Decomposition Method for Block

Diagonal Linear Programming Problems.” Operational Research Letters, 8, pp. 287-294.

Salhi, A. (1989), "Karmarkar's Algorithm: Extensions and Implementation”, Ph.D. Thesis,
Aston University.

Saunders, M. A. (1994), “Major Cholesky Would Feel Proud.” ORSA Journal on

Computing, 6(1), pp. 23-34.

Setiono, R. (1990), "Interior Dual Proximal Point Algorithm Using Preconditioned

Conjugate Gradient", Computer Science Technical, 951, University of Wisconsin, Madison.

Shanno, D. F. (1988), “Computing Karmarkar Projections Quickly.” Mathematical
Programming, 41, pp. 61-71.

Shanno, D. F. and R. E. Marsten (1988), “A Reduced-Gradient Variant of Karmarkar's
Algorithm and Null-Space Projections.” Journal of Optimization Theory and Applications,

57(3), pp. 383-397.

Simonnard, M. (1966), Linear Programming, Prentice-Hall, Englewood Cliffs, NJ.

Smale, S. (1983), “On the Average Number of Steps of the Simplex Method for Linear
Programming.” Mathematical Programming, 27, pp. 241-262.

Spingarn, J. E. (1985), “Applications of the Method of Partial Inverses to Convex

Programming: Decomposition.” Mathematical Programming, 32, pp. 199-223.

Taha, H. A. (1992), Operations Research: An Introduction, Macmillan Publishing

Company, New York.

164

Tewarson, R. P. (1973), Sparse Matrices, Academic Press, New York.

Todd, M. J. and B. P. Burrell (1986), “An Extension of Karmarkar Algorithm for Linear
Programming Using Dual Variables.” Algorithmica, 1, pp. 409-424.

Todd, M. J. (1993), “Combining Phase-I and Phase-II in a Potential Reduction Algorithm

for Linear Programming.” Mathematical Programming, 59, pp. 133-150.

Todd, M. J. and Y. Wang (1993), “On Combined Phase 1-Phase 2 Projective Methods for
Linear Programming.” Algorithmica, 9, pp. 64-83.

Todd, M. J. (1994), “Theory and Practice for Interior Point Methods.” ORSA Journal on
Computing, 6(1), pp. 28-31.

Tomlin, J. A. (1985), “An Experimental Approach to Karmarkar's Projective Methods for
Linear Programming.”, Proceedings of the Symposium on Karmarkar's and Related
Algorithms for Linear Programming, Geological Society, Burlington House, Piccadilly,
London.

Traub, J. F.and Wozniakowki, (1982), “Complexity of Linear Programming.” Operations
Research Letters, 1(2), pp. 59-62.

Turner, K. (1987), "A Variable-Metric Variant of the Karmarkar Algorithm for Linear
Programming", Technical Report, 87-13, Department of Mathematical Science, Rice
University, Houston, Texas 77251.

Van der Sluis, A. (1969), “Condition Numbers and Equilibration of Matrices.” Numerische
Mathematik, 14, pp. 14-23.

Van der Sluis, A. and H. A. Van der Vorst (1986), “The Rate of Convergence of Conjugate
Gradients.” Numerische Mathematik, 48, pp. 543-560.

Van der Vorst, H. A. and K. Dekker (1988), “Conjugate Gradient Type Methods and
Preconditioning.” Journal of Computational and Applied Mathematics, 24, pp. 73-87.

Vanderbei, R. S., M. S. Meketon and B. A. Freedman (1986), “A Modification of
Karmarkar's Linear Programming Algorithm.” Algorithmica, 1, pp. 395-407.

165

Vanderbei, R. J. (1990), "ALPO: Another Linear Program Optimizer", Technical Report,
AT&T Laboratories, Murray Hill, NJ.

Vanderbei, R. S. (1994), “Interior-Point Methods: Algorithms and Formulations.” ORSA
Journal on Computing, 6(1), pp. 32-34.

Varga, R. S. (1962), Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.

Vladimirou, H. (1990), "Stochastic Networks: Solution Methods and Applications in
Financial Planning"”, Ph.D. Thesis, Princeton University, Department of Civil Engineering

and Operations Research, Priceton, NJ.

Von Hohenbalken, B. (1977), “Simplicial Decomposition in Non-linear Programming
Algorithms .” Mathematical Programming, 13, pp. 49-68.

Wright, S. J. (1990), “Implementing Proximal Point Methods for Linear Programming.”
Journal of Optimization Theory and Applications, 65(3), pp. 531-554.

Yamnitsky, B. (1982), "Notes on Linear Programming", MSc Thesis, Boston University.

Ye, Y. and M. Kojima (1987), “Recovering Optimal Dual Solutions in Karmarkar's
Polynomial Algorithm for Linear Programming.” Mathematical Programming, 39(3), pp.
305-317.

Ye, Y., R. A. Tapia and Y. Zhang (1991), "A Superlinearly Convergent O(v/nL)-Iterations
Algorithm for Linear Programming”, TR91-22, Department of Mathematical Science, Rice

University, Houston, Texas.

Ye, Y., O. Guler, R. A. Tapia and Y. Zhang (1993), “A Quadratic Convergence O(:/nL)-
Iteration Algorithm for Linear Programming.” Mathematical Programming, 59, pp. 151-
161.

Zenios, S. A., M. C. Pinar and R. S. Dembo, (1990), "A Smooth Penalty Function
Algorithm for Network Structured Problems"”, Report 90-12-05, Decision Sciences

Department, The Wharton School, University of Pennsylvania.

166

Zenios, S. A. and M. C. Pinar, (1992), “Parallel Block Partitioning of Truncated Newton
for Non-linear Network Optimization.” SIAM Journal on Scientific and Statistical

Computing, 13, (to appear).
Zhang, Y. and R. A. Tapia (1992), “Superlinear and quadratic Convergence of Primal-Dual

Interior-Point Methods for Linear Programming Revisited.” Journal of Optimization Theory
and Applications, 73(2), pp. 229-242.

167

Appendix A: Cholesky Decomposition

The Cholesky method is a variant of Gauss elimination for symmetric positive

semidefinite nxn-matrix. If M is such a matrix it can be written in the factored form M =

LLT, as depicted below.

My M2 ... My L 0~y /Lii L2t ... Ly
Mo Moo ... _ Lo Lo Loy ... Lp2
Mnl Mn2 Mnn Lnl Ln2 Lnn 0 Ln n

L is lower triangular and sometimes called the square root of M, given its similarity
with the scale case. The method, due to Cholesky and Banachiewicz, is described in the

following algorithm for computing L:

fori=1,2,..,n

1-1
Mj - D L%
f=

0 for j < i

L: = 1 i-1
e L (Mji -]Z,lekLik] forj=1i+1, ..., n

i1

168

Appendix B: Incomplete Cholesky Preconditioners

One of the most important preconditioning strategies used with conjugate gradient
methods for solving the system of equations Ax = b, where A is symmetric PD, involves
computing an incomplete Cholesky factorization of A. The idea behind this approach is to
calculate a lower triangular matrix H with the property that H has some tractable sparsity
structure and is somehow “close” to A’s exact Cholesky factor G. The preconditioner is
taken to be M = HHT. To appreciate this choice consider the following facts:

« There exists a unique symmetric positive definite matrix C such that M = C2.

There exists an orthogonal Q such that C = QHT, i.e., HT is the upper triangular factor
of a QR factorization of C.

The heuristic is, therefore, obtained:

A = C1AC1 = C-TAC-! = (HQT) 1A(HQT)-1
QH-1GGTH-THQT =1

Thus, the better H approximates G the smaller the condition of A, and the better the
performance of the PCCGM.

An easy but effective way to determine such a simple H that approximates G

is to step through the Cholesky reduction setting h;; to zero if the corresponding a;; is zero.

Pursuing this with the outer product version of Cholesky obtains, [Golub & van Loan,

(1983)]:

169

Step 1.for k = 1:n

Akk = VA
Step 2. fori=k+1:n
if Ajx #0 A
Ajk = K]’}k
end
Step 3. for j=k+1:n
Step 4. fori=jmn
if Ajj #0
Ajj = Alj — AikAjk
end

Another version of the Cholesky factor [Setiono, (1990)] can be obtained by the procedure:

Step l.for i =1,2,..m

k=1
M; = ‘\/(Mii ~ Y M%)
1

Step 2. for j = 1+1,..m
if Mjj#0
k=1
MJI - ZMjk Mik
i-1
Mii = Mi;
end

170

Appendix C: The Variant of the Dual Projective of Karmarkar

and Ramakrishnan

The two phases of the variant of the dual projective algorithm, [Karmarkar &

Ramakrishnan, (1991)], as described in Chapter 4 is given below.

Algorithm A (Variant of the dual projective algorithm)

Step 1. Given an initial interior starting point y9, s19, 559, and parameters o and €, o,
being the step-size parameter (o < 1), and € being the switching criterion, set (a) the iteration
counter 1 = 0; (b) switch_criterion = false.

Step 2. While switch_criterion = false

Step 3. Objective function improving step.

(a)Compute ascent directions Ay, Asy and Asp using equations
Ay=(AD2AT)-1(b—AD{2D.2u)
As1==D¢2D22AT(AD2AT)-1(b—AD 12D 2u)-D.2u
As3=D2D12AT(AD2AT)-1(b—AD2D¢2u)-D.2u

where De2 = D12 + D12, D2 = D12 - D12D2D2,

D=[?hDZ],Dylszg@D,Df1=dMg®ﬁ.

(b)Compute maximum step-length permissible to keep sy and sp

non-negative.

N ST Som!
B = min MINAgTk<0 — > MINAIm<) — dl
Asik Asym

(c)Compute a fraction of the maximum step-length.

B=op.

(d)Update the solution.
yitl =yl + Ay,
spitl = 511 + BAsy,

spitl = 551 4+ BAsy,
1=1+1.

171

Step 4. (a)Check if related improvement in objective function is less than €

if
((bTyi —uTsy)—(bTyi-1_uTsyi-1)<e|(bTyi-I_uTg,i-1)]

then

swithch_criterion = true

end
Step 5. Reciprocal estimate step.
(a) Call Algorithm B to apply the reciprocal estimates to the current
iteration and obtain Ay, Asy and Asp,

(b) Re-execute Steps 3(b) to 3(d) to update the solution.

end

Algorithm B (The reciprocal estimates algorithm)

Step 1. Given parameters &, W, and a feasible dual solution (y*, sl*, sz*), estimate

the initial primal variable x9, as follows:
(a)Compose the vectors X and x'.

Let xX% =% + ox' where

X"‘{O if s5;* < s1;"
Py if s9;* 2 s1;"
and
1 : :
. if syt < sy
S1i
Xi' =
. if st 2 sy
S2i

(b)Choose G so that Ax¥ is as close to b as possible. Thus
_(b = Ax)T(Ax")

T Ax'lp2?

(c)Perform the minimum ratio test to make x¥ satisfy the bounds.

Compute

T 1 L Lk 1 . oo .*
d:mm[mmISiSn,SZi*<sli*(Ui5h),mm1S1£n,52i*>sli*(u1521)]

Step 2. (a) stop_criterion = false; (b) k = 0.

172

Step 3. While (stop_criterion = false)

end

(a) D = diag(x;¥).

(b) r=b - Axk

(c) Solve the system AD2ATAx =r

(d) If in dual phase, interpret Ax as a direction in dual space, i.e.,
Ay. Compute the corresponding directions for Asy and Asj and
return to algorithm A.

(e) xk+1 = xk + nD2ZATAx, where

vk k
. u;—X . - —X
n= W*[mmi,(DzATAx)pO G50 min;,(D2ATAx);<0 4‘)

(DZATAx); (D2ATAX);
(f) if (IAxk+1 1 —bll, < IbIE)
stop_criterion = true
else
k=k+1

end

173

Appendix D: Interior Point Methods MATILAB Codes

Barnes Algorithm

function [x,iter,time,matrix_dip]=barnes(A,b,c,tol)
%Barnes Affine Transform Method {Math. Prog. 36(1986) 174-182}
%%
P%Initialization
%
t1=clock;x2=[];x=[];[m n]=size(A); AOR=A;matrix_dip=[];
%
%Set Up Initial Problem
%o
aplusl=b-sum(A(1:m,:)")";cplus1=1000000;A=[A aplus1];
c=[c cplusl];B=[];n=n+1;x0=sparse(ones(1,n)");x=x0;
%%
%Set alpha Barnes used 0.1
%
alpha = .0001;lambda=sparse(zeros(1,m)");
%
%Main Algorithm
%
iter=0;lambda’*b;
while abs(c*x-lambda'*b) >tol
%disp('new one');

lambda'*b;x2=x.*x;D=diag(x);D2=diag(x2);AD2=A*D2;

174

lambda=(AD2*A\AD2*c'):

dualres=c'-A'*lambda;normres=norm(D*dualres);

fori=l:n
if dualres(1)>0
ratio(i)=normres/(x(1)*(c(1)-A(:,1) *lambda));
else
ratio(i)=inf;
end
end

R=min(ratio)-alpha;x [=x-R*D2*dualres/normres;

x=x1;basiscount=0;B=[];basic=[];cb=[];

for k=1:n
if x(k)>tol
basiscount=basiscount+1;
basic=[basic k];
end
end

%
%Only used if problem non-degenerate
%
if basiscount<=m
for k=basic
B=[B A(;,k)];cb=[cb c(k)];
end
primalsol=sparse(full(b')/full(B"));len_primalsol=length(primalsol);
dualsol=sparse(full(cb)/full(B));sol=primalsol;break;
end
iter=iter+1;

if rem(iter,1)==0

175

matrix_dip=[matrix_dip;iter c*x];
end
matrix_dip=full(matrix_dip);
end;

time=etime(clock,t1);

Infeasible Method

function [x,its,time_inf,matrix_dip]=infmethod(a,b,c,tol)
%Andersen Infeasible Dual Affine Scaling Method, {Scandinavian Workshop in Linear
%Programming, 1993}
%o
%Set initial values
t3=clock;matrix_dip=[]; [m n}=size(a);k=n-m; lambda=.99999;iteration=0;
y=norm(c)/norm(a'*b)*b; yr=2*norm(a*y-c'); x=sparse(ones(1,n)');
Climit=norm(b,inf);
%%
%Main Loop
%
while abs(c*x-y'*b) >tol

iteration=iteration+1;

if rem(iteration, 1)==0

matrix_dip=[matrix_dip;iteration c*x];

end

matrix_dip=full(matrix_dip);

s=c'-a"*y+yr*ones(1l,n)’;

deltayr=-Climit*yr*yr;

sminus2=diag(sparse(ones(1,n))./(s.*s)");

176

as=a*sminus?2;
deldiv=(b+deltayr*as*sparse(ones(1,n)"));
deltay=(as*a')\deldiv;

Poprimal variables
xval=a'*deltay-deltayr*sparse(ones(1,n)');
Xx=sminus2*xval;

deltas=-xval;

if(deltas>=0 & deltas~=0),disp(‘'unbounded');break;end;

minratio=[];

for i=1:n
if deltas(i)<0
minratio(i)=-s(i)/deltas(i);
else
minratio(i)=inf;
end
end;

alpha=min(minratio);
y=y+lambda*alpha*deltay;
yr=yr+lambda*alpha*deltayr;
if yr<=0,yr=0;end;

end

its=iteration;

td=clock;

time_inf=etime(t4,t3);

177

Karmarkar and Ramakrishnan Dual Variant

function [primalsol ITER_ALG_A,ITER_ALG_B,TIMEI1, TIME2 TIME, matrix_dip]=
karmar93(A,b,c,u,epsdual,epsprimal,nu,theta)
%o
%This Program Is An Implementation Of A Variant Of Karmarkar's 1992 Projective
% Algorithm For Linear Programming
%o
%take nu and theta as le-8 and epsdual as .005 and epsprimal .005
%
Di=[]; D2=(]; De2=[]; DDASH2=[]; y=[l; ya=[}; s1=[}; sli=[]; sla=[]; slai=[]; s2=[];
s21=[]; s2a=[]; s2ai=[]; alfa=[]; alfai=[]; beta=[]; min1=[]; minli=[]; min2=[]; min2i=[];
min3i=[}; mindi=[]; xdash=[]; xtilda=[];
%
%Finding Initial Solution.
%
TIME_BEGIN I=clock;[m,n}=size(A);ya=sparse(zeros(m,1));
for i=1:n
vec(l)=norm(A(:,1));
end
alphai=abs(c./vec);alpha=max(alphai);s2a=2*alpha*vec';sla=s2a+c";
%
%Dual Projective Algorithm.
%
ITER_ALG_A=0;super_counter=0;switch_criterion=1;
while switch_criterion==1
ITER_ALG_A=ITER_ALG_A+1;
%

%Step 3(A) Compute Ascent Directions Dy,Ds1,Ds2.

178

%

clear Dee2 DDASH?2 Dy Ds1 Ds2
slaa=sparse(ones(n,1))./sla;s2aa=sparse(ones(n,1))./s2a;D 1=diag(slaa);D2=diag(s
2aa);Dee2=[];Dee2=sparse(ones(n,1))./(slaa.*2+s2aa.*2);De2=diag(Dee2);D 1squar
e=D172;D2square=D2"2;DDASH2=D Isquare-(D1square*De2*D1square);
Dy=(speye(size(A*DDASH2*A"))\(A*DDASH2*A"))*(b-A*D lsquare*De2*u);
Ds1=-De2*D2square* A*Dy-De2*u;Ds2=De2*D Isquare¥* A*Dy-De2*u;

%

%(B) Compute Maximum Step Length Permissible To Keep S1 And S2 Non-Negative.

%
beta=feastep(Ds1,Ds2,n,sla,s2a);y=ya;s1=sla;s2=s2a;

%%

%(d) Update The Solution.

%%
ya=yatbeta*Dy;sla=slatbeta*Ds1;s2a=s2a+beta*Ds2;clear Dy Ds1 Ds2

%

%Step 4 Check If Relative Improvement In Objective Function Is Less Than Epsilon.

%
if (b"™*ya-u'*s2a)-(b"*y-u'*s2)<epsdual*abs(b'*y-u'*s2)
switch_criterion=0;
end
xr=recipest(sla,s2a,A,b,n,u);
Po
oStep 2.
%o
D=diag(xr);r=b-A*xr;ada=A*D"2*A';Dy=solver(ada,r,m,n,theta,nu);test=norm(
ada*Dy-r);Dsl=-De2*D2square* A'*Dy-De2*u;Ds2=De2*D1square* A"*Dy-De2*u;
%

%Re-execute Steps 3(B) To 3(D) To Update The Solution.

179

%
beta=feastep(Ds1,Ds2,n,s1a,s2a);
%o
%(d) Update The Solution.
%
ya=ya+beta*Dy;sla=sla+beta*Dsl;s2a=s2a+beta*Ds2;objectvalue_dual=b*ya;obje
ctvalue_dual_pr=objectvalue_dual;
if abs(objectvalue_dual-objectvalue_dual_pr)>1000*abs(objectvalue_dual_pr)
disp('THE PROBLEM IS INFEASIBLE!")
disp(PROGRAM TERMINATED!")
error(");

end

end

TIME_END l=clock;TIME l=etime(TIME_END1,TIME_BEGIN1);

save data.dat ya sla s2a ITER_ALG_A objectvalue_dual;

disp(DUAL PHASE IS COMPLETED, RESULTS ARE SAVED IN FILE DATA.DAT.")

disp(PLEASE WAIT,PROCEED IN PRIMAL PHASE.")

TIME_BEGIN2=clock;

%o

%Calculate Primal Approximate Solution Using Reciprocals Of Slacks

%

xr=recipest(sla,s2a,A,b,n,u);stop_criterion=1;

%

%This 100p Refines Primal Solution

%%

ITER_ALG_B=0;

while (stop_criterion==1)

ITER_ALG_B=ITER_ALG_B+1;

modstep=norm(A*xr-b);

180

D=diag(xr);r=b-A*xr;ada=D"2*A'"; adal=A*ada;
xdash2=solver(adal,r,m,n,theta,nu); primedir=ada*xdash2;
fori=1:n
if abs(primedir(i))<le- 10, primedir(i)=0;end;
end
for i=1:n
if (primedir(1)>0),
minstep(1)=(u(i)-xr(i))/primedir(i);
elseif (primedir(i1)<0),
minstep(1)=-xr(1)/primedir(i);
else
minstep(i)=Inf;
end;
end;
stepval=min(minstep);
if modstep>.1, modstep=.05;end;
xstep=modstep*stepval; xr=xr+xstep*primedir; modstep=norm(A*xr-b);
objectvalue_primal=c*xr;
if rem(ITER_ALG_B,2)==0
matrix_dip=[matrix_dip;ITER_ALG_B objectvalue_primal];
end
matrix_dip=full(matrix_dip);
if (abs(objectvalue_primal-objectvalue_dual)<0.0000005 & ITER_ALG_B>25)
stop_criterion=0;
end
flops;aver_flops_per_iteration=flops/(ITER_ALG_A+ITER_ALG_B)
disp(PRIMAL PHASE IS COMPLETED, RESULTS ARE SAVED IN FILE
DATA.DAT.")
TIME_END2=clock; TIME2=etime(TIME_END2 TIME_BEGIN2);TIME=TIME1+TIMEZ2;

181

primalsol=xr";
dualsol=ya’;
save data.dat xr ITER_ALG_B objectvalue_primal TIME ;

%Functions Feastep, Solver And Recipest Are Called Within Karmar93

function v=feastep(Ds1,Ds2,n,s1a,s2a)

for k=1:n
if(Ds1(k)<0)
minli(k)=-sla(k)/Ds1(k);
else
minli(k)=Inf;
end
if(Ds2(k)<0)
min2i(k)=-s2a(k)/Ds2(k);
else
min2i(k)=Inf;
end
end

betaval=min([minli min2i]);

%o

%(c) Compute A Fraction Of The Maximum Step Length.
o

v=.9%*betaval;

function xr=recipest(sla,s2a,A,b,n,u)
%uses reciprocals of slack variables to estimat primal solution

%

182

xtilda=sparse(ones(n,1));xdash=sparse(ones(n,1));

fori=l:n
if(s2a(i)<sla(i))
xtilda(i)=0;
xdash(i)=1/s1a(i);
else
xtilda(i)=u(i);
xdash(i)=-1/s2a(i);
end
end
%

%(b) Choose Sigma So That A*Xr Is As Close To B As Possible.
%o

axd=A*xdash;sigma=(b-A*xtilda) *axd/(norm(axd)*norm(axd));
%

%(c) Perform The Minimum Ratio Test To Make Xr Satisfy The Bounds.

%
fori=1:n
if(s2a(i)<sla(i))
min3i(i)=u(i)*sla(i);
else
min3i(i)=Inf;
end
if(s2a(i)>=sla(1))
mindi(i)=u(i)*s2a(i);
else
min4i(i)=Inf;
end
end

183

delta=min([min31 min4i});

%o

%(d) Check For Feasibility.

To

if sigma>= delta,
sigma=0.9*delta;

end;

xr=xtilda+sigma*xdash;

function xdash=solver(ada,b,m,n, TITA ,EPSILON_C)
%Given Parameters L.dash,Gdash,Tita,Epsilon,Mxitr And A System Of Equations
A*DM2*A*X=B,Computes A Feasible X.
%
xdash=[]; gdash=[]; ddash=[]; qdash=[]; q=[];
mxitr=n,;
%
%Step 1. Initialization.
%o
xdash=sparse(zeros(m,1));
gdash=-b;
ddash=-gdash;
mioulnit=b'*b;
if miouinit<le-16,
disp('zero b squared’);
end;
stop_criterionl=1;
k=0;

miou=miouinit;

184

To

oStep 2.

%o

while (stop_criterionl==1)
qdash=ada*ddash;
gq=qdash;
r=ddash'*q;
if (r==0),

error('r=0,divide by 0!!!")

end
alpha=miou/r;
xdash=xdash+alpha*ddash;
gdash=gdash+alpha*q;
delta=gdash'*qdash;
beta=delta/r;
ddash=-gdash+beta*ddash;
miou=beta*miou;
k=k+1;
val=ada*xdash;
if((1-val*b/(norm(val)*norm(b)))<=TITA)&(miou/miouinit<=EPSILON_C),

stop_criterion1=0;

end

if(k>mxitr)
stop_criterion1=0;

end

end

185

Predictor Corrector Method

function [sol,iter,time,matrix_dip]=pdcorpred(a,b,c,tol)

9oMehrotra's method, Siam J. of Optimization 2(4), 575-601

% Set Up Initial Feasible Problem

%

t1=clock; x2=[]; x=[]; matrix_dip=[]; [m,n]=size(a);
%

% Set Up Initial Problem

%

[m,n]=size(a);
yO=sparse(ones(m,1));z0=sparse(ones(n,1));
aplus1=b-sum(a(l:m,:)")";

cplus1=1076;ba=10"6;

newrow=(a'*y0+z0-c)";

a=[a aplus] sparse(zeros(m,1))];

a=[a;newrow 0 1};

c=[c;cplusl];

c=[c;0];

n=n+2;m=m+1;

b=[b;ba];
x0=sparse(ones(1,n))";x=x0;x(n)=ba-newrow*x(1:n-2);
ya=-1;zb=1;y=[y0;ya];z=[z0;10"6-aplus1*y0;zb];
%o

%Set rho

rho=0.99995;

%o

%Set Initial Y And Z And Mu

186

%
mu=0;

%

%Main Algorithm

%

iter=0;pd=1+tol;

while abs(pd)>tol

%Set Up First Order Conditions

bigz=diag(z);bigx=diag(x);

%The lhs Matrix

firstoa=[bigz sparse(zeros(size(a'))) bigx;a sparse(zeros(m)) sparse(zeros(m,n));

sparse(zeros(n)) a' speye(n)];

%The rhs of System

firstob=[-bigx*bigz*sparse(ones(n,1));b-a*x;c-a'*y-z];

%Now Solve System

soldxyz=firstoa\firstob;

9%Calculate Correction

dbarx=soldxyz(1:n);dbary=soldxyz(n+1:m+n);dbarz=soldxyz(m+n+1:2*n+m);

dx=dbarx;dz=dbarz;

fori=1:1
cor=diag(dx)*diag(dz)*sparse(ones(n,1));
rirstob=firstob-[-mu*sparse(ones(n,1))+cor;sparse(zeros(m+n,1))];
soldxyz=firstoa\firstob;
dx=soldxyz(1:n);dy=soldxyz(n+1:n+m);dz=soldxyz(n+m+1:2*n+m);

end

%Do Only One Correction

%Calculate New x,y,z By Taking Feasible Step

ratio=[];

fori=1l:n

187

end

if dx(1)<0
ratio(i)=-x(i)/dx(i);
else
ratio(i)=inf;
end
end

alphap=min([min(ratio),1]);

ratio=[];
for i=1:n
if dz(1)<0
ratio(i)=-z(1)/dz(i);
else
ratio(i)=inf;
end
end

alphad=min([min(ratio),1]);
x 1=x+rho*alphap*dx;xbarl=x+alphap*dbarx;
y l1=y+rho*alphad*dy;ybarl=y+alphad*dbary;
zl=z+rho*alphad*dz;zbarl=z+alphad*dbarz;
g=xbarl(1:n-2)*zbarl(1:n-2);
mu=(g/(x(1:n-2)*z(1:n-2)))"2*g/(n-2);iter=iter+1;
pd=c(1:n-2)*x1(1:n-2)-y1(1:m-1)*b(1:m-1);%full([mu pd])
x=x1;y=yl;z=z1;
if rem(iter,1)==0

matrix_dip=[matrix_dip;iter c*x];
end

matrix_dip=full(matrix_dip);

sol=x(1:n-2);time=etime(clock,tl);

188

Appendix E: Quadratic Programming Algorithms
MATLAB Codes

GL Interior Point Method

%The Following Coding Is A Modification Of Burrett (1994) Code. Different Convergence
9 Criterion and Formula For Updating The Penalty Parameter Is Used And Sparsity Is
%Taken Into Account

function [sol,iters]=goldlu(Q,p,d,f)

% Quadratic Solver Taken From:D. Goldfarb & S. Lui Mathematical Programming 49 (1991)
Jopp:325-340

%o

%o Sparsity Is Obtained In The Generation Of The Quadratic Problems. The MATLAM Code
%of the Generators Can Be Found in Appendix F.

% Step 1. Initialization

%

[m,n]=size(d);m1=2"8;tau=0.0005;eps0=2"8;rho=2"8; gamma=0; sigma=0.9; iters=0;
oldmu=0.5;epsval=eps0;dualgap=1;

%o

%Step 2. Formulate Initial Problem

%0Step 2 Was Not Used In The Experiments Performed To Obtain The Results In Chapter 5.
%But It Is Described Here For The Sake Of Completeness

%o

g=[Q zeros(size(Q),1) zeros(size(Q),1);zeros(1,size(Q)) 0 O;zeros(1,size(Q)) 0 0];

a=[d f/rho-d*ones(1,n)' zeros(size(d),1);ones(1,n) 1 17];

c=[p' m1 0];d=[f/rho;n];n=n+2;x=0nes(n,1);z=0.001*ones(n,1);

189

Z%Step 3. Main Loop
%o
while dualgap>tau
iters=iters+1;1f rem(iters,20)==0,disp(iters),end
if abs(epsval-oldmu)/oldmu>gamma
munew=epsval;
else
munew=oldmu;
end
oldmu=munew;znew={];
fori=l:n
if abs(x(1)-z(1))/z(1)>gamma
znew(i)=x(1);
else
znew(i)=zold(i);
end
end
zold=znew;smallg=g*x+c'-epsval*diag(ones(n,1)./x)*ones(n,1);
dz=diag(ones(1,n)./znew."2);ghat=g+munew*dz;
ghatin=ghat\eye(n);y=(a*ghatin*a")\a*ghatin*smallg;
h=ghatin*(a'*y-smallg);x=x+h;s=g*x+c'-a"*y;
pv=p*x +0.5*x"*Q*x;dv={*y-0.5*x"*Q*x;
Yodualgap=x'*s;
%Originally Proposed Termination Criterion
dualgap=abs((pv-dv)/pv);
epsval=(pv-dv)/n"2;
%epsval=(1-sigma/sqrt(n))*epsval;
%Originally Proposed Function For The Reduction Of epsval

end,sol=rho*x(1:n-2)";

190

CG Interior Point Method

Z%The Following Coding Is A Modification Of Burrett (1994) Code. In This Implementation

%Sparsity Is Taken Into Account

function [x,loops,it,matrix_dip]=cg_quad_solver_s(A,b,c,Q)
JoQuadratic Solver Using Conjugate Gradients Computational Optimization And

Applications, 2, 5-28 (1993)

%Step 0. Initialization
%o
[m,n]=size(A);z=(A*A"\speye(m);p=speye(n)-A*z* A;matrix_dip=[];
x=sparse(ones(n, 1));it=0;e=x;mu=norm(z*A*c")/norm(z*A*e);t1=clock;
optimality_criterion=0;stoping_criterion=0;loops=0;pv=2;mat1=[];mat2=[];
%
J0Main Loop
%
while optimality_criterion==
k=0;loops=loops+1;y=diag(sparse(ones(n,1))./x);
if rem(loops,20)==0,disp(loops),end
grad=c'+Q*x-mu*y*e;g=grad;dx=sparse(zeros(n,1));
d=-p*g;y2=diag(sparse(ones(n,1))./x.*2);h=Q+mu*y2;
while norm(p*g)>0.0005
k=k+1;dhd=d"*h*d;gamma=-d'*g/dhd;dx=dx+gamma*d;
g=h*dx+grad;beta=d"*h*p*g/dhd;d=-p*g+beta*d;it=it+1;
end
%
%Step 2. Force Feasibility

%

191

ratios=[];

fori=1l:n
if dx(i)<0
ratios=[ratios -x(1)/dx(1)];
else
ratios=[ratios inf};
end
end

alphav=min(ratios)*0.995;x=x+alphav*dx;
%
%Step 3. Compute Dual Variables
%
y=(A*diag(x)*diag(x)*A"\(A*diag(x)*diag(x)*(c'+Q*x));
%
JoCalculate Primal And Dual Objective Values & Check For Optimality
%
pv_pr=pv;mu_pr=mu;dv=b*y-0.5*x"*Q*x;pv=c*x+0.5*x"*Q*x;
mu=max(107(-9),mu/2);
if rem(loops,2)==0
matrix_dip=[matrix_dip;loops pv];
mat]=[mat];etime(clock,t1)];
mat2=[mat2;flops];
end
matrix_dip=full(matrix_dip);
if abs((pv-dv)/pv)<0.0005
optimality_criterion=1;x=x";

end

end

matl,mat2

192

UDA Interior Point Method

function {x_sol,singl_qp_solver_counter,matrix_dip]=qp_solver(p,D,A,b,l,u)
% This Function Is Used To Find The Solution To A Quadratic Problem Of The Form
Jomin (p'*z + 1/2*¥z2*D*z), s.t.: A*z=b, l<z<u By Given Vectors p, |, u, b, And

%oMatrices D And A, Where D Is Symmetric Positive Definite.

%Step 1. Initialization.
%
[m,n]=size(A);y=sparse(ones(m,1));iter_conj_grad=0;x=sparse(0.5*ones(n,1));
stop_rule=0;epsilon1=0.001;teta_sum=0;teta_count=0;singl_qp_solver_counter=0;
teta_count=0;teta_count_matrix=[];teta_matrix=[];teta_index=0;mat I =[];mat2=[];
epsilon2=0.0005;teta_temp=0;count_temp=0;matrix_dip=[];pv=100;t1=clock;
%
%oMain Loop
%
while stop_rule==
%STep 2. Computing Parameter Delta.
%
Anadelta=b-A*x;
if rem(iter_conj_grad,m)==0
delta=Anadelta;
else
Anadelta_pr=b-A*x_pr;
delta=Anadelta+(((Anadelta)*(Anadelta-
Anadelta_pr))/(Anadelta_pr'*Anadelta_pr))*delta;
end
iter_conj_grad=iter_conj_grad+1;X_pr=x;

if rem(iter_conj_grad,20)==0

193

disp(iter_con)_grad)
end
¥

%Step 3. Solving The Subproblem And Computing Parameter Teta.

%
[x,teta]:quad_presolver_s(diag'(D)',(y’*A—p')',(delta‘*A)‘,delta‘*b,l,u);
singl_qgp_solver_counter=singl_gp_solver_counter+1;
teta=-teta;

%

%Step 4. Update Parameter Y.
%o
y=y+teta*delta;
%
%Step 5. Optimality Check.
%
pv_pre=pv;dv=b*y-0.5*x*D*x";pv=p"*x'+0.5*x*D*x";
if rem(iter_conj_grad,2)==0
matrix_dip=[matrix_dip;iter_conj_grad pv];
mat]l=[mat];etime(clock,tl)];
mat2=[mat2;flops];

end

matrix_dip=full(matrix_dip);

if abs(dv-pv)/pv<=epsilon2 | iter_con]j_grad==300
stop_rule=1;x_sol=x;

else
stop_rule=0;

end

x=x";

end %(WHILE)

194

% Functions Quad_Presolver, Ptsolve, Quadsolve2_s, Convertor, Setsub And Min_Eig Are

%Called Within Qp_solver

function [result,teta]=quad_presolver(d,a,b,b0,L,U)
9 This Function Is Used To Check The Format Of A Singl Constraint Problem And Find

Any Solution Before The Main Procedure Is Called.

%Step 0. Initialization.

%
n=length(L);xsol=[];isol=[];resisol=[];inprop_criterion=0;temp_value=0;
aNEW=[];bNEW=[];dNEW=[];LNEW=[];UNEW=[];neg=[];fl=0;

%

%Step 1. Checking Vector D.

%o
for i=1:n
if d(1)<=0
inprop_criterion=1;
end
end

if inprop_criterion==1
disp('THE SINGLY CONSTRAINT QUADRATIC PROBLEM IS NOT IN
APPROPRIATE FORM.")
error(' ALL THE COEFFICIENTS OF THE SQUARES MUST BE POSSITIVE.")
end
%
9Step 2. Checking Bounds.
%

test_bounds=U-L;index=find(test_bounds<0);

195

if index~=[]
disp('THE SINGLY CONSTRAINT QUADRATIC PROBLEM IS NOT IN
APPROPRIATE FORM.")
error('UPPER BOUNDS MUST BE GREATER THAN LOWER BOUNDS.")
end
%

% Step 3. Checking Vector B.

%
fori=1:n
if b(1)==0 & -a(1)/d(1)>0 & -a(i)/d(1)>=L(1) & -a(i)/d(1)<=U(1)
xsol=[xsol -a(1)/d(i)];isol=[isol i];
elseif b(1)==0 & -a(i)/d(i)>0 & -a(1)/d(1)>U(1)
xsol=[xsol U(i)];isol=[isol i];
elseif b(1)==0 & -a(i)/d(1)>0 & -a(i)/d(1)<L(i)
xsol=[xsol L(i)];isol=[isol i];
elseif b(1)==0 & -a(1)/d(i)<0
xsol=[xsol L(i)];isol=[1s0l 1];
elseif b(1)<0
bNEW=[bNEW -b(i)];aNEW=[aNEW -a(i)]; temp_value=L(i);
resisol=[resisol i]; LNEW=[LNEW -U(1)];UNEW=[UNEW -temp_value];
ANEW=[dANEW d(i)];neg=[neg i];{l=1;
else
resisol=[resisol 1];LNEW=[LNEW L(i)];UNEW=[UNEW U(@)];
bNEW=[bNEW b(1)];dNEW=[dNEW d(i)];aNEW=[aNEW a(1)] ;fl=1;
end
end
if fl==0
result=xsol;
else

196

%
%Step 4. Solving The Reduced Quadratic Problem
%%
[teta,res]=quadsolve2(ANEW,aNEW' bNEW' bO,LNEW' UNEW');
%
%Step 5. Updating The Solution
%

nl=length(isol);n2=length(resisol);n=n1+n2;n3=length(neg);

for i=1:n
for k=1:n2
if i==resisol(k)
result(i)=res(k);
end
end
end
fori=1:n
forj=1:nl
if 1==1s0l(j)
result(1)=xsol(j);
end
end
end
fori=1:n
for k=1:n3
if i==neg(k)
result(i)=-result(i);
end
end
end

197

end

function xt=ptsolve(t,a,b,d,l,u)
%Solves Parametric Problem
n=length(a);
fori=l:n
v(D)=(a()-b(1)*t)/d(1);
if v(1)<=I1(1)
xt(1)=1(1);
elseif v(i)>=u(i)
xt(1)=u(1);
else
xt(1)=v(1);
end

end

function [topt, xt]=quadsolve2_s(d,a,b,b0,1,u)
% Initialization
%
il=[];iu=[];im=[];n=length(d);tl=[];tu=[];xt=[];x=[];iter=0;flag=0;
fori=l:n
tl(D)=(a(®)-1()*d(1))/b(1);
tu(i)=(a@®-u®)*d@))/b(1);
end
%
% Bracketing
%
t1=min([tl tu]);tr=max([tl tu]);

xtl=ptsolve(tl,a,b,d,l,u);xtr=ptsolve(tr,a,b,d,l,u);

198

%
% Checking Optimality and Infeasibility
%o
if xt1*b==b0
disp('THE SOLUTION IS OPTIMAL.")
x=xtl,break;flag=1;
elseif xtr*b==b0
disp('THE SOLUTION is OPTIMAL.")
x=xtr,break
elseif xt1*b<bO0 | xtr*b>b0
disp('THE PROBLEM HAS NO FEASIBLE SOLUTION."),break;flag=1;
else
tmin=t1;tmax=tr;iset=1:n;
end
%o
% Main Loop
%
ilist=iset;
while length(iset)~=0
tim=median(tl(iset));
isetgr=(];
for i=iset
if tl(i)>=tlm
isetgr=[isetgr i];
end
end
tum=median(tu(isetgr));

for t=tlm tum]

if t<tmax & t>tmin

xt=ptsolve(t,a,b,d,l,u);
if xt¥b==b0
disp('THE SOLUTION IS OPTIMAL")
flag=1; x=xt;iset=(];
elseif xt*b>b0
tmin=max{tmin,t);
else
tmax=min(tmax,t);
end
end
end
ilset=sparse([]);iuset=sparse([]);imset=sparse([]);
for j=iset
if tl(j)<=tmin
xt())=1();11=[il j];ilset=[ilset j];
elseif tmax<=tu(j)
xt(})=u(j);iu=[1u jJ;luset=[1uset j};
elseif tmin<=tmax
if tmax<=tl(j) & tu(j)<=tmin
xt())=(a@)-b()*t)/dG);
im=[im j];imset=[imset j];
end
end
end
iset=setsub(iset,iuset);
iset=setsub(iset,ilset);
iset=setsub(iset,imset);
end%(WHILE)

%

200

GRS

% Now Calculate

%

topt=sum(b(iu).*u(iu))+sum(b(il). ¥1(il))+sum(b(im).*a(im)./d(im)")-b0;
topt=topt/sum(b(im)."2./d(im)");

if im~=[]

xt(im)=(a(im)-topt*b(im)})"./d(im);

end
if il~=[]
xt(l)=1(1l);
end
if u~=[]
xt(iu)=u(iu);
end

Xt=sparse(xt);topt=sparse(topt);

function [p,D,A,b,Lu]=convertor(p,D,A,b,l,u)
%This Function Is Used To Convert A Nonseparable Quadratic Problem To A Separable
One.

delta=min(eig(D));
%odelta=min_eig(D);
bound=10000000;
if delta>0
disp(MATRIX D IS POSITIVE DEFINITE.")
if delta>0
delta=0.9*delta;
end

mat=D-delta*eye(size(D));G=chol(mat);

201

D_templ=[delta*0.5*eye(size(D)) zeros(size(D))];

D_temp2={zeros(size(D)) 0.5*eye(size(D))];

D=[D_templ;D_temp2];

b={b;zeros(length(p),1)];

p=[p;zeros(length(p),1)1;

A=[A zeros(size(A))];

A_temp=[G -eye(size(G))];

A=[A;A_temp],

I=[1 ; -bound*ones(size(l))];

u=[u ; bound*ones(size(u))];

disp(‘THE PROBLEM IS TRANSFORMED TO A SEPARABLE ONE.")
else

disp(TRANSFORMATION IS NOT APPLICABLE FOR THIS PROBLEM.")

end

function v=setsub(s1,s2)
JoSubtract Set S2 From Set S1
Isl=length(s1);ls2=length(s2);s1h=s1;
if Is2~=0 & Is1~=0
for i=1:length(s1h)
for j=1:length(s2)
if s1h(i)==s2(j)
sLh(i)=[1;
end
end
if length(s1h)==Is1-1s2
break
end

end

202

else
v=s];
end

v=slh;

function l=min_eig(a)
%This Function Calculates The Minimum Eigenvalue Of A Symmetric Or Non Symmetric

%Real Matrix By The Inverse Iteration Algorithm. We Assume That Min_eig > -10

[m,n]=size(a);u=ones(n,1);termination_criterion=0;
loops=0;miou=-10;[L,U]=lu(a-miou*eye(n));
while termination_criterion==0
loops=loops+1;u_pr=u;
z=L\u;v=U\z;u=v/max(abs(v));
if max(abs(u-u_pr))<107(-50)
termination_criterion=1;
l=miou+1/max(abs(v));
end

end

203

Appendix F: Decomposition Algorithms MATLAB Codes

Decentralized Algorithm

function [tt,time_dec,xx,main_loop,disp_matrix] = decomposition(AH, bH, cH,
lo_bounds_H, up_bounds_H,index_matrix)
%This Program Is An Implementation Of The Decentralized Decomposition Algorithm Of

%P.Mahey & P.D.Tao.

%Step 1. Initialization

%

UDASH=[]; VDASH=[];optimality_criterion=0;[p,r]=size(index_matrix);[m,n]=size(AH);
epsilon=.01;lamda=1000;main_loop=1;x=[];b_Coupl_Sub_Matrix=[]; t1=clock; t6=0;
time_par=[];b_coupl_Sub_Matrix=[]; A_Coupl=AH(index_matrix(p,2)+1:m,:);

X_pr=sparse(ones(n,1)); disp_matrix=[]

YoInitializing Matrix U
%
Ufirst=sparse(rand(m-index_matrix(p,2),1));
fori=l:p

U=[U Ufirst];

%Initializing Matrix V
%o

204

V=U(,1:p-1);[mV,nV]=size(V);
if nV==1
Vlast=-V;
else
Vtemp=V";Vlast=(-sum(Vtemp))';
end
V=[V Vlast];B=V;
%o

Plnitializing Partitioning Of The RHS Corresponding To The Coupling Constraints

%%

fori=1:p
b_coupl_Sub_Matrix=[b_coupl_Sub_Miatrix (sum((A_Coupl(:,index_matrix(i,3) :
index_matrix(i,4))')'];

end

t2=etime(clock,t1);

%

%oMain Loop

%

while optimality_criterion==0

%%

%Step 2. Solve The Quadratic Subproblems And Compute U And V.

%%

fori=1:p
t3=clock;index=index_matrix(i,:);Asub=AH(index(1):index(2),index(3):index(4));
bsub=bH(index(1):index(2));csub=cH(index(3):index(4));usub=U(:,1);
vsub=V{(:,1);A_Coupl_Sub=A_Coupl(:,index(3):index(4));
lo_bounds_sub=lo_bounds_H(index(3):index(4));
up_bounds_sub=up_bounds_H(index(3):index(4));
b_Coupl_Sub=b_coupl_Sub_Matrix(:,1);

205

%

%Computing The Parameters For The Quadratic Solver

%
pp=csub'+(A_Coupl_Sub*usub)+lamda*A_Coupl_Sub'*(vsub-b_Coupl_Sub);
D=(lamda/2)*A_Coupl_Sub*A_Coupl_Sub;

%

%Solving The Quadratic Subproblems

%
[x_sol,singl_gp_solver_counter]=qp_solver(pp,D,Asub,bsub,lo_bounds_sub,
up_bounds_sub);
time_par=[time_par etime(clock,t3)]; t4=clock;x=[x x_sol];

%

%Computing U and V

%
udash=usub+lamda*(A_Coupl_Sub*x_sol'+vsub-b_Coupl_Sub);
UDASH=[UDASH udash]; vdash=b_Coupl_Sub-A_Coupl_Sub*x_sol’;
VDASH=[VDASH vdash];

end

%%

%Step 3. Compute Projections
%
sum_proj=sum(VDASH');
fori=1l:p
sum_proj_matrix=[sum_proj_matrix sum_proj'];
end
V=VDASH-sum_proj_matrix/n;VDASH=[];
U=UDASH+sum_proj_matrix/n;UDASH=[];

tS=etime(clock,t4);

206

%Step 4. Check For Optimality
%%
ax_b=[ax_b max(abs(AH*x'-bH))],res_1=[res_1 max(abs(ones(size(x"))-x"))]
1f max(abs(ones(size(x"))-x'))<=epsilon
optimality_criterion=1;xx=x;
else
main_loop=main_loop+1;x_pr=x";x=[];pp=[1;D=[];sum_proj_matrix=[];
t6=t6+max(time_par)+tS;time_par=[];
end
end %(WHILE)

tt=etime(clock,t1);time_dec=t2+t6;

Augmented Lagrangian Method

function [timell,time_parallel,xx,main_loop,disp_matrix]=decomposII(A,b,c,index_matrix)
%This Program Is An Implementation Of The Decomposition Algorithm Of J.M. Mulvey &

%A. Ruszcynski.

%Step 1. Initialisation
epsilon=1;termination_criterion=0;[m,n]=size(index_matrix);x=[];main_loop=0;test=[];
r=10"5;[mA,nA]=size(A);x_sol=[];t2I=clock;time_dec_sub2=[];
pgr=sparse(ones(mA-index_matrix(m,2),1));sumQji=sparse(zeros(mA-
index_matrix(m,2),1)); t=0.95;xdash=sparse(ones(nA,1));u=2*sparse(ones(1,nA));
sumsub=sparse(zeros(size(pgr)));t27=0;stop_criterion=0;inner_loop=0;D=sparse(zeros(inde

x_matrix(1,4)-index_matrix(1,3)+1));disp_matrix=[];

%Main Loop
%o

while termination_criterion==0

207

main_loop=main_loop+1;
%%

%Step 2. Solving The Subproblems

%%
while stop_criterion==0
inner_loop=inner_loop+1;
disp(full([main_loop inner_loop]))
fori=l:m
index=index_matrix(i,:);t23=clock;
%%

%Computing The Parameters For The Quadratic Solver
%
Asub=A(index(1):index(2),index(3):index(4));bsub=b(index(1):index(2));
csub=c(index(3):index(4));
pp=c(index(3):index(4))-pgr'* A(index_matrix(m,2)+1: mA,index(3) :index(4));
for j=1:m
if j~=1
sumQji=sumQji+A(index_matrix(m,2)+1: mA, index_matrix(j,3): index_matrix(j,4))
*xdash(index_matrix(},3) :index_matrix(j,4));
end
end
Q=A(index_matrix(m,2)+1:mA,index(3):index(4));up_bounds_sub=u(index(3):inde
x(4));D=r*Q*Q;
lo_bounds_sub=zeros(size(up_bounds_sub));
pp=[pp-r*((b(index_matrix(m,2)+1:mA)-sumQji)*Q)]’;
[mD,nD]=size(D);
for ii=1:mD
if D(ii,ii)==0
D(ii,i1)=107(-5);

208

end
end
[x_sol,singl_gp_solver_counter]=qp_solver(pp,D,Asub,bsub,lo_bounds_sub,up_b
ounds_sub); x=[x;sparse(x_sol")];pp=[];D=[];sumQji=sparse(zeros(size(sumQji)));
t24=clock; t_dec22=etime(124,t23);
if main_loop==1
time_dec_sub2=[time_dec_sub2 t_dec22];
else
time_dec_sub2(i)=time_dec_sub2(i)+t_dec22;
end
end
%
%Step 3. Checking For Optimality
%o
t25=clock;
fori=1:m
index=index_matrix(i,:);
subtest=norm(A(index_matrix(m,2)+1:mA,index(3):index(4))*(x(index(3):index(4))
-xdash(index(3):index(4))));
if subtest<=epsilon

test=[test 1];

test=[test 0];
end

end

if all(test)==1 | inner_loop==20
stop_criterion=1;inner_loop=0;

fori=1:m

209

index=index_matrix(i,:);

sumsub=sumsub+A(index_matrix(m,2)+1:mA,index(3):index(4))*x(index(3):index(
4));

end

else
xdash=xdash+t*(x-
xdash);x=[];test=[];sumsub=sparse(zeros(size(sumsub)));
end
end%(WHILE)
stop_criterion=0;
if max(abs(ones(size(x'))-x"))<=0.01
termination_criterion=1;xx=x;
elseif main_loop>8
termination_criterion=1;x,xx=[];
else
%
%STEP 4. UPDATING THE SOLUTION
Yo
pgr=pgr+r*(b(index_matrix(m,2)+1:mA)-sumsub); x=[]; test=[1;
sumsub=sparse(zeros(size(sumsub))); %r=10%r;
end
t26=clock;t27=t27+etime(t26,t25);
end %(WHILE)
t22=clock;timell=etime(t22,t21);time_parallel=max(time_dec_sub2)+t27;time_ratio2=timell/

time_parallel;

210

Linear Quadratic Decomposition Algorithm With Penalty Function &

function [xx,main_loop,t_decII[,tIlI_par,disp_matrix]=decomp_li(A,b,c,u,index_matrix)
%This Program Is An Implementation Of The Decomposition Algorithm Of M.C. Pinar &
%S.A. Zenios.

Z%Step 1. Initialization
%
[m,n]=size(index_matrix);x=[];termination_criterion=0;main_loop=0;[mA,nA]=size(A);
xi=[];s=mA-index_matrix(m,2);epsilon=.01;test1=[];test2=[}; V=[];;D=zeros(nA,nA);
sf=zeros(size(c));t3 1=clock;t_matrix=[];M=107(3);cho_int_alg=[];tol=0.0005;ntal=0.5;
nta2=0.5;nta3=0.5;disp_matrix=[];;t_s=0;t3t=0;
%o
%Step 2. Solving The Relaxed Problem
%
t35=clock;
if A(index_matrix(m,2)+1:m,:)*x<=b(index_matrix(m,2)+1:m)
termination_criterion=1;xx=x;
else
x_pr=x;miou=max(abs(c));eps=max(0,nta3*max(A*x-b));
end,t36=etime(clock,t35);
%
%oMain Loop
%o
while termination_criterion==
t37=clock;main_loop=main_loop+1;
%Step 3. Computing The Parameters Of The Penalty Function
%o

E=A(index_matrix(m,2)+1:mA,1:nA);d=b(index_matrix(m,2)+1:mA);

211

for j=1:s
y=abs(E(,)*x-d(j));
if y<=0.005
Potestl=[test]l 1];
disp('COUPLING CONSTRAINT SATISFIED.")
elseif y>0.005 & y<=eps
disp(ADDING QUADRATIC SEGMENT.");
D=D+miou*(E(,:)*E(,:))/2*eps;st=sf-

miou*d(j)*E(j,:)/eps;testl=[test] O];

else
disp((ADDING LINEAR SEGMENT.";
sf=sf+miou*E(j,:);test1=[test] 1];V=[V;y];
end
end
for iD=1:nA
if D(1D,iD)==
D(D,iD)=107(-5);
end

end,t38=etime(clock,t37);
%%
%Step 4. Solving The Penalty Function
%%
ind=index_matrix(m,:);
if all(testl)==
disp(LINEAR MASTER-PENALTY PROBLEM SOLVED BY
PREDICTOR CORRECTOR ALGORITHM.";
[x,iter]=pdcorpred(A(1:1nd(2),1:nA),b(1:ind(2)),(c+sf)’,tol);

else

212

disp(QUADRATIC MASTER-PENALTY PROBLEM.");

[x,singl_qp_solver_counter,ts]=simp_decomp(D,(c+sf),A(1:ind(2),1:nA),b(1:ind(2))
Jandex_matrix); t_s=t_s+ts;

end
%
%Step 5. Checking For Optimality And Updating Parameters Miou And Eps
%

t39=clock;

if max(abs(ones(size(x"))-x"))<=epsilon

termination_criterion=1;xx=x;

else
if sum(test1)==
eps=max(epsilon,ntal *eps);
else
miou=miou*max(V)/(nta2*eps);
end
x_pr=x;testl=[];D=zeros(size(D));sf=zeros(size(sf));
end

13t=t3t+t38+etime(clock,t39);disp_matrix=[disp_matrix;main_loop c*x];
end %(WHILE)

t32=clock;t_decII=etime(t32,t31);tII_par=t36+t_s+t3t;

213

Linear Quadratic Decomposition Algorithm With Penalty Function &,

function [xx,main_loop,t_decIILtIII_par,disp_matrix] = decomp_li_me (A,b,c,u,
index_matrix)
%This Program Is An Implementation Of A Variant Of The Decomposition Algorithm Of

%M.C. Pinar & S.A. Zenios.

% Step 1. Initialization

%%

[m,n]=size(index_matrix);x=[];termination_criterion=0;main_loop=0;[mA,nA]=size(A);
xi=[];s=mA-index_matrix(m,2); epsilon=.01;test_1=[};test2=[1;V=[]; D=zeros(nA,nA);
sf=zeros(size(c));t31=clock; t_matrix=[];M=107(3) ;cho_in(_alg=[]; tol=0.0005; ntal=0.5:
nta2=0.5;nta3=0.5;t_s=0;t3t=0;disp_matrix=[1;

%

%Step 2. Solving The Relaxed Problem

%

fori=1:m
t33=clock;
[xi,iter]=pdcorpred(A(index(1):index(2),index(3):index(4)),b(index(1):index(2)),
c(index(3):index(4))',tol);
x=[x;x1];
t34=clock;t_matrix=[t_matrix etime(t34,t33)];

end

t35=clock;

if max(abs(A(index_matrix(m,2)+1:m,:)*x-b(index_matrix(m,2)+1:m)))<epsilon
termination_criterion=1;xx=x;
else

X_pr=x;miou=max(abs(c));eps=nta3*max(A*x-b);

214

end,t36=etime(clock,t35);

%

%Main Loop

%

while termination_criterion==0
t37=clock;main_loop=main_loop+1;

%

%Step 3. Computing The Parameters Of The Penalty Function

%
E=A(index_matrix(m,2)+1:mA, l:nA);d=b(index_matrix(m,2)+1:mA);
forj=1:s
y=E(s,:)*x-d(s);
if y<=0
test1=[testl OJ;
elseif y>=0 & y<=eps
D=[D+(E(s,:)*E(s,:))/eps];sf=[sf+2*d(s) *E(s,:/eps+E(s,:)/2];test I=[test] 0];
else
st=[sf+(E(s,:)-eps/2)];testI=[test] 1];
V=[Viyl;
end
end
for iD=1:nA
if D(iD,iD)==0
D(@aD,iD)=107(-5);
end
end,t38=etime(clock,t37);
Yo

%Step 4. Solving The Penalty Function

215

%
ind=index_matrix(m,:);
if all(testl)==1
disp((ADDING LINEAR SEGMENT.');
disp(MASTER-PENALTY PROBLEM SOLVED BY PREDICTOR
CORRECTOR ALGORITHM.");

[xi,iter]=pdcorpred(A(1:ind(2),1:nA),b(1:ind(2)),(c+sf)",tol);

else
disp(ADDING QUADRATIC SEGMENT.");
[x,singl_gp_solver_counter,ts]=simp_decomp(D,(c+sf),A(1:ind(2),1:nA),
b(1:ind(2)),index_matrix);t_s=t_s+ts;

end

%
PoStep 5. Checking For Optimality And Updating Parameters Miou And Eps
%o

t39=clock;

if max(abs(ones(size(x'))-x"))<=epsilon

termination_criterion=1;xx=x;

else
x_pr=x;testl=[];
if sum(testl)==0
eps=max(epsilon,ntal *eps);
else
miou=miou*max(V)/(nta2*eps);
end
end

t3t=t3t+t38+etime(clock,t39);disp_matrix=[disp_matrix;main_loop c*x];
end %(WHILE)

t32=clock;t_decllI=etime(t32,t31);tIII_par=t36+max(t_matrix)+t_s+t3t;

216

Appendix G: Problem Generators MATLAB Codes

Linear Problem Generators

Hilbert-Type Problem Generator

%This Program Generates The Coefficients For The Hilbert Problems By Given Parameter

N. Please Enter The Values Of Parameter N.

%Step 1. Initialization.
%o

n=200;

%o

%Step 2. Compute The Coefficients Of Matrix A And B.

%
fori=1:n
b(i)=0;c(1)=2/(i+1);
for j=1:n
b(1)=b(i)+1/(i+j);a(i,)=1/(i+));
end
%o

%Step 3. Compute The Coefficients Of Vector C.
%o
for j=2:n
c()=c(1)+1/(1+));

end

217

end

cc=c;aa=a;

c=[c zeros(1,n)];a=[a -eye(n)];b=b";

%%

%Step 4. Compute The Components Of Vector U.

%o

u=1.1*ones(2*n,1);

a=sparse(a);b=sparse(b);c=sparse(c);u=sparse(u);

Josave

tt1=clock;ttt 1 =etime(clock,tt]);tt2=clock;ttt2=etime(clock,t2);
tt3=clock;ttt3=etime(clock,tt3);ttd=clock;tttd=etime(clock,tt4);
ttS=clock;tttS=etime(clock,t5);ttb=clock;ttt6=etime(clock,tt6);
tt7=clock;ttt7=etime(clock,tt7);tt8=clock;ttt8=etime(clock,t8);
tt9=clock;ttt9=etime(clock,tt9);tt10=clock;ttt 10=etime(clock,t10);

tt1 1=clock;ttt1 1=etime(clock,tt11);tt12=clock;ttt12=etime(clock,tt12);

flops(0)

[sol_kar,iter_kar,time_kar,m_kar]=karm93dual([sparse(aa’) -speye(n) speye(n)],
sparse(cc’), [sparse(-b') 20*sparse(ones(1,n)) sparse(zeros(1,n))], 20*gsparse(ones(3*n,1)),
0.0000005, le-8,1e-8)

flops_kar_dual=flops

flops(0)

[primalsol,ITER_ALG_A,ITER_ALG_B,TIMEI ,TIME2, TIME,matrix_dip}=karmar93(a,b,
¢,u,0.0000005,0.0000005, le-8,le-8)

flops_kar=flops

flops(0)
[sol_barnes,iter_barnes,time_barnes,m,barnes]:barnes(a,b,C,0.000000S)
flops_barns=flops,

flops(0)

[sol_inf,iter_inf time_inf,m_inf]=infmethod(a,b,c,0.0000005);

218

flops_inf=flops,
flops(0)
[sol_cor,iter_cor,time_cor,m_cor]=pdcorpred(a,b,c',0.0000005)

flops_predcorr=flops,

Klee-Milty Problem Generator

%This Program Generates The Coefficients For The Klee-Minty Problems By Given

Parameters M And N. Please Enter The Values Of Parameters M And N.

%Step 1. Initialization.

%%

m=0.4; n=50:b=ones(n,1);c=[1,2*n];d=[1,n];
%

%Step 2. Compute The Components Of Vector C.

%

for j=1:n
d(j)=-m(n-j);

end

c=[d zeros(1,n)];
%

%Step 3. Compute The Components Of Matrix A.

%o
fori=1:n
for j=1:n
if j>i,
e(1,))=0;
elseif j==i,
e(i,))=1;

219

else,
e(i,j)=2*mA(-);
end
end

end
[al,a2]=percentage(e); a=[e eye(n)];[o,p]l=size(a);
%o
%Step 5. Compute The Components Of Vector U.
%o
u=[0.001*ones(1,n-1) 1 ones(1,n)]’;

a=sparse(a);b=sparse(b);c=sparse(c);u=sparse(u);

Linear Ordering Problem Generator

%This Program Gegerates The Coefficients For The Linear Ordering Problems By Given

%Parameter N. Please Give The Value Of Parameter N.

%Step 1. Initialization.
%
n=10;smax=2%*n-1;constrl_counter=0;constr2_counter=0;constr3_counter=0;
matl=zeros(n,n);mat2=zeros(n,n);mat3=zeros(n,n);
%o
%Step 2. Compute The Components Of Matrix A.
%
for s=3:smax
fori=I:n
for j=1:n
if i~=j & 14j==5 & J>1,

matl(1,))=1;matl(j,1)=1;

220

if any(any(matl))==
constrl _counter=constrl_counter+1;
for ii=1:n
conl={conl matl(ii,:)];
end

a=[a;conl];conl=[];matl=zeros(n,n);

end
end
end
end
end
fori=l:n
for j=1:n
for k=1:n
if 1<=1 & i<j & j<k & k<=n
mat2(1,j)=mat2(i,j)}+1;mat2(j,k)=mat2(},k)+1;
mat2(k,i)=mat2(k,i)+1;
end
if any(any(mat2))==
constr2_counter=constr2_counter+1;
forjj=1:n
con2=[con2 mat2(jj,:)];
end
a=[a;con2];con2=[];mat2=zeros(n,n);
end
end
end
end
fori=l:n

221

for j=1:n
for k=1:n
if 1<=1 & i< & j<=k & k<=n
mat3(j,1)=mat3(j,i)+1;mat3(i,k)=mat3(1,k)+1;

mat3(k,j)=mat3(k,j)+1;

end
if any(any(mat3))==
constr3_counter=constr3_counter+1;
for kk=1:n
con3=[con3 mat3(kk,:)];
end
a=[a;con3];con3=[];mat3=zeros(n,n);
end

end

end
end
[ma,na]=size(a);
dim l=constr2_counter+constr3_counter;dim2=constrl_counter+dim];a=[a(:,2:na)
eye(dim?2)];[o,pl=size(a);
%
%Step 3. Compute The Components Of Vector B.
%o
b=[ones(1,constrl_counter) 2*ones(1,dim1)]";
%o
%Step 4. Compute The Components Of Vector C.
%
c=-rand(1,n"2+dim2-1);
%o

%Step 5. Compute The Components Of Vector U.

222

%
u=2*ones(n*2+dim2-1,1);

a=sparse(a);b=sparse(b);c=sparse(c);u=sparse(u);

Random Problem Generator

%This Program Generates The Coefficients For The Hilbert Problems By Given Parameter

%N. Please Enter The Values Of Parameter N.

%Step 1. Initialization.

%%

n=10;

%

%Step 2. Compute The Coefficients Of Matrix A And B.
%

a=10*rand(2*n/3,n);b=a*ones(n,1);

%

%Step 3. Compute The Coefficients Of Vector C.
%

c¢=10*rand(1,n);cc=c;aa=a;

9oc=[c zeros(1,n)];a=[a -eye(n)];b=b";

%

%Step 4. Compute The Components Of Vector U.
%o

u=10*ones(n,1);

a=sparse(a);b=sparse(b);c=sparse(c);u=sparse(u);

223

Quadratic Problem Generator

%This Program Generates Separable and Non-Separable Quadratic Problems of Given Size,

Sparsity and Condition Number of the Matrix of the Quadratic Coefficients

m=10;n=20;cond=100;d=20*sprandn(m,n,0.5,1/cond);x=sparse(ones(n,1));
Q=20*sprandsym(n,0.12,1/cond, 1);
F0Q=speye(n);

p=sparse((20*rand(1,n)-10)");f=d*x;l=sparse(zeros(n,1));u=sparse(20*ones(n,1));

Decomposition Problem Generator

%This Is A Generator For Block Diagonal Decomposition Problems Proposed By

%oMangasarian (1981).

%Index_matrix Must Be Entered Interactively

%o

index_matrix=[5 10;5 10]

%index_matrix=[5 10;5 10;5 10;5 10];

%index_matrix=[5 10;5 10;5 10;5 10;5 10;5 10;5 10;5 10}
mlink=2;[m,n}=size(index_matrix);M=30;
size_dec_problem=sum(index_matrix);nlink=size_dec_problem(2);
%o

% Initializing The Decomposition Problem

%o

b=[];A=[];c=(];c_temp=0;index_matrix_temp=[};

224

%
%Generating Matrix A
%
fori=1:m
if i==1
A=[round(100*rand(index_matrix(1,1),index_matrix(1,2)))
zeros(index_matrix(1,1),size_dec_problem(2)-index_matrix(1,2))];
else
A=[A;zeros(index_matrix(i,1),sum(index_matrix(1:1-1,2)))
round(100*rand(index_matrix(i,1),index_matrix(i,2)))
zeros(index_matrix(i, 1),size_dec_problem(2)-index_matrix(i,2)-sum(index_matrix(1:1-
L2))I;
end
end
A=[A;round(100*rand(mlink,nlink))];
%
% Computing Vectors B And C
%
A_sum=sum(A");
for i=1:size_dec_problem(1)+mlink
if A_sum(1)>0
b=[b;A_sum(1)];
else
b=[b;2*A_sum(i)-1];
end
end
for i=1:size_dec_problem(2)
for j=1:size_dec_problem(1)+mlink

if A_sum(j)>0

225

c_temp=c_temp+A(j,1);
end
end
c=[c c_temp];c_temp=0;
end
%o
%0Generating Lower And Upper Bound Vectors
%
l=zeros(1,size_dec_problem(2));u=M*ones(1,size_dec_problem(2));
u=size_dec_problem(1)*ones(1,size_dec_problem(2));
%
%Generating Index_matrix For The Decomposition Algorithm
%
fori=1:m
if i==1
index_matrix_temp=[index_matrix_temp;] index_matrix(i,1) 1
index_matrix(1,2)];
else
index_matrix_temp=[index_matrix_temp;index_matrix_temp(i-1,2)+1
index_matrix_temp(i-1,2)+index_matrix(i,1) index_matrix_temp(i-1,4)+1
index_matrix_temp(i-1,4)+index_matrix(i,2)];
end
end
A=sparse(A);b=sparse(b);c=sparse(c);index_matrix_temp=sparse(index_matrix_temp);
%o
% Solving The Decomposition Problem
cl=clock;etime(clock,c1);c2=clock;etime(clock,c2);c3=clock;etime(clock,c3);

cl=clock;etime(clock,c1);c2=clock;etime(clock,c2);c3=clock;etime(clock,c3);

226

flops(0);tl=clock;[xi,iter]=pdcorpred(A,b,c',0.0005);time_li=etime(clock,tl),flops_li=flops,
IT=Cc*x1
flops(0);[t,t_par,x,m_loop,disp_mat]=decomposition3(A,b,c,l,u,index_matrix_temp),flops
_1=flops,max(abs(A*x'-b))
flops(0);[t,t_par,x,m_loop,disp_mat]=decomposII(A,b,c,index_matrix_temp),flops_2=flop
s,max(abs(A*x-b))
flops(0);[x,m_loop,t,t_par,disp_mat]=decomp_li(A,b,c,u,index_matrix_temp),flops_3=flop
s,max(abs(A*x-b))
flops(0);[x,m_loop,t,t_par,disp_mat]=decomp_li_me(A,b,c,u,index_matrix_temp),flops_3

=flops,max(abs(A*x-b))

