
"Multidimensional Quadrature"

Peter John King

A thesis submitted to the University of Aston in Birmingham for the

degree of Doctor of Philosophy.

Department of Computer Science

October 1983

The University of Aston in Birmingham

Multidimensional Quadrature

by

Peter John King

Summary

In this thesis original software is presented for the approximate
evaluation of multiple integrals over two basic regions of
integration; the simplex and the hypercube. The majority of the work
is based upon an adaptive approach. One exception is a program which
generates a sequence of product rules from the one dimensional
Patterson family of formulae ami applies these rules iteratively
over a hypercube type region of integration. A basic alaptive
algorithm for multidimensional quairature is described and programs
for both the simplex and the hypercube based on this are presented.
The problems of testing ami comparison of quadrature routines are
discussed. ‘Two alternative approaches to storing integrand
evaluations are presented; the first using a linked list type data
structure while the secomi uses scatter storage techniques. Programs
for the hypercube which use the basic adaptive strategy but store
the integrand evaluations illustrate the storage techniques. It is
suggested that the storing of integrand evaluations is only feasible
for particularly "expensive" integranis. A case is presented for the
adoption of a global subiivision strategy as opposed to a local
subdivision strategy in the construction of multidimensional
quairature algorithms. A global strategy reduces the total number of
integrami evaluations used by producing a result which is closer to
the required tolerance. One approach to exteniing the methais to

other regions of integration is described ami the problems
associated with this are considered. Finally the possibilities of
using a multiple processor for the evaluation of multiple integrals
are discussed.

Keywords: adaptive multidimensional quairature, numerical software

A thesis submitted to the University of Aston in October 1983 for
the degree of Doctor of Philosophy.

Acknowledgement.

I would like to thank Dr. L.J.Hazlewood for his help and assistance

throughout the entire project and to acknowledge the S.R.C. for

funding the first two years of this research.

Contents

Summary

Contents

Page

Chapter 1 - Introduction 1.

1.1 Description of the thesis x

1.2 Background to the study 1

1.3 A brief history of multidimensional quadrature 2

1.4 Decisions taken as a result of the literature survey 6

1.5 Objectives 8

1.6 Contents of the chapters 13

Chapter 2 - Product Formulae 16

2.1 Introduction 16

2.2 The construction of a product formula for the hypercube 17

2.3 General cartesian product formulae 19

2.4 The construction of product formulae for the simplex 20

2.5 The degree of the formulae used in the construction of a

product formula

2.6 A set of product rules based upon Patterson's formulae

2.7 The construction of a product type multidimensional

quadrature routine

2.8 Testing the routine

2.8 Conclusions

Chapter 3 - The testing of quadrature routines

3.1 Introduction

3.2 "Battery" type testing

24

24

26

39

39

41

41

42

3.3 The performance profile approach to testing 43

3.4 Comparison between these two approaches to testing 50

3.5 A possible approach to testing multidimensional

quadrature routines 51

3.6 the method of testing adopted in this research 52

3.7 The set of test problems used 53

Chapter 4 - A basic alaptive multidimensional quadrature

procedure 55

4.1 Introduction 55

4.2 The brief description of the basic approach 55

4.3 The structure of the basic algorithn 58

4.4 The subdivision strategy used with the hypercube 60

4.5 The basic rules used for the hypercube 62

4.6 Defining the integrand 63

4.7 Segmentation of the program 64

4.8 The simplex as a basic region 65

4.9 The hypervolume of a simplex 66

4.10 The centroid of a simplex 67

4.11 Area coordinates 68

4.12 The subdivision strategy used with the simplex 69

4.13 The structure of the algorithm as applied

to the simplex 71

4.14 The basic rules used for the simplex vu

4.15 The program for the simplex 75

4.16 The data required by the program 75

4.17 Testing the two programs 77

4.18 Conclusions 78

Chapter 5 - Storing the integrand evaluations 82

5.1 The need for storing integrand evaluations 82

5.2 The basic rules and the subdivision strategy

for the hypercube 83

5.3 Storing the integrand evaluations in a linked list 83

5.4 Ordering the list 85

5.5 The generation and use of linked lists 85

5.6 A procedure to search a linked list 86

5.7 A procedure to insert an item in a linked list 89

5.8 Enumerating the keys o1

5.9 The basic program 98

5.10 Scatter storage techniques 99

5.11 The development of an algorithm based upon scatter

storage techniques 100

5.12 Key generation 101

5.13 Hash codes 103

5.14 Finding the integrand evaluation at a particular node 104

5.15 Camputing an estimate to the interal

over the subregions 110

5.16 The program using scatter storage techniques 113

5.17 Testing the two approaches to storing the

integrand evaluations 113

5.18 Comparison between the two approaches 113

5.19 Conclusions 114

Chapter 6 - Global subdivision strategies 116

6.1 Introduction 116

6.2 A modification of the basic algorithm for the hypercube

to use a global subdivision strategy

6.2.1 Adding a node to the list of subregions

6.2.2 Adopting a doubly linked list to store the details

of the subregions

6.3 The complete program using this strategy

6.4 Testing the program

6.5 Conclusions

Chapter 7 - Extension of the methods to other regions

7.1 Introduction

7.2 Extension of the region of integration

7.3 Subdivision of a region into a region of simplexes

and hypercubes

7.4 The basic structure of an algorithm

7.5 Defining the original region as a linked list

7.6 Storing the linked list

7.7 Processing the list of subregions

7.8 The complete program

7.9 A simple test problem

7.10 Conclusions

Chapter 8 - Multiprocessor techniques

8.1 Introduction

8.2 The architecture of a multiprocessor

8.3 Multidimensional quadrature as a suitable task for

solution on a multiprocessor

119

121

124

127

127

127

130

130

130

132

136

138

141

147

149

149

150

153

153

153

155

8.4 An algorithm for use on a multiprocessor 156

“*, 8.5 Conclusions 161

Chapter 9 - Conclusions 162

dices 167

dix 1 - The set of test problems 168

ix 2 - The product Patterson formulae program 171

dix 3 - The basic alaptive programs

3.1 The basic alaptive program for the hypercube 178

3.2 The basic alaptive program for the simplex 193

Timings for basic operations on the I.C.L.1904s 202

- The programs using stored integrand techniques

5.1 The program using linked list techniques 203

5.2 The program using scatter storage techniques 217

- The program using a global subdivision strategy 226

- The program for an extended region 231

- The test results for the hypercube programs 240

- The test results for the simplex program 274

erences 219

Page 1

Chapter 1 Introduction

1.1 Description of the thesis

This thesis is concerned with the development of algorithms for the

approximate evaluation of multiple integrals on a mainframe

computer. That is integrals of the form :

| (x), Kee eX) dx dx... dx,

Rn

where the region of integration, Rn, is a given region inn

dimensional Euclidean space En and the function f(x,,x,...x,) is

Riemann integrable over this region. The work is limited to the

evaluation of multiple integrals over two main regions : the

hypercube and the simplex. Classical type methods (as opposed to

Monte Carlo type) are used exclusively. The majority of the

algorithms are based upon an adaptive approach. However, one

exception to this is the algorithm based upon a product type rule.

The emphasis of the work is on the development of efficient,

reliable numerical software based on the existing mathematical

theory, not on the extension of the theory of numerical integration.

1.2 Background to the study

Many eminent mathematicians including A.H.Stroud and J.N.Lyness have

devoted a large amount of time and effort to the research and

development of the theory of the approximate evaluation of miltiple

integrals. However, the application of this theory has lagged far

behind its growth because of the lack of effort in the field of

Page 2

numerical software written to apply the theory efficiently and

reliably. Many mathematicians consider programming a trivial task

and disregard it; while most computer scientists have neither the

mathematical knowledge nor the motivation to approach the task of

writing rigorous numerical software. Most important of all the

potential users of the theory, engineers and scientists, have both

insufficient time and insufficient knowledge of either the

mathematical theory or computer science to produce adequate

software. Thus the author has attempted to find the parts of the

theory which are most suitable for use in computer programs and to

bridge the gap between this theory and the potential user by the

development of efficient and reliable numerical software.

1.3 A brief history of multidimensional quadrature

Archimedes, Heron and Pappus were among the first people to study

areas and volumes. These studies can be considered as the start of

the history of integration. From these early beginnings the impetus

was given for the evolution of the continuous calculus, which spread

rapidly to a wide variety of applications. Inevitably, problems

arose in which the integrals formed could not be solved analytically

and hence, the study of numerical integration began early in the

history of the calculus.

The majority of the work on quadrature was concerned with me

dimensional problems. However, as early as 1877 a paper was

published by James Clerk Maxwell [42] which gave two formulae for

numerical integration over the cube. The theory of the solution of

multiple integrals advanced very slowly from this point possibly due

Page 3

to the large amount of computation required for anything but the

simplest of problems. In fact only about fifteen papers are recorded

as being written on the subject prior to 1945.

With the advent of the digital computer a greater impetus was given

to the advance of the theory of multidimensional quadrature since

the amount of calculation that could be considered feasible was

increased dramatically. ‘Two quite distinct approaches to

multidimensional quadrature were adopted. These are firstly, the use

of Monte Carlo type methods, and secondly, the use of classical or

systematic type methods. The Mmte Carlo type methods are based om

statistical randon number sampling techniques whereas the classical

type methods are based on weighted sums of integrand evaluations at

predefined nodes. That is formulae of the type:

0

ff £(x xX j005 x) dx, ax, ++ dx, ~ S ni £(Vi, Vine + +Vin)

Rn
i=)

Where the Bi are the weights, or coefficients, of the formula and

the Vj, Vie ---Vin are the nodes.

A discussion of Monte Carlo and other number theoretic methods is

given in Stroud[57] chapter 6 and Zakrzewska[59]. Tables of

classical type formulae are given in Stroud[57] chapter 8. Specific

examples of formulae for the hypercube are given in Lyness and

McHugh[40] and Piessens and Haegmans[50], and for the simplex in

Cowper[6], Hammer, Marlowe and Stroud[20], Hillion[22], Lyness[36]

and Silvester[54].

A variety of attributes of a multidimensional quadrature problem are

Page 4

relevant in deciding whether to use classical or Monte Carlo type

methods. Typically, the classical type methods are more suitable for

low dimensional problems where the region of integration is

familiar, for example the hypercube or the simplex, a high degree of

accuracy is required and for which the integrand is analytic and

smooth. Whereas Monte Carlo type methods are more suited to high

dimensional problems over unfamiliar or erratic regions with a low

accuracy requirement and possibly with a highly discontinuous

integrand. The areas of application are obviously overlapping and

somewhat blurred.

During the period 1945 to 1960 an increasing amount of effort went

into the theory of multiple integrals and between 1960 and 1970

considerable progress was made with respect to classical methods.

The state of the art of the subject in 1970 formed the prime subject

of a paper by Haber [18] in 1970. Essentially, quadrature rules for

many standard regions of integration were developed and the form and

limitation of such rules were investigated. The major results of

this period were collected by A.H.Stroud[57] and published in the

form of a book in 1971. This book has now become a standard

reference on the subject of the approximate evaluation of multiple

integrals. Since this period the subject has advanced more slowly

and the theory has tended to be rounded out and various gaps filled

in so that now there exists quite an extensive body of theory

available for a wide range of regions of integration.

Considerably less attention, however, has been paid to the software

or applied numerical quadrature side of the problem. Only a few

important pieces of software have been published (although many more

Page 5

may have been written). During the early 1970's both A.C.Genz and

I.Robinson were actively working (independently) on the problem of

producing quality software for numerical quadrature over rectangular

regions. In September 1973 Robinson[52] completed a Ph.D. thesis om

methods of numerical integration. The last chapter of which

describes a general adaptive algorithm for integration over ann

dimensional rectangular region. The algorithm was a simple

generalization of the trapezium rule and is extremely time consuming

but was one of the first algorithms of its type to appear in the

literature.

In 1972 A.C.Genz[16] published a paper which described an adaptive

multidimensional quadrature procedure for the hypercube. His

procedure used two classical type rules and an extrapolation

technique to improve the accuracy of the results. A few years later

Genz prepared a modified version of this algorithm, which adopted

Monte Carlo type methods, for the NAG Fortran library[17].

In 1976 Kahaner and Wells[25] were developing an algorithm for n

dimensional adaptive quadrature using the simplex as a basic region

of integration. This algorithm was written in a high level language

and took advantage of advanced programming techniques. The method

involved the derivation of variable order interpolatory quadrature

formulae during the execution of the program. A paper relating to

the algorithm was not published until 1979, and it is still in the

form of an experimental test bed rather than a polished piece of

library software.

Some major contributions to the area have been made by J.N.Lyness

Page 6

[31,32,..40] particularly with respect to quadrature over the

simplex. With reference to one dimensional integration Lyness[34]

has suggested that too many automatic routines deny the user of the

opportunity to think. He believes that the user should be encouraged

to take a more active part in the choice of a suitable algorithm for

the evaluation of his particular integral and that software should

be written so as to be able to take advantage of any prior knowledge

of the integrand. With the greater complexities of higher

dimensional problems there is an even greater scope for savings from

this kind of information and so these suggestions are even more

important.

To summarise, the theory has reached a stage where any further

research can only bring diminishing rewards but the application of

the theory is still at an early stage of development.

1.4 Decisions taken as a result of the literature survey

The survey of the literature revealed the diversity of the topic and

the author made some decisions as to the direction of the research

fron the very outset. Particularly with reference to the region of

integration and the type of formulae adopted.

First consider the region of integration. In one dimension there are

only three basic types of region of integration; a closed interval,

a semi-closed interval and an open interval. Whereas in more than

one dimension there are a potentially infinite number of different

types of region to contend with ani only in particular cases is it

possible to transform formulae from one type of region onto a second

Page 7

type of region. Hence, the theory of multidimensional quadrature has

tended to be developed for specific regions of integration.

Obviously, this makes it very difficult to attempt to construct

algorithms that will be applicable to completely general regions of

integration and still be efficient and reliable. The author

therefore chose to limit his work to two specific basic regions of

integration; the hypercube and the simplex. These are the natural n

dimensional extensions of the square and the triangle respectively.

This was not an entirely arbitrary choice. These two regions are

quite common in practical problems and a large body of theory has

ybeen based upon them. Further because of the properties of linearity

for multiple integrals**, it is possible to form an approximation

over a given region that can be defined as a combination of

subregions by summing estimates over the subregions and both the

hypercube and the simplex lend themselves to forming the subregions

of other regions.

Now consider the type of formulae adopted. The previous section

described the two paths taken as regards the derivation of formulae;

the classical type methods and the Monte Carlo type methods. The

author considered it impractical to follow both approaches and since

the research was chosen to be restricted to specific regions this

lead to the consideration of classical type methods oly. Monte

Carlo type methods have the advantage of being adaptable to various

regions but offer no reasonable means of avoiding returns to the

same neighbourhood sample which suggests that the methods should not

be as effective as an efficient classical type method.

**{The properties of linearity for multiple integrals

Multiple integrals satisfy the following (which correspond to the

Page 8

properties of linearity for one dimensional definite integrals) :

a)if k is a constant

[-/ k£(K,,Xg70++Xn) AX, dxXg-. dXq

Rn

ox ff £(X,pXpre++Xn) AX\AXg-2- AXq

Rn

b) es rea + G(X, /Xpre0eXn) AK, GKe.-- AXq

Rn

= I : [ie meron dx, dxXe...dXn

Rn

[se atte AX, AX p++ dXy

Ro

c) je AX, dXp «- «dXy

Rn

=) ian AX, dxX2 -. -dXq

Rnl

+ ig f £(X,,Xpr002Xn) AX\dxg-- -dXn

Rn2

where Rn can be defined as a union of the regions Rnl and Rn2 which

have at most only boundary points in common.

These properties have natural extensions, for example in b) toa

sum of more than two functions and in c) to a union of more than

two regions.}

1.5 Objectives

The overall objective of this work has been to produce efficient,

Page 9

reliable software for the approximate evaluation of multiple

integrals over the two specific regions of the hypercube and the

simplex. The work is limited to these two basic regions since this

poses a sufficiently difficult task to be examined realistically in

the time available. The software is not intended to provide the

final solution to the problem but rather to form a basic grounding

for the available theory which can be enhanced as additional theory

is developed. A secondary aim is to demmstrate the usefulness of a

high level language and advanced programming techniques in the

construction of such numerical software.

A survey of techniques for evaluating one dimensional integrals

revealed that the majority of one dimensional problems are tackled

by adaptive quadrature algorithms. An adaptive algorithm attempts to

take advantage of the "shape" of an integrand by applying less

integrand evaluations where the integrand is "well behaved" and

comparatively more integrand evaluations where it is "badly

behaved". This can reduce the overall "cost", usually measured in

terms of integrand evaluations, of achieving a given accuracy for

some problems. That is problems which require comparatively more

integrand evaluations in certain parts of the region to obtain a

particular accuracy in those parts of the region as compared to the

number required to obtain the same accuracy in the rest of the

region. There is a potential saving for integrands which are "badly

behaved" over relatively small areas of the region and which are

"well behaved" over the rest. However, if the integrand is uniformly

"well behaved" or uniformly “badly behaved" over the entire region

then an adaptive method will perform less favourably than a non

adaptive method. This is because an even distribution of integrand

Page 10

evaluations will be required and the adaptive method involves

various overheads in determining this whereas a non adaptive method

always uses this type of distribution. In fact any "potential

reduction" expected with an adaptive method has to be off set

against the additional work required to achieve the desired

distribution of integrand evaluations. The potential savings in

"cost" by adopting this technique for multidimensional problems are

far greater due to the size and complexity of such problems. Thus,

one of the first objectives was to develop a basic adaptive

multidimensional quadrature procedure. There are a wide variety of

formulae that lend themselves to this type of algorithm and in order

to be able to compare their merits a further aim was to make it a

feature of the procedure that it was able to utilise alternative

formulae. This allows any new formulae to be tested as they become

available

A major feature of multidimensional integrals is the large number of

integrand evaluations required to obtain a meaningful approximation.

Even for a simple problem the number of integrand evaluations

required can be very high and the "cost" increases exponentially as

the number of dimensions increases. Further if the integrand is a

complicated expression and hence, expensive to evaluate, then the

time taken to compute the integrand evaluations becomes the dominant

proportion of the time required to compute an estimate to the

integral. If an adaptive scheme is used it seems feasible that for

"expensive" integrands it would be economical to store and reuse

these evaluations rather than recompute their values. Obviously the

method of storing the integrand evaluations needs to be both fast

and efficient in the use of store. The adoption of such methods

Page 11

assumes that the quadrature formulae being used have their nodes at

sufficiently convenient positions to allow a suitable subdivision

strategy to take advantage of the positions in terms of reusing the

integrand evaluations. Thus, the subdivision strategy and the chosen

formulae are interrelated. These three topics, choice of formulae,

subdivision strategy ani methods of storing integrand evaluations,

have been investigated by the author.

A straight forward approach to the design of an algorithm for the

approximate evaluation of miltiple integrals is one based on the use

of product type formulae. However, at first sight such algorithms

appear to be far too “expensive” in terms of numbers of integrand

evaluations even though they can produce very accurate

approximations in certain cases. With the advent of more and more

powerful computers they could offer a feasible technique.

Consequently the author has developed an algorithm based on product

type formulae in order to quantitatively measure their effectiveness

in terms of cost and accuracy and in order to provide a bench mark

for comparing other techniques. This algorithm is non adaptive and

uses an even distribution of nodes throughout the region of

integration. Hence it is well suited to integrands that are

uniformly behaved, either "well" or "badly", throughout the region.

Experience with one dimensional adaptive quadrature procedures

(Malcolm and Bruce-Simpson [41]) suggest a global subinterval

selection stategy as opposed to a local one. With a local strategy

the local error criteriondecreases linearly with the interval length

and hence is most stringent as a tolerance in regions where the

adaptive process is performing the most subdivisions. With a global

Page 12

strategy the aim is to select subintervals so that the local errors

are roughly equal in magnitude rather than scaled by the length of

the subintervals. Malcolm and Bruce-Simpson suggest that a global

subdivision strategy has the potential both for reducing the number

of subintervals, and the corresponding integrand evaluations, and

for generating a result with an error closer to a specified

tolerance, rather than more accurate with the corresponding "cost"

overheads. Since the number of subregions used in a multidimensional

quadrature procedure is likely to be higher than that in a me

dimensional problem the potential savings would seem to be far

greater. Such considerations have been examined by the author to

determine if the potential savings can be achieved or if they are

lost in the overheads incurred in implementing such a strategy.

Once successful procedures have been written to approximate multiple

integrals over the two basic regions the problem of extending these

methods to cover other regions which are unions of the basic regions

must be considered. The scope of this thesis cannot cover the topic

of subdivision of regions of integration into combinations of

hhypercubes and simplexes adequately. However, the author has

considered how the procedures can be extended or used to cope with

problems where the region of integration is already expressed as a

union of subregions, each of which is either a simplex ora

hypercube.

Until recently the enhancement of computer performance has come fran

a refinement of the basic Von Neumann architecture and the improved

performance of semiconductor components. With the rapid development

of LSI technology and the corresponding fall in processor costs

Page 13

there has been a trend towards multiprocessor architectures offering

both parallel and concurrent processing capabilities. Improved

performance of problem solving on this type of architecture depends

to a large extent on the algorithm employed. If the algorithm can be

divided easily into a number of largely independent processes then

an improvement in terms of speed of execution can be expected. With

an adaptive quadrature procedure the algorithm proceeds by

continually subdividing the initial region of integration into more

and more subregions each of which is treated in a similar manner on

an independent basis. This suggests that an improved performance

might be expected on a multiprocessor type computer. Although a

machine with the necessary architecture was mot at the authors

disposal, the theoretical possibilities of this type of approach

have been considered.

1.6 Contents of the chapters

Chapter 2 deals with the theory of product type rules. A little

background theory relating to product rules is given. The major

problem with product rules is the large number of integrand

evaluations used, but if sufficient processing power is available

they can be used to produce very accurate results for some problems.

An algorithm is developed based on product Patterson rules. The

algorithm adopts an iterative approach applying higher and higher

order Patterson products until the required accuracy is obtained. A

product Patterson set of rules was chosen because they form a common

point family of rules and a simple method has been devised to store

and reuse the integrand evaluations.

Page 14

Chapter 3 examines the difficulties of testing algorithms. The

methods of testing used with reference to one dimensional problems

are reviewed and the applicability of these methods to

multidimensional algorithms is considered. The ideas of the

"battery" test and the performance profile are introduced.

The first part of Chapter 4 contains a detailed description of a

basic adaptive multidimensional quadrature procedure for the

hypercube. This procedure is written so as to facilitate the testing

of various formlae on a variety of test problems. The second part

o£ Chapter 4 describes an analogous procedure for the simplex. These

procedures deliver satisfactory results but highlight the problems

of testing.

In the first half of Chapter 5 the author approaches the problem of

storing integrand evaluations. The justification for storing

integrand evaluations is discussed. A method of storing the

integrand evaluations in a linked list is introduced along with a

method of determining a unique key for each integrand evaluation.

Alternative methods of enumerating this key are described and an

algorithm based on one method is described. The second half of

Chapter 5 continues the theme of storing integrand evaluations by

introducing the ideas of scatter storage techniques based on hash

codes. An algorithm based on this method is developed, This offers

the possibility of increased performance under certain conditions.

In Chapter 6 one of the previous algorithms is modified to use a

global subinterval strategy instead of the local strategy used

previously. A comparison is made between the two approaches and some

Page 15

conclusions are reached about the advantages and disadvantages of

the global technique.

Chapter 7 defines a method of describing a region as a linked list

of subregions, each of which is either a hypercube or a simplex. A

procedure is constructed which applies the basic procedures

developed previously to a linked list of this form in order to

obtain an approximation to an integral over the region thus

described. The limitations of this approach are discussed.

The possible advantages of using a multiprocessor type architecture

for multidimensional quadrature are considered in Chapter 8. A

theoretical algorithm is developed o the basis of the availability

of a multiprocessor with certain capabilities.

The final Chapter contains some concluding remarks and a summary of

the preceding work.

Page 16

Chapter 2. Product Formulae

2.1 Introduction

The major classification of quadrature formulae is into product and

non product type formulae. This chapter deals with product formulae.

A quadrature formula such as :

[-f w (x x5++-x,) £(x|x,-+-x,) dx dx ,...dx,,

Rn n

= > BiL(Vi Vio *++Vin) +

tet

could be derived from a combination, or product, of formulae for

regions of dimension less than n. It is not possible to construct

product formulae for arbitary regions Rn, but they can be

constructed for some simple regions which are often encountered. The

author considers product formulae in relation to two of these simple

regions : the hypercube and the simplex.

In most cases n one dimensional formulae, each of degree d, are

combined to give a new formula of degree d for Rn. The method for

constructing product formulae is the method of separation of

variables. Consider the monamial integral :

Jf Se (RIK Vo sc) x x%*,.. x%° ax dx _...dx are)
wre. nn 1 2 n 1 = n

Rn

If it is possible to find a (non linear) transformation :

X, = X\(W,,Ug, ++, Un)

Xe = Xp(UyUsr+++/Uq)

Page 17

Xn = Xq(U, pes ++ Un)

which transforms (1) into the product of n single integrals :

[veo g,(u,) du,

| aiea ga(ua) dug

[Wa(Un) Go(un) dun

and if some suitable formulae are known for the single integrals,

then it is possible to combine these fommlae to give a formula for

Rn.

The most undesirable property of product formulae is that the number

of points increases very rapidly as n increases. However, for small n

product formulae can be very useful because of their high accuracy.

2.2 The construction of a product formula for the hypercube

Initially consider the case for n = 3. Let Rn be the hypercube

-l < x <= 1 and the weight function w(x,y,z) be equal to 1. Now

suppose there exists a one variable formula

Page 18

' ”~

[dx = Z aig yi)
~! a

which has degree d.

Now construct the product formula from three copies of this formula,

that is the formula with m3 points :

[|

Wt

acts dxdydz = mae ain ais £(pay pie pio DS) secre)
1 \eicem

keiz3

It is not difficult to see that this formula is also of degree d.

For if 0@ek<ed , 0 = f<d , am 0G X<d =... (3)

then

thes ' q '

LL [te dy dz - [see ae

ciel “1 Ly Ly

ny ", n,

=o Ke aie koa pe ++ (4)

= yee ins

= Sa, Fie Ais pie pat pat

Veiker

Ke1,2,>

Since the set of alld ,f,¥ which satisfy Ob<=f+ Y+kc= d , 0 <= x, 0

SS p , O<=¥% is a subset of those which satisfy (3), formula (2) is

exact for all monanials of degree less than or equal tod. An

argument similar to (4) shows that formula (2) is not exact for x@t!

ry “and 24+ therefore formula (2) has degree d.

Formula (2) has an obvious generalization for any n >= 2.

Page 19

2.3 General Cartesian Product Formulae

The result of the last section can be generalized for other regions

as follows. Assume Rn, Rp and Rq are regions in Euclidean space of

dimensions n, p and q respectively, where n = p+ q and

Rn = {(xi, Kaos Xa) & (Kir o+eKp) ERD, (xp-s-Xale Rq }

Then Rn is called the Cartesian product of Rp and Rq. That is

Rn = Rp * Rq.

Now assume that

w(X,,Xe0e+Xn) = We(X) +X ars +Xp)Wa (Xpy +++ -Xn) éaiars (Die:

If there exist two formulae, one for Rp and one for Rq :

: o[eybeyercxpdebes econ x, Axe. -dXp

= Sah 99 of degree d(6)

f [yey ° +X) G (Mpa stn) AX, + + AX

&
Ni

os S Byatte

Then the N = NpNq points and coefficients

Pj) of degree d(7).

(ds +> Apo Bip 7 + pin) BpiBgj +++ (8)

ih ly) ao ONP ete = Ng

form an integration formula of degree d = min (dpdq) for Rn with

weight function (5).

The proof is a consequence of the fact that

Page 20

f- [ots x0 x ee eek Ox iesndxn

Ra

is the product of

foo fags xe eae ene dx ,...dxp

e

and

ee
2 Js (Xpae = Xd Set AX yp + AX 9

and is analogous to the set of equations (4).

The formula (8) is a Cartesian product formula; the Cartesian

product of the formulae (6) and (7).

2.4 The construction of product formulae for the n simplex

Now consider the construction of a product formula for Tn the n

simplex with vertices :

(0}077----0)

(1,0; anes-O)

(0,1,0, -..0)

(0,0; <00-s1)-

It is possible to transform Tn onto any other simplex by means of an

affine transformation. Therefore it is possible to obtain

integration formulae for any given n simplex by an affine

Page 21

transformation of formulae for Tn.

The integral of a monamial over Tn is

[[T [+
This can be ean into a product of n single integrals using

wyr Kae ny

PRS con oXV GR, AN 6 Ak, +00 (9)

the following transformation :

Sey = ¥4

X2= ye(1-y\) ye(1-x,)

X3 = ys(1-ye) (1-y,) y3(1-x\-x2)

Xn = Yo(1—You) (1-yee) «+e (1-y,) = ya(1-xy-Xe- ++ --X) +e 2 (10)

Since the limits of integration for the x are

O <= xi 1-x,- ..--xu, 1 =1,2,--.n

the limits for the yj will be

O«eyi<el , i=1,2,..-n.

Since the Jacobian of transformation (10) is

T= (1-y, "yn eee (1a)

the mononial integral (9) transforms into

fe fowl iol, Ga ey a ee Ye ndy, dys «+<dyq «++(11)

A,

Be

pt sooo t+ n-l

het wees HX 4 n-2

Page 22

Pri = ont 1

The integral (11) is a product of n single integrals, where the

integral with respect to y, has the form :

1

Tore dy, k=1,2,...n

ie He <
where Pyly,) = Ve Cl=y_) is a polynomial of degree = ofyt

seeee + On in yy. Therefore if there exist n one variable formulae

of degree d, of the form :

! m

a) (1-¥,)" "Ely 4) Gye © Sau E(pei) ++ +-(12)
(ag ial

for k =1,2,...n, these can be combined to give a formula of degree

d for Tn.

These results can be summarised as follows: if each of then

formulae (12) has degree d then a formula of degree d for Tn, with

w(x, ,+...Xn) = 1, is given, in cartesian coordinates, by the m*

points and coefficients

(iy Mhiey + Vuigaetg) tees (13)

ArAeigcees Ania

Vi, = pre

Vite = Pei(1- pa) i

Page 23

Via srtn = Prin Bajos ee C= Bra)

l1<ei,em ,k=1,2,...n.

Formula (13) is called the conical product of the one dimensional

formulae (12); these are usually taken to be the Gauss-Jacobi

formulae.

The above can be generalized to give integration formulae for Tn

with a weight function

= eo xS*(1-x,)* esse (1=x\- soe .

The product formula is exactly analogous to (13) except in place of

the me variable formulae (12) the following formulae must be used.

' "

[ort £ly,) ayy 2 Fre Flpe) k =1,2,..en
2 ie)

where the Px, 3x, Se,€x are related by

“Lh < = & kK=b, one

“1 < Pris St +--+ Sn 4 ey +--+ ent n-)

=I

SOC eaeeon tT Enhie Ene

=< Pa = €n

Page 24

2.5 The degree of the formulae used in the construction of a product

formula

In the above discussion all the product formulae were constructed

using products of formmlae of the same degree. There is no reason

why all the formulae used have to be of the same degree and under

certain circumstances there may be advantages in using different

degree formulae. For example if it is known that an integrand is

"well" behaved in one dimension but "badly" behaved in another then

it could be advantageous when forming a product rule for this

integrand to use a product of a low and a high order formulae. Thus

allowing the distribution of the nodes to reflect the behaviour of

the integrand. On the other hand if the behaviour of the integrand

is not known then a product of different degree may give a false

impression of the integral, in particular if the integrand is well

behaved in the dimension where a high order formula has been used

and badly behaved in a dimension where a low order formula has been

used. Hence the main advantage of using the same degree formulae

when constructing a general product formula is that the resulting

formula has an an even distribution of nodes, whereas the use of

different degree formulae can be advantageous when constructing

specific product formulae for integrands of known behaviour.

2.6 A set of product rules based upon Patterson's formulae

This section deals with the construction of a set of product type

rules for the hypercube based upon the oe dimensional formulae

derived by Patterson [48]. Patterson's formulae form a family of

interlacing whole interval, cammon point quadrature formulae of

Page 25

fairly high order which possess good stability and convergence

properties. The rules were produced by Patterson in 1968 as an

example of the method which he developed to extend the ideas of

Kronrod [28], who first showed how to add a further ntl points to an

n point Gauss-Legendre formula to produce a 2ntl point formula of

degree 3ntl (n even) or 3n+2 (n odd) in 1965. Patterson began with a

3 point Gauss rule from which he derived a 7 point rule with 3 of

the abscissae coinciding with the original Gauss abscissae; the

remaining 4 were chosen so as to give the greatest possible increase

in polynanial integrating degree and the resulting 7 point rule had

degree 11. From the 7 point rule a 15 point rule of degree 23 was

derived in a similar manner. Continuing in this fashion Patterson

derived rules using 31, 63, 127 and 255 points of respective degree

47, 95, 191 and 383. The nodes and weights for these formulae are

given in appendix [2]. These formulae were used in an algorithm for

automatic numerical integration over a finite interval [48]. The

basis for the algorithm was the successive application of these

rules, until the most recent results differ by the tolerance or

less. Due to their interlacing form, no integrand evaluations are

wasted in passing from one rule to the next and the algorithm has

proved to perform reliably and efficiently in it s long period of

use. In a survey of available algorithms for numerical quadrature

V.A.Dixon [11] states that the family of formulae is ideal for an

automatic scheme. Hence it seemed reasonable to adopt these formulae

as the starting point when constructing a set of product type rules

to be used in an autamatic quadrature routine based upon an

iterative scheme.

Page 26

2.7 Construction of a product type multidimensional quadrature

routine.

This routine uses a simple iterative scheme, generating and applying

successive higher order product rules, based on a Patterson family

of one dimensional rules, until either the required accuracy is

obtained or the maximum number of integrand evaluations allowed is

exceeded. The method is based upon generating the rules in

preference to storing them for two reasons; firstly, so that the

method can be used for any number of dimensions, and secondly, so

that only one copy of the nodes and weights has to be stored.

Basically the algorithm consists of the following :

REPEAT

generate the m" point product rule based on the m point

Patterson rule (m takes the values 3,7,15,31,63,127,255)

campute an estimate to the integral using this rule

UNTIL

either the estimate is to within the given tolerance or the

maximum number of integrand evaluations is exceeded

IF the maximum is exceeded

THEN output a suitable message

ELSE output the result

FI

As an example consider a two dimensional problem in which case m2.

Starting with a three point rule (m3) it is necessary to construct a

9 (m‘n) point product rule. Let the 3 points be x, y, z. In one

dimension the distribution of the points may be :

Page 27

Be y z
a

ak 0 1

In order to form the 9 point rule 3 copies of the 3 point rule must

be distributed across the region at a spacing equivalent to the

distribution of the original points. This gives a distribution of :

BY ey’

The next rule has 7 points in one dimension, 3 of which are those of

the 3 point rule and the other 4 of which interlace with these. Thus

in one dimension :

= y Zz

=k Sr

pq nes

In order to form the 49 point rule, 7 copies of the 7 point rule

must be distributed across the region at a spacing equivalent to the

distribution of the original points. Thus giving :

Where the points are (p,p),(p,x),(p,q),--(s,s). It can be seen that

Page 28

the coordinates of the points of the product rule are constructed by

taking all the possible nodes of the one dimensional rule as the

first coordinate of a point and all the possible nodes of the ome

dimensional rule as the second coordinate of a point. Consider the 9

point rule :

the first point is (1st node of 1d rule, lst node of 1d rule)

the second is (as , 2nd node of 1d rule)

the third is (. , 3rd node of 1d rule)

the fourth is (2nd node of 1d rule, 1st node of 1d rule)

the ninth is (3rd node of 1d rule, 3rd node of 1d rule).

A simple way of representing this is to let the nodes of the

original one dimensional rule to be numbered 1, 2, 3. Then the nodes

of the product rule can be written in terms of these numbers :

(pL) (152), (3) oe 250 2 (379) «

Then a point in the product rule, for example (2,3), can be

interpreted as the point given by taking the appropriate combination

of the nodes of the one dimensional rule, for example the second

node as the first coordinate and the third node as the second

coordinate. Obviously the process can be reversed, in that the pairs

(1,1),(1,2) ... (3,3) can be generated first and the actual points

generated by relating the integers to the nodes of a one dimensional

rule. This is the method adopted in the algorithm. The procedure to

generate the nodes of the mn point product rule has to work for any

value of m orn given the appropriate set of nodes and weights for

the one dimensional m point rule. The procedure achieves this by

generating the n elements of an array, in the order

(1,1,.-1),(1,1,-+2),+--(m,m,..m), which can be interpreted as the

Page 29

coordinates of a point of the new rule. For example, if n = 3 and

the array holds (1,3,2) this can be interpreted as the point x,y,z

where x is the first node of the one dimensional rule, y is the

third node of the one dimensional rule and z is the second node of

the rule. The weight for this node is given by the product of the

first, third and second weights for the oe dimensional rule. This

procedure consists of the following :

PROC generate = (INT m,n, REFLJINT array,

REF REAL present estimate)VOID :

BEGIN

{This procedure generates a set of m” n dimensional points,

where m is the number of points in a one dimensional rule,

which make up an n dimensional product rule; the product of nm

point one dimensional rules}

FOR i TO m DO

BEGIN

array[n] := i;

TE n> 1

THEN generate(m,n-l,array,present estimate)

ELSE

interpret the array ;

increase the number of integrand evaluations;

add the weight * the integrand evaluation to the

present estimate

END

END of the procedure generate.

One of the major advantages of using the Patterson family of rules

Page 30

is that each higher order rule uses all the previous nodes used by

earlier rules. This means that no integrand evaluations, which could

be "expensive" for complicated integrands, need to be wasted during

the iterative scheme. In order to take advantage of this feature it

is necessary to store the integrand evaluations and be able to

access them efficiently. Fortunately,using generate the nodes will

always be generated in a specific order, even when increasing the

value of m. In fact increasing the value of m merely adds new nodes

to the sequence of nodes. For example, with a three dimensional

problem the nodes would be generated in the following order:

See are

digo: gi 2

A LigS

ae Ay aa

1,2,2

se. etc.

Increasing the value of m would result in the addition of more nodes

to the list :

Sgt gk

Lply 2

Deep e ly)

1,1, 4 new node

1,1, 5 new node

1,1, 6 new node

Page 31

Also, in generating this new list it is easy to see that any nodes

generated using values less than or equal to the previous value of m

already exist, while nodes generated from values greater than this

value of m do not exist. Consequently the integrand evaluations at

these nodes need to be computed and stored. Thus the integrand

evaluations are conveniently stored in a linked list. A pointer then

advances through the list as nodes are generated. If the node

already exists then the pointer indicates the element of the list

which holds the required integrand evaluation. Otherwise, the

pointer indicates the position of insertion of a new list element

created to hold the integrand evaluation at this node.

feval for 1,1,1

feval for 1,1,2

feval for 1,1,3

feval for 1,2,1

feval for 1,2,2

feval for 1,2,3

etc.

When m increases these integrand evaluations are used in order until

the node 1,1,4 is generated which does not already exist. A new node

element is created and the integrand evaluation is added to the

list.

feval for 1,1,4

Hence it was necessary to alter the procedure generate slightly as

follows:

PROC generate =(INT m,n,previousm, REF[JINT array, BOOL exist,

REF REAL present estimate) VOID :

BEGIN

Page 32

{Procedure to generate the nodes of an n dimensional product

type rule from an m point one dimensional rule}

FOR i TO m DO

BEGIN

arrayL[i] :

IF exist

{if exist is false then the node already contains a

coordinate which indicates that it does not already exist}

THEN IF i > previousm

THEN {node does not already exist}

exist := FALSE

#L

FI;

Leen >)

THEN generate (m,n-1,previousm, array, exist,

present estimate)

ELSE IF exist

THEN

{the integrand has been evaluated at this node previously

and the required integrand evaluation is the next value in

the list}

select the next value in the list ;

generate the corresponding weight ;

add the weight multiplied by

the value to the present estimate

ELSE {the node has not been used previously}

interpret the array;

increase the number of integrand evaluations ;

create a new list element ;

Page 33

store the integrand evaluation in this element ;

add this element to the list ;

add the weight * the integrand evaluation

to the present estimate

FI

FI

END

END of the procedure generate.

This procedure now contains several steps which need to be explained

further.

Select the next value in the list :

In order to be able to do this it is necessary to define the

elements of the list. Each element needs to contain both an

integrand evaluation and a pointer to the next element in the list.

It was convenient to define a new mode for the elements of the list

MODE NODE = STRUCT (REAL feval, REF NODE ptr) .

Then selecting the next value in the list required the use of a

pointer to indicate the present position in the list. This pointer

was called pointer so that the following could be written:

next value := feval of pointer ;

{extract the value fron the list}

pointer := ptr OF pointer

{move the pointer on to the next item in the list }

Generate the corresponding weight:

This is a little more involved. The weights for the various rules

are stored in an array called weights in the required order. That

is:

Page 34

weights for m= 3

weights for m= 7

weights for m= 15

etc.

Also a second array called starting points contains the positions of

the start of each set of weights. Thus the starting position is

merely a function of m and generate the corresponding weight

consists of:

corresponding weight := 1 ;

FOR i TO number of dimensions

DO corresponding weight TIMES

weights(starting position[m]+array[i])

The value of starting position[m] is another parameter of the

procedure generate.

Interpret the array :

This consists of converting the values of the array into the

coordinates of the n dimensional point. The point is declared as

[1:n]REAL and interpret consists of :

FOR i TO number of dimensions

DO point[i] := node[array[i]]

This was combined with generating the weight described above.

Create a new list element, store the integrand evaluation and add

Page 35

this element to the list are achieved by the use of a procedure

which will perform all three tasks, given the appropriate

parameters. The procedure is called add to list and the parameters

it requires are the integrand evaluation and the pointer to the

present position in the list.

PROC add to list = (REAL feval, REF REF NODE pointer) VOID :

BEGIN

REF NODE newnode = NODE ; {create a new node on the heap}

feval OF newnode := feval ;

ptr OF newnode := pointer ;{pointer dereferenced twice}

pointer := newnode {pointer dereferenced once}

END of the procedure add to list.

Then it is necessary to move the pointer on to the next item in the

list: pointer := ptr OF pointer. This ensures that the next

integrand evaluation chosen from the list is the correct one for the

given node.

Hence the outline of the recursive procedure generate consists of:

PROC generate = (INT m,n,previousm,starting position,

REF[JINT array,

BOOL exist, REF REAL present estimate)VOID:

BEGIN

{This is a procedure to generate the nodes of an n dimensional

product type rule fran an m point one dimensional rule and to

generate an estimate to an integral using this rule}

FOR i TO m DO

BEGIN

array[n] := i;

IF exist

THEN IF i > previousm

Page 36

THEN exist := FALSE

ET

EL;

Trew 1

THEN generate (m,n-1,previousm,starting position,array,

exist,present estimate)

ELSE IF exist

{the integrand has been evaluated at this node,the

required integrand evaluation is the next value in

the list

generate the corresponding weight}

corresponding weight := 1;

FOR i TO number of dimensions

DO corresponding weight TIMES

weights[starting position + arrayli]] ;

{add the weight * the next value to the estimate}

present estimate PLUS (corresponding *

feval OF pointer) ;

{move the pointer to the next item in the list}

pointer := ptr OF pointer

ELSE {the node has not already been used}

{interpret the array and generate the weight}

corresponding weight := 1;

FOR i TO number of dimensions DO

BEGIN

point{i] := nodeLarray[i]] ;

corresponding weight TIMES

weights[starting position + array[i]]

Page 37

END ;

integrand eval := f(point) ;

present estimate PLUS

(corresponding weight * integrand eval) ;

nofe PLUS 1 ;

{increase the number of integrand evaluations}

add to list(integrand eval, pointer)

Er

END

END of the procedure generate.

The outline of the program based on Patterson's rules consists of :

Product type method based on Patterson's rules

WITH segfl-2d FROM pjk-alb-al

BEGIN

[] REAL nodes = (.......) 7

[] REAL weights = (.......) 7

[] INT starting positions = (......) ;

INT maxpoints , nofe :=0, nj;

REAL eps ;

read((maxpoints,eps,n)) ;

CJmNT m = (3,7,15) ;

INT next := 1 ;

[1:n]JINT array ;

BOOL exist := FALSE , notgt8 := TRUE , nottoomanyfe := TRUE ;

REAL result , resultl ;

Page 38

MODE NODE = STRUCT(REAL feval,REF NODE ptr) ;

PROC add to list = (REAL feval , REF REF NODE pointer) VOID :

NODE start := (0.0,NIL) ;

REF NODE pointer := ptr OF start ;

PROC generate = :

BEGIN+..END ;

generate(m[next],n,0, starting

position[next],array,exist,result) ;

WHILE (exist := TRUE ;

pointer := ptr OF start ;

generate (... eoee,resultl) ;

resultl - result > eps)

AND notgt8

next < 8

AND nottoomanyfe := nofe < max

DO result := resultl ;

IF NOT notgt8

THEN print((newline,"all nodes used ",newline))

Fly

IF NOT nottoomanyfe

THEN print((newline,"Too many integrand evaluations required"))

FI:

Page 39

print((newline,"The result is : ",resultl,newline))

FINISH

The complete version of the program is given in appendix [2].

2.8 Testing

The program was tested with the set of test problems given in

appendix [1] and using a set of tolerances 0.5, 0.1, 0.01,

0.05,....0.000001. The tables of the results for the test runs are

given in appendix [8].

2.9 Conclusions

All the results produced using this program on the limited set of

test problems were very accurate but correspondingly “expensive" in

terms of time and the number of integrand evaluations used. The

results were all far more accurate than the requested tolerance. For

example on the two dimensional version of the first test problem

with a tolerance of 0.5 the actual error was approximately 0.000001.

However the number of integrand evaluations used was 49 as compared

to 7 with one of the adaptive methods which produced a result with

an actual error of approximately 0.003, and the time taken to

compute the result was 77 millunits as compared to 9 millunits for

the adaptive method. One of the drawbacks with using product

formulae is the large minimum number of integrand evaluations that

have to be used; in two dimensions a minimum of 49 integrand

Page 40

evaluations are used, in three dimensions 343 and in n dimensions

7’n. Also there is a dramatic increase in the number of integrand

evaluations used in moving from one product rule to the next higher

order rule. For example in two dimensions the number of integrand

evaluations used takes the values 49, 225, 961, 3969, 16129 and

165025, and in three dimensions it takes the values 343, 3375,

29791, 250047, 2048383 and 16581375. As the mumber of dimensions

increases the change becanes even more pronounced. Hence, as can be

seen from the results, the program stops for quite large tolerances,

even though the previous results were far more accurate than the

requested tolerance, because the next rule has had to be applied in

order to determine the error estimate and either there is

insufficient space left on the heap to store the list of integrand

evaluations or the time allocation has been exhausted. This suggests

that the stopping criterion might be relaxed somewhat.

In conclusion the method is very accurate but expensive both in

terms of integrand evaluations used and the storage space required.

The storage space required could be reduced to a minimum by not

reusing the integrand evaluations but this would defeat the aim of

the algorithm and slow the method down considerably with anything

but the simplest of problems. Hence if sufficient storage space and

time are available then the method is suitable for producing very

accurate results for low dimensional problems. At this point in time

the method is unsuitable for higher dimensional problems because the

vast amount of space and the large number of integrand evaluations

involved are beyond the computing power of most available machines.

Page 41

Chapter 3 The Testing of Quadrature Routines

3.1 Introduction

This chapter deals with the testing and comparison of quadrature

procedures. Obviously, it is necessary to test and to compare

routines in order to satisfy the authors of the procedures that they

actually work, in order to give the user some confidence in using

the procedures and in order to justify the inclusion of such

procedures in a library. It is generally agreed that the structure

of automatic quadrature routines is sufficiently complicated to

preclude the possibility of comparison or evaluation by analytic

means alone and so it is necessary to adopt numerical experiments as

a method of testing and comparison. The choice of a suitable format

for these experiments is very important.

From the great number of quadrature routines which have been written

for one dimensional problems it would seem that the inclusion of any

reasonable new automatic quadrature routine in a software library

can be justified by choosing a suitable set of test problems for

which the routine produces "better" results than other available

routines. A proliferation of automatic quadrature routines has

resulted because of the "absence of generally acceptable standards

or benchmarks for comparing or evaluating such routines" (Lyness and

Kaganove[38]). This would suggest that it is very important to adopt

a suitable test and comparison methodology for multidimensional

quadrature routines so as to avoid wasting both time and computing

resources. Hence the author examined the test methodologies adopted

for one dimensional routines before adopting any particular approach

Page 42

in this work. In one dimensional quadrature two distinct approaches

have been developed. The first involves the use of a "battery" type

test while the second is based upon a "statistical" or “perfomance

profile" approach.

3.2 "Battery" type testing

The most commonly adopted approach in testing one dimensional

quadrature routines is the "battery" test. This type of test

involves applying a given routine to a predefined set of problems

which have known solutions and which vary in difficulty fron "well"

behaved integrands with no non mathematical difficulties, i.e.

difficulties due to the "shape" of the integrand, to "badly" behaved

integramis with non mathematical difficulties. Theoretically, it is

possible to take the results and compute an overall figure of merit

for the given quadrature routine. This method of testing and

comparison is based upon two assumptions :

a) That there is a "best" routine applicable to all the problems in

the test set.

and

b) That the test set of problems are representative of a wide set of

problems for which the routine will perform similarly.

These assumptions are not necessarily valid and this has led to

several difficulties in applying this method. Nevertheless, the

method is widely adopted because it is so simple to use. One major

example of a battery type test was the investigation by Kahaner[24]

which was performed in order to choose suitable one dimensional

quadrature routines for inclusion in a _ subroutine library. This

investigation highlighted sane of the problems associated with

Page 43

battery tests. A large set of problems, methods, and tolerances were

used and the experiment was completely objective in that if there

had been a best overall method then it would have been found.

Unfortunately, no one method proved consistently better than any

other over the complete range of test problems and in the end the

choice was made based, principally but not exclusively, upon an

experienced but subjective idea of the "best" all rounder in terms

of average reliability and average speed for each routine. Using

this test method it is very difficult to make any hard and fast

decisions as to the general applicability of a routine.

Perhaps the major drawback of the battery test is the way in which

the test set is chosen. The integrand functions are normally chosen

to be as different as possible so as to obtain a wide generality.

However, it does not always follow that a method suitable for a

problem A will be suitable for a problem A' (a slight variant o A).

In fact minor changes in the choice of integrand may lead to major

differences in the performance of the algorithm in same cases (this

is a consequence of the nature of the performance profile [39] which

is discussed in the next section). Therefore, it is possible for a

set of test problems to be either a "lucky" or an "unlucky" choice

and to give a false impression, good or bad, of a routine.

3.3 The Performance Profile approach to testing

The performance profile approach to testing adopts the function

v(Equad(s,€ req)) as a means of testing and comparison. The function

v(Equad(s,€req)) is the average number of integrand evaluations

required by the routine to integrate members of a specific problem

Page 44

family when the quadrature tolerance parameter has been set in such

a way that an accuracy £req is obtained with probability s.

A problem family is chosen such that each of it s members has a

particular attribute. An individual member is specified by assigning

a numerical value to an aiditional parameter, which may appear in

the integrand function £(x;A) or in the integration limits a(\) and

b(\). ‘The parameter A may take any value within a specified range,

that is \-<=A<=)+.

For example :

a=1,b=2

£(x;A) = ((x-A\)*2 +p°2)*-1 , p= 0.01

0.998 <=A<= 2.02

Each member of this family has a peak of height 100 and a half width

0.01 within or very close to the end of the integration interval.

If the experiments are limited to a single problem family then each

run may be specified by two input parameters and € quad.

Corresponding to each such pair it is possible to define

Eact(\;E quad) the error | re-0¢ | of the result returned by the

routine and v(\;€quad) the number of integrand evaluations required

by the routine to return this result. A plot of the function act (A;

Equad) against for a fixed value of Equad is called a performance

profile. A fundamental property of quadrature routines is that the

functions Eact(X; Equad) and v(; Equad) are rapidly varying

discontinous functions of A. Because of this they are not suitable

as a direct measure of the efficiency af an automatic quadrature

routine. The difficulties encountered in using battery testing

result fron this property since by relying om individual values of

the input parameter and €quad significant arbitary components have

Page 45

been introduced into the results which frustrate the evaluation

process.

The evaluation technique proposed by Lyness and Kaganove [33] for

one dimensional routines is based upon the performance profile but

treats the problem family as a whole. An average function value

count, v(Equad), is used along with the distribution function

#(xrEquad). he

v(Equad) = Ur, -d. [wreqaaion seetl)

@(x;€quad) = (proportion of values of \ for which
\Eact(;Equaa)| <= x)

S/Oe 9 [Hoe |eact(equad;d)|)ay.--. (2)

where H(t) stands for unit step function (Heaviside function)

er G9

H(t) =1/2 t=0 weseees (3)

Oo +t<O

These quantities can be calculated using Monte Carlo integration to

approximate the integrals in (1) and (2). Thus m rms are made to

obtain a set of results:

Eact(\i;Equad); v(Ai;Equad) i = 1,2,...m. The values of) are chosen

fron the range (\- ,A+) using a (repeatable) random number

generator and the quantities

vm(Equad) = 1/m = v(Aiz€quad) «22266 (4)

and ued

drm(x;€quad) = 1/m (number of values of i for which

| €act(AisEquad)| <= x)

1/m S H(x- |éact (\i;équaa)|) Seon (5)
i)

are used as approximations to (1) and (2) respectively.

Page 46

As in any statistically based experiment the size of the sample has

to be chosen with care with a view to the accuracy required in the

results. One advantage of this method is that if anybody doubts the

results then the distribution function can be recomputed and the

conclusions altered if significant differences are found. Once a

problem family has been defined and a quadrature routine chosen,

along with a value of Equad, then the functions #(x;€quaa) and

v(Equad) are well defined and can be determined. As illustrated

above for example.

In practice Lyness and Kaganove [38] found that relatively small

values of m, such as nm&100, were sufficient to obtain a clear idea

of the form of the functions. However, they actually used values of

m=1000 for the sake of being cautious and they produced values of

¢ (xzéquad) to within 1% for most of the range of x.

A set of statistical distribution functions corresponding to

different problem families and different automatic quadrature

routines provides a wealth of information which could be examined by

experts with a view to determining defects or advantages of

particular routines in various contexts. The following is a

hypothetical set of statistical distribution functions, ¢ (Exe,

Equad), plottel as a function of €req for a given problem family and

a specific routine.

Each curve is labelled with the value of €quad and in parentheses

the value v(Equad). The ordinate is not linear but scaled in such a

way that if log € req were normally distributed the curve would

appear to be a straight line.

Page 47

toe tors os

From this table it can be seen that if , for example, a value of

€quad of 10*-3 is chosen then there is a 79.7% probability of the

result being accurate to the required tolerance with a corresponding

number of integrand evaluations of 73. This could be compared with

the same information from the curves for another routine in order to

Choose between the two. Sets of tables like this for different

routines could be used to compare such things as the reliability of

stopping criterion and the "cost" in terms of integrand evaluations

for the various routines. This information could then be used either

to alter existing methods or as a basis for creating new ones. An

alternative application is to use them to provide a non expert, ie

the user, with information that he might require for his particular

problem.

Although it is unlikely that a user will have a problem which

coincides precisely with a member of a problem family which has been

investigated already, it is possible, with most difficult problems,

to find a salient feature of the integrand which is responsible

primarily for the difficulties to be encountered in numerical

integration. A problem family with only this feature can be looked

upon for guidance. Either these sta tistics would be available

Page 48

already or they could be specially obtained.

How does a user choose a method and a tolerance? Suppose the problem

has a dominant feature which corresponds to a particular problem

family and that a set of distribution functions for that problem

family and the available routines exists. Then, using the functions

the user can determine, using a simple double interpolation process

on the statistical distribution curves, the required tolerance £quad

to achieve say a 90% success probability and the average cost,

v(& quad), using each method. For example consider the table given

previously. If a horizontal line is drawn across at the 90% mark and

a vertical line drawn at 10*-3 the intersection can be used to

determine the value of €quad required to satisfy the user's

conditions. In this case the intersection falls between a choice of

10*-3and 10°-3.5 for Equad with corresponding costs of 83 and 73

integrand evaluations. Hence the user may decide to use a value of

10*-3.3 in which case he would expect a 90% success probability at a

cost of 78 integrand evaluations. Hence, the user can decide which

method to adopt. Thus the user has to decide both the accuracy he

requires and the probability of success that he is prepared to pay

for in terms of integrand evaluations. The user is warned

unambiguously that the routine may fail, in fact that statistically

it will fail.

The process by which Equad(s,treq) and v(Equad) are obtained fron

the statistical distribution function is a standard procedure

involving interpolation. A prospective user need not be burdened

with this calculation because a plot of Equad(s,€req) and v(Equad(s,

€req)) which is sufficient for the user can be obtained

Page 49

automatically. A user only needs to glance at these plots in order

to obtain a clear idea of the relative cost involved in using any of

the routines for a particular confidence level s.

A drawback of this method would appear to be the fact that a number

of plots, one for each value of s, are required for every method. If

this were the case then the technique would be of no practical use.

Fortunately, (Lyness and Kaganove[38]), there is practically no

qualitative difference between plots for different values of s,

apart from the obvious point that more integrand values are required

by each routine for a higher confidence level.

Thus the method of testing and evaluation involves using the

quantity v(Equad(s,€req)) where s = (€req, Equad) as a measure of

the cost of using a routine.

The method has several advantages:

1.The quantities on which the decisions are based are mathematically

defined and can be recalculated. It is a repeatable experiment.

2.Once a problem family has been selected, there is no bias in the

treatment.

3. The results are realistic in the sense that they relate toa

‘likelihood of failure'. There is no implication that the routine

can or should be completely reliable.

4. The results are problem orientated, that is they are ina

convenient form for one to select an appropriate routine for a

particular problem.

5.lyness and Kaganove found that their conclusions were compatible

with common experience.

Page 50

6. It is possible to add routines and problem families and so build

on currently available results.

The method has the following disadvantages:

1. It is possible to 'rig' a routine for any given problem family.

2. The choice of problem families is a subjective element.

3. It is a relatively expensive procedure.

4. To obtain full benefit, the user has to "tune" the value of

Equad.

5. Only accuracy and economy are tested; the user interface, warning

messages etc., are disregarded.

Hence, using a performance profile approach to testing it is

possible to reach unambiguous if limited conclusions about the

quadrature routines under test: routine A is better on average than

routine B for problems with a particular salient feature. This

method is very costly and not feasible for all situations.

3.4 Comparison between these two approaches to testing

The battery test sets out to demonstrate that a particular

integration routine is "better" for a wide class of problems than

certain other routines by applying the routines to a limited set of

problems and making general assumptions fron the results.

Unfortunately, due to the very nature of the problems under test,

these generalisations do not always follow and consequently the

assumptions can sometimes give a false impression,either good or

bad, of the routines being compared. On the other hand the

Page 51

performance profile approach to testing involves considerably more

work to reach far more limited conclusions, but the conclusions are

unambiguous and appear to give a true impression of the routines

under test.

3.5 Possible approach to testing multidimensional quadrature

routines

The range of multidimensional integration problems is vast and the

possible complexities are far greater than those in one dimensional

problems. Since no one integration routine has proved to perforn

consistently better than all other routines over all problem ranges

in one dimensional integration, it is reasonable to assume that no

one routine will prove to be consistently better than all other

routines over all the problem ranges in multidimensional quadrature.

Hence, because of the advantages of the performance profile approach

to testing over the battery type test, in that the former allows

unambiguous conclusions to be reached for routines over specific

problem ranges, it would seem natural to adopt a similar approach in

testing multidimensional quadrature routines.

The main advantage of this approach to testing is that it enables

the author of a given routine to say with confidence that his

routine is suitable for any problems whose dominant feature is one

of those featured in the set of problem families to which the

routine is applicable. However, that being the case, there is still

a subjective element in the testing in that the author of the

routine chooses the problem families for the test runs. Certain

aspects of the testing must be considered before deciding on the

Page 52

approach as a suitable basis.

The method is very expensive if sufficient tests are carried out to

give meaningful results. The choice of problem families is very

important. Unless the problem families reflect the dominant features

that are encounterei in user problems then the results are of no

use. The problem families should be user orientated, with different

sets aimed at different applications. The method is quite complex

and could involve the would be user in a lot of effort in actually

interpreting the available results. This manual approach might be

too much effort for the user to bother and therefore it would be

better to automate the process but make all the information

available should anyone require it, for example algorithm writers

who may use the information to improve existing routines or in the

writing of new routines.

Hence, although the method has many advantages it cannot be

undertaken seriously unless sufficient people, both software writers

and software users, agree upon it as a standard so that a single

body of information can be built up which can grow as new routines

are written. The salient features of the problem families must be

chosen with great care and agreed upon. This in itself could involve

a large amount of research but would be worth the effort if it

avoided the waste of effort that has been seen with respect to one

dimensional problems.

3.6 The method of testing adopted in this research

Although performance profile testing is recognised as the best

Page 53

method of testing and comparing routines it was not feasible to

adopt that approach in this work firstly because of the reasons

outlined above and secondly because of the cost involved,

particularly in terms of computing time. The method actually used

was based upon a "battery" type test. It must be stressed that this

approach was only used to form some general idea of whether or not

the methods examined in the routines are of any use at all even

though the results cannot guarantee to give unambiguous conclusions.

If the routines perform badly on all the test problems then it can

be assumed that they are not suitable as a starting point for

multidimensional quadrature and alternative approaches can be

adopted. However, since there are so few routines available any that

prove to perform reasonably well over a limited "battery" test may

be of use to somebody. It can only be stressed that no inference as

regards the performance of the routines for other, even similar,

problems to those used in the tests can be drawn from the results

unless the user is satisfied that the salient feature of the problem

in question is the same as the salient feature of one of the test

problems and that the performance profile for the problem family to

which they both thus belong is well behaved.

3.7 The set of test problems used

The set of test problems ranges from two to four dimensional

problems, each of which has a _ known solution. The problems were

chosen so as to illustrate different types of behaviour in the

integrand over the region of integration. For example oe has a

difficulty along one boundary of the region, another has

difficulties along two boundaries and a third has a non mathematical

Page 54

difficulty in the centre of the region. All the test problems were

written in the form of procedures which could be called by the

various programs in order to evaluate the integrand at a particular

node. Each procedure is included in one program segment and full

details of the format of both the procedures and the segments are

given in appendix [1] along with full details of all the test

problems.

Page 55

Chapter 4 A basic adaptive multidimensional quadrature procedure.

4.1 introduction

This chapter discusses a basic adaptive multidimensional quadrature

procedure. The aim of the procedure is to compute an approximation

to a multiple integral over a given region, to a given tolerance.

The tolerance is supplied by the user. The basic algorithm is a more

sophisticated version of an algorithm developed by the author for an

M.Sc. project [27]. The basic algorithm formed the starting point of

this research into multidimensional quadrature and, consequently, it

was written as a research tool rather than as a complete and

finished algorithm suitable for inclusion in a software library. Two

versions of the procedure have been written; the first using the

hypercube as a basic region and the second using the simplex as a

basic region, but both follow the overall structure of the

algorithm.

4.2 A brief description of the basic approach.

The following is only a brief summary of the more important aspects

of the basic approach. The method is based upon a technique used in

one dimensional integration and for simplicity the technique as used

in one dimensional problems is described before the n dimensional

analogy is discussed.

Given a one dimensional problem, a simple approach to find an

approximation, SO, to it s evaluation is to apply a basic rule over

the entire integration region. However, it is not usually feasible

Page 56

just to accept this result without any indication of it s accuracy.

Therefore, since most rules do not supply an accurate error

estimate, it is necessary to compute an error estimate. A convenient

approach is to subdivide the region into two or more, usually equal,

parts and apply the same basic rule, suitably transformed, to each

subregion. Then the sum of the two estimates gives a second

approximation to the result, Sl, which can be compared with SO for

consistency and in order to generate an error estimate. If the

results are inconsistent with some required tolerance then each of

the subregions can be subdivided and the rule applied in a similar

manner to each new subregion. The sum of the results gives the next

estimate, S2, which can be compared with Sl for consistency.

Obviously, the process can be repeated to give a sequence of

converging approximations to the integral, SO0,S1,S2....Sn. This

method has the disadvantage that the error at level P is given by

considering the difference between the estimate Sp and the estimate

at the next level Sptl. That is, by the very nature of the error

estimate it is necessary to go one level further than the accuracy

actually required.

An alternative approach to obtaining an error estimate is to use two

basic rules to give approximations AOBO, AIBl,...AnBn. Then the

difference between the results Ai and Bi in any given region (or

subregion) gives an error estimate over that region and the sum of

the error estimates can be tested for convergence. This method is

not as reliable as the previous one and the two basic rules need to

be chosen with care. However, this method is often more convenient,

particularly when an adaptive algorithm is being written. With an

adaptive method a subregion is dismissed from further consideration

Page 57

once an estimate has been formed over that subregion which satisfies

the allowable tolerance for that subregion. If the first approach is

taken then it is necessary to go to the next level of subdivision in

order to determine the error estimate for a subregion whereas with

this approach the error estimate is given quite simply by forming

the difference between the two esimates Ai and Bi. The allowable

tolerance for a subregion may be given by dividing the total

required tolerance between the number of subregions. Using an

adaptive method has the effect of concentrating more nodes in the

regions where the integral is comparatively "badly" behaved and less

where it is "well" behaved. However, the error method described and

the method of subdivision of the tolerance has the disadvantage of

imposing the strictest tolerances in the subregions where the

function is least well behaved. This often results in the answer

being more accurate than the user requested, with the overheads of a

higher cost to the user. A slight improvement on the situation can

be made by taking advantage of any "spare tolerance" from converged

subregions. Instead of dividing the tolerance between all the

subregions the sum of the error estimates for the converged

subregions is subtracted from the total tolerance requirement and

the remaining tolerance is divided between the non converged

subregions. This should have the effect of producing a result closer

to the required accuracy, with a corresponding saving in computing

effort. This is the approach adopted with the multidimensional

quadrature procedures, since the number of subregions is likely to

be far higher and the potential savings far greater.

Now consider the n dimensional analogy of this technique as applied

to a hypercube. Initially, two basic rules are applied over the

Page 58

hypercube to give two estimates AO and BO. These are compared for

consistency with the error tolerance requested and if the error is

too large then the hypercube is subdivided into 2%n (where n is the

number of dimensions of the problem) subregions, each of which is a

further hypercube. The basic rules, suitably transformed, are then

applied to each of the subregions and the sum of these estimates

gives the next estimate over the initial hypercube. If at any stage

the difference between two estimates over a subregion is less than

the present tolerance for that subregion then the subregion is

dismissed from further consideration and the spare tolerance is

shared amongst the other remaining subregions. A running total is

kept of the estimates over the converged subregions. Hence there are

two reasons for stopping; either the difference between two

estimates over the whole hypercube is less than the required

tolerance or convergence has been achieved in all the subregions.

The problems of organisation are far more difficult with the n

dimensional version of the technique than with the one dimensional

version.

4.3 The structure of the basic algorithm

The essence of the algorithm is straightforward and consists of

continually subdividing the region of integration into more and more

subregions and forming new estimates to the result until convergence

is achieved. However, the problems arise in keeping track of the

subregions and applying the correct transformation of the basic

rules to then.

Perhaps the simplest way to keep track of the subregions is to store

Page 59

them in a linked list. Initially the list consists of the whole

region only, then this is replaced by the list of it s subregions,

then this list is replaced by the list of subregions of the

subregions, and so on the list grows. As convergence is achieved in

various subregions they are removed from the list altogether and

their estimates added to the total of contributions from the

convergel subregions which is part of the final approximation. Thus

one reason for terminating the algorithm is that the list of

non-converged subregions is empty, indicating convergence in all

subregions.

Hence the basic structure of the algorithm using a linked list

approach consists of :

WHILE NOT converged

DO

{Compute the estimate of each subregion in the linked list in

turn}

IF convergence is not achieved in a subregion

‘THEN

subdivide that subregion and store it s subregions m the

next linked list of subregions

ELSE.

dismiss this subregion from further consideration and add

its estimate to the total estimate from converged

subregions

EI

Compare the sum of the estimates from non-converged subregions

plus the total estimate from converged subregions (i.e. the

oD

Page 60

present approximation to the integral) with the previous

approximation.

IF the difference is less than

the required tolerance

OR

the new list of non-converged

subregions is empty

THEN

the method has converged

ELSE

{further computation is required in the non-converged

subregions}

4.4 The subdivision strategy used with the hypercube

It is necessary to subdivide the original hypercube into a number of

subregions, each of which is another hypercube. The minimum nunber

of subregions which can be used to achieve this is 2%n. Hence in two

dimensions the square is subdivided into four squares thus:

original region subregions

In three dimensions the cube is subdivided into eight cubes thus:

Page 61

|
|

I t
| ta “A
1 rep oe

! Fiat / a

Eo Ace sete
/ yiie L

/ 7
t --4-4--|-

/ ‘ /
if / /

— / >=

original region subregions

In a similar manner the n dimensional hypercube is subdivided into

2°n subregions.

Now consider what it is necessary to store in each element of the

list in order to adequately describe the subregion. Each of the

rules used to derive approximations over hypercubes is based upon a

set of nodes and associated weights. Most of the rules are given for

a particular hypercube but can be transformed to any other

hypercube, since they are invariant under an affine transformation.

The nodes are usually given with respect to same origin, which is

often the centre of the starting hypercube. In order to apply one of

these rules to a different hypercube it is necessary to map the rule

from the first hypercube to the second by considering a change of

origin andi a change of scale between the two. Hence to apply any

given rule to any given hypercube it is only necessary to know the

centre of the hypercube and the scaling factor relating the size,

hhypervolume, of the hypercube to the hypercube over which the rule

is defined. Thus all that has to be stored in each element of the

list in order to adequately describe the subregion, so as to be able

to apply the basic rule and obtain an approximation to its

integral, is the centre of the subregion and it s associated scaling

Page 62

factor. In fact, the scaling factor need not be stored with each

element since it is the same for any given level of subdivision into

subregions and the list oly ever contains subregions at one

particular level.

4.5 The basic rules used for the hypercube

Certain basic rules are used to compute the estimates to each

subregion in the linked list. These rules are written in the form of

procedures, each of which requires the same parameters. The

parameters consist of the centre of the hypercube over which an

estimate is required, scaling factors relating the hypercube to the

initial hypercube and a function to evaluate the integral at any

given node.

Initially the two basic rules used were Stroui's n+l point rule of

degree two and Stroui's 2n point rule of degree 3 ([57] chapter 8).

Stroud's ntl point rule consists of:

points coefficients

(EiyeXiae eta tia) V/(n+1)

where V is the hypervolume

X i,axy = sart(2/3) . cos(2ikw/(nt1)

Tie sqrt(2/3) . sin(2ikr/(nt1l)

k =1,2,...(n/2) i=0,1,-..n

If n is odd

Lin = (-1)°i / sart(3)

The points are the vertices of a regular n simplex and they all lie

inside the region.

Page 63

Stroud's 2n point rule consists of:

points coefficients

(iyiTieres Lin 1T iq) v/(2n)

where V is the hypervolume

X ex = sart(2/3) . cos(2k-1)in/n

rian = sqrt(2/3) . sin(2k-1)iv/n

k=1,2,...(n/2) i= 0,1,...2n

If n is odd

ran = (-L)i / sart(3)

The points are the vertices of a regular n dimensional octahedron

and they all lie inside the region.

**{The notation (u, ,Uz,-+++Un 7Une,) denotes the set of points

consisting of the point (u,,u,,---U,) amd all the points which this

maps into under the set of all (ntl)! linear transformations of Sn

on to itself. These points can be found by forming all the possible

permutations of the ntl coordinates. If all ui, i= 1,2,...-ntl are

distinct this gives (ntl)! different expressions :

(Wg) Wig ees Win inn) =

The first mn components of these vectors are the coordinates of the

desired points. If not all the ui are distinct this will result in

fewer than (ntl)! points in the set.}

4.6 Defining the integrand

In order to evaluate a particular integral it is necessary to pass

the integrand to the routine. This is achieved by writing a

procedure to evaluate the integrand at any given node and linking

the procedure to the quadrature routine. This can be quite difficult

Page 64

but was acceptable for this algorithm since it was only intended to

be used by the author as a research and development tool. For a

quadrature routine intended for a wider audience, possibly people

with little or no computing experience, it would be necessary to

provide a more agreeable user interface. A suitable approach might

be to write a program which took as input an integral in the form:

[-f AK, AXe ++ +++ AXn

Rn

where y = f(x,X,-+++-+-X,) amd Rn is the region of integration. The

program would then produce as output a procedure to evaluate the

integrand at any given node.

4.7 Segmentation of the program

This program was written primarily as a research tool. Hence, in

order to facilitate testing and development the program was written

as a sequence of segments which are linked together by the main body

of the program. Each of the segments can be replaced by an

alternative and the effects considered.

The first segment contains the declarations for the constants and

variables which are common to the other segments.

The second segment contains a procedure, MILLTIME, which has no

parameters and delivers a LONG INT representation of the time of

call. This procedure is used for timing the method as a basis of

comparison.

Page 65

The third and fourth segments contain procedures to apply the basic

rules to evaluate an estimate to the integral over a region defined

by the parameters. To some extent the program is imlepenient of the

basic rules used in that it is possible to use any alternative rule,

provided an appropriate segment is written. Thus the testing of

various formulae ami combinations of formulae was possible by

writing alternative segments with the same staniard form and name

for the procedures to apply the rules.

The fifth segment contains the procedure to evaluate the function

defining the integral at any given node. Again multiple copies of

this segment were written, each containing a procedure of the same

name and form but each evaluating a different integral, thus

simplifying the testing of the routine with various integrals.

The final segment is the main body of the program amd links all the

other segments together. Any further sections of the program which

needed to be campared with alternatives could also be taken out as

further segments.

The complete program is given in appendix [3.1].

4.8 The simplex as a basic region

As an alternative to the hypercube a simplex is considered as a

basic region of integration. A simplex is merely an extension of the

two dimensional triangle, so that inn dimensional space it is a

figure defined by n + 1 vertices; thus in two dimensions it is a

triangle with three vertices, in three dimensions it is a

Page 66

tetrahedron with four vertices and so on.

One of the main advantages of choosing the simplex as a basic region

is the fact that any simplex, regardless of the number of

dimensions, can always be divided into two "similar" subregions,

similar in that they are both simplexes. Thus the same type of basic

rule can be used throughout and the number of subregions will grow

less rapidly than is the case with the hypercube, which has to be

subdivided into 2*n (where n is the number of dimensions of the

problem) in order to produce "similar" subregions. Hence the

algorithms for the simplex can follow more closely the method of the

one dimensional algorithms where a subdivision into two subintervals

has proved to be a better approach. The basic method adopted for the

simplex is analogous to that adopted for the hypercube. However,

certain features of the simplex, such as the hypervolume and the

centroid, are important and these are now discussed in detail along

with any slight changes that had to be made to the basic algorithm.

4.9 The hypervolume of a simplex

With many of the formulae for simplexes it is necessary to be able

to determine the hypervolume V (Hammer and Stroud's terminology -

[19]) or the sizeo(S) (Silvester's notation - [54]) of the region

of integration. Silvester gives the following approach to finding

a(S) :

Let a simplex be defined by it s n+l vertices in the n space spanned

by the coordinates x!',x*,...x*. Let S be the n dimensional simplex

whose kth vertex coordinates are xi where i = 1,2,...n. Then the

Page 67

size o(S) is defined in the following manner :

o(s)= 1

nl! eet Shui ecein) Oe:

a £ Xi Baers Snes

Under this definition the size of a me dimensional simplex is it s

length, the size of a two dimensional simplex is it s area, that of

a three dimensional simplex it s volume, and so on. However, using

this definition the sign of the size is undefined, being dependant

upon the way in which the vertices are ordered. Therefore it is

usual to adopt |= (s)| as the size of a simplex in any formulae, so

that the size is always positive.

Since the term hypervolume has been used in conjunction with the

hypercube previously this term will also be used for the simplex

throughout the rest of this thesis in preference to the term size,

although the two are interchangeable.

4.10 The centroid of a simplex

The centroid of a simplex is used in many of the integration

formulae for the simplex. The centroid of a simplex is defined as

the point of intersection of its medians, that is a point of

trisection of each median. Let the vertices of the n simplex Sn be Vo

1 V,se+eV,~- Then the centroid, C, of Sn is given by :

Page 68

n

c= S vi / (nt)

i=0

To illustrate this consider the centroid of a two dimensional

simplex, i.e. a triangle :
& x95

Consider the median AE

X = x,t 2.(AD)/3 = x\+2.((x,+%0)/2 - x,)

= (x,+x,t+x,)/3

Similarly

¥ = (yityetys)/3

n

that is the centroid (X,Y) = S vison)

i=0

4.11 Area coordinates

Area coordinates are a means of describing a point within a

triangle. Each point is defined by means of three coordinates Ai,

Page 69

Bi, Ci. For example one area coordinate of the point (x,y) is given

by the ratio d/r where d is the perpendicular distance from the side

of the triangle DE to the point (x,y) and r is the distance of the

vertex F from the side DE. The other area coordinates of the point

(x,y) are defined similarly. Obviously only two area coordinates are

required to define a point uniquely.

D

Area coordinates are a useful means of describing the nodes of a

quadrature formula. Any triangle can be mapped onto any other

triangle by means of a linear transformation and under such a

mapping area coordinates are invariant. Hence a quadrature formula

developed for a particular triangle can be applied to any other

triangle relatively simply provided it s nodes are described in

terms of area coordinates.

Area coordinates have an obvious extension to n dimensions.

4.12 Subdivision strategy used with the simplex

Any simplex can be subdivided into two further simplexes, hence the

overall subdivision strategy used with the simplex is one of

continually splitting each subregion into two further subregions.

However there are a wide variety of ways in which a simplex can be

split into two simplexes. It is preferable to use a subdivision

strategy which leads to "compa subregions since this ensures an

even distribution of the nodes of the basic rules used. With non

Page 70

"compact" subregions the nodes could easily become clustered at one

end of the region thus giving a false impression of the integrand.

Now consider how the subdivision takes place. If the simplex is two

dimensional, i.e. a triangle, then a new vertex is formed along me

side of the simplex and a line drawn to the opposing vertex in order

to divide the original simplex in two. Thus :

fe Ye

Mi : Ve SAY, s

compact non compact

With a three dimensional simplex, i.e. a tetrahedron, a new vertex

is formed along one side of the simplex and a plane constructed

through the opposing side of the simplex in order to give the two

new simplexes. Thus :

Ly LY
non compact

It is easy to see that "compact" and equal hypervolume simplexes

result from choosing the midpoint of the longest side of the

original simplex as the new vertex when generating the two new

subregions. This was the method adopted in the algorithms.

The n dimensional analogy is straightforward. In order to split ann

dimensional simplex into two a new vertex is formed along oe side

Page 71

of the original simplex, say vertex Vntl is formed between the

original vertices Vi and Vitl, then the new vertex replaces one of

it s neighbouring vertices in the set of vertices defining the

original simplex in order to define the first new simplex and the

other neighbouring vertex in the set in order to define the the

second new simplex. That is the two new simplexes are defined by the

vertices VO,...Vi,Vntl,Vi+2,...Vn and VO,...Vi-1,Vntl,Vitl,...Vn .

4.13 The structure of the algorithm as applied to the simplex

The structure of the algorithm as applied to the simplex follows

exactly the structure of the basic algorithm given in section 4.3.

The main differences between the application of the algorithm to the

simplex and the hypercube is that subregions now refers to simplexes

and the subdivision strategy is as described above. The elements in

the linked list of subregions are different in that the amount of

information required to describe each simplex is not the same as

that required to describe each hypercube.

4.14 The basic rules used for the simplex

It is somewhat easier to discuss formulae for the simplex if they

are all considered in reference to one particular simplex. Hence the

author adopted the notation used by Stroud to define all the

formulae used over the following basic simplex.

Let Sn — the n dimensional simplex with ntl vertices

(0,0, sau 70)

(1,0, 06540)

(Oj ApsieceeQ)

Page 72

(0,0, .«.«,1)

The hypervolume of Sn is denoted by V = 1/n! .

Any point (x, 1X pee rX,) on the simplex satisfies the following :

x, in ot eseoe eo 1 x O i=1,2,...,;n.

For example in two dimensions :

(0,1)

(0,0) (1,0)

v=1/2

The two basic rules used initially were Hammer and Stroud's [19]

formula for the quadratic polynomial and Lauffer's [30] degree two

formula. Both of these are given in Stroud[57].

The first basic rule

Hammer and Stroud's degree 2, ml point formula :

points coefficients

Page 73

(njzyecccra) (1/(nt1)) V

where V is the hypervolume

q a (nt2 ¥ sqrt(n+2)) /(m+1) (nt2)

a i (nt2 £n.sqrt(nt2)) /(mt1)(nt2)

The upper sign was chosen since this gives a formula with all the

points inside the simplex for all n whereas the lower sign gives a

formula with all the points outside the simplex for n>=3.

The points of this formula lie along the medians of the simplex.

The second basic rule

Lauffer's degree 2 , (nt1)(n+2)/2 point rule.

points coefficients

(0,0,...,0;1) B

(0,0,..0,r;r) €

where V is the hypervolume

Piel.

B (2-n)*V/(n+1) (nt2)

Cc i 4*y / (nt1)(nt2)

The points for this formula are the vertices of the simplex and the

midpoints of the sides of the simplex.

These two rules were chosen as a pair because they provide an even

Page 74

distribution of points across the region of integration. To

illustrate this consider the geometrical position of the nodes of

the two formulae in relation to the two dimensional version of the

basic region Sn :

The vertices for this region are (0,0), (0,1) and (1,0).

For the first rule

(nt2-sqrt(nt+2))/(mt1)(nt2) = 1/6 a 1
W s = (nt2+n.sqrt(nt2))/(mt1)(nt2) = 2/3

hence the points are (1/6,1/6), (1/6,2/3) and (2/3,1/6)

For the second rule

r=1/2

hence the nodes are (0,0), (0,1), (1,0),

(0,1/2), (1/2,0) and (1/2,1/2).
© points for Lauffer's rule

xX points for Hammer and Stroud's rule.

The basic rules which are used to compute the estimates over the

subregions are written in the form of procedures. The procedures are

contained in separate segments and the same parameters are used for

Page 75

each procedure since this facilitates the simple interchange of

alternate formulae. The segments containing these procedures are

given in appendix [3.2].

4.15 The program for the simplex

As with the program for the hypercube, the program for the simplex

was written as a sequence of segments which are linked together by

the main body of the program. Full details of all the segments are

given in appendix [3.2].

4.16 The data required by the program

In effect the segment SEGF is part of the input to the program since

this defines the function to be integrated. However, a selection of

possible integrals and the corresponding segments SEGF are given in

appendix[1]. This section is concerned with the data that is

required to drive the program once the problem has been defined in

the form of segment SEGF.

This data consists of the number of dimensions of the problem, the

required number of test runs of the problem, the tolerance for each

of these runs and sufficient information to define the region of

integration. The first three items are quite straightforward, but

the third needs a little more explanation.

First consider the hypercube. Although the basic rules were based

initially on formulae derived for the hypercube -l1<=x <1 it is

Page 76

possible to solve integrals over other hypercubes using these

formulae, by mapping nodes from the initial hypercube to the new

region. This approach is acceptable since the rules are invariant

under such an affine transformation. The data required to achieve

this mapping is as follows:

1. The factor relating the new nodes to the old nodes, i.e. the

factor by which the side of the hypercube needs to be divided or

multiplied to give the side of the new hypercube.

2. The scaling factor relating the hypervolume of the initial region

to the hypervolume of the new region.

3. The centre of the new region.

4. The offset of the centres of the first subregions of the region

from it s centre.

Thus for example the data required by the program for the following

two problems:
B+

Lf tovesevanions and

Sa

treet

[[[eres dx, dx, dx,
> to So

consists of

Problem 1 Problem 2

2 3 the number of dimensions of the problem

3 4 the number of tests to be performed

eSpelyos .5,.2,.. the tolerances one for each test

i 2 divl the division factor relating

the new nodes to the old nodes

0.5 0.25 the offset of the subcentres of the subregions

0.0 0.5

Page 77

of the new region

the scaling factor relating the hypervolumes

the centre of the new region.

Now consider the simplex. The data required to define the region of

integration consists of:

1 the vertices of the simplex

2 the hypervolume of the simplex.

Hence for the problem
Tale

J [soon dx dy
° °

the data would consist of:

2 the number of dimensions of the problem

4 the number of tests to be performed

.5,.1,...the tolerances one for each test

0,0

0,1 the vertices

1,0

0.5 the hypervolume.

4.17 Testing the two programs

The program for the hypercube was tested using the set of test

problems described in appendix [1]. Also the program was tested with

an alternative pair of basic rules; namely the compound trapezoidal

rule and Ewing's rule, details of which are given in appendix [5.1].

The procedures to evaluate an estimate to the integral using each of

these rules are given in appendix [5.1]. The results of the test

runs are given in appendix [8].

Page 78

The program for the simplex was tested using the set of test

problems described in appendix [1]. The results of these test runs

are given in appendix [9].

The following set of tolerances were used for both programs:

0.5,0.1,0.05,....0.000001. The maximum jobtime for each run of the

program was limited to 90 and the maximum core size 90k.

4.18 Conclusions

Both of the programs produced results to within the required

tolerance for the majority of the problem and tolerance range. In

fact the majority of results were far more accurate than the

required tolerance. However, once the tolerances became too small

the programs started to fail because of the large number of

integrand evaluations required which resulted in either the time

running out or no more space being available for the heap to expand.

This was more of a problem with the hypercube program than with the

simplex program.

It was noted that due to the nature of the subdivision process used

with the hypercube the number of integrand evaluations used changed

considerably from one tolerance to the next, if any change in the

number occurred at all. For example, a specific number of integrand

evaluations might be used for all tolerances larger than 0.001 and

then a sudden increase in the number of integrand evaluations would

occur for the tolerance 0.001. Hence the results produced with an

error tolerance slightly larger than 0.001 might have an actual

error marginally greater than the requested tolerance while the

Page 79

results produced with an error tolerance of 0.001 might have an

actual error far smaller than the requested tolerance.

The results produced using the hypercube program were not as

accurate as those produced by the product Patterson program but the

number of integrand evaluations used were far less and the tolerance

was still satisfied for the majority of the range. Consequently the

range of tolerances for which the method succeeded in producing

results was greater than that of the product method.

The results using the second pair of rules (the compound trapezoidal

rule and Ewing's rule) were noticeably worse all round than the

results using Stroud's rules. Hence, Strouwl' rules form a better

pair of formulae for this program.

For comparison an Algol68 version of the Fortran routine of Genz

[16] was written and tested on some of the test set of problems.

However, the results of the comparison were not conclusive in any

way and merely highlighted the problems of testing and comparing

different routines. The first routine produced slightly better

results on some problems or with particular tolerances while the

second produced better results on others or with different

tolerances.

One problem with this basic adaptive method is the large amount of

global store that is used. In particular the heap is used to store

the linked lists of subregions. Hence it is in constant use and

frequently becomes fragmented which results in garbage collection

being invoked. (This is the process of finding all the free space on

Page 80

the heap and grouping it together.) Unfortunately this process is

rather slow and needs to be avoided if at all possible. One solution

would be to increase the amount of space allocated to the heap but

this is not possible beyond a certain point because of the physical

limits of the machine and the upper limit set by the compiler.

Alternatively one or two modifications could be made to the program

to make the use of the heap more efficient. The basic structure of

the algorithm involves creating a list of subregions which is then

replaced by a list of subregions of these subregions and the

original list discarded. This list is then replaced by another new

list of subregions of subregions and discarded. The process

continues in this manner using more and more of the heap until

convergence is achieved. It would be feasible to avoid some of the

garbage collection by keeping a list of the free space which was

made up of the discarded lists. Whenever more space was required it

could be taken from the free space list, if the list was not empty,

instead of using more of the heap. Instead of discarding the used

lists they could be tagged on to the free space list.

The stopping criterion for the simplex was altered slightly because

of a problem that occurred during the first few test runs. The

program was tested on an integral which had a symmetric integrand

function and the combination of the symmetry and the subdivision

process resulted in the first two subregions having the same

estimate and the sum of the two estimates being equal to the initial

estimate over the whole region. Hence the program stopped after the

first subdivision regardless of the tolerance because the difference

between the latest two estimates to the integral was zero. The

stopping criterion:

Page 81

WHILE the list of subregions is not empty

AND the difference between the latest two estimates

is greater than the tolerance

was replaced by

WHILE the list of subregions is not empty

In conclusion the two programs produce satisfactory results but

there are some slight improvements that could be attempted.

Page 82

Chapter 5 Storing the integrand evaluations

5.1 The need for storing integrand evaluations

With all but the simplest of problems a large number of integrand

evaluations are needed to produce a reasonable approximation to the

solution. Hence, if the integrand is a complicated expression the

time taken to evaluate the integrand at each of the nodes can add

considerably to the overall time taken to compute the result. This

suggested the possibility of reducing the amount of computation by

choosing the basic rules in such a way that some or all of the nodes

used at ome level of subdivision are used again at subsequent levels

o£ subdivision and storing the integrand evaluations thus avoiding

reevaluation of the integrand at the common nodes. Alternatively,

the subdivision strategy could be chosen to enable common nodes to

be used. In practice it is necessary to select both the basic rules

and the subdivision strategy to take full advantage of common nodes.

This approach is only feasible provided an efficient and convenient

method is developed to store and access the integrand evaluations as

the subdivisions take place. Even then, storing the integrand

evaluations will only be a practical proposition when reevaluating

the integrand at a given node takes longer than the overheads

incurred in storing and accessing an integrand evaluation. This

restricts stored integrand evaluation techniques to certain

problems; those whose "cost" of evaluation is above a certain level.

This chapter is concerned with the particular methods of storing the

integrand evaluations and the subdivision strategies adopted by the

author.

Page 83

5.2 The basic rules and subdivision strategy for the hypercube

The subdivision strategy used in the previous algorithms consisted

of subdividing the n dimensional hypercube into 2*n equal

lhypervolume subregions, each a hypercube. With this strategy any

rules based on the corners of a hypercube, on the centre of a

hypercube, or anywhere on a regular mesh(corresponding to the

subdivision) result in common nodes on subdivision. For example in

two dimensions:

 Sear
Initial region First level of subdivision

o°- common nodes

In this example 16 new integrand evaluations would be required at

the first level of subdivision if the previous integrand evaluations

were stored as opposed to 36 integrand evaluations if none were

stored.

Several rules are based upon nodes on this type of mesh, for example

the product trapezoidal rule and Ewing's rule.

5.3 Storing the integrand evaluations in a linked list

In the first attempt to develop an algorithm which made use of

Page 84

stored integrand evaluations the author chose to store the integrand

evaluations in a linked list which could grow dynamically as the

method proceeded. The list could then be searched in order to find

an integrand evaluation associated with a given node. Each item in

the list had to contain the following information: the numerical

value of the integrand evaluation, a key (associating the integrand

evaluation with a given node and providing a means of ordering the

list), and a pointer to the next item in the list. To satisfy these

needs items of an additional mode defined as:

MODE ITEM = STRUCT (INT index,

REAL fevaluation, REF ITEM ptr).

The integrand evaluation is stored in the fevaluation field of an

iten. The key is stored in the index field of an item and the

pointer to the next item in the list is stored in the ptr field.

This gives the items of the list but creates the problem of

indicating the start and finish of a list. The start of a list is

indicated simply by using a pointer, for example REF ITEM head,

which is a reference to the first item in the list. In order to

signify the end of a list it is necessary to have a null pointer to

assign to the ptr field of the last item in the list. Fortunately in

Algol 68 NIL fills these requirements.

Thus, the linked list consists of a pointer to the start of the

list, the chain of items in the list and the last item in the list

with NIL assigned to it s ptr field indicating that there are no

further items in the list.

Page 85

5.4 Ordering the list

When a list is not ordered it is necessary to make a complete search

of the list in order to determine that an item does not yet exist.

Obviously this is very wasteful and was avoided to some extent by

ordering the list. Since the keys are numerical values the natural

choice was to order the list by magnitude of keys; the items with

the smallest keys appearing at the start of the list while the items

with the largest keys appear at the end of the list. With an ordered

list a search can stop either when the required item is found or

when an item is found with a larger key than the search key. The

overheads incurred in ordering the list are few since the list needs

to be searched anyway and an unsuccessful search automatically gives

the place of insertion of the new item in the list, that is

immediately before the first item with a key larger than the search

key.

The choice of the keys is a very difficult area. The keys have to be

simple to campute yet uniquely linked to the coordinates of the

given node. The various methods considered by the author are

discussed under the section 5.8 and for the present it is sufficient

to know that it is possible to obtain the value of such a key by the

use of a procedure called enumerate.

5.5 The generation and use of linked lists

In order to generate and use linked lists it is necessary to be able

to create new items of the correct type for the list, insert these

items into the list and search the list for an item with a given

Page 86

key. The list can be generated from an empty list, that is a null

pointer to the start of the list, by creating new items globally and

linking these items to the list by insertion at the correct

position. In Algol 68 global variables can be created and stored in

a dynamic storage area called the heap.

Insertion is achieved by the use of a procedure "insert" which

creates a new item globally, assigns the appropriate data to it and

connects it to the linked list at a given point. The point of

insertion of the new item is given by the procedure "searchlist".

This procedure searches a list for a given node and delivers either

the position of that node in the list, if it exists, or the position

in the list where it should be, that is the position of insertion.

These procedures are now discussed in detail.

5.6 A procedure to search a linked list

The following procedure "searchlist" searches a list of items,of the

type MODE ITEM = STRUCT (INT index, REAL fevaluation, REF ITEM ptr),

for a given item and delivers either TRUE if the item is in the list

or FALSE if it is not. It also delivers as a parameter a pointer to

either the required item or to the position where this item should

be inserted. The search takes place by a comparison of the keys in

the list which are stored in ascending order of magnitude of the

keys. Thus searching merely consists of comparing the search key

(that is the key of the given item) with each of the keys of the

items in the list one at a time. This process continues until oe of

the following occurs: the end of the list is reached, a key equal to

the search key is found, or a key greater than the search key is

Page 87

encountered, in which case the given item cannot be in the list. The

procedure consists of:

PROC searchlist = (REF REF REF ITEM pointer, INT key) BOOL:

BEGIN

{This procedure searches a list for a node with a given key, it

delivers TRUE if the node is in the list and FALSE otherwise}

BOOL not found := TRUE, possible := TRUE ;

{not found indicates whether the item has been found while

possible indicates whether the item could be in the list}

IF pointer ISNT empty

{This tests for an empty list and is redundant when only non

empty lists are used}

THEN

WHILE not found AND possible DO

BEGIN

REF INT indp = index OF pointer ;

IF indp = key

THEN notfound := FALSE {the item has been found}

ELSF indp > key

THEN possible := FALSE

{item is not in the list}

ELSE

IF (ptr OF pointer) IS empty

THEN possible := FALSE

{list is now empty}

FI;

pointer := ptr OF pointer

{move on to the next item in the list}

Page 88

END

FI;

NOT not found

{deliver TRUE if the item is in the list and FALSE otherwise}

END of the procedure searchlist.

The need for a pointer parameter with mode REF REF REF ITEM is

perhaps not obvious and may be understood more easily by considering

a diagrammatic representation of what is taking place.

Linked list

item iten item

pointer

The pointer contains a reference to the ptr field of a given item

and as the search takes place its value changes accordingly. Suppose

the declaration ITEM first; occurs then :

first is of mode REF ITEM

index OF first is of mode REF INT

fevaluation OF first is of mode REF REAL

and ptr OF first is of mode REF REF ITEM.

Hence, if the pointer is to contain a reference to the ptr field it

needs to be of mode REF REF REF ITEM. It would of course be easier

to search at ome level of reference less by having a pointer to the

item instead of to the ptr field of the previous item. However, this

would make insertion more difficult. As it is insertion is simple

and consists of making the ptr field of the new item contain the

Page 89

value held in the ptr field referred to by the pointer and then

making the ptr field referred to by the pointer contain the

reference to the new item,

Linked list

item item item

-(_}+_ +E
Sse =

peter (ese a
The algorithm written to search a linked list is a satisfactory

method of accessing the nodes, however using the basic structure

imposes one or two slight disadvantages which might be avoided by

using a more complex structure. For example the larger the key is

the longer it will take to either find it or to discover that it is

not in the list. As the list gets longer the average search time

will increase. An alternative approach might be to use a double

linked list which can be searched in both directions or to have a

sequence of pointers to various positions in the list from whence

the search can begin. This could be very useful since the range of

key values is known but the distribution is dependent upon the

problem because the method is adaptive. A second alternative may be

to build up a tree structure rather than a linked list and adopt a

binary type search. There is scope for improvement and further

development here using the various approaches, however the author

had to restrict the work to the method described.

5.7 A procedure to insert an item in a linked list

The following procedure creates an item globally on the heap,

assigns the appropriate data to it (i.e. the integrand evaluation

and the key) and inserts it in the linked list. The position of

Page 90

insertion is immediately after the item whose ptr field is indicated

by the parameter "pointer". The insertion is achieved by assigning

the value of the ptr field indicated by pointer (i.e. the reference

to the next item in the list) to the ptr field of the new item and

then the reference to the new item is assigned to the ptr field

indicated by pointer. Diagrammatically :

Linked list

item item item

pointer —»! See)
\ f

\
1

fe ga 8 \ .
\

* I

“sy ey?

new item

Dotted lines indicate the changes made in the links when insertion

takes place.

The complete procedure consists of :

PROC insert = (REF REF ITEM pointer, INT key, REAL feval) VOID :

BEGIN

{This procedure creates a new item and inserts it in the list

at the position indicated by pointer}

REF ITEM newitem = ITEM ;

{This creates a new item globally on the heap}

index OF newitem := feval ;

{assign the appropriate data to the new item}

ptr OF newitem := pointer ;

{Link the new item to the next item in the list}

pointer := newitem

{Link the previous item in the list to the new item}

Page 91

END of the procedure insert.

This procedure is quite straightforward and requires little or no

explanation. The only place where clarification is required is

handling the references. The result of ptr OF newitem becomes

pointer is to dereference pointer once to give the reference to the

next item in the list, which is then assigned to ptr. When pointer

becomes newitem a straightforward assignment is made with no

dereferencing.

5.8 Enumerating the keys

The problem of computing a unique key for any given node in any

number of dimensions is almost impossible, if the coordinates are

unpredictable real numbers. However, the complexity of the problem

is reduced to sane extent if the basic rules are chosen such that

the coordinates which they use are integers or can be converted

easily to integers. For example consider the product trapezoidal

rule in which the nodes are the corners of an n dimensional

hypercube. In two dimensions the starting region may be the square

O<x;<=1 i=1,2 and the nodes will then have coordinates (0,0),

(0,1), (1,0), and (1,1). I£ each of these nodes is considered as a

two digit number to the base two then each has a unique integer

equivalent which may be used as it s key : 00 =0, Ol =1, 10 =2,

and 11 = 3. If the region is subdivided into four similar subregions

and adjusted versions of the basic rule applied to each then the new

nodes would all have coordinates that are multiples of 0.5. For

example the new nodes for one of the subregions would be (0.5,0.5),

(0.5,1), (1,0.5), and (1,1). These could be converted to integer

Page 92

pairs by multiplying each coordinate by two to give (1,1), (1,2),

(2,1), and (2,2). If each of these is considered as a two digit

number to the base 3 (base 3 since there are three possible values

for each digit 0,1,2) then each has a unique integer equivalent

which may be used as it s key : 11 = 4, 12 = 5, 21 = 7, and 22 = 8.

This idea can be continued to the next level of subdivision

introducing terms involving multiples of 0.25 and generating

integers to the base 5 and so on to any level of subdivision.

Hence using the above approach it is possible to obtain a unique

integer key representing a given node to a given base, provided the

coordinates of the node are exact multiples of a fraction

corresponding to the base. One problem with this is that common

nodes would have different integer keys depending on the base of the

number system used, which is dependent on the level of subdivision,

thus losing all the benefits of using stored integrand evaluation

techniques. This can be overcame in one of two ways. The first

involves fixing the maxim level of subdivision and hence the

maximum base possible. All the keys can then be evaluated to this

base using the corresponding division factor. This results in me

long list of items each with fairly high order keys. This method

suggests the use of an array to store the integrand evaluations

instead of a linked list since all the keys will be integers and the

range will be known. The range is dependent on the base chosen as

the maximum and so the base and thus the level of subdivision would

be dependent on the amount of store available for the array. However

the number of elements required in this array would be very large

and hopefully the majority of them would not be used since the

algorithm is adaptive and should concentrate the nodes in the

Page 93

regions where the integrand is "badly" behaved. If most of the

elements are used then this suggests that the integrand is either

uniformly "well" behaved or uniformly "badly" behaved and in either

case there is no advantage in using an adaptive method.

An alternative approach is to use the bases related to the

subdivision level and store the keys thus generated in separate

lists. To overcome the problem of common nodes having different keys

it is necessary to adopt a strategy whereby any common node is only

stored at it s lowest key level. This requires the ability to

recognise when a node already exists at a lower key level and to

obtain the appropriate key and associated list. Fortunately this is

quite easily achieved. Consider the node (1,1) which is likely to be

common over several levels of subdivision. The node (1,1) will be

stored in the list containing integers to the base 2 and it s key

will be 11 = 3. At the next level of subdivision the node (1,1) will

have the key 22 = 8 and at the next level of subdivision it will

have the key 44 = 24 and so om. Therefore the node (1,1) gives the

keys 11, 22, 44, 88, ..etc. at different levels of subdivision. From

this it can be seen that if all the digits in the key are even then

the node exists at the next level down and so on. Once the key

contains an odd digit then it cannot exist at a lower level. Thus

the appropriate key and the base for the lowest level at which any

node can possibly be stored may be obtained by a simple process of

division. One benefit of generating a number of lists in this

manner,i.e. one associated with each level of subdivision, is that

the integrand evaluations accessed most often will be contained in

the shortest lists. At the first level of subdivision for a p point

rule there will be p points stored in the first list. At the second

Page 94

level of subdivision there will be less than p*2%n points stored in

the second list, since the initial region is subdivided into 2°n

subregions. Of course some points will be common with those from the

first level of subdivision, thus reducing the total of points from

p*2*n and in the later stages of subdivision the adaptive nature of

the algorithm will avoid the use of nodes in certain subregions.

This should reduce the overall searchtime for a given key since

shorter lists need to be searched.

Both of these approaches can be implemented in the form ofa

procedure "enumerate" which takes the node as a parameter and

evaluates the corresponding key, which is delivered as a second

parameter. The first approach is very easy to implement and consists

of the following:-

PROC enumerate = (REF[JREAL node, REF INT key) VOID :

BEGIN

{This procedure enumerates a searchkey given a node using the

first approach}

key := 0;

FOR i TO n DO key := key * base + ENTIER(node[i]*multiplier)

{n is the number of dimensions of the problem

base is the base of the number system being used

multiplier is the reciprocal of the division factor

corresponding to the base}

END of the procedure enumerate.

The second approach is slightly more complicated and involves same

additional parameters. In this case enumerate delivers the key

relating to a given node and a pointer to indicate the list in which

Page 95

a node with this key should be found, if it already exists. The

pointer is given by a parameter "ptr" which is used to select from

an array of pointers to the various lists; the first element of the

array is a pointer to the list of keys to the base 2, the second

element is a pointer to the list of keys to the base 3, and so on.

The procedure can be broken down into two main parts:

a) find the lowest possible base level for a given node

and

b) evaluate the key for this node based upon the information about

the base.

The second part is equivalent to the first version of enumerate

given above. The first part involves starting at the preset base

level, considering if the node could exist at a lower base level,

moving to that level if it could and otherwise stopping. The

complete procedure using the second approach consists of the

following:

PROC enumerate = (REF[JREAL node, REF INT key,ptr,

INT b, REAL al) VOID :

BEGIN

{This procedure enumerates a searchkey, given a node}

BOOL possible := TRUE ;

{possible indicates that the node could be stored at a lower

base level}

REAL alt := al ;

{alt is the divisor associated with the given base b}

INT base := b;

While base > 2 AND possible DO

{2 is the lowest base possible}

Page 96

BEGIN

FOR i TO n DO IF odd(ENTIER(node[i]/alt))

THEN possible := FALSE

FL;

{if any of the digits to this base are odd then the node

cannot be stored at a lower base level}

IF possible

THEN {consider the next base level}

base := (base + 1) '/'2;

alt TIMES 2 ;

ptr MINUS 1

FI

END ;

{base is not at the correct level for this node, so evaluate

the key}

key := 0;

FOR i TO n DO key := key*base + ENTIER(node[i]/alt)

END of the procedure enumerate.

Fron this procedure it can be seen that enumerating a key for a

given node is quite expensive in terms of computer time. Hence,

since the procedure is called so often, any improvements in this

area would be beneficial. At this point it should be noted that if

the time taken to evaluate the key is longer than the time to

reevaluate integrand then no saving can be made by storing the

integrand evaluations.

An obvious fault with the above procedure is the repetition of the

calculation ENTIER(node[iJ/alt) which is in itself quite an

Page 97

expensive operation. This was avoided by the introduction of an

array [l:n]INT to store the digits computed from the node. These

digits can then be repeatedly divided by two until me of them is

odd. This also removes the need for alt and the associated

multiplication alt TIMES 2. A further improvement was the removal of

the calculation of the base (base := (basetl)'/'2) by storing the

possible bases in an array and altering a pointer to this array. The

variable "ptr" can be used for this purpose. The procedure enumerate

with these alterations consists of the following:

PROC enumerate = (REF[]REAL node, REF INT key,ptr,

INT b, REAL al) VOID :

BEGIN

BOOL possible := TRUE ;

[i:n] INT digits ;

{compute the digits from node and store them in the array

digits, if any of the digits are odd set possible to FALSE}

FOR i TO n DO IF odd(digits[i] := ENTIER(node[i]/al))

THEN possible := FALSE

{node cannot be stored at a lower base level}

EL 7:

{consider the lower base levels}

WHILE ptr > 1 AND possible DO

{pointer now selects from an array of bases and the lowest

possible base level,2, is stored in the first element of the

array, thus ptr > 1 is equivalent to base > 2 }

BEGIN

FOR i TO n DO

IF odd(digitli] := digit[i] 2)

Page 98

THEN possible := FALSE

FT 3

IF possible

THEN {consider the next base level}

ptr MINUS 1

EI

END ;

{ptr now indicates the correct base level for this node, look

up the base and evaluate the key}

INT base := bases[ptr] ;

{bases is the array of base levels}

key := 0;

FOR i TO n DO key := key*base + digitLi]

END of the procedure enumerate.

5.9 The basic program

Storing the integrand evaluations affects the procedures to apply

the basic rules, in that stored integrand evaluations are used where

possible in preference to reevaluating the integrand, but does not

affect the basic program used to apply these procedures. The

structure of the program follows exactly the basic structure defined

in 4.3. The complete program is given in appendix [5.1].

5.10 Scatter storage techniques

The techniques used so far for storing the integrand evaluations

have been based upon the use of linked lists ordered according to

the given keys. This approach is quite satisfactory for short lists

Page 99

but becomes rather too slow when the lists become longer, since the

searching involves a linear search of the list.

An alternative approach is to use scatter storage techniques. The

fundamental idea behind scatter storage is that the key associated

with the desired entry, that is the integrand evaluation in this

case, is used to locate the entry in storage. Some transformation is

performed on the key to produce an address (sometimes called the

hash address or hash code) in a table which holds the key and the

entry associated with it. This avoids searching the list. If the

hash codes are such that the same hash code may be generated from

different keys a method is needed for resolving the collision of

keys. This is one reason why the key needs to be stored alongside

the entry.

Various methods have been developed to handle collisions and the ome

that seems to be most suitable to this work is called direct

chaining [45]. With this technique part of each entry is reserved as

a pointer to indicate where additional entries with the same

calculated addresses are to be found, if there are any. Thus all of

the entries with the same hash code are to be found in a linked list

starting at the address indicated by the hash code. Once a hash code

has been generated the corresponding linked list must be searched

linearly (possibly ordering the list and using the techniques

described previously). However, all the lists will be relatively

small if the number of collisions is kept to a minimum. In fact if

the data is distributed evenly throughout the scatter storage table

no searching will take place until most of the table has been

filled. Therefore the larger the size of the table the quicker

Page 100

access should be, up to a point. The aim of a good hash code is to

distribute the data evenly throughout the available store, thus

avoiding collisions. More will be said about this later in the

section on hash code generation.

A general introduction and useful summary of the scatter storage

techniques presently in general use are given in [45].

5.11 Development of an algorithm based upon scatter storage

techniques

The following describes the various sections of the algorithm

developed to take advantage of the scatter storage techniques

described above.

The algorithm follows the previous algorithm to a large extent, but

the method of storing the integrand evaluations is altered, a

scatter storage technique being used. Thus, to avoid repetition,

only the new sections of the algorithm are discussed in detail.

5.12 Key generation

A unique key is required to store alongside each integrand

evaluation, since a hash code will be used that allows collisions.

The key needs to be compared with a search key to ensure that the

correct integrand evaluation is obtained for a given node. A LONG

INT value is used for the key, in order to increase the range of

possible values. The key is generated uniquely from the coordinates

of a given node. It is convenient initially to generate two integer

keys (keyl and key2) from the node, which can then be combined to

Page 101

form a single LONG INT. These two keys are also used in the hash

code generation.

PROC eval key = (INT keyl, key2) LONG INT :

BEGIN

{This procedure evaluates a LONG INT key given two integer keys

"keyl" and "key2"}

LONG INT newkey ;

newkey := LENG key2 ;

newkey := newkey*(LONG 10000000) ;

newkey := newkey + (LENG keyl) ;

{This combines the two keys}

newkey

END of the procedure eval key.

The number of dimensions of the problem determines the way in which

the two INT keys, "keyl" and "key2", are generated. With a two

dimensional problem it is simply a case of constructing the first

key, "keyl", from the first coordinate and the second key, "key2",

from the second coordinate. These two integers are generated in a

similar manner to the methods used in the procedure enumerate

earlier. Each coordinate is a real number in the range 0 - 1 and

ENTIER(coordinate*const) is computed to givethe corresponding

integer. The variable const is the reciprocal of the fraction

associated with the lowest level of subdivision. This is equivalent

to finding the integer number of times that the fraction divides

into the coordinate but is slightly more efficient since divisio is

slower than multiplication.

Page 102

With a three dimensional problem the three integers associated with

the three coordinates of a node are generated in the same way as

above. The largest value of any of these integers depends on the

level of subdivision allowed, hence by putting a limit on the level

of subdivision it is possible to ensure that oly the first fifteen

bits of any of these integers are significant. One integer contains

twenty four bits and so it is possible to form the first key,

"keyl", from all the significant bits of oe of these integers and

the first eight significant bits of the second. similarly "key2" can

be formed from the next seven significant bits of the second integer

and all the significant bits of the third integer.

Higher dimensional problems require a similar approach and

corresponding restriction on the level of subdivision. Obviously

more words could be used to represent the keys but this would make

the method less efficient. Thus this method is more restrictive in

some ways than the previous method.

The procedure which is used to produce the two keys from a given

node is as follows:

PROC compute keys = (REF INT keyl, key2, REF[JREAL x) VOID :

BEGIN

{This procedure computes the two keys for the given node x}

CASE (n-1) {n is the number of dimensions}

IN({2d problem}

keyl := ENTIER(x[1] * const);

key2 := ENTIER(x[2] * const));

({3d problem}

Page 103

BITS b ;

INT digit := ENTIER(x[3] * const);

b := BIN digit ;

keyl := ABS ((b SR 8) SL 15)

OR (BIN(ENTIER(x[2]*const)))))

OUT SKIP {other dimensions not yet included}

ESAC

END of the procedure compute keys.

Further dimensions can be added as required.

5.13 Hash codes

A good hash code is required to distribute the data evenly

throughout the available store. The hash code could be generated

from the LONG INT key produced by the procedure "evalkey" but it is

slightly easier to make use of the two keys, "keyl" and "key2", from

which the LONG INT key is generated.

Various methods of hash code generation are available and a good

review of the possibilities appears in [45]. Briefly the mst

commonly adopted approaches are as follows:

a) Choose same bits from the middle of the square of the key, enough

bits to be used as an index to address any item in the table. Since

the value of the middle bits of the square depend on all the bits of

the key there is a high probability that different keys will give

rise to different hash codes, more or less independently of whether

or not the keys share some common feature.

b) If the keys are mltiword items, then sane bits from the product

Page 104

of the words making up the key may be satisfactory as long as care

is taken to ensure that the calculated address does not turn out to

be zero most of the time.

c) A third approach is to cut the keys up into n-bit sections, where

n is the number of bits needed for the hash address, and then form

the sum of all these sections. The low order n bits of the sum are

then used as the hash address. This method can be used for single

word keys as well as for multiword keys.

The method adopted by the author is a slight variation o the third

of these basic ideas. The method consists of adding the two INT keys

and dividing the result by the maximm possible value of the sum of

these two keys. This gives a real value in the range 0 to 1 which

can be converted to any required range by multiplying by the number

of elements in the range and taking the largest integer less than

the resulting real number. The procedure used to generate a hash

value given two integer keys is as follows:

PROC compute hash value = (INT keyl, key2) INT :

{This procedure generates a hash value}

(ENTIER(1024*ABS ((keyl+key2) /maxint)))

The variable maxint, as it s name suggests, is the maximum value of

the sum of the two keys, "keyl" and "key2".

5.14 Finding the integrand evaluation at a particular node

In the previous sections the generation of a pair of keys frona

given node and the generation of the corresponding hash value fron

Page 105

these keys was discussed. Now the method of applying this hash code

to the storing and accessing of integrand evaluations will be

approached. First consider the data structure that is to be used.

Starting from a node the keys are generated and from the keys the

hash code is produced. This gives the position in a table where an

index into the scatter storage table for that hash code is located.

Within the scatter storage table all the integrand evaluations

associated with the nodes which produce the same hash code are

stored in a linked list. Pictorially the data structure my be

viewed as :

hash table scatter index table

fren) [rev]

 node

thash code node

node | L—___ |

linked lists

Each node in the linked lists consists of :

a key | an integrand evaluation | a pointer to the next node

The hash table is simply an array of pointers into the scatter index

table. The scatter index table can be either an array of references

to lists of integrand evaluations, in which case each element is a

single item, or it can be an array of the first nodes in the lists

Page 106

of integrand evaluations, in which case each element would be a

structure. In the first case no space is pre allocated for the

storage of integrand evaluations whereas in the second case space to

store one integrand evaluation, i.e. one node, is allocated per

element of the scatter index table.

The author adopted the first approach which is somewhat simpler to

achieve. Direct chaining is used to handle collisions and in it s

simplest form this results in a one to me relationship between the

hash table and the scatter index table which could thus be replaced

by a single table. However, if the two are kept separate it is

possible to adopt alternate strategies as regards the chaining quite

easily. For example, if the linked lists hanging off each entry in

the scatter index table tend to be long then the amount of time

involved in searching through the lists may be a problem. In order

to shorten the lists one approach might be to have two entries in

the scatter index table for each pointer in the hash table; one

pointing toa list of the integrand evaluations with odd valued keys

leading to the given hash code and the other pointing to a list of

the integrand evaluations with even valued keys leading to the given

hash code. Or even four entries, since the searchkey is made up from

two keys; even and odd lists for the first key and even and odd

lists for the second key. Hence, pictorially the data structure

hash table scatter index table nodes
pies ae

we ee

eae bee
might be replaced by

Page 107

hash table scatter index table

———— even list

zg (Ee
ct odd list

Lo} “eee

or even

hash table scatter index table even list for keyl

odd list for keyl

even list for key2

odd list for key2

The author has only implemented the simplest strategy so far with

the aim of investigating the feasibility of the approach. The

following describes how the ideas have actually been used in the

program.

The main requirement of the program is the evaluation of the

integrand at particular nodes as the computation progresses. Hence

the program has to either look up the value of the integrand

evaluation in the scatter index table, if this particular node has

been used before, or compute the integrand evaluation at this node

and store the integrand evaluation at the appropriate place in the

scatter index table. The process was written in the formofa

procedure called "integrand evaluation" which takes as input

parameters the node and the procedure describing the integrand and

Page 108

delivers as it s result the integrand evaluation. The essence of the

procedure consists of :

Compute the two keys for the given node;

Combine the two keys to give the searchkey;

Compute the hash value for this node;

{Consider the value stored in the hash table at the position given

by the hash code}

IF the hash table entry is empty

THEN

ELSE

{the integrand evaluation has not been computed previously}

compute the integrand evaluation and store it s value in the

scatter index table;

{deliver this integrand evaluation as the result of the

procedure}

alter the entry in the hash table at the position given by the

hash code to be the position in the scatter index which

contains the pointer to the start of the list in which the new

integrand evaluation has just been stored

{the integrand evaluation may have been computed already}

obtain the pointer to the list of integrand evaluations given

by the entry in the scatter index indicated by the entry in the

hash table at the position given by the hash code;

search the list for an entry with the appropriate key;

IF the key is found

THEN

deliver the integrand evaluation associated with this key

as the result of the procedure

Page 109

ELSE

{add a new node to the list of integrand evaluations}

compute the integrand evaluation for this node;

store this integrand evaluation in the new node;

store the key for this integrand evaluation in the new

node;

deliver the integrand evaluation as the result of the

procedure

FI

{End of the procedure}

In order to search the list a procedure is used that follows the

same pattern as the one given in section 5.6, the only difference is

that the key used as a search key is a LONG INT as opposed to an

INT. Similarly a procedure analogous to the one given in section 5.7

is used to insert an item in the linked list. Full details of these

two procedures are given in appendix [5.2].

The complete procedure to find the value of the integrand at a

particular node either by looking it up or by evaluating it consists

of

PROC integrand evaluation = (REF[JREAL node,

PROC(REF[JREAL)REAL £)REAL :

BEGIN

REAL val ;

compute keys (keyl,key2,node) ;

newkey := evalkey (keyl,key2) ;

Page 110

{form the long int search key}

hash value := compute hash value (keyl,key2) ;

IF hash value < 0 OR hash value > 1023

THEN hash value := 1

FI;

REF INT htv = hash table [hash value] ;

IF htv = 0

THEN

htv := next PLUS 1 ;

val := £(node) ; {evaluate the integrand at this node}

numeval PLUS 1 ;

insert (scatter index table[htv],newkey, val)

ELSE

pointer := scatter index table [htv] ;

IF searchlist (pointer, newkey)

THEN val := fevalOFpointer

ELSE

val := £(node) ;

{evaluate the integrand at this node}

numeval PLUS 1 ;

insert (pointer,newkey,val)

FI

FI ;

val {deliver val as the result of the procedure}

END {of the procedure}

5.15 Computing an estimate to the integral over the subregions

Initially the compound trapezoidal rule and Ewing's rule were used

Page 111

to compute the estimates to the integral over the subregions. These

two rules have been discussed previously, however the procedures to

evaluate the estimates have changed slightly. The procedures now use

the procedure “integrand evaluation" described in the last section

to find the value of the integrand at a particular node either by

looking it up or by evaluating it. The procedure to evaluate an

estimate to the integral of a subregion using the compound

trapezoidal rule consists of the following :

Proc evala = (REAL div, scf, REF[JREAL centre,

PROC(REF[JREAL)REAL £)REAL :

BEGIN

REAL estimate := 0.0 ;

FOR j TO num DO

{for each node in the rule}

BEGIN

[1:n]JREAL temp ;

REF[JREAL t2 = nodes[j,l:n] ;

{set t2 to point to the next node}

{transform this node from the region over which the rule

is defined to the current subregion and store the node

thus formed in temp}

FOR k TO n Do temp[k] := centre[k] + t2[k]/div ;

compute keys (keyl,key2,temp) ;

estimate PLUS integrand evaluation (temp, f)

{use the procedure integrand evaluation to find the value

of the integrand at the new node}

END ;

estimate DIV scf ;

Page 112

{scale the estimate thus formed}

estimate

{deliver the estimate as the result of the procedure}

END {of the procedure evala}

The procedure to evaluate an estimate to the integral of a subregio

using Ewing's rule consists of the following :

PROC evalb = (REAL div, scf, REF[]REAL centre,

PROC(REF[JREAL)REAL £)REAL :

BEGIN

REAL estimate := 0.0 ;

{for each node in the rule}

FOR j TO num DO

BEGIN

[1:n]REAL temp ;

REF[JREAL t2 = nodese[j,l:n] ;

{transform this node from the region over which it is

defined to the current subregion and store the node thus

formed in temp}

FOR k TO n DO templk] := centre[k] + t2[k]/div ;

estimate PLUS integrand evaluation (temp, f)

{use the procedure integrand evaluation to find the value

of the integrand at the new node}

END ;

estimate TIMES constl ;

{multiply the estimate by the appropriate weight}

{add the integrand evaluation at the centre of the subregion

multiplied by the appropriate weight to the estimate}

Page 113

estimate PLUS (integrand evaluation(centre,f)*const2) ;

{scale the estimate}

estimate DIV scf ;

{deliver the estimate as the result of the procedure}

estimate

END {of the procedure}

5.16 The program using scatter storage techniques

The program using scatter storage techniques follows the same

pattern as the program using linked lists to store the integrand

evaluations. The main difference is the way in which the integrand

evaluations are stored. In this program the scatter storage

techniques described above are used whereas linked lists were used

in the previous program. Full details of the complete program are

given in appendix [5.2].

5.17 Testing the two approaches to storing the integrand evaluations

The program based on linked lists and the program based qm the

scatter storage techniques were tested on the set of test problems

described in appendix [1]. The tables of results for the test runs

are given in appendix [8].

5.18 Comparison between the two approaches

From the tables of results it can be seen that the program based

upon the scatter storage techniques is marginally faster than the

program based upon the linked lists. As the number of integrand

Page 114

evaluations increases the difference between the two methods in

terms of time increases. However, the hash code technque is more

restrictive than the linked list method because of the way in which

the keys are generated. As the number of dimensions increases the

maximum level of subdivision allowed decreases. This could be

altered by choosing a different representation for the keys. This is

an area in which further research could take place if storing the

integrand evaluations is justified.

5.19 Conclusions

Both of the programs produced reasonable results which satisfied the

required tolerances in the majority of cases. Compared with the non

storing methods the programs were somewhat slower but they did

reduce the number of integrand evaluations actually evaluated

considerably. Unfortunately the rules that are suitable for methods

based on storing the integrand evaluations are less accurate than

the rules that proved to be best in the non stored methods and

consequently more integrand evaluations had to be computed using

these methods to satisfy the same tolerances. If a high order pair

of formulae with a minimum number of points could be found that

produced nodes suitable for storing then the method could be

improved considerably.

However, it can be seen from the test results that the overheads

involved in storing the integrand evaluations would be justified if

the integrand was very "expensive" to compute and a fairly accurate

result was required; the stored method does not start to use less

integrand evaluations than the non stored methods until the

Page 115

subdivision process is well under way. For example consider the two

dimensional version of the first test problem with a tolerance of

0.001. The basic adaptive method used 63 integrand evaluations and

took 78 millunits whereas the hash code method used 225 integrand

evaluations but only actually computed 49, the other 176 being

reused, and took 559 millunits. Therefore the hash code method took

481 millunits longer but used 14 integrand evaluations less. Hence

if the integrand had been more expensive to evaluate and 14

integrand evaluations had taken longer than 481 millunits then the

stored method would have been faster. Similarly, with a tolerance of

0.00005 224 less integrand evaluations were used by the stored

method but it took 1991 millunits longer. Therefore if it had taken

longer than 1991 millunits to compute 224 integrand evaluations then

the stored method would have faster. Same timings for the types of

Operations involved in computing an integrand evaluation are given

in appendix [4].

In conclusion the methods adopted to store the integrand evaluations

perform satisfactorily but the overheads involved make the programs

impractical for anything but "expensive" problems. With further

research the overheads might be reduced but this could mly be

justified if it can be demonstrated that there are significant

number of sufficiently complex problems to be solved.

Page 116

Chapter 6 Global Subdivision Strategies

6.1 Introduction

This chapter is concerned with the effects of different interval

subdivision strategies. The algorithms described so far have all

been based on what is termed a “local subdivision strategy".

However, with respect to one dimensional adaptive quadrature Malcolm

and Bruce Simpson [41] suggest that there are certain advantages in

using a global subdivision strategy. They state that a global

strategy can result in a reduction of the number of subregions used

and an error in the final result which is closer to the required

tolerance than is possible with a local strategy. Hence these ideas

have been extended to multidimensional quadrature and examined.

The two terms local and global acceptance criterion are used

exclusively with respect to adaptive quadrature schemes and can best

be described as follows. An adaptive quadrature routine can be

regarded as an algorithm for processing a sequence of subregions

(Sn), the main components of which are :

a) a local quadrature procedure for evaluating an approximation

to the integral over the subregion, that is

Q(sn) wf sare.) dx, dx, .. -dxq

Sn

b) a method for calculating an estimate to the error in the

approximation, that is

E(Sn) | a¢sn) jain ade ++ .dx|

Sn

Page 117

c) criteria for deciding which subregion in the sequence (Sn)

to subdivide at each stage and for deciding when to terminate.

The object of the algorithm is to produce a result, res, which is

accurate to a user specified absolute error tolerance £&, that is

res - | £(x,X2-++Xq)Ax,dx,-..dx, | © E

Sy

The subregions Sn fall into three distinct categories :

a) Sn has already been subdivided and discarded (n € dis)

ib) Sn has been accepted (n € acc)

c) Sn is pending further examination (n € pen).

A program implementing an adaptive quadrature algorithm has to store

the list of subregions pending further examination, (Sn | népen) and

to accumulate the contributions to the result from the accepted

subregions, (Sn \ néacc). Using a local error criterion a subregion

is accepted once the error estimate for that subregion is less than

the proportion of the absolute error tolerance given by the

hhypervolume of the initial region divided by the hypervolume of the

subregion, that is

E(Sn) < (h(Sn)é/ (b-a))

where h(Sn) is the hypervolume of the subregion Sn.

This criterion has the following features :

a) the decision is based entirely on information available fron

Sn

b) if the error estimate E(Sn) is in fact a bound for the error

in Q(Sn) for every n € acc when the algorithm terminates then

the user's tolerance is guaranteed to be met (assuming exact

arithmetic)

With the global error criterion all the subregions which have not

Page 118

been discarded (discarded subregions are those which have been

replaced by further subregions) are retained as pending and the sum

of the error estimates for all the pending subregions being less

than the absolute error tolerance is used as an acceptance criterion

for the entire pending set, that is

s E($m) 2 &
mépen

Then if this condition is not satisfied the subregion with the

largest error estimate, mépen such that

E(Sm) 2 E(Sn) for all n € pen,

can be subdivided and the resulting subregions added to the pending

set in place of $m.

Hence, the local error criterion decreases linearly with the

subregion hypervolume and is most stringent as a tolerance in

regions where the adaptive process is working at subdivision the

hardest, whereas the global strategy selects subregions so that the

local errors are roughly equal in magnitude, rather than scaled by

the hypervolume of the subregions. Thus algorithms using global

strategies should work no harder on subregions where the integrand

is difficult to integrate than on subregions where it is "well

behaved". Hence a global criterion has the potential for reducing

the number of subregions used.

The subregion selection strategy does not affect the order of an

adaptive quadrature algorithm but it does appear to influence it s

performance in at least three ways:

1) by affecting the number of integrand evaluations required

for an integral

Page 119

2) by changing the domain of integrands which can be handled by

the algorithm

3) by affecting the closeness with which the user's tolerance

is achieved.

Rapid growth of the number of subregions and the corresponding

numbers of integrand evaluations required are perhaps the key

factors in multidimensional quadrature routines. Also most

quadrature routines produce answers which are far more accurate than

required by the tolerance, hence if the global strategy can reduce

the number of integrand evaluations by producing a result which has

an error closer to the required tolerance, without incurring too

many overheads in terms of organisation then it has the potential of

improving the efficiency of the algorithms.

6.2 A modification of the basic algorithm for the hypercube to use a

global subregion strategy

In the basic algorithm for the hypercube a list was maintained of

the non converged subregions of the initial region. This list was

processed sequentially and a new list formed of the subregions of

the mon converged subregions of the first list. As convergence was

achieved in a subregion the estimate thus formed was added to the

total estimate so far and the subregion discarded from further

consideration. In order to apply a global subdivision strategy it is

necessary to keep a list of all the subregions and to order the list

according to the size of the error estimate for the subregions. The

subregion with the largest error estimate is at the start of the

list while the subregion with the smallest error estimate is at the

Page 120

emi of the list. Hence the basic structure consists of :

BEGIN

form the initial estimate over the whole region and the

associated error estimate;

set up a list consisting of this region ;

set the total error estimate to be the error estimate for this

region;

set the estimate to the result to be the estimate over the

whole region;

WHILE not converged

{i.e. the total error estimate > the required tolerance}

Do

consider the subregion with the largest error estimate,

i.e. the oe at the head of the list;

subtract the estimate for this subregion from the estimate

to the result;

subtract the error estimate for this subregion from the

total error estimate;

subdivide this region into subregions;

FOR each subregion

DO

compute the estimate for this subregion;

add this estimate to the total estimate to the

result;

compute the error estimate for this subregion;

add the error estimate for this subregion to the

total error estimate;

store the details of this subregion in a node;

Page 121

add this node to the linked list at the correct

position, i.e. depedent upon the magnitude of the

error estimate

oD

{now the estimate for the subregion with the largest error

estimate has been replaced by the sum of the estimates

over the subregions of that subregion]

With this approach regions are only subdivided into subregions when

a new estimate over that region is required. It should be noted that

in this algorithm, unlike with the basic algorithm for the

hypercube, that the subregions which make up the linked list are not

necessarily all at the same level of subdivision. Hence it is

necessary to store details of the level of subdivision of each

subregion in order to ensure that the correct transformation of the

basic rule is applied. In the basic algorithm over the hypercube all

that was required in each element of the list was the centre of the

subregion and the pointer to the next item in the list. Rather more

is required for the method based upon the global subregion strategy;

namely the centre of the subregion, the scaling factor, the

transformation factor (div), the error estimate for this subregion,

the estimate over this region and the pointer to the next item in

the list. Hence the following mode was defined:

MODE NODE = STRUCT(REF NODE ptr, REF[JREAL centre,

REAL errest, estimate, scf, div)

6.2.1 Adding a node to the list of subregions

Page 122

In the basic program the new nodes corresponding to new subregions

were quite simply added to the start of the linked list. However

with the global strategy approach it is necessary to maintain the

list in descending order of the error estimates. Hence the insertion

of a new node in the list involves a search for the correct position

of insertion. A straight linear search from the start of the list

was adopted.

The search and insertion process consists of :

start at the head of the list, set a temp ptr to the head;

IF the list is empty

THEN

set the head of the list to point to the new node;

set the ptr of the new node to be nil, i.e. empty

WHILE the error estimate of the temp ptr is greater than

the error estimate of the new node

AND the ptr of the temp ptr ISNT nil

Do

move the temp ptr on to the next item in the list

OD;

{now the first item in the list whose error estimate is smaller

than the error estimate for the new node has been found}

IF the ptr of temp ptr is nil

AND the error estimate of the temp ptr is greater than the

error estimate of the new node

THEN

Page 123

{the end of the list has been reached}

set the ptr of the new node to be nil;

set the ptr of temp ptr to point to the new node;

{i.-e. add the new node to the end of the list}

ELSE

{add the new node before the item pointed to by temp ptr}

set a temporary node equal to the new node;

set the new node equal to the node pointed to by temp ptr;

set the ptr of temp ptr equal to the new node;

{in effect this adds the new node after the node pointed

to by temp ptr but changes the data of the two nodes}

FL

BT

As well as adding new nodes to the list it is necessary to remove

the first item from the list. This is achieved by advancing the head

of the list to the second item in the list. Since the head of the

list is continually removed and replaced it was essential to make

use of the discarded node so as to avoid using the heap too

rapidly. This was achieved quite simply by having a variable which

could be pointed to the node to be deleted from the head of the list

before advancing the head of the list then this free node was used

the next time a new node was required, instead of creating a new

node on the heap.

head node to be deleted

free node becomes head becomes:

Page 124

6.2.2 Adopting a doubly linked list to store the details of the

subregions

This section presents one alternative method of accessing the

integrand evaluations. In the previous section storing the

subregions in a simple linked list was considered. However, consider

the size of the error estimate for the new subregions. In the

majority of cases they will be smaller than the error estimates for

the existing subregions (otherwise the overall error estimate would

not be decreasing and the method would not be converging). Hence in

these cases adopting the simple approach described above would

result in the list being searched to or very near to the end passing

through all or almost all the nodes in the list on the way with the

associated comparisons of error estimate. Obviously it would seem

reasonable under the circumstances to start the search at the end of

the list and work towards the beginning. Then only in the

exceptional cases would a large proportion of the list be searched

in order to find the position of insertion of the new node. In order

to achieve this it is necessary to alter the structure of the list

slightly so as to enable movement up or down the list. A second

pointer has to be added to each node to point backwards to the

previous node in the list. Each node in the list is of the following

mode:

MODE NODE = STRUCT(REFNODE fptr, bptr, REF[JREAL centre,

REAL errest, estimate, scf, div)

where fptr represents forward pointer and bptr represents backward

pointer. The structure of the list is of the form:

bptr fptr bptr fptr bptr fptr

a Balto n Laces eS a

This

the

node.

Page 125

alters the part of the algorithm which is involved with finding

position of insertion of the new node and inserting the new

Adopting the double linked list and starting the search from

the end of the list the search and insertion process consists of:

Start at the tail of the list

IF the list is empty

THEN

ELSE

set the head of the list to point to the new node;

set the tail of the list to point to the new node;

set both the forward and backward pointers of the new node to

be empty, i.e. NIL

WHILE the error estimate of the tempptr

is less than the error estimate of the new node

AND the backward ptr of tempptr ISNT NIL

DO

move the tempptr back to the previous item in the list

OD;

{i.e. find the last item in the list whose error estimate is

greater than the error estimate of the new node, i.e. the

position of insertion}

IF the backward ptr of tempptr IS NIL

AND the error estimate of the tempptr

> error estimate of the new node

{the start of the list has been reached and the new node

needs to be inserted at the head of thhe list}

set the forward pointer of the new node to be head;

ELSE

FL

Fr

Since it

Page 126

set the backward pointer of head to be the new node;

set head to be the new node;

set the backward pointer of the new node to be nil

{add the new node after the item pointed to by temp ptr}

backward pointer OF new node := temp ptr;

forward pointer OF new node := forward pointer OF temp ptr

backward ptr OF forward ptr OF temp ptr := new node ;

forward ptr OF temp ptr := new node

is likely that the magnitude of the error estimates over

the subregions ofa particular subregion will be similar it may be

more efficient to start the search from the last position of

insertion

involves

and search either forwards or backwards as required. This

both the search and insert process described above and the

search and insert process described in the last section. Essentially

the two processes can be combined in the following manner assuming

temp ptr is the last position of insertion of a new node:

IF the error estimate of the temp ptr is greater than

the error estimate of the new node

THEN

search forward until an item is found with a smaller error

estimate than that of the new node;

insert the new node prior to this node

{this is the process described in the last section}

ELSE

Page 127

search backwards until an item is found with a larger error

estimate than that of the new node;

insert the new node after this node

{this is the process described above}

The double linked list is just one alternative to the single linked

list that could possibly improve the performance of the algorithm.

Another alternative might be to adopt a tree structure. These

alternatives are worthy of further research once the global

subdivision strategy has proved to be an improvement on the locel

strategy.

6.3 The complete program

The program uses the same two basic rules adopted for the local

method; namely Stroud's ntl and 2n point rules. The program is

written as a sequence of segments, full details of which are given

in appendix [6].

6.4 testing the program

The program was tested using the set of test problems defined in

appendix [1] and the tolerances 0.5,0.1,0.5,..etc. The maximum

jobtime was limited to 90 and the maximm oore size to 90k. The

results for the test runs are given in appendix [8].

6.5 Conclusions

Page 128

The majority of results produced using this method were more

accurate than the requested tolerance and the times to produce the

results compared favourably with the other methods. In particular

the program consistently used less integrand evaluations than the

basic local aljaptive method and correspondingly less time to produce

results that were closer to the required tolerance. Also the change

in the number of integrand evaluations used for each tolerance was

quite smooth, unlike with the local method where sudden dramatic

increases occur as the method progresses from one level of

subdivision to the next. Hence, it would appear from the results so

far that the global subdivision strategy is preferable to a local

subdivision strategy in that it uses less integrand evaluations and

the results produced are close to the required tolerance. This

program demonstrates that it is possible to adopt a global

subdivision strategy without the benefits being lost due to the

overheads in implementing the technique.

Further research into storing and accessing the list of subregions

could perhaps improve the program further. The program does use a

large amount of store in the form of the heap and any reductions

would be an improvement.

One problem with this method is that the list of subregions can get

very long since all the subregions are retained. One solution might

be to set a maximum limit on the length of the list and once this

limit is reached begin to discard subregions from the end of the

list; that is begin to discard the subregions which have the

smallest error estimates. This should not affect the overall

strategy if the list is long enough since the number of subregions

Page 129

actually discarded will be kept to a minimm and subregions will

only start to be discarded when the program is close to obtaining

the final solution.

In conclusion adopting a global subdivision strategy would appear

from the work so far to be beneficial in multidimensional quadrature

programs.

Page 130

Chapter 7 Extension of the methods to other regions

7.1 Introduction

In the previous chapters programs have been developed to approximate

integrals over two basic regions; the hypercube and the simplex.

Unfortunately the vast majority of practical problems involve rather

more complex regions which cannot be transformed easily, if at all,

into either of these two regions. However, in many cases it is

possible to define a region as the union of a series of subregions,

each of which is either a simplex or a hypercube. Under such

circumstances it would be feasible to use the programs of the

previous chapters to find estimates to the integral over each of

these subregions and to sum the results to give an estimate over the

whole region. If the final approximation was not sufficiently

accurate then the whole process would have to be repeated. This

could be very tedious for a camplicated region even though the

process is relatively straightforward. This chapter is concerned

with extending the methods developed so far in order to autamate

this process.

7.2 Extension of the region of integration

The methods developed for the two basic regions in the previous

chapters were based upon the use of a linked list to store the

subregions prior to processing. As the methods progress each

subregion in the list is either removed fran the list because

convergence has been achieved in it, in which case the estimate over

Page 131

that subregion is added to the final estimate, or it is replaced by

a list of it s subregions. Consider the list of subregions generated

by one of the previous programs. The following applies :

1) At any stage the starting region is defined by the linked

list of subregions amd possibly a total estimate over the

converged subregions

2) The estimate to the integral over the whole region is given

by the sum of the estimates to the integral over each of the

subregions in the linked list plus the total estimate over the

converged subregions.

3) Each of the subregions in the list has the same form, either

a simplex or a hypercube, as the original region and a simple

transformation of the basic rule is applied to give the

estimate over the subregion.

Obviously, 1) and 2) above are essential if the final estimate is to

be valid. However, 3) can be relaxed in two ways :

a) it is not essential that the same rule is applied over each

subregion, provided an approximation over the region can be

formed that is sufficient

b) the subregions need not be of the same form as the original,

it is sufficient that the sum of the subregions is equivalent

to the whole region.

These two relaxations mean that the region defined by the list of

subregions need not be a region of a particular shape, since it is

sufficient that the sum of the subregions is equivalent to the whole

region, am that the subregions could be of any form, so some could

be simplexes and some could be hypercubes. Hence this allows the

same basic approach to be taken for a region which is not itself

either a hypercube or a simplex but which can be defined as a union

Page 132

of subregions, each of which is either a hypercube or a simplex. It

is valid to form the estimate over the region by taking the sum of

the estimates over the subregions which make up the union because

the basic properties of linearity for multiple integrals apply. In

order to develop a program upon this type of region, which is an

extension of the regions used in the previous algorithms, it was

necessary to amalgamate parts of both the program for the hypercube

and the program for the simplex.

7.3 Subdivision of a region into a union of simplexes and hypercubes

The problem of subdivision of a region into a union of simplexes and

hypercubes is beyond the scope of this thesis. However this section

outlines sane of the difficulties involved in the subdivision

process and attempts to justify the development of an algorithm

based on the simplex and hypercube as subregions by showing that

they are useful forms for the subregions.

Consider the subsdivision of an arbitrary two dimensional region of

integration into a series of subregions :

Page 133

It can be seen that it is possible to subdivide the region into a

union of squares and triangles and that the area covered by the

union can be made as close to that of the whole region as required

by taking sufficiently small subregions. The simplex is well suited

to subdividing curved edge boundaries while the hypercube is well

suited to filling large areas of the region.

There are an infinite number of ways in which the original region

could be subdivided and various questions concerning the subdivision

process arise immediately :

1) how many subregions should be used ?

2) should uniform or non uniform size subregions be used ?

3) how closely does the border of the union of subregions need

to follow the border of the initial region in order to give a

satisfactory result ?

4) should one type of subregion be used ? For example is it

better to split the squares into two triangles ?

5) should the sides of the squares be parallel with the axes ?

6) is the orientation of the triangles important ?

All of these questions require further research in order to answer

them fully. However, from the point of view of writing an algorithm

some guidelines can be given as regards some of them. Since the

algorithm will progress by automatically subdividing the subregions

into still more subregions amd the minimum number of integrand

evaluations used is determined by the number of subregions in the

initial list it is preferable to use as few subregions as possible

to define the region. This implies that it is better not to

Page 134

subdivide hypercubes into simplexes, since although each square can

be divided into only two triangles any cube has to be divided into

at least six simplexes and the ratio increases as the number of

dimensions increases. However, that being the case, if the behaviour

of the integrand is known or is suspected to be particularly “bad"

in one or more specific areas of the region then it may be a good

idea to make the subregions in these areas somewhat smaller. This

has the potential for saving same work by the algorithm which would

have to find the difficulty otherwise by the subdivision process. If

the user knows that at least a certain level of subdivision will be

required in order to give the required accuracy then it may bea

good idea to use sufficient subregions initially to reflect this

level so as to avoid all the computation that would be involved in

reaching this level. One aivantage of defining the region as a list

of subregions is that the user has some influence over the behaviour

of the algorithm; by his choice of subregions the user can force the

algorithm to use more or less integrand evaluations initially in

particular parts of the region. It has been suggested by Lyness [34]

that automatic quadrature routines do not allow the user to think

and that this is the wrong approach. In definingthe initial region

as a linked list of subregions the user is encouraged to think and

to take advantage of his knowledge so as to improve the performance

of the method.

The question of how closely the border of the union of subregions

has to follow the border of the initial region in order to give a

satisfactory result is perhaps the most important question. One

possible approach is to define two unions to describe the region;

one circumscribing the region and one inscribing the region. Then

Page 135

the approximations over these two unions can be considered as upper

and lower bounds on the required estimate. Obviously if the

difference between the two is not acceptable then further subregions

need to be added so that the unions are closer approximations to the

original region. This process could be very expensive amd me

alternative is to define three unions; the first covering the

majority of the region and inscribing the region, the second having

it s inner border common with the outer border of the first union

and it s outer border inscribing the initial region, and the third

also having the common border with the first but having it s outer

border circumscribing the initial region. Thus for example:

MA Sask teagon

\ ater Fagion — fda Feaion

Second oe

Then in order to reduce the difference between the upper and lower

bounds it is only necessary to redefine the second two unions and

compute new estimates to the integral over these regions. The

integral over the first union need not be recalculated, but the

estimate to it can be added to the estimates over the other two

regions to give the overall estimates.

If the subregions which are hypercubes are chosen so that the sides

of the hypercubes are parallel to the axes then the transformation

of the basic rules is simple and the methods used in the previous

algorithms can be used with only slight modification. The

orientation of the simplexes is unimportant since the rules can be

defined in terms of the vertices.

Page 136

The same ideas can be extended quite naturally to n dimensions,

where the subdivision process becomes complicated.

Hence it is possible to subdivide a region into a union of simplexes

and hypercubes. These two subregions lend themselves quite naturally

to the subdivision process am using the two in combination would

appear quite useful. Thus there is same justification for developing

a method based upon a combination of these subregions.

7.4 The basic structure of an algorithm

If it is assumed that the region of integration can be defined as

the union of a set of subregions, each of which is either a simplex

or a hypercube, then the basic structure of an algorithm to form an

estimate to the integral of a function over that region can follow

quite closely the structure of the algorithms described previously.

Once the linked list of subregions has been formed the method

proceeds by continually subdividing each subregion in the list into

more subregions until finally an estimate is formed which satisfies

the required tolerance. The author chose to adopt a global

subdivision strategy fran the outset with this algorithm since the

list of subregions defining the region of integration could be large

to start with in which case a local strategy would result in a very

rapid increase in the number of integrand evaluations at each level

of subdivision.

Hence the basic structure of the algorithm consists of :

{Form the initial estimate over the entire region}

FOR each subregion in the linked list DO

Page 137

BEGIN

compute the estimates over this subregion using suitable

transformations of the appropriate rules;

evaluate the error estimate for this subregion;

{ie. the difference between the two estimates canputed }

store the details of this subregion and the estimates in a list

element;

add this list element to the ordered list of subregions, at a

position dictated by the magnitude of the error estimate

{largest at the start, smallest at the end}

add the estimate over this subregion to the total estimate over

the whole region;

add the error estimate over this subregion to the total error

estimate over the whole region

{Now an ordered list of subregions has been formed with the

subregion with largest error estimate at the head of the list and

the subregion with the smallest error estimate at the tail of the

list}

{calculate further estimates until convergence is achieved}

WHILE NOT converged DO

{ie. the total error estimate is greater than the tolerance}

BEGIN

{consider the subregion at the head of the list}

subtract the error estimate for this subregion from the total

error estimate;

subtract the estimate for this subregion from the total

estimate;

Page 138

{ie. remove the contributions for this subregion fram the

running totals, these will now be replaced by the contributions

from the subregions of this subregion}

subdivide the subregions into the appropriate number and type

of subregions;

FOR each subregion DO

BEGIN

compute the estimates over this subregion using suitable

transformations of the appropriate rules;

evaluate the error estimate for this subregion;

add the estimate and the error estimate for this subregion

to the running totals for the entire region;

store the details of this subregion and the estimates in a

list element;

add this list element to the ordered list of subregions,

at a position dictated by the magnitude of the error

estimate

END

END ;

{convergence achieved}

output the required results.

Some parts of this algorithm have been discussed previously, the

rest will be explained in more detail in the following sections.

7.5 Defining the original region as a linked list

The original region has to be defined as a linked list of

subregions, each of which is either a hypercube or a simplex. Each

Page 139

element of the linked list must contain sufficient information to

allow an estimate to be formed over that subregion. The information

used in the previous programs to represent the two regions is now

discussed.

All the rules for the hypercube are given with respect toa

particular starting region (-l<=x;<=l i = 1,2,...n in this thesis)

and in order to form an estimate over an alternative hypercube the

nodes of the rule have to be mapped on to the new hypercube and the

resulting estimate scaled accordingly. In the previous program the

procedures which evaluate the estimates over the subregions have the

following parameters : "centre, div, scf, alt". These parameters are

sufficient to allow the mapping to take place and the transformed

rule to be applied correctly. The parameters indicate :

centre - the centre of the subregion to which the rule is to be

mapped

div - the factor relating one side of the original hypercube

to one side of the subregion, this is the factor used to scale

the nodes fran the original region to the subregion

scf - the scaling factor relating the hypervolumes of the

initial hypercube and the subregion

alt - the offset of the subregions of the subregion, this is

equal to one quarter of one side of the subregion.

For example consider the values of the parameters that would be used

to transform a rule from the region -l<=x;<=l i = 1,2,...n to the

subregion 0<=x(<=1 i = 1,2,...n for a two dimensional problem.

Page 140

4 n \I

+)

=|

centre = 0.5, 0.5

div = 2 = side of the original/ side of the subregion

scf = 4 = hypervolume of the initial region/ hypervolume of the

subregion

alt = 0.25 = side of the subregion/ 4

In the linked list defining the subregions for the hypercube program

some of these parameters were common to all the subregions at me

level and so were dropped. However with this program all the

parameters could be different and need to be stored for each element

in the list.

The rules for the simplex are often given with respect to a starting

simplex, however the nodes can usually be transformed so that they

relate to the vertices of the simplex. Hence in the simplex programs

the procedures which evaluate the estimates over the subregions have

the vertices as one parameter and the centroid and hypervolume as

two other parameters, since these are used in many rules. Thus in

order to describe a simplex adequately, an element of the list must

contain : the vertices of the simplex, the hypervolume and the

centroid. In fact the centroid need not be stored since it is

canputed from the vertices.

Page 141

So in order to define an original region as a linked list it is

necessary to subdivide the region into a number of subregions; for

each subregion which is a hypercube the appropriate "centre, div,

scf and alt" must be defined and for each subregion which is a

simplex the vertices and hypervolume must be defined.

7.6 Storing the linked list

In the previous programs all the elements of each of the linked

lists contained either details of simplexes or details of

hhypercubes. With this extemled program the list could contain

details of both types of subregion at once. That is the list must be

able to take the form :

head

details of a simplex

details of a hypercube

details of a simplex }»

Thus the pointer of an element is required to point to either an

element suitable to hold the details of a simplex or an element

suitable to hold the details of a hypercube. In order to define a

simplex an element has to contain :

a) the vertices of the simplex

b) the hypervolume of the simplex

c) an estimate for this region

Page 142

d) an error estimate for this subregion

e) a pointer to the next element in the list

while in order to define a hypercube an element has to contain :

a) the centre of the hypercube

b) div, the factor used to scale the nodes

c) scf, the scaling factor

da) alt,the offset of the centres of the subregions of this

subregion

e) an estimate for this subregion

f£) an error estimate for this subregion

g) a pointer to the next element in the list.

It was useful to define two new modes to describe these list

elements. Suppose a new mode describing a pointer to a simplex or a

lhypercube existed :

MODE NEXTITEM

then the two modes required could be defined as :

MODE SIMPLEXITEM = STRUCT (REFL, JREAL vertices,

REAL, hhypervolume, estimate, error

estimate,

NEXTITEM ptr)

and

MODE HYPERCUBEITEM = STRUCT(REF[]REAL centre, REAL div, scf, alt,

estimate, error estimate,

NEXTITEM ptr) .

The mode NEXTITEM has to be defined so that it can be either a

reference to a SIMPLEXITEM or a reference to a HYPERCUBEITEM,

depending upon the type of the next subregion in the list.

Page 143

Fortunately this can be achieved by the use of a unio in algolé8.

Hence the mode NEXTITEM was defined as :

MODE NEXTITEM = UNION(REF SIMPLEXITEM, REF HYPERCUBEITEM)

Before these two new modes can be used to create space in which to

store the list it is necessary to input the appropriate data. The

author chose the following format for the input data defining the

subregions in the list :

type of subregion - simplex or hypercube

. data for this subregion

type of subregion

.» data for this subregion

end of list marker .

Hence the basis of the algorithm to input and store the linked list

consists of the following :

WHILE (input the type of subregion ;

type is not equal to the end of list marker) DO

BEGIN

IF type = simplex

THEN {the subregion is a simplex}

create a new simplex list element ;

Page 144

input the data for this simplex ;

store the data in the new element ;

compute the estimates for this subregion ;

evaluate the error estimate ;

store the estimate and the error estimate in the new list

element ;

add the new element to the sorted list at a position

according to the magnitude of it's error estimate

ELSE {the subregion is a hypercube}

create a new hypercube list element ;

input the data for this hypercube ;

store the data in the new element ;

compute the estimates for this subregion;

evaluate the error estimate ;

store the estimate and the error estimate in the new list

element ;

add the new element to the sorted list

In order to add a new element to the sorted list at the correct

position it is necessary to search through the list to find the

position of insertion and then to actually insert the new element at

this position. This process was written in the form of the procedure

"add to list" which consists of :

PROC add to list = (REAL e, REF NEXTITEM newnode) VOID :

BEGIN

REF REF NEXTITEM tempptr := head ;

Page 145

{set a temporary pointer to point to the start of the list}

REF SIMPLEXITEM s ;

REF HYPERCUBEITEM h ;

IF head ISNT end of list

{where REF NEXTITEM end of list = NIL}

THEN {the list isnt empty,

search for the correct position of insertion}

BOOL notfound := TRUE ;

WHILE notfound DO

BEGIN

CASE (s,h) ::= tempptr

IN

(IF errest OF s > e

THEN tempptr:= ptr OF s ;

{move on to the next item in the list}

IF ptr OF s IS end of list

{end of the list reached}

FI

ELSE notfound := FALSE

{position of insertion found}

FI),

(IF errest OF h > e

THEN tempptr := ptr OF h ;

{move on to the next item in the list}

IF ptr OF h IS end of list

{end of the list reached}

Page 146

ELSE notfound := FALSE

{position of insertion found}

FI)

ee

{position of insertion found}

CASE (s,h) ::= newnode

In

(ptr OF s := tempptr),

(ptr OF h := tempptr)

ESAC ;

{the newnode now points to the next item in the list}

(REF REF NEXTITEM VAL tempptr) := newnode

{the previous item in the list now points to the newnade}

In the procedure tempptr points to the pointer field of the¢

previous element in the list, thus simplifying the insertion

process.

 head

 Ss

When considering the data of node B tempptr is pointing to the

pointer field of node A. Therefore insertion consists of making the

pointer field of the newnode equal to the pointer field pointed to

by tempptr, i.e. linking the newnode to the node B, and making the

pointer field pointed to by tempptr point to the newnade, i.e.

Page 147

linking node A to the newnode.

8.7 Processing the list of subregions

Once the initial list of subregions has been formed with the

subregion with the largest error estimate at the head of the list

and the subregion with the smallest error estimate at the tail of

the list, this list must be processed. That is, the contribution

made by the subregion at the head of the list to the total result

must be replaced by the sum of the contributions from the subregions

of this subregion. Also the list element defining this subregion

must be removed fron the list and replaced by the list elements

defining it s subregions. This process is complicated somewhat by

the fact that the list elements describe either simplexes or

hypercubes.

Essentially the process consists of :

{consider the subregion at the head of the list}

IF the subregion is a simplex

THEN

remove the contributions for this simplex fran the running

totals;

subdivide the subregion into two further simplexes;

FOR each simplex DO

BEGIN

compute the estimates for this subregion;

add the estimates to the running totals ;

store the details of this subregion ina simplex list

element;

add this element to the list of subregions

Page 148

END

ELSE {the subregion is a hypercube}

remove the contributions for this hypercube from the running

totals;

subdivide the region into 2°n hypercubes;

FOR each hypercube DO

BEGIN

compute the estimates for this subregion;

add the estimates to the running totals;

store the details of this subregion in a hypercube list

element;

add this element to the list of subregions

Pies,

move on to the next element in the list.

Moving on to the next element in the list involves setting the head

of the list to be the pointer of the head. This operation depends

upon the type of subregion described by the element at the head of

the list amd so is best refined as two distinct operations in the

algorithm above. In order to decide the type of subregion described

by the head of the list it is necessary to deunite the list element

describing the subregion at the head of the list. This is achieved

with the aid of a collateral conformity clause in conjunction with a

case construction. Adopting this approach results in the following:

REF SIMPLEX ITEM s ; REF HYPERCUBE ITEM h ;

{these are temporary pointers, one of which will be set dependant

upon the type of subregion}

CASE (s,h) ::= head

IN

Page 149

({s has been set, the region is a simplex}

process the simplex as above ;

set head to be the pointer of the simplex item),

({h has been set, the region is a hypercube}

process the hypercube as above;

set head to be the pointer of the hypercube item)

ESAC

This process is repeated until the required tolerance has been

satisfied.

7.8 The complete program

The estimates over the subregions are computed using the basic rules

discussed previously. For subregions which are hypercubes Stroud's

rules are used, while for subregions which are simplexes Stroud's

and Lauffer's rules are used. The complete program consists of a

sequence of segments which are linked by the main body of the

program. A full description of all the segments and the main body of

the program is given in appendix [7].

7.9 A simple test problem

As an illustration of the program a hypercube was subdivided into a

number of subregions, each of which was either a hypercube or a

simplex. Then the extended program was used to compute an estimate

over this union of subregions. The following is the initial region

and the chosen subdivision into subregions:

Page 150

 20 or

Hence the data defining the union consisted of:

2 the number of dimensions of the problem

H the subregion is a hypercube

0.25 0.25 the centre of the hypercube

16, 4, 0.125 scf, div and alt

H the subregion is a hypercube

0.25 0.75 the centre of the hypercube

16, 4, 0.125 scf, div and alt

H the subregion is a hypercube

0.75 0.75 the centre of the hypercube

16, 4, 0.125 scf, div and alt

s the subregion is a simplex

0.5,0-5 1.0,0.5 {.0,0.0 v

0.125 the hypervolume of the simplex

Ss the subregion is a simplex

0.5,0-5 1.0,0.5 0.570.0 v

0.125 the hypervolume of the simplex

E end of data marker

The program was tested using the following problem:

[[eae ax dy

The results were more accurate than the requested tolerance but

"expensive" in terms of integrand evaluations. However, this problem

is intended as an example of how the program is used and would not

be a realistic problem for solution using this method.

7.10 conclusions

Page 151

This chapter has demonstrated one way in which the methods developed

for the simplex and the hypercube can be extended to cope with other

types of region of integration. If a region can be defined as a

union of subregions, each of which is either a simplex ora

hypercube, then this is a feasible approach. However the problem of

subdivision of the initial region requires careful consideration if

the method is to be reliable and efficient.

One limitation with this approach is the large number of subregions

that could exist at any me time. One solution to this problem might

be to set an upper limit on the number of subregions that are held

in the list. Once this limit has been reached the program could save

a part of the list on backing store and continue to process the rest

of the list. Once a satisfactory estimate over this part of the list

had been achieved then the other part of the list could be

reinstated in place of the present part and an estimate formed over

this part. Then the sum of the two estimates would give the required

estimate. Alternatively it would be possible to adopt a policy of

discarding subregions from the end of the list once the upper limit

on the number of subregions had been reached. Obviously the

estimates fron the discarded subregions would have to be added toa

running total estimate to the final result.

The method as described in this chapter applies one procedure to the

hypercube based on a certain pair of rules and a second procedure to

the simplex based on a different pair of rules. However, there is no

reason why more than one procedure for each region could not be

included and a choice made between the available procedures

Page 152

dependent upon the behaviour of the integrand in the present

subregion; the behaviour of the integrand over a particular

subregion could be supplied by the user when defining the mion of

subregions, if he knew it or left blank otherwise. For example a

procedure could be included which applied the product Patterson

rules to a hypercube. Then if the user knew that the integrand was

either uniformly "well" behaved or uniformly "badly" behaved over

one or more of the subregions he could supply the information to the

program to ensure that the product Patterson procedure was applied

over those subregions. Alternatively if the user knew that a

different procedure was more applicable to a particular subregion

then he could supply the information to ensure the correct choice of

procedures for those subregions. Thus the user could be allowed to

influence the performance of the method by taking advantage of his

knowledge of the integrand. Another way in which the user may be

allowed to supply information would be to include the possibility of

the initial estimates over all or same of the subregions to form

part of the input data. This could also be use to allow the user to

restart the program in order to obtain a more accurate result if the

list of subregions was output in same form at the end of the

computations.

Page 153

Chapter 8 Multiprocessor Techniques

8.1 Introduction

The methods described so far are very processor intensive and thus

limited by the capabilities of the machine a which the programs are

run. Obviously one way in which the performance of the methods can

be improved is by using a more powerful, faster machine. Until

recently the enhancement of computer performance has come from a

refinement of the basic Von Neumann architecture and the improved

performance of semiconductor canponents. With the rapid development

of LSI technology and the corresponding fall in processor costs

there has been a trend towards mltiprocessor architectures offering

both parallel and concurrent processing capabilities. With a

suitable problem the new types of architecture can result ina

considerable improvement in the performance of an algorithm. The

author considers the problem of multidimensional quadrature to be

well suited to solution m a machine with this type of architecture

and hence presents a case for their adoption for multidimensional

quadrature programs. Since a suitable machine was not at the

disposal of the author same of the theoretical possibilities have

been considered.

8.2 The architecture of a multiprocessor

Early camputers were classified as serial or parallel depending upon

the design of the arithmetic and logic unit. However the concept of

parallelism has been extended to cover any set of operations carried

out in parallel and may occur at any logical or physical level of

Page 154

the system. Flynn has suggested that it is now appropriate to view

architectures in terms of the instruction stream and the data

stream. Multiplicities in these streams lead to four basic

alternative architectures:

1) single instruction single data - sISsD

2) single instruction mitiple data - SIMD

3) multiple instruction single data - MISD

and 4) multiple instruction miltiple data - MIMD.

The ideas proposed in this chapter are based upon the attributes of

a machine with a multiple instruction stream and a multiple data

stream type architecture. That is a machine that must have more than

one processor. Multiple processor systems exhibit a diversity of

architectures and it is often the case, particularly with mitiple

microprocessor systems, that the architecture has been designed for

a specific task. Frequently the motivation for using multiple

processors does not come fran throughput considerations but from the

many other advantages of distributing both processing power and

intelligence, such as modularity, reliability, response time to

human interaction, resource sharing and fault tolerance. However the

motivation for the adoption of this type of architecture in the

context of multidimensional quadrature algorithms is solely an

improvement in performance. Hence the overheads involved in

coordinating the processors must be weighed against any possible

advantages.

{Perhaps it should be stressed that a multiple processor

architecture, i.e. a MIMD type architecture, as opposed to an array

processor type architecture, i.e. a SIMD type architecture, is being

considered. The latter being the type nommally associated with

speeding up numerical calculations.}

Page 155

The architecture could be described as a master, slave system where

one processor is deemed to be the master in control of distributing

tasks to the other processors which are considered to be slaves of

the master. All communication between the master and the slaves can

take place via a suitable bus.

Master [slave] [slave | [slave]

l [I T

Each processor has it s own memory and a main memory could be

available as part of the master or as a separate entity also

connected to the bus. This is perhaps the simplest interconnection

topology that could be used and relies on the use of a global bus.

This obviously creates the problem of simultaneous requests for the

bus and so sane form of arbitration is required. Arbitration is

merely the name given to the process of deciding which processor

obtains exclusive use of the bus. A full introduction to the basic

concepts of multiple processor systems is given in Bowen and Buhr

[3]. Although this book is mainly concerned with microprocessors the

ideas are valid regardless of the size or power of the processors

used.

8.3 Multidimensional quadrature as a suitable task for solution om a

multiple processor system

When using a multiple processor system as opposed toa single

processor system an improvement in the performance of an algorithm

can only be expected if the algorithm exhibits sane inherent

concurrency. That is if the algorithm can be split into a number of

Page 156

tasks which can be distributed amongst the available processors and

processed concurrently so as to take advantage of the available

processing power. If the algorithm is strictly sequential in nature

then no improvement can be expected.

Consider the nature of the multidimensional quadrature algorithms.

In each case the method proceeds by subdividing a region into a

number of subregions, forming the estimates over each of these

subregions and summing these estimates to give a total estimate over

the entire region. The natural concurrency involved in forming the

estimates over the subregions has to be removed and a sequential

order imposed when adopting the algorithm on a single processor

system. Hence it seems reasonable to assume that an improvement in

performance of the multidimensional quadrature algorithms can be

expected if a multiple processor system is adopted provided the

overheads involved in distributing the tasks are not too high. The

calculation of the estimates over the subregions of a region or even

the entire list of subregions could be processed concurrently.

8.4 An algorithm for use @m a multiple processor system

If it is assumed that a machine with an architecture of the type

described in the last section is available, where each processor in

the system has sufficient power to perform the subdivision process

and to generate estimates over the subregions, then it would be

feasible to construct an algorithm for multidimensional quadrature

for that machine. All the algorithms written previously exhibit some

natural concurrency which could be exploited om a multiple processor

system. However they all have same drawbacks from this point of

Page 157

view. Consider the first basic adaptive method as described in 4.3.

The method involved processing a list of subregions sequentially.

Obviously the calculations for each subregion are not connected and

could be performed in parallel, or at least concurrently. However

the method could not proceed to the next level of subdivision until

the entire list at one level had been processed. Since the list

grows to a long length before convergence begins to take place in

various subregions it is not feasible to have sufficient processors

to perform the calculations for all the subregions at the same time.

Hence towards the end of an iteration the situation could arise

where many of the processors were idle while only one or two of the

processors performed the calculations for the last regions. This

might not be a serious drawback but could degrade the overall

performance of the system and is not an efficient way of using the

processors. In the worst case the number of subregions would be ome

larger than the number of processors, which would result in all the

processors but one waiting while the calculations for the last

subregion were performed.

Alternatively consider the global subdivision strategy. With this

method the algorithm proceeds by dealing with one subregion at a

time. The only obvious benefit of using a multiple processor systen

in this situation is if the tasks of calculating the estimates over

the subregions of the subregion are performed concurrently. The

drawback then is the sequential nature of the tasks of processing

the list, forming the subregions and checking for convergence. All

the processors would be idle while these tasks were performed.

As they stand the basic algorithms suffer from some drawbacks as

Page 158

regards multiprocessing. However one variation on the global

subdivision strategy would appear to solve most of the problems and

make the use of a multiple processor system highly beneficial.

Although the global subdivision strategy involves processing the

subregions in the linked list one at a time there is no reason why

work could not be started on other subregions prior to the

campletion of the calculations for the first subregion. Then

processors would only be idle when the number of elements in the

list of subregions was less than the number of processors. At first

sight this would appear to imply that it is necessary to wait for

all the processes to complete before an estimate can be formed since

more than one subregion is removed from the list at a time and the

order in which the results are returned cannot be guaranteed.

However these problems can be avoided by not removing the

contributions to the final result from a particular subregion util

the sum of the estimates over the subregions of that subregion have

been formed. Then the total estimate will always be an approximation

to the result but the algorithm cannot be guaranteed to be global

since the order in which the estimates over the subregions in the

list are returned will be processor dependant. For example if the

first three elements of the list are passed to three processors in

order to calculate the new estimates over those subregions then it

is possible that the computations for the third element my be

completed first, in which case the subregion with the largest error

estimate has not been replaced first. This should not affect the

algorithm considerably but is worth noting. Adopting this approach

the basis of an algorithm is :

Page 159

Form the initial estimate to the result, the error estimate and the

list of subregions;

WHILE {convergence has not been achieved}

oD

the

Ira

THEN

EE

error estimate > tolerance

processor is available

start the processor working on the subregion at the head

of the list ;

{remove this subregion from the list}

advance the head to the next item in the list

process is complete

subtract the old estimate over the subregion from the

total estimate;

subtract the old error estimate from the total error

estimate ;

add the new estimate over the subregions of this subregion

to the total estimate;

add the associated error estimate to the total error

estimate;

instigate the process of adding the list of new subregions

to the subregion list

{output the results}

The algorithm would be executed on the master processor and

Page 160

semaphores would have to be used to protect certain areas. For

example the list of subregions is accessed by the master and the

slaves. The master takes information from the head of the list,

passes this information to a slave and then alvances the head of the

list. Obviously it is important that no other processor alters the

list while these operations are being performed if corruption of the

list is to be avoided. The other process which might attempt to

alter the list at the same time is the one which adds the new

subregions of a subregion to the list. A problem could occur if a

subregion was added at the head of the list just before the master

processor advanced the head of the list; the wrong element could be

removed from the list. This could be avoided by making the master

processor wait until the transfer of all the list of subregions was

complete before moving on. However this would be inefficient. A

better approach is to use a semaphore to make the two processes

mutually exclusive. That is when an element is being added to the

list the operations associated with ajvancing the head cannot take

place and alternatively when the operations associated with

advancing the head are taking place then an element cannot be alded

to the list. The master processor could be given priority so that

free processors were not kept waiting while new subregions were

added to the list. The mly time that a processor would have to wait

would be when the list of subregions was empty; this situation could

arise while a processor was actually adding a list of new subregions

to the list of subregions.

All communications take place via the bus. Therefore it is necessary

to have some form of arbitration to decide which processor actually

gets the bus when more than oe request is made for it at any me

Page 161

time. The proportion of the computation allocated to the master is

relatively small. This enables the master to have time to perform

this arbitrat ion without degrading the performance. Hence the

master is in full control.

8.5 Conclusions

A straightforward extension of the algorithm based upon the global

subdivision strategy has been presented which it is suggested would

be suitable for use on a machine with a multiple instruction

multiple data type architecture. It is felt that considerable

improvements in the performance of the algorithm could be expected

with a reasonable number of processors if the overheads can be kept

to a minimum since a significant number of tasks exhibit a natural

concurrency. Obviously it would be best if an architecture was

designed to suit the problem. This could be feasible in the near

future when it is expected that the availability of numerous

processors and facilities to reconfigure the interconnection

topology of those processors under software control will be just an

extension of the software engineer's tools. However, at the moment

same of the languages designed to run on standard multiple processor

systems, such as Ada and concurrent Pascal [21], offer many of the

facilities required to construct an algorithm of the type described

above. Same discussions about using these languages are given in

Dawson [10] and Bowen and Buhr [3]. In conclusion it would be

possible to construct a program based on the algorithm described

which would run on a multiple processor system.

Page 162

Chapter 9 Conclusions

In the previous chapters the development of software for the

approproximate evaluation of multiple integrals has been considered.

The work has been based on the construction of reliable software to

apply the existing theory in an efficient manner. It is hoped that

this work will be a starting point for the development of further

software for multidimensional quadrature and that any further

advance in the theory of numerical integration will lead to the

construction of formulae that are suitable for use in

multidimensional quadrature programs. Multidimensional quadrature is

such a laborious exercise in terms of computation that it is

unlikely that any formlae which are not suitable for use ma

computer will ever be used.

One of the first objectives of the work was to construct two

adaptive algorithms, one for regions of integration which are

hhypercubes and the second for regions of integration which are

simplexes. These have been developed and the resulting programs

perform well but are slightly inefficient in that they tend to

produce more accurate results than required at a correspondingly

higher "cost". The efficiency of the programs can be improved by

adopting a global subdivision strategy as opposed to a local

subdivision strategy without affecting the reliability. This was

demonstrated by the program which was written to perform a global

subdivision strategy over a hypercube type region of integration.

Exactly the same strategy could be adopted for the simplex. The

program for the hypercube performed well and extended the range of

tolerances over which results could be produced before the limits m

Page 163

time ami store were reached by producing results closer to the

required tolerance. Further research could improve the methois of

storing ami accessing the lists of subregions used in the global

subdivision strategy program and it is recommenied that any further

software written to perform adaptive multidimensional quadrature

should ajopt this subdivision strategy.

Another objective was to consider the possibilities of storing

integrami evaluations as a means of reducing the overall time taken

to compute an approximation. The techniques for storing integrand

evaluations were developed with reference to the hypercube as it was

felt that the same techniques could be applied to the simplex if

they were successful. Two distinct approaches were taken to storing

the integrand evaluations; firstly a linked list or series of linked

lists was used and secomly scatter storage techniques were alopted.

Both methods reduced the actual number of integram] evaluations used

considerably once the methods reached a level of subdivision where a

large number of integrand evaluations were required. However both

methods proved to be very "expensive", amd are not feasible unless

the integrand is very "expensive" to evaluate ami it is envisaged

that a large number of integrani evaluations will be computed to

achieve the accuracy required. The major problem with storing the

integrand evaluations is that certain integration formulae which

lend themselves to the subdivision ani storage methods have to be

used. Unfortunately these formulae ten] to be less accurate ani use

more integrand evaluations than other available formulae. If

formulae were developed with the maximum accuracy using a minimum

number of nodes and the nodes were distributed such that they could

be reused after the subdivision then the methais would be very

Page 164

useful.

The construction of product formulae has been reviewed. One program

was written to construct and apply an n dimensional product rule.

This program is a non alaptive method based upon a straightforward

iterative scheme. At each iteration it constructs an n dimensional

product rule from the ane dimensional rules of Patterson and uses

this rule to produce the next approximation. The program

demonstrates ome method of storing the integrand evaluations so as

to take aivantage of the nature of the Patterson formulae which forn

a cammon point family. The program either produces very accurate

results or fails because of the vast number of integrand evaluations

required for the next iteration. As an iterative scheme the program

is not viable with the present limitations on computing power and

resources. However the lower order formulae could be used

successfully in conjunction with an adaptive scheme to produce

initial accurate results over uniformly behaved regions.

In this thesis working programs have been written to produce

approximations over both the hypercube and the simplex. However, the

majority of problems that people actually wish to solve do not fit

into either of these categories. Therefore a program was written to

demonstrate how the methods used over these two regions can be

extended to the solution of problems over any region of integration

which can be defined as a union of hypercubes and simplexes. This

approach can be modified to incorporate alternative formulae and to

take advantage of any user knowledge of the integrand. The area of

subdivision of regions of integration into unions of simplexes and

hhypercubes is one which requires further research.

Page 165

With the changing nature of the architecture of computer systems no

work would be complete without considering the future. The possible

advantages of using a multiple processor system have been considered

and the author suggests that a considerable improvement in the

performance of quadrature algorithms could be expected if an

architecture of this type was adopted.

The testing of quadrature is very complex and same of the methods

have been examined. The author considers that it would be beneficial

to carry out research into the testing and comparison of quadrature

programs and the types of problem that need to be solved before any

further work is carried out in the area of numerical software for

multidimensional quadrature.

In this work the improvement of approximations to the result has

been achieved by a method of subdivision and the application of

formulae to the subregions. As the method progresses a sequence of

converging estimates to the result are produced. One possible method

of improving the results would be to use an extrapolation technique.

Anders [1] and Strom [56] have published papers on particular

extrapolation methods for multiple integrals. Lyness and McHugh [40]

have developed an extension of Richardson extrapolation for the

hypercube and this progressive procedure can be applied to other

formulae. Genz [16] applied a variation of this method to improve

the results of his multidimensional quadrature program. These

techniques could perhaps be applied beneficially to the algorithms

described in this thesis with an aim to improving the results

without using any more integrand evaluations.

Page 166

In conclusion this research has resulted in the development of a

variety of algorithms for the appropriate evaluation of multiple

integrals. On the whole the programs perfonn well and form the basis

for the development of efficient, reliable software for

multidimensional quadrature.

is ?

7
*.

oT
=

r
t

z

A
7

.

Page 168

Appendix 1

1.1 The set of test problems

All the problems are written in the form of procedures which

evaluate the integrand, defining the problem, at any given node.

Each procedure has the same name, f, but is contained in it's own

segment. All the segments and the procedures have the following

form:

Segfl2d

BEGIN

{this is the two dimensional version of the first test problem,

this is indicated by the 12d in the segment name}

PROC f = (REF[JREAL x)REAL :

(sqrt(x[1]+x{2])) ;

SKIP

KEEP £

FINISH

Page 169

1.2 The set of test problems used for the hypercube programs

Segf12da

[[weve X2) Ax, dxe ~ 0.975161133

se f134
fe ‘sqrt (xi+ xt x3) dx,dx,dx, % 1205656861

segl4a
LLL ween Xpt Xst xq) dx,dx,dx,dx, ~ 1.398180578

Segf22da

ve sqrt(x,* x2) dx,dxp a 0.444444444

S03 £234
fp " eget # X2* xX.) dx,dx,dxz = 0.296296296

segi32a

pe fe 1/ (44x, 4x2) Ax, dx, f= —0.201355135

segf30d

i "1/(44x,+x2+x,) ax, dxgdx, = 0.183354140

nates
LOG

[exp(sin x,sin x2) dx,dxp = 4,151291030
="

Seg £434
‘ { 1

TEE exp(sin x,sin xpsin xq) dx\dxpdx; ~ 8.081734973
=t ay

Page 170

1.3 The set of test problems used for the simplex programs

Segfl2a
‘ Ants

ifs sgrt(x,+ Xp) dx,dxp ~ 0.400000000

Seg f13d
UPlnxy pf Ieinee

ff sqrt(x,+ x,+ x3) dx,dxgdx, w 0.142857143
eo Jo lo

Seg £224

w
i pine

f sqrt(x,* x») dx,dx 0.130951982

Seg £324
Pim

[f 1/(4+x,+x2) dx,dxe
lo Jo

Seg£33a
t fee Pir ee

[f [1x ets) dx, dx,dx, ~ 0.035148211
lo Jo

Segf42d

@ 0.1 07425796

Lopiney
i exp(sin x,sin xe) dx,dx, ~ 0.541481025

lo Jo

W
O
N
O
U
F
U
N

S
O

Appendix 2

Page 171

2.1 The nodes and weights for Patterson's formulae

The following are the nodes and weights for Patterson's one ‘

dimensional formulae:

SEGNODES
"BEGIN’

tC’ THE FULLOwING ARE THE NODES AND WEIGHTS FOR PATTERSONS

FORMULA:

C2*RESL* NODES
0.7745966069¢4,

€459 23287,
53114955,

3121974564,
9720625937,

0241057115696,
U.002909600u2,

7774982202,
OSFF9ISIR IS 9GT,

é5 37149960,
632039715,

5UE4G4I 477,

0272142306537,
4695135265,

55740385785,

G.14042423315,
On5 9994599621,

015137040,
IT473445975,

G.950115297>52,
1543758716,
029305555,
462878 766,

836243445,
570640792,
621200606,
11951485¢,
02645.676-

10704069760 4,

tH

sunt OS0
0.96049126871,
0.62110294674,
0.92965455743,
Qs 12539326,

GREGEG T5755,
6399793619,

7719571005,
O.1682252
ULo9Gs
0.97714151464,

} 4002547,
215625436,

366298743109,
50766775753,
04576044156,

006445604008,
099976049092,

0, 0.99051414591,
0 .92709252795,
U 96548455550,
O.94241156519,
U.90514059251,
6 6857355631009,
0.759092299 er

6 .730664521
peice

O 655058542,
0647142506587,
0.37042208795,
0626424537241,

0.15474651148,
0004226916477,

654243745935,
0.22238668643,
0.83567 25933817,
U.11248894313,
0.97218287475,
0.¢0694053195,
0.4676 1802655,
0.056344313C5,
0.99572410470,
6.96663785156,
G.B99744689975,
0.791084925e0,
U.642270604251,
0.45913001199,
0.25067873C20,
U.02818464895,
C.999580338C3,
0.99482150280,
0.9835 1865758,
0.96564062157,
0.954066436 16,
Oa89418456834,
U.G43576668 267,

O.78291939412,
O.f1c0sd 159950,
6.63175643771,
6.54290566656,
0.44673538766,
C.344307341€0,
0.23705684559,
0.12647058437,
(.01409386641

€.99383196224
C.999O9E1Z497
C.70249620649

CaVGSET2ASAE VE
C9 46354285837
C.73975€04435
0.382359352420
€.9959824 30355
0.99 149572118
C.95273000645
C.87651341448
C.75748396636
€.59940393024
C.40897982123
0.19569750271
C.995999759630
C 09987456 1447
C.99272134420
C.97940626167
C.95718821611
C.92507893291
C.862568640285
€.82952219464
C.76611781936
C.6928157097%
0 .61031811372
€.515955966154
€.42165768663

1789001207
0.20966525824
C.09645253966U

;

Se
w

N
N

N
A
S

N
S
S
.

S
S
S

SD
©

SE
SE

SL
A

 S
SE
SN

GRE
ETS

NA
NU
ES

EN
S
E
N
N

ESO
AG
Es

Sv
e

Ean
Se
e

en
e
o
s

N
S

ON)
S
S

S
N

ON
NE

SO
N

OS
S
S

CI "REAL®
O.8S88888t8 1G,
0.10465622603,
0.05160328390,
0217151190914,
0.02540759210,
0.08575592095, 0

06035957190
0.1056698
0. 01290360010,
0.04267796005
3201797855 157
0205283494679,
0.0061155UE#e,
0.025586967933,
0.2446914653165,
0.95548140456,
6200643190005,
0202143892001,
DeOUS9E9Z7S 73,
0.02641747240,
0.00305775341,
0201293483966,
0.02245726543,
0.02774070216,
000093836955,
0.004671050357,

0.00964117773,
0.014893¢64160,
0.01979549505;,
0.023585405211,
0.02669662293,
0.02807645579,
0.003 22595093,
0201071949001,
0.90449463759,
0.01320873670,
0.00152887671,
0.90646741963,
0.91122863291,
0.01347035109,
0.00046918492,
O2002355 52519,
0-00466205e846,
0.007 446622033,
O.00989774752,
0.01192702605,
G.01334821146,
G.01403822790,
0.00013575491,
0.50074026 250,
0.00765611273
0.00277219576,
0.00401106872,
0.00531308601,
B200663172124,
0.00792794953
0.00916671116,
0.01031681233,
0201135065432,
0.01224442498,
001297820224,
ae 01353603593,
-0158060198C,

enzs4

WELGHTS

Page 172

al

1A

655555555555,
03 4013 39741478,

0429062852938,
0 21915685040,

0.10031427461,
0410957842106,

7950949,
11195687302,

76921053,
62975475,
7843651,

5076856965,
2739460526,
1624487737,
2798921826,

100524912345,
0.01852677556,
602428216520,
0.02013884992,
0 ..00168114287,
000584344988,
0 .01095573339,
0.01617321873,
002090585145,
002469052474,

2718551323,
2817631903,

31253928483,
0 .01369730263,
0.09712243869,
0201399460913,
0 00262456173,
6.007768 58778,
9.01214108260,

0.01406942496,
0 4057143,
U.09292172494,

600547736569,
08660936,

1045292572,
1234526237,

59275661 -
4608815952,

0.60024921240,
0.90094536152,

6191971297,

564221810.
695936141,
24430376,
46368999,

2.01056716790,
0.91158807403,
001244356019,
D.D1s1as 690004
0201264651810,
0.! 6815581,
0.014092°4507

0.45091653866,
0.22551049920,
(201700171963,
0.1127552567?2,
000842456574,
0.0025 4478079,
(.07687962C50,
0.05637762836,
0.00421763C44,
0.00126515656,
0.03843981Cz25,
0.00036322142,
©.01540675047,
203606443278,
Ca05158325295,
0.02218881418,
0.0021C881525,
0.0006226073<,
0.01921990512,
0.0001£073556,
(00770337523,
0.01802221629,
£.0257916269%,
9.00005053610,
000256876454,
0.00707249CCO,
0.01227583C56,
0.01742193C16,
0202195636631,
0.02544576597,
0.02757974557,
0.014094407C9,
0.00105440762,
0200031630266,
£.00960(995254,
0.00009037273,
0.00285168762,
0.00901610820,
0.01289581249,
0.000025157&7,
0200128438247,
0.0035 262450,
0.0061279152e,
0.00271096SC5,

101097818215,
0.0127 2282498,
C.0137898 747%,
0.00000693794,
0.000289745 28,
0.00116748412,
Aoi eceaerent

~ 00338039799,
0100665731720.
9.00597291957,
6100728494798,
0.008556542356,
400975465654,
201084984409,
0.011816385¢9,
0.01263240364,
0.01327995174,
0.01374509344,
C.014017968C4,

;

C.26868808987
€.13441525524
C209 292719532
€.0672077543C
0.04666289326
O.01644604985
C.09 262710998
C.03360387715
C.02323144664
€.00622300796
C.04681355499
C.00257904979
C.02059423292
€.06071551012
C.05290549934
C.016£0193557
C.011615 723552
€.004111503598
C.0234067775C
€-6012895 240%
(01029711696
eos

C.0186318 482:
002254096423
0.02611567332

ETEP TASTE
C.0024005 6929
C.0052076 6166
C.cOz05575199
C.01170328875
C.00064476204
(00514855284

TC17BE 7753
247627432

0018827326
«00178644639
200417161938
eae

15924135

a areskett
0120576 2669
201293862574
O0CO5327529

10055429531
C.00140490800
C.0024789 5822
C.00269337792
U0 .U0492436656
C 00620277345
(.00760798967
C.00686417321
C.01003917204
£.01110446115
C.01203527079
€.01281069816
0 .013461379309
C.01363163191
€.01405538207

Page 173

2.2 The complete Program based on Patterson's rules

Product type method based on Patterson's rules

WITH segnodes, segmilltime, segfl-2d FROM pjk-alb-al

BEGIN

[] INT starting positions = (0,2,6,14,30) ;

INT maxpoints , nofe :=0,n;

REAL eps ;

read ((maxpoints,eps,n)) ;

ClInT m = (3,7,15) ;

INT next := 1 ;

{l:n]INT array ;

BOOL exist := FALSE , notgt8 := TRUE , nottoomanyfe := TRUE ;

REAL result , resultl ;

MODE NODE = STRUCT(REAL feval,REF NODE ptr) ;

PROC add to list = (REAL feval, REF REF NODE pointer) VOID :

BEGIN

REF NODE newnode = NODE ;

{create a new node on the heap}

feval OF newnode := feval ;

ptr OF newnode := pointer ;

{pointer dereferenced twice}

pointer := newnode

{pointer dereferenced once}

END ;

REAL alt, div, scf, cen ;

INT number of tests ;

read ((n, newline));

Page 174

read((number of tests,newline)) ;

[l:number of tests]REAL epsa ;

read ((epsa,newline,div,newline,alt,newline,

scf,newline,cen,newline)) ;

[1:n]REAL centre ;

FOR i TO n DO centre[i] := cen ;

CImINT m = (3,7,15,31,63,127,255) ;

INT next := 1;

Cl:nJINT array ; [1:n]REAL point ;

BOOL exist, notgt8, nottoomanyfe ;

REAL result, resultl, corresponding weight, function eval ;

PROC generate = (INT m,n,previousm,starting position,

REFLJINT array,

BOOL exist, REF REAL present estimate)VOID:

BEGIN

{This is a procedure to generate the nodes of an n dimensional

product type rule from an m point one dimensional rule and to

generate an estimate to an integral using this rule}

FOR i TO m DO

BEGIN

array[n] := i;

IF exist

THEN IF i > previousm

THEN exist := FALSE

FE

EL;

IF m 1

THEN generate (m,n-1,previousm,starting position,array,

Page 175

exist,present estimate)

ELSE IF exist

THEN

{the integrand has been evaluated at this node, the

required integrand evaluation is the next value in

the list

generate the corresponding weight}

corresponding weight := 1;

FOR i TOn

DO corresponding weight TIMES

weights[starting position + array[i]'/'2+1]

{add the weight * the next value to the estimate}

present estimate PLUS (corresponding *

feval OF pointer) ;

{move the pointer to the next item in the list}

pointer := ptr OF pointer

ELSE {the node has not already been used}

{interpret the array and generate the weight}

corresponding weight := 1;

FOR i TO n DO

BEGIN

INT nn ; BOOL posnode := ODD(nn:=arrayLil]) ;

nn :=m'/'2+1;

point[i] :=

(IF posnode

THEN nodes[nn]

ELSE - nodes[nn]

FI)/div + centre ;

Page 176

corresponding weight TIMES

weights[starting position + nn]

END ;

integrand eval := f(point) ;

present estimate PLUS

(corresponding weight * integrand eval) ;

nofe PLUS 1 ;

{increase the number of integrand evaluations}

add to list(integrand eval, pointer)

END of the procedure generate.

NODE st := (£(centre),NIL) ;

REF NODE start := st ;

REF REF NODE pointer := start ;

{output the details of this test run}

preint((....))7

LONG INT before, after ;

FOR i TO number of tests DO

BEGIN

start := st ; pointer := start ;

eps := epsali] ; nofe :=1;

exist := TRUE ; notgt8 := TRUE ;

next := 1

result := 0.0 ;

before := milltime ;

Page 177

generate(m[next],n,1,starting

position[next],array,exist,result) ;

esult DIV scf ;

pointer := start ;

WHILE (exist := TRUE ;

pointer := ptr OF start ;

generate (m[nextPLUS1],n,m[next-1],starting

positions[next],array,exist,resultl) ;

resultl DIV scf ;

ABS(resultl - result) > eps)

AND notgt8 := next < 8

AND nottoomanyfe := nofe < max

DO result := resultl ;

IF NOT notgt8

THEN print((newline,"all nodes used ",newline))

FE

IF NOT nottoomanyfe

THEN print((newline,"Too many integrand evaluations required"))

BLY

print((newline,"The result is : ",resultl,newline))

FINISH

Page 178

Appendix 3

3.1 The basic adaptive method for the hypercube

The program now follows in order of the segments:

3.1.1 The first segment

SEGCONST

BEGIN

END

{This segment declares the common constants and variables used

by other segments}

Int n; {n is the number of dimensions of the problem}

read((n,newline)); {input the value of n}

INT npl =n+1, mm=2*n;

{num is the number of subregions into which each region will be

divided}

INT numeval ; {numeval is the number of integrand evaluations}

REAL constl = sqrt(2/3) , const2 = sqrt(3) ;

BOOL odd = 2*(ENTIER(n/2))£n;

SKIP

KEEP n,npl,num,const1,const2,numeval ,odd

FINISH

3.1.2 The second segment

SEGMILLTIME

Page 179

BEGIN

{The following procedure is used to give the time of call, as

given by a real time clock, in the form of a LONG INT. It is

used to make comparative timings by calling it before and after

an event. }

PROC milltime = LONG INT :

BEGIN

LONG INT CODE 165,6,10 EDOC

KEEP milltime

FINISH

3.1.3 The third segment

This segment contains the first of the two basic rules used in the

algorithm. Initially the two basic rules used were Stroui's m1

point rule of degree 2 and Stroui's 2n point rule of degree 3. The

first is applied using the procedure evalA while the second is

applied using the procedure evalB (this is defined in the next

segment). Since only one of the rules is used to give an estimate

which forms part of the final approximation, the other being an

intermediate tool used to evaluate an error estimate over a

subregion, it is sensible to choose the more accurate of the two

rules for this role. Hence in this case, the second rule is the more

accurate and evalB is used. For ease, the following convention is

adopted when testing any pair of basic rules; with any pair of rules

the more accurate of the two, if there is one, is used in the

Page 180

procedure evalB and the other in the procedure evlaA.

SEGEVALA

WITH segconst FROM albumname

BEGIN

{This segment contains a procedure to cbtain an estimate to an

integral over a subregion}

REAL const3 = num/npl ;

{Evaluate and store the nodes for Stroud's ntl point rule}

[O:n,1:n]REAL nodesa ;

{array to hold the nodes for this rule}

FOR k FROM O TO n DO

BEGIN

REF[JREAL t = nodesa[k,1:n]

{set up a reference to one of the nodes, each row contains

one node}

FOR r TO n'/'2 DO

BEGIN

INT r2 = 2*r ; REAL theta = (r2*k*pi)/npl ;

t[{r2-1] := constl * cos(theta) ;

t[r2] := constl * sin(theta)

END ;

IF odd THEN t[n] := ((-1)*k)/const2 FI

END ;

{All the nodes have now been evaluated and stored.

The following is a procedure to evaluate an estimate to the

integral of a region using Stroud's n+l point rule}

PROC evala = (REAL div,scf, REF[]REAL centre,

PROC (REF[JREAL)REAL £) REAL :

Page 181

BEGIN

REAL estimate := 0.0 ;

{estimate is the approximation to the integral}

{Evaluate the function at each node using the procedure f

and add the value to the total estimate}

FOR j FROM 0 TO n DO

BEGIN

[1:n]REAL tempnode ;

{used to store each node in turn}

REFLJREAL t2 = nodesa[j,l:n] ; {next node}

{Now transform the node +t2 to the given subregion

defined by centre, scf, and div. Store this newnode

in tempnode}

FOR k TO n DO tempnode[k] := centre[k] + t2[k]/div ;

{Now add the integrand evaluation at this temporary

node to the estimate}

estimate PLUS f£(tempnode)

END ;

{Increment the number of integrand evaluations}

numeval PLUS npl ;

{Multiply the estimate by the scaling factor and the

weight const3 to give the applicable estimate}

estimate TIMES (const3/scf)

{Deliver the estimate as the result of the procedure

evala}

END ; {end of the procedure evala}

END {end of the segment SEGEVALA}

KEEP evala

{Make the procedure available to any program which links this

Page 183

3.1.4 The fourth segment

SEGEVALB

WITH segconst FROM albumname

BEGIN

{This segment contains a procedure to dotain an estimate to an

integral over a subregion}

INT n2 = 2*n ;REAL const4 = nun/n2 ;

(1:2n,1:n]REAL nodesb ;

{array to hold the nodes for this rule}

{Evaluate and store the nodes for Stroud's 2n point rule}

FOR k TO n DO

BEGIN

REF[JREAL tl = nodesb[ktn,1:n] ;

REF[JREAL t2 = nodesb[k ,1:n] ;

{set up references to two of the nodes, each row holds one

node}

FOR r TO n'/'2 DO

BEGIN

INT r2 = 2*r ;

{Set up the constants for the derivation of the

nodes}

INT r2m = 12-1;

REAL theta = (r2ml*k*pi)/n ;

{Store the next four nodes generated}

tl[r2ml] := constl * cos(theta) ;

t2[r2ml] := - tl[r2ml] ;

t1[r2] := constl * sin(theta) ;

+2[r2] = -tl[r2]

Page 184

END ;

IF odd

THEN tl[n] := (-1)*k/const2 ;

t2[n] := - tl[n]

FI

END ;

{All the nodes have now been evaluated and stored}

{The following is used to evaluate an estimate to the integral

over a region using Stroui's 2n point rule}

PROC evalb = (REAL div,scf, REF[]REAL centre,

PROC (REF[]REAL)REAL f) REAL :

BEGIN

REAL estimate := 0.0 ;

{estimate is the approximation to the integral}

{Evaluate the function at each node using the procedure f

and aid the value to the estimate}

FOR j TO 2n DO

BEGIN

{1:n]JREAL tempnode ;

{used to store each node in turn}

REF[JREAL t2 = nodesb[j,1:n] ; {next node}

{Now transform the node +t2 to the given subregion

defined by centre,scf, and div. Store this newnode in

tempnode}

FOR k TO n DO

tempnode[k] := centre[k] + t2[k]/div ;

{Now add the integrand evaluation at this temporary

node to the estimate}

estimate PLUS £(tempnode)

SKIP

END {end

Page 185

END ;

{Increment the number of integrand evaluations}

numeval PLUS n2 ;

{Multiply the estimate by the scaling factor and the

weight const4 to give the applicable estimate for this

subregion}

estimate TIMES (const4/scf)

{Deliver estimate as the result of the procedure evalb}

END ; {end of the procedure evalb}

of the segment SEGEVALB}

KEEP evalb

{Make the

FINISH

procedure evalb available to any other program}

Page 186

3.1.5 The main body of the program

Multidimensional Adaptive Quadrature Program 1

WITH segconst,segmilltime,segevala,segevalb,segf FROM albummame

BEGIN

{This is an adaptive multidimensional quadrature program. It

delivers an approximation to the integral of the function

defined in segf over the hypercube defined by the input

data.The data defines the number of approximations required,

the tolerance for each ami the region of integration. The

algorithm is based upon a strategy of subdivision of the

initial hypercube into increasing numbers of subregions and the

application of the basic rules, defined in segevala amd

segevalb, to form estimates over the subregions. The algorithm

is adaptive; subregions are dismissed from further

consideration once a given accuracy has been achieved in them}

REAL altl,tot,err,divl,scfl,centre,consub ;

INT number of tests, level of subdivisioin ;

{Input the number of tests required}

read((number of tests,newline));

{Set up an array for the tolerances}

[l:number of tests]REAL epsa ;

{Input the tolerances and the data defining the region of

integration}

read ((epsa,newline,divl ,newline,altl, newline, scfl, newline, centre

es

Page 187

{The program uses a linked list to keep track of the

subregions, each node in the list is defined as :}

MODE NODE = STRUCI(REF NODE ptr, REF[,]JREAL subcentres) ;

{The following procedure considers the element of a list of

nodes pointed to by head. For each of the subcentres of this

node it computes two estimates to the integral over the

subregion defined by that subcentre. If the difference is less

than the tolerance eps it adds the estimate to the final

estimate, increases the number of converged subregions and aids

the difference to the total error estimate. Otherwise a new

node is added to the list pointed to by newhead. This node

contains the subcentres of the subregions of this subregion.

Alt, scf and div are parameters defining the subregions.}

PROC compute estimate = (REF REF NODE head, newhead,

REAL eps, alt, scf, div) REAL :

BEGIN

REAL result := 0.0 ;

{result is the estimate delivered by the procedure}

{Consider each subcentre in turn}

FOR i TO UPB subcentres OF head DO

BEGIN

REF[]REAL centre = (subcentresOFhead)[i,1l:n] ;

{Let centre point to the next subcentre and form the

two estimates to the integral over the subregion}

REAL estimatea := evala(div,scf,centre,f),

estimateb := evalb(div,scf,centre, f), diffe;

{Set diff to be the difference between the two

Page 188

estimates}

diff := ABS(estimatea - estimateb) ;

result PLUS estimateb ;

IF diff < eps {test for convergence}

THEN

tot PLUS estimateb ;

{add estimateb to the final estimate}

consub PLUS 1 ;

{Increment the number of converged subregions}

err PLUS diff

{add the difference to the total error estimate}

{Convergence not achieved in this subregion}

REF NODE temptr := newhead ;

newhead := NODE ; {declare a new nade}

ptrOFhead := temptr ;

{link the new node to the list}

REFL, JREAL centres = [1:num,1:n]REAL ;

{Set up the subcentres of this subregion}

FOR i TO num DO

BEGIN

{Set up a pointer to the next subcentre}

REF[JREAL sub = centres[i,];

BITS b := BIN i ;

{This section of the procedure uses the

bits pattern of the digit i to determine

the subcentres of the subregion

FOR j TO n DO

Page 189

IF (25-3)ELEM b

THEN sub[j] := centre[j] + alt

ELSE sub[j] := centre[j] - alt

FI

END ;

subcentresOFnewhead := centres

PL

END ;

head := ptrOFhead ;

{Move on to the next node in the list}

result

END ; {end of the procedure compute estimate}

{Set up the variables ...}

(1:1,1:nJREAL c ; {c is used to represent the centre}

FOR j TO n DO c[1,j] := centre ;

REF NODE nil = NIL ;

LONG INT before, after ;

{Perform the calculations for each test}

FOR i TO number of tests DO

BEGIN

{Set up the variables for this test}

REAL sum := 0.0, latest := 0.0, eps := epsali], neweps,

alt := altl, subregions := 1, div := divl, scf :=

scfl ;

consub := 0; tot := 0; err := 0;

level of subdivisi 8 ‘i : i i 8 8

Page 190

REF NODE newhead := nil ;

BOOL notconverged := TRUE ;

{start timing this test using the procedure milltime}

before := milltime ;

WHILE notconverged DO

BEGIN

latest := sum ;{set latest to the most recent

estimate}

sum := tot ;

{sum will be the present, it is set initially to the

total estimate from converged subregions}

{Now process the list of non converged subregions,

adding the estimates over each to the present

estimate sum}

WHILE head ISNT nil {while list not empty}

Do sum PLUS compute

estimate(head ,newhead ,neweps,alt,scf,div) ;

{All estimates formed and added to sum. A new list of

non converged subregions has been formed am is

pointed to by newhead. Test for convergence.}

IF (newhead IS nil)

{list of non converged subregions is empty}

OR (ABS(latest-sum) <eps)

{the difference between the two most recent

estimates

is less than the required tolerance}

THEN notconverged := FALSE

{solution found}

ELSE

Page 191

{Set up the variables to consider the next list

of non converged subregions, ie consider the

next level of subdivision}

subregions TIMES num ;

{subregions is equal to the total number of

subregions at this level of subdivision}

level of subdivision PLUS 1 ;

consub TIMES num ;

{Evaluate the number of converged subregions at

this level of subdivision, ie consub}

{Evaluate the tolerance to be applied to each

subregion. This consists of dividing the

tolerance minus the error estimate from the

converged subregions between each of the non

converged subregions, ie the total number of

subregions minus the converged subregions at

this level}

neweps := (eps-err)/(subregions-consub) ;

{Alter the scaling factors}

div TIMES 2 ; alt DIV 2 ; scf TIMES num;

{Replace the old list of non converged

subregions by the new one and set the new one to

empty}

head := newhead ;

newhead := nil

FI

END ;

{Estimate formed for this test, finish timing}

after := milltime ;

Page 192

{output the information required from this test}

print(("The final estimate to the integral is

" sum,newline,

“The time taken to obtain the result was

",after-before,

"The number of integrand evaluations was ",numeval,

"The tolerance for this run was ",eps,

“The level of subdivision was ",level of

subdivision)) ;

numeval := 0 {reset the number of integrand evaluations to

oO}

END {end of the calculations loop}

END { end of the program:

FINISH

Multidimensional Adaptive Quadrature Program 1 }

Page 193

3.2 The basic alaptive program for the simplex

The program for the simplex follows in the omer of the segments.

However segmilltime is anitted since it is given in 3.1.

3.2.1 Segconst

Segconst

BEGIN

INT n, nfe := 0 ; read((n,newline)) ;

{n is the number of dimensions}

[O:n,1:nJREAL vertices ; read((vertices,newline)) ;

REAL hypervolume ; read((hypervolume, newline)) ;

INT npl = ntl ; BOOL odd = ODD n ; SKIP

END

KEEP n, nfe, npl, vertices, hypervolume, aid

FINISH

3.2.2 Segcentroid

This segment contains a procedure to fini the centroid of a simplex

Segcentroid

WITH segconst FROM album

BEGIN

PROC finicentroid = (REF[]REAL centroid,

REF[, JREAL vertices)VOID:

BEGIN

FOR i TO n DO

BEGIN

REAL temp := 0.0;

FOR j FROM 0 TO n DO temp PLUS vertices[j,i] ;

centroid[i] := temp/npl

Page 194

END ; SKIP

END

KEEP findcentroid

FINISH

3.2.3 Segevala

This segment contains the first basic rule.

Segevala

WITH segconst FROM album

BEGIN

REAL const3 = num/npl ;

{evaluate and store the coordinates for Stroui's rule}

[O:n,1:n]JREAL nodesa ;

FOR k FROM O TO n DO

BEGIN

REF[JREAL t = nodesa[k.1:n] ;

FOR r TO n'/'2 Do

BEGIN

INT r2 = 2*r ; REAL theta = (r2*k*pi)/npl ;

t[r2-1] := constl*cos(theta) ;

t[r2] := constl*sin(theta) ;

END ;

IF odd THEN t[n] := ((-1)*k)/const2 FI

END ;

PROC evala = (REAL div, scf,REF[]REAL centre,

PROC(REF[]REAL)REAL £)REAL:

BEGIN

REAL estimate := 0.0 ;

Page 195

FOR j FROM 0 TO n DO

BEGIN

[1:nJREAL temp ; REF[JREAL t2 = nodesa[j,l:n] ;

FOR k TO n DO temp[k] := centre[k] + t2[k]/div ;

estimate PLUS £(temp)

END ;

nfe PLUS npl ;

estimate TIMES (const3/scf)

KEEP evala

FINISH

3.2.4 Segevalb

This segment contains a procedure to apply the seconi basic rule.

Segevalb

WITH segconst FROM album

BEGIN

INT n2 = 2*n ; REAL const4 = num/n2 ;

{evaluate and store the coordinates for Stroui's 2n point rule}

[1:n2,1:n]REAL nojesb ;

FOR k TO n DO

BEGIN

nodesb[ktn,1l:n] ; REF[JREAL t1

nodesb[k,1:n] ; REF[JREAL t

FOR r TO n'/'2 DO

BEGIN

INT 12 = 2*r > INT r2ml = r2 —-1 ;

Page 196

REAL theta = (r2ml*k*pi)/n ;

t[r2ml] := constl*cos(theta)

tilraml] := - t{r2ml] ;

ti[r2] := constl*sin(theta)

tifr2] := t[r2]

END ;

IF odd THEN t[n] := (-1)*k/const2 ;

tifn] := - t[n] FI

END ;

PROC evalb = (REAL div, scf,REF[JREAL centre,

PROC(REF[JREAL)REAL £)REAL:

BEGIN

REAL estimate := 0.0 ;

FOR j TO n2 DO

BEGIN

[1:n]REAL temp ; REF[JREAL t2 = nodesb[j,l:n] ;

FOR k TO n DO temp[k] := centre[k] + t2[k]/div ;

estimate PLUS £(temp)

END ;

nfe PLUS n2 ;

estimate TIMES (const4/scf)

KEEP evalb

FINISH

Page 197

3.2.5 The main body of the program

First simplex method

WITH segconst, segmilltime, segcentroid, segevala, segevalb, segfl2d

FROM album

BEGIN

REAL tot, sum, latest, eps, neweps, subregions, consub, err ;

MODE ELEMENT = STRUCT(REF ELEMENT ptr,

REFL, JREAL vertices,

REAL hypervolume) ;

REF ELEMENT empty = NIL ;

PROC simpest = (REFREFELEMENT head, newhead,

REAL eps)REAL :

BEGIN

REFL, JREAL v = vertices OF head ;

[1:n]REAL c ;

{c is the centroid of the simplex}

findcentroid(c,v) ;

REAL estimatea :=

evala(v,c,hypervolumeoFhead , f) ,

estimateb :=

evalb(v,c,hypervolumeoFhead , f) ,

Giff ;

aiff := ABS(estimatea-estimateb) ;

IF diff < eps

THEN {convergence in this subregion}

tot PLUS estimateb ;

consub PLUS 1 ;

Page 198

err PLUS diff

ELSE

{subdivide the region}

{find the longest side of the simplex}

INT vl,v2 ; REAL longest ;

FOR i FROM O TO n DO

BEGIN

REFLJREAL temp = vLi,] ;

FOR j FROM (itl) TO n DO

BEGIN

REFLJREAL t2 = vij,] ;

REAL length := 0.0 ;

FOR m TO n DO

length PLUS ((temp[m]-t2[m])*2) ;

IF length ~ longest

THEN longest := length;

vl =i;

v2

END

END ;

{the longest side lies between vl and v2,find the

midpoint of this}

{1:n]REAL midpoint ;

REF[JREAL tvl = vivl,J], tv2 = viv2,] ;

FOR i TO n DO

midpointLi] := (tvlLi}+tv2[i])/2 ;

{set up the two subregions}

[1:n]REAL temp ;

Page 199

temp := v[vl,] ;

vivl,] := midpoint ;

REF ELEMENT temptr := newhead ;

newhead := ELEMENT ;

REF[, JREAL vert = [O:n,1:nJREAL := v ;

ptr OF newhead := ELEMENT :=

(temptr, vert ,hypervolum0Fhead/2) ;

vivl,] := temp ;

viv2,] := midpoint ;

REF[, JREAL vertl = [O:n,1:n]JREAL := v ;

verticesOFnewhead := vertl ;

hhypervolumeOFnewhead := hypervolumeOFhead/2

INT number of tests ;

read((number of tests, newline)) ;

[1:nunber of tests]REAL epsa ;

read((epsa,newline)) ;

FOR i TO number of tests DO

BEGIN

BOOL notconverged := TRUE ;

LONG INT before, after ;

REFL, JREAL verto = [O:n,l:n]REAL := vertices ;

REF ELEMENT head := ELEMENT :=

(empty, verto, hypervolume)

REF ELEMENT newhead := empty 7

neweps := eps := epsa[i] ;

Page 200

tot := 0.0 ; sum := 0.0 ; latest := 0.0;

subregions := 1 ; consub := 0 ; err := 0.0;

nfe := 0;

before := milltime ;

WHILE notconverged DO

BEGIN

latest := sum ;

sum := tot ;

WHILE head ISNT empty

DO (sum PLUS simpest (head, newhead ,neweps) ;

head := ptrOFheal) ;

IF newhead IS empty

THEN notconverged := FALSE

ELSE

subregions TIMES 2 ;

consub TIMES 2 ;

neweps := (eps-err)/(subregions-consub) ;

head := newhead ;

newhead := empty

: i

{output the results}

print(("the final estimate is ",sum,newline,

"time ",after-before,newline,

“integrand evaluations ",nfe,newline,

"tolerance ",eps))

Page 202

Appendix 4

The following are approximate timings for some basic operations in

algol68r on the I.C.L.1904s. The timings are given in micro units,

where 1000 micro units are equivalent to me millunit.

BOOL, assignment 3.5

INT oe 3.5

REAL . 7.0

[JREAL o 14.6

[, JREAL ve 30.0

(,, JREAL oe 45.4

(,.,JREAL .. 60.8

se 4.2

= 3.0

* 10.3

/ 22.5

ABS 1.8

sqrt 165.1

sin 218.3

cos 215.1

tan 227.1

in 218.8

exp 264.3

arcsin 410.0

arccos 416.4

arctan 226.6

a°2 72.5

a°3 85.9

a%4 97.7

Page 203

Appendix 5

This section contains the segments defining the programs for the

hypercube using stored integrand evaluation techniques.

5.1 The program using linked list techniques

5.1.1 Segconst

This segment contains the constants used in the other segments

Segconst

BEGIN

INT n, nfe := 0, top, tfe := 0;

read((n,top,newline)) ;

INT num = 2°n ;

REAL constl = 1/3, const2 = 2*num/3 ;

MODE NODE = STRUCT(INT index, REAL fevaluation,

REF NODE ptr);

[1:top]REF NODE pointerlist ;

REF NODE nil = NIL ;

FOR i TO top DO pointerlist[i] := nil ;

INT base := 2, lptr :=1 ;

SKIP

END

KEEP n,nfe,tfe,num,NODE, pointerlist,nil,base, top, lptr

FINISH

5.1.2 Segmilltime

This segment contains a procedure to give the time of call. It is

the same as the one given in appendix 3 and so is amitted.

Page 204

5.1.3 Segllprocs

This segments contains the procedures concerned with the linked

lists.

Segllprocs

WITH segconst FROM album

BEGIN

{this segment contains the linked list procedures}

PROC searchlist = (REFREFREF NODE pointer,

INT key) BOOL :

BEGIN

{this procedure searches a list for a node with a given

key}

BOOL notfound := TRUE, possible := TRUE;

IF pointer ISNT nil

THEN

WHILE notfound AND possible DO

BEGIN

REF INT indp = indexOFpointer ;

IF indp = key

ELSF indp > key

THEN possible := FALSE

ELSE IF (ptrOFpointer) IS nil

THEN possible := FALSE

EL;

pointer := ptrOFpointer

FI

FI;

Page 205

NOT notfound

END ; {end of the procedure}

PROC insert = (REFREFNODEpointer, INT key,

REAL feval) VOID :

BEGIN

{this procedure creates a new node nad inserts it in the

list at the position indicated by pointer}

REF NODE newnode = NODE ;

indexOFnewnode := key ;

fevaluationOFnewnode := feval ;

ptrOFnewnode := pointer ;

{link the newnode to the next node in the list}

pointer := newnade

SKIP

END

KEEP searchlist, insert

FINISH

5.1.4 Segenumerate

This segment contains a procedure enumerate a key from a given node.

Segenumerate

WITH segconst FROM album

BEGIN

PROC enumerate = (REF[JREAL point,

REF INT key, ptr,

INT b, REAL al) VOID:

Page 206

BEGIN

BOOL possible := TRUE ;

REAL alt := al ;

INT base := b;

WHILE base > 2 AND possible DO

BEGIN

FOR i TO n DO

IF ODD(ENTIER(point[iJ/alt))

THEN possible := FALSE

FI;

IF possible

‘THEN

base := (basetl)'/'2 ;

alt TIMES 2 ;

ptr MINUS 1

EL

END ;

key := 0;

FOR i TO n DO

key := key*base + ENTIER(point[i]/alt)

SKIP

KEEP enumerate

FINISH

5.1.5 Segevala

This segment contains the procedure to apply the first basic rule,

the compound trapezoidal rule.

Page 207

Segevala

WITH segconst, segllprocs, segenumerate FROM album

BEGIN

[1:num,1:n]REAL nodes ;

{set up the nodes for this rule}

FOR i TO num DO

BEGIN

REF[JREAL node = nodes[i,l:n] ;

BITS b := BIN i ;

FOR j TO n DO

IF (25-3)ELEM b

THEN node[j] := 1

ELSE nodef[3] 1

ED

END ;

PROC evala = (REFLJREAL centre, REAL alt,scf,

INT base, ptr, div,

PROC(REF[JREAL)REAL £)REAL:

BEGIN

REAL estimate := 0.0 ;

FOR i TO num DO

BEGIN

INT ptrindex := ptr ;

[1:n]REAL temp ;

REF[JREAL t2 = nodes[i,l:n] ;

FOR j TO n DO

templj] := centre[j] + t2[j]/div ;

INT key := 0 ;

enumerate(temp,key,ptrindex,base,alt*2);

Page 208

REF REF NODE pt := pointerlist[ptrindex] ;

estimate PLUS

(IF pt IS nil

THEN REAL tot := £(temp);

nfe PLUS 1 ;

insert(pt,key,tot) ;

tot

ELSF searchlist(pt,key)

THEN fevalautionOFpt

ELSE REAL tot := £(temp) ;

nfe PLUS 1 ;

insert(pt,key,tot) ;

tot

FI)

END ;

{increment the total number of integrand evaluations used}

tfe PLUS num ;

estimate DIV scf ;

estimate

END ;

SKIP

KEEP evala

5.1.6 Segevalb

This segment contains the procedure to apply the second basic rule,

Ewing's rule.

Segevalb

WITH segconst, segllprocs, segenumerate FROM album

Page 209

BEGIN

[1:num,1:n]REAL nodes ;

{set up the nodes for this rule}

FOR i TO num DO

BEGIN

REF[JREAL node = nodes[i,l:n] ;

BITS b := BIN i ;

FOR j TO n DO

IF (25-3)ELEM b

THEN node[j] := 1

ELSE node[j] := -1

FI

END ;

REAL constl = 1/3, const2 = 2*num/3 ;

PROC evalb = (REF[JREAL centre, REAL alt,scf,

INT base, ptr, div,

PROC(REF[JREAL)REAL £)REAL:

BEGIN

REAL estimate := 0.0 ;

REF REF NODE pt ;

INT ptrindex ;

FOR i TO num DO

BEGIN

[1l:n]JREAL temp ;

ptrindex := ptr ;

REF[JREAL t2 = nodes[i,l:n] ;

FOR j TO n DO

temp[j] := centre[j] + t2[3]/div ;

INT key := 0 ;

Page 210

enumerate(temp,key, ptrindex, base, alt*2);

pt := pointerlist[ptrindex] ;

estimate PLUS

(IF pt IS nil

THEN REAL tot := £(temp);

nfe PLUS 1 ;

insert(pt,key,tot) ;

tot

ELSF searchlist(pt,key)

THEN fevalautionOFpt

ELSE REAL tot := f(temp) ;

nfe PLUS 1 ;

insert(pt,key,tot) ;

tot

FI)

END ;

estimate TIMES constl ;

estimate PLUS

(INT key := 0;

ptrindex := ptr ;

enumerate(centre,key,ptrindex,base,alt*2) ;

pt := pointerlist[ptrindex];

const2*IF searchlist(pt,key)

THEN fevaluationOFpt

ELSE REAL tot := £(centre);

nfe PLUS 1 ;

insert(pt,key, tot);

tot

FI);

Page 211

{increment the total number of integrand evaluations used}

tfe PLUS (num) ;

estimate DIV scf ;

estimate

SKIP

KEEP evalb

5.1.7 The main body of the program

This is the main body of the program using linked lists to store the

integrand evaluations.

Stored integrand evaluation program

WITH segconst, segmilltime,segllprocs, segevala, segevalb,segf FROM

albumname

BEGIN

REAL tot:= 0.0, sum := 0.0, latest:= 0.0, eps, neweps, alt,

subregions:= 1,scf,consub:=0.0, err:=0.0 ;

INT div ;

MODE NODE = STRUCT(REF NODE ptr, REF[,JREAL subcentres) ;

PROC compute estimate = (REF REF NODE head, newhead,

REAL eps, alt, scf,

INT div, base,

ptr) REAL :

BEGIN

REAL result := 0.0 ;

{result is the estimate delivered by the procedure}

{Consider each subcentre in turn}

Page 212

FOR i TO UPB subcentres OF head DO

BEGIN

REF[JREAL centre = (subcentresOFhead)[i,l:n] ;

{Let centre point to the next subcentre and form the

two estimates to the integral over the subregion}

REAL estimatea :=

evala(centre,alt,scf,base,ptr,div,f),

estimateb :=

evalb(centre,alt,scf,base,ptr,div,f),

GLEE 5;

{Set diff to be the difference between the two

estimates}

diff := ABS(estimatea - estimateb) ;

result PLUS estimateb ;

IF diff < eps {test for convergence}

THEN

tot PLUS estimateb ;

{add estimateb to the final estimate}

consub PLUS 1 ;

{Increment the number of converged subregions}

err PLUS diff

{Add the difference to the total error estimate}

ELSE

{Convergence not achieved in this subregion}

REF NODE temptr := newhead ;

newhead := NODE ; {declare a new node}

ptroFhead := temptr ;

{link the new node to the list}

REFL, JREAL centres = [1:num,1:n]REAL ;

Page 213

{Set up the subcentres of this subregion}

FOR i TO num DO

BEGIN

{Set up a pointer to the next subcentre}

REF[JREAL sub = centresli, J;

BITS b := BIN i ;

{This section of the procedure uses the

bits pattern of the digit i to determine

the subcentres of the subregion

FOR j TO n DO

IF (25-j)ELEM b

THEN sub[j] := centre[j] + alt

ELSE sub[j] := centre[j] - alt

FI

END ;

subcentresOFnewhead := centres

FI

END ;

head := ptrOFhead ;

{Move on to the next node in the list}

result

END ; {end of the procedure compute estimate}

read ((eps ,newline,alt, newline,div,newline,scf,newline) ;

REAL d ; read(d) ;

[1:1,l:nJREAL c ; {c is used to represent the centre}

FOR j TOn DO c[l,j] :=d;

REF NODE nil = NIL ;

Page 214

LONG INT before, after ;

{Start timing this test using the procedure milltime}

before := milltime ;

WHILE notconverged DO

BEGIN

latest := sum ;{set latest to the most recent

estimate}

sum := tot ;

{sum will be the present, it is set initially to the

total estimate from converged subregions}

{Now process the list of non converged subregions,

adding the estimates over each to the present

estimate sum}

WHILE head ISNT nil {while list not empty}

DO sum PLUS compute

estimate(head , newhead ,neweps, alt, scf,div, base, lptr) ;

{All estimates formed and added to sum. A new list of

non converged subregions has been formed and is

pointed to by newhead. Test for convergence.}

IF (newhead IS nil)

{list of non converged subregions is empty}

OR (ABS(latest-sum) <eps)

{the difference between the two most recent

estimates

is less than the required tolerance}

THEN

ELSE

Page 215

notconverged := FALSE

{solution found}

{Set up the variables to consider the next list

of non converged subregions, ie consider the

next level of subdivision}

subregions TIMES num ;

{subregions is equal to the total number of

subregions at this level of subdivision}

level of subdivision PLUS 1 ;

consub TIMES num ;

{Evaluate the number of converged subregions at

this level of subdivision, ie consub}

{Evaluate the tolerance to be applied to each

subregion. This consists of dividing the

tolerance minus the error estimate from the

converged subregions between each of the non

converged subregions, ie the total number of

subregions minus the converged subregions at

this level}

neweps := (eps-err)/(subregions-consub) ;

{Alter the scaling factors}

div TIMES 2 ; alt DIV 2 ; scf TIMES num;

{Replace the old list of non converged

subregions by the new one and set the new one to

empty}

head := newhead ;

newhead := nil ;

base == base * 2-1;

FINISH

Page 216

lptr PLUS 1

FI

END ;

{Estimate formed for this test, finish timing}

after := milltime ;

{output the information required fran this test}

print(("The final estimate to the integral is

", sum, newline,

“The time taken to obtain the result was ",after—-before,

"The number of integrand evaluations was ",numeval,

"The tolerance for this run was ",eps,

“The level of subdivision was ",level of subdivision))

Page 217

5.2 The program using the scatter stoarge techniques

This section contains the segments used in the scatter storage

programs.

5.2.1 Segconst

This segment contains the constants used in the other segments.

Segconst

BEGIN

END

INT n ; {n is the number of dimensions}

read((n,newline)) ;

INT npl = ntl, num = 2*n ;

INT numeval := 0, hashvalue, keyl, key2 ;

REAL const] = 1/3, const2 = 2*num/3 ;

MODE ITEM = STRUCT(LONG INT key, REAL feval,

REF ITEM ptr) ;

[0:1023]REF ITEM scatter index table ;

FOR i FROM O TO 1023 DO

scatter index table[i] := NIL ;

[0:1023]INT hash table ;

LONG INT newkey ;

REF REF ITEM pointer ;

INT next := 0 ;

INT const = (IF m2 THEN 1048576

ELSE 8192 FI),

maxint = 4194304 ;

SKIP

KEEP n,npl,num,numeval ,hash

Page 218

value, keyl,key2,const1,const2,ITEM,scatter index table,hash

table,newkey, pointer ,maxint,next, const

FINISH

5.2.2 Segmilltime

This segment contains the procedure to give the time of call and is

described in appendix 3.

5.2.3 Segprocs

This segment contains all the procedures associated with the scatter

storage technique.

Segprocs

WITH segconst FROM albun

REF ITEM empty = NIL ;

{procedure to compute a hash value}

PROC compute hash = (INT keyl, key2) INT:

BEGIN

ENTIER(1024*ABS ((keyl+key2)/maxint))

END ;

{procedure to compute the key}

PROC compute keys = (REF INT keyl, key2,

REF[REAL x) VOID :

BEGIN

CASE (n-1)

IN

({2d problem}

keyl := ENTIER(x[1]*const) ;

key2 := ENTIER(x[2]*const)),

({3d problem}

Page 219

BITS b ;

INT digit := ENTIER(x[3]*const) ;

b := BIN digit ;

keyl := ABS((bSR8)SL15)

OR (BIN(ENTIER(x[2]*const))));

key2 := ABS((bSL15)

OR (BIN(ENTIER(x[1]*const)))))

OUT SKIP

{other dimensions not included}

ESAC

END ;

{procedure to evaluate a key}

PROC evalkey = (INT keyl,key2) LONG INT:

BEGIN

LONG INT newkey ;

newkey := newkey * (LONG 10000000);

newkey := newkey + (LENG keyl) ;

newkey

END ;

{procedure to search a list}

PROC searchlist = (REFREFREF ITEM pointer,

LONG INT key) BOOL :

BEGIN

BOOL notfound := TRUE, possible := TRUE ;

IF pointer ISNT empty

THEN

WHILE notfound AND possible DO

BEGIN

REF LONG INT indp = keyOFpointer ;

Page 220

IF indp = key

THEN notfound := FALSE

{searchkey = key of item}

ELSE indp > key

THEN possible := FALSE

{item cannot be in the list}

ELSE IF (ptrOFpointer) IS empty

THEN possible := FALSE

{no more items in the list}

ah

pointer := ptrOFpointer

{move on to the next item}

NOT notfound

{deliver true if the item is in the list and false if it

is not in the list}

END ;

{procedure to insert an item in a list}

PROC insert = (REF REF ITEM pointer,

LONG INT key,

REAL feval) VOID :

BEGIN

REF ITEM newitem = ITEM ;

keyOFnewitem := key ;

fevaloFnewitem := feval ;

ptroFnewitem := pointer ;

pointer := newitem

Page 221

END ;

{procedure to find the value of the integrand at a given naje

either by looking it up or by evaluating it}

PROC integrand evaluation = (REF[]REAL node,

PROC(REF[JREAL)REAL £)REAL:

BEGIN

REAL val ;

compute keys(keyl,key2,node) ;

newkey := evalkey(keyl,key2) ;

hash value := comput hash(keyl,key2) ;

REF INT htv = hash table[hash value] ;

IF htv = 0

THEN htv := next PLUS 1 ;

val := £(node)

numeval PLUS 1 ;

insert(scatter index table[htv],

newkey, val)

ELSE pointer := scatter index table[htv];

IF searchlist(pointer,newkey)

THEN val := fevalOFpointer

ELSE val := f£(node) ;

numeval PLUS 1 ;

insert (pointer ,newkey, val)

FL

Page 222

KEEP integrand evaluation, campute hash, compute keys, evalkey

FINISH

5.2.4 Segevala

This segment contains the procedure to apply the first basic

rule, the campound trapezoidal rule.

Segevala

WITH segconst, segprocs FROM album

BEGIN

{1:num,1:n]REAL nodes ;

{set up the nodes for this rule}

FOR i TO num DO

BEGIN

REF[JREAL node = nodes[i,l:n] ;

BITS b := BINi;

FOR j TO n DO

IF (25-3j)ELEM b

THEN node[j] := 1

ELSE node[j] := -1

FI

END ;

PROC evala = (REF[JREAL centre, REAL div, scf

PROC(REF[]REAL)REAL £)REAL:

BEGIN

REAL estimate := 0.0 ;

FOR i TO num DO

BEGIN

[l:n]REAL temp ;

REFLJREAL t2 = nodes[i,l:n] ;

Page 223

FOR j TO n DO

templj] := centre[j] + t2[j]/div ;

compute keys(keyl,key2,temp) ;

estimate PLUS integrand evaluation(temp, f)

END ;

{increment the total number of integrand evaluations used}

tfe PLUS num ;

estimate DIV scf ;

estimate

KEEP evala

5.2.5 Segevalb

This segment contains the procedure to apply the second basic rule,

Ewing's rule.

Segevalb

WITH segconst, segprocs FROM album

BEGIN

[1:num,1:n]REAL nodes ;

{set up the nodes for this rule}

FOR i TO num DO

BEGIN

REF[JREAL node = nodes[i,l:n] ;

BITS b := BIN i ;

FOR j TO n DO

IF (25-3)ELEM b

THEN node[j] := 1

Frage 44%

ELSE node[j] := -1

EE

END ;

REAL constl = 1/3, const2 = 2*num/3 ;

PROC evalb = (REF[JREAL centre, REAL div, scf,

PROC(REF[JREAL)REAL £)REAL:

BEGIN

REAL estimate := 0.0 ;

FOR i TO num DO

BEGIN

{1:n]JREAL temp ;

REF[JREAL t2 = nodes[i,l:n] ;

FOR j TO n DO

templj] := centre[j] + t2[j]/div ;

estimate PLUS integrand evaluation(temp, f)

END ;

estimate TIMES constl ;

estimate PLUS

(integrand evaluation(centre,f)*const2) ;

{increment the total number of integrand evaluations used}

tfe PLUS (numt+l) ;

estimate DIV scf ;

estimate

SKIP

KEEP evalb

5.2.6 The main body of the program

Page 225

This is exactly the same as the main body of the program for the

previous program (5.1.7) amd so is not repeated

Page 226

Appendix 6

This section contains the details of the segments that are used in

the global subdivision strategy program for the hypercube. The

segments containing the procedures to apply the two basic rules,

segevala and segevalb, are the same as those given in appendix 3 and

so are not repeated. Segconst merely contains the constants used by

the other segments and inputs the number of dimensions of the

problem. The main body of the program consists of :

Global subdivision strategy

WITH segconst, segmilltime, segevala,segevalb, segfl2d FROM

albumname

BEGIN

REAL altl, tot, err, divl, scfl, centre, consub ;

INT number of tests ;

read((number of tests, newline)) ;

[lpnumber of tests]REAL epsa ;

read ((epsa,newline,divl, newline, altl,newline,

scfl,newline,centre,newline)) ;

{output the details of this testrun}

print (("testing ..."));

{set up the mode for the nodes in the subregion list}

MODE NODE = STRUCT(REF NODE ptr, REF[JREAL centre,

REAL errest, estimate, INT level) ;

REF NODE empty = NIL ;

REF NODE head ;

{the following is a procedure to add a node to a list ata

position dependant upon the magnitude of it s error estimate}

Page 227

PROC addtolist = (REF NODE newnode) VOID :

BEGIN

REF REF NODE temptr := head ;

IF temptr ISNT empty

THEN

{search the list for the position of insertion}

REF REAL e = errest OF newnode ;

BOOL possible := TRUE ;

WHILE possible AND (errestOFtemptr > e DO

BEGIN

IF (ptroFtemptr) IS empty

THEN possible := FALSE

Hig

temptr := ptrOFtemptr

EL?

{position of insertion found}

ptroFnewnode := temptr ;

(REF REF NODE VAL temptr) := newnode

END ;

{set up the data structures to hold the scfs, divs and alts

associated with the level of subdivision}

INT toplevel = 50 ;

[O:toplevel]REAL altlev, divlev, scflev ;

REAL presentalt,presentdiv, presentscf ;

altlev[0] := altl * 2;

divlev[0] := divl ;

scflev[0] := scfl ;

FOR i TO number of tests DO

Page 228

BEGIN

REAL eps := epsa[i], subregions := 1 ;

presentalt := altlev[0O] ;

presentdiv := divl ;

presentscf := scfl ;

LONG INT before, after ;

{set up the initial list of subregions amd the level of

subdivision}

INT maxlevel := 0 ;

{maximum level of subdivision so far}

[1:n]REAL c ;

FOR j TO n DO cj] := centre ;

before := milltime ;

REAL estimatea := evala(presentdiv,presentscf,c,f),

estimatea := evala(presentdiv,presentscf,c,f);

total error estimate := ABS(estimatea - estimateb) ;

total result := estimateb ;

head := NODE := (empty,c,total,error estimate,estimateb,1)

{while convergence has not been achieved perform the

process}

WHILE total error estimate > eps DO

BEGIN

{consider the subregion with the largest error

estimate}

REAL talt, tscf, tdiv ; INT nextlev ;

total error estimate MINUS errestOFhead ;

total result MINUS estimateOFhead ;

{set up the scaling factors for the subregions of

Page 229

this subregion}

IF levelOFhead > maxlevel

THEN maxlevel PLUS 1 ;

presentscf TIMES num ;

scflev[leveloFhead] := presentscf ;

presentalt DIV 2 ;

altlev[leveloFhead] := presentalt ;

presentdiv TIMES 2 ;

divlev[leveloFhead] := presentdiv ;

FI;

talt := altlev[leveloFhead] ;

tsc£ := scflev[leveloFhead] ;

tdiv := divlev[leveloFheaD] ;

nextlev := levleOFhead + 1 ;

{consider each subregion in turn}

FOR j TO num DO

BEGIN

REF[JREAL tc = [1:n]REAL ;

REF NODE newnode := NODE ;

levelOFnewnode := nextlev ;

{set up the centre for this subregion}

BITS b := BIN j ;

FOR k TO n DO

te[k] := (centreOFhead)[k] +

(IF (25-k)ELEM b

THEN talt

ELSE -talt

iE):

{evaluate the estimates for this subregion}

END

Page 230

estimateOFnewnode := evalb(tdiv,tscf,tc,f) ;

errestOFnewnode := ABS(evala(tdiv,tscf,tc,f) -

estimateOFnewnode) ;

centreOFnewnode := tc ;

{add the newnode to the list of subregions}

addtolist(newnode) ;

total error estimate PLUS errestOFnewnoe ;

total result PLUS estimateOFnewnode

{now the estimate for the subregion at the head of the

list has been replaced by the sum of the estimates over

the subregions of that subregion, which now needs to be

removed fran the list}

head := ptrOFhead

after := milltime ;

{output the results for this run}

pEint(("s60 "))7

numeval

FINISH

= 0

Page 231

Appendix 7

This appendix contains the segments which make up the extended

region global subdivision strategy program. Several of the segments

are the same as those used in other programs amd so are not

repeated. Segcentroid, segevala and segevalb are described in

appendix 3.2. Segmilltime is described in appendix 3.1 and segevalc

and segevald are equivalent to segevala and segevalb from that

appendix. The procedure names used in these two segments are

reffered to as evalc and evald instead of evala and evalb in the

following program. !1j

6.1 Segconst

This segment contains the constants used in the rest of the

segments.

Segconst

BEGIN

INT n;

read((n,newline));

INT npl = ntl , num = 2°n ;

INT numeval := 0 , nfe :=0 ;

REAL constl = sqrt(2/3), const2 = sqrt(3) ;

BOOL odd = ODD n ;

SKIP

END

KEEP n,npl,num,const1,const2,numeval ,odd ,nfe

FINISH

6.2 The main body of the program

Page 232

Global subdivision strategy for an extended region

WITH segconst, segmilltime, segcentroid, segevala, segevalb

segevalc, segevald, segfl2d FROM album

BEGIN

REAL eps ; read((eps,newline));

{output the details of this testrun}

print(("Testing ...",newline));

CHAR type ;

MODE NEXTITEM ;

MODE SIMP = STRUCT(REAL errest, hypervolume, estimate,

REF, JREAL vertices,

REF NEXTITEM ptr) ;

MODE HYP = STRUCT(REAL errest, div, estimate, scf, alt,

REF[JREAL centre,

REF NEXTITEM ptr);

MODE NEXTITEM = UNION(REF SIMP, REF HYP);

REF NEXTITEM end of list = NIL ;

REF NEXTITEM head := end of list ;

REF SIMP s ; REF HYP h ;

{procedure to add an item to the list}

PROC addtolist = (REAL e, REF NEXTITEM newnode) VOID :

BEGIN

REF REF NEXTITEM temptr := head ;

REF SIMP s ; REF HYP h ;

IF head ISNT end of list

THEN {the list isnt empty search for

Page 233

the position of insertion }

BOOL notfound := TRUE ;

WHILE notfound DO

BEGIN

CASE (s,h) :

IN

(IF errestOFs > e

THEN temptr := ptrOFs ;

IF ptrOFs IS end of list

THEN notfound := FALSE

FI

ELSE notfound := FALSE

FI) ,

(IF errestOFh > e

THEN temptr := ptrOFh ;

IF ptrOFh IS end of list

THEN notfound := FALSE

{position of insertion found}

CASE (s,h) ::= newnode

(ptrors := temptr),

(ptrOFh := temptr)

(REF

Page 234

REF NEXTITEM VAL temptr) := newnode

REAL total := 0.0, total error estimate := 0.0 ;

WHILE (read((type,newline)) ;

type <> "E") DO

BEGIN

REF NEXTITEM nextnode = NEXTITEM ;

IF type = "s"

THEN

REF SIMP newnode = SIMP ;

REF[, JREAL v = [0:n,1:n]REAL ;

[1:n]REAL cent ;

read ((v, newline, hypervolumeOFnewnode, newline)) ;

verticesOFnewnode := v ;

{find the centroid of this subregion}

findcentroid(cent,v) ;

REAL estimatea

evala(v,cent,hypervolumoFnewnode, £) ,

estimateb

evalb(v,cent ,hypervolumeOFnewnade, f) ,

diff ;

diff := ABS(estimatea-estimateb)

errestOFnewnode := diff ;

estimateOFnewnode := estimateb ;

total PLUS estimateb ;

total error estimate PLUS diff ;

nextnode := newnode ;

{add this new subregion to the list}

Page 235

addtolist(diff,nextnode)

ELSE

REF HYP newnode = HYP ;

REF[JREAL cent = [1:n]REAL ;

read ((cent, newline, scfOFnewnode, newline,

divoFnewnode, newline,altOFnewnode,

newline));

centreOFnewnode := cent ;

REAL estimatec := evalc(divOFnewnode,

scfOFnewnode, cent, £),

estimated := evald(divoFnewnode,

scfOFnewnode, cent, £) ,diff;

diff := ABS(estimatec-estimated) ;

errestOFnewnode := diff ;

estimateOFnewnode := estimated ;

total PLUS estimated ;

total error estimate PLUS diff ;

nextnode := newnode ;

addtolist(diff,nextnode)

FI

LONG INT before, after ;

before := milltime;

{while convergence has not been achieved

perform the process}

WHILE total error estimate > eps DO

BEGIN

{consider the subregion with the largesterror estimate}

Page 236

{determine the type of subregion}

CASE (s,h) ::= head

IN

({the subregion is a simplex}

INT vl,v2 ; REAL longest ;

total MINUS estimateOfs ;

total error estimate MINUS errestOFs ;

{subdivide the subregion}

{find the largest side of the simplex}

FOR i FROM 0 TO n DO

BEGIN

REF[JREAL temp = (verticesOFs)[i,] ;

FOR j FROM i+] TO n DO

BEGIN

REFLJREAL t2 = (verticesoOFs)[j,] ;

REAL length := 0.0 ;

FORmTOn

DO length PLUS ((temp[m] - t2[m])*2) ;

IF length > longest

THEN longest := length;

vl =i; v2 = j

EL

END

END ;

{the longest side lies between vertices vl ami v2}

{find the midpoint of the longest side}

[1:n]REAL midpoint ;

REF[JREAL tvl = (verticesoFs)[vl,],

tv2 = (verticesOFs)[v2,];

Page 237

FOR i TOn

DO midpoint[i] := (tvl[i]+tv2[i])/2 ;

{set up the two subregions}

{1:nJREAL tempv ;

tempv := (verticesoFs)[vl,] ;

(verticesOFs)[vl,] := midpoint ;

REFNEXTITEM nextnode = NEXTITEM ;

REF SIMP newnode = SIMP ;

REF[, JREAL vert = [0:n,1:n]REAL ;

vert := verticesOFs ;

verticesOFnewnode := vert ;

{1:nJREAL cent ;

finicentroid(cent,vert) ;

hhypervolumeOFnewnode := (hypervolumeOFs)/2 ;

REAL estimatea := evala(vert,cent,hypervolumeOFnewnade, f) ,

estimateb := evalb(vert,cent,hypervolumedFnewnade, f),

Gift 5

diff := ABS (estimatea -estimateb) ;

errestOFnewnode := diff ;

estimateOFnewnode := estimateb ;

total PLUS estimateb ;

total error estimate PLUS diff ;

nextnode := newnode ;

addtolist(diff,nextnode) ;

{set up the second subregion}

(verticesOFs)[vl,] := tempv ;

(verticesOFs)[v2,] := midpoint ;

REFNEXTITEM nextnode2 = NEXTITEM ;

REF SIMP newnode2 = SIMP ;

Page 238

REF[, JREAL vert2 = [0:n,1:n]REAL ;

vert2 := verticesOFs ;

verticesOFnewnode2 := vert2 ;

findcentroid(cent,vert2) ;

hypervolumeoFnewnode2 := (hypervolumedF's)/2 ;

estimatea := evala(vert2, cent, hypervolumeOFnewnode, f)

estimateb := evalb(vert2,cent,hypervolumeOFnewnode,£) ;

diff := ABS (estimatea -estimateb) ;

errestOFnewnode2 := diff ;

estimateOFnewnode2 := estimateb ;

total PLUS estimateb ;

total error estimate PLUS diff ;

nextnode2 := newnode2 ;

addtolist(diff,nextnode2) ;

head := ptroFs),

({the subregion is a hypercube}

total MINUS estimateOFh ;

total error estimate MINUS errestOFh ;

FOR i TO num DO

BEGIN

REF NEXTITEM nextnode = NEXTITEM ;

REF HYP newnode = HYP ;

nextnode := newnode ;

REF[JREAL sub = [1:n]REAL ;

BITS b := BIN i ;

FOR j TO n DO

IF (25-3)ELEM b

THEN sub[j] := (centreorh)[j] + altoFh

ELSE sub[j] := (centreoFh)[j] - altoFh

Page 239

FI;

centreOFnewnode := sub ;

divoFnewnode := (divOFh)*2 ;

altoFnewnode := (altOFh)/2 ;

scfOFnewnode := (scfOFh)*num ;

REAL estimatec := evalc(divOFnewnode, scfOFnewnode, sub, f),

estimated := evald(divoFnewnode, scfOFnewnade, sub, f),

Gift ;

diff := ABS(estimatec - estimated) ;

estimateOFnewnode := estimated ;

errestOFnewnode := diff ;

total PLUS estimated ;

total error estimate PLUS diff ;

addtolist (diff,nextnode)

END ;

head := ptrOFh)

ESAC

END ;

after := milltime ;

{output the results}

prin’ ((" ise”))

END

FINISH

Page 240

Appendix 8

The following pages contain the results for the set of test problems

described in appendix 1.2. In the tables of results the various

programs are indicated by:

z-pl : the basic adaptive program using Stroud's rules, as described

in chapter 4.

Z-pé : the same program as above, but using the compound trapezoidal

rule and Ewing's rule.

z-p5 : the program which uses linked lists to store the integrand

evaluations, as described in chapter 5.

Z-p7 : the program which uses scatter storage techniques to store

the integrand evaluations. This program is described in chapter 5.

z-gss : the program based upon a global subdivision strategy, as

described in chapter 6.

z-plO : the iterative program based upon product Patterson formulae.

The milltime is given in millunits where L millunit is equal

to 1000 micro units. These timings are used for comparison only.

Test Problem SEGF12D

Program Estimate

Tolerance

z-pl 0.977975186

zZ-p6 0.951184463

z-p5 0.951184463

z-p7 0.951184463

z-gss 0.977975186

z-plO 0.975162070

Tolerance

zZ-pl 0.977975186

Z-p6 0.951184463

Z=p5 0.951184463

Z-p7 0.951184463

Z-gss 0.977975186

z-plO 0.975162070

Tolerance

Z-pl 0.977975186

Z-p6 0.970759029

Z-p5 0.970759029

z-p7 0.970759029

Z-gss 0.977975186

z-ploO 0.975162070

Page 241

Actual Error

0.5

0.002814053

0.023976670

0.023976670

0.023976670

0.002814053

0.000000937

0.1

0.002814053

0.023976670

0.023976670

0.023976670

0.002814053

0.000000937

0.05

0.002814053

0.004402104

0.004402104

0.004402104

0.002814053

0.000000937

Milltime Integrand Evaluations

21

21

77

10

21

21

77

45

115

109

oI,

total actual reused

49

49

45

45

45

49

13

13

32

32

Test Problem SEGF12D

Program Estimate

Tolerance

z-pl 0.977975186

z-p6 0.974356415

z-p5 0.974219356

zZ-p7 0.974219356

zZ-gss 0.977975186

z-plO 0.975162070

Tolerance

z-pl 0.977975186

Z-po 0.974371350

z-p5 0.974219356

z-p7 0.974219356

z-gss 0.977975186

z-pl0 0.975162070

Tolerance

z-pl 0.975318624

Z-p6 0.975020763

Z-p5 0.974983055

z-p7 0.974983055

zZ-gss 0.975717695

Z-pl0 0.975162070

Page 242

Actual Error

0.01

0.002814053

0.000804718

0.000941777

0.000941777

0.002814053

0.000000937

0.005

0.002814053

0.000789783

0.000941777

0.000941777

0.002814053

0.000000937

0.001

0.000157491

0.000140370

0.000178078

0.000178078

0.000556562

0.000000937

Milltime Integrand Evaluations

173

211

198

a

218

211

197

77

73

672

559

U7

total actual reused

153

81

81

49

189

81

81

49

63

765

225

225

35

49

21

21

21

21

49

49

60

176

176

Test Problem SEGF12D

Program Estimate

Tolerance

z-pl 0.975318624

Z-p6 0.975136183

z-p5 0.975115419

Z-p7 0.975115419

Z-gss 0.975318624

zZ-plO 0.975162070

Tolerance

z-pl 0.975184703

Z-po

Z-p5 0.975128330

Z-p7 0.975128330

Z-gss 0.975193379

z-plO 0.975161131

Tolerance

Z-pl 0.975167719

Z-po

z—p5 0.975152297

z-p7 0.975152297

Z-gss 0.975172232

z-pLO 0.975161131

Page 243

Actual Error

0.0005

0.000157491

0.000024950

0.000045714

0.000045714

0.000157491

0.000000937

0.0001

0.000023570

0.000032803

0.000032803

0. 000022246

0.000000002

0.00005

0.000006586

0.000008836

0.000008836

0.000011099

0.000000002

Milltime Integrand Evaluations

78

2839

1021

832

78

77

289

2577

1931

357

496

3693

2487

351

357

total actual reused

63

2313

333

333

63

49

231

693

693

175

225

399

909

909

259

225

71

71

135

135

175

175

262

262

558

558

734

734

Test Problem SEGF12D

Program Estimate

Tolerance

z-pl 0.975162150

Z-pe

Z-p5 0.975159369

Z-p7 0.975159369

z-gss 0.975162994

Z-pl0 0.975161133

Tolerance

z-pl 0.975161880

Z-po

z-p5 0.975159874

Z-p7 0.975159874

Z-gss 0.975161804

z-plo 0.975161133

Tolerance

Z-pl 0.975161255

Z-pe

z-p5

Z-p7 0.975160852

Z-plO

Z-gss 0.975161220

Page 244

Actual Error

0.00001

0.000001017

0.000001764

0.000001764

0.000001861

0.000000000

0.000005

0.000000747

0.000001259

0.000001259

0.000000671

0.000000000

0.000001

0.000000122

0.000000281

0.000000087

Milltime Integrand Evaluations

1432

15135

6699

1150

1499

2232

29795

10117

1962

11719

6596

19939

8865

total actual

1155

2205

2205

735

961

1799

3249

3249

1127

3969

5327

5697

3255

407

407

585

585

1013

reused

1798

1798

2664

2664

4684

Test Problem SEGF13D

Program Estimate

Tolerance

z-pl 1.206755133

Z-p6 1.190442059

z-p5 1.190442059

Z-p7 1.190442059

Z-gss 1.206755133

z-plO

Tolerance

z-pl 1.206755133

Z-p6 1.190442059

Z-p5 1.190442059

Z-p7 1.190442059

zZ-gss 1.206755133

z-plO

Tolerance

z-pl 1.206755133

zZ-po 1.204112993

z-p5 1.204112993

Z-p7 1.204112993

2-gss 1.206755133

z-plO

Page 245

Actual Error Milltime Integrand Evaluations

0.5

0.001098272

0.015214802

0.015214802

0.015214802

0.001098272

0.1

0.001098272

0.015214802

0.015214802

0.015214802

0.001098272

0.05

0.001098272

0.001543868

0.001543868

0.001543868

0.001098272

22

52

49

14

22

52

49

14

14

199

573

432

14

10

Lyi

17

ay,

10

10

17

17

a;

10

10

153

153

153

10

35

35

total actual reused

118

118

Test Problem SEGF13D

Program Estimate

Tolerance

z-pl 1.206755133

Z-p6 1.205464263

z-p5 1.204112993

Z-p7 1.204112993

z-gss 1.206755133

z-plO

Tolerance

z-pl 1.206755133

Z-p6 1.205502245

z-p5 1.205321344

Z-p7 1.205321344

Z-gss 1.206755133

z-plo

Tolerance

Z-pl 1.206755133

Z-pe 1.205642775

z-p5 1.205464263

Z-p7 1.205464263

zZ-gss 1.206755133

z-ploO

Page 246

Actual Error

0.01

0.001098272

0.000192598

0.001543868

0.001543868

0.001098272

0.005

0.001098272

0.000154616

0.000335517

0.000335517

0.001098272

0.001

0.001098272

0.000014086

0.000192598

0.000192598

0.001098272

Milltime Integrand Evaluations

14

916

573)

432

14

14

1466

1114

835

14

14

13279

3958

2120

14

total actual reused

10

697

153

153

10

10

1105

289

289

10

10

9809

697

697

10

35

35

61

61

124

124

118

118

228

228

573

S13

Test Problem SEGF13D

Program Estimate

Tolerance

z-pl 1.206755133

z-pe

z-p5 1.205614025

Z-p7 1.205614025

Z-gss 1.206755133

z-plO

Tolerance

z-pl 1.205714285

Z-p6

Z-p5 1.205626658

Z-p7 1.205626658

Z-gss 1.205798812

z-plO

Tolerance

z-pl 1.205714285

Z-pe

z-p5 1.205637770

z-p7 1.205637770

Z-gss 1.205798812

z-plO

Page 247

Actual Error

0.0005

0.001098272

0.000042836

0.000042836

0.001098272

0.0001

0.000057424

0.000030203

0.000030203

0.000141951

0.00005

0.000057424

0.000019091

0.000019091

0.000141951

Milltime Integrand Evaluations

14

9380

4272

14

241

12658

5682

130

241

42260

13968

130

total actual reused

10

215

215

10

170

1785

1785

170

3961

3961

278

278

5/1

S71

1507

1507

3390

3390

Test Problem SEGF13D

Program Estimate

Tolerance

Z-pl 1.205671980

Z-pe

z-p5

zZ-p7

Z-gss 1.205682887

z-plO

Tolerance

z-pl 1.205661349

z-p6

z-p5

Z-p7

2-gss 1.205669393

z-plO

Tolerance

Z-pl 1.205657887

Z-po

Z-p5

Z-p7

z-plO

z-gss 1.205697029

Page 248

Actual Error

0.00001

0.000015119

0.000026026

0.000005

0.000004488

0.000012532

0.000001

0.000001026

0.000002841

Milltime Integrand Evaluations

total actual reused

1149 «810

623 410

2169 1530

1025 650

7052 4970

3655 1930

Test Problem SEGF14D

Program Estimate

Tolerance

z-pl 1.398860237

Z-p6 1.388923304

z-p5 1.388923304

Z-p7

zZ-gss 1.398860237

z-plO

Tolerance

Z-pl 1.398860237

Z-po 1.388923304

Z-p5 1.388923304

Z-p7

Z-gss 1.398860237

z-ploO

Tolerance

z-pl 1.398860237

Z-p6 1.397595164

z-p5 1.397595164

Z-p7

Z-gss 1.398860237

zZ-plo

Page 249

Actual Error

0.5

0.000679659

0.009257274

0.009257274

0.000679659

0.1

0.000679659

0.009257274

0.009257274

0.000679659

0.05

0.000679659

0.000585414

0.000585414

0.000679659

Milltime Integrand Evaluations

20

49

133

20

20

49

133

20

20

851

3689

20

total actual reused

13

33

33

13

13

33

33

13

a

561

561

13

17

17

97

16

16

464

Test Problem SEGF14D

Program Estimate

Tolerance

Z-pl 1.398860237

Z-p6 1.397595164

z-p5 1.397595164

z-p7

z-gss 1.398860237

z-plO

Tolerance

z-pl 1.398860237

Z-po 1.398141777

z-p5 1.397595164

zZ-p7

z-gss 1.398860237

z-pl0

Tolerance

Z-pl 1.398860237

Z-pe

Z-p5 1.397978410

z-p7

Z-gss 1.398860237

zZ-plO

Page 250

Actual Error

0.01

0.000679659

0.000585414

0.000585414

0.000679659

0.005

0.000679659

0.000038801

0.000585414

0.000679659

0.001

0.000679659

0.000202168

0.000679659

Milltime Integrand Evaluations

20

918

3689

20

20

13083

3689

20

20

7447

20

total actual

13

561

561

13

13.

8481

561

13

13

1089

13

97

o7

177

reused

464

912

Test Problem SEGF14D

Program Estimate

Tolerance

z-pl 1.398860237

Z-pe

z-p5

z-p7

Z-gss 1.398860237

z-plO

Tolerance

z-pl 1.398249065

Zp

Z-p5

z-p7

zZ-gss 1.398249065

z-pl0

Tolerance

Z-pl 1.398222054

Z-pe

Z-p5

Z-p7

Z-gss 1.398249065

z-pl0O

Page 251

Actual Error

0.0005

0.000679659

0.000679659

0.0001

0.000068487

0.000068487

0.00005

0.000041476

0.000068487

Milltime

20

20

359

359

699

359

Integrand Evaluations

total actual reused

13

13

221

221

429

221

Test Problem SEGF14D

Program Estimate

Tolerance

z-pl 1.398199665

Z-po

Z-p5

z-p7

z-gss 1.398222054

z-plO

Tolerance

Z-pl 1.398187822

z-p6

z-p5

Z-p7

Z-gss 1.398200859

z-pl0

Tolerance

z-pl 1.398181935

z-pe

z-p5

Z-p7

z-plO

Z-gss 1.398185099

Page 252

Actual Error

0.00001

0.000019087

0.000041476

0.000005

0.000007244

0.000020281

0.000001

0.000001357

0.000004521

Milltime Integrand Evaluations

total actual reused

2394 1469

699 429

5773 3549

2274 1261

33344 20397

8182 3757

Test Problem SEGF22D

Program Estimate

Tolerance

z-pl 0.444036916

zZ-pe 0.416666666

z-p5 0.416666666

z-p7 0.416666666

Z-gss 0.444036916

z-pl0O 0.444634014

Tolerance

z-pl 0.444036916

Z-p6 0.432429799

z-p5 0.432429799

Z-p7 0.432429799

z-gss 0.444036916

z-plO 0.444634014

Tolerance

2-pl 0.444036916

Z-po 0.432429799

z-p5 0.432429799

z-p7 0.432429799

zZ-gss 0.444036916

z-plo 0.444634014

Page 253

Actual Error

0.5

0.000407528

0.027777778

0.027777778

0.027777778

0.000407528

0.000189570

O.1

0.000407528

0.012014645

0.012014645

0.012014645

0.000407528

0.000189570

0.05

0.000407528

0.012014645

0.012014645

0.012014645

0.000407528

0.000189570

Milltime Integrand Evaluations

10

21

21

78

115

115

78

15 83)

108

78

total actual

49

45

45

45

49

45

45

45

49

13

13

13

13

reused

32

32

32

32

Test Problem SEGF22D

Program Estimate

Tolerance

z-pl 0.444590168

Z-p6 0.439870077

z-p5 0.439853877

Z-p7 0.439853877

z-gss 0.444590168

z-plO 0.444634014

Tolerance

z-pl 0.444590168

Z-p6 0.442779912

Z-p5 0.439853877

Z-p7 0.439853877

Z-gss 0.444659322

z-plo 0.444634014

Tolerance

Z-pl 0.444590168

Z-pe 0.444233283

z-p5 0.442770143

Z-p7 0.442770143

Z-gss 0.444497782

Z-plO 0.444453847

Page 254

Actual Error

0.01

0.000145724

0.004574367

0.004590567

0.004590567

0.000145724

0.000189570

0.005

0.000145724

0.001664532

0.004590567

0.004590567

0.000214878

0.000189570

0.001

0.000145724

0.000211161

0.001674301

0.001674301

0.000053338

0.000009403

Milltime Integrand Evaluations

43

223

380

43

78

43

719

380

80

78

6279

1479

1164

358

total actual reused

35

189

153

153

35

49

35

621

153

153

63

49

35

5517

441

441

259

225

35

35

35

35

91

SE

118

118

118

118

350

350

Test Problem SEGF22D

Program Estimate

Tolerance

z-pl 0.444547977

Z-p6 0.444233474

Z-p5 0.443605645

2-p7 0.443605645

2-gss 0.444474979

Z-pl0 0.444453847

Tolerance

Z-pl 0.444547977

Z-pe

z-p5 0.444067361

Z-p7 0.444067361

Z-gss 0.444449757

z-plo 0.444444891

Tolerance

Z-pl 0.444547977

Z-pe

z-p5 0.444215809

zZ-p7 0.444215809

Z-gss 0.444447695

z-plo 0.444444891

Page 255

Actual Error

0.0005

0.000103533

0.000210970

0.000838799

0.000838799

0.000030535

0.000009403

0.0001

0.000103533

0.000377083

0.000377083

0.000005313

0.000000447

0.00005

0.000103533

0.000228635

0.000228635

0.000003251

0.000000447

Milltime Integrand Evaluations

200

10227

3501

2176

644

358

200

10635

5260

3506

1530

200

20649

8102

7646

1530

total actual

147

7929

801

801

455

225

147

1809

1809

1855

961

147

2709

2709

3255

961

163

163

351

Seal

517

517

reused

638

638

1458

1458

2192)

2192

Test Problem SEGF23D

Program Estimate

Tolerance

z-pl 0.305345904

Z-p6 0.277368927

z-p5 0.277368927

Z-p7 0.277368927

zZ-gss

z-plO 0.296485886

Tolerance

z-pl 0.305345904

Z-po 0.285706653

z-p5 0.285706653

Z-p7 0.285706653

z-gss

Z-plO 0.296485886

Tolerance

Z-pl 0.305345904

Z-p6 0.285706653

z-p5 0.285706653

Z-p7 0.285706653

Z-gss

z-pl0 0.296485886

Page 256

Actual Error Milltime Integrand Evaluations

0.5

0.009049608

0.018927369

0.018927369

0.018927369

0.000189590

O.1

0.009049608

0.010589643

0.010589643

0.010589643

0.000189590

0.05

0.009049608

0.010589643

0.010589643

0.010589643

0.000189590

21

52

676

14

190

571

430

676

14

190

571,

430

676

10

Ly

17

17

343

10

153

153

153

343

10

153

153

153

343

35

35

35

35

total actual reused

118

118

118

118

Test Problem SEGF23D

Program Estimate

Tolerance

z-pl 0.305345904

Z-po 0.285706653

z-p5 0.285706653

z-p7 0.285706653

zZ-gss

z-pl0 0.296485886

Tolerance

z-pl 0.298748347

Z-p6o 0.294660372

2-p5 0.291921377

Z-p7 0.291921377

Z-gss

z-plO 0.296485886

Tolerance

z-pl 0.297602719

z-p6

2-p5 0.291926649

Z-p7 0.291926649

Z-gss

2z-plO 0.296305699

Page 257

Actual Error Milltime Integrand Evaluations

0.01

0.009049608

0.010589643

0.010589643

0.010589643

0.000189590

0.005

0.002452051

0.001635924

0.004374919

0.004374919

0.000189590

0.001

0.001330894

0.004369647

0.004369647

0.000009403

14

190

571

430

676

242

12332

7753

3421

676

1721

8770

3829

6616

total actual

10

53

153 35

153 3,

343

170

8857

1105 175

1105 175

343

1210

1241 189

1241 189

3375

reused

118

118

930

930

1052

1052

Page 258

Test Problem SEGF23D

Program Estimate Actual Error Milltime Integrand Evaluations

total actual reused

Tolerance 0.0005

z-pl 0.297477407 0.001181111 2871 2010

Z-po

zp

z-p7 0.294379170 0.001917126 19164 5321 759 4562

zZ-gss

z-pl0

Test Problem SEGF32D

Program Estimate

Tolerance

zZ-pl 0.201342281

z-p6 0.201388888

z-p5 0.201388888

Z-p7 0.201388888

z-gss 0.201342281

z-plO

Tolerance

z-pl 0.201342281

Z-p6 0.201388888

z-p5 0.201388888

Z-p7 0.201388888

zZ-gss 0.201342281

z-plo

Tolerance

z-pl 0.201342281

z-p6 0.201388888

z-p5 0.201388888

Z-p7 0.201388888

Z-gss 0.201342281

z-plO

Page 259

Actual Error

0.5

0.000012854

0.000033753

0.000033753

0.000033753

0.000012854

0.1

0.000012854

0.000033753

0.000033753

0.000033753

0.000012854

0.05

0.000012854

0.000033753

0.000033753

0.000033753

0.000012854

Milltime Integrand Evaluations

21

2a

21

21

21

21

total actual reused

7

9

9 5 4

9 5 4

7

a

3

9 5 4

So 5 4

Wl

Tl

9

2 5 4

9 2 4

a

Test Problem SEGF32D

Program Estimate

Tolerance

z-pl 0.201342281

z-p6 0.201388888

z-p5 0.201388888

z-p7 0.201388888

zZ-gss 0.201342281

z-plO

Tolerance

z-pl 0.201342281

z-p6 0.201388888

z-p5 0.201388888

z-p7 0.201388888

Z-gss 0.201342281

z-plO

Tolerance

zZ-pl 0.201342281

Z-p6 0.201357323

2-p5 0.201357323

Z-p7 0.201357323

z-gss 0.201342281

z-plO

Page 260

Actual Error

0.01

0.000012854

0.000033753

0.000033753

0.000033753

0.000012854

0.005

0.000012854

0.000033753

0.000033753

0.000033753

0.000012854

0.001

0.000012854

0.000002188

0.000002188

0.000002188

0.000012854

Milltime Integrand Evaluations

total actual reused

7 7

8 2

21 io 5 4

21 2 5 4

. 7

7 7

8 2

2y 2 > 4

21 9 5 4

7 7

7 u

43 45

113 45 13 32

108 45 13 32

a 7

Test Problem SEGF32D

Program Estimate

Tolerance

z-pl 0.201342281

2-p6 0.201357323

z-p5 0.201357323

z-p7 0.201357323

z-gss 0.201342281

z-plO

Tolerance

z-pl 0.201342281

Z-p6 0.201357323

z-p5 0.201357323

Z-p7 0.201357323

z-gss 0.201342281

z-plo

Tolerance

z-pl 0.201342281

Z-p6 0.201357323

z-p5 0.201357323

z-p7 0.201357323

Z-gss 0.201354289

z-plO

Page 261

Actual Error

0.0005

0.000012854

0.000002188

0.000002188

0.000002188

0.000012854

0.0001

0.000012854

0.000002188

0.000002188

0.000002188

0.000012854

0.00005

0.000012854

0.000002188

0.000002188

0.000002188

0.000000846

Milltime Integrand Evaluations

43

113

108

43

113

108

43

113

108

37

total actual

45

45

45

45

45

45

45

45

45

35

13

13

13

13

13

13

reused

32

32

32

32

32

32

Test Problem SEGF32D

Program Estimate

Tolerance

z-pl 0.201342281

z-p6 0.201355273

z-p5 0.201355273

Z-p7 0.201355273

zZ-gss 0.201354289

z-plO

Tolerance

Z-pl 0.201342281

Z-p6 0.201355273

z-p5 0.201355273

Z-p7 0.201355273

Z-gss 0.201354784

z-ploO

Tolerance

Z-pl 0.201342281

Z-p6 0.201355144

z-p5 0.201355144

Z-p7 0.201355144

Z-plo

zZ-gss 0.201355081

Page 262

Actual Error

0.00001

0.000012854

0000000138

0.000000138

0.000000138

0.000000846

0.000005

0.000012854

0.000000138

0.000000138

0.000000138

0.000000351

0.000001

0.000012854

0.000000009

0.000000009

0.000000009

0.000000054

Milltime Integrand Evaluations

217

591

489

37

217

591

101

874

3200

2109

167

total actual

189

189

189

35

189

189

189

Oi

765

765

765

147

41

41

41

41

145

145

reused

148

148

148

148

620

620

Page 263

Test Problem SEGF33D

Program Estimate Actual Error Milltime Integrand Evaluations

total actual reused

Tolerance 0.5

z-pl 0.183339494 0.000014646 12 10

2-p6 0.183414502 0.000060362 19 LT

z-p5 0.183414502 0.000060362 51 7 9 8

z-p7 0.183414502 0.000060362 47 17 2) 8

2-gss 0.183339494 0.000014646 12 10

z-pl0 0.183354140 0.000000000 616 343

Tolerance 0.1

z-pl 0.183339494 0.000014646 a2 10

Z-p6 0.183414502 0.000060362 19 17

z-p5 0.183414502 0.000060362 51 17 2) 8

Z-p7 0.183414502 0.000060362 47 aly 2 8

z2-gss 0.183339494 0.000014646 AZ 10

z-plO 0.183354140 0.000000000 616 343

Tolerance 0.05

z-pl 0.183339494 0.000014646 12. 10

2-p6 0.183414502 0.000060362 19) a7,

Z-p5 0.183414502 0.000060362 Sy ay 9 8

Z-p7 0.183414502 0.000060362 47 U7 oy 8

z-gss 0.183339494 0.000014646 12 10

z-plO 0.183354140 0.000000000 616 343

Test Problem SEGF33D

Program Estimate

Tolerance

z-pl 0.183339494

z—pe 0.183414502

z-p5 0.183414502

z-p7 0.183414502

Z-gss 0.183339494

z-pl0 0.183354140

Tolerance

z-pl 0.183339494

z-po 0.183414502

z-p5 0.183414502

zZ-p7 0.183414502

Z-gss 0.183339494

z-plo 0.183354140

Tolerance

z-pl 0.183339494

Z-pe 0.183357996

z-p5 0.183357996

Z-p7 0.183357996

Z-gss 0.183339494

z-plo 0.183354140

Page 264

Actual Error Milltime Integrand Evaluations

0.01

0.000014646

0.000060362

0.000060362

0.000060362

0.000014646

0.000000000

0.005

0.000014646

0.000060362

0.000060362

0.000060362

0.000014646

0.000000000

0.001

0.000014646

0.000003856

0.000003856

0.000003856

0.000014646

0.000000000

12

au

47

12

616

19

51

47

616

12

179

567

426

12

616

10

a7

17

17

10

343

10

17

17

17

10

343

10

153

153

153

10

343

35

35

total actual reused

118

118

Test Problem SEGF33D

Program Estimate

Tolerance

z-pl 0.183339494

Z-po 0.183357996

zZ-p5 0.183357996

Z-p7 0.183357996

zZ-gss 0.183339494

z-plO 0.183354140

Tolerance

z-pl 0.183339494

Z-p6 0.183357996

zZ-p5 0.183357996

z-p7 0.183357996

2-gss 0.183339494

Z-plO 0.183354140

Tolerance

z-pl 0.183339494

Z-po 0.183354383

z-p5 0.183354383

z-p7 0.183354383

Z-gss 0.183339494

zZ-plO 0.183354140

Page 265

Actual Error

0.0005

0.000014646

0.000003856

0.000003856

0.000003856

0000014646

0.000000000

0.0001

0.000014646

0.000003856

0.000003856

0.000003856

0.000014646

0.000000000

0.00005

0.000014646

0.000000243

0.000000243

0.000000243

0.000014646

0.000000000

Milltime Integrand Evaluations

ee

179

567

426

12

616

12

179

567

426

12

616

12

1764

8745

3803

12

616

total actual reused

10

153

153

153

10

343

10

153

153

153

10

343

10

1241

1241

1241

10

343

35

35

35

35

189

189

118

118

118

118

1052

1052

Test Problem SEGF33D

Program Estimate

Tolerance

z-pl 0.183339494

Z-po 0.183354383

z-p5 0.183354383

z-p7 0.183354383

2-gss 0.183339494

z-plO 0.183354140

Tolerance

z-pl 0.183353173

Z-p6 0.183354383

z-p5 0.183354383

Z-p7 0.183354383

Z-gss 0.183353173

z-plo 0.183354140

Tolerance

Z-pl 0.183353173

Z-po

z-p5

Z-p7 0.183354383

z-ploO 0.183353173

Z-gss 0.183354140

Page 266

Actual Error

0.00001

0.000014646

0.000000243

0.000000243

0.000000243

0.000014646

0 .000000000

0.000005

0.000000967

0.000000243

0.000000243

0.000000243

0.000000967

0.000000000

0.000001

0.000000967

0.000000243

0.000000967

0.000000000

Milltime Integrand Evaluations

12

1764

8745

3803

12

616

412

1764

8745

3803

112

616

112

3803

112

616

total actual

10

1241

1241

1241

10

343

90

1241

1241

1241

343

90

1241

343

189

189

189

189

189

reused

1052

1052

1052

1052

1052

Test Problem SEGF42D

Program Estimate

Tolerance

z-pl 4.000000000

z-pe 4.157862768

z-p5 4.157862768

zZ-p7

z-gss 4.000000000

z-plO 4.151291620

Tolerance

z-pl 4.000000000

z-p6 4.158404123

z-p5 4.157862768

Z-p7

Z-gss 4.000000000

z-plo 4.151291620

Tolerance

z-pl 4.146517279

z-p6 4.158404123

2-p5 4.158404123

Z-p7

Z-gss 4.146517279

z-plO 4.151291620

Page 267

Actual Error

0.5

0.151291030

0.006571738

0.006571738

0.151291030

0.000000590

0.1

0.151291030

0.007113093

0.006571738

0.151291030

0.000000590

0.05

0.004773751

0.007113093

0.007113093

0.004773751

0.000000590

Milltime Integrand Evaluations

11

73

125

il

102

i.

189

125

11

102

61

189

354

61

102

total actual reused

45

45

49

AL7,

45

49

35

117

aay:

35

49

13

13

29

32

32

Page 268

Test Problem SEGF42D

Program Estimate Actual Error Milltime Integrani Evaluations

total actual reused

Tolerance 0.01

z-pl 4.151050452 0.000240578 255 147

z-p6 4.158404123 0.007113093 189 117

z-p5 4.158404123 0.007113093 354 Al7 29 88

z-p7

z-gss 4.146441756 0.004849274 161 91

z-plo 4.151291620 0.000000590 102 49

Tolerance 0.005

z-pl 4.151050452 0.000240578 295 S147,

Z-p6 4.158404123 0.007113093 1s9 «117

z-p5 4.158404123 0.007113093 354 «#117 29 88

Z-p7

Z-gss 4.148746104 0.002544926 213 do.

2-ploO 4.151291620 0.000000590 102 49

Tolerance 0.001

z-pl 4.151229237 0.000061793 982" 567

Z-p6 4.151312255 0.000021225 1358 765

z-p5 4.158404123 0.007113093 354 117 29 88

Z-p7

Z-gss 4.151104853 0.000186177 165° 399

z-plO 4.151291620 0.000000590 102 49

Test Problem SEGF42D

Program Estimate

Tolerance

z-pl 4.151277237

zZ-po 4.151312255

z—p5 4.151493662

z-p7

z-gss 4.151194495

z-plo 4.151291608

Tolerance

z-pl 4.151286920

Z-p6 4.151292949

zZ-p5 4.151316178

Z-p7

z-gss 4.151281468

z-plo 4.151291608

Tolerance

z-pl 4.151288243

z-pe 4.151292886

z-p5 4.151310246

Z-p7

Z-gss 4.151284707

z-plO 4.151291608

Page 269

Actual Error

0.0005

0.000013793

0.000021225

0.000202632

0.000096535

0.000000578

0.0001

0.000004110

0.000001919

0.000025148

0.000009652

0.000000578

0.00005

0.000002787

0.000001856

0.000019216

0.000006323

0.000000578

Milltime Integrami Evaluations

1042

1358

2910

1001

471

3793

5235

17919

4003

471

4018

5535

22156

5531

471

total actual reused

595

765

693

511

225

2191

2925

2133

1631

225

2247

3069

2421

2079

225

137

401

449

556

1732

1972

Test Problem SEGF42D

Program Estimate

Tolerance

z-pl 4.151290343

Z-pe

z-p5

z-p7

z-gss 4.151290029

z-plo 4.151291608

Tolerance

2-pl 4.151290453

Z-po

z-p5

zZ-p7

Z-gss

z-plo 4.151291608

Page 270

Actual Error

0.00001

0.000000687

0.000001001

0.000000578

0.000005

0.000000577

0.000000578

Milltime Integrand Evaluations

total actual reused

15052 8687

53204 7007

471 225

21603 9051

471 225

Page 271

Test Problem SEGF43D

Program Estimate Actual Error Milltime Integrand Evaluations

total actual reused

Tolerance 0.5

z-pl 8.052928426 0.028806547 21 10

Z-po 8.093352987 0.011618014 310 153

z—p5 8.093352987 0.011618014 645 153 35 118

z-p7

Z-gss 8.052928426 0.028806547 21 10

z-p 10 8.081734977 0.000000004 922 343

Tolerance 0.1

z-pl 8.052928426 0.028806547 21 10

Z-po 8.094772398 0.013037425 1430 697

z-p5 8.093352987 0.011618014 645 153 Si) 118

Z-p7

Z-gss 8.052928426 0.028806547 21 10

z-p 10 8.081734977 0.000000004 922 343

Tolerance 0.05

z-pl 8.081168598 0.000566375 191 90

Z-po 8.082329644 0.000594671 2625 1241

z—p5 8.093352987 0.011618014 645 153 35) 118

Z-p7

Z-gss 8.081168598 0.000566375 193 90

Z-p 10 8.081734977 0.000000004 922 343

Page 272

Test Problem SEGF43D

Program Estimate Actual Error Milltime Integrand Evaluations

total actual reused

Tolerance 0.01

z-pl 8.080826280 0.000908693 869 410

z-po 8.082100084 0.000365111 18274 7769

z-p5 8.094772398 0.013037425 4611 697 133 564

zZ-p7

zZ-gss 8.081168598 0.000566375 193 90

z-p 10 8.081734977 0.000000004 922 343

Tolerance 0.005

z-pl 8.079790872 0.001944101 1225 570

Z-pe

z-p5 8.082329644 0.000594671 9001 1241 189 1052

Z-p7

Z-gss 8.08082628 0.000908693 907 410

z-p 10 8.081734977 0.000000004 222 343

Tolerance 0.001

zZ-pl 8.081708613 0.000026360 1737 730

Z-pe

z-p5

Z-p7

2-gss 8.081710739 0.000024234 4702 1850

z-p 10 8.081734977 0.000000004 922 343

Page 273

Test Problem SEGF43D

Program Estimate Actual Error Milltime Integrani Evaluations

total actual reused

Tolerance 0.0005

z-pl 8.081678187 0.000056786 9359 4250

Z-pe

z-p5

zZ-p7

z-gss 8.081706565 0.000028408 8287 2970

z-plO

Page 274

Appendix 9

The following pages contain the results of the mms of the basic

adaptive simplex program on the set of test problems described in

appendix 1.3.

The milltime is given in millunits where 1 millunit is equal to 1000

micro units. These timings are used for comparison only.

Page 275

Program Estimate Actual Error Milltime Integrand

Evaluations

Tolerance 0.5

segfl2d 0.402368927 0.002368927 10 2

segfl3d 0.145710672 0.002853529 17 14

segf22d 0.083333333 0.047618649 2 3

segf32d 0.107407407 0.000018389 8 2

segf33d_ 0.035138887 0.000009324 14 14

segf424d 0.543068297 0.001587272 13 =)

Tolerance 0.1

segfl2d 0.402368927 0.002368927 10 2

segfl3d 0.145710672 0.002853529 AT 14

segf22d 0.083333333 0.047618649 9 9

segf32d 0.107407407 0.000018389 8 2

segf33d 0.035138887 0.000009324 14 14

segf42d 0.543068297 0.001587272 13 9

Tolerance 0.05

segfl2d 0.402368927 0.002368927 10 9.

segfl3d 0.145710672 0.002853529 17 14

segf22d 0.113835450 0.017116532 34 27

segf32d_ 0.107407407 0.000018389 8 9

segf33d 0.035138887 0.000009324 14 14

segf42d 0.543068297 0.001587272 13 9

Problem Estimate

Tolerance

segfl2d 0.402368927

segfl3d 0.145710672

segf22d 0.125627117

segf32d 0.107407407

segf33d 0.035138887

segf42d 0.543068297

Tolerance

segfl2d 0.402368927

segfl3d_0.145710672

segf22d 0.128884797

segf32d_ 0.107407407

segf33d 0.035138887

segf42d 0.543068297

Tolerance

segfl2d 0.400431916

segfl3d 0.143242691

segf22d 0.130794666

segf32d_ 0.107407407

segf33d_ 0.035138887

segf42a-0.541135811

Page 276

Actual Error

0.01

0.002368927

0.002853529

0.005324865

0.000018389

0.000009324

0.001587272

0.005

0.002368927

0.002853529

0.002067185

0.000018389

0.000009324

0.001587272

0.001

0.000431916

0.000385548

0.000157316

0.000018389

0.000009324

0.000345214

Milltime Integrand

10

17

232

14

13

10

Ly

479

14

13

10

847

1815

14

49

Evaluations

14

171

14

14

351

14

1323

14

27

Problem Estimate

Tolerance

segfl2d 0.400431916

segfl3d 0.143052325

segf22d 0.131059256

segf32d 0.107407407

segf33d 0.035138887

segf42d 0.035138887

Tolerance

segfl2d 0.400431916

segfl3d 0.142892380

segf22d 0.130949391

segf32d 0.107407407

segf33d 0.035138887

segf42d 0.541490925

Tolerance

segfl2a 0.400379259

segfl3d 0.142871008

segf22d 0.130930977

segf32d 0.107407407

seg f33d 0.035138887

segf42a 0.541490925

Page 277

Actual Error

0.0005

0.000431916

0.000195182

0.000107274

0.000018389

0.000009324

0.000009324

0.0001

0.000431916

0.000035237

0.000002591

0.000018389

0.000009324

0.000009900

0.00005

0.000379259

0.000013865

0.000021005

0.000018389

0.000009324

0.000009900

Milltime

10

1109

3646

14

14

135

1897

13929

8

14

459

236

4085

29313

8

14

459

Integrand

Evaluations

714

2655

14

14

99

1218

8361

14

243

171

2618

15831

2

14

243

Problem Estimate

Tolerance

segfl2d 0.400379259

segfl3d 0.142861791

segf22d

segf32d_ 0.107407407

segf33d_ 0.035145980

segf42d 0.541491025

Tolerance

segfl2a

segfl3d_ 0.142859759

segf22d

segf32d 0.107407407

segf33d_ 0.035145980

seg f42d

Tolerance

seg fl2d

segfl3d

seg f22d

segf32d_ 0.107407407

seg f42a

seg f33d 0.035147809

Page 278

Actual Error

0.00001

0.000379259

0.000004648

0.000018389

0.000002231

0.000010000

0.000005

0.000002616

0.000018389

0.000002231

0.000001

0.000018389

0.000000402

Milltime Integrand

Evaluations

236 171

10065 6034

8 9)

se 322

1484 783

23527 «13258

8 9

444 322

8 9

1068 770

Page 279

References

fi]

[2]

(3]

[4]

[5]

[6]

7]

[8]

[9]

E.B.Anders

"An extension of oamberg integration procedures to n variables"

J.A.C.M.,V13,1966,pp505-510.

B.Bereanu

“On the convergence of cartesian multidimensional quairature

formulae."

Numer. Math. 19,pp348-350,1972

B.A.Bowen & R.Buhr

"The logical design of multiple microprocessor systems"

pub. Prentice Hall.

R.Burlirsch

“Bemerkungen zur Ramberg integration"

Numer. Mathe. 6, pp6-16, 1964

J.J.Cosgrove and P.Cannon

“Array processors"

IEEE SIG on signal processing

G.R.Cowper

"Gaussian quairature formulas for triangles"

I.J. for N.M. in Eng. 7, pp405-408.

R.Cranley & T.N.L.Patterson

"On the automatic numerical evaluation of definite integrals"

Camp. J. (1971),vol 14,no. 2,pp 189-198

P.J.Davis

"A construction of non negative approximate quadratures"

Math.Camp., V 21. pp 578-582

P.J.Davis & P.Rabinowitz

“Numerical inte. gration"

[10]

(11)

[12]

[13]

[14]

[15]

[16]

[17]

Page 280

Blaisdell,Waltham,Mass.

Dawson

"Software strategy for multiprocessors"

I.P.C. Business Press vol3,no6,1979.

V-A.Dixon

"Numerical quadrature:A survey of available algorithms"

NPL. Report NAC 36,June 1973

Elise de Donker

“New Euler-Maclaurin expansions ami their application to

quadrative over the s-dimensional simplex"

Math, Comp: , vol 33,number 147,July 1979,pp 1003-1018

Charles S. Duris

“generating and compound ing product type Newton-Cotes

quadrature formulae"

ACM Transactions on Mathematical Software, Vol 2,No. 1,March

1976, pp 50-58

Richard Franke

“Orthogonal polynomials and approximate multiple integration"

SIAM J. Numer. Anal. vol8 no4, 1971.

F.N.Fritsch

“On self contained numerical integration formulae for symmetric

regions"

SIAM J.Numer.Anal. vol8,no2,1971.

A.C.Genz

"An adaptive multidimensional quadrature procedure"

Computer Physics Cammunications 4, ppll-15

A.C.Genz

"A procedure for multidimensional quairature"

NAG DOLFAF

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Page 281

S.Haber

"Numerical evaluation of multiple integrals"

SIAM Review vol.12,1970,pp481-526.

P.C.Hammer & A.Stroud

"Numerical integration over simplexes"

MTAC voll0, ppl37-139.

P.C.Hanmer O.Marlowe & A.Stroud

“Numerical integration over simplexes ani cones"

MTAC vol 10, ppl30-137.

Per Brinch Hansen

“The programming language concurrent Pascal"

IEEE Trans. on Software Engineering, voll,no2, 1975.

P.Hillion

“Numerical integration on a triangle"

I.J. for Numer. Methods in Eng., volll, pp 797-815, 1977

D.R.Hunkins

“Product type multiple integration formulae"

BIT 13 pp408-414

D.K.Kahaner

“Comparison of numerical quadrature formulae"

Mathematical software (1971) Academic Press, pp229-259.

D.K.Kahaner & M.Wells

"An algorithm for n dimensional adaptive quadrature using

advanced programming techniques"

LAUR 76-2310 LOS Alamos Scientific Laboratory report (i979)

P.Keast

"Optimal parameters for multidimensional integration"

SIAM J. Numer. Anal. voll0,n05, 1973

P.J.King

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Page 282

“Adaptive multidimensional quadrature procedures"

M.Sc. Project , Aston University 1978

D.Kronrod

"Nodes and weights of quairature formulae"

English translation fron Russian, Consultants Bureau, New York,

MR 32 £ 597

G.Lague & R.Baldur

“Extended numerical integration methois for triangular

surfaces"

Short Comms. 1976 , C.A.c.M.

Lauffer “Interpolation mehrfacher Tntegrale” MR 16, 862.

J.N. Lyness

“quadrature over a simplex: partl .A representation for the

integrand function"

SIAM J. Numer. Anal. vol 15, nol 1978

J.N. Lyness

"Quadrature over a simplex part2. A representation for the

error functional"

SIAM J. Numer. Anal. vol 15, no5 1978

J.N. Lyness

"The effect of inadequate convergence criteria in automatic

routines"

Camp. J. 12, 1969 pp279-281

J.N. Lyness

"Guidelines for automatic quadrature routines"

Information Processing 71,1972

J.N. Lyness

"Moderate degree symmetric quadrature rules for the triangle"

J.Inst. Math. Appl. 1975, 15 , pp 19-32

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Page 283

J.N. Lyness

“An error functional expansion for n dimensional quadrature

with an integrand function singular at a point"

Math, Camp. vol30, no 133 1976 pp 1-23

J.N. Lyness

"Quid, Quo quadrature"

Argonne National Laboratory, Illinois

J.N. Lyness & J.J.Kaganove

“A technique for comparing automatic quairature routines"

Camp. J. vol. 20, no2, ppl70-177 , 1977

J.N. Lyness & J.J.Kaganove

"Camments on the nature of automatic quadrature routines"

A.C.M. Trans on Math. Software vol2, nol, 1976 , pp65-81

J.N. Lyness & B.McHugh

“Integration over multidimensional hypercubes 1, a progressive

procedure"

Camp. J. vol 6, 1963, pp264-270

M.Malcolm & R.Bruce Simpson.

"Local versus global strategies for adaptive quadrature"

A.C.M. Trans on Math. Software voll, no 2 1975

James Clerk Maxwell

"On approximate multiple integration between limits of

summation"

Cambridge Phil. Soc. Proc., vol 3, 1877, pp39-47.

W.McKeeman

"Adaptive integration ani multiple integration"

C.A.C.M. vol6, no 8 , 1963

W.D.Maurer

"An improved hash code for scatter storage"

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Page 284

C.A.C.M. volll, nol, 1968

R.Morris

"Scatter storage techniques"

C.A.C.M. vol 11, nol, 1968

H.O'Hara & F.Smith

“The evaluation of definite integrals by interval subdivision"

Comp. J. 12 1969, ppl79-182

J.Oliver

"A doubly adaptive Clenshaw-Curtis quadrature method"

Comp. J. voll5, 1972, pp 141-147

T.Patterson

“Algorithm for automatic numerical integration over a finite

interval"

C.A.C.M. noll, vol 16, 1973, pp 694-699

T.Patterson

“The optimum aidition of points to quairature formulae"

Math. Comp. 22, 1968, pp847-856

R.Piessens & A.Haegemans

"Cubature formulae of degree nine for symmetric planar regions"

Math. Camp. vol29, no 131, 1975, pp 810-815

J.Rice

"Mathematical Software"

Academic Press, New York, 1971

I.Robinson

"Methods of numerical integration"

Ph.D. Thesis, Dept. of Inf. Science, Melbourne University, 1973

T.Sasaki

“Multidimensional integration techniques for ill behaved

functions" Colloquium on advanced computing methods in
theoretical physics C.N.R.S., Marseille (1975).

[54]

[55]

[56]

[57]

[58]

[59]

Page 285

P.Silvester

“Symmetric quadrature formulae for simplexes"

Math. Camp. vol24, pp95-100

W.Squire

“Numerical evaluation of a class of singular double integrals

by symmetric pairing"

Int. J. Num. Meth. in Eng. voll0, pp703-720 , 1976

T.Stron

"Practical error estimates for repeated Richardson

extrapolation schemes"

BIT 13 , 1973, pp 196-205

A.H.Stroui

“Approximate calculation of multiple integrals"

Prentice Hall series in automatic computation.

A.H.Stroul

"Same fourth degree integration formulae for simplexes"

Math. Camp. vol30, num 134, 1976, pp 291-294

K.Zabrzewska, J.Dudek and N.Nazarewicz

“A numerical calculation of multidimensional integrals"

Computer Physics Cams. 14, 1978, pp299-309

