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Summary

A number of researchers have investigated the impact of network architecture on the
performance of artificial neural networks. Particular attention has been paid to the impact
on the performance of the multi-layer perceptron of architectural issues, and the use of
various strategies to attain an optimal network structure. However, there are still
perceived limitations with the multi-layer perceptron and networks that employ a
different architecture to the multi-layer perceptron have gained in popularity in recent
years. Particularly, networks that implement a more localised solution, where the solution
in one area of the problem space does not impact, or has a minimal impact, on other areas
of the space. In this study, we discuss the major architectural issues effecting the
performance of a multi-layer perceptron, before moving on to examine in detail the
performance of a new localised network, namely the bumptree.

The work presented here examines the impact on the performance of artificial neural
networks of employing alternative networks to the long established multi-layer
perceptron. In particular, networks that impose a solution where the impact of each
parameter in the final network architecture has a localised impact on the problem space
being modelled are examined. The alternatives examined are the radial basis function and
bumptree neural networks, and the impact of architectural issues on the performance of
these networks is examined. Particular attention is paid to the bumptree, with new
techniques for both developing the bumptree structure and employing this structure to
classify patterns being examined.

Keywords: Neural Networks, Multi-Layer Perceptron, Radial Basis Function, Bumptree,
Localised Impact, Optimal Network Structure.
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Chapter 1

Introduction

The development of computers able to display intelligence comparable to that displayed by
humans has always been an appealing idea for computer scientists and the principal
objective for researchers in artificial intelligence. This has been a very active area of
research, with some limited success being achieved in recent years. Initial attention
focused on the use of machine-learning algorithms, including rule-based or expert systems,
and these systems have enjoyed a degree of success and commercial acceptance. Expert
systems approach the task of creating ‘"intelligent" computers through explicitly
embodying the knowledge of experts in the system through the careful hand crafting of the
knowledge base. In practice the knowledge acquisition phase of expert system
development has proved to be time consuming and difficult. An alternative approach is to
allow the system to develop its own representation of the problem area through the
presentation of training examples. This approach is able to overcome many of the
problems found in the development of expert systems, and is the one employed by neural

networks in pattern classification.

Attention has turned increasingly towards the use of neural networks in an attempt to
create "intelligent" computer systems for pattern classification tasks. The ability of neural
networks to develop their own "knowledge" of the problem to be classified should allow
the development of computer systems with the ability to learn to classify patterns. A wide
range of neural networks employing different approaches have been developed to classify
patterns. The neural network that has been most widely used for pattern classification is
the multi-layer perceptron (MLP) trained by the standard back-propagation learning
algorithm (Rumelhart, Hinton and Williams 1988). One of the major alternative systems to

the MLP approach for pattern classification is the Radial Basis Function (RBF) network
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(Powell 1985, Broomhead and Lowe 1988). Recently attention has also focused on the
development of neural networks employing tree based structures; these form the main

basis of this study.

The MLP, RBF and tree based neural networks examined in this study employ the
supervised learning approach, in which patterns are presented to the network and the
resulting output compared against the desired output with the network weights adjusted to
minimise any difference. Unsupervised learning algorithms offer an alternative approach to
the task of training the network by allowing it to self-organise, adjusting the weights
according to a well-defined algorithm to produce the desired changes. The unsupervised
learning algorithms do not use a straightforward error minimisation technique as the main
component of the training algorithm. Networks that adopt an unsupervised approach to
learning, such as the Kohonen feature map (Kohonen 1988) do not fall within the scope of
this thesis. The standard MLP employs a supervised learning algorithm, and trains to a
solution through the explicit minimisation of a given error. It includes no unsupervised
component. In contrast, both the RBF and the tree based network examined in this study

embody an unsupervised element alongside a supervised one in the training process.

A fundamental difference between the neural networks examined in this study is the
approach adopted during the training phase. This difference will be further examined in
later chapters. Another fundamental difference between the three neural networks
examined in this study is the use of local and non-local (global) partitioning of the problem
space. The MLP uses hyperplanes to partition the problem space, and these suffer from
long range effects, since moving the hyperplanes to accommodate data in one area of the
problem space can have an adverse effect on data elsewhere. This is shown in figure 1.1,
where the hyperplane has been moved from position 1 to position 2 to enhance

classification of patterns in class 1. However, this has the effect of degrading the



classification of patterns in class 2. Figure 1.2 shows how increasing the number of
hyperplanes will improve classification performance on the training set. The RBF network
and the tree based network employ a more local solution than the MLP, and it is hoped

this might offer improved classification performance.

position 2

position 1

MLP.

Figure 1.2 - Improved classification performance on the training set for the standard MLP
through the use of additional hyperplanes.

Another aspect of the MLP trained with the standard back propagation learning algorithm
that needs considering is the number of arbitrary parameters that need to be determined.
Values need to be assigned to the learning rate, the momentum term, the initial weight and
bias values, and most significantly the number of units in the hidden layer. If there are too
few hidden units then the network will be unable to adequately partition the problem
space, and if there are too many units then it will simply memorise the patterns of the

training set and consequently give poor performance for patterns previously unseen. Thus,
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the number of units assigned to the hidden layer is crucial to the network achieving
optimal performance; it is not surprising therefore that much research has been concerned

with investigating network architecture.

As a consequence of the limitations of the MLP, studies have also been undertaken into
the development of alternative neural networks. The rationale for studying such networks
is that the MLP, even with the optimum set of parameters and architecture is still
susceptible to the "hyperplane effect” mentioned above. This has led to the development of
neural networks that implement a local rather than global solution in the hope that they
will offer an improvement in generalisation performance and training time. To date, the
most popular of such neural networks are those that employ radial basis functions and
these like the MLP are, in theory, able to form an arbitrarily close approximation to any

continuous non-linear mapping.

The RBF network is, however, not the only alternative. Recently attention has begun to
focus on the use of tree based structures to create neural networks that implement a local
solution; such structures have their origins in the decision trees of machine learning. It is
hoped that by employing a tree structure it will be possible to develop a neural network
that will learn faster and perform better in terms of generalisation than the MLP or RBF
neural networks. However, the work on tree based neural networks is in its early stages

and the plausibility of these aims remains to be discovered.

The work presented in this thesis is concerned with investigating the impact of
architecture on the performance of a neural network, with particular reference to the
MLP, RBF, and a tree based network. The latter is based on the bumptree geometric data

structure developed by Omohundro (1991).
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The main aims of this work are as follows:

(1) To examine architectural issues that exist with neural networks. Attention will be paid
to the MLP, the RBF and tree based neural networks.

(2) To develop a tree based localised neural network based on the bumptree geometric
data structure introduced by Omohundro (1991), and to ascertain the impact that various
architectural issues have on the performance of this localised network.

(3) To conduct a comparative study of the performance of the MLf’, RBF and the
bumptree neural network on a wide range of natural and artificial problems. Particular
attention will be given not only to performance but also to the computational requirements

of each algorithm, for example, the computational time required for training.
The thesis is organised as follows:

Chapter 2 presents a general review of architectural issues that impact on the performance
of the MLP. Particular attention is paid to reviewing the current literature concerning the
development of dynamic network design strategies for attaining the optimal architecture
for the MLP. This focuses primarily on the pruning and constructive algorithms that have
been introduced. In addition, combined algorithms including both a constructive and a
pruning component, and the use of genetic algorithms to optimise the structure of the

MLP are examined.

Chapter 3 is concerned with examining neural networks that implement a more local
solution than the MLP. It presents a general overview of the approach adopted by the
RBF neural network, in addition to which it introduces the idea of employing the tree
based structures introduced in the decision trees of machine learning to develop neural
networks that implement a local solution. This chapter also introduces the bumptree neural

network, a neural network that employs a tree based structure.
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Chapter 4 discusses the architectural issues that need to be resolved if the bumptree neural
network is to be employed satisfactorily. Consideration is given to how the functions
employed to partition the problem space should be defined; a number of alternate

techniques are examined.

Chapter 5 examines further architectural issues that exist with the bumptree neural
network. For example, the nature of the learning algorithm to be applied to the partitioned
areas, and the use to which the tree structure is to be put when calculating the output of

the network.

Chapter 6 presents a comparative study of the performance of the MLP, RBF and
bumptree neural networks on a wide range of problems. The performance of these
different networks is compared in terms of their generalisation performance, the time
taken to train to a solution, and the time taken by the trained system to produce a response

to a query.

Chapter 7 summarises the work conducted and discusses the major achievements of this

work and possible future extensions.
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Chapter 2

An Examination of Architectural Issues Associated With Multi-Layer Perceptrons

2.1 Introduction

Multi-Layer Perceptrons (MLP's) that have been trained with the back—propagation
learning algorithm (Rumelhart, Hinton and Williams 1988) have been widely used in the
development of artificial neural networks. They have been employed in such diverse
fields as medical diagnosis (Astion and Wilding 1992), hand-written text recognition (Le
Cun ef al. 1990) and phonetic classification and recognition (Leung ef al. 1989, 1991). A
major reason for their popularity is that whilst some problems are more efficiently
modelled by other more specialised networks, such as radial basis function networks or
binary tree structures, the multi-layer perceptron is a good general learning tool for a

wide range of applications.

2.2 The Limitations of the Standard Multi-layer Perceptron

The MLP trained with the standard back-propagation learning algorithm, whilst being a
good general learning tool, possesses some inherent limitations. Firstly the learning
algorithm is computationally demanding and slow since it employs an iterative gradient
descent method. Secondly it is not guaranteed that the MLP will converge to an
adequate solution even when one exists, and thirdly the performance of the MLP is
dependent upon a number of arbitrary parameters. These arbitrary parameters need to be
adequately resolved if optimal performance is to be produced by the network. In
particular, the number of hidden units required to produce optimal generalisation

performance needs to be determined. If too few hidden units are employed then the
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network will fail to achieve satisfactory performance, whilst if too many hidden units are
used then the network will tend to "memorise" the patterns in the training set and
consequently give poor performance for patterns not included in the training set (Mozer
and Smolensky 1989). The best generalisation performance is obtained by trading the
training error against network complexity (Le Cun, Denker and Solla 1990). That is,
whilst it may be the case that a network with a large number of hidden upits may be able
to reach a low error on the training set, the network complexity required to reach this
level of error prohibits good generalisation performance. Baum and Hausler (1989) claim
that the best generalisation performance is attained from a network containing a minimal
number of hidden units. The main principle here is that a smaller network is more likely
to generalise well because it has extracted the essential and significant features of the

data.

The issues of computational expense and learning time are also linked to the number of
hidden units employed by the MLP. Learning time is generally quicker in terms of the
number of iterations taken to reach a solution when more hidden units are employed
(Mozer and Smolensky 1989), although the computational expense of each iteration in
the learning process is increased because of the larger number of units; the saving in
computational effort is, therefore, reduced by the increased computational cost of each
iteration. Hence, not only is it important to attain a minimal, or near minimal, sized
network in order to attain good generalisation, it is also necessary if the computational

cost of the learning process is to be optimised.

A study on network architecture by Baum and Hassler (1989) indicated that the number
of training patterns required to obtain good generalisation increased when the number of
hidden units increased. Widrow (1987) suggested that the number of patterns required to

reach a 90% accuracy level was about ten times the number of weights in the network.
y g
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Hence according to this a small 3-n-1 network that employs five hidden units (20
connections) requires 200 training patterns if a 90% level of accuracy is to be achieved.
If fifty hidden units are employed (300 connections) then 3000 patterns are required to
train to the same level of accuracy, an increase of 1500%. Increasing the number of
patterns upon which the network is to be trained clearly imposes further computational
demands. Although Widrow's ten percent rule may not have universal ap;plication, clearly
large networks impose considerable demands on the size of training set required to

achieve a meaningful network performance.

Therefore, the number of hidden units employed has a significant impact on the
performance of the MLP. However, in order to attain optimum performance there are
other issues that need to be considered. In particular, the number of layers of hidden
units needs to be determined. The standard MLP employs a single layer of hidden units,
and Lippmann (1987) demonstrated that an MLP with a single hidden layer can
implement arbitrary convex decision boundaries. Further, Cybenko (1989) has shown
that a network with a single hidden layer can form an arbitrarily close approximation to
any continuous non-linear mapping. These results do not, however, imply that there is no
benefit to having more than a single hidden layer. For some problems a small 2 hidden
layer network can be used where a single hidden layer network would require an infinite
number of nodes (Chester 1990). It has also been shown that there are problems which
require an exponential number of nodes in a single hidden layer network that can be
implemented with a polynomial number of nodes in a 2 hidden layer network (Hajnal er
al. 1987). The use of multiple layers of hidden units, while offering some potential
benefits, does not, however, diminish the problem of determining the appropriate number
of hidden units. It simply extends this problem from one to multiple layers. The use of
multiple layers of hidden units and its impact on network performance needs close

examination. In addition, approaches for determining the number of units to be employed
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in each of the hidden layers need examining. However, these issues do not fall within the
scope of this study. Instead this study uses MLP's with a single hidden layer, and the
focus of attention is with determining the number of units to be employed in the single
hidden layer. The impact on network performance of varying the number of hidden units

1s examined in later chapters.

Another additional parameter that needs to be altered to suit the problem being modelled
is the learning rate. This is a parameter in the learning algorithm that plays a role in
determining the size of the alterations made to the weights in the network at each weight
change. In addition to the learning rate, the momentum term needs to be altered to suit
the problem being modelled. This parameter in the learning algorithm plays a role in
determining the degree to which the present weight change is effected by the previous
weight change. The starting weight and bias values for the connections within the
network also need to be determined, and these can be set to any value deemed
appropriate. The standard MLP employs feed forward connections that do not by-pass
layers. However, it is possible to employ connections within the network that feedback
rather than forward, and feed forward connections that by-pass layers. The use of these

alternate connections and their impact on network performance is not examined in this

study.

Therefore, in order for the network to achieve optimal performance it is necessary not
only to adjust the number of hidden unit's employed to solve each problem, it is also
necessary to examine the parameters identified above. The impact of each of these
parameters cannot be determined without further examination, and this further
examination does not fall within the scope of this study. The architectural issue

concerning the MLP that this work concentrates on is the impact on network
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performance of the number of hidden units, and approaches for achieving the optimal

number will be examined.

2.3 Dynamic Network Design Strategies

It is not possible to determine the optimal architecture of a network unless long and
protracted empirical studies are conducted in which network performance is related to
architecture. The number of hidden units providing optimal performance on a problem
cannot be determined prior to the commencement of the training process. However,
some attempts have been made to determine the optimal architecture during the learning
process. The aim of the dynamic network design strategies is to define a network
architecture capable of providing good generalisation performance, and it is commonly
held that this in turn implies the attainment of a minimal sized network. Four different
approaches have been proposed that attempt to dynamically determine the optimal
number of hidden units in the multi-layer perceptron. These four approaches are
constructive strategies, pruning strategies, combined constructive and pruning strategies,
and genetic algorithm based strategies. Of these approaches, the constructive and

pruning approaches have received the most attention to date.

2.3.1 Pruning Algorithms

The underlying principle of the pruning approach is to commence the training process
with a large number of hidden units and then systematically reduce the number of hidden
units and/or connections either during training or at the conclusion of training. A number

of different algorithms have been studied, and the majority of these concentrate on the
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removal of hidden units from the network. However, algorithms have also been studied
that prune connections, in addition to some that prune both connections and hidden
units. Pruning can either be carried out as an integral part of the training process or can
be implemented at the completion of the training process. In the later case the algorithms
that carry out the pruning operation employ an external monitoring system, whilst those
that carry out the pruning during the training process modify the standard learning

algorithm accordingly.

Algorithms that employ a global monitoring system carry out the removal of units and/or
connections from the network through the use of a monitoring system which is applied at
the termination of the learning process, when the network has been trained to the desired
level of performance. In some cases (Sietsma 1990) a certain degree of retraining is
necessary once the pruning operation has been completed, if an acceptable performance
of the reduced network is to be achieved. In general when a pruning algorithm employs a

global monitoring system the back-propagation learning algorithm is unchanged.

Sietsma (1990) investigated a pruning algorithm that used an external monitoring system
to remove redundant units together with a modified version of the back-propagation
learning algorithm to train the initial network. Sietsma was concerned particularly with
investigating the effect on generalisation performance of removing redundant units from
the network. She defined two different classes of redundant units that could be profitably
removed from the network. Firstly, non-contributory units were identified: these had an
approximately constant output across the training set or had their output mimicked
across the output of another unit. Secondly, unnecessary information units were
identified: these provided information to the next layer which was redundant as far as the
classification process was concerned. Sietsma applied a pruning algorithm based on the

removal of these two types of redundant unit from a network that had been trained with




a slightly modified back-propagation learning algorithm. Sietsma modified the learning
algorithm by using a decay term which she claimed did not affect convergence but did
reduce the average size of the weights. The decay would also appear to limit the further
reduction of the error level when the required weight changes became sufficiently small,
since these small changes were eradicated by the decay term. In addition, Sietsma also
induced noise into the training process, which she claimed led to better generalisation
performance. The data set she employed to test this pruning algorithm consisted of a

series of sine waves of different frequencies.

Sietsma investigated the effect on network performance of removing redundant units
(Sietsma 1990, Sietsma and Dow 1991) using the two stage pruning process discussed
above. The first stage removed the non-contributory units whilst the second stage
removed the unnecessary information units. In a typical set of results Sietsma found that
the two stage pruning process gave a reduced network structure of (64)-9-3 with a
generalisation performance which was superior to that given by the original network
(64)-20-8-3. However, she found that the smallest networks determined by the pruning
algorithm did not always give the best generalisation performance. In one particular
study a (64)-8-3 network gave a poorer performance on the generalisation set than a
(64)-9-3 network. It would seem that the pruning algorithm occasionally removed
meaningful hidden units from the network thus leading to a reduction in network
performance. Sietsma argues that the slightly larger networks performed better because
of the addition of noise to the data set during the training process. In Sietsma's approach
the network was retrained after removing the unnecessary information units, so that the
remaining hidden units could then be retrained to perform the task previously carried out
by the units removed. This additional training took far less time than the original training
process and the weights did not usually change greatly. Sietsma found that when the

optimal architecture was taken as the initial architecture, (64)-9-3, the network failed to
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converge; she concluded from this that the number of initial hidden units should exceed

the optimal number for convergence to be attained.

Pruning algorithms that employ an external monitoring system have the attraction that
there is no need to alter the learning algorithm. Training proceeds with a prescribed
number of hidden units until it terminates, when any extraneous units and/or connections
are removed from the network. The main problem with this approach, as with any other
type of pruning, is to decide which units and/or connections should be removed from the
network, whether any additional training is required by the reduced network, and what is
to happen to the weighted values of a unit when it is removed from the network. They
can simply be discarded or can somehow be redistributed around the remaining units. In
Sietsma's study (1990) the output weights from the units that were removed from the
network after stage one pruning were redistributed evenly to the remaining units, whilst
the weights from the input to hidden units were discarded. In addition, all the weights
from the units deleted by the stage two pruning process were discarded. Another
important issue that needs to be considered is whether retraining should be carried out
once the external monitoring system has removed superfluous units. The use of an
external monitoring system clearly increases the computational cost of training a

network, but offers the possibility of improved generalisation performance.

For pruning algorithms invoked during the training process Wynne-Jones (1991) has
distinguished two different approaches. In the first approach the final architecture is
attained through the minimisation of a biased cost function in the learning process. In the
second approach the final architecture is determined by the removal of units and/or
connections during training according to the relevance of the unit or weight. The

relevance concerns the degree to which the unit or weight contributes to the reduction of
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the error level in the network. The aim of both of these approaches is the same - the

removal of non-essential hidden units.

Chauvin (1989) developed an algorithm to arrive at the optimum network architecture
through the minimisation of a biased cost function. Optimality was defined by Chauvin as
the minimisation of a function of the "energy" spent by the hidden units in the network to
solve the given problem. Hidden units that did not significantly contribute towards the
minimisation of the error were removed from the network. Chauvin considered a hidden

unit to be unused and available for pruning
'.. .. when its activation over the entire range of

patterns contributes little to the activation's of the
output units.'

(Chauvin, 1989, P524)

The technique employed by Chauvin caused redundant hidden units in the network to
decay, by decreasing an energy term written as a function of the sum of the activation
squared of each hidden unit. The standard back-propagation learning algorithm is a

gradient descent on the cost function shown in equation (2.1):

=330 @1

where t is the desired output of an output unit, O the actual output, and the sum is taken
over the set of output units, o, for the set of training patterns, p. Chauvin modified this

cost function to that shown in equation (2.2):

p o » H 2
C= 3 Y (1= 00) + 13 3 e(05) (22)
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where the sum of the second term is taken over a set or subset of the hidden units H and
e 1s a monotonic function. The first term in the cost function is the error term; the second
the energy term. The theoretical minimum of this function is found when the desired
activation is equal to the observed activation for all output units and all presented
patterns, and when the hidden units do not, in Chauvin's terminology, "spend any
energy" in achieving this. Hence, Chauvin's approach aimed to remove any hidden units
that did not make a significant contribution to the activation of the output units. These
units, whilst present in the network, still have to be trained and their impact on the
output units considered even though their contribution may be insignificant. The energy
to which Chauvin referred could be regarded simply as the extent to which the activity of
the hidden units fails to contribute to the minimisation of the error. The minimum of the
function cannot be reached in practice, since the hidden units have to spend some energy
to solve a given problem. The quantity of energy spent will in part be determined by the
relative importance given to the error and energy terms during training. In principle, if a
hidden unit has a constant activation for all patterns presented to the network then it

contributes only to the energy term and will be suppressed by the algorithm.

The algorithm that Chauvin employed to arrive at the final network topology was simply
the standard back-propagation algorithm with a different back-propagated term. The
signal used to update the weights was the back-propagated signal from the previous
layer augmented by the energy of the current hidden layer. A vital component of this
algorithm proved to be the energy function employed, since Chauvin found the
algorithm's performance to be very sensitive to the choice of function. The derivative of

the energy function with respect to the squared activation/energy of the units is shown in

equation (2.3):
o) _ 1 (2.3)
20,  (1+¢)

e =
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where n is an integer that determines the precise shape of the energy function. When
n=0, e=1 and high and low energy units are penalised equally. When n=1, e is a
logarithmic function that penalises low energy units most severely. When n=2, the energy
penalty reaches an asymptote, which Chauvin does not identify, and high and middle

energy units receive the same penalty.

Chauvin tested the algorithm on the XOR problem, the 3 bit parity problem, the
symmetry problem (Rumelhart, Hinton and Williams 1988), and on phonetic labelling
tasks, where the input patterns consist of spectrograms corresponding to nine syllables.
The results show the algorithm to be capable of producing an optimal or nearly optimal
architecture for this wide variety of tasks. Chauvin also argues that because the
algorithm imposes a constraint on the solution space, by constraining the energy spent by
the units in the hidden layers of the network, the generalisation properties of the network
are enhanced. Unfortunately, he has provided no theoretical or practical evidence to

support this claim.

Hanson and Pratt (1989) also carried out work into the development of an algorithm to
reduce the number of hidden units in the network through the minimisation of a biased
cost function. The algorithm they developed caused non-essential hidden units to decay
away through the use of an additional expression. There are a number of alternative ways
in which the weights can be caused to decay, including the use of a cost function across
the entire network, such as that adopted by Chauvin. The approach adopted by Hanson
and Pratt considered each hidden unit's weight group separately. This has the potentially
desirable effect of isolating weight changes to the weight group of each hidden unit
which could then be used to eliminate hidden units from the network. Hanson and Pratt
employed either the hyperbolic bias or the exponential bias in their modified learning

algorithm, but there exist many other expressions that could have been employed by the
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learning algorithm. Hanson and Pratt tested the performance of their pruning algorithm
on a speech recognition problem, XOR and 4-bit parity. On the parity and XOR
problems the number of hidden units tended to decrease towards the minimum required
to solve the problem, although there was a decrease in the rate of convergence. In the
speech recognition problem the number of hidden units tended to decrease, while the
performance improved when the pruning algorithm was applied. Hanson and Pratt
introduced an interesting concept in the way that they focus attention on the weights for
particular hidden units as opposed to focusing attention on the network as a whole in
their modified learning algorithm. They provide encouraging results, but further
examination on problems that allow a more in-depth analysis of generalisation

performance is required before the technique can be fully evaluated.

Mozer and Smolensky (1989) developed an algorithm to arrive at the final network
architecture by removing units and/or weights from the network based on a measure of
the relevance of a unit or weight. This algorithm typifies the general approach whereby
an attempt is made to define the significance of each unit and/or connection so that
meaningful pruning can occur. The prime difference between this approach and that of
minimising a biased cost function is that here a metric directly calculates the relevance of
the units and/or connections at various times during the training and simply removes the
irrelevant ones from the network. This can be contrasted to the use of a biased cost

function which simply causes weights to decay during training.

The most important aspect of Mozer and Smolensky's algorithm is the relevance metric

that they employed. They regard the ideal relevance metric as being that shown in

equation (2.4):

Relevance; = E without unit i - E with unit i (2.4)
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However, they argued that it was not feasible to employ this relevance metric because of
the impact that it would have on the training time of the network, and they attempted
instead to approximate this figure by carrying out a single pass through the network with

the linear error function shown in equation (2.5):

E:Z Z [ty — Oyl (2.5)

Since the derivative of this function is independent of the difference between the output
activity and the target output it does not reach zero as the error decreases; this issue
caused a problem for Mozer and Smolensky when they employed the standard quadratic

error function.

Mozer and Smolensky tested the performance of their algorithm on a variety of
problems: the cue salience problem, the rule-plus-exception problem, the train problem,
the four bit multiplexor problem, and the random mapping problem. The results obtained
show that the algorithm could calculate the relevance of units with some degree of
accuracy. For example, the performance of the network was improved from the 41%

achieved by a random removal of units to 81% with the removal of units based on their

relevance metric.

Le Cun, Denker and Solla (1990) also developed an algorithm for removing units from
the network. This algorithm, entitled optimal brain damage (OBD), attempted to
improve the performance of the network through the removal of unimportant weights.
Like Mozer and Smolensky (1989) they employed a relevance measure to determine
which units should be removed. OBD deletes weights with what Le Cun, Denker and
Solla termed small "saliency". That is, the weights considered to have the least effect on

the training error. The assumption made was that small-magnitude parameters would
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have the least saliency and so could be sequentially removed. Once these small-
magnitude parameters had been removed a degree of retraining then took place. This
process was then repeated. They proposed a theoretically justified saliency measure
rather than relating the magnitude of a weight to its saliency. The technique to achieve
this made use of the second derivative of the error function with respect to the

parameters. The assumption here was that

i

.. objective functions play a central role . . . ;
therefore it is more than reasonable to define the
saliency of a parameter to be the change in the
objective function caused by deleting that

parameter'
(Le Cun, Denker & Solla, 1990, P600)

Le Cun, Denker and Solla (1990) showed that it was possible to construct a local model
of the error function and analytically predict the effect of removing a parameter without
actually doing so. This local model of the error function was constructed by using the
second derivative for each parameter with respect to the error; the second derivative was

calculated by the procedure defined by Le Cun (1987).

The OBD procedure was a six stage procedure that made use of the second derivative
for each parameter in relation to the error function in order to determine which units
should be removed from the network. The six steps are shown in figure 2.1. When a

parameter was deleted its value was set to zero.
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1. Choose a reasonable network architecture.

2. Train the network until a reasonable solution is obtained.

3. Compute the second derivatives for each parameter.

4. Compute the saliency's for each parameter.

5. Sort the parameters by saliency and delete some low-saliency
parameters.

. Iterate to step 2.

[op

Figure 2.1: The OBD procedure (Le Cun, Denker & Solla 1990).

The OBD algorithm was tested on a hand-written text recognition problem (Le Cun ef
al. 1990), and the early results were promising with the number of parameters in a
practical network being reduced by a factor of four. This led to a significant increase in
the speed of the network, and a slight increase in recognition accuracy. However, a point
that needs to be reinforced about the OBD procedure is that it was applied to a network
already considered to be optimal for the problem in question. OBD was, therefore, able
to make significant improvements to a network that already worked well, which is
perhaps a more significant achievement than improving the performance of a sub optimal
network. Whilst the use of the second derivative as the basis for pruning units gave good
results in this limited study, it would be interesting to determine the performance of the

technique for different problems and the computational cost involved.

In pruning algorithm's therefore, the general approach is that training commences with a
large network and some measure of relevance is applied to the units and/or connections
in order to arrive at a reduced network topology that might be expected to be optimal or
near optimal for the problem in question. There are, however, a number of issues that
need to be examined if a pruning algorithm is to be applied. The first and obviously most
important one concerns the nature of the metric used to decide which units and/or

connections should be removed from the network. Whether an external monitoring
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system is used or a biased cost function is minimised the aim is the same, to reduce the
architecture of the network to the optimal size. In order to achieve this it is necessary to
remove units and/or connections which are redundant. Mozer and Smolensky (1989)
showed how badly a network performed when random units were removed, thus
illustrating the possibility of pruning giving a degraded network performance. In
addition, there are a number of associated issues that need to be resolveud‘ For example,
when a unit is removed from a network, should its connection weights bé redistributed to
the remaining connections ? Should any degree of retraining be carried out once the
pruning operation has been implemented ? These questions need to be resolved in order
to implement a pruning algorithm. In addition, the computational complexity and cost
involved in training a network is also of considerable importance. Clearly the number of
calculations required at each stage of the learning process will be dictated by the size of
the given network. In addition, the use of a pruning algorithm adds to the training time

since it is additional to the standard learning algorithm.

2.3.2 Constructive Algorithms

The underlying principle of the constructive approach is to commence the training
process with a network that is too small for the given task and add hidden units until the
network's performance is satisfactory. Important work has been carried out in this area
by Honovar and Uhr (1988), Nadal (1989), Fahlman and Lebierre (1990), Frean (1990),
Wynne-Jones (1992) and Ash (1989). The usual procedure for constructive algorithms is
to add units into the single hidden layer of a multi-layer perceptron rather than creating
multi-layered networks. An exception to this is Fahlman and Lebierre's algorithm, where

each unit added to the network forms a single layer. There have been a number of



constructive algorithms described in the literature, but only the more important of these

will now be described.

Dynamic node creation was the technique adopted by Ash (1989) to develop a network
that was large enough to learn the mapping and as small as possible to generalise well.
The constructive algorithm developed by Ash added new hidden units into a single
hidden layer. When a new unit was added to the network, the weights. of the new unit
and those of the existing units were all subjected to the learning algorithm. Ash claimed
that if only the new weights were adjusted then this would impose constraints on the
network's performance. To determine when a new hidden unit was to be added to the
network he made use of the fact that for a given learning rate with a given network size,
the error tends to reach a plateau. Ash adopted the approach that when the error level
was stationary, or decreasing very slowly, and the level of performance of the network
was still poor, then a new unit should be added to the network. The flattening of the
error curve such as that shown in figure 2.2 was detected by examining the ratio of the
reduction in the squared error over the last x trials to the squared error when the last
node was added. When the ratio fell below some threshold, that was problem dependent
and user defined, then a new hidden unit was added to the network. This process
continued until the error level on the training set was considered satisfactory. Figure 2.3
depicts the performance of a network containing an insufficient number of hidden units.
The network's performance stagnates at a poor level since the network does not have

sufficient degrees of freedom to model the problem.
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Figure 2.2: Percentage of training patterns correct versus number of iterations for a
ne'qurk that adds in hidden units at flat spots in the learning process (the addition of
units 1s marked on the graph).
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Figure 2.3: Percentage of test patterns correct versus the number of iterations for a
network with insufficient hidden units.

Ash tested the dynamic node creation technique on a number of differing problems that
included XOR, Symmetry (4) and Encoder (16). In most cases dynamic node creation

was able to find a near-minimal solution with a computational expense that was
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competitive with the standard back-propagation algorithm. The results reported by Ash
are encouraging, but the algorithm has only been tested on small-scale problems which

did not allow generalisation performance to be measured.

Wynne-Jones (1992) proposed a constructive algorithm that arrived at the optimal
network structure through the application of a technique that split the units in the hidden
layer when performance was deemed to be unsatisfactory. Training co;nmenced with a
small network and proceeded until there was no further improvement in performance on
the training set. Once this point had been reached the network was increased in size by
splitting the units in the hidden layer. The rationale being that the network possessed
insufficient degrees of freedom to describe the given problem, and splitting the existing
hidden units would increase these, hopefully leading to an improved performance. The
units to be split were identified through the use of a principal component analysis on the
oscillating weight vectors and also by the examination of the Hessian matrix of second
derivatives of the error with respect to the weights. According to Wynne-Jones it is also
possible, to apply the second derivative method to the input layer, where it provides a

useful indication of the relative importance of the various inputs for the given

classification task.

Applying the node splitting technique to a standard multi-layer perceptron is equivalent
to introducing a hinge in the decision boundary so that recognition of higher
dimensionality can be attained. However, the long range effects of decision boundaries
can cause the new nodes to slip back to the original position of the old "parent" node,
thus nullifying any performance gains. Wynne-Jones feels that the node-splitting
technique whilst reasonably unsuccessful with the multi-layer perceptron may have

greater success with networks using localised receptive fields such as radial basis

functions.
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Fahlman and Lebierre (1990) also developed a constructive algorithm, which, in contrast
to the above studies, commenced the training process with no hidden units. Each unit
when added to the network became a permanent feature-detector, available for
producing outputs or for creating other feature detectors. Another difference in their
approach was that the network was comprised of many layers where each layer consisted
of one unit. The cascade-correlation learning algorithm arrived at the ultimate network
size through a constructive procedure, and the use of the Quickprop alg;)rithm (Fahlman
1988) to train the network allowed the training time to be substantially reduced from that
attained with the standard back-propagation learning algorithm. Fahlman and Lebierre
claim that any training algorithm for the multi-layer perceptron that allows all the
weights to be updated concurrently will suffer from the moving target problem, in which
each hidden unit tries to evolve simultaneously into a feature detector. The fact that all
the units are changing together greatly complicates the task, since each unit is having to
respond at each stage of the training process to differing contributions from the other
units. Thus Fahlman and Lebierre claim that the time taken for a unit to acquire its

proper role is increased by the varying contributions of the other units.

Cascade-correlation combated this problem by allowing only a few of the weights in the
network to alter at any one time. More specifically, Cascade-correlation attempted to
attain a suitable architecture through the addition of single hidden units to the network
and the modification of a limited number of weights upon the introduction of each new
unit. This had the effect of making each of the hidden units act as a particular feature
detector. Once a unit had been added to the network and its training completed, the
manner in which the weights of the units were fixed meant that the unit would always
recognise the particular feature for which it had been trained. The view of Fahlman and

Lebierre differed from that of Ash (1989) who argued that freezing existing weights

would seriously limit the performance of the network.
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To create a new unit in Cascade-correlation a candidate was first identified that received
trainable input connections from all the external inputs to the network and from all the
pre-existing hidden units. The output of this candidate unit was not initially connected to
the rest of the network and hence did not affect network performance. A number of
training passes were then made, which had the effect of allowing the candidate unit to
reduce the error level of the existing network without disrupting it by the introduction of
new untrained weights. When a candidate unit was introduced into the network its input
weights were fixed so that the perturbation to the rest of the network caused by the unit's
introduction would be minimal. An alternative approach to this was to employ a pool of

candidate units and only accept the best into the network structure.

Fahlman and Lebierre make a number of claims for the cascade-correlation algorithm,
the most significant of these being that it is able to build a small, though not necessarily
optimal, network to solve a variety of problems. In addition, they claim that the
algorithm 1s able to build deep networks, consisting of a number of hidden layers,
without the dramatic increase in computational expense that is witnessed in back-
propagation networks that contain multiple hidden layers. Thirdly, cascade-correlation is
useful for incremental learning since the feature detection capability of each unit is not
greatly altered when a new unit is introduced into the network. Fahlman and Lebierre's
study is limited since they failed to consider the generalisation performance of the

resulting network.

Therefore, constructive algorithms that approach the issue of dynamically constructing
network architecture's that are suitable for given problems have adopted a multitude of
differing solutions to the basic issues that need to be addressed. The primary issue to be
addressed concerns when a new unit should be added to the network, and when the

addition of units should cease. Another issue concerns the value to be allocated to the
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weights of new units. In addition, should the existing units be trained alongside the new
unit or have their weights fixed at current levels. It is also necessary to decide what
period of time a new hidden unit is to be given to impact on the performance of the
network before additional hidden units should be added. Finally, a decision when to
terminate the learning process is required. Constructive algorithms must provide good

answers to these questions if they are to attain an optimal network structure.

2.3.3 Combined Algorithms

Another approach to the problem of obtaining an optimal size network is to try and
combine the constructive and pruning methods so that they operate in a co-operative
manner. A combined algorithm will allow a reduced network to commence training with
its size increasing until an acceptable performance is attained. Once this has been reached
a pruning algorithm can then be applied in order to remove any redundant hidden units.
In addition, the application of a pruning algorithm on the completion of training will
allow the removal of any further redundant connections, thus reducing any extraneous

degrees of freedom in the network, leading to an improvement in generalisation

performance.

Chiu and Hines (1991) presented a combined algorithm that commenced training with a
single hidden unit and added further units until an acceptable solution was reached, when
the network was then reduced in size through pruning. The insertion of units into the
network was fairly rudimentary, with a new hidden unit added after every two hundred
and fifty iterations until convergence was attained. The pruning technique was based on

the premise that connections of a small magnitude could be pruned from the network
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since they contributed little to the forward units in the network. Chiu and Hines also

removed units in the hidden layer when they had lost more than half their connections.

The approach taken by Chiu and Hines has a number of shortcomings that limit the value
of the study. The general utility of their approach cannot be determined, nor can the
generalisation performance of the network be evaluated since they restrgcted their study
to a single problem, the well known XOR problem. In addition, the rationale for pruning
the hidden units has little theoretical foundation; it is questionable whether a unit that has
lost fifty percent of its connections is no longer relevant to the network simply because

of this.

Hirose et al (1991) also developed a combined algorithm to determine network
architecture. Training commenced with one hidden unit and units were added to the
network whenever a local minima, which was identified by testing the reduction in error
that occurred after every hundred iterations, was encountered. If the reduction in the
error was less than one percent of the previous error, and the error was higher than some
user defined value, then the network was considered to be trapped in a local minima and
a further hidden unit added. Once the algorithm had converged below a specified error
level then the reduction phase of the algorithm was entered. This consisted of removing
the hidden units one at a time and testing whether with a little retraining the network

could reach a solution. If a solution could not be achieved then the network was restored

to its previous state and training was deemed complete.
The work by Hirose ef al once again failed to address the generalisation performance of

the final network. In addition, in their algorithm units were removed in the reverse order

to their insertion into the network and this last-in-first-out ordering may not be the best
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sequence for removal, since the utility of a unit may not be determined by its position in

the insertion sequence.

Combined algorithms attempt to attain an optimum network architecture through the
application of both the constructive and pruning approaches in a single algorithm. A
combined approach allows the system to reverse the expansion or contraction of a
network thus offering the possibility that an optimal architecture can i)e attained. The
main drawback with the combined approach is that training time and computational
complexity will be considerable since time will have to be spent in building the network
and then pruning it. The development of these combined algorithms is still in its early
stages and so further work needs to be carried out before any performance comparison

can be made between the combined and separate approaches.

2.3.4 Genetic Algorithms Applied to Multi-layer Perceptrons

Genetic Algorithms are an optimisation technique, based on the mechanics of Darwinian
evolution, first introduced by Holland (1975). They operate by searching multiple areas
of the state space simultaneously. The parameters to be optimised are usually coded as a
binary string, referred to as a chromosome, and initially the population consists of a
predetermined number of members with randomly designated chromosomes. From these
initial members evolve the later more "successful" members whose chromosomes are
more suited to solving the given problem. The evolution process is comprised of four
major stages which are as follows. First, the fitness of each member of the population is
calculated by some measure that determines how close the member is to the solution.
Second, a number of members of the current population are selected, with the fitter

members having a better chance of being selected. Third, a new generation is formed
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from the selected parents by the application of the genetic operators. The two main
operators are crossover, which swaps sections of the binary strings of two parents
selected from the population, and mutation which randomly inverts one or more bits of
the binary string. Fourth, all of the offspring just created are introduced into the
population, usually replacing the least-fit of the existing individuals to form the next
generation. This four stage process is repeated for a predetermined number of

generations or until a satisfactory solution is obtained.

Genetic algorithms have been employed to optimise multi-layer perceptrons both in
terms of connection weights and biases and in terms of architecture. The use of a
genetic algorithm to optimise the weights and biases of a Multi-layer perceptron (Whitley
& Hanson 1989, Marshall & Harrison 1991) has not proved advantageous. Indeed the
relative training speed of genetic algorithms means that they are an inherently inefficient
method of training a multi-layer perceptron. There seems little or no benefit to be gained
by using a genetic algorithm for this task (Williams 1992). Genetic algorithms have also
been employed in relation to multi-layer perceptrons to optimise their architecture in
terms of the network topology. The application of genetic algorithms to determine
network architecture has been relatively successful where simple problems like XOR are
concerned (Miller ef al. 1989) and gave encouragement that for some problems genetic
algorithms could be used profitably. However, the experiments on the simple problems
have tended to use simple representations and these have failed to scale up to larger
"real" problems. Attempts have been made to deal with real-life problems by employing
complex, weakly specified, representations (Harp et al. 1989, Harp & Samad 1991).
However, to date an ideal representation does not appear to have been found and the

ability of genetic algorithms to produce adequate architecture's for multi-layer

perceptrons remains to be demonstrated (Radcliffe 1991).
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2.4 Summary

This chapter has examined the architectural issues that need to be considered in order to
obtain optimal performance from an MLP. The issue that has been focused on in this
study is that of identifying the number of hidden units to be employed to provide optimal
performance on any given problem. This chapter has examined a number of alternative
solutions that have been adopted to dynamically determine the size of th(;, hidden layer of
the network. It has reviewed work that has been carried out in this area, and whilst this
review is not exhaustive it does discuss in some depth the major approaches that have
been adopted to date. The majority of these have focused mainly on the development of
constructive and pruning algorithms, but recently there has been increased research
interest in combined algorithms. Genetic algorithms have also been employed to optimise
network architecture, but to date with variable results. The aim of all these algorithms is
to attain an architecture that is optimal, or near optimal, in terms of network
performance. The work has focused largely on reducing the size of a network because it
is a widely held belief that the generalisation performance of the MLP is thought to

improve with small networks.

The main alternative to employing a dynamic network design strategy is to determine the
optimal network size through long and protracted empirical studies. In these studies the
number of hidden units are varied and the effect on performance recorded. Since this
study is not aiming to provide an exhaustive study of the various dynamic network
design strategies, it has been decided to address the issue of determining the number of

hidden units empirically. Whilst this process is likely to take longer than using a dynamic

network design strategy, it will nonetheless allow a standard MLP to be used in the

comparative studies. The dynamic network design strategies discussed in this chapter

reveal that the problem with determining the number of hidden units required is being



addressed with some success. However, the problem still exists. In addition, there are the
other arbitrary parameters described above, and alternative network structures may be
able to provide a solution that requires is less dependent on arbitrary parameters. Two
alternatives, namely the RBF and tree based networks will be examined in future

chapters.

In addition to the dynamic network design strategies, alternative approaches to
dynamically altering the topology of the network to improve the generalisation of a
multi-layer perceptron have been examined (Yu and Simmons 1990). However, the
problem with these approaches is that the size of the network still needs to be defined at
the commencement of training, a problem which exists whether standard back-
propagation is employed or some variation of it (Yu and Simmons 1990, Fahlman 1988).
Therefore, although techniques like that employed by Yu and Simmons produce
promising results in terms of generalisation performance they do not solve the problem
of determining the optimal network structure prior to the commencement of the training

process.
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Chapter 3

Alternate Classification Systems That Implement Local Solutions

3.1 Introduction

The development of alternative neural network structures to the MLP has been actively
studied for a number of years. Most of the work has concentrated on developing networks
which employ a more local partitioning of the problem space than the MLP, which adopts
a "long range" approach using hyperplanes. Long range and local partitioning refers to
the area of the problem space upon which each neuron impacts. When a local partitioning
technique 1s employed each neuron impacts only on a subset of the patterns. Networks
which impose a local partitioning of the problem space will, it is believed, through the
emergence of "local experts" offer improved generalisation performance and a decreased

training time.

A number of alternative classification systems to the MLP have been developed, but
attention will focus in this study on the Radial Basis Function (RBF) network (Powell
1985; Moody and Darken 1988, 1989; Broomhead and Lowe 1988), and neural network
systems based on ideas developed in decision trees (Brieman ef al. 1984, Buntine 1991).

Particular attention will be paid to the Bumptree structure that was first introduced by

Omohundro (1991).

3.2 The Radial Basis Function Network

The RBF approach can develop networks for classification and function approximation

and just like the MLP, in theory at least, can produce networks capable of forming an
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arbitrarily close approximation to any continuous non-linear mapping (Poggio and Girosi
1989). RBF networks have been successfully applied to a variety of areas including
speech recognition (Renals and Rohwer 1989) and financial forecasting (Lowe & Webb
1991). The results from these applications suggest that RBF's, or other techniques for
implementing a more local solution, are worth further investigation as a possible

alternative to the MLP.

)
O
Inputs RBI's Outputs

Figure 3.1: The RBF Network Structure.

An RBF network is a two layer network, depicted in figure 3.1, whose output nodes form
a linear combination of the basis functions computed by the hidden layer nodes. The
basis functions produce a localised response to input stimulus. That is, they produce a
significant non-zero response only when the input falls within a small localised region of
the input space. For this reason RBF networks are sometimes referred to as localised
receptive fields. The hidden layer is composed of a series of basis functions, and although

implementations vary, the most common basis function for this task is the gaussian

response function, given in (3.1).

Ugj=exp| - ((x-wip T * Gewi)2e%] =12 Ny (3.1
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where Uy is the output of the jth node in the first layer, x is the input pattern, wy; is the
weight vector for the jth node in the first layer, that is, the centre of the Gaussian for node
Js sz is the normalisation parameter for the jth node, and N is the number of nodes in

the first layer.

The node outputs range from 0 to 1, and the closer the input to the centre of the gaussian,
the larger the response of the node. In addition to the gaussian response function, there
are other functions that can be employed in the hidden layer of an RBF network. The
main alternatives are the inverse multi-quadratic function, the multi-quadratic function,
and the thin plate spline function. The inverse multi-quadratic function, like the gaussian,
generates the highest outputs for patterns closest to the function centre. However, the
multi-quadratic and the thin plate spline are non-localised functions, and as such their
output increases as the input patterns move further away from their centre. Surprisingly
localised networks formed using non-localised functions, are often found to perform

better than those employing the more local functions; a point that will be demonstrated in

chapter 6.

The output layer produces its output based on a weighted linear combination of the
outputs from the basis functions in the hidden layer. Only the output of those functions
that give a response to a pattern are taken into account at the output layer, with the impact
on the network being proportional to the response of the function. Hence, if an input
vector lies between the centre of two gaussian functions then the corresponding output of
the network will be a weighted average of the output of the two active gaussian functions.
The overall network therefore performs a non-linear transformation by forming a linear

combination of the non-linear basis functions (Powell 1985).
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There are a variety of approaches to learning in the RBF network, and most of these
approach the problem in two stages. The first stage is involved with learning in the
hidden layer, and this generally employs an unsupervised learning algorithm. The second
stage 1s concerned with learning in the output layer, and this generally uses a supervised
learning algorithm that attempts to minimise the mean squared error. Once an initial
solution 1s found using this two stage approach, a supervised learning algorithm is
sometimes applied to both layers simultaneously to fine tune the parameters of the

network.

The unsupervised part of the learning process attempts to determine the centres of the
basis functions and their radii. A number of methods can be employed, but the chosen
method must ensure that the distribution of centres in the problem space is similar to that
obtained in the training data. Hence, it must be assumed that the training data is
representative of the problem, if good generalisation performance is to be attained. One
technique for choosing centres is to place them at various points across the space covered
by the data. An alternative to this is to select actual points from the data set as the centres.
Another approach is to employ a clustering technique, such as the K-means clustering
algorithm, to position the centres. Whichever of these techniques is chosen the number of

basis functions required and their radii need to be determined.

It is reasonably straightforward to define a gaussian function so that each function peaks
when a particular training pattern or similar patterns are presented. However, this
approach becomes cumbersome and not practically feasible when there is a large training
set. Attention has therefore turned to technigues, such as K-means, which are capable of
positioning functions without requiring one function per data point. For example, Moody

and Darken (1989) used a modification of the K-means clustering algorithm to centre the



basis functions in a network. Positioning the basis functions is important in classification

problems since:

' . class membership proves to be important in any
clustering algorithm dealing with classification, because a
sample of a specific class in the envelope of another class
yields erroneous results'

(P596, Musavi, 1992)

Therefore, the outcome of the clustering algorithm in separating the classes when
positioning the basis functions influences the accuracy of the network and the extent to
which the number of basis functions can be reduced, and consequently the computational

expense involved in training the network.

bbb

’

Figure 3.2 : A placement of basis functions that will encourage good performance.
Patterns are classed as either a or b.

b b
b b P

In positioning a basis function consideration must also be given to the width of the
function. While it is not a problem when two functions concerned with the same class
overlap, as they do in figure 3.2, it is imperative that functions concerned with two
differing classes should be separated, since any overlapping will effect the accuracy of
the network, minimising generalisation performance and degrading the recognition of
local properties. Musavi (1992) has presented an iterative clustering algorithm that takes
class membership into account. The aim is to achieve clusters that only contain points of

the same class. The technique determines the radii of the functions by minimising the



overlap between the nearest neighbours of different classes, but it often fails to
completely separate local densities of different classes. Figure 3.2 demonstrates a
placement of centres that should permit a good level of performance, whilst the situation

shown in figure 3.3 would give poor performance.

Figure 3.3 : A placement of basis functions giving poor performance. Patterns are classed
as either a or b.

In addition to positioning the basis functions on the problem space it is necessary to train
the output layer. This layer is usually trained after the centre and radii parameters of the
basis functions in the hidden layer have been determined. The parameters of the basis
functions are sometimes changed once the output layer has been trained and the
performance of the network examined, although in these cases the output layer is still
retrained after the hidden layer has been finalised. The output layer of the RBF network is
trained to minimise the mean squared error of the network where the output of node (i) is

calculated as (3.2),

(/1)

V=YWL, (32)

where yip(H) is the output of the jth radial basis function on the pth example, and wij is

the weight from basis function j to output node i. The error of the network can be written

as (3.3),
(H)

E(w)=0.5w,y, - D) (3.3)
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where Dip(T) is the desired output for output node i on pattern p. This error has its

minimum at the point when the derivative given in (3.4) vanishes.

dE 3 (Hy (1) oy H
dw“ - Z Zyjp yip - ZD}‘[’ yip (34)
g / P P

Let R be the correlation matrix of the basis function outputs (3.5).
(H) _ ()
R(/ - Zyjp yip (35)
4

The weight matrix w* which minimises E lies where the gradient vanishes (3.6),

(H)

W, =2V VR, (3.6)

Thus, the problem is solved by inverting the square H*H matrix R, where H is the
number of basis functions. The matrix inversion can be accomplished by standard
techniques, or by a singular value decomposition method, such as the Gauss Jordan
technique, if there is a danger of encountering a singular matrix. An alternative approach |
to that given above has been adopted by Broomhead and Lowe (1988) which focuses on
the linear system embedded in the error formula itself. The procedure for training the
output layer of the RBF is, therefore, not an iterative procedure in the tradition of back

propagation, and consequently for large data sets training can be several orders of

magnitude quicker than back propagation.

Therefore, one of the major advantages of the RBF network is that learning tends to be
much faster than with an MLP. One of the main reasons for this is that the training
algorithm is not an iterative procedure like the backpropagation learning algorithm.
Another main reason for the faster training times of the RBF is that the learning algorithm

is broken into two stages, and the algorithms used in both stages can be made relatively
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efficient. The first stage, involves finding an optimal number of functions and positioning
them on the problem space. Once the basis functions are in position, and the hidden layer
parameters fixed, learning in the output layer takes place. In addition to the advantage in
terms of training speed, the generalisation performance of RBF networks is comparable
to that of MLP's (Musavi 1992; Chen, Cowan and Grant 1991). However, the response
time to queries is slower. In addition to the RBF, attention has also turned to alternative
techniques that produce a localised solution. In particular the decision tree algorithms of
machine learning (Omohundro 1987, 1990, 1991; Gentric and Withagen 1993) have
come to the fore. These algorithms use splitting techniques in an attempt to build tree

structures that accurately model the data.

3.3 Decision Trees (Machine Learning Algorithms)

Machine learning has been an active area of research in artificial intelligence for many
years. The majority of this work has been carried out into classification of patterns, and
this is the field in which most success has been achieved. The basic problem with
machine learning algorithms is to derive a function from samples of data, described by
attributes and a class, that is able to predict the class of othei samples from the same
domain. The general scheme for studying the predictions made by any particular method
is to present it with training samples to allow it to learn to map a problem. Subsequently
some unseen test data can be presented to assess the ability of the method to classify
unseen patterns. A simplistic method for comparing the performance of the methods is to

examine the number of correct classifications each is able to make both on the training

data and on the unseen test data.
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Decision trees are part of a group of learning algorithms that have been developed in
artificial intelligence which together with systems that employ if-then rules, have become
known as machine learning algorithms. Decision trees have been an active area of
research for many years, and have enjoyed a measure of success when applied to
classification tasks. The early work on decision trees continued in parallel with work on
the if-then decision rules that were embodied in the expert systems developed in the early
1970's. Indeed, it was found that decision trees could be used just as effectively as
decision rules in expert systems. It was also recognised that the ability of decision trees to
partition an input space into small areas of similar characteristics could be of use to the
neural network community. Decision trees are not neural networks, they are based on the
hierarchical data structures from computational geometry and employ a more direct
representation of information. As with neural networks, the decision trees "learn" and can

adapt themselves to different statistical distributions of inputs.

Decision trees can be used to represent a multiple-choice decision procedure which starts
from the root of the tree and proceeds to one of the terminal nodes or leaves, with each
choice corresponding to the value of an attribute and each leaf determining a class.
Decision trees can be grown by a data driven approach, whereby a sample of the data is
selected and a tree built to correctly classify this data. That is, the tree is partitioned into
subsets determined by some particular attribute of the training data, and this process
continues until the examples in each set have the same class or until there are no further
attributes to consider. Each of the decision tree algorithms has its own approach to
determine when the presentation of data should be terminated, and how the multiple-
choice conditions are consequently altered. There exist a number of such algorithms, with
the classification and regression tree (CART) (Brieman e al. 1984) probably the best
known. Omohundro (1987) has introduced a number of alternative techniques that can be

used to partition the input space, and which could be used to develop neural networks.

w
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Decision trees are required to make a decision about which attribute of the data should
provide the splitting criterion at each point where a new branch is to be grown. The aim is
to arrive at the smallest possible tree consistent with correct classification. However, this
1s computationally expensive to achieve so most of the decision trees employ a heuristic
to guide the search process. For example, a number of new splitting criterion can be
applied to arrive at the best single split, classified as the one that causes the most patterns
to be correctly classified. Most of the existing decision trees perform splits on the basis of
a single attribute, and they divide the space up so that those items which are
geometrically close to each other are placed in the same class. This is a local criterion for
splitting, so it does not guarantee to produce an optimal tree. As a consequence of this, it
has been necessary for decision tree algorithms to incorporate a technique for pruning the
network to a more acceptable size. The two pruning approaches that have been adopted
are: pre-pruning and post-pruning. Pre-pruning is a process depending upon a series of
conditions that decide whether a node should be split, or whether it should be regarded as
complete during training. Post-pruning removes various layers of the tree after the
complete tree has been built and the data correctly classified. At the culmination of the

building process various layers of the tree are removed.

CART is a binary decision tree algorithm developed by Brieman es al. (1984). By
definition CART has exactly two branches at each internal node. The basic principle
behind the construction approach adopted by CART, which has gained wide acceptance,
is to select each split so that the descendant subsets of the data are "purer” than those of
the parent. The term purity can be illustrated by the following example. Consider an
initial set of 100 patterns, 50 from each class. If the patterns are split into groups of 40:5
and 10:45 then the purity is greatly increased. The 1deal target is splits of 50:0 and 0:50.

The pruning algorithm that CART employs (Brieman e al. 1984) is cost-complexity
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pruning and is one of the most sophisticated adopted by a decision tree algorithm.
Basically this algorithm approaches the task by dividing the data set into two groups, one
for training and one for validation. The tree is built using only the training set, taking into
account a measure that is concerned with balancing the likely error of the tree against its
size. The ultimate tree structure is determined by building a number of different trees on
the training set and then calculating the error for both the training set and the validation

set. The tree that performs the best on both data sets is retained.

The idea of dividing up the problem space for the purpose of implementing a local
solution based on the input of the patterns is central to decision tree algorithms, but is
also embodied in the RBF network. As is the case with decision trees, the RBEF network
splits up the data based on its input, and once this has been done produces further splits
based on the desired output of the patterns, until all patterns have been correctly
classified. However, the RBF and decision tree systems use different techniques to
classify the patterns once the splitting has been achieved. The techniques employed by
the decision tree algorithms to divide up the problem space could provide very useful

information for the development of local neural network solutions.

Omohundro (1987) has carried out a reasonably extensive study of the various techniques
employed by decision tree algorithms for classifying data into appropriate groups. He
concentrates on the types of splitting that can be employed in a decision tree, rather than
focusing on the nature of the pruning algorithms or the actual criterion for determining
when splitting should take place. Omohundro examined a number of alternative
techniques for classifying data into appropriate groups. These are based initially on the
input of the patterns and subsequently their desired output. Initially, Omohundro
concentrated on one-dimensional data sets, and the most important structures found for

classifying data into groups were binary tries, binary trees, and two level buckets. All
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these techniques stored the data in what Omohundro termed bins, although they differed
in the way they used the bins to partition the problem space. A two level bucket
approaches the issue of partitioning the problem space by initially commencing with a
single level of bins. The bins at the first level of the bucket are all of the same size. The
problem space is then further partitioned by the addition of a second level of bins. These
second level bins may vary in size depending on the density of data in the region. The
bins are smaller in regions where there is a lot of data, meaning that the size of a bin
inversely reflects the amount of data available in the area it is concerned with. Each bin
produced from the same parent is of the same size. Figure 3.4 shows a possible structure

of a two level bucket.

First level of the bucket.
All the bins are the same size

i r i ' Second level of bucket. Bins are more
' } l l dense in areas where there is a lot of data

Figure 3.4: A two level bucket structure.

To adapt the bucket structure more closely to the input distribution, it 1s necessary to
employ structures that can consist of more than two layers. Tries are one such structure,
being a modified two layer bucket structure that, by decomposing the structure into an
arbitrary number of bins at each level, can adapt the bins more closely to the requirements
of the data . At each level the number of bins is the same. That is, if two bins are
employed at the top level of the trie, as in figure 3.5, whenever further bins are added
they will always be added in pairs. Densely populated regions may be split into many

levels, whilst conversely, sparse regions may not be split beyond the first level. A
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particular type of trie is the binary trie, shown in figure 3.5, where at each splitting point
the area 1s divided into half. Any bin that is further split can be viewed as a parent of the
nodes used to partition the area further. With a binary trie each parent bin that requires

splitting will have two children, and both the children will be of the same size.

L
i

Figure 3.5: A binary trie structure.

Trees are another important structure for classifying data into appropriate groups that
Omohundro examined. These allow the bins to be even more closely modelled to the
data, by allowing each region to be split into different sizes. That is, the bins at any given
point in the tree do not have to be of the same size, thus allowing greater flexibility for
splitting the data. A particularly important type of tree is the binary tree shown in figure
3.6. The binary tree splits the problem space, or that part of it which the parent bin was
concerned with, into two each time further bins are added to the structure. There is no

limit to the number of times further bins can be added to the tree structure.

Figure 3.6: A binary tree structure.
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Therefore, the techniques employed by the two layer bucket, binary trie, and binary tree
differ, with each approach allowing different levels of freedom in partitioning the
problem space. The two layer bucket is the most restricted of these approaches, only
allowing two attempts at partitioning the problem space, and forcing the bins from any
parent bin to all be of the same size. The trie allows more freedom by allowing more than
two layers, thereby allowing areas where data is dense to be split more times than areas
where the data is sparse. However, it is clear that the tree approach has the greatest
freedom to model the data. Consequently it might be expected to be the preferred
approach for decision trees. As a significant part of the RBF approach consisted in
positioning functions on the problem space in such a way as to separate the data into
discrete output classes, the approaches adopted by decision trees may also have a use

with neural networks implementing a local solution.

In addition to the techniques for splitting one-dimensional data sets, Omohundro has
discussed a number of techniques for use with multi-dimensional data. These are all
basically extensions of the one-dimensional techniques, with the most important of these
being grids, k-d tries and k-d trees. Grids are expansions of the two-layer buckets, and
they divide the space into areas of constant size across the entire problem space. They
uniformly partition each dimension exactly as buckets did with a one-dimensional
problem space. In addition, it is possible to partition the different dimensions into a
different number of areas. The k-d trie adopts the same policy for partitioning the data in
multi-dimensional space as that adopted by tries operating in a single dimension. Indeed,
at each split only one dimension is considered. The most important of the k-d tries is the
binary k-d trie which splits each bin in half along a particular dimension. Perhaps the
most important of the multi-dimensional structures, as was the case with the one-

dimensional splitting techniques, is that employed by trees. Once again the binary tree is
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of particular significance. The k-d tree embodies the approach outlined in the discussion

of the one-dimensional trees, and again each split considers only a single dimension.

This discussion of the decision tree algorithms has revealed that a great deal of work has
been involved in developing techniques for splitting data. The primary aim is to split the
data into subgroups that are of the same class, based on the input values of the patterns,
so that only patterns in the same class are grouped together in a node of the tree where an
output value will be calculated; this is similar to the requirements of the RBF network.
Hence, it appears that it may be possible to apply some of the techniques used in decision
trees for building neural networks that implement a local solution. The fundamental idea
that underlies the partitioning approach appears to be equally applicable to positioning

RBF functions, and consequently justifies further investigation.

3.4 Neural Networks that Utilise a Tree Structure

The use of tree based structures in the field of neural networks has in recent years become
an area of considerable interest. It is hoped that by utilising a tree structure it will be
possible to develop neural networks that will be more local in nature, will require less
time to construct, and will perform better than existing networks in terms of
generalisation. Important work in this area has been carried out by Omohundro (1991),
and Gentric and Withagen (1993), and these studies suggest that neural network systems

employing tree structures offer important potential benefits.
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3.4.1 The Bumptree

Omohundro (1991) has described a new class of geometric data structure termed the
bumptree, which can be used for learning, representing and evaluating geometric
relationships in a wide variety of contexts. Bumptrees are able to provide efficient access
to a collection of functions on a Euclidean space of interest. They are a natural
generalisation of several other geometric data structures, including oct-trees, k-d trees,
balltrees (Omohundro 1987) and boxtrees (Omohundro 1989). The bumptree is able to
partition the data based on multi-dimensions at each splitting point, unlike the k-d tree, k-
d trie and other techniques discussed above which split the data on only a single

dimension at each split.

The bumptree developed by Omohundro is a complete binary tree in which each leaf
corresponds to a function of interest. Functions are associated with each internal node,
subject to the constraint that the function for each interior node must be everywhere
larger than each of the functions associated with the leaves beneath it. An important type
of bumptree, and one which appears to offer considerable promise as the basis for a
neural network classifier employs collections of gaussians to represent a multi-
dimensional space (Bostock and Harget 1994; Williams et al. 1993, 1994). Omohundro
has discussed a number of approaches for building a balltree structure (Omohundro
1989), and claims that each of these can be applied to building a bumptree. The most time
efficient approach recursively splits the functions into two sets of almost the same size in
a top down manner and is analogous to the basic k-d construction technique. The
approach that Omohundro claims will give the best level of performance, but which is
computationally slow, builds the tree bottom up, greedily deciding on the best pair of

functions to join under a single node. Bumptrees may be used to efficiently support many



important queries, the simplest of which involves the presentation of a point in order to

ascertain which functions are active.

The Bumptree approaches the task of mapping a problem space by building local models
of the mapping in each region of the space using only data associated with the training
samples that are nearest to that region. Each of the local models is based around a
function, with each of the functions peaking in a particular region and steeply
diminishing to zero outside the particular area of influence. The bumptree developed by
Omohundro organises the local models so that only those that have a great influence on a
query sample need to be evaluated. Omohundro makes use of the concept of a partition of
unity in order to evaluate the performance of the bumptree when more than one function
is active. The partition of unity involves normalising the output of each of the active
gaussians so that their sum is equal to one. Therefore, the error of the full model is
bounded by the errors of the local models and yet the full approximation is as smooth as

the local bump functions.

Omohundro has applied the bumptree structure to the problem of learning to map the
motion of a robot arm. He has compared its performance to that of an RBIF network, and
found that the RBF network achieves a smaller error than the bumptree but is more
computationally demanding, being much slower than the bumptree to achieve a given
error. In addition, retrieval time with an RBF network requires that the value of each
basis function be computed on each query input and that these results be combined
according to the best fit weight matrix. In contrast, bumptrees are not required to test the
performance of every function, since decisions taken at the top level automatically prune
the lower level functions. Hence, the bumptree has a quicker retrieval time than RBF
networks. The performance of the bumptree approach on the robot arm movement

mapping task has suggested that further analysis of the technique would be advantageous,

63



and this has been carried out in the present study and will be described in chapters 4,5 and
6. Thus, the objective is to develop a bumptree which gives a generalisation performance
that is comparable to that attained by the RBF and MLP networks, whilst training to a
solution faster than both the RBF and MLP, with a retrieval time at least comparable to

the other networks.

3.4.2 The Constructive Tree RBF

In addition to the bumptree, a study has been made into combining a tree structure with a
standard radial basis function network. Gentric and Withagen (1993) developed a
constructive tree RBF (CTRBF) in an attempt to speed up the retrieval time of an RBF
network. It was based on the premise that not all the basis functions are active at the same
time. Indeed, in order to calculate the output of an RBF network it is necessary only to
calculate the activity of the basis functions which are active for the given pattern. The aim
of Gentric and Withagen was to employ a tree structure that would enable the active basis
functions to be located with minimal calculation and computation time. The empbhasis

here was not to enhance the classification performance of the RBF, but rather to speed up

the retrieval time.

The tree structure developed by Gentric and Withagen was a multi-level tree, consisting
of a parent, or root node, connected to a number of nodes referred to as sons - each son
node having a radius smaller than that of the parent node. If a node has more than one son
then the son nodes are referred to as brothers, and each brother has an equal radius. The
depth of the tree could be unlimited, but the criterion outlined above had to be adhered to

cach time a new level was added. If a node had no son then it was termed a leaf node, and

if a node had no brothers it was referred to as a terminal node.
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Gentric and Withagen discussed both a supervised and an unsupervised approach to
building a CTRBF network, and both of these approaches commenced by having a single
root node connected to a leaf for every basis function in the network. This structure was
then developed into a tree through the use of either unsupervised or supervised training
procedures. Both these procedures attempted to assign the centre of the basis functions,
so that they could be enclosed by one of the nodes at a higher level in the tree. The centre
in this instance actually related to the pattern of the data set that the function was created
around. Hence, the design that Gentric and Withagen discussed commenced by having a
node for every basis function in the network, and the original RBF network was
constructed through the use of one of the standard methods discussed earlier. The
building of an RBF network and the subsequent forming of the tree structure will mean
that this procedure will increase the learning time of the network, although it is hoped

with an accompanying reduction in retrieval time.

Once the tree has been built, the network's response to a given input was evaluated
commencing at the root node. The initial step in the evaluation process was to compute
the distance between the input pattern and the centre of the current node. If the distance
was larger than the radius of the node then the younger brother was examined, otherwise
the son was examined. When the search led to a leaf node then the corresponding basis
function of the RBF network had its value calculated in order to produce an output from
the network. The search could be extended so that more than one of the basis functions

was used to calculate the final output of the network - and it was found that this led to an

improvement in the performance level attained.

CTRBF has been applied to a hand-written character recognition task, and the results
demonstrate that the performance in terms of correct classifications is comparable to that

attained by the MLP and by a standard RBF network. In addition, the evaluation time of
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CTRBF is comparable to that of the MLP but far superior to that of the RBF, whilst the
training time of the CTRBF is quicker than the MLP, but slower than the standard RBF

because the network is built prior to the development of the tree structure.

The technique developed by Gentric and Withagen is another approach that has embodied
a tree based structure into a neural network classifier in the hope of improving the
performance of the network. In this instance there appear to be a number of advantages
over the MLP and RBF, but at the same time a number of drawbacks that need to be
resolved in order to realise the full potential of the tree based structure. In particular, it
seems limiting to build an RBF prior to constructing the tree structure. If the training time
of the tree based approaches is to be comparable to that of the RBF then the tree structure
will have to be created as an integral part of the training process. The approach by
Omohundro allows a complete network to be built as a tree in a single process that is far
quicker than either the MLP or the RBF, resulting in reduced training times. Thus,

CTRBF is quicker than the MLP to train, and quicker than the RBF to evaluate a pattern.

3.5 Summary

This chapter has examined the work that has been carried out into the development of a
neural network able to implement a solution in a more local manner than the MLP. It is
hoped that such networks will provide better generalisation performance, faster learning
times, and quicker evaluation times. The RBF, an example of such a network, has been
shown to perform adequately in terms of generalisation and learning time. In our studies
we have been inspired by the work of Omohundro to develop a network based on a local

solution in an attempt to obtain a level of performance that is superior to that attained

with RBF and MLP networks.
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Chapter 4

Architectural Issues In Developing A Bumptree Neural Network

4.1 Introduction

The development of the MLP and the back propagation learning algorithm (Rumelhart,
Hinton and Williams 1988) led to a resurgence of interest in the field of neural
computing, after Minsky and Papert (1969) had, in their critique of Rosenblatt and his
perceptron (Rosenblatt 1969), caused interest in the field to decline. The MLP and the
back propagation learning algorithm together provide an effective neural network that
is able to perform adequately across a wide range of problems. Whilst its performance
has been adequate, much recent work has been devoted to developing artificial neural
networks that are able to produce better performance. Work has been carried out in an
attempt to achieve this through adjusting the MLP and its attendant learning algorithm.
This work is examined in chapter 2. Work has also been carried out into the
development of alternative networks to the MLP, specifically networks that adopt a
differing approach to mapping the problem space. Alternative approaches that attempt
to improve the performance attainable by artificial neural networks by employing a
local solution were examined in chapter 3. This chapter will focus on the development
of the bumptree neural network. In particular, techniques for partitioning the problem

space and the effect these have on network performance will be examined.

Whilst the most widely examined of the approaches that employ a more local solution
has been the RBF network, interest has increased in networks that explicitly employ
some of the ideas embodied in decision trees. Omohundro (1991) introduced e
structure that can be employed as a neural network architecture, whose origins lie in
decision tree algorithms. Omohundro refers to this structure as a bumptree, and the
combination of ideas from decision trees and neural networks that this structure

represents is intriguing. However, in order to employ the bumptree structure as a
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neural network there are a number of design issues that need to be resolved. This
chapter will examine the issues that relate to the partitioning of the problem space, and
their effect on the performance of the bumptree neural network. Performance on a
number of problems ranging from traditional problems such as XOR and Parity (6) to

skin cancer diagnosis, and vowel recognition will be considered.

4.2 Introduction to the Bumptree Neural Network

The bumptree is a new class of geometric data structure that was devised originally by
Omohundro (1991) and shown to provide the basis for a neural network. It is a natural
generalisation of several hierarchical data structures including oct-trees, k-d trees
balltrees (Omohundro 1987) and boxtrees (Omohundro 1989). The bumptree neural
network uses the bumptree data structure to partition the data, and then applies a
learning algorithm to this partitioned data. The learning algorithm deals with each of
the partitioned areas separately. Hence, the network approaches the task of mapping a
problem space by building local models of the mapping in each region of the space,
with each local model using only the data in the training set within the region in
question. The data that is mapped in each of the local models is determined by the

manner in which the bumptree data structure has partitioned the problem space.

The bumptree structure used to partition the problem space into local areas was
examined in some detail in chapter 3 and shown to partition the data based on multiple
dimensions at each splitting point. The bumptree structure developed by Omohundro is
a complete binary tree in which each leaf corresponds to a function of interest, with
each function in the tree being responsible for a larger area of the data set than each of
the functions beneath it in the subtree. The type of function employed by the bumptree

will have an impact on the manner in which the problem space is partitioned, and, as 1S
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the case with RBF networks, a number of function types can be employed. For the

work described here the author has used gaussian functions.

Developing a bumptree neural network involves three major issues. The first is the
manner in which the functions are to be placed on the problem space, the dimensions
of these functions and other issues that relate to the building of the bumptree. The
second is concerned with calculating the output of the network. The third is the
learning algorithm to be employed to model the data in each of the local areas once the
partitioning of the problem space has been completed. The learning algorithm is
invoked every time new functions are added to the network, and is executed once for
each function added. The problem space is split into areas during the construction of
the bumptree, and each of these areas is mapped individually by the learning algorithm.
That is, each area is mapped independently of the other areas that exist. The solution
reached in one area of the problem space will not impact on other areas of the problem

space.

The issues of partitioning the problem space and employing a learning algorithm to
model it are very closely interlinked in the training process. Initialisation of the training
process involves placing two functions on the problem space and assigning each
training pattern to one of them. The learning algorithm is then applied separately to
each of these areas prior to the use of a performance measure to ascertain if the
functions have been able to map the problem space adequately. If they have achieved
this then training terminates, otherwise two further functions are added to the area of
the data that has not been adequately mapped. These two functions further partition
this area of the problem space before the learning algorithm is applied to the area

again. This training process continues until an adequate mapping of the problem space

1s achieved.
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The remainder of this chapter will be concerned with examining the various approaches
that have been employed to partition the problem space. Chapter 5 will be concerned
with examining other major issues in the development of a bumptree neural network,
including the learning algorithm to be employed and the manner in which the output of

the network is to be calculated.

4.3 Placement and Dimensions of Functions: An Introduction

The technique used to partition the problem space has a significant impact on the level
of performance which can be achieved with the bumptree neural network. The task of
partitioning the problem space is carried out initially by two functions that map the
entire problem space. If these functions are unable to reach an adequate solution
further functions are added to the network. The functions that have been employed by
the author are gaussian functions, whose activation on each input dimension of a

pattern is given by equation 4.1:

—(0.5*% w0y
Aﬁ _ exp 0.5 1,7C 4 (lﬁ)l))*l/(aﬁ* [3.14159*2) 41

where Ag = the activation of the function f on the pattern p for the ith input dimension,
ag is the radius of the function f in dimension i, Cf = the centre of the function f in
dimension 1, and Inp; = the ith dimension of the pth input vector. The activation of

each of the functions on an entire input pattern is the product over all the input

dimensions.

Two functions are placed on the problem space, and the patterns assigned to the
function on which they are most active. A learning algorithm is then applied separately
to the two functions, with each being trained on the training patterns assigned to them.

A performance measure, based on the performance of the training set and on a
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generalisation set is calculated to ascertain whether these functions have adequately
modelled the problem space. If one, or both, of the functions fails to reach the required
level of performance then further functions are added to the network and the above

procedure repeated.

The bumptree employs a tree structure to add functions when the existing functions are
unable to reach an acceptable level of performance. For instance, if function f1 models
its part of the problem space satisfactorily then further function expansion in this part
of the problem space is not required. However, if function f2 fails to model its part of
the problem space satisfactorily then further expansion is necessary to adequately
partition this part of the problem space. In this case two further functions f3 and 4 are
derived from f2. Patterns will then be assigned to function f3 or f4 depending upon
which gives the greater activity as calculated by equation 4.1. This process continues
until effective partitioning of the problem space is achieved. The process leads to the
type of tree structure shown in figure 4.1, where f1 is satisfactory but f2 is not and has
consequently been expanded, as has f4. Thus a solution has been reached with
functions f1, f3, {5 and f6. Figure 4.2 shows the division of the problem space given

this sequence of events. Only functions f1, f3, f5S and {6 are shown, since functions f2

and f4 were found to be unsatisfactory.

(f1) . (f2)
3)/ ) {4

(f5) - (16)

Figure 4.1 - The bumptree structure relating to the problem described in the text.
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f3

Figurp 4.2 - A problem space divided by the functions in the bumptree neural network
described in the text.

The bumptree neural network, therefore, approaches the task of modelling the problem
space by dividing it up into smaller areas and solving each of these areas separately.
Experimentation has revealed that the technique employed to split up the problem
space has an impact on how well the bumptree neural network performs. This impact is
to a degree problem dependent. The main issues to be considered when partitioning the
problem space are how to determine the dimensions of the functions and when to
terminate the addition of functions; this chapter will focus on the former issue and
chapter 5 on the latter. To determine the dimensions of a function it is necessary to
determine its radius in each dimension and its centre, which is described by one centre

point in each input dimension.

Omohundro stipulated that every function, except the first level ones, must be wholly
enclosed by its parent function. That is, the centre of the function and its radius in each
of the dimensions must be totally enclosed by the parent function, as shown in figure
43. However, the author regards this criterion as being too restrictive, and has
developed an alternative approach to constraining the dimensions of the functions
within the bumptree neural network. The bumptree neural network is concerned with
partitioning the problem space so that each level of the tree subdivides the area
described by the level above it. As long as this constraint is adhered to, lower level
functions can be placed anywhere and need not have their radii constrained, since the
important thing is to allow the functions to be positioned at the point in the problem
space that allows the best partitioning of the data. A number of different approaches

for defining the functions have been studied and these will now be examined.
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4.4 Omohundro's Approach

The first centre and radii defining technique implemented in this study adhered to
Omohundro's criterion. At each splitting point within the tree the child function had its
dimensions wholly enclosed within those of its parent function, as shown in figure 4.3.
The technique adopted for positioning the initial parent functions on the problem space
was to select random points within the area covered by the data, and to set the radii so
that for every dimension the parent function fell within the area covered by the training
set. Likewise, the child functions had their centres and radii chosen so that for every
dimension they were constrained to the area of their parent function. This approach
simply placed two functions at random points within the area of the parent function
each time a function had to be split; in contrast to some of the alternative techniques
examined below. The comparative results relating to the performance of this function
centering and constraint approach, along with the other techniques that the author has

developed are given in section 4.8.

©9 O @)

Figure 4.3 - Bump functions adhering to Omohundro's constraint.

4.5 Multiple Initial Functions (MIF)

What has been termed Omohundro's approach to function centering and constraint

employed two functions when further functions were required. These were simply
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placed at random points on the problem space. With Omohundro's approach the top
level functions had their dimensions confined to within the area of the data set. In
addition, the dimensions of each function below the top level were confined to the area
of the associated parent function. It was felt that both the function centering and
function constraint techniques employed by this approach could be improved upon, so
alternative approaches were investigated. In a departure from Omohundro's approach a
number of functions were defined initially so that the network might locate the new
functions in more advantageous positions. The author decided to employ ten functions
at each point where new functions were required by the network. The MIF approach
could have employed any number of functions, and ten was a figure selected arbitrarily.

Figure 4.4 further describes the MIF algorithm.

Ten sets of function centres in each dimension were selected, and these functions had
their radii constrained in an appropriate manner. Once the functions dimensions had
been determined the patterns were assigned to functions by equation 4.1. The learning
algorithm was then applied to each of the functions active on any patterns, and an error
level for the training set calculated. The next step involved the calculation of a

"goodness" measure for each of the functions; calculated as shown in 4.2:
Calculated Error for Function / Number of patterns function active for (4.2)

The function with the best value was retained and the centres and radii of the other
nine functions, or at least those that were active on any patterns, averaged out to
create the second function. The patterns were then reassigned to the two remaining
functions and the learning algorithm reapplied. A performance measure was applied mn
order to ascertain whether further functions were required. If they were the process
was repeated. This procedure of employing multiple initial functions was combined

with a number of different approaches for constraining the centre and radii of the

functions.
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For Functions =1 to 10
Assign function (Functions) a centerpoint in each dimension.
End For
For Patterns = 1 to NumPatterns
For Functions =1 to 10
Calculate activity of function (Functions) on pattern (Patterns) using
equation 4.1.
End For
Assign pattern (Patterns) to the most active function.
End For
Apply the learning algorithm discussed in detail in chapter 5 to each function active on
any pattern, and calculate an error level for these. The aim of this learning algorithm is
to minimise the error of the functions on the patterns upon which they are active.
Calculate a goodness measure for each active function using equation 4.2.
Retain the function with the best goodness value and average out the remaining active
functions.
For Patterns = 1 to NumPatterns
For Functions = 1 to 2
Calculate activity of function (Functions) on pattern (Patterns) using
equation 4.1.
End For
Assign pattern (Patterns) to the most active function.
End For
Apply the learning algorithm discussed in detail in chapter 5 to each function active on
any pattern, and calculate an error level for these. The aim of this learning algorithm is
to minimise the error of the functions on the patterns upon which they are active.

Figure 4.4 - The MIF approach for adding functions to the network.

The first function centering and constraint technique that was developed using MIF
was one that adhered quite closely to the technique discussed in section 4.4, except
that it utilised the MIF approach when adding functions to the network. It was hoped
that the addition of MIF to the technique discussed in section 4.4 would facilitate
better placement of the functions on the problem space and lead to an improvement in

results. Section 4.8 will discuss the performance attained.




The MIF approach for positioning functions on the problem space, outlined in figure
4.4, did not consider how the radii of functions should be determined. The constraint
technique described in section 4.4 could be employed in conjunction with the MIF
approach to provide a full function centering and constraint technique. However, the
point was made above that the function constraint technique employed in Omohundro's
approach could adversely affect the performance of the bumptree neural network, and
that an alternative technique might produce better results. Constraining the lower level
functions within the area of their parent function might be unnecessary. The important
1ssue is that the lower level functions are constrained so that they are only ever active
on patterns which their immediate parent dealt with. In addition, constraining the
functions wholly inside their parent may cause problems at the lower levels of the tree.
A function with a particularly small radius in one dimension in comparison to other
functions is unlikely to attract patterns, since pattern assignment is calculated as a

product across all dimensions.

The constraints on the radii of the functions were relaxed in stages, so that the effect of
each relaxation could be determined. The first approach introduced a modified
constraint rule in which the original top level functions were still constrained in each
dimension to the area covered by the data set. However, the lower level functions were
now constrained within each dimension so that they described the area of the problem
space covered by those patterns for which their parent function was active, rather than
the total area covered by their parent function. It was felt that introducing this
technique would allow the lower level functions greater freedom in where they could
be centred and in the value to be assigned to the radii in each dimension. The centre of
each of the lower level functions had to fall for each dimension within the area of the
problem space containing the patterns for which the parent function was active. The

results of applying this constraint technique along with the MIF approach will be

considered in section 4.8.
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In the second approach the constraints employed by Omohundro on the size of the
original parent functions were relaxed. The techniques outlined above constrain the
initial functions so that their radius in each dimension falls within the area of the
training set from where the centre is positioned. This constraint was relaxed by setting
the radii of all the original functions to 1. The value of one was selected since the data
presented to the bumptree neural network was always normalised to values between 0
and 1, and so a radius of 1 in each dimension meant that wherever a function was
placed it could cover the entire problem space. The rationale here was to ensure that a
function had a proper scope of responsibility in each dimension of the problem space.
The functions below the first level still had their centre selected by the technique
described above, and were still constrained so that each dimension fell within the area
of the problem space assigned to their parent. The results of applying this technique

along with the MIF approach will be examined in section 4.8.

The third approach relaxed the only remaining constraint of Omohundro's approach.
That is, the restriction on the radii of the lower level functions was relaxed in order to
truly test whether an unconfined approach to function centering and constraint would
be beneficial. The approach assigned a value of 1 to each radius in each dimension for
all the functions that comprised the network, and then centred the functions within the
area covered by those training patterns upon which the parent function was active. The

results from applying this technique, alongside the MIF approach will be examined in

section 4.8.

4.6 The N-Function Bumptree

The bumptree that Omohundro discussed was a complete binary tree. However, he
gave no theoretical basis for its binary nature, and the addition of multiple functions to

the network every time a function was split offered a viable alternative to adding only
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two functions at every split. Since the bumptree neural network has been employed to
deal with problems containing multiple inputs, it was felt that the addition of more than
2 functions to the network at every splitting point might improve the performance of

the network.

The n-function bumptree requires a means of determining the number of functions to
be added to the network when function expansion is required. It was decided to relate
the number of functions to the input dimensionality of the problem. That is, the number
of functions to be added to the network should be equal to the number of input
dimensions of the problem. For instance, the Iris problem has 4 input dimensions, and
so 4 functions were added to the network each time function expansion was required.
A possible bumptree that could be obtained is shown in figure 4.5. This criterion for
determining the number of functions to be added to the network was selected because
the assignment of patterns to functions is based on the input dimensions of the
patterns. It was felt, therefore, that because the input dimensions of the problem play
such a major role in assigning patterns to functions, allowing them to also determine

the number of functions added at each expansion might result in improved

performance.

It was hoped that this approach would enable a much finer partitioning of the data at
each level of the tree giving improved performance with little increase in the retrieval
time to answer a query. An alternative would be to base the number of functions added
at each split on the number of output dimensions of the problem. This was rejected,

however, because splitting is considered to be explicitly input driven.
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Figure 4.5 - An n-ﬁmction bumptree to solve the Iris problem. There are four functions
at each splitting point because the problem has four input dimensions.

The n-function bumptree has been implemented on a wide range of problems, and the
results of applying this approach will be set out in section 4.8, where its performance
will be compared to the other function centering and constraint techniques that have
been implemented. In order to implement the n-function bumptree approach it is
necessary to have a technique for centering and constraining the size of the functions.
That is, the n-function approach to constructing a bumptree needs to be combined with
an approach for determining the dimensions of the functions. The approach adopted
for constraining the functions was to set the radii of all functions to one. In addition,
the centre of each function in each dimension was constrained to fall within the area of

the data set covered by their parent.

4.7 The Use of Non-Hierarchical Clustering Techniques

The approaches to function centering discussed in sections 4.4 and 4.6 are static
techniques. That is, once the functions have been placed on the problem space they
remain fixed in this position throughout the remainder of the training process. In
addition, in the MIF technique the 10 initial functions once placed on the problem
space remain fixed in position. The only movement of functions that is allowed to
oceur is when new functions are added to the network. When this occurs one of the
new functions is obtained from the existing active functions by averaging the radii and
centres of those functions considered to have inferior goodness measures. Once a

function has been added to the network it is not allowed to be reassigned to a different
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position in the problem space. This was considered to be a possible limitation on
performance, and so a function centering technique that utilised a non-hierarchical
clustering technique was developed. The effect of this on the performance of the
bumptree was determined particularly with regard to its recognition capability, and

time to train.

The central idea of the non-hierarchical clustering techniques is to initially partition the
data into clusters, and then alter cluster membership so as to attain a better partitioning
of the data according to some defined metric. The techniques begin with a series of
initial points that divide up the problem space and then a sequence of moves is
generated for each of these points until a satisfactory solution is reached. The principal
aim of the non-hierarchical clustering technique is to position the functions so that the

best partitioning of the problem space is achieved.

A number of different non-hierarchical clustering techniques have been described in the
literature, with two of the most important being the Forgy method (Forgy 1965) and
MacQueen's k-means method (MacQueen 1967); both of these methods were
considered in the present study. Forgy suggests a very simple algorithm to partition a
problem space, and the steps of this algorithm are set out in figure 4.6. When applied
to the bumptree neural network, the algorithm first of all partitions the data by
selecting a series of original functions and assigning each data point to the function
with the highest level of activation (given by equation 4.1). Once all the patterns have
been assigned to the functions, then those functions active on some patterns have their
centre point in each dimension recalculated based on the current active patterns and
their old centre points. The paiterns are then reassigned to the function with the
highest activation level and the process repeated. This iterative procedure continues
until the movement of patterns between functions is below a defined threshold. After

the functions have been centred, patterns are assigned and the learning algorithm

applied as described above.
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Step 1: Commence with any desired initial configuration, or partitioning,
of the data.

Step 2: Allocate each data unit to the cluster with the nearest centre. The
centre points are fixed for a full cycle through the entire data set.

Step 3: Compute new centre points for each of the clusters based on the data
within the cluster and the old centre points.

Step 4: Execute steps 2 and 3 until the process converges; that is, continue
until no data units change their cluster membership at step 2.

Figure 4.6 - The Forgy non-hierarchical clustering technique.

Another important non-hierarchical clustering technique is the k-means method
developed by MacQueen (1967). MacQueen uses the term "k-means" to denote the
process of assigning each data unit to the nearest cluster, out of k clusters. The steps
of the k-means approach are set out in figure 4.7. There are several differences
between this technique and that devised by Forgy, one of the main differences being
that the centre of a cluster is computed on the basis of the cluster's current membership
rather than its membership at the termination of clustering. Again in contrast to the
Forgy method the centres of the initial functions are given by actual points from the
data set rather than being randomly assigned. Also, the centre points of each of the
functions is updated after each pattern is assigned, rather than after all the patterns in
the training set have been assigned to one of the functions. In addition, the
MacQueen's k-means technique takes only one pass through the data set to arrive at

the final centres, whilst the Forgy technique may take numerous passes before the new

function centres have been determined.

81




Step 1: Take the first k data units as clusters of one unit each.

Step 2: Assign each of the remaining data units to the cluster with the nearest
centre. After each assignment recompute the centre of the cluster that
received the unit.

Step 3: After all the data units have been assigned in step 2, take the existing
cluster centres as fixed and make one more pass through the data set
assigning each data unit to the nearest centre point.

Figure 4.7 - The MacQueen's k-means non-hierarchical clustering technique.

The function constraint technique selected for use with the non-hierarchical function
centering technique was identified in section 4.5. That is, each function has its radii set
to a value of 1, and its centre point constrained in each dimension to fall within the
area of the data set the function is concerned with. This technique was chosen partly
because it was found to perform well in conjunction with the MIF centering technique
developed in section 4.5. In addition, a fixed radius for all functions in all dimensions
was used in an attempt to isolate the effect of changing a function's centerpoint. A
modified version of the Forgy technique was used in the present study, with a
limitation on the number of iterations allowed before centering was considered to be

complete. The relative performance of this technique will be discussed in section 4.8.

4.8 Comparative Results for Function Centering and Constraining Techniques

This section is concerned with examining the results obtained by the different function
centering and constraint techniques identified in sections 4.4-4.7. The performance of
these techniques has been examined for differing problems. The Parity (6), Encoder (8)
and XOR problems which do not allow a test of generalisation have been examined. In
addition, the Iris, Skin Cancer, Diabetes and Vowel recognition data sets which do

allow a test of generalisation performance have been examined. The characteristics of
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these data sets are given in table 4.1. Several performance issues will be considered in
this section. First, the performance of the network on both the training and
generalisation sets will be examined. Second, the time taken to train the network will
also be evaluated. This will focus attention on issues such as the number of functions in
the final network, the number of function addition stages required, and any additional
computational effort demanded by the technique. In addition, the time taken by the
network to answer a query will be examined. This will focus attention on the depth of

the tree to be traversed and the number of calculations required to produce an answer.

When the results for the various function centering and constraint techniques are
provided, reference will be made to the learning algorithm that was employed and the
technique for calculating the output of the network. These issues will be examined in
more detail in chapter 5. All of the results given in this section calculate the output of
the network as that of the last active function in the tree. In addition, all the results
given in this section use the one-shot learning algorithm that employs the Gauss-Jordan

singular value decomposition technique (VanDer Rest 1992) to train the network.

Table 4.1 - The data sets employed in the study.
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4.8.1 Training and Generalisation Performance

The performance of the various function centering and constraint techniques will be
assessed in terms of the accuracy of classification of the training and generalisation
sets. In order to measure this performance the bumptree neural network was trained
and the generalisation set subsequently presented to the network for classification. The
performance of the network was determined at the point where the highest level of
generalisation performance was attained when over 70% of the training set was
correctly classified. If the network failed to achieve this level of performance on the
training set then the performance was determined at the point of best generalisation

performance.

The performance of the various approaches to function centering and constraint
identified in sections 4.4-4.7 on the training and generalisation sets has been measured
as the percentage of correct classifications recorded. Whilst this technique provides
information on the performance of the various approaches, it has limitations. The main
limitation is that the division of patterns from the various output classes amongst the
training and generalisation data sets can influence the performance recorded on them.
For example, the performance of Omohundro's approach on the skin cancer diagnosis
problem, given in figure 4.2, reveals the influence that an uneven division of patterns
between the training and generalisation sets can have on performance. The training set
is biased towards a single class, whilst the generalisation set is not. The improved
performance on the generalisation set compared to the training set may simply reflect
the more balanced nature of the generalisation set. Future examinations of the function
centering and constraint techniques would profit by at least recording the percentage
of each output class correctly classified. This would enable the identification of any

bias introduced by the split of patterns from the different classes between the training

and generalisation sets.
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An examination of the performance of each technique will now be made before
concluding with a discussion of their comparative performance. Table 4.2 provides
summary information of how Omohundro's approach performed on the problems
studied, with the best, worst and average performances being given together with the

standard deviation for each set of results.

The results given in table 4.2 for Omohundro's approach to function centering and
constraint were averaged over 10 runs. The output of the network was calculated
using the last active function (LAF) technique, and it was trained using the one-shot
learning algorithm employing singular value decomposition. Both these techniques are
examined in detail in chapter 5. The results are quite encouraging, with the approach
able to satisfactorily solve the iris, skin cancer, diabetes, XOR and encoder (8)
problems. The results on the skin cancer diagnosis problem reveal the problem
identified earlier with employing generalisation and training sets where the ratio of the
different output classes differs. It is possible that this is responsible for the difference in

performance on the training and generalisation data sets.
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Table 4.2 - The average percentage performance of the Omohundro approach to
function centering and constraint over ten runs.




Performance was poorer for the Petersen and Barney vowel data (Petersen and Barney
1952) and Parity (6) problems, the most complex problems examined. These required
larger bumptrees than the other problems to reach an acceptable solution. The
constraints to the dimensions of the functions enforced by Omohundro's approach were
identified as a possible reason for the poorer performance on these problems. With this
approach the lower level functions were not able to adjust the partitioning of the
problem space sufficiently to achieve improved performance on the more complex
problems. It was felt that this was because the functions were restricted to the area of
their parent so closely that they were unable to introduce further splits as required.
Relaxation of these constraints might, therefore, lead to an improvement in
performance; a prediction which has been supported by the results obtained with the
MIF technique. Table 4.2 shows that the results for the Petersen and Barney vowel
recognition and Parity (6) problems have greater statistical variation than those

obtained on the other problems.

The poor performance of the bumptree employing Omohundro's approach on the
Petersen and Barney vowel data set and on Parity (6) led to the development of
alternative approaches to the task of function centering and constraint. A major
alternative for placing functions on the problem space was developed in the MIF
approach. In conjunction with this, the constraints on the dimensions of the functions
in the network were relaxed. The aim of both of these modifications was to enable the
bumptree to produce a better partitioning of the problem space through the use of
multiple initial functions where each function was assigned a significant radius in each
dimension. The results achieved by this approach will now be considered. As a basis
for comparison the results obtained with the MIF approach combined with the function
constraint rule employed in Omohundro's approach, are given in table 4.3. The results
were averaged over 10 runs. The LAF approach to output calculation was employed,

i addition to the one-shot learning algorithm employing the singular value

decomposition technique.
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Table ‘4.3 - Thp average percentage performance of the MIF approach to function
centering combined with Omohundro's approach to function constraining.

The results summarised in table 4.3 reveal an encouraging trend with regards to
training performance. Average performance on the training set was equal to or better
than that achieved by Omohundro's approach on six of the seven problems. The
exception was the diabetes data set, where Omohundro's method achieved slightly
superior average performance, although a difference of 0.1% is not particularly
significant when the level of standard deviation is considered. The trend in
generalisation performance was not as encouraging. Indeed, it only outperformed
Omohundro's approach in terms of average percentage of correct classifications on the
Iris problem. However, it was never outperformed by Omohundro's approach by more
than one standard deviation from the mean, being outperformed by 1% in the case of
the vowel recognition and diabetes data sets, and 2% in the case of the skin cancer
data. The standard deviation figures for this approach were very similar to those given
in table 4.2. The trend towards a slight worsening in average performance on the
generalisation set compared to that attained by Omohundro's approach was the main
cause for concern from the results given in table 4.3. However, the difference was only
marginal, and it was hoped that by relaxing the constraints on function dimensionality
the MIF approach would be able to at least equal the performance of Omohundro's

approach on generalisation whilst retaining its advantage on the training set.
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83.0

89.5

76.3

77.8

69.1

5.8

Table 4.4 - The average percentage performance of the MIF approach to function
centering combined with reduced constraints on the dimensions of the functions at the
lower levels of the tree. The functions below the top level are restricted to the area
covered by the patterns upon which their parent was active.

The changes made to these constraints were examined in detail in section 4.5, and so
will not be discussed here. The first modification introduced was to alter the size
restriction for functions below the top level, constraining them to the area containing
the active patterns covered by their parent. Previously they had been restricted to
within the area of their parent function. The results obtained with this approach are

shown in table 4.4.

The results given in table 4.4 were averaged over 10 runs. The LAF approach to
output calculation was employed, in addition to the one-shot learning algorithm
employing the singular value decomposition technique. These results show that this
approach performed well in comparison to both the approaches whose results are
examined above. For six of the seven data sets the average performance on the training
set was equal to or better than that achieved by the other two approaches. The most
significant improvement was on the Parity (6) problem, where the average performance
improved from around 60% to 99.5%. The main reason identified for this was the

ability of the bumptree with reduced constraints to introduce further splits of the
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problem space with the lower level functions. It was felt that the reduction in the
constraints on the dimensions of the functions was a significant factor in this
improvement. The exception to this improving trend was the skin cancer data set
where a 5% deterioration in performance resulted compared to that attained by the
combined approach whose results are given in table 4.3. On the generalisation set this
approach outperformed both the other approaches on three of the four data sets with a
valid test of generalisation; although performance again deteriorated for the skin
cancer data. A statistical analysis of the results show that greater consistency was

achieved with this approach.

The results given in table 4.4 reveal a trend towards improved performance on both the
training and generalisation sets. However, when considering this trend towards
improved classification performance the standard deviation figures need to be
considered. The standard deviation figures reveal that the performance of this
bumptree is not as sensitive to initial conditions as the other two approaches examined
above. This has contributed to the improving average performance, since the results

are more consistently clustered around the average.

This work has shown that the removal of the strict constraints imposed by Omohundro
led to an improved average performance on both the training and generalisation sets
for the majority of the problems studied. The single exception is the skin cancer
diagnosis problem, in which performance degraded and the standard deviation
increased. The results led us to believe that a further relaxation of the function size
might lead to additional improvement in network performance. Thus, the next stage in
allowing the functions more freedom consisted of introducing a fixed radius of one for
each top level function in each dimension, in the hope that this would enable a better

partitioning of the problem space. The results obtained with this approach are set out

in table 4.5.
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Table 4.5 - The average percentage performance of the MIF approach to function
centering combined with reduced constraints on the dimensions of the functions. The
functions below the top level are restricted to the area covered by the patterns upon
which their parent was active, and the top level functions have a radius of 1 in each
dimension.

The results given in table 4.5 were averaged over 10 runs. The LAF approach to
output calculation was employed, alongside the one-shot learning algorithm employing
the singular value decomposition technique. These results show that a slight
improvement in network performance was obtained for the data sets considered. The
improvement was not as significant as that achieved with the last method, but this was
to be expected, since the only alteration was restricted to the two top level functions in
the network, as opposed to all the functions below the top level. However, an
improvement in performance was demonstrated with this approach removed any
chance of a constricted radii in any dimension occurring. Average performance on the
training set improved from the previous techniques on the diabetes and vowel data
sets, but worsened slightly, on the iris, skin cancer and Parity (6) problems. Of the four
problems with a valid test of generalisation improved average performance was
attained on the iris, skin cancer and vowel recognition problems, and identical
performance achieved on the diabetes diagnosis problem. Performance on the iris and

vowel recognition problems was the best attained by the techniques examined in this
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section so far. However, performance on the skin cancer diagnosis problem is still
worse than that achieved by Omohundro's approach, although the increase in the
standard deviation may contribute to this difference in the general trend. The standard
deviation figures demonstrate that this approach is less dependent upon the initial

placing of the functions than the other techniques considered so far.

The performance of the MIF approach with a further relaxation of the constraints on
the functions dimensions is given in table 4.6. The only remaining constraint existing
with the bumptree examined in table 4.5 concerns the constraint of the radius of the
functions below the top level to the area covered by the patterns upon which the parent
function was active. Even this was now relaxed. All functions had their radius in each
dimension set to 1. It was hoped that the additional freedom now given to the
functions would enable them to provide a better partitioning of the problem space. A
uniform radius of 1 assigned to each function meant that the problem caused by small

radii was totally eradicated. The results obtained with this are shown in table 4.6.

The results given in table 4.6 were averaged over 10 runs. The LAF approach to
output calculation was employed, in addition to the one-shot learning algorithm
employing the singular value decomposition technique. These results support the belief
that the removal of constraints on the size of functions provides a better partitioning of
the problem space. On the iris data set this unconstrained approach outperformed all
the other approaches in terms of average performance on both the training set and the
generalisation set. It correctly modelled all the training set on every run, and attained a
level of 97.3% on 90% of the runs on the generalisation set. On the skin cancer data
set this approach was found to have an average performance 5% worse on the training
set than the best performance. On the generalisation it was found to have an average
performance 1.4% worse than the best performance On the Parity (6) problem this
approach was found to be slightly inferior, by 1% to the best performance attained.

However, it attained an average performance level of 98.3% and correctly classified all
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sixty four patterns 60% of the time. Once again the results are very closely clustered
around the mean value. This approach like all the other approaches correctly classified
all the patterns for the XOR and Encoder (8) problems. On the diabetes diagnosis data
set this technique outperformed all the other approaches on both the training set and
the generalisation set, although the difference on the training set was only 0.1 %. On
the Petersen and Barney vowel recognition data set this approach was outperformed

by the best approach by 0.4% on the training set and 0.3% on the generalisation set.

P
e
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Table 4.6 - The average percentage performance of the MIF approach to function
centering combined with reduced constraints on the dimensions of the functions at all
levels of the tree. All the functions have a radius of 1 in each dimeasion.

The results achieved by the bumptree that employed a unit radius in each dimension
revealed a trend towards improved performance, but the differences between this
approach and the other approaches that significantly reduced the constraints on the
dimensions of the functions was minimal. The general trend is for the results to be less
dependent on the initial starting point, and this undoubtedly contributes to the
improved average performance since there are no particularly poor results to force the

average performance down. The trend towards improved average performance

supports the belief that the reduction of the constraints on the function dimensions
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allows the network to partition the problem space in a more satisfactory manner. The
approach that performed at the highest level over most of the problems was the one
that combined the MIF approach with the most relaxed function constraint technique
of setting the radii of all the functions in all dimensions to 1. If a function has a small
radius in one or more dimensions in comparison to other functions at its own level then
this will adversely affect its chances of attracting patterns and will therefore lead to an
inaccurate partitioning of the problem space. The setting of all the functions
dimensions to 1 normalises the radii and removes this problem. The Parity (6) problem
and the Petersen and Barney vowel recognition problem could only be mapped to a
satisfactory degree by approaches that adopted the relaxed function constraints,
because the reduced constraints allowed the lower level functions to further partition
the problem space. Hence, the overall trend of results for the training set and where
applicable, the generalisation set has been for the average number of correct

classifications to increase with a relaxation of the constraints on function dimensions.

The improvement in average performance has been accompanied by a decrease in the
standard deviation. This demonstrates that the ability of the final network to reach a
good solution is less dependant on its original starting point. The standard deviation
figures also reveal that except for the approaches that do not relax the constraints to
any degree the differences in performance are small. The trends toward improved
performance are apparent, but the initial reduction of the constraints by the approach
whose results are given in table 4.4 produced the most significant improvement. The
performance of the five function centering and constraint techniques examined to date

are summarised in figures 4.8 and 4.9, and tables 4.7 and 4.8.
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8

75.9
0.7

75.8
1.2

75.7
1.1

76.5
1.1

76.5
1.1

Table 4.7 - The average percentage performance for the MIF centre placement and
confining techniques and Omohundro's approach on the training sets examined in this
study. Each technique is identified by a number which corresponds to the key given in
figure 4.8.

To conclude, the results for the approaches examined above have shown that the
performance of the various function centering and constraint techniques is to a degree
problem dependent. The approach examined above that gives the best overall average
performance, on both the training and generalisation sets, is the approach that
combines the MIF approach with unit radii in all dimensions. It is however necessary to
consider that the results may have been influenced to a degree by the fact that the
training and generalisation sets employ different ratios of the output classes. However,

the general trend towards improved results once the functions are allowed increased

freedom to partition the problem space is clear.
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Table 4.8 - The average percentage performance for the MIF centre placement and
confining techniques and Omohundro's approach on the generalisation sets examined in
this study. Each technique is identified by a number which corresponds to the key
given in figure 4.9.

Percentage
Correct

version 1 version 2 version 3 version 4 version §

Function Centring and Constraint Approach

Iris B Skin Cancer & Diabetes [ Vowel Data B Parity6

Figure 4.8 - Average percentage performance on the training set for the various
function centering and constraint techniques.
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Figure 4.9 - Average percentage performance on the generalisation set for the various
function centering and constraint techniques.

Key for figures 4.8, 4.9, and tables 4.7 and 4.8.

Version 1: Omohundro's approach.

Version 2: Omohundro's approach + MIF.

Version 3: MIF + lower level constrained within parents pattern area.

Version 4. MIF + top level radii =1 + lower level constrained within parents pattern

area.
Version 5: MIF + all functions radii =1.

The techniques examined above ultimately add two functions to the network at every
point where additional functions are required, but as section 4.6 pointed out, there is
no inherent restriction which stipulates that the bumptree must be binary in nature.
Indeed, the addition of multiple functions to the network at each splitting point might
lead to a better partitioning of the problem space with a consequent improvement in
performance. The results obtained by adding n functions to the network at each
addition, referred to as the n-function bumptree are shown in table 4.9; n here is

defined by the number of input dimensions of the problem.
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Table 4.9 - The average percentage performance for the n-function bumptree,
combined with radii of 1 for each function in each dimension.

The results shown in table 4.9 were averaged over 10 trials, and employed a bumptree
trained using the one-shot learning algorithm employing the singular value
decomposition technique. The output of the bumptree was calculated via the LAF
technique for output calculation. The performance of this n-function bumptree was
compared against those networks employing the techniques described eartier. The iris
data set revealed that the n-function bumptree, whilst outperforming a network
constructed with Omohundro's approach, was not able to match the average
performance of any of the MIF approaches on either the training or generalisation set,
although it attained comparable performance on the training set. The approach tended
to produce results with greater variation than the other techniques examined to date, as

illustrated by the standard deviation figures.

Figures 4.10 and 4.11 show the average performance of the various versions of the
bumptree on the iris, diabetes, vowel recognition and skin cancer data sets for which
generalisation could be measured. Only on the iris data set is the n-function bumptree
outperformed on the training set, and then by the MIF bumptree which obtained
complete correctness for all trials. On the diabetes, skin cancer and vowel recognition
tasks the n-function bumptree performed at least as well as the other two techniques

on the training set, and significantly better (by 10%) on the vowel recognition data.
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However, in terms of average generalisation performance, the n-function bumptree is
outperformed on all the problems examined, as shown in figure 4.18m, by the MIF
approach with all radii set to 1. The n-function bumptree is able to outperform
Omohundro's approach only on the iris and vowel recognition tasks. In addition, the
standard deviation figures show that, particularly for the iris and skin cancer data sets,
the performance attained by the n-function bumptree is very dependent on where the

functions are placed on the problem space.

Therefore, whilst the n-function bumptree has performed well on the training sets of
the problems in question, it has given a poorer performance on the generalisation sets.
It has also been found to be sensitive to the initial placement of the functions on the
problem space. However, the network gives a performance comparable to that attained
by Omohundro's network. In addition to the results given in figures 4.10 and 4.11, the
n-function bumptree was able to correctly classify 100% of the patterns for all the trials
on the XOR and Encoder(8) problems. The divergence in the level of performance
attained on the training and generalisation sets suggests that the n-function bumptree is

overfitting the training set at the expense of performance on the generalisation set.

100

Training 85
Performance 80

60 .
n-function  Omohundro's MIF (all radii
bumptree bumptree setto 1)

Bumptree Approach

{Elris B Skin Cancer ODiabetes O Vowel Data ]

Figure 4.10 - The average percentage performance of various bumptree versions on
the training sets of the iris, diabetes, vowel recognition and skin cancer tasks.
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Figure 4.11 - The average percentage performance of various bumptree versions on
the generalisation sets of the iris, diabetes, vowel recognition and skin cancer tasks.

None of the techniques examined so far has been able to produce the best average
classification performance on all the data sets. However, the general trend is for
techniques employing the MIF technique combined with reduced function constraints
to produce the best average generalisation performance. The n-function bumptree
displays evidence, particularly on the vowel recognition problem, of overfitting the
training set at the expense of generalisation performance. In addition, the approaches
that did not reduce constraints sufficiently, whose results are given in tables 4.2 and
4.3, are not able to model complex problems sufficiently. It is possible that this is due
to their inability to achieve further splits in the problem space with the lower level
functions. One possible technique for further improving the performance of the
bumptree that was discussed in section 4.7 is the use of a non-hierarchical clustering
technique to position the functions on the problem space. The Forgy technique,
examined in section 4.7 was employed, and this technique was employed in

conjunction with the MIF approach all radii for all functions set to 1.

Employing a non-hierarchical clustering technique in conjunction with the MIF

approach raised the issue of where to apply the clustering technique. There exist two
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points at which the clustering algorithm could be employed, with the first being
concerned with the initial placement on the problem space of the ten functions. The
second point is after the dimensions of the two functions to be added to the network
from the ten initial functions have been decided upon. The author implemented the
Forgy non-hierarchical clustering technique at these points both individually and
simultaneously, and the results on the iris, skin cancer, diabetes and vowel recognition

data sets are given in table 4.10.

The results displayed in table 4.10 were attained by bumptree structures trained with
the one-shot learning algorithm employing the singular value decomposition technique.
The output was calculated by the LAF technique. The results were averaged over 10
trials. The "best position slot" of table 4.10 refers to where the Forgy technique was
applied to produce the result that is shown in the table. The results show that applying
the clustering technique only after the final two functions have been allocated fails to
produce better results than applying it in either of the other ways. The performance
achieved on the iris data set, in terms of both training and generalisation was bettered
by the MIF approaches that set the top level radii to 1, regardless of how the lower
level functions radii were confined. The standard deviation on this data set showed that
the approach is relatively independent of the placement of the functions on the problem
space on three of the four problems. On the skin cancer diagnosis data set, the best
average performance attained by any of the techniques examined in this chapter is
achieved by this approach. However, on the training sets it is outperformed by all the
other approaches. The standard deviation of O obtained shows that the results are
invariant to the initial conditions. This can be viewed as a local minima, which in this
instance happens to provide the best generalisation. Regardless of how many function
splits are introduced the network always returns the same partition of the problem
space as that achieved at the top level. The performance attained on the diabetes data
set is similar to that attained by the other approaches, but is superior for generalisation.

Finally, the performance of this approach on the vowel recognition data set was the
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worst, by over 15% on both the training and generalisation sets of any of the
approaches examined in this chapter. This approach has not been able to achieve an
average performance level of better than 50% correctness on either the training or the
generalisation sets. The standard deviation figure on the vowel recognition task reveals
that this approach is very dependant on where the original functions are placed on the
problem space. The functions added to the network at the earlier stages produced a
partitioning that the later functions were unable to influence. This can be viewed as an
inability to extract the network from local minima, a problem also encountered with the

skin cancer diagnosis data.

The use of a non-hierarchical clustering technique in conjunction with the best MIF
approach produced variable results. It produced excellent results on some problems,
but was plagued by local minima on others from which it was unable to extricate itself.
In particular, the performance on the skin cancer diagnosis data set revealed this
characteristic. In addition, the use of a non-hierarchical clustering technique in
conjunction with the best MIF approach had a drastic effect on the level of
performance attained on the vowel recognition problem. It led to a decrease in
performance of 35% on the training set and 23% on the generalisation set. The results
on the vowel recognition problem were disappointing, and reveal limitations in the
ability of the bumptree employing the Forgy non-hierarchical clustering approach to
solve complex problems. These limitations relate primarily to the inability of the
network to extract itself from local minima. The introduction of additional functions is

unable to extricate the network from a minima once one has been encountered.
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Table 4.10 - The average percentage performance for the bumptree employing the
Forgy non-hierarchical clustering technique, combined with MIF with all radii set to 1.

This study has shown that the MIF technique combined with reduced function
constraints attained a consistently high level of training and generalisation performance
across all the data sets tested. It is therefore recommended as the best general purpose
algorithm of those examined. However, in making this recommendation it 1s necessary
to consider that the presentation of training and generalisation sets with differing ratios
of the output classes could have influenced performance. In addition, some of the
differences in performance are small when considered across all the approaches, and
the differences can be seen to relate to the impact of starting conditions on the
performance of the networks. Nevertheless, a trend towards improved performance

when the MIF approach is combined with reduced function constraints is revealed.

4.8.2 Training Time

This section will examine the performance of the various function centering and
constraint techniques introduced in this chapter in terms of the time taken to train to a
solution. Consideration will be given to the number of functions needed and the

computational complexity involved in the training process. The number of functions
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required by each approach is summarised in table 4.11. Only those data sets that allow
a valid test for generalisation are examined, since the aim is to analyse the time taken

to reach the level of generalisation performance described in section 4.8.1.

Table 4.11 - The average percentage performance of the various bumptree versions in
terms of the number of functions required to reach the level of generalisation
performance discussed in section 4.8.1.

Key:

Version 1: MIF + all functions radii = 1.

Version 2: MIF + top level radii =1 + lower level constrained within parents pattern
area.

Version 3: MIF + top level functions constrained to within the area of the data set +
lower level constrained within parents pattern area.

Version 4: Omohundro's approach + MIF

Version 5: Omohundro's approach.

Version 6: N-function bumptree.

Version 7. MIF bumptree employing the Forgy non-hierarchical clustering technique.

The results in table 4.11 for the various centering techniques were averaged over 10
trials. The bumptrees were trained with the one-shot learning algorithm employing the
singular value decomposition technique, and the LAF approach to output calculation
was employed. The results demonstrate that with the exception of the vowel
recognition task the different bumptree structures tended to employ a similar number
of functions to solve the particular problems. However, the vowel recognition task is a
good guide to the performance level reported in section 4.8.1. Version 7 employs
insufficient functions and is, therefore, unable to adequately map the problem space.

This is because once the problem space has been partitioned 2 or 3 times, further
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partitions simply replicate those that already exist. The same is true of versions 4 and
S, since they employ insufficient functions to map the problem space. They constrain
the lower level functions to the same area as their parent, and eventually the problem
space becomes saturated by the functions that have been created. Version 6 employs
too many functions to model the vowel recognition data, and the results in section
481 reflect this. The approach outperforms all the others on the training set for
almost all the problems, but cannot match the performance of the better MIF
techniques in terms of generalisation. Hence, partitioning the problem space with
multiple functions at each point where additional functions are required leads to the
bumptree over-fitting the training set with a subsequent degradation in generalisation

performance.

The computational effort required by each of the bumptrees identified in table 4.11 to
reach a solution is linked to the number of functions employed. However, it is also
linked to the technique employed for constructing the network. The main steps
involved in the MIF bumptree with all radius set to 1 are given in Appendix A in the
form of pseudo code. This provides an outline of the approach adopted by this
bumptree against which the other approaches can be compared, and provides a basis

for the analysis of the computational effort involved with the different bumptrees.

The MIF approach uses multiple candidate functions to determine the dimensions of
the functions to be added to the network. This is potentially more computationally
expensive in terms of adding functions to the network than some of the other
approaches. Compared to Omohundro's approach there is the additional step of
assigning the initial candidate functions to the problem space and their subsequent
processing. The candidate functions have to be placed on the problem space, the
patterns assigned between them, the learning algorithm applied to the active ones and a
goodness measure calculated for each of them. The functions not chosen as the best

are then averaged out to provide the second function to be added to the network. The
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patterns are then assigned as appropriate. Each of the MIF approaches adopts a
different approach to constraining the dimensions of the functions, and the least
computationally expensive of these is to set all the radii to 1. The most computationally
expensive of the approaches is that which employs a non-hierarchical clustering
technique to obtain better partitioning of the problem space. This approach employs all
the steps employed by the MIF technique, in addition to the Forgy technique described

in figure 4.6.

Omohundro's approach was the simplest for positioning functions on the problem
space. It simply placed two functions within the area covered by the training set,
constrained their radius so that they fell within the area of the data set, and then
assigned the patterns to these functions. Once the patterns had been assigned the
learning algorithm was applied to them. Finally, a performance measure was applied to
ascertain whether further functions were required. Further functions were added by
repeating the process used to add the initial functions. These additional functions were
positioned so that their centre fell within the area covered by their parent function. In
addition, the radii of the functions were constrained to fall within the area of the
parent. The n-function bumptree adopted a very similar approach to Omohundro's,
except that the process had to be carried out for multiple functions instead of two at
each addition. The actual number of functions was determined by the input
dimensionality of the problem. This approach set the radii of every function to one.
The addition of functions by the n-function bumptree is, therefore, computationally
more expensive. However, gains are achieved by potentially reaching a solution with

fewer addition of functions, although each addition is more computationally expensive.

The computational complexity of each of the bumptree approaches identified above
will be analysed in terms of the mathematical operations required for adding functions
to the network. The pseudo code given in Appendix A provides a basis for the

analysis, and the focus of attention will be on identifying differences between the
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various approaches. A major process involved in constructing the bumptree network
concerns the addition of functions to the network. This process involves a number of
procedures, and commences with the top level, or parent functions, being positioned
on the problem space. If these cannot adequately model the problem space then further
functions are added. The addition of functions by the MIF bumptree involves the initial
step of determining centres for the 10 candidate functions to be considered for addition

to the network. This utilises the calculation given in equation 4.2:

f max ymax

Z ZRandomNumber/((7f“(Ma¥[u]—Min[zz]))JrMiiz[u]) (4.2)

f=1 u=l
where fmax is the number of functions, umax is the number of units; Max[u] is the
maximum value for input dimension u; Min[u] is the minimum value for input
dimension u; RandomNumber is the random number used to provide the initial figure
to determine the centre of function f in each input dimension. The use of Min[u] and
Max[u] is to ensure that the centre of the parent function dimension by dimension falls
within the area covered by the data set for the initial parent functions. For functions
added after the initial two functions Min[u] and Max[u] refer to the maximum and

minimum values in each dimension of the patterns upon which the parent function was

active.

The allocation of centre points to the ten candidate functions to be considered for
addition to the network, whilst an integral part of the MIF approach, is not present in
either the n-function bumptree or in Omohundro's approach. These other approaches
do not employ candidate functions, they simply position the functions to be added on
the problem space. For each input dimension, each of the ten functions requires a
process that involves 1 division, 1 multiplication, 1 addition, and 1 subtraction. Hence,
for the Encoder (8) problem this initial step of assigning centres to the candidate
functions involves a total of 320 divisions, multiplication's, additions, and subtraction's

that are not required by either the n-function bumptree or Omohundro's approach.
q y p pp
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Once the dimensions of the candidate functions have been determined, it is necessary
to assign the patterns in the training set to the function with the highest activation
level. Figure 4.12 provides the pseudo code for this process, detailing the calculations
that take place. Once again these calculations relate to the 10 candidate functions used
to determine the dimensions of the two functions to be added to the bumptree

structure and therefore the process is unique to the MIF bumptree.

For Patterns = 1 to Num Patterns in Training Set
For Functions = 1 to 10
Temp 5 =1
For Units = 1 to Num Input Units
Templ = 1/(1*(sqrt(3.141592654*2)))
Temp2 = 0.5 *(Input [Patterns]{Units]-Function centre[Units])/ 1)2
Temp3 = exp(-Temp2)
Temp4 = Templ*Temp3
Temp5 = TempS5*Temp4
End
Function[Functions] Activation Level = Temp5
End
End

Figure 4.12 - Pseudo Code detailing the steps involved in calculating the activation of
the 10 candidate functions with the MIF approach.

The pseudo code in figure 4.12 demonstrates that for each pattern each function on
each input dimension carries out 3 divisions, 6 multiplication's, 2 subtraction's, and 1
exponential calculation. Therefore, for the XOR data set that comprises two inputs and
four training patterns there are 960 calculations required. The equation to determine
the number of calculations required for a training set is given in equation 4.3. The
equation given in 4.3 is applied to the candidate functions when the MIF bumptree is
employed.

NumFunctions*Num Input Units*Num Patterns*Num Calculations (4.3)
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Once the activation of the 10 candidate functions has been calculated, it is necessary to
assign each pattern in the training set to the function with the highest activation level.
This is a simple comparative process, and following this each of the ten functions
considered to be active on sufficient patterns has its weight and bias parameters
optimised. The process of optimising the weight and bias, or Alpha and Beta
parameters is detailed in Appendix B. The matrix containing the optimised Alpha and
Beta values is arrived at by multiplying the result matrix (matrix3) by the pseudo
inverse of matrix]. Matrix] can be populated in two stages. The first stage populates
an area equal to the square of the number of input dimensions. For each of the ten
candidate functions, every slot is filled by a process using 1 multiplication and 1
addition for every pattern the function is active on in the training set. Hence, the
number of calculations involved in this process is determined as the number of input
dimensions squared multiplied by the number of patterns in the training set multiplied
by the number of calculations. No reference is made to the number of functions the
process is carried out for since regardless of this the operation is carried out for every
training pattern. The outer loops in the pseudo code given in Appendix B have to be
traversed more times when more functions are being examined, but the number of
calculations involved in the actual process is the same. The first stage of populating
Matrix1 for the Encoder (8) will require 8*8*8%*2 calculations, a total of 1024
calculations. The second stage of populating Matrix1 involves every function for every
input dimension having an addition carried out over every pattern upon which the
function is active. This process is carried out twice. Each time the calculations required
can be given as the number of input dimensions multiplied by the number of patterns in
the training set. Using the example of the Encoder (8) problem this requires 8*8, or 64

calculations, a total of 128 calculations.

Matrix3 is populated through a very similar process to Matrix1. It is again populated in
two stages. The first stage populates an area of the matrix equal to the number of input

dimensions multiplied by the number of output dimensions. For each of the candidate
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functions, every slot is filled by a process using 1 multiplication and 1 addition for
every pattern the function is active on in the training set. Hence, the number of
calculations involved in this process is determined as the number of input dimensions
multiplied by the number of output dimensions multiplied by the number of patterns in
the training set multiplied by the number of calculations. No reference is made to the
number of functions the process is carried out for, since regardless of this the operation
is carried out for every training pattern. Once again, the outer loops in the pseudo code
given in Appendix B have to be traversed more times when more functions are being
examined, but the number of calculations involved in the actual process is the same.
The second stage of populating Matrix3 involves every function for every output
dimension having an addition carried out over every pattern upon which the function is
active. This process is carried out twice. The calculations required can be given as the

number of output dimensions multiplied by the number of patterns in the training set.

Once the two matrices have been populated it is necessary to produce the pseudo
inversion of matrix1, and this is done using the Gauss Jordan method. This involves
identifying the pivot row and carrying out the elimination process, but this process 1S
not computationally intensive. Once the pseudo inverse of Matrix1 has been calculated,
it is necessary to multiply matrices 1 and 3 for each function. ¥or every row in the
result matrix, a process involving a single multiplication is carried out. The number of
calculations is given as Input dimensions +1 multiplied by the number of output
dimensions. Using the example of the Encoder (8) problem, each function requires a

process consisting of 9*8, or 72 calculations.
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ForF=11t010
Temp6 =0
For Pattern =1 to Num Patterns Function[F] Active On
TempS =0
For U =1 To Num Output Units
Temp2 =0
For UI =1 to Num Input Units
Temp = Function[F] ALPHA[UI][U]*Input[patterns][UI]
Temp2=Temp2+Temp
End
Temp3 = (Temp2 + BETA[U])-Output{patterns][U]
Temp4 = Temp4 * Temp3
TempS = Temp5 + Temp4

End
Temp6 = Temp6 + TempS
End
Function[F] Error =0.5*Temp6
End

Figure 4.13 - Pseudo Code detailing the steps involved in calculating the error of the
10 candidate functions with the MIF approach.

Once the 10 candidate functions have had their Alpha and Beta parameters optimised,
it is necessary to calculate an error level for each candidate function considered to be
active on sufficient patterns. Figure 4.13 provides pseudo code detailing the
calculations involved in calculating the error of the candidate functions. Each function
has its error calculated on only the patterns upon which it is active. The calculations
required to calculate the error of an individual function are given in figure 4.14. The
impact that each dimension has on this calculation is shown with the Parity (6)
problem. The number of calculations required is given in figure 4.14. This figure
reveals that to calculate the error of the 10 candidate functions requires a total of 1994
calculations made up of multiplication's, divisions, additions and subtraction's. The

numbers identified in figure 4.14 are as follows. The number of functions is 10, the

110



number of patterns in the training set is 64, the number of output units is 2 (identified
as 2a), and the number of inputs is 6 (identified as 6b). The other figures given relate

to the number of calculations required at each of the stages identified in figure 4.13.

(10*1)+(64*1)+(64*(2a*3))+(64*2*(6b*2)) = Error of Candidate functions

Figure 4.14 - Calculations involved in calculating the error of the 10 candidate
functions with the MIF approach.

Once the error of the 10 candidate functions has been calculated, the next step is to
calculate the goodness value for each of the functions considered to be active on

sufficient patterns. The goodness value is calculated as shown in equation 4.4

Error Level / Number of Patterns Function Active On (4.4)

This goodness measure is calculated once for each function, and therefore involves ten
calculations. The function with the best goodness value is added to the network, and
the second function to be added is arrived at by averaging the centres in each

dimension of all the functions active on any patterns.

Once the dimensions of the two functions to be added to the network have been
determined the approach of the MIF bumptree is similar to that of Omohundro's
approach. Both the approaches employ the procedures identified in figure 4.15 for
“actual functions” on the two functions to be added to the network. The MIF approach
does not require any extra calculations to Omohundro's approach until further
functions need to be added to the network and the procedure with the 10 candidate
ﬁmctions recommences. The main steps involved in the MIF approach to training the
bumptree are summarised in figure 4.15. These steps are divided into those that are
applied to the candidate functions and those that are applied to the functions added to
the network. Omohundro's approach utilises only those steps applied to the functions

to be added to the network. The n-function bumptree does likewise, except that whilst
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Omohundro’s approach carries out these steps for two functions the n-function
bumptree carries it out for a variant number of functions. The number is determined by
the number of input dimensions of the problem. Table 4.11 provides details of the
calculations required by the MIF approach, Omohundro's approach, and the n-function

bumptree on the problems examined in this study.

Candidate Functions:

1 - Determine initial function centres.

2 - Assign Patterns to functions.

3 - Optimise Alpha and Beta parameters.

4 - Calculate the error of each function.

5 - Calculate a goodness value for each function.
6 - Add functions to the network.

Actual Functions:

7 - Assign Patterns to functions.

8 - Optimise Alpha and Beta Parameters
9 - Calculate the error of each function.

If further functions are required goto step 1, else finish training.

Figure 4.15 - The main steps employed to construct the MIF bumptree.

The figures given in table 4.11 reflect the calculations that the approaches require to
add functions to the network. All the approaches need to define the parameters of the
‘nitial functions, and Omohundro's approach involves the least calculations. The figure
given in table 4.11 reveal that as the input and output dimensionality of the problem
increase so the other approaches require more computational effort than Omohundro's
approach. The number of calculations required by the N-function bumptree 1s
adversely effected when the input dimensionality of the problem rises. This is to be
expected since the number of functions employed increases with the number of input
dimensions. The difference in the number of calculations required by the approaches

relates purely to their use of different numbers of functions. The MIF bumptree has 10
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additional functions to process compared to Omohundro's, and when there are more
than two inputs the n-function bumptree has additional functions to deal with.
Therefore, in order for the MIF or n-function bumptree to add further functions to the

network additional computational effort is required at each addition.

AN TR AR a
. Candidate ctual Candidate

_ functions functions

Table 4.12 - Calculations required to add new functions to the bumptree. The
calculations required to assign the patterns to the functions depending on their
activation, to optimise the Alpha and Beta values, and to calculate the error of the

functions are considered.

Additional calculations are required when a technique for constraining the radius of the
functions is employed. The setting of all the radius to 1 is the least computationally
expensive approach, and the use of the Forgy technique is the most computationally
expensive approach. However, the impact of constraining the radins of the functions
on training computational expense is significant only when the Forgy non-hierarchical
clustering technique is employed. Therefore, in the analysis of the computational

expense of the various approaches the constraining of radius has not been considered.

Therefore, the amount of computation required by the various techniques differs, with

the MIF bumptree employing the non-hierarchical clustering technique being the most

computationally expensive.
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4.9 Summary

This chapter has addressed the issue of how the problem space should be partitioned.
The focus of attention has been on various approaches to positioning the functions on
the problem space and constraining the dimensions of these functions. The
performance of each of these techniques on various data sets ranging from a vowel
recognition task to the diagnosis of skin cancer has been evaluated. Performance has
been tested primarily on the ability of the approaches to construct a network that is
able to perform well on both training data and generalisation data. In addition, an
examination of the computational effort required by the approaches to construct a
network to a solution has been examined. Particular attention has been given to the
number of functions required to attain a desired level of performance. In addition, the
computational effort, in terms of the number of calculations demanded by each
technique has been examined. The focus of attention has been on the addition of units
to the network, since all the approaches examined in this chapter have used the same

learning algorithm and the same output calculation technique.

The approaches have on the whole performed fairly well on the data sets considered.
Whilst no individual approach has been able to constantly outperform all the others,
some have revealed limitations. For instance, the n-function bumptree has revealed a
tendency towards over fitting the training set to the detriment of generalisation
performance. In addition, it has been discovered that Omohundro's restriction on the
dimensions of the lower level functions causes difficulties when a large number of
functions are required to solve a problem. The vowel recognition data set is a good
example of this, as is the Parity (6) problem. Limitations with the use of a non-
hierarchical clustering technique have also been revealed. On the smaller scale

problems the use of a non-hierarchical clustering technique produces a good level of

114




performance. In particular, on the diabetes problem the best level of performance
attained on both the training and generalisation sets 18 with a network built employing
the Forgy technique. However, this approach is susceptible to the problem of local
minima. It has proved incapable on some problems of partitioning the data so that
good performance on the training and/or generalisation sets can be achieved. In
particular, the vowel recognition task has proved a serious problem, and the skin

cancer diagnosis task always encountered a local minima.

The best approach to constructing a bumptree neural network considered in this study
was the MIF approach, combined with a number of alternate techniques for
constraining the dimensions of the functions within the network. The technique that
was able to achieve the highest level of performance consistently across all of the
problems examined was the one that set all the radii of the functions to 1. This
approach overcame the problems of local minima and small radii and consequently

allowed sufficient functions to be added to solve the problems without overfitting the

training set.

In terms of computational effort, each function addition with the MIF and n-function
bumptrees required more effort than when Omohundro's approach was employed. The
number of function additions required by each of the approaches was problem
dependent, but the trend was for the n-function bumptree 10 require the most
functions, followed by the MIF bumptree with bumptrees developed with
Omohundro's approach employing the least functions. This trend is reflected in the
results on the data sets examined in this chapter. The n-function bumptree employed
too many functions and subsequently on several of the problems overfitted the training
rformance. Omohundro's approach was not

data at the expense of generalisation pe

able to model the more complex problems sufficiently because it employed too few

functions. The MIF bumptree was, however, able to produce a reasonable level of




performance on both the training and generalisation data sets on the problems

examined In this study.

There are, however, a number of other issues that need to be addressed before a
bumptree neural network can be employed. In particular, a learning algorithm that can
be applied to each individual function needs to be developed and a technique for
calculating the output from the network needs to be devised. Two of these techniques
have been introduced in this chapter. In addition, decisions must be made about when
to add functions to the network and also when to recognise that further partitioning of
the problem space is not desirable and that the training process should be stopped.
These issues will be examined in detail in chapter 5, and a comparative study of

performance with RBF and MLP networks will be carried out in chapter 6.
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Chapter 5

Further Architectural Issues In Developing A Bumptree Neural Network

5.1 Introduction

In order to utilise a bumptree neural network several issues need to be resolved. Chapter 4
examined techniques for positioning the functions and determining their size. The task of
partitioning the problem space, whilst being vital to the performance of the network, 1s
only one issue that needs to be addressed in order to implement a bumptree neural
network. Other major issues are the nature of the learning algorithm to be applied and the
method for calculating the output of the network. In addition, the algorithm developed by
the author to construct the bumptree neural network employed some additional
mechanisms. These controlled when functions should be added to the network, when the
addition should cease and whether a function could be described as "live". Live in this
sense refers to whether a function is considered to contribute sufficiently to the network

to be involved in calculating its output. All these issues will be examined in this chapter.

This chapter will also introduce the genetic bumptree (Willliams ef al. 1993, 1994). The
genetic bumptree is a variation on the bumptree classifier which, instead of being
"trained" using a learning algorithm, develops entirely through a process of evolution, via
a genetic algorithm. The genetic algorithm can be used to simultaneously optimises the
number of functions employed by the tree, the structure of the tree, the functions centre
and radii, and the functions associated weight and bias parameters, in order to minimise a
training set error measure. The performance of the genetic bumptree will be described

and compared against that obtained with the standard bumptree.




5.2 The Learning Algorithm

The bumptree neural network approaches the task of mapping a problem space in two
stages. The first stage involves partitioning the problem space into local areas with
gaussian functions. The second stage involves the application to each of these individual
areas of a learning algorithm to minimise a training set error measure. These stages are
closely interlinked in the process of constructing a bumptree neural network. First, the
initial functions are placed on the problem space. The learning algorithm is then applied,
and if it is unable to reach an acceptable level of performance additional functions are
created to further partition the space before the learning algorithm is applied to the new
functions. This procedure continues until an acceptable solution is reached. The
partitioning of the problem space was examined in chapter 4, and the second stage of this

process, the learning algorithm will now be considered.

The learning algorithm is applied once to each function as it is added to the network, and
each time it is applied it only considers those patterns for which the function 1s active.
Hence, each local area of the problem space has the learning algorithm applied to it
separately in an attempt to minimise the squared crror on the training set. Although a
learning algorithm specific to the bumptree was developed by the author, and will be
examined below, existing learning algorithms could have been adopted. For instance, it
would be possible to employ a multi-layer perceptron (o model the space covered by each
individual function in the network, so that, each of the functions would have its area
modelled by an individual and independent MLP. This is still in compliance with the idea
of imposing a local solution, since even though the hyper planes of the MLP will extend
far beyond the boundaries of the data that the particular function is concerned with, they

will have no effect on the remaining data. However, to employ an MLP at each function
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in the network would lead to unacceptably long training times. The time taken would

exceed that required to train a single MLP mapping the entire problem space.

A learning algorithm has been developed specifically for the bumptree neural network,
which will be shown to be capable of finding a solution quickly and accurately; this will
now be examined. The algorithm is a "one-shot" learning algorithm, in contrast to the
MLP which employs an iterative procedure. The one-shot algorithm determines the
optimum weight and bias parameters for each function by solving a series of equations.
This learning algorithm maps the problem space through the use of weight and bias
parameters that connect the input and output units. There is one weight, or Alpha, value
for each input to output connection and a bias, or Beta, value for each output unit. The
Beta value is constant across all the input dimensions. The output of a function on any

pattern is given as:
JAMAX

. (P}
ain: = zauz " x_/l + Bi: (5 1)
J
where aojpy is the output of the zth output unit of the ith function on the pth pattern, j 1s
the input unit, ]MAX the total number of input units, ojjz is the Alpha value that
connects input unit i to output unit z for the ith function, Xj(p) is the element of the pth
training pattern that is concerned with the jth input dimension. Finally, B, is the Beta

value for the zth output unit. The error of each function Ej is given as:

PMAX MAX

1 2
E=52 2@o, tv:) (5.2)

p=l =

where Ej; is the error of the ith function across all output dimensions (zMAX), for all
patterns upon which the function is active (pPMAX), aojpy is the actual zth output of the
ith function on the pth pattern, and tvpy is the target output for the zth unit on the pth

pattern. Hence, the learning algorithm is required to arrive at Alpha and Beta values for

119




every function that minimises the error given by 5.2. The Alpha and Beta values for each
function i can be derived from the equation given in 5.3, which is simply a combination

of 5.1 and 5.2, and this derivation will now be examined.

pA AAX 2MAX  JMAX

E-= Z SO o xR, (5.3)

"‘p! =1 j=1

The equation in 5.3 can be divided into two parts, with the first part, given in 5.4
concerned with the Alpha derivative. The second part concerns the Beta derivative, and is

given in 5.5.
PMAX ZMAX JMAX

=S S S0 X v, X =0 (5.4)
iz I

6&/1 p=l ==l j=1

PMAX zMAX  jMAX

B =2 Z{Za,, X"+ v, *1=0 (5.5)

From the derivatives of Alpha and Beta given in 5.4 and 5.5 it is possible (o arrive at the
Alpha and Beta parameters that provide the best fit to the data. This is achieved through
multiplying matrix 1, given in figure 5.1, by the inverse of matrix 3, given in figure 5.3.
This provides the matrix of Alpha and Beta values given in figure 5.2. The Matrices

derived from 5.4 and 5.5 given in figures 5.1, 5.2 and 5.3 are those required by a problem

with 3 inputs and 2 outputs.
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Figure 5.1 - Matrix 1, which is derived from equations 5.7 and 5.8
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Figure 5.2 - Matrix 2, the Alpha and Beta matrix, derived from equations 5.7 and 5.8.
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Figure 5.3 - Matrix 3, the result matrix derived from the equations given in 5.7 and 5.8.

In order to arrive at the Alpha and Beta figures in matrix 2 it is necessary (o multiply

matrix 3 by the inverse of matrix 1. This procedure will need to be carried out once for

each function in the network. The one-shot learning algorithm is able to arrive at the



Alpha and Beta parameters extremely quickly, with a consequent reduction in the training
time; this is in contrast to the iterative procedure employed in back propagation.
However, there is a drawback with the one-shot learning algorithm, namely the need to

invert matrix 1 before being able to calculate the Alpha and Beta parameters.

When the one-shot learning algorithm was first implemented problems with singular
matrices were often encountered, which caused training to cease. Such difficulties arose
when matrix 1 either contained a number of 0's, or when only a few patterns were being
considered. This set of circumstances was found to be problem dependent to a degree, but
was also affected by parameters defined for the bumptree training algorithm. For
example, in the training algorithm a parameter termed SMALL was used to determine
whether a function was live and therefore a candidate for training. If a function did not
attract more than SMALL patterns, it was not a candidate for training. The SMALL
parameter can, to an extent, prevent problems with singular matrices by ensuring that
matrix 1 is not created for functions that are responsible for a small number of patterns.

The problem of matrix 1 containing a number of 0 elements, however, still remains.

Experimentation revealed that when matrix inversion was employed as part of the
learning algorithm the bumptree had a very limited degree of success. For instance, on the
Parity (6), Encoder (8) and XOR problems the bumptree was never able to converge to a
solution due to the number of 0's in matrix 1. For the other problems examined in this
study, such as the skin cancer diagnosis and vowel recognition data sets, the bumptree
was able to reach a solution with an appropriate setting of SMALL. However, the
accuracy of this solution was not as good as that reported in chapter 6 because the value
of SMALL was too high to allow the network to model the problem space with sufficient
accuracy. The best results attained on the iris problem when pseudo matrix inversion was

employed were attained when SMALL was set to 7. However, when matrix inversion was
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used the problem of singular matrices was encountered, and the bumptree was only able
to reach a solution for 70% of the trials when SMALL was set to 7. Table 5.1 summarises,
the performance on the Iris problem of that version of the bumptree identified in chapter
4 as the one giving the best overall performance. That is, the bumptree which employed
the MIF approach with all radii set to 1 and the output calculated using the LAF
technique The performance of this bumptree is given for various settings of SMALL.
Table 5.2 summarises the performance of the bumptree for the skin cancer diagnosis
problem. It can be seen that performance is inversely related to the value taken for
SMALL - a trend that was noted in the results for the other data sets. The standard
deviation figures reveal that the bumptree with a higher SMALL value is more dependent
on its starting configuration. The ideal setting for SMALL with the skin cancer diagnosis,
vowel recognition, and diabetes diagnosis problems proved to be 1, and this almost

always resulted in a singular matrix when matrix inversion was employed.

Table 5.1 - The average percentage performance of the MIF bumptree with all radii set to
| and the output calculated using the LLAF approach for different settings of SMALL on

the iris problem.




Table 5.2 - The average percentage performance of the MIF bumptree with all radii set to
1, employing the LAF output calculation technique for different settings of SMALL on the
skin cancer diagnosis problem.

Table 5.3 summarises the results attained on the Parity (6) problem by the MIF bumptree
with all its radii set to 1 that employed the LAF technique for calculating the output of the
network. These results follow the trend identified above, namely that performance 1S
inversely related to the value of SMALL. Once again, the standard deviation figures reveal
that the bumptree with a higher SMALL value is more dependent on its starting

configuration.

Average

94.1
98.3

Table 5.3 - The average percentage performance of the MIF bumptree with all radii set to
1 and the output calculated using the LAF approach for different settings of SMALL on

the Parity (6) problem.

In an attempt to overcome the problem of singular matrices in the matrix inversion
procedure alternative techniques were considered. The solution that was finally adopted
was to employ a singular value decomposition (SVD) technique to calculate a pseudo
inverse instead of the inverse; this overcame the problem of singular matrices. The SVD

technique employed in our study used the Gauss Jordan method (VanDer Rest 1992).
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Other methods could have been used such as Csanky's method, the bordering method, the
twofold partition method and the general r-fold method of partitioning (VanDer Rest
1992). The Gauss Jordan technique was selected because studies had shown that it
performs at least as well as any of the other techniques for a wide range of problems
(VanDerRest 1992). Experimentation with the Gauss Jordan method showed that it was
robust in solving the problem identified above. This enabled the bumptree neural network
to attain the levels of performance described in chapter 4. Appendix B provides pseudo

code that further details the process of optimising the Alpha and Beta parameters.

The one-shot learning algorithm that employed the SVD technique was consequently
adopted to determine the Alpha and Beta parameters, and the results given in chapters 4
and 6 were achieved with bumptrees employing this approach. It was found that this
approach gave reduced training times accompanied by improved performance compared

to the learning algorithm that employed standard matrix inversion.

5.3 Use of the Bumptree Structure to Calculate the Output of the Network

The partitioning of the problem space through the techniques discussed in chapter 4,
combined with the one-shot learning algorithm utilising the Gauss Jordan SVD
technique, allowed the construction of a bumptree neural network that gave robust
performance. The completed bumptree comprised functions at a number of levels in the
tree, with each function active on only a subset of the patterns. With the network fully
constructed the next problem concerned the mechanism for calculating the output of the
network. In particular, it was necessary 10 determine which functions should be involved

in calculating the output of the network. For a given pattern there will usually be a
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number of active functions distributed throughout the tree; figure 5.4 demonstrates a
typical activation pattern. Functions that are active on a pattern have their corresponding
nodes shaded. The issue then to be resolved is which of the active functions and which, if
any, of the other functions in the network are to be allowed to contribute to the network

output.

Figure 5.4 - Functions at various levels of the tree are active on individual patterns. This
figure demonstrates how 4 of the bumptrees functions are active on the pattern that has
just been presented to the network. Here functions 1,3,6 and 9 are active.

Different approaches for calculating the network's output were considered, and these will
now be examined. Firstly, the output could be based on the normalised output of every
function within the bumptree structure. Using this criterion, the output for any pattern
presented to the network in figure 5.4 would be based on the average output produced by
all ten functions. However, a better approach is to scale the output of each of the
functions. This scaling can be achieved by taking into account the level of activity of each

of the gaussian functions on the pattern. The scaling equation is given in 5.9:

MAX

; (Vo yussorad* Gauss ) * Output, (5.9)




where f is the function in question, fMAX is the total number of functions in the network,
GaussTotal is the summed activation of all the functions in the network, Gaussf is the
activation of the fth function on the pattern, and Outputg is the output of the fth function
on the pattern. Although this is a possible approach it was not implemented since it was
not considered desirable to have the output of a pattern based partly on the output of

functions that had not been trained to deal with the relevant section of the problem space.

A second approach to calculating the output of the network, the all active function (AAF)
would be to calculate the output of the bumptree as the normalised output of all the active

functions on the pattern in question. Applied to the situation in figure 5.4 the output

would be based on that of the functions 1, 3, 6 and 9. The normalised output of these
functions could be determined from equation 5.9 by summing over only the active

functions.

A third approach, described as the LAF approach in chapter 4, would be to base the
output of the network on the output of the active function at the lowest level of the tree.
In the case of the situation depicted in figure 5.4 the output of the network would simply
be the output of function 9. This approach has the advantage of basing the output on that

function determined to provide the best description of that portion of the problem space

in which the pattern resides. It might therefore be expected that this approach should give
a superior performance as far as training is concerned. Generalisation performance might,
however, be degraded by the over reliance on the output of a single activation function.

The results of a comparative study of the LAF and AAF approaches is provided below.

A fourth approach would be to sum the output of both the last active function and its
"brother", that is, the function created from the same parent function. In the case of the

situation displayed in figure 5.4 the output of the network would then be based on the
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output of functions 9 and 10, which could be averaged or calculated by a modification of
the scaling approach shown in 5.4. This approach was not implemented since it was not
considered appropriate to base the output partly on a function untrained for that part of

the problem space.

5.3.1 Comparative Results for Qutput Calculation Techniques

A comparative study of some of the techniques for calculating the output of the network,
described in the last section will now be considered for the problems described in chapter
4. For all experiments, the bumptree employed was created with the MIF approach which
set all the radius of each function to 1. The performance of each technique was measured
initially in terms of its ability to correctly classify the training and generalisation data
sets. The same criterion described in chapter 4 to determine the level of performance for
the training and generalisation sets was adopted here. Also of interest was the

computational time, and expense of required by each approach to reach an acceptable

solution.

Table 5.4 - The a{'erage percentage performance of the MIF bumptree with all radii set to
1 and the output calculated using the LAF output calculation technique.




Table 5.4 summarises the results obtained by using the LAF technique to calculate the
output of the network, and table 5.5 shows the results obtained when the AAF technique
for output calculation was employed. These results were achieved by bumptrees trained
using the one-shot learning algorithm employing the SVD technique. A comparison of
the results achieved by these two differing approaches reveals that there was no
significant difference in performance on either the training or the generalisation sets for
most of the seven problems examined. Employing the LAF approach gave a superior
performance by 8% on the Parity (6) problem, but gave an inferior performance of 6% for
the skin cancer data. Otherwise the two approaches achieved results within 2% of each
other on all the training and generalisation sets. The standard deviation figures
demonstrate an equal dependence of both the AAF and LAF output calculation

techniques on the initial configuration of the network.

It had been expected that the two differing approaches would produce markedly different
results. In particular, it was expected that the approach using the AAF technique would
have given better generalisation performance but poorer training performance. The
expectation was that because the AAF approach based the output of the network on
functions trained across a wider spectrum of the training set the generalisation
performance would be better because the output would be influenced by a wider area of
the problem space. Conversely, it was felt that since the LAF approach calculated the
output based on a single function trained on only a particular area of the problem space
the generalisation performance might suffer. However, it was expected that this would
improve training performance. That is, it was felt that the LAF approach might result in a
degree of overfitting of the training set, whilst the AAF approach might not be able to
learn the problems with the same degree of accuracy. The results show, however, that
ttle significant difference in performance between the two approaches. The

there is i

unbalanced nature of the training and generalisation sets, in terms of the proportion of
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patterns of each class might have influenced the results. However, with the data sets

employed the trend towards parity of results between the two approaches is clear.

Table 5.5 - The average percentage performance of the MIF bumptree with all radii set to
1. and the output of the network calculated using the AAT technique.

Table 5.6 - The average number of functions required by the LAF and AAF output

calculation techniques.

Another performance metric considered in this study was the number of functions
required by each technique in order to optimise performance. As table 5.6 shows, with the
exception of the Parity (6) problem, more functions were required when the AAF output
calculation technique was employed; this was particularly true for the vowel recognition

task. Therefore, the approach that calculates the output using the AATF approach 1s




computationally more expensive. This is in part because it requires more functions, but
also because it is necessary to retain the activation level of the gaussian function for each
function that is active on the pattern, as well as retaining the output value that the
function produced for the pattern. The process of normalisation can then be carried out on
these figures. Calculating the output of the network with the LAF technique simply
involves negotiating the tree structure until there exist no further branches and then
calculating the output of the final function. Since there 1s very little difference between
the performance of the two techniques the computational requirements would indicate
that the output of the network should be calculated on the last active function in the

structure.

5.4 Additional Training Mechanisms Included in the Training Algorithm

The approach that the author has developed for building, training and employing the
bumptree neural network therefore consists of a technique for partitioning the problem
space, a learning algorithm to be applied separately to each function, and a technique for
calculating the output of the network. In order for these component parts to be combined
satisfactorily to form a complete approach to building and calculating the output of a
bumptree some additional mechanisms were introduced. These were concerned with
determining when functions should be added to the network, when the process of addition
should stop, and when a function added to the network was to be considered live. As
defined earlier a function is said to be live if it contributes sufficiently to the network to
be considered a part of it for the purpose of calculating its output. In addition, only when
a function is live does it need to be considered when determining whether additional
functions are required. The mechanisms that were employed for these tasks and the effect

that they had on the performance of the network will be examined below.




The first of the additional mechanisms was concerned with the task of deciding when to
add functions to the network and when this process should terminate. In order to help
make the decision it was decided to use a simple measure of the error for each function
for the given training set. If the error was higher than some user defined value, referred to
as ACCEPTABLE, then the problem space for which the function was responsible was
further partitioned by the addition of new functions. The purpose of this approach was to
prevent the network adding unnecessary functions in the later stages of the training
process, whilst ensuring that function addition took place when required in the earlier
stages. The effect on the performance of the network of varying the value of
ACCEPTABLE was measured for all seven problems. A level of 0.5 was found to give the
best overall performance. For instance, for the iris problem when ACCEPTABLE was set
to 0.5 the bumptree was able to achieve accuracy levels of 100% on the training set and
97.5% on the generalisation set whilst achieving corresponding values of 99% and 94%
with ACCEPTABLE set to 2.0. The standard deviation values with these results were less
than 0.5 for both the training and generalisation sets. When ACCEPTABLE was assigned
a higher value the network prematurely converged to a solution, whilst a low value
tended to increase the number of functions added giving rise to an overfitting of the data.

Through extensive experimentation, a value of 0.5 was found to deal satisfactorily with

these conflicting requirements.

A mechanism also had to be adopted to determine when a function was live. That is,
when it influenced sufficient patterns in the training set to be considered significant. This
mechanism employed a parameter termed SMALL, and was introduced originally when
matrix inversion was an integral part of the learning algorithm. If a function dealt with a
greater number of patterns than that assigned to SMALL then the function was considered
significant; otherwise it was excluded from further splitting and was not involved in

calculating the output of the network. The use of an SVD technique largely overcame the



need for the SMALL parameter, but the parameter was retained. In only one of the seven
problems was a better result attained when SMALL was set to a value higher than 1, and
this was the iris problem, where a setting of 7 was found to be optimal. In general, a
setting of 1 was found to produce the best performance in terms of generalisation as
shown in tables 5.1 and 5.2. However, for the XOR, Parity (6) and Encoder (8) problems,
as is shown in table 5.3, a setting of 0 was required to attain the best level of
performance. The SMALL parameter was used to force a decline in training performance
in the hope that generalisation would improve by lowering the number of live functions
in the network. Adjusting the parameter upwards only improved performance if the
training set was overfitting the data, a problem that was not often encountered with the

bumptree.

A mechanism was also introduced to determine whether a network had become trapped in
4 minimum. This mechanism, which employed a parameter termed SAME, was
particularly useful when the Forgy non-hierarchical clustering technique was included in
the training approach, since this often encountered minima. The ideal setting for this
parameter was found through experimentation to be 4, since if the bumptree was still
trapped after 4 function additions then escape was not deemed possible. This parameter
was used to determine when the bumptree was unable to reach a position where all the

active lowest level functions had an error level less than A4 CCEPTABLE.

To conclude, the best parameters for the mechanisms identified above were arrived at
through experimentation. These experiments found that on all of the problems studied the
best performance was attained when ACCEPTABLE was set to 0.5. The iris problem
produced the best results when SMALL was set to 7, but on the other problems a value of

| or less for SMALL was required. The best setting for the SAME parameter was found to

be 4.
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5.5 The Genetic Bumptree

The bumptree classifier examined in chapter 4 and in the sections above is trained in two
stages. Firstly, the structure of the tree, the number of functions, their positions in the
tree, and their centres and radii, are determined. Secondly, each function's associated
weight and bias (Alpha and Beta) parameters are optimised using a one-shot learning
algorithm to minimise an error measure for the training set. A number of variations for
both positioning functions on the problem space and for minimising the error of each
function have been examined above. A further variation that was examined in this study
was the use of a genetic algorithm to arrive at the Alpha and Beta parameters for each

function and/or to position the functions on the problem space.

Genetic algorithms (GA's) were discussed briefly in chapter 2, when their use in the
optimisation of the MLP was examined. They are optimisation algorithms based on the
mechanics of Darwinian evolution that were introduced originally by Holland (1975).
They differ from other optimisation algorithms in that they operate on a coding of the
parameter space rather than directly on the space itself, and search stochastically from
many points at once. In the GA, parameters to be optimised are coded as a string of digits
which is usually binary in nature; the string is termed a chromosome. A population of
many such chromosomes is initially generated at random. Thereafter, evolution proceeds
as follows. Initially, a measure of fitness is calculated for each member of the population,
by decoding its chromosome and evaluating the associated point in the parameter-space
within the system whose parameters are to be optimised. Then a number of parents are
selected from the population, with 2a chromosome's probability of sclection being
proportional to its fitness. New offspring chromosomes are generated from fit parents by
the application of genetic operalors, typically: crossover, which swaps sections of

chromosome from two parents, and mutation, which randomly modifies one or more
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digits on a chromosome. All offspring so created are introduced into the population,
usually replacing the least-fit of the existing individuals, to form the next generation. This
process is repeated and with each generation the population's mean fitness increases. The
GA has been found to be able to discover near maximal points in high dimensional,

discontinuous parameter spaces in a relatively small number of generations.

Recently there has been a growing overlap of research interest between the fields of
neural networks and genetic algorithms (GA's). Researchers have sought to combine the
GA and neural network paradigms in hybrid learning systems with varying degrees of
success (Jones 1993; Yao 1992). The exact nature of the hybridisation has varied, from
using a GA to search the weight space of a neural network (Whitley, Dominic and Das
1991), to using the GA to optimise network architecture (Harp, Samad and Guha 1989) to
systems in which both architecture and weights are optimised genetically (Bornholdt and
Graudenz 1991). One factor which remains constant across the vast bulk of the published
work in this area, however, is that the neural network model chosen is the MLP.
However, the application of GA's to other types of neural network models is a possibility,

and it offers.an alternative technique for training the bumptree neural network.

The GA can be employed as a complete learning system to determine both the parameters
of the functions in terms of their centres and radius, and the Alpha and Beta values
(Williams et al. 1993). Alternatively, it can be employed in conjunction with the one-shot
learning algorithm. In the later case the GA is used to position the functions on the
problem space and the one-shot learning algorithm is used to arrive at the required Alpha
and Beta parameters (Williams ef al. 1994). The GA utilised by the hybrid GA-bumptree

whose results are examined below is detailed in Appendix C.



Employing the GA to optimise the bumptree system as a whole had the advantage that the
tree structure was not fixed entirely according to the distribution of the training data, but
was optimised simultaneously with the function's weight and bias parameters, the whole
process being based on the minimisation of a global error. It was hoped that by
considering a large number of parameters such a system would be able to provide better
performance. Furthermore, the use of a GA would also avoid the problem with singular
matrices when matrix inversion was employed. The bumptree that employed the GA to
optimise the structure of the tree whilst allowing the one-shot learning algorithm
discussed above to determine the Alpha and Beta values was developed to allow an
investigation of whether the genetic bumptree was placing the functions in a more
advantageous manner. It was also felt that the use of the one-shot learning algorithm
would produce better results than basing the Alpha and Beta values on a random, if
guided, walk through the problem space by the GA. The genetic bumptree adhered to the
constraints imposed by Omohundro's approach (section 4.4) on the size and location of

the functions within the network. .

The results achieved by the two genetic bumptrees will now be examined. The genetic
bumptree that employed a GA to both position the functions on the problem space and to
optimise the weight and bias parameters was employed on the Iris problem. This was able
to achieve an average performance level of 97% correct on the training set and 90% on
the generalisation set over ten trials. In this set of experiments a population size of 400
was used, of which 10% were replaced each generation. In initial tests the genetic
bumptree was found to reach near-convergence in around 150-200 generations and so, for
these experiments 300 generations were allowed before training was terminated. The
same technique described n chapter 4 was employed to determine the point at which the
performance of the network should be calculated. The average performance of the various

bumptrees described in chapter 4 ranged from 95.5% to 100% on the training set and



from 92% to 97.5% on the generalisation set. Hence, on the whole this type of genetic
bumptree produced slightly inferior results compared to bumptrees trained in a more

standard manner.

It was hoped that the genetic bumptree that combined the use of a GA to position the
functions on the problem space and the one-shot learning algorithm to determine the
weight and bias parameters would be able to produce superior results. Table 5.7
summarises the results achieved by this approach for the Iris, Parity (6) and Vowel
recognition problems. Once again a population size of 400 was employed with 10% of
the generation being replaced. A maximum of 500 generations was allowed and the
zesults averaged over 10 trials for each data set. The results reveal that this genetic
bumptree was able to produce better results than the initial genetic bumptree on the Iris
problem. Indeed, the results attained on the Iris problem were comparable to the results
attained by the standard bumptrees discussed in chapter 4, but its result was found to be

inferior for the Parity (6) and vowel recognition problems.

The use of a GA therefore offers an alternative approach for constructing and training a
bumptree. The genetic bumptrees developed to date have been constructed to adhere to
the constraints imposed by Omohundro on the dimensions of the functions, and it may be
possible to achieve improved performance by removing these constraints in a similar way
to that discussed in chapter 4. Even if this could be achieved, however, the training time
required would increase dramatically even with the GA concerned solely with positioning
the functions on the problem space. The scope for the genetic bumptree to improve the
“performance of the bumptree to a level superior to that attainable by the best standard

bumptree developed in chapter 4 may therefore be limited.
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Table 5.7 - The average percentage performance of the genetic bumptree that employs the
genetic algorithm to determine the dimensions of the functions and the one-shot learning
algorithm to optimise the weight and bias values.

5.6 Summary

This chapter has addressed all the issues involved with constructing and using a bumptree
neural network other than the task of partitioning the problem space, which was examined
in chapter 4. Attention focused initially on the learning algorithm to be employed to
optimise the weight and bias (Alpha and Beta) parameters of each individual function to
minimise a squared error measure on the training set. The leamning algorithm that was
developed for this task was a one-shot algorithm that optimised these parameters through
a matrix multiplication process applied once to each function. [nitial problems were
encountered with singular matrices when matrix inversion was incorporated in this
technique. However, once the Gauss Jordan SVD technique was used instead of matrix
inversion the algorithm was able to produce, alongside the MIF approach to function
centering and constraint, networks that were able to produce comparative performance to

those produced by MLP and RBF networks. A comparative study with the MLP and RBF

networks will be presented in chapter 6.

The second major issue to be examined in this chapter concerned the way in which the

output of the network should be calculated. The LAF approach calculated the output as
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the output of the live function at the lowest level of the tree active on the pattern. The
AAF approach calculated the output as the normalised output of all the live functions that
were active on the pattern. Both of these approaches proved to perform well on the seven
problems examined in this study, and neither had a real performance advantage in terms
of correct classifications over the other. However, the AAF approach — was
computationally more expensive, since it required more functions to attain a given level
of performance. The LAF approach is, therefore, the preferred approach. An important
point about the output that the bumptree produces is that it is a winner takes all system,

and as such requires one output per class of pattern.

The third issue concerned the mechanisms for determining when to add functions, when
to stop their addition and when to consider a function live. The examination of these
parameters showed that on the whole the parameters were problem insensitive. That is,

the best results were attained on the seven problems with parameters that varied very

little.

This chapter was finally concerned with the genetic bumptree. The genetic bumptree was
constructed through the use of a genetic algorithm rather than through any of the function
centering and constraint techniques discussed in chapter 4. In addition, in the initial
version the weight and bias (Alpha and Beta) parameters for each of the functions was
arrived at through the use of a genetic algorithm. It proved possible to employ a GA to
construct a bumptree neural network, and as the results in section 5.5 demonstrate, its
performance is comparable to that attained by the more standard bumptree. There 1s,
however, one issue on which the genetic bumptree fails hopelessly to match the
performance of the standard bumptree, and that is training time. The one-shot learning
algorithm takes roughly under a second to add a function to the network with the iris

problem (on Sparc Classics), and requires at most 9 function additions to solve the
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problem. The genetic bumptree requires multiple computers of a similar processing
power for periods of time usually exceeding 24 hours to reach a solution. Hence, the
genetic bumptree can be seen to take almost a day longer to train to a solution for the

simple iris problem. This increase in training time is also seen across the other problems.

The bumptree neural network classifier has been introduced in chapters 4 and 5, as have
the various approaches employed to construct, train and employ it. In addition, the
performance of the various approaches has been studied. However, in order for the
bumptree to be able to make a contribution as a neural network classification system it
needs to be compared to existing classifiers; the results of this comparative study are

described in chapter 6.
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Chapter 6

Comparative Study of the Bumptree, RBF and MLP Networks

6.1 Introduction

In previous chapters we have described the development of the bumptree neural network
and shown that it can be successfully applied to a range of problems. As a further
investigation of its performance we have conducted a number of comparative studies
against the more traditional MLP and RBF networks (Bostock & Harget 1994). This

chapter describes the results obtained.

The MLP employed in this study was trained with the standard back propagation learning
algorithm (Rumelhart, Hinton and Williams 1988) and employed a momentum term and
learning rate that were constant throughout the entire training process. For all problems
the learning rate was fixed at 0.25, and the momentum term set to 0.9. For each problem
the MLP's architecture consisted of an input layer, an output layer and a single hidden
layer. The starting weights and bias values were assigned random values between 2 and -
9 There still remained the issue of how many hidden units should be employed for each
of the problems, and this figure was arrived at empirically. Each of the problems was

solved with different numbers of hidden units and the best performance recorded.

For the RBF network the program included in the Autonet package developed by
Recognition Research (1993) was employed. This approaches the task of placing the
functions on the problem space by selecting points from either the actual data set or by
selecting random points within the area covered by the data set. The positioning of the
functions on the problem space was initially carried out using both of these approaches,

but the better generalisation performance was attained by using sample points within the
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problem space, so this method was chosen for all studies. There was also a choice of four
different functions that could be employed by the RBF to partition the problem space,
namely, gaussian, multi-quadratic, inverse multi-quadratic and thin plate spline functions;
these functions were described in chapter 3. These function types were employed to
produce the results discussed below. In addition, the number of functions to be employed
was arrived at empirically. Each of the problems was solved with different numbers of

functions and the best performance recorded.

A comparative study of network performance was conducted on a wide range of
problems, including XOR, Parity (6), vowel recognition, the diagnosis of diabetes and the
diagnosis of skin cancer. Particular attention was given to the average number of correct
classifications achieved on the training and generalisation sets and the computational time
required by the network to train to a solution. Also of concern is the time taken by the
trained network to respond to a query. The decision when to determine the performance
of the network during the training cycle was addressed in section 4.8.1, and the solution

proposed there has been adopted again in this section.

A potential limitation of this study is that the data sets have not split the patterns of the
different output classes evenly between the training and generalisation sets. That is, the
percentage of patterns of each output class in the training and generalisation sets differs.
This unevenédistribution may have had an impact on the results reported in this section, a
point to be considered when examining the results. The choice of a classification measure
based on the percentage of correct classifications did not compensate for any possible
bias introduced by the make up of the training and generalisation sets. A measure of the

percentage of each output class correctly classified would have provided additional useful

information. However, the split of the data was the same for all the neural network types
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and as such allowed a consistent and representative picture to be produced across the

different network types.

An additional consideration that is relevant to the results reported in this section is that
the performance of the MLP network was achieved by varying only a single parameter,
namely the number of hidden units. It may have been possible to achieve improved
results by adjusting some of the other parameters. For instance, the learning rate was set
to a value of 0.25 across all problems, and it may have been possible to improve
performance by altering this figure. In addition, the RBF network was employed in a very
"black box" manner. That is, this study did not conduct an in-depth investigation of the
RBF network. It instead utilised the standard RBF provided by the Autonet package to
attain comparative figures. The number of functions, their radius and the dimensions of
these, were altered for the various problems, but the results could possibly have been
improved by further adjusting these and other parameters in the training algorithm. The
MIF bumptree did not adjust the parameters in its learning algorithm in the course of this
study, but these parameters could be considered to be nearly optimal following the
investigations conducted in chapters 4 and 5. An additional consideration is that the
carlier chapters have revealed that the performance of the bumptree is fairly insensitive to
these parameters, whilst the performance of the RBF and MLP networks is known to be
dependent on various arbitrary parameters. The insensitivity of the bumptree to
parameters in the learning algorithm can be cited as an advantage that it possesses.
However, it does not remove the concern that the results provided in this chapter may
have been influenced by the decision to only adjust certain parameters of the MLP and
RBF networks. Therefore, the results provided in this section can be viewed as providing

a representative comparison but cannot be claimed to provide a definitive or critical

comparison.




6.2 Highly Non-Linear Problems Without a Test of Generalisation Performance

This section will examine how the three neural networks performed on highly non-linear
problems with no accompanying test of generalisation ability. The problems in this class
were the XOR, Parity (6) and Encoder (8) problems. The aim with these problems was
simply to model the training set to optimal accuracy with as small a network as possible.
The problems in this class were highly non-linear in nature, and therefore a good test of
the ability of the various network types to model difficult problem spaces during training.
Furthermore, they have been widely studied by others and provide a good initial
benchmark upon which to compare the performance of the bumptree to that of other

network types.

With both Parity (6) and XOR the network was learning to ensure even parity. The XOR
problem had two inputs and one output, with the output being concerned with ensuring an
even number of ones in total for the three units. That s, if the two input units had the
same value then the output unit should register a value of 0, otherwise a value of 1. The
XOR problem had four patterns in the training set. The Parity (6) problem employed in
this study had six inputs and two outputs. It is more comnion for Parity (6) to have only a
single output, like XOR, but as the bumptree takes the most active of the output units as
the output of the network, it requires one unit representing a 0 output and another
representing an output of 1. The task of the output units with the Parity (6) problem was
once again to ensure an even number of ones in the network. For instance, with an odd
number of ones in the input the output unit signifying an output of 1 should be active,
otherwise the other output unit should be active. The Parity (6) problem had sixty four
patterns In the training set. The Encoder (8) problem required the network's output to

directly reproduce the input. A single input unit is active for each of the patterns that
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comprised the problem. There are eight input units, eight output units, and eight patterns

in the training set with each pattern containing a single value of 1 in a different position.

6.2.1 The Radial Basis Function Network

The performance of the RBF network on the XOR, Parity (6) and Encoder (8) problems
will now be examined. For each of these problems the functions were placed on the
problem space at points within the area covered by the training set. The performance of
the RBE network on the XOR problem was very encouraging, with all the functions,
excluding the thin plate spline, giving a completely accurate mapping of the training set.
For the thin plate spline function the average performance on the XOR problem was
found to be 88.3%. Specifically it achieved 100% accuracy for 53% of the runs, and 75%
accuracy for the remaining runs. The performance of the RBF network seemed to be
invariant to the number of functions, since for cach function type the network was trained

with two, three and four functions and similar results were obtained.

The performance of the RBF networks employed in this study on the Parity (6) problem
was less encouraging. None of the function types was able to achieve an average
performance level of complete correctness for this problem. The best average
performance was achieved by an RBF that employed inverse multi-quadratic functions;
this achieved an average performance level of 92.1% correct using 60 functions to
partition the problem space. Only 10% of the runs were able to produce the correct output
for all the patterns in the training set. The non-local thin plate spline and multi-quadratic
functions were able to achieve an average performance level of 87.4% and 88.0%
respectively. The thin plate spline correctly classified all the patterns in 20% of the runs,

whilst the multi-quadratic achieved this in just 10% of the runs. The RBF that performed
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worst on Parity (6) was the one that employed gaussian functions to partition the space.
This achieved an average performance level of 81.4%, and never correctly classified all

the patterns.

The performance of the RBF networks on the Encoder (8) problem was very similar to
that attained on the Parity (6) problem. Once again none of the function types was able to
achieve an average performance of completely correct classification. The best average
level of performance was attained by the RBF network that employed multi-quadratic
functions, which gave an average performance level of 82.5%, with all the patterns being
classified correctly on 30% of the runs, when 8 functions were employed to partition the
problem space. Using gaussian and inverse multi-quadratic functions, with 8 functions,
performance levels of 71.3% and 78.8% respectively were attained. The RBF that

employed thin plate splines to partition the problem space was only able to attain an

average performance of 57.5% on the training set.
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Table 6.1 - The average percentage performance of RBF's employing different function

types.
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These studies showed that the performance of RBF networks employing the various
function types was very much problem dependent and that no particular function type
consistently gave the best performance. The average results attained by RBF's employing
the various function types are displayed in figure 6.1 and summarised in table 6.1. The
standard deviation figures in table 6.1 demonstrate that the performance of the RBF's was

very dependent on where the functions were positioned on the problem space.
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Percentage 80
Correct

Parity 6 Encoder 8

Problem
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Figure 6.1 - The average percentage performance of RBF networks using the various
function types with the optimum number of functions.

Figure 6.2 shows the variation in performance when different numbers of functions were
employed on the Encoder (8) problem. The results show an improved performance when
the number of functions used is increased. A similar performance trend was observed
with the results for the Parity (6) problem. In examining the XOR, Parity (6) and Encoder
(8) problems it was decided not to employ more functions than there were patterns in the
training set. That is, for Encoder (8) the number of functions was limited to 8. However,

it is possible that training performance might have been improved by employing more
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than this limited number of functions. Therefore, the results given here may not represent

the best possible results that could have been attained with the RBF network.

100

90

80

70

60

50

40

I m

8 functions 4 functions 2 functions

FGaussian O Thin plate spline @ Multi quadratic @ Inverse multi quadratic J

Figure 6.2 - The average percentage performance of RBF networks employing various
numbers and types of functions on the Encoder (8) problem.

6.2.2 The Multi-Layer Perceptron

The MLP was tested on the XOR, Parity (6) and Encoder (8) problems with networks that
employed differing numbers of hidden units. The performance of the MLP on the XOR
problem was excellent when the correct number of hidden units was used. However,
when insufficient hidden units were employed the MLP was unable to model the problem
space, and performance degraded. Table 6.2 summarises the results obtained. This reveals
that a network containing 4 hidden units was required for 100% correctness for all trials.
The standard deviation figures given in table 6.2 reveal that the MLP was very dependent

on the networks initial configuration when 2 or 3 hidden units were employed. It also
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reveals that trials that did reach a level of complete correctness on the problem required
fewer iterations when 4 hidden units were employed than when 2 or 3 were used. The
average number of iterations given in table 6.2 was calculated only from those runs that

correctly classified 100% of the patterns.

Table 6.2 - The average percentage performance of the MLP on the XOR problem.

The performance of the MLP on the Parity (6) problem was determined for network's
containing between one and ten hidden units. The performance was found to be similar to
that obtained on the XOR problem; not surprising given the similar nature of the
problems. The performance of the different sized networks on the Parity (6) problem 1S
summarised in table 6.3. This reveals that MLP's that employed 1 or 2 hidden units were
never able to correctly classify the complete training set. Indeed, when 4 hidden units
were employed only 50% of the trials achieved complete correctness. It was not until 10
hidden units were employed that complete correciness was achieved. This trend of
improving network performance with increased network size was also observed for the
XOR problem. The standard deviation figures in table 6.3 reveal that the MLP became
less influenced by its starting configuration when employing more hidden units. The

average number of iterations given in table 6.3 was calculated only from those runs that

correctly classified 100% of the patterns.
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The performance of the MLP on the Encoder (8) problem was once again very good. All
the networks that employed two or more hidden units were able to correctly classify all
the patterns for all trials. When one hidden unit was employed the MLP was only able to
correctly classify 50% of the patterns. As the number of hidden units was decreased the
average number of iterations required to achieve 100% correctness increased. For
instance, when three hidden units were employed an average of 1937 iterations was
required, but only 362 iterations were required when 8 hidden units were used. However,
this was compensated for by the fact that with more hidden units each iteration i1s more

computationally complex.

Table 6.3 - The average percentage performance of the MLP on the Parity (6) problem.

These studies have shown that the performance of the MLP is very good when the
network contains sufficient hidden units, but degrades sharply when fewer than required
are used. They have shown that determining the correct number of hidden units for the
MLP network is of considerable importance particularly for problems of a highly non-
linear nature. The number of hidden units employed by the MLP also influences the

number of iterations required to reach a solution, as illustrated by the Encoder (8)
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problem. However, another important point that needs to be considered is that the more
hidden units that are employed the more computationally expensive each iteration

becomes, because for each iteration there are more weighted connections to update.

6.2.3 Classification Performance of the MLP, RBF and Bumptree Neural Networks

This section will provide a comparative study of the average classification performance
of the MLP, RBF and bumptree artificial neural networks on the XOR, Parity (6) and
Encoder (8) problems. In considering the results it is necessary to consider that only
limited number of parameters for the RBF and MLP have been adjusted, and that
improved performance might have been possible if additional parameters had been
adjusted. For each network results attained with the optimum architecture will be
examined. In the case of the bumptree this means using the MIF technique, with the
functions radii in each dimension set to 1, the output of the network calculated with the
LAF technique, and the one-shot learning algorithm using the SVD technique employed.
This will be referred to as the MIF bumptree. Figure 6.3 provides a graphical summary of
how each of these networks performed in terms of the percentage of correct

classifications recorded on the various problems.

Overall the most satisfactory performance was achieved for the XOR problem. The MLP
was able to correctly classify all the patterns when more than four units were employed in
the hidden layer, and the RBF network was able to correctly classify all the patterns when
more than two functions were used for all function types except the thin plate spline. The
MIF bumptree neural network was able to correctly classify all the patterns; a result that
was repeated for the bumptree networks employing any of the centering techniques

discussed in chapter 4. Hence, all three approaches were able to correctly classify all
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patterns when an optimum network architecture was used. However, in the case of the
MLP and RBF networks deviation from the optimum architecture caused a rapid
degradation in performance. In contrast, the performance of the bumptree neural network
was found to be relatively less sensitive to parameter settings; the same set of parameters

being used for the XOR, Parity (6) and Encoder (8) problems.
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Figure 6.3 - The average percentage performance of the MLP, RBF, and MIFF bumptree
neural networks on the Parity (6), Encoder (8) and XOR problems.

For the Parity (6) problem the MLP network was able to achieve completely correct
classification for the training set when the appropriate number of hidden units were
employed. However, as with the XOR problem performance degraded when fewer hidden
units were used. The best average performance attained by the RBF network was 92.1%
of the patterns correctly classified, achieved when the inverse multi-quadratic function
was employed. The MIF bumptree was able on average to correctly classify 98.3% of the
patterns. All three networks, therefore, performed to a similar level, but only the MLP
achieved 100% correct classification for every trial conducted when using the correct size

network. The other two network types were not able to achieve this level of average



performance. The MIF bumptree achieved a better average classification performance to
the RBF, although the difference could in part be accounted for by the standard deviation

figures, and the limiting of the number of functions in the RBF network to 64.

The Encoder (8) problem once again produced diverse results across the three differing
networks. For all trials the MLP was able to correctly classify all the patterns with more
than one hidden unit, and a similar level of performance was obtained by the MIF
bumptree. The RBF network, however, gave inferior performance; using multi-quadratic
functions it could only achieve an average performance of 82.5% correct classifications.
The performance of the RBF network was greatly influenced by the positioning of the
functions on the problem space, as revealed by the standard deviation figure given in

table 6.1.

In conclusion, the classification performance of the MIF bumptree on these highly non-
linear problems was found to be very encouraging. The issues of training time and
training complexity, examined in section 6.8, reveal that the promising classification
results were achieved with a minimum of effort compared to the other approaches. The
performance of the MIF bumptree and RBI network were equally dependent on the
positioning of the functions on the problem space with the Parity (6) problem. However,
for Encoder (8) problem the performance of the RBF was influenced to a greater degree

by the initial placing of the functions on the problem space.



6.3 The Diabetes Diagnosis Data Set

Further experiments were conducted in order to test the generalisation performance of the
networks, beginning with the diabetes diagnosis data set. This data set concerns the
occurrence and diagnosis of diabetes in the Pima North American Indian tribe. In
particular, all the patients represented in the data set are females of at least twenty one
years of age of Pima Indian heritage living near Phoenix, Arizona, USA. The data set
contained 400 patterns in the training set and 368 patterns in the generalisation set with
each pattern being described by eight inputs and two outputs. Each of the patients
represented in the data set had been diagnosed as either diabetic or non-diabetic, and the
problem was to predict whether a patient would test positive according to the World
Health Organisation criteria (i.e. if the patient's 2 hour post-load glucose is at least 200
mg/dl) given a number of physiological measurements and medical test results; the
attribute details are given in figure 6.4. In order to test the performance of the MLP, RBF
and MIF bumptree neural networks on the diabetes problem the data was normalised so

that the values for each attribute fell within the range 0-1.

1 - number of times pregnant

2 - plasma glucose concentration in an oral glucose tolerance test
3 - diastolic blood pressure (mm/Hg)

4 - triceps skin fold thickness (mm)

5 - 2-hour serum insulin (mu U/ml)

6 - body mass index (kg/m2)

7 - diabetes pedigree function

8 - age (years)

Figure 6.4 - The eight attributes for the diabetes data set.




Of the 768 patterns contained in the data set, S00 (65%) represented diabetic patients and
the remaining 268 (35%) non-diabetic patients. The training set consisted of 248 (62%)
patterns representing diabetic patients, and 152 (38%) representing non-diabetic patients.

For the generalisation set the corresponding figures were 252 (68%) and 116 (32%).

6.3.1 The Radial Basis Funetion Network

RBF networks employing either localised functions in the form of gaussians, or non-
localised functions, in the form of thin plate splines were tested on this problem. The
functions were again placed on the problem space at points within the area covered by the

data set.

Table 6.4 - The average percentage performance of RBF networks using thin plate splines
on the diabetes data set.

The RBFE network that used thin plate splines was constructed with between 25 and 400
functions. The results for these different size networks are summarised in table 6.4. These
results show that whilst the best average performance on the training set was obtairied

with 400 functions, the best generalisation performance of 78.9% was obtained with 25




functions. Figure 6.5 shows a clear trend, in that training performance improves when the
number of functions increases, whilst generalisation performance degrades. This suggests
that with more functions the RBF overfitted the training set at the expense of

generalisation performance.

Percentage
Correct
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(training) (generalisa
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Figure 6.5 - The average percentage performance of the RBF network that employed thin
plate splines on the diabetes data set.

The RBF network employed between 25 and 150 gaussian functions, and the results
obtained from these differing size networks are given in table 6.5. The best average
performance on the generalisation set was 74.7% obtained using 100 gaussian functions,
whilst the best training set performance was 83.4% obtained with 150 functions. Our
studies showed that the performance of the RBF network was sensitive to the number of
functions used whatever their type. When too many functions were employed the RBF
network tended to over fit the training set and degrade generalisation performance, whilst

if too few were employed the network was unable to achieve satisfactory performance on

either data set.



Table 6.5 - The average percentage performance of RBF networks using gaussian
functions on the diabetes data set.

6.3.2 The Multi-Layer Perceptron

The MLP was tested on the diabetes diagnosis problem with the hidden layer ranging
from 2 to 40 units; the results for these different sized networks are given in table 6.6.
The best average generalisation performance of 78.9% was obtained with a network
containing 16 hidden units, whilst 40 hidden units were required to give the best
performance on the training set of 86.6%. The performance on both data sets improved

consistently as the number of hidden units was increased from 2 to 16. When more than

E 16 hidden units were employed, performance on the training set continued to improve
whilst performance on the generalisation set worsened, probably due to an overfitting of

the training set. These results bear a strong resemblance to those obtained with the RBF

network, even to the extent of giving similar generalisation performance.
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.6 - The average percentage performénce of the MLP on the diabetes data set.

6.3.3 Classification Performance of the MLP, RBF and Bumptree Neural Networks

This section will provide a comparative study of the average classification performance
of the MLP, RBF and MIF bumptree neural networks on the diabetes diagnosis problem.
The results summarised in table 6.7 show that the three network types produce similar
performance levels. The MIF bumptree gave slightly the best generalisation performance,
by 1%, with the MLP and RBF networks giving similar performance. In addition, only
the MLP gave better performance on the training set than the generalisation set when the
generalisation performance in table 6.7 was achieved. Finally, all three networks were

prone to overfitting the training data when too many functions or hidden units were used.

With regards to parameter settings it was found that the same parameter values could be
used for the MIF bumptree (SMALL=I, ACCEPTABLE=0.5) as used in the skin cancer
and vowel recognition problems. These figures are similar to those adopted for the XOR,
Parity (6) and Encoder (8) problems, and underline the robustness of the bumptree. In
contrast, the performance of the RBF and MLP networks was found to be sensitive to

parameter settings. This sensitivity was also reflected to a degree in the standard
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deviation figures, which demonstrate that the performance of the MLP network was very
dependent on the initial configuration of the networks weight and bias parameters’. The
ability of the network to consistently perform at a given level regardless of initial network
configuration is relevant in addressing performance of the networks. The standard
deviation figures provide information on this consistency. In addition, they provide
information concerning the degree to which the average performance has been influenced

by outlying results.

Table 6.7 - The average percentage performance of the MLP, RBJF and MIF bumptree
neural networks on the diabetes data set for the networks with the best average
generalisation performance.

6.4 The Skin Cancer Diagnosis Data Sct

The skin cancer diagnosis data set also allowed generalisation performance to be
evaluated. The skin cancer diagnosis data set concerned the occurrence and diagnosis of
skin tumours in Britain, and was provided by Ela Claridge! and Per Hall?. The data set
was comprised of 62 patterns in both the training and generalisation sets, with each

pattern being described by 3 inputs and 2 outputs. Each of the patients represented in the

IEla Claridge, School of Computer Science, University of Birmingham, Birmingham.
2 per Hall, Department of Plastic Surgery, Wordsley Hospital, West Midlands.
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data set had had a skin tumour removed and then diagnosed as either benign or malignant.
The three inputs represented the bulkiness, the textural fractal dimension and the
structural fractal dimension of the tumour. All input data was normalised between the

values of 0 and 1.

If the networks could provide high generalisation performance then this would provide a
means of detecting melanoma, thus avoiding the unnecessary surgery of benign tumours.
In an earlier study with a modified version of the MLP (Bostock et al. 1993), only a
single output unit was used to indicate whether a tumour was benign or malignant. In this
study, however, 2 output units were used, since the output of the bumptree network is
given by the output unit with the highest activation. One output unit represented
malignant tumours and the other benign. The training set consisted of 37 malignant
patterns (60%) and 25 benign patterns (40%), and the generalisation set consisted of 31
(50%) malignant patterns and 31 (50%) benign patterns. This was not balanced in terms
of the distribution of patterns from the differing output classes, and the results attained by

the different networks may have been influenced by this uneven distribution.

6.4.1 The Radial Basis Function Network

The performance of the RBF network on the skin cancer diagnosis data set will now be
examined for networks employing either gaussian, thin plate spline, multi-quadratic or

inverse multi-quadratic functions The functions were placed on the problem space at

random points within the area covered by the training set.

With thin plate splines a number of networks were constructed with between 10 and 62

functions, and the results are given in table 6.8. These show that the network was able to
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correctly classify all members of the training set with 62 functions, and that the best
average performance on the generalisation set (79.5%) was achieved when 20 functions
were employed. Table 6.8 shows that the average performance on the training set
improved as the number of functions increased and that average performance on the
generalisation set peaked when 20 functions were employed and deteriorated as the
number increased. These results show that the network remained strongly influenced by

the initial configuration of the network, regardless of the number of functions employed.

Table 6.8 - The average percentage performance of RBF networks employing thin plate
splines on the skin cancer data set.

A similar set of experiments was conducted with gaussian functions, and the results
shown in table 6.9 were obtained. These show that the best average performance on the
training set (100%) was achieved when 62 functions were employed, and that between 10
and 20 functions were required for the best average generalisation performance (76.8%).
When the number of functions increased beyond 20, the performance on the training set
improved, whilst performance on the generalisation set worsened, suggesting that
overfitting of the training set had occurred. The results also reveal that the performance of

the network was strongly influenced by its initial configuration.
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Table 6.9 - The average percentage performance of RBF networks employing gaussian
functions on the skin cancer data set.

The results for the RBF networks that employed multi-quadratic functions are given in
table 6.10, and for inverse multi-quadratic functions in table 6.11. Both results show the
trend observed in tables 6.8 and 6.9, namely that optimal performance on the
generalisation set is achieved with a relatively small number of functions but then
degrades as the number of functions increases, probably due to overfitting the training

data. Once again the impact of the initial network configuration on performance can be

seen to be significant.

Table 6.10 - The average pefééhtage performance of RBF networks employing multi-
quadratic functions on the skin cancer data set.
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Table 6.11 - The average percentage performance of RBF networks employing inverse
multi-quadratic functions on the skin cancer data set.

A comparison of the performance of the four basis functions reveals that the best average
generalisation performance of 80.3% was achieved when 10 multi-quadratic functions
were employed, with the poorest being obtained with the inverse multi-quadratic
functions. Networks that employed each of the function types were prone to overfitting
the training data when too many functions were employed. In addition, the performance

of the network was found to be sensitive to the initial configuration of the network.

6.4.2 The Multi-Layer Perceptron

The MLP was trained and tested on the skin cancer diagnosis data set with networks that
employed between 1 and 20 hidden units, and table 6.12 summarises these results. The
best generalisation performance of 79.3% was obtained with a network employing 4
hidden units, and generalisation performance was to a large extent invariant over the
range of 4 to 20 hidden units. The results in section 6.4.1 revealed that when the RBF
networks employed too many functions they tended to over fit the training set. A similar
trend was found with the MLP, although the deterioration in performance was not so
marked. When more than 4 hidden units were employed performance on the training set

improved, whilst performance on the generalisation set marginally deteriorated. When




less than 4 hidden units were used the MLP gave poor performance on both the training
and generalisation sets, suggesting that the network had insufficient hidden units to
adequately map the problem space. The standard deviation figures in table 6.12 reveal
that the performance of the MLP was significantly influenced by the initial network

configuration.

Table 6.12 - The average percentage performance of the MLP on the skin cancer data set.

6.4.3 Classification Performance of the MLP, RBF and Bumptree Neural Networks

This section will provide a comparative study of the average classification performance
of the MLP, RBF and MIF bumptree on the diabetes diagnosis problem. The average
level of performance achieved by each network is shown in table 6.13. We have included
the performance of the MIF bumptree and Omohundro's bumptree, since it was found to
give the best generalisation performance (82.2%) of any of the bumptree variations. The
generalisation performance achieved by the different networks was again very similar,
although Omohundro's bumptree was found to marginally outperform the other networks.
The results indicate a tendency for the bumptree to produce a marginally superior

performance on the generalisation set. However, the standard deviation figures,
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particularly on the generalisation set, demonstrate the dependency of the networks on the
initial configuration. The dependency of the networks on their starting configuration can
be considered to play a significant role in determining the average levels of performance.
The results reveal that the bumptree is less effected by its initial configuration. They do

not, however, demonstrate a significant superiority in terms of performance level.

For the skin cancer diagnosis problem the three networks were able to achieve similar
levels of classification performance. The performance on the training set of the MIF
bumptree varied significantly and was dependent on its initial configuration, as was that
of the RBF and MLP networks. However, on the generalisation set the performance was
significantly less dependent on the initial configuration of the network than the other
network types. The MIF bumptree proved to be less sensitive to a range of parameter
values, since the same parameter values used for the diabetes problem were also used
here. In contrast, the MLP and RBF networks had to be re-parameterised in order to
optimise network performance. The impact of adjusting the number of hidden units and
the number of functions implies that the failure to adjust additional parameters for the

RBF and MLP network's might have had a significant impact on the performance level

attained.

Table 6.13 - The average percentage performance of the MLP, RBF and bumptree neural

networks on the skin cancer data set.




6.5 The Iris Data Set

The iris data set was concerned with distinguishing between three different sorts of
flowers, and was provided for use in this study by D. Bounds?. The data set contained 75
patterns in both the training and generalisation sets, with each pattern being described by
4 inputs and 3 outputs, with each type of flower represented by one of the outputs. The
data was normalised in the range 0 to 1. In its entirety the data set consisted of 150
patterns, with 50 patterns representing each class of flower. Both the training set and the

generalisation set consisted of 75 patterns, with 25 instances of each class of flower.

6.5.1 The Radial Basis Function Network

RBFE networks were constructed using gaussian, thin plate spline, multi-quadratic, or
inverse multi-quadratic functions with the functions once again being placed on the

problem space at random points within the area covered by the training set.

An RBF network employing between 25 and 75 thin plate spline functions gave the
performance shown in table 6.14. These results show that the network was able to
correctly classify all the patterns in the training set when between 35 and 75 functions
were employed. The best average generalisation performance of 93.7% was achieved
with 35 functions. There was a slight weakening of generalisation performance as the

number of functions was increased, but even with 75 functions performance was still

satisfactory.

3professor D. Bounds, Head of Department, Department of Computer Science, Aston University,

Birmingham.
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Table 6.14 - The average percentage performance of RBF networks employing thin plate
splines on the iris data set.

The results obtained for an RBF network using between 35 and 75 multi-quadratic
functions are shown in table 6.15. The results on the training set show that when 75
functions were employed the network was able to correctly classify all the patterns for all
the trials, but that performance degraded when fewer functions were used. In contrast
generalisation performance was found to improve slightly as fewer functions were used,
although the actual changes were very small, and possibly explained by the standard

deviation figures given in table 6.15.

Table 6.15 - The average percentage performance for RBF networks employing multi-
quadratic functions on the iris problem.
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Table 6.16 - The average percentage performance of RBF networks employing inverse
multi-quadratic functions on the iris problem.

RBF networks constructed with between 35 and 75 inverse multi-quadratic functions
gave the results shown in table 6.16. The results are similar to those obtained using multi-
quadratic functions. The network was able to correctly classify all the members of the
training set when 75 functions were used and generalisation performance improved when
the number of functions decreased. In this instance the best average generalisation

performance of 92.5% was achieved with a network using 50 functions.

When gaussian functions were used, networks employing 50 and 75 functions were
examined, and both of these networks correctly classified all the members of the training
set. With 50 functions the generalisation performance was found to be 94% and for 75
functions 96%. Overall this was the best performance obtained by an RBF network. Once

again, it was decided not to employ more functions than one per pattern in the training

set.

In summary, all the RBF networks were able to achieve completely correct classification
of the training set - although the best performance on the generalisation set was not
achieved by the thin plate spline, multi-quadratic and inverse multi-quadratic functions
with this level of performance on the training set. To correctly classify all the training

patterns it was necessary for these RBF networks to over fit the training data at the
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expense of generalisation performance. The best level of performance on the
generalisation set was obtained with an RBF with gaussian functions, when a correct

classification of all the patterns in the training set was obtained.

6.5.2 The Multi-Layer Perceptron

The MLP was tested on the iris pattern classification task with networks that employed
between 2 and 50 hidden units; the results for the generalisation set are given in figure
6.6. The best average generalisation performance of 95.7% was achieved when 4 hidden
units were employed. For the iris problem the size of the hidden layer made hardly any
difference to the performance of the network, unlike the other problems examined so far.
When between 2 and 50 hidden units were employed the MLP was able to correctly
classify all members of the training set and achieve a classification performance

exceeding 95% on the generalisation set.
g g
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Figure 6.6 - The average percentage performance of the MLP on the iris pattern

classification problem.
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The overall results and trends for the iris pattern classification task were consistent with
those achieved for the other problems. The MIF bumptree produced a classification
performance comparable to that obtained with the MLP and RBF networks, and an
analysis of the time required to train the network to a solution carried out in section 6.7
reveals that the training process was less computationally complex. The response times of
the trained networks to queries was similar in the case of the MLP and MIF bumptree

~
<

networks, but much slower for the RBF network.

In contrast to the previous studies the performance of the MIF bumptree was found to be
sensitive to the parameter values taken, since the best performance was obtained with a
value of 7 for the parameter SMALL. The performance of the RBF network was once
again found to be dependent on the number and type of function employed, whilst the
MLP was able to produce a similar performance on both the training and generalisation

data sets for an architecture consisting of between 2 and 50 hidden units.

6.6 The Petersen and Barney Vowel Data

The Petersen and Barney vowel data set (Petersen and Barney 1952) concerned the
classification of the letters A-J, and was provided for this study by David Bounds?®. The
data set contained a number of occurrences of the letters A-J, and consisted of 653
patterns with each pattern being represented by two inputs and three outputs. The patterns
were divided into 320 patterns in the training set and 333 patterns in the generalisation
set, with each of the letter classes being evenly represented in both data sets. All the input

and output values were normalised to values between 0 and 1. This was a complex

4professor D.Bounds, Head of Department, Department of Computer Science, Aston University,

Birmingham.
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problem to solve, since the different classes of patterns were very closely grouped

together, with the various classes overlapping on the problem space.

6.6.1 The Radial Basis Function Network

The performance of the RBF network on the vowel recognition task will now be
examined. RBF networks were constructed using either thin plate spline, gaussian, multi-
quadratic or inverse multi-quadratic functions, with varying numbers of functions. The
functions were once again placed on the problem space at random points within the area
covered by the training set.

Figure 6.8 provides the results for the RBF network using between 60 and 320 gaussian
functions. These show that the best training performance (99.4%) was achieved with 320
functions and the best generalisation performance (85.4%) was achieved with 80
functions. As the number of functions increased generalisation performance degraded as
the network overfitted the training set, with a severe degradation being observed with 320
functions. Performance on the training set was also found to be somewhat sensitive to the
number of functions employed, the results showing a clear trend of improving

performance with increasing network size.
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Figure 6.8 - The average percentage performance of RBF networks employing gaussian
functions on the Petersen and Barney vowel data.

Similar results were obtained for RBF networks using thin plate spline, multi-quadratic
and inverse multi-quadratic functions. As the number of functions increased towards 320
performance on the training set improved. whilst performance on the generalisation set
peaked with between 100 and 200 functions; this is shown in figures 6.9-6.11. The RBF
network using thin plate splines achieved the best training performance (96.2%) when
approximately 300 functions were used, and the best generalisation performance (77.9%)
when between 50 and 75 functions were used. The best training performance for the RBF
network employing multi-quadratic functions (95.1%) was achieved with approximately
300 functions as was the best generalisation performance (76%). When less than 290
functions were employed the performance on both the training and generalisation sets
deteriorated. The RBF using inverse multi-quadratic functions obtained its best average
performance level of 93.2% on the training set when between 290 and 300 functions were
employed. The best average generalisation performance (76.4%) was achieved when
between 200 and 210 functions were used. When less than 200 functions were employed

performance on both the training and generalisation sets deteriorated.
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Figure 6.9 - The average percentage performance of RBF networks employing thin plate
splines on the Petersen and Barney vowel data.
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Figure 6.10 - The average percentage performance of RBF networks employing multi-
quadratic functions on the Petersen and Barney vowel data.
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Figure 6.11 - The average percentage performance of RBF networks employing inverse
multi-quadratic functions on the Petersen and Barney vowel data.

The performance of the RBF network on the Petersen and Barney vowel data showed the
same trends between performance and the number of functions present in the network as
were observed for the other problems studied. That is, the performance on the training set
improved as the number of functions ‘nereased, and the network was able to memorise
the training patterns. The performance on the generalisation set improved upto the point
when the network possessed sufficient degrees of freedom to map the problem, and

deteriorated thereafter as the network began to simply memorise the training patterns.

6.6.2 The Multi-Layer Perceptron

The MLP was tested on the Petersen and Barney vowel recognition data with networks
consisting of between 8 and 20 hidden units; the results are given in table 6.17. Given the
complexity of the problem the MLP required a large number of hidden units in order to

effectively partition the problem space. The largest number of hidden units employed in




the network was 20, and this gave a training set performance of 82.4% and a
generalisation set performance of 77.1%. In order for the network to correctly classify
more than 75% of the patterns in the training set at least 16 hidden units were required.
Further trials were carried out that employed more than 20 hidden units, but performance

on the generalisation set was not significantly improved, whilst training time was

extended greatly.

Table 6.17 - The average percentage performance of the MLP on the Petersen and Barney
vowel data. b

6.6.3 Classification Performance of the MLP, RBF and Bumptree Neural Networks

This section will provide a comparative study of the average classification performance
of the various neural networks on the Petersen and Barney vowel recognition problem.

The level of performance achieved is shown in figure 6.12. This shows that the RBF

network using 80 gaussian functions was able to attain the best performance level on the
generalisation set of 85.5%, followed by the MLP with 77.1% and the bumptree trailing
with 73.6%. The RBF network correctly classified over 90% of the patterns in the
training set for all four function types when a sufficient number was used, although

generalisation performance deteriorated. The MLP attained the best performance on both

176




the generalisation and training sets when 20 hidden units were employed. The
performance of the MIF bumptree on both the training set and the generalisation set

improved as more functions were used, but was disappointing.

90
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Figure 6.12 - The average percentage performance of the MLP, RBF and MIF bumptree
neural networks on the Petersen and Barney vowel recognition task.

It was expected that with a problem where the different classes overlapped to a large
degree, as was the case with the Petersen and Barney data, the MLP, with its long range
solution, would produce the worst generalisation performance. However, this was not the
case. The RBF was able to produce superior performance to the MLP, but the MIF
bumptree gave the poorest performance. It was not able to match the generalisation
performance of the other networks on this problem, and this raises the issue of its ability
to deal with difficult problems. This problem is particularly difficult because of the
manner in which the different classes overlap. The MIF bumptree is able to learn

complex problems, as revealed by the Parity (6) problem and by the performance on the

training set with this problem. However, it was not able to produce good generalisation

performance on this, the most complex data sct examined. It was able to reach the

177




recorded level of performance relatively quickly, but from this point was not able to

improve generalisation performance.

6.7 Computational Complexity Of the MLP, RBF and MIF Bumptree Networks.

The average classification performance of the RBF, MLP and MIF bumptree neural
networks is one performance measure that can be utilised. An additional performance
measure is the computational effort required to reach a solution. The issue of
computational complexity involves both the size of the network required to reach a
solution and the mathematical operations required to train the network. A similar
approach to that employed in chapter 4 has been adopted to compare the computational
complexity of the RBF and MLP networks to the MIF bumptree. The data sets examined
are those that allow a valid test of the generalisation performance of the network, since
the main concern is to identify the degree of computational complexity required to train

the network to the level of generalisation performance given above.

The computational complexity of the RBF, MLP and MIF bumptrees will be analysed
both in terms of the size of network required to reach an adequate solution and in terms of
the mathematical operations required to train the network. The latter measure provides
more useful information, since a network that employs 1 function but takes thousands of
calculations is inferior in terms of its computational complexity to one with 20 functions
that requires a hundred calculations. Table 6.18 summarises the number of hidden units

or functions each network type required to attain the level of average generalisation

performance given above.
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4 hidden units
(262

iterations)
iterations)
75 functions 25 functions
8 functions 3 functions

Table 6.18 - The size of networks to produce the best generalisation performance on the
problems with a valid test of generalisation.

Table 6.18 suggests that the MIF bumptree generally requires fewer functions than the
RBF network with the exception of the Vowel Recognition problem. This is also the
problem where the MIF bumptree performs worse than the other networks. It appears that
if the MIF bumptree is unable to reach a solution with a relatively small network the level
of performance deteriorates in comparison to the other network types. That is, although
the performance of the MIF bumptrce improves on the Vowel Recognition problem until
on average 104 functions are employed it is not able to match the performance of the
other networks. The inability of the MIF bumptree to perform adequately on the vowel
recognition problem was raised earlier. and its performance brings into question its ability
to perform adequately when numerous function additions are required. The MLP
employed a relatively small number of hidden units for all the problems, and the
significance of these and the number of iterations required on the complexity of the

training process will be examined below.

In terms of network size the MIF bumptree generally employed fewer functions than the
RBF network. In addition, it generally employs a similar number of functions as the MLP

employs hidden units. The exception to this is the Vowel recognition problem, and this

have been discussed above. Although network size is an important issue in considering
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the computational complexity of the approaches, of more significance is the number of
mathematical operations required to arrive at a solution. Chapter 4 examined the number
of mathematical operations (multiplication's, divisions, additions, subtraction's) required
by the MIF training operation. The number of calculations required by the MLP and RBF
can also be categorised in this manner. which enables the scale of any differences in

computational complexity to be identified.

In the case of the MIF bumptree, the focus of attention is on adding functions to the
network, and the subsequent training of these functions. The pseudo code given In
Appendix A provides a basis for this analysis. and chapter 4 examines this process in
detail. To arrive at the total number of calculations required to reach a solution for the
MIF bumptree it is necessary to consider not only the calculations required to train each

function, but it is also necessary to consider the number of function additions required to

reach a solution.

1 - Assign the weight and bias's their initial random values.
2 - Calculate the error of the network.
3 -While the error level is not satisfactory.
4 - Adjust the weight and bias values.
5 - Calculate the error of the network.
6 - End training.

Figure 6.13 - The main steps employed in training the MLP.

The training of the MLP concerns the iterative updating of the weight and bias values
employed by the network. That is, it commences with a network of fixed size and updates

the weight and bias values until an acceptable level of performance is reached. Therefore,
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the important issues are the number of hidden units employed, the number of iterations
required, and the number of weight and bias values to be updated. The steps involved in

training the MLP network employed in this study are summarised in figure 6.13.

1 - Determine initial function centres.

2 - Calculate activation of each function on all patterns.

3 - Optimise Alpha and Beta parameters for patterns where the function has an activation
level that 1s non zero.

Figure 6.14 - The main steps employed to construct the RBF network.

The RBF training process employed in this study bears similarities to both the MLP and
MIF bumptree approaches. Similar to the MLP, the size of the RBF network is fixed at
the commencement of the training process and every update of the parameters has to
consider the impact of every pattern in the training set. However, the RBF training
process is not an iterative procedure. Instead the RBF, like the MIF bumptree, can
employ a one-shot learning algorithm. The training process employed by the RBF used in
this study is summarised in figure 6.14. The RBF network employing gaussian functions
will be considered because the bumptree considered in this section employed gaussian
functions. There are similarities between the RBF approach and the MIF bumptree
training process which is summarised in figure 6.15. The training process for each
function with the MIF bumptree is not iterative, but the entire process can be seen to be
repeated cach time an additional function is required. The RBF network can employ the
one-shot learning process once only for all the functions in the network. The absence of
the need for a routine to calculate the error of the RBF network 1s an obvious difference

between the approaches. This is not required since the size of the network and the
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position of the functions is fixed for the duration of the training process, and the error of
the network does not impact on the training process. It can simply be used at the
conclusion of the training process (o measure the success or failure of the approach. In
addition, it is usual for the training algorithm for the RBF to contain an element
concerned with positioning functions on the problem space. However, in this study

experimentation was employed to determine acceptable positions for the functions.

Candidate Functions:

1 - Determine initial function centres.

2 - Assign Patterns to functions.

3 - Optimise Alpha and Beta parameters.

4 - Calculate the error of each function.

5 _ Calculate a goodness value for each function.
6 - Add functions to the network.

Actual Functions:

7 - Assign Patterns 10 functions.

8 - Optimise Alpha and Beta Parameters
9 - Calculate the error of each function.

If further functions are required goto step 1, else finish training.

Figure 6.15 - The main steps employed to construct the MIF bumptree.

The calculations required by the MIF bumptree to add two functions to the network for
each of the Iris, vowel, diabetes and skin cancer diagnosis data set were examined in
chapter 4. Chapter 4 provided an analysis of the calculations required by the main steps
involved in this training process, namely those concerned with assigning patterns to the
functions, optimising the Alpha and Beta parameters, and calculating the error of the
functions. In order to arrive at the total calculations required by the MIF approach 1o

reach a solution for each of these problems it is also necessary to consider the number of
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function additions required by the MIFF bumptree to reach a solution. Table 6.18 listed the
number of functions required for each of the problems and table 6.19 provides a summary
of the total calculations required to solve each of the problems in question. This table
reveals that the vowel recognition problem is the most expensive problem in terms of
computational complexity for the MIF bumptree. This is primarily because the network is
required to make 52 function additions as opposed to the 2 or 4 additions required for the

other problems examined in this section.

2

560048

230568 1120096

Table 6.19 - Total calculations required to train the MIF bumptree to a solution.

In order to arrive at the total number of calculations required to train the MLP and RBF
networks to a solution for the problems examined in table 6.19 it is necessary initially to
identify the calculations required by cach stage of the training process for these networks.
Appendix D provides the pseudo code for the main steps of the learning algorithm
required by the MLP training process summarised in figure 6.13. The calculations
required by each of the main steps in the MLP learning algorithm for the problems

examined in this section are outlined in table 6.20.




4 hidden units | 16 hidden units
262 iterations ; 240 iterations
75 patterns

TS*T2%262 400%392*240
75%197%262

5,285,850 141,408,000

Table 6.20 - Total calculations (additions, subtractions, multiplications, divisions)
required by the MLP to achieve the desired level of performance.

The figures given in table 6.20 break down the main steps of the MLP training procedure
into numbers of simple mathematical operations. These figures reveal that as with the
MIF bumptree the most expensive problem in terms of computational complexity was the
vowel data problem, followed by the diabetes diagnosis problem. A comparison of the
mathematical operations required by the MLP with those required by the MII* bumptree
reveals that the iterative MLP training procedure is far more computationally complex
than the MIF bumptree training procedure. FFor the iris problem, the MIF bumptree
required 230,568 mathematical calculations to train to a solution, whilst the MLP
required 5,285,850 mathematical calculations. The MLP, therefore, required 23 times the
mathematical calculations the MIFF bumptree required. To solve the diabetes diagnosis
problem the MLP required 126 times the calculations required by the MIF bumptree. To
solve the skin cancer diagnosis problem the MLP required 968 times the calculations

required by the MIF bumptree. Finally, to solve the vowel recognition problem the MLP

required 3682 times the calculations required by the MII® bumptree. These figures
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demonstrate the advantage that the MIF bumptree possesses over the MLP in terms of the

computational complexity of the training process.

For Patterns = 1 to Num Patterns in Training Set
For Functions = 1 to Functions in the Network
Temp 5 =1
For Units = 1 to Num Input Units
Templ = 1/(1*(sqrt(3.1415926354%2)))
Temp2 = 0.5 *(Input [Patterns][Units]-Function cenlre[Units])/l)2
Temp3 =exp(-Temp2)
Temp4 = Templ*Temp3
TempS = TempS*Temp4
End
Function[Functions] Activation Level = Temp5
End
End

Figure 6.16 - Pseudo Code detailing the steps involved in calculating the activation of the

functions in the RBF network.

The procedure for training the RBF network 1s summarised in figure 6.14. It is able to
employ similar procedures for these steps to those employed by the MIIF bumptree
examined in chapter 4. However, the RBIF network has no candidate functions to consider
and therefore, these steps are carried out once for each function. The steps required to
calculate the activation of the RBFF functions on each pattern are summarised in figure
6.16. The activation of each of the functions on the patterns is particularly important to
the RBF network, since the functions only require their weights updating for those
patterns upon which they are active. In addition, when the network is fully trained the

functions only contribute to the networks output for those patterns upon which they are

active.




Once the activation of the functions has been calculated it is necessary to optimise the
weight and bias parameters of each function. This can be done with a procedure very
similar to that employed by the MIF bumptree, examined in chapter 4. Each function has
its weight and bias parameters optimised across all the patterns in the training set.
However, only those patterns for which a function is active will impact on the weights of
the function. In addition, the degree to which a pattern alters the weights of a function
depends on the activation level of the function on it. The process is similar to that of the
MIF bumptree summarised in Appendix B. The main difference is that whilst the MIF
bumptree assigns each pattern to only one function, the RBF network allows each pattern
to have multiple functions active on it. The weight and bias values for the functions can
again be arrived at through the matrix multiplication and pseudo inversion employed to
train the MIF bumptree. The difference is that the RBF network needs to consider every
pattern for every function, whilst this is not the case with the MIF bumptree. As with the
MIF bumptree, Matrix1 can be populated in two stages. The first stage populates an area
equal to the square of the number of input dimensions. For each function every slot 1s
filled by a process using 1 multiplication and 1 addition for every pattern in the training
set. The number of times these calculations need to be carried out for each function is
given as the number of input dimensions squared, multiplied by the number of patterns in
the training set, even though the activation of some of the functions may be zero on some
patterns they still have to be considered. The second stage of populating Matrix1 involves
every function for every input dimension having an addition carried out for every pattern.
This process is carried out twice. Each time the calculations required can be given as the
number of input dimensions multiplied by the number of patterns in the training set, even

though many will add a zero value because the function 1s not active on them.

Matrix3 is populated through a very similar process to Matrix1. It is again populated in

two stages. The first stage populates an area of the matrix for each function equal to the
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number of input dimensions multiplied by the number of output dimensions. For each of
the functions, every slot is filled by a process using | multiplication and 1 addition for
every pattern in the training set. The number of times these calculations need to be carried
out for each function is given as the number of input dimensions multiplied by the
number of output dimensions, multiplied by the number of patterns in the training set The
second stage of populating Matrix3 considers every function in every output dimension
having an addition carried out over every pattern. This process is carried out twice. The
calculations required for each function can be given as the number of output dimensions
multiplied by the number of patterns in the training set, even though some of the patterns

will not contribute to the final total because the function is not active on them.

Once the two matrices have been populated it is necessary to produce the pseudo
inversion of matrix!, and this is done using the Gauss Jordan method. This involves
identifying the pivot row and carrying out the elimination process, but this process is not
computationally intensive. Once the pseudo inverse of Matrix1 has been calculated, it 1s
necessary to multiply matrices 1 and 3 for cach function. For every row in the result
matrix, a process involving a single multiplication is carried out. The number of
calculations is given as Input dimensions -+1 multiplied by the number of output

dimensions.

The training process for each function considers all the patterns in the training set,
although in practice the function is unlikely to be active on each of the patterns. The
impact that each of the patterns has on the weight and bias parameters for each function is
scaled depending on the level of activation of the function on the pattern. However, since
the purpose of this study is not to carry out an in-depth analysis of the RBF approach to
training a network but simply to attain comparative figures in terms of training

complexity this issue does not need to be examined. The steps required to fill stage 1 of

187




matrix 1 can be given as the number of input dimensions squared, multiplied by the
number of patterns in the training set, multiplied by the number of functions in the
network, multiplied by the number of calculations required, in this case 2. In order to fill
stage 2 of matrix 1 the number of calculations is equal to the input dimensions multiplied
by the patterns in the training set. multiplied by the number of functions in the network.
The steps required to fill stage 1 of matrix 3 can be given as the number of input
dimensions multiplied by the number of output dimensions, multiplied by the number of
patterns in the training set, multiplied by the number of functions in the network,
multiplied by the number of calculations required, in this case 2. The steps required to fill
stage 2 of matrix 3 can be given as the number of output dimensions multiplied by the
number of patterns in the training set, multiplied by the number of functions in the
network. Table 6.21 summarises the calculations required by the two major procedures in

the RBF training algorithm.

Table 6.21 - The total calculations required to train the RBF network to an acceptable
solution.

The results provided in table 6.21 reveal that to train the RBF network to a position where
it is able to produce the level of performance discussed in this chapter, requires less
computational complexity than is required to train the MLP. The RBF network requires

2.6 times as many calculations to train to a solution on the iris problem as the MIF
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bumptree. On the diabetes problem it requires 2.3 times as many calculations to train to a
solution as the MIF bumptree. However, on the skin cancer problem the RBF requires
only 62% of the calculations required by the MIF bumptree, and on the vowel recognition
problem the RBI network requires only 26% of the calculations required by the MIF
bumptree. The number of calculations required to train to a solution provides an
indication of the computational complexity of the various approaches, and reveals
interesting information on the three approaches. As expected the MLP requires the largest
number of calculations and on two of the four problems the RBF network requires
significantly more calculations. However, on the skin cancer problem and the vowel
recognition problem, the RBF requires less calculations than the MIF bumptree. This is
due in part because the RBF network does not require an error calculation routine as part
of its training algorithm. Another factor is the use of multiple initial candidate functions
by the MIIF bumptree. This adds greatly to the number of calculations required by the
bumptree neural network. The difference in calculations between the RBF and MIF
bumptree on the vowel recognition problem is also impacted upon by the fact that the

RBF network requires significantly fewer functions than the MIF bumptree.

In addition to the issue of training time, there exists the issue of the time for the trained
network to respond to a query. It was anticipated that the MLP would provide the best
performance on this since the other two networks require the additional calculation of the
activation levels of the functions in the network. The approach to producing an output for
a query adopted by the MLP is outlined in figure 6.17. The calculations that this approach
requires for each of the problems examined in this section of the study are summarised in

table 6.22.

189



For Units in layer 2
temp=0
For Units in layer |
temp=temp-+(output|unitlayer! |*weight[unit, layer! to layer2])
End
netoutput[unit in layer 2]=temp-+bias[unit in layer2]
output [unit in layer2]=1.0/(1.0+exp(-netoutput[unit in layer2]))

End
For Units in layer 3
temp=0
For Units in layer 2
temp=temp-+(output[unitlayer3]*weight[unit, layer2 to layer3])
End
netoutput[unit in layer 3]=temp-+bias|unit in layer3]
output [unit in layer3]=1.0/(1.0+exp(-netoutput[unit in layer3]))
End

Figure 6.17 - The procedure required to produce the output to a query for the MLP.

Table 6.22 - The calculations required to respond to a query of a trained MLP network.

Table 6.22 reveals that the MLP requires most calculations to respond to a query for the

vowel recognition problem. It demonstrates how the computational complexity of
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producing a response to a query increases dramatically as the size of the network
increases. The ratio of calculations per weight and bias value remains relatively constant
across the problems, it is simply the number of weight and bias connections in the

network that leads to the increased calculations.

temp5=0.0
For Input Units
templ=1.0/(functions centre * (sqrt(3.14159%2.0)))
temp2=0.5* ((patterns input -functions centre)/ functions radius)z)
temp3=exp(-temp2)
temp4=templ *temp3
tempS=temp5*temp4
End
functions activation = temp>

Figure 6.18 - Routine to calculate the activation of gaussian functions.

The approach of the MIF bumptree to respond to a query is to calculate the activation
level of the functions in the network in the branches of the tree where the active functions
reside. That is, the parent functions both have their activation calculated, and following
this the two functions on the selected branch have their activation calculated. This
procedure continues until there are no further branches in the tree that remain to be
examined. When there are no further levels in the tree structure the weight and bias
parameters are utilised to produce the required output value. Figure 6.18 summarises the
manner in which the activation of the gaussian functions is calculated, and figure 6.19

summarises the approach to calculating the actual output value of the network.
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For output units
temp2=0.0
For input units
temp=weighted connection * input pattern
temp2=temp2-+temp
End
temp3=temp2+bias value
Output for output unit =temp3
End

Figure 6.19 - Routine for calculating the response to a query of the MIF bumptree.

The approach adopted by the MIF bumptree can also be adopted by the RBF network,
although the routine to calculate the activation of the functions differs when other than
gaussian functions are employed. In addition, whilst the MIF bumptree only calculates
the activation of those functions that are potentially active on the pattern and the output of
the final of these, the RBF network needs to calculate the activation of all the functions in
the network and the output of each of these since they all contribute to the final output of
the network. The degree to which the output value of each function impacts on the final
output of the network is determined by the activation level of the function on the pattern.
Functions with the highest activation levels have the greatest impact. Table 6.23

summarises the calculations required by the MIF bumptree and RBF network to provide a

response to a query for the problems examined in this section.

Table 6.23 - The calculations required by the MIF bumptree and RBF networks to
respond to a query.



The figures provided in tables 6.22 and 6.23 reveal that the RBF network is outperformed
by all the other networks on all the problems. The biggest differential is on the Iris
problem where the RBF network requires 67 times the calculations required by the MLP
required, and 26 times the MIF bumptree calculations. The reason for this additional
complexity is that the output of the network instead of needing to be calculated once as
with the other approaches needs to be calculated once for each function in the network.
The performance of the MIF bumptree is similar to that of the MLP network, since it only
requires the output of the network to be calculated once and in doing so less calculations
are required than when calculating the output of the RBF. It is the calculation of the
activation of the gaussian functions that requires the extra computational expense
compared to the MLP. The calculations required to respond to a query on the diabetes
data set reveals that when the network size is appropriate the MIF bumptree is able to

produce a response to a query quicker than the MLP.

6.8 Summary

This chapter has focused on a comparative study of the performance of the MLP, RBF
and MIF bumptree neural networks over a wide range of problems. The differing
approaches have been compared in terms of their performance on a generalisation set, the
time taken to train to a solution, and the time taken to respond to a query. The average
classification performance of the MIF bumptree is comparable to that of the other
networks on the problems examined in this study. The vowel recognition problem is an
exception, where it is unable to match the performance of the other approaches. In terms
of training time the MIF bumptree substantially outperformed the other two networks on

the Iris and Diabetes diagnosis problems, but is outperformed by the RBF on the skin



cancer and vowel recognition problems. Training time is one of the major advantages of
the MIF bumptree approach. In terms of the response time to queries the MIF bumptree
was able to outperform the RBF network on all the problems examined in this study, and

at least matched the performance of the MLP on some.

To conclude, the MIF bumptree showed in this study that it was able to perform
adequately across a wide range of problems, and its performance was comparable to that
achieved with the MLP and RBF networks. The training speed of the MIF bumptree was
found to be a major advantage, so much so, that for problems where a quick solution is

required the MIF bumptree is clearly an attractive candidate.
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Chapter 7

Conclusion

The work presented here has been concerned with the impact of architecture on the
performance of neural networks, and its impact has been examined across a range of
problems for a number of network types. The work has initialy examined the architectural
issues associated with the MLP network. It has then demonstrated how it is possible to
employ alternate network architecture's to the MLP that implement a more local solution,

with attention focusing in particular on the development of the bumptree neural network,

The main focus of attention of this study was to examine the impact of employing an
alternate network structure to the MLP. The alternate techniques examined attempted to
improve network performance by partitioning the problem space in a different manner to
the MLP. In particular, attention turned to structures that employed a more local solution
than the MLP, namely the RBF and bumptree neural networks. Particular attention
focused on the MIF bumptree. This embodied an idea with its foundations in the decision
tree algorithms of machine learning, namely the utilisation of a tree structure to partition
the problem space. It was hoped that the use of a more local solution would allow the

production of networks that would generalise better and train to a solution quicker.

The main issues to be resolved with the bumptree neural network concerned the manner
in which the functions that made up the tree structure were to have their dimensions
determined, the learning algorithm to be employed, and the manner in which the output
of the network was to be calculated. A number of alternatives were presented in chapters
S and 6, with the preferred solutions being embodied in the MIF bumptree which
eradicated the issue of determining the radius of the functions in each dimension by

employing a constant unit radius. The learning algorithm employed after examination of
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alternatives was the one-shot learning algorithm described in chapter 5, and the output of
the network was calculated using only the output of the function furthest from the root
level that was active on the pattern. This approach is referred to as the LAF output

calculation technique in chapter 5.

The MIF bumptree was able to produce performance comparable to that achieved by
MLP and RBF networks in terms of average correct classifications on the problems
examined in this study. The bumptree did, however, prove to have an advantage over the
other connectionist models examined. This was its training time, and in some instances
the time to access a trained network. With the bumptree it is only necessary to compute
the activation of two functions at each level of the tree, in addition to calculating the
output of the last active function, in order to classify a point. In contrast an RBF network
requires the calculation of the activation of all functions in the network. An MLP with n
hidden units requires n hyperplanes to be evaluated each time a point is classified. In
contrast, a complete bumptree with n functions requires 2logyn function evaluations to
classify a point. Thus, the bumptree can offer an access-speed advantage over the MLP
when networks employ similar numbers of hyperplanes and functions, with the advantage
increasing exponentially with increasing network size. During training, the bumptrees
output weights are minimised in a single pass through the training set, whereas the MLP
typically employs an iterative gradient descent method requiring thousands of passes. In
addition, each function in the bumptree is trained only on a subset of the patterns in the
training set and does not need to consider other functions when the learning algorithm is
being applied to it. This is unlike the RBF where the functions are all trained on all the
patterns (although not all the patterns exert equal influence). Hence, the bumptree neural
network exhibited a considerable improvement in training time, and in some case

recognition time, compared to the other networks examined.
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In addition to this work a genetic bumptree was developed with the initial intent of
producing an alternative bumptree which had a learning algorithm not effected by
possible problems with singular matrices. However, the one-shot learning algorithm
employing an SVD technique that was developed meant that this problem was resolvable
with more standard techniques, and the performance of the initial genetic bumptree that
employed a genetic algorithm both to determine the dimensions of the functions and to
determine their weight and bias values was not particularly encouraging. It was, however,
perceived that the genetic bumptree would achieve better performance when it only
employed a genetic algorithm to determine the dimensions of the functions and utilised
the one-shot learning algorithm employing an SVD technique to determine the required
weight and bias values. When a genetic bumptree was developed that approached the task

in this manner it was able to achieve performance comparable to the standard bumptree.

This study has shown that a bumptree neural network has certain advantages over the
type of MLP and RBF networks studied. The bumptree neural network produced
performance comparable to the other networks in terms of correct classifications whilst
displaying the advantage of reduced training times, and comparable query response times.
However, the study compared the performance of an optimised bumptree against the
performance of an MLP network where the only parameter altered was the number of
hidden units. In addition, attempts to improve the performance of the RBF network
focused on altering the number of functions employed. Hence, this study provides a
representative comparison of the approaches, although it may not be a definitive
comparison. The same point can be made with regard to the nature of the training and
generalisation data sets. The patterns of the various output classes are unevenly
distributed between the data sets, and whilst this does not impact on the representative

nature of the study, it does mean that the comparison cannot be viewed as definitive.




The bumptree neural network is still in its infancy compared to the other more established
networks examined in this study, and there are a number of areas in which it may be
possible to further improve the performance of the network. It may be possible to employ
different learning algorithms for the functions within the tree structure without adversely
affecting the networks performance. One option is to employ an individual MLP for each
function, although this would drastically affect training time. Another issue that can be
addressed in the future concerns the possibility of doing away with the tree structure once
the network has been constructed, and simply retaining the lowest level functions to

calculate the response of the network to patterns.

Therefore, in conclusion the bumptree neural network revealed an alternative network to
currently existing ones that was able to produce a level of performance at least
comparable to that attained by the RBF and MLP networks on the problems examined in

this study.
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Appendix A

Pseudo Code for the MIF bumptree. The learning algorithm employs the Gauss Jordan
singular value decomposition technique rather than matrix inversion.

STEPWISE LEVEL 1

1- Create the initial functions to be considered for addition to the network.
For functions = 1 to 2 (the original functions to be added to the network).

{
If function(functions) is active
{
2- Optimise the Alpha and Beta values.
}
}

While training is not satisfactorily concluded

{
I}

For all functions that have not previously had their level of error calculated.

{
Calculate the level of error for function(functions).
Test Performance of function(functions).
If performance is unsatisfactory
{

3- Add in further functions with function(functions) as the parent .

}

}

}

Display the performance of the network.
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STEPWISE LEVEL 2:
Further refining of the steps identified in level 1.

The first process to be further broken down is that identified above as 1, namely the
process to Create the initial functions to be considered for addition to the network.

Create centres for the 10 initial functions to be considered for addition to the network.
For patterns =1 to number of patterns in the training set

{

For the 10 functions to be considered for addition to the network

{
h

Assign pattern(patterns) to the function with the highest activation level.

}

For the 10 functions to be considered for addition to the network

{
1

If function(functions) is active

Calculate the activation of function(functions)

{
Optimise the Alpha and Beta Values.
§
}
For the 10 functions to be considered for addition to the network
{

Calculate the level of error for function(functions)
Calculate the goodness measure for function(functions).
h
Select the best function.
Attain the other function to be added to the network.
For the 2 functions to be added to the network

{
For patterns =1 to number of patterns in the training set
{
For the 2 functions to be considered for addition to the network
{
Calculate the activation of function(functions)
h
Assign pattern(patterns) to the function with the highest activation level.
b

——
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The second process to be further broken down is that identified above as 2, namely the
process to Optimise the Alpha and Beta values for the functions presented to the routine.
The routine can be employed for the 2 functions added to the network when an addition
takes place. It can also be employed for the 10 functions that are considered for addition
to the network. The approach given here employs the Gauss Jordan singular value
decomposition pseudo matrix inversion technique.

Create matrix 1.

Create matrix 3.

Carry out the singular value decomposition on matrix 1 to arrive at the pseudo inverse
of this.

Multiply matrix 3 by the pseudo inverse of matrix 1 to create matrix 2 which contains
the optimised Alpha and Beta values.

The third process to be further broken down is that identified above as 3, namely the
process to add in further functions when the original functions have proved unable to
satisfactorily partition the problem space. This process is almost the same as that
involved in placing the initial functions on the problem space. The fundamental
difference concerns the positioning of the functions. When the initial functions are added
to the network they can be positioned anywhere in the problem space. The functions
added at this stage of the learning algorithm have to have their centre point situated
within the area covered by the patterns upon which their parent function was active.

Create centres for the ten functions to be considered for addition to the network (using
the procedure identified in step2).
For patterns =1 to number of patterns in the training set

{

For the 10 functions to be considered for addition to the network

{
}

Assign pattern(patterns) to the function with the highest activation level.

Calculate the activation of function(functions)

}

For the 10 functions to be considered for addition to the network

{

If function(functions) is active

{
Optimise the Alpha and Beta Values.
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For the 10 functions to be considered for addition to the network
{
Calculate the level of error for function(functions)
Calculate the goodness measure for function(functions).
}
Select the best function.
Attain the other function to be added to the network.
For the 2 functions to be added to the network

{
For patterns =1 to number of patterns in the training set
{
For the 2 functions to be considered for addition to the network
{
Calculate the activation of function(functions)
}
Assign pattern(patterns) to the function with the highest activation level.
}
}
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Appendix B

Pseudo Code for the MIF bumptree. The pseudo code given in this appendix provides
more detailed information on the process of Optimising the weight and bias, or Alpha and
Beta parameters. The optimising process identified in this appendix is that employed
when optimising the 10 candidate functions considered for addition to the network with
the MIF bumptree. However, the same process is utilised by the other bumptree
approaches, and by the MIF approach when optimising the functions actually being added
to the network. The difference is that instead of the process being carried out 10 times it
is carried out for as many functions as require it. When it is carried out for the addition of
the final two functions to the network it is carried out for two functions. However, with
the n-function bumptree it can be carried out for any number of functions.

1 - Assion Values to the Elements of Matrix 1 for each function

ForF=1to 10
if Function[F] active
xl =1
Temp2=20
For Row = 1 to Num Input Units
x2 =1
For Column = 1 to Num Input Units
For Pattern = | to Num Patterns Function [F] active on
Temp=Function[F] InputPattern[pattern]{x1]*Function[I]I nputPattern[pattern][x2]
Temp2=Temp2 + Temp

End
Function.Matrix 1{row]{column] = Temp2
X2 =x2+1
Temp2 =0
End
x1 =x1+1
End
For Row =1 To Num Input Units
Temp=0

For Pattern = 1 To Num Patterns Function [F] active on
Temp = Temp + Function[F].InputPattern[Pattern][Row]

End

Function[F] Matrix1[Row][Num InputUnits + 1]
End
For Column = 1 To Num Input Units

Temp =0

For Pattern = 1 To Num Patterns Function {IF] active on
Temp = Temp + Function[F].InputPattern[Pattern]{Row]
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End
Function[F] Matrix 1 [Num Input Units + 1][Column]

End
End

2 _ Assien Values to the Elements of Matrix 3 (the result matrix) for each function

ForF=1to 10
if Function[F] active
For Row = 1 to Num Input Units
For Column = 1 to Num Input Units
Temp 2 =0
For Pattern = 1 to Num Patterns Function [F] active on
Temp=
Function[F]OutputPattern[pattern][x1]* Function[F]InputPattern[pattern][x2]

Temp2=Temp2 + Temp

End
Function.Matrix3[row][column] = Temp2
End
End
For Column = 1 To NumOutput Units
Temp =0

For Pattern = 1 To Num Patterns Function [F] active on
Temp = Temp + Function[F].OutputPattern[Pattem][Row]

End

Function[F] Matrix3[Num Input Units + 1][Column] = Temp

End
End
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3 - Assion Values to the Elements of Matrix2 (the Alpha & Beta matrix) for each
function

This procedure is concerned with inverting matrix1 to allow it to be multiplied by
Matrix3, which is the result matrix, to arrive at the optimal Alpha and Beta values. This
procedure employs the Gauss Jordan singular value decomposition in place of a standard
matrix inversion rechnique. This is to avoid problems with singular matrices. The steps
are not broken down into great detail since it is simply a case of employing the Gauss
Jordan singular value decomposition technique.

For Pass = 1 To Num Input Units + 1

Choose pivots within Matrix1

Utilise the pivot value to produce pseudo inverse of Matrix 1
End
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Appendix €

This appendix contains details of the genetic bumptree introduced in section 3.5,

The Genetic Bumptree

In order to represent a bumplree structure as a chromosome suitable for manipulation by
genctic operalors, various issues needed to be addressed, and these are examined below.
An ideal representational scheme for a GA should have propertics of completeness, closure
and low-redundancy - and these will now be considered in relation to the bumptree. Fiest,
the issue of completeness. An ideal chromosomal representation scheme should be
complete in the sense that the genotype should be capable ol representing any point i the
space of the possible phenotvpes. In the case of the abstract notion of the bumptree. there
was obviousty an infintie number ol possible free structures which could be defined m a
space ol given dimensionality. and hence the chromosome would have to be ol infinite
length to truly be complete. However, this could be made of finite length if the space of

possible bumptrees 1s of Finite volume describing discrete points in which the bumplrees

must exist.

Second, the issue of closure. An ideal genctic representation should be closed with respect
to the space of possible phenotypes to be represented. FFor the bumptree this means that il
should be impossible for any genetic string to deline an illegal tree structure. That 1s, if
Omohundro's approach (0 centring and constraining the functions was employed  the
bumptree structure would have to be binary in nature and cach function below the top level
would have to be fully enclosed by its parent function. Hence, for a representation to be
closed it must only produce representations that describe valid states in the specilied

yoblem. 1 a representation is not closed. 1t becomes necessary Lo check the vatidity ol
} ! ) 3



cach new chromosome which arises through mutation or crossover. and 1o decide on a
suitable scheme to deal with invalid chromosomes. In the case where invahd chromosomes

it rercsrsisetiisss ss€ thoos aeimivas, ovilurbosowy taths theough vencliv Spacce

of the GA may be greatly reduced, whilst

computational demands are greatly increased.

Third. the issue of Tow-redundancy. In an ideal genetic representation there should be a one
to one mapping between the space of possible chromosomes and the space of possible
phenotvpes.  For  the  bumplree neural network, no  two  diflerent chromosomal
representations should ever yield identical bumptrees. If the situation exists where two
identical bumptrees can be constructed from uite different chromosomes. then a child

sroduced by combining genetic material from two such identical parenis could be very

dificrent to hoth. his offect reduces the (GA's abtlity to discover and combine vood genetic
hutlding blochs” Redundaney in the representation scheme has proved o be a big obstacle

i the application of (7A's o neural network problems in generai and has fed to the so-

called ‘permutation problem’ in optimising the MIP (Radcliffe 1991).

The (A approach employed to optimise the bumptree neural network structure will now
be examined. It was decided that chromosomes of lixed length would be used to represent
the bumptree. It is possible to allow the chromosomes 1o vary in length, but this demands
highly specralised genctic operators, with an attendant increase i complexity. The
chromosome emploved consisted of floating-pomt genes, arranged as a concatenation of 30
sets of parameters. cach sct delining a single function. It was not necessary tor all 30
functions to be present in the {inal bumptree. The first two blocks of parameters on the
chromosome define the root-level functions and therealter the presence or absence of
further functions is dictated by a single parameter associated with cach function which

determuines whether that tunction 1s a icrminal function or contains iwo child functions. All
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potential functions have fixed positions on the chromosome. and il function » 15 non-

terminal, its children will be functions 2n+ 1 and 27+2. as 1s shown in higure C1.
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Figure €1 - Chroniosome represenianon of bumpiree parameters.

The problom with encoding structural parameters for the bumpliee 15 that there exists a
strong dependency between the paramelers which are subject to certain criteria bang
fulfilled. The genetic bumptice as originally developed adhered to the constraints imposed
by Omohundro's approach (section 4.4 on the size and location of the functions within the
network. Hence. a functions maximum radii and the space in which its centre must exist
were not known o priori, but depended on the centie and radu of its parent function. A
naive coding scheme. where cach function’s centie and radii are coded as real values 10 a
global co-ordinate system therelore becomes untenable. [t becomes necessary o cheek and
possibly adjust the value of every genc on any new bumpiree chromosome, 10 ensure that
all the functions are correctlv cnclosed by their parents. A reduction in a particular
function's radii arising as a result of a mutation. may necessitate adjustment of the radu

and possibly the centres ol all the functions below it in the tree.



in order {0 empiov a (1A o oplinuse a bumptree neural network a simple. but novel,
chromosomal representation has been introduced. In this representation, every gene 18 a
single tloating poini vaiue normalised o a value in the range -~ or -1. The process of
translating @ chromosome into a bumplree neural netswork commences by defining the
volurme of the probiem space within which the bumptree is o be placed. The genctic
bumptree defines this arca as a hyper-cllipse which encloses all the data pomts in the
(raining sel. A co-ordinate svstem based on this volume was then calculated. i which the
origin is at the volume's centre. The genes which code the centre co-ordinates ol cach of
the (wo root-level functions in the tree are interpreted in terms ol this co-ordinate systeny.
o a wiven dimension, the value of a gene which codes a root-level function's radius s
mapped onto the region between the funciion's centre and the permeter of the voiume

1

within which the bumptree is constrained. Having constructed the two rooi-teved functions,

cach non-root fevel tunciion moihe free 18 comstrucied m a strmdar manner, ihe function's

co-ordinate system being delined by the volume enclosed by ats parent.

It can be shown that this representation scheme has the desirable properties outhined carlier
of completencss. closure and low-redundancy. (riven the constramt thal some maxium
aumber of {unctions i o be allowed, the chromosome 1s able 1o represent all pussible
bumptrees within a given discrete space. The representation is. therefore, complete. The
normalised relative coding of function centres and radi ensures that the integrity of the tree
structure is inherent i the coding - 1t s impossible (o represent an illegal bumplree
structure. so the representation is closed. Moreover, as well as ensuring that chromosomes
alwavs produce legal burnptrees. this coding helps the important structural qualities of
parent bumptrees o be preserved when chromosomes are recombined by crossover or
modificd bv mutation. as there s a smooth and contimuous mappimg, belween the space of
the chromosomes and the space of bumptrees. Finally, as cach potential funciion has 18

parameters coded as a fixed posttion on the chromosome there 1s very hittle redundancy



ihotont it tho roprescriation scheme. For a given bumptroe structure. there exist only two
different possible chromosomes which could have yielded that structure, which contamn
ideniical genetic informaton for the two main branches of the tree, but with the root-tevel
functions transposed.

Having examined the normalised representation scheme that has been employved in the
genetic bumplree, it 1s now necessary o describe the other details of the genetic bumplree
classifier. In the genetic bumptree, each chromosome of the population has associated with
it a unigue co-ordmate on a two dimensional erid. This spatial relattonship  between
chromosomes 1§ used (o mmplement local, rather than population wide selection,
reproduction and repiacement strategies. 1his approach has been tound to be benelictai
preventing the GA from converping prematurcly due (o loss of genetic diversity, by
allowing the emergence of sub-popuiations ol chromosomes. jsolated by distance from

cach other and with a consequently limited rate of exchange ol genetic material.

In cach generation, a fixed number of chromosomes is replaced, and the rest of the
population is unaffected. This replacement oceurs as follows. Intally a random pomnt on
the population grid s selected. A parent chromosome 18 chosen, being the fittest
chromosome encountered during a fixed length walk across the grid (rom the initial starting
point. A second parent chromosome is chosen i the same manncr, during a sccond
random waik from the same initial starting pont. These two parent strings are combined by
a genelic crossover operator (o form a single child chromosome, which is then subjected to
slight random mutation.” A third random walk is made from the mitial starting point and the
least fit chromosome cncountered during this walk is replaced with the new child.
Chromosomes that have alrcady been replaced in the current generation may not be
selected as parents or as candidates for replacement. This entire process is repeated from

different initial random starting pomts on the population gnd. Alter a certain proportion of
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the population has been replaced n this manner. all newly created child stnings are

evaluated for fitness, and this completes one generation of the GA.

The crossover operator employed i the genetic bumptree was a variation of uniform
crossover. in which many small scctions ol genetic material, sampled randomly and with
unilorm probability afong the length of one parent chromosome were exchanged wath
corresponding sections from the sceond parent chromosome. [n addition, every new child
chromosome created is subjected (o ‘creeping’ mutation, which is cffected by randomly
selecting a number of genes along the fength ol the chromosome (around 3% ol the total
aumber of genes in the chromosome) and perturbing their tloating point values by adding
or subtracting small random quantities. usually in the range of + or - 0.2, Checks werce

then performed to ensure that the values remained m the range of - or - L.
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Appendix D

This appendix contains the pseudo code for the backpropagation learning algorithm that
was employed by the MLP used in this study. Step | sets out the basic steps involved in
the learning algorithm.

STEP |
[nitialise the weight and bias values
Al - Calculate the error of the network.
While the error level is not satisfactory Do
Bl - Adjust Weights

Calculate Error
End While

STEP2
This step provides the pseudo code required to calculate the error of the network.

errorsum=0.0;
for pattern = 1 to num patterns (tp)

clamp input units to their required value
A2 - calculateoutput
for units in layer 3 (j)
Calculate the error over the entire training set AS
[errorsum=errorsum-+ ((targetvectors[tp][j]-output[(numunits-
unitsinlayer3)+j]) * (targetvectors[tp][j]—output[(numunits-unitsinlayerB)+j]))]
End
error=errorsum*0.5;

End
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This step further breaks down A2 - the process to calculate the output of the network.

for units in layer 2 (j)
temp=0.0;
for units in layer 1 (1)
tempstemp+(output[i]*weight[i][i]);

/* To get the value referred to in the literature as NETpj, it is necessary */

/* to add the bias value to the temporary value calculated above */
netoutput[j]=temp+bias[j];

/* From this net output it is possible to calculate the actual output of the */

/* unit. A threshold has been employed in order to stop figures goingto ¥/

/* unacceptable values */

output[j]=1.0/(1 .O+exp(-netoutput[j]));

End

End

for units in layer 3 (J)
temp=0.0;

for units in layer 2 (1)
lemp=temp+(output[i]*weighl[j][i]);

/* To get the value NETpj, it is necessary */
/* to add the bias value to the temporary value calculated above */

netoutput[j]=temp-+bias(j];
output(j}=1.0/(1 .O+exp(-netoutput[j}));
End
End
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STEP 4
This step further breaks down the process required to adjust the weights.

/* Calculate the weight change on the connections {0 the output units */

total=numunits;
for units in layer 3 (j)
delta[j]=(targetvectors[tp][j—(total—unitsinlayer3)] -output[j]) * output{j] * (1.0-
output[i));
End
B2 - weight change

/* Calculate the weight changes on the connections to the hidden units */

for units in layer 2 (j)
sum=0.0;
for units in layer 3 (k)

/* For all units directly above the hidden layer pass back the error */

sum=sum-+(delta[k]*weight[K][}]);
End
deltafj]=sum*output[j}*(1 .0-output}j]);
End
total=numunits-unitsinlayer3;
weight change

/* Update the bias for the relevant units (all except the input units) */

for units in layers 2 and 3 (units)
deltabias[units]=(learningfactor*delta[units]) +

(momentumfactor*olddeltabias[units]);
bias[units]=bias[units]+deltabias[units];

End
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The next step further breaks down the process identified as weight change above.

for units in top layer (})
for units in bottom layer (i)
deltaweight[j]{i] = (learningfactor*delta[j]*output[i])
+(momentumfactor*olddeltaweight[j][i]);
weight[j][i]=weight[j][i]+deltaweight[j][i];
End
End





