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Summary 

In this thesis original software is presented for the approximate 
evaluation of multiple integrals over two basic regions of 
integration; the simplex and the hypercube. The majority of the work 
is based upon an adaptive approach. One exception is a program which 
generates a sequence of product rules from the one dimensional 
Patterson family of formulae ami applies these rules iteratively 
over a hypercube type region of integration. A basic alaptive 
algorithm for multidimensional quairature is described and programs 
for both the simplex and the hypercube based on this are presented. 
The problems of testing ami comparison of quadrature routines are 
discussed. ‘Two alternative approaches to storing integrand 
evaluations are presented; the first using a linked list type data 
structure while the secomi uses scatter storage techniques. Programs 
for the hypercube which use the basic adaptive strategy but store 
the integrand evaluations illustrate the storage techniques. It is 
suggested that the storing of integrand evaluations is only feasible 
for particularly "expensive" integranis. A case is presented for the 
adoption of a global subiivision strategy as opposed to a local 
subdivision strategy in the construction of multidimensional 
quairature algorithms. A global strategy reduces the total number of 
integrami evaluations used by producing a result which is closer to 
the required tolerance. One approach to exteniing the methais to 

other regions of integration is described ami the problems 
associated with this are considered. Finally the possibilities of 
using a multiple processor for the evaluation of multiple integrals 
are discussed. 
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Chapter 1 Introduction 

1.1 Description of the thesis 

This thesis is concerned with the development of algorithms for the 

approximate evaluation of multiple integrals on a mainframe 

computer. That is integrals of the form : 

| (x), Kee eX) dx dx... dx, 

Rn 

where the region of integration, Rn, is a given region inn 

dimensional Euclidean space En and the function f(x,,x,...x,) is 

Riemann integrable over this region. The work is limited to the 

evaluation of multiple integrals over two main regions : the 

hypercube and the simplex. Classical type methods (as opposed to 

Monte Carlo type) are used exclusively. The majority of the 

algorithms are based upon an adaptive approach. However, one 

exception to this is the algorithm based upon a product type rule. 

The emphasis of the work is on the development of efficient, 

reliable numerical software based on the existing mathematical 

theory, not on the extension of the theory of numerical integration. 

1.2 Background to the study 

Many eminent mathematicians including A.H.Stroud and J.N.Lyness have 

devoted a large amount of time and effort to the research and 

development of the theory of the approximate evaluation of miltiple 

integrals. However, the application of this theory has lagged far 

behind its growth because of the lack of effort in the field of
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numerical software written to apply the theory efficiently and 

reliably. Many mathematicians consider programming a trivial task 

and disregard it; while most computer scientists have neither the 

mathematical knowledge nor the motivation to approach the task of 

writing rigorous numerical software. Most important of all the 

potential users of the theory, engineers and scientists, have both 

insufficient time and insufficient knowledge of either the 

mathematical theory or computer science to produce adequate 

software. Thus the author has attempted to find the parts of the 

theory which are most suitable for use in computer programs and to 

bridge the gap between this theory and the potential user by the 

development of efficient and reliable numerical software. 

1.3 A brief history of multidimensional quadrature 

Archimedes, Heron and Pappus were among the first people to study 

areas and volumes. These studies can be considered as the start of 

the history of integration. From these early beginnings the impetus 

was given for the evolution of the continuous calculus, which spread 

rapidly to a wide variety of applications. Inevitably, problems 

arose in which the integrals formed could not be solved analytically 

and hence, the study of numerical integration began early in the 

history of the calculus. 

The majority of the work on quadrature was concerned with me 

dimensional problems. However, as early as 1877 a paper was 

published by James Clerk Maxwell [42] which gave two formulae for 

numerical integration over the cube. The theory of the solution of 

multiple integrals advanced very slowly from this point possibly due
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to the large amount of computation required for anything but the 

simplest of problems. In fact only about fifteen papers are recorded 

as being written on the subject prior to 1945. 

With the advent of the digital computer a greater impetus was given 

to the advance of the theory of multidimensional quadrature since 

the amount of calculation that could be considered feasible was 

increased dramatically. ‘Two quite distinct approaches to 

multidimensional quadrature were adopted. These are firstly, the use 

of Monte Carlo type methods, and secondly, the use of classical or 

systematic type methods. The Mmte Carlo type methods are based om 

statistical randon number sampling techniques whereas the classical 

type methods are based on weighted sums of integrand evaluations at 

predefined nodes. That is formulae of the type: 

0 

ff £(x xX j005 x) dx, ax, ++ dx, ~ S ni £(Vi, Vine + +Vin) 

Rn 
i=) 

Where the Bi are the weights, or coefficients, of the formula and 

the Vj, Vie ---Vin are the nodes. 

A discussion of Monte Carlo and other number theoretic methods is 

given in Stroud[57] chapter 6 and Zakrzewska[59]. Tables of 

classical type formulae are given in Stroud[57] chapter 8. Specific 

examples of formulae for the hypercube are given in Lyness and 

McHugh[40] and Piessens and Haegmans[50], and for the simplex in 

Cowper[6], Hammer, Marlowe and Stroud[20], Hillion[22], Lyness[36] 

and Silvester[54]. 

A variety of attributes of a multidimensional quadrature problem are
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relevant in deciding whether to use classical or Monte Carlo type 

methods. Typically, the classical type methods are more suitable for 

low dimensional problems where the region of integration is 

familiar, for example the hypercube or the simplex, a high degree of 

accuracy is required and for which the integrand is analytic and 

smooth. Whereas Monte Carlo type methods are more suited to high 

dimensional problems over unfamiliar or erratic regions with a low 

accuracy requirement and possibly with a highly discontinuous 

integrand. The areas of application are obviously overlapping and 

somewhat blurred. 

During the period 1945 to 1960 an increasing amount of effort went 

into the theory of multiple integrals and between 1960 and 1970 

considerable progress was made with respect to classical methods. 

The state of the art of the subject in 1970 formed the prime subject 

of a paper by Haber [18] in 1970. Essentially, quadrature rules for 

many standard regions of integration were developed and the form and 

limitation of such rules were investigated. The major results of 

this period were collected by A.H.Stroud[57] and published in the 

form of a book in 1971. This book has now become a standard 

reference on the subject of the approximate evaluation of multiple 

integrals. Since this period the subject has advanced more slowly 

and the theory has tended to be rounded out and various gaps filled 

in so that now there exists quite an extensive body of theory 

available for a wide range of regions of integration. 

Considerably less attention, however, has been paid to the software 

or applied numerical quadrature side of the problem. Only a few 

important pieces of software have been published (although many more
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may have been written). During the early 1970's both A.C.Genz and 

I.Robinson were actively working (independently) on the problem of 

producing quality software for numerical quadrature over rectangular 

regions. In September 1973 Robinson[52] completed a Ph.D. thesis om 

methods of numerical integration. The last chapter of which 

describes a general adaptive algorithm for integration over ann 

dimensional rectangular region. The algorithm was a simple 

generalization of the trapezium rule and is extremely time consuming 

but was one of the first algorithms of its type to appear in the 

literature. 

In 1972 A.C.Genz[16] published a paper which described an adaptive 

multidimensional quadrature procedure for the hypercube. His 

procedure used two classical type rules and an extrapolation 

technique to improve the accuracy of the results. A few years later 

Genz prepared a modified version of this algorithm, which adopted 

Monte Carlo type methods, for the NAG Fortran library[17]. 

In 1976 Kahaner and Wells[25] were developing an algorithm for n 

dimensional adaptive quadrature using the simplex as a basic region 

of integration. This algorithm was written in a high level language 

and took advantage of advanced programming techniques. The method 

involved the derivation of variable order interpolatory quadrature 

formulae during the execution of the program. A paper relating to 

the algorithm was not published until 1979, and it is still in the 

form of an experimental test bed rather than a polished piece of 

library software. 

Some major contributions to the area have been made by J.N.Lyness
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[31,32,..40] particularly with respect to quadrature over the 

simplex. With reference to one dimensional integration Lyness[34] 

has suggested that too many automatic routines deny the user of the 

opportunity to think. He believes that the user should be encouraged 

to take a more active part in the choice of a suitable algorithm for 

the evaluation of his particular integral and that software should 

be written so as to be able to take advantage of any prior knowledge 

of the integrand. With the greater complexities of higher 

dimensional problems there is an even greater scope for savings from 

this kind of information and so these suggestions are even more 

important. 

To summarise, the theory has reached a stage where any further 

research can only bring diminishing rewards but the application of 

the theory is still at an early stage of development. 

1.4 Decisions taken as a result of the literature survey 

The survey of the literature revealed the diversity of the topic and 

the author made some decisions as to the direction of the research 

fron the very outset. Particularly with reference to the region of 

integration and the type of formulae adopted. 

First consider the region of integration. In one dimension there are 

only three basic types of region of integration; a closed interval, 

a semi-closed interval and an open interval. Whereas in more than 

one dimension there are a potentially infinite number of different 

types of region to contend with ani only in particular cases is it 

possible to transform formulae from one type of region onto a second
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type of region. Hence, the theory of multidimensional quadrature has 

tended to be developed for specific regions of integration. 

Obviously, this makes it very difficult to attempt to construct 

algorithms that will be applicable to completely general regions of 

integration and still be efficient and reliable. The author 

therefore chose to limit his work to two specific basic regions of 

integration; the hypercube and the simplex. These are the natural n 

dimensional extensions of the square and the triangle respectively. 

This was not an entirely arbitrary choice. These two regions are 

quite common in practical problems and a large body of theory has 

ybeen based upon them. Further because of the properties of linearity 

for multiple integrals**, it is possible to form an approximation 

over a given region that can be defined as a combination of 

subregions by summing estimates over the subregions and both the 

hypercube and the simplex lend themselves to forming the subregions 

of other regions. 

Now consider the type of formulae adopted. The previous section 

described the two paths taken as regards the derivation of formulae; 

the classical type methods and the Monte Carlo type methods. The 

author considered it impractical to follow both approaches and since 

the research was chosen to be restricted to specific regions this 

lead to the consideration of classical type methods oly. Monte 

Carlo type methods have the advantage of being adaptable to various 

regions but offer no reasonable means of avoiding returns to the 

same neighbourhood sample which suggests that the methods should not 

be as effective as an efficient classical type method. 

**{The properties of linearity for multiple integrals 

Multiple integrals satisfy the following (which correspond to the
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properties of linearity for one dimensional definite integrals) : 

a)if k is a constant 

[-/ k£(K,,Xg70++Xn) AX, dxXg-. dXq 

Rn 

ox ff £(X,pXpre++Xn) AX\AXg-2- AXq 

Rn 

b) es rea + G(X, /Xpre0eXn) AK, GKe.-- AXq 

Rn 

= I : [ie meron dx, dxXe...dXn 

Rn 

[se atte AX, AX p++ dXy 

Ro 

c) je AX, dXp «- «dXy 

Rn 

= ) ian AX, dxX2 -. -dXq 

Rnl 

+ ig f £(X,,Xpr002Xn) AX\dxg-- -dXn 

Rn2 

where Rn can be defined as a union of the regions Rnl and Rn2 which 

have at most only boundary points in common. 

These properties have natural extensions, for example in b) toa 

sum of more than two functions and in c) to a union of more than 

two regions.} 

1.5 Objectives 

The overall objective of this work has been to produce efficient,
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reliable software for the approximate evaluation of multiple 

integrals over the two specific regions of the hypercube and the 

simplex. The work is limited to these two basic regions since this 

poses a sufficiently difficult task to be examined realistically in 

the time available. The software is not intended to provide the 

final solution to the problem but rather to form a basic grounding 

for the available theory which can be enhanced as additional theory 

is developed. A secondary aim is to demmstrate the usefulness of a 

high level language and advanced programming techniques in the 

construction of such numerical software. 

A survey of techniques for evaluating one dimensional integrals 

revealed that the majority of one dimensional problems are tackled 

by adaptive quadrature algorithms. An adaptive algorithm attempts to 

take advantage of the "shape" of an integrand by applying less 

integrand evaluations where the integrand is "well behaved" and 

comparatively more integrand evaluations where it is "badly 

behaved". This can reduce the overall "cost", usually measured in 

terms of integrand evaluations, of achieving a given accuracy for 

some problems. That is problems which require comparatively more 

integrand evaluations in certain parts of the region to obtain a 

particular accuracy in those parts of the region as compared to the 

number required to obtain the same accuracy in the rest of the 

region. There is a potential saving for integrands which are "badly 

behaved" over relatively small areas of the region and which are 

"well behaved" over the rest. However, if the integrand is uniformly 

"well behaved" or uniformly “badly behaved" over the entire region 

then an adaptive method will perform less favourably than a non 

adaptive method. This is because an even distribution of integrand
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evaluations will be required and the adaptive method involves 

various overheads in determining this whereas a non adaptive method 

always uses this type of distribution. In fact any "potential 

reduction" expected with an adaptive method has to be off set 

against the additional work required to achieve the desired 

distribution of integrand evaluations. The potential savings in 

"cost" by adopting this technique for multidimensional problems are 

far greater due to the size and complexity of such problems. Thus, 

one of the first objectives was to develop a basic adaptive 

multidimensional quadrature procedure. There are a wide variety of 

formulae that lend themselves to this type of algorithm and in order 

to be able to compare their merits a further aim was to make it a 

feature of the procedure that it was able to utilise alternative 

formulae. This allows any new formulae to be tested as they become 

available 

A major feature of multidimensional integrals is the large number of 

integrand evaluations required to obtain a meaningful approximation. 

Even for a simple problem the number of integrand evaluations 

required can be very high and the "cost" increases exponentially as 

the number of dimensions increases. Further if the integrand is a 

complicated expression and hence, expensive to evaluate, then the 

time taken to compute the integrand evaluations becomes the dominant 

proportion of the time required to compute an estimate to the 

integral. If an adaptive scheme is used it seems feasible that for 

"expensive" integrands it would be economical to store and reuse 

these evaluations rather than recompute their values. Obviously the 

method of storing the integrand evaluations needs to be both fast 

and efficient in the use of store. The adoption of such methods
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assumes that the quadrature formulae being used have their nodes at 

sufficiently convenient positions to allow a suitable subdivision 

strategy to take advantage of the positions in terms of reusing the 

integrand evaluations. Thus, the subdivision strategy and the chosen 

formulae are interrelated. These three topics, choice of formulae, 

subdivision strategy ani methods of storing integrand evaluations, 

have been investigated by the author. 

A straight forward approach to the design of an algorithm for the 

approximate evaluation of miltiple integrals is one based on the use 

of product type formulae. However, at first sight such algorithms 

appear to be far too “expensive” in terms of numbers of integrand 

evaluations even though they can produce very accurate 

approximations in certain cases. With the advent of more and more 

powerful computers they could offer a feasible technique. 

Consequently the author has developed an algorithm based on product 

type formulae in order to quantitatively measure their effectiveness 

in terms of cost and accuracy and in order to provide a bench mark 

for comparing other techniques. This algorithm is non adaptive and 

uses an even distribution of nodes throughout the region of 

integration. Hence it is well suited to integrands that are 

uniformly behaved, either "well" or "badly", throughout the region. 

Experience with one dimensional adaptive quadrature procedures 

(Malcolm and Bruce-Simpson [41]) suggest a global subinterval 

selection stategy as opposed to a local one. With a local strategy 

the local error criteriondecreases linearly with the interval length 

and hence is most stringent as a tolerance in regions where the 

adaptive process is performing the most subdivisions. With a global



Page 12 

strategy the aim is to select subintervals so that the local errors 

are roughly equal in magnitude rather than scaled by the length of 

the subintervals. Malcolm and Bruce-Simpson suggest that a global 

subdivision strategy has the potential both for reducing the number 

of subintervals, and the corresponding integrand evaluations, and 

for generating a result with an error closer to a specified 

tolerance, rather than more accurate with the corresponding "cost" 

overheads. Since the number of subregions used in a multidimensional 

quadrature procedure is likely to be higher than that in a me 

dimensional problem the potential savings would seem to be far 

greater. Such considerations have been examined by the author to 

determine if the potential savings can be achieved or if they are 

lost in the overheads incurred in implementing such a strategy. 

Once successful procedures have been written to approximate multiple 

integrals over the two basic regions the problem of extending these 

methods to cover other regions which are unions of the basic regions 

must be considered. The scope of this thesis cannot cover the topic 

of subdivision of regions of integration into combinations of 

hhypercubes and simplexes adequately. However, the author has 

considered how the procedures can be extended or used to cope with 

problems where the region of integration is already expressed as a 

union of subregions, each of which is either a simplex ora 

hypercube. 

Until recently the enhancement of computer performance has come fran 

a refinement of the basic Von Neumann architecture and the improved 

performance of semiconductor components. With the rapid development 

of LSI technology and the corresponding fall in processor costs
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there has been a trend towards multiprocessor architectures offering 

both parallel and concurrent processing capabilities. Improved 

performance of problem solving on this type of architecture depends 

to a large extent on the algorithm employed. If the algorithm can be 

divided easily into a number of largely independent processes then 

an improvement in terms of speed of execution can be expected. With 

an adaptive quadrature procedure the algorithm proceeds by 

continually subdividing the initial region of integration into more 

and more subregions each of which is treated in a similar manner on 

an independent basis. This suggests that an improved performance 

might be expected on a multiprocessor type computer. Although a 

machine with the necessary architecture was mot at the authors 

disposal, the theoretical possibilities of this type of approach 

have been considered. 

1.6 Contents of the chapters 

Chapter 2 deals with the theory of product type rules. A little 

background theory relating to product rules is given. The major 

problem with product rules is the large number of integrand 

evaluations used, but if sufficient processing power is available 

they can be used to produce very accurate results for some problems. 

An algorithm is developed based on product Patterson rules. The 

algorithm adopts an iterative approach applying higher and higher 

order Patterson products until the required accuracy is obtained. A 

product Patterson set of rules was chosen because they form a common 

point family of rules and a simple method has been devised to store 

and reuse the integrand evaluations.
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Chapter 3 examines the difficulties of testing algorithms. The 

methods of testing used with reference to one dimensional problems 

are reviewed and the applicability of these methods to 

multidimensional algorithms is considered. The ideas of the 

"battery" test and the performance profile are introduced. 

The first part of Chapter 4 contains a detailed description of a 

basic adaptive multidimensional quadrature procedure for the 

hypercube. This procedure is written so as to facilitate the testing 

of various formlae on a variety of test problems. The second part 

o£ Chapter 4 describes an analogous procedure for the simplex. These 

procedures deliver satisfactory results but highlight the problems 

of testing. 

In the first half of Chapter 5 the author approaches the problem of 

storing integrand evaluations. The justification for storing 

integrand evaluations is discussed. A method of storing the 

integrand evaluations in a linked list is introduced along with a 

method of determining a unique key for each integrand evaluation. 

Alternative methods of enumerating this key are described and an 

algorithm based on one method is described. The second half of 

Chapter 5 continues the theme of storing integrand evaluations by 

introducing the ideas of scatter storage techniques based on hash 

codes. An algorithm based on this method is developed, This offers 

the possibility of increased performance under certain conditions. 

In Chapter 6 one of the previous algorithms is modified to use a 

global subinterval strategy instead of the local strategy used 

previously. A comparison is made between the two approaches and some
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conclusions are reached about the advantages and disadvantages of 

the global technique. 

Chapter 7 defines a method of describing a region as a linked list 

of subregions, each of which is either a hypercube or a simplex. A 

procedure is constructed which applies the basic procedures 

developed previously to a linked list of this form in order to 

obtain an approximation to an integral over the region thus 

described. The limitations of this approach are discussed. 

The possible advantages of using a multiprocessor type architecture 

for multidimensional quadrature are considered in Chapter 8. A 

theoretical algorithm is developed o the basis of the availability 

of a multiprocessor with certain capabilities. 

The final Chapter contains some concluding remarks and a summary of 

the preceding work.
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Chapter 2. Product Formulae 

2.1 Introduction 

The major classification of quadrature formulae is into product and 

non product type formulae. This chapter deals with product formulae. 

A quadrature formula such as : 

[-f w (x x5++-x,) £(x|x,-+-x,) dx dx ,...dx,, 

Rn n 

= > BiL(Vi Vio *++Vin) + 

tet 

could be derived from a combination, or product, of formulae for 

regions of dimension less than n. It is not possible to construct 

product formulae for arbitary regions Rn, but they can be 

constructed for some simple regions which are often encountered. The 

author considers product formulae in relation to two of these simple 

regions : the hypercube and the simplex. 

In most cases n one dimensional formulae, each of degree d, are 

combined to give a new formula of degree d for Rn. The method for 

constructing product formulae is the method of separation of 

variables. Consider the monamial integral : 

Jf Se (RIK Vo sc) x x%*,.. x%° ax dx _...dx are) 
wre. nn 1 2 n 1 = n 

Rn 

If it is possible to find a (non linear) transformation : 

X, = X\(W,,Ug, ++, Un) 

Xe = Xp(UyUsr+++/Uq)
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Xn = Xq(U, pes ++ Un) 

which transforms (1) into the product of n single integrals : 

[veo g,(u,) du, 

| aiea ga(ua) dug 

[ Wa(Un) Go(un) dun 

and if some suitable formulae are known for the single integrals, 

then it is possible to combine these fommlae to give a formula for 

Rn. 

The most undesirable property of product formulae is that the number 

of points increases very rapidly as n increases. However, for small n 

product formulae can be very useful because of their high accuracy. 

2.2 The construction of a product formula for the hypercube 

Initially consider the case for n = 3. Let Rn be the hypercube 

-l < x <= 1 and the weight function w(x,y,z) be equal to 1. Now 

suppose there exists a one variable formula
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' ”~ 

[ dx = Z aig yi) 
~! a 

which has degree d. 

Now construct the product formula from three copies of this formula, 

that is the formula with m3 points : 

[ | 

Wt 

acts dxdydz = mae ain ais £( pay pie pio DS) secre) 
1 \eicem 

keiz3 

It is not difficult to see that this formula is also of degree d. 

For if 0@ek<ed , 0 = f<d , am 0G X<d =... (3) 

then 

thes ' q ' 

LL [te dy dz - [see ae 

ciel “1 Ly Ly 

ny ", n, 

=o Ke aie koa pe ++ (4) 

= yee ins 

= Sa, Fie Ais pie pat pat 

Veiker 

Ke1,2,> 

Since the set of alld ,f,¥ which satisfy Ob<=f+ Y+kc= d , 0 <= x, 0 

SS p , O<=¥% is a subset of those which satisfy (3), formula (2) is 

exact for all monanials of degree less than or equal tod. An 

argument similar to (4) shows that formula (2) is not exact for x@t! 

ry “and 24+ therefore formula (2) has degree d. 

Formula (2) has an obvious generalization for any n >= 2.
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2.3 General Cartesian Product Formulae 

The result of the last section can be generalized for other regions 

as follows. Assume Rn, Rp and Rq are regions in Euclidean space of 

dimensions n, p and q respectively, where n = p+ q and 

Rn = {(xi, Kaos Xa) & (Kir o+eKp) ERD, (xp-s-Xale Rq } 

Then Rn is called the Cartesian product of Rp and Rq. That is 

Rn = Rp * Rq. 

Now assume that 

w(X,,Xe0e+Xn) = We(X) +X ars +Xp)Wa (Xpy +++ -Xn) éaiars (Die: 

If there exist two formulae, one for Rp and one for Rq : 

: o[ eybeyercxpdebes econ x, Axe. -dXp 

= Sah 99 of degree d ....(6) 

f [yey ° +X) G (Mpa stn) AX, + + AX 

& 
Ni 

os S Byatte 

Then the N = NpNq points and coefficients 

  

Pj) of degree d ....(7). 

  

(ds +> Apo Bip 7 + pin) BpiBgj +++ (8) 

ih ly) ao ONP ete = Ng 

form an integration formula of degree d = min (dpdq) for Rn with 

weight function (5). 

The proof is a consequence of the fact that
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f- [ots x0 x ee eek Ox iesndxn 

Ra 

is the product of 

foo fags xe eae ene dx ,...dxp 

e 

and 

ee 
2 Js (Xpae = Xd Set AX yp + AX 9 

and is analogous to the set of equations (4). 

The formula (8) is a Cartesian product formula; the Cartesian 

product of the formulae (6) and (7). 

2.4 The construction of product formulae for the n simplex 

Now consider the construction of a product formula for Tn the n 

simplex with vertices : 

(0}077----0) 

(1,0; anes-O) 

(0,1,0, -..0) 

(0,0; <00-s1)- 

It is possible to transform Tn onto any other simplex by means of an 

affine transformation. Therefore it is possible to obtain 

integration formulae for any given n simplex by an affine
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transformation of formulae for Tn. 

The integral of a monamial over Tn is 

[[T [+ 
This can be ean into a product of n single integrals using 

wyr Kae ny 

PRS con oXV GR, AN 6 Ak, +00 (9) 

the following transformation : 

Sey = ¥4 

X2= ye(1-y\) ye(1-x,) 

X3 = ys(1-ye) (1-y,) y3(1-x\-x2) 

Xn = Yo(1—You) (1-yee) «+e (1-y,) = ya(1-xy-Xe- ++ --X) +e 2 (10) 

Since the limits of integration for the x are 

O <= xi 1-x,- ..--xu, 1 =1,2,--.n 

the limits for the yj will be 

O«eyi<el , i=1,2,..-n. 

Since the Jacobian of transformation (10) is 

T= (1-y, "yn eee (1a) 

the mononial integral (9) transforms into 

fe fowl iol, Ga ey a ee Ye ndy, dys «+<dyq «++(11) 

A, 

Be 

pt sooo t+ n-l 

het wees HX 4 n-2
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Pri = ont 1 

The integral (11) is a product of n single integrals, where the 

integral with respect to y, has the form : 

1 

Tore dy, k=1,2,...n 

ie He < 
where Pyly,) = Ve Cl=y_) is a polynomial of degree = ofyt 

seeee + On in yy. Therefore if there exist n one variable formulae 

of degree d, of the form : 

! m 

a) (1-¥,)" "Ely 4) Gye © Sau E(pei) ++ +-(12) 
(ag ial 

for k =1,2,...n, these can be combined to give a formula of degree 

d for Tn. 

These results can be summarised as follows: if each of then 

formulae (12) has degree d then a formula of degree d for Tn, with 

w(x, ,+...Xn) = 1, is given, in cartesian coordinates, by the m* 

points and coefficients 

(iy Mhiey + Vuigaetg) tees (13) 

ArAeigcees Ania 

Vi, = pre 

Vite = Pei(1- pa) i
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Via srtn = Prin Bajos ee C= Bra) 

l1<ei,em ,k=1,2,...n. 

Formula (13) is called the conical product of the one dimensional 

formulae (12); these are usually taken to be the Gauss-Jacobi 

formulae. 

The above can be generalized to give integration formulae for Tn 

with a weight function 

= eo xS*(1-x,)* esse (1=x\- soe . 

The product formula is exactly analogous to (13) except in place of 

the me variable formulae (12) the following formulae must be used. 

' " 

[ort £ly,) ayy 2 Fre Flpe) k =1,2,..en 
2 ie) 

where the Px, 3x, Se,€x are related by 

“Lh < = & kK=b, one 

“1 < Pris St +--+ Sn 4 ey +--+ ent n-) 

=I 

SOC eaeeon tT Enhie Ene 

=< Pa = €n
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2.5 The degree of the formulae used in the construction of a product 

formula 

In the above discussion all the product formulae were constructed 

using products of formmlae of the same degree. There is no reason 

why all the formulae used have to be of the same degree and under 

certain circumstances there may be advantages in using different 

degree formulae. For example if it is known that an integrand is 

"well" behaved in one dimension but "badly" behaved in another then 

it could be advantageous when forming a product rule for this 

integrand to use a product of a low and a high order formulae. Thus 

allowing the distribution of the nodes to reflect the behaviour of 

the integrand. On the other hand if the behaviour of the integrand 

is not known then a product of different degree may give a false 

impression of the integral, in particular if the integrand is well 

behaved in the dimension where a high order formula has been used 

and badly behaved in a dimension where a low order formula has been 

used. Hence the main advantage of using the same degree formulae 

when constructing a general product formula is that the resulting 

formula has an an even distribution of nodes, whereas the use of 

different degree formulae can be advantageous when constructing 

specific product formulae for integrands of known behaviour. 

2.6 A set of product rules based upon Patterson's formulae 

This section deals with the construction of a set of product type 

rules for the hypercube based upon the oe dimensional formulae 

derived by Patterson [48]. Patterson's formulae form a family of 

interlacing whole interval, cammon point quadrature formulae of
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fairly high order which possess good stability and convergence 

properties. The rules were produced by Patterson in 1968 as an 

example of the method which he developed to extend the ideas of 

Kronrod [28], who first showed how to add a further ntl points to an 

n point Gauss-Legendre formula to produce a 2ntl point formula of 

degree 3ntl (n even) or 3n+2 (n odd) in 1965. Patterson began with a 

3 point Gauss rule from which he derived a 7 point rule with 3 of 

the abscissae coinciding with the original Gauss abscissae; the 

remaining 4 were chosen so as to give the greatest possible increase 

in polynanial integrating degree and the resulting 7 point rule had 

degree 11. From the 7 point rule a 15 point rule of degree 23 was 

derived in a similar manner. Continuing in this fashion Patterson 

derived rules using 31, 63, 127 and 255 points of respective degree 

47, 95, 191 and 383. The nodes and weights for these formulae are 

given in appendix [2]. These formulae were used in an algorithm for 

automatic numerical integration over a finite interval [48]. The 

basis for the algorithm was the successive application of these 

rules, until the most recent results differ by the tolerance or 

less. Due to their interlacing form, no integrand evaluations are 

wasted in passing from one rule to the next and the algorithm has 

proved to perform reliably and efficiently in it s long period of 

use. In a survey of available algorithms for numerical quadrature 

V.A.Dixon [11] states that the family of formulae is ideal for an 

automatic scheme. Hence it seemed reasonable to adopt these formulae 

as the starting point when constructing a set of product type rules 

to be used in an autamatic quadrature routine based upon an 

iterative scheme.
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2.7 Construction of a product type multidimensional quadrature 

routine. 

This routine uses a simple iterative scheme, generating and applying 

successive higher order product rules, based on a Patterson family 

of one dimensional rules, until either the required accuracy is 

obtained or the maximum number of integrand evaluations allowed is 

exceeded. The method is based upon generating the rules in 

preference to storing them for two reasons; firstly, so that the 

method can be used for any number of dimensions, and secondly, so 

that only one copy of the nodes and weights has to be stored. 

Basically the algorithm consists of the following : 

REPEAT 

generate the m" point product rule based on the m point 

Patterson rule (m takes the values 3,7,15,31,63,127,255) 

campute an estimate to the integral using this rule 

UNTIL 

either the estimate is to within the given tolerance or the 

maximum number of integrand evaluations is exceeded 

IF the maximum is exceeded 

THEN output a suitable message 

ELSE output the result 

FI 

As an example consider a two dimensional problem in which case m2. 

Starting with a three point rule (m3) it is necessary to construct a 

9 (m‘n) point product rule. Let the 3 points be x, y, z. In one 

dimension the distribution of the points may be :
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Be y z 
a 

ak 0 1 

In order to form the 9 point rule 3 copies of the 3 point rule must 

be distributed across the region at a spacing equivalent to the 

distribution of the original points. This gives a distribution of : 

  

BY ey’ 

        

The next rule has 7 points in one dimension, 3 of which are those of 

the 3 point rule and the other 4 of which interlace with these. Thus 

in one dimension : 

= y Zz 

  

=k Sr 

pq nes 

In order to form the 49 point rule, 7 copies of the 7 point rule 

must be distributed across the region at a spacing equivalent to the 

distribution of the original points. Thus giving : 

  

Where the points are (p,p),(p,x),(p,q),--(s,s). It can be seen that
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the coordinates of the points of the product rule are constructed by 

taking all the possible nodes of the one dimensional rule as the 

first coordinate of a point and all the possible nodes of the ome 

dimensional rule as the second coordinate of a point. Consider the 9 

point rule : 

the first point is (1st node of 1d rule, lst node of 1d rule) 

the second is ( as , 2nd node of 1d rule) 

the third is ( . , 3rd node of 1d rule) 

the fourth is (2nd node of 1d rule, 1st node of 1d rule) 

the ninth is (3rd node of 1d rule, 3rd node of 1d rule). 

A simple way of representing this is to let the nodes of the 

original one dimensional rule to be numbered 1, 2, 3. Then the nodes 

of the product rule can be written in terms of these numbers : 

(pL) (152), ( 3) oe 250 2 (379) « 

Then a point in the product rule, for example (2,3), can be 

interpreted as the point given by taking the appropriate combination 

of the nodes of the one dimensional rule, for example the second 

node as the first coordinate and the third node as the second 

coordinate. Obviously the process can be reversed, in that the pairs 

(1,1),(1,2) ... (3,3) can be generated first and the actual points 

generated by relating the integers to the nodes of a one dimensional 

rule. This is the method adopted in the algorithm. The procedure to 

generate the nodes of the mn point product rule has to work for any 

value of m orn given the appropriate set of nodes and weights for 

the one dimensional m point rule. The procedure achieves this by 

generating the n elements of an array, in the order 

(1,1,.-1),(1,1,-+2),+--(m,m,..m), which can be interpreted as the
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coordinates of a point of the new rule. For example, if n = 3 and 

the array holds (1,3,2) this can be interpreted as the point x,y,z 

where x is the first node of the one dimensional rule, y is the 

third node of the one dimensional rule and z is the second node of 

the rule. The weight for this node is given by the product of the 

first, third and second weights for the oe dimensional rule. This 

procedure consists of the following : 

PROC generate = (INT m,n, REFLJINT array, 

REF REAL present estimate)VOID : 

BEGIN 

{This procedure generates a set of m” n dimensional points, 

where m is the number of points in a one dimensional rule, 

which make up an n dimensional product rule; the product of nm 

point one dimensional rules} 

FOR i TO m DO 

BEGIN 

array[n] := i; 

TE n> 1 

THEN generate(m,n-l,array,present estimate) 

ELSE 

interpret the array ; 

increase the number of integrand evaluations; 

add the weight * the integrand evaluation to the 

present estimate 

END 

END of the procedure generate. 

One of the major advantages of using the Patterson family of rules
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is that each higher order rule uses all the previous nodes used by 

earlier rules. This means that no integrand evaluations, which could 

be "expensive" for complicated integrands, need to be wasted during 

the iterative scheme. In order to take advantage of this feature it 

is necessary to store the integrand evaluations and be able to 

access them efficiently. Fortunately,using generate the nodes will 

always be generated in a specific order, even when increasing the 

value of m. In fact increasing the value of m merely adds new nodes 

to the sequence of nodes. For example, with a three dimensional 

problem the nodes would be generated in the following order: 

See are 

digo: gi 2 

A LigS 

ae Ay aa 

1,2,2 

se. etc. 

Increasing the value of m would result in the addition of more nodes 

to the list : 

Sgt gk 

Lply 2 

Deep e ly) 

1,1, 4 new node 

1,1, 5 new node 

1,1, 6 new node
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Also, in generating this new list it is easy to see that any nodes 

generated using values less than or equal to the previous value of m 

already exist, while nodes generated from values greater than this 

value of m do not exist. Consequently the integrand evaluations at 

these nodes need to be computed and stored. Thus the integrand 

evaluations are conveniently stored in a linked list. A pointer then 

advances through the list as nodes are generated. If the node 

already exists then the pointer indicates the element of the list 

which holds the required integrand evaluation. Otherwise, the 

pointer indicates the position of insertion of a new list element 

created to hold the integrand evaluation at this node. 

feval for 1,1,1 

feval for 1,1,2 

feval for 1,1,3 

feval for 1,2,1 

feval for 1,2,2 

feval for 1,2,3 

etc. 

When m increases these integrand evaluations are used in order until 

the node 1,1,4 is generated which does not already exist. A new node 

element is created and the integrand evaluation is added to the 

list. 

feval for 1,1,4 

Hence it was necessary to alter the procedure generate slightly as 

follows: 

PROC generate =(INT m,n,previousm, REF[JINT array, BOOL exist, 

REF REAL present estimate) VOID : 

BEGIN
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{Procedure to generate the nodes of an n dimensional product 

type rule from an m point one dimensional rule} 

FOR i TO m DO 

BEGIN 

arrayL[i] : 

  

IF exist 

{if exist is false then the node already contains a 

coordinate which indicates that it does not already exist} 

THEN IF i > previousm 

THEN {node does not already exist} 

exist := FALSE 

#L 

FI; 

Leen >) 

THEN generate (m,n-1,previousm, array, exist, 

present estimate) 

ELSE IF exist 

THEN 

{the integrand has been evaluated at this node previously 

and the required integrand evaluation is the next value in 

the list} 

select the next value in the list ; 

generate the corresponding weight ; 

add the weight multiplied by 

the value to the present estimate 

ELSE {the node has not been used previously} 

interpret the array; 

increase the number of integrand evaluations ; 

create a new list element ;
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store the integrand evaluation in this element ; 

add this element to the list ; 

add the weight * the integrand evaluation 

to the present estimate 

FI 

FI 

END 

END of the procedure generate. 

This procedure now contains several steps which need to be explained 

further. 

Select the next value in the list : 

In order to be able to do this it is necessary to define the 

elements of the list. Each element needs to contain both an 

integrand evaluation and a pointer to the next element in the list. 

It was convenient to define a new mode for the elements of the list 

MODE NODE = STRUCT (REAL feval, REF NODE ptr) . 

Then selecting the next value in the list required the use of a 

pointer to indicate the present position in the list. This pointer 

was called pointer so that the following could be written: 

next value := feval of pointer ; 

{extract the value fron the list} 

pointer := ptr OF pointer 

{move the pointer on to the next item in the list } 

Generate the corresponding weight: 

This is a little more involved. The weights for the various rules 

are stored in an array called weights in the required order. That 

is:
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weights for m= 3 

weights for m= 7 

weights for m= 15 

etc. 

Also a second array called starting points contains the positions of 

the start of each set of weights. Thus the starting position is 

merely a function of m and generate the corresponding weight 

consists of: 

corresponding weight := 1 ; 

FOR i TO number of dimensions 

DO corresponding weight TIMES 

weights(starting position[m]+array[i]) 

The value of starting position[m] is another parameter of the 

procedure generate. 

Interpret the array : 

This consists of converting the values of the array into the 

coordinates of the n dimensional point. The point is declared as 

[1:n]REAL and interpret consists of : 

FOR i TO number of dimensions 

DO point[i] := node[array[i]] 

This was combined with generating the weight described above. 

Create a new list element, store the integrand evaluation and add
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this element to the list are achieved by the use of a procedure 

which will perform all three tasks, given the appropriate 

parameters. The procedure is called add to list and the parameters 

it requires are the integrand evaluation and the pointer to the 

present position in the list. 

PROC add to list = (REAL feval, REF REF NODE pointer) VOID : 

BEGIN 

REF NODE newnode = NODE ; {create a new node on the heap} 

feval OF newnode := feval ; 

ptr OF newnode := pointer ;{pointer dereferenced twice} 

pointer := newnode {pointer dereferenced once} 

END of the procedure add to list. 

Then it is necessary to move the pointer on to the next item in the 

list: pointer := ptr OF pointer. This ensures that the next 

integrand evaluation chosen from the list is the correct one for the 

given node. 

Hence the outline of the recursive procedure generate consists of: 

PROC generate = (INT m,n,previousm,starting position, 

REF[JINT array, 

BOOL exist, REF REAL present estimate)VOID: 

BEGIN 

{This is a procedure to generate the nodes of an n dimensional 

product type rule fran an m point one dimensional rule and to 

generate an estimate to an integral using this rule} 

FOR i TO m DO 

BEGIN 

array[n] := i; 

IF exist 

THEN IF i > previousm
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THEN exist := FALSE 

ET 

EL; 

Trew 1 

THEN generate (m,n-1,previousm,starting position,array, 

exist,present estimate) 

ELSE IF exist 

{the integrand has been evaluated at this node,the 

required integrand evaluation is the next value in 

the list 

generate the corresponding weight} 

corresponding weight := 1; 

FOR i TO number of dimensions 

DO corresponding weight TIMES 

weights[starting position + arrayli]] ; 

{add the weight * the next value to the estimate} 

present estimate PLUS (corresponding * 

feval OF pointer) ; 

{move the pointer to the next item in the list} 

pointer := ptr OF pointer 

ELSE {the node has not already been used} 

{interpret the array and generate the weight} 

corresponding weight := 1; 

FOR i TO number of dimensions DO 

BEGIN 

point{i] := nodeLarray[i]] ; 

corresponding weight TIMES 

weights[starting position + array[i]]
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END ; 

integrand eval := f(point) ; 

present estimate PLUS 

(corresponding weight * integrand eval) ; 

nofe PLUS 1 ; 

{increase the number of integrand evaluations} 

add to list(integrand eval, pointer) 

Er 

END 

END of the procedure generate. 

The outline of the program based on Patterson's rules consists of : 

Product type method based on Patterson's rules 

WITH segfl-2d FROM pjk-alb-al 

BEGIN 

[] REAL nodes = (.......) 7 

[] REAL weights = (.......) 7 

[] INT starting positions = (......) ; 

INT maxpoints , nofe :=0, nj; 

REAL eps ; 

read((maxpoints,eps,n)) ; 

CJmNT m = (3,7,15) ; 

INT next := 1 ; 

[1:n]JINT array ; 

BOOL exist := FALSE , notgt8 := TRUE , nottoomanyfe := TRUE ; 

REAL result , resultl ;
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MODE NODE = STRUCT(REAL feval,REF NODE ptr) ; 

PROC add to list = (REAL feval , REF REF NODE pointer) VOID : 

NODE start := (0.0,NIL) ; 

REF NODE pointer := ptr OF start ; 

PROC generate = ....... : 

BEGIN .......+..END ; 

generate(m[next],n,0, starting 

position[next],array,exist,result) ; 

WHILE (exist := TRUE ; 

pointer := ptr OF start ; 

generate ( ... eoee,resultl) ;   

resultl - result > eps) 

AND notgt8 

  

next < 8 

AND nottoomanyfe := nofe < max 

DO result := resultl ; 

IF NOT notgt8 

THEN print((newline,"all nodes used ",newline) ) 

Fly 

IF NOT nottoomanyfe 

THEN print((newline,"Too many integrand evaluations required") ) 

FI:
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print((newline,"The result is : ",resultl,newline) ) 

FINISH 

The complete version of the program is given in appendix [2]. 

2.8 Testing 

The program was tested with the set of test problems given in 

appendix [1] and using a set of tolerances 0.5, 0.1, 0.01, 

0.05,....0.000001. The tables of the results for the test runs are 

given in appendix [8]. 

2.9 Conclusions 

All the results produced using this program on the limited set of 

test problems were very accurate but correspondingly “expensive" in 

terms of time and the number of integrand evaluations used. The 

results were all far more accurate than the requested tolerance. For 

example on the two dimensional version of the first test problem 

with a tolerance of 0.5 the actual error was approximately 0.000001. 

However the number of integrand evaluations used was 49 as compared 

to 7 with one of the adaptive methods which produced a result with 

an actual error of approximately 0.003, and the time taken to 

compute the result was 77 millunits as compared to 9 millunits for 

the adaptive method. One of the drawbacks with using product 

formulae is the large minimum number of integrand evaluations that 

have to be used; in two dimensions a minimum of 49 integrand
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evaluations are used, in three dimensions 343 and in n dimensions 

7’n. Also there is a dramatic increase in the number of integrand 

evaluations used in moving from one product rule to the next higher 

order rule. For example in two dimensions the number of integrand 

evaluations used takes the values 49, 225, 961, 3969, 16129 and 

165025, and in three dimensions it takes the values 343, 3375, 

29791, 250047, 2048383 and 16581375. As the mumber of dimensions 

increases the change becanes even more pronounced. Hence, as can be 

seen from the results, the program stops for quite large tolerances, 

even though the previous results were far more accurate than the 

requested tolerance, because the next rule has had to be applied in 

order to determine the error estimate and either there is 

insufficient space left on the heap to store the list of integrand 

evaluations or the time allocation has been exhausted. This suggests 

that the stopping criterion might be relaxed somewhat. 

In conclusion the method is very accurate but expensive both in 

terms of integrand evaluations used and the storage space required. 

The storage space required could be reduced to a minimum by not 

reusing the integrand evaluations but this would defeat the aim of 

the algorithm and slow the method down considerably with anything 

but the simplest of problems. Hence if sufficient storage space and 

time are available then the method is suitable for producing very 

accurate results for low dimensional problems. At this point in time 

the method is unsuitable for higher dimensional problems because the 

vast amount of space and the large number of integrand evaluations 

involved are beyond the computing power of most available machines.
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Chapter 3 The Testing of Quadrature Routines 

3.1 Introduction 

This chapter deals with the testing and comparison of quadrature 

procedures. Obviously, it is necessary to test and to compare 

routines in order to satisfy the authors of the procedures that they 

actually work, in order to give the user some confidence in using 

the procedures and in order to justify the inclusion of such 

procedures in a library. It is generally agreed that the structure 

of automatic quadrature routines is sufficiently complicated to 

preclude the possibility of comparison or evaluation by analytic 

means alone and so it is necessary to adopt numerical experiments as 

a method of testing and comparison. The choice of a suitable format 

for these experiments is very important. 

From the great number of quadrature routines which have been written 

for one dimensional problems it would seem that the inclusion of any 

reasonable new automatic quadrature routine in a software library 

can be justified by choosing a suitable set of test problems for 

which the routine produces "better" results than other available 

routines. A proliferation of automatic quadrature routines has 

resulted because of the "absence of generally acceptable standards 

or benchmarks for comparing or evaluating such routines" (Lyness and 

Kaganove[38]). This would suggest that it is very important to adopt 

a suitable test and comparison methodology for multidimensional 

quadrature routines so as to avoid wasting both time and computing 

resources. Hence the author examined the test methodologies adopted 

for one dimensional routines before adopting any particular approach
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in this work. In one dimensional quadrature two distinct approaches 

have been developed. The first involves the use of a "battery" type 

test while the second is based upon a "statistical" or “perfomance 

profile" approach. 

3.2 "Battery" type testing 

The most commonly adopted approach in testing one dimensional 

quadrature routines is the "battery" test. This type of test 

involves applying a given routine to a predefined set of problems 

which have known solutions and which vary in difficulty fron "well" 

behaved integrands with no non mathematical difficulties, i.e. 

difficulties due to the "shape" of the integrand, to "badly" behaved 

integramis with non mathematical difficulties. Theoretically, it is 

possible to take the results and compute an overall figure of merit 

for the given quadrature routine. This method of testing and 

comparison is based upon two assumptions : 

a) That there is a "best" routine applicable to all the problems in 

the test set. 

and 

b) That the test set of problems are representative of a wide set of 

problems for which the routine will perform similarly. 

These assumptions are not necessarily valid and this has led to 

several difficulties in applying this method. Nevertheless, the 

method is widely adopted because it is so simple to use. One major 

example of a battery type test was the investigation by Kahaner[24] 

which was performed in order to choose suitable one dimensional 

quadrature routines for inclusion in a _ subroutine library. This 

investigation highlighted sane of the problems associated with
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battery tests. A large set of problems, methods, and tolerances were 

used and the experiment was completely objective in that if there 

had been a best overall method then it would have been found. 

Unfortunately, no one method proved consistently better than any 

other over the complete range of test problems and in the end the 

choice was made based, principally but not exclusively, upon an 

experienced but subjective idea of the "best" all rounder in terms 

of average reliability and average speed for each routine. Using 

this test method it is very difficult to make any hard and fast 

decisions as to the general applicability of a routine. 

Perhaps the major drawback of the battery test is the way in which 

the test set is chosen. The integrand functions are normally chosen 

to be as different as possible so as to obtain a wide generality. 

However, it does not always follow that a method suitable for a 

problem A will be suitable for a problem A' (a slight variant o A). 

In fact minor changes in the choice of integrand may lead to major 

differences in the performance of the algorithm in same cases (this 

is a consequence of the nature of the performance profile [39] which 

is discussed in the next section). Therefore, it is possible for a 

set of test problems to be either a "lucky" or an "unlucky" choice 

and to give a false impression, good or bad, of a routine. 

3.3 The Performance Profile approach to testing 

The performance profile approach to testing adopts the function 

v(Equad(s,€ req)) as a means of testing and comparison. The function 

v(Equad(s,€req)) is the average number of integrand evaluations 

required by the routine to integrate members of a specific problem
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family when the quadrature tolerance parameter has been set in such 

a way that an accuracy £req is obtained with probability s. 

A problem family is chosen such that each of it s members has a 

particular attribute. An individual member is specified by assigning 

a numerical value to an aiditional parameter, which may appear in 

the integrand function £(x;A) or in the integration limits a(\) and 

b( \). ‘The parameter A may take any value within a specified range, 

that is \-<=A<=)+. 

For example : 

a=1,b=2 

£(x;A) = ((x-A\)*2 +p°2)*-1 , p= 0.01 

0.998 <=A<= 2.02 

Each member of this family has a peak of height 100 and a half width 

0.01 within or very close to the end of the integration interval. 

If the experiments are limited to a single problem family then each 

run may be specified by two input parameters and € quad. 

Corresponding to each such pair it is possible to define 

Eact(\;E quad) the error | re-0¢ | of the result returned by the 

routine and v(\;€quad) the number of integrand evaluations required 

by the routine to return this result. A plot of the function act (A; 

Equad) against for a fixed value of Equad is called a performance 

profile. A fundamental property of quadrature routines is that the 

functions Eact(X; Equad) and v(; Equad) are rapidly varying 

discontinous functions of A. Because of this they are not suitable 

as a direct measure of the efficiency af an automatic quadrature 

routine. The difficulties encountered in using battery testing 

result fron this property since by relying om individual values of 

the input parameter and €quad significant arbitary components have
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been introduced into the results which frustrate the evaluation 

process. 

The evaluation technique proposed by Lyness and Kaganove [33] for 

one dimensional routines is based upon the performance profile but 

treats the problem family as a whole. An average function value 

count, v(Equad), is used along with the distribution function 

#(xrEquad). he 

v(Equad) = Ur, -d. [ wreqaaion seetl) 

@(x;€quad) = (proportion of values of \ for which 
\Eact(;Equaa)| <= x) 

S/Oe 9 [Hoe |eact(equad;d)|)ay.--. (2) 

where H(t) stands for unit step function (Heaviside function) 

er G9 

H(t) =1/2 t=0 weseees (3)   

Oo +t<O 

These quantities can be calculated using Monte Carlo integration to 

approximate the integrals in (1) and (2). Thus m rms are made to 

obtain a set of results: 

Eact( \i;Equad); v(Ai;Equad) i = 1,2,...m. The values of ) are chosen 

fron the range (\- ,A+ ) using a (repeatable) random number 

generator and the quantities 

     
vm(Equad) = 1/m = v(Aiz€quad) «22266 (4) 

and ued 

drm(x;€quad) = 1/m (number of values of i for which 

| €act(AisEquad)| <= x) 

1/m S H(x- |éact (\i;équaa)| ) Seon (5) 
i) 

are used as approximations to (1) and (2) respectively.
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As in any statistically based experiment the size of the sample has 

to be chosen with care with a view to the accuracy required in the 

results. One advantage of this method is that if anybody doubts the 

results then the distribution function can be recomputed and the 

conclusions altered if significant differences are found. Once a 

problem family has been defined and a quadrature routine chosen, 

along with a value of Equad, then the functions #(x;€quaa) and 

v( Equad) are well defined and can be determined. As illustrated 

above for example. 

In practice Lyness and Kaganove [38] found that relatively small 

values of m, such as nm&100, were sufficient to obtain a clear idea 

of the form of the functions. However, they actually used values of 

m=1000 for the sake of being cautious and they produced values of 

¢ (xzéquad) to within 1% for most of the range of x. 

A set of statistical distribution functions corresponding to 

different problem families and different automatic quadrature 

routines provides a wealth of information which could be examined by 

experts with a view to determining defects or advantages of 

particular routines in various contexts. The following is a 

hypothetical set of statistical distribution functions, ¢ (Exe, 

Equad), plottel as a function of €req for a given problem family and 

a specific routine. 

Each curve is labelled with the value of €quad and in parentheses 

the value v(Equad). The ordinate is not linear but scaled in such a 

way that if log € req were normally distributed the curve would 

appear to be a straight line.
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From this table it can be seen that if , for example, a value of 

€quad of 10*-3 is chosen then there is a 79.7% probability of the 

result being accurate to the required tolerance with a corresponding 

number of integrand evaluations of 73. This could be compared with 

the same information from the curves for another routine in order to 

Choose between the two. Sets of tables like this for different 

routines could be used to compare such things as the reliability of 

stopping criterion and the "cost" in terms of integrand evaluations 

for the various routines. This information could then be used either 

to alter existing methods or as a basis for creating new ones. An 

alternative application is to use them to provide a non expert, ie 

the user, with information that he might require for his particular 

problem. 

Although it is unlikely that a user will have a problem which 

coincides precisely with a member of a problem family which has been 

investigated already, it is possible, with most difficult problems, 

to find a salient feature of the integrand which is responsible 

primarily for the difficulties to be encountered in numerical 

integration. A problem family with only this feature can be looked 

upon for guidance. Either these sta tistics would be available
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already or they could be specially obtained. 

How does a user choose a method and a tolerance? Suppose the problem 

has a dominant feature which corresponds to a particular problem 

family and that a set of distribution functions for that problem 

family and the available routines exists. Then, using the functions 

the user can determine, using a simple double interpolation process 

on the statistical distribution curves, the required tolerance £quad 

to achieve say a 90% success probability and the average cost, 

v(& quad), using each method. For example consider the table given 

previously. If a horizontal line is drawn across at the 90% mark and 

a vertical line drawn at 10*-3 the intersection can be used to 

determine the value of €quad required to satisfy the user's 

conditions. In this case the intersection falls between a choice of 

10*-3and 10°-3.5 for Equad with corresponding costs of 83 and 73 

integrand evaluations. Hence the user may decide to use a value of 

10*-3.3 in which case he would expect a 90% success probability at a 

cost of 78 integrand evaluations. Hence, the user can decide which 

method to adopt. Thus the user has to decide both the accuracy he 

requires and the probability of success that he is prepared to pay 

for in terms of integrand evaluations. The user is warned 

unambiguously that the routine may fail, in fact that statistically 

it will fail. 

The process by which Equad(s,treq) and v(Equad) are obtained fron 

the statistical distribution function is a standard procedure 

involving interpolation. A prospective user need not be burdened 

with this calculation because a plot of Equad(s,€req) and v(Equad(s, 

€req) ) which is sufficient for the user can be obtained
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automatically. A user only needs to glance at these plots in order 

to obtain a clear idea of the relative cost involved in using any of 

the routines for a particular confidence level s. 

A drawback of this method would appear to be the fact that a number 

of plots, one for each value of s, are required for every method. If 

this were the case then the technique would be of no practical use. 

Fortunately, (Lyness and Kaganove[38]), there is practically no 

qualitative difference between plots for different values of s, 

apart from the obvious point that more integrand values are required 

by each routine for a higher confidence level. 

Thus the method of testing and evaluation involves using the 

quantity v(Equad(s,€req)) where s = (€req, Equad) as a measure of 

the cost of using a routine. 

The method has several advantages: 

1.The quantities on which the decisions are based are mathematically 

defined and can be recalculated. It is a repeatable experiment. 

2.Once a problem family has been selected, there is no bias in the 

treatment. 

3. The results are realistic in the sense that they relate toa 

‘likelihood of failure'. There is no implication that the routine 

can or should be completely reliable. 

4. The results are problem orientated, that is they are ina 

convenient form for one to select an appropriate routine for a 

particular problem. 

5.lyness and Kaganove found that their conclusions were compatible 

with common experience.
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6. It is possible to add routines and problem families and so build 

on currently available results. 

The method has the following disadvantages: 

1. It is possible to 'rig' a routine for any given problem family. 

2. The choice of problem families is a subjective element. 

3. It is a relatively expensive procedure. 

4. To obtain full benefit, the user has to "tune" the value of 

Equad. 

5. Only accuracy and economy are tested; the user interface, warning 

messages etc., are disregarded. 

Hence, using a performance profile approach to testing it is 

possible to reach unambiguous if limited conclusions about the 

quadrature routines under test: routine A is better on average than 

routine B for problems with a particular salient feature. This 

method is very costly and not feasible for all situations. 

3.4 Comparison between these two approaches to testing 

The battery test sets out to demonstrate that a particular 

integration routine is "better" for a wide class of problems than 

certain other routines by applying the routines to a limited set of 

problems and making general assumptions fron the results. 

Unfortunately, due to the very nature of the problems under test, 

these generalisations do not always follow and consequently the 

assumptions can sometimes give a false impression,either good or 

bad, of the routines being compared. On the other hand the
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performance profile approach to testing involves considerably more 

work to reach far more limited conclusions, but the conclusions are 

unambiguous and appear to give a true impression of the routines 

under test. 

3.5 Possible approach to testing multidimensional quadrature 

routines 

The range of multidimensional integration problems is vast and the 

possible complexities are far greater than those in one dimensional 

problems. Since no one integration routine has proved to perforn 

consistently better than all other routines over all problem ranges 

in one dimensional integration, it is reasonable to assume that no 

one routine will prove to be consistently better than all other 

routines over all the problem ranges in multidimensional quadrature. 

Hence, because of the advantages of the performance profile approach 

to testing over the battery type test, in that the former allows 

unambiguous conclusions to be reached for routines over specific 

problem ranges, it would seem natural to adopt a similar approach in 

testing multidimensional quadrature routines. 

The main advantage of this approach to testing is that it enables 

the author of a given routine to say with confidence that his 

routine is suitable for any problems whose dominant feature is one 

of those featured in the set of problem families to which the 

routine is applicable. However, that being the case, there is still 

a subjective element in the testing in that the author of the 

routine chooses the problem families for the test runs. Certain 

aspects of the testing must be considered before deciding on the
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approach as a suitable basis. 

The method is very expensive if sufficient tests are carried out to 

give meaningful results. The choice of problem families is very 

important. Unless the problem families reflect the dominant features 

that are encounterei in user problems then the results are of no 

use. The problem families should be user orientated, with different 

sets aimed at different applications. The method is quite complex 

and could involve the would be user in a lot of effort in actually 

interpreting the available results. This manual approach might be 

too much effort for the user to bother and therefore it would be 

better to automate the process but make all the information 

available should anyone require it, for example algorithm writers 

who may use the information to improve existing routines or in the 

writing of new routines. 

Hence, although the method has many advantages it cannot be 

undertaken seriously unless sufficient people, both software writers 

and software users, agree upon it as a standard so that a single 

body of information can be built up which can grow as new routines 

are written. The salient features of the problem families must be 

chosen with great care and agreed upon. This in itself could involve 

a large amount of research but would be worth the effort if it 

avoided the waste of effort that has been seen with respect to one 

dimensional problems. 

3.6 The method of testing adopted in this research 

Although performance profile testing is recognised as the best
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method of testing and comparing routines it was not feasible to 

adopt that approach in this work firstly because of the reasons 

outlined above and secondly because of the cost involved, 

particularly in terms of computing time. The method actually used 

was based upon a "battery" type test. It must be stressed that this 

approach was only used to form some general idea of whether or not 

the methods examined in the routines are of any use at all even 

though the results cannot guarantee to give unambiguous conclusions. 

If the routines perform badly on all the test problems then it can 

be assumed that they are not suitable as a starting point for 

multidimensional quadrature and alternative approaches can be 

adopted. However, since there are so few routines available any that 

prove to perform reasonably well over a limited "battery" test may 

be of use to somebody. It can only be stressed that no inference as 

regards the performance of the routines for other, even similar, 

problems to those used in the tests can be drawn from the results 

unless the user is satisfied that the salient feature of the problem 

in question is the same as the salient feature of one of the test 

problems and that the performance profile for the problem family to 

which they both thus belong is well behaved. 

3.7 The set of test problems used 

The set of test problems ranges from two to four dimensional 

problems, each of which has a _ known solution. The problems were 

chosen so as to illustrate different types of behaviour in the 

integrand over the region of integration. For example oe has a 

difficulty along one boundary of the region, another has 

difficulties along two boundaries and a third has a non mathematical
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difficulty in the centre of the region. All the test problems were 

written in the form of procedures which could be called by the 

various programs in order to evaluate the integrand at a particular 

node. Each procedure is included in one program segment and full 

details of the format of both the procedures and the segments are 

given in appendix [1] along with full details of all the test 

problems.
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Chapter 4 A basic adaptive multidimensional quadrature procedure. 

4.1 introduction 

This chapter discusses a basic adaptive multidimensional quadrature 

procedure. The aim of the procedure is to compute an approximation 

to a multiple integral over a given region, to a given tolerance. 

The tolerance is supplied by the user. The basic algorithm is a more 

sophisticated version of an algorithm developed by the author for an 

M.Sc. project [27]. The basic algorithm formed the starting point of 

this research into multidimensional quadrature and, consequently, it 

was written as a research tool rather than as a complete and 

finished algorithm suitable for inclusion in a software library. Two 

versions of the procedure have been written; the first using the 

hypercube as a basic region and the second using the simplex as a 

basic region, but both follow the overall structure of the 

algorithm. 

4.2 A brief description of the basic approach. 

The following is only a brief summary of the more important aspects 

of the basic approach. The method is based upon a technique used in 

one dimensional integration and for simplicity the technique as used 

in one dimensional problems is described before the n dimensional 

analogy is discussed. 

Given a one dimensional problem, a simple approach to find an 

approximation, SO, to it s evaluation is to apply a basic rule over 

the entire integration region. However, it is not usually feasible
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just to accept this result without any indication of it s accuracy. 

Therefore, since most rules do not supply an accurate error 

estimate, it is necessary to compute an error estimate. A convenient 

approach is to subdivide the region into two or more, usually equal, 

parts and apply the same basic rule, suitably transformed, to each 

subregion. Then the sum of the two estimates gives a second 

approximation to the result, Sl, which can be compared with SO for 

consistency and in order to generate an error estimate. If the 

results are inconsistent with some required tolerance then each of 

the subregions can be subdivided and the rule applied in a similar 

manner to each new subregion. The sum of the results gives the next 

estimate, S2, which can be compared with Sl for consistency. 

Obviously, the process can be repeated to give a sequence of 

converging approximations to the integral, SO0,S1,S2....Sn. This 

method has the disadvantage that the error at level P is given by 

considering the difference between the estimate Sp and the estimate 

at the next level Sptl. That is, by the very nature of the error 

estimate it is necessary to go one level further than the accuracy 

actually required. 

An alternative approach to obtaining an error estimate is to use two 

basic rules to give approximations AOBO, AIBl,...AnBn. Then the 

difference between the results Ai and Bi in any given region (or 

subregion) gives an error estimate over that region and the sum of 

the error estimates can be tested for convergence. This method is 

not as reliable as the previous one and the two basic rules need to 

be chosen with care. However, this method is often more convenient, 

particularly when an adaptive algorithm is being written. With an 

adaptive method a subregion is dismissed from further consideration
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once an estimate has been formed over that subregion which satisfies 

the allowable tolerance for that subregion. If the first approach is 

taken then it is necessary to go to the next level of subdivision in 

order to determine the error estimate for a subregion whereas with 

this approach the error estimate is given quite simply by forming 

the difference between the two esimates Ai and Bi. The allowable 

tolerance for a subregion may be given by dividing the total 

required tolerance between the number of subregions. Using an 

adaptive method has the effect of concentrating more nodes in the 

regions where the integral is comparatively "badly" behaved and less 

where it is "well" behaved. However, the error method described and 

the method of subdivision of the tolerance has the disadvantage of 

imposing the strictest tolerances in the subregions where the 

function is least well behaved. This often results in the answer 

being more accurate than the user requested, with the overheads of a 

higher cost to the user. A slight improvement on the situation can 

be made by taking advantage of any "spare tolerance" from converged 

subregions. Instead of dividing the tolerance between all the 

subregions the sum of the error estimates for the converged 

subregions is subtracted from the total tolerance requirement and 

the remaining tolerance is divided between the non converged 

subregions. This should have the effect of producing a result closer 

to the required accuracy, with a corresponding saving in computing 

effort. This is the approach adopted with the multidimensional 

quadrature procedures, since the number of subregions is likely to 

be far higher and the potential savings far greater. 

Now consider the n dimensional analogy of this technique as applied 

to a hypercube. Initially, two basic rules are applied over the
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hypercube to give two estimates AO and BO. These are compared for 

consistency with the error tolerance requested and if the error is 

too large then the hypercube is subdivided into 2%n (where n is the 

number of dimensions of the problem) subregions, each of which is a 

further hypercube. The basic rules, suitably transformed, are then 

applied to each of the subregions and the sum of these estimates 

gives the next estimate over the initial hypercube. If at any stage 

the difference between two estimates over a subregion is less than 

the present tolerance for that subregion then the subregion is 

dismissed from further consideration and the spare tolerance is 

shared amongst the other remaining subregions. A running total is 

kept of the estimates over the converged subregions. Hence there are 

two reasons for stopping; either the difference between two 

estimates over the whole hypercube is less than the required 

tolerance or convergence has been achieved in all the subregions. 

The problems of organisation are far more difficult with the n 

dimensional version of the technique than with the one dimensional 

version. 

4.3 The structure of the basic algorithm 

The essence of the algorithm is straightforward and consists of 

continually subdividing the region of integration into more and more 

subregions and forming new estimates to the result until convergence 

is achieved. However, the problems arise in keeping track of the 

subregions and applying the correct transformation of the basic 

rules to then. 

Perhaps the simplest way to keep track of the subregions is to store
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them in a linked list. Initially the list consists of the whole 

region only, then this is replaced by the list of it s subregions, 

then this list is replaced by the list of subregions of the 

subregions, and so on the list grows. As convergence is achieved in 

various subregions they are removed from the list altogether and 

their estimates added to the total of contributions from the 

convergel subregions which is part of the final approximation. Thus 

one reason for terminating the algorithm is that the list of 

non-converged subregions is empty, indicating convergence in all 

subregions. 

Hence the basic structure of the algorithm using a linked list 

approach consists of : 

WHILE NOT converged 

DO 

{Compute the estimate of each subregion in the linked list in 

turn} 

IF convergence is not achieved in a subregion 

‘THEN 

subdivide that subregion and store it s subregions m the 

next linked list of subregions 

ELSE. 

dismiss this subregion from further consideration and add 

its estimate to the total estimate from converged 

subregions 

EI 

Compare the sum of the estimates from non-converged subregions 

plus the total estimate from converged subregions (i.e. the
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present approximation to the integral) with the previous 

approximation. 

IF the difference is less than 

the required tolerance 

OR 

the new list of non-converged 

subregions is empty 

THEN 

the method has converged 

ELSE 

{further computation is required in the non-converged 

subregions} 

4.4 The subdivision strategy used with the hypercube 

It is necessary to subdivide the original hypercube into a number of 

subregions, each of which is another hypercube. The minimum nunber 

of subregions which can be used to achieve this is 2%n. Hence in two 

dimensions the square is subdivided into four squares thus: 

  

  
  

        
  

original region subregions 

In three dimensions the cube is subdivided into eight cubes thus:
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In a similar manner the n dimensional hypercube is subdivided into 

2°n subregions. 

Now consider what it is necessary to store in each element of the 

list in order to adequately describe the subregion. Each of the 

rules used to derive approximations over hypercubes is based upon a 

set of nodes and associated weights. Most of the rules are given for 

a particular hypercube but can be transformed to any other 

hypercube, since they are invariant under an affine transformation. 

The nodes are usually given with respect to same origin, which is 

often the centre of the starting hypercube. In order to apply one of 

these rules to a different hypercube it is necessary to map the rule 

from the first hypercube to the second by considering a change of 

origin andi a change of scale between the two. Hence to apply any 

given rule to any given hypercube it is only necessary to know the 

centre of the hypercube and the scaling factor relating the size, 

hhypervolume, of the hypercube to the hypercube over which the rule 

is defined. Thus all that has to be stored in each element of the 

list in order to adequately describe the subregion, so as to be able 

to apply the basic rule and obtain an approximation to its 

integral, is the centre of the subregion and it s associated scaling
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factor. In fact, the scaling factor need not be stored with each 

element since it is the same for any given level of subdivision into 

subregions and the list oly ever contains subregions at one 

particular level. 

4.5 The basic rules used for the hypercube 

Certain basic rules are used to compute the estimates to each 

subregion in the linked list. These rules are written in the form of 

procedures, each of which requires the same parameters. The 

parameters consist of the centre of the hypercube over which an 

estimate is required, scaling factors relating the hypercube to the 

initial hypercube and a function to evaluate the integral at any 

given node. 

Initially the two basic rules used were Stroui's n+l point rule of 

degree two and Stroui's 2n point rule of degree 3 ([57] chapter 8). 

Stroud's ntl point rule consists of: 

points coefficients 

(EiyeXiae eta tia) V/(n+1) 

where V is the hypervolume 

X i,axy = sart(2/3) . cos(2ikw/(nt1) 

Tie sqrt(2/3) . sin(2ikr/(nt1l) 

k =1,2,...(n/2) i=0,1,-..n 

If n is odd 

Lin = (-1)°i / sart(3) 

The points are the vertices of a regular n simplex and they all lie 

inside the region.
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Stroud's 2n point rule consists of: 

points coefficients 

(iyiTieres Lin 1T iq) v/(2n) 

where V is the hypervolume 

X ex = sart(2/3) . cos(2k-1)in/n 

rian = sqrt(2/3) . sin(2k-1)iv/n 

k=1,2,...(n/2) i= 0,1,...2n 

If n is odd 

ran = (-L)i / sart(3) 

The points are the vertices of a regular n dimensional octahedron 

and they all lie inside the region. 

**{The notation (u, ,Uz,-+++Un 7Une, ) denotes the set of points 

consisting of the point (u,,u,,---U,) amd all the points which this 

maps into under the set of all (ntl)! linear transformations of Sn 

on to itself. These points can be found by forming all the possible 

permutations of the ntl coordinates. If all ui, i= 1,2,...-ntl are 

distinct this gives (ntl)! different expressions : 

(Wg) Wig ees Win inn) = 

The first mn components of these vectors are the coordinates of the 

desired points. If not all the ui are distinct this will result in 

fewer than (ntl)! points in the set.} 

4.6 Defining the integrand 

In order to evaluate a particular integral it is necessary to pass 

the integrand to the routine. This is achieved by writing a 

procedure to evaluate the integrand at any given node and linking 

the procedure to the quadrature routine. This can be quite difficult
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but was acceptable for this algorithm since it was only intended to 

be used by the author as a research and development tool. For a 

quadrature routine intended for a wider audience, possibly people 

with little or no computing experience, it would be necessary to 

provide a more agreeable user interface. A suitable approach might 

be to write a program which took as input an integral in the form: 

[-f AK, AXe ++ +++ AXn 

Rn 

where y = f(x,X,-+++-+-X,) amd Rn is the region of integration. The 

program would then produce as output a procedure to evaluate the 

integrand at any given node. 

4.7 Segmentation of the program 

This program was written primarily as a research tool. Hence, in 

order to facilitate testing and development the program was written 

as a sequence of segments which are linked together by the main body 

of the program. Each of the segments can be replaced by an 

alternative and the effects considered. 

The first segment contains the declarations for the constants and 

variables which are common to the other segments. 

The second segment contains a procedure, MILLTIME, which has no 

parameters and delivers a LONG INT representation of the time of 

call. This procedure is used for timing the method as a basis of 

comparison.
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The third and fourth segments contain procedures to apply the basic 

rules to evaluate an estimate to the integral over a region defined 

by the parameters. To some extent the program is imlepenient of the 

basic rules used in that it is possible to use any alternative rule, 

provided an appropriate segment is written. Thus the testing of 

various formulae ami combinations of formulae was possible by 

writing alternative segments with the same staniard form and name 

for the procedures to apply the rules. 

The fifth segment contains the procedure to evaluate the function 

defining the integral at any given node. Again multiple copies of 

this segment were written, each containing a procedure of the same 

name and form but each evaluating a different integral, thus 

simplifying the testing of the routine with various integrals. 

The final segment is the main body of the program amd links all the 

other segments together. Any further sections of the program which 

needed to be campared with alternatives could also be taken out as 

further segments. 

The complete program is given in appendix [3.1]. 

4.8 The simplex as a basic region 

As an alternative to the hypercube a simplex is considered as a 

basic region of integration. A simplex is merely an extension of the 

two dimensional triangle, so that inn dimensional space it is a 

figure defined by n + 1 vertices; thus in two dimensions it is a 

triangle with three vertices, in three dimensions it is a
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tetrahedron with four vertices and so on. 

One of the main advantages of choosing the simplex as a basic region 

is the fact that any simplex, regardless of the number of 

dimensions, can always be divided into two "similar" subregions, 

similar in that they are both simplexes. Thus the same type of basic 

rule can be used throughout and the number of subregions will grow 

less rapidly than is the case with the hypercube, which has to be 

subdivided into 2*n (where n is the number of dimensions of the 

problem) in order to produce "similar" subregions. Hence the 

algorithms for the simplex can follow more closely the method of the 

one dimensional algorithms where a subdivision into two subintervals 

has proved to be a better approach. The basic method adopted for the 

simplex is analogous to that adopted for the hypercube. However, 

certain features of the simplex, such as the hypervolume and the 

centroid, are important and these are now discussed in detail along 

with any slight changes that had to be made to the basic algorithm. 

4.9 The hypervolume of a simplex 

With many of the formulae for simplexes it is necessary to be able 

to determine the hypervolume V (Hammer and Stroud's terminology - 

[19]) or the sizeo(S) (Silvester's notation - [54]) of the region 

of integration. Silvester gives the following approach to finding 

a(S) : 

Let a simplex be defined by it s n+l vertices in the n space spanned 

by the coordinates x!',x*,...x*. Let S be the n dimensional simplex 

whose kth vertex coordinates are xi where i = 1,2,...n. Then the



  

Page 67 

size o(S) is defined in the following manner : 

o(s)= 1 

nl! eet Shui ecein) Oe: 

a £ Xi Baers Snes 

Under this definition the size of a me dimensional simplex is it s 

length, the size of a two dimensional simplex is it s area, that of 

a three dimensional simplex it s volume, and so on. However, using 

this definition the sign of the size is undefined, being dependant 

upon the way in which the vertices are ordered. Therefore it is 

usual to adopt |= (s)| as the size of a simplex in any formulae, so 

that the size is always positive. 

Since the term hypervolume has been used in conjunction with the 

hypercube previously this term will also be used for the simplex 

throughout the rest of this thesis in preference to the term size, 

although the two are interchangeable. 

4.10 The centroid of a simplex 

The centroid of a simplex is used in many of the integration 

formulae for the simplex. The centroid of a simplex is defined as 

the point of intersection of its medians, that is a point of 

trisection of each median. Let the vertices of the n simplex Sn be Vo 

1 V,se+eV,~- Then the centroid, C, of Sn is given by :
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n 

c= S vi / (nt) 

i=0 

To illustrate this consider the centroid of a two dimensional 

simplex, i.e. a triangle : 
& x95 

  

Consider the median AE 

  

X = x,t 2.(AD)/3 = x\+2.((x,+%0)/2 - x,) 

= (x,+x,t+x,)/3 

Similarly 

¥ = (yityetys)/3 

n 

that is the centroid (X,Y) = S vison) 

i=0 

4.11 Area coordinates 

Area coordinates are a means of describing a point within a 

triangle. Each point is defined by means of three coordinates Ai,
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Bi, Ci. For example one area coordinate of the point (x,y) is given 

by the ratio d/r where d is the perpendicular distance from the side 

of the triangle DE to the point (x,y) and r is the distance of the 

vertex F from the side DE. The other area coordinates of the point 

(x,y) are defined similarly. Obviously only two area coordinates are 

required to define a point uniquely. 

D 

  

Area coordinates are a useful means of describing the nodes of a 

quadrature formula. Any triangle can be mapped onto any other 

triangle by means of a linear transformation and under such a 

mapping area coordinates are invariant. Hence a quadrature formula 

developed for a particular triangle can be applied to any other 

triangle relatively simply provided it s nodes are described in 

terms of area coordinates. 

Area coordinates have an obvious extension to n dimensions. 

4.12 Subdivision strategy used with the simplex 

Any simplex can be subdivided into two further simplexes, hence the 

overall subdivision strategy used with the simplex is one of 

continually splitting each subregion into two further subregions. 

However there are a wide variety of ways in which a simplex can be 

split into two simplexes. It is preferable to use a subdivision 

strategy which leads to "compa subregions since this ensures an 

even distribution of the nodes of the basic rules used. With non
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"compact" subregions the nodes could easily become clustered at one 

end of the region thus giving a false impression of the integrand. 

Now consider how the subdivision takes place. If the simplex is two 

dimensional, i.e. a triangle, then a new vertex is formed along me 

side of the simplex and a line drawn to the opposing vertex in order 

to divide the original simplex in two. Thus : 

fe Ye 

Mi : Ve SAY, s 

compact non compact 

With a three dimensional simplex, i.e. a tetrahedron, a new vertex 

is formed along one side of the simplex and a plane constructed 

through the opposing side of the simplex in order to give the two 

new simplexes. Thus : 

Ly LY 
non compact 

It is easy to see that "compact" and equal hypervolume simplexes 

result from choosing the midpoint of the longest side of the 

original simplex as the new vertex when generating the two new 

subregions. This was the method adopted in the algorithms. 

The n dimensional analogy is straightforward. In order to split ann 

dimensional simplex into two a new vertex is formed along oe side
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of the original simplex, say vertex Vntl is formed between the 

original vertices Vi and Vitl, then the new vertex replaces one of 

it s neighbouring vertices in the set of vertices defining the 

original simplex in order to define the first new simplex and the 

other neighbouring vertex in the set in order to define the the 

second new simplex. That is the two new simplexes are defined by the 

vertices VO,...Vi,Vntl,Vi+2,...Vn and VO,...Vi-1,Vntl,Vitl,...Vn . 

4.13 The structure of the algorithm as applied to the simplex 

The structure of the algorithm as applied to the simplex follows 

exactly the structure of the basic algorithm given in section 4.3. 

The main differences between the application of the algorithm to the 

simplex and the hypercube is that subregions now refers to simplexes 

and the subdivision strategy is as described above. The elements in 

the linked list of subregions are different in that the amount of 

information required to describe each simplex is not the same as 

that required to describe each hypercube. 

4.14 The basic rules used for the simplex 

It is somewhat easier to discuss formulae for the simplex if they 

are all considered in reference to one particular simplex. Hence the 

author adopted the notation used by Stroud to define all the 

formulae used over the following basic simplex. 

Let Sn — the n dimensional simplex with ntl vertices 

(0,0, sau 70) 

(1,0, 06540) 

(Oj ApsieceeQ)
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(0,0, .«.«,1) 

The hypervolume of Sn is denoted by V = 1/n! . 

Any point (x, 1X pee rX,) on the simplex satisfies the following : 

x, in ot eseoe eo 1 x O i=1,2,...,;n. 

For example in two dimensions : 

(0,1) 

(0,0) (1,0) 

v=1/2 

The two basic rules used initially were Hammer and Stroud's [19] 

formula for the quadratic polynomial and Lauffer's [30] degree two 

formula. Both of these are given in Stroud[57]. 

The first basic rule 

Hammer and Stroud's degree 2, ml point formula : 

points coefficients
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(njzyecccra) (1/(nt1)) V 

where V is the hypervolume 

q a (nt2 ¥ sqrt(n+2)) /(m+1) (nt2) 

a i (nt2 £n.sqrt(nt2)) /(mt1)(nt2) 

The upper sign was chosen since this gives a formula with all the 

points inside the simplex for all n whereas the lower sign gives a 

formula with all the points outside the simplex for n>=3. 

The points of this formula lie along the medians of the simplex. 

The second basic rule 

Lauffer's degree 2 , (nt1)(n+2)/2 point rule. 

points coefficients 

(0,0,...,0;1) B 

(0,0,..0,r;r) € 

where V is the hypervolume 

Piel. 

B (2-n)*V/(n+1) (nt2) 

Cc i 4*y / (nt1)(nt2) 

The points for this formula are the vertices of the simplex and the 

midpoints of the sides of the simplex. 

These two rules were chosen as a pair because they provide an even
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distribution of points across the region of integration. To 

illustrate this consider the geometrical position of the nodes of 

the two formulae in relation to the two dimensional version of the 

basic region Sn : 

The vertices for this region are (0,0), (0,1) and (1,0). 

For the first rule 

(nt2-sqrt(nt+2))/(mt1)(nt2) = 1/6 a 1 
W s = (nt2+n.sqrt(nt2))/(mt1)(nt2) = 2/3 

hence the points are (1/6,1/6), (1/6,2/3) and (2/3,1/6) 

For the second rule 

r=1/2 

hence the nodes are (0,0), (0,1), (1,0), 

(0,1/2), (1/2,0) and (1/2,1/2).    
© points for Lauffer's rule 

xX points for Hammer and Stroud's rule. 

The basic rules which are used to compute the estimates over the 

subregions are written in the form of procedures. The procedures are 

contained in separate segments and the same parameters are used for
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each procedure since this facilitates the simple interchange of 

alternate formulae. The segments containing these procedures are 

given in appendix [3.2]. 

4.15 The program for the simplex 

As with the program for the hypercube, the program for the simplex 

was written as a sequence of segments which are linked together by 

the main body of the program. Full details of all the segments are 

given in appendix [3.2]. 

4.16 The data required by the program 

In effect the segment SEGF is part of the input to the program since 

this defines the function to be integrated. However, a selection of 

possible integrals and the corresponding segments SEGF are given in 

appendix[1]. This section is concerned with the data that is 

required to drive the program once the problem has been defined in 

the form of segment SEGF. 

This data consists of the number of dimensions of the problem, the 

required number of test runs of the problem, the tolerance for each 

of these runs and sufficient information to define the region of 

integration. The first three items are quite straightforward, but 

the third needs a little more explanation. 

First consider the hypercube. Although the basic rules were based 

initially on formulae derived for the hypercube -l1<=x <1 it is
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possible to solve integrals over other hypercubes using these 

formulae, by mapping nodes from the initial hypercube to the new 

region. This approach is acceptable since the rules are invariant 

under such an affine transformation. The data required to achieve 

this mapping is as follows: 

1. The factor relating the new nodes to the old nodes, i.e. the 

factor by which the side of the hypercube needs to be divided or 

multiplied to give the side of the new hypercube. 

2. The scaling factor relating the hypervolume of the initial region 

to the hypervolume of the new region. 

3. The centre of the new region. 

4. The offset of the centres of the first subregions of the region 

from it s centre. 

Thus for example the data required by the program for the following 

two problems: 
B+ 

Lf tovesevanions and 

Sa 

treet 

[[ [eres dx, dx, dx, 
> to So 

consists of 

Problem 1 Problem 2 

2 3 the number of dimensions of the problem 

3 4 the number of tests to be performed 

eSpelyos .5,.2,.. the tolerances one for each test 

i 2 divl the division factor relating 

the new nodes to the old nodes 

0.5 0.25 the offset of the subcentres of the subregions
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of the new region 

the scaling factor relating the hypervolumes 

the centre of the new region. 

Now consider the simplex. The data required to define the region of 

integration consists of: 

1 the vertices of the simplex 

2 the hypervolume of the simplex. 

Hence for the problem 
Tale 

J [soon dx dy 
° ° 

the data would consist of: 

2 the number of dimensions of the problem 

4 the number of tests to be performed 

.5,.1,...the tolerances one for each test 

0,0 

0,1 the vertices 

1,0 

0.5 the hypervolume. 

4.17 Testing the two programs 

The program for the hypercube was tested using the set of test 

problems described in appendix [1]. Also the program was tested with 

an alternative pair of basic rules; namely the compound trapezoidal 

rule and Ewing's rule, details of which are given in appendix [5.1]. 

The procedures to evaluate an estimate to the integral using each of 

these rules are given in appendix [5.1]. The results of the test 

runs are given in appendix [8].
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The program for the simplex was tested using the set of test 

problems described in appendix [1]. The results of these test runs 

are given in appendix [9]. 

The following set of tolerances were used for both programs: 

0.5,0.1,0.05,....0.000001. The maximum jobtime for each run of the 

program was limited to 90 and the maximum core size 90k. 

4.18 Conclusions 

Both of the programs produced results to within the required 

tolerance for the majority of the problem and tolerance range. In 

fact the majority of results were far more accurate than the 

required tolerance. However, once the tolerances became too small 

the programs started to fail because of the large number of 

integrand evaluations required which resulted in either the time 

running out or no more space being available for the heap to expand. 

This was more of a problem with the hypercube program than with the 

simplex program. 

It was noted that due to the nature of the subdivision process used 

with the hypercube the number of integrand evaluations used changed 

considerably from one tolerance to the next, if any change in the 

number occurred at all. For example, a specific number of integrand 

evaluations might be used for all tolerances larger than 0.001 and 

then a sudden increase in the number of integrand evaluations would 

occur for the tolerance 0.001. Hence the results produced with an 

error tolerance slightly larger than 0.001 might have an actual 

error marginally greater than the requested tolerance while the
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results produced with an error tolerance of 0.001 might have an 

actual error far smaller than the requested tolerance. 

The results produced using the hypercube program were not as 

accurate as those produced by the product Patterson program but the 

number of integrand evaluations used were far less and the tolerance 

was still satisfied for the majority of the range. Consequently the 

range of tolerances for which the method succeeded in producing 

results was greater than that of the product method. 

The results using the second pair of rules (the compound trapezoidal 

rule and Ewing's rule) were noticeably worse all round than the 

results using Stroud's rules. Hence, Strouwl' rules form a better 

pair of formulae for this program. 

For comparison an Algol68 version of the Fortran routine of Genz 

[16] was written and tested on some of the test set of problems. 

However, the results of the comparison were not conclusive in any 

way and merely highlighted the problems of testing and comparing 

different routines. The first routine produced slightly better 

results on some problems or with particular tolerances while the 

second produced better results on others or with different 

tolerances. 

One problem with this basic adaptive method is the large amount of 

global store that is used. In particular the heap is used to store 

the linked lists of subregions. Hence it is in constant use and 

frequently becomes fragmented which results in garbage collection 

being invoked. (This is the process of finding all the free space on
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the heap and grouping it together.) Unfortunately this process is 

rather slow and needs to be avoided if at all possible. One solution 

would be to increase the amount of space allocated to the heap but 

this is not possible beyond a certain point because of the physical 

limits of the machine and the upper limit set by the compiler. 

Alternatively one or two modifications could be made to the program 

to make the use of the heap more efficient. The basic structure of 

the algorithm involves creating a list of subregions which is then 

replaced by a list of subregions of these subregions and the 

original list discarded. This list is then replaced by another new 

list of subregions of subregions and discarded. The process 

continues in this manner using more and more of the heap until 

convergence is achieved. It would be feasible to avoid some of the 

garbage collection by keeping a list of the free space which was 

made up of the discarded lists. Whenever more space was required it 

could be taken from the free space list, if the list was not empty, 

instead of using more of the heap. Instead of discarding the used 

lists they could be tagged on to the free space list. 

The stopping criterion for the simplex was altered slightly because 

of a problem that occurred during the first few test runs. The 

program was tested on an integral which had a symmetric integrand 

function and the combination of the symmetry and the subdivision 

process resulted in the first two subregions having the same 

estimate and the sum of the two estimates being equal to the initial 

estimate over the whole region. Hence the program stopped after the 

first subdivision regardless of the tolerance because the difference 

between the latest two estimates to the integral was zero. The 

stopping criterion:
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WHILE the list of subregions is not empty 

AND the difference between the latest two estimates 

is greater than the tolerance 

was replaced by 

WHILE the list of subregions is not empty 

In conclusion the two programs produce satisfactory results but 

there are some slight improvements that could be attempted.
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Chapter 5 Storing the integrand evaluations 

5.1 The need for storing integrand evaluations 

With all but the simplest of problems a large number of integrand 

evaluations are needed to produce a reasonable approximation to the 

solution. Hence, if the integrand is a complicated expression the 

time taken to evaluate the integrand at each of the nodes can add 

considerably to the overall time taken to compute the result. This 

suggested the possibility of reducing the amount of computation by 

choosing the basic rules in such a way that some or all of the nodes 

used at ome level of subdivision are used again at subsequent levels 

o£ subdivision and storing the integrand evaluations thus avoiding 

reevaluation of the integrand at the common nodes. Alternatively, 

the subdivision strategy could be chosen to enable common nodes to 

be used. In practice it is necessary to select both the basic rules 

and the subdivision strategy to take full advantage of common nodes. 

This approach is only feasible provided an efficient and convenient 

method is developed to store and access the integrand evaluations as 

the subdivisions take place. Even then, storing the integrand 

evaluations will only be a practical proposition when reevaluating 

the integrand at a given node takes longer than the overheads 

incurred in storing and accessing an integrand evaluation. This 

restricts stored integrand evaluation techniques to certain 

problems; those whose "cost" of evaluation is above a certain level. 

This chapter is concerned with the particular methods of storing the 

integrand evaluations and the subdivision strategies adopted by the 

author.
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5.2 The basic rules and subdivision strategy for the hypercube 

The subdivision strategy used in the previous algorithms consisted 

of subdividing the n dimensional hypercube into 2*n equal 

lhypervolume subregions, each a hypercube. With this strategy any 

rules based on the corners of a hypercube, on the centre of a 

hypercube, or anywhere on a regular mesh(corresponding to the 

subdivision) result in common nodes on subdivision. For example in 

two dimensions: 

  

  

  

          Sear 
Initial region First level of subdivision 

    

o°- common nodes 

In this example 16 new integrand evaluations would be required at 

the first level of subdivision if the previous integrand evaluations 

were stored as opposed to 36 integrand evaluations if none were 

stored. 

Several rules are based upon nodes on this type of mesh, for example 

the product trapezoidal rule and Ewing's rule. 

5.3 Storing the integrand evaluations in a linked list 

In the first attempt to develop an algorithm which made use of
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stored integrand evaluations the author chose to store the integrand 

evaluations in a linked list which could grow dynamically as the 

method proceeded. The list could then be searched in order to find 

an integrand evaluation associated with a given node. Each item in 

the list had to contain the following information: the numerical 

value of the integrand evaluation, a key (associating the integrand 

evaluation with a given node and providing a means of ordering the 

list), and a pointer to the next item in the list. To satisfy these 

needs items of an additional mode defined as: 

MODE ITEM = STRUCT (INT index, 

REAL fevaluation, REF ITEM ptr). 

The integrand evaluation is stored in the fevaluation field of an 

iten. The key is stored in the index field of an item and the 

pointer to the next item in the list is stored in the ptr field. 

This gives the items of the list but creates the problem of 

indicating the start and finish of a list. The start of a list is 

indicated simply by using a pointer, for example REF ITEM head, 

which is a reference to the first item in the list. In order to 

signify the end of a list it is necessary to have a null pointer to 

assign to the ptr field of the last item in the list. Fortunately in 

Algol 68 NIL fills these requirements. 

Thus, the linked list consists of a pointer to the start of the 

list, the chain of items in the list and the last item in the list 

with NIL assigned to it s ptr field indicating that there are no 

further items in the list.
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5.4 Ordering the list 

When a list is not ordered it is necessary to make a complete search 

of the list in order to determine that an item does not yet exist. 

Obviously this is very wasteful and was avoided to some extent by 

ordering the list. Since the keys are numerical values the natural 

choice was to order the list by magnitude of keys; the items with 

the smallest keys appearing at the start of the list while the items 

with the largest keys appear at the end of the list. With an ordered 

list a search can stop either when the required item is found or 

when an item is found with a larger key than the search key. The 

overheads incurred in ordering the list are few since the list needs 

to be searched anyway and an unsuccessful search automatically gives 

the place of insertion of the new item in the list, that is 

immediately before the first item with a key larger than the search 

key. 

The choice of the keys is a very difficult area. The keys have to be 

simple to campute yet uniquely linked to the coordinates of the 

given node. The various methods considered by the author are 

discussed under the section 5.8 and for the present it is sufficient 

to know that it is possible to obtain the value of such a key by the 

use of a procedure called enumerate. 

5.5 The generation and use of linked lists 

In order to generate and use linked lists it is necessary to be able 

to create new items of the correct type for the list, insert these 

items into the list and search the list for an item with a given
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key. The list can be generated from an empty list, that is a null 

pointer to the start of the list, by creating new items globally and 

linking these items to the list by insertion at the correct 

position. In Algol 68 global variables can be created and stored in 

a dynamic storage area called the heap. 

Insertion is achieved by the use of a procedure "insert" which 

creates a new item globally, assigns the appropriate data to it and 

connects it to the linked list at a given point. The point of 

insertion of the new item is given by the procedure "searchlist". 

This procedure searches a list for a given node and delivers either 

the position of that node in the list, if it exists, or the position 

in the list where it should be, that is the position of insertion. 

These procedures are now discussed in detail. 

5.6 A procedure to search a linked list 

The following procedure "searchlist" searches a list of items,of the 

type MODE ITEM = STRUCT (INT index, REAL fevaluation, REF ITEM ptr), 

for a given item and delivers either TRUE if the item is in the list 

or FALSE if it is not. It also delivers as a parameter a pointer to 

either the required item or to the position where this item should 

be inserted. The search takes place by a comparison of the keys in 

the list which are stored in ascending order of magnitude of the 

keys. Thus searching merely consists of comparing the search key 

(that is the key of the given item) with each of the keys of the 

items in the list one at a time. This process continues until oe of 

the following occurs: the end of the list is reached, a key equal to 

the search key is found, or a key greater than the search key is
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encountered, in which case the given item cannot be in the list. The 

procedure consists of: 

PROC searchlist = (REF REF REF ITEM pointer, INT key) BOOL: 

BEGIN 

{This procedure searches a list for a node with a given key, it 

delivers TRUE if the node is in the list and FALSE otherwise} 

BOOL not found := TRUE, possible := TRUE ; 

{not found indicates whether the item has been found while 

possible indicates whether the item could be in the list} 

IF pointer ISNT empty 

{This tests for an empty list and is redundant when only non 

empty lists are used} 

THEN 

WHILE not found AND possible DO 

BEGIN 

REF INT indp = index OF pointer ; 

IF indp = key 

THEN notfound := FALSE {the item has been found} 

ELSF indp > key 

THEN possible := FALSE 

{item is not in the list} 

ELSE 

IF (ptr OF pointer) IS empty 

THEN possible := FALSE 

{list is now empty} 

FI; 

pointer := ptr OF pointer 

{move on to the next item in the list}
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END 

FI; 

NOT not found 

{deliver TRUE if the item is in the list and FALSE otherwise} 

END of the procedure searchlist. 

The need for a pointer parameter with mode REF REF REF ITEM is 

perhaps not obvious and may be understood more easily by considering 

a diagrammatic representation of what is taking place. 

Linked list 

item iten item 

  

    

                

        

pointer 

The pointer contains a reference to the ptr field of a given item 

and as the search takes place its value changes accordingly. Suppose 

the declaration ITEM first; occurs then : 

first is of mode REF ITEM 

index OF first is of mode REF INT 

fevaluation OF first is of mode REF REAL 

and ptr OF first is of mode REF REF ITEM. 

Hence, if the pointer is to contain a reference to the ptr field it 

needs to be of mode REF REF REF ITEM. It would of course be easier 

to search at ome level of reference less by having a pointer to the 

item instead of to the ptr field of the previous item. However, this 

would make insertion more difficult. As it is insertion is simple 

and consists of making the ptr field of the new item contain the
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value held in the ptr field referred to by the pointer and then 

making the ptr field referred to by the pointer contain the 

reference to the new item, 

Linked list 

item item item 

-(_}+_ +E 
Sse = 

peter (ese a 
The algorithm written to search a linked list is a satisfactory 

  

        

  

      

method of accessing the nodes, however using the basic structure 

imposes one or two slight disadvantages which might be avoided by 

using a more complex structure. For example the larger the key is 

the longer it will take to either find it or to discover that it is 

not in the list. As the list gets longer the average search time 

will increase. An alternative approach might be to use a double 

linked list which can be searched in both directions or to have a 

sequence of pointers to various positions in the list from whence 

the search can begin. This could be very useful since the range of 

key values is known but the distribution is dependent upon the 

problem because the method is adaptive. A second alternative may be 

to build up a tree structure rather than a linked list and adopt a 

binary type search. There is scope for improvement and further 

development here using the various approaches, however the author 

had to restrict the work to the method described. 

5.7 A procedure to insert an item in a linked list 

The following procedure creates an item globally on the heap, 

assigns the appropriate data to it (i.e. the integrand evaluation 

and the key) and inserts it in the linked list. The position of
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insertion is immediately after the item whose ptr field is indicated 

by the parameter "pointer". The insertion is achieved by assigning 

the value of the ptr field indicated by pointer (i.e. the reference 

to the next item in the list) to the ptr field of the new item and 

then the reference to the new item is assigned to the ptr field 

indicated by pointer. Diagrammatically : 

  

    

              

  

        

Linked list 

item item item 

pointer —»! See) 
\ f 

\ 
1 

fe ga 8 \ . 
\ 

* I 

“sy ey? 

new item 

Dotted lines indicate the changes made in the links when insertion 

takes place. 

The complete procedure consists of : 

PROC insert = (REF REF ITEM pointer, INT key, REAL feval) VOID : 

BEGIN 

{This procedure creates a new item and inserts it in the list 

at the position indicated by pointer} 

REF ITEM newitem = ITEM ; 

{This creates a new item globally on the heap} 

index OF newitem := feval ; 

{assign the appropriate data to the new item} 

ptr OF newitem := pointer ; 

{Link the new item to the next item in the list} 

pointer := newitem 

{Link the previous item in the list to the new item}
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END of the procedure insert. 

This procedure is quite straightforward and requires little or no 

explanation. The only place where clarification is required is 

handling the references. The result of ptr OF newitem becomes 

pointer is to dereference pointer once to give the reference to the 

next item in the list, which is then assigned to ptr. When pointer 

becomes newitem a straightforward assignment is made with no 

dereferencing. 

5.8 Enumerating the keys 

The problem of computing a unique key for any given node in any 

number of dimensions is almost impossible, if the coordinates are 

unpredictable real numbers. However, the complexity of the problem 

is reduced to sane extent if the basic rules are chosen such that 

the coordinates which they use are integers or can be converted 

easily to integers. For example consider the product trapezoidal 

rule in which the nodes are the corners of an n dimensional 

hypercube. In two dimensions the starting region may be the square 

O<x;<=1 i=1,2 and the nodes will then have coordinates (0,0), 

(0,1), (1,0), and (1,1). I£ each of these nodes is considered as a 

two digit number to the base two then each has a unique integer 

equivalent which may be used as it s key : 00 =0, Ol =1, 10 =2, 

and 11 = 3. If the region is subdivided into four similar subregions 

and adjusted versions of the basic rule applied to each then the new 

nodes would all have coordinates that are multiples of 0.5. For 

example the new nodes for one of the subregions would be (0.5,0.5), 

(0.5,1), (1,0.5), and (1,1). These could be converted to integer
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pairs by multiplying each coordinate by two to give (1,1), (1,2), 

(2,1), and (2,2). If each of these is considered as a two digit 

number to the base 3 (base 3 since there are three possible values 

for each digit 0,1,2) then each has a unique integer equivalent 

which may be used as it s key : 11 = 4, 12 = 5, 21 = 7, and 22 = 8. 

This idea can be continued to the next level of subdivision 

introducing terms involving multiples of 0.25 and generating 

integers to the base 5 and so on to any level of subdivision. 

Hence using the above approach it is possible to obtain a unique 

integer key representing a given node to a given base, provided the 

coordinates of the node are exact multiples of a fraction 

corresponding to the base. One problem with this is that common 

nodes would have different integer keys depending on the base of the 

number system used, which is dependent on the level of subdivision, 

thus losing all the benefits of using stored integrand evaluation 

techniques. This can be overcame in one of two ways. The first 

involves fixing the maxim level of subdivision and hence the 

maximum base possible. All the keys can then be evaluated to this 

base using the corresponding division factor. This results in me 

long list of items each with fairly high order keys. This method 

suggests the use of an array to store the integrand evaluations 

instead of a linked list since all the keys will be integers and the 

range will be known. The range is dependent on the base chosen as 

the maximum and so the base and thus the level of subdivision would 

be dependent on the amount of store available for the array. However 

the number of elements required in this array would be very large 

and hopefully the majority of them would not be used since the 

algorithm is adaptive and should concentrate the nodes in the
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regions where the integrand is "badly" behaved. If most of the 

elements are used then this suggests that the integrand is either 

uniformly "well" behaved or uniformly "badly" behaved and in either 

case there is no advantage in using an adaptive method. 

An alternative approach is to use the bases related to the 

subdivision level and store the keys thus generated in separate 

lists. To overcome the problem of common nodes having different keys 

it is necessary to adopt a strategy whereby any common node is only 

stored at it s lowest key level. This requires the ability to 

recognise when a node already exists at a lower key level and to 

obtain the appropriate key and associated list. Fortunately this is 

quite easily achieved. Consider the node (1,1) which is likely to be 

common over several levels of subdivision. The node (1,1) will be 

stored in the list containing integers to the base 2 and it s key 

will be 11 = 3. At the next level of subdivision the node (1,1) will 

have the key 22 = 8 and at the next level of subdivision it will 

have the key 44 = 24 and so om. Therefore the node (1,1) gives the 

keys 11, 22, 44, 88, ..etc. at different levels of subdivision. From 

this it can be seen that if all the digits in the key are even then 

the node exists at the next level down and so on. Once the key 

contains an odd digit then it cannot exist at a lower level. Thus 

the appropriate key and the base for the lowest level at which any 

node can possibly be stored may be obtained by a simple process of 

division. One benefit of generating a number of lists in this 

manner,i.e. one associated with each level of subdivision, is that 

the integrand evaluations accessed most often will be contained in 

the shortest lists. At the first level of subdivision for a p point 

rule there will be p points stored in the first list. At the second
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level of subdivision there will be less than p*2%n points stored in 

the second list, since the initial region is subdivided into 2°n 

subregions. Of course some points will be common with those from the 

first level of subdivision, thus reducing the total of points from 

p*2*n and in the later stages of subdivision the adaptive nature of 

the algorithm will avoid the use of nodes in certain subregions. 

This should reduce the overall searchtime for a given key since 

shorter lists need to be searched. 

Both of these approaches can be implemented in the form ofa 

procedure "enumerate" which takes the node as a parameter and 

evaluates the corresponding key, which is delivered as a second 

parameter. The first approach is very easy to implement and consists 

of the following:- 

PROC enumerate = (REF[JREAL node, REF INT key) VOID : 

BEGIN 

{This procedure enumerates a searchkey given a node using the 

first approach} 

key := 0; 

FOR i TO n DO key := key * base + ENTIER(node[i]*multiplier) 

{n is the number of dimensions of the problem 

base is the base of the number system being used 

multiplier is the reciprocal of the division factor 

corresponding to the base} 

END of the procedure enumerate. 

The second approach is slightly more complicated and involves same 

additional parameters. In this case enumerate delivers the key 

relating to a given node and a pointer to indicate the list in which
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a node with this key should be found, if it already exists. The 

pointer is given by a parameter "ptr" which is used to select from 

an array of pointers to the various lists; the first element of the 

array is a pointer to the list of keys to the base 2, the second 

element is a pointer to the list of keys to the base 3, and so on. 

The procedure can be broken down into two main parts: 

a) find the lowest possible base level for a given node 

and 

b) evaluate the key for this node based upon the information about 

the base. 

The second part is equivalent to the first version of enumerate 

given above. The first part involves starting at the preset base 

level, considering if the node could exist at a lower base level, 

moving to that level if it could and otherwise stopping. The 

complete procedure using the second approach consists of the 

following: 

PROC enumerate = (REF[JREAL node, REF INT key,ptr, 

INT b, REAL al) VOID : 

BEGIN 

{This procedure enumerates a searchkey, given a node} 

BOOL possible := TRUE ; 

{possible indicates that the node could be stored at a lower 

base level} 

REAL alt := al ; 

{alt is the divisor associated with the given base b} 

INT base := b; 

While base > 2 AND possible DO 

{2 is the lowest base possible}



Page 96 

BEGIN 

FOR i TO n DO IF odd(ENTIER(node[i]/alt)) 

THEN possible := FALSE 

FL; 

{if any of the digits to this base are odd then the node 

cannot be stored at a lower base level} 

IF possible 

THEN {consider the next base level} 

base := (base + 1) '/'2; 

alt TIMES 2 ; 

ptr MINUS 1 

FI 

END ; 

{base is not at the correct level for this node, so evaluate 

the key} 

key := 0; 

FOR i TO n DO key := key*base + ENTIER(node[i]/alt) 

END of the procedure enumerate. 

Fron this procedure it can be seen that enumerating a key for a 

given node is quite expensive in terms of computer time. Hence, 

since the procedure is called so often, any improvements in this 

area would be beneficial. At this point it should be noted that if 

the time taken to evaluate the key is longer than the time to 

reevaluate integrand then no saving can be made by storing the 

integrand evaluations. 

An obvious fault with the above procedure is the repetition of the 

calculation ENTIER(node[iJ/alt) which is in itself quite an
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expensive operation. This was avoided by the introduction of an 

array [l:n]INT to store the digits computed from the node. These 

digits can then be repeatedly divided by two until me of them is 

odd. This also removes the need for alt and the associated 

multiplication alt TIMES 2. A further improvement was the removal of 

the calculation of the base (base := (basetl)'/'2) by storing the 

possible bases in an array and altering a pointer to this array. The 

variable "ptr" can be used for this purpose. The procedure enumerate 

with these alterations consists of the following: 

PROC enumerate = (REF[]REAL node, REF INT key,ptr, 

INT b, REAL al) VOID : 

BEGIN 

BOOL possible := TRUE ; 

[i:n] INT digits ; 

{compute the digits from node and store them in the array 

digits, if any of the digits are odd set possible to FALSE} 

FOR i TO n DO IF odd(digits[i] := ENTIER(node[i]/al)) 

THEN possible := FALSE 

{node cannot be stored at a lower base level} 

EL 7: 

{consider the lower base levels} 

WHILE ptr > 1 AND possible DO 

{pointer now selects from an array of bases and the lowest 

possible base level,2, is stored in the first element of the 

array, thus ptr > 1 is equivalent to base > 2 } 

BEGIN 

FOR i TO n DO 

IF odd(digitli] := digit[i] 2)
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THEN possible := FALSE 

FT 3 

IF possible 

THEN {consider the next base level} 

ptr MINUS 1 

EI 

END ; 

{ptr now indicates the correct base level for this node, look 

up the base and evaluate the key} 

INT base := bases[ptr] ; 

{bases is the array of base levels} 

key := 0; 

FOR i TO n DO key := key*base + digitLi] 

END of the procedure enumerate. 

5.9 The basic program 

Storing the integrand evaluations affects the procedures to apply 

the basic rules, in that stored integrand evaluations are used where 

possible in preference to reevaluating the integrand, but does not 

affect the basic program used to apply these procedures. The 

structure of the program follows exactly the basic structure defined 

in 4.3. The complete program is given in appendix [5.1]. 

5.10 Scatter storage techniques 

The techniques used so far for storing the integrand evaluations 

have been based upon the use of linked lists ordered according to 

the given keys. This approach is quite satisfactory for short lists
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but becomes rather too slow when the lists become longer, since the 

searching involves a linear search of the list. 

An alternative approach is to use scatter storage techniques. The 

fundamental idea behind scatter storage is that the key associated 

with the desired entry, that is the integrand evaluation in this 

case, is used to locate the entry in storage. Some transformation is 

performed on the key to produce an address (sometimes called the 

hash address or hash code) in a table which holds the key and the 

entry associated with it. This avoids searching the list. If the 

hash codes are such that the same hash code may be generated from 

different keys a method is needed for resolving the collision of 

keys. This is one reason why the key needs to be stored alongside 

the entry. 

Various methods have been developed to handle collisions and the ome 

that seems to be most suitable to this work is called direct 

chaining [45]. With this technique part of each entry is reserved as 

a pointer to indicate where additional entries with the same 

calculated addresses are to be found, if there are any. Thus all of 

the entries with the same hash code are to be found in a linked list 

starting at the address indicated by the hash code. Once a hash code 

has been generated the corresponding linked list must be searched 

linearly (possibly ordering the list and using the techniques 

described previously). However, all the lists will be relatively 

small if the number of collisions is kept to a minimum. In fact if 

the data is distributed evenly throughout the scatter storage table 

no searching will take place until most of the table has been 

filled. Therefore the larger the size of the table the quicker
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access should be, up to a point. The aim of a good hash code is to 

distribute the data evenly throughout the available store, thus 

avoiding collisions. More will be said about this later in the 

section on hash code generation. 

A general introduction and useful summary of the scatter storage 

techniques presently in general use are given in [45]. 

5.11 Development of an algorithm based upon scatter storage 

techniques 

The following describes the various sections of the algorithm 

developed to take advantage of the scatter storage techniques 

described above. 

The algorithm follows the previous algorithm to a large extent, but 

the method of storing the integrand evaluations is altered, a 

scatter storage technique being used. Thus, to avoid repetition, 

only the new sections of the algorithm are discussed in detail. 

5.12 Key generation 

A unique key is required to store alongside each integrand 

evaluation, since a hash code will be used that allows collisions. 

The key needs to be compared with a search key to ensure that the 

correct integrand evaluation is obtained for a given node. A LONG 

INT value is used for the key, in order to increase the range of 

possible values. The key is generated uniquely from the coordinates 

of a given node. It is convenient initially to generate two integer 

keys (keyl and key2) from the node, which can then be combined to



Page 101 

form a single LONG INT. These two keys are also used in the hash 

code generation. 

PROC eval key = (INT keyl, key2) LONG INT : 

BEGIN 

{This procedure evaluates a LONG INT key given two integer keys 

"keyl" and "key2"} 

LONG INT newkey ; 

newkey := LENG key2 ; 

newkey := newkey*(LONG 10000000) ; 

newkey := newkey + (LENG keyl) ; 

{This combines the two keys} 

newkey 

END of the procedure eval key. 

The number of dimensions of the problem determines the way in which 

the two INT keys, "keyl" and "key2", are generated. With a two 

dimensional problem it is simply a case of constructing the first 

key, "keyl", from the first coordinate and the second key, "key2", 

from the second coordinate. These two integers are generated in a 

similar manner to the methods used in the procedure enumerate 

earlier. Each coordinate is a real number in the range 0 - 1 and 

ENTIER(coordinate*const) is computed to givethe corresponding 

integer. The variable const is the reciprocal of the fraction 

associated with the lowest level of subdivision. This is equivalent 

to finding the integer number of times that the fraction divides 

into the coordinate but is slightly more efficient since divisio is 

slower than multiplication.
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With a three dimensional problem the three integers associated with 

the three coordinates of a node are generated in the same way as 

above. The largest value of any of these integers depends on the 

level of subdivision allowed, hence by putting a limit on the level 

of subdivision it is possible to ensure that oly the first fifteen 

bits of any of these integers are significant. One integer contains 

twenty four bits and so it is possible to form the first key, 

"keyl", from all the significant bits of oe of these integers and 

the first eight significant bits of the second. similarly "key2" can 

be formed from the next seven significant bits of the second integer 

and all the significant bits of the third integer. 

Higher dimensional problems require a similar approach and 

corresponding restriction on the level of subdivision. Obviously 

more words could be used to represent the keys but this would make 

the method less efficient. Thus this method is more restrictive in 

some ways than the previous method. 

The procedure which is used to produce the two keys from a given 

node is as follows: 

PROC compute keys = (REF INT keyl, key2, REF[JREAL x) VOID : 

BEGIN 

{This procedure computes the two keys for the given node x} 

CASE (n-1) {n is the number of dimensions} 

IN( {2d problem} 

keyl := ENTIER(x[1] * const); 

key2 := ENTIER(x[2] * const) ); 

( {3d problem}
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BITS b ; 

INT digit := ENTIER(x[3] * const); 

b := BIN digit ; 

keyl := ABS ((b SR 8) SL 15) 

OR (BIN(ENTIER(x[2]*const) )))) 

OUT SKIP {other dimensions not yet included} 

ESAC 

END of the procedure compute keys. 

Further dimensions can be added as required. 

5.13 Hash codes 

A good hash code is required to distribute the data evenly 

throughout the available store. The hash code could be generated 

from the LONG INT key produced by the procedure "evalkey" but it is 

slightly easier to make use of the two keys, "keyl" and "key2", from 

which the LONG INT key is generated. 

Various methods of hash code generation are available and a good 

review of the possibilities appears in [45]. Briefly the mst 

commonly adopted approaches are as follows: 

a) Choose same bits from the middle of the square of the key, enough 

bits to be used as an index to address any item in the table. Since 

the value of the middle bits of the square depend on all the bits of 

the key there is a high probability that different keys will give 

rise to different hash codes, more or less independently of whether 

or not the keys share some common feature. 

b) If the keys are mltiword items, then sane bits from the product
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of the words making up the key may be satisfactory as long as care 

is taken to ensure that the calculated address does not turn out to 

be zero most of the time. 

c) A third approach is to cut the keys up into n-bit sections, where 

n is the number of bits needed for the hash address, and then form 

the sum of all these sections. The low order n bits of the sum are 

then used as the hash address. This method can be used for single 

word keys as well as for multiword keys. 

The method adopted by the author is a slight variation o the third 

of these basic ideas. The method consists of adding the two INT keys 

and dividing the result by the maximm possible value of the sum of 

these two keys. This gives a real value in the range 0 to 1 which 

can be converted to any required range by multiplying by the number 

of elements in the range and taking the largest integer less than 

the resulting real number. The procedure used to generate a hash 

value given two integer keys is as follows: 

PROC compute hash value = (INT keyl, key2) INT : 

{This procedure generates a hash value} 

(ENTIER(1024*ABS ( (keyl+key2) /maxint) ) ) 

The variable maxint, as it s name suggests, is the maximum value of 

the sum of the two keys, "keyl" and "key2". 

5.14 Finding the integrand evaluation at a particular node 

In the previous sections the generation of a pair of keys frona 

given node and the generation of the corresponding hash value fron
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these keys was discussed. Now the method of applying this hash code 

to the storing and accessing of integrand evaluations will be 

approached. First consider the data structure that is to be used. 

Starting from a node the keys are generated and from the keys the 

hash code is produced. This gives the position in a table where an 

index into the scatter storage table for that hash code is located. 

Within the scatter storage table all the integrand evaluations 

associated with the nodes which produce the same hash code are 

stored in a linked list. Pictorially the data structure my be 

viewed as : 

hash table scatter index table 
  

fren) [rev] 
      

  

  

  

    
  node   

thash code node 

node         | L—___ | 

linked lists 

Each node in the linked lists consists of : 
  

    
a key | an integrand evaluation | a pointer to the next node 

      

The hash table is simply an array of pointers into the scatter index 

table. The scatter index table can be either an array of references 

to lists of integrand evaluations, in which case each element is a 

single item, or it can be an array of the first nodes in the lists



Page 106 

of integrand evaluations, in which case each element would be a 

structure. In the first case no space is pre allocated for the 

storage of integrand evaluations whereas in the second case space to 

store one integrand evaluation, i.e. one node, is allocated per 

element of the scatter index table. 

The author adopted the first approach which is somewhat simpler to 

achieve. Direct chaining is used to handle collisions and in it s 

simplest form this results in a one to me relationship between the 

hash table and the scatter index table which could thus be replaced 

by a single table. However, if the two are kept separate it is 

possible to adopt alternate strategies as regards the chaining quite 

easily. For example, if the linked lists hanging off each entry in 

the scatter index table tend to be long then the amount of time 

involved in searching through the lists may be a problem. In order 

to shorten the lists one approach might be to have two entries in 

the scatter index table for each pointer in the hash table; one 

pointing toa list of the integrand evaluations with odd valued keys 

leading to the given hash code and the other pointing to a list of 

the integrand evaluations with even valued keys leading to the given 

hash code. Or even four entries, since the searchkey is made up from 

two keys; even and odd lists for the first key and even and odd 

lists for the second key. Hence, pictorially the data structure 

  
  

  

hash table scatter index table nodes 
pies ae 

we ee 

eae bee         
might be replaced by
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hash table scatter index table 

———— even list 

zg (Ee 
ct odd list 

Lo} “eee 

or even 

  

  

  

  

  

  

        

hash table scatter index table even list for keyl 

  

    

        

   

odd list for keyl 

even list for key2 

odd list for key2 

The author has only implemented the simplest strategy so far with 

the aim of investigating the feasibility of the approach. The 

following describes how the ideas have actually been used in the 

program. 

The main requirement of the program is the evaluation of the 

integrand at particular nodes as the computation progresses. Hence 

the program has to either look up the value of the integrand 

evaluation in the scatter index table, if this particular node has 

been used before, or compute the integrand evaluation at this node 

and store the integrand evaluation at the appropriate place in the 

scatter index table. The process was written in the formofa 

procedure called "integrand evaluation" which takes as input 

parameters the node and the procedure describing the integrand and
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delivers as it s result the integrand evaluation. The essence of the 

procedure consists of : 

Compute the two keys for the given node; 

Combine the two keys to give the searchkey; 

Compute the hash value for this node; 

{Consider the value stored in the hash table at the position given 

by the hash code} 

IF the hash table entry is empty 

THEN 

ELSE 

{the integrand evaluation has not been computed previously} 

compute the integrand evaluation and store it s value in the 

scatter index table; 

{deliver this integrand evaluation as the result of the 

procedure} 

alter the entry in the hash table at the position given by the 

hash code to be the position in the scatter index which 

contains the pointer to the start of the list in which the new 

integrand evaluation has just been stored 

{the integrand evaluation may have been computed already} 

obtain the pointer to the list of integrand evaluations given 

by the entry in the scatter index indicated by the entry in the 

hash table at the position given by the hash code; 

search the list for an entry with the appropriate key; 

IF the key is found 

THEN 

deliver the integrand evaluation associated with this key 

as the result of the procedure
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ELSE 

{add a new node to the list of integrand evaluations} 

compute the integrand evaluation for this node; 

store this integrand evaluation in the new node; 

store the key for this integrand evaluation in the new 

node; 

deliver the integrand evaluation as the result of the 

procedure 

FI 

{End of the procedure} 

In order to search the list a procedure is used that follows the 

same pattern as the one given in section 5.6, the only difference is 

that the key used as a search key is a LONG INT as opposed to an 

INT. Similarly a procedure analogous to the one given in section 5.7 

is used to insert an item in the linked list. Full details of these 

two procedures are given in appendix [5.2]. 

The complete procedure to find the value of the integrand at a 

particular node either by looking it up or by evaluating it consists 

of 

PROC integrand evaluation = (REF[JREAL node, 

PROC(REF[JREAL)REAL £)REAL : 

BEGIN 

REAL val ; 

compute keys (keyl,key2,node) ; 

newkey := evalkey (keyl,key2) ;
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{form the long int search key} 

hash value := compute hash value (keyl,key2) ; 

IF hash value < 0 OR hash value > 1023 

THEN hash value := 1 

FI; 

REF INT htv = hash table [hash value] ; 

IF htv = 0 

THEN 

htv := next PLUS 1 ; 

val := £(node) ; {evaluate the integrand at this node} 

numeval PLUS 1 ; 

insert (scatter index table[htv],newkey, val) 

ELSE 

pointer := scatter index table [htv] ; 

IF searchlist (pointer, newkey) 

THEN val := fevalOFpointer 

ELSE 

val := £(node) ; 

{evaluate the integrand at this node} 

numeval PLUS 1 ; 

insert (pointer,newkey,val) 

FI 

FI ; 

val {deliver val as the result of the procedure} 

END {of the procedure} 

5.15 Computing an estimate to the integral over the subregions 

Initially the compound trapezoidal rule and Ewing's rule were used
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to compute the estimates to the integral over the subregions. These 

two rules have been discussed previously, however the procedures to 

evaluate the estimates have changed slightly. The procedures now use 

the procedure “integrand evaluation" described in the last section 

to find the value of the integrand at a particular node either by 

looking it up or by evaluating it. The procedure to evaluate an 

estimate to the integral of a subregion using the compound 

trapezoidal rule consists of the following : 

Proc evala = (REAL div, scf, REF[JREAL centre, 

PROC(REF[JREAL)REAL £)REAL : 

BEGIN 

REAL estimate := 0.0 ; 

FOR j TO num DO 

{for each node in the rule} 

BEGIN 

[1:n]JREAL temp ; 

REF[JREAL t2 = nodes[j,l:n] ; 

{set t2 to point to the next node} 

{transform this node from the region over which the rule 

is defined to the current subregion and store the node 

thus formed in temp} 

FOR k TO n Do temp[k] := centre[k] + t2[k]/div ; 

compute keys (keyl,key2,temp) ; 

estimate PLUS integrand evaluation (temp, f) 

{use the procedure integrand evaluation to find the value 

of the integrand at the new node} 

END ; 

estimate DIV scf ;
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{scale the estimate thus formed} 

estimate 

{deliver the estimate as the result of the procedure} 

END {of the procedure evala} 

The procedure to evaluate an estimate to the integral of a subregio 

using Ewing's rule consists of the following : 

PROC evalb = (REAL div, scf, REF[]REAL centre, 

PROC(REF[JREAL)REAL £)REAL : 

BEGIN 

REAL estimate := 0.0 ; 

{for each node in the rule} 

FOR j TO num DO 

BEGIN 

[1:n]REAL temp ; 

REF[JREAL t2 = nodese[j,l:n] ; 

{transform this node from the region over which it is 

defined to the current subregion and store the node thus 

formed in temp} 

FOR k TO n DO templk] := centre[k] + t2[k]/div ; 

estimate PLUS integrand evaluation (temp, f) 

{use the procedure integrand evaluation to find the value 

of the integrand at the new node} 

END ; 

estimate TIMES constl ; 

{multiply the estimate by the appropriate weight} 

{add the integrand evaluation at the centre of the subregion 

multiplied by the appropriate weight to the estimate}
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estimate PLUS (integrand evaluation(centre,f)*const2) ; 

{scale the estimate} 

estimate DIV scf ; 

{deliver the estimate as the result of the procedure} 

estimate 

END {of the procedure} 

5.16 The program using scatter storage techniques 

The program using scatter storage techniques follows the same 

pattern as the program using linked lists to store the integrand 

evaluations. The main difference is the way in which the integrand 

evaluations are stored. In this program the scatter storage 

techniques described above are used whereas linked lists were used 

in the previous program. Full details of the complete program are 

given in appendix [5.2]. 

5.17 Testing the two approaches to storing the integrand evaluations 

The program based on linked lists and the program based qm the 

scatter storage techniques were tested on the set of test problems 

described in appendix [1]. The tables of results for the test runs 

are given in appendix [8]. 

5.18 Comparison between the two approaches 

From the tables of results it can be seen that the program based 

upon the scatter storage techniques is marginally faster than the 

program based upon the linked lists. As the number of integrand
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evaluations increases the difference between the two methods in 

terms of time increases. However, the hash code technque is more 

restrictive than the linked list method because of the way in which 

the keys are generated. As the number of dimensions increases the 

maximum level of subdivision allowed decreases. This could be 

altered by choosing a different representation for the keys. This is 

an area in which further research could take place if storing the 

integrand evaluations is justified. 

5.19 Conclusions 

Both of the programs produced reasonable results which satisfied the 

required tolerances in the majority of cases. Compared with the non 

storing methods the programs were somewhat slower but they did 

reduce the number of integrand evaluations actually evaluated 

considerably. Unfortunately the rules that are suitable for methods 

based on storing the integrand evaluations are less accurate than 

the rules that proved to be best in the non stored methods and 

consequently more integrand evaluations had to be computed using 

these methods to satisfy the same tolerances. If a high order pair 

of formulae with a minimum number of points could be found that 

produced nodes suitable for storing then the method could be 

improved considerably. 

However, it can be seen from the test results that the overheads 

involved in storing the integrand evaluations would be justified if 

the integrand was very "expensive" to compute and a fairly accurate 

result was required; the stored method does not start to use less 

integrand evaluations than the non stored methods until the
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subdivision process is well under way. For example consider the two 

dimensional version of the first test problem with a tolerance of 

0.001. The basic adaptive method used 63 integrand evaluations and 

took 78 millunits whereas the hash code method used 225 integrand 

evaluations but only actually computed 49, the other 176 being 

reused, and took 559 millunits. Therefore the hash code method took 

481 millunits longer but used 14 integrand evaluations less. Hence 

if the integrand had been more expensive to evaluate and 14 

integrand evaluations had taken longer than 481 millunits then the 

stored method would have been faster. Similarly, with a tolerance of 

0.00005 224 less integrand evaluations were used by the stored 

method but it took 1991 millunits longer. Therefore if it had taken 

longer than 1991 millunits to compute 224 integrand evaluations then 

the stored method would have faster. Same timings for the types of 

Operations involved in computing an integrand evaluation are given 

in appendix [4]. 

In conclusion the methods adopted to store the integrand evaluations 

perform satisfactorily but the overheads involved make the programs 

impractical for anything but "expensive" problems. With further 

research the overheads might be reduced but this could mly be 

justified if it can be demonstrated that there are significant 

number of sufficiently complex problems to be solved.
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Chapter 6 Global Subdivision Strategies 

6.1 Introduction 

This chapter is concerned with the effects of different interval 

subdivision strategies. The algorithms described so far have all 

been based on what is termed a “local subdivision strategy". 

However, with respect to one dimensional adaptive quadrature Malcolm 

and Bruce Simpson [41] suggest that there are certain advantages in 

using a global subdivision strategy. They state that a global 

strategy can result in a reduction of the number of subregions used 

and an error in the final result which is closer to the required 

tolerance than is possible with a local strategy. Hence these ideas 

have been extended to multidimensional quadrature and examined. 

The two terms local and global acceptance criterion are used 

exclusively with respect to adaptive quadrature schemes and can best 

be described as follows. An adaptive quadrature routine can be 

regarded as an algorithm for processing a sequence of subregions 

(Sn), the main components of which are : 

a) a local quadrature procedure for evaluating an approximation 

to the integral over the subregion, that is 

Q(sn) wf sare.) dx, dx, .. -dxq 

Sn 

b) a method for calculating an estimate to the error in the 

approximation, that is 

E(Sn) | a¢sn) jain ade ++ .dx| 

Sn
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c) criteria for deciding which subregion in the sequence (Sn) 

to subdivide at each stage and for deciding when to terminate. 

The object of the algorithm is to produce a result, res, which is 

accurate to a user specified absolute error tolerance £&, that is 

res - | £(x,X2-++Xq)Ax,dx,-..dx, | © E 

Sy 

The subregions Sn fall into three distinct categories : 

a) Sn has already been subdivided and discarded (n € dis) 

ib) Sn has been accepted (n € acc) 

c) Sn is pending further examination (n € pen). 

A program implementing an adaptive quadrature algorithm has to store 

the list of subregions pending further examination, (Sn | népen) and 

to accumulate the contributions to the result from the accepted 

subregions, (Sn \ néacc). Using a local error criterion a subregion 

is accepted once the error estimate for that subregion is less than 

the proportion of the absolute error tolerance given by the 

hhypervolume of the initial region divided by the hypervolume of the 

subregion, that is 

E(Sn) < (h(Sn)é/ (b-a)) 

where h(Sn) is the hypervolume of the subregion Sn. 

This criterion has the following features : 

a) the decision is based entirely on information available fron 

Sn 

b) if the error estimate E(Sn) is in fact a bound for the error 

in Q(Sn) for every n € acc when the algorithm terminates then 

the user's tolerance is guaranteed to be met (assuming exact 

arithmetic) 

With the global error criterion all the subregions which have not
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been discarded (discarded subregions are those which have been 

replaced by further subregions) are retained as pending and the sum 

of the error estimates for all the pending subregions being less 

than the absolute error tolerance is used as an acceptance criterion 

for the entire pending set, that is 

s E($m) 2 & 
mépen 

Then if this condition is not satisfied the subregion with the 

largest error estimate, mépen such that 

E(Sm) 2 E(Sn) for all n € pen, 

can be subdivided and the resulting subregions added to the pending 

set in place of $m. 

Hence, the local error criterion decreases linearly with the 

subregion hypervolume and is most stringent as a tolerance in 

regions where the adaptive process is working at subdivision the 

hardest, whereas the global strategy selects subregions so that the 

local errors are roughly equal in magnitude, rather than scaled by 

the hypervolume of the subregions. Thus algorithms using global 

strategies should work no harder on subregions where the integrand 

is difficult to integrate than on subregions where it is "well 

behaved". Hence a global criterion has the potential for reducing 

the number of subregions used. 

The subregion selection strategy does not affect the order of an 

adaptive quadrature algorithm but it does appear to influence it s 

performance in at least three ways: 

1) by affecting the number of integrand evaluations required 

for an integral
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2) by changing the domain of integrands which can be handled by 

the algorithm 

3) by affecting the closeness with which the user's tolerance 

is achieved. 

Rapid growth of the number of subregions and the corresponding 

numbers of integrand evaluations required are perhaps the key 

factors in multidimensional quadrature routines. Also most 

quadrature routines produce answers which are far more accurate than 

required by the tolerance, hence if the global strategy can reduce 

the number of integrand evaluations by producing a result which has 

an error closer to the required tolerance, without incurring too 

many overheads in terms of organisation then it has the potential of 

improving the efficiency of the algorithms. 

6.2 A modification of the basic algorithm for the hypercube to use a 

global subregion strategy 

In the basic algorithm for the hypercube a list was maintained of 

the non converged subregions of the initial region. This list was 

processed sequentially and a new list formed of the subregions of 

the mon converged subregions of the first list. As convergence was 

achieved in a subregion the estimate thus formed was added to the 

total estimate so far and the subregion discarded from further 

consideration. In order to apply a global subdivision strategy it is 

necessary to keep a list of all the subregions and to order the list 

according to the size of the error estimate for the subregions. The 

subregion with the largest error estimate is at the start of the 

list while the subregion with the smallest error estimate is at the
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emi of the list. Hence the basic structure consists of : 

BEGIN 

form the initial estimate over the whole region and the 

associated error estimate; 

set up a list consisting of this region ; 

set the total error estimate to be the error estimate for this 

region; 

set the estimate to the result to be the estimate over the 

whole region; 

WHILE not converged 

{i.e. the total error estimate > the required tolerance} 

Do 

consider the subregion with the largest error estimate, 

i.e. the oe at the head of the list; 

subtract the estimate for this subregion from the estimate 

to the result; 

subtract the error estimate for this subregion from the 

total error estimate; 

subdivide this region into subregions; 

FOR each subregion 

DO 

compute the estimate for this subregion; 

add this estimate to the total estimate to the 

result; 

compute the error estimate for this subregion; 

add the error estimate for this subregion to the 

total error estimate; 

store the details of this subregion in a node;
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add this node to the linked list at the correct 

position, i.e. depedent upon the magnitude of the 

error estimate 

oD 

{now the estimate for the subregion with the largest error 

estimate has been replaced by the sum of the estimates 

over the subregions of that subregion] 

With this approach regions are only subdivided into subregions when 

a new estimate over that region is required. It should be noted that 

in this algorithm, unlike with the basic algorithm for the 

hypercube, that the subregions which make up the linked list are not 

necessarily all at the same level of subdivision. Hence it is 

necessary to store details of the level of subdivision of each 

subregion in order to ensure that the correct transformation of the 

basic rule is applied. In the basic algorithm over the hypercube all 

that was required in each element of the list was the centre of the 

subregion and the pointer to the next item in the list. Rather more 

is required for the method based upon the global subregion strategy; 

namely the centre of the subregion, the scaling factor, the 

transformation factor (div), the error estimate for this subregion, 

the estimate over this region and the pointer to the next item in 

the list. Hence the following mode was defined: 

MODE NODE = STRUCT(REF NODE ptr, REF[JREAL centre, 

REAL errest, estimate, scf, div) 

6.2.1 Adding a node to the list of subregions



Page 122 

In the basic program the new nodes corresponding to new subregions 

were quite simply added to the start of the linked list. However 

with the global strategy approach it is necessary to maintain the 

list in descending order of the error estimates. Hence the insertion 

of a new node in the list involves a search for the correct position 

of insertion. A straight linear search from the start of the list 

was adopted. 

The search and insertion process consists of : 

start at the head of the list, set a temp ptr to the head; 

IF the list is empty 

THEN 

set the head of the list to point to the new node; 

set the ptr of the new node to be nil, i.e. empty 

WHILE the error estimate of the temp ptr is greater than 

the error estimate of the new node 

AND the ptr of the temp ptr ISNT nil 

Do 

move the temp ptr on to the next item in the list 

OD; 

{now the first item in the list whose error estimate is smaller 

than the error estimate for the new node has been found} 

IF the ptr of temp ptr is nil 

AND the error estimate of the temp ptr is greater than the 

error estimate of the new node 

THEN
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{the end of the list has been reached} 

set the ptr of the new node to be nil; 

set the ptr of temp ptr to point to the new node; 

{i.-e. add the new node to the end of the list} 

ELSE 

{add the new node before the item pointed to by temp ptr} 

set a temporary node equal to the new node; 

set the new node equal to the node pointed to by temp ptr; 

set the ptr of temp ptr equal to the new node; 

{in effect this adds the new node after the node pointed 

to by temp ptr but changes the data of the two nodes} 

FL 

BT 

As well as adding new nodes to the list it is necessary to remove 

the first item from the list. This is achieved by advancing the head 

of the list to the second item in the list. Since the head of the 

list is continually removed and replaced it was essential to make 

use of the discarded node so as to avoid using the heap too 

rapidly. This was achieved quite simply by having a variable which 

could be pointed to the node to be deleted from the head of the list 

before advancing the head of the list then this free node was used 

the next time a new node was required, instead of creating a new 

node on the heap. 

head node to be deleted 

  

  
              

free node becomes head becomes:
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6.2.2 Adopting a doubly linked list to store the details of the 

subregions 

This section presents one alternative method of accessing the 

integrand evaluations. In the previous section storing the 

subregions in a simple linked list was considered. However, consider 

the size of the error estimate for the new subregions. In the 

majority of cases they will be smaller than the error estimates for 

the existing subregions (otherwise the overall error estimate would 

not be decreasing and the method would not be converging). Hence in 

these cases adopting the simple approach described above would 

result in the list being searched to or very near to the end passing 

through all or almost all the nodes in the list on the way with the 

associated comparisons of error estimate. Obviously it would seem 

reasonable under the circumstances to start the search at the end of 

the list and work towards the beginning. Then only in the 

exceptional cases would a large proportion of the list be searched 

in order to find the position of insertion of the new node. In order 

to achieve this it is necessary to alter the structure of the list 

slightly so as to enable movement up or down the list. A second 

pointer has to be added to each node to point backwards to the 

previous node in the list. Each node in the list is of the following 

mode: 

MODE NODE = STRUCT(REFNODE fptr, bptr, REF[JREAL centre, 

REAL errest, estimate, scf, div) 

where fptr represents forward pointer and bptr represents backward 

pointer. The structure of the list is of the form: 

bptr fptr bptr fptr bptr fptr 

a Balto n Laces eS a 
  

  

       



This 

the 

node. 
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alters the part of the algorithm which is involved with finding 

position of insertion of the new node and inserting the new 

Adopting the double linked list and starting the search from 

the end of the list the search and insertion process consists of: 

Start at the tail of the list 

IF the list is empty 

THEN 

ELSE 

set the head of the list to point to the new node; 

set the tail of the list to point to the new node; 

set both the forward and backward pointers of the new node to 

be empty, i.e. NIL 

WHILE the error estimate of the tempptr 

is less than the error estimate of the new node 

AND the backward ptr of tempptr ISNT NIL 

DO 

move the tempptr back to the previous item in the list 

OD; 

{i.e. find the last item in the list whose error estimate is 

greater than the error estimate of the new node, i.e. the 

position of insertion} 

IF the backward ptr of tempptr IS NIL 

AND the error estimate of the tempptr 

> error estimate of the new node 

{the start of the list has been reached and the new node 

needs to be inserted at the head of thhe list} 

set the forward pointer of the new node to be head;



ELSE 

FL 

Fr 

Since it 
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set the backward pointer of head to be the new node; 

set head to be the new node; 

set the backward pointer of the new node to be nil 

{add the new node after the item pointed to by temp ptr} 

backward pointer OF new node := temp ptr; 

forward pointer OF new node := forward pointer OF temp ptr 

backward ptr OF forward ptr OF temp ptr := new node ; 

forward ptr OF temp ptr := new node 

is likely that the magnitude of the error estimates over 

the subregions ofa particular subregion will be similar it may be 

more efficient to start the search from the last position of 

insertion 

involves 

and search either forwards or backwards as required. This 

both the search and insert process described above and the 

search and insert process described in the last section. Essentially 

the two processes can be combined in the following manner assuming 

temp ptr is the last position of insertion of a new node: 

IF the error estimate of the temp ptr is greater than 

the error estimate of the new node 

THEN 

search forward until an item is found with a smaller error 

estimate than that of the new node; 

insert the new node prior to this node 

{this is the process described in the last section} 

ELSE
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search backwards until an item is found with a larger error 

estimate than that of the new node; 

insert the new node after this node 

{this is the process described above} 

The double linked list is just one alternative to the single linked 

list that could possibly improve the performance of the algorithm. 

Another alternative might be to adopt a tree structure. These 

alternatives are worthy of further research once the global 

subdivision strategy has proved to be an improvement on the locel 

strategy. 

6.3 The complete program 

The program uses the same two basic rules adopted for the local 

method; namely Stroud's ntl and 2n point rules. The program is 

written as a sequence of segments, full details of which are given 

in appendix [6]. 

6.4 testing the program 

The program was tested using the set of test problems defined in 

appendix [1] and the tolerances 0.5,0.1,0.5,..etc. The maximum 

jobtime was limited to 90 and the maximm oore size to 90k. The 

results for the test runs are given in appendix [8]. 

6.5 Conclusions
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The majority of results produced using this method were more 

accurate than the requested tolerance and the times to produce the 

results compared favourably with the other methods. In particular 

the program consistently used less integrand evaluations than the 

basic local aljaptive method and correspondingly less time to produce 

results that were closer to the required tolerance. Also the change 

in the number of integrand evaluations used for each tolerance was 

quite smooth, unlike with the local method where sudden dramatic 

increases occur as the method progresses from one level of 

subdivision to the next. Hence, it would appear from the results so 

far that the global subdivision strategy is preferable to a local 

subdivision strategy in that it uses less integrand evaluations and 

the results produced are close to the required tolerance. This 

program demonstrates that it is possible to adopt a global 

subdivision strategy without the benefits being lost due to the 

overheads in implementing the technique. 

Further research into storing and accessing the list of subregions 

could perhaps improve the program further. The program does use a 

large amount of store in the form of the heap and any reductions 

would be an improvement. 

One problem with this method is that the list of subregions can get 

very long since all the subregions are retained. One solution might 

be to set a maximum limit on the length of the list and once this 

limit is reached begin to discard subregions from the end of the 

list; that is begin to discard the subregions which have the 

smallest error estimates. This should not affect the overall 

strategy if the list is long enough since the number of subregions
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actually discarded will be kept to a minimm and subregions will 

only start to be discarded when the program is close to obtaining 

the final solution. 

In conclusion adopting a global subdivision strategy would appear 

from the work so far to be beneficial in multidimensional quadrature 

programs.
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Chapter 7 Extension of the methods to other regions 

7.1 Introduction 

In the previous chapters programs have been developed to approximate 

integrals over two basic regions; the hypercube and the simplex. 

Unfortunately the vast majority of practical problems involve rather 

more complex regions which cannot be transformed easily, if at all, 

into either of these two regions. However, in many cases it is 

possible to define a region as the union of a series of subregions, 

each of which is either a simplex or a hypercube. Under such 

circumstances it would be feasible to use the programs of the 

previous chapters to find estimates to the integral over each of 

these subregions and to sum the results to give an estimate over the 

whole region. If the final approximation was not sufficiently 

accurate then the whole process would have to be repeated. This 

could be very tedious for a camplicated region even though the 

process is relatively straightforward. This chapter is concerned 

with extending the methods developed so far in order to autamate 

this process. 

7.2 Extension of the region of integration 

The methods developed for the two basic regions in the previous 

chapters were based upon the use of a linked list to store the 

subregions prior to processing. As the methods progress each 

subregion in the list is either removed fran the list because 

convergence has been achieved in it, in which case the estimate over
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that subregion is added to the final estimate, or it is replaced by 

a list of it s subregions. Consider the list of subregions generated 

by one of the previous programs. The following applies : 

1) At any stage the starting region is defined by the linked 

list of subregions amd possibly a total estimate over the 

converged subregions 

2) The estimate to the integral over the whole region is given 

by the sum of the estimates to the integral over each of the 

subregions in the linked list plus the total estimate over the 

converged subregions. 

3) Each of the subregions in the list has the same form, either 

a simplex or a hypercube, as the original region and a simple 

transformation of the basic rule is applied to give the 

estimate over the subregion. 

Obviously, 1) and 2) above are essential if the final estimate is to 

be valid. However, 3) can be relaxed in two ways : 

a) it is not essential that the same rule is applied over each 

subregion, provided an approximation over the region can be 

formed that is sufficient 

b) the subregions need not be of the same form as the original, 

it is sufficient that the sum of the subregions is equivalent 

to the whole region. 

These two relaxations mean that the region defined by the list of 

subregions need not be a region of a particular shape, since it is 

sufficient that the sum of the subregions is equivalent to the whole 

region, am that the subregions could be of any form, so some could 

be simplexes and some could be hypercubes. Hence this allows the 

same basic approach to be taken for a region which is not itself 

either a hypercube or a simplex but which can be defined as a union
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of subregions, each of which is either a hypercube or a simplex. It 

is valid to form the estimate over the region by taking the sum of 

the estimates over the subregions which make up the union because 

the basic properties of linearity for multiple integrals apply. In 

order to develop a program upon this type of region, which is an 

extension of the regions used in the previous algorithms, it was 

necessary to amalgamate parts of both the program for the hypercube 

and the program for the simplex. 

7.3 Subdivision of a region into a union of simplexes and hypercubes 

The problem of subdivision of a region into a union of simplexes and 

hypercubes is beyond the scope of this thesis. However this section 

outlines sane of the difficulties involved in the subdivision 

process and attempts to justify the development of an algorithm 

based on the simplex and hypercube as subregions by showing that 

they are useful forms for the subregions. 

Consider the subsdivision of an arbitrary two dimensional region of 

integration into a series of subregions : 
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It can be seen that it is possible to subdivide the region into a 

union of squares and triangles and that the area covered by the 

union can be made as close to that of the whole region as required 

by taking sufficiently small subregions. The simplex is well suited 

to subdividing curved edge boundaries while the hypercube is well 

suited to filling large areas of the region. 

There are an infinite number of ways in which the original region 

could be subdivided and various questions concerning the subdivision 

process arise immediately : 

1) how many subregions should be used ? 

2) should uniform or non uniform size subregions be used ? 

3) how closely does the border of the union of subregions need 

to follow the border of the initial region in order to give a 

satisfactory result ? 

4) should one type of subregion be used ? For example is it 

better to split the squares into two triangles ? 

5) should the sides of the squares be parallel with the axes ? 

6) is the orientation of the triangles important ? 

All of these questions require further research in order to answer 

them fully. However, from the point of view of writing an algorithm 

some guidelines can be given as regards some of them. Since the 

algorithm will progress by automatically subdividing the subregions 

into still more subregions amd the minimum number of integrand 

evaluations used is determined by the number of subregions in the 

initial list it is preferable to use as few subregions as possible 

to define the region. This implies that it is better not to
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subdivide hypercubes into simplexes, since although each square can 

be divided into only two triangles any cube has to be divided into 

at least six simplexes and the ratio increases as the number of 

dimensions increases. However, that being the case, if the behaviour 

of the integrand is known or is suspected to be particularly “bad" 

in one or more specific areas of the region then it may be a good 

idea to make the subregions in these areas somewhat smaller. This 

has the potential for saving same work by the algorithm which would 

have to find the difficulty otherwise by the subdivision process. If 

the user knows that at least a certain level of subdivision will be 

required in order to give the required accuracy then it may bea 

good idea to use sufficient subregions initially to reflect this 

level so as to avoid all the computation that would be involved in 

reaching this level. One aivantage of defining the region as a list 

of subregions is that the user has some influence over the behaviour 

of the algorithm; by his choice of subregions the user can force the 

algorithm to use more or less integrand evaluations initially in 

particular parts of the region. It has been suggested by Lyness [34] 

that automatic quadrature routines do not allow the user to think 

and that this is the wrong approach. In definingthe initial region 

as a linked list of subregions the user is encouraged to think and 

to take advantage of his knowledge so as to improve the performance 

of the method. 

The question of how closely the border of the union of subregions 

has to follow the border of the initial region in order to give a 

satisfactory result is perhaps the most important question. One 

possible approach is to define two unions to describe the region; 

one circumscribing the region and one inscribing the region. Then
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the approximations over these two unions can be considered as upper 

and lower bounds on the required estimate. Obviously if the 

difference between the two is not acceptable then further subregions 

need to be added so that the unions are closer approximations to the 

original region. This process could be very expensive amd me 

alternative is to define three unions; the first covering the 

majority of the region and inscribing the region, the second having 

it s inner border common with the outer border of the first union 

and it s outer border inscribing the initial region, and the third 

also having the common border with the first but having it s outer 

border circumscribing the initial region. Thus for example: 

      

MA Sask teagon 

\ ater Fagion — fda Feaion 

Second oe 

Then in order to reduce the difference between the upper and lower 

bounds it is only necessary to redefine the second two unions and 

compute new estimates to the integral over these regions. The 

integral over the first union need not be recalculated, but the 

estimate to it can be added to the estimates over the other two 

regions to give the overall estimates. 

If the subregions which are hypercubes are chosen so that the sides 

of the hypercubes are parallel to the axes then the transformation 

of the basic rules is simple and the methods used in the previous 

algorithms can be used with only slight modification. The 

orientation of the simplexes is unimportant since the rules can be 

defined in terms of the vertices.



Page 136 

The same ideas can be extended quite naturally to n dimensions, 

where the subdivision process becomes complicated. 

Hence it is possible to subdivide a region into a union of simplexes 

and hypercubes. These two subregions lend themselves quite naturally 

to the subdivision process am using the two in combination would 

appear quite useful. Thus there is same justification for developing 

a method based upon a combination of these subregions. 

7.4 The basic structure of an algorithm 

If it is assumed that the region of integration can be defined as 

the union of a set of subregions, each of which is either a simplex 

or a hypercube, then the basic structure of an algorithm to form an 

estimate to the integral of a function over that region can follow 

quite closely the structure of the algorithms described previously. 

Once the linked list of subregions has been formed the method 

proceeds by continually subdividing each subregion in the list into 

more subregions until finally an estimate is formed which satisfies 

the required tolerance. The author chose to adopt a global 

subdivision strategy fran the outset with this algorithm since the 

list of subregions defining the region of integration could be large 

to start with in which case a local strategy would result in a very 

rapid increase in the number of integrand evaluations at each level 

of subdivision. 

Hence the basic structure of the algorithm consists of : 

{Form the initial estimate over the entire region} 

FOR each subregion in the linked list DO
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BEGIN 

compute the estimates over this subregion using suitable 

transformations of the appropriate rules; 

evaluate the error estimate for this subregion; 

{ie. the difference between the two estimates canputed } 

store the details of this subregion and the estimates in a list 

element; 

add this list element to the ordered list of subregions, at a 

position dictated by the magnitude of the error estimate 

{largest at the start, smallest at the end} 

add the estimate over this subregion to the total estimate over 

the whole region; 

add the error estimate over this subregion to the total error 

estimate over the whole region 

{Now an ordered list of subregions has been formed with the 

subregion with largest error estimate at the head of the list and 

the subregion with the smallest error estimate at the tail of the 

list} 

{calculate further estimates until convergence is achieved} 

WHILE NOT converged DO 

{ie. the total error estimate is greater than the tolerance} 

BEGIN 

{consider the subregion at the head of the list} 

subtract the error estimate for this subregion from the total 

error estimate; 

subtract the estimate for this subregion from the total 

estimate;
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{ie. remove the contributions for this subregion fram the 

running totals, these will now be replaced by the contributions 

from the subregions of this subregion} 

subdivide the subregions into the appropriate number and type 

of subregions; 

FOR each subregion DO 

BEGIN 

compute the estimates over this subregion using suitable 

transformations of the appropriate rules; 

evaluate the error estimate for this subregion; 

add the estimate and the error estimate for this subregion 

to the running totals for the entire region; 

store the details of this subregion and the estimates in a 

list element; 

add this list element to the ordered list of subregions, 

at a position dictated by the magnitude of the error 

estimate 

END 

END ; 

{convergence achieved} 

output the required results. 

Some parts of this algorithm have been discussed previously, the 

rest will be explained in more detail in the following sections. 

7.5 Defining the original region as a linked list 

The original region has to be defined as a linked list of 

subregions, each of which is either a hypercube or a simplex. Each
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element of the linked list must contain sufficient information to 

allow an estimate to be formed over that subregion. The information 

used in the previous programs to represent the two regions is now 

discussed. 

All the rules for the hypercube are given with respect toa 

particular starting region (-l<=x;<=l i = 1,2,...n in this thesis) 

and in order to form an estimate over an alternative hypercube the 

nodes of the rule have to be mapped on to the new hypercube and the 

resulting estimate scaled accordingly. In the previous program the 

procedures which evaluate the estimates over the subregions have the 

following parameters : "centre, div, scf, alt". These parameters are 

sufficient to allow the mapping to take place and the transformed 

rule to be applied correctly. The parameters indicate : 

centre - the centre of the subregion to which the rule is to be 

mapped 

div - the factor relating one side of the original hypercube 

to one side of the subregion, this is the factor used to scale 

the nodes fran the original region to the subregion 

scf - the scaling factor relating the hypervolumes of the 

initial hypercube and the subregion 

alt - the offset of the subregions of the subregion, this is 

equal to one quarter of one side of the subregion. 

For example consider the values of the parameters that would be used 

to transform a rule from the region -l<=x;<=l i = 1,2,...n to the 

subregion 0<=x(<=1 i = 1,2,...n for a two dimensional problem.
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centre = 0.5, 0.5 

div = 2 = side of the original/ side of the subregion 

scf = 4 = hypervolume of the initial region/ hypervolume of the 

subregion 

alt = 0.25 = side of the subregion/ 4 

In the linked list defining the subregions for the hypercube program 

some of these parameters were common to all the subregions at me 

level and so were dropped. However with this program all the 

parameters could be different and need to be stored for each element 

in the list. 

The rules for the simplex are often given with respect to a starting 

simplex, however the nodes can usually be transformed so that they 

relate to the vertices of the simplex. Hence in the simplex programs 

the procedures which evaluate the estimates over the subregions have 

the vertices as one parameter and the centroid and hypervolume as 

two other parameters, since these are used in many rules. Thus in 

order to describe a simplex adequately, an element of the list must 

contain : the vertices of the simplex, the hypervolume and the 

centroid. In fact the centroid need not be stored since it is 

canputed from the vertices.



Page 141 

So in order to define an original region as a linked list it is 

necessary to subdivide the region into a number of subregions; for 

each subregion which is a hypercube the appropriate "centre, div, 

scf and alt" must be defined and for each subregion which is a 

simplex the vertices and hypervolume must be defined. 

7.6 Storing the linked list 

In the previous programs all the elements of each of the linked 

lists contained either details of simplexes or details of 

hhypercubes. With this extemled program the list could contain 

details of both types of subregion at once. That is the list must be 

able to take the form : 

  

  
head 

    

  

details of a simplex 
    

  

details of a hypercube 
    

  

details of a simplex }»       

Thus the pointer of an element is required to point to either an 

element suitable to hold the details of a simplex or an element 

suitable to hold the details of a hypercube. In order to define a 

simplex an element has to contain : 

a) the vertices of the simplex 

b) the hypervolume of the simplex 

c) an estimate for this region
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d) an error estimate for this subregion 

e) a pointer to the next element in the list 

while in order to define a hypercube an element has to contain : 

a) the centre of the hypercube 

b) div, the factor used to scale the nodes 

c) scf, the scaling factor 

da) alt,the offset of the centres of the subregions of this 

subregion 

e) an estimate for this subregion 

f£) an error estimate for this subregion 

g) a pointer to the next element in the list. 

It was useful to define two new modes to describe these list 

elements. Suppose a new mode describing a pointer to a simplex or a 

lhypercube existed : 

MODE NEXTITEM 

then the two modes required could be defined as : 

MODE SIMPLEXITEM = STRUCT (REFL, JREAL vertices, 

REAL, hhypervolume, estimate, error 

estimate, 

NEXTITEM ptr) 

and 

MODE HYPERCUBEITEM = STRUCT(REF[]REAL centre, REAL div, scf, alt, 

estimate, error estimate, 

NEXTITEM ptr) . 

The mode NEXTITEM has to be defined so that it can be either a 

reference to a SIMPLEXITEM or a reference to a HYPERCUBEITEM, 

depending upon the type of the next subregion in the list.
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Fortunately this can be achieved by the use of a unio in algolé8. 

Hence the mode NEXTITEM was defined as : 

MODE NEXTITEM = UNION(REF SIMPLEXITEM, REF HYPERCUBEITEM) 

Before these two new modes can be used to create space in which to 

store the list it is necessary to input the appropriate data. The 

author chose the following format for the input data defining the 

subregions in the list : 

type of subregion - simplex or hypercube 

. data for this subregion 

type of subregion 

.» data for this subregion 

end of list marker . 

Hence the basis of the algorithm to input and store the linked list 

consists of the following : 

WHILE (input the type of subregion ; 

type is not equal to the end of list marker) DO 

BEGIN 

IF type = simplex 

THEN {the subregion is a simplex} 

create a new simplex list element ;
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input the data for this simplex ; 

store the data in the new element ; 

compute the estimates for this subregion ; 

evaluate the error estimate ; 

store the estimate and the error estimate in the new list 

element ; 

add the new element to the sorted list at a position 

according to the magnitude of it's error estimate 

ELSE {the subregion is a hypercube} 

create a new hypercube list element ; 

input the data for this hypercube ; 

store the data in the new element ; 

compute the estimates for this subregion; 

evaluate the error estimate ; 

store the estimate and the error estimate in the new list 

element ; 

add the new element to the sorted list 

In order to add a new element to the sorted list at the correct 

position it is necessary to search through the list to find the 

position of insertion and then to actually insert the new element at 

this position. This process was written in the form of the procedure 

"add to list" which consists of : 

PROC add to list = (REAL e, REF NEXTITEM newnode) VOID : 

BEGIN 

REF REF NEXTITEM tempptr := head ;
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{set a temporary pointer to point to the start of the list} 

REF SIMPLEXITEM s ; 

REF HYPERCUBEITEM h ; 

IF head ISNT end of list 

{where REF NEXTITEM end of list = NIL} 

THEN {the list isnt empty, 

search for the correct position of insertion} 

BOOL notfound := TRUE ; 

WHILE notfound DO 

BEGIN 

CASE (s,h) ::= tempptr 

IN 

(IF errest OF s > e 

THEN tempptr:= ptr OF s ; 

{move on to the next item in the list} 

IF ptr OF s IS end of list 

{end of the list reached} 

FI 

ELSE notfound := FALSE 

{position of insertion found} 

FI), 

(IF errest OF h > e 

THEN tempptr := ptr OF h ; 

{move on to the next item in the list} 

IF ptr OF h IS end of list 

{end of the list reached}
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ELSE notfound := FALSE 

{position of insertion found} 

FI) 

ee 

{position of insertion found} 

CASE (s,h) ::= newnode 

In 

(ptr OF s := tempptr ), 

(ptr OF h := tempptr ) 

ESAC ; 

{the newnode now points to the next item in the list} 

(REF REF NEXTITEM VAL tempptr) := newnode 

{the previous item in the list now points to the newnade} 

In the procedure tempptr points to the pointer field of the¢ 

previous element in the list, thus simplifying the insertion 

process. 
  

    head 
  

    Ss 

When considering the data of node B tempptr is pointing to the 

pointer field of node A. Therefore insertion consists of making the 

pointer field of the newnode equal to the pointer field pointed to 

by tempptr, i.e. linking the newnode to the node B, and making the 

pointer field pointed to by tempptr point to the newnade, i.e.
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linking node A to the newnode. 

8.7 Processing the list of subregions 

Once the initial list of subregions has been formed with the 

subregion with the largest error estimate at the head of the list 

and the subregion with the smallest error estimate at the tail of 

the list, this list must be processed. That is, the contribution 

made by the subregion at the head of the list to the total result 

must be replaced by the sum of the contributions from the subregions 

of this subregion. Also the list element defining this subregion 

must be removed fron the list and replaced by the list elements 

defining it s subregions. This process is complicated somewhat by 

the fact that the list elements describe either simplexes or 

hypercubes. 

Essentially the process consists of : 

{consider the subregion at the head of the list} 

IF the subregion is a simplex 

THEN 

remove the contributions for this simplex fran the running 

totals; 

subdivide the subregion into two further simplexes; 

FOR each simplex DO 

BEGIN 

compute the estimates for this subregion; 

add the estimates to the running totals ; 

store the details of this subregion ina simplex list 

element; 

add this element to the list of subregions
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END 

ELSE {the subregion is a hypercube} 

remove the contributions for this hypercube from the running 

totals; 

subdivide the region into 2°n hypercubes; 

FOR each hypercube DO 

BEGIN 

compute the estimates for this subregion; 

add the estimates to the running totals; 

store the details of this subregion in a hypercube list 

element; 

add this element to the list of subregions 

Pies, 

move on to the next element in the list. 

Moving on to the next element in the list involves setting the head 

of the list to be the pointer of the head. This operation depends 

upon the type of subregion described by the element at the head of 

the list amd so is best refined as two distinct operations in the 

algorithm above. In order to decide the type of subregion described 

by the head of the list it is necessary to deunite the list element 

describing the subregion at the head of the list. This is achieved 

with the aid of a collateral conformity clause in conjunction with a 

case construction. Adopting this approach results in the following: 

REF SIMPLEX ITEM s ; REF HYPERCUBE ITEM h ; 

{these are temporary pointers, one of which will be set dependant 

upon the type of subregion} 

CASE (s,h) ::= head 

IN
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({s has been set, the region is a simplex} 

process the simplex as above ; 

set head to be the pointer of the simplex item), 

({h has been set, the region is a hypercube} 

process the hypercube as above; 

set head to be the pointer of the hypercube item) 

ESAC 

This process is repeated until the required tolerance has been 

satisfied. 

7.8 The complete program 

The estimates over the subregions are computed using the basic rules 

discussed previously. For subregions which are hypercubes Stroud's 

rules are used, while for subregions which are simplexes Stroud's 

and Lauffer's rules are used. The complete program consists of a 

sequence of segments which are linked by the main body of the 

program. A full description of all the segments and the main body of 

the program is given in appendix [7]. 

7.9 A simple test problem 

As an illustration of the program a hypercube was subdivided into a 

number of subregions, each of which was either a hypercube or a 

simplex. Then the extended program was used to compute an estimate 

over this union of subregions. The following is the initial region 

and the chosen subdivision into subregions:
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        20 or 

Hence the data defining the union consisted of: 

2 the number of dimensions of the problem 

H the subregion is a hypercube 

0.25 0.25 the centre of the hypercube 

16, 4, 0.125 scf, div and alt 

H the subregion is a hypercube 

0.25 0.75 the centre of the hypercube 

16, 4, 0.125 scf, div and alt 

H the subregion is a hypercube 

0.75 0.75 the centre of the hypercube 

16, 4, 0.125 scf, div and alt 

s the subregion is a simplex 

0.5,0-5 1.0,0.5 {.0,0.0 v 

0.125 the hypervolume of the simplex 

Ss the subregion is a simplex 

0.5,0-5 1.0,0.5 0.570.0 v 

0.125 the hypervolume of the simplex 

E end of data marker 

The program was tested using the following problem: 

[ [eae ax dy 

The results were more accurate than the requested tolerance but 

"expensive" in terms of integrand evaluations. However, this problem 

is intended as an example of how the program is used and would not 

be a realistic problem for solution using this method. 

7.10 conclusions
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This chapter has demonstrated one way in which the methods developed 

for the simplex and the hypercube can be extended to cope with other 

types of region of integration. If a region can be defined as a 

union of subregions, each of which is either a simplex ora 

hypercube, then this is a feasible approach. However the problem of 

subdivision of the initial region requires careful consideration if 

the method is to be reliable and efficient. 

One limitation with this approach is the large number of subregions 

that could exist at any me time. One solution to this problem might 

be to set an upper limit on the number of subregions that are held 

in the list. Once this limit has been reached the program could save 

a part of the list on backing store and continue to process the rest 

of the list. Once a satisfactory estimate over this part of the list 

had been achieved then the other part of the list could be 

reinstated in place of the present part and an estimate formed over 

this part. Then the sum of the two estimates would give the required 

estimate. Alternatively it would be possible to adopt a policy of 

discarding subregions from the end of the list once the upper limit 

on the number of subregions had been reached. Obviously the 

estimates fron the discarded subregions would have to be added toa 

running total estimate to the final result. 

The method as described in this chapter applies one procedure to the 

hypercube based on a certain pair of rules and a second procedure to 

the simplex based on a different pair of rules. However, there is no 

reason why more than one procedure for each region could not be 

included and a choice made between the available procedures
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dependent upon the behaviour of the integrand in the present 

subregion; the behaviour of the integrand over a particular 

subregion could be supplied by the user when defining the mion of 

subregions, if he knew it or left blank otherwise. For example a 

procedure could be included which applied the product Patterson 

rules to a hypercube. Then if the user knew that the integrand was 

either uniformly "well" behaved or uniformly "badly" behaved over 

one or more of the subregions he could supply the information to the 

program to ensure that the product Patterson procedure was applied 

over those subregions. Alternatively if the user knew that a 

different procedure was more applicable to a particular subregion 

then he could supply the information to ensure the correct choice of 

procedures for those subregions. Thus the user could be allowed to 

influence the performance of the method by taking advantage of his 

knowledge of the integrand. Another way in which the user may be 

allowed to supply information would be to include the possibility of 

the initial estimates over all or same of the subregions to form 

part of the input data. This could also be use to allow the user to 

restart the program in order to obtain a more accurate result if the 

list of subregions was output in same form at the end of the 

computations.
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Chapter 8 Multiprocessor Techniques 

8.1 Introduction 

The methods described so far are very processor intensive and thus 

limited by the capabilities of the machine a which the programs are 

run. Obviously one way in which the performance of the methods can 

be improved is by using a more powerful, faster machine. Until 

recently the enhancement of computer performance has come from a 

refinement of the basic Von Neumann architecture and the improved 

performance of semiconductor canponents. With the rapid development 

of LSI technology and the corresponding fall in processor costs 

there has been a trend towards mltiprocessor architectures offering 

both parallel and concurrent processing capabilities. With a 

suitable problem the new types of architecture can result ina 

considerable improvement in the performance of an algorithm. The 

author considers the problem of multidimensional quadrature to be 

well suited to solution m a machine with this type of architecture 

and hence presents a case for their adoption for multidimensional 

quadrature programs. Since a suitable machine was not at the 

disposal of the author same of the theoretical possibilities have 

been considered. 

8.2 The architecture of a multiprocessor 

Early camputers were classified as serial or parallel depending upon 

the design of the arithmetic and logic unit. However the concept of 

parallelism has been extended to cover any set of operations carried 

out in parallel and may occur at any logical or physical level of
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the system. Flynn has suggested that it is now appropriate to view 

architectures in terms of the instruction stream and the data 

stream. Multiplicities in these streams lead to four basic 

alternative architectures: 

1) single instruction single data - sISsD 

2) single instruction mitiple data - SIMD 

3) multiple instruction single data - MISD 

and 4) multiple instruction miltiple data - MIMD. 

The ideas proposed in this chapter are based upon the attributes of 

a machine with a multiple instruction stream and a multiple data 

stream type architecture. That is a machine that must have more than 

one processor. Multiple processor systems exhibit a diversity of 

architectures and it is often the case, particularly with mitiple 

microprocessor systems, that the architecture has been designed for 

a specific task. Frequently the motivation for using multiple 

processors does not come fran throughput considerations but from the 

many other advantages of distributing both processing power and 

intelligence, such as modularity, reliability, response time to 

human interaction, resource sharing and fault tolerance. However the 

motivation for the adoption of this type of architecture in the 

context of multidimensional quadrature algorithms is solely an 

improvement in performance. Hence the overheads involved in 

coordinating the processors must be weighed against any possible 

advantages. 

{Perhaps it should be stressed that a multiple processor 

architecture, i.e. a MIMD type architecture, as opposed to an array 

processor type architecture, i.e. a SIMD type architecture, is being 

considered. The latter being the type nommally associated with 

speeding up numerical calculations.}
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The architecture could be described as a master, slave system where 

one processor is deemed to be the master in control of distributing 

tasks to the other processors which are considered to be slaves of 

the master. All communication between the master and the slaves can 

take place via a suitable bus. 
  

      
Master [ slave] [slave | [slave] 

l [ I T 

Each processor has it s own memory and a main memory could be 

available as part of the master or as a separate entity also 

connected to the bus. This is perhaps the simplest interconnection 

topology that could be used and relies on the use of a global bus. 

This obviously creates the problem of simultaneous requests for the 

bus and so sane form of arbitration is required. Arbitration is 

merely the name given to the process of deciding which processor 

obtains exclusive use of the bus. A full introduction to the basic 

concepts of multiple processor systems is given in Bowen and Buhr 

[3]. Although this book is mainly concerned with microprocessors the 

ideas are valid regardless of the size or power of the processors 

used. 

8.3 Multidimensional quadrature as a suitable task for solution om a 

multiple processor system 

When using a multiple processor system as opposed toa single 

processor system an improvement in the performance of an algorithm 

can only be expected if the algorithm exhibits sane inherent 

concurrency. That is if the algorithm can be split into a number of
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tasks which can be distributed amongst the available processors and 

processed concurrently so as to take advantage of the available 

processing power. If the algorithm is strictly sequential in nature 

then no improvement can be expected. 

Consider the nature of the multidimensional quadrature algorithms. 

In each case the method proceeds by subdividing a region into a 

number of subregions, forming the estimates over each of these 

subregions and summing these estimates to give a total estimate over 

the entire region. The natural concurrency involved in forming the 

estimates over the subregions has to be removed and a sequential 

order imposed when adopting the algorithm on a single processor 

system. Hence it seems reasonable to assume that an improvement in 

performance of the multidimensional quadrature algorithms can be 

expected if a multiple processor system is adopted provided the 

overheads involved in distributing the tasks are not too high. The 

calculation of the estimates over the subregions of a region or even 

the entire list of subregions could be processed concurrently. 

8.4 An algorithm for use @m a multiple processor system 

If it is assumed that a machine with an architecture of the type 

described in the last section is available, where each processor in 

the system has sufficient power to perform the subdivision process 

and to generate estimates over the subregions, then it would be 

feasible to construct an algorithm for multidimensional quadrature 

for that machine. All the algorithms written previously exhibit some 

natural concurrency which could be exploited om a multiple processor 

system. However they all have same drawbacks from this point of
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view. Consider the first basic adaptive method as described in 4.3. 

The method involved processing a list of subregions sequentially. 

Obviously the calculations for each subregion are not connected and 

could be performed in parallel, or at least concurrently. However 

the method could not proceed to the next level of subdivision until 

the entire list at one level had been processed. Since the list 

grows to a long length before convergence begins to take place in 

various subregions it is not feasible to have sufficient processors 

to perform the calculations for all the subregions at the same time. 

Hence towards the end of an iteration the situation could arise 

where many of the processors were idle while only one or two of the 

processors performed the calculations for the last regions. This 

might not be a serious drawback but could degrade the overall 

performance of the system and is not an efficient way of using the 

processors. In the worst case the number of subregions would be ome 

larger than the number of processors, which would result in all the 

processors but one waiting while the calculations for the last 

subregion were performed. 

Alternatively consider the global subdivision strategy. With this 

method the algorithm proceeds by dealing with one subregion at a 

time. The only obvious benefit of using a multiple processor systen 

in this situation is if the tasks of calculating the estimates over 

the subregions of the subregion are performed concurrently. The 

drawback then is the sequential nature of the tasks of processing 

the list, forming the subregions and checking for convergence. All 

the processors would be idle while these tasks were performed. 

As they stand the basic algorithms suffer from some drawbacks as
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regards multiprocessing. However one variation on the global 

subdivision strategy would appear to solve most of the problems and 

make the use of a multiple processor system highly beneficial. 

Although the global subdivision strategy involves processing the 

subregions in the linked list one at a time there is no reason why 

work could not be started on other subregions prior to the 

campletion of the calculations for the first subregion. Then 

processors would only be idle when the number of elements in the 

list of subregions was less than the number of processors. At first 

sight this would appear to imply that it is necessary to wait for 

all the processes to complete before an estimate can be formed since 

more than one subregion is removed from the list at a time and the 

order in which the results are returned cannot be guaranteed. 

However these problems can be avoided by not removing the 

contributions to the final result from a particular subregion util 

the sum of the estimates over the subregions of that subregion have 

been formed. Then the total estimate will always be an approximation 

to the result but the algorithm cannot be guaranteed to be global 

since the order in which the estimates over the subregions in the 

list are returned will be processor dependant. For example if the 

first three elements of the list are passed to three processors in 

order to calculate the new estimates over those subregions then it 

is possible that the computations for the third element my be 

completed first, in which case the subregion with the largest error 

estimate has not been replaced first. This should not affect the 

algorithm considerably but is worth noting. Adopting this approach 

the basis of an algorithm is :
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Form the initial estimate to the result, the error estimate and the 

list of subregions; 

WHILE {convergence has not been achieved} 

oD 

the 

Ira 

THEN 

EE 

error estimate > tolerance 

processor is available 

start the processor working on the subregion at the head 

of the list ; 

{remove this subregion from the list} 

advance the head to the next item in the list 

process is complete 

subtract the old estimate over the subregion from the 

total estimate; 

subtract the old error estimate from the total error 

estimate ; 

add the new estimate over the subregions of this subregion 

to the total estimate; 

add the associated error estimate to the total error 

estimate; 

instigate the process of adding the list of new subregions 

to the subregion list 

{output the results} 

The algorithm would be executed on the master processor and
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semaphores would have to be used to protect certain areas. For 

example the list of subregions is accessed by the master and the 

slaves. The master takes information from the head of the list, 

passes this information to a slave and then alvances the head of the 

list. Obviously it is important that no other processor alters the 

list while these operations are being performed if corruption of the 

list is to be avoided. The other process which might attempt to 

alter the list at the same time is the one which adds the new 

subregions of a subregion to the list. A problem could occur if a 

subregion was added at the head of the list just before the master 

processor advanced the head of the list; the wrong element could be 

removed from the list. This could be avoided by making the master 

processor wait until the transfer of all the list of subregions was 

complete before moving on. However this would be inefficient. A 

better approach is to use a semaphore to make the two processes 

mutually exclusive. That is when an element is being added to the 

list the operations associated with ajvancing the head cannot take 

place and alternatively when the operations associated with 

advancing the head are taking place then an element cannot be alded 

to the list. The master processor could be given priority so that 

free processors were not kept waiting while new subregions were 

added to the list. The mly time that a processor would have to wait 

would be when the list of subregions was empty; this situation could 

arise while a processor was actually adding a list of new subregions 

to the list of subregions. 

All communications take place via the bus. Therefore it is necessary 

to have some form of arbitration to decide which processor actually 

gets the bus when more than oe request is made for it at any me
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time. The proportion of the computation allocated to the master is 

relatively small. This enables the master to have time to perform 

this arbitrat ion without degrading the performance. Hence the 

master is in full control. 

8.5 Conclusions 

A straightforward extension of the algorithm based upon the global 

subdivision strategy has been presented which it is suggested would 

be suitable for use on a machine with a multiple instruction 

multiple data type architecture. It is felt that considerable 

improvements in the performance of the algorithm could be expected 

with a reasonable number of processors if the overheads can be kept 

to a minimum since a significant number of tasks exhibit a natural 

concurrency. Obviously it would be best if an architecture was 

designed to suit the problem. This could be feasible in the near 

future when it is expected that the availability of numerous 

processors and facilities to reconfigure the interconnection 

topology of those processors under software control will be just an 

extension of the software engineer's tools. However, at the moment 

same of the languages designed to run on standard multiple processor 

systems, such as Ada and concurrent Pascal [21], offer many of the 

facilities required to construct an algorithm of the type described 

above. Same discussions about using these languages are given in 

Dawson [10] and Bowen and Buhr [3]. In conclusion it would be 

possible to construct a program based on the algorithm described 

which would run on a multiple processor system.
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Chapter 9 Conclusions 

In the previous chapters the development of software for the 

approproximate evaluation of multiple integrals has been considered. 

The work has been based on the construction of reliable software to 

apply the existing theory in an efficient manner. It is hoped that 

this work will be a starting point for the development of further 

software for multidimensional quadrature and that any further 

advance in the theory of numerical integration will lead to the 

construction of formulae that are suitable for use in 

multidimensional quadrature programs. Multidimensional quadrature is 

such a laborious exercise in terms of computation that it is 

unlikely that any formlae which are not suitable for use ma 

computer will ever be used. 

One of the first objectives of the work was to construct two 

adaptive algorithms, one for regions of integration which are 

hhypercubes and the second for regions of integration which are 

simplexes. These have been developed and the resulting programs 

perform well but are slightly inefficient in that they tend to 

produce more accurate results than required at a correspondingly 

higher "cost". The efficiency of the programs can be improved by 

adopting a global subdivision strategy as opposed to a local 

subdivision strategy without affecting the reliability. This was 

demonstrated by the program which was written to perform a global 

subdivision strategy over a hypercube type region of integration. 

Exactly the same strategy could be adopted for the simplex. The 

program for the hypercube performed well and extended the range of 

tolerances over which results could be produced before the limits m
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time ami store were reached by producing results closer to the 

required tolerance. Further research could improve the methois of 

storing ami accessing the lists of subregions used in the global 

subdivision strategy program and it is recommenied that any further 

software written to perform adaptive multidimensional quadrature 

should ajopt this subdivision strategy. 

Another objective was to consider the possibilities of storing 

integrami evaluations as a means of reducing the overall time taken 

to compute an approximation. The techniques for storing integrand 

evaluations were developed with reference to the hypercube as it was 

felt that the same techniques could be applied to the simplex if 

they were successful. Two distinct approaches were taken to storing 

the integrand evaluations; firstly a linked list or series of linked 

lists was used and secomly scatter storage techniques were alopted. 

Both methods reduced the actual number of integram] evaluations used 

considerably once the methods reached a level of subdivision where a 

large number of integrand evaluations were required. However both 

methods proved to be very "expensive", amd are not feasible unless 

the integrand is very "expensive" to evaluate ami it is envisaged 

that a large number of integrani evaluations will be computed to 

achieve the accuracy required. The major problem with storing the 

integrand evaluations is that certain integration formulae which 

lend themselves to the subdivision ani storage methods have to be 

used. Unfortunately these formulae ten] to be less accurate ani use 

more integrand evaluations than other available formulae. If 

formulae were developed with the maximum accuracy using a minimum 

number of nodes and the nodes were distributed such that they could 

be reused after the subdivision then the methais would be very
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useful. 

The construction of product formulae has been reviewed. One program 

was written to construct and apply an n dimensional product rule. 

This program is a non alaptive method based upon a straightforward 

iterative scheme. At each iteration it constructs an n dimensional 

product rule from the ane dimensional rules of Patterson and uses 

this rule to produce the next approximation. The program 

demonstrates ome method of storing the integrand evaluations so as 

to take aivantage of the nature of the Patterson formulae which forn 

a cammon point family. The program either produces very accurate 

results or fails because of the vast number of integrand evaluations 

required for the next iteration. As an iterative scheme the program 

is not viable with the present limitations on computing power and 

resources. However the lower order formulae could be used 

successfully in conjunction with an adaptive scheme to produce 

initial accurate results over uniformly behaved regions. 

In this thesis working programs have been written to produce 

approximations over both the hypercube and the simplex. However, the 

majority of problems that people actually wish to solve do not fit 

into either of these categories. Therefore a program was written to 

demonstrate how the methods used over these two regions can be 

extended to the solution of problems over any region of integration 

which can be defined as a union of hypercubes and simplexes. This 

approach can be modified to incorporate alternative formulae and to 

take advantage of any user knowledge of the integrand. The area of 

subdivision of regions of integration into unions of simplexes and 

hhypercubes is one which requires further research.
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With the changing nature of the architecture of computer systems no 

work would be complete without considering the future. The possible 

advantages of using a multiple processor system have been considered 

and the author suggests that a considerable improvement in the 

performance of quadrature algorithms could be expected if an 

architecture of this type was adopted. 

The testing of quadrature is very complex and same of the methods 

have been examined. The author considers that it would be beneficial 

to carry out research into the testing and comparison of quadrature 

programs and the types of problem that need to be solved before any 

further work is carried out in the area of numerical software for 

multidimensional quadrature. 

In this work the improvement of approximations to the result has 

been achieved by a method of subdivision and the application of 

formulae to the subregions. As the method progresses a sequence of 

converging estimates to the result are produced. One possible method 

of improving the results would be to use an extrapolation technique. 

Anders [1] and Strom [56] have published papers on particular 

extrapolation methods for multiple integrals. Lyness and McHugh [40] 

have developed an extension of Richardson extrapolation for the 

hypercube and this progressive procedure can be applied to other 

formulae. Genz [16] applied a variation of this method to improve 

the results of his multidimensional quadrature program. These 

techniques could perhaps be applied beneficially to the algorithms 

described in this thesis with an aim to improving the results 

without using any more integrand evaluations.
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In conclusion this research has resulted in the development of a 

variety of algorithms for the appropriate evaluation of multiple 

integrals. On the whole the programs perfonn well and form the basis 

for the development of efficient, reliable software for 

multidimensional quadrature.
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Appendix 1 

1.1 The set of test problems 

All the problems are written in the form of procedures which 

evaluate the integrand, defining the problem, at any given node. 

Each procedure has the same name, f, but is contained in it's own 

segment. All the segments and the procedures have the following 

form: 

Segfl2d 

BEGIN 

{this is the two dimensional version of the first test problem, 

this is indicated by the 12d in the segment name} 

PROC f = (REF[JREAL x)REAL : 

(sqrt(x[1]+x{2])) ; 

SKIP 

KEEP £ 

FINISH
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1.2 The set of test problems used for the hypercube programs 

Segf12da 

[ [weve X2) Ax, dxe ~ 0.975161133 

se f134 
fe ‘sqrt (xi+ xt x3) dx,dx,dx,  % 1205656861 

segl4a 
LLL ween Xpt Xst xq) dx,dx,dx,dx, ~ 1.398180578 

Segf22da 

ve sqrt(x,* x2) dx,dxp a 0.444444444 

S03 £234 
fp " eget # X2* xX.) dx,dx,dxz =  0.296296296 

segi32a 

pe fe 1/ (44x, 4x2) Ax, dx, f= —0.201355135 

segf30d 

i "1/(44x,+x2+x,) ax, dxgdx, =  0.183354140 

nates 
LOG 

[ exp(sin x,sin x2) dx,dxp = 4,151291030 
=" 

Seg £434 
‘ { 1 

TEE exp(sin x,sin xpsin xq) dx\dxpdx; ~ 8.081734973 
=t ay
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1.3 The set of test problems used for the simplex programs 

Segfl2a 
‘ Ants 

ifs sgrt(x,+ Xp) dx,dxp ~ 0.400000000 

Seg f13d 
UPlnxy pf Ieinee 

ff sqrt(x,+ x,+ x3) dx,dxgdx,  w 0.142857143 
eo Jo lo 

Seg £224 

w 
i pine 

f sqrt(x,* x») dx,dx 0.130951982 

Seg £324 
Pim 

[ f 1/(4+x,+x2) dx,dxe 
lo Jo 

Seg£33a 
t fee Pir ee 

[f [1x ets) dx, dx,dx, ~ 0.035148211 
lo Jo 

Segf42d 

@ 0.1 07425796 

Lopiney 
i exp(sin x,sin xe) dx,dx, ~ 0.541481025 

lo Jo
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2.1 The nodes and weights for Patterson's formulae 

The following are the nodes and weights for Patterson's one ‘ 

dimensional formulae: 

SEGNODES 
"BEGIN’ 

tC’ THE FULLOwING ARE THE NODES AND WEIGHTS FOR PATTERSONS 

FORMULA: 

C2*RESL* NODES 
0.7745966069¢4, 

€459 23287, 
53114955, 

3121974564, 
9720625937, 

0241057115696, 
U.002909600u2, 

7774982202, 
OSFF9ISIR IS 9GT, 

é5 37149960, 
632039715, 

5UE4G4I 477, 

              

   

0272142306537, 
4695135265, 

55740385785, 

G.14042423315, 
On5 9994599621,    

  

   

  

    

  

   

015137040, 
IT473445975, 

G.950115297>52, 
1543758716, 
029305555, 
462878 766, 

  

836243445, 
570640792, 
621200606, 
11951485¢, 
02645.676- 

10704069760 4, 

  

   

        

     

tH 

sunt OS0 
0.96049126871, 
0.62110294674, 
0.92965455743, 
Qs 12539326, 

GREGEG T5755, 
6399793619, 

7719571005, 
O.1682252 
ULo9Gs 
0.97714151464, 

} 4002547, 
215625436, 

366298743109, 
50766775753, 
04576044156, 

006445604008, 
099976049092, 

    

   

    

0, 0.99051414591, 
0 .92709252795, 
U 96548455550, 
O.94241156519, 
U.90514059251, 
6 6857355631009, 
0.759092299 er 

6 .730664521 
peice 

          

O 655058542, 
0647142506587, 
0.37042208795, 
0626424537241, 

  

0.15474651148, 
0004226916477, 

654243745935, 
0.22238668643, 
0.83567 25933817, 
U.11248894313, 
0.97218287475, 
0.¢0694053195, 
0.4676 1802655, 
0.056344313C5, 
0.99572410470, 
6.96663785156, 
G.B99744689975, 
0.791084925e0, 
U.642270604251, 
0.45913001199, 
0.25067873C20, 
U.02818464895, 
C.999580338C3, 
0.99482150280, 
0.9835 1865758, 
0.96564062157, 
0.954066436 16, 
Oa89418456834, 
U.G43576668 267, 

O.78291939412, 
O.f1c0sd 159950, 
6.63175643771, 
6.54290566656, 
0.44673538766, 
C.344307341€0, 
0.23705684559, 
0.12647058437, 
(.01409386641 

€.99383196224 
C.999O9E1Z497 
C.70249620649 

CaVGSET2ASAE VE 
C9 46354285837 
C.73975€04435 
0.382359352420 
€.9959824 30355 
0.99 149572118 
C.95273000645 
C.87651341448 
C.75748396636 
€.59940393024 
C.40897982123 
0.19569750271 
C.995999759630 
C 09987456 1447 
C.99272134420 
C.97940626167 
C.95718821611 
C.92507893291 
C.862568640285 
€.82952219464 
C.76611781936 
C.6928157097% 
0 .61031811372 
€.515955966154 
€.42165768663 

1789001207 
0.20966525824 
C.09645253966U 

; 
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CI "REAL® 
O.8S88888t8 1G, 
0.10465622603, 
0.05160328390, 
0217151190914, 
0.02540759210, 
0.08575592095, 0 

  

06035957190 
0.1056698 
0. 01290360010, 
0.04267796005 
3201797855 157 
0205283494679, 
0.0061155UE#e, 
0.025586967933, 
0.2446914653165, 
0.95548140456, 
6200643190005, 
0202143892001, 
DeOUS9E9Z7S 73, 
0.02641747240, 
0.00305775341, 
0201293483966, 
0.02245726543, 
0.02774070216, 
000093836955, 
0.004671050357, 

0.00964117773, 
0.014893¢64160, 
0.01979549505;, 
0.023585405211, 
0.02669662293, 
0.02807645579, 
0.003 22595093, 
0201071949001, 
0.90449463759, 
0.01320873670, 
0.00152887671, 
0.90646741963, 
0.91122863291, 
0.01347035109, 
0.00046918492, 
O2002355 52519, 
0-00466205e846, 
0.007 446622033, 
O.00989774752, 
0.01192702605, 
G.01334821146, 
G.01403822790, 
0.00013575491, 
0.50074026 250, 
0.00765611273 
0.00277219576, 
0.00401106872, 
0.00531308601, 
B200663172124, 
0.00792794953 
0.00916671116, 
0.01031681233, 
0201135065432, 
0.01224442498, 
001297820224, 
ae 01353603593, 
-0158060198C, 

enzs4 

WELGHTS 
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al 

1A
 

655555555555, 
03 4013 39741478, 

0429062852938, 
0 21915685040, 

0.10031427461, 
0410957842106, 

7950949, 
11195687302, 

76921053, 
62975475, 
7843651, 

5076856965, 
2739460526, 
1624487737, 
2798921826, 

100524912345, 
0.01852677556, 
602428216520, 
0.02013884992, 
0 ..00168114287, 
000584344988, 
0 .01095573339, 
0.01617321873, 
002090585145, 
002469052474, 

2718551323, 
2817631903, 

31253928483, 
0 .01369730263, 
0.09712243869, 
0201399460913, 
0 00262456173, 
6.007768 58778, 
9.01214108260, 

            

   

        

  

   

  

     

  

   

  

   

  

0.01406942496, 
0 4057143, 
U.09292172494, 

600547736569, 
08660936, 

  

1045292572, 
1234526237, 

59275661 - 
4608815952, 

0.60024921240, 
0.90094536152, 

6191971297, 

564221810. 
695936141, 
24430376, 
46368999, 

2.01056716790, 
0.91158807403, 
001244356019, 
D.D1s1as 690004 
0201264651810, 
0.! 6815581, 
0.014092°4507     

0.45091653866, 
0.22551049920, 
(201700171963, 
0.1127552567?2, 
000842456574, 
0.0025 4478079, 
(.07687962C50, 
0.05637762836, 
0.00421763C44, 
0.00126515656, 
0.03843981Cz25, 
0.00036322142, 
©.01540675047, 
203606443278, 
Ca05158325295, 
0.02218881418, 
0.0021C881525, 
0.0006226073<, 
0.01921990512, 
0.0001£073556, 
(00770337523, 
0.01802221629, 
£.0257916269%, 
9.00005053610, 
000256876454, 
0.00707249CCO, 
0.01227583C56, 
0.01742193C16, 
0202195636631, 
0.02544576597, 
0.02757974557, 
0.014094407C9, 
0.00105440762, 
0200031630266, 
£.00960(995254, 
0.00009037273, 
0.00285168762, 
0.00901610820, 
0.01289581249, 
0.000025157&7, 
0200128438247, 
0.0035 262450, 
0.0061279152e, 
0.00271096SC5, 

  

101097818215, 
0.0127 2282498, 
C.0137898 747%, 
0.00000693794, 
0.000289745 28, 
0.00116748412, 
Aoi eceaerent 

~ 00338039799, 
0100665731720. 
9.00597291957, 
6100728494798, 
0.008556542356, 
400975465654, 
201084984409, 
0.011816385¢9, 
0.01263240364, 
0.01327995174, 
0.01374509344, 
C.014017968C4, 

; 

C.26868808987 
€.13441525524 
C209 292719532 
€.0672077543C 
0.04666289326 
O.01644604985 
C.09 262710998 
C.03360387715 
C.02323144664 
€.00622300796 
C.04681355499 
C.00257904979 
C.02059423292 
€.06071551012 
C.05290549934 
C.016£0193557 
C.011615 723552 
€.004111503598 
C.0234067775C 
€-6012895 240% 
(01029711696 
eos 

          

C.0186318 482: 
002254096423 
0.02611567332 

ETEP TASTE 
C.0024005 6929 
C.0052076 6166 
C.cOz05575199 
C.01170328875 
C.00064476204 
(00514855284 

TC17BE 7753 
247627432 

0018827326 
«00178644639 
200417161938 
eae 

    

    

   

  

   

15924135 

  

a areskett 
0120576 2669 
201293862574 
O0CO5327529 

10055429531 
C.00140490800 
C.0024789 5822 
C.00269337792 
U0 .U0492436656 
C 00620277345 
(.00760798967 
C.00686417321 
C.01003917204 
£.01110446115 
C.01203527079 
€.01281069816 
0 .013461379309 
C.01363163191 
€.01405538207
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2.2 The complete Program based on Patterson's rules 

Product type method based on Patterson's rules 

WITH segnodes, segmilltime, segfl-2d FROM pjk-alb-al 

BEGIN 

[] INT starting positions = (0,2,6,14,30) ; 

INT maxpoints , nofe :=0,n; 

REAL eps ; 

read ((maxpoints,eps,n)) ; 

ClInT m = (3,7,15) ; 

INT next := 1 ; 

{l:n]INT array ; 

BOOL exist := FALSE , notgt8 := TRUE , nottoomanyfe := TRUE ; 

REAL result , resultl ; 

MODE NODE = STRUCT(REAL feval,REF NODE ptr) ; 

PROC add to list = (REAL feval, REF REF NODE pointer) VOID : 

BEGIN 

REF NODE newnode = NODE ; 

{create a new node on the heap} 

feval OF newnode := feval ; 

ptr OF newnode := pointer ; 

{pointer dereferenced twice} 

pointer := newnode 

{pointer dereferenced once} 

END ; 

REAL alt, div, scf, cen ; 

INT number of tests ; 

read ((n, newline) );
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read((number of tests,newline)) ; 

[l:number of tests]REAL epsa ; 

read ((epsa,newline,div,newline,alt,newline, 

scf,newline,cen,newline)) ; 

[1:n]REAL centre ; 

FOR i TO n DO centre[i] := cen ; 

CImINT m = (3,7,15,31,63,127,255) ; 

INT next := 1; 

Cl:nJINT array ; [1:n]REAL point ; 

BOOL exist, notgt8, nottoomanyfe ; 

REAL result, resultl, corresponding weight, function eval ; 

PROC generate = (INT m,n,previousm,starting position, 

REFLJINT array, 

BOOL exist, REF REAL present estimate)VOID: 

BEGIN 

{This is a procedure to generate the nodes of an n dimensional 

product type rule from an m point one dimensional rule and to 

generate an estimate to an integral using this rule} 

FOR i TO m DO 

BEGIN 

array[n] := i; 

IF exist 

THEN IF i > previousm 

THEN exist := FALSE 

FE 

EL; 

IF m 1 

THEN generate (m,n-1,previousm,starting position,array,
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exist,present estimate) 

ELSE IF exist 

THEN 

{the integrand has been evaluated at this node, the 

required integrand evaluation is the next value in 

the list 

generate the corresponding weight} 

corresponding weight := 1; 

FOR i TOn 

DO corresponding weight TIMES 

weights[starting position + array[i]'/'2+1] 

{add the weight * the next value to the estimate} 

present estimate PLUS (corresponding * 

feval OF pointer) ; 

{move the pointer to the next item in the list} 

pointer := ptr OF pointer 

ELSE {the node has not already been used} 

{interpret the array and generate the weight} 

corresponding weight := 1; 

FOR i TO n DO 

BEGIN 

INT nn ; BOOL posnode := ODD(nn:=arrayLil]) ; 

nn :=m'/'2+1; 

point[i] := 

(IF posnode 

THEN nodes[nn] 

ELSE - nodes[nn] 

FI)/div + centre ;
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corresponding weight TIMES 

weights[starting position + nn] 

END ; 

integrand eval := f(point) ; 

present estimate PLUS 

(corresponding weight * integrand eval) ; 

nofe PLUS 1 ; 

{increase the number of integrand evaluations} 

add to list(integrand eval, pointer) 

END of the procedure generate. 

NODE st := (£(centre),NIL) ; 

REF NODE start := st ; 

REF REF NODE pointer := start ; 

{output the details of this test run} 

preint((....))7 

LONG INT before, after ; 

FOR i TO number of tests DO 

BEGIN 

start := st ; pointer := start ; 

eps := epsali] ; nofe :=1; 

exist := TRUE ; notgt8 := TRUE ; 

next := 1 

result := 0.0 ; 

before := milltime ;
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generate(m[next],n,1,starting 

position[next],array,exist,result) ; 

esult DIV scf ; 

pointer := start ; 

WHILE (exist := TRUE ; 

pointer := ptr OF start ; 

generate (m[nextPLUS1],n,m[next-1],starting 

positions[next],array,exist,resultl) ; 

resultl DIV scf ; 

ABS(resultl - result) > eps) 

AND notgt8 := next < 8 

AND nottoomanyfe := nofe < max 

DO result := resultl ; 

IF NOT notgt8 

THEN print((newline,"all nodes used ",newline) ) 

FE 

IF NOT nottoomanyfe 

THEN print((newline,"Too many integrand evaluations required")) 

BLY 

print((newline,"The result is : ",resultl,newline)) 

FINISH
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Appendix 3 

3.1 The basic adaptive method for the hypercube 

The program now follows in order of the segments: 

3.1.1 The first segment 

SEGCONST 

BEGIN 

END 

{This segment declares the common constants and variables used 

by other segments} 

Int n; {n is the number of dimensions of the problem} 

read((n,newline)); {input the value of n} 

INT npl =n+1, mm=2*n; 

{num is the number of subregions into which each region will be 

divided} 

INT numeval ; {numeval is the number of integrand evaluations} 

REAL constl = sqrt(2/3) , const2 = sqrt(3) ; 

BOOL odd = 2*(ENTIER(n/2))£n; 

SKIP 

KEEP n,npl,num,const1,const2,numeval ,odd 

FINISH 

3.1.2 The second segment 

SEGMILLTIME
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BEGIN 

{The following procedure is used to give the time of call, as 

given by a real time clock, in the form of a LONG INT. It is 

used to make comparative timings by calling it before and after 

an event. } 

PROC milltime = LONG INT : 

BEGIN 

LONG INT CODE 165,6,10 EDOC 

KEEP milltime 

FINISH 

3.1.3 The third segment 

This segment contains the first of the two basic rules used in the 

algorithm. Initially the two basic rules used were Stroui's m1 

point rule of degree 2 and Stroui's 2n point rule of degree 3. The 

first is applied using the procedure evalA while the second is 

applied using the procedure evalB (this is defined in the next 

segment). Since only one of the rules is used to give an estimate 

which forms part of the final approximation, the other being an 

intermediate tool used to evaluate an error estimate over a 

subregion, it is sensible to choose the more accurate of the two 

rules for this role. Hence in this case, the second rule is the more 

accurate and evalB is used. For ease, the following convention is 

adopted when testing any pair of basic rules; with any pair of rules 

the more accurate of the two, if there is one, is used in the
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procedure evalB and the other in the procedure evlaA. 

SEGEVALA 

WITH segconst FROM albumname 

BEGIN 

{This segment contains a procedure to cbtain an estimate to an 

integral over a subregion} 

REAL const3 = num/npl ; 

{Evaluate and store the nodes for Stroud's ntl point rule} 

[O:n,1:n]REAL nodesa ; 

{array to hold the nodes for this rule} 

FOR k FROM O TO n DO 

BEGIN 

REF[JREAL t = nodesa[k,1:n] 

{set up a reference to one of the nodes, each row contains 

one node} 

FOR r TO n'/'2 DO 

BEGIN 

INT r2 = 2*r ; REAL theta = (r2*k*pi)/npl ; 

t[{r2-1] := constl * cos(theta) ; 

t[r2]  := constl * sin(theta) 

END ; 

IF odd THEN t[n] := ((-1)*k)/const2 FI 

END ; 

{All the nodes have now been evaluated and stored. 

The following is a procedure to evaluate an estimate to the 

integral of a region using Stroud's n+l point rule} 

PROC evala = (REAL div,scf, REF[]REAL centre, 

PROC (REF[JREAL)REAL £ ) REAL :



Page 181 

BEGIN 

REAL estimate := 0.0 ; 

{estimate is the approximation to the integral} 

{Evaluate the function at each node using the procedure f 

and add the value to the total estimate} 

FOR j FROM 0 TO n DO 

BEGIN 

[1:n]REAL tempnode ; 

{used to store each node in turn} 

REFLJREAL t2 = nodesa[j,l:n] ; {next node} 

{Now transform the node +t2 to the given subregion 

defined by centre, scf, and div. Store this newnode 

in tempnode} 

FOR k TO n DO tempnode[k] := centre[k] + t2[k]/div ; 

{Now add the integrand evaluation at this temporary 

node to the estimate} 

estimate PLUS f£(tempnode) 

END ; 

{Increment the number of integrand evaluations} 

numeval PLUS npl ; 

{Multiply the estimate by the scaling factor and the 

weight const3 to give the applicable estimate} 

estimate TIMES (const3/scf) 

{Deliver the estimate as the result of the procedure 

evala} 

END ; {end of the procedure evala} 

END {end of the segment SEGEVALA} 

KEEP evala 

{Make the procedure available to any program which links this
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3.1.4 The fourth segment 

SEGEVALB 

WITH segconst FROM albumname 

BEGIN 

{This segment contains a procedure to dotain an estimate to an 

integral over a subregion} 

INT n2 = 2*n ;REAL const4 = nun/n2 ; 

(1:2n,1:n]REAL nodesb ; 

{array to hold the nodes for this rule} 

{Evaluate and store the nodes for Stroud's 2n point rule} 

FOR k TO n DO 

BEGIN 

REF[ JREAL tl = nodesb[ktn,1:n] ; 

REF[ JREAL t2 = nodesb[k ,1:n] ; 

{set up references to two of the nodes, each row holds one 

node} 

FOR r TO n'/'2 DO 

BEGIN 

INT r2 = 2*r ; 

{Set up the constants for the derivation of the 

nodes} 

INT r2m = 12-1; 

REAL theta = (r2ml*k*pi)/n ; 

{Store the next four nodes generated} 

tl[r2ml] := constl * cos(theta) ; 

t2[r2ml] := - tl[r2ml] ; 

t1[r2] := constl * sin(theta) ; 

+2[r2] = -tl[r2]
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END ; 

IF odd 

THEN tl[n] := (-1)*k/const2 ; 

t2[n] := - tl[n] 

FI 

END ; 

{All the nodes have now been evaluated and stored} 

{The following is used to evaluate an estimate to the integral 

over a region using Stroui's 2n point rule} 

PROC evalb = (REAL div,scf, REF[]REAL centre, 

PROC (REF[]REAL)REAL f) REAL : 

BEGIN 

REAL estimate := 0.0 ; 

{estimate is the approximation to the integral} 

{Evaluate the function at each node using the procedure f 

and aid the value to the estimate} 

FOR j TO 2n DO 

BEGIN 

{1:n]JREAL tempnode ; 

{used to store each node in turn} 

REF[JREAL t2 = nodesb[j,1:n] ; {next node} 

{Now transform the node +t2 to the given subregion 

defined by centre,scf, and div. Store this newnode in 

tempnode} 

FOR k TO n DO 

tempnode[k] := centre[k] + t2[k]/div ; 

{Now add the integrand evaluation at this temporary 

node to the estimate} 

estimate PLUS £(tempnode)



SKIP 

END {end 
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END ; 

{Increment the number of integrand evaluations} 

numeval PLUS n2 ; 

{Multiply the estimate by the scaling factor and the 

weight const4 to give the applicable estimate for this 

subregion} 

estimate TIMES (const4/scf) 

{Deliver estimate as the result of the procedure evalb} 

END ; {end of the procedure evalb} 

of the segment SEGEVALB} 

KEEP evalb 

{Make the 

FINISH 

procedure evalb available to any other program}
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3.1.5 The main body of the program 

Multidimensional Adaptive Quadrature Program 1 

WITH segconst,segmilltime,segevala,segevalb,segf FROM albummame 

BEGIN 

{This is an adaptive multidimensional quadrature program. It 

delivers an approximation to the integral of the function 

defined in segf over the hypercube defined by the input 

data.The data defines the number of approximations required, 

the tolerance for each ami the region of integration. The 

algorithm is based upon a strategy of subdivision of the 

initial hypercube into increasing numbers of subregions and the 

application of the basic rules, defined in segevala amd 

segevalb, to form estimates over the subregions. The algorithm 

is adaptive; subregions are dismissed from further 

consideration once a given accuracy has been achieved in them} 

REAL altl,tot,err,divl,scfl,centre,consub ; 

INT number of tests, level of subdivisioin ; 

{Input the number of tests required} 

read((number of tests,newline)); 

{Set up an array for the tolerances} 

[l:number of tests]REAL epsa ; 

{Input the tolerances and the data defining the region of 

integration} 

read ( (epsa,newline,divl ,newline,altl, newline, scfl, newline, centre 

es
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{The program uses a linked list to keep track of the 

subregions, each node in the list is defined as :} 

MODE NODE = STRUCI(REF NODE ptr, REF[,]JREAL subcentres) ; 

{The following procedure considers the element of a list of 

nodes pointed to by head. For each of the subcentres of this 

node it computes two estimates to the integral over the 

subregion defined by that subcentre. If the difference is less 

than the tolerance eps it adds the estimate to the final 

estimate, increases the number of converged subregions and aids 

the difference to the total error estimate. Otherwise a new 

node is added to the list pointed to by newhead. This node 

contains the subcentres of the subregions of this subregion. 

Alt, scf and div are parameters defining the subregions.} 

PROC compute estimate = (REF REF NODE head, newhead, 

REAL eps, alt, scf, div) REAL : 

BEGIN 

REAL result := 0.0 ; 

{result is the estimate delivered by the procedure} 

{Consider each subcentre in turn} 

FOR i TO UPB subcentres OF head DO 

BEGIN 

REF[]REAL centre = (subcentresOFhead)[i,1l:n] ; 

{Let centre point to the next subcentre and form the 

two estimates to the integral over the subregion} 

REAL estimatea := evala(div,scf,centre,f), 

estimateb := evalb(div,scf,centre, f), diffe; 

{Set diff to be the difference between the two
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estimates} 

diff := ABS(estimatea - estimateb) ; 

result PLUS estimateb ; 

IF diff < eps {test for convergence} 

THEN 

tot PLUS estimateb ; 

{add estimateb to the final estimate} 

consub PLUS 1 ; 

{Increment the number of converged subregions} 

err PLUS diff 

{add the difference to the total error estimate} 

{Convergence not achieved in this subregion} 

REF NODE temptr := newhead ; 

newhead := NODE ; {declare a new nade} 

ptrOFhead := temptr ; 

{link the new node to the list} 

REFL, JREAL centres = [1:num,1:n]REAL ; 

{Set up the subcentres of this subregion} 

FOR i TO num DO 

BEGIN 

{Set up a pointer to the next subcentre} 

REF[JREAL sub = centres[i, ]; 

BITS b := BIN i ; 

{This section of the procedure uses the 

bits pattern of the digit i to determine 

the subcentres of the subregion 

FOR j TO n DO
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IF (25-3)ELEM b 

THEN sub[j] := centre[j] + alt 

ELSE sub[j] := centre[j] - alt 

FI 

END ; 

subcentresOFnewhead := centres 

PL 

END ; 

head := ptrOFhead ; 

{Move on to the next node in the list} 

result 

END ; {end of the procedure compute estimate} 

{Set up the variables ...} 

(1:1,1:nJREAL c ; {c is used to represent the centre} 

FOR j TO n DO c[1,j] := centre ; 

REF NODE nil = NIL ; 

LONG INT before, after ; 

{Perform the calculations for each test} 

FOR i TO number of tests DO 

BEGIN 

{Set up the variables for this test} 

REAL sum := 0.0, latest := 0.0, eps := epsali], neweps, 

alt := altl, subregions := 1, div := divl, scf := 

scfl ; 

consub := 0; tot := 0; err := 0; 

level of subdivisi 8 ‘i : i i 8 8
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REF NODE newhead := nil ; 

BOOL notconverged := TRUE ; 

{start timing this test using the procedure milltime} 

before := milltime ; 

WHILE notconverged DO 

BEGIN 

latest := sum ;{set latest to the most recent 

estimate} 

sum := tot ; 

{sum will be the present, it is set initially to the 

total estimate from converged subregions} 

{Now process the list of non converged subregions, 

adding the estimates over each to the present 

estimate sum} 

WHILE head ISNT nil {while list not empty} 

Do sum PLUS compute 

estimate(head ,newhead ,neweps,alt,scf,div) ; 

{All estimates formed and added to sum. A new list of 

non converged subregions has been formed am is 

pointed to by newhead. Test for convergence.} 

IF (newhead IS nil) 

{list of non converged subregions is empty} 

OR (ABS(latest-sum) <eps) 

{the difference between the two most recent 

estimates 

is less than the required tolerance} 

THEN notconverged := FALSE 

{solution found} 

ELSE
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{Set up the variables to consider the next list 

of non converged subregions, ie consider the 

next level of subdivision} 

subregions TIMES num ; 

{subregions is equal to the total number of 

subregions at this level of subdivision} 

level of subdivision PLUS 1 ; 

consub TIMES num ; 

{Evaluate the number of converged subregions at 

this level of subdivision, ie consub} 

{Evaluate the tolerance to be applied to each 

subregion. This consists of dividing the 

tolerance minus the error estimate from the 

converged subregions between each of the non 

converged subregions, ie the total number of 

subregions minus the converged subregions at 

this level} 

neweps := (eps-err)/(subregions-consub) ; 

{Alter the scaling factors} 

div TIMES 2 ; alt DIV 2 ; scf TIMES num; 

{Replace the old list of non converged 

subregions by the new one and set the new one to 

empty} 

head := newhead ; 

newhead := nil 

FI 

END ; 

{Estimate formed for this test, finish timing} 

after := milltime ;
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{output the information required from this test} 

print(("The final estimate to the integral is 

" sum,newline, 

“The time taken to obtain the result was 

",after-before, 

"The number of integrand evaluations was ",numeval, 

"The tolerance for this run was ",eps, 

“The level of subdivision was ",level of 

subdivision)) ; 

numeval := 0 {reset the number of integrand evaluations to 

oO} 

END {end of the calculations loop} 

END { end of the program: 

FINISH 

Multidimensional Adaptive Quadrature Program 1 }



Page 193 

3.2 The basic alaptive program for the simplex 

The program for the simplex follows in the omer of the segments. 

However segmilltime is anitted since it is given in 3.1. 

3.2.1 Segconst 

Segconst 

BEGIN 

INT n, nfe := 0 ; read((n,newline)) ; 

{n is the number of dimensions} 

[O:n,1:nJREAL vertices ; read((vertices,newline)) ; 

REAL hypervolume ; read((hypervolume, newline)) ; 

INT npl = ntl ; BOOL odd = ODD n ; SKIP 

END 

KEEP n, nfe, npl, vertices, hypervolume, aid 

FINISH 

3.2.2 Segcentroid 

This segment contains a procedure to fini the centroid of a simplex 

Segcentroid 

WITH segconst FROM album 

BEGIN 

PROC finicentroid = (REF[]REAL centroid, 

REF[, JREAL vertices)VOID: 

BEGIN 

FOR i TO n DO 

BEGIN 

REAL temp := 0.0; 

FOR j FROM 0 TO n DO temp PLUS vertices[j,i] ; 

centroid[i] := temp/npl
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END ; SKIP 

END 

KEEP findcentroid 

FINISH 

3.2.3 Segevala 

This segment contains the first basic rule. 

Segevala 

WITH segconst FROM album 

BEGIN 

REAL const3 = num/npl ; 

{evaluate and store the coordinates for Stroui's rule} 

[O:n,1:n]JREAL nodesa ; 

FOR k FROM O TO n DO 

BEGIN 

REF[ JREAL t = nodesa[k.1:n] ; 

FOR r TO n'/'2 Do 

BEGIN 

INT r2 = 2*r ; REAL theta = (r2*k*pi)/npl ; 

t[r2-1] := constl*cos(theta) ; 

t[r2]  := constl*sin(theta) ; 

END ; 

IF odd THEN t[n] := ((-1)*k)/const2 FI 

END ; 

PROC evala = (REAL div, scf,REF[]REAL centre, 

PROC(REF[]REAL)REAL £)REAL: 

BEGIN 

REAL estimate := 0.0 ;
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FOR j FROM 0 TO n DO 

BEGIN 

[1:nJREAL temp ; REF[JREAL t2 = nodesa[j,l:n] ; 

FOR k TO n DO temp[k] := centre[k] + t2[k]/div ; 

estimate PLUS £(temp) 

END ; 

nfe PLUS npl ; 

estimate TIMES (const3/scf) 

KEEP evala 

FINISH 

3.2.4 Segevalb 

This segment contains a procedure to apply the seconi basic rule. 

Segevalb 

WITH segconst FROM album 

BEGIN 

INT n2 = 2*n ; REAL const4 = num/n2 ; 

{evaluate and store the coordinates for Stroui's 2n point rule} 

[1:n2,1:n]REAL nojesb ; 

FOR k TO n DO 

BEGIN 

nodesb[ktn,1l:n] ; REF[ JREAL t1 

nodesb[k,1:n] ; REF[ JREAL t 

FOR r TO n'/'2 DO 

BEGIN 

INT 12 = 2*r > INT r2ml = r2 —-1 ;
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REAL theta = (r2ml*k*pi)/n ; 

t[r2ml] := constl*cos(theta) 

tilraml] := - t{r2ml] ; 

ti[r2] := constl*sin(theta) 

tifr2] := t[r2] 

END ; 

IF odd THEN t[n] := (-1)*k/const2 ; 

tifn] := - t[n] FI 

END ; 

PROC evalb = (REAL div, scf,REF[JREAL centre, 

PROC(REF[JREAL)REAL £)REAL: 

BEGIN 

REAL estimate := 0.0 ; 

FOR j TO n2 DO 

BEGIN 

[1:n]REAL temp ; REF[JREAL t2 = nodesb[j,l:n] ; 

FOR k TO n DO temp[k] := centre[k] + t2[k]/div ; 

estimate PLUS £(temp) 

END ; 

nfe PLUS n2 ; 

estimate TIMES (const4/scf) 

KEEP evalb 

FINISH
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3.2.5 The main body of the program 

First simplex method 

WITH segconst, segmilltime, segcentroid, segevala, segevalb, segfl2d 

FROM album 

BEGIN 

REAL tot, sum, latest, eps, neweps, subregions, consub, err ; 

MODE ELEMENT = STRUCT(REF ELEMENT ptr, 

REFL, JREAL vertices, 

REAL hypervolume) ; 

REF ELEMENT empty = NIL ; 

PROC simpest = (REFREFELEMENT head, newhead, 

REAL eps)REAL : 

BEGIN 

REFL, JREAL v = vertices OF head ; 

[1:n]REAL c ; 

{c is the centroid of the simplex} 

findcentroid(c,v) ; 

REAL estimatea := 

evala(v,c,hypervolumeoFhead , f) , 

estimateb := 

evalb(v,c,hypervolumeoFhead , f) , 

Giff ; 

aiff := ABS(estimatea-estimateb) ; 

IF diff < eps 

THEN {convergence in this subregion} 

tot PLUS estimateb ; 

consub PLUS 1 ;
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err PLUS diff 

ELSE 

{subdivide the region} 

{find the longest side of the simplex} 

INT vl,v2 ; REAL longest ; 

FOR i FROM O TO n DO 

BEGIN 

REFLJREAL temp = vLi,] ; 

FOR j FROM (itl) TO n DO 

BEGIN 

REFLJREAL t2 = vij,] ; 

REAL length := 0.0 ; 

FOR m TO n DO 

length PLUS ((temp[m]-t2[m])*2) ; 

IF length ~ longest 

THEN longest := length; 

vl =i; 

v2 

  

END 

END ; 

{the longest side lies between vl and v2,find the 

midpoint of this} 

{1:n]REAL midpoint ; 

REF[JREAL tvl = vivl,J], tv2 = viv2,] ; 

FOR i TO n DO 

midpointLi] := (tvlLi}+tv2[i])/2 ; 

{set up the two subregions} 

[1:n]REAL temp ;
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temp := v[vl,] ; 

vivl,] := midpoint ; 

REF ELEMENT temptr := newhead ; 

newhead := ELEMENT ; 

REF[, JREAL vert = [O:n,1:nJREAL := v ; 

ptr OF newhead := ELEMENT := 

(temptr, vert ,hypervolum0Fhead/2) ; 

vivl,] := temp ; 

viv2,] := midpoint ; 

REF[, JREAL vertl = [O:n,1:n]JREAL := v ; 

verticesOFnewhead := vertl ; 

hhypervolumeOFnewhead := hypervolumeOFhead/2 

INT number of tests ; 

read((number of tests, newline)) ; 

[1:nunber of tests]REAL epsa ; 

read((epsa,newline)) ; 

FOR i TO number of tests DO 

BEGIN 

BOOL notconverged := TRUE ; 

LONG INT before, after ; 

REFL, JREAL verto = [O:n,l:n]REAL := vertices ; 

REF ELEMENT head := ELEMENT := 

(empty, verto, hypervolume) 

REF ELEMENT newhead := empty 7 

neweps := eps := epsa[i] ;
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tot := 0.0 ; sum := 0.0 ; latest := 0.0; 

subregions := 1 ; consub := 0 ; err := 0.0; 

nfe := 0; 

before := milltime ; 

WHILE notconverged DO 

BEGIN 

latest := sum ; 

sum := tot ; 

WHILE head ISNT empty 

DO (sum PLUS simpest (head, newhead ,neweps) ; 

head := ptrOFheal) ; 

IF newhead IS empty 

THEN notconverged := FALSE 

ELSE 

subregions TIMES 2 ; 

consub TIMES 2 ; 

neweps := (eps-err)/(subregions-consub) ; 

head := newhead ; 

newhead := empty 

: i 

{output the results} 

print(("the final estimate is ",sum,newline, 

"time ",after-before,newline, 

“integrand evaluations ",nfe,newline, 

"tolerance ",eps) )
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Appendix 4 

The following are approximate timings for some basic operations in 

algol68r on the I.C.L.1904s. The timings are given in micro units, 

where 1000 micro units are equivalent to me millunit. 

BOOL, assignment 3.5 

INT oe 3.5 

REAL . 7.0 

[JREAL o 14.6 

[, JREAL ve 30.0 

(,, JREAL oe 45.4 

(,.,JREAL .. 60.8 

se 4.2 

= 3.0 

* 10.3 

/ 22.5 

ABS 1.8 

sqrt 165.1 

sin 218.3 

cos 215.1 

tan 227.1 

in 218.8 

exp 264.3 

arcsin 410.0 

arccos 416.4 

arctan 226.6 

a°2 72.5 

a°3 85.9 

a%4 97.7
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Appendix 5 

This section contains the segments defining the programs for the 

hypercube using stored integrand evaluation techniques. 

5.1 The program using linked list techniques 

5.1.1 Segconst 

This segment contains the constants used in the other segments 

Segconst 

BEGIN 

INT n, nfe := 0, top, tfe := 0; 

read((n,top,newline)) ; 

INT num = 2°n ; 

REAL constl = 1/3, const2 = 2*num/3 ; 

MODE NODE = STRUCT(INT index, REAL fevaluation, 

REF NODE ptr); 

[1:top]REF NODE pointerlist ; 

REF NODE nil = NIL ; 

FOR i TO top DO pointerlist[i] := nil ; 

INT base := 2, lptr :=1 ; 

SKIP 

END 

KEEP n,nfe,tfe,num,NODE, pointerlist,nil,base, top, lptr 

FINISH 

5.1.2 Segmilltime 

This segment contains a procedure to give the time of call. It is 

the same as the one given in appendix 3 and so is amitted.
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5.1.3 Segllprocs 

This segments contains the procedures concerned with the linked 

lists. 

Segllprocs 

WITH segconst FROM album 

BEGIN 

{this segment contains the linked list procedures} 

PROC searchlist = (REFREFREF NODE pointer, 

INT key) BOOL : 

BEGIN 

{this procedure searches a list for a node with a given 

key} 

BOOL notfound := TRUE, possible := TRUE; 

IF pointer ISNT nil 

THEN 

WHILE notfound AND possible DO 

BEGIN 

REF INT indp = indexOFpointer ; 

IF indp = key 

ELSF indp > key 

THEN possible := FALSE 

ELSE IF (ptrOFpointer) IS nil 

THEN possible := FALSE 

EL; 

pointer := ptrOFpointer 

FI 

FI;
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NOT notfound 

END ; {end of the procedure} 

PROC insert = (REFREFNODEpointer, INT key, 

REAL feval) VOID : 

BEGIN 

{this procedure creates a new node nad inserts it in the 

list at the position indicated by pointer} 

REF NODE newnode = NODE ; 

indexOFnewnode := key ; 

fevaluationOFnewnode := feval ; 

ptrOFnewnode := pointer ; 

{link the newnode to the next node in the list} 

pointer := newnade 

SKIP 

END 

KEEP searchlist, insert 

FINISH 

5.1.4 Segenumerate 

This segment contains a procedure enumerate a key from a given node. 

Segenumerate 

WITH segconst FROM album 

BEGIN 

PROC enumerate = (REF[JREAL point, 

REF INT key, ptr, 

INT b, REAL al) VOID:
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BEGIN 

BOOL possible := TRUE ; 

REAL alt := al ; 

INT base := b; 

WHILE base > 2 AND possible DO 

BEGIN 

FOR i TO n DO 

IF ODD(ENTIER(point[iJ/alt) ) 

THEN possible := FALSE 

FI; 

IF possible 

‘THEN 

base := (basetl)'/'2 ; 

alt TIMES 2 ; 

ptr MINUS 1 

EL 

END ; 

key := 0; 

FOR i TO n DO 

key := key*base + ENTIER(point[i]/alt) 

SKIP 

KEEP enumerate 

FINISH 

5.1.5 Segevala 

This segment contains the procedure to apply the first basic rule, 

the compound trapezoidal rule.
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Segevala 

WITH segconst, segllprocs, segenumerate FROM album 

BEGIN 

[1:num,1:n]REAL nodes ; 

{set up the nodes for this rule} 

FOR i TO num DO 

BEGIN 

REF[JREAL node = nodes[i,l:n] ; 

BITS b := BIN i ; 

FOR j TO n DO 

IF (25-3)ELEM b 

THEN node[j] := 1 

ELSE nodef[ 3] 1 

  

ED 

END ; 

PROC evala = (REFLJREAL centre, REAL alt,scf, 

INT base, ptr, div, 

PROC(REF[ JREAL)REAL £)REAL: 

BEGIN 

REAL estimate := 0.0 ; 

FOR i TO num DO 

BEGIN 

INT ptrindex := ptr ; 

[1:n]REAL temp ; 

REF[ JREAL t2 = nodes[i,l:n] ; 

FOR j TO n DO 

templj] := centre[j] + t2[j]/div ; 

INT key := 0 ; 

enumerate(temp,key,ptrindex,base,alt*2);
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REF REF NODE pt := pointerlist[ptrindex] ; 

estimate PLUS 

(IF pt IS nil 

THEN REAL tot := £(temp); 

nfe PLUS 1 ; 

insert(pt,key,tot) ; 

tot 

ELSF searchlist(pt,key) 

THEN fevalautionOFpt 

ELSE REAL tot := £(temp) ; 

nfe PLUS 1 ; 

insert(pt,key,tot) ; 

tot 

FI) 

END ; 

{increment the total number of integrand evaluations used} 

tfe PLUS num ; 

estimate DIV scf ; 

estimate 

END ; 

SKIP 

KEEP evala 

5.1.6 Segevalb 

This segment contains the procedure to apply the second basic rule, 

Ewing's rule. 

Segevalb 

WITH segconst, segllprocs, segenumerate FROM album
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BEGIN 

[1:num,1:n]REAL nodes ; 

{set up the nodes for this rule} 

FOR i TO num DO 

BEGIN 

REF[ JREAL node = nodes[i,l:n] ; 

BITS b := BIN i ; 

FOR j TO n DO 

IF (25-3)ELEM b 

THEN node[j] := 1 

ELSE node[j] := -1 

FI 

END ; 

REAL constl = 1/3, const2 = 2*num/3 ; 

PROC evalb = (REF[JREAL centre, REAL alt,scf, 

INT base, ptr, div, 

PROC(REF[JREAL)REAL £)REAL: 

BEGIN 

REAL estimate := 0.0 ; 

REF REF NODE pt ; 

INT ptrindex ; 

FOR i TO num DO 

BEGIN 

[1l:n]JREAL temp ; 

ptrindex := ptr ; 

REF[ JREAL t2 = nodes[i,l:n] ; 

FOR j TO n DO 

temp[j] := centre[j] + t2[3]/div ; 

INT key := 0 ;
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enumerate(temp,key, ptrindex, base, alt*2); 

pt := pointerlist[ptrindex] ; 

estimate PLUS 

(IF pt IS nil 

THEN REAL tot := £(temp); 

nfe PLUS 1 ; 

insert(pt,key,tot) ; 

tot 

ELSF searchlist(pt,key) 

THEN fevalautionOFpt 

ELSE REAL tot := f(temp) ; 

nfe PLUS 1 ; 

insert(pt,key,tot) ; 

tot 

FI) 

END ; 

estimate TIMES constl ; 

estimate PLUS 

(INT key := 0; 

ptrindex := ptr ; 

enumerate(centre,key,ptrindex,base,alt*2) ; 

pt := pointerlist[ptrindex]; 

const2*IF searchlist(pt,key) 

THEN fevaluationOFpt 

ELSE REAL tot := £(centre); 

nfe PLUS 1 ; 

insert(pt,key, tot); 

tot 

FI);
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{increment the total number of integrand evaluations used} 

tfe PLUS (num) ; 

estimate DIV scf ; 

estimate 

SKIP 

KEEP evalb 

5.1.7 The main body of the program 

This is the main body of the program using linked lists to store the 

integrand evaluations. 

Stored integrand evaluation program 

WITH segconst, segmilltime,segllprocs, segevala, segevalb,segf FROM 

albumname 

BEGIN 

REAL tot:= 0.0, sum := 0.0, latest:= 0.0, eps, neweps, alt, 

subregions:= 1,scf,consub:=0.0, err:=0.0 ; 

INT div ; 

MODE NODE = STRUCT(REF NODE ptr, REF[,JREAL subcentres) ; 

PROC compute estimate = (REF REF NODE head, newhead, 

REAL eps, alt, scf, 

INT div, base, 

ptr) REAL : 

BEGIN 

REAL result := 0.0 ; 

{result is the estimate delivered by the procedure} 

{Consider each subcentre in turn}
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FOR i TO UPB subcentres OF head DO 

BEGIN 

REF[JREAL centre = (subcentresOFhead)[i,l:n] ; 

{Let centre point to the next subcentre and form the 

two estimates to the integral over the subregion} 

REAL estimatea := 

evala(centre,alt,scf,base,ptr,div,f), 

estimateb := 

evalb(centre,alt,scf,base,ptr,div,f), 

GLEE 5; 

{Set diff to be the difference between the two 

estimates} 

diff := ABS(estimatea - estimateb) ; 

result PLUS estimateb ; 

IF diff < eps {test for convergence} 

THEN 

tot PLUS estimateb ; 

{add estimateb to the final estimate} 

consub PLUS 1 ; 

{Increment the number of converged subregions} 

err PLUS diff 

{Add the difference to the total error estimate} 

ELSE 

{Convergence not achieved in this subregion} 

REF NODE temptr := newhead ; 

newhead := NODE ; {declare a new node} 

ptroFhead := temptr ; 

{link the new node to the list} 

REFL, JREAL centres = [1:num,1:n]REAL ;
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{Set up the subcentres of this subregion} 

FOR i TO num DO 

BEGIN 

{Set up a pointer to the next subcentre} 

REF[ JREAL sub = centresli, J; 

BITS b := BIN i ; 

{This section of the procedure uses the 

bits pattern of the digit i to determine 

the subcentres of the subregion 

FOR j TO n DO 

IF (25-j)ELEM b 

THEN sub[j] := centre[j] + alt 

ELSE sub[j] := centre[j] - alt 

FI 

END ; 

subcentresOFnewhead := centres 

FI 

END ; 

head := ptrOFhead ; 

{Move on to the next node in the list} 

result 

END ; {end of the procedure compute estimate} 

read ( (eps ,newline,alt, newline,div,newline,scf,newline) ; 

REAL d ; read(d) ; 

[1:1,l:nJREAL c ; {c is used to represent the centre} 

FOR j TOn DO c[l,j] :=d; 

REF NODE nil = NIL ;
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LONG INT before, after ; 

{Start timing this test using the procedure milltime} 

before := milltime ; 

WHILE notconverged DO 

BEGIN 

latest := sum ;{set latest to the most recent 

estimate} 

sum := tot ; 

{sum will be the present, it is set initially to the 

total estimate from converged subregions} 

{Now process the list of non converged subregions, 

adding the estimates over each to the present 

estimate sum} 

WHILE head ISNT nil {while list not empty} 

DO sum PLUS compute 

estimate(head , newhead ,neweps, alt, scf,div, base, lptr) ; 

{All estimates formed and added to sum. A new list of 

non converged subregions has been formed and is 

pointed to by newhead. Test for convergence.} 

IF (newhead IS nil) 

{list of non converged subregions is empty} 

OR (ABS(latest-sum) <eps) 

{the difference between the two most recent 

estimates 

is less than the required tolerance}



THEN 

ELSE 
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notconverged := FALSE 

{solution found} 

{Set up the variables to consider the next list 

of non converged subregions, ie consider the 

next level of subdivision} 

subregions TIMES num ; 

{subregions is equal to the total number of 

subregions at this level of subdivision} 

level of subdivision PLUS 1 ; 

consub TIMES num ; 

{Evaluate the number of converged subregions at 

this level of subdivision, ie consub} 

{Evaluate the tolerance to be applied to each 

subregion. This consists of dividing the 

tolerance minus the error estimate from the 

converged subregions between each of the non 

converged subregions, ie the total number of 

subregions minus the converged subregions at 

this level} 

neweps := (eps-err)/(subregions-consub) ; 

{Alter the scaling factors} 

div TIMES 2 ; alt DIV 2 ; scf TIMES num; 

{Replace the old list of non converged 

subregions by the new one and set the new one to 

empty} 

head := newhead ; 

newhead := nil ; 

base == base * 2-1;
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lptr PLUS 1 

FI 

END ; 

{Estimate formed for this test, finish timing} 

after := milltime ; 

{output the information required fran this test} 

print(("The final estimate to the integral is 

", sum, newline, 

“The time taken to obtain the result was ",after—-before, 

"The number of integrand evaluations was ",numeval, 

"The tolerance for this run was ",eps, 

“The level of subdivision was ",level of subdivision) )



Page 217 

5.2 The program using the scatter stoarge techniques 

This section contains the segments used in the scatter storage 

programs. 

5.2.1 Segconst 

This segment contains the constants used in the other segments. 

Segconst 

BEGIN 

END 

INT n ; {n is the number of dimensions} 

read((n,newline)) ; 

INT npl = ntl, num = 2*n ; 

INT numeval := 0, hashvalue, keyl, key2 ; 

REAL const] = 1/3, const2 = 2*num/3 ; 

MODE ITEM = STRUCT(LONG INT key, REAL feval, 

REF ITEM ptr) ; 

[0:1023]REF ITEM scatter index table ; 

FOR i FROM O TO 1023 DO 

scatter index table[i] := NIL ; 

[0:1023]INT hash table ; 

LONG INT newkey ; 

REF REF ITEM pointer ; 

INT next := 0 ; 

INT const = (IF m2 THEN 1048576 

ELSE 8192 FI), 

maxint = 4194304 ; 

SKIP 

KEEP n,npl,num,numeval ,hash
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value, keyl,key2,const1,const2,ITEM,scatter index table,hash 

table,newkey, pointer ,maxint,next, const 

FINISH 

5.2.2 Segmilltime 

This segment contains the procedure to give the time of call and is 

described in appendix 3. 

5.2.3 Segprocs 

This segment contains all the procedures associated with the scatter 

storage technique. 

Segprocs 

WITH segconst FROM albun 

REF ITEM empty = NIL ; 

{procedure to compute a hash value} 

PROC compute hash = (INT keyl, key2) INT: 

BEGIN 

ENTIER(1024*ABS ( (keyl+key2)/maxint) ) 

END ; 

{procedure to compute the key} 

PROC compute keys = (REF INT keyl, key2, 

REF[ REAL x) VOID : 

BEGIN 

CASE (n-1) 

IN 

({2d problem} 

keyl := ENTIER(x[1]*const) ; 

key2 := ENTIER(x[2]*const) ), 

({3d problem}
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BITS b ; 

INT digit := ENTIER(x[3]*const) ; 

b := BIN digit ; 

keyl := ABS((bSR8)SL15) 

OR (BIN(ENTIER(x[2]*const) ))); 

key2 := ABS((bSL15) 

OR (BIN(ENTIER(x[1]*const) )))) 

OUT SKIP 

{other dimensions not included} 

ESAC 

END ; 

{procedure to evaluate a key} 

PROC evalkey = (INT keyl,key2) LONG INT: 

BEGIN 

LONG INT newkey ; 

newkey := newkey * (LONG 10000000); 

newkey := newkey + (LENG keyl) ; 

newkey 

END ; 

{procedure to search a list} 

PROC searchlist = (REFREFREF ITEM pointer, 

LONG INT key) BOOL : 

BEGIN 

BOOL notfound := TRUE, possible := TRUE ; 

IF pointer ISNT empty 

THEN 

WHILE notfound AND possible DO 

BEGIN 

REF LONG INT indp = keyOFpointer ;
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IF indp = key 

THEN notfound := FALSE 

{searchkey = key of item} 

ELSE indp > key 

THEN possible := FALSE 

{item cannot be in the list} 

ELSE IF (ptrOFpointer) IS empty 

THEN possible := FALSE 

{no more items in the list} 

ah 

pointer := ptrOFpointer 

{move on to the next item} 

NOT notfound 

{deliver true if the item is in the list and false if it 

is not in the list} 

END ; 

{procedure to insert an item in a list} 

PROC insert = (REF REF ITEM pointer, 

LONG INT key, 

REAL feval) VOID : 

BEGIN 

REF ITEM newitem = ITEM ; 

keyOFnewitem := key ; 

fevaloFnewitem := feval ; 

ptroFnewitem := pointer ; 

pointer := newitem
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END ; 

{procedure to find the value of the integrand at a given naje 

either by looking it up or by evaluating it} 

PROC integrand evaluation = (REF[]REAL node, 

PROC(REF[ JREAL)REAL £)REAL: 

BEGIN 

REAL val ; 

compute keys(keyl,key2,node) ; 

newkey := evalkey(keyl,key2) ; 

hash value := comput hash(keyl,key2) ; 

REF INT htv = hash table[hash value] ; 

IF htv = 0 

THEN htv := next PLUS 1 ; 

val := £(node) 

numeval PLUS 1 ; 

insert(scatter index table[htv], 

newkey, val) 

ELSE pointer := scatter index table[htv]; 

IF searchlist(pointer,newkey) 

THEN val := fevalOFpointer 

ELSE val := f£(node) ; 

numeval PLUS 1 ; 

insert (pointer ,newkey, val) 

FL
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KEEP integrand evaluation, campute hash, compute keys, evalkey 

FINISH 

5.2.4 Segevala 

This segment contains the procedure to apply the first basic 

rule, the campound trapezoidal rule. 

Segevala 

WITH segconst, segprocs FROM album 

BEGIN 

{1:num,1:n]REAL nodes ; 

{set up the nodes for this rule} 

FOR i TO num DO 

BEGIN 

REF[ JREAL node = nodes[i,l:n] ; 

BITS b := BINi; 

FOR j TO n DO 

IF (25-3j)ELEM b 

THEN node[j] := 1 

ELSE node[j] := -1 

FI 

END ; 

PROC evala = (REF[JREAL centre, REAL div, scf 

PROC(REF[]REAL)REAL £)REAL: 

BEGIN 

REAL estimate := 0.0 ; 

FOR i TO num DO 

BEGIN 

[l:n]REAL temp ; 

REFLJREAL t2 = nodes[i,l:n] ;
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FOR j TO n DO 

templj] := centre[j] + t2[j]/div ; 

compute keys(keyl,key2,temp) ; 

estimate PLUS integrand evaluation(temp, f) 

END ; 

{increment the total number of integrand evaluations used} 

tfe PLUS num ; 

estimate DIV scf ; 

estimate 

KEEP evala 

5.2.5 Segevalb 

This segment contains the procedure to apply the second basic rule, 

Ewing's rule. 

Segevalb 

WITH segconst, segprocs FROM album 

BEGIN 

[1:num,1:n]REAL nodes ; 

{set up the nodes for this rule} 

FOR i TO num DO 

BEGIN 

REF[ JREAL node = nodes[i,l:n] ; 

BITS b := BIN i ; 

FOR j TO n DO 

IF (25-3)ELEM b 

THEN node[j] := 1
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ELSE node[j] := -1 

EE 

END ; 

REAL constl = 1/3, const2 = 2*num/3 ; 

PROC evalb = (REF[JREAL centre, REAL div, scf, 

PROC(REF[ JREAL)REAL £)REAL: 

BEGIN 

REAL estimate := 0.0 ; 

FOR i TO num DO 

BEGIN 

{1:n]JREAL temp ; 

REF[ JREAL t2 = nodes[i,l:n] ; 

FOR j TO n DO 

templj] := centre[j] + t2[j]/div ; 

estimate PLUS integrand evaluation(temp, f) 

END ; 

estimate TIMES constl ; 

estimate PLUS 

(integrand evaluation(centre,f)*const2) ; 

{increment the total number of integrand evaluations used} 

tfe PLUS (numt+l) ; 

estimate DIV scf ; 

estimate 

SKIP 

KEEP evalb 

5.2.6 The main body of the program
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This is exactly the same as the main body of the program for the 

previous program (5.1.7) amd so is not repeated
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Appendix 6 

This section contains the details of the segments that are used in 

the global subdivision strategy program for the hypercube. The 

segments containing the procedures to apply the two basic rules, 

segevala and segevalb, are the same as those given in appendix 3 and 

so are not repeated. Segconst merely contains the constants used by 

the other segments and inputs the number of dimensions of the 

problem. The main body of the program consists of : 

Global subdivision strategy 

WITH segconst, segmilltime, segevala,segevalb, segfl2d FROM 

albumname 

BEGIN 

REAL altl, tot, err, divl, scfl, centre, consub ; 

INT number of tests ; 

read((number of tests, newline)) ; 

[lpnumber of tests]REAL epsa ; 

read ((epsa,newline,divl, newline, altl,newline, 

scfl,newline,centre,newline)) ; 

{output the details of this testrun} 

print (("testing ...")); 

{set up the mode for the nodes in the subregion list} 

MODE NODE = STRUCT(REF NODE ptr, REF[JREAL centre, 

REAL errest, estimate, INT level) ; 

REF NODE empty = NIL ; 

REF NODE head ; 

{the following is a procedure to add a node to a list ata 

position dependant upon the magnitude of it s error estimate}
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PROC addtolist = (REF NODE newnode) VOID : 

BEGIN 

REF REF NODE temptr := head ; 

IF temptr ISNT empty 

THEN 

{search the list for the position of insertion} 

REF REAL e = errest OF newnode ; 

BOOL possible := TRUE ; 

WHILE possible AND (errestOFtemptr > e DO 

BEGIN 

IF (ptroFtemptr) IS empty 

THEN possible := FALSE 

Hig 

temptr := ptrOFtemptr 

EL? 

{position of insertion found} 

ptroFnewnode := temptr ; 

(REF REF NODE VAL temptr) := newnode 

END ; 

{set up the data structures to hold the scfs, divs and alts 

associated with the level of subdivision} 

INT toplevel = 50 ; 

[O:toplevel]REAL altlev, divlev, scflev ; 

REAL presentalt,presentdiv, presentscf ; 

altlev[0] := altl * 2; 

divlev[0] := divl ; 

scflev[0] := scfl ; 

FOR i TO number of tests DO
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BEGIN 

REAL eps := epsa[i], subregions := 1 ; 

presentalt := altlev[0O] ; 

presentdiv := divl ; 

presentscf := scfl ; 

LONG INT before, after ; 

{set up the initial list of subregions amd the level of 

subdivision} 

INT maxlevel := 0 ; 

{maximum level of subdivision so far} 

[1:n]REAL c ; 

FOR j TO n DO cj] := centre ; 

before := milltime ; 

REAL estimatea := evala(presentdiv,presentscf,c,f), 

estimatea := evala(presentdiv,presentscf,c,f); 

total error estimate := ABS(estimatea - estimateb) ; 

total result := estimateb ; 

head := NODE := (empty,c,total,error estimate,estimateb,1) 

{while convergence has not been achieved perform the 

process} 

WHILE total error estimate > eps DO 

BEGIN 

{consider the subregion with the largest error 

estimate} 

REAL talt, tscf, tdiv ; INT nextlev ; 

total error estimate MINUS errestOFhead ; 

total result MINUS estimateOFhead ; 

{set up the scaling factors for the subregions of
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this subregion} 

IF levelOFhead > maxlevel 

THEN maxlevel PLUS 1 ; 

presentscf TIMES num ; 

scflev[ leveloFhead] := presentscf ; 

presentalt DIV 2 ; 

altlev[leveloFhead] := presentalt ; 

presentdiv TIMES 2 ; 

divlev[ leveloFhead] := presentdiv ; 

FI; 

talt := altlev[leveloFhead] ; 

tsc£ := scflev[leveloFhead] ; 

tdiv := divlev[leveloFheaD] ; 

nextlev := levleOFhead + 1 ; 

{consider each subregion in turn} 

FOR j TO num DO 

BEGIN 

REF[JREAL tc = [1:n]REAL ; 

REF NODE newnode := NODE ; 

levelOFnewnode := nextlev ; 

{set up the centre for this subregion} 

BITS b := BIN j ; 

FOR k TO n DO 

te[k] := (centreOFhead)[k] + 

(IF (25-k)ELEM b 

THEN talt 

ELSE -talt 

iE): 

{evaluate the estimates for this subregion}



END 
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estimateOFnewnode := evalb(tdiv,tscf,tc,f) ; 

errestOFnewnode := ABS(evala(tdiv,tscf,tc,f) - 

estimateOFnewnode) ; 

centreOFnewnode := tc ; 

{add the newnode to the list of subregions} 

addtolist(newnode) ; 

total error estimate PLUS errestOFnewnoe ; 

total result PLUS estimateOFnewnode 

{now the estimate for the subregion at the head of the 

list has been replaced by the sum of the estimates over 

the subregions of that subregion, which now needs to be 

removed fran the list} 

head := ptrOFhead 

after := milltime ; 

{output the results for this run} 

pEint(("s60 "))7 

numeval 

FINISH 

= 0
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Appendix 7 

This appendix contains the segments which make up the extended 

region global subdivision strategy program. Several of the segments 

are the same as those used in other programs amd so are not 

repeated. Segcentroid, segevala and segevalb are described in 

appendix 3.2. Segmilltime is described in appendix 3.1 and segevalc 

and segevald are equivalent to segevala and segevalb from that 

appendix. The procedure names used in these two segments are 

reffered to as evalc and evald instead of evala and evalb in the 

following program. !1j 

6.1 Segconst 

This segment contains the constants used in the rest of the 

segments. 

Segconst 

BEGIN 

INT n; 

read((n,newline) ); 

INT npl = ntl , num = 2°n ; 

INT numeval := 0 , nfe :=0 ; 

REAL constl = sqrt(2/3), const2 = sqrt(3) ; 

BOOL odd = ODD n ; 

SKIP 

END 

KEEP n,npl,num,const1,const2,numeval ,odd ,nfe 

FINISH 

6.2 The main body of the program
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Global subdivision strategy for an extended region 

WITH segconst, segmilltime, segcentroid, segevala, segevalb 

segevalc, segevald, segfl2d FROM album 

BEGIN 

REAL eps ; read((eps,newline) ); 

{output the details of this testrun} 

print(("Testing ...",newline)); 

CHAR type ; 

MODE NEXTITEM ; 

MODE SIMP = STRUCT(REAL errest, hypervolume, estimate, 

REF, JREAL vertices, 

REF NEXTITEM ptr) ; 

MODE HYP = STRUCT(REAL errest, div, estimate, scf, alt, 

REF[ JREAL centre, 

REF NEXTITEM ptr); 

MODE NEXTITEM = UNION(REF SIMP, REF HYP); 

REF NEXTITEM end of list = NIL ; 

REF NEXTITEM head := end of list ; 

REF SIMP s ; REF HYP h ; 

{procedure to add an item to the list} 

PROC addtolist = (REAL e, REF NEXTITEM newnode) VOID : 

BEGIN 

REF REF NEXTITEM temptr := head ; 

REF SIMP s ; REF HYP h ; 

IF head ISNT end of list 

THEN {the list isnt empty search for
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the position of insertion } 

BOOL notfound := TRUE ; 

WHILE notfound DO 

BEGIN 

  

CASE (s,h) : 

IN 

(IF errestOFs > e 

THEN temptr := ptrOFs ; 

IF ptrOFs IS end of list 

THEN notfound := FALSE 

FI 

ELSE notfound := FALSE 

FI) , 

(IF errestOFh > e 

THEN temptr := ptrOFh ; 

IF ptrOFh IS end of list 

THEN notfound := FALSE 

{position of insertion found} 

CASE (s,h) ::= newnode 

(ptrors := temptr), 

(ptrOFh := temptr)
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REF NEXTITEM VAL temptr) := newnode 

REAL total := 0.0, total error estimate := 0.0 ; 

WHILE (read((type,newline)) ; 

type <> "E") DO 

BEGIN 

REF NEXTITEM nextnode = NEXTITEM ; 

IF type = "s" 

THEN 

REF SIMP newnode = SIMP ; 

REF[, JREAL v = [0:n,1:n]REAL ; 

[1:n]REAL cent ; 

read ( (v, newline, hypervolumeOFnewnode, newline) ) ; 

verticesOFnewnode := v ; 

{find the centroid of this subregion} 

findcentroid(cent,v) ; 

REAL estimatea 

evala(v,cent,hypervolumoFnewnode, £) , 

estimateb 

evalb(v,cent ,hypervolumeOFnewnade, f) , 

diff ; 

diff := ABS(estimatea-estimateb) 

errestOFnewnode := diff ; 

estimateOFnewnode := estimateb ; 

total PLUS estimateb ; 

total error estimate PLUS diff ; 

nextnode := newnode ; 

{add this new subregion to the list}
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addtolist(diff,nextnode) 

ELSE 

REF HYP newnode = HYP ; 

REF[JREAL cent = [1:n]REAL ; 

read ( (cent, newline, scfOFnewnode, newline, 

divoFnewnode, newline,altOFnewnode, 

newline) ); 

centreOFnewnode := cent ; 

REAL estimatec := evalc(divOFnewnode, 

scfOFnewnode, cent, £), 

estimated := evald(divoFnewnode, 

scfOFnewnode, cent, £) ,diff; 

diff := ABS(estimatec-estimated) ; 

errestOFnewnode := diff ; 

estimateOFnewnode := estimated ; 

total PLUS estimated ; 

total error estimate PLUS diff ; 

nextnode := newnode ; 

addtolist(diff,nextnode) 

FI 

LONG INT before, after ; 

before := milltime; 

{while convergence has not been achieved 

perform the process} 

WHILE total error estimate > eps DO 

BEGIN 

{consider the subregion with the largesterror estimate}
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{determine the type of subregion} 

CASE (s,h) ::= head 

IN 

({the subregion is a simplex} 

INT vl,v2 ; REAL longest ; 

total MINUS estimateOfs ; 

total error estimate MINUS errestOFs ; 

{subdivide the subregion} 

{find the largest side of the simplex} 

FOR i FROM 0 TO n DO 

BEGIN 

REF[JREAL temp = (verticesOFs)[i,] ; 

FOR j FROM i+] TO n DO 

BEGIN 

REFLJREAL t2 = (verticesoOFs)[j,] ; 

REAL length := 0.0 ; 

FORmTOn 

DO length PLUS ((temp[m] - t2[m])*2) ; 

IF length > longest 

THEN longest := length; 

vl =i; v2 = j 

EL 

END 

END ; 

{the longest side lies between vertices vl ami v2} 

{find the midpoint of the longest side} 

[1:n]REAL midpoint ; 

REF[ JREAL tvl = (verticesoFs)[vl,], 

tv2 = (verticesOFs)[v2,];
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FOR i TOn 

DO midpoint[i] := (tvl[i]+tv2[i])/2 ; 

{set up the two subregions} 

{1:nJREAL tempv ; 

tempv := (verticesoFs)[vl,] ; 

(verticesOFs)[vl,] := midpoint ; 

REFNEXTITEM nextnode = NEXTITEM ; 

REF SIMP newnode = SIMP ; 

REF[, JREAL vert = [0:n,1:n]REAL ; 

vert := verticesOFs ; 

verticesOFnewnode := vert ; 

{1:nJREAL cent ; 

finicentroid(cent,vert) ; 

hhypervolumeOFnewnode := (hypervolumeOFs)/2 ; 

REAL estimatea := evala(vert,cent,hypervolumeOFnewnade, f) , 

estimateb := evalb(vert,cent,hypervolumedFnewnade, f), 

Gift 5 

diff := ABS (estimatea -estimateb) ; 

errestOFnewnode := diff ; 

estimateOFnewnode := estimateb ; 

total PLUS estimateb ; 

total error estimate PLUS diff ; 

nextnode := newnode ; 

addtolist(diff,nextnode) ; 

{set up the second subregion} 

(verticesOFs)[vl,] := tempv ; 

(verticesOFs)[v2,] := midpoint ; 

REFNEXTITEM nextnode2 = NEXTITEM ; 

REF SIMP newnode2 = SIMP ;
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REF[, JREAL vert2 = [0:n,1:n]REAL ; 

vert2 := verticesOFs ; 

verticesOFnewnode2 := vert2 ; 

findcentroid(cent,vert2) ; 

hypervolumeoFnewnode2 := (hypervolumedF's)/2 ; 

estimatea := evala(vert2, cent, hypervolumeOFnewnode, f) 

estimateb := evalb(vert2,cent,hypervolumeOFnewnode,£) ; 

diff := ABS (estimatea -estimateb) ; 

errestOFnewnode2 := diff ; 

estimateOFnewnode2 := estimateb ; 

total PLUS estimateb ; 

total error estimate PLUS diff ; 

nextnode2 := newnode2 ; 

addtolist(diff,nextnode2) ; 

head := ptroFs ), 

({the subregion is a hypercube} 

total MINUS estimateOFh ; 

total error estimate MINUS errestOFh ; 

FOR i TO num DO 

BEGIN 

REF NEXTITEM nextnode = NEXTITEM ; 

REF HYP newnode = HYP ; 

nextnode := newnode ; 

REF[JREAL sub = [1:n]REAL ; 

BITS b := BIN i ; 

FOR j TO n DO 

IF (25-3)ELEM b 

THEN sub[j] := (centreorh)[j] + altoFh 

ELSE sub[j] := (centreoFh)[j] - altoFh
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FI; 

centreOFnewnode := sub ; 

divoFnewnode := (divOFh)*2 ; 

altoFnewnode := (altOFh)/2 ; 

scfOFnewnode := (scfOFh)*num ; 

REAL estimatec := evalc(divOFnewnode, scfOFnewnode, sub, f), 

estimated := evald(divoFnewnode, scfOFnewnade, sub, f), 

Gift ; 

diff := ABS(estimatec - estimated) ; 

estimateOFnewnode := estimated ; 

errestOFnewnode := diff ; 

total PLUS estimated ; 

total error estimate PLUS diff ; 

addtolist (diff,nextnode) 

END ; 

head := ptrOFh) 

ESAC 

END ; 

after := milltime ; 

{output the results} 

prin’ ((" ise” )) 

END 

FINISH
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Appendix 8 

The following pages contain the results for the set of test problems 

described in appendix 1.2. In the tables of results the various 

programs are indicated by: 

z-pl : the basic adaptive program using Stroud's rules, as described 

in chapter 4. 

Z-pé : the same program as above, but using the compound trapezoidal 

rule and Ewing's rule. 

z-p5 : the program which uses linked lists to store the integrand 

evaluations, as described in chapter 5. 

Z-p7 : the program which uses scatter storage techniques to store 

the integrand evaluations. This program is described in chapter 5. 

z-gss : the program based upon a global subdivision strategy, as 

described in chapter 6. 

z-plO : the iterative program based upon product Patterson formulae. 

The milltime is given in millunits where L millunit is equal 

to 1000 micro units. These timings are used for comparison only.



Test Problem SEGF12D 

Program Estimate 

Tolerance 

z-pl 0.977975186 

zZ-p6 0.951184463 

z-p5 0.951184463 

z-p7 0.951184463 

z-gss 0.977975186 

z-plO 0.975162070 

Tolerance 

zZ-pl 0.977975186 

Z-p6 0.951184463 

Z=p5 0.951184463 

Z-p7 0.951184463 

Z-gss 0.977975186 

z-plO 0.975162070 

Tolerance 

Z-pl 0.977975186 

Z-p6 0.970759029 

Z-p5 0.970759029 

z-p7 0.970759029 

Z-gss 0.977975186 

z-ploO 0.975162070 
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Actual Error 

0.5 

0.002814053 

0.023976670 

0.023976670 

0.023976670 

0.002814053 

0.000000937 

0.1 

0.002814053 

0.023976670 

0.023976670 

0.023976670 

0.002814053 

0.000000937 

0.05 

0.002814053 

0.004402104 

0.004402104 

0.004402104 

0.002814053 

0.000000937 

Milltime Integrand Evaluations 

21 

21 

77 

10 

21 

21 

77 

45 

115 

109 

oI, 

total actual reused 

49 

49 

45 

45 

45 

49 

13 

13 

32 

32



Test Problem SEGF12D 

Program Estimate 

Tolerance 

z-pl 0.977975186 

z-p6 0.974356415 

z-p5 0.974219356 

zZ-p7 0.974219356 

zZ-gss 0.977975186 

z-plO 0.975162070 

Tolerance 

z-pl 0.977975186 

Z-po 0.974371350 

z-p5 0.974219356 

z-p7 0.974219356 

z-gss 0.977975186 

z-pl0 0.975162070 

Tolerance 

z-pl 0.975318624 

Z-p6 0.975020763 

Z-p5 0.974983055 

z-p7 0.974983055 

zZ-gss 0.975717695 

Z-pl0 0.975162070 
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Actual Error 

0.01 

0.002814053 

0.000804718 

0.000941777 

0.000941777 

0.002814053 

0.000000937 

0.005 

0.002814053 

0.000789783 

0.000941777 

0.000941777 

0.002814053 

0.000000937 

0.001 

0.000157491 

0.000140370 

0.000178078 

0.000178078 

0.000556562 

0.000000937 

Milltime Integrand Evaluations 

173 

211 

198 

a 

218 

211 

197 

77 

73 

672 

559 

U7 

total actual reused 

153 

81 

81 

49 

189 

81 

81 

49 

63 

765 

225 

225 

35 

49 

21 

21 

21 

21 

49 

49 

60 

176 

176



Test Problem SEGF12D 

Program Estimate 

Tolerance 

z-pl 0.975318624 

Z-p6 0.975136183 

z-p5 0.975115419 

Z-p7 0.975115419 

Z-gss 0.975318624 

zZ-plO 0.975162070 

Tolerance 

z-pl 0.975184703 

Z-po 

Z-p5 0.975128330 

Z-p7 0.975128330 

Z-gss 0.975193379 

z-plO 0.975161131 

Tolerance 

Z-pl 0.975167719 

Z-po 

z—p5 0.975152297 

z-p7 0.975152297 

Z-gss 0.975172232 

z-pLO 0.975161131 
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Actual Error 

0.0005 

0.000157491 

0.000024950 

0.000045714 

0.000045714 

0.000157491 

0.000000937 

0.0001 

0.000023570 

0.000032803 

0.000032803 

0. 000022246 

0.000000002 

0.00005 

0.000006586 

0.000008836 

0.000008836 

0.000011099 

0.000000002 

Milltime Integrand Evaluations 

78 

2839 

1021 

832 

78 

77 

289 

2577 

1931 

357 

496 

3693 

2487 

351 

357 

total actual reused 

63 

2313 

333 

333 

63 

49 

231 

693 

693 

175 

225 

399 

909 

909 

259 

225 

71 

71 

135 

135 

175 

175 

262 

262 

558 

558 

734 

734



Test Problem SEGF12D 

Program Estimate 

Tolerance 

z-pl 0.975162150 

Z-pe 

Z-p5 0.975159369 

Z-p7 0.975159369 

z-gss 0.975162994 

Z-pl0 0.975161133 

Tolerance 

z-pl 0.975161880 

Z-po 

z-p5 0.975159874 

Z-p7 0.975159874 

Z-gss 0.975161804 

z-plo 0.975161133 

Tolerance 

Z-pl 0.975161255 

Z-pe 

z-p5 

Z-p7 0.975160852 

Z-plO 

Z-gss 0.975161220 
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Actual Error 

0.00001 

0.000001017 

0.000001764 

0.000001764 

0.000001861 

0.000000000 

0.000005 

0.000000747 

0.000001259 

0.000001259 

0.000000671 

0.000000000 

0.000001 

0.000000122 

0.000000281 

0.000000087 

Milltime Integrand Evaluations 

1432 

15135 

6699 

1150 

1499 

2232 

29795 

10117 

1962 

11719 

6596 

19939 

8865 

total actual 

1155 

2205 

2205 

735 

961 

1799 

3249 

3249 

1127 

3969 

5327 

5697 

3255 

407 

407 

585 

585 

1013 

reused 

1798 

1798 

2664 

2664 

4684



Test Problem SEGF13D 

Program Estimate 

Tolerance 

z-pl 1.206755133 

Z-p6 1.190442059 

z-p5 1.190442059 

Z-p7 1.190442059 

Z-gss 1.206755133 

z-plO 

Tolerance 

z-pl 1.206755133 

Z-p6 1.190442059 

Z-p5 1.190442059 

Z-p7 1.190442059 

zZ-gss 1.206755133 

z-plO 

Tolerance 

z-pl 1.206755133 

zZ-po 1.204112993 

z-p5 1.204112993 

Z-p7 1.204112993 

2-gss 1.206755133 

z-plO 
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Actual Error Milltime Integrand Evaluations 

0.5 

0.001098272 

0.015214802 

0.015214802 

0.015214802 

0.001098272 

0.1 

0.001098272 

0.015214802 

0.015214802 

0.015214802 

0.001098272 

0.05 

0.001098272 

0.001543868 

0.001543868 

0.001543868 

0.001098272 

22 

52 

49 

14 

22 

52 

49 

14 

14 

199 

573 

432 

14 

10 

Lyi 

17 

ay, 

10 

10 

17 

17 

a; 

10 

10 

153 

153 

153 

10 

35 

35 

total actual reused 

118 

118



Test Problem SEGF13D 

Program Estimate 

Tolerance 

z-pl 1.206755133 

Z-p6 1.205464263 

z-p5 1.204112993 

Z-p7 1.204112993 

z-gss 1.206755133 

z-plO 

Tolerance 

z-pl 1.206755133 

Z-p6 1.205502245 

z-p5 1.205321344 

Z-p7 1.205321344 

Z-gss 1.206755133 

z-plo 

Tolerance 

Z-pl 1.206755133 

Z-pe 1.205642775 

z-p5 1.205464263 

Z-p7 1.205464263 

zZ-gss 1.206755133 

z-ploO 
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Actual Error 

0.01 

0.001098272 

0.000192598 

0.001543868 

0.001543868 

0.001098272 

0.005 

0.001098272 

0.000154616 

0.000335517 

0.000335517 

0.001098272 

0.001 

0.001098272 

0.000014086 

0.000192598 

0.000192598 

0.001098272 

Milltime Integrand Evaluations 

14 

916 

573) 

432 

14 

14 

1466 

1114 

835 

14 

14 

13279 

3958 

2120 

14 

total actual reused 

10 

697 

153 

153 

10 

10 

1105 

289 

289 

10 

10 

9809 

697 

697 

10 

35 

35 

61 

61 

124 

124 

118 

118 

228 

228 

573 

S13



Test Problem SEGF13D 

Program Estimate 

Tolerance 

z-pl 1.206755133 

z-pe 

z-p5 1.205614025 

Z-p7 1.205614025 

Z-gss 1.206755133 

z-plO 

Tolerance 

z-pl 1.205714285 

Z-p6 

Z-p5 1.205626658 

Z-p7 1.205626658 

Z-gss 1.205798812 

z-plO 

Tolerance 

z-pl 1.205714285 

Z-pe 

z-p5 1.205637770 

z-p7 1.205637770 

Z-gss 1.205798812 

z-plO 
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Actual Error 

0.0005 

0.001098272 

0.000042836 

0.000042836 

0.001098272 

0.0001 

0.000057424 

0.000030203 

0.000030203 

0.000141951 

0.00005 

0.000057424 

0.000019091 

0.000019091 

0.000141951 

Milltime Integrand Evaluations 

14 

9380 

4272 

14 

241 

12658 

5682 

130 

241 

42260 

13968 

130 

total actual reused 

10 

215 

215 

10 

170 

1785 

1785 

170 

3961 

3961 

278 

278 

5/1 

S71 

1507 

1507 

3390 

3390



Test Problem SEGF13D 

Program Estimate 

Tolerance 

Z-pl 1.205671980 

Z-pe 

z-p5 

zZ-p7 

Z-gss 1.205682887 

z-plO 

Tolerance 

z-pl 1.205661349 

z-p6 

z-p5 

Z-p7 

2-gss 1.205669393 

z-plO 

Tolerance 

Z-pl 1.205657887 

Z-po 

Z-p5 

Z-p7 

z-plO 

z-gss 1.205697029 
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Actual Error 

0.00001 

0.000015119 

0.000026026 

0.000005 

0.000004488 

0.000012532 

0.000001 

0.000001026 

0.000002841 

Milltime Integrand Evaluations 

total actual reused 

1149 «810 

623 410 

2169 1530 

1025 650 

7052 4970 

3655 1930



Test Problem SEGF14D 

Program Estimate 

Tolerance 

z-pl 1.398860237 

Z-p6 1.388923304 

z-p5 1.388923304 

Z-p7 

zZ-gss 1.398860237 

z-plO 

Tolerance 

Z-pl 1.398860237 

Z-po 1.388923304 

Z-p5 1.388923304 

Z-p7 

Z-gss 1.398860237 

z-ploO 

Tolerance 

z-pl 1.398860237 

Z-p6 1.397595164 

z-p5 1.397595164 

Z-p7 

Z-gss 1.398860237 

zZ-plo 
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Actual Error 

0.5 

0.000679659 

0.009257274 

0.009257274 

0.000679659 

0.1 

0.000679659 

0.009257274 

0.009257274 

0.000679659 

0.05 

0.000679659 

0.000585414 

0.000585414 

0.000679659 

Milltime Integrand Evaluations 

20 

49 

133 

20 

20 

49 

133 

20 

20 

851 

3689 

20 

total actual reused 

13 

33 

33 

13 

13 

33 

33 

13 

a 

561 

561 

13 

17 

17 

97 

16 

16 

464



Test Problem SEGF14D 

Program Estimate 

Tolerance 

Z-pl 1.398860237 

Z-p6 1.397595164 

z-p5 1.397595164 

z-p7 

z-gss 1.398860237 

z-plO 

Tolerance 

z-pl 1.398860237 

Z-po 1.398141777 

z-p5 1.397595164 

zZ-p7 

z-gss 1.398860237 

z-pl0 

Tolerance 

Z-pl 1.398860237 

Z-pe 

Z-p5 1.397978410 

z-p7 

Z-gss 1.398860237 

zZ-plO 
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Actual Error 

0.01 

0.000679659 

0.000585414 

0.000585414 

0.000679659 

0.005 

0.000679659 

0.000038801 

0.000585414 

0.000679659 

0.001 

0.000679659 

0.000202168 

0.000679659 

Milltime Integrand Evaluations 

20 

918 

3689 

20 

20 

13083 

3689 

20 

20 

7447 

20 

total actual 

13 

561 

561 

13 

13. 

8481 

561 

13 

13 

1089 

13 

97 

o7 

177 

reused 

464 

912



Test Problem SEGF14D 

Program Estimate 

Tolerance 

z-pl 1.398860237 

Z-pe 

z-p5 

z-p7 

Z-gss 1.398860237 

z-plO 

Tolerance 

z-pl 1.398249065 

Zp 

Z-p5 

z-p7 

zZ-gss 1.398249065 

z-pl0 

Tolerance 

Z-pl 1.398222054 

Z-pe 

Z-p5 

Z-p7 

Z-gss 1.398249065 

z-pl0O 
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Actual Error 

0.0005 

0.000679659 

0.000679659 

0.0001 

0.000068487 

0.000068487 

0.00005 

0.000041476 

0.000068487 

Milltime 

20 

20 

359 

359 

699 

359 

Integrand Evaluations 

total actual reused 

13 

13 

221 

221 

429 

221



Test Problem SEGF14D 

Program Estimate 

Tolerance 

z-pl 1.398199665 

Z-po 

Z-p5 

z-p7 

z-gss 1.398222054 

z-plO 

Tolerance 

Z-pl 1.398187822 

z-p6 

z-p5 

Z-p7 

Z-gss 1.398200859 

z-pl0 

Tolerance 

z-pl 1.398181935 

z-pe 

z-p5 

Z-p7 

z-plO 

Z-gss 1.398185099 
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Actual Error 

0.00001 

0.000019087 

0.000041476 

0.000005 

0.000007244 

0.000020281 

0.000001 

0.000001357 

0.000004521 

Milltime Integrand Evaluations 

total actual reused 

2394 1469 

699 429 

5773 3549 

2274 1261 

33344 20397 

8182 3757



Test Problem SEGF22D 

Program Estimate 

Tolerance 

z-pl 0.444036916 

zZ-pe 0.416666666 

z-p5 0.416666666 

z-p7 0.416666666 

Z-gss 0.444036916 

z-pl0O 0.444634014 

Tolerance 

z-pl 0.444036916 

Z-p6 0.432429799 

z-p5 0.432429799 

Z-p7 0.432429799 

z-gss 0.444036916 

z-plO 0.444634014 

Tolerance 

2-pl 0.444036916 

Z-po 0.432429799 

z-p5 0.432429799 

z-p7 0.432429799 

zZ-gss 0.444036916 

z-plo 0.444634014 
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Actual Error 

0.5 

0.000407528 

0.027777778 

0.027777778 

0.027777778 

0.000407528 

0.000189570 

O.1 

0.000407528 

0.012014645 

0.012014645 

0.012014645 

0.000407528 

0.000189570 

0.05 

0.000407528 

0.012014645 

0.012014645 

0.012014645 

0.000407528 

0.000189570 

Milltime Integrand Evaluations 

10 

21 

21 

78 

115 

115 

78 

15 83) 

108 

78 

total actual 

49 

45 

45 

45 

49 

45 

45 

45 

49 

13 

13 

13 

13 

reused 

32 

32 

32 

32



Test Problem SEGF22D 

Program Estimate 

Tolerance 

z-pl 0.444590168 

Z-p6 0.439870077 

z-p5 0.439853877 

Z-p7 0.439853877 

z-gss 0.444590168 

z-plO 0.444634014 

Tolerance 

z-pl 0.444590168 

Z-p6 0.442779912 

Z-p5 0.439853877 

Z-p7 0.439853877 

Z-gss 0.444659322 

z-plo 0.444634014 

Tolerance 

Z-pl 0.444590168 

Z-pe 0.444233283 

z-p5 0.442770143 

Z-p7 0.442770143 

Z-gss 0.444497782 

Z-plO 0.444453847 
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Actual Error 

0.01 

0.000145724 

0.004574367 

0.004590567 

0.004590567 

0.000145724 

0.000189570 

0.005 

0.000145724 

0.001664532 

0.004590567 

0.004590567 

0.000214878 

0.000189570 

0.001 

0.000145724 

0.000211161 

0.001674301 

0.001674301 

0.000053338 

0.000009403 

Milltime Integrand Evaluations 

43 

223 

380 

43 

78 

43 

719 

380 

80 

78 

6279 

1479 

1164 

358 

total actual reused 

35 

189 

153 

153 

35 

49 

35 

621 

153 

153 

63 

49 

35 

5517 

441 

441 

259 

225 

35 

35 

35 

35 

91 

SE 

118 

118 

118 

118 

350 

350



Test Problem SEGF22D 

Program Estimate 

Tolerance 

z-pl 0.444547977 

Z-p6 0.444233474 

Z-p5 0.443605645 

2-p7 0.443605645 

2-gss 0.444474979 

Z-pl0 0.444453847 

Tolerance 

Z-pl 0.444547977 

Z-pe 

z-p5 0.444067361 

Z-p7 0.444067361 

Z-gss 0.444449757 

z-plo 0.444444891 

Tolerance 

Z-pl 0.444547977 

Z-pe 

z-p5 0.444215809 

zZ-p7 0.444215809 

Z-gss 0.444447695 

z-plo 0.444444891 
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Actual Error 

0.0005 

0.000103533 

0.000210970 

0.000838799 

0.000838799 

0.000030535 

0.000009403 

0.0001 

0.000103533 

0.000377083 

0.000377083 

0.000005313 

0.000000447 

0.00005 

0.000103533 

0.000228635 

0.000228635 

0.000003251 

0.000000447 

Milltime Integrand Evaluations 

200 

10227 

3501 

2176 

644 

358 

200 

10635 

5260 

3506 

1530 

200 

20649 

8102 

7646 

1530 

total actual 

147 

7929 

801 

801 

455 

225 

147 

1809 

1809 

1855 

961 

147 

2709 

2709 

3255 

961 

163 

163 

351 

Seal 

517 

517 

reused 

638 

638 

1458 

1458 

2192) 

2192



Test Problem SEGF23D 

Program Estimate 

Tolerance 

z-pl 0.305345904 

Z-p6 0.277368927 

z-p5 0.277368927 

Z-p7 0.277368927 

zZ-gss 

z-plO 0.296485886 

Tolerance 

z-pl 0.305345904 

Z-po 0.285706653 

z-p5 0.285706653 

Z-p7 0.285706653 

z-gss 

Z-plO 0.296485886 

Tolerance 

Z-pl 0.305345904 

Z-p6 0.285706653 

z-p5 0.285706653 

Z-p7 0.285706653 

Z-gss 

z-pl0 0.296485886 
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Actual Error Milltime Integrand Evaluations 

0.5 

0.009049608 

0.018927369 

0.018927369 

0.018927369 

0.000189590 

O.1 

0.009049608 

0.010589643 

0.010589643 

0.010589643 

0.000189590 

0.05 

0.009049608 

0.010589643 

0.010589643 

0.010589643 

0.000189590 

21 

52 

676 

14 

190 

571 

430 

676 

14 

190 

571, 

430 

676 

10 

Ly 

17 

17 

343 

10 

153 

153 

153 

343 

10 

153 

153 

153 

343 

35 

35 

35 

35 

total actual reused 

118 

118 

118 

118



Test Problem SEGF23D 

Program Estimate 

Tolerance 

z-pl 0.305345904 

Z-po 0.285706653 

z-p5 0.285706653 

z-p7 0.285706653 

zZ-gss 

z-pl0 0.296485886 

Tolerance 

z-pl 0.298748347 

Z-p6o 0.294660372 

2-p5 0.291921377 

Z-p7 0.291921377 

Z-gss 

z-plO 0.296485886 

Tolerance 

z-pl 0.297602719 

z-p6 

2-p5 0.291926649 

Z-p7 0.291926649 

Z-gss 

2z-plO 0.296305699 
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Actual Error Milltime Integrand Evaluations 

0.01 

0.009049608 

0.010589643 

0.010589643 

0.010589643 

0.000189590 

0.005 

0.002452051 

0.001635924 

0.004374919 

0.004374919 

0.000189590 

0.001 

0.001330894 

0.004369647 

0.004369647 

0.000009403 

14 

190 

571 

430 

676 

242 

12332 

7753 

3421 

676 

1721 

8770 

3829 

6616 

total actual 

10 

53 

153 35 

153 3, 

343 

170 

8857 

1105 175 

1105 175 

343 

1210 

1241 189 

1241 189 

3375 

reused 

118 

118 

930 

930 

1052 

1052



Page 258 

Test Problem SEGF23D 

Program Estimate Actual Error Milltime Integrand Evaluations 

total actual reused 

Tolerance 0.0005 

z-pl 0.297477407 0.001181111 2871 2010 

Z-po 

zp 

z-p7 0.294379170 0.001917126 19164 5321 759 4562 

zZ-gss 

z-pl0



Test Problem SEGF32D 

Program Estimate 

Tolerance 

zZ-pl 0.201342281 

z-p6 0.201388888 

z-p5 0.201388888 

Z-p7 0.201388888 

z-gss 0.201342281 

z-plO 

Tolerance 

z-pl 0.201342281 

Z-p6 0.201388888 

z-p5 0.201388888 

Z-p7 0.201388888 

zZ-gss 0.201342281 

z-plo 

Tolerance 

z-pl 0.201342281 

z-p6 0.201388888 

z-p5 0.201388888 

Z-p7 0.201388888 

Z-gss 0.201342281 

z-plO 
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Actual Error 

0.5 

0.000012854 

0.000033753 

0.000033753 

0.000033753 

0.000012854 

0.1 

0.000012854 

0.000033753 

0.000033753 

0.000033753 

0.000012854 

0.05 

0.000012854 

0.000033753 

0.000033753 

0.000033753 

0.000012854 

Milltime Integrand Evaluations 

21 

2a 

21 

21 

21 

21 

total actual reused 

7 

9 

9 5 4 

9 5 4 

7 

a 

3 

9 5 4 

So 5 4 

Wl 

Tl 

9 

2 5 4 

9 2 4 

a



Test Problem SEGF32D 

Program Estimate 

Tolerance 

z-pl 0.201342281 

z-p6 0.201388888 

z-p5 0.201388888 

z-p7 0.201388888 

zZ-gss 0.201342281 

z-plO 

Tolerance 

z-pl 0.201342281 

z-p6 0.201388888 

z-p5 0.201388888 

z-p7 0.201388888 

Z-gss 0.201342281 

z-plO 

Tolerance 

zZ-pl 0.201342281 

Z-p6 0.201357323 

2-p5 0.201357323 

Z-p7 0.201357323 

z-gss 0.201342281 

z-plO 
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Actual Error 

0.01 

0.000012854 

0.000033753 

0.000033753 

0.000033753 

0.000012854 

0.005 

0.000012854 

0.000033753 

0.000033753 

0.000033753 

0.000012854 

0.001 

0.000012854 

0.000002188 

0.000002188 

0.000002188 

0.000012854 

Milltime Integrand Evaluations 

total actual reused 

7 7 

8 2 

21 io 5 4 

21 2 5 4 

. 7 

7 7 

8 2 

2y 2 > 4 

21 9 5 4 

7 7 

7 u 

43 45 

113 45 13 32 

108 45 13 32 

a 7



Test Problem SEGF32D 

Program Estimate 

Tolerance 

z-pl 0.201342281 

2-p6 0.201357323 

z-p5 0.201357323 

z-p7 0.201357323 

z-gss 0.201342281 

z-plO 

Tolerance 

z-pl 0.201342281 

Z-p6 0.201357323 

z-p5 0.201357323 

Z-p7 0.201357323 

z-gss 0.201342281 

z-plo 

Tolerance 

z-pl 0.201342281 

Z-p6 0.201357323 

z-p5 0.201357323 

z-p7 0.201357323 

Z-gss 0.201354289 

z-plO 
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Actual Error 

0.0005 

0.000012854 

0.000002188 

0.000002188 

0.000002188 

0.000012854 

0.0001 

0.000012854 

0.000002188 

0.000002188 

0.000002188 

0.000012854 

0.00005 

0.000012854 

0.000002188 

0.000002188 

0.000002188 

0.000000846 

Milltime Integrand Evaluations 

43 

113 

108 

43 

113 

108 

43 

113 

108 

37 

total actual 

45 

45 

45 

45 

45 

45 

45 

45 

45 

35 

13 

13 

13 

13 

13 

13 

reused 

32 

32 

32 

32 

32 

32



Test Problem SEGF32D 

Program Estimate 

Tolerance 

z-pl 0.201342281 

z-p6 0.201355273 

z-p5 0.201355273 

Z-p7 0.201355273 

zZ-gss 0.201354289 

z-plO 

Tolerance 

Z-pl 0.201342281 

Z-p6 0.201355273 

z-p5 0.201355273 

Z-p7 0.201355273 

Z-gss 0.201354784 

z-ploO 

Tolerance 

Z-pl 0.201342281 

Z-p6 0.201355144 

z-p5 0.201355144 

Z-p7 0.201355144 

Z-plo 

zZ-gss 0.201355081 
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Actual Error 

0.00001 

0.000012854 

0000000138 

0.000000138 

0.000000138 

0.000000846 

0.000005 

0.000012854 

0.000000138 

0.000000138 

0.000000138 

0.000000351 

0.000001 

0.000012854 

0.000000009 

0.000000009 

0.000000009 

0.000000054 

Milltime Integrand Evaluations 

217 

591 

489 

37 

217 

591 

101 

874 

3200 

2109 

167 

total actual 

189 

189 

189 

35 

189 

189 

189 

Oi 

765 

765 

765 

147 

41 

41 

41 

41 

145 

145 

reused 

148 

148 

148 

148 

620 

620
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Test Problem SEGF33D 

Program Estimate Actual Error Milltime Integrand Evaluations 

total actual reused 

Tolerance 0.5 

z-pl 0.183339494 0.000014646 12 10 

2-p6 0.183414502 0.000060362 19 LT 

z-p5 0.183414502 0.000060362 51 7 9 8 

z-p7 0.183414502 0.000060362 47 17 2) 8 

2-gss 0.183339494 0.000014646 12 10 

z-pl0 0.183354140 0.000000000 616 343 

Tolerance 0.1 

z-pl 0.183339494 0.000014646 a2 10 

Z-p6 0.183414502 0.000060362 19 17 

z-p5 0.183414502 0.000060362 51 17 2) 8 

Z-p7 0.183414502 0.000060362 47 aly 2 8 

z2-gss 0.183339494 0.000014646 AZ 10 

z-plO 0.183354140 0.000000000 616 343 

Tolerance 0.05 

z-pl 0.183339494 0.000014646 12. 10 

2-p6 0.183414502 0.000060362 19) a7, 

Z-p5 0.183414502 0.000060362 Sy ay 9 8 

Z-p7 0.183414502 0.000060362 47 U7 oy 8 

z-gss 0.183339494 0.000014646 12 10 

z-plO 0.183354140 0.000000000 616 343



Test Problem SEGF33D 

Program Estimate 

Tolerance 

z-pl 0.183339494 

z—pe 0.183414502 

z-p5 0.183414502 

z-p7 0.183414502 

Z-gss 0.183339494 

z-pl0 0.183354140 

Tolerance 

z-pl 0.183339494 

z-po 0.183414502 

z-p5 0.183414502 

zZ-p7 0.183414502 

Z-gss 0.183339494 

z-plo 0.183354140 

Tolerance 

z-pl 0.183339494 

Z-pe 0.183357996 

z-p5 0.183357996 

Z-p7 0.183357996 

Z-gss 0.183339494 

z-plo 0.183354140 
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Actual Error Milltime Integrand Evaluations 

0.01 

0.000014646 

0.000060362 

0.000060362 

0.000060362 

0.000014646 

0.000000000 

0.005 

0.000014646 

0.000060362 

0.000060362 

0.000060362 

0.000014646 

0.000000000 

0.001 

0.000014646 

0.000003856 

0.000003856 

0.000003856 

0.000014646 

0.000000000 

12 

au 

47 

12 

616 

19 

51 

47 

616 

12 

179 

567 

426 

12 

616 

10 

a7 

17 

17 

10 

343 

10 

17 

17 

17 

10 

343 

10 

153 

153 

153 

10 

343 

35 

35 

total actual reused 

118 

118



Test Problem SEGF33D 

Program Estimate 

Tolerance 

z-pl 0.183339494 

Z-po 0.183357996 

zZ-p5 0.183357996 

Z-p7 0.183357996 

zZ-gss 0.183339494 

z-plO 0.183354140 

Tolerance 

z-pl 0.183339494 

Z-p6 0.183357996 

zZ-p5 0.183357996 

z-p7 0.183357996 

2-gss 0.183339494 

Z-plO 0.183354140 

Tolerance 

z-pl 0.183339494 

Z-po 0.183354383 

z-p5 0.183354383 

z-p7 0.183354383 

Z-gss 0.183339494 

zZ-plO 0.183354140 
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Actual Error 

0.0005 

0.000014646 

0.000003856 

0.000003856 

0.000003856 

0000014646 

0.000000000 

0.0001 

0.000014646 

0.000003856 

0.000003856 

0.000003856 

0.000014646 

0.000000000 

0.00005 

0.000014646 

0.000000243 

0.000000243 

0.000000243 

0.000014646 

0.000000000 

Milltime Integrand Evaluations 

ee 

179 

567 

426 

12 

616 

12 

179 

567 

426 

12 

616 

12 

1764 

8745 

3803 

12 

616 

total actual reused 

10 

153 

153 

153 

10 

343 

10 

153 

153 

153 

10 

343 

10 

1241 

1241 

1241 

10 

343 

35 

35 

35 

35 

189 

189 

118 

118 

118 

118 

1052 

1052



Test Problem SEGF33D 

Program Estimate 

Tolerance 

z-pl 0.183339494 

Z-po 0.183354383 

z-p5 0.183354383 

z-p7 0.183354383 

2-gss 0.183339494 

z-plO 0.183354140 

Tolerance 

z-pl 0.183353173 

Z-p6 0.183354383 

z-p5 0.183354383 

Z-p7 0.183354383 

Z-gss 0.183353173 

z-plo 0.183354140 

Tolerance 

Z-pl 0.183353173 

Z-po 

z-p5 

Z-p7 0.183354383 

z-ploO 0.183353173 

Z-gss 0.183354140 

Page 266 

Actual Error 

0.00001 

0.000014646 

0.000000243 

0.000000243 

0.000000243 

0.000014646 

0 .000000000 

0.000005 

0.000000967 

0.000000243 

0.000000243 

0.000000243 

0.000000967 

0.000000000 

0.000001 

0.000000967 

0.000000243 

0.000000967 

0.000000000 

Milltime Integrand Evaluations 

12 

1764 

8745 

3803 

12 

616 

412 

1764 

8745 

3803 

112 

616 

112 

3803 

112 

616 

total actual 

10 

1241 

1241 

1241 

10 

343 

90 

1241 

1241 

1241 

343 

90 

1241 

343 

189 

189 

189 

189 

189 

reused 

1052 

1052 

1052 

1052 

1052



Test Problem SEGF42D 

Program Estimate 

Tolerance 

z-pl 4.000000000 

z-pe 4.157862768 

z-p5 4.157862768 

zZ-p7 

z-gss 4.000000000 

z-plO 4.151291620 

Tolerance 

z-pl 4.000000000 

z-p6 4.158404123 

z-p5 4.157862768 

Z-p7 

Z-gss 4.000000000 

z-plo 4.151291620 

Tolerance 

z-pl 4.146517279 

z-p6 4.158404123 

2-p5 4.158404123 

Z-p7 

Z-gss 4.146517279 

z-plO 4.151291620 

Page 267 

Actual Error 

0.5 

0.151291030 

0.006571738 

0.006571738 

0.151291030 

0.000000590 

0.1 

0.151291030 

0.007113093 

0.006571738 

0.151291030 

0.000000590 

0.05 

0.004773751 

0.007113093 

0.007113093 

0.004773751 

0.000000590 

Milltime Integrand Evaluations 

11 

73 

125 

il 

102 

i. 

189 

125 

11 

102 

61 

189 

354 

61 

102 

total actual reused 

45 

45 

49 

AL7, 

45 

49 

35 

117 

aay: 

35 

49 

13 

13 

29 

32 

32



Page 268 

Test Problem SEGF42D 

Program Estimate Actual Error Milltime Integrani Evaluations 

total actual reused 

Tolerance 0.01 

z-pl 4.151050452 0.000240578 255 147 

z-p6 4.158404123 0.007113093 189 117 

z-p5 4.158404123 0.007113093 354 Al7 29 88 

z-p7 

z-gss 4.146441756 0.004849274 161 91 

z-plo 4.151291620 0.000000590 102 49 

Tolerance 0.005 

z-pl 4.151050452 0.000240578 295 S147, 

Z-p6 4.158404123 0.007113093 1s9 «117 

z-p5 4.158404123 0.007113093 354 «#117 29 88 

Z-p7 

Z-gss 4.148746104 0.002544926 213 do. 

2-ploO 4.151291620 0.000000590 102 49 

Tolerance 0.001 

z-pl 4.151229237 0.000061793 982" 567 

Z-p6 4.151312255 0.000021225 1358 765 

z-p5 4.158404123 0.007113093 354 117 29 88 

Z-p7 

Z-gss 4.151104853 0.000186177 165° 399 

z-plO 4.151291620 0.000000590 102 49



Test Problem SEGF42D 

Program Estimate 

Tolerance 

z-pl 4.151277237 

zZ-po 4.151312255 

z—p5 4.151493662 

z-p7 

z-gss 4.151194495 

z-plo 4.151291608 

Tolerance 

z-pl 4.151286920 

Z-p6 4.151292949 

zZ-p5 4.151316178 

Z-p7 

z-gss 4.151281468 

z-plo 4.151291608 

Tolerance 

z-pl 4.151288243 

z-pe 4.151292886 

z-p5 4.151310246 

Z-p7 

Z-gss 4.151284707 

z-plO 4.151291608 
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Actual Error 

0.0005 

0.000013793 

0.000021225 

0.000202632 

0.000096535 

0.000000578 

0.0001 

0.000004110 

0.000001919 

0.000025148 

0.000009652 

0.000000578 

0.00005 

0.000002787 

0.000001856 

0.000019216 

0.000006323 

0.000000578 

Milltime Integrami Evaluations 

1042 

1358 

2910 

1001 

471 

3793 

5235 

17919 

4003 

471 

4018 

5535 

22156 

5531 

471 

total actual reused 

595 

765 

693 

511 

225 

2191 

2925 

2133 

1631 

225 

2247 

3069 

2421 

2079 

225 

137 

401 

449 

556 

1732 

1972



Test Problem SEGF42D 

Program Estimate 

Tolerance 

z-pl 4.151290343 

Z-pe 

z-p5 

z-p7 

z-gss 4.151290029 

z-plo 4.151291608 

Tolerance 

2-pl 4.151290453 

Z-po 

z-p5 

zZ-p7 

Z-gss 

z-plo 4.151291608 
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Actual Error 

0.00001 

0.000000687 

0.000001001 

0.000000578 

0.000005 

0.000000577 

0.000000578 

Milltime Integrand Evaluations 

total actual reused 

15052 8687 

53204 7007 

471 225 

21603 9051 

471 225
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Test Problem SEGF43D 

Program Estimate Actual Error Milltime Integrand Evaluations 

total actual reused 

Tolerance 0.5 

z-pl 8.052928426 0.028806547 21 10 

Z-po 8.093352987 0.011618014 310 153 

z—p5 8.093352987 0.011618014 645 153 35 118 

z-p7 

Z-gss 8.052928426 0.028806547 21 10 

z-p 10 8.081734977 0.000000004 922 343 

Tolerance 0.1 

z-pl 8.052928426 0.028806547 21 10 

Z-po 8.094772398 0.013037425 1430 697 

z-p5 8.093352987 0.011618014 645 153 Si) 118 

Z-p7 

Z-gss 8.052928426 0.028806547 21 10 

z-p 10 8.081734977 0.000000004 922 343 

Tolerance 0.05 

z-pl 8.081168598 0.000566375 191 90 

Z-po 8.082329644 0.000594671 2625 1241 

z—p5 8.093352987 0.011618014 645 153 35) 118 

Z-p7 

Z-gss 8.081168598 0.000566375 193 90 

Z-p 10 8.081734977 0.000000004 922 343
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Test Problem SEGF43D 

Program Estimate Actual Error Milltime Integrand Evaluations 

total actual reused 

Tolerance 0.01 

z-pl 8.080826280 0.000908693 869 410 

z-po 8.082100084 0.000365111 18274 7769 

z-p5 8.094772398 0.013037425 4611 697 133 564 

zZ-p7 

zZ-gss 8.081168598 0.000566375 193 90 

z-p 10 8.081734977 0.000000004 922 343 

Tolerance 0.005 

z-pl 8.079790872 0.001944101 1225 570 

Z-pe 

z-p5 8.082329644 0.000594671 9001 1241 189 1052 

Z-p7 

Z-gss 8.08082628 0.000908693 907 410 

z-p 10 8.081734977 0.000000004 222 343 

Tolerance 0.001 

zZ-pl 8.081708613 0.000026360 1737 730 

Z-pe 

z-p5 

Z-p7 

2-gss 8.081710739 0.000024234 4702 1850 

z-p 10 8.081734977 0.000000004 922 343
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Test Problem SEGF43D 

Program Estimate Actual Error Milltime Integrani Evaluations 

total actual reused 

Tolerance 0.0005 

z-pl 8.081678187 0.000056786 9359 4250 

Z-pe 

z-p5 

zZ-p7 

z-gss 8.081706565 0.000028408 8287 2970 

z-plO
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Appendix 9 

The following pages contain the results of the mms of the basic 

adaptive simplex program on the set of test problems described in 

appendix 1.3. 

The milltime is given in millunits where 1 millunit is equal to 1000 

micro units. These timings are used for comparison only.
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Program Estimate Actual Error Milltime Integrand 

Evaluations 

Tolerance 0.5 

segfl2d 0.402368927 0.002368927 10 2 

segfl3d 0.145710672 0.002853529 17 14 

segf22d 0.083333333 0.047618649 2 3 

segf32d 0.107407407 0.000018389 8 2 

segf33d_ 0.035138887 0.000009324 14 14 

segf424d 0.543068297 0.001587272 13 =) 

Tolerance 0.1 

segfl2d 0.402368927 0.002368927 10 2 

segfl3d  0.145710672 0.002853529 AT 14 

segf22d 0.083333333 0.047618649 9 9 

segf32d  0.107407407 0.000018389 8 2 

segf33d 0.035138887 0.000009324 14 14 

segf42d  0.543068297 0.001587272 13 9 

Tolerance 0.05 

segfl2d 0.402368927 0.002368927 10 9. 

segfl3d  0.145710672 0.002853529 17 14 

segf22d 0.113835450 0.017116532 34 27 

segf32d_ 0.107407407 0.000018389 8 9 

segf33d 0.035138887 0.000009324 14 14 

segf42d 0.543068297 0.001587272 13 9



Problem Estimate 

Tolerance 

segfl2d 0.402368927 

segfl3d 0.145710672 

segf22d  0.125627117 

segf32d 0.107407407 

segf33d  0.035138887 

segf42d 0.543068297 

Tolerance 

segfl2d 0.402368927 

segfl3d_0.145710672 

segf22d 0.128884797 

segf32d_ 0.107407407 

segf33d  0.035138887 

segf42d 0.543068297 

Tolerance 

segfl2d 0.400431916 

segfl3d 0.143242691 

segf22d 0.130794666 

segf32d_ 0.107407407 

segf33d_ 0.035138887 

segf42a-0.541135811 
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Actual Error 

0.01 

0.002368927 

0.002853529 

0.005324865 

0.000018389 

0.000009324 

0.001587272 

0.005 

0.002368927 

0.002853529 

0.002067185 

0.000018389 

0.000009324 

0.001587272 

0.001 

0.000431916 

0.000385548 

0.000157316 

0.000018389 

0.000009324 

0.000345214 

Milltime Integrand 

10 

17 

232 

14 

13 

10 

Ly 

479 

14 

13 

10 

847 

1815 

14 

49 

Evaluations 

14 

171 

14 

14 

351 

14 

1323 

14 

27



Problem Estimate 

Tolerance 

segfl2d  0.400431916 

segfl3d  0.143052325 

segf22d  0.131059256 

segf32d  0.107407407 

segf33d  0.035138887 

segf42d 0.035138887 

Tolerance 

segfl2d  0.400431916 

segfl3d  0.142892380 

segf22d 0.130949391 

segf32d  0.107407407 

segf33d 0.035138887 

segf42d 0.541490925 

Tolerance 

segfl2a  0.400379259 

segfl3d  0.142871008 

segf22d  0.130930977 

segf32d 0.107407407 

seg f33d 0.035138887 

segf42a 0.541490925 
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Actual Error 

0.0005 

0.000431916 

0.000195182 

0.000107274 

0.000018389 

0.000009324 

0.000009324 

0.0001 

0.000431916 

0.000035237 

0.000002591 

0.000018389 

0.000009324 

0.000009900 

0.00005 

0.000379259 

0.000013865 

0.000021005 

0.000018389 

0.000009324 

0.000009900 

Milltime 

10 

1109 

3646 

14 

14 

135 

1897 

13929 

8 

14 

459 

236 

4085 

29313 

8 

14 

459 

Integrand 

Evaluations 

714 

2655 

14 

14 

99 

1218 

8361 

14 

243 

171 

2618 

15831 

2 

14 

243



Problem Estimate 

Tolerance 

segfl2d 0.400379259 

segfl3d 0.142861791 

segf22d 

segf32d_ 0.107407407 

segf33d_ 0.035145980 

segf42d 0.541491025 

Tolerance 

segfl2a 

segfl3d_ 0.142859759 

segf22d 

segf32d  0.107407407 

segf33d_ 0.035145980 

seg f42d 

Tolerance 

seg fl2d 

segfl3d 

seg f22d 

segf32d_ 0.107407407 

seg f42a 

seg f33d 0.035147809 
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Actual Error 

0.00001 

0.000379259 

0.000004648 

0.000018389 

0.000002231 

0.000010000 

0.000005 

0.000002616 

0.000018389 

0.000002231 

0.000001 

0.000018389 

0.000000402 

Milltime Integrand 

Evaluations 

236 171 

10065 6034 

8 9) 

se 322 

1484 783 

23527 «13258 

8 9 

444 322 

8 9 

1068 770
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